Science.gov

Sample records for density lipoprotein subclass

  1. Charge properties of low density lipoprotein subclasses.

    PubMed

    La Belle, M; Blanche, P J; Krauss, R M

    1997-04-01

    Measurements of electrophoretic mobility and particle size of low density lipoproteins (LDL) allowed use of standard electrokinetic theory to quantitate LDL charge characteristics from subjects with predominance of large LDL (pattern A, n = 9) or small LDL (pattern B, n = 8). Pattern A LDL was found to have significantly lower (P < or = 0.001) mobility (-0.22 +/- 0.01 micron s-1 cm V-1), surface potential (-4.2 +/- 0.3 mV) and charge density (-500 +/- 34 esu/cm2) than pattern B LDL (-0.25 +/- 0.01 micron s-1 cm V-1, -4.9 +/- 0.3 mV, and -580 +/- 30 esu/cm2), but no significant difference in particle valence (-22.0 +/- 1.4 for pattern A vs. -21.8 +/- 1.9 for pattern B). Thus, the greater mobility of pattern B LDL is due to similar net charge residing on a smaller particle. Comparison of subfractions in pattern B relative to pattern A LDL revealed greater surface potential in all pattern B subfractions and greater charge density in fractions of d > or = 1.032 g/ml. In a subset of subjects incubation with neuraminidase produced significant reductions in all LDL charge parameters for all subfractions, but did not abolish the differences between pattern A and B. Thus increased surface potential and charge density of unfractionated pattern B LDL is due both to charge properties of particles across the size and density spectrum as well as enrichment of pattern B LDL with smaller, denser particles that have higher surface charge density.

  2. Low-density lipoprotein subclass patterns and risk of myocardial infarction.

    PubMed

    Austin, M A; Breslow, J L; Hennekens, C H; Buring, J E; Willett, W C; Krauss, R M

    1988-10-01

    The association of low-density lipoprotein (LDL) subclass patterns with coronary heart disease was investigated in a case-control study of nonfatal myocardial infarction. Subclasses of LDL were analyzed by gradient gel electrophoresis of plasma samples from 109 cases and 121 controls. The LDL subclass pattern characterized by a preponderance of small, dense LDL particles was significantly associated with a threefold increased risk of myocardial infarction, independent of age, sex, and relative weight. Plasma levels of high-density lipoprotein cholesterol were decreased, and levels of triglyceride, very low-density lipoproteins, and intermediate-density lipoproteins were increased in subjects with this LDL subclass pattern. Multivariate logistic regression analyses showed that both high-density lipoprotein cholesterol and triglyceride levels contributed to the risk associated with the small, dense LDL subclass pattern. Thus, the metabolic trait responsible for this LDL subclass pattern results in a set of interrelated lipoprotein changes that lead to increased risk of coronary heart disease.

  3. Effects of dietary fat on high-density-lipoprotein subclasses are influenced by both apolipoprotein E isoforms and low-density-lipoprotein subclass patterns.

    PubMed

    Williams, P T; Dreon, D M; Krauss, R M

    1995-06-01

    We examined the effects of replacing dietary fat with carbohydrates on high-density-lipoprotein (HDL) subclasses as measured by nondenaturing polyacrylamide-gradient-gel electrophoresis. One hundred five men received a 6-wk low-fat diet (24% of total energy) and a 6-wk high-fat diet (46% of energy) in a crossover design. Absorbency of protein stain was measured within five HDL subclasses: HDL3c (7.2-7.8 nm), HDL3b (7.8-8.2 nm), HDL3a (8.2-8.8 nm), HDL2a (8.8-9.7 nm), and HDL2b (9.7-12 nm). The low-density-lipoprotein-(LDL) subclass pattern was determined by gradient-gel electrophoresis, with pattern B men defined as having an LDL-predominant peak diameter < or = 25.5 nm and an LDL distribution skewed toward larger size particles. On the high-fat diet, 18 men exhibited LDL-subclass pattern B and 87 men exhibited the alternative LDL pattern A. Twelve men had the apolipoprotein (apo) epsilon 2 allele. Replacing dietary fat with carbohydrates 1) significantly decreased HDL3a, HDL2a, and HDL2b; 2) reduced HDL2b significantly more in pattern A than in pattern B men; and 3) increased plasma HDL3b concentrations significantly more in those men with the epsilon 2 allele. Our results suggest that unfavorable HDL changes were significantly more likely to occur in men who had LDL-subclass pattern A or the apo epsilon allele than in men who had pattern B or lacked the epsilon 2 allele.

  4. Variations in high-density lipoprotein subclasses during the menstrual cycle.

    PubMed

    Williams, P T; Austin, M A; Krauss, R M

    1994-11-01

    In a study of 41 healthy premenopausal women, plasma high-density lipoprotein-2a (HDL2a) levels (ie, HDL of diameter 8.8 to 9.7 nm) were significantly higher during the luteal phase than during the follicular phase of the cycle. There was no significant variation in HDL2b or any of the HDL3 subclasses.

  5. Low-density lipoprotein subclass patterns and lipoprotein response to a reduced-fat diet in men.

    PubMed

    Dreon, D M; Fernstrom, H A; Miller, B; Krauss, R M

    1994-01-01

    Low-density lipoprotein (LDL) subclass pattern B is a common genetically influenced lipoprotein profile characterized by a predominance of small, dense LDL particles, and associated with increased levels of triglyceride-rich lipoproteins, reductions in high-density lipoprotein cholesterol (HDL-C), and increased risk of coronary artery disease compared to individuals with a predominance of larger LDL (pattern A). We sought to determine whether LDL subclass patterns are associated with response of plasma lipoprotein levels to changes in dietary fat and carbohydrate content. In a randomized cross-over study, 105 men consumed, for six weeks each, high-fat (46%) and low-fat (24%) solid food diets, with replacement of fat by carbohydrate. Diet-induced changes in subjects who exhibited pattern B (n = 18) following the high-fat diet differed significantly from those in subjects with pattern A (n = 87): in pattern B subjects LDL cholesterol (LDL-C) reductions were two-fold greater and plasma apolipoprotein (apo) B levels decreased significantly. These differences remained significant after adjustment for levels of plasma LDL-C, apo B, HDL-C, and body mass index. Thus, LDL subclass pattern is a factor that contributes significantly to interindividual variation of plasma lipoprotein response to a low-fat, high-carbohydrate diet.

  6. Inheritance of low-density lipoprotein subclass patterns: results of complex segregation analysis.

    PubMed

    Austin, M A; King, M C; Vranizan, K M; Newman, B; Krauss, R M

    1988-12-01

    Heterogeneity in the size of low-density lipoprotein (LDL) particles was used to identify two distinct patterns based on gradient gel electrophoresis analysis. These two phenotypes, LDL subclass pattern A and pattern B, were characterized by a predominance of large, buoyant LDL particles and small, dense LDL particles, respectively. The inheritance of these LDL subclass patterns was investigated in a sample of 61 healthy families including 301 individuals. LDL subclass pattern B was present in 31% of the subjects, with the prevalence varying by gender, age, and (in women) menopausal status. Complex segregation analysis suggested a major locus controlling LDL subclass patterns. The model providing the best fit to the data included a dominant mode of inheritance with a frequency of .25 for the allele determining LDL subclass pattern B and reduced penetrance for men under age 20 and for premenopausal women. Thus, the allele for the LDL subclass pattern characterized by a predominance of small, dense LDL particles appears to be very common in the population, although not usually expressed until adulthood in men and until after menopause in women. The presence of a major gene controlling LDL subclass could explain much of the familial aggregation of lipid and apolipoprotein levels and may be involved in increased risk of coronary heart disease.

  7. Low-density-lipoprotein subclasses and response to a low-fat diet in healthy men.

    PubMed

    Krauss, R M; Dreon, D M

    1995-08-01

    Lipid and lipoprotein responses to reduced dietary fat intake were investigated in relation to differences in distribution of low-density-lipoprotein (LDL) subclasses among 105 healthy men consuming high-fat (46% fat) and low-fat (24% fat) diets in random order for 6 wk each. With high-fat diets, 87 subjects had predominantly large, buoyant LDL (pattern A), whereas the remainder had primarily smaller, denser LDL (pattern B). With low-fat diets, 36 men changed from pattern A to B. Compared with the 51 men with pattern A with both diets (stable A group), men in the stable B group (n = 18) had significantly greater reductions in plasma LDL cholesterol, apolipoprotein B, and mass of mid-sized (LDL II) and small (LDL III) LDL subfractions. In both the stable A and change groups, there was a shift in LDL particle mass from larger, lipid-enriched (LDL I and II) to smaller, lipid-depleted (LDL III and IV) subfractions, suggestive of change in LDL composition with minimal change in particle number, and consistent with the observation of reduced plasma LDL cholesterol without reduced apolipoprotein B. Stable B subjects had significantly greater increases in the largest very-low-density-lipoprotein subfraction with the low-fat diet than the stable A group, and also had greater decreases in the high-density-lipoprotein (HDL) subclass HDL3 but smaller reductions in HDL2. Genetic and environmental factors influencing LDL subclass distributions thus may also contribute substantially to interindividual variation in plasma lipoprotein response to a low-fat diet.

  8. Linkage analysis of low-density lipoprotein subclass phenotypes and the apolipoprotein B gene.

    PubMed

    LaBelle, M; Austin, M A; Rubin, E; Krauss, R M

    1991-01-01

    A common heritable phenotype has recently been identified which is characterized by a relative abundance of small, dense low-density lipoproteins (LDL), and mild elevations of plasma triglycerides and reductions in plasma high-density lipoproteins (HDL) cholesterol. This phenotype, designated LDL subclass phenotype B, has been associated with up to a three-fold increase in coronary disease risk. Complex segregation analysis in two large family studies has demonstrated that LDL subclass phenotype B is influenced by an allele at a single genetic locus with a population frequency of 0.25-0.3, and autosomal dominant inheritance, but with full penetrance only in males age 20 and over and in postmenopausal women. Since apolipoprotein B (apoB) is the principal protein component of LDL, linkage analysis was used to investigate possible linkage between the phenotype B phenotype and the apoB gene, using a variable number of tandem repeats site located 0.5 kb from the 3' end of the apoB gene. In 6 informative families including only family members in the penetrant classes, a total LOD score of -7.49 was found at a recombination fraction of 0.001. Thus, under the assumptions of the single gene model, it is unlikely that the apoB locus controls LDL subclass phenotype B.

  9. Associations of hepatic and lipoprotein lipase activities with changes in dietary composition and low density lipoprotein subclasses.

    PubMed

    Campos, H; Dreon, D M; Krauss, R M

    1995-03-01

    To test whether lipoprotein lipase or hepatic lipase activities are associated with lipoprotein subclasses, and to assess the effects of dietary manipulations on these associations, enzyme activities were measured in postheparin plasma (75 U heparin/kg) from 43 healthy men who were randomly allocated to a low-fat (24% fat, 60% carbohydrate) and a high-fat (46% fat, 38% carbohydrate) diet for 6 weeks each in a cross-over design. The high-fat diet significantly increased both lipoprotein lipase (+20%, P = 0.02) and hepatic lipase (+8%, P = 0.007) activities. On both diets, hepatic lipase activity was significantly positively correlated (P < 0.01) with plasma apolipoprotein (apo)B concentrations, and with levels of small dense low density lipoprotein (LDL) III, measured by analytic ultracentrifugation as mass of lipoproteins of flotation rate (Sof) 3-5, while lipoprotein lipase activity was inversely associated with levels of LDL III (P < 0.05). Despite the cross-sectional correlations, increased hepatic lipase activity was not significantly correlated with the reduction in LDL III mass observed on the high-fat diet. Rather, changes in hepatic lipase were correlated inversely with changes in small very low density lipoproteins (VLDL) of Sof 20-40, and small intermediate density lipoproteins (VLDL) of Sof 10-16. Moreover, changes in lipoprotein lipase activity were not significantly correlated with changes in small LDL, but were positively associated with changes in small IDL of Sof 10-14, and large LDL I of Sof 7-10. Thus, while increased levels of small dense LDL are associated with a metabolic state characterized by relatively increased hepatic lipase and decreased lipoprotein lipase activity, changes in these enzymes do not appear to be primary determinants of diet-induced changes in levels of this LDL subfraction. On the other hand, increased lipoprotein lipase activity induced by high-fat feeding may contribute to the accumulation in plasma of both large LDL I

  10. Associations of age, adiposity, menopause, and alcohol intake with low-density lipoprotein subclasses.

    PubMed

    Williams, P T; Krauss, R M

    1997-06-01

    We used nondenaturing polyacrylamide gradient gel electrophoresis to examine the associations of age, adiposity, menopause, and alcohol intake with LDL subclasses in 355 individuals. The absorbency of protein stain was used as an index of mass concentrations at intervals of 0.05 nm within seven LDL subclasses: LDL-IVB (22.0 to 23.2 nm), LDL-IVA (23.3 to 24.1 nm), LDL-IIIB (24.2 to 24.6 nm), LDL-IIIA (24.7 to 25.5 nm), LDL-II (25.5 to 26.4 nm), LDL-I (26.0 to 28.5 nm), and intermediate-size lipoproteins (ISL, 28.0 to 32.0 nm). Age and alcohol intake were obtained from questionnaires, and body mass index was computed from clinic measurements of weight and height. In adult men, body mass index correlated positively with LDL-III, and alcohol intake correlated positively with larger LDL-I. Age was positively correlated with LDL-IIIA and ISL in both men and women and with LDL-IIIB and LDL-II in women. Postmenopausal women had higher LDL-IIIA, LDL-II, and ISL than both premenopausal and premenarchal females. Adult males, > or = 18 years old, had higher levels of LDL-IIIA and LDL-II than younger males. Adjustment for fasting plasma triglyceride levels eliminated the significant associations between age and LDL-IIIA in both men and women and between age and LDL-II in women. Partial correlation analyses showed that reductions in the LDL peak diameter associated with increasing age, male sexual maturation, menopause, and adiposity are attributable to increases in the LDL-IIIA subclass. Thus, densitometric measurements of protein-stained gradient gels reveal specific relationships between LDL subclasses and age, adiposity, and alcohol intake beyond those identified by the LDL peak or average diameter.

  11. Low density lipoprotein subclasses and response to a low-fat diet in healthy men

    SciTech Connect

    Krauss, R.M.; Dreon, D.M.

    1994-11-01

    Lipid and lipoprotein response to reduced dietary fat intake was investigated in relation to differences in distribution of LDL subclasses among 105 healthy men consuming high-fat (46%) and low-fat (24%) diets in random order for six weeks each. On high-fat, 87 subjects had predominantly large, buoyant LDL as measured by gradient gel electrophoresis and confirmed by analytic ultracentrifugation (pattern A), while the remainder had primarily smaller, denser LDL (pattern B). On low-fat, 36 men changed from pattern A to B. Compared with the 51 men in the stable A group, men in the stable B group (n = 18) had a three-fold greater reduction in LDL cholesterol and significantly greater reductions in plasma apoB and mass of intermediate (LDL II) and small (LDL III) LDL subtractions measured by analytic ultracentrifugation. In both stable A and change groups, reductions in LDL-cholesterol were not accompanied by reduced plasma apoB, consistent with the observation of a shift in LDL particle mass from larger, lipid-enriched (LDL I and II) to smaller, lipid-depleted (LDL III and IV) subfractions, without significant change in particle number. Genetic and environmental factors influencing LDL subclass distributions thus may also contribute substantially to interindividual variation in response to a low-fat diet.

  12. [Cholesterol of the high-density lipoprotein subclasses in the native inhabitants of the Chukchi National Autonomous Okrug].

    PubMed

    Polesskiĭ, V A; Chepurnenko, N V; Koshechkin, V A; Morozov, V V; Gerasimova, E N

    1980-12-01

    The authors studied the content of total cholesterol (Ch), triglycerides (TG), CS of high density lipoprotein (HDL2 and HDL3) subclasses and testosterone in blood plasma of 30-59-year-old males, natives or newcomers of Chukotsk, and compared the results with the corresponding values determined in the male population of Moscow. It was established that the mean HDL Ch concentration in blood plasma was higher and the content of TG and to a lesser degree that of total CS, was lower in the Chukchi males than in the male Moscow population and in the newcomers who were examined. It was also shown that in hypo- and hyper-alphalipoproteinemia in all groups examined, the content of HDL2 Ch changed for the most part (decreased or increased, respectively) while the level of HDL3 Ch remained relatively stable.

  13. Trypanosome lytic factor, a subclass of high-density lipoprotein, forms cation-selective pores in membranes.

    PubMed

    Molina-Portela, Maria del Pilar; Lugli, Elena B; Recio-Pinto, Esperanza; Raper, Jayne

    2005-12-01

    Trypanosome lytic factor 1 (TLF1) is a subclass of human high-density lipoprotein that kills some African trypanosomes thereby protecting humans from infection. We have shown that TLF1 is a 500 kDa HDL complex composed of lipids and at least seven different proteins. Here we present evidence outlining a new paradigm for the mechanism of lysis; TLF1 forms cation-selective pores in membranes. We show that the replacement of external Na+ (23 Da) with the larger tetramethylammonium+, choline+ and tetraethylammonium+ ions (74 Da, 104 Da and 130 Da) ameliorates the osmotically driven swelling and lysis of trypanosomes by TLF1. Confirmation of cation pore-formation was obtained using small unilamellar vesicles incubated with TLF1; these showed the predicted change in membrane potential expected from an influx of sodium ions. Using planar lipid bilayer model membranes made from trypanosome lipids, which allow the detection of single channels, we found that TLF1 forms discrete ion-conducting channels (17 pS) that are selective for potassium ions over chloride ions. We propose that the initial influx of extracellular Na+ down its concentration gradient promotes the passive entry of Cl- through preexisting Cl- channels. The net influx of both Na+ and Cl- create an osmotic imbalance that leads to passive water diffusion. This loss of osmoregulation results in cytoplasmic vacuolization, cell swelling and ultimately trypanosome lysis. PMID:16202458

  14. Associations of age, adiposity, alcohol intake, menstrual status, and estrogen therapy with high-density lipoprotein subclasses.

    PubMed

    Williams, P T; Vranizan, K M; Austin, M A; Krauss, R M

    1993-11-01

    We used nondenaturing polyacrylamide gradient gel electrophoresis to examine the associations of age, adiposity, alcohol intake, and exogenous estrogen with high-density lipoprotein (HDL) subclasses in 427 members of 51 principally Mormon kindreds. The absorbency of protein stain was used as an index of mass concentrations at intervals of 0.01 nm within five HDL subclasses: HDL3c (7.2 to 7.8 nm), HDL3b (7.8 to 8.2 nm), HDL3a (8.2 to 8.8 nm), HDL2a (8.8 to 9.7 nm), and HDL2b (9.7 to 12 mm). Age and alcohol intake were obtained from questionnaires, and body mass index was computed from clinic measurements as weight (kg)/height (m)2. The results suggest that HDL3b concentrations were higher after menopause than before. Adult men (> or = 18 years old) had significantly higher HDL3c and HDL3b and significantly lower HDL2b and HDL2a levels than younger boys. Compared with the women, adult men had higher levels of HDL3c and HDL3b and lower levels of HDL2b, HDL2a, and larger-diameter HDL3a particles. There were no significant differences between the HDL profiles of women and younger boys, suggesting that divergence in HDL occurs during puberty. Eighty-eight percent of the increase in HDL associated with estrogen replacement in postmenopausal women occurred within HDL3a and HDL2a. Reported alcohol intake in adult men correlated with two HDL regions: one within the HDL2b region and a second within the HDL3a/2a region, whereas in women the positive correlation between alcohol and HDL levels was within the HDL2b region only. In both men and premenopausal adult women, increasing levels of body mass index were associated with higher levels of HDL3b and lower levels of HDL2b.(ABSTRACT TRUNCATED AT 250 WORDS)

  15. Lipoprotein subclasses in genetic studies: the Berkeley data set.

    PubMed

    Krauss, R M; Williams, P T; Blanche, P J; Cavanaugh, A; Holl, L G; Austin, M A

    1993-01-01

    In conjunction with a study examining the inheritance of LDL subclass patterns in a healthy population, measurements of lipids, lipoproteins, and lipoprotein subclasses were performed in 301 individuals in 27 kindreds. Questionnaires were used to obtain information on use of medications, hormones, cigarettes, and alcohol. Laboratory data from this study (the Berkeley data set) include measurements of LDL and HDL size subclasses by nondenaturing gradient gel electrophoresis, and measurement of apolipoprotein A-I by radial immunodiffusion.

  16. Effects of Lipid-Lowering Drugs on High-Density Lipoprotein Subclasses in Healthy Men—A Randomized Trial

    PubMed Central

    Spenrath, Nadine; Montalto, Giuseppe; Krone, Wilhelm; Gouni-Berthold, Ioanna

    2014-01-01

    Context and Objective Investigating the effects of lipid-lowering drugs on HDL subclasses has shown ambiguous results. This study assessed the effects of ezetimibe, simvastatin, and their combination on HDL subclass distribution. Design and Participants A single-center randomized parallel 3-group open-label study was performed in 72 healthy men free of cardiovascular disease with a baseline LDL-cholesterol of 111±30 mg/dl (2.9±0.8 mmol/l) and a baseline HDL-cholesterol of 64±15 mg/dl (1.7±0.4 mmol/l). They were treated with ezetimibe (10 mg/day, n = 24), simvastatin (40 mg/day, n = 24) or their combination (n = 24) for 14 days. Blood was drawn before and after the treatment period. HDL subclasses were determined using polyacrylamide gel-tube electrophoresis. Multivariate regression models were used to determine the influence of treatment and covariates on changes in HDL subclass composition. Results Baseline HDL subclasses consisted of 33±10% large, 48±6% intermediate and 19±8% small HDL. After adjusting for baseline HDL subclass distribution, body mass index, LDL-C and the ratio triglycerides/HDL-C, there was a significant increase in large HDL by about 3.9 percentage points (P<0.05) and a decrease in intermediate HDL by about 3.5 percentage points (P<0.01) in both simvastatin-containing treatment arms in comparison to ezetimibe. The parameters obtained after additional adjustment for the decrease in LDL-C indicated that about one third to one half of these effects could be explained by the extent of LDL-C-lowering. Conclusions In healthy men, treatment with simvastatin leads to favorable effects on HDL subclass composition, which was not be observed with ezetimibe. Part of these differential effects may be due to the stronger LDL-C-lowering effects of simvastatin. Trial Registration ClinicalTrials.gov NCT00317993 PMID:24662777

  17. Conservation of apolipoprotein A-I's central domain structural elements upon lipid association on different high-density lipoprotein subclasses.

    PubMed

    Oda, Michael N; Budamagunta, Madhu S; Geier, Ethan G; Chandradas, Sajiv H; Shao, Baohai; Heinecke, Jay W; Voss, John C; Cavigiolio, Giorgio

    2013-10-01

    The antiatherogenic properties of apolipoprotein A-I (apoA-I) are derived, in part, from lipidation-state-dependent structural elements that manifest at different stages of apoA-I's progression from lipid-free protein to spherical high-density lipoprotein (HDL). Previously, we reported the structure of apoA-I's N-terminus on reconstituted HDLs (rHDLs) of different sizes. We have now investigated at the single-residue level the conformational adaptations of three regions in the central domain of apoA-I (residues 119-124, 139-144, and 164-170) upon apoA-I lipid binding and HDL formation. An important function associated with these residues of apoA-I is the activation of lecithin:cholesterol acyltransferase (LCAT), the enzyme responsible for catalyzing HDL maturation. Structural examination was performed by site-directed tryptophan fluorescence and spin-label electron paramagnetic resonance spectroscopies for both the lipid-free protein and rHDL particles 7.8, 8.4, and 9.6 nm in diameter. The two methods provide complementary information about residue side chain mobility and molecular accessibility, as well as the polarity of the local environment at the targeted positions. The modulation of these biophysical parameters yielded new insight into the importance of structural elements in the central domain of apoA-I. In particular, we determined that the loosely lipid-associated structure of residues 134-145 is conserved in all rHDL particles. Truncation of this region completely abolished LCAT activation but did not significantly affect rHDL size, reaffirming the important role of this structural element in HDL function. PMID:23984834

  18. The hypertriglyceridemia of acquired immunodeficiency syndrome is associated with an increased prevalence of low density lipoprotein subclass pattern B

    SciTech Connect

    Feingold, K.R.; Krauss, R.M.; Pang, M.; Doerrler, W.; Jensen, P.; Grunfeld, C. Lawrence Berkeley Lab., CA )

    1993-06-01

    To better define the role of environmental factors on LDL phenotypic expression, the authors determined LDL patterns in patients with acquired immunodeficiency syndrome (AIDS), and infection characterized by hypertriglyceridemia and weight loss. Similar to previous studies, plasma triglyceride levels were increased, whereas plasma cholesterol, LDL cholesterol, and HDL cholesterol levels were decreased in the AIDS subjects compared to those in age-matched controls. The percentage of AIDS subjects with the LDL B phenotype was increased 2.5-fold, demonstrating an increased prevalence of the LDL B phenotype in an acquired form of hypertriglyceridemia. For each LDL phenotype in AIDS, serum triglyceride levels were higher than the same phenotypic pattern in controls, with the most marked elevations in triglycerides found in AIDS subjects with the LDL B phenotype. In contrast to what was observed in controls, HDL cholesterol levels were decreased in all AIDS subjects and were unrelated to LDL pattern. Total and LDL cholesterol levels were higher in controls with the LDL B phenotype than in those with the LDL A phenotype, but there was no difference in total and LDL cholesterol in AIDS subjects with LDL B compared to A. On multiple regression analysis in subjects with AIDS, plasma triglyceride levels, age, and HDL cholesterol all contribute to the occurrence of the LDL B phenotype, but elevations in plasma triglyceride levels are the strongest independent predictor. Body mass index was not a predictor of LDL B phenotype in AIDS. These results suggest that disturbances in triglyceride metabolism that are caused by AIDS lead to the appearance of the LDL subclass B phenotype and provide further evidence that environmental or disease states that perturb lipid metabolism can produce an increased prevalence of the LDL B phenotype. 35 refs., 1 fig., 5 tabs.

  19. Sleep Apnea Is Related to the Atherogenic Phenotype, Lipoprotein Subclass B

    PubMed Central

    Luyster, Faith S.; Kip, Kevin E.; Drumheller, Oliver J.; Rice, Thomas B.; Edmundowicz, Daniel; Matthews, Karen; Reis, Steven E.; Strollo, Patrick J.

    2012-01-01

    Study Objectives: Sleep apnea has been implicated as an independent risk factor for atherosclerotic coronary artery disease (CAD). An association between the severity of sleep apnea and total cholesterol levels has previously been reported. However, the association with small dense low density lipoprotein (LDL) cholesterol concentration (subclass B), one of the strongest predictors of atherosclerosis, is unknown. We examined the relationship between sleep apnea and LDL subclass B, considering body size. Methods: This is a cross-sectional observational cohort of participants enrolled in a cardiovascular health study. Sleep apnea was assessed with a validated portable monitor. Lipid panels included total cholesterol, triglycerides, high density lipoprotein cholesterol, LDL cholesterol, and LDL subclasses A, B, and A/B. Sleep apnea was analyzed categorically using the apnea hypopnea index (AHI). Results: A total of 519 participants were evaluated. Mean age was 58.7 ± 7.4 years; BMI was 29.6 ± 5.7; 65% were female; 59% were Caucasian, and 37% were African American. Among participants with abnormal waist circumference by ATP III criteria, moderate to severe sleep apnea (AHI ≥ 25) was not independently associated with LDL subclass B. In contrast, among participants with normal waist circumference, moderate to severe sleep apnea was associated with 4.5-fold odds of having LDL subclass B. Conclusions: Sleep apnea is independently associated with an atherogenic phenotype (LDL subclass B) in non-obese individuals. The association between sleep apnea and LDL subclass B in those with normal waist circumference may account, in part, for the increased risk of atherosclerosis and subsequent vascular events. Citation: Luyster FS; Kip KE; Drumheller OJ; Rice TB; Edmundowicz D; Matthews K; Reis SE; Strollo PJ. Sleep apnea is related to the atherogenic phenotype, lipoprotein subclass B. J Clin Sleep Med 2012;8(2):155-161. PMID:22505860

  20. Effects of cardiovascular lifestyle change on lipoprotein subclass profiles defined by nuclear magnetic resonance spectroscopy

    PubMed Central

    Decewicz, David J; Neatrour, David M; Burke, Amy; Haberkorn, Mary Jane; Patney, Heather L; Vernalis, Marina N; Ellsworth, Darrell L

    2009-01-01

    Background Low-density lipoprotein (LDL) cholesterol lowering is a primary goal in clinical management of patients with cardiovascular disease, but traditional cholesterol levels may not accurately reflect the true atherogenicity of plasma lipid profiles. The size and concentration of lipoprotein particles, which transport cholesterol and triglycerides, may provide additional information for accurately assessing cardiovascular risk. This study evaluated changes in plasma lipoprotein profiles determined by nuclear magnetic resonance (NMR) spectroscopy in patients participating in a prospective, nonrandomized lifestyle modification program designed to reverse or stabilize progression of coronary artery disease (CAD) to improve our understanding of lipoprotein management in cardiac patients. Results The lifestyle intervention was effective in producing significant changes in lipoprotein subclasses that contribute to CAD risk. There was a clear beneficial effect on the total number of LDL particles (-8.3%, p < 0.05 compared to matched controls), small dense LDL particles (-9.5%, p < 0.05), and LDL particle size (+0.8%; p < 0.05). Likewise, participants showed significant improvement in traditional CAD risk factors such as body mass index (-9.9%, p < 0.01 compared to controls), total cholesterol (-5.5%, p < 0.05), physical fitness (+37.2%, p < 0.01), and future risk for CAD (-7.9%, p < 0.01). Men and women responded differently to the program for all clinically-relevant variables, with men deriving greater benefit in terms of lipoprotein atherogenicity. Plasma lipid and lipoprotein responses to the lifestyle change program were not confounded by lipid-lowering medications. Conclusion In at risk patients motivated to participate, an intensive lifestyle change program can effectively alter traditional CAD risk factors and plasma lipoprotein subclasses and may reduce risk for cardiovascular events. Improvements in lipoprotein subclasses are more evident in men compared to

  1. The associations of high-density lipoprotein subclasses with insulin and glucose levels, physical activity, resting heart rate, and regional adiposity in men with coronary artery disease: the Stanford Coronary Risk Intervention Project baseline survey.

    PubMed

    Williams, P T; Haskell, W L; Vranizan, K M; Krauss, R M

    1995-01-01

    We used nondenaturing polyacrylamide gradient gel electrophoresis to examine the associations of high-density lipoprotein (HDL) subclasses with adiposity, physical activity, resting heart rate (an indicator of sympathetic drive), and plasma insulin and glucose levels in 97 men with angiographically documented coronary artery disease. These men neither smoked nor used medications known to affect lipoproteins. The absorbency of protein stain was used as an index of mass concentrations at intervals of 0.01 nm within five HDL subclasses: HDL3c (7.2 to 7.8 nm), HDL3b (7.8 to 8.2 nm), HDL3a (8.2 to 8.8 nm), HDL2a (8.8 to 9.7 nm), and HDL2b (9.7 to 12 nm). HDL peak diameter was determined from the predominant peak of the HDL particle distribution when plotted against particle diameter. Four men who were non-insulin-dependent diabetics as defined by a fasting glucose exceeding 140 mg/dL had significantly higher plasma HDL3b levels and significantly smaller HDL peak diameters than nondiabetic men, and were therefore excluded from further analyses. In the remaining 93 nondiabetic men, plasma HDL3b levels correlated positively with indices of truncal obesity (waist to hip ratio and subscapular skinfold), whereas plasma HDL2b levels correlated negatively with indices of total adiposity (body mass index [BMI]) and truncal obesity (subscapular and abdominal skinfold). Fasting plasma insulin levels correlated negatively with HDL3a, HDL2a, and HDL2b. Obesity significantly affected the relationships of resting heart rate with insulin and HDL subclasses.(ABSTRACT TRUNCATED AT 250 WORDS)

  2. The specific amino acid sequence between helices 7 and 8 influences the binding specificity of human apolipoprotein A-I for high density lipoprotein (HDL) subclasses: a potential for HDL preferential generation.

    PubMed

    Carnemolla, Ronald; Ren, Xuefeng; Biswas, Tapan K; Meredith, Stephen C; Reardon, Catherine A; Wang, Jianjun; Getz, Godfrey S

    2008-06-01

    Humans have two major high density lipoprotein (HDL) sub-fractions, HDL(2) and HDL(3), whereas mice have a monodisperse HDL profile. Epidemiological evidence has suggested that HDL(2) is more atheroprotective; however, currently there is no direct experimental evidence to support this postulate. The amino acid sequence of apoA-I is a primary determinant of HDL subclass formation. The majority of the alpha-helical repeats in human apoA-I are proline-punctuated. A notable exception is the boundary between helices 7 and 8, which is located in the transitional segment between the stable N-terminal domain and the C-terminal hydrophobic domain. In this study we ask whether the substitution of a proline-containing sequence (PCS) separating other helices in human apoA-I for the non-proline-containing sequence (NPCS) between helices 7 and 8 (residues 184-190) influences HDL subclass association. The human apoA-I mutant with PCS2 replacing NPCS preferentially bound to HDL(2). In contrast, the mutant where PCS3 replaced NPCS preferentially associated with HDL(3). Thus, the specific amino acid sequence between helices 7 and 8 influences HDL subclass association. The wild-type and mutant proteins exhibited similar physicochemical properties except that the two mutants displayed greater lipid-associated stability versus wild-type human apoA-I. These results focus new attention on the influence of the boundary between helices 7 and 8 on the properties of apoA-I. The expression of these mutants in mice may result in the preferential generation of HDL(2) or HDL(3) and allow us to examine experimentally the anti-atherogenicity of the HDL subclasses.

  3. Expression of human apolipoprotein A-I in transgenic mice results in reduced plasma levels of murine apolipoprotein A-I and the appearance of two new high density lipoprotein size subclasses.

    PubMed

    Rubin, E M; Ishida, B Y; Clift, S M; Krauss, R M

    1991-01-15

    In Western societies high density lipoprotein (HDL) levels correlate inversely with the risk for coronary heart disease. The primary protein component of both human and mouse HDL is apolipoprotein A-I (apoAI), which comprises greater than 70% of HDL protein and 30% of HDL mass. Human HDLs include particles of several distinct size subpopulations, whereas HDLs from inbred C57BL/6 mice contain a single population of particles. To study the regulation of apoAI expression and its role in HDL assembly, we created transgenic C57BL/6 mice containing the human apoAI gene. Two independent lines of transgenic mice with approximately twice the normal plasma levels of total apoAI were studied. The level of mouse apoAI is reduced greater than 4-fold in both transgenic lines, comprising only 4% of total plasma apoAI levels in one transgenic line and 13% in the other. We demonstrate that the mechanism responsible for the decrease in mouse apoAI is posttranscriptional. Parallel to the replacement of mouse with human apoAI, the single HDL species normally present in the plasma of C57BL/6 is replaced by two HDL subclasses similar in size to human HDL2b and HDL3a. The changes in murine apolipoprotein levels and HDL subclass size are inherited by all transgenic offspring of the two founder animals. These results suggest a dominant role of apoAI in determining the HDL particle size distribution and a mechanism involving expression of human apoAI transgenes that alters the plasma levels of mouse apoAI.

  4. Lipoprotein subclasses in the Monitored Atherosclerosis Regression Study (MARS). Treatment effects and relation to coronary angiographic progression.

    PubMed

    Mack, W J; Krauss, R M; Hodis, H N

    1996-05-01

    Accumulating evidence suggests that triglyceride-rich lipoproteins contribute to coronary artery disease. Using data from the Monitored Atherosclerosis Regression Study, an angiographic trial of middle-aged men and women randomized to lovastatin or placebo, we investigated relationships between lipoprotein subclasses and progression of coronary artery atherosclerosis. Coronary artery lesion progression was determined by quantitative coronary angiography in low-grade ( < 50% diameter stenosis), high-grade ( > or = 50% diameter stenosis), and all coronary artery lesions in 220 baseline/2-year angiogram pairs. Analytical ultracentrifugation was used to measure lipoprotein masses that were statistically evaluated for treatment group differences and relationships to progression of coronary artery atherosclerosis. All low density lipoprotein (LDL), intermediate density lipoprotein (IDL), and very low density lipoprotein (VLDL) masses were significantly lowered and all high density lipoprotein (HDL) masses were significantly raised with lovastatin therapy. The mass of smallest LDL (Svedberg flotation rate [Sf] 0 to 3), IDL (Sf 12 to 20), all VLDL subclasses (Sf 20 to 60, Sf 60 to 100, and Sf 100 to 400), and peak LDL flotation rate were significantly related to the progression of coronary artery lesions, specifically low-grade lesions. Greater baseline levels of HDL3, were related to a lower likelihood of coronary artery lesion progression. In multivariate analyses, small VLDL (Sf 20 to 60) and HDL3 mass were the most important correlates of coronary artery lesion progression. These results provide further evidence for the importance of triglyceride-rich lipoproteins in the progression of coronary artery disease. In addition, these results present new evidence for the possible protective role of HDL3 in the progression of coronary artery lesions. More specific information on coronary artery lesion progression may be obtained through the study of specific apolipoprotein B

  5. Hypertriglyceridemia and unusual lipoprotein subclass distributions associated with late pregnancy

    SciTech Connect

    Forte, T.M.; Kretchmer, N.; Silliman, K. )

    1991-03-15

    In the human adult population elevated plasma triglyceride (TG) levels are associated with decreased high density lipoprotein-cholesterol (HDL-C) levels and decreased HDL and LDL particle sizes. Late pregnancy is a hypertriglyceridemic state where little is known about LDL and HDL subpopulation distribution. Plasma lipids, apolipoproteins (apo) and lipoprotein subpopulations were examined in 36 pregnant women at 36 wk pregnancy and 6 wk postpartum and correlated with HDL and LDL size. There was a significant decrease in LDL diameter at 36 wk pre, 25 {plus minus} 0.7 nm compared, with 6 wk post, 26.4 {plus minus} 0.8 nm. A total of 97% of the 36 wk pre subjects had small dense LDL which paralleled increases in apoB concentration. Unlike LDL HDL at 36 wks pre showed a significant increase in larger sized particles where HDL{sub 2b} predominated. There was a positive correlation between HDL{sub 2b} mass and apoAl and HDL-C concentrations. Late pregnancy is a metabolic state where the predominance of large, HDL{sub 2b} particles is discordant with the predominance of small LDL and elevated TG. This annual metabolic pattern may in part be due to hormonal changes occurring in late pregnancy.

  6. Lipoprotein subclasses in genetic studies: The Berkeley Data Set

    SciTech Connect

    Krauss, R.M.; Williams, P.T.; Blanche, P.J.; Cavanaugh, A.; Holl, L.G.; Austin, M.A.

    1992-10-01

    Data from the Berkeley Data Set was used to investigate familial correlations of HDL-subclasses. Analysis of the sibling intraclass correlation coefficient by HDL particle diameter showed that sibling HDL levels were significantly correlated for HDL{sub 2b}, HDL{sub 3a} and HDL{sub 3b} subclasses. The percentage of the offsprings` variance explained by their two parents. Our finding that parents and offspring-have the highest correlation for HDL{sub 2b} is consistent with published reports that show higher heritability estimates for HDL{sub 2} compared with HDL{sub 3}{minus} cholesterol.

  7. 1H NMR metabonomics of plasma lipoprotein subclasses: elucidation of metabolic clustering by self-organising maps.

    PubMed

    Suna, Teemu; Salminen, Aino; Soininen, Pasi; Laatikainen, Reino; Ingman, Petri; Mäkelä, Sanna; Savolainen, Markku J; Hannuksela, Minna L; Jauhiainen, Matti; Taskinen, Marja-Riitta; Kaski, Kimmo; Ala-Korpela, Mika

    2007-11-01

    (1)H NMR spectra of plasma are known to provide specific information on lipoprotein subclasses in the form of complex overlapping resonances. A combination of (1)H NMR and self-organising map (SOM) analysis was applied to investigate if automated characterisation of subclass-related metabolic interactions can be achieved. To reliably assess the intrinsic capability of (1)H NMR for resolving lipoprotein subclass profiles, sum spectra representing the pure lipoprotein subclass part of actual plasma were simulated with the aid of experimentally derived model signals for 11 distinct lipoprotein subclasses. Two biochemically characteristic categories of spectra, representing normolipidaemic and metabolic syndrome status, were generated with corresponding lipoprotein subclass profiles. A set of spectra representing a metabolic pathway between the two categories was also generated. The SOM analysis, based solely on the aliphatic resonances of these simulated spectra, clearly revealed the lipoprotein subclass profiles and their changes. Comparable SOM analysis in a group of 69 experimental (1)H NMR spectra of serum samples, which according to biochemical analyses represented a wide range of lipoprotein lipid concentrations, corroborated the findings based on the simulated data. Interestingly, the choline-N(CH(3))(3) region seems to provide more resolved clustering of lipoprotein subclasses in the SOM analyses than the methyl-CH(3) region commonly used for subclass quantification. The results illustrate the inherent suitability of (1)H NMR metabonomics for automated studies of lipoprotein subclass-related metabolism and demonstrate the power of SOM analysis in an extensive and representative case of (1)H NMR metabonomics.

  8. Role of low-density lipoprotein apheresis.

    PubMed

    Ziajka, Paul

    2005-08-22

    Low-density lipoprotein (LDL) apheresis has been shown to reduce plasma levels of total cholesterol, LDL cholesterol, and lipoprotein(a). In addition to these lipoprotein changes, LDL apheresis induces atherosclerosis regression, improves myocardial perfusion and endothelial function, and may reduce cardiovascular event rates. PMID:16098847

  9. Associations of lipoproteins and apolipoproteins with gradient gel electrophoresis estimates of high density lipoprotein subfractions in men and women.

    PubMed

    Williams, P T; Krauss, R M; Vranizan, K M; Stefanick, M L; Wood, P D; Lindgren, F T

    1992-03-01

    We examined the relations of gender and lipoproteins to subclasses of high density lipoproteins (HDLs) in a cross-sectional sample of moderately overweight men (n = 116) and women (n = 78). The absorbance of protein-stained polyacrylamide gradient gels was used as an index of mass concentrations of HDL at intervals of 0.01 nm across the entire HDL particle size range (7.2-12 nm). At least five HDL subclasses have been identified by their particle sizes: HDL3c (7.2-7.8 nm), HDL3b (7.8-8.2 nm), HDL3a (8.2-8.8 nm), HDL2a (8.8-9.7 nm), and HDL2b (9.7-12 nm). Men had significantly higher HDL3b and significantly lower HDL2a and HDL2b than did women. Correlations of HDL subclasses with concentrations of other lipoprotein variables were generally as strong for gradient gel electrophoresis as for analytical ultracentrifugation measurements of HDL particle distributions. In both sexes, high levels of HDL3b were associated with coronary heart disease risk factors, including high concentrations of triglycerides, apolipoprotein B, small low density lipoproteins, intermediate density lipoproteins, and very low density lipoproteins and low concentrations of HDL2 cholesterol and HDL2 mass. Plasma concentrations of HDL3 cholesterol were unrelated to protein-stained HDL3b levels. HDL3 cholesterol concentrations also did not exhibit the sex difference or the relations with lipoprotein concentrations that characterized HDL3b. Thus, low HDL3b levels may contribute in part to the low heart disease risk in men and women who have high HDL cholesterol. Measurements of HDL3 cholesterol may not identify clinically important relations involving HDL3b.

  10. Familial apolipoprotein Al and apolipoprotein CIII deficiency: subclass distribution, composition, and morphology of lipoproteins in a disorder associated with premature atherosclerosis

    SciTech Connect

    Forte, T.M.; Nichols, A.V.; Krauss, R.M.; Norum, R.A.

    1984-11-01

    Lipoprotein classes isolated from the plasma of two patients with apolipoprotein AI (apo AI) and apolipoprotein CIII (apo CIII) deficiency were characterized and compared with those of healthy, age- and sex-matched controls. The plasma triglyceride values for patients 1 and 2 were 31 and 51 mg/dl, respectively, and their cholesterol values were 130 and 122 mg/dl, respectively; the patients, however, had no measurable high density lipoprotein (HDL)-cholesterol. Analytic ultracentrifugation showed that patients' S/sub f//sup 0/ 0-20 lipoproteins posses a single peak with S/sub f//sup 0/ rates of 7.4 and 7.6 for patients 1 and 2, respectively, which is similar to that of the controls. The concentration of low density lipoprotein (LDL) (S/sub f//sup 0/ 0-12) particles, although within normal range (331 and 343 mg/dl for patients 1 and 2, respectively), was 35% greater than that of controls. Intermediate density lipoproteins (IDL) and very low density lipoproteins (VLDL) (S/sub f//sup 0/ 20-400) were extremely low in the patients. HDL in the patients had a calculated mass of 15.4 and 11.8 mg/dl for patients 1 and 2, respectively. No HDL could be detected by analytic ultracentrifugation, but polyacrylamide gradient gel electrophoresis (gge) revealed that patients possessed two major HDL subclasses: (HDL/sub sb/)/sub gge/ at 11.0 nm and (HDL/sub 3b/)/sub gge/ at 7.8 nm. The major peak in the controls (HDL/sub 3a/)/sub gge/, was lacking in the patients.

  11. Dense low density lipoproteins and coronary artery disease.

    PubMed

    Krauss, R M

    1995-02-23

    A common, genetically influenced lipoprotein subclass profile characterized by a predominance of small, dense low density lipoprotein (LDL) particles is associated with relative increases in plasma triglyceride and apolipoprotein (apo) B-100, and reduced levels of high density lipoprotein cholesterol and apoAI. Recently, this phenotype has also been associated with the insulin resistance syndrome and familial combined hyperlipidemia. Case-control studies of patients with myocardial infarction and angiographically documented coronary artery disease (CAD) have demonstrated that 40-50% of patients have the small, dense LDL phenotype and that this is associated with a 2- to 3-fold increase in disease risk. However, because of strong statistical correlations among the multiple features of the phenotype, it has been difficult to determine whether > or = 1 of its metabolic alterations are primarily responsible for increased CAD susceptibility. More direct evidence for enhanced atherogenicity of lipoproteins in this trait derives from a recent report that LDL-cholesterol lowering by diet and drug treatment resulted in reduced coronary angiographic progression in CAD subjects with predominantly dense LDL, but that an equivalent lowering of LDL cholesterol in subjects with more buoyant LDL was not associated with angiographic benefit. Further, in vitro findings have indicated increased susceptibility of small, dense LDL to oxidative modification and relatively greater binding of these particles to arterial wall proteoglycans. Thus, the small, dense LDL trait may underlie familial predisposition to CAD in a large proportion of the population, and its presence may indicate the potential for benefit from specific therapeutic interventions.

  12. Dietary and genetic effects on low-density lipoprotein heterogeneity.

    PubMed

    Krauss, R M

    2001-01-01

    We have tested whether differences in distribution and dietary responsiveness of low-density lipoprotein (LDL) subclasses contribute to the variability in the magnitude of LDL-cholesterol reduction induced by diets low in total and saturated fat and high in carbohydrate. Our studies have focused on a common, genetically influenced metabolic profile, characterized by a predominance of small, dense LDL particles (subclass pattern B), that is associated with a two- to threefold increase in risk for coronary artery disease. We have found that healthy normolipidemic individuals with this trait show a greater reduction in LDL cholesterol and particle number in response to low-fat, high-carbohydrate diets than do unaffected individuals (subclass pattern A). Moreover, such diets result in reduced LDL particle size, with induction of pattern B in a substantial proportion of pattern A men. Recent studies have indicated that this response is under genetic influence. Future identification of the specific genes involved may lead to improved targeting of dietary therapies aimed at reducing cardiovascular disease risk.

  13. Association of lipoprotein subclass distribution with use of selective and non-selective beta-blocker medications in patients with coronary heart disease.

    PubMed

    Superko, H R; Haskell, W L; Krauss, R M

    1993-06-01

    The relationship of beta-blocker drug use to plasma low density lipoprotein-cholesterol (LDL-C), lipoprotein mass distribution, (LDL, Sf0-12), intermediate density lipoproteins (IDL, Sf12-20), very low density lipoproteins (VLDL, Sf20-400), and high density lipoproteins (HDL, F(1.2)0-9) were examined in 206 men with coronary heart disease. Thirty-three used non-selective (NSEL), 49 used selective (SEL), and were compared to 124 who used no beta-blockade (NoBB). No significant between group differences were seen for potentially confounding variables. LDL and IDL mass, total cholesterol and LDL-cholesterol were not significantly different between groups. HDL-C was significantly lower in both NSEL (P < 0.005) and SEL (P < 0.01). NSEL and SEL had significantly lower HDL mass (P < 0.005 and P < 0.005) and SEL (P < 0.01 and P = 0.06), and HDL3 mass (P < 0.01 and P < 0.05). VLDL mass was significantly higher (P < 0.02) only in NSEL. Small LDL (Sf0-7) was not significantly different between groups and large LDL (Sf7-12) was significantly lower in NSEL (P < 0.05) and SEL (P < 0.05). LDL peak Sf was significantly lower in both NSEL (P < 0.005) and SEL (P < 0.02) compared to NoBB. Despite the lack of differences in levels of LDL-cholesterol, beta-blocker use is associated with a significant difference in the distribution of larger, more buoyant to smaller, more dense LDL particles. Reduced HDL levels in subjects on beta-blockade therapy are associated with reductions in both HDL2 and HDL3 subclasses.(ABSTRACT TRUNCATED AT 250 WORDS)

  14. Changes in lipoprotein(a), oxidized phospholipids, and LDL subclasses with a low-fat high-carbohydrate diet

    PubMed Central

    Faghihnia, Nastaran; Tsimikas, Sotirios; Miller, Elizabeth R.; Witztum, Joseph L.; Krauss, Ronald M.

    2010-01-01

    Low-fat diets have been shown to increase plasma concentrations of lipoprotein(a) [Lp(a)], a preferential lipoprotein carrier of oxidized phospholipids (OxPLs) in plasma, as well as small dense LDL particles. We sought to determine whether increases in plasma Lp(a) induced by a low-fat high-carbohydrate (LFHC) diet are related to changes in OxPL and LDL subclasses. We studied 63 healthy subjects after 4 weeks of consuming, in random order, a high-fat low-carbohydrate (HFLC) diet and a LFHC diet. Plasma concentrations of Lp(a) (P < 0.01), OxPL/apolipoprotein (apo)B (P < 0.005), and OxPL-apo(a) (P < 0.05) were significantly higher on the LFHC diet compared with the HFLC diet whereas LDL peak particle size was significantly smaller (P < 0.0001). Diet-induced changes in Lp(a) were strongly correlated with changes in OxPL/apoB (P < 0.0001). The increases in plasma Lp(a) levels after the LFHC diet were also correlated with decreases in medium LDL particles (P < 0.01) and increases in very small LDL particles (P < 0.05). These results demonstrate that induction of increased levels of Lp(a) by an LFHC diet is associated with increases in OxPLs and with changes in LDL subclass distribution that may reflect altered metabolism of Lp(a) particles. PMID:20713651

  15. Changes in lipoprotein(a), oxidized phospholipids, and LDL subclasses with a low-fat high-carbohydrate diet.

    PubMed

    Faghihnia, Nastaran; Tsimikas, Sotirios; Miller, Elizabeth R; Witztum, Joseph L; Krauss, Ronald M

    2010-11-01

    Low-fat diets have been shown to increase plasma concentrations of lipoprotein(a) [Lp(a)], a preferential lipoprotein carrier of oxidized phospholipids (OxPLs) in plasma, as well as small dense LDL particles. We sought to determine whether increases in plasma Lp(a) induced by a low-fat high-carbohydrate (LFHC) diet are related to changes in OxPL and LDL subclasses. We studied 63 healthy subjects after 4 weeks of consuming, in random order, a high-fat low-carbohydrate (HFLC) diet and a LFHC diet. Plasma concentrations of Lp(a) (P < 0.01), OxPL/apolipoprotein (apo)B (P < 0.005), and OxPL-apo(a) (P < 0.05) were significantly higher on the LFHC diet compared with the HFLC diet whereas LDL peak particle size was significantly smaller (P < 0.0001). Diet-induced changes in Lp(a) were strongly correlated with changes in OxPL/apoB (P < 0.0001). The increases in plasma Lp(a) levels after the LFHC diet were also correlated with decreases in medium LDL particles (P < 0.01) and increases in very small LDL particles (P < 0.05). These results demonstrate that induction of increased levels of Lp(a) by an LFHC diet is associated with increases in OxPLs and with changes in LDL subclass distribution that may reflect altered metabolism of Lp(a) particles.

  16. LDL subclass patterns and lipoprotein response to a low-fat, high-carbohydrate diet in women.

    PubMed

    Dreon, D M; Fernstrom, H A; Williams, P T; Krauss, R M

    1997-04-01

    A predominance of small, dense LDL particles (subclass pattern B) characterizes a metabolic trait that is associated with higher levels of triglyceride-rich lipoproteins and lower levels of HDL compared with those of individuals with predominantly larger LDL (pattern A). This trait appears to be under the influence of one or more genes, with maximal expression in adult males and reduced expression in premenopausal females. In a previous study, men with LDL subclass pattern B had significantly greater reductions in LDL cholesterol (LDL-C) and apolipoprotein B than men with pattern A. We hypothesized that despite the low prevalence of pattern B in premenopausal women, genetic predisposition to this trait could affect dietary responsiveness. Specifically, we predicted that LDL-C reduction on a low-fat, high-carbohydrate diet would be greatest in daughters of two pattern B parents, intermediate in daughters with one pattern B parent, and least in daughters with no pattern B parents. When 72 premenopausal women were placed on a 20% fat diet for 8 weeks, the changes in LDL-C (mmol/L) compared with levels on basal diets were significantly related to the number of pattern B parents (two B parents: -0.92 +/- 0.61, one B parent: -0.23 +/- 0.10, no B parents: -0.05 +/- 0.06) and could not be explained by diet adherence or baseline characteristics including initial lipoprotein profile or body mass index. The number of pattern B parents was also related to reductions in plasma mass concentrations of IDL, total LDL, and large LDL and to increases in plasma triglycerides. There was a significant inverse correlation between changes in triglyceride and LDL-C induced by the low-fat, high-carbohydrate diet. Thus, genetic and metabolic factors underlying LDL subclass pattern B may result in enhanced LDL and triglyceride responsiveness to substitution of dietary carbohydrate for fat in premenopausal women.

  17. The antigenic similarity of human low density lipoproteins.

    PubMed

    LEVINE, L; KAUFFMAN, D L; BROWN, R K

    1955-08-01

    THE FOLLOWING HUMAN LOW DENSITY LIPOPROTEINS WERE PREPARED: beta-lipoproteins of densities greater than 1.040 (A, B,C) a beta-lipoprotein of -S(1.063) = 5 (D), a lipoprotein of -S(1.063) = 19 (E), and a lipoprotein of -S(1.063) = 70 (F). Data are presented which show the immunochemical homogeneity of the D lipoprotein rabbit-anti-D lipoprotein system. Cross-reactions between antibody to A and D lipoproteins and the above lipoproteins have been demonstrated by quantitative precipitation, quanitative complement fixation, and single and double diffusion in agar. The antigenic similarities appear to be associated with the protein portions of the molecule. The antisera produced did not differentiate the low density lipoprotein classes. PMID:13242737

  18. Subfractions of high-density lipoprotein (HDL) and dysfunctional HDL in chronic kidney disease patients

    PubMed Central

    Banach, Maciej

    2016-01-01

    A number of studies have shown that chronic kidney disease (CKD) is associated with increased risk for cardiovascular disease (CVD). Chronic kidney disease is characterized by significant disturbances in lipoprotein metabolism, including differences in quantitative and qualitative content of high-density lipoprotein (HDL) particles. Recent studies have revealed that serum HDL cholesterol levels do not predict CVD in CKD patients; thus CKD-induced modifications in high-density lipoprotein (HDL) may be responsible for the increase in CV risk in CKD patients. Various methods are available to separate several subclasses of HDL and confirm their atheroprotective properties. However, under pathological conditions associated with inflammation and oxidation, HDL can progressively lose normal biological activities and be converted into dysfunctional HDL. In this review, we highlight the current state of knowledge on subfractions of HDL and HDL dysfunction in CKD. PMID:27478466

  19. Abnormal high density lipoproteins in cerebrotendinous xanthomatosis

    SciTech Connect

    Shore, V.; Salen, G.; Cheng, F.W.; Forte, T.; Shefer, S.; Tint, G.S.

    1981-11-01

    The plasma lipoprotein profiles and high density lipoproteins (HDL) were characterized in patients with the genetic disease cerebrotendinous xanthomatosis (CTX). The mean HDL-cholesterol concentration in the CTX plasmas was 14.5 +/- 3.2 mg/dl, about one-third the normal value. The low HDL-cholesterol reflects a low concentration and an abnormal lipid composition of the plasma HDL. Relative to normal HDL, the cholesteryl esters are low, free cholesterol and phospholipids essentially normal, and triglycerides increased. The ratio of apoprotein (apo) to total cholesterol in the HDL of CTX was two to three times greater than normal. In the CTX HDL, the ratio of apoAI to apoAII was high, the proportion of apoC low, and a normally minor form of apoAI increased relative to other forms. The HDL in electron micrographs appeared normal morphologically and in particle size. The adnormalities in lipoprotein distribution profiles and composition of the plasma HDL result from metabolic defects that are not understood but may be linked to the genetic defect in bile acid synthesis in CTX. As a consequence, it is probable that the normal functions of the HDL, possibly including modulation of LDL-cholesterol uptake and the removal of excess cholesterol from peripheral tissues, are perturbed significantly in this disease.

  20. Double Superhelix Model of High Density Lipoprotein*

    PubMed Central

    Wu, Zhiping; Gogonea, Valentin; Lee, Xavier; Wagner, Matthew A.; Li, Xin-Min; Huang, Ying; Undurti, Arundhati; May, Roland P.; Haertlein, Michael; Moulin, Martine; Gutsche, Irina; Zaccai, Giuseppe; DiDonato, Joseph A.; Hazen, Stanley L.

    2009-01-01

    High density lipoprotein (HDL), the carrier of so-called “good” cholesterol, serves as the major athero-protective lipoprotein and has emerged as a key therapeutic target for cardiovascular disease. We applied small angle neutron scattering (SANS) with contrast variation and selective isotopic deuteration to the study of nascent HDL to obtain the low resolution structure in solution of the overall time-averaged conformation of apolipoprotein AI (apoA-I) versus the lipid (acyl chain) core of the particle. Remarkably, apoA-I is observed to possess an open helical shape that wraps around a central ellipsoidal lipid phase. Using the low resolution SANS shapes of the protein and lipid core as scaffolding, an all-atom computational model for the protein and lipid components of nascent HDL was developed by integrating complementary structural data from hydrogen/deuterium exchange mass spectrometry and previously published constraints from multiple biophysical techniques. Both SANS data and the new computational model, the double superhelix model, suggest an unexpected structural arrangement of protein and lipids of nascent HDL, an anti-parallel double superhelix wrapped around an ellipsoidal lipid phase. The protein and lipid organization in nascent HDL envisages a potential generalized mechanism for lipoprotein biogenesis and remodeling, biological processes critical to sterol and lipid transport, organismal energy metabolism, and innate immunity. PMID:19812036

  1. Intrinsic enzymes of high-density lipoprotein.

    PubMed

    Le, Ngoc-Anh; Walter, Mary F

    2007-03-01

    Several lines of evidence are available to support the protective effects of high-density lipoproteins (HDL) on atherosclerosis. The exact mechanisms by which HDL protects against atherosclerotic disease development are not understood. In addition to its role in the reverse transport of cholesterol from the peripheral sites to the liver for excretion, HDL also carries a number of enzymes that contribute to the remodeling of plasma lipoproteins and to the protection of other lipoproteins against oxidative modification. Many of these enzymes can play a role in determining the composition of circulating HDL, while others appear to affect specific biologic activities associated with HDL. It is not clear whether the concentrations of HDL particles or the activities associated with this class of particles are more important. One of the problems is that HDL constitutes a heterogeneous population of particles, and analytical tools to characterize the various subpopulations are not widely available. In this article, we will review the enzymes that are associated with plasma HDL and possible mechanisms as to how these may contribute to the protective properties of HDL in humans. PMID:21291665

  2. Six new loci associated with blood low-density lipoprotein cholesterol, high-density lipoprotein cholesterol or triglycerides in humans

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Low-density lipoprotein (LDL) and high-density lipoprotein (HDL) cholesterol are risk factors for cardiovascular disease and blood triglycerides reflect key metabolic processes including sensitivity to insulin. Blood lipoprotein and lipid concentrations are heritable. To date, the identification o...

  3. Alcohol alters low density lipoprotein composition and metabolism

    SciTech Connect

    Hoinacki, J.; Brown, J.; Dawson, M.; Deschenes, R.; Mulligan, J. )

    1991-03-11

    Two separate studies were conducted to examine the effect of ethanol (EtOH) dose on atherogenic low density lipoprotein (LDL) subfractions and LDL metabolism in vivo. In the first study, male, atherosclerosis-susceptible squirrel monkeys were divided in three treatments: controls fed liquid diet, and low and high alcohol groups given liquid diet with vodka substituted for carbohydrate at 12% and 24% of calories, respectively. After 6 months, LDL subclasses (LDL{sub 1a}, LDL{sub 1b} and LDL{sub 2}) were isolated by density gradient ultracentrifugation and polyacrylamide gradient gel electrophoresis, and their lipid and protein composition was determined. Low dose EtOH had no effect on LDL subfraction distribution while 24% EtOH resulted in an increase in the larger (LDL{sub 1a} and LDL{sub 1b}), buoyant subspecies without affecting the level of the more atherogenic, smaller, denser LDL{sub 2} particles. In the second study, {sup 125}I-LDL apolipoprotein B (apo B) was injected intravenously into Control and High EtOH monkeys and kinetic analyses were performed. Although the absolute catabolic rate (LDL production) was not altered, High EtOH primates showed a reduction in the fractional catabolic rate and a longer LDL apoB residence time.

  4. Why are low-density lipoproteins atherogenic?

    PubMed Central

    Young, S G; Parthasarathy, S

    1994-01-01

    Low-density lipoproteins (LDLs) carry most of the cholesterol in human plasma, and high levels of LDL cholesterol clearly cause heart disease. In recent years, many scientists have focused on elucidating the pathophysiologic steps that lie between elevated levels of LDL in the plasma and atherosclerotic plaques in the arterial wall. A large number of scientific studies indicate that oxidation of LDL within the arterial wall may be an important early step in atherogenesis. The uptake of oxidized LDL by macrophages is a likely explanation for the formation of macrophage foam cells in early atherosclerotic lesions. In addition, oxidized LDL has many other potentially proatherogenic properties. Images PMID:8160466

  5. Metabolic abnormalities: triglyceride and low-density lipoprotein.

    PubMed

    Krauss, Ronald M; Siri, Patty W

    2004-06-01

    Increased plasma triglyceride and reduced high-density lipoprotein cholesterol are key features of the metabolic syndrome. Although elevated low-density lipoprotein cholesterol is not an integral characteristic of this syndrome, there is commonly an increase in the proportion of small, dense low-density lipoprotein particles. Together, these abnormalities constitute the atherogenic dyslipidemia of the metabolic syndrome. This article reviews the pathophysiology of altered triglyceride and low-density lipoprotein metabolism in the metabolic syndrome, outlines the relationship of these lipoprotein abnormalities to increased risk of coronary heart disease,and highlights the application of this information to clinical practice. The role of reduced high-density lipoprotein in the metabolic syndrome is discussed elsewhere in this issue.

  6. [Atherogenic modification of low-density lipoproteins].

    PubMed

    Sukhorukov, V N; Karagodin, V P; Orekhov, A N

    2016-05-01

    One of the first manifestations of atherosclerosis is accumulation of extra- and intracellular cholesterol esters in the arterial intima. Formation of foam cells is considered as a trigger in the pathogenesis of atherosclerosis. Low density lipoprotein (LDL) circulating in human blood is the source of lipids accumulated in the arterial walls. This review considered features and role in atherogenesis different modified forms of LDL: oxidized, small dense, electronegative and especially desialylated LDL. Desialylated LDL of human blood plasma is capable to induce lipid accumulation in cultured cells and it is atherogenic. LDL possesses numerous alterations of protein, carbohydrate and lipid moieties and therefore can be termed multiple-modified LDL. Multiple modification of LDL occurs in human blood plasma and represents a cascade of successive changes in the lipoprotein particle: desialylation, loss of lipids, reduction in the particle size, increase of surface electronegative charge, etc. In addition to intracellular lipid accumulation, stimulatory effects of naturally occurring multiple-modified LDL on other processes involved in the development of atherosclerotic lesions, namely cell proliferation and fibrosis, were shown. PMID:27562992

  7. Low levels of high density lipoproteins in Turks, a population with elevated hepatic lipase. High density lipoprotein characterization and gender-specific effects of apolipoprotein e genotype.

    PubMed

    Mahley, R W; Pépin, J; Palaoğlu, K E; Malloy, M J; Kane, J P; Bersot, T P

    2000-08-01

    Turks have strikingly low levels of high density lipoprotein cholesterol (HDL-C) (10-15 mg/dL lower than those of Americans or Western Europeans) associated with elevated hepatic lipase mass and activity. Here we report that Turks have low levels of high density lipoprotein subclass 2 (HDL(2)), apoA-I-containing lipoproteins (LpA-I), and pre-beta-1 HDL and increased levels of HDL(3) and LpA-I/A-II particles (potentially an atherogenic lipid profile). The frequency distributions of HDL-C and LpA-I levels were skewed toward bimodality in Turkish women but were unimodal in Turkish men. The apoE genotype affected HDL-C and LpA-I levels in women only. In women, but not men, the varepsilon2 allele was strikingly more prevalent in those with the highest levels of HDL-C and LpA-I than in those with the lowest levels. The higher prevalence of the epsilon2 allele in these subgroups of women was not explained by plasma triglyceride levels, total cholesterol levels, age, or body mass index. The modulating effects of apoE isoforms on lipolytic hydrolysis of HDL by hepatic lipase (apoE2 preventing efficient hydrolysis) or on lipoprotein receptor binding (apoE2 interacting poorly with the low density lipoprotein receptors) may account for differences in HDL-C levels in Turkish women (the epsilon2 allele being associated with higher HDL levels). In Turkish men, who have substantially higher levels of hepatic lipase activity than women, the modulating effect of apoE may be overwhelmed. The gender-specific impact of the apoE genotype on HDL-C and LpA-I levels in association with elevated levels of hepatic lipase provides new insights into the metabolism of HDL.

  8. 21 CFR 866.5600 - Low-density lipoprotein immunological test system.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Low-density lipoprotein immunological test system....5600 Low-density lipoprotein immunological test system. (a) Identification. A low-density lipoprotein... the low-density lipoprotein in serum and other body fluids. Measurement of low-density lipoprotein...

  9. Nanobiotechnology applications of reconstituted high density lipoprotein

    PubMed Central

    2010-01-01

    High-density lipoprotein (HDL) plays a fundamental role in the Reverse Cholesterol Transport pathway. Prior to maturation, nascent HDL exist as disk-shaped phospholipid bilayers whose perimeter is stabilized by amphipathic apolipoproteins. Methods have been developed to generate reconstituted (rHDL) in vitro and these particles have been used in a variety of novel ways. To differentiate between physiological HDL particles and non-natural rHDL that have been engineered to possess additional components/functions, the term nanodisk (ND) is used. In this review, various applications of ND technology are described, such as their use as miniature membranes for solubilization and characterization of integral membrane proteins in a native like conformation. In other work, ND harboring hydrophobic biomolecules/drugs have been generated and used as transport/delivery vehicles. In vitro and in vivo studies show that drug loaded ND are stable and possess potent biological activity. A third application of ND is their use as a platform for incorporation of amphiphilic chelators of contrast agents, such as gadolinium, used in magnetic resonance imaging. Thus, it is demonstrated that the basic building block of plasma HDL can be repurposed for alternate functions. PMID:21122135

  10. High-Density Lipoproteins: Nature's Multifunctional Nanoparticles.

    PubMed

    Kuai, Rui; Li, Dan; Chen, Y Eugene; Moon, James J; Schwendeman, Anna

    2016-03-22

    High-density lipoproteins (HDL) are endogenous nanoparticles involved in the transport and metabolism of cholesterol, phospholipids, and triglycerides. HDL is well-known as the "good" cholesterol because it not only removes excess cholesterol from atherosclerotic plaques but also has anti-inflammatory and antioxidative properties, which protect the cardiovascular system. Circulating HDL also transports endogenous proteins, vitamins, hormones, and microRNA to various organs. Compared with other synthetic nanocarriers, such as liposomes, micelles, and inorganic and polymeric nanoparticles, HDL has unique features that allow them to deliver cargo to specific targets more efficiently. These attributes include their ultrasmall size (8-12 nm in diameter), high tolerability in humans (up to 8 g of protein per infusion), long circulating half-life (12-24 h), and intrinsic targeting properties to different recipient cells. Various recombinant ApoA proteins and ApoA mimetic peptides have been recently developed for the preparation of reconstituted HDL that exhibits properties similar to those of endogenous HDL and has a potential for industrial scale-up. In this review, we will summarize (a) clinical pharmacokinetics and safety of reconstituted HDL products, (b) comparison of HDL with inorganic and other organic nanoparticles, PMID:26889958

  11. Nanobiotechnology applications of reconstituted high density lipoprotein.

    PubMed

    Ryan, Robert O

    2010-01-01

    High-density lipoprotein (HDL) plays a fundamental role in the Reverse Cholesterol Transport pathway. Prior to maturation, nascent HDL exist as disk-shaped phospholipid bilayers whose perimeter is stabilized by amphipathic apolipoproteins. Methods have been developed to generate reconstituted (rHDL) in vitro and these particles have been used in a variety of novel ways. To differentiate between physiological HDL particles and non-natural rHDL that have been engineered to possess additional components/functions, the term nanodisk (ND) is used. In this review, various applications of ND technology are described, such as their use as miniature membranes for solubilization and characterization of integral membrane proteins in a native like conformation. In other work, ND harboring hydrophobic biomolecules/drugs have been generated and used as transport/delivery vehicles. In vitro and in vivo studies show that drug loaded ND are stable and possess potent biological activity. A third application of ND is their use as a platform for incorporation of amphiphilic chelators of contrast agents, such as gadolinium, used in magnetic resonance imaging. Thus, it is demonstrated that the basic building block of plasma HDL can be repurposed for alternate functions.

  12. Triglycerides, total cholesterol, high density lipoprotein cholesterol and low density lipoprotein cholesterol in rats exposed to premium motor spirit fumes

    PubMed Central

    Aberare, Ogbevire L.; Okuonghae, Patrick; Mukoro, Nathaniel; Dirisu, John O.; Osazuwa, Favour; Odigie, Elvis; Omoregie, Richard

    2011-01-01

    Background: Deliberate and regular exposure to premium motor spirit fumes is common and could be a risk factor for liver disease in those who are occupationally exposed. A possible association between premium motor spirit fumes and plasma levels of triglyceride, total cholesterol, high density lipoprotein cholesterol and low density lipoprotein cholesterol using a rodent model could provide new insights in the pathology of diseases where cellular dysfunction is an established risk factor. Aim: The aim of this study was to evaluate the possible effect of premium motor spirit fumes on lipids and lipoproteins in workers occupationally exposed to premium motor spirit fumes using rodent model. Materials and Methods: Twenty-five Wister albino rats (of both sexes) were used for this study between the 4th of August and 7th of September, 2010. The rats were divided into five groups of five rats each. Group 1 rats were not exposed to premium motor spirit fumes (control group), group 2 rats were exposed for 1 hour daily, group 3 for 3 hours daily, group 4 for 5 hours daily and group 5 for 7 hours daily. The experiment lasted for a period of 4 weeks. Blood samples obtained from all the groups after 4 weeks of exposure were used for the estimation of plasma levels of triglyceride, total cholesterol, high density lipoprotein- cholesterol and low density lipoprotein- cholesterol. Result: Results showed significant increase in means of plasma total cholesterol and low density lipoprotein levels (P<0.05). The mean triglyceride and total body weight were significantly lower (P<0.05) in the exposed group when compared with the unexposed. The plasma level of high density lipoprotein, the ratio of low density lipoprotein to high density lipoprotein and the ratio of total cholesterol to high density lipoprotein did not differ significantly in exposed subjects when compared with the control group. Conclusion: These results showed that frequent exposure to petrol fumes may be highly

  13. Pistachio intake increases high density lipoprotein levels and inhibits low-density lipoprotein oxidation in rats.

    PubMed

    Aksoy, Nur; Aksoy, Mehmet; Bagci, Cahit; Gergerlioglu, H Serdar; Celik, Hakim; Herken, Emine; Yaman, Abdullah; Tarakcioglu, Mehmet; Soydinc, Serdar; Sari, Ibrahim; Davutoglu, Vedat

    2007-05-01

    There is increasing evidence that nuts have protective effects against coronary artery disease by improving lipid profile and inhibiting lipid oxidation. However, data about pistachio nuts are limited, and to our knowledge, there is no study investigating the effects of pistachio intake on lipid oxidation and serum antioxidant levels. This study, therefore, sought to determine the effects of pistachio intake on serum lipids and determine whether consumption of pistachio would alter serum antioxidant levels. Rats were randomly divided into three groups (n=12 for each): control group fed basic diet for 10 weeks and treated groups fed basic diet plus pistachio which constituted 20% and 40% of daily caloric intake, respectively. Consumption of pistachio as 20% of daily caloric intake increased high-density lipoprotein (HDL) levels and decreased total cholesterol (TC)/HDL ratio, compared with those not taking pistachio. However, TC, low-density lipoprotein (LDL) cholesterol and triglyceride levels were unaffected by pistachio consumption. Consumption of pistachio as 20% of daily caloric intake increased serum paraoxonase activity by 35% and arylesterase activity by 60%, which are known to inhibit LDL cholesterol oxidation, compared with the control group. However, increased antioxidant activity was blunted when pistachio intake was increased to 40% of daily caloric intake. In conclusion, the present results show that consumption of pistachio as 20% of daily caloric intake leads to significant improvement in HDL and TC/HDL ratio and inhibits LDL cholesterol oxidation. These results suggest that pistachio may be beneficial for both prevention and treatment of coronary artery disease.

  14. Hemodynamics alter arterial low-density lipoprotein metabolism

    SciTech Connect

    Warty, V.S.; Calvo, W.J.; Berceli, S.A.; Pham, S.M.; Durham, S.J.; Tanksale, S.K.; Klein, E.C.; Herman, I.M.; Borovetz, H.S. )

    1989-10-01

    We have investigated the role of hemodynamic factors on low-density lipoprotein transport and metabolism in the intact arterial wall. Freshly excised canine carotid blood vessels were exposed to well-defined pulsatile flow in vitro for continuous periods up to 20 hours. We chose to impose the following hemodynamic conditions on our test carotid arteries: normotension, hypertension (at physiologic flow conditions), and hypertension coupled with elevated flow of canine serum perfusate. In several experiments the effect of endothelial denudation was examined in carotid arteries exposed to normotensive pulsatile flow. A trapped ligand method was used for quantitating low-density lipoprotein uptake and metabolism in the arterial wall. The distribution of both intact and degraded low-density lipoprotein fractions was determined from measurements of radiolabelled low-density lipoprotein activity within thin radial sections of perfused arteries. Our results suggest that both hypertensive hemodynamic simulations exacerbate the uptake of low-density lipoprotein within the arterial wall (by a factor of three to nine). The percentage of low-density lipoprotein that undergoes irreversible degradation falls from 41% under normotensive conditions to below 30% when hypertensive conditions are imposed, indicating that degradative processes are not proportionally elevated with the accelerated influx. A similar pattern is observed for deendothelialized vessels.

  15. Total cholesterol, low density lipoprotein cholesterol, and high density lipoprotein cholesterol and coronary heart disease in Scotland.

    PubMed Central

    Hargreaves, A D; Logan, R L; Thomson, M; Elton, R A; Oliver, M F; Riemersma, R A

    1991-01-01

    OBJECTIVE--To investigate long term changes in total cholesterol, high density lipoprotein cholesterol, and low density lipoprotein cholesterol concentrations and in measures of other risk factors for coronary heart disease and to assess their importance for the development of coronary heart disease in Scottish men. DESIGN--Longitudinal study entailing follow up in 1988-9 of men investigated during a study in 1976. SETTING--Edinburgh, Scotland. SUBJECTS--107 men from Edinburgh who had taken part in a comparative study of risk factors for heart disease with Swedish men in 1976 when aged 40. INTERVENTION--The men were invited to attend a follow up clinic in 1988-9 for measurement of cholesterol concentrations and other risk factor measurements. Eighty three attended and 24 refused to or could not attend. MAIN OUTCOME MEASURES--Changes in total cholesterol, high density lipoprotein cholesterol, and low density lipoprotein cholesterol concentrations, body weight, weight to height index, prevalence of smoking, and alcohol intake; number of coronary artery disease events. RESULTS--Mean serum total cholesterol concentration increased over the 12 years mainly due to an increase in the low density lipoprotein cholesterol fraction (from 3.53 (SD 0.09) to 4.56 (0.11) mmol/l) despite a reduction in high density lipoprotein cholesterol concentration. Body weight and weight to height index increased. Fewer men smoked more than 15 cigarettes/day in 1988-9 than in 1976. Blood pressure remained stable and fasting triglyceride concentrations did not change. The frequency of corneal arcus doubled. Alcohol consumption decreased significantly. Eleven men developed clinical coronary heart disease. High low density lipoprotein and low high density lipoprotein cholesterol concentrations in 1976, but not total cholesterol concentration, significantly predicted coronary heart disease (p = 0.05). Almost all of the men who developed coronary heart disease were smokers (91% v 53%, p less than

  16. Lipolytic degradation of human very low density lipoproteins by human milk lipoprotein lipase: the identification of lipoprotein B as the main lipoprotein degradation product.

    PubMed

    Alaupovic, P; Wang, C S; McConathy, W J; Weiser, D; Downs, D

    1986-01-01

    Although the direct conversion of very low density lipoproteins (VLDL) into low density (LDL) and high density (HDL) lipoproteins only requires lipoprotein lipase (LPL) as a catalyst and albumin as the fatty acid acceptor, the in vitro-formed LDL and HDL differ chemically from their native counterparts. To investigate the reason(s) for these differences, VLDL were treated with human milk LPL in the presence of albumin, and the LPL-generated LDL1-, LDL2-, and HDL-like particles were characterized by lipid and apolipoprotein composition. Results showed that the removal of apolipoproteins B, C, and E from VLDL was proportional to the degree of triglyceride hydrolysis with LDL2 particles as the major and LDL1 and HDL + VHDL particles as the minor products of a complete in vitro lipolysis of VLDL. In comparison with native counterparts, the in vitro-formed LDL2 and HDL + VHDL were characterized by lower levels of triglyceride and cholesterol ester and higher levels of free cholesterol and lipid phosphorus. The characterization of lipoprotein particles present in the in vitro-produced LDL2 showed that, as in plasma LDL2, lipoprotein B (LP-B) was the major apolipoprotein B-containing lipoprotein accounting for over 90% of the total apolipoprotein B. Other, minor species of apolipoprotein B-containing lipoproteins included LP-B:C-I:E and LP-B:C-I:C-II:C-III. The lipid composition of in vitro-formed LP-B closely resembled that of plasma LP-B. The major parts of apolipoproteins C and E present in VLDL were released to HDL + VHDL as simple, cholesterol/phospholipid-rich lipoproteins including LP-C-I, LP-C-II, LP-C-III, and LP-E. However, some of these same simple lipoprotein particles were present after ultracentrifugation in the LDL2 density segment because of their hydrated density and/or because they formed, in the absence of naturally occurring acceptors (LP-A-I:A-II), weak associations with LP-B. Thus, the presence of varying amounts of these cholesterol

  17. HIV Infection and High Density Lipoprotein Metabolism

    PubMed Central

    Rose, Honor; Hoy, Jennifer; Woolley, Ian; Tchoua, Urbain; Bukrinsky, Michael; Dart, Anthony; Sviridov, Dmitri

    2008-01-01

    HIV infection and its treatment are associated with dyslipidemia, including hypoalphalipoproteinemia, and increased risk of cardiovascular disease. Parameters of HDL metabolism in HIV-positive patients were investigated in a cross-sectional study. The following groups of subjects were selected: i) 25 treatment-naïve HIV-infected patients or HIV-infected patients on long therapy break, ii) 28 HIV-infected patients currently treated with protease inhibitors, and iii) 33 HIV-negative subjects. Compared to the HIV-negative group, all groups of HIV-infected patients were characterized by significantly elevated triglyceride and apolipoprotein B levels, mass and activity of lecithin cholesterol acyl transferase and cholesteryl ester transfer protein (p<0.01). Total and LDL cholesterol was lower in treatment-naïve HIV-infected group only. HDL cholesterol and preβ1-HDL were significantly lower in all HIV-infected groups (p<0.05), while mean levels of apolipoprotein A-I (apoA-I) and ability of plasma to promote cholesterol efflux were similar in all groups. We found a positive correlation between apoA-I and levels of CD4+ cells (r2 = 0.3, p<0.001). Plasma level of phospholipid transfer protein was reduced in the group on antiretroviral therapy. Taken together these results suggest that HIV infection is associated with modified HDL metabolism re-directing cholesterol to the apoB-containing lipoproteins and likely reducing the functionality of reverse cholesterol transport. PMID:18054941

  18. A Novel Anti-Inflammatory Effect for High Density Lipoprotein

    PubMed Central

    Cameron, Scott J.; Morrell, Craig N.; Bao, Clare; Swaim, AnneMarie F.; Rodriguez, Annabelle; Lowenstein, Charles J.

    2015-01-01

    High density lipoprotein has anti-inflammatory effects in addition to mediating reverse cholesterol transport. While many of the chronic anti-inflammatory effects of high density lipoprotein (HDL) are attributed to changes in cell adhesion molecules, little is known about acute signal transduction events elicited by HDL in endothelial cells. We now show that high density lipoprotein decreases endothelial cell exocytosis, the first step in leukocyte trafficking. ApoA-I, a major apolipoprotein of HDL, mediates inhibition of endothelial cell exocytosis by interacting with endothelial scavenger receptor-BI which triggers an intracellular protective signaling cascade involving protein kinase C (PKC). Other apolipoproteins within the HDL particle have only modest effects upon endothelial exocytosis. Using a human primary culture of endothelial cells and murine apo-AI knockout mice, we show that apo-AI prevents endothelial cell exocytosis which limits leukocyte recruitment. These data suggest that high density lipoprotein may inhibit diseases associated with vascular inflammation in part by blocking endothelial exocytosis. PMID:26680360

  19. Effects of human low and high density lipoproteins on the binding of rat intermediate density lipoproteins to rat liver membranes

    SciTech Connect

    Brissette, L.; Nol, S.P.

    1986-05-25

    Upon incubation with rat liver membranes, radioiodinated rat intermediate density lipoproteins (IDL) interacted with at least two binding sites having a low and a high affinity as demonstrated by the curvilinear Scatchard plots obtained from the specific binding data. The purpose of our work was to identify the nature of these binding sites. Human low density lipoproteins (LDL), contain apolipoprotein B only, and human high density lipoproteins (HDL3), containing neither apolipoprotein B nor E, were both capable of decreasing the specific binding of rat /sup 125/I-IDL. The Scatchard analysis clearly revealed that only the low affinity component was affected by the addition of these human lipoproteins. In fact, the low affinity binding component gradually decreased as the amount of human LDL or HDL3 increased in the binding assay. At a 200-fold excess of human LDL or HDL3, the low affinity binding was totally masked, and the Scatchard plot of the specific /sup 125/I-IDL binding became linear. Only the high affinity binding component was left, enabling a precise measurement of its binding parameters. In a series of competitive displacement experiments in which the binding assay contained a 200-fold excess of human LDL or HDL3, only unlabeled rat IDL effectively displaced the binding of rat /sup 125/I-IDL. We conclude that the low affinity binding of rat IDL to rat liver membranes is due to weak interactions with unspecified lipoprotein binding sites. The camouflage of these sites by human lipoproteins makes possible the study of IDL binding to the high affinity component which likely represents the combined effect of IDL binding to both the remnant and the LDL receptors.

  20. Management of non-high-density lipoprotein abnormalities.

    PubMed

    Rosenson, Robert S

    2009-12-01

    Epidemiological evidence supports the use of non-high-density lipoprotein cholesterol (non-HDL-C), apolipoprotein B-100 (apoB), and low-density lipoprotein particles as markers of atherogenic risk. Treatment guidelines also identify these as additional targets of lipid-modifying intervention in patients with elevated triglycerides (TG). Even when TG are only moderately elevated, many patients on statin monotherapy who have achieved targets for low-density lipoprotein cholesterol (LDL-C) fail to reach non-HDL-C treatment goals, and even fewer reach apoB goals. Combination lipid-modifying therapy is therefore indicated for comprehensive lipid management, particularly in patients with type 2 diabetes and metabolic syndrome in whom LDL-C levels are often considered 'optimal'. Of the available options, adding either a niacin, fibrate or omega-3 fatty acids provides greater opportunity to achieve non-HDL-C and apoB targets, given complementary profiles of lipid-modifying activity and supported by evidence from clinical studies. Improvement in lipid control and reduction in atherogenic risk could be anticipated to translate to benefits in clinical outcomes. PMID:19545870

  1. Modifying plasma low-density lipoprotein and high-density lipoprotein cholesterol: what combinations are available in the future?

    PubMed

    Kastelein, John J P

    2005-11-01

    Despite a growing body of research on the benefit of combination drug therapy for dyslipidemia in the metabolic syndrome or diabetes mellitus, there are insufficient outcome data on the use of combination therapy as well as inadequate data to compare certain combination regimens. The focus of the therapeutic approach in treating the metabolic syndrome has been almost exclusively on low-density lipoprotein (LDL) cholesterol for approximately the past 10 years, and specifically on statin therapy. Although results of epidemiologic studies as well as clinical trials using angiographic and clinical end points confirm the association of LDL cholesterol and risk of coronary artery disease, data are lacking regarding the effects of combination therapy in the management of coronary artery disease. Management of the metabolic syndrome focusing on the modification of plasma LDL as well as high-density lipoprotein cholesterol is reviewed. Future management strategies with the use of novel combination therapy is also discussed. PMID:16291010

  2. Dot-blot assay for the low density lipoprotein receptor

    SciTech Connect

    Maggi, F.M.; Catapano, A.L.

    1987-01-01

    We describe a new method for detecting the interaction of low density lipoprotein with its receptor using unmodified nitrocellulose as support for membrane protein. The method is specific and sensitive down to 3 micrograms of membrane protein. Unlabeled LDL, but not HDL, competes with /sup 125/I-labeled LDL for binding, and binding is abolished by pretreatment of the membranes with pronase and is dependent upon the presence of Ca2+. Furthermore, modification of arginine or lysine residues on LDL abolishes the lipoprotein interaction with the receptor protein supported on the nitrocellulose. When the membranes are solubilized with octyl glucoside, purification steps of the receptor can be directly followed with no interference of the detergent, therefore eliminating the need for its removal. The increased expression of LDL receptors on liver membranes from estradiol-treated rats was also demonstrated. We suggest, therefore, that this method can be used to detect the presence of LDL receptors on minute amounts of membrane protein.

  3. A prominent large high-density lipoprotein at birth enriched in apolipoprotein C-I identifies a new group of infancts of lower birth weight and younger gestational age

    SciTech Connect

    Kwiterovich Jr., Peter O.; Cockrill, Steven L.; Virgil, Donna G.; Garrett, Elizabeth; Otvos, James; Knight-Gibson, Carolyn; Alaupovic, Petar; Forte, Trudy; Farwig, Zachlyn N.; Macfarlane, Ronald D.

    2003-10-01

    Because low birth weight is associated with adverse cardiovascular risk and death in adults, lipoprotein heterogeneity at birth was studied. A prominent, large high-density lipoprotein (HDL) subclass enriched in apolipoprotein C-I (apoC-I) was found in 19 percent of infants, who had significantly lower birth weights and younger gestational ages and distinctly different lipoprotein profiles than infants with undetectable, possible or probable amounts of apoC-I-enriched HDL. An elevated amount of an apoC-I-enriched HDL identifies a new group of low birth weight infants.

  4. Esterification of Low Density Lipoprotein Cholesterol in Human Fibroblasts and Its Absence in Homozygous Familial Hypercholesterolemia

    PubMed Central

    Goldstein, Joseph L.; Dana, Suzanna E.; Brown, Michael S.

    1974-01-01

    A new mechanism is described for the cellular esterification of cholesterol derived from extra-cellular lipoproteins. Incubation of monolayers of cultured fibroblasts from normal human subjects with low density lipoproteins led to a 30- to 40-fold increase in the rate of incorporation of either [14C]acetate or [14C]oleate into the fatty acid fraction of cholesteryl [14C]esters. This stimulation of cholesteryl ester formation by low density lipoproteins occurred despite the fact that endogenous synthesis of free cholesterol was completely suppressed by the lipoprotein. Thus, exogenous cholesterol contained in low density lipoproteins, rather than endogenously synthesized sterol, appeared to provide the cholesterol substrate for this cellular esterfication process. High density lipoproteins and the lipoprotein-deficient fraction of serum neither stimulated cholesteryl ester formation nor inhibited cholesterol synthesis. Both the low density lipoprotein-dependent increase in cholesterol esterification and decrease in free cholesterol synthesis required the interaction of the lipoprotein with its recently described cell surface receptor. Cells from homozygotes with familial hypercholesterolemia, which lack specific low density lipoprotein receptors, showed neither lipoprotein-dependent cholesterol esterification nor suppression of cholesterol synthesis. The reciprocal changes in free cholesterol synthesis and cholesteryl ester formation produced by low density lipoprotein-receptor interactions may play an important role in the regulation of the cholesterol content of mammalian cells. PMID:4373706

  5. Esterification of low density lipoprotein cholesterol in human fibroblasts and its absence in homozygous familial hypercholesterolemia.

    PubMed

    Goldstein, J L; Dana, S E; Brown, M S

    1974-11-01

    A new mechanism is described for the cellular esterification of cholesterol derived from extra-cellular lipoproteins. Incubation of monolayers of cultured fibroblasts from normal human subjects with low density lipoproteins led to a 30- to 40-fold increase in the rate of incorporation of either [(14)C]acetate or [(14)C]oleate into the fatty acid fraction of cholesteryl [(14)C]esters. This stimulation of cholesteryl ester formation by low density lipoproteins occurred despite the fact that endogenous synthesis of free cholesterol was completely suppressed by the lipoprotein. Thus, exogenous cholesterol contained in low density lipoproteins, rather than endogenously synthesized sterol, appeared to provide the cholesterol substrate for this cellular esterfication process. High density lipoproteins and the lipoprotein-deficient fraction of serum neither stimulated cholesteryl ester formation nor inhibited cholesterol synthesis. Both the low density lipoprotein-dependent increase in cholesterol esterification and decrease in free cholesterol synthesis required the interaction of the lipoprotein with its recently described cell surface receptor. Cells from homozygotes with familial hypercholesterolemia, which lack specific low density lipoprotein receptors, showed neither lipoprotein-dependent cholesterol esterification nor suppression of cholesterol synthesis. The reciprocal changes in free cholesterol synthesis and cholesteryl ester formation produced by low density lipoprotein-receptor interactions may play an important role in the regulation of the cholesterol content of mammalian cells.

  6. Data on carotid intima-media thickness and lipoprotein subclasses in type 1 diabetes from the Diabetes Control and Complications Trial and the Epidemiology of Diabetes Interventions and Complications (DCCT/EDIC)

    PubMed Central

    Basu, Arpita; Jenkins, Alicia J.; Zhang, Ying; Stoner, Julie A.; Klein, Richard L.; Lopes-Virella, Maria F.; Timothy Garvey, W.; Lyons, Timothy J.

    2015-01-01

    Type 1 diabetes (T1DM) is associated with increased risk of macrovascular complications. We examined longitudinal associations of serum conventional lipids and nuclear magnetic resonance (NMR)-determined lipoprotein subclasses with carotid intima-media thickness (IMT) in adults with T1DM (n=455) enrolled in the Diabetes Control and Complications Trial (DCCT). Data on serum lipids and lipoproteins were collected at DCCT baseline (1983–89) and were correlated with common and internal carotid IMT determined by ultrasonography during the observational follow-up of the DCCT, the Epidemiology of Diabetes Interventions and Complications (EDIC) study, at EDIC ‘Year 1’ (199–1996) and EDIC ‘Year 6’ (1998–2000). This article contains data on the associations of DCCT baseline lipoprotein profiles (NMR-based VLDL & chylomicrons, IDL/LDL and HDL subclasses and ‘conventional’ total, LDL-, HDL-, non-HDL-cholesterol and triglycerides) with carotid IMT at EDIC Years 1 and 6, stratified by gender. The data are supplemental to our original research article describing detailed associations of DCCT baseline lipids and lipoprotein profiles with EDIC Year 12 carotid IMT (Basu et al. in press) [1]. PMID:26759826

  7. Oxidized low-density lipoprotein induces hematopoietic stem cell senescence.

    PubMed

    Zhang, Xian-Ping; Zhang, Gui-Hai; Wang, Yu-Ying; Liu, Jun; Wei, Qiang; Xu, Chun-Yan; Wang, Jian-Wei; Wang, Ya-Ping

    2013-09-01

    We have investigated oxidized low-density lipoprotein (ox-LDL) induced senescence in hematopoietic stem cells (HCs). Mouse Sca-1+ HCs were separated and purified using the magnetic activated cell sorting technique. Ox-LDL induced significant senescence in HCs measured by SA-β-Gal staining, and reduced CFU-Mix colony-forming capacity, arresting cells at G0/G1 phase. In agreement with the cell cycle arrest, ox-LDL markedly reduced the expression of CDK4, cyclin D, and cyclin E. As possible contributing factors for cell senescence, ox-LDL also induced cellular oxidative stress and reduced telomerase activity.

  8. Biomimetic high density lipoprotein nanoparticles for nucleic acid delivery.

    PubMed

    McMahon, Kaylin M; Mutharasan, R Kannan; Tripathy, Sushant; Veliceasa, Dorina; Bobeica, Mariana; Shumaker, Dale K; Luthi, Andrea J; Helfand, Brian T; Ardehali, Hossein; Mirkin, Chad A; Volpert, Olga; Thaxton, C Shad

    2011-03-01

    We report a gold nanoparticle-templated high density lipoprotein (HDL AuNP) platform for gene therapy that combines lipid-based nucleic acid transfection strategies with HDL biomimicry. For proof-of-concept, HDL AuNPs are shown to adsorb antisense cholesterylated DNA. The conjugates are internalized by human cells, can be tracked within cells using transmission electron microscopy, and regulate target gene expression. Overall, the ability to directly image the AuNP core within cells, the chemical tailorability of the HDL AuNP platform, and the potential for cell-specific targeting afforded by HDL biomimicry make this platform appealing for nucleic acid delivery.

  9. Thermal stability of human plasma electronegative low-density lipoprotein: A paradoxical behavior of low-density lipoprotein aggregation.

    PubMed

    Rull, Anna; Jayaraman, Shobini; Gantz, Donald L; Rivas-Urbina, Andrea; Pérez-Cuellar, Montserrat; Ordóñez-Llanos, Jordi; Sánchez-Quesada, Jose Luis; Gursky, Olga

    2016-09-01

    Low-density lipoprotein (LDL) aggregation is central in triggering atherogenesis. A minor fraction of electronegative plasma LDL, termed LDL(-), plays a special role in atherogenesis. To better understand this role, we analyzed the kinetics of aggregation, fusion and disintegration of human LDL and its fractions, LDL(+) and LDL(-). Thermal denaturation of LDL was monitored by spectroscopy and electron microscopy. Initially, LDL(-) aggregated and fused faster than LDL(+), but later the order reversed. Most LDL(+) disintegrated and precipitated upon prolonged heating. In contrast, LDL(-) partially retained lipoprotein morphology and formed soluble aggregates. Biochemical analysis of all fractions showed no significant degradation of major lipids, mild phospholipid oxidation, and an increase in non-esterified fatty acid (NEFA) upon thermal denaturation. The main baseline difference between LDL subfractions was higher content of NEFA in LDL(-). Since NEFA promote lipoprotein fusion, increased NEFA content can explain rapid initial aggregation and fusion of LDL(-) but not its resistance to extensive disintegration. Partial hydrolysis of apoB upon heating was similar in LDL subfractions, suggesting that minor proteins importantly modulate LDL disintegration. Unlike LDL(+), LDL(-) contains small amounts of apoA-I and apoJ. Addition of exogenous apoA-I to LDL(+) hampered lipoprotein aggregation, fusion and precipitation, while depletion of endogenous apoJ had an opposite effect. Therefore, the initial rapid aggregation of LDL(-) is apparently counterbalanced by the stabilizing effects of minor proteins such as apoA-I and apoJ. These results help identify key determinants for LDL aggregation, fusion and coalescence into lipid droplets in vivo. PMID:27233433

  10. High density lipoprotein metabolism in a rabbit model of hyperalphalipoproteinemia.

    PubMed

    Quig, D W; Zilversmit, D B

    1989-03-01

    The potential utility of an animal model of hyperalphalipoproteinemia for examining the role of high density lipoprotein (HDL) in atherogenesis prompted the current studies. Preliminary data indicated that in rabbits high-coconut oil feeding for 30 days doubled plasma HDL-cholesterol levels, but did not affect lower density lipoproteins (LDL) (d less than 1.063 g/ml). Experiments were performed to examine the composition of these HDL and to determine the mechanism for the diet-induced increase in plasma HDL. Rabbits were fed commercial chow or chow plus 14% (w/w) coconut oil and blood samples were collected 18 h after feeding. Compared to chow-fed rabbits, peak levels of HDL-cholesterol were attained within 2 weeks, and coconut oil feeding doubled the plasma levels of HDL-cholesterol, phospholipids and protein for up to 4 months without affecting HDL lipid and apoprotein composition. After 3 months the diet also increased VLDL- (107%) and LDL-cholesterol (40%) levels, but the absolute increases in each of these lipoprotein fractions was less than half of that of HDL. Isotope kinetic studies of 125I-HDL protein indicated a doubled rate of production of HDL and no change in the efficiency of removal of HDL from plasma. These studies demonstrate that in the rabbit high-coconut oil feeding doubles the rate of production and turnover of apparently normal HDL particles. It is proposed that such an animal model could be utilized to examine directly the role of HDL in atherogenesis. PMID:2920068

  11. Phagocytosis of aggregated lipoprotein by macrophages: Low density lipoprotein receptor-dependent foam-cell formation

    SciTech Connect

    Suits, A.G.; Chait, A.; Aviram, M.; Heinecke, J.W. )

    1989-04-01

    Low density lipoprotein (LDL) modified by incubation with phospholipase C (PLC-LDL) aggregates in solution and is rapidly taken up and degraded by human and mouse macrophages, producing foam cells in vitro. Human, mouse, and rabbit macrophages degraded {sup 125}I-labeled PLC-LDL ({sup 125}I-PLC-LDL) more rapidly than native {sup 125}I-labeled LDL ({sup 125}I-LDL), while nonphagocytic cells such as human fibroblasts and bovine aortic endothelial cells degraded {sup 125}I-PLC-LDL more slowly than {sup 125}I-LDL. This suggested the mechanism for internalization of PLC-LDL was phagocytosis. When examined by electron microscopy, mouse peritoneal macrophages appeared to be phagocytosing PLC-LDL. The uptake and degradation of {sup 125}I-PLC-LDL by human macrophages was inhibited >80% by the monoclonal antibody C7 (IgG2b) produced by hybridoma C7, which blocks the ligand binding domain of the LDL receptor. Similarly, methylation of {sup 125}I-LDL ({sup 125}I-MeLDL) prior to treatment with phospholipase C decreased its subsequent uptake and degradation by human macrophages by >90%. The uptake and degradation of phospholipase C-modified {sup 125}I-MeLDL by macrophages could be restored by incubation of the methylated lipoprotein with apoprotein E, a ligand recognized by the LDL receptor. These results indicate that macrophages internalize PLC-LDL by LDL receptor-dependent phagocytosis.

  12. High-density lipoprotein functionality in coronary artery disease.

    PubMed

    Kosmas, Constantine E; Christodoulidis, Georgios; Cheng, Jeh-wei; Vittorio, Timothy J; Lerakis, Stamatios

    2014-06-01

    The role of high-density lipoprotein (HDL) in cardiovascular atheroprotection is well established. Epidemiological data have clearly demonstrated an inverse relationship between HDL levels and the risk for coronary artery disease, which is independent of the low-density lipoprotein levels. However, more recent data provide evidence that high HDL levels are not always protective and that under certain conditions may even confer an increased risk. Thus, a new concept has arisen, which stresses the importance of HDL functionality, rather than HDL concentration per se, in the assessment of cardiovascular risk. HDL functionality is genetically defined but can also be modified by several environmental and lifestyle factors, such as diet, smoking or certain pharmacologic interventions. Furthermore, HDL is consisted of a heterogeneous group of particles with major differences in their structural, biological and functional properties. Recently, the cholesterol efflux capacity from macrophages was proven to be an excellent metric of HDL functionality, because it was shown to have a strong inverse relationship with the risk of angiographically documented coronary artery disease, independent of the HDL and apolipoprotein A-1 levels, although it may not actually predict the prospective risk for cardiovascular events. Thus, improving the quality of HDL may represent a better therapeutic target than simply raising the HDL level, and assessment of HDL function may prove informative in refining our understanding of HDL-mediated atheroprotection.

  13. Protein carbamylation renders high-density lipoprotein dysfunctional

    PubMed Central

    2012-01-01

    Aim Carbamylation of proteins through reactive cyanate has been demonstrated to predict an increased cardiovascular risk. Cyanate is formed in vivo by break-down of urea and at sites of inflammation by the phagocyte protein myeloperoxidase. Since myeloperoxidase (MPO) associates with high-density lipoprotein (HDL) in human atherosclerotic intima, we examined in the present study whether cyanate specifically targets HDL. Results Mass spectrometry analysis revealed that protein carbamylation is a major post-translational modification of HDL. The carbamyllysine content of lesion derived HDL was more than 20-fold higher in comparison to 3-chlorotyrosine levels, a specific oxidation product of MPO. Notable, the carbamyllysine content of lesion-derived HDL was 5 to 8-fold higher when compared to lesion derived low-density lipoprotein (LDL) or total lesion protein and increased with lesion severity. Importantly, the carbamyllysine content of HDL, but not of LDL, correlated with levels of 3-chlorotyrosine, suggesting MPO mediated carbamylation in the vessel wall. Remarkably, one carbamyllysine residue per HDL associated apolipoprotein A-I was sufficient to induce cholesterol accumulation and lipid droplet formation in macrophages through a pathway requiring the HDL receptor scavenger receptor class B, type I. Conclusion The present results raise the possibility that HDL carbamylation contributes to foam cell formation in atherosclerotic lesions. PMID:21235354

  14. High-density lipoprotein subfractions--what the clinicians need to know.

    PubMed

    Pirillo, Angela; Norata, Giuseppe Danilo; Catapano, Alberico Luigi

    2013-01-01

    Although the inverse relationship between plasma levels of high-density lipoprotein (HDL) and cardiovascular disease has been largely demonstrated, many observations have suggested that the assessment of HDL functionality might be more informative than a simple measurement of HDL-cholesterol plasma levels. HDLs are a class of structurally and functionally heterogeneous particles; in atherosclerosis-related diseases, changes in HDL subfraction levels and functions are frequently observed. Circulating levels of large HDL particles are decreased in dyslipidaemic conditions, while levels of small dense HDL particles are increased in patients with coronary heart disease. Furthermore, specific genetic defects in proteins involved in HDL metabolism significantly impact the distribution of HDL subpopulations. Finally, many drugs used for dyslipidaemia induce changes in HDL subfractions strictly related to cardiovascular disease. Although several methods exist to evaluate HDL subclass levels, most of them are not easily applicable in clinical practice, due to the costs and high variability. However, the possibility to measure the levels of specific HDL subfractions in patients with atherosclerosis-related diseases might help to better define their cardiovascular risk. PMID:23428644

  15. Liver disease alters high-density lipoprotein composition, metabolism and function.

    PubMed

    Trieb, Markus; Horvath, Angela; Birner-Gruenberger, Ruth; Spindelboeck, Walter; Stadlbauer, Vanessa; Taschler, Ulrike; Curcic, Sanja; Stauber, Rudolf E; Holzer, Michael; Pasterk, Lisa; Heinemann, Akos; Marsche, Gunther

    2016-07-01

    High-density lipoproteins (HDL) are important endogenous inhibitors of inflammatory responses. Functional impairment of HDL might contribute to the excess mortality experienced by patients with liver disease, but the effect of cirrhosis on HDL metabolism and function remain elusive. To get an integrated measure of HDL quantity and quality, we assessed several metrics of HDL function using apolipoprotein (apo) B-depleted sera from patients with compensated cirrhosis, patients with acutely decompensated cirrhosis and healthy controls. We observed that sera of cirrhotic patients showed reduced levels of HDL-cholesterol and profoundly suppressed activities of several enzymes involved in HDL maturation and metabolism. Native gel electrophoresis analyses revealed that cirrhotic serum HDL shifts towards the larger HDL2 subclass. Proteomic assessment of isolated HDL identified several proteins, including apoA-I, apoC-III, apoE, paraoxonase 1 and acute phase serum amyloid A to be significantly altered in cirrhotic patients. With regard to function, these alterations in levels, composition and structure of HDL were strongly associated with metrics of function of apoB-depleted sera, including cholesterol efflux capability, paraoxonase activity, the ability to inhibit monocyte production of cytokines and endothelial regenerative activities. Of particular interest, cholesterol efflux capacity appeared to be strongly associated with liver disease mortality. Our findings may be clinically relevant and improve our ability to monitor cirrhotic patients at high risk. PMID:27106140

  16. Liver disease alters high-density lipoprotein composition, metabolism and function.

    PubMed

    Trieb, Markus; Horvath, Angela; Birner-Gruenberger, Ruth; Spindelboeck, Walter; Stadlbauer, Vanessa; Taschler, Ulrike; Curcic, Sanja; Stauber, Rudolf E; Holzer, Michael; Pasterk, Lisa; Heinemann, Akos; Marsche, Gunther

    2016-07-01

    High-density lipoproteins (HDL) are important endogenous inhibitors of inflammatory responses. Functional impairment of HDL might contribute to the excess mortality experienced by patients with liver disease, but the effect of cirrhosis on HDL metabolism and function remain elusive. To get an integrated measure of HDL quantity and quality, we assessed several metrics of HDL function using apolipoprotein (apo) B-depleted sera from patients with compensated cirrhosis, patients with acutely decompensated cirrhosis and healthy controls. We observed that sera of cirrhotic patients showed reduced levels of HDL-cholesterol and profoundly suppressed activities of several enzymes involved in HDL maturation and metabolism. Native gel electrophoresis analyses revealed that cirrhotic serum HDL shifts towards the larger HDL2 subclass. Proteomic assessment of isolated HDL identified several proteins, including apoA-I, apoC-III, apoE, paraoxonase 1 and acute phase serum amyloid A to be significantly altered in cirrhotic patients. With regard to function, these alterations in levels, composition and structure of HDL were strongly associated with metrics of function of apoB-depleted sera, including cholesterol efflux capability, paraoxonase activity, the ability to inhibit monocyte production of cytokines and endothelial regenerative activities. Of particular interest, cholesterol efflux capacity appeared to be strongly associated with liver disease mortality. Our findings may be clinically relevant and improve our ability to monitor cirrhotic patients at high risk.

  17. Reliability of low-density lipoprotein cholesterol, non-high-density lipoprotein cholesterol, and apolipoprotein B measurement.

    PubMed

    Contois, John H; Warnick, G Russell; Sniderman, Allan D

    2011-01-01

    There is little understanding of the reliability of laboratory measurements among clinicians. Low-density lipoprotein cholesterol (LDL-C) measurement is the cornerstone of cardiovascular risk assessment and prevention, but it is fraught with error. Therefore, we have reviewed issues related to accuracy and precision for the measurement of LDL-C and the related markers non-high-density lipoprotein cholesterol (non-HDL-C) and apolipoprotein B. Despite the widespread belief that LDL-C is standardized and reproducible, available data suggest that results can vary significantly as the result of methods from different manufacturers. Similar problems with direct HDL-C assays raise concerns about the reliability of non-HDL-C measurement. The root cause of method-specific bias relates to the ambiguity in the definition of both LDL and HDL, and the heterogeneity of LDL and HDL particle size and composition. Apolipoprotein B appears to provide a more reliable alternative, but assays for it have not been as rigorously tested as direct LDL-C and HDL-C assays.

  18. Biologically active low density lipoprotein in human peripheral lymph.

    PubMed Central

    Reichl, D; Myant, N B; Brown, M S; Goldstein, J L

    1978-01-01

    We have compared the ability of human serum and peripheral lymph to suppress the activity of 3-hydroxy-3-methylglutaryl-coenzyme A reductase (HMG-CoA reductase), to activate cholesteryl ester synthesis, and to compete with 125I-labeled low density lipoprotein (LDL) for binding to LDL receptors in cultured human fibroblasts. Whole lymph was active in all three tests and the activity per unit volume in lymph was approximately equal to 1/10th that in serum. All three biologic activities in lymph were confined to the d less than 1.063 g/ml fraction. Whole lymph had no significant effect on HMG-CoA reductase activity in fibroblasts from a patient with homozygous familial hypercholesterolemia, whose cells lack LDL receptors. The LDL-like biologic activity per unit mass of immunologically active apoprotein B was approximately the same in lymph as in serum. The current data indicate that functionally active LDL is present in lymph and that the concentration of this lipoprotein is approximately equal to 1/10th that in serum. PMID:201669

  19. High-Density Lipoprotein, Lecithin: Cholesterol Acyltransferase, and Atherosclerosis.

    PubMed

    Ossoli, Alice; Pavanello, Chiara; Calabresi, Laura

    2016-06-01

    Epidemiological data clearly show the existence of a strong inverse correlation between plasma high-density lipoprotein cholesterol (HDL-C) concentrations and the incidence of coronary heart disease. This relation is explained by a number of atheroprotective properties of HDL, first of all the ability to promote macrophage cholesterol transport. HDL are highly heterogeneous and are continuously remodeled in plasma thanks to the action of a number of proteins and enzymes. Among them, lecithin:cholesterol acyltransferase (LCAT) plays a crucial role, being the only enzyme able to esterify cholesterol within lipoproteins. LCAT is synthetized by the liver and it has been thought to play a major role in reverse cholesterol transport and in atheroprotection. However, data from animal studies, as well as human studies, have shown contradictory results. Increased LCAT concentrations are associated with increased HDL-C levels but not necessarily with atheroprotection. On the other side, decreased LCAT concentration and activity are associated with decreased HDL-C levels but not with increased atherosclerosis. These contradictory results confirm that HDL-C levels per se do not represent the functionality of the HDL system. PMID:27302716

  20. High-Density Lipoprotein, Lecithin: Cholesterol Acyltransferase, and Atherosclerosis

    PubMed Central

    Ossoli, Alice; Pavanello, Chiara

    2016-01-01

    Epidemiological data clearly show the existence of a strong inverse correlation between plasma high-density lipoprotein cholesterol (HDL-C) concentrations and the incidence of coronary heart disease. This relation is explained by a number of atheroprotective properties of HDL, first of all the ability to promote macrophage cholesterol transport. HDL are highly heterogeneous and are continuously remodeled in plasma thanks to the action of a number of proteins and enzymes. Among them, lecithin:cholesterol acyltransferase (LCAT) plays a crucial role, being the only enzyme able to esterify cholesterol within lipoproteins. LCAT is synthetized by the liver and it has been thought to play a major role in reverse cholesterol transport and in atheroprotection. However, data from animal studies, as well as human studies, have shown contradictory results. Increased LCAT concentrations are associated with increased HDL-C levels but not necessarily with atheroprotection. On the other side, decreased LCAT concentration and activity are associated with decreased HDL-C levels but not with increased atherosclerosis. These contradictory results confirm that HDL-C levels per se do not represent the functionality of the HDL system. PMID:27302716

  1. 21 CFR 866.5600 - Low-density lipoprotein immunological test system.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Low-density lipoprotein immunological test system... SERVICES (CONTINUED) MEDICAL DEVICES IMMUNOLOGY AND MICROBIOLOGY DEVICES Immunological Test Systems § 866.5600 Low-density lipoprotein immunological test system. (a) Identification. A low-density...

  2. 21 CFR 866.5600 - Low-density lipoprotein immunological test system.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Low-density lipoprotein immunological test system... SERVICES (CONTINUED) MEDICAL DEVICES IMMUNOLOGY AND MICROBIOLOGY DEVICES Immunological Test Systems § 866.5600 Low-density lipoprotein immunological test system. (a) Identification. A low-density...

  3. Heterogeneity of serum low density lipoproteins in normal human subjects

    SciTech Connect

    Shen, M.M.S.; Krauss, R.M.; Lindgren, F.T.; Forte, T.M.

    1981-01-01

    Equilibrium density gradient ultracentrifugation of serum low density lipoprotein (LDL) from twelve healthy human subjects was used to separate six subfractions with mean dinsity ranging from 1.0268 to 1.0597 g/ml. Mean corrected peak flotation rate (S/sup o//sub f/) measured by analytic ultracentrifugation, and mean particle diameter determined by negative staining electron microscopy, both declined significantly with increasing density of the subfractions. Major differences in chemical composition of the subfractions were noted, including a singnificantly lower triglyceride content and higher ratio of cholesteryl ester to triglyceride in the middle fractions compared with those of highest and lowest density. Concentration of fraction 2 correlated positively with HDL (P < 0.01) and negatively with VLDL (P < 0.001); concentration of fraction 4 correlated negatively with HDL (P < 0.05) and positively with VLDL (P < 0.001) and IDL (P < 0.01). LDL may thus include subspecies of differing structure and composition which might also have different metabolic and atherogenic roles.

  4. Distinct Hepatic Receptors for Low Density Lipoprotein and Apolipoprotein E in Humans

    NASA Astrophysics Data System (ADS)

    Hoeg, Jeffrey M.; Demosky, Stephen J.; Gregg, Richard E.; Schaefer, Ernst J.; Brewer, H. Bryan

    1985-02-01

    Since the liver is a central organ for lipid and lipoprotein synthesis and catabolism, hepatic receptors for specific apolipoproteins on plasma lipoproteins would be expected to modulate lipid and lipoprotein metabolism. The role of hepatic receptors for low density lipoproteins and apolipoprotein E-containing lipoproteins was evaluated in patients with complementary disorders in lipoprotein metabolism: abetalipoproteinemia and homozygous familial hypercholesterolemia. In addition, hepatic membranes from a patient with familial hypercholesterolemia were studied and compared before and after portacaval shunt surgery. The results establish that the human liver has receptors for apolipoproteins B and E. Furthermore, in the human, hepatic receptors for low density lipoproteins and apolipoprotein E are genetically distinct and can undergo independent control.

  5. Biominetic High Density Lipoproteins for the Delivery of Therapeutic Oligonucleotides

    NASA Astrophysics Data System (ADS)

    Tripathy, Sushant

    Advances in nanotechnology have brought about novel inorganic and hybrid nanoparticles with unique physico-chemical properties that make them suitable for a broad range of applications---from nano-circuitry to drug delivery. A significant part of those advancements have led to ground-breaking discoveries that have changed the approaches to formulation of therapeutics against diseases, such as cancer. Now-a-days the focus does not lie solely on finding a candidate small-molecule therapeutic with minimal adverse effects, but researchers are looking up to nanoparticles to improve biodistribution and biocompatibility profile of clinically proven therapeutics. The plethora of conjugation chemistries offered by currently extant inorganic nanoparticles have, in recent years, led to great leaps in the field of biomimicry---a modality that promises high biocompatibility. Further, in the pursuit of highly specific therapeutic molecules, researchers have turned to silencing oligonucleotides and some have already brought together the strengths of nanoparticles and silencing oligonucleotides in search of an efficacious therapy for cancer with minimal adverse effects. This dissertation work focuses on such a biomimetic platform---a gold nanoparticle based high density lipoprotein biomimetic (HDL NP), for the delivery of therapeutic oligonucleotides. The first chapter of this body of work introduces the molecular target of the silencing oligonucleotides---VEGFR2, and its role in the progression of solid tumor cancers. The background information also covers important aspects of natural high density lipoproteins (HDL), especially their innate capacity to bind and deliver exogenous and endogenous silencing oligonucleotides to tissues that express their high affinity receptor SRB1. We subsequently describe the synthesis of the biomimetic HDL NP and its oligonucleotide conjugates, and establish their biocompatibility. Further on, experimental data demonstrate the efficacy of silencing

  6. Distribution of High-Density Lipoprotein Subfractions and Hypertensive Status

    PubMed Central

    Zhang, Yan; Li, Sha; Xu, Rui-Xia; Guo, Yuan-Lin; Wu, Na-Qiong; Zhu, Cheng-Gang; Gao, Ying; Dong, Qian; Liu, Geng; Sun, Jing; Li, Jian-Jun

    2015-01-01

    Abstract The exact mechanisms of hypertension contributing to atherosclerosis have not been fully elucidated. Although multiple studies have clarified the association with low-density lipoprotein (LDL) subfractions, uncertainty remains about its relationship with high-density lipoprotein (HDL) subfractions. Therefore, we aimed to comprehensively determine the relationship between distribution of HDL subfractions and hypertensive status. A total of 953 consecutive subjects without previous lipid-lowering drug treatment were enrolled and were categorized based on hypertension history (with hypertension [n = 550] or without hypertension [n = 403]). Baseline clinical and laboratory data were collected. HDL separation was performed using the Lipoprint System. Plasma large HDL-cholesterol (HDL-C) and large HDL percentage were dramatically lower whereas the small HDL-C and small HDL percentage were higher in patients with hypertension (all P < 0.05). The antihypertensive drug therapy was not associated with large or small HDL subfractions (on treatment vs not on treatment, P > 0.05; combination vs single drug therapy, P > 0.05). However, the blood pressure well-controlled patients have significantly lower small HDL subfraction (P < 0.05). Moreover, large HDL-C and percentage were inversely whereas small HDL percentage was positively associated with incident hypertension after adjusting potential confounders (all P < 0.05). In the multivariate model conducted in patients with and without hypertension separately, the cardio-protective value of large HDL-C was disappeared in patients with hypertension (OR 95%CI: 1.011 [0.974–1.049]). The distribution of HDL subfractions is closely associated with hypertensive status and hypertension may potentially impact the cardio-protective value of large HDL subfraction. PMID:26512616

  7. 99mTc-low density lipoprotein: intracellularly trapped radiotracer for noninvasive imaging of low density lipoprotein metabolism in vivo.

    PubMed

    Vallabhajosula, S; Goldsmith, S J

    1990-01-01

    Low density lipoprotein (LDL) is the major transport protein for endogenous cholesterol in human plasma. LDL can be radiolabeled with 99mTc using sodium dithionite as a reducing agent. Biodistribution studies of 99mTc-LDL in normal rabbits confirm that 99mTc-LDL acts as an intracellularly "trapped ligand" similar to radioiodinated tyramine cellobiose-LDL (the previously validated trapped radioligand). In addition, studies performed in hypercholesterolemic rabbit models demonstrated the feasibility of imaging hepatic LDL-receptor concentration noninvasively. 99mTc-LDL imaging studies in a number of hypercholesterolemic and hypocholesterolemic patients have proven useful in understanding the abnormal uptake and metabolism of LDL. In patients with hypercholesterolemia (HC), 99mTc-LDL appears to be taken up well by the actively evolving atherosclerotic lesions and xanthomata that contained foam cells and macrophages. In patients with myeloproliferative disease and chronic hypocholesterolemia, 99mTc-LDL images showed intense accumulation of radioactivity in the spleen and bone marrow; this demonstrated extensive proliferation of the macrophage population suggesting that hypocholesterolemia in these patients may be due to increased uptake of LDL uptake by the macrophages. 99mTc-LDL is a powerful tool for the noninvasive exploration of a variety of disorders of lipoprotein metabolism in patients.

  8. Radiotracers for low density lipoprotein biodistribution studies in vivo: technetium-99m low density lipoprotein versus radioiodinated low density lipoprotein preparations

    SciTech Connect

    Vallabhajosula, S.; Paidi, M.; Badimon, J.J.; Le, N.A.; Goldsmith, S.J.; Fuster, V.; Ginsberg, H.N.

    1988-07-01

    In an attempt to characterize the in vivo behavior of (99mTc) low density lipoprotein (LDL), biodistribution studies were performed in normal and hypercholesterolemic (HC) rabbits. In normal rabbits, 24 hr after the injection of (99mTc)LDL, 99mTc activity accumulated mainly in adrenal glands, spleen, liver, and kidney. In HC rabbits, however, there was a marked reduction of 99mTc activity in these organs. In both normal and HC rabbits, less than 17% of 99mTc activity appeared in the 24-hr urine following injection of (99mTc)LDL, suggesting that in vivo, (99mTc)LDL is trapped and accumulated within the tissues. Direct comparison of (99mTc)LDL, 125I-native-LDL and (131I)tyramine cellobiose-LDL (the previously validated trapped radioligand) in normal rabbits, demonstrated that the biodistribution of (99mTc)LDL was similar to that of (131I)tyramine cellobiose-LDL. The adrenal glands, liver, and spleen accumulated significantly greater quantities of 99mTc and 131I activity per gram of tissue than 125I (from native-LDL). In addition, imaging studies in monkeys, showed that the hepatic uptake and retention of (99mTc) LDL was similar to that of (131I)tyramine cellobiose LDL. In contrast, radioiodine from native-LDL was deiodinated in liver with subsequent excretion into the intestine. These results suggest that (99mTc)LDL acts as a trapped ligand in vivo and should therefore, be a good tracer for noninvasive quantitative biodistribution studies of LDL.

  9. Radiotracers for low density lipoprotein biodistribution studies in vivo: technetium-99m low density lipoprotein versus radioiodinated low density lipoprotein preparations.

    PubMed

    Vallabhajosula, S; Paidi, M; Badimon, J J; Le, N A; Goldsmith, S J; Fuster, V; Ginsberg, H N

    1988-07-01

    In an attempt to characterize the in vivo behavior of [99mTc] low density lipoprotein (LDL), biodistribution studies were performed in normal and hypercholesterolemic (HC) rabbits. In normal rabbits, 24 hr after the injection of [99mTc]LDL, 99mTc activity accumulated mainly in adrenal glands, spleen, liver, and kidney. In HC rabbits, however, there was a marked reduction of 99mTc activity in these organs. In both normal and HC rabbits, less than 17% of 99mTc activity appeared in the 24-hr urine following injection of [99mTc]LDL, suggesting that in vivo, [99mTc]LDL is trapped and accumulated within the tissues. Direct comparison of [99mTc]LDL, 125I-native-LDL and [131I]tyramine cellobiose-LDL (the previously validated trapped radioligand) in normal rabbits, demonstrated that the biodistribution of [99mTc]LDL was similar to that of [131I]tyramine cellobiose-LDL. The adrenal glands, liver, and spleen accumulated significantly greater quantities of 99mTc and 131I activity per gram of tissue than 125I (from native-LDL). In addition, imaging studies in monkeys, showed that the hepatic uptake and retention of [99mTc] LDL was similar to that of [131I]tyramine cellobiose LDL. In contrast, radioiodine from native-LDL was deiodinated in liver with subsequent excretion into the intestine. These results suggest that [99mTc]LDL acts as a trapped ligand in vivo and should therefore, be a good tracer for noninvasive quantitative biodistribution studies of LDL.

  10. Fitness, Heart Disease, and High-Density Lipoproteins: A Look at the Relationships.

    ERIC Educational Resources Information Center

    McCunney, Robert J.

    1987-01-01

    The role of fitness in preventing coronary heart disease is explored. Research on high-density lipoprotein, which has been found to be one of the most critical determinants of risk, is reviewed. The relationship between fitness, high-density lipoprotein, and coronary heart disease is assessed, and clinical implications are spelled out. (MT)

  11. Proprotein convertases in high-density lipoprotein metabolism.

    PubMed

    Choi, Seungbum; Korstanje, Ron

    2013-01-01

    The proprotein convertase subtilisin/kexins (PCSKs) are a serine endopeptidase family. PCSK members cleave amino acid residues and modulate the activity of precursor proteins. Evidence from patients and animal models carrying genetic alterations in PCSK members show that PCSK members are involved in various metabolic processes. These studies further revealed the molecular mechanism by which genetic alteration of some PCSK members impairs normal molecular and physiological functions, which in turn lead to cardiovascular disease. High-density lipoprotein (HDL) is anti-atherogenic as it removes excessive amount of cholesterol from blood and peripheral tissues. Several PCSK members are involved in HDL metabolism. PCSK3, PCSK5, and PCSK6 process two triglyceride lipase family members, endothelial lipase and lipoprotein lipase, which are important for HDL remodeling. Recent studies in our lab found evidence that PCSK1 and PCSK9 are also involved in HDL metabolism. A mouse model carrying an amino acid substitution in PCSK1 showed an increase in serum apolipoprotein A1 (APOA1) level. Another mouse model lacking PCSK9 showed a decrease in APOE-containing HDL. In this review, we summarize the role of the five PCSK members in lipid, glucose, and bile acid (BA) metabolism, each of which can influence HDL metabolism. We propose an integrative model in which PCSK members regulate HDL metabolism through various molecular mechanisms and metabolic processes and genetic variation in some PCSK members may affect the efficiency of reverse cholesterol transport. PCSK members are considered as attractive therapeutic targets. A greater understanding of the molecular and physiological functions of PCSK members will improve therapeutic strategies and drug efficacy for cardiovascular disease where PCSK members play critical role, with fewer adverse effects. PMID:24252756

  12. Lipoprotein receptors in copper-deficient rats: high density lipoprotein binding to liver membranes

    SciTech Connect

    Hassel, C.A.; Lei, K.Y.; Marchello, J.A.

    1986-03-05

    In copper-deficient rats, the observed hyperlipoproteinemia was mainly due to the elevation in high density lipoproteins (HDL). This study was designed to determine whether an impairment in the binding of HDL to liver membrane is responsible for the hyperlipoproteinemia. Sixty male Sprague-Dawley rats were randomly divided into 2 treatments, namely copper (Cu) deficient and adequate (less than 1 and 8 mg Cu/kg of diet). After 8 weeks, plasma, heart and liver tissues were obtained. Reduction in liver Cu content and elevation in heart to body weight ratio and plasma cholesterol confirmed that rats fed the test diet were Cu-deficient. Plasma HDL isolated from both Cu-deficient and control rats were iodinated and bound to liver membranes prepared from rats of each treatment. Binding of /sup 125/I-HDL was competitively inhibited by unlabelled rat HDL from both treatments, but not by human LDL. Scatchard analysis of specific binding data showed that maximal /sup 125/I-HDL binding (per mg membrane protein) to membranes prepared from Cu-deficient rats was not lower than controls. Furthermore, the amount of /sup 125/I-HDL from deficient rats specifically bound to liver membranes prepared from either treatment was not less than the amount of /sup 125/I-HDL from control rats bound to the same membranes. The data suggest that the hyperlipoproteinemia in Cu-deficient rats may not have resulted from a decrease in the number of hepatic HDL binding sites.

  13. Native low density lipoprotein promotes lipid raft formation in macrophages.

    PubMed

    Song, Jian; Ping, Ling-Yan; Duong, Duc M; Gao, Xiao-Yan; He, Chun-Yan; Wei, Lei; Wu, Jun-Zhu

    2016-03-01

    Oxidized low‑density lipoprotein (LDL) has an important role in atherogenesis; however, the mechanisms underlying cell‑mediated LDL oxidation remain to be elucidated. The present study investigated whether native‑LDL induced lipid raft formation, in order to gain further insight into LDL oxidation. Confocal microscopic analysis revealed that lipid rafts were aggregated or clustered in the membrane, which were colocalized with myeloperoxidase (MPO) upon native LDL stimulation; however, in the presence of methyl‑β‑cyclodextrin (MβCD), LDL‑stimulated aggregation, translocation, and colocalization of lipid rafts components was abolished.. In addition, lipid raft disruptors MβCD and filipin decreased malondialdehyde expression levels. Density gradient centrifugation coupled to label‑free quantitative proteomic analysis identified 1,449 individual proteins, of which 203 were significantly upregulated following native‑LDL stimulation. Functional classification of the proteins identified in the lipid rafts revealed that the expression levels of translocation proteins were upregulated. In conclusion, the results of the present study indicated that native‑LDL induced lipid raft clustering in macrophages, and the expression levels of several proteins were altered in the stimulated macrophages, which provided novel insights into the mechanism underlying LDL oxidation.

  14. Statins do not decrease small, dense low-density lipoprotein.

    PubMed

    Choi, Cheol Ung; Seo, Hong Seog; Lee, Eun Mi; Shin, Seung Yong; Choi, Un-Jung; Na, Jin Oh; Lim, Hong Euy; Kim, Jin Won; Kim, Eung Ju; Rha, Seung-Woon; Park, Chang Gyu; Oh, Dong Joo

    2010-01-01

    In an observational study, we examined the effect of statins on low-density-lipoprotein (LDL) subfractions.Using density-gradient ultracentrifugation, we measured small, dense LDL density in 612 patients (mean age, 61.7 ± 12.6 yr), some with and some without coronary artery disease, who were placed in a statin-treated group (n=172) or a control group (n=440) and subdivided on the basis of coronary artery disease status.Total cholesterol, LDL cholesterol, apolipoprotein B, and the LDL cholesterol/apolipoprotein B ratio were significantly lower in the statin group. However, the proportion of small, dense LDL was higher in the statin group (42.9% ± 9.5% vs 41.3% ± 8.5%; P=0.046) and the proportion of large, buoyant LDL was lower (23.6% ± 7.5% vs 25.4% ± 7.9%; P=0.011). In the statin group, persons without coronary artery disease had higher proportions of small, dense LDL, and persons with coronary artery disease tended to have higher proportions of small, dense LDL.Our study suggests that statin therapy--whether or not recipients have coronary artery disease--does not decrease the proportion of small, dense LDL among total LDL particles, but in fact increases it, while predictably reducing total LDL cholesterol, absolute amounts of small, dense LDL, and absolute amounts of large, buoyant LDL. If and when our observation proves to be reproducible in subsequent large-scale studies, it should provide new insights into small, dense LDL and its actual role in atherogenesis or the progression of atherosclerosis.

  15. Low High-Density Lipoprotein and Risk of Myocardial Infarction

    PubMed Central

    Ramirez, A.; Hu, P. P.

    2015-01-01

    Low HDL is an independent risk factor for myocardial infarction. This paper reviews our current understanding of HDL, HDL structure and function, HDL subclasses, the relationship of low HDL with myocardial infarction, HDL targeted therapy, and clinical trials and studies. Furthermore potential new agents, such as alirocumab (praluent) and evolocumab (repatha) are discussed. PMID:26692765

  16. Low High-Density Lipoprotein and Risk of Myocardial Infarction.

    PubMed

    Ramirez, A; Hu, P P

    2015-01-01

    Low HDL is an independent risk factor for myocardial infarction. This paper reviews our current understanding of HDL, HDL structure and function, HDL subclasses, the relationship of low HDL with myocardial infarction, HDL targeted therapy, and clinical trials and studies. Furthermore potential new agents, such as alirocumab (praluent) and evolocumab (repatha) are discussed. PMID:26692765

  17. Cholesteryl ester transfer protein, low density lipoprotein particle size and intima media thickness in patients with coronary heart disease.

    PubMed

    Tosheska, Katerina; Labudovic, Danica; Jovanova, Silvana; Jaglikovski, Branko; Alabakovska, Sonja

    2011-08-01

    Cholesteryl ester transfer protein (CETP) plays a key role in reverse cholesterol transport and high density lipoprotein (HDL) metabolism. Predominance of small, dense LDL particles is associated with an increased risk of atherosclerosis and coronary heart disease (CHD).The aim of the study was to determine the potential relationship between the CETP concentration and low density lipoprotein (LDL) particle size and their association with intima media thickness (IMT) in patients with CHD. Lipid parameters, CETP concentration and LDL particle size were determined in 100 healthy subjects (control group) and in 100 patients with CHD, aged 43 to 77 years. Plasma CETP concentrations were measured by an enzyme-linked immuno-sorbent assay with two different monoclonal antibodies. LDL subclasses were separated by nondenaturing polyacrilamide 3-31% gradient gel electrophoresis. CETP concentration was higher in patients compared to controls (2.02 ± 0.75 mg/ml vs. 1.74 ± 0.63 mg/ml, p<0.01). Mean LDL particle size (nm) was significantly smaller in patients than in controls (24.5 ± 1.1 vs. 26.1 ± 0.9; p<0.001). There was no relation between LDL particle size and CETP concentration (r=-0.1807, p=0.072). Age, diastolic blood pressure, CETP concentration and LDL particle size were independent factors for determing IMT by multiple linear regression analysis. They accounted for 35.2 % of the observed variability in IMT. CETP is not an independent contributor of LDL particle size. CETP might play a role in determining lipoprotein distributions, but did not seem to be the sole factor in the formation of small LDL particles.

  18. Punicalagin Induces Serum Low-Density Lipoprotein Influx to Macrophages.

    PubMed

    Atrahimovich, Dana; Khatib, Soliman; Sela, Shifra; Vaya, Jacob; Samson, Abraham O

    2016-01-01

    High levels of circulating low-density lipoprotein (LDL) are a primary initiating event in the development of atherosclerosis. Recently, the antiatherogenic effect of polyphenols has been shown to be exerted via a mechanism unrelated to their antioxidant capacity and to stem from their interaction with specific intracellular or plasma proteins. In this study, we investigated the interaction of the main polyphenol in pomegranate, punicalagin, with apolipoprotein B-100 (ApoB100) that surrounds LDL. Punicalagin bound to ApoB100 at low concentrations (0.25-4 μM). Upon binding, it induced LDL influx to macrophages in a concentration-dependent manner, up to 2.5-fold. In contrast, another polyphenol which binds to ApoB100, glabridin, did not affect LDL influx. We further showed that LDL influx occurs specifically through the LDL receptor, with LDL then accumulating in the cell cytoplasm. Taken together with the findings of Aviram et al., 2000, that pomegranate juice and punicalagin induce plasma LDL removal and inhibit macrophage cholesterol synthesis and accumulation, our results suggest that, upon binding, punicalagin stimulates LDL influx to macrophages, thus reducing circulating cholesterol levels. PMID:27516832

  19. Effects of diet on high-density lipoprotein cholesterol.

    PubMed

    Siri-Tarino, Patty W

    2011-12-01

    Multiple dietary factors have been shown to increase high-density lipoprotein cholesterol (HDL-C) concentrations, and HDL-C has been inversely associated with coronary heart disease (CHD) risk. Replacement of dietary carbohydrate with polyunsaturated, monounsaturated and saturated fat has been associated with progressively greater increases in HDL-C (7-12%) in addition to other lipid changes. Added sugars, but not high glycemic carbohydrates, have been associated with decreased HDL-C. Alcohol consumption has been associated with increased HDL-C (9.2%) independent of changes in other measured lipids. Modest effects on HDL-C (~4-5%) among other lipid and non-lipid CHD risk factors have also been observed with weight loss by dieting, omega-3 fatty acids, and a Mediterranean diet pattern. The CHD benefit of increasing HDL-C is unclear given the inconsistent evidence from HDL-raising pharmacologic trials. Furthermore, pleiotropic effects of diet preclude attribution of CHD benefit specifically to HDL-C. Investigation into functional or other properties of HDL may lend further insight. PMID:21901431

  20. Punicalagin Induces Serum Low-Density Lipoprotein Influx to Macrophages

    PubMed Central

    Atrahimovich, Dana; Khatib, Soliman; Sela, Shifra; Vaya, Jacob

    2016-01-01

    High levels of circulating low-density lipoprotein (LDL) are a primary initiating event in the development of atherosclerosis. Recently, the antiatherogenic effect of polyphenols has been shown to be exerted via a mechanism unrelated to their antioxidant capacity and to stem from their interaction with specific intracellular or plasma proteins. In this study, we investigated the interaction of the main polyphenol in pomegranate, punicalagin, with apolipoprotein B-100 (ApoB100) that surrounds LDL. Punicalagin bound to ApoB100 at low concentrations (0.25–4 μM). Upon binding, it induced LDL influx to macrophages in a concentration-dependent manner, up to 2.5-fold. In contrast, another polyphenol which binds to ApoB100, glabridin, did not affect LDL influx. We further showed that LDL influx occurs specifically through the LDL receptor, with LDL then accumulating in the cell cytoplasm. Taken together with the findings of Aviram et al., 2000, that pomegranate juice and punicalagin induce plasma LDL removal and inhibit macrophage cholesterol synthesis and accumulation, our results suggest that, upon binding, punicalagin stimulates LDL influx to macrophages, thus reducing circulating cholesterol levels. PMID:27516832

  1. Oxidized low-density lipoprotein alters endothelial progenitor cell populations.

    PubMed

    Cui, Yuqi; Narasimhulu, Chandrakala A; Liu, Lingjuan; Li, Xin; Xiao, Yuan; Zhang, Jia; Xie, Xiaoyun; Hao, Hong; Liu, Jason Z; He, Guanglong; Cowan, Peter J; Cui, Lianqun; Zhu, Hua; Parthasarathy, Sampath; Liu, Zhenguo

    2015-06-01

    Oxidized low-density lipoprotein (ox-LDL) is critical to atherosclerosis in hyperlipidemia. Bone marrow (BM)-derived endothelial progenitor cells (EPCs) are important to preventing atherosclerosis, and significantly decreased in hyperlipidemia. This study was to demonstrate ox-LDL and hyperlipidemia could exhibit similar effect on EPC population and the role of reactive oxygen species (ROS). ROS production in BM and blood was significantly increased in male C57BL/6 mice with intravenous ox-LDL treatment, and in hyperlipidemic LDL receptor knockout mice with 4-month high-fat diet. ROS formation was effectively blocked with overexpression of antioxidant enzymes or N-acetylcysteine treatment. In hyperlipidemic and ox-LDL-treated mice, c-Kit(+)/CD31(+) cell number in BM and blood, and Sca-1(+)/Flk-1(+) cell number in blood, not in BM, were significantly decreased, which were not affected by inhibiting ROS production, while blood CD34(+)/Flk-1(+) cell number was significantly increased that was prevented with reduced ROS formation. However, blood CD34(+)/CD133(+) cell number increased in ox-LDL-treated mice, while decreased in hyperlipidemic mice. These data suggested that ox-LDL produced significant changes in BM and blood EPC populations similar (but not identical) to chronic hyperlipidemia with predominantly ROS-independent mechanism(s).

  2. Novel Therapies for Low-Density Lipoprotein Cholesterol Reduction.

    PubMed

    Toth, Peter P

    2016-09-15

    Although many clinical trials and meta-analyses have demonstrated that lower serum low-density lipoprotein cholesterol (LDL-C) levels are associated with proportionately greater reductions in the risk of cardiovascular disease events, not all patients with hypercholesterolemia are able to attain risk-stratified LDL-C goals with statin monotherapy. Elucidation of the pathophysiology of genetic disorders of lipid metabolism (e.g., familial hypercholesterolemia) has led to the development of several novel lipid-lowering strategies, including blocking the degradation of hepatic LDL-C receptors that are important in LDL-C clearance, or the inhibition of apoprotein synthesis and lipidation. Mipomersen and lomitapide are highly efficacious new agents available for the treatment of patients with homozygous familial hypercholesterolemia. The recent introduction of PCSK9 inhibitors (alirocumab and evolocumab) have made it possible for many patients to achieve very low LDL-C concentrations (e.g., <40 mg/dl) that are usually not attainable with statin monotherapy. Ongoing clinical trials are examining the impact of very low LDL-C levels on cardiovascular disease event rates and the long-term safety of this approach. PMID:27620356

  3. Tiliroside and gnaphaliin inhibit human low density lipoprotein oxidation.

    PubMed

    Schinella, Guillermo R; Tournier, Horacio A; Máñez, Salvador; de Buschiazzo, Perla M; Del Carmen Recio, María; Ríos, José Luis

    2007-01-01

    Two flavonoids, gnaphaliin and tiliroside, isolated from Helichrysum italicum, were studied in vitro for their capacity to inhibit Cu(2+)-induced human low density lipoprotein (LDL) and diluted plasma oxidation. LDL oxidation was monitored by conjugated diene, thiobarbituric acid-reactive substances (TBARS) formation and electrophoretic mobility on agarose gel. Gnaphaliin and tiliroside increased the lag-phase for diene conjugate production in a dose-dependent manner. The reduction of TBARS production confirmed the antioxidant activity of gnaphaliin and tiliroside with 50% inhibitory concentration (IC(50)) values of 8.0+/-3.9 microM and 7.0+/-2.6 microM respectively. Furthermore, the flavonoids negated the Cu(2+)-induced increase in electrophoretic mobility of LDL. Antioxidant activity of gnaphaliin and tiliroside was significantly different when diluted plasma was oxidised by adding 1 mM CuSO(4). Although both flavonoids again reduced the TBARS production, tiliroside showed higher activity than gnaphaliin (IC(50)=10.6+/-2.5 microM vs. IC(50)>50 microM). In conclusion, tiliroside and gnaphaliin are antioxidants against in vitro Cu(2+)-induced LDL oxidation in the same order of magnitude compared to that of the reference drug, probucol.

  4. Acrolein impairs the cholesterol transport functions of high density lipoproteins.

    PubMed

    Chadwick, Alexandra C; Holme, Rebecca L; Chen, Yiliang; Thomas, Michael J; Sorci-Thomas, Mary G; Silverstein, Roy L; Pritchard, Kirkwood A; Sahoo, Daisy

    2015-01-01

    High density lipoproteins (HDL) are considered athero-protective, primarily due to their role in reverse cholesterol transport, where they transport cholesterol from peripheral tissues to the liver for excretion. The current study was designed to determine the impact of HDL modification by acrolein, a highly reactive aldehyde found in high abundance in cigarette smoke, on the cholesterol transport functions of HDL. HDL was chemically-modified with acrolein and immunoblot and mass spectrometry analyses confirmed apolipoprotein crosslinking, as well as acrolein adducts on apolipoproteins A-I and A-II. The ability of acrolein-modified HDL (acro-HDL) to serve as an acceptor of free cholesterol (FC) from COS-7 cells transiently expressing SR-BI was significantly decreased. Further, in contrast to native HDL, acro-HDL promotes higher neutral lipid accumulation in murine macrophages as judged by Oil Red O staining. The ability of acro-HDL to mediate efficient selective uptake of HDL-cholesteryl esters (CE) into SR-BI-expressing cells was reduced compared to native HDL. Together, the findings from our studies suggest that acrolein modification of HDL produces a dysfunctional particle that may ultimately promote atherogenesis by impairing functions that are critical in the reverse cholesterol transport pathway.

  5. Targeting high-density lipoproteins: update on a promising therapy.

    PubMed

    Verdier, Céline; Martinez, Laurent O; Ferrières, Jean; Elbaz, Meyer; Genoux, Annelise; Perret, Bertrand

    2013-11-01

    Numerous epidemiological studies have demonstrated the atheroprotective roles of high density lipoproteins (HDL), so that HDL is established as an independent negative risk factor. The protective effect of HDL against atherosclerosis is mainly attributed to their capacity to bring peripheral excess cholesterol back to the liver for further elimination into the bile. In addition, HDL can exert other protective functions on the vascular wall, through their anti-inflammatory, antioxidant, antithrombotic and cytoprotective properties. HDL-targeted therapy is thus an innovative approach against cardiovascular risk and atherosclerosis. These pleiotropic atheroprotective properties of HDL have led experts to believe that "HDL-related therapies" represent the most promising next step in fighting against atherosclerosis. However, because of the heterogeneity of HDL functions, targeting HDL is not a simple task and HDL therapies that lower cardiovascular risk are NOT yet available. In this paper, an overview is presented about the therapeutic strategies currently under consideration to raise HDL levels and/or functions. Recently, clinical trials of drugs targeting HDL-C levels have disappointingly failed, suggesting that HDL functions through specific mechanisms should be targeted rather than increasing per se HDL levels. PMID:24074699

  6. Ethanol enhances de novo synthesis of high density lipoprotein cholesterol

    SciTech Connect

    Cluette, J.E.; Mulligan, J.J.; Noring, R.; Doyle, K.; Hojnacki, J.

    1984-05-01

    Male squirrel monkeys fed ethanol at variable doses were used to assess whether alcohol enhances de novo synthesis of high density lipoprotein (HDL) cholesterol in vivo. Monkeys were divided into three groups: 1) controls fed isocaloric liquid diet; 2) low ethanol monkeys fed liquid diet with vodka substituted isocalorically for carbohydrate at 12% of calories; and 3) High Ethanol animals fed diet plus vodka at 24% of calories. High Ethanol primates had significantly higher levels of HDL nonesterified cholesterol than Control and Low Ethanol animals while serum glutamate oxaloacetate transaminase was similar for the three treatments. There were no significant differences between the groups in HDL cholesteryl ester mass or specific activity following intravenous injection of labeled mevalonolactone. By contrast, High Ethanol monkeys had significantly greater HDL nonesterified cholesterol specific activity with approximately 60% of the radioactivity distributed in the HDL/sub 3/ subfraction. This report provides the first experimental evidence that ethanol at 24% of calories induces elevations in HDL cholesterol in primates through enhanced de novo synthesis without adverse effects on liver function.

  7. Effect of a Moderate Fat Diet With and Without Avocados on Lipoprotein Particle Number, Size and Subclasses in Overweight and Obese Adults: A Randomized, Controlled Trial

    PubMed Central

    Wang, Li; Bordi, Peter L.; Fleming, Jennifer A.; Hill, Alison M.; Kris‐Etherton, Penny M.

    2015-01-01

    Background Avocados are a nutrient‐dense source of monounsaturated fatty acids (MUFA) that can be used to replace saturated fatty acids (SFA) in a diet to lower low density lipoprotein cholesterol (LDL‐C). Well‐controlled studies are lacking on the effect of avocado consumption on cardiovascular disease (CVD) risk factors. Methods and Results A randomized, crossover, controlled feeding trial was conducted with 45 overweight or obese participants with baseline LDL‐C in the 25th to 90th percentile. Three cholesterol‐lowering diets (6% to 7% SFA) were fed (5 weeks each): a lower‐fat diet (LF: 24% fat); 2 moderate‐fat diets (34% fat) provided similar foods and were matched for macronutrients and fatty acids: the avocado diet (AV) included one fresh Hass avocado (136 g) per day, and the moderate‐fat diet (MF) mainly used high oleic acid oils to match the fatty acid content of one avocado. Compared with baseline, the reduction in LDL‐C and non‐high‐density lipoprotein (HDL) cholesterol on the AV diet (−13.5 mg/dL, −14.6 mg/dL) was greater (P<0.05) than the MF (−8.3 mg/dL, −8.7 mg/dL) and LF (−7.4 mg/dL, −4.8 mg/dL) diets. Furthermore, only the AV diet significantly decreased LDL particle number (LDL‐P, −80.1 nmol/L, P=0.0001), small dense LDL cholesterol (LDL3+4, −4.1 mg/dL, P=0.04), and the ratio of LDL/HDL (−6.6%, P<0.0001) from baseline. Conclusions Inclusion of one avocado per day as part of a moderate‐fat, cholesterol‐lowering diet has additional LDL‐C, LDL‐P, and non‐HDL‐C lowering effects, especially for small, dense LDL. Our results demonstrate that avocados have beneficial effects on cardio‐metabolic risk factors that extend beyond their heart‐healthy fatty acid profile. Clinical Trial Registration URL: http://www.clinicaltrials.gov. Unique identifier: NCT01235832. PMID:25567051

  8. Triolein and trilinolein ameliorate oxidized low-density lipoprotein-induced oxidative stress in endothelial cells.

    PubMed

    Luo, Ting; Deng, Ze-yuan; Li, Xiao-ping; Rao, Huan; Fan, Ya-wei

    2014-05-01

    Uptake of oxidized low-density lipoprotein by endothelial cells is a critical step for the initiation of atherosclerosis. Triacylglycerol uptake in these cells is understood to be a part of the process. The present investigation, comparison among the effects of simple acylglycerol, including tristearin, triolein, and trilinolein, upon oxidized low-density lipoprotein -induced oxidative stress was undertaken. Results indicated that trilinolein (78 % ± 0.02) and triolein (90 % ± 0.01) increased cell viability of endothelial cells exposed to oxidized low-density lipoprotein, whereas tristearin decreased the cell viability (55 % ± 0.03) (P < 0.05). Oxidized low-density lipoprotein treatment significantly increased apoptosis (23 %), compared to cells simultaneously exposed to trilinolein (19 %) or triolein (16 %), where apoptosis was reduced (P < 0.05). On the other hand, exposure to tristearin further increased oxidized low-density lipoprotein -induced cell apoptosis (34 %). Treatment with trilinolein or triolein on oxidized low-density lipoprotein -stimulated endothelial cells inhibited the expression of ICAM-1 and E-selectin mRNA. Moreover, both trilinolein and triolein demonstrated a strong antioxidant response to oxidative stress caused by oxidized low-density lipoprotein. Taken together, the results indicate trilinolein and triolein possess anti-inflammatory properties, which are mediated via the antioxidant defense system.

  9. Lipid composition of circulating multiple-modified low density lipoprotein.

    PubMed

    Zakiev, E R; Sukhorukov, V N; Melnichenko, A A; Sobenin, I A; Ivanova, E A; Orekhov, A N

    2016-01-01

    Atherogenic modified low- density lipoprotein (LDL) induces pronounced accumulation of cholesterol and lipids in the arterial wall, while native LDL seems to lack such capability. Therefore, modified LDL appears to be a major causative agent in the pathogenesis of atherosclerosis. Possible modifications of LDL particles include changes in size and density, desialylation, oxidation and acquisition of negative charge. Total LDL isolated from pooled plasma of patients with coronary atherosclerosis, as well as from healthy subjects contains two distinct subfractions: normally sialylated LDL and desialylated LDL, which can be isolated by binding to a lectin affinity column. We called the desialylated LDL subfraction circulating modified LDL (cmLDL). In this study, we focused on lipid composition of LDL particles, analysing the total LDL preparation and two LDL subfractions: cmLDL and native LDL. The composition of LDL was studied using thin-layer chromatography. We found that cmLDL subfraction had decreased levels of free and esterified cholesterol, triglycerides, phospholipids (except for lysophosphatidylcholine) and sphingomyelin in comparison to native LDL. On the other hand, levels of mono-, and diglycerides, lysophosphatidylcholine and free fatty acids were higher in cmLDL than in native LDL. Our study demonstrated that lipid composition of cmLDL from atherosclerotic patients was altered in comparison to healthy subjects. In particular, phospholipid content was decreased, and free fatty acids levels were increased in cmLDL. This strengthens the hypothesis of multiple modification of LDL particles in the bloodstream and underscores the clinical importance of desialylated LDL as a possible marker of atherosclerosis progression. PMID:27558696

  10. Identifying the predominant peak diameter of high-density and low-density lipoproteins by electrophoresis.

    PubMed

    Williams, P T; Krauss, R M; Nichols, A V; Vranizan, K M; Wood, P D

    1990-06-01

    Particle size distributions of high-density (HDL) and low-density (LDL) lipoproteins, obtained by polyacrylamide gradient gel electrophoresis, exhibit apparent predominant and minor peaks within characteristic subpopulation migration intervals. In the present report, we show that identification of such peaks as predominant or minor depends on whether the particle size distribution is analyzed according to migration distance or particle size. The predominant HDL peak on the migration distance scale is frequently not the predominant HDL peak when the distribution is transformed to the particle size scale. The potential physiologic importance of correct identification of the predominant HDL peak within a gradient gel electrophoresis profile is suggested by our cross-sectional study of 97 men, in which diameters associated with the predominant peak, determined using migration distance and particle size scales, were correlated with plasma lipoprotein and lipid parameters. Plasma concentrations of HDL-cholesterol, triglycerides, and apolipoproteins A-I and B correlated more strongly with the predominant peak obtained using the particle size scale than the migration distance scale. The mathematical transformation from migration distance to particle diameter scale had less effect on the LDL distribution. The additional computational effort required to transform the HDL-distribution into the particle size scale appears warranted given the substantial changes it produces in the gradient gel electrophoresis profile and the strengthening of correlations with parameters relevant to lipoprotein metabolism.

  11. High-density lipoprotein cholesterol on a roller coaster: where will the ride end?

    PubMed

    Kronenberg, Florian

    2016-04-01

    Bowe et al. report an association between low high-density lipoprotein cholesterol concentrations and various incident chronic kidney disease end points in a cohort of almost 2 million US veterans followed for 9 years. These impressive data should be a starting point for further investigations including genetic epidemiologic investigations as well as post hoc analyses of interventional trials that target high-density lipoprotein cholesterol and, finally, studies that focus on the functionality of high-density lipoprotein particles. PMID:26994572

  12. Relative atherogenicity and predictive value of non-high-density lipoprotein cholesterol for coronary heart disease.

    PubMed

    Miller, Michael; Ginsberg, Henry N; Schaefer, Ernst J

    2008-04-01

    Although low-density lipoprotein cholesterol (LDL-C) is a well-established atherogenic factor for coronary heart disease, it does not completely represent the risk associated with atherogenic lipoproteins in the presence of high triglyceride (TG) levels. Constituent lipoproteins constituting non-high-density lipoprotein cholesterol (non-HDL-C) include atherogenic TG-rich lipoproteins, cholesteryl ester-enriched remnants of TG-rich lipoproteins, and lipoprotein(a). Recent observational and intervention studies suggest that the predictive value of non-HDL-C for cardiovascular risk and mortality is better than low-density lipoprotein cholesterol and that non-HDL-C correlates highly with plasma apolipoprotein B levels. Currently, the National Cholesterol Education Program Adult Treatment Panel III guidelines identify non-HDL-C as a secondary target of therapy in patients with TG elevation (> or =200 mg/dl) after the attainment of LDL-C target goals. In patients with coronary heart disease or coronary heart disease risk equivalents, an optional non-HDL-C goal is <100 mg/dl. To achieve the non-HDL-C goal, statin therapy may be intensified or combined with ezetimibe, niacin, a fibrate, or omega-3 fatty acids. In conclusion, non-HDL-C remains an important target of therapy for patients with elevated TGs, although its widespread adoption has yet to gain a foothold among health care professionals treating patients with dyslipidemia. PMID:18359322

  13. Human very low density lipoproteins and chylomicrons can protect against endotoxin-induced death in mice.

    PubMed Central

    Harris, H W; Grunfeld, C; Feingold, K R; Rapp, J H

    1990-01-01

    Endotoxemia stimulates many physiologic responses including disturbances in lipid metabolism. We hypothesized that this lipemia may be part of a defensive mechanism by which the body combats the toxic effects of circulating endotoxin. We tested the effects of mixtures of endotoxin, lipoproteins, and lipoprotein-free plasma and determined the ability of varying concentrations of human very low density lipoproteins (VLDL) and chylomicrons, as well as low density lipoproteins (LDL) and high density lipoproteins (HDL), and of the synthetic lipid emulsion SOYACAL to prevent endotoxin-induced death in mice. This study demonstrates that the triglyceride-rich VLDL and chylomicrons, as well as cholesterol-rich LDL and HDL, and cholesterol-free SOYACAL can protect against endotoxin-induced death. Protection required small amounts of lipoprotein-free plasma, and depended on the incubation time and the concentration of lipoprotein lipid. Despite stringent techniques to prevent exogenous endotoxin contamination eight of ten duplicate VLDL preparations contained endotoxin (5,755 +/- 3,514 ng endotoxin/mg triglyceride, mean +/- SEM) making the isolation of endotoxin-free VLDL difficult. In contrast, simultaneous preparations of LDL and HDL were relatively free of endotoxin contamination (3 +/- 3 and 320 +/- 319 ng/mg total cholesterol, respectively), suggesting that the contamination of VLDL occurs in vivo and not during the isolation procedure. These observations suggest a possible role for increased triglyceride-rich lipoproteins in the host's defense against endotoxemia and infection. Images PMID:2394827

  14. Biomimetic High-Density Lipoproteins from a Gold Nanoparticle Template

    NASA Astrophysics Data System (ADS)

    Luthi, Andrea Jane

    For hundreds of years the field of chemistry has looked to nature for inspiration and insight to develop novel solutions for the treatment of human diseases. The ability of chemists to identify, mimic, and modifiy small molecules found in nature has led to the discovery and development of many important therapeutics. Chemistry on the nanoscale has made it possible to mimic natural, macromolecular structures that may also be useful for understanding and treating diseases. One example of such a structure is high-density lipoprotein (HDL). The goal of this work is to use a gold nanoparticle (Au NP) as a template to synthesize functional mimics of HDL and characterize their structure and function. Chapter 1 details the structure and function of natural HDL and how chemistry on the nanoscale provides new strategies for mimicking HDL. This Chapter also describes the first examples of using nanoparticles to mimic HDL. Chapter 2 reports the synthesis and characterization of biomimetic HDL using different sizes of Au NPs and different surface chemistries and how these variables can be used to tailor the properties of biomimetic HDL. From these studies the optimal strategy for synthesizing biomimetic HDL was determined. In Chapter 3, the optimization of the synthesis of biomimetic HDL is discussed as well as a full characterization of its structure. In addition, the work in this chapter shows that biomimetic HDL can be synthesized on a large scale without alterations to its structure or function. Chapter 4 focuses on understanding the pathways by which biomimetic HDL accepts cholesterol from macrophage cells. The results of these studies demonstrate that biomimetic HDL is able to accept cholesterol by both active and passive pathways of cholesterol efflux. In Chapter 5 the preliminary results of in vivo studies to characterize the pharmacokinetics and pharmacodynamics of biomimetic HDL are presented. These studies suggest that biomimetic HDL traffics through tissues prone to

  15. High-density lipoprotein, mitochondrial dysfunction and cell survival mechanisms.

    PubMed

    White, C Roger; Giordano, Samantha; Anantharamaiah, G M

    2016-09-01

    Ischemic injury is associated with acute myocardial infarction, percutaneous coronary intervention, coronary artery bypass grafting and open heart surgery. The timely re-establishment of blood flow is critical in order to minimize cardiac complications. Reperfusion after a prolonged ischemic period, however, can induce severe cardiomyocyte dysfunction with mitochondria serving as a major target of ischemia/reperfusion (I/R) injury. An increase in the formation of reactive oxygen species (ROS) induces damage to mitochondrial respiratory complexes leading to uncoupling of oxidative phosphorylation. Mitochondrial membrane perturbations also contribute to calcium overload, opening of the mitochondrial permeability transition pore (mPTP) and the release of apoptotic mediators into the cytoplasm. Clinical and experimental studies show that ischemic preconditioning (ICPRE) and postconditioning (ICPOST) attenuate mitochondrial injury and improve cardiac function in the context of I/R injury. This is achieved by the activation of two principal cell survival cascades: 1) the Reperfusion Injury Salvage Kinase (RISK) pathway; and 2) the Survivor Activating Factor Enhancement (SAFE) pathway. Recent data suggest that high density lipoprotein (HDL) mimics the effects of conditioning protocols and attenuates myocardial I/R injury via activation of the RISK and SAFE signaling cascades. In this review, we discuss the roles of apolipoproteinA-I (apoA-I), the major protein constituent of HDL, and sphingosine 1-phosphate (S1P), a lysosphingolipid associated with small, dense HDL particles as mediators of cardiomyocyte survival. Both apoA-I and S1P exert an infarct-sparing effect by preventing ROS-dependent injury and inhibiting the opening of the mPTP. PMID:27150975

  16. Itinerary of high density lipoproteins in endothelial cells.

    PubMed

    Perisa, Damir; Rohrer, Lucia; Kaech, Andres; von Eckardstein, Arnold

    2016-02-01

    High density lipoprotein (HDL) and its main protein component apolipoprotein A-I (ApoA-I) have multiple anti-atherogenic functions. Some of them are exerted within the vessel wall, so that HDL needs to pass the endothelial barrier. To elucidate their itinerary through endothelial cells (ECs), we labelled ApoA-I and HDL either fluorescently or with 1.4 nm nanogold and investigated their cellular localization by using immunofluorescent microscopy (IFM) and electron microscopy (EM). HDL as well as ApoA-I is taken up by ECs into the same route of intracellular trafficking. Time kinetics and pulse chase experiments revealed that HDL is trafficked through different vesicles. HDL partially co-localized with LDL, albumin, and transferrin. HDL did not co-localize with clathrin and caveolin-1. Fluorescent HDL was recovered at small proportions in early endosomes and endosome to trans-golgi network vesicles but not at all in recycling endosomes, in late endosomes or lysosomes. EM identified HDL mainly in large filled vesicles which however upon IFM did not colocalize with markers of multivesicular bodies or autophagosomes. The uptake or cellular distribution of HDL was altered upon pharmacological interference with cytochalasine D, colchicine and dynasore. Blockage of fluid phase uptake with Amiloride or EIPA did not reduce the uptake of HDL. Neither did we observe any co-localization of HDL with dextran as the marker of fluid phase uptake. In conclusion, HDL and ApoA-I are internalized and trafficked by endothelial cells through a non-classical endocytic route. PMID:26577406

  17. Lipoprotein binding and endosomal itinerary of the low density lipoprotein receptor-related protein in rat liver.

    PubMed Central

    Lund, H; Takahashi, K; Hamilton, R L; Havel, R J

    1989-01-01

    The high affinity of 45Ca binding to the low density lipoprotein receptor (LDL-R) and the LDL-R-related protein (LRP) was utilized to study the subcellular distribution of these two proteins in rat liver. Like the LDL-R, LRP was manyfold enriched in rat liver endosomal membranes with a relative distribution in early and late endosomal compartments consistent with recycling between endosomes and the cell surface. The high concentration of LRP in hepatic endosomal membranes greatly facilitated demonstration of Ca-dependent binding of apolipoprotein E- and B-containing lipoproteins in ligand blots. LRP was severalfold more abundant than the LDL-R in hepatic parenchymal cells, showed extensive degradation in hepatic endosomes, and was found in high concentrations in the Golgi apparatus and endoplasmic reticulum. These data suggest a high rate of synthesis of LRP that appeared to be unaffected by treatment of rats with estradiol. The repeating cysteine-rich A-motif found in the ligand-binding domain of LRP appeared to be responsible for Ca binding by LRP, LDL-R, and complement factor C9 and accounted for immunological cross-reactivity among these proteins. Weaker ligand-blotting properties and an extraordinary susceptibility to proteolysis most likely contribute to the difficulty of detecting LRP in conventional assays for lipoprotein receptors. Our data suggest an extensive proteolytic processing of this protein and are consistent with a functional role of LRP in lipoprotein metabolism. Images PMID:2594771

  18. Membrane receptors for very low density lipoprotein (VLDL) inhibitor of lymphocyte proliferation

    SciTech Connect

    Yi, P.I.; Beck, G.; Zucker, S.

    1981-06-01

    Physiologic concentrations of human plasma very low density lipoproteins inhibit the DNA synthesis of lymphocytes stimulated by allogeneic cells or lectins. In this report reachers have compared the effects of isolated lipoproteins (very low density lipoproteins (VLDL), low density lipoproteins (LDL), and high density lipoproteins (HDL)) and lipoprotein-depleted plasma (LDP) on DNA synthesis by phytohemagglutinin-stimulated human lymphocytes. The relative potency for the inhibition of lymphocyte proliferation was VLDL greater than LDL greater than HDL greater than LDP. Fifty percent inhibition of DNA synthesis was observed at a VLDL protein concentration of 1.5--2.0 microgram/ml. Researchers have further demonstrated the presence of specific receptors for VLDL on human lymphocytes. Native VLDL was more effective than LDL in competing for 125I-VLDL binding sites. Subsequent to binding to lymphocytes, 125I-VLDL was internalized and degraded to acid-soluble products. Based on a Scatchard analysis of VLDL binding at 4 degrees C, the number of VLDL receptors per lymphocyte was estimated at 28,000 +/- 1300. Based on an estimated mean binding affinity for the VLDL receptor complex at half saturation of approximately 8.8 X 10(7) liter/mole, it is estimated that 91% of lymphocyte VLDL receptors are occupied at physiologic VLDL concentrations in blood. Although the immune regulatory role of plasma lipoproteins is uncertain, researchers suggest tha VLDL and LDL-In may maintain circulating blood lymphocytes in a nonproliferative state via their respective cell receptor mechanisms.

  19. Measurement of low-density lipoprotein cholesterol in assessment and management of cardiovascular disease risk.

    PubMed

    Jialal, I; Remaley, A T

    2014-07-01

    The deposition of cholesterol in the arterial wall by the infiltration of low-density lipoproteins (LDLs) is a key step in the development of atherosclerosis. In this Commentary, we discuss recent recommendations for clinical laboratory measurement of low-density lipoprotein cholesterol (LDL-C) and its utility both for assessing cardiovascular disease risk and as a tool in the management of patients receiving lipid-lowering therapy.

  20. Reliability of Calculated Low-Density Lipoprotein Cholesterol.

    PubMed

    Meeusen, Jeffrey W; Snozek, Christine L; Baumann, Nikola A; Jaffe, Allan S; Saenger, Amy K

    2015-08-15

    Aggressive low-density lipoprotein cholesterol (LDL-C)-lowering strategies are recommended for prevention of cardiovascular events in high-risk populations. Guidelines recommend a 30% to 50% reduction in at-risk patients even when LDL-C concentrations are between 70 and 130 mg/dl (1.8 to 3.4 mmol/L). However, calculation of LDL-C by the Friedewald equation is the primary laboratory method for routine LDL-C measurement. We compared the accuracy and reproducibility of calculated LDL-C <130 mg/dl (3.4 mmol/L) to LDL-C measured by β quantification (considered the gold standard method) in 15,917 patients with fasting triglyceride concentrations <400 mg/dl (4.5 mmol/L). Both variation and bias of calculated LDL-C increased at lower values of measured LDL-C. The 95% confidence intervals for a calculated LDL-C of 70 mg/dl (1.8 mmol/L) and 30 mg/dl (0.8 mmol/L) were 60 to 86 mg/dl (1.6 to 2.2 mmol/L) and 24 to 60 mg/dl (0.6 to 1.6 mmol/L), respectively. Previous recommendations have emphasized the requirement for a fasting sample with triglycerides <400 mg/dl (4.5 mmol/L) to calculate LDL-C by the Friedewald equation. However, no recommendations have addressed the appropriate lower reportable limit for calculated LDL-C. In conclusion, calculated LDL-C <30 mg/dl (0.8 mmol/L) should not be reported because of significant deviation from the gold standard measured LDL-C results, and caution is advised when using calculated LDL-CF values <70 mg/dl (1.8 mmol/L) to make treatment decisions.

  1. Human endothelial progenitor cells internalize high-density lipoprotein.

    PubMed

    Srisen, Kaemisa; Röhrl, Clemens; Meisslitzer-Ruppitsch, Claudia; Ranftler, Carmen; Ellinger, Adolf; Pavelka, Margit; Neumüller, Josef

    2013-01-01

    Endothelial progenitor cells (EPCs) originate either directly from hematopoietic stem cells or from a subpopulation of monocytes. Controversial views about intracellular lipid traffic prompted us to analyze the uptake of human high density lipoprotein (HDL), and HDL-cholesterol in human monocytic EPCs. Fluorescence and electron microscopy were used to investigate distribution and intracellular trafficking of HDL and its associated cholesterol using fluorescent surrogates (bodipy-cholesterol and bodipy-cholesteryl oleate), cytochemical labels and fluorochromes including horseradish peroxidase and Alexa Fluor® 568. Uptake and intracellular transport of HDL were demonstrated after internalization periods from 0.5 to 4 hours. In case of HDL-Alexa Fluor® 568, bodipy-cholesterol and bodipy-cholesteryl oleate, a photooxidation method was carried out. HDL-specific reaction products were present in invaginations of the plasma membrane at each time of treatment within endocytic vesicles, in multivesicular bodies and at longer periods of uptake, also in lysosomes. Some HDL-positive endosomes were arranged in form of "strings of pearl"- like structures. HDL-positive multivesicular bodies exhibited intensive staining of limiting and vesicular membranes. Multivesicular bodies of HDL-Alexa Fluor® 568-treated EPCs showed multilamellar intra-vacuolar membranes. At all periods of treatment, labeled endocytic vesicles and organelles were apparent close to the cell surface and in perinuclear areas around the Golgi apparatus. No HDL-related particles could be demonstrated close to its cisterns. Electron tomographic reconstructions showed an accumulation of HDL-containing endosomes close to the trans-Golgi-network. HDL-derived bodipy-cholesterol was localized in endosomal vesicles, multivesicular bodies, lysosomes and in many of the stacked Golgi cisternae and the trans-Golgi-network Internalized HDL-derived bodipy-cholesteryl oleate was channeled into the lysosomal intraellular

  2. Focus on lipids: high-density lipoprotein cholesterol and its associated lipoproteins in cardiac and renal disease.

    PubMed

    Shin, Hyun Joon; McCullough, Peter A

    2014-01-01

    High-density lipoprotein cholesterol (HDL-C) contains dozens of apoproteins that participate in normal cholesterol metabolism with a reliance on renal catabolism for clearance from the body. The plasma pool of HDL-C has been an excellent inverse predictor of cardiovascular events. However, when HDL-C concentrations have been manipulated with the use of niacin, fibric acid derivatives, and cholesteryl ester transferase protein inhibitors, there has been no improvement in outcomes in patients where the low-density lipoprotein cholesterol has been well treated with statins. Apolipoprotein L1 (APOL1) is one of the minor apoproteins of HDL-C, newly discovered in 1997. Circulating APOL1 is a 43-kDa protein mainly found in the HDL3 subfraction. In patients with chronic kidney disease (CKD), mutant forms of APOL1 have been associated with rapidly progressive CKD and end-stage renal disease (ESRD). Because mutant forms of APOL1 are more prevalent in African Americans compared to Caucasians, it may explain some of the racial disparities seen in the pool of patients with ESRD in the United States. Thus, HDL-C is an important lipoprotein carrying apoproteins that play roles in vascular and kidney disease. PMID:25343842

  3. Metabolism of a Lipid Nanoemulsion Resembling Low-Density Lipoprotein in Patients with Grade III Obesity

    PubMed Central

    Dantas, Simone Alves; Ficker, Elisabeth Salvatori; Vinagre, Carmen G. C.; Ianni, Barbara Maria; Maranhão, Raul Cavalcante; Mady, Charles

    2010-01-01

    INTRODUCTION: Obesity increases triglyceride levels and decreases high-density lipoprotein concentrations in plasma. Artificial emulsions resembling lipidic plasma lipoprotein structures have been used to evaluate low-density lipoprotein metabolism. In grade III obesity, low density lipoprotein metabolism is poorly understood. OBJECTIVE: To evaluate the kinetics with which a cholesterol-rich emulsion (called a low-density emulsion) binds to low-density lipoprotein receptors in a group of patients with grade III obesity by the fractional clearance rate. METHODS: A low-density emulsion was labeled with [14C]-cholesterol ester and [3H]-triglycerides and injected intravenously into ten normolipidemic non-diabetic patients with grade III obesity [body mass index higher than 40 kg/m2] and into ten non-obese healthy controls. Blood samples were collected over 24 hours to determine the plasma decay curve and to calculate the fractional clearance rate. RESULTS: There was no difference regarding plasma levels of total cholesterol or low-density lipoprotein cholesterol between the two groups. The fractional clearance rate of triglycerides was 0.086 ± 0.044 in the obese group and 0.122 ± 0.026 in the controls (p = 0.040), and the fractional clearance rate of cholesterol ester (h−1) was 0.052 ± 0.021 in the obese subjects and 0.058 ± 0.015 (p = 0.971) in the controls. CONCLUSION: Grade III obese subjects exhibited normal low-density lipoprotein removal from plasma as tested by the nanoemulsion method, but triglyceride removal was slower. PMID:20126342

  4. Iron-ascorbate-phospholipid mediated modification of low density lipoprotein.

    PubMed

    Greenspan, P; Yu, H; Gutman, R L; Mao, F; Ryu, B H; Lou, P

    1996-06-11

    LDL can be oxidized by a variety of agents to form a modified lipoprotein which is capable of being avidly metabolized by macrophages. While previous in vitro studies have focused exclusively on the oxidation of LDL, other lipids found in the atheroma are also subject to oxidation and its lipoperoxide byproducts may contribute to the process of LDL modification. To examine the relationship between the oxidation of phospholipids and the subsequent modification of LDL, we incubated 250 microM phosphatidylcholine with 10 microM ferrous sulfate and 50 microM ascorbic acid in 10 mM Tris (pH 7.0). After 18 h at 37 degrees C, significant amounts of thiobarbituric acid reactive substances (TBARS) were formed. The inclusion of LDL (100 micrograms protein/ml) elevated the TBARS and increased the electrophoretic mobility of the lipoprotein. LDL treated with iron and ascorbate in the absence of phosphatidylcholine did not result in the modification of this lipoprotein. LDL that was incubated with phosphatidylcholine, iron and ascorbate was found to be metabolized by macrophages to a far greater extent than native LDL or LDL treated with phosphatidylcholine alone. Probucol (10 microM) inhibited the LDL modification process. These results demonstrate that while iron and ascorbate cannot oxidize LDL directly, the addition of phosphatidylcholine to these initiators of lipid peroxidation can mediate and lead to the modification of LDL. PMID:8664335

  5. Rhesus positivity and low high-density lipoprotein cholesterol: a new link?

    PubMed

    Kanbay, Mehmet; Yildirir, Aylin; Ulus, Taner; Bilgi, Muhammet; Kucuk, Alparslan; Muderrisoglu, Haldun

    2006-04-01

    The aim of the study was to investigate the relationship of ABO and Rh blood groups with lipid profile in patients with established multivessel coronary artery disease in a population with low levels of high-density lipoprotein cholesterol. The records of 978 patients with multivessel coronary artery disease, in whom coronary bypass surgery was performed, were investigated. Coronary risk factors including diabetes, hypertension, smoking, and obesity were noted for each patient. Serum lipid profiles: total cholesterol, low-density and high-density lipoprotein cholesterol, and triglyceride levels, were also recorded. The mean age of the patients was 59.3 +/- 9.7 years (range, 25-84 years) and 80% were male. The risk factors and lipid profiles of ABO blood types were similar. Rh-negative patients had higher levels of high-density lipoprotein cholesterol (46.9 +/- 9.9 vs. 41.6 +/- 10.4 mg.dL(-1), p = 0.001) and a lower total/high-density lipoprotein cholesterol ratio (4.8 +/- 1.3 vs. 5.2 +/- 1.6, p = 0.029) compared to Rh-positive patients. The other lipid levels and risk factors had no association with Rh typing. These results indicate a significant association between rhesus positivity and low levels of high-density lipoprotein cholesterol in patients with multivessel coronary artery disease.

  6. Effect of improving glycemic control in patients with type 2 diabetes mellitus on low-density lipoprotein size, electronegative low-density lipoprotein and lipoprotein-associated phospholipase A2 distribution.

    PubMed

    Sánchez-Quesada, José L; Vinagre, Irene; de Juan-Franco, Elena; Sánchez-Hernández, Juan; Blanco-Vaca, Francisco; Ordóñez-Llanos, Jordi; Pérez, Antonio

    2012-07-01

    The aim of this study was to determine the effect of intensified hypoglycemic therapy in patients with type 2 diabetes mellitus on the distribution of lipoprotein-associated phospholipase A2 (Lp-PLA2) activity between high-density lipoprotein and low-density lipoprotein (LDL) and its relation with the lipid profile and other qualitative properties of LDL. Forty-two patients with type 2 diabetes on the basis of poor glycemic control and normal or near normal LDL cholesterol were recruited. Lifestyle counseling and pharmacologic hypoglycemic therapy were intensified to improve glycemic control, but lipid-lowering therapy was unchanged. At 4 ± 2 months, glycosylated hemoglobin had decreased by a mean of 2.1%, but the only effect on the lipid profile were statistically significant decreases in nonesterified fatty acids and apolipoprotein B concentration. LDL size increased and the proportion of electronegative LDL decreased significantly. In parallel, total Lp-PLA2 activity decreased significantly, promoting a redistribution of Lp-PLA2 activity toward a higher proportion in high-density lipoprotein. Improvements in glycemic control led to more marked changes in Lp-PLA2 activity and distribution in patients with diabetes who had not received previous lipid-lowering therapy. In conclusion, optimizing glycemic control in patients with type 2 diabetes promotes atheroprotective changes, including larger LDL size, decreased electronegative LDL, and a higher proportion of Lp-PLA2 activity in high-density lipoprotein. PMID:22481012

  7. Proteome of human plasma very low-density lipoprotein and low-density lipoprotein exhibits a link with coagulation and lipid metabolism.

    PubMed

    Dashty, M; Motazacker, M M; Levels, J; de Vries, M; Mahmoudi, M; Peppelenbosch, M P; Rezaee, F

    2014-03-01

    Apart from transporting lipids through the body, the human plasma lipoproteins very low-density lipoprotein (VLDL) and low-density lipoprotein (LDL) are also thought to serve as a modality for intra-organismal protein transfer, shipping proteins with important roles in inflammation and thrombosis from the site of synthesis to effector locations. To better understand the role of VLDL and LDL in the transport of proteins, we applied a combination of LTQ ORBITRAP-XL (nLC-MS/MS) with both in-SDS-PAGE gel and in-solution tryptic digestion of pure and defined VLDL and LDL fractions. We identified the presence of 95 VLDL- and 51 LDL-associated proteins including all known apolipoproteins and lipid transport proteins, and intriguingly a set of coagulation proteins, complement system and anti- microbial proteins. Prothrombin, protein S, fibrinogen γ, PLTP, CETP, CD14 and LBP were present on VLDL but not on LDL. Prenylcysteine oxidase 1, dermcidin, cathelicidin antimicrobial peptide, TFPI-1 and fibrinogen α chain were associated with both VLDL and LDL. Apo A-V is only present on VLDL and not on LDL. Collectively, this study provides a wealth of knowledge on the protein constituents of the human plasma lipoprotein system and strongly supports the notion that protein shuttling through this system is involved in the regulation of biological processes. Human diseases related to proteins carried by VLDL and LDL can be divided in three major categories: 1 - dyslipidaemia, 2 - atherosclerosis and vascular disease, and 3 - coagulation disorders. PMID:24500811

  8. One precursor, three apolipoproteins: the relationship between two crustacean lipoproteins, the large discoidal lipoprotein and the high density lipoprotein/β-glucan binding protein.

    PubMed

    Stieb, Stefanie; Roth, Ziv; Dal Magro, Christina; Fischer, Sabine; Butz, Eric; Sagi, Amir; Khalaila, Isam; Lieb, Bernhard; Schenk, Sven; Hoeger, Ulrich

    2014-12-01

    The novel discoidal lipoprotein (dLp) recently detected in the crayfish, differs from other crustacean lipoproteins in its large size, apoprotein composition and high lipid binding capacity, We identified the dLp sequence by transcriptome analyses of the hepatopancreas and mass spectrometry. Further de novo assembly of the NGS data followed by BLAST searches using the sequence of the high density lipoprotein/1-glucan binding protein (HDL-BGBP) of Astacus leptodactylus as query revealed a putative precursor molecule with an open reading frame of 14.7 kb and a deduced primary structure of 4889 amino acids. The presence of an N-terminal lipid bind- ing domain and a DUF 1943 domain suggests the relationship with the large lipid transfer proteins. Two-putative dibasic furin cleavage sites were identified bordering the sequence of the HDL-BGBP. When subjected to mass spectroscopic analyses, tryptic peptides of the large apoprotein of dLp matched the N-terminal part of the precursor, while the peptides obtained for its small apoprotein matched the C-terminal part. Repeating the analysis in the prawn Macrobrachium rosenbergii revealed a similar protein with identical domain architecture suggesting that our findings do not represent an isolated instance. Our results indicate that the above three apolipoproteins (i.e HDL-BGBP and both the large and the small subunit of dLp) are translated as a large precursor. Cleavage at the furin type sites releases two subunits forming a heterodimeric dLP particle, while the remaining part forms an HDL-BGBP whose relationship with other lipoproteins as well as specific functions are yet to be elucidated.

  9. Familial correlations of HDL subclasses based on gradient gel electrophoresis.

    PubMed

    Williams, P T; Vranizan, K M; Austin, M A; Krauss, R M

    1992-12-01

    We used nondenaturing polyacrylamide gradient gel electrophoresis to examine the familial correlations of high density lipoprotein (HDL) subclasses for 150 offspring in 47 nuclear families. The absorbance of protein stain was used as an index of mass concentrations at intervals of 0.01 nm within five HDL subclasses: HDL3c (7.2-7.8 nm), HDL3b (7.8-8.2 nm), HDL3a (8.2-8.8 nm), HDL2a (8.8-9.7 nm), and HDL2b (9.7-12 nm). Parent-offspring correlations were computed for two different characterizations of the parents: 1) by sex (i.e., mother versus father) and 2) by their relative values (highest versus lowest HDL). Sibling resemblance was assessed by using the intraclass correlations coefficient. Family members were significantly related for the following subclasses: HDL3c (sibling and father-offspring), HDL3b (sibling), HDL3a (sibling and mother-offspring), HDL2a (mother-offspring), and HDL2b (sibling, father-offspring, and mother-offspring). The offsprings' HDL3c and HDL2b values were more strongly related to their fathers' than to their mothers' values, whereas their HDL2a levels were more strongly related to their mothers' than their fathers' values. In addition, fathers' HDL2b levels were inversely correlated with the offsprings' HDL3b. The parents' HDL subclass levels were more strongly related to subclass levels of their younger (< or = 20 years) than their older offspring. Among all subclasses, HDL2b showed the strongest parent-offspring relation, with the parents' HDL values accounting for over 30% of the variance in offsprings' HDL2b.(ABSTRACT TRUNCATED AT 250 WORDS)

  10. 'Trig-onometry': non-high-density lipoprotein cholesterol as a therapeutic target in dyslipidaemia.

    PubMed

    Jacobson, T A

    2011-01-01

    Targeting elevations in low-density lipoprotein cholesterol (LDL-C) remains the cornerstone of cardiovascular prevention. However, this fraction does not adequately capture elevated triglyceride-rich lipoproteins (TRLs; e.g. intermediate-density lipoprotein, very low density lipoprotein) in certain patients with metabolic syndrome or diabetic dyslipidaemia. Many such individuals have residual cardiovascular risk that might be lipid/lipoprotein related despite therapy with first-line agents (statins). Epidemiological evidence encompassing > 100,000 persons supports the contention that non-high-density lipoprotein cholesterol (non-HDL-C) is a superior risk factor vs. LDL-C for incident coronary heart disease (CHD) in certain patient populations. In studies with clinical end-points evaluated in the current article, a 1:1 to 1:3 relationship was observed between reductions in non-HDL-C and in the relative risk of CHD after long-term treatment with statins, niacin (nicotinic acid) and fibric-acid derivatives (fibrates); this relationship increased to 1:5 to 1:10 in smaller subgroups of patients with elevated triglycerides and low HDL-C levels. Treatment with statin-, niacin-, fibrate-, ezetimibe-, and omega 3 fatty acid-containing regimens reduced non-HDL-C by approximately 9-65%. In a range of clinical trials, long-term treatment with these agents also significantly decreased the incidence of clinical/angiographic/imaging efficacy outcome variables. For patients with dyslipidaemia, consensus guidelines have established non-HDL-C treatment targets 30 mg/dl higher than LDL-C goals. Ongoing prospective randomised controlled trials should help to resolve controversies concerning (i) the clinical utility of targeting non-HDL-C in patients with dyslipidaemia; (ii) the most efficacious and well-tolerated therapies to reduce non-HDL-C (e.g. combination regimens); and (iii) associations between such reductions and clinical, angiographic, and/or imaging end-points. PMID:21105969

  11. Stimulated arachidonate metabolism during foam cell transformation of mouse peritoneal macrophages with oxidized low density lipoprotein.

    PubMed Central

    Yokode, M; Kita, T; Kikawa, Y; Ogorochi, T; Narumiya, S; Kawai, C

    1988-01-01

    Changes in arachidonate metabolism were examined in mouse peritoneal macrophages incubated with various types of lipoproteins. Oxidized low density lipoprotein (LDL) was incorporated by macrophages and stimulated macrophage prostaglandin E2 (PGE2) and leukotriene C4 syntheses, respectively, 10.8- and 10.7-fold higher than by the control. Production of 6-keto-PGF1 alpha, a stable metabolite of prostacyclin, was also stimulated. No stimulation was found with native LDL, which was minimally incorporated by the cells. Acetylated LDL and beta-migrating very low density lipoprotein (beta-VLDL), though incorporated more efficiently than oxidized LDL, also had no stimulatory effect. When oxidized LDL was separated into the lipoprotein-lipid peroxide complex and free lipid peroxides, most of the stimulatory activity was found in the former fraction, indicating that stimulation of arachidonate metabolism in the cell is associated with uptake of the lipoprotein-lipid peroxide complex. These results suggest that peroxidative modification of LDL could contribute to the progression of atheroma by stimulating arachidonate metabolism during incorporation into macrophages. Images PMID:3125226

  12. Isolation and partial characterization of high-density lipoprotein HDL1 from rat plasma by gradient centrifugation.

    PubMed Central

    Lusk, L T; Walker, L F; DuBien, L H; Getz, G S

    1979-01-01

    The lipoproteins isolated from rat plasma by flotation in the density range 1.019-1.063 g/ml were further characterized. Using rate zonal ultracentrifugation, we isolated two lipoproteins in almost equal proportions from this density range. Similar isolations may be accomplished with density gradients in a swinging-bucket rotor. On isopycnic-density-gradient ultracentrifugation one component banded at rho = 1.031 g/ml and the other at rho = 1.054 g/ml. More that 98% of the apoprotein of the lighter component was B protein, and hence this particle is LD (low-density) lipoprotein. Of the apoproteins of the rho = 1.054 g/ml particles, designated lipoprotein HDL1, over 60% was arginine-rich peptide, and the remainder was A-I, A-IV and C peptides. The molecular weight of these lipoproteins determined by agarose column chromatography was 2.36 x 10(6) for LD lipoprotein and 1.30 x 10(6) for lipoprotein HDL1. On electron microscopy the radius of LD lipoprotein was 14.0 nm and that of lipoprotein HDL1 was 10.0 nm, in contrast with molecular radii of 10.4 nm and 8.4 nm respectively determined from the gel-permeation-chromatography data. The lipid and phospholipid composition of both particles was determined. Lipoprotein HDL1 was notable for both the concentration of its esterified cholesterol, which was similar to that of LD lipoprotein, and the low triacylglycerol content, resembling that of HD lipoprotein. The possible origin of lipoprotein HDL1 is discussed. Images Fig. 1. PMID:230819

  13. In vitro incorporation of radiolabeled cholesteryl esters into high and low density lipoproteins

    SciTech Connect

    Terpstra, A.H.; Nicolosi, R.J.; Herbert, P.N. )

    1989-11-01

    We have developed and validated a method for in vitro incorporation of radiolabeled cholesteryl esters into low density (LDL) and high density lipoproteins (HDL). Radiolabeled cholesteryl esters dissolved in absolute ethanol were mixed with LDL or HDL in the presence of lipoprotein-deficient serum (LPDS) as a source of core lipid transfer activity. The efficiency of incorporation was dependent on: (a) the core lipid transfer activity and quantity of LPDS, (b) the mass of added radiolabeled cholesteryl esters, (c) the length of incubation, and (d) the amount of acceptor lipoprotein cholesterol. The tracer incorporation was documented by repeat density gradient ultracentrifugation, agarose gel electrophoresis, and precipitation with heparin-MnCl2. The radiolabeling conditions did not affect the following properties of the lipoproteins: (1) chemical composition, (2) electrophoretic mobility on agarose gels, (3) hydrated density, (4) distribution of apoproteins on SDS gels, (5) plasma clearance rates, and (6) immunoprecipitability of HDL apoproteins A-I and A-II. Rat HDL containing radiolabeled cholesteryl esters incorporated in vitro had plasma disappearance rates identical to HDL radiolabeled in vivo.

  14. Glycated albumin and direct low density lipoprotein cholesterol levels in type 2 diabetes mellitus

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Diabetes mellitus is a major risk factor for coronary heart disease (CHD), renal failure, retinopathy, and neuropathy. Lowering glycosylated hemoglobin (HbA1c) as well as low-density lipoprotein-cholesterol (LDL-C) has been associated with a decreased risk of these complications. We evaluated the ut...

  15. Low density lipoprotein receptor related protein 1 variant interacts with saturated fatty acids in Puerto Ricans

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Low density lipoprotein related receptor protein 1 (LRP1) is a multi-functional endocytic receptor that is highly expressed in adipocytes and the hypothalamus. Animal models and in vitro studies support a role for LRP1 in adipocyte metabolism and leptin signaling, but genetic polymorphisms have not ...

  16. 21 CFR 866.5600 - Low-density lipoprotein immunological test system.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Low-density lipoprotein immunological test system. 866.5600 Section 866.5600 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES IMMUNOLOGY AND MICROBIOLOGY DEVICES Immunological Test Systems §...

  17. 21 CFR 866.5600 - Low-density lipoprotein immunological test system.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Low-density lipoprotein immunological test system. 866.5600 Section 866.5600 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES IMMUNOLOGY AND MICROBIOLOGY DEVICES Immunological Test Systems §...

  18. Direct Low Density Lipoprotein Cholesterol and Glycated Albumin Levels in Type 2 Diabetes Mellitus

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Diabetes mellitus is a major risk factor for coronary heart disease (CHD), renal failure, retinopathy, and neuropathy. Lowering glycosylated hemoglobin (HbA1c) as well as low-density lipoprotein-cholesterol (LDL-C) have been associated with a decreased risk of these complications. The aim in this st...

  19. Total and High-Density Lipoprotein Cholesterol in Adults with Mental Retardation.

    ERIC Educational Resources Information Center

    Rimmer, James H.; Kelly, Luke E.

    1990-01-01

    The study evaluated the total cholesterol and high density lipoprotein cholesterol of 40 adults (mean age 37.5 years) with mental retardation residing at an intermediate care facility. Results indicated that 59 percent of the males and 68 percent of the females were at moderate to high risk for coronary heart disease. (DB)

  20. Low density lipoprotein fraction assay for cardiac disease risk

    DOEpatents

    Krauss, R.M.; Blanche, P.J.; Orr, J.

    1999-07-20

    A variable rate density gradient electrophoric gel is described which separates LDL subfractions with the precision of ultracentrifugation techniques. Also, an innovative bottom inlet mixing chamber particularly useful for producing these gels is described. 8 figs.

  1. Low density lipoprotein fraction assay for cardiac disease risk

    DOEpatents

    Krauss, Ronald M.; Blanche, Patricia J.; Orr, Joseph

    1999-01-01

    A variable rate density gradient electrophoric gel is described which separate LDL subfractions with the precision of ultracentrifugation techniques. Also, an innovative bottom inlet mixing chamber particularly useful for producing these gels is described.

  2. Particulate Matter Promotes In Vitro Receptor-Recognizable Low-Density Lipoprotein Oxidation and Dysfunction of Lipid Receptors

    PubMed Central

    Manzano-León, Natalia; Mas-Oliva, Jaime; Sevilla-Tapia, Laura; Morales-Bárcenas, Rocío; Serrano, Jesús; O’Neill, Marie S.; García-Cuellar, Claudia M.; Quintana, Raúl; Vázquez-López, Inés

    2015-01-01

    Particulate matter may promote cardiovascular disease, possibly as a consequence of its oxidative potential. Studies using susceptible animals indicate that particulate matter aggravates atherosclerosis by increasing lipid/macrophage content in plaques. Macrophage lipid uptake requires oxidized low-density lipoprotein and scavenger receptors; same receptors are involved in particulate matter uptake. We studied in vitro particulate matter potential to oxidize low-density lipoproteins and subsequent cell uptake through scavenger receptors. Particulate matter-induced low-density lipoproteins oxidation was evaluated by the thiobarbituric acid assay. Binding/internalization was tested in wild type and scavenger receptor–transfected Chinese hamster ovary cells, and in RAW264.7 cells using fluorescently labeled low-density lipoproteins. Dose-dependent binding/internalization only occurred in scavenger receptor–transfected Chinese hamster ovary cells and RAW264.7 cells. Competition binding/internalization using particles showed that particulate matter induced decreased binding (~50%) and internalization (~70%) of particle-oxidized low-density lipoproteins and native low-density lipoproteins. Results indicate that particulate matter was capable of oxidizing low-density lipoproteins, favoring macrophage internalization, and also altered scavenger and low-density lipoproteins receptor function. PMID:23297186

  3. Assembly and secretion of hepatic very-low-density lipoprotein.

    PubMed Central

    Gibbons, G F

    1990-01-01

    In contrast to water-soluble fuels such as glucose or ketone bodies, the use of lipids as an energy source for tissues has required the development of complex structures for their transport through the aqueous plasma. In the case of endogenously synthesized triacylglycerol this is achieved by the assembly and secretion of hepatic VLDL which provides the necessary stability in an aqueous medium. An essential component of this assembly process is apo B. Dietary changes which require an increase in hepatic VLDL secretion appear to be accompanied by increases in the availability of functional apo B. Interesting questions relate to: (a) the intracellular site(s) of triacylglycerol association with apo B, and (b) the mechanism(s) by which the availability of functional apo B at this site responds to metabolic and hormonal signals which reflect dietary status and, thus, the need to secrete triacylglycerol. As regards the latter, although in some cases changes in apo B synthesis occur in response to VLDL secretion hepatic apo B mRNA levels appear to be quite stable in vitro. Intracellular switching of apo B between the secretory and degradative pathways may be important in controlling VLDL assembly and post-translational modifications of the apoprotein may also play a role by influencing its ability to bind to triacylglycerol. Transport is not the only problem associated with the utilization of a concentrated energy source such as triacylglycerol and the complex problems of waste product disposal and recycling have to be dealt with. In the case of triacylglycerol, potentially toxic waste products include atherogenic remnants and LDL. The overall problem, then, in the long-term, involves the development of a 'safe' means of utilizing triacylglycerol and this requirement accounts for much of the complexity of plasma lipoprotein metabolism. In this area, the rat could teach the human a few tricks. One of these appears to be the utilization of hepatic apo B48 rather than apo B

  4. Distribution and Kinetics of Lipoprotein-Bound Endotoxin

    PubMed Central

    Levels, J. H. M.; Abraham, P. R.; van den Ende, A.; van Deventer, S. J. H.

    2001-01-01

    Lipopolysaccharide (LPS), the major glycolipid component of gram-negative bacterial outer membranes, is a potent endotoxin responsible for pathophysiological symptoms characteristic of infection. The observation that the majority of LPS is found in association with plasma lipoproteins has prompted the suggestion that sequestering of LPS by lipid particles may form an integral part of a humoral detoxification mechanism. Previous studies on the biological properties of isolated lipoproteins used differential ultracentrifugation to separate the major subclasses. To preserve the integrity of the lipoproteins, we have analyzed the LPS distribution, specificity, binding capacity, and kinetics of binding to lipoproteins in human whole blood or plasma by using high-performance gel permeation chromatography and fluorescent LPS of three different chemotypes. The average distribution of O111:B4, J5, or Re595 LPS in whole blood from 10 human volunteers was 60% (±8%) high-density lipoprotein (HDL), 25% (±7%) low-density lipoprotein, and 12% (±5%) very low density lipoprotein. The saturation capacity of lipoproteins for all three LPS chemotypes was in excess of 200 μg/ml. Kinetic analysis however, revealed a strict chemotype dependence. The binding of Re595 or J5 LPS was essentially complete within 10 min, and subsequent redistribution among the lipoprotein subclasses occurred to attain similar distributions as O111:B4 LPS at 40 min. We conclude that under simulated physiological conditions, the binding of LPS to lipoproteins is highly specific, HDL has the highest binding capacity for LPS, the saturation capacity of lipoproteins for endotoxin far exceeds the LPS concentrations measured in clinical situations, and the kinetics of LPS association with lipoproteins display chemotype-dependent differences. PMID:11292694

  5. Low density lipoprotein uptake by an endothelial-smooth muscle cell bilayer

    SciTech Connect

    Alexander, J.J.; Miguel, R.; Graham, D. )

    1991-03-01

    To study the interaction of endothelial and smooth muscle cells, and the means by which such interaction may affect lipid permeability of the arterial wall, cell bilayers were established by use of a transwell culture system. After confluent growth of both cell types had been achieved, iodine 125 bound to low-density lipoprotein (10 ng protein/ml) was added to the media of the upper well. After a 3-hour incubation period, the iodine 125-bound low-density lipoprotein content of the upper and lower media demonstrated an impedance to lipoprotein movement across the endothelial cell monolayer as compared to the bare porous polycarbonate filter of the transwell (p less than 10(-6)). The presence of smooth muscle cells in the bottom well significantly enhanced the permeability of the endothelial cell layer (p less than 10(-60)). This effect remained unchanged over a 9-day time course. Membrane binding and cellular uptake of low-density lipoprotein by endothelial cells was not altered by smooth muscle cells, indicating that this change in permeability could not be easily attributed to changes in receptor-mediated transport or transcytosis. Membrane binding (p less than 0.02) and cellular uptake (p less than 10(-6)) of low-density lipoprotein by smooth muscle cells in the bilayer, when adjusted for counts available in the smooth muscle cell media, were both reduced in the early incubation period as compared to isolated smooth muscle cells. The disproportionate reduction in uptake as compared to binding would suggest that this was not entirely a receptor-dependent process.

  6. Lipoprotein(a) Catabolism Is Regulated by Proprotein Convertase Subtilisin/Kexin Type 9 through the Low Density Lipoprotein Receptor*

    PubMed Central

    Romagnuolo, Rocco; Scipione, Corey A.; Boffa, Michael B.; Marcovina, Santica M.; Seidah, Nabil G.; Koschinsky, Marlys L.

    2015-01-01

    Elevated levels of lipoprotein(a) (Lp(a)) have been identified as an independent risk factor for coronary heart disease. Plasma Lp(a) levels are reduced by monoclonal antibodies targeting proprotein convertase subtilisin/kexin type 9 (PCSK9). However, the mechanism of Lp(a) catabolism in vivo and the role of PCSK9 in this process are unknown. We report that Lp(a) internalization by hepatic HepG2 cells and primary human fibroblasts was effectively reduced by PCSK9. Overexpression of the low density lipoprotein (LDL) receptor (LDLR) in HepG2 cells dramatically increased the internalization of Lp(a). Internalization of Lp(a) was markedly reduced following treatment of HepG2 cells with a function-blocking monoclonal antibody against the LDLR or the use of primary human fibroblasts from an individual with familial hypercholesterolemia; in both cases, Lp(a) internalization was not affected by PCSK9. Optimal Lp(a) internalization in both hepatic and primary human fibroblasts was dependent on the LDL rather than the apolipoprotein(a) component of Lp(a). Lp(a) internalization was also dependent on clathrin-coated pits, and Lp(a) was targeted for lysosomal and not proteasomal degradation. Our data provide strong evidence that the LDLR plays a role in Lp(a) catabolism and that this process can be modulated by PCSK9. These results provide a direct mechanism underlying the therapeutic potential of PCSK9 in effectively lowering Lp(a) levels. PMID:25778403

  7. [THE LIPOLYSIS IN PHYLOGENETICALLY EARLY LIPOPROTEINS OF LOW DENSITY AND MORE LATER LIPOPROTEINS OF VERY LOW DENSITY: FUNCTION AND DIAGNOSTIC VALUE OF APOE AND APOC-III].

    PubMed

    Rozhkova, T A; Titov, V N; Amelyushkina, V A; Kaba, S I; Kukhartchuk, V V

    2015-12-01

    According to phylogenetic theory of general pathology, the function of low density lipoproteins (LDL) and hydrolysis of triglycerides (TG) in them under the effect of hepatic glycerol hydrolase apoC-III (HGH) developed at much earlier stages of phylogenesis than functioning of insulin-dependent phylogenetically late very low density lipoproteins (VLDL). For millions ofyears, lipolysis and HGH+apoC-III have activated transfer of polyenic fatty acids (FA) in the form of cholesteryl polyesters (CLE) from high density lipoproteins (HDL) to linoleic and linolenic LDL under the effect of cholesteryl ester transfer protein. It is reasonable to suggest that hepatocytes physiologically secrete oleic and palmitic VLDL and linoleic and linolenic LDL. Cells uptake ligand oleic and palmitic VLVL by apoE/B-100 receptor-mediated endocytosis. Physiologically, VLDL are not converted to LDL. If hepatocytes secrete palmitic VLDL in greater amounts than oleic VLDL upon slow hydrolysis ofpalmitic TG and under the effect of postheparinic lipoprotein lipase+apoC-II, only some proportion of palmitic TG is uptaken by cells as VLDL, and the rest is converted in ligand-free palmitic LDL These LDL increase plasma contents of TG and LDL-cholesterol and form small dense palmitic LDL. Expression of HGH+apoC-III synthesis compensates TG hydrolysis in nonphysiological palmitic LDL. In vivo, apoC-III is neither physiological no pathological inhibitor of lipolysis. Increase in plasma apoC-III content is an indicator of accumulation of non-physiological palmitic LDL and atherosclerosis-atheromatosis risk factor ApoE content ofpalmitic LDL increases together with apoC-III, i.e., apoE in ligand VLDL is not internalized via apoE/B-100 endocytosis. An increase in apoC-III and apoE contents are reliable in vivo tests for the rise inpalmitic FA, palmitic TG and excessive secretion of palmitic VLDL by hepatocytes. ApoC-III and apoE contents in LDL are additional tests to evaluate the efficiency of

  8. [THE LIPOLYSIS IN PHYLOGENETICALLY EARLY LIPOPROTEINS OF LOW DENSITY AND MORE LATER LIPOPROTEINS OF VERY LOW DENSITY: FUNCTION AND DIAGNOSTIC VALUE OF APOE AND APOC-III].

    PubMed

    Rozhkova, T A; Titov, V N; Amelyushkina, V A; Kaba, S I; Kukhartchuk, V V

    2015-12-01

    According to phylogenetic theory of general pathology, the function of low density lipoproteins (LDL) and hydrolysis of triglycerides (TG) in them under the effect of hepatic glycerol hydrolase apoC-III (HGH) developed at much earlier stages of phylogenesis than functioning of insulin-dependent phylogenetically late very low density lipoproteins (VLDL). For millions ofyears, lipolysis and HGH+apoC-III have activated transfer of polyenic fatty acids (FA) in the form of cholesteryl polyesters (CLE) from high density lipoproteins (HDL) to linoleic and linolenic LDL under the effect of cholesteryl ester transfer protein. It is reasonable to suggest that hepatocytes physiologically secrete oleic and palmitic VLDL and linoleic and linolenic LDL. Cells uptake ligand oleic and palmitic VLVL by apoE/B-100 receptor-mediated endocytosis. Physiologically, VLDL are not converted to LDL. If hepatocytes secrete palmitic VLDL in greater amounts than oleic VLDL upon slow hydrolysis ofpalmitic TG and under the effect of postheparinic lipoprotein lipase+apoC-II, only some proportion of palmitic TG is uptaken by cells as VLDL, and the rest is converted in ligand-free palmitic LDL These LDL increase plasma contents of TG and LDL-cholesterol and form small dense palmitic LDL. Expression of HGH+apoC-III synthesis compensates TG hydrolysis in nonphysiological palmitic LDL. In vivo, apoC-III is neither physiological no pathological inhibitor of lipolysis. Increase in plasma apoC-III content is an indicator of accumulation of non-physiological palmitic LDL and atherosclerosis-atheromatosis risk factor ApoE content ofpalmitic LDL increases together with apoC-III, i.e., apoE in ligand VLDL is not internalized via apoE/B-100 endocytosis. An increase in apoC-III and apoE contents are reliable in vivo tests for the rise inpalmitic FA, palmitic TG and excessive secretion of palmitic VLDL by hepatocytes. ApoC-III and apoE contents in LDL are additional tests to evaluate the efficiency of

  9. Apolipoprotein E on Hepatitis C Virion Facilitates Infection through Interaction with Low Density Lipoprotein Receptor

    PubMed Central

    Owen, David M.; Huang, Hua; Ye, Jin; Gale, Michael

    2009-01-01

    Hepatitis C virus (HCV) infection is a major cause of liver disease. HCV associates with host apolipoproteins and enters hepatocytes through complex processes involving some combination of CD81, claudin-I, occludin, and scavenger receptor BI. Here we show that infectious HCV resembles very low density lipoprotein (VLDL) and that entry involves co-receptor function of the low density lipoprotein receptor (LDL-R). Blocking experiments demonstrate that β-VLDL itself or anti-apolipoprotein E (apoE) antibody can block HCV entry. Knockdown of the LDL-R by treatment with 25-hydroxycholesterol or siRNA ablated ligand uptake and reduced HCV infection of cells, whereas infection was rescued upon cell ectopic LDL-R expression. Analyses of gradient-fractionated HCV demonstrate that apoE is associated with HCV virions exhibiting peak infectivity and dependence upon the LDL-R for cell entry. Our results define the LDL-R as a cooperative HCV co-receptor that supports viral entry and infectivity through interaction with apoE ligand present in an infectious HCV/lipoprotein complex comprising the virion. Disruption of HCV/LDL-R interactions by altering lipoprotein metabolism may therefore represent a focus for future therapy. PMID:19751943

  10. Patients with Rheumatoid Arthritis Show Altered Lipoprotein Profiles with Dysfunctional High-Density Lipoproteins that Can Exacerbate Inflammatory and Atherogenic Process

    PubMed Central

    Kim, Jae-Yong; Lee, Eun-Young; Park, Jin Kyun; Song, Yeong Wook; Kim, Jae-Ryong; Cho, Kyung-Hyun

    2016-01-01

    Objective In order to identify putative biomarkers in lipoprotein, we compared lipid and lipoprotein properties between rheumatoid arthritis (RA) patients and control with similar age. Methods We analyzed four classes of lipoproteins (VLDL, LDL, HDL2, HDL3) from both male (n = 8, 69±4 year-old) and female (n = 25, 53±7 year-old) rheumatoid arthritis (RA) patients as well as controls with similar age (n = 13). Results Although RA group showed normal levels of total cholesterol (TC), low-density lipoprotein (LDL)-cholesterol, and glucose, however, the RA group showed significantly reduced high-density lipoprotein (HDL)-C level and ratio of HDL-C/TC. The RA group showed significantly elevated levels of blood triglyceride (TG), uric acid, and cholesteryl ester transfer protein (CETP) activity. The RA group also showed elevated levels of advanced glycated end (AGE) products in all lipoproteins and severe aggregation of apoA-I in HDL. As CETP activity and TG contents were 2-fold increased in HDL from RA group, paraoxonase activity was reduced upto 20%. Electron microscopy revealed that RA group showed much less HDL2 particle number than control. LDL from the RA group was severely oxidized and glycated with greater fragmentation of apo-B, especially in female group, it was more atherogenic via phagocytosis. Conclusion Lipoproteins from the RA patients showed severely altered structure with impaired functionality, which is very similar to that observed in coronary heart patients. These dysfunctional properties in lipoproteins from the RA patients might be associated with high incidence of cardiovascular events in RA patients. PMID:27736980

  11. Small Dense Low Density Lipoprotein Particles Are Associated with Poor Outcome after Angioplasty in Peripheral Artery Disease

    PubMed Central

    Mosimann, Kathrin; Husmann, Marc; Thalhammer, Christoph; Wilkinson, Ian; Berneis, Kaspar; Amann-Vesti, Beatrice R.

    2014-01-01

    Purpose In patients suffering from symptomatic peripheral artery disease (PAD), percutaneous revascularization is the treatment of choice. However, restenosis may occur in 10 to 60% in the first year depending on a variety of factors. Small dense low density lipoprotein (sdLDL) particles are associated with an increased risk for cardiovascular events, but their role in the process of restenosis is not known. We conducted a prospective study to analyze the association of sdLDL particles with the outcome of balloon angioplasty in PAD. The composite primary endpoint was defined as improved walking distance and absence of restenosis. Methods Patients with angiographically documented PAD of the lower extremities who were scheduled for lower limb revascularization were consecutively recruited for the study. At baseline and at three month follow-up triglyceride, total cholesterol, LDL size and subclasses and HDL cholesterol and ankle-brachial index (ABI) were measured. Three months after the intervention duplex sonography was performed to detect restenosis. Results Sixty-four patients (53% male) with a mean age of 68.6±9.9 years were included. The proportion of small- dense LDL particles (class III and IV) was significantly lower (33.1±11.0% vs. 39.4±12.1%, p = 0.038) in patients who reached the primary end-point compared with those who did not. Patients with improved walking distance and without restenosis had a significantly higher LDL size at baseline (26.6±1.1 nm vs. 26.1±1.1 nm, p = 0.046) and at follow-up (26.7±1.1 nm vs. 26.2±0.9 nm, p = 0.044) than patients without improvement. Conclusions Small-dense LDL particles are associated with worse early outcome in patients undergoing percutaneous revascularization for symptomatic PAD. PMID:25265512

  12. Macrophage metalloproteinases degrade high-density-lipoprotein-associated apolipoprotein A-I at both the N- and C-termini.

    PubMed Central

    Eberini, Ivano; Calabresi, Laura; Wait, Robin; Tedeschi, Gabriella; Pirillo, Angela; Puglisi, Lina; Sirtori, Cesare R; Gianazza, Elisabetta

    2002-01-01

    Atheromatous plaques contain various cell types, including macrophages, endothelial cells and smooth-muscle cells. To investigate the possible interactions between secreted matrix metalloproteinases and high-density lipoprotein (HDL) components, we tested the above cell types by culturing them for 24 h. HDL(3) (HDL subfractions with average sizes of between 8.44 nm for HDL(3A) and 7.62 nm for HDL(3C)) were then incubated in their cell-free conditioned media. Proteolytic degradation of apolipoprotein A-I was observed with macrophages, but not with endothelial-cell- or muscle-cell-conditioned supernatant. Absence of calcium or addition of EDTA to incubation media prevented all proteolytic processes. The identified apolipoprotein A-I fragments had sizes of 26, 22, 14 and 9 kDa. Two-dimensional electrophoresis and MS resolved the 26 and the 22 kDa components and identified peptides resulting from both N- and C-terminal cleavage of apolipoprotein A-I. The higher abundance of C- than N-terminally cleaved peptides agrees with data in the literature for a fully structured alpha-helix around Tyr(18) compared with an unstructured region around Gly(185) and Gly(186). The flexibility in the latter region of apolipoprotein A-I may explain its susceptibility to proteolysis. In our experimental set-up, HDL(3C) was more extensively degraded than the other HDL(3) subclasses (HDL(3A) and HDL(3B)). Proteolytic fragments produced by metalloproteinase action were shown by gel filtration and electrophoresis to be neither associated with lipids nor self-associated. PMID:11879189

  13. High-density lipoprotein cholesterol as an independent risk factor in cardiovascular disease: assessing the data from Framingham to the Veterans Affairs High--Density Lipoprotein Intervention Trial.

    PubMed

    Boden, W E

    2000-12-21

    The Framingham Heart Study found that high-density lipoprotein cholesterol (HDL-C) was the most potent lipid predictor of coronary artery disease risk in men and women >49 years of age. The Air Force/Texas Coronary Atherosclerosis Prevention Study (AFCAPS/TexCAPS), in which subjects were randomized to treatment with lovastatin or placebo, also reported a striking benefit of treatment, particularly in patients with HDL-C < or =35 mg/dL at baseline. Treatment with lovastatin was associated with a remarkable 45% reduction in events for this group. The Veterans Affairs HDL Intervention Trial (VA-HIT) randomized subjects to gemfibrozil or placebo. A high proportion of enrolled subjects with low HDL-C also had characteristics of the dysmetabolic syndrome. HDL-C likewise increased by 6% on treatment, total cholesterol was reduced by 4% and triglycerides by 31%. There was no change in low-density lipoprotein cholesterol (LDL-C) levels. These changes in lipid were associated with a cumulative 22% reduction in the trial primary endpoint of all-cause mortality and nonfatal myocardial infarction (MI). Additionally, significant reductions in secondary endpoints including death from coronary artery disease, nonfatal MI, stroke, transient ischemic attack, and carotid endarterectomy were associated with the increase in HDL-C. In VA-HIT, for every 1% increase in HDL-C, there was a 3% reduction in death or MI, a therapeutic benefit that eclipses the benefit associated with LDL-C reduction. PMID:11374850

  14. Nigerian propolis improves blood glucose, glycated hemoglobin A1c, very low-density lipoprotein, and high-density lipoprotein levels in rat models of diabetes

    PubMed Central

    Oladayo, Mustafa Ibrahim

    2016-01-01

    Objective: According to our previous studies, propolis of Nigerian origin showed some evidence of hypoglycemic and hypolipidemic activities in addition to its ability to ameliorate oxidative-stress-induced organ dysfunction. This study was carried out to determine whether an ethanolic extract of Nigerian propolis (EENP) improves glycated hemoglobin A1c (HbA1c), fasting plasma glucose, very low-density lipoprotein (VLDL), and high-density lipoprotein (HDL) concentrations in rats that have alloxan diabetes. Materials and Methods: Diabetes was induced with alloxan (110 mg/kg). Animals were divided into 5 groups (n = 5); Group 1 was non-diabetic receiving normal saline and Group 2 was diabetic but also received only normal saline. Groups 3, 4, and 5 were diabetic receiving 200 mg/kg propolis, 300 mg/kg propolis, and 150 mg/kg metformin, respectively, for 42 days. Results: Hyperglycemia, elevated serum level of VLDL, elevated plasma level of HbA1c, and decreased levels of HDL were observed in the diabetic untreated animals. Nigerian propolis decreased blood glucose level and serum level of VLDL but elevated HDL level. These changes were significant (P < 0.05). The levels of plasma HbA1c were also reduced in the propolis-treated groups, and the reduction was significant (P < 0.05). Conclusion: Nigerian propolis contains compounds exhibiting hypoglycemic, antihyperlipidemic, and HbA1c reducing activities. PMID:27366348

  15. Baseline lipoprotein lipids and low-density lipoprotein cholesterol response to prescription omega-3 acid ethyl ester added to Simvastatin therapy.

    PubMed

    Maki, Kevin C; Dicklin, Mary R; Davidson, Michael H; Doyle, Ralph T; Ballantyne, Christie M

    2010-05-15

    The present post hoc analysis of data from the COMBination of prescription Omega-3 with Simvastatin (COMBOS) study investigated the predictors of the low-density lipoprotein (LDL) cholesterol response to prescription omega-3 acid ethyl ester (P-OM3) therapy in men and women with high (200 to 499 mg/dl) triglycerides during diet plus simvastatin therapy. Subjects (n = 256 randomized) received double-blind P-OM3 4 g/day or placebo for 8 weeks combined with diet and open-label simvastatin 40 mg/day. The percentage of changes from baseline (with diet plus simvastatin) in lipids was evaluated by tertiles of baseline LDL cholesterol and triglyceride concentrations. The baseline LDL cholesterol tertile was a significant predictor of the LDL cholesterol response (p = 0.022 for the treatment by baseline tertile interaction). The median LDL cholesterol response in the P-OM3 group was +9.5% (first tertile, <80.4 mg/dl), -0.9% (second tertile), and -6.4% (third tertile, > or =99.0 mg/dl). Non-high-density lipoprotein cholesterol, very-low-density lipoprotein cholesterol, high-density lipoprotein cholesterol, and triglyceride responses did not vary significantly by baseline LDL cholesterol tertile. The reductions in very-low-density lipoprotein cholesterol concentrations were greater than the increases in LDL cholesterol, where present, resulting in a net decrease in the concentration of cholesterol carried by atherogenic particles (non-high-density lipoprotein cholesterol) in all baseline LDL cholesterol tertiles. In conclusion, these results suggest that the increase in LDL cholesterol that occurred with the addition of P-OM3 to simvastatin therapy in subjects with mixed dyslipidemia was confined predominantly to those with low LDL cholesterol levels while receiving simvastatin monotherapy. PMID:20451686

  16. Sweet potato (Ipomoea batatas L.) leaves suppressed oxidation of low density lipoprotein (LDL) in vitro and in human subjects.

    PubMed

    Nagai, Miu; Tani, Mariko; Kishimoto, Yoshimi; Iizuka, Maki; Saita, Emi; Toyozaki, Miku; Kamiya, Tomoyasu; Ikeguchi, Motoya; Kondo, Kazuo

    2011-05-01

    Sweet potato (Ipomoea batatas L.) leaves are consumed as vegetables around the world, especially in Southeast Asia. The aim of this study was to investigate the inhibitory effect of sweet potato leaves on low-density lipoprotein oxidation in vitro and in human subjects. We compared the antioxidant activity of 8 kinds of sweet potato leaves. Every sweet potato leaf had high radical scavenging activity and prolonged a lag time for starting low-density lipoprotein oxidation in vitro. We found that sweet potato leaves contained abundant polyphenol compounds and the radical scavenging activity and prolongation rate of lag time were highly correlated with total polyphenol content. We also confirmed that thiobarbituric acid reactive substances production was increased in endothelial cell-mediated low-density lipoprotein oxidation, which was decreased by treatment with sweet potato leaves. We further measured the low-density lipoprotein oxidizability in 13 healthy volunteers after their intake of 18 g of "Suioh", raw sweet potato leaves. "Suioh" prolonged a lag time for starting low-density lipoprotein oxidation and decreased low-density lipoprotein mobility. These results suggest that sweet potato leaves have antioxidant activity leading to the suppression of low-density lipoprotein oxidation.

  17. Structural investigation of reconstituted high density lipoproteins by scanning tunnelling microscopy

    NASA Astrophysics Data System (ADS)

    Culot, C.; Durant, F.; Lazarescu, S.; Thiry, P. A.; Vanloo, B.; Rosseneu, M. Y.; Lins, L.; Brasseur, R.

    2004-05-01

    Being able to participate in the reverse cholesterol transport (RCT), high density lipoproteins (HDL) are known to be anti-atherogenic. In order to understand such a process, it is thus essential to have a detailed knowledge of the structure and molecular organisation of HDL. Reconstituted nascent high density lipoproteins (r-HDL), consisting of synthetic phospholipids together with different apolipoproteins (apo A-I, A-IV and E), were thus analysed by scanning tunnelling microscopy (STM). Both shape and dimensions of the discoidal HDL particles measured by this technique were found in good agreement with the data available from the literature. The accuracy of the STM pictures presented in this paper enables for the first time the visualisation of the molecular organisation of such macromolecules. The arrangement of the protein as antiparallel helical segments, is consistent with the general mode of organisation of apolipoprotein/phospholipid discoidal particles previously reported.

  18. Drugs targeting high-density lipoprotein cholesterol for coronary artery disease management.

    PubMed

    Katz, Pamela M; Leiter, Lawrence A

    2012-01-01

    Many patients remain at high risk for future cardiovascular events despite levels of low-density lipoprotein cholesterol (LDL-C) at, or below, target while taking statin therapy. Much effort is therefore being focused on strategies to reduce this residual risk. High-density lipoprotein cholesterol (HDL-C) is a strong, independent, inverse predictor of coronary heart disease risk and is therefore an attractive therapeutic target. Currently available agents that raise HDL-C have only modest effects and there is limited evidence of additional cardiovascular risk reduction on top of background statin therapy associated with their use. It was hoped that the use of cholesteryl ester transfer protein (CETP) inhibitors would provide additional benefit, but the results of clinical outcome studies to date have been disappointing. The results of ongoing trials with other CETP inhibitors that raise HDL-C to a greater degree and also lower LDL-C, as well as with other emerging therapies are awaited.

  19. Microchip-based human serum atherogenic lipoprotein profile analysis.

    PubMed

    Wang, Hua; Zhang, Wei; Wan, Jun; Liu, Weiwei; Yu, Bo; Jin, Qinghui; Guan, Ming

    2014-12-15

    Owing to the mounting evidence of serum lipid changes in atherosclerosis, there has been increasing interest in developing new methods for analyzing atherogenic lipoprotein profiles. The separation of lipoprotein and lipoprotein subclasses has been demonstrated using a microchip capillary electrophoresis (CE) system [Chromatographia 74 (2011) 799-805]. In contrast to this previous study, the current report demonstrates that sdLDL peak efficiencies can be improved dramatically by adding gold nanoparticles (AuNPs) to the sample. Moreover, NBD C6-ceramide was identified as a satisfactory dye for specific labeling and quantitation of individual serum lipoproteins. The accuracy of the method was evaluated by comparison with ultracentrifuge separated small, dense, low-density lipoprotein (sdLDL). A high correlation was observed between these two methods for sdLDL cholesterol. Lipid levels were investigated between atherosclerotic patients and healthy controls. The variation of serum atherogenic lipoprotein profiles for atherosclerotic patients pre- and post-treatment was assessed by microchip CE. This method has potential for the rapid and sensitive detection of different lipoprotein classes as well as their subclasses and, therefore, is suitable for routine clinical applications. Microchip-based atherogenic lipoprotein profile assays will greatly improve the analysis of risk factors in atherosclerosis and will provide useful information for monitoring the effect of therapies on atherosclerotic disease.

  20. Alpha slow-moving high-density-lipoprotein subfraction in serum of a patient with radiation enteritis and peritoneal carcinosis

    SciTech Connect

    Peynet, J.; Legrand, A.; Messing, B.; Thuillier, F.; Rousselet, F.

    1989-04-01

    An alpha slow-moving high-density-lipoprotein (HDL) subfraction was seen in a patient presenting with radiation enteritis and peritoneal carcinosis, who was given long-term cyclic parenteral nutrition. This subfraction, observed in addition to normal HDL, was precipitated with low-density lipoproteins (LDL) and very-low-density lipoproteins (VLDL) by sodium phosphotungstate-magnesium chloride. The patient's serum lipoproteins were analyzed after fractionation by density gradient ultracentrifugation. The alpha slow-moving HDL floated in the ultracentrifugation subfractions with densities ranging from 1.028 to 1.084 kg/L, and their main apolipoproteins included apolipoprotein E in addition to apolipoprotein A-I. These HDL were larger than HDL2. The pathogenesis of this unusual HDL subfraction is hypothesized.

  1. Switching to black rice diets modulates low-density lipoprotein oxidation and lipid measurements in rabbits.

    PubMed

    Abdel-Moemin, Aly R

    2011-04-01

    The effect of white and black rice consumption on lipid profile, hydroperoxides, thiobarbituric reactive substances and oxidized low-density lipoprotein (LDL) induced by hypercholesterolemia was investigated in 24 male rabbits; a purified normal diet (NC, n = 6), a high fat/cholesterol (1.0 g/100 g) diet (PC group, n = 6), a high fat/cholesterol diet with 25 g/100 g white ground rice (PCWR group, n = 6), 25 g/100 g black ground rice (PCBR group, n = 6) for 10 weeks. Blood samples were collected for lipid measurements. Results indicate that serum high-density lipoprotein-cholesterol was higher (P < 0.05) in the PCBR compared with the PC and PCWR groups. Hydroperoxides and thiobarbituric reactive substances were significantly lower (P < 0.05) in the PCBR compared with PCWR and PC groups. Cyanidin-3-glucoside (Cy-3-Glu) and peonidin-3-glucoside have been tested in vitro against copper-mediated low-density lipoprotein. Cy-3-Glu was excelled peonidin-3-glucoside by increasing the lag time of NC from 80 to 500 minutes in the presence of 2.0 μM of Cy-3-Glu. Hierarchically, black rice rabbits group was given the best results compared with other groups. The results may be indicating to a suggested mechanism (anthocyanins protection; Cy-3-Glu) of the cardioprotective effect of black rice. PMID:21289511

  2. Practical technique to quantify small, dense low-density lipoprotein cholesterol using dynamic light scattering

    NASA Astrophysics Data System (ADS)

    Trirongjitmoah, Suchin; Iinaga, Kazuya; Sakurai, Toshihiro; Chiba, Hitoshi; Sriyudthsak, Mana; Shimizu, Koichi

    2016-04-01

    Quantification of small, dense low-density lipoprotein (sdLDL) cholesterol is clinically significant. We propose a practical technique to estimate the amount of sdLDL cholesterol using dynamic light scattering (DLS). An analytical solution in a closed form has newly been obtained to estimate the weight fraction of one species of scatterers in the DLS measurement of two species of scatterers. Using this solution, we can quantify the sdLDL cholesterol amount from the amounts of the low-density lipoprotein cholesterol and the high-density lipoprotein (HDL) cholesterol, which are commonly obtained through clinical tests. The accuracy of the proposed technique was confirmed experimentally using latex spheres with known size distributions. The applicability of the proposed technique was examined using samples of human blood serum. The possibility of estimating the sdLDL amount using the HDL data was demonstrated. These results suggest that the quantitative estimation of sdLDL amounts using DLS is feasible for point-of-care testing in clinical practice.

  3. Amphiphilic polyvinyl alcohol adsorbent for the removal of low-density lipoprotein.

    PubMed

    Yu, Yao Ting; Zhu, Huijun; Wang, Shenqi

    2015-04-01

    Spacer can effectively reduce the steric hindrance and synergistic effect of the hydrophilic and hydrophobic ligands immobilized in adsorbents can improve the specific adsorption for low-density lipoprotein (LDL). In this paper, in order to improve the adsorption capacity for the Low-density lipoprotein-cholesterol (LDL-C), specifically, amphiphilic adsorbent based on polyvinyl alcohol (PVA) containing cholesterol ligand and sulfonic dextran ligands was synthesized. All kinds of factors affecting the synthesis yield and adsorption properties were studied in detail. Results showed that the amphiphilic PVA adsorbent has higher adsorption capacity for total cholesterol (TC), (LDL-C), triglyceride (TG), and lower adsorption capacity, and percentage for high-density lipoprotein-cholesterol (HDL-C), while the ligand ratio of cholesterol to sulfonic ligands is 1.57:1, the adsorption percentage and adsorption capacity for TC, LDL-C, TG, and HDL-C were 54.4%, 67.6%, 42.5%, 10.4% and 4.02, 3.612, 2.154, 0.168 mg/g, respectively.

  4. Current guidelines for high-density lipoprotein cholesterol in therapy and future directions

    PubMed Central

    Subedi, Bishnu H; Joshi, Parag H; Jones, Steven R; Martin, Seth S; Blaha, Michael J; Michos, Erin D

    2014-01-01

    Many studies have suggested that a significant risk factor for atherosclerotic cardiovascular disease (ASCVD) is low high-density lipoprotein cholesterol (HDL-C). Therefore, increasing HDL-C with therapeutic agents has been considered an attractive strategy. In the prestatin era, fibrates and niacin monotherapy, which cause modest increases in HDL-C, reduced ASCVD events. Since their introduction, statins have become the cornerstone of lipoprotein therapy, the benefits of which are primarily attributed to decrease in low-density lipoprotein cholesterol. Findings from several randomized trials involving niacin or cholesteryl ester transfer protein inhibitors have challenged the concept that a quantitative elevation of plasma HDL-C will uniformly translate into ASCVD benefits. Consequently, the HDL, or more correctly, HDL-C hypothesis has become more controversial. There are no clear guidelines thus far for targeting HDL-C or HDL due to lack of solid outcomes data for HDL specific therapies. HDL-C levels are only one marker of HDL out of its several structural or functional properties. Novel approaches are ongoing in developing and assessing agents that closely mimic the structure of natural HDL or replicate its various functions, for example, reverse cholesterol transport, vasodilation, anti-inflammation, or inhibition of platelet aggregation. Potential new approaches like HDL infusions, delipidated HDL, liver X receptor agonists, Apo A-I upregulators, Apo A mimetics, and gene therapy are in early phase trials. This review will outline current therapies and describe future directions for HDL therapeutics. PMID:24748800

  5. Unique Features of High-Density Lipoproteins in the Japanese: In Population and in Genetic Factors

    PubMed Central

    Yokoyama, Shinji

    2015-01-01

    Despite its gradual increase in the past several decades, the prevalence of atherosclerotic vascular disease is low in Japan. This is largely attributed to difference in lifestyle, especially food and dietary habits, and it may be reflected in certain clinical parameters. Plasma high-density lipoprotein (HDL) levels, a strong counter risk for atherosclerosis, are indeed high among the Japanese. Accordingly, lower HDL seems to contribute more to the development of coronary heart disease (CHD) than an increase in non-HDL lipoproteins at a population level in Japan. Interestingly, average HDL levels in Japan have increased further in the past two decades, and are markedly higher than in Western populations. The reasons and consequences for public health of this increase are still unknown. Simulation for the efficacy of raising HDL cholesterol predicts a decrease in CHD of 70% in Japan, greater than the extent by reducing low-density lipoprotein cholesterol predicted by simulation or achieved in a statin trial. On the other hand, a substantial portion of hyperalphalipoproteinemic population in Japan is accounted for by genetic deficiency of cholesteryl ester transfer protein (CETP), which is also commonly unique in East Asian populations. It is still controversial whether CETP mutations are antiatherogenic. Hepatic Schistosomiasis is proposed as a potential screening factor for historic accumulation of CETP deficiency in East Asia. PMID:25849946

  6. Current guidelines for high-density lipoprotein cholesterol in therapy and future directions.

    PubMed

    Subedi, Bishnu H; Joshi, Parag H; Jones, Steven R; Martin, Seth S; Blaha, Michael J; Michos, Erin D

    2014-01-01

    Many studies have suggested that a significant risk factor for atherosclerotic cardiovascular disease (ASCVD) is low high-density lipoprotein cholesterol (HDL-C). Therefore, increasing HDL-C with therapeutic agents has been considered an attractive strategy. In the prestatin era, fibrates and niacin monotherapy, which cause modest increases in HDL-C, reduced ASCVD events. Since their introduction, statins have become the cornerstone of lipoprotein therapy, the benefits of which are primarily attributed to decrease in low-density lipoprotein cholesterol. Findings from several randomized trials involving niacin or cholesteryl ester transfer protein inhibitors have challenged the concept that a quantitative elevation of plasma HDL-C will uniformly translate into ASCVD benefits. Consequently, the HDL, or more correctly, HDL-C hypothesis has become more controversial. There are no clear guidelines thus far for targeting HDL-C or HDL due to lack of solid outcomes data for HDL specific therapies. HDL-C levels are only one marker of HDL out of its several structural or functional properties. Novel approaches are ongoing in developing and assessing agents that closely mimic the structure of natural HDL or replicate its various functions, for example, reverse cholesterol transport, vasodilation, anti-inflammation, or inhibition of platelet aggregation. Potential new approaches like HDL infusions, delipidated HDL, liver X receptor agonists, Apo A-I upregulators, Apo A mimetics, and gene therapy are in early phase trials. This review will outline current therapies and describe future directions for HDL therapeutics.

  7. Single Step Reconstitution of Multifunctional High-Density Lipoprotein-Derived Nanomaterials Using Microfluidics

    PubMed Central

    Kim, YongTae; Fay, Francois; Cormode, David P.; Sanchez-Gaytan, Brenda L.; Tang, Jun; Hennessy, Elizabeth J.; Ma, Mingming; Moore, Kathryn; Farokhzad, Omid C.; Fisher, Edward Allen; Mulder, Willem J. M.; Langer, Robert; Fayad, Zahi A.

    2014-01-01

    High-density lipoprotein (HDL) is a natural nanoparticle that transports peripheral cholesterol to the liver. Reconstituted high-density lipoprotein (rHDL) exhibits antiatherothrombotic properties and is being considered as a natural treatment for cardiovascular diseases. Furthermore, HDL nanoparticle platforms have been created for targeted delivery of therapeutic and diagnostic agents. The current methods for HDL reconstitution involve lengthy procedures that are challenging to scale up. A central need in the synthesis of rHDL, and multifunctional nanomaterials in general, is to establish large-scale production of reproducible and homogeneous batches in a simple and efficient fashion. Here, we present a large-scale microfluidics-based manufacturing method for single-step synthesis of HDL-mimicking nanomaterials (µHDL). µHDL is shown to have the same properties (e.g., size, morphology, bioactivity) as conventionally reconstituted HDL and native HDL. In addition, we were able to incorporate simvastatin (a hydrophobic drug) into µHDL, as well as gold, iron oxide, quantum dot nanocrystals or fluorophores to enable its detection by computed tomography (CT), magnetic resonance imaging (MRI), or fluorescence microscopy, respectively. Our approach may contribute to effective development and optimization of lipoprotein-based nanomaterials for medical imaging and drug delivery. PMID:24079940

  8. The farnesoid X receptor induces very low density lipoprotein receptor gene expression.

    PubMed

    Sirvent, Audrey; Claudel, Thierry; Martin, Geneviève; Brozek, John; Kosykh, Vladimir; Darteil, Raphaël; Hum, Dean W; Fruchart, Jean-Charles; Staels, Bart

    2004-05-21

    The farnesoid X receptor (FXR) is a nuclear receptor activated by bile acids (BAs). In response to ligand-binding, FXR regulates many genes involved in BA, lipid, and lipoprotein metabolism. To identify new FXR target genes, microarray technology was used to profile total RNA extracted from HepG2 cells treated with the natural FXR agonist chenodeoxycholic acid (CDCA). Interestingly, a significant increase of transcript level of the very low density lipoprotein receptor (VLDLR) was observed. Our data, resulting from selective FXR activation, FXR RNA silencing and FXR-deficient mice, clearly demonstrate that BAs up-regulate VLDLR transcript levels via a FXR-dependent mechanism in vitro in human and in vivo in mouse liver cells.

  9. Ascorbic acid protects lipids in human plasma and low-density lipoprotein against oxidative damage

    SciTech Connect

    Frei, B. )

    1991-12-01

    The authors exposed human blood plasma and low-density lipoprotein (LDL) to many different oxidative challenges and followed the temporal consumption of endogenous antioxidants in relation to the initiation of oxidative damage. Under all types of oxidizing conditions, ascorbic acid completely protects lipids in plasma and LDL against detectable peroxidative damage as assessed by a specific and highly sensitive assay for lipid peroxidation. Ascorbic acid proved to be superior to the other water-soluble plasma antioxidants bilirubin, uric acid, and protein thiols as well as to the lipoprotein-associated antioxidants alpha-tocopherol, ubiquinol-10, lycopene, and beta-carotene. Although these antioxidants can lower the rate of detectable lipid peroxidation, they are not able to prevent its initiation. Only ascorbic acid is reactive enough to effectively intercept oxidants in the aqueous phase before they can attack and cause detectable oxidative damage to lipids.

  10. Atheroprotective role of high-density lipoprotein (HDL)-associated sphingosine-1-phosphate (S1P).

    PubMed

    Potì, Francesco; Simoni, Manuela; Nofer, Jerzy-Roch

    2014-08-01

    Numerous epidemiological studies documented an inverse relationship between plasma high-density lipoprotein (HDL) cholesterol levels and the extent of atherosclerotic disease. However, clinical interventions targeting HDL cholesterol failed to show clinical benefits with respect to cardiovascular risk reduction, suggesting that HDL components distinct from cholesterol may account for anti-atherogenic effects attributed to this lipoprotein. Sphingosine-1-phosphate (S1P)-a lysosphingolipid exerting its biological activity via binding to specific G protein-coupled receptors and regulating a wide array of biological responses in a variety of different organs and tissues including the cardiovascular system-has been identified as an integral constituent of HDL particles. In the present review, we discuss current evidence from epidemiological studies, experimental approaches in vitro, and animal models of atherosclerosis, suggesting that S1P contributes to atheroprotective effects exerted by HDL particles. PMID:24891400

  11. Suppression by diets rich in fish oil of very low density lipoprotein production in man.

    PubMed Central

    Nestel, P J; Connor, W E; Reardon, M F; Connor, S; Wong, S; Boston, R

    1984-01-01

    The highly polyunsaturated fatty acids in fish oils lower the plasma triglyceride concentration. We have studied the effect of a diet rich in fish oil on the rate of production of the triglyceride-transporting very low density lipoprotein (VLDL). Seven subjects, five normal and two with hypertriglyceridemia received up to 30% of daily energy needs from a fish oil preparation that was rich in eicosapentaenoic acid and docosahexaenoic acid, omega-3 fatty acids with five and six double bonds, respectively. Compared with a diet similarly enriched with safflower oil (in which the predominant fatty acid is the omega-6 linoleic acid, with two double bonds), the fish oil diet lowered VLDL lipids and B apoprotein concentrations profoundly. High density lipoprotein lipids and A1 apoprotein were also lowered, but the effect on low density lipoprotein (LDL) concentration was inconsistent. The daily production or flux of VLDL apoprotein B, calculated from reinjected autologous 125I-labeled lipoprotein, was substantially less in six subjects studied after 3 wk of fish oil, compared with after safflower oil. This effect on flux was more consistent than that on the irreversible fractional removal rate, which was increased in the four normolipidemic but inconsistent in the hypertriglyceridemic subjects. This suggests that fish oil reduced primarily the production of VLDL. The daily production of VLDL triglyceride, calculated from the kinetics of the triglyceride specific radioactivity-time curves after [3H]glycerol was injected, also showed very substantial reductions in five subjects studied. The marked suppression in VLDL apoprotein B and VLDL triglyceride formation was found not to be due to diminished plasma total free fatty acid or plasma eicosapentaenoic flux, calculated during constant infusions of [14C]eicosapentaenoic acid and [3H]oleic acid in four subjects. In two subjects there was presumptive evidence for substantial independent influx of LDL during the fish oil diet

  12. Suppression by diets rich in fish oil of very low density lipoprotein production in man.

    PubMed

    Nestel, P J; Connor, W E; Reardon, M F; Connor, S; Wong, S; Boston, R

    1984-07-01

    The highly polyunsaturated fatty acids in fish oils lower the plasma triglyceride concentration. We have studied the effect of a diet rich in fish oil on the rate of production of the triglyceride-transporting very low density lipoprotein (VLDL). Seven subjects, five normal and two with hypertriglyceridemia received up to 30% of daily energy needs from a fish oil preparation that was rich in eicosapentaenoic acid and docosahexaenoic acid, omega-3 fatty acids with five and six double bonds, respectively. Compared with a diet similarly enriched with safflower oil (in which the predominant fatty acid is the omega-6 linoleic acid, with two double bonds), the fish oil diet lowered VLDL lipids and B apoprotein concentrations profoundly. High density lipoprotein lipids and A1 apoprotein were also lowered, but the effect on low density lipoprotein (LDL) concentration was inconsistent. The daily production or flux of VLDL apoprotein B, calculated from reinjected autologous 125I-labeled lipoprotein, was substantially less in six subjects studied after 3 wk of fish oil, compared with after safflower oil. This effect on flux was more consistent than that on the irreversible fractional removal rate, which was increased in the four normolipidemic but inconsistent in the hypertriglyceridemic subjects. This suggests that fish oil reduced primarily the production of VLDL. The daily production of VLDL triglyceride, calculated from the kinetics of the triglyceride specific radioactivity-time curves after [3H]glycerol was injected, also showed very substantial reductions in five subjects studied. The marked suppression in VLDL apoprotein B and VLDL triglyceride formation was found not to be due to diminished plasma total free fatty acid or plasma eicosapentaenoic flux, calculated during constant infusions of [14C]eicosapentaenoic acid and [3H]oleic acid in four subjects. In two subjects there was presumptive evidence for substantial independent influx of LDL during the fish oil diet

  13. Alimentary lipemia: plasma high-density lipoproteins and apolipoproteins CII and CIII in healthy subjects.

    PubMed

    Kashyap, M L; Barnhart, R L; Srivastava, L S; Perisutti, G; Allen, C; Hogg, E; Glueck, C J; Jackson, R L

    1983-02-01

    Three healthy male and three female inpatient volunteers consumed isocaloric diets for 4 wk. At weekly intervals, a fatty meal (100 g fat) was consumed by each fasting subject and blood drawn at 2 h intervals for 12 h. Of the four oral fat loads, two contained saturated fat (polyunsaturated/saturated fat ratio = 0.34) and two contained unsaturated fat (polyunsaturated/saturated fat = 2.21). The magnitude of alimentary lipemia, expressed as area under the plasma triglyceride curve, was 3- to 4-fold higher in males than females. Alimentary lipemia was inversely related to the subjects' fasting plasma high-density lipoprotein (HDL)-cholesterol, HDL apolipoprotein (apo) CIII and directly related to plasma triglycerides. The P/S ratios of the daily diet or the fat meal did not significantly influence the plasma triglyceride curve. After fat intake, mean (+/- SEM) plasma total apoCII and CIII fell to 54 +/- 20% and 73 +/- 5% of base-line, respectively, at 12 h in five of six subjects. After oral fat, an initial fall and a subsequent rise in apoCII and CIII in HDL was associated with reciprocal changes in apoC concentrations in very low-density lipoproteins. We speculate from the data that 1) plasma HDL and their apoC concentrations are important determinants of chylomicron clearance and 2) transfer of apoCs from HDL to triglyceride-rich lipoproteins in the early phase of fat absorption does not result in the total recycling of apoCs from these lipoproteins to HDL during the late phase of alimentary lipemia.

  14. New function for high density lipoproteins. Their participation in intravascular reactions of bacterial lipopolysaccharides.

    PubMed Central

    Ulevitch, R J; Johnston, A R; Weinstein, D B

    1979-01-01

    The addition of bacterial lipopolysaccharide (LPS) from Escherichia coli 0111:B4 or Salmonella minnesota R595 to plasma (or serum) resulted in a marked reduction of the hydrated buoyant density of the parent LPS (0111:B4 [d = 1.44 g/cm3] and R595 [d = 1.38 g/cm3]), to d less than 1.2 g/cm3. This reduction in buoyant density to less than 1.2 g/cm3 of the LPS required plasma (or serum) lipid. Delipidation of plasma (or serum) by extraction with n-butanol/diisopropyl ether (40/60, vol:vol) prevented the conversion of the parent LPS to a form with d less than 1.2 g/cm3. Reversal of the effect of delipidation was accomplished by the addition of physiologic concentrations of high density lipoprotein (HDL). In contrast, as much as two times normal serum concentration of low density or very low density lipoprotein were ineffective. The ability of normal plasma (or serum) to inhibit the pyrogenic activity of LPS, lost after delipidation, was also restored after the addition of HDL. Preliminary results suggested that prior modifications of the LPS, probably disaggregation, may be required before interaction with HDL. PMID:227936

  15. Increased low density lipoprotein degradation in aorta of irradiated mice is inhibited by preenrichment of low density lipoprotein with alpha-tocopherol.

    PubMed

    Tribble, D L; Krauss, R M; Chu, B M; Gong, E L; Kullgren, B R; Nagy, J O; La Belle, M

    2000-10-01

    We previously reported that upper thoracic exposure to ionizing radiation (IR) accelerates fatty streak formation in C57BL/6 mice and that such effects are inhibited by overexpression of the antioxidant enzyme CuZn-superoxide dismutase (SOD). Notably, IR-accelerated lesion formation is strictly dependent on a high fat diet (i.e., atherogenic lipoproteins) but does not involve alterations in circulating lipid or lipoprotein levels. We thus proposed that IR promotes changes in the artery wall that enhance the deposition of lipoprotein lipids. To address this hypothesis, we examined the effects of IR on aortic accumulation and degradation of low density lipoproteins (LDL). Ten-week-old C57BL/6 mice were exposed to a single (8-Gy) dose of (60)Co radiation to the upper thoracic area or were sham irradiated (controls) and were then placed on the high fat diet. Five days postexposure, the mice received either (125)I-labeled LDL ((125)I-LDL) (which was used to measure intact LDL) or (125)I-labeled tyramine cellobiose ((125)I-TC)-LDL (which was used to measure both intact and cell-degraded LDL) via tail vein injection. On the basis of trichloroacetic acid (TCA)-precipitable counts in retroorbital blood samples, > or =95% of donor LDL was cleared within 24 h and there were no differences in time-averaged plasma concentrations of the two forms of LDL among irradiated and control mice. Aortic values increased markedly within the first hour and thereafter exhibited a slow increase up to 24 h. There were no differences between irradiated and control mice at 1 h, when values primarily reflected LDL entry, but a divergence was observed thereafter. At 24 h, (125)I-TC-associated counts were 1.8-fold higher in irradiated mice (P = 0.10). In contrast, (125)I-LDL-associated counts were 30% lower in irradiated mice (P< 0.05), suggesting that most of the retained (125)I-TC was associated with LDL degradation products. Consistent with the proposed involvement of oxidative or redox

  16. Modulation of infant formula fat profile alters the low-density lipoprotein/high-density lipoprotein ratio and plasma fatty acid distribution relative to those with breast-feeding.

    PubMed

    Hayes, K C; Pronczuk, A; Wood, R A; Guy, D G

    1992-04-01

    The effect of breast-feeding was compared with that of two fat-modified milk formulas in 45 infants (15 per group) studied by assessing body weight gain for 4 months and plasma lipids, lipoprotein profiles, fatty acid profiles of plasma and red blood cells, and plasma tocopherol status 3 months after birth. A saturated fat formula with coconut oil/soybean oil (COCO/SOY) had a fatty acid content and polyunsaturated/saturated ratio (P/S, 0.55) comparable with that of human milk fat (P/S, 0.39) and had the same fat energy content (50% kcal). The second formula, with corn oil/soybean oil (CORN/SOY), was highly unsaturated (P/S, 4.6), with only 35% kcal from fat. Energy intake and body weight gain were similar for all groups. Plasma total cholesterol, triglyceride, and phospholipid levels were significantly lower (greater than 20% on average) in infants fed the CORN/SOY formula than in infants fed either the COCO/SOY formula or human milk. Infants fed the CORN/SOY formula also had lower (25% to 35%) plasma low-density lipoprotein cholesterol and apolipoprotein B levels and low-density lipoprotein/high-density lipoprotein and apolipoprotein B/apolipoprotein A-I ratios. Plasma, red blood cell, and cholesteryl ester fatty acids from infants fed COCO/SOY contained less 18:1 and more 18:2; cholesterol esters in plasma from breast-fed infants had the highest 20:4n-6 levels. Plasma tocopherol levels were higher in infants consuming formulas. The presence of cholesterol in human milk appeared to expand the low-density lipoprotein pool and exert an "unfavorable" increase in the low-density lipoprotein/high-density lipoprotein ratio. Thus modulation of infant lipoproteins by changing dietary fat and cholesterol is feasible and in keeping with the known response in adults. PMID:1560323

  17. Rapid and simple profiling of lipoproteins by polyacrylamide-gel disc electrophoresis to determine the heterogeneity of low-density lipoproteins (LDLs) including small, dense LDL.

    PubMed

    Nakano, Takanari; Inoue, Ikuo; Seo, Makoto; Takahashi, Seiichiro; Awata, Takuya; Komoda, Tsugikazu; Katayama, Shigehiro

    2009-01-01

    This study aimed to explore the potential of polyacrylamide-gel disc electrophoresis (PAGE) for lipoprotein profiling in clinical practice. Blood samples were collected from 146 patients with type 2 diabetes mellitus and lipid parameters were assayed by PAGE, including small, dense low-density lipoprotein (LDL) (n = 41), and triglyceride-rich lipoprotein remnant cholesterol (n = 37). We also used a commercial kit to measure small, dense LDL (n = 41). By PAGE, we obtained the percentage of the area under the curve (AUC %) of each peaks and calculated respective AUC% x total cholesterol (AUC%xTC) values. The calculated values of LDL-AUC%xTC, small LDL-AUC%xTC, and HDL-AUC%xTC values were correlated well with values from homogeneous assay for LDL-cholesterol, small, dense LDL-cholesterol, and HDL-cholesterol assays (r = 0.94, 0.81, and 0.89, respectively). PAGE combined with measurement of total cholesterol and triglycerides provides a rapid evaluation of anti- or pro-atherogenic lipoproteins and a simple profiling system for both the "quantity" and "quality" of lipoproteins, allowing a better assessment of the risk of coronary artery diseases. This article discusses several methods for simple and rapid lipid profiling and outlines some recent patents relevant to the methods.

  18. Effect of Oxidation on the Structure of Human Low- and High-Density Lipoproteins

    PubMed Central

    Oliveira, Cristiano L.P.; Santos, Priscila R.; Monteiro, Andrea M.; Figueiredo Neto, Antonio M.

    2014-01-01

    This work presents a controlled study of low-density lipoprotein (LDL) and high-density lipoprotein (HDL) structural changes due to in vitro oxidation with copper ions. The changes were studied by small-angle x-ray scattering (SAXS) and dynamic light scattering (DLS) techniques in the case of LDL and by SAXS, DLS, and Z-scan (ZS) techniques in the case of HDL. SAXS data were analyzed with a to our knowledge new deconvolution method. This method provides the electron density profile of the samples directly from the intensity scattering of the monomers. Results show that LDL particles oxidized for 18 h show significant structural changes when compared to nonoxidized particles. Changes were observed in the electrical density profile, in size polydispersity, and in the degree of flexibility of the APO-B protein on the particle. HDL optical results obtained with the ZS technique showed a decrease of the amplitude of the nonlinear optical signal as a function of oxidation time. In contrast to LDL results reported in the literature, the HDL ZS signal does not lead to a complete loss of nonlinear optical signal after 18 h of copper oxidation. Also, the SAXS results did not indicate significant structural changes due to oxidation of HDL particles, and DLS results showed that a small number of oligomers formed in the sample oxidized for 18 h. All experimental results for the HDL samples indicate that this lipoprotein is more resistant to the oxidation process than are LDL particles. PMID:24940777

  19. The secondary structure of apolipoprotein A-I on 9.6-nm reconstituted high-density lipoprotein determined by EPR spectroscopy

    PubMed Central

    Oda, Michael N; Budamagunta, Madhu S; Borja, Mark S; Petrlova, Jitka; Voss, John C; Lagerstedt, Jens O

    2013-01-01

    Apolipoprotein A-I (ApoA-I) is the major protein component of high-density lipoprotein (HDL), and is critical for maintenance of cholesterol homeostasis. During reverse cholesterol transport, HDL transitions between an array of subclasses, differing in size and composition. This process requires ApoA-I to adapt to changes in the shape of the HDL particle, transiting from an apolipoprotein to a myriad of HDL subclass-specific conformations. Changes in ApoA-I structure cause alterations in HDL-specific enzyme and receptor-binding properties, and thereby direct the HDL particle through the reverse cholesterol transport pathway. In this study, we used site-directed spin label spectroscopy to examine the conformational details of the ApoA-I central domain on HDL. The motional dynamics and accessibility to hydrophobic/hydrophilic relaxation agents of ApoA-I residues 99–163 on 9.6-nm reconstituted HDL was analyzed by EPR. In previous analyses, we examined residues 6–98 and 164–238 (of ApoA-I's 243 residues), and combining these findings with the current results, we have generated a full-length map of the backbone structure of reconstituted HDL-associated ApoA-I. Remarkably, given that the majority of ApoA-I's length is composed of amphipathic helices, we have identified nonhelical residues, specifically the presence of a β-strand (residues 149–157). The significance of these nonhelical residues is discussed, along with the other features, in the context of ApoA-I function in contrast to recent models derived by other methods. PMID:23668303

  20. The biological properties of iron oxide core high-density lipoprotein in experimental atherosclerosis

    PubMed Central

    Skajaa, Torjus; Cormode, David P.; Jarzyna, Peter A.; Delshad, Amanda; Blachford, Courtney; Barazza, Alessandra; Fisher, Edward A.; Gordon, Ronald E.; Fayad, Zahi A.; Mulder, Willem J.M.

    2013-01-01

    Lipoproteins are a family of plasma nanoparticles responsible for the transportation of lipids throughout the body. High-density lipoprotein (HDL), the smallest of the lipoprotein family, measures 7–13 nm in diameter and consists of a cholesteryl ester and triglyceride core that is covered with a monolayer of phospholipids and apolipoproteins. We have developed an iron oxide core HDL nanoparticle (FeO-HDL), which has a lipid based fluorophore incorporated in the phospholipid layer. This nanoparticle provides contrast for optical imaging, magnetic resonance imaging (MRI) and transmission electron microscopy (TEM). Consequently, FeO-HDL can be visualized on the anatomical, cellular and sub-cellular level. In the current study we show that the biophysical features of FeO-HDL closely resemble those of native HDL and that FeO-HDL possess the ability to mimic HDL characteristics both in vitro as well as in vivo. We demonstrate that FeO-HDL can be applied to image HDL interactions and to investigate disease settings where HDL plays a key function. More generally, we have demonstrated a multimodal approach to study the behavior of biomaterials in vitro as well as in vivo. The approach allowed us to study nanoparticle dynamics in circulation, as well as nanoparticle targeting and uptake by tissues and cells of interest. Moreover, we were able to qualitatively assess nanoparticle excretion, critical for translating nanotechnologies to the clinic. PMID:20926130

  1. Low-Density Lipoprotein Modified by Myeloperoxidase in Inflammatory Pathways and Clinical Studies

    PubMed Central

    Vanhamme, Luc; Roumeguère, Thierry; Zouaoui Boudjeltia, Karim

    2013-01-01

    Oxidation of low-density lipoprotein (LDL) has a key role in atherogenesis. Among the different models of oxidation that have been studied, the one using myeloperoxidase (MPO) is thought to be more physiopathologically relevant. Apolipoprotein B-100 is the unique protein of LDL and is the major target of MPO. Furthermore, MPO rapidly adsorbs at the surface of LDL, promoting oxidation of amino acid residues and formation of oxidized lipoproteins that are commonly named Mox-LDL. The latter is not recognized by the LDL receptor and is accumulated by macrophages. In the context of atherogenesis, Mox-LDL accumulates in macrophages leading to foam cell formation. Furthermore, Mox-LDL seems to have specific effects and triggers inflammation. Indeed, those oxidized lipoproteins activate endothelial cells and monocytes/macrophages and induce proinflammatory molecules such as TNFα and IL-8. Mox-LDL may also inhibit fibrinolysis mediated via endothelial cells and consecutively increase the risk of thrombus formation. Finally, Mox-LDL has been involved in the physiopathology of several diseases linked to atherosclerosis such as kidney failure and consequent hemodialysis therapy, erectile dysfunction, and sleep restriction. All these issues show that the investigations of MPO-dependent LDL oxidation are of importance to better understand the inflammatory context of atherosclerosis. PMID:23983406

  2. Low-density lipoprotein mimics blood plasma-derived exosomes and microvesicles during isolation and detection.

    PubMed

    Sódar, Barbara W; Kittel, Ágnes; Pálóczi, Krisztina; Vukman, Krisztina V; Osteikoetxea, Xabier; Szabó-Taylor, Katalin; Németh, Andrea; Sperlágh, Beáta; Baranyai, Tamás; Giricz, Zoltán; Wiener, Zoltán; Turiák, Lilla; Drahos, László; Pállinger, Éva; Vékey, Károly; Ferdinandy, Péter; Falus, András; Buzás, Edit Irén

    2016-01-01

    Circulating extracellular vesicles have emerged as potential new biomarkers in a wide variety of diseases. Despite the increasing interest, their isolation and purification from body fluids remains challenging. Here we studied human pre-prandial and 4 hours postprandial platelet-free blood plasma samples as well as human platelet concentrates. Using flow cytometry, we found that the majority of circulating particles within the size range of extracellular vesicles lacked common vesicular markers. We identified most of these particles as lipoproteins (predominantly low-density lipoprotein, LDL) which mimicked the characteristics of extracellular vesicles and also co-purified with them. Based on biophysical properties of LDL this finding was highly unexpected. Current state-of-the-art extracellular vesicle isolation and purification methods did not result in lipoprotein-free vesicle preparations from blood plasma or from platelet concentrates. Furthermore, transmission electron microscopy showed an association of LDL with isolated vesicles upon in vitro mixing. This is the first study to show co-purification and in vitro association of LDL with extracellular vesicles and its interference with vesicle analysis. Our data point to the importance of careful study design and data interpretation in studies using blood-derived extracellular vesicles with special focus on potentially co-purified LDL. PMID:27087061

  3. Low-density lipoprotein mimics blood plasma-derived exosomes and microvesicles during isolation and detection

    PubMed Central

    Sódar, Barbara W; Kittel, Ágnes; Pálóczi, Krisztina; Vukman, Krisztina V; Osteikoetxea, Xabier; Szabó-Taylor, Katalin; Németh, Andrea; Sperlágh, Beáta; Baranyai, Tamás; Giricz, Zoltán; Wiener, Zoltán; Turiák, Lilla; Drahos, László; Pállinger, Éva; Vékey, Károly; Ferdinandy, Péter; Falus, András; Buzás, Edit Irén

    2016-01-01

    Circulating extracellular vesicles have emerged as potential new biomarkers in a wide variety of diseases. Despite the increasing interest, their isolation and purification from body fluids remains challenging. Here we studied human pre-prandial and 4 hours postprandial platelet-free blood plasma samples as well as human platelet concentrates. Using flow cytometry, we found that the majority of circulating particles within the size range of extracellular vesicles lacked common vesicular markers. We identified most of these particles as lipoproteins (predominantly low-density lipoprotein, LDL) which mimicked the characteristics of extracellular vesicles and also co-purified with them. Based on biophysical properties of LDL this finding was highly unexpected. Current state-of-the-art extracellular vesicle isolation and purification methods did not result in lipoprotein-free vesicle preparations from blood plasma or from platelet concentrates. Furthermore, transmission electron microscopy showed an association of LDL with isolated vesicles upon in vitro mixing. This is the first study to show co-purification and in vitro association of LDL with extracellular vesicles and its interference with vesicle analysis. Our data point to the importance of careful study design and data interpretation in studies using blood-derived extracellular vesicles with special focus on potentially co-purified LDL. PMID:27087061

  4. Low-density lipoprotein mimics blood plasma-derived exosomes and microvesicles during isolation and detection.

    PubMed

    Sódar, Barbara W; Kittel, Ágnes; Pálóczi, Krisztina; Vukman, Krisztina V; Osteikoetxea, Xabier; Szabó-Taylor, Katalin; Németh, Andrea; Sperlágh, Beáta; Baranyai, Tamás; Giricz, Zoltán; Wiener, Zoltán; Turiák, Lilla; Drahos, László; Pállinger, Éva; Vékey, Károly; Ferdinandy, Péter; Falus, András; Buzás, Edit Irén

    2016-04-18

    Circulating extracellular vesicles have emerged as potential new biomarkers in a wide variety of diseases. Despite the increasing interest, their isolation and purification from body fluids remains challenging. Here we studied human pre-prandial and 4 hours postprandial platelet-free blood plasma samples as well as human platelet concentrates. Using flow cytometry, we found that the majority of circulating particles within the size range of extracellular vesicles lacked common vesicular markers. We identified most of these particles as lipoproteins (predominantly low-density lipoprotein, LDL) which mimicked the characteristics of extracellular vesicles and also co-purified with them. Based on biophysical properties of LDL this finding was highly unexpected. Current state-of-the-art extracellular vesicle isolation and purification methods did not result in lipoprotein-free vesicle preparations from blood plasma or from platelet concentrates. Furthermore, transmission electron microscopy showed an association of LDL with isolated vesicles upon in vitro mixing. This is the first study to show co-purification and in vitro association of LDL with extracellular vesicles and its interference with vesicle analysis. Our data point to the importance of careful study design and data interpretation in studies using blood-derived extracellular vesicles with special focus on potentially co-purified LDL.

  5. ANALYSIS OF DRUG INTERACTIONS WITH VERY LOW DENSITY LIPOPROTEIN BY HIGH PERFORMANCE AFFINITY CHROMATOGRAPHY

    PubMed Central

    Sobansky, Matthew R.; Hage, David S.

    2014-01-01

    High-performance affinity chromatography (HPAC) was utilized to examine the binding of very low density lipoprotein (VLDL) with drugs, using R/S-propranolol as a model. These studies indicated that two mechanisms existed for the binding of R- and S-propranolol with VLDL. The first mechanism involved non-saturable partitioning of these drugs with VLDL, which probably occurred with the lipoprotein's non-polar core. This partitioning was described by overall affinity constants of 1.2 (± 0.3) × 106 M-1 for R-propranolol and 2.4 (± 0.6) × 106 M-1 for S-propranolol at pH 7.4 and 37 °C. The second mechanism occurred through saturable binding by these drugs at fixed sites on VLDL, such as represented by apolipoproteins on the surface of the lipoprotein. The association equilibrium constants for this saturable binding at 37 °C were 7.0 (± 2.3) × 104 M-1 for R-propranolol and 9.6 (± 2.2) × 104 M-1 for S-propranolol. Comparable results were obtained at 20 °C and 27 °C for the propranolol enantiomers. This work provided fundamental information on the processes involved in the binding of R- and S-propranolol to VLDL, while also illustrating how HPAC can be used to evaluate relatively complex interactions between agents such as VLDL and drugs or other solutes. PMID:25103529

  6. Impaired protection against diabetes and coronary heart disease by high-density lipoproteins in Turks.

    PubMed

    Onat, Altan; Can, Günay; Ayhan, Erkan; Kaya, Zekeriya; Hergenç, Gülay

    2009-10-01

    The issue of whether or not incident type 2 diabetes mellitus and coronary heart disease (CHD) can be predicted by high-density lipoprotein (HDL) cholesterol in both sexes needs investigation. A representative sample of 3035 middle-aged Turkish adults free of CHD at baseline was studied with this purpose prospectively over a mean of 7.8 years. High-density lipoprotein cholesterol levels were found to be correlated in women positively with plasma fibrinogen and weakly with waist girth and C-reactive protein, and to be not correlated with fasting insulin. High-density lipoprotein cholesterol protected men against future CHD risk (for a 12-mg/dL increment: relative risk = 0.80 [95% confidence interval, 0.69-0.95]) after multivariable adjustment in logistic regression analyses for age, smoking status, physical activity grade, hypertension, abdominal obesity, diabetes, and lipid-lowering drugs. However, men were not protected against risk of diabetes. In women, HDL cholesterol was not associated with risk for CHD, whereas intermediate (40-60 mg/dL) compared with lower HDL cholesterol levels proved protective against risk of diabetes (relative risk = 0.57 [95% confidence interval, 0.36-0.90]) after adjustments that included apolipoprotein A-I tertiles. Yet higher serum concentrations failed to yield protection against diabetes. It was concluded that HDL particles confer partially lacking protection against cardiometabolic risk among Turks, and this impairment is modulated by sex. This highly important observation may result from a setting of prevailing chronic subclinical inflammation.

  7. High-Density Lipoprotein Prevents Endoplasmic Reticulum Stress-Induced Downregulation of Liver LOX-1 Expression

    PubMed Central

    Hong, Dan; Li, Ling-Fang; Gao, Hai-Chao; Wang, Xiang; Li, Chuan-Chang; Luo, Ying; Bai, Yong-Ping; Zhang, Guo-Gang

    2015-01-01

    Lectin-like oxidized low-density lipoprotein receptor-1 (LOX-1) is a specific cell-surface receptor for oxidized-low-density lipoprotein (ox-LDL). The impact of high-density lipoprotein (HDL) on endoplasmic reticulum (ER) stress-mediated alteration of the LOX-1 level in hepatocytes remains unclear. We aimed to investigate the impact on LOX-1 expression by tunicamycin (TM)-induced ER stress and to determine the effect of HDL on TM-affected LOX-1 expression in hepatic L02 cells. Overexpression or silencing of related cellular genes was conducted in TM-treated cells. mRNA expression was evaluated using real-time polymerase chain reaction (PCR). Protein expression was analyzed by western blot and immunocytochemistry. Lipid uptake was examined by DiI-ox-LDL, followed by flow cytometric analysis. The results showed that TM induced the upregulation of ER chaperone GRP78, downregulation of LOX-1 expression, and lipid uptake. Knock down of IRE1 or XBP-1 effectively restored LOX-1 expression and improved lipid uptake in TM-treated cells. HDL treatment prevented the negative impact on LOX-1 expression and lipid uptake induced by TM. Additionally, 1–10 μg/mL HDL significantly reduced the GRP78, IRE1, and XBP-1 expression levels in TM-treated cells. Our findings reveal that HDL could prevent the TM-induced reduction of LOX-1 expression via inhibiting the IRE1/XBP-1 pathway, suggesting a new mechanism for beneficial roles of HDL in improving lipid metabolism. PMID:25923692

  8. High-Density Lipoprotein Prevents Endoplasmic Reticulum Stress-Induced Downregulation of Liver LOX-1 Expression.

    PubMed

    Hong, Dan; Li, Ling-Fang; Gao, Hai-Chao; Wang, Xiang; Li, Chuan-Chang; Luo, Ying; Bai, Yong-Ping; Zhang, Guo-Gang

    2015-01-01

    Lectin-like oxidized low-density lipoprotein receptor-1 (LOX-1) is a specific cell-surface receptor for oxidized-low-density lipoprotein (ox-LDL). The impact of high-density lipoprotein (HDL) on endoplasmic reticulum (ER) stress-mediated alteration of the LOX-1 level in hepatocytes remains unclear. We aimed to investigate the impact on LOX-1 expression by tunicamycin (TM)-induced ER stress and to determine the effect of HDL on TM-affected LOX-1 expression in hepatic L02 cells. Overexpression or silencing of related cellular genes was conducted in TM-treated cells. mRNA expression was evaluated using real-time polymerase chain reaction (PCR). Protein expression was analyzed by western blot and immunocytochemistry. Lipid uptake was examined by DiI-ox-LDL, followed by flow cytometric analysis. The results showed that TM induced the upregulation of ER chaperone GRP78, downregulation of LOX-1 expression, and lipid uptake. Knock down of IRE1 or XBP-1 effectively restored LOX-1 expression and improved lipid uptake in TM-treated cells. HDL treatment prevented the negative impact on LOX-1 expression and lipid uptake induced by TM. Additionally, 1-10 μg/mL HDL significantly reduced the GRP78, IRE1, and XBP-1 expression levels in TM-treated cells. Our findings reveal that HDL could prevent the TM-induced reduction of LOX-1 expression via inhibiting the IRE1/XBP-1 pathway, suggesting a new mechanism for beneficial roles of HDL in improving lipid metabolism. PMID:25923692

  9. Selective uptake of boronated low-density lipoprotein in melanoma xenografts achieved by diet supplementation.

    PubMed

    Setiawan, Y; Moore, D E; Allen, B J

    1996-12-01

    The lipid core of human plasma low-density lipoprotein (LDL) was extracted using hexane and the LDL reconstituted with the addition of n-octyl-carborane. Biodistribution studies of the boronated LDL were performed in BALB/c mice bearing subcutaneous Harding-Passey melanoma xenografts. When diet supplementation with coconut oil and cholesterol for 21 days and regular dosing with hydrocortisone for 7 days before the studies was used to down-regulate the liver LDL receptors and the adrenal receptors, respectively, the tumour-blood boron concentration ratio of 5:1 was achieved.

  10. Receptor-mediated delivery of photoprotective agents by low-density lipoprotein

    SciTech Connect

    Mosley, S.T.; Yang, Y.L.; Falck, J.R.; Anderson, R.G.W.

    1984-12-01

    Low density lipoprotein (LDL) has been used to deliver toxic molecules to cells by receptor-mediated endocytosis. In these studies, the cholesteryl ester core of LDL was replaced with a lipophilic, toxic molecule. The authors report that photoprotective azo dyes can be stably incorporated into LDL, and that this reconstituted LDL protects cells from the photosensitizing action of pyrene methanol (PM) in a receptor-dependent process. The photoprotective action of the azo dye is due to its ability to scavenge singlet oxygen that is produced by the photosensitive agent in response to UV light.

  11. Synthetic high-density lipoprotein-like nanoparticles for cancer therapy

    PubMed Central

    Foit, Linda; Giles, Francis J.; Gordon, Leo I.; Thaxton, C. Shad

    2015-01-01

    Summary High-density lipoproteins (HDLs) are a diverse group of natural nanoparticles that are most well-known for their role in cholesterol transport. However, HDLs have diverse functions that provide significant opportunities for cancer therapy. Presented is a focused review of the ways that synthetic versions of HDL have been used as targeted therapies for cancer, and as vehicles for the delivery of diverse therapeutic cargo to cancer cells. As such, synthetic HDLs are likely to play a central role in the development of next generation cancer therapies. PMID:25487833

  12. Oxidation of cholesterol does not alter significantly its uptake into high-density lipoprotein particles.

    PubMed

    Karilainen, Topi; Timr, Štěpán; Vattulainen, Ilpo; Jungwirth, Pavel

    2015-04-01

    Using replica exchange umbrella sampling we calculated free energy profiles for uptake of cholesterol and one of its oxysterols (7-ketocholesterol) from an aqueous solution into a high-density lipoprotein particle. These atomistic molecular dynamics simulations show that both sterols are readily taken up from the aqueous solution with comparable free energy minima at the surface of the particle of -17 kcal/mol for cholesterol and -14 kcal/mol for 7-ketocholesterol. Moreover, given its preferred position at the particle surface, 7-ketocholesterol is expected to be able to participate directly in biological signaling processes.

  13. Synthetic Nano-Low Density Lipoprotein as Targeted Drug DeliveryVehicle for Glioblastoma Multiforme

    SciTech Connect

    Nikanjam, Mina; Blakely, Eleanor A.; Bjornstad, Kathleen A.; Shu,Xiao; Budinger, Thomas F.; Forte, Trudy M.

    2006-06-14

    This paper discribes a synthetic low density lipoprotein(LDL) made by complexing a 29 amino acid that consists of a lipid bindingdomain and the LDL receptor binding domain with a lipid microemulsion.The nano-LDL particles were intermdiate in size between LDL and HDL andbound to LDL receptors on GBM brain tumor cells. Synthetic nano-LDLuptake by GBM cells was LDL receptor specific and dependent on cellreceptor number. It is suggested that these synthetic particles can serveas a delivery vehicle for hydophobic anti-tumor drugs by targeting theLDL receptor.

  14. Health benefits of high-density lipoproteins in preventing cardiovascular diseases.

    PubMed

    Berrougui, Hicham; Momo, Claudia N; Khalil, Abdelouahed

    2012-01-01

    Plasma levels of high-density lipoprotein (HDL) are strongly and inversely correlated with atherosclerotic cardiovascular diseases. However, it is becoming clear that a functional HDL is a more desirable target than simply increasing HDL-cholesterol levels. The best known antiatherogenic function of HDL particles relates to their ability to promote reverse cholesterol transport from peripheral cells. However, HDL also possesses antioxidant, anti-inflammatory, and antithrombotic effects. This review focuses on the state of knowledge regarding assays of HDL heterogeneity and function and their relationship to cardiovascular diseases.

  15. Association of a genetic polymorphism in human apolipoprotein B-100 with intermediate density lipoprotein concentrations.

    PubMed

    Robinson, M T; Butler, R; Krauss, R M

    1991-09-01

    Immunochemical techniques have been used to identify five antigenic (Ag) sites on apolipoprotein B-100 (apoB), the major protein constituent of very low density (VLDL), intermediate density (IDL), and low density lipoproteins (LDL). Each Ag site results from allelic variation at a specific locus of the apoB gene. In the present study, we assessed whether variations in the five Ag loci were associated with concentrations of plasma lipids or lipoprotein fractions measured by analytical ultracentrifugation in a group of 44 healthy men. Pair-wise analyses of the Ag markers revealed that Ag(a1/d), in association with either Ag(x/y) or Ag(t/z), is significantly related to plasma IDL-mass concentrations. In this cohort we detected no significant associations of the Ag alleles (singly or in combination) with plasma total cholesterol, triglycerides, LDL-cholesterol, HDL-cholesterol, or mass of total VLDL or LDL. These results suggest that genetic variations in the apoB molecule may predispose to variations in concentrations of IDL that could have consequences for atherosclerotic risk.

  16. Preferential enrichment of large-sized very low density lipoprotein populations with transferred cholesteryl esters

    SciTech Connect

    Eisenberg, S.

    1985-04-01

    The effect of lipid transfer proteins on the exchange and transfer of cholesteryl esters from rat plasma HDL2 to human very low (VLDL) and low density (LDL) lipoprotein populations was studied. The use of a combination of radiochemical and chemical methods allowed separate assessment of (/sup 3/H)cholesteryl ester exchange and of cholesteryl ester transfer. VLDL-I was the preferred acceptor for transferred cholesteryl esters, followed by VLDL-II and VLDL-III. LDL did not acquire cholesteryl esters. The contribution of exchange of (/sup 3/H)cholesteryl esters to total transfer was highest for LDL and decreased in reverse order along the VLDL density range. Inactivation of lecithin: cholesterol acyltransferase (LCAT) and heating the HDL2 for 60 min at 56 degrees C accelerated transfer and exchange of (/sup 3/H)cholesteryl esters. Addition of lipid transfer proteins increased cholesterol esterification in all systems. The data demonstrate that large-sized, triglyceride-rich VLDL particles are preferred acceptors for transferred cholesteryl esters. It is suggested that enrichment of very low density lipoproteins with cholesteryl esters reflects the triglyceride content of the particles.

  17. Low-Density Lipoprotein Cholesterol, Non-High-Density Lipoprotein Cholesterol, Triglycerides, and Apolipoprotein B and Cardiovascular Risk in Patients With Manifest Arterial Disease.

    PubMed

    van den Berg, M Johanneke; van der Graaf, Yolanda; de Borst, Gert Jan; Kappelle, L Jaap; Nathoe, Hendrik M; Visseren, Frank L J

    2016-09-15

    Low-density lipoprotein cholesterol (LDL-C) only partly represents the atherogenic lipid burden, and a growing body of evidence suggests that non-high-density lipoprotein cholesterol (non-HDL-C), triglycerides, and apolipoprotein B (apoB) are more accurate in estimating lipid-related cardiovascular disease risk. Our objective was to compare the relation among LDL-C, non-HDL-C, triglycerides, and apoB and the occurrence of future vascular events and mortality in patients with manifest arterial disease. This is a prospective cohort study of 7,216 patients with clinically manifest arterial disease in the Secondary Manifestations of Arterial Disease Study. Cox proportional hazard models were used to quantify the risk of major cardiovascular events (MACE; i.e., stroke, myocardial infarction, and vascular mortality) and all-cause mortality. Interaction was tested for type of vascular disease at inclusion. MACE occurred in 1,185 subjects during a median follow-up of 6.5 years (interquartile range 3.4 to 9.9 years). Adjusted hazard ratios (HRs) of MACE per 1 SD higher were for LDL-C (HR 1.15, 95% confidence interval [CI] 1.09 to 1.22), for non-HDL-C (HR 1.17, 95% CI 1.11 to 1.23), for log(triglycerides) (HR 1.12, 95% CI 1.06 to 1.19), and for apoB HR (1.12, 95% CI 0.99 to 1.28). The relation among LDL-C, non-HDL-C, and cardiovascular events was comparable in patients with cerebrovascular disease, coronary artery disease, or polyvascular disease and absent in those with aneurysm of abdominal aorta or peripheral artery disease. In conclusion, in patients with a history of cerebrovascular, coronary artery, or polyvascular disease, but not aneurysm of abdominal aorta or peripheral artery disease, higher levels of LDL-C and non-HDL-C are related to increased risk of future MACE and of comparable magnitude.

  18. Low-Density Lipoprotein Cholesterol, Non-High-Density Lipoprotein Cholesterol, Triglycerides, and Apolipoprotein B and Cardiovascular Risk in Patients With Manifest Arterial Disease.

    PubMed

    van den Berg, M Johanneke; van der Graaf, Yolanda; de Borst, Gert Jan; Kappelle, L Jaap; Nathoe, Hendrik M; Visseren, Frank L J

    2016-09-15

    Low-density lipoprotein cholesterol (LDL-C) only partly represents the atherogenic lipid burden, and a growing body of evidence suggests that non-high-density lipoprotein cholesterol (non-HDL-C), triglycerides, and apolipoprotein B (apoB) are more accurate in estimating lipid-related cardiovascular disease risk. Our objective was to compare the relation among LDL-C, non-HDL-C, triglycerides, and apoB and the occurrence of future vascular events and mortality in patients with manifest arterial disease. This is a prospective cohort study of 7,216 patients with clinically manifest arterial disease in the Secondary Manifestations of Arterial Disease Study. Cox proportional hazard models were used to quantify the risk of major cardiovascular events (MACE; i.e., stroke, myocardial infarction, and vascular mortality) and all-cause mortality. Interaction was tested for type of vascular disease at inclusion. MACE occurred in 1,185 subjects during a median follow-up of 6.5 years (interquartile range 3.4 to 9.9 years). Adjusted hazard ratios (HRs) of MACE per 1 SD higher were for LDL-C (HR 1.15, 95% confidence interval [CI] 1.09 to 1.22), for non-HDL-C (HR 1.17, 95% CI 1.11 to 1.23), for log(triglycerides) (HR 1.12, 95% CI 1.06 to 1.19), and for apoB HR (1.12, 95% CI 0.99 to 1.28). The relation among LDL-C, non-HDL-C, and cardiovascular events was comparable in patients with cerebrovascular disease, coronary artery disease, or polyvascular disease and absent in those with aneurysm of abdominal aorta or peripheral artery disease. In conclusion, in patients with a history of cerebrovascular, coronary artery, or polyvascular disease, but not aneurysm of abdominal aorta or peripheral artery disease, higher levels of LDL-C and non-HDL-C are related to increased risk of future MACE and of comparable magnitude. PMID:27471056

  19. Triglyceride to high density lipoprotein cholesterol ratio, total cholesterol to high density lipoprotein cholesterol ratio and low ankle brachial index in an elderly population.

    PubMed

    Zhan, Yiqiang; Yu, Jinming; Ding, Rongjing; Sun, Yihong; Hu, Dayi

    2014-05-01

    Hintergrund: Der Zusammenhang zwischen den Quotienten aus Triglycerid (TG) und High-density-lipoprotein-cholesterin (HDL‑C) sowie Gesamtcholesterin (TC) und HDL‑C und dem Knöchel-Arm-Index (ABI) wurde selten untersucht. Patienten und Methoden: Insgesamt 2.982 Teinehmer, die über 60 Jahre alt waren, wurden für die bevölkerungsbasierte Querschnittstudie rekrutiert. TG, TC, HDL‑C, und low-density Lipoprotein Cholesterol (LDL-C) wurden bei allen Teilnehmern getestet. Ein niedriger ABI wurde als ABI ≤ 0.9 definiert. Multiple Regressionsmodelle wurden für die Untersuchung der Assoziation zwischen TG/HDL‑C Ratio und TC/HDL‑C Ratio und niedrigem ABI angewendet. Ergebnisse: Die TG/HDL‑C Ratios für ABI > 0.9 und ABI ≤ 0.9 waren 1.28 ± 1.20 und 1.48 ± 1.13 (P < 0.0001), während die TC/HDL‑C Ratios 3.96 ± 1.09 bzw. 4.32 ± 1.15 (P < 0.0001) waren. Nach der Angleichung von Alter, Geschlecht, Body-Mass-Index, Fettleibigkeit, Alkoholkonsum, köperliche Aktivität, Hypertonie, Diabetes, Einnahme von lipidsenkenden Medikamenten, und Herz-Kreislauf-Erkrankungen waren die Odds Ratios (OR) mit 95 % Konfidenzintervall (KI) bei dem niedrigen ABI und TG/HDL‑C Quotient 1,10 (0,96 - 1,26) und 1,34 (1,14 - 1,59) für TC/HDL‑C in der Nichtrauchergruppe. Wenn das TC weiter angeglichen wurde, waren die ORs (95 % CIs) 1.40 (0.79, 2.52) und 1.53 (1.21, 1.93) für die TG/HDL‑C Ratio und TC/HDL‑C Ratio. Nichtlineare Zusammenhänge wurden zwischen der TG/HDL‑C Ratio und TC/HDL‑C Ratio und dem niedrigen ABI in der Raucher- und Nichtrauchergruppe entdeckt. Schlussfolgerungen: Die TC/HDL‑C Ratio war signifikant mit einem niedrigen ABI in der Nichtrauchergruppe verbunden und die Assoziation war unabhängig von TC, TG, HDL‑C und LDL-C. TC/HDL‑C könnte als potentieller Biomarker für die frühe periphere arterielle Verschlusskrankheit beim Screening berücksichtigt werden.

  20. Accelerated decline in renal function after acute myocardial infarction in patients with high low-density lipoprotein-cholesterol to high-density lipoprotein-cholesterol ratio.

    PubMed

    Okumura, Satoshi; Sakakibara, Masaki; Hayashida, Ryo; Jinno, Yasushi; Tanaka, Akihito; Okada, Koji; Hayashi, Mutsuharu; Ishii, Hideki; Murohara, Toyoaki

    2014-01-01

    High low-density lipoprotein-cholesterol to high-density lipoprotein-cholesterol (L/H) ratio is associated with progressions of coronary arteriosclerosis and chronic kidney disease. On the other hand, renal function markedly declined after acute myocardial infarction (AMI). The aims of the present study were (1) to identify what type of patients with AMI would have high L/H ratio at follow-up and (2) to evaluate whether decline in renal function after AMI had accelerated or not in patients with high L/H ratio. The 190 eligible AMI patients who underwent primary percutaneous coronary intervention (PCI) and received atorvastatin (10 mg) were divided into one of two groups according to the L/H ratio at 6-month follow-up: L/H >2 group (n = 81) or L/H ≤2 group (n = 109). The characteristics on admission in the two groups were examined. Furthermore, changes in serum creatinine (sCr) and estimated glomerular filtration rate (eGFR) during 1- and 6-month follow-up were compared between the two groups. L/H >2 group were significantly younger and had greater body mass index (BMI) and worse lipid profile on admission compared with L/H ≤2 group. Percentage increase in sCr and percentage decrease in eGFR during 1-month follow-up in L/H >2 group tended to be greater than in L/H ≤2 group, and those during 6-month follow-up were significantly greater (16.5 ± 2.77 vs. 9.79 ± 2.23 %, p = 0.03 and 11.8 ± 1.93 vs. 2.75 ± 3.85 %, p = 0.04, respectively). In AMI patients undergoing primary PCI, those who were young and had large BMI and poor lipid profile on admission were likely to have a high L/H ratio at follow-up despite statin therapy. In addition, the decline in renal function after AMI had significantly accelerated in patients with high L/H ratio.

  1. Receptor-mediated uptake of low density lipoprotein stimulates bile acid synthesis by cultured rat hepatocytes

    SciTech Connect

    Junker, L.H.; Davis, R.A. )

    1989-12-01

    The cellular mechanisms responsible for the lipoprotein-mediated stimulation of bile acid synthesis in cultured rat hepatocytes were investigated. Adding 280 micrograms/ml of cholesterol in the form of human or rat low density lipoprotein (LDL) to the culture medium increased bile acid synthesis by 1.8- and 1.6-fold, respectively. As a result of the uptake of LDL, the synthesis of (14C)cholesterol from (2-14C)acetate was decreased and cellular cholesteryl ester mass was increased. Further studies demonstrated that rat apoE-free LDL and apoE-rich high density lipoprotein (HDL) both stimulated bile acid synthesis 1.5-fold, as well as inhibited the formation of (14C)cholesterol from (2-14C)acetate. Reductive methylation of LDL blocked the inhibition of cholesterol synthesis, as well as the stimulation of bile acid synthesis, suggesting that these processes require receptor-mediated uptake. To identify the receptors responsible, competitive binding studies using 125I-labeled apoE-free LDL and 125I-labeled apoE-rich HDL were performed. Both apoE-free LDL and apoE-rich HDL displayed an equal ability to compete for binding of the other, suggesting that a receptor or a group of receptors that recognizes both apolipoproteins is involved. Additional studies show that hepatocytes from cholestyramine-treated rats displayed 2.2- and 3.4-fold increases in the binding of apoE-free LDL and apoE-rich HDL, respectively. These data show for the first time that receptor-mediated uptake of LDL by the liver is intimately linked to processes activating bile acid synthesis.

  2. Lower Low-Density Lipoprotein Cholesterol Levels Are Associated with Severe Dengue Outcome.

    PubMed

    Biswas, Hope H; Gordon, Aubree; Nuñez, Andrea; Perez, Maria Angeles; Balmaseda, Angel; Harris, Eva

    2015-01-01

    Dengue virus (DENV) is a flavivirus of worldwide importance, with approximately 4 billion people across 128 countries at risk of infection, and up to 390 million infections and 96 million clinically apparent cases estimated annually. Previous in vitro studies have shown that lipids and lipoproteins play a role in modifying virus infectivity. However, the relationship between development of severe dengue and total cholesterol, high-density lipoprotein cholesterol (HDL-C), and low-density lipoprotein cholesterol (LDL-C), respectively, is unclear. We analyzed data from 789 laboratory-confirmed dengue cases and 447 other febrile illnesses (OFI) in a prospective pediatric hospital-based study in Managua, Nicaragua between August 2005 and January 2013, using three different classifications of dengue severity: World Health Organization (WHO) 1997, WHO 2009, and standardized intervention categories. Total serum cholesterol and LDL-C levels decreased over the course of illness and were generally lower with increasing dengue severity, regardless of classification scheme. Greater decreases in LDL-C than HDL-C were observed among dengue-positive patients compared to patients with OFI and among severe dengue compared to mild dengue cases. Furthermore, daily cholesterol levels declined with daily albumin blood levels. To examine the effect of cholesterol at presentation on subsequent risk of development of severe dengue, relative risks and 95% confidence intervals were calculated using multivariable modified Poisson models. We found that lower total serum cholesterol and LDL-C levels at presentation were associated with subsequent risk of developing dengue hemorrhagic fever/dengue shock syndrome using the WHO 1997 dengue severity classification, and thus that the reduction in LDL-C is likely driving the decreases observed in total serum cholesterol levels among dengue-positive patients. Our results suggest that cholesterol blood levels are important correlates of dengue

  3. Changes in remnant and high-density lipoproteins associated with hormone therapy and progression of coronary artery disease in postmenopausal women

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The effect of hormone therapy (HT) on the plasma concentration of remnant lipoprotein cholesterol (RLP-C) and high density lipoprotein (HDL) subpopulations and the contribution of HT-related changes in these lipoproteins to the progression of coronary heart disease (CHD) were examined in 256 postmen...

  4. Interleukin-10 Deficiency Increases Atherosclerosis, Thrombosis, and Low-density Lipoproteins in Apolipoprotein E Knockout Mice

    PubMed Central

    Caligiuri, Giuseppina; Rudling, Mats; Ollivier, Véronique; Jacob, Marie-Paule; Michel, Jean-Baptiste; Hansson, Göran K; Nicoletti, Antonino

    2003-01-01

    Interleukin (IL)-10 is an anti-inflammatory cytokine that may play a protective role in atherosclerosis. The aim of this study was to assess the effect of IL-10 deficiency in the apolipoprotein E knockout mouse. Apolipoprotein E deficient (E−/−) and IL-10 deficient (−/−) mice were crossed to generate E−/− × IL-10−/− double knockout mice. By 16 wk, cholesterol and triglycerides were similar in double and single knockouts but the lack of IL-10 led to increased low-density lipoprotein cholesterol whereas very-low-density lipoprotein was reduced. In parallel, T-helper 1 responses and lesion size were dramatically increased in double knockout compared with E−/− controls. At 48 wk, matrix metalloproteinases and tissue factor activities were increased in lesions of double-knockout mice. Furthermore, markers of systemic coagulation were increased, and vascular thrombosis in response to i.v. thrombin occurred more frequently in E−/− × IL-10−/− than in E−/− mice. Our findings suggest that IL-10 deficiency plays a deleterious role in atherosclerosis. The early phase of lesion development was increased, and the proteolytic and procoagulant activity was elevated in advanced lesions. These data show that IL-10 may reduce atherogenesis and improve the stability of plaques. PMID:12765335

  5. Thinking beyond low-density lipoprotein cholesterol: strategies to further reduce cardiovascular risk.

    PubMed

    Sharma, Rakesh K; Singh, Vibhuti N; Reddy, Hanumanth K

    2009-01-01

    Several large statin trials and meta-analyses have demonstrated a reduction in low-density lipoprotein cholesterol (LDL-C) and cardiovascular morbidity and mortality. Some trials have also highlighted the significance of residual cardiovascular risk after treatment of LDL-C to target levels. This reflects the complex nature of residual cardiovascular risk. This residual risk is partially due to low HDL-C and high triglycerides (TG) despite achievement of LDL goals with statin therapy. The NCEP ATP III guidelines reported that low HDL-C is a significant and an independent risk factor for coronary heart disease (CHD) and is inversely related to CHD. Epidemiologic studies have also shown a similar inverse relationship of HDL-C with CHD. High-density lipoprotein cholesterol (HDL-C) may directly participate in the anti-atherogenic process by promoting efflux of cholesterol of the foam cells of atherogenic lesions. Many studies have demonstrated multiple anti-atherogenic actions of HDL-C and its role in promoting efflux of cholesterol from the foam cells. The residual risk by increased TG with or without low HDL-C can be assessed by calculating non-HDL-C and a reduction in TG results in decreased CHD. PMID:19812691

  6. Linkage between cholesterol 7alpha-hydroxylase and high plasma low-density lipoprotein cholesterol concentrations.

    PubMed Central

    Wang, J; Freeman, D J; Grundy, S M; Levine, D M; Guerra, R; Cohen, J C

    1998-01-01

    Interindividual differences in plasma low-density lipoprotein cholesterol (LDL-C) levels reflect both environmental variation and genetic polymorphism, but the specific genes involved and their relative contributions to the variance in LDL-C are not known. In this study we investigated the relationship between plasma LDL-C concentrations and three genes with pivotal roles in LDL metabolism: the low-density lipoprotein receptor (LDLR), apolipoprotein B (APOB), and cholesterol 7alpha-hydroxylase (CYP7). Analysis of 150 nuclear families indicated statistically significant linkage between plasma LDL-C concentrations and CYP7, but not LDLR or APOB. Further sibling pair analyses using individuals with high plasma LDL-C concentrations as probands indicated that the CYP7 locus was linked to high plasma LDL-C, but not to low plasma LDL-C concentrations. This finding was replicated in an independent sample. DNA sequencing revealed two linked polymorphisms in the 5' flanking region of CYP7. The allele defined by these polymorphisms was associated with increased plasma LDL-C concentrations, both in sibling pairs and in unrelated individuals. Taken together, these findings indicate that polymorphism in CYP7 contributes to heritable variation in plasma LDL-C concentrations. Common polymorphisms in LDLR and APOB account for little of the heritable variation in plasma LDL-C concentrations in the general population. PMID:9502769

  7. Targeting PCSK9 as a promising new mechanism for lowering low-density lipoprotein cholesterol.

    PubMed

    Della Badia, Laura A; Elshourbagy, Nabil A; Mousa, Shaker A

    2016-08-01

    Statins and other lipid-lowering drugs have dominated the market for many years for achievement of recommended levels of low-density lipoprotein cholesterol (LDL-C). However, a substantial number of high-risk patients are unable to achieve the LDL-C goal. Proprotein convertase subtilisin/kexin 9 (PCSK9) has recently emerged as a new, promising key therapeutic target for hypercholesterolemia. PCSK9 is a protease involved in chaperoning the low-density lipoprotein receptor to the process of degradation. PCSK9 inhibitors and statins effectively lower LDL-C. The PCSK9 inhibitors decrease the degradation of the LDL receptors, whereas statins mainly interfere with the synthetic machinery of cholesterol by inhibiting the key rate limiting enzyme, the HMG CoA reductase. PCSK9 inhibitors are currently being developed as monoclonal antibodies for their primary use in lowering LDL-C. They may be especially useful for patients with homozygous familial hypercholesterolemia, who at present receive minimal benefit from traditional statin therapy. The monoclonal antibody PCSK9 inhibitors, recently granted FDA approval, show the most promising safety and efficacy profile compared to other, newer LDL-C lowering therapies. This review will primarily focus on the safety and efficacy of monoclonal antibody PCSK9 inhibitors in comparison to statins. The review will also address new, alternative PCSK9 targeting drug classes such as small molecules, gene silencing agents, apolipoprotein B antisense oligonucleotides, and microsomal triglyceride transfer protein inhibitors.

  8. Targeting PCSK9 as a promising new mechanism for lowering low-density lipoprotein cholesterol.

    PubMed

    Della Badia, Laura A; Elshourbagy, Nabil A; Mousa, Shaker A

    2016-08-01

    Statins and other lipid-lowering drugs have dominated the market for many years for achievement of recommended levels of low-density lipoprotein cholesterol (LDL-C). However, a substantial number of high-risk patients are unable to achieve the LDL-C goal. Proprotein convertase subtilisin/kexin 9 (PCSK9) has recently emerged as a new, promising key therapeutic target for hypercholesterolemia. PCSK9 is a protease involved in chaperoning the low-density lipoprotein receptor to the process of degradation. PCSK9 inhibitors and statins effectively lower LDL-C. The PCSK9 inhibitors decrease the degradation of the LDL receptors, whereas statins mainly interfere with the synthetic machinery of cholesterol by inhibiting the key rate limiting enzyme, the HMG CoA reductase. PCSK9 inhibitors are currently being developed as monoclonal antibodies for their primary use in lowering LDL-C. They may be especially useful for patients with homozygous familial hypercholesterolemia, who at present receive minimal benefit from traditional statin therapy. The monoclonal antibody PCSK9 inhibitors, recently granted FDA approval, show the most promising safety and efficacy profile compared to other, newer LDL-C lowering therapies. This review will primarily focus on the safety and efficacy of monoclonal antibody PCSK9 inhibitors in comparison to statins. The review will also address new, alternative PCSK9 targeting drug classes such as small molecules, gene silencing agents, apolipoprotein B antisense oligonucleotides, and microsomal triglyceride transfer protein inhibitors. PMID:27133571

  9. Uptake and processing of remnants of chylomicrons and very low density lipoproteins by rat liver

    SciTech Connect

    Jones, A.L.; Hradek, G.T.; Hornick, C.; Renaud, G.; Windler, E.E.; Havel, R.J.

    1984-11-01

    In the rat, chylomicron remnants and very low density lipoprotein (VLDL) remnants are taken up into the liver by high affinity processes and appear to undergo degradation by lysosomes. The relationship of this catabolic process to the known pathways of uptake and degradation of low density lipoproteins (LDL) and the involvement of nonparenchymal cells are addressed in these studies. The authors have utilized both light and electron microscopic radioautography to determine whether the pathway of intracellular transport and catabolism resembles that established for LDL in hepatocytes. Radioiodinated plasma VLDL remnants and lymph chylomicron remnants were injected into femoral veins of rats and the livers were fixed by perfusion 3 to 30 minutes later. Quantitative light microscopic radioautography showed little or no accumulation of grains over Kupffer cells. Electromicroscopic radioautography confirmed these observations and, in addition, demonstrated that very few grains were associated with endothelial cells. The processing of the remnant particles closely resembled that of LDL. Following an initial association of grains with the parenchymal cell plasma membrane, frequently in regions in close proximity to clathrin-coated endocytic pits, the grains were found in endocytic vesicles just beneath the plasma membrane. By 15 minutes the grains were found over multivesicular bodies located in the Golgi-lysosome region of the cell. Thirty minutes after injection, radioautographic grains began to be associated with secondary lysosomes.

  10. Effect of apolipoprotein E-free high density lipoproteins on cholesterol metabolism in cultured pig hepatocytes

    SciTech Connect

    Bachorik, P.S.; Virgil, D.G.; Kwiterovich, P.O. Jr.

    1987-10-05

    We studied cholesterol synthesis from (/sup 14/C)acetate, cholesterol esterification from (/sup 14/C)oleate, and cellular cholesterol and cholesteryl ester levels after incubating cells with apoE-free high density lipoproteins (HDL) or low density lipoproteins (LDL). LDL suppressed synthesis by up to 60%, stimulated esterification by up to 280%, and increased cell cholesteryl ester content about 4-fold. Esterification increased within 2 h, but synthesis was not suppressed until after 6 h. ApoE-free HDL suppressed esterification by about 50% within 2 h. Cholesterol synthesis was changed very little within 6 h, unless esterification was maximally suppressed; synthesis was then stimulated about 4-fold. HDL lowered cellular unesterified cholesterol by 13-20% within 2 h and promoted the removal of newly synthesized cholesterol and cholesteryl esters. These changes were transient; by 24 h, both esterification and cellular unesterified cholesterol returned to control levels, and cholesteryl esters increased 2-3-fold. HDL core lipid was taken up selectively from /sup 125/I-labeled (/sup 3/H)cholesteryl ester- and ether-labeled HDL. LDL core lipid uptake was proportional to LDL apoprotein uptake. The findings suggest that 1) the cells respond initially to HDL or LDL with changes in esterification, and 2) HDL mediates both the removal of free cholesterol from the cell and the delivery of HDL cholesteryl esters to the cell.

  11. Lowering low-density lipoprotein cholesterol levels in patients with type 2 diabetes mellitus

    PubMed Central

    Bays, Harold E

    2014-01-01

    Type 2 diabetes mellitus (T2DM) is characterized by hyperglycemia, insulin resistance, and/or progressive loss of β-cell function. T2DM patients are at increased risk of micro- and macrovascular disease, and are often considered as representing an atherosclerotic coronary heart disease (CHD) risk equivalent. Interventions directed at glucose and lipid level control in T2DM patients may reduce micro- and macrovascular disease. The optimal T2DM agent is one that lowers glucose levels with limited risk for hypoglycemia, and with no clinical trial evidence of worsening CHD risk. Lipid-altering drugs should preferably reduce low-density lipoprotein cholesterol and apolipoprotein B (apo B) and have evidence that the mechanism of action reduces CHD risk. Statins reduce low-density lipoprotein cholesterol and apo B and have evidence of improving CHD outcomes, and are thus first-line therapy for the treatment of hypercholesterolemia. In patients who do not achieve optimal lipid levels with statin therapy, or who are intolerant to statin therapy, add-on therapy or alternative therapies may be indicated. Additional available agents to treat hypercholesterolemic patients with T2DM include bile acid sequestrants, fibrates, niacin, and ezetimibe. This review discusses the use of these alternative agents to treat hypercholesterolemia in patients with T2DM, either as monotherapy or in combination with statin therapy. PMID:25045281

  12. N-Succinyl-chitosan nanoparticles coupled with low-density lipoprotein for targeted osthole-loaded delivery to low-density lipoprotein receptor-rich tumors

    PubMed Central

    Zhang, Chun-ge; Zhu, Qiao-ling; Zhou, Yi; Liu, Yang; Chen, Wei-liang; Yuan, Zhi-Qiang; Yang, Shu-di; Zhou, Xiao-feng; Zhu, Ai-jun; Zhang, Xue-nong; Jin, Yong

    2014-01-01

    N-Succinyl-chitosan (NSC) was synthesized and NSC nanoparticles (NPs) with loaded osthole (Ost) (Ost/NSC-NPs) were prepared by emulsion solvent diffusion. Subsequently, low-density lipoprotein (LDL)-mediated NSC-NPs with loaded Ost (Ost/LDL-NSC-NPs) were obtained by coupling LDL with Ost/NSC-NPs through amide linkage. The average particle size of Ost/NSC-NPs was approximately 145 nm, the entrapment efficiency was 78.28%±2.06%, and the drug-loading amount was 18.09%±0.17%. The release of Ost from Ost/NSC-NPs in vitro showed a more evident sustained effect than the native material. The half maximal inhibitory concentration of Ost/LDL-NSC-NPs was only 16.23% that of the free Ost at 24 hours in HepG2 cells. Ost inhibited HepG2 cell proliferation by arresting cells in the synthesis phase of the cell cycle and by triggering apoptosis. Cellular uptake and subcellular localization in vitro and near-infrared fluorescence real-time imaging in vivo showed that Ost/LDL-NSC-NPs had high targeting efficacy. Therefore, LDL-NSC-NPs are a promising system for targeted Ost delivery to liver tumor. PMID:24966673

  13. Oxidized low density lipoprotein receptor-1 mediates oxidized low density lipoprotein-induced apoptosis in human umbilical vein endothelial cells: role of reactive oxygen species.

    PubMed

    Chen, Xiu-ping; Xun, Ke-li; Wu, Qin; Zhang, Tian-tai; Shi, Jing-shan; Du, Guan-hua

    2007-07-01

    Studies have shown that oxidized low density lipoprotein (ox-LDL) elicits both necrotic and apoptotic cell death and several mechanisms have been proposed. Ox-LDL induces reactive oxygen species (ROS), a second messenger that might be involved in apoptosis, formation in different types of cells including endothelial cells (ECs) and smooth muscle cells (SMCs). As lectin-like ox-LDL receptor-1 (LOX-1) was the main receptor for ox-LDL, this study was designed to determine whether the apoptosis induced by ox-LDL was mediated by LOX-1 in cultured human umbilical vein endothelial cells (HUVECs) and whether there is an association between LOX-1 mediated apoptosis and the production of ROS. After exposure to ox-LDL (50,100, and 150 microg/ml for 18 h), HUVECs exhibit typical apoptotic characteristics as determined by transmission electron microscopy and flow cytometry analysis in a dose-dependent pattern. Ox-LDL increases intracellular ROS formation including superoxide anion (O2-) and hydrogen peroxide (H2O2) in a dose-dependent and time-dependent manner. Pretreatment with anti-LOX-1 mAb, Vitamin C, apocynin or catalase significantly reduced ROS production and prevented ox-LDL-induced apoptosis, while indomethacin or allopurinol had no effect. These results suggest that LOX-1 mediates ox-LDL-induced apoptosis in endothelial cells and that ROS production and NADPH oxidase might play an important role in ox-LDL-induced apoptosis.

  14. Pleiotropic effects on subclasses of HDL, adiposity and glucose metabolism in adult Alaskan Eskimos

    PubMed Central

    Tejero, ME; Voruganti, VS; Cai, G; Cole, SA; Laston, S; Wenger, CR; MacCluer, JW; Dyke, B; Devereux, R; Ebbesson, SO; Fabsitz, RR; Howard, BV; Comuzzie, AG

    2012-01-01

    The aim of the present study was to analyze the heritability and the presence of pleiotropic effects on subfractions of high density lipoproteins (HDLs) as measured by nuclear magnetic resonance (NMR), parameters for adiposity and glucose metabolism in adult Alaskan Eskimos. The present family study included 1214 adult Alaskan Eskimos (537 male/677 female). Body weight, height, circumferences, selected skinfolds and blood pressure were measured in all participants. Blood samples were collected under fasting conditions for isolation of plasma. Glucose, insulin, subclasses and size of lipoproteins, triglycerides, total and HDL cholesterol and lipoprotein (a) were measured in plasma. HbA1c was measured in total blood. Univariate and bivariate quantitative genetic analyses were conducted between HDL subclasses and size and the anthropometric and biochemical measures using the variance decomposition approach. Variation in all the analyzed traits exhibits a significant genetic component. Heritabilities ranged between 0.18 ± 0.11 for LDL2 (intermediate) to 0.89 ± 0.07 for small HDL. No common genetic effects were found on the HDL subclasses (small, intermediate and large). Small HDL particles were genetically correlated with LDL particles and HbA1c. Negative genetic correlations were observed between intermediate and large HDL subfractions and HDL size and measures of adiposity, LDL and parameters for glucose metabolism (HbA1, insulin). These observations confirm the presence of possible pleiotropic effects on HDL, adiposity and cardiovascular risk factors and provide novel insight on the relationship between HDL subclasses, adiposity and glucose regulation. PMID:19950191

  15. Genetic risk scores associated with baseline lipoprotein subfraction concentrations do not associate with their responses to fenofibrate

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Lipoprotein subclass concentrations are modifiable markers of cardiovascular disease risk. Fenofibrate is known to show beneficial effects on lipoprotein subclasses, but little is known about the role of genetics in mediating the responses of lipoprotein subclasses to fenofibrate. A recent genomewid...

  16. Effects of maximal doses of atorvastatin versus rosuvastatin on small dense low-density lipoprotein cholesterol levels

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Maximal doses of atorvastatin and rosuvastatin are highly effective in lowering low-density lipoprotein (LDL) cholesterol and triglyceride levels; however, rosuvastatin has been shown to be significantly more effective than atorvastatin in lowering LDL cholesterol and in increasing high-density lipo...

  17. Structural Insights into High Density Lipoprotein: Old Models and New Facts

    PubMed Central

    Gogonea, Valentin

    2016-01-01

    The physiological link between circulating high density lipoprotein (HDL) levels and cardiovascular disease is well-documented, albeit its intricacies are not well-understood. An improved appreciation of HDL function and overall role in vascular health and disease requires at its foundation a better understanding of the lipoprotein's molecular structure, its formation, and its process of maturation through interactions with various plasma enzymes and cell receptors that intervene along the pathway of reverse cholesterol transport. This review focuses on summarizing recent developments in the field of lipid free apoA-I and HDL structure, with emphasis on new insights revealed by newly published nascent and spherical HDL models constructed by combining low resolution structures obtained from small angle neutron scattering (SANS) with contrast variation and geometrical constraints derived from hydrogen–deuterium exchange (HDX), crosslinking mass spectrometry, electron microscopy, Förster resonance energy transfer, and electron spin resonance. Recently published low resolution structures of nascent and spherical HDL obtained from SANS with contrast variation and isotopic labeling of apolipoprotein A-I (apoA-I) will be critically reviewed and discussed in terms of how they accommodate existing biophysical structural data from alternative approaches. The new low resolution structures revealed and also provided some answers to long standing questions concerning lipid organization and particle maturation of lipoproteins. The review will discuss the merits of newly proposed SANS based all atom models for nascent and spherical HDL, and compare them with accepted models. Finally, naturally occurring and bioengineered mutations in apoA-I, and their impact on HDL phenotype, are reviewed and discuss together with new therapeutics employed for restoring HDL function. PMID:26793109

  18. [Cholesterol bound to high density lipoproteins: critical review of the methods of analysis and personal data].

    PubMed

    Orso Giacone, G

    1982-01-01

    It is widely known that atherosclerosis through its complication, i.e. heart and brain infarction, is at the present the main cause of death. The atherosclerotic process has been shown in correlation with hyperlipemia especially as far as the plasma lipoprotein cholesterol level is concerned. A preminent role in removing cholesterol from tissues and arterial walls then in preventing atherosclerosis is played by a specific class of plasma lipoproteins, the high density lipoproteins (HDL). Since the HDL-colesterol level seems to have an inverse correlation with the atherosclerotic disease it is of primary importance to define a reliable and reproducible technique to measure it. One of the aims of this paper was to examine the different methods now available for such a determination. This analysis has underlined the discrepancy among the reference values reported in the literature. However, all the authors agree that only the simultaneous measurement of total and HDL-colesterol levels is of prognostic value. Personal studies are here reported on the relationship between total and HDL-colesterol levels and risk factor of cardiovascular diseases. The two mentioned laboratory analyses have been performed on blood samples from 250 between male and female human subjects of different age. The obtained results show that the highest HDL-colesterol concentrations determined by a lipoprotein precipitation procedure with dextran sulphate, are typical in the first ten years of life both in male and in female, while the lowest levels of plasma HDL-cholesterol have been evintiated during the fifth decade of life, when the total cholesterol and the risk of cardiovascular complications rich the highest values. In a following set of investigations, the already examined blood parameters together with the risk factor values have been examined in two groups of subjects, the first one represented by adult healthy persons the second one by patients of similar age from a cardiovascular

  19. [Cholesterol bound to high density lipoproteins: critical review of the methods of analysis and personal data].

    PubMed

    Orso Giacone, G

    1982-01-01

    It is widely known that atherosclerosis through its complication, i.e. heart and brain infarction, is at the present the main cause of death. The atherosclerotic process has been shown in correlation with hyperlipemia especially as far as the plasma lipoprotein cholesterol level is concerned. A preminent role in removing cholesterol from tissues and arterial walls then in preventing atherosclerosis is played by a specific class of plasma lipoproteins, the high density lipoproteins (HDL). Since the HDL-colesterol level seems to have an inverse correlation with the atherosclerotic disease it is of primary importance to define a reliable and reproducible technique to measure it. One of the aims of this paper was to examine the different methods now available for such a determination. This analysis has underlined the discrepancy among the reference values reported in the literature. However, all the authors agree that only the simultaneous measurement of total and HDL-colesterol levels is of prognostic value. Personal studies are here reported on the relationship between total and HDL-colesterol levels and risk factor of cardiovascular diseases. The two mentioned laboratory analyses have been performed on blood samples from 250 between male and female human subjects of different age. The obtained results show that the highest HDL-colesterol concentrations determined by a lipoprotein precipitation procedure with dextran sulphate, are typical in the first ten years of life both in male and in female, while the lowest levels of plasma HDL-cholesterol have been evintiated during the fifth decade of life, when the total cholesterol and the risk of cardiovascular complications rich the highest values. In a following set of investigations, the already examined blood parameters together with the risk factor values have been examined in two groups of subjects, the first one represented by adult healthy persons the second one by patients of similar age from a cardiovascular

  20. The effects of physical exercise on plasma prebeta-1 high-density lipoprotein.

    PubMed

    Jafari, Mahtab; Leaf, David Alexander; Macrae, Holden; Kasem, Julie; O'conner, Patricia; Pullinger, Clive; Malloy, Marry; Kane, John P

    2003-04-01

    The impact of physical exercise on high-density lipoprotein (HDL) metabolism is recognized as a major mechanism of coronary artery disease (CAD) risk reduction. Prebeta-1 HDL subparticle species play a pivotal role in initiating reverse cholesterol transport (RCT). We examined the effect of acute physical exercise on plasma prebeta-1 HDL levels. Nineteen nonsmoking, healthy men (n = 11) and women (n = 8) not receiving lipid-altering medications completed dietary surveys, and had percent body fat determinations, and fasting blood drawn for measurements of plasma lipids, lipoproteins, apolipoprotein A-I (Apo A-I), and absolute and percent prebeta-1 HDL. Each subject completed cardiopulmonary exercise stress testing to Vo(2max) followed by a 4-km course of run-jogging. Laboratory measurements were repeated from blood drawn immediately after exercise. Mean +/- SD values were determined for age, percent body fat, dietary calories, dietary cholesterol, dietary fat, and plasma lipids, lipoproteins, Apo A-I, and absolute and percent prebeta-1 HDL using 1-way analysis of variance (ANOVA). One-way ANOVA comparisons were made for measurements of plasma lipids, lipoproteins, Apo A-I, and absolute and percent prebeta HDL measurements taken before and after exercise for all subjects combined. Entry characteristics showed the following (mean +/-SD): age, 24 +/- 5.8 years; body mass index (BMI), 22.4 +/- 2.6; percent body fat, 13 +/- 5.7; and Vo(2max), 49.1 +/- 7.9 mL O(2)/kg/min. Exercise significantly increased absolute plasma prebeta HDL (0.10 +/- 0.05 to 0.130 +/- 0.07 microg/mL, P =.039) and decreased plasma HDL-triglycerides (23.3 +/- 10.8 to 12.5 +/- 5.6 mg/dL, P =.012). Our findings indicate that prebeta-1 HDL and HDL-triglyceride metabolism are significant components of the effect of acute exercise on RCT. These findings have important relevance for studies pertaining to exercise-related effects on HDL metabolism as pertains to CAD risk reduction. PMID:12701055

  1. High density lipoprotein-based contrast agents for multimodal imaging of atherosclerosis

    PubMed Central

    Skajaa, Torjus; Cormode, David P.; Falk, Erling; Mulder, Willem J. M.

    2010-01-01

    Lipoproteins, natural nanoparticles, have a well-recognized biological role and are highly suitable as a platform for delivering imaging agents. The ease with which both the exterior and interior of the particles can be modified permits the creation of multifunctional nanoparticles for imaging as well as the delivery of therapeutics. Importantly, their endogenous nature may make them biocompatible, biodegradable and allows them to avoid the recognition of the reticuloendothelial system. In particular, high density lipoproteins (HDL) are of interest, because of their small size they can easily cross the endothelium and penetrate the underlying tissue. We summarize here the progress in establishing HDL as a vector for delivering a variety of diagnostically active materials to vulnerable atherosclerotic plaques in mouse models of atherosclerosis. By loading various types of image-enhancing compounds into either the core or surface of HDL, they can be visualized by different imaging modalities (MRI, CT, optical). By re-routing of HDL away from plaque macrophages, imaging of biological processes in diseases besides atherosclerosis may also be achieved. PMID:19815819

  2. Protective effect of oleanolic acid on oxidized-low density lipoprotein induced endothelial cell apoptosis.

    PubMed

    Cao, Jianhua; Li, Guanghui; Wang, Meizhi; Li, Hui; Han, Zhiwu

    2015-10-01

    Oleanolic acid (3β-hydroxyolean-12-en-28-oic acid, OA) is a naturally-occurring triterpenoid with various promising pharmacological properties. The present study was conducted to determine the protective effects of OA against oxidized low-density lipoprotein (ox-LDL) induced endothelial cell apoptosis and the possible underlying mechanisms. Our results showed that ox-LDL significantly decreased cell viability and induced apoptosis in human umbilical vein endothelial cells (HUVECs). OA in the co-treatment showed a protective effect against ox-LDL induced loss in cell viability and an increase in apoptosis, which was associated with the modulating effect of OA on ox-LDL induced hypoxia-inducible factor 1α(HIF-1α) expression. Moreover, our results showed that the modulating effect of OA against ox-LDL induced HIF-1α expression was obtained via inhibition of lipoprotein receptor 1 (LOX-1)/reactive oxygen species (ROS) signaling. Collectively, we suggested that the protective effect of OA against ox-LDL induced HUVEC apoptosis might, at least in part, be obtained via inhibition of the LOX-1/ROS/HIF-1α signaling pathway. PMID:26559024

  3. Optical Characterization of Europium Tetracycline Complex in the presence of Low Density Lipoprotein and its Applications

    NASA Astrophysics Data System (ADS)

    de Oliveira Silva, Flávia Rodrigues; Monteiro, Andrea Moreira; Neto, Antônio M. Figueiredo; Gidlund, Magnus A.; Gomes, Laércio; Junior, Nilson Dias Vieira; Courrol, Lilia Coronato

    2008-04-01

    Development of native Low Density Lipoprotein (LDL) biosensors is of great importance in clinical analysis because the LDL concentration, which is the main carrier of cholesterol, in the plasma, is a fundamental parameter for the prevention and diagnosis of a number of clinical disorders such as heart disease, hypertension and atherosclerosis. The optical properties of the Europium-Tetracycline Complex (EuTc) were investigated for the solutions containing LDL in their compositions. In this paper we show an enhancement in the europium luminescence of EuTc complex in the presence of LDL. The time-resolved fluorescence spectroscopy experimental results of the pure EuTc sample and samples with LDL (EuTc:LDL) reveal an increase in the europium emission lifetime in the lipoprotein-doped samples with respect to the pure EuTc sample. A calibration curve, reasonably well described by a linear function between 0 and 3 mg/mL of LDL, was obtained. The obtained limit of detection was 0.23 mg/mL. Sixteen blood plasma samples all of them contend approximately 90 mg/dL of LDL were studied and the LDL concentrations were calculated with our method. The average LDL concentration obtained was 94 mg/dL. The results show that the EuTc complex can be used as a sensor to determine LDL with fast response, compact design, and reproducible results.

  4. Protective effect of oleanolic acid on oxidized-low density lipoprotein induced endothelial cell apoptosis.

    PubMed

    Cao, Jianhua; Li, Guanghui; Wang, Meizhi; Li, Hui; Han, Zhiwu

    2015-10-01

    Oleanolic acid (3β-hydroxyolean-12-en-28-oic acid, OA) is a naturally-occurring triterpenoid with various promising pharmacological properties. The present study was conducted to determine the protective effects of OA against oxidized low-density lipoprotein (ox-LDL) induced endothelial cell apoptosis and the possible underlying mechanisms. Our results showed that ox-LDL significantly decreased cell viability and induced apoptosis in human umbilical vein endothelial cells (HUVECs). OA in the co-treatment showed a protective effect against ox-LDL induced loss in cell viability and an increase in apoptosis, which was associated with the modulating effect of OA on ox-LDL induced hypoxia-inducible factor 1α(HIF-1α) expression. Moreover, our results showed that the modulating effect of OA against ox-LDL induced HIF-1α expression was obtained via inhibition of lipoprotein receptor 1 (LOX-1)/reactive oxygen species (ROS) signaling. Collectively, we suggested that the protective effect of OA against ox-LDL induced HUVEC apoptosis might, at least in part, be obtained via inhibition of the LOX-1/ROS/HIF-1α signaling pathway.

  5. Translation of two aggregated low-density lipoproteins within blood plasma: a mathematical model.

    PubMed

    Hadjinicolaou, Maria; Protopapas, Eleftherios

    2015-01-01

    Arteriosclerosis is a disease in which the artery walls get thicker and harder. Atherosclerosis is a specific form of arteriosclerosis which allows less blood to travel through the artery and increases blood pressure. Low-density lipoproteins (LDLs) and their ability to aggregate are important in atherosclerosis. In the present study we develop a mathematical model that describes the translation of two aggregated LDSs through blood plasma. We model the two aggregated LDLs as an inverted oblate spheroid and the flow as a creeping steady incompressible axisymmetric one. The mathematical tools that we used are the Kelvin inversion and the semi-separation of variables in the spheroidal coordinate systems. The stream function is given as a series expansion of even order terms of combinations of Gegenbauer functions of angular and radial dependence. The analytical solution is expected to give insight into the study of the various chemical precipitation methods used for the precipitation of lipoproteins, as this is the first step for the measurement of their concentration within blood plasma. PMID:25417024

  6. Dysfunctional High-Density Lipoprotein: An Innovative Target for Proteomics and Lipidomics

    PubMed Central

    Salazar, Juan; Olivar, Luis Carlos; Ramos, Eduardo; Chávez-Castillo, Mervin; Rojas, Joselyn; Bermúdez, Valmore

    2015-01-01

    High-Density Lipoprotein-Cholesterol (HDL-C) is regarded as an important protective factor against cardiovascular disease, with abundant evidence of an inverse relationship between its serum levels and risk of cardiovascular disease, as well as various antiatherogenic, antioxidant, and anti-inflammatory properties. Nevertheless, observations of hereditary syndromes featuring scant HDL-C concentration in absence of premature atherosclerotic disease suggest HDL-C levels may not be the best predictor of cardiovascular disease. Indeed, the beneficial effects of HDL may not depend solely on their concentration, but also on their quality. Distinct subfractions of this lipoprotein appear to be constituted by specific protein-lipid conglomerates necessary for different physiologic and pathophysiologic functions. However, in a chronic inflammatory microenvironment, diverse components of the HDL proteome and lipid core suffer alterations, which propel a shift towards a dysfunctional state, where HDL-C becomes proatherogenic, prooxidant, and proinflammatory. This heterogeneity highlights the need for further specialized molecular studies in this aspect, in order to achieve a better understanding of this dysfunctional state; with an emphasis on the potential role for proteomics and lipidomics as valuable methods in the search of novel therapeutic approaches for cardiovascular disease. PMID:26634153

  7. High-Density Lipoprotein Binds to Mycobacterium avium and Affects the Infection of THP-1 Macrophages

    PubMed Central

    Ichimura, Naoya; Sato, Megumi; Yoshimoto, Akira; Yano, Kouji; Ohkawa, Ryunosuke; Kasama, Takeshi

    2016-01-01

    High-density lipoprotein (HDL) is involved in innate immunity toward various infectious diseases. Concerning bacteria, HDL is known to bind to lipopolysaccharide (LPS) and to neutralize its physiological activity. On the other hand, cholesterol is known to play an important role in mycobacterial entry into host cells and in survival in the intracellular environment. However, the pathogenicity of Mycobacterium avium (M. avium) infection, which tends to increase worldwide, remains poorly studied. Here we report that HDL indicated a stronger interaction with M. avium than that with other Gram-negative bacteria containing abundant LPS. A binding of apolipoprotein (apo) A-I, the main protein component of HDL, with a specific lipid of M. avium might participate in this interaction. HDL did not have a direct bactericidal activity toward M. avium but attenuated the engulfment of M. avium by THP-1 macrophages. HDL also did not affect bacterial killing after ingestion of live M. avium by THP-1 macrophage. Furthermore, HDL strongly promoted the formation of lipid droplets in M. avium-infected THP-1 macrophages. These observations provide new insights into the relationship between M. avium infection and host lipoproteins, especially HDL. Thus, HDL may help M. avium to escape from host innate immunity. PMID:27516907

  8. High density lipoproteins: Measurement techniques and potential biomarkers of cardiovascular risk

    PubMed Central

    Hafiane, Anouar; Genest, Jacques

    2015-01-01

    Plasma high density lipoprotein cholesterol (HDL) comprises a heterogeneous family of lipoprotein species, differing in surface charge, size and lipid and protein compositions. While HDL cholesterol (C) mass is a strong, graded and coherent biomarker of cardiovascular risk, genetic and clinical trial data suggest that the simple measurement of HDL-C may not be causal in preventing atherosclerosis nor reflect HDL functionality. Indeed, the measurement of HDL-C may be a biomarker of cardiovascular health. To assess the issue of HDL function as a potential therapeutic target, robust and simple analytical methods are required. The complex pleiotropic effects of HDL make the development of a single measurement challenging. Development of laboratory assays that accurately HDL function must be developed validated and brought to high-throughput for clinical purposes. This review discusses the limitations of current laboratory technologies for methods that separate and quantify HDL and potential application to predict CVD, with an emphasis on emergent approaches as potential biomarkers in clinical practice. PMID:26674734

  9. Effect of chronic renal failure on high-density lipoprotein kinetics

    SciTech Connect

    Fuh, M.M.; Lee, C.M.; Jeng, C.Y.; Shen, D.C.; Shieh, S.M.; Reaven, G.M.; Chen, Y.D. )

    1990-05-01

    Plasma lipid and lipoprotein concentration and high density lipoprotein (HDL) kinetics were determined in control subjects and patients with chronic renal failure (CRF). Results demonstrated that plasma triglyceride (TG) concentration was significantly higher (P less than 0.001) in patients with CRF, associated with a significant increase in plasma VLDL-cholesterol (P less than 0.002) and a significant decrease (P less than 0.05) in plasma HDL-cholesterol concentration. The rate of removal of {sup 125}I-apoAI/HDL from plasma was slower (P less than 0.001) in the patients with CRF, resulting in an increase in the residence time of {sup 125}I-apoAI/HDL (P less than 0.001) and a decrease in the fractional catabolic rate (P less than 0.001). Since plasma apoAI concentration was lower in patients with CRF, total apoAI/HDL synthetic rate was also significantly (P less than 0.05) decreased. These data provide support for the view that low plasma HDL-cholesterol concentrations in patients with CRF are related to decreases in the synthetic rate of apoAI/HDL.

  10. High density lipoproteins: Measurement techniques and potential biomarkers of cardiovascular risk.

    PubMed

    Hafiane, Anouar; Genest, Jacques

    2015-06-01

    Plasma high density lipoprotein cholesterol (HDL) comprises a heterogeneous family of lipoprotein species, differing in surface charge, size and lipid and protein compositions. While HDL cholesterol (C) mass is a strong, graded and coherent biomarker of cardiovascular risk, genetic and clinical trial data suggest that the simple measurement of HDL-C may not be causal in preventing atherosclerosis nor reflect HDL functionality. Indeed, the measurement of HDL-C may be a biomarker of cardiovascular health. To assess the issue of HDL function as a potential therapeutic target, robust and simple analytical methods are required. The complex pleiotropic effects of HDL make the development of a single measurement challenging. Development of laboratory assays that accurately HDL function must be developed validated and brought to high-throughput for clinical purposes. This review discusses the limitations of current laboratory technologies for methods that separate and quantify HDL and potential application to predict CVD, with an emphasis on emergent approaches as potential biomarkers in clinical practice. PMID:26674734

  11. ANALYSIS OF DRUG INTERACTIONS WITH HIGH DENSITY LIPOPROTEIN BY HIGH-PERFORMANCE AFFINITY CHROMATOGRAPHY

    PubMed Central

    Chen, Sike; Sobansky, Matthew R.; Hage, David S.

    2009-01-01

    Columns containing immobilized lipoproteins were prepared for the analysis of drug interactions with these particles by high-performance affinity chromatography. This approach was evaluated by using it to examine the binding of high density lipoprotein (HDL) to the drugs propranolol or verapamil. HDL was immobilized by the Schiff base method onto silica and gave HPLC columns with reproducible binding to propranolol over four to five days of continuous operation at pH 7.4. Frontal analysis experiments indicated that two types of interactions were occurring between R/S-propranolol and HDL at 37°C: saturable binding with an association equilibrium constant (Ka) of 1.1–1.9 × 105 M−1, and non-saturable binding with an overall affinity constant (n Ka) of 3.7–4.1 × 104 M−1. Similar results were found at 4 and 27°C. Verapamil also gave similar behavior, with a Ka of 6.0 × 104 M−1 at 37°C for the saturable sites and a n Ka value for the non-saturable sites of 2.5 × 104 M−1. These measured affinities gave good agreement with solution-phase values. The results indicated HPAC can be used to study drug interactions with HDL, providing information that should be valuable in obtaining a better description of how drugs are transported within the body. PMID:19833090

  12. Usefulness of High-Density Lipoprotein Cholesterol to Predict Survival in Pulmonary Arterial Hypertension.

    PubMed

    Larsen, Carolyn M; McCully, Robert B; Murphy, Joseph G; Kushwaha, Sudhir S; Frantz, Robert P; Kane, Garvan C

    2016-07-15

    It has been suggested that lipoprotein abnormalities may contribute to the pulmonary arteriolar dysfunction observed in pulmonary arterial hypertension (PAH). High-density lipoprotein cholesterol (HDL) has vasodilatory, anti-inflammatory, and endothelial protective properties. We hypothesized that a higher serum HDL level may be advantageous for survival in PAH and that the serum HDL level at diagnosis would be an independent predictor of survival in PAH and be additive to previously validated predictors of survival. This study included all patients with PAH seen at the Mayo Clinic Pulmonary Hypertension Clinic from January 1, 1995, to December 31, 2009, who had a baseline HDL measurement. Mortality was analyzed over 5 years using the Kaplan-Meier method. Univariate and multivariable Cox proportional hazards ratios were calculated to evaluate the relation between baseline HDL level and survival. HDL levels were available for 227 patients. Higher HDL levels were associated with significantly lower mortality. Patients with an HDL >54 mg/dl at diagnosis had a 5-year survival of 59%. By comparison those with an HDL <34 mg/dl had a 5-year survival of 30%. On multivariate analysis, higher HDL was associated with an age-adjusted risk ratio for death of 0.78 (CI 0.67 to 0.91; p <0.01) per 10 mg/dl increase. In conclusion, HDL was an independent predictor of survival in PAH.

  13. Anionic phospholipids inhibit apolipoprotein E--low-density lipoprotein receptor interactions.

    PubMed

    Yamamoto, Taichi; Ryan, Robert O

    2007-03-16

    Apolipoprotein E (apoE) is a ligand for members of the low-density lipoprotein receptor (LDLR) family. Lipid-free apoE is not recognized by LDLR, yet interaction with lipid confers receptor recognition properties. Although lipid interaction is known to induce a conformational change in apoE, it is not known if the lipid composition of the resulting complex influences binding. Using reconstituted lipoprotein particles of apoE3 N-terminal (NT) domain and dimyristoylphosphatidylcholine (DMPC), maximal LDLR binding was observed at DMPC:apoE3-NT ratios >2.5:1 (w/w). ApoE3-NT lipid particles prepared with egg sphingomyelin were functional as LDLR ligands while complexes formed with the anionic phospholipids dimyristoylphosphatidylglycerol or dimyristoylphosphatidylserine (DMPS) were not. In the case of apoE3-NT, lipid particles comprised of a mixture of DMPC and DMPS, a DMPS concentration dependent inhibition of LDLR binding activity was observed. Thus, in addition to affecting apoE conformational status, the lipid composition of ligand particles can modulate LDLR binding activity.

  14. [Possibility of New Circulating Atherosclerosis-Related Lipid Markers Measurement in Medical and Complete Medical Checkups: Small Dense Low-Density Lipoprotein Cholesterol and Lipoprotein Lipase].

    PubMed

    Sumino, Hiroyuki; Nakajima, Katsuyuki; Murakami, Masami

    2016-03-01

    Small dense low-density lipoprotein cholesterol (sdLDL-C) concentrations correlate more strongly with cardiovascular disease (CVD) than other LDL-C and large LDL particle concentrations. Lipoprotein lipase (LPL) plays a central role in triglyceride-rich lipoprotein metabolism by catalyzing the hydrolysis of triglycerides in chylomicrons and very low-density lipoprotein particles and is a useful biomarker in diagnosing Type I, Type IV, and Type V hyperlipidemia. Therefore, the measurement of circulating sdLDL-C and LPL concentrations contributes to the assessment of circulating atherosclerosis-related lipid markers. However, the measurement of these lipids has not been fully adopted in medical and complete medical checkups. Recently, novel automated homogenous assay for measuring sdLDL-C and latex particle-enhanced turbidimetric immunoassay (LTIA) for measuring LPL have been developed, respectively. Using these new assays, sdLDL-C values showed excellent agreement with those obtained by isolation of the d = 1.044 - 1.063 g/mL plasma fraction by sequential ultracentrifugation, and LPL values measured with and without heparin injection were highly correlated with the values measured by the LPL-enzyme-linked immunosorbent assay (ELISA). These assays may be superior to the previous assays for the measurement of sdLDL-C and LPL concentrations due their simplicity and reproducibility. The measurements of sdLDL-C and LPL concentrations may be useful as lipid markers in the assessment of the development and progression of atherosclerosis and the detection of pathological conditions and diseases if these markers are measured in medical and complete medical checkups. We have introduced the possibility of the novel measurement of circulating atherosclerosis-related lipid markers such as sdLDL-C and LPL in medical and complete medical checkups. Further studies are needed to clarify whether sdLDL-C and LPL concentrations are related to the development and progression of

  15. Magnetic Resonance Imaging Detection of Tumor Cells by Targeting Low-Density Lipoprotein Receptors with Gd-Loaded Low-Density Lipoprotein Particles1

    PubMed Central

    Crich, Simonetta Geninatti; Lanzardo, Stefania; Alberti, Diego; Belfiore, Simona; Ciampa, Anna; Giovenzana, Giovanni B; Lovazzano, Clara; Pagliarin, Roberto; Aime, Silvio

    2007-01-01

    Gd-DO3A-diph and Gd-AAZTAC17 are lipophilic magnetic resonance imaging (MRI) agents that display high affinity for low-density lipoprotein (LDL) particles. However, on binding to LDL, Gd-DO3A-diph shows a decreased hydration that results in a lower enhancement of water proton relaxation rate. Conversely, Gd-AAZTAC17 displays a strong relaxation enhancement at the imaging fields. Each LDL particle can load up to 100 and 400 UNITS of Gd-DO3A-diph and Gd-AAZTAC17, respectively. Their LDL adducts are taken up by human hepatoblastoma G2 (HepG2) and melanoma B16 tumor cells when added to the incubation medium. T1 measurements of the labeled cells indicate that Gd-AAZTAC17 is significantly more efficient than Gd-DO3A-diph. Furthermore, it has been found that HepG2 hepatoma cells can internalize higher amounts of Gd-AAZTAC17 than B16 cells and the involvement of LDL receptors (LDLRs) has been demonstrated in competition assays with free LDL. Gd-AAZTAC17/LDL adduct proved to be an efficient probe in the magnetic resonance (MR) visualization of subcutaneous tumors in animal models obtained by injecting B16 melanoma cells into the right flank of mice. Finally, confocal microscopy validation of the distribution of LDL-based probes in the tumor has been obtained by doping the Gd-AAZTAC17/LDL adduct with a fluorescent phospholipid moiety. PMID:18084612

  16. Atherogenicity of triglyceride-rich lipoproteins.

    PubMed

    Krauss, R M

    1998-02-26

    There is increasing evidence that alterations in metabolism of triglyceride-rich lipoproteins are of importance in the pathogenesis of atherosclerosis and its clinical consequences. Particles with the characteristics of triglyceride-rich lipoprotein remnants have been related to the extent and severity of atherosclerosis in humans and in animal models. These particles can be identified using ultracentrifugal procedures as small, very low-density lipoprotein (VLDL) and intermediate-density lipoprotein (IDL) with Svedberg flotation rates (Sf) of 12-60. Postprandial triglyceride levels also have been related to risk of coronary artery disease, consistent with a pathologic role for remnant lipoproteins. In studies in which measurements of lipoprotein subfractions have been carried out, levels of IDL have been more predictive than low-density lipoprotein (LDL) of atherosclerosis progression as assessed by coronary artery angiography or carotid artery ultrasonography. These findings suggest that a considerable portion of the coronary disease risk attributed to LDL may be accounted for by the IDL particles included in standard LDL measurements. Other metabolic changes associated with increased levels of plasma triglyceride may also adversely affect cardiovascular disease risk. These include reductions in HDL-cholesterol and apoprotein A1, increased levels of small dense LDL particles, redistribution of apoC-III from HDL to apoB-containing lipoproteins, diminished insulin sensitivity, and procoagulant changes, including increased levels of the fibrinolysis inhibitor, plasminogen-activator inhibitor-1 (PAI-1). A predominance of small dense LDL (subclass pattern B) is a discrete marker for this cluster of interrelated abnormalities and is found in 40-50% of patients with coronary artery disease. Therapeutic interventions with favorable effects on components of this dysmetabolic profile appear to be of value in decreasing atherosclerosis risk in a substantial proportion of

  17. High-Density Lipoprotein - A Hero, a Mirage, or a Witness?

    PubMed

    Sviridov, Dmitri

    2014-01-01

    Negative relationship between plasma high-density lipoprotein (HDL) levels and risk of cardiovascular disease (CVD) is a firmly established medical fact, but attempts to reproduce protective properties of HDL by pharmacologically elevating HDL levels were mostly unsuccessful. This conundrum presents a fundamental question: were the approaches used to raise HDL flawed or the protective effects of HDL are an epiphenomenon? Recent attempts to elevate plasma HDL were universally based on reducing HDL catabolism by blocking reverse cholesterol transport (RCT). Here, we argue that this mode of HDL elevation may be mechanistically different to natural mechanisms and thus be counterproductive. We further argue that independently of whether HDL is a driving force or a surrogate measure of the rate of RCT, approaches aimed at increasing HDL supply, rather than reducing its catabolism, would be most beneficial for speeding up RCT and improving protection against CVD. PMID:26664860

  18. Spanish sparkling wines (Cavas) as inhibitors of in vitro human low-density lipoprotein oxidation.

    PubMed

    Satué-Gracia, M T; Andrés-Lacueva, C; Lamuela-Raventós, R M; Frankel, E N

    1999-06-01

    Forty-seven dealcoholized sparkling wines (cava) from the Penedès area in Spain were tested for their antioxidant activity in a low-density lipoprotein system. The effect of different quality-related parameters, such as harvest year or grape variety, was investigated. Twenty-two phenolic compounds were separated by high-performance liquid chromatography and identified by comparing their retention time and their ultraviolet spectra with those of pure standards. When tested at the same total phenol concentration, the antioxidant activity of these white sparkling wines was found to be similar to that reported for red wines. This activity was positively correlated with the total phenolic content, trans-caffeic acid, coumaric acid, protocatechuic acid, and quercetin 3-glucuronide. The wines made of the classic cava wine coupage had superior antioxidant activity compared to those of other cultivars.

  19. Treating low high-density lipoprotein cholesterol: what is the evidence?

    PubMed Central

    Hage, Mirella P.

    2014-01-01

    Epidemiological studies have shown an inverse association between high-density lipoprotein cholesterol (HDL-C) and cardiovascular disease (CVD) risk. However, genetic and interventional studies have failed to consistently support this relationship. There is an increasing body of evidence that the function of HDL, including its antiatherogenic properties and its reverse cholesterol transport activity, has a greater impact on CVD risk compared with levels of HDL alone. Targeting HDL has become a growing interest. Nevertheless, raising HDL pharmacologically has failed to show a considerable, if any, impact on cardiovascular outcome. Efforts should focus on improving HDL quality in addition to raising HDL levels when developing new therapies. Ongoing and future research will help determine the most safe and effective approach to improve cardiovascular outcome and establish the safety, efficacy and impact on atherosclerosis of the emerging HDL-raising therapies. PMID:24696776

  20. High density lipoprotein cholesterol: an evolving target of therapy in the management of cardiovascular disease

    PubMed Central

    Kapur, Navin K; Ashen, Dominique; Blumenthal, Roger S

    2008-01-01

    Since the pioneering work of John Gofman in the 1950s, our understanding of high density lipoprotein cholesterol (HDL-C) and its relationship to coronary heart disease (CHD) has grown substantially. Numerous clinical trials since the Framingham Study in 1977 have demonstrated an inverse relationship between HDL-C and one’s risk of developing CHD. Over the past two decades, preclinical research has gained further insight into the nature of HDL-C metabolism, specifically regarding the ability of HDL-C to promote reverse cholesterol transport (RCT). Recent attempts to harness HDL’s ability to enhance RCT have revealed the complexity of HDL-C metabolism. This review provides a detailed update on HDL-C as an evolving therapeutic target in the management of cardiovascular disease. PMID:18629371

  1. Lectin-like oxidized low-density lipoprotein receptor (LOX-1) in sickle cell disease vasculopathy.

    PubMed

    Chen, Mingyi; Qiu, Hong; Lin, Xin; Nam, David; Ogbu-Nwobodo, Lucy; Archibald, Hannah; Joslin, Amelia; Wun, Ted; Sawamura, Tatsuya; Green, Ralph

    2016-09-01

    Lectin-like oxidized low-density lipoprotein (LDL) receptor-1 (LOX-1) is an endothelial receptor for oxidized LDL. Increased expression of LOX-1 has been demonstrated in atherosclerotic lesions and diabetic vasculopathy. In this study, we investigate the expression of LOX-1 receptor in sickle cell disease (SCD) vasculopathy. Expression of LOX-1 in brain vascular endothelium is markedly increased and LOX-1 gene expression is upregulated in cultured human brain microvascular endothelial cells by incubation with SCD erythrocytes. Also, the level of circulating soluble LOX-1 concentration is elevated in the plasma of SCD patients. Increased LOX-1 expression in endothelial cells is potentially involved in the pathogenesis of SCD vasculopathy. Soluble LOX-1 concentration in SCD may provide a novel biomarker for risk stratification of sickle cell vascular complications. PMID:27519944

  2. Edaravone attenuates monocyte adhesion to endothelial cells induced by oxidized low-density lipoprotein.

    PubMed

    Li, Zhijuan; Cheng, Jianxin; Wang, Liping

    2015-10-30

    Oxidized low-density lipoprotein (oxLDL) plays a vital role in recruitment of monocytes to endothelial cells, which is important during early stages of atherosclerosis development. Edaravone, a potent and novel scavenger of free radicals inhibiting hydroxyl radicals, has been clinically used to reduce the neuronal damage following ischemic stroke. In the present study, Edaravone was revealed to markedly reduce oxLDL-induced monocyte adhesion to human umbilical vein endothelial cells (HUVECs). The inhibitory mechanism of Edaravone was associated with suppression of the chemokine MCP-1 and adhesion molecule VCAM-1 and ICAM-1 expression. In addition, luciferase reporter assay results revealed that administration of Edaravone attenuated the increase in NF-κB transcriptional activity induced by oxLDL. Notably, it's also shown that Edaravone treatment blocked oxLDL induced p65 nuclear translocation in HUVECs. Results indicate that Edaravone negatively regulates endothelial inflammation.

  3. Oxidized low-density lipoprotein (Ox-LDL) impacts on erythrocyte viscoelasticity and its molecular mechanism.

    PubMed

    Wang, Xiang; Yang, Li; Liu, Yao; Gao, Wei; Peng, Weiyan; Sung, K-L Paul; Sung, Lanping Amy

    2009-10-16

    The oxidized low-density lipoprotein (Ox-LDL) plays an important role in atherosclerosis, yet it remains unclear if it damages circulating erythrocytes. In this study, erythrocyte deformability and its membrane proteins after Ox-LDL incubations are investigated by micropipette aspiration, thiol radical measurement, and sodium dodecyl sulphate-polyacrylamide gel electrophoresis (SDS-PAGE). Results show that Ox-LDL incubation reduces the erythrocyte deformability, decreases free thiol radical contents in erythrocytes, and induces the cross-linking among membrane proteins. SDS-PAGE analysis reveals a high molecular weight (HMW) complex as well as new bands between spectrins and band 3 and reduced ratios between band 3 and other major membrane skeletal proteins. Analyses indicate that Ox-LDL makes erythrocytes harder to deform through a molecular mechanism by which the oxidation of free thiol radicals forms disulfide bonds among membrane skeletal proteins.

  4. Hypercholesterolemia, low density lipoprotein receptor and proprotein convertase subtilisin/kexin-type 9

    PubMed Central

    Gu, Hong-mei; Zhang, Da-wei

    2015-01-01

    Abstract Atherosclerotic cardiovascular disease is the main cause of mortality and morbidity in the world. Plasma levels of low density lipoprotein cholesterol (LDL-C) are positively correlated with the risk of atherosclerosis. High plasma LDL concentrations in patients with hypercholesterolemia lead to build-up of LDL in the inner walls of the arteries, which becomes oxidized and promotes the formation of foam cells, consequently initiating atherosclerosis. Plasma LDL is mainly cleared through the LDL receptor (LDLR) pathway. Mutations in the LDLR cause familiar hypercholesterolemia and increase the risk of premature coronary heart disease. The expression of LDLR is regulated at the transcriptional level via the sterol regulatory element binding protein 2 (SREBP-2) and at the posttranslational levels mainly through proprotein convertase subtilisin/kexin-type 9 (PCSK9) and inducible degrader of the LDLR (IDOL). In this review, we summarize the latest advances in the studies of PCSK9. PMID:26445568

  5. Pharmacogenetics of paraoxonase activity: elucidating the role of high-density lipoprotein in disease

    PubMed Central

    Kim, Daniel Seung; Marsillach, Judit; Furlong, Clement E; Jarvik, Gail P

    2014-01-01

    PON1 is a key component of high-density lipoproteins (HDLs) and is at least partially responsible for HDL's antioxidant/atheroprotective properties. PON1 is also associated with numerous human diseases, including cardiovascular disease, Parkinson's disease and cancer. In addition, PON1 metabolizes a broad variety of substrates, including toxic organophosphorous compounds, statin adducts, glucocorticoids, the likely atherogenic l-homocysteine thiolactone and the quorum-sensing factor of Pseudomonas aeruginosa. Numerous cardiovascular and antidiabetic pharmacologic agents, dietary macronutrients, lifestyle factors and antioxidant supplements affect PON1 expression and enzyme activity levels. Owing to the importance of PON1 to HDL function and its individual association with diverse human diseases, pharmacogenomic interactions between PON1 and the various factors that alter its expression and activity may represent an important therapeutic target for future investigation. PMID:24024900

  6. High density lipoprotein: it’s not just about lipid transport anymore

    PubMed Central

    Gordon, Scott M.; Hofmann, Susanna; Askew, David S.; Davidson, W. Sean

    2011-01-01

    Plasma levels of high density lipoprotein cholesterol (HDL-C) have long been associated with protection against cardiovascular disease (CVD) in large populations. However, HDL-C has been significantly less useful for predicting CVD risk in individual patients. This has ignited a new debate on the merits of measuring HDL quantity versus quality in terms of protective potential. In addition, numerous recent studies have begun to uncover HDL functions that vary surprisingly from traditional lipid transport roles. In this paper, we review recent findings that point to important functions for HDL that go well beyond lipid transport. These discoveries suggest that HDL might be a platform that mediates protection from a host of disease states ranging from CVD to diabetes to infectious disease. PMID:21067941

  7. Anticipatory Role of High Density Lipoprotein and Endothelial Dysfunction: An Overview

    PubMed Central

    Eren, Esin; Yılmaz, Necat; Aydin, Ozgur; Ellidağ, Hamit Y

    2014-01-01

    High Density Lipoprotein (HDL) has been witnessed to possess a range of different functions that contribute to its atheroprotective effects. These functions are: the promotion of macrophage cholesterol efflux, reverse cholesterol transport, anti-inflammatory, anti-thrombotic, anti-apoptotic, pro-fibrinolytic and anti-oxidative functions. Paraoxonase 1 (PON1) is an HDL associated enzyme esterase/homocysteinethiolactonase that contributes to the anti-oxidant and anti-atherosclerotic capabilities of HDL. PON1 is directly involved in the etiopathogenesis of atherosclerosis through the modulation of nitric oxide (NO) bioavailability. The aim of this review is to summarize the role of HDL on endothelial homeostasis, and also to describe the recently characterized molecular pathways involved. PMID:25598849

  8. Effects of lifestyle interventions on high-density lipoprotein cholesterol levels.

    PubMed

    Roussell, Michael A; Kris-Etherton, Penny

    2007-03-01

    This review summarizes intervention studies that evaluated the effects of lifestyle behaviors on high-density lipoprotein-cholesterol (HDL-C) levels. Current diet and lifestyle recommendations beneficially affect HDL-C. Individual lifestyle interventions that increase HDL-C include: a healthful diet that is low (7-10% of calories) in saturated fat and sufficient in unsaturated fat (15-20% of calories), regular physical activity, attaining a healthy weight, with moderate alcohol consumption, and cessation of cigarette smoking. Combining a healthy diet with weight loss and physical activity can increase HDL-C 10% to 13%. When combined with interventions that beneficially affect other cardiovascular disease risk factors, this increase in HDL-C is expected to contribute to a overall reduction in cardiovascular disease risk.

  9. High-Density Lipoprotein Proteomics: Identifying New Drug Targets and Biomarkers by Understanding Functionality

    PubMed Central

    Gordon, Scott; Durairaj, Anita; Lu, Jason L.; Davidson, W. Sean

    2010-01-01

    Recent proteomics studies on human plasma high-density lipoprotein (HDL) have discovered up to 50 individual protein constituents. Many of these have known functions that vary surprisingly from the lipid transport roles commonly thought to mediate HDL’s ability to protect from coronary artery disease. Given newly discovered roles in inflammation, protease inhibition, complement regulation, and innate immunity, many have begun to view HDL as a broad collection of distinct particle subfamilies, each distinguished by unique protein compositions and functions. Herein we review recent applications of high-resolution proteomics to HDL and summarize evidence supporting the idea of HDL functional subspeciation. These studies have set the stage for a more complete understanding of the molecular basis of HDL functional heterogeneity and hold promise for the identification of new biomarkers that can predict disease or evaluate the success of clinical interventions. PMID:20625533

  10. Conformational Changes in High-Density Lipoprotein Nanoparticles Induced by High Payloads of Paramagnetic Lipids

    PubMed Central

    2016-01-01

    High-density lipoprotein (HDL) nanoparticles doped with gadolinium lipids can be used as magnetic resonance imaging diagnostic agents for atherosclerosis. In this study, HDL nanoparticles with different molar fractions of gadolinium lipids (0 < xGd-lipids < 0.33) were prepared, and the MR relaxivity values (r1 and r2) for all compositions were measured. Both r1 and r2 parameters reached a maximal value at a molar fraction of approximately xGd-lipids = 0.2. Higher payloads of gadolinium did not significantly increase relaxivity values but induced changes in the structure of HDL, increasing the size of the particles from dH = 8.2 ± 1.6 to 51.7 ± 7.3 nm. High payloads of gadolinium lipids trigger conformational changes in HDL, with potential effects on the in vivo behavior of the nanoparticles. PMID:27713933

  11. High density lipoprotein and metabolic disease: Potential benefits of restoring its functional properties

    PubMed Central

    Klancic, Teja; Woodward, Lavinia; Hofmann, Susanna M.; Fisher, Edward A.

    2016-01-01

    Background High density lipoproteins (HDLs) are thought to be atheroprotective and to reduce the risk of cardiovascular disease (CVD). Besides their antioxidant, antithrombotic, anti-inflammatory, anti-apoptotic properties in the vasculature, HDLs also improve glucose metabolism in skeletal muscle. Scope of the review Herein, we review the functional role of HDLs to improve metabolic disorders, especially those involving insulin resistance and to induce regression of CVD with a particular focus on current pharmacological treatment options as well as lifestyle interventions, particularly exercise. Major conclusions Functional properties of HDLs continue to be considered important mediators to reverse metabolic dysfunction and to regress atherosclerotic cardiovascular disease. Lifestyle changes are often recommended to reduce the risk of CVD, with exercise being one of the most important of these. Understanding how exercise improves HDL function will likely lead to new approaches to battle the expanding burden of obesity and the metabolic syndrome. PMID:27110484

  12. Receptor mediated uptake of paclitaxel from a synthetic high density lipoprotein nanocarrier.

    PubMed

    Mooberry, Linda K; Nair, Maya; Paranjape, Sulabha; McConathy, Walter J; Lacko, Andras G

    2010-01-01

    The purpose of these studies was to determine the mechanism(s) whereby paclitaxel (PTX), is taken up by cancer cells, once encapsulated into synthetic/reconstituted high density lipoprotein (rHDL). The uptake of PTX was found to be facilitated by the scavenger receptor type B-1 (SR-B1) when drug-loaded rHDL particles were incubated with cells that express the SRB1 receptor. Studies with double-labeled, PTX containing rHDL nanoparticles showed that prostate cancer (PC-3) cells incorporated PTX primarily via a selective (SR-B1 type) uptake mechanism. In the presence of a 10-fold excess of plasma HDL, PTX uptake decreased to 30% of the control. These findings suggest that the incorporation of lipophilic drugs by cancer cells from rHDL nanoparticles is facilitated by a receptor mediated (SR-B1) mechanism.

  13. Inhibition of human low-density lipoprotein oxidation in vitro by ginger extracts.

    PubMed

    Gunathilake, K D Prasanna P; Rupasinghe, H P Vasantha

    2014-04-01

    Oxidative modification of low-density lipoprotein (LDL) is thought to play a key role in atherosclerotic plaque formation. Currently, there is a renewed interest in ginger because of its antioxidants and cardioprotective properties. The effects of ethanol, methanol, ethyl acetate, and hexane solvent extracts of ginger and pure major ginger constituents on Cu(2+)-induced oxidation of human LDL in vitro were examined. The LDL oxidation inhibition by ethanol, methanol, ethyl acetate, and hexane extracts of ginger was 71%, 76%, 67%, and 67%, respectively, at their optimum extraction conditions. Inhibition of LDL oxidation by water extracts of ginger, which was prepared by ultrasonic-assisted extraction conditions of 52°C for 15 min, was about 43%. Phenolic bioactives of ginger-6-gingerols, 8-gingerols, 10-gingerols, and 6-shogaol-seem to be strong inhibitors of Cu(+2)-induced LDL oxidation. Overall, ginger extracts, including the water extract possess the antioxidant activities to inhibit human LDL oxidation in vitro.

  14. Low Density Lipoprotein Receptor Related Proteins as Regulators of Neural Stem and Progenitor Cell Function

    PubMed Central

    Landowski, Lila M.; Young, Kaylene M.

    2016-01-01

    The central nervous system (CNS) is a highly organised structure. Many signalling systems work in concert to ensure that neural stem cells are appropriately directed to generate progenitor cells, which in turn mature into functional cell types including projection neurons, interneurons, astrocytes, and oligodendrocytes. Herein we explore the role of the low density lipoprotein (LDL) receptor family, in particular family members LRP1 and LRP2, in regulating the behaviour of neural stem and progenitor cells during development and adulthood. The ability of LRP1 and LRP2 to bind a diverse and extensive range of ligands, regulate ligand endocytosis, recruit nonreceptor tyrosine kinases for direct signal transduction and signal in conjunction with other receptors, enables them to modulate many crucial neural cell functions. PMID:26949399

  15. Betanin inhibits the myeloperoxidase/nitrite-induced oxidation of human low-density lipoproteins.

    PubMed

    Allegra, Mario; Tesoriere, Luisa; Livrea, Maria A

    2007-03-01

    Production of nitrogen dioxide by the activity of myeloperoxidase (MPO) in the presence of nitrite is now considered a key step in the pathophysiology of low-density lipoprotein (LDL) oxidation. This study shows that betanin, a phytochemical of the betalain class, inhibits the production of lipid hydroperoxides in human LDL submitted to a MPO/nitrite-induced oxidation. Kinetic measurements including time-course of particle oxidation and betanin consumption, either in the presence or in the absence of nitrite, suggest that the antioxidant effect is possibly the result of various actions. Betanin scavenges the initiator radical nitrogen dioxide and can also act as a lipoperoxyl radical-scavenger. In addition, unidentified oxidation product(s) of betanin by MPO/nitrite inhibit(s) the MPO/nitrite-induced LDL oxidation as effectively as the parent compound. In the light of betanin bioavailability and post-absorbtion distribution in humans, present findings may suggest favourable in vivo activity of this phytochemical.

  16. The Complex Fate in Plasma of Gadolinium Incorporated into High-Density Lipoproteins Used for Magnetic Imaging of Atherosclerotic Plaques

    PubMed Central

    Barazza, Alessandra; Blachford, Courtney; Even-Or, Orli; Joaquin, Victor A.; Briley-Saebo, Karen C.; Chen, Wei; Jiang, Xian-Cheng; Mulder, Willem J. M.; Cormode, David P.; Fayad, Zahi A.; Fisher, Edward A.

    2014-01-01

    We have previously reported enhancing the imaging of atherosclerotic plaques in mice using reconstituted high density lipoproteins (HDL) as nanocarriers for the MRI contrast agent gadolinium (Gd). This study focuses on the underlying mechanisms of Gd delivery to atherosclerotic plaques. HDL, LDL, and VLDL particles containing Gd chelated to phosphatidyl ethanolamine (DTPA-DMPE) and a lipidic fluorophore were used to demonstrate the transfer of Gd-phospholipids among plasma lipoproteins in vitro and in vivo. To determine the basis of this transfer, the roles of phospholipid transfer protein (PLTP) and lipoprotein lipase (LpL) in mediating the migration of Gd-DTPA-DMPE among lipoproteins were investigated. The results indicated that neither was an important factor, suggesting that spontaneous transfer of Gd-DTPA-DMPE was the most probable mechanism. Finally, two independent mouse models were used to quantify the relative contributions of HDL and LDL reconstituted with Gd-DTPA-DMPE to plaque imaging enhancement by MR. Both sets of results suggested that Gd-DTPA-DMPE originally associated with LDL was about twice as effective as that injected in the form of Gd-HDL, and that some of Gd-HDL’s effectiveness in vivo is indirect through transfer of the imaging agent to LDL. In conclusion, the fate of Gd-DTPA-DMPE associated with a particular type of lipoprotein is complex, and includes its transfer to other lipoprotein species that are then cleared from the plasma into tissues. PMID:23617731

  17. High-density lipoprotein-cholesterol, daily estradiol and progesterone, and mammographic density phenotypes in premenopausal women.

    PubMed

    Flote, Vidar G; Frydenberg, Hanne; Ursin, Giske; Iversen, Anita; Fagerland, Morten W; Ellison, Peter T; Wist, Erik A; Egeland, Thore; Wilsgaard, Tom; McTiernan, Anne; Furberg, Anne-Sofie; Thune, Inger

    2015-06-01

    High-density lipoprotein-cholesterol (HDL-C) may influence the proliferation of breast tumor cells, but it is unclear whether low HDL-C levels, alone or in combination with cyclic estrogen and progesterone, are associated with mammographic density, a strong predictor of breast cancer development. Fasting morning serum concentrations of HDL-C were assessed in 202 premenopausal women, 25 to 35 years of age, participating in the Norwegian Energy Balance and Breast Cancer Aspects (EBBA) I study. Estrogen and progesterone were measured both in serum, and daily in saliva, throughout an entire menstrual cycle. Absolute and percent mammographic density was assessed by a computer-assisted method (Madena), from digitized mammograms (days 7-12). Multivariable models were used to study the associations between HDL-C, estrogen and progesterone, and mammographic density phenotypes. We observed a positive association between HDL-C and percent mammographic density after adjustments (P = 0.030). When combining HDL-C, estradiol, and progesterone, we observed among women with low HDL-C (<1.39 mmol/L), a linear association between salivary 17β-estradiol, progesterone, and percent and absolute mammographic density. Furthermore, in women with low HDL-C, each one SD increase of salivary mid-menstrual 17β-estradiol was associated with an OR of 4.12 (95% confidence intervals; CI, 1.30-13.0) of having above-median percent (28.5%), and an OR of 2.5 (95% CI, 1.13-5.50) of having above-median absolute mammographic density (32.4 cm(2)). On the basis of plausible biologic mechanisms linking HDL-C to breast cancer development, our findings suggest a role of HDL-C, alone or in combination with estrogen, in breast cancer development. However, our small hypothesis generating study requires confirmation in larger studies.

  18. High-density Lipoprotein Particle Concentration and Subclinical Atherosclerosis of the Carotid Arteries in Japanese Men

    PubMed Central

    Zaid, Maryam; Fujiyoshi, Akira; Miura, Katsuyuki; Abbott, Robert D.; Okamura, Tomonori; Takashima, Naoyuki; Torii, Sayuki; Saito, Yoshino; Hisamatsu, Takashi; Miyagawa, Naoko; Ohkubo, Takayoshi; Kadota, Aya; Sekikawa, Akira; Maegawa, Hiroshi; Nakamura, Yasuyuki; Mitsunami, Kenichi; Ueshima, Hirotsugu

    2015-01-01

    Objective The association of high-density lipoprotein particle (HDL-P) with atherosclerosis may be stronger than that of HDL-cholesterol (HDL-C) and independent of conventional cardiovascular risk factors. Whether associations persist in populations at low risk of coronary heart disease (CHD) remains unclear. This study examines the associations of HDL-P and HDL-C with carotid intima-media thickness (cIMT) and plaque counts among Japanese men, who characteristically have higher HDL-C levels and a lower CHD burden than those in men of Western populations. Methods We cross-sectionally examined a community-based sample of 870 Japanese men aged 40-79 years, free of known clinical cardiovascular disease (CVD) and not on lipid-lowering medication. Participants were randomly selected among Japanese living in Kusatsu City in Shiga, Japan. Results Both HDL-P and HDL-C were inversely and independently associated with cIMT in models adjusted for conventional CHD risk factors, including low-density lipoprotein cholesterol (LDL-C) and diabetes. HDL-P maintained an association with cIMT after further adjustment for HDL-C (P<0.01), whereas the association of HDL-C with cIMT was noticeably absent after inclusion of HDL-P in the model. In plaque counts of the carotid arteries, HDL-P was significantly associated with a reduction in plaque count, whereas HDL-C was not. Conclusion HDL-P, in comparison to HDL-C, is more strongly associated with measures of carotid atherosclerosis in a cross-sectional study of Japanese men. Findings demonstrate that, HDL-P is a strong correlate of subclinical atherosclerosis even in a population at low risk for CHD. PMID:25687270

  19. Paradoxical Elevation of High Density Lipoprotein Cholesterol in Association with Lacunar-Type Cerebral Infarction

    PubMed Central

    Meng, Gui-Lin; Tan, Yan; Fang, Min; Yang, Hong-Yan; Liu, Xue-Yuan; Zhao, Yan-Xin

    2015-01-01

    Background The aim of this study was to evaluate the association between high-density lipoprotein cholesterol (HDLC) levels and the risk of lacunar infarction (LI) in a retrospective cohort study in China. Material/Methods We recruited 229 patients with obsolete brain infarctions single side (SOBI), 218 with obsolete brain infarctions bilateral sides (BOBI), 193 with both acute stroke and obsolete lacunar infarctions single side (AI&SOBI), 113 with both acute stroke and obsolete lacunar infarctions bilateral sides (AI&BOBI), and 203 without any infarctions (Control). Results 1) The plasma levels of HDLC in group BOBI, AI&SOBI, and AI&BOBI were higher than in the control group, and lower in group SOBI than in the control group (p<0.01). 2) The plasma levels of HDLC in group AI&SOBI were significantly higher than in group SOBI (p<0.01). 3) The plasma levels of HLDL were similar between group AI&SOBI and AI&BOBI. 4) There were significant relationships between HDLC and acute lacunar stroke, even after adjusting for these factors such as age, sex, triglyceride, total cholesterol, low-density lipoprotein cholesterol, and history of diabetes (p=0.001). 4) Compared with the controls, the calculation of odds ratios indicated relative risk estimates of higher HDLC for acute lacunar stroke with obsolete lacunar infarction. Conclusions Elevated HDLC may be an independent predictor of recurrent stroke with obsolete lacunar infarctions single side in Chinese people, justifying clinical trials for secondary prevention of stroke by generally increasing HLDL level. According to the difference between single and bilateral side multiple silent lacunar infarcts, it is inferred that HDLC may increase the risk of atherothrombotic infarction but reduce the risk of cardioembolic infarction in the general Chinese population. PMID:26120926

  20. Studies on epitopes on low-density lipoprotein modified by 4-hydroxynonenal. Biochemical characterization and determination.

    PubMed Central

    Chen, Q; Esterbauer, H; Jürgens, G

    1992-01-01

    Oxidation of human low-density lipoprotein (LDL) was found to be accompanied by the generation of various reactive aldehydes. One of them, 4-hydroxynonenal (HNE), was shown to modify LDL to a form which represents a good model of oxidized LDL (ox-LDL). In order to investigate the epitopes newly formed on HNE-modified LDL, a polyvalent antiserum to HNE-LDL [anti-(HNE-LDL)] was raised in rabbits and the non-specific components were removed with native LDL coupled to CNBr-Sepharose 4B. Competitive fluorescence immunoassay analysis showed that anti-(HNE-LDL) recognized HNE-LDL, copper-oxidized LDL, HNE-albumin and to a lower extent HNE-modified high-density lipoprotein 3 (HNE-HDL3) and ox-HDL3 but not native LDL. A certain degree of cross-reactivity of the antibody with LDLs modified by either hexanal or 2,4-heptadienal was found. No reaction was obtained with LDL labelled with malondialdehyde. From the abilities of HNE-modified poly(L-amino acids) to compete with HNE-LDL for binding to anti-(HNE-LDL), it is postulated that lysine, tyrosine, arginine and histidine are involved in the formation of HNE-derived epitopes on apolipoprotein B (apo B). Using a double-sandwich fluorescence immunoassay [capture antibody: anti-(apo B); detection antibody: anti-(HNE-LDL)] we found that the HNE-derived epitopes were expressed at a far higher degree in ox-LDL and HNE-LDL than in native LDL. PMID:1280111

  1. Overexpression of LOXIN Protects Endothelial Progenitor Cells From Apoptosis Induced by Oxidized Low Density Lipoprotein.

    PubMed

    Veas, Carlos; Jara, Casandra; Willis, Naomi D; Pérez-Contreras, Karen; Gutierrez, Nicolas; Toledo, Jorge; Fernandez, Paulina; Radojkovic, Claudia; Zuñiga, Felipe A; Escudero, Carlos; Aguayo, Claudio

    2016-04-01

    Human endothelial progenitor cells (hEPC) are adult stem cells located in the bone marrow and peripheral blood. Studies have indicated that hEPC play an important role in the recovery and repair of injured endothelium, however, their quantity and functional capacity is reduced in several diseases including hypercholesterolemia. Recently, it has been demonstrated that hEPC express lectin-like oxidized low-density lipoprotein receptor-1 (LOX-1) and its activation by oxidized low-density lipoprotein (ox-LDL) induces cellular dysfunction and apoptosis. This study aimed to investigate whether overexpression of LOXIN, a truncated isoform of LOX-1 that acts as a dominant negative, plays a protective role against ox-LDL-induced apoptosis in hEPC. Human endothelial progenitor cells exposed to ox-LDL showed a significant increase in LOX-1 expression, and apoptosis began at ox-LDL concentrations above 50 μg/mL. All hEPC apoptosed at 200 μg/mL ox-LDL. High LOXIN expression was generated using adenoviral systems in hEPC and SiHa cells transduced with 100 colony-forming units per cell. Transduced LOXIN localized to the plasma membrane and blocked ox-LDL uptake mediated by LOX-1. Overexpression of LOXIN protected hEPC from ox-LDL-induced apoptosis, and therefore maybe a novel way of improving hEPC function and quantity. These results suggest that adenoviral vectors of LOXIN may provide a possible treatment for diseases related to ox-LDL and vascular endothelium dysfunction, including atherosclerosis.

  2. Highly absorptive curcumin reduces serum atherosclerotic low-density lipoprotein levels in patients with mild COPD

    PubMed Central

    Funamoto, Masafumi; Sunagawa, Yoichi; Katanasaka, Yasufumi; Miyazaki, Yusuke; Imaizumi, Atsushi; Kakeya, Hideaki; Yamakage, Hajime; Satoh-Asahara, Noriko; Komiyama, Maki; Wada, Hiromichi; Hasegawa, Koji; Morimoto, Tatsuya

    2016-01-01

    Purpose COPD is mainly caused by tobacco smoking and is associated with a high frequency of coronary artery disease. There is growing recognition that the inflammation in COPD is not only confined to the lungs but also involves the systemic circulation and can impact nonpulmonary organs, including blood vessels. α1-antitrypsin–low-density lipoprotein (AT-LDL) complex is an oxidatively modified LDL that accelerates atherosclerosis. Curcumin, one of the best-investigated natural products, is a powerful antioxidant. However, the effects of curcumin on AT-LDL remain unknown. We hypothesized that Theracurmin®, a highly absorptive curcumin with improved bioavailability using a drug delivery system, ameliorates the inflammatory status in subjects with mild COPD. Patients and methods This is a randomized, double-blind, parallel-group study. Subjects with stages I–II COPD according to the Japanese Respiratory Society criteria were randomly assigned to receive 90 mg Theracurmin® or placebo twice a day for 24 weeks, and changes in inflammatory parameters were evaluated. Results There were no differences between the Theracurmin® and placebo groups in terms of age, male/female ratio, or body mass index in 39 evaluable subjects. The percent changes in blood pressure and hemoglobin A1c and LDL-cholesterol, triglyceride, or high-density lipoprotein-cholesterol levels after treatment were similar for the two groups. However, the percent change in the AT-LDL level was significantly (P=0.020) lower in the Theracurmin® group compared with the placebo group. Conclusion Theracurmin® reduced levels of atherosclerotic AT-LDL, which may lead to the prevention of future cardiovascular events in mild COPD subjects.

  3. Highly absorptive curcumin reduces serum atherosclerotic low-density lipoprotein levels in patients with mild COPD

    PubMed Central

    Funamoto, Masafumi; Sunagawa, Yoichi; Katanasaka, Yasufumi; Miyazaki, Yusuke; Imaizumi, Atsushi; Kakeya, Hideaki; Yamakage, Hajime; Satoh-Asahara, Noriko; Komiyama, Maki; Wada, Hiromichi; Hasegawa, Koji; Morimoto, Tatsuya

    2016-01-01

    Purpose COPD is mainly caused by tobacco smoking and is associated with a high frequency of coronary artery disease. There is growing recognition that the inflammation in COPD is not only confined to the lungs but also involves the systemic circulation and can impact nonpulmonary organs, including blood vessels. α1-antitrypsin–low-density lipoprotein (AT-LDL) complex is an oxidatively modified LDL that accelerates atherosclerosis. Curcumin, one of the best-investigated natural products, is a powerful antioxidant. However, the effects of curcumin on AT-LDL remain unknown. We hypothesized that Theracurmin®, a highly absorptive curcumin with improved bioavailability using a drug delivery system, ameliorates the inflammatory status in subjects with mild COPD. Patients and methods This is a randomized, double-blind, parallel-group study. Subjects with stages I–II COPD according to the Japanese Respiratory Society criteria were randomly assigned to receive 90 mg Theracurmin® or placebo twice a day for 24 weeks, and changes in inflammatory parameters were evaluated. Results There were no differences between the Theracurmin® and placebo groups in terms of age, male/female ratio, or body mass index in 39 evaluable subjects. The percent changes in blood pressure and hemoglobin A1c and LDL-cholesterol, triglyceride, or high-density lipoprotein-cholesterol levels after treatment were similar for the two groups. However, the percent change in the AT-LDL level was significantly (P=0.020) lower in the Theracurmin® group compared with the placebo group. Conclusion Theracurmin® reduced levels of atherosclerotic AT-LDL, which may lead to the prevention of future cardiovascular events in mild COPD subjects. PMID:27616885

  4. Overexpression of LOXIN Protects Endothelial Progenitor Cells From Apoptosis Induced by Oxidized Low Density Lipoprotein.

    PubMed

    Veas, Carlos; Jara, Casandra; Willis, Naomi D; Pérez-Contreras, Karen; Gutierrez, Nicolas; Toledo, Jorge; Fernandez, Paulina; Radojkovic, Claudia; Zuñiga, Felipe A; Escudero, Carlos; Aguayo, Claudio

    2016-04-01

    Human endothelial progenitor cells (hEPC) are adult stem cells located in the bone marrow and peripheral blood. Studies have indicated that hEPC play an important role in the recovery and repair of injured endothelium, however, their quantity and functional capacity is reduced in several diseases including hypercholesterolemia. Recently, it has been demonstrated that hEPC express lectin-like oxidized low-density lipoprotein receptor-1 (LOX-1) and its activation by oxidized low-density lipoprotein (ox-LDL) induces cellular dysfunction and apoptosis. This study aimed to investigate whether overexpression of LOXIN, a truncated isoform of LOX-1 that acts as a dominant negative, plays a protective role against ox-LDL-induced apoptosis in hEPC. Human endothelial progenitor cells exposed to ox-LDL showed a significant increase in LOX-1 expression, and apoptosis began at ox-LDL concentrations above 50 μg/mL. All hEPC apoptosed at 200 μg/mL ox-LDL. High LOXIN expression was generated using adenoviral systems in hEPC and SiHa cells transduced with 100 colony-forming units per cell. Transduced LOXIN localized to the plasma membrane and blocked ox-LDL uptake mediated by LOX-1. Overexpression of LOXIN protected hEPC from ox-LDL-induced apoptosis, and therefore maybe a novel way of improving hEPC function and quantity. These results suggest that adenoviral vectors of LOXIN may provide a possible treatment for diseases related to ox-LDL and vascular endothelium dysfunction, including atherosclerosis. PMID:26771151

  5. Residual Cardiovascular Risk in Chronic Kidney Disease: Role of High-density Lipoprotein

    PubMed Central

    Kon, Valentina; Yang, Haichun; Fazio, Sergio

    2016-01-01

    Although reducing low-density lipoprotein-cholesterol (LDL-C) levels with lipid-lowering agents (statins) decreases cardiovascular disease (CVD) risk, a substantial residual risk (up to 70% of baseline) remains after treatment in most patient populations. High-density lipoprotein (HDL) is a potential contributor to residual risk, and low HDL-cholesterol (HDL-C) is an established risk factor for CVD. However, in contrast to conventional lipid-lowering therapies, recent studies show that pharmacologic increases in HDL-C levels do not bring about clinical benefits. These observations have given rise to the concept of dysfunctional HDL where increases in serum HDL-C may not be beneficial because HDL loss of function is not corrected by or even intensified by the therapy. Chronic kidney disease (CKD) increases CVD risk, and patients whose CKD progresses to end-stage renal disease (ESRD) requiring dialysis are at the highest CVD risk of any patient type studied. The ESRD population is also unique in its lack of significant benefit from standard lipid-lowering interventions. Recent studies indicate that HDL-C levels do not predict CVD in the CKD population. Moreover, CKD profoundly alters metabolism and composition of HDL particles and impairs their protective effects on functions such as cellular cholesterol efflux, endothelial protection, and control of inflammation and oxidation. Thus, CKD-induced perturbations in HDL may contribute to the excess CVD in CKD patients. Understanding the mechanisms of vascular protection in renal disease can present new therapeutic targets for intervention in this population. PMID:26009251

  6. Effects of serum amyloid A on the structure and antioxidant ability of high-density lipoprotein

    PubMed Central

    Sato, Megumi; Ohkawa, Ryunosuke; Yoshimoto, Akira; Yano, Kouji; Ichimura, Naoya; Nishimori, Madoka; Okubo, Shigeo; Yatomi, Yutaka; Tozuka, Minoru

    2016-01-01

    Serum amyloid A (SAA) levels increase during acute and chronic inflammation and are mainly associated with high-density lipoprotein (HDL). In the present study, we investigated the effect of SAA on the composition, surface charge, particle size and antioxidant ability of HDL using recombinant human SAA (rhSAA) and HDL samples from patients with inflammation. We confirmed that rhSAA bound to HDL3 and released apolipoprotein A-I (apoA-I) from HDL without an apparent change in particle size. Forty-one patients were stratified into three groups based on serum SAA concentrations: Low (SAA ≤ 8 μg/ml), Middle (8 < SAA ≤ 100 μg/ml) and High (SAA > 100 μg/ml). The ratios of apoA-I to total protein mass, relative cholesterol content and negative charge of HDL samples obtained from patients with high SAA levels were lower than that for samples from patients with low SAA levels. Various particle sizes of HDL were observed in three groups regardless of serum SAA levels. Antioxidant ability of rhSAA, evaluated as the effect on the formation of conjugated diene in low-density lipoprotein (LDL) induced by oxidation using copper sulfate, was higher than that of apoA-I. Consistent with this result, reconstituted SAA-containing HDL (SAA-HDL) indicated higher antioxidant ability compared with normal HDL. Furthermore, HDL samples obtained from High SAA group patients also showed the highest antioxidant ability among the three groups. Consequently, SAA affects the composition and surface charge of HDL by displacement of apoA-I and enhances its antioxidant ability. PMID:27422844

  7. Molecular studies of pH-dependent ligand interactions with the low-density lipoprotein receptor.

    PubMed

    Yamamoto, Taichi; Chen, Hsuan-Chih; Guigard, Emmanuel; Kay, Cyril M; Ryan, Robert O

    2008-11-01

    The release of ligand from the low-density lipoprotein receptor (LDLR) has been postulated to involve a "histidine switch"-induced intramolecular rearrangement that discharges bound ligand. A recombinant soluble low-density lipoprotein receptor (sLDLR) was employed in ligand binding experiments with a fluorescently tagged variant apolipoprotein E N-terminal domain (apoE-NT). Binding was monitored as a function of fluorescence resonance energy transfer (FRET) from excited Trp residues in sLDLR to an extrinsic fluorophore covalently attached to Trp-null apoE3-NT. In binding experiments with wild-type (WT) sLDLR, FRET-dependent AEDANS fluorescence decreased as the pH was lowered. To investigate the role of His190, His562, and His586 in sLDLR in pH-dependent ligand binding and discharge, site-directed mutagenesis studies were performed. Compared to WT sLDLR, triple His --> Ala mutant sLDLR displayed attenuated pH-dependent ligand binding and a decreased level of ligand release as a function of low pH. When these His residues were substituted for Lys, the positively charged side chain of which does not ionize over this pH range, ligand binding was nearly abolished at all pH values. When sequential His to Lys mutants were examined, the evidence suggested that His562 and His586 function cooperatively. Whereas the sedimentation coefficient for WT sLDLR increased when the pH was reduced from 7 to 5, no such change occurred in the case of the triple Lys mutant receptor or a His562Lys/His586Lys double mutant receptor. The data support the existence of a cryptic, histidine side chain ionization-dependent alternative ligand that modulates ligand discharge via conformational reorganization.

  8. Z-Scan Analysis: a New Method to Determine the Oxidative State of Low-Density Lipoprotein and Its Association with Multiple Cardiometabolic Biomarkers

    NASA Astrophysics Data System (ADS)

    de Freitas, Maria Camila Pruper; Figueiredo Neto, Antonio Martins; Giampaoli, Viviane; da Conceição Quintaneiro Aubin, Elisete; de Araújo Lima Barbosa, Milena Maria; Damasceno, Nágila Raquel Teixeira

    2016-04-01

    The great atherogenic potential of oxidized low-density lipoprotein has been widely described in the literature. The objective of this study was to investigate whether the state of oxidized low-density lipoprotein in human plasma measured by the Z-scan technique has an association with different cardiometabolic biomarkers. Total cholesterol, high-density lipoprotein cholesterol, triacylglycerols, apolipoprotein A-I and apolipoprotein B, paraoxonase-1, and glucose were analyzed using standard commercial kits, and low-density lipoprotein cholesterol was estimated using the Friedewald equation. A sandwich enzyme-linked immunosorbent assay was used to detect electronegative low-density lipoprotein. Low-density lipoprotein and high-density lipoprotein sizes were determined by Lipoprint® system. The Z-scan technique was used to measure the non-linear optical response of low-density lipoprotein solution. Principal component analysis and correlations were used respectively to resize the data from the sample and test association between the θ parameter, measured with the Z-scan technique, and the principal component. A total of 63 individuals, from both sexes, with mean age 52 years (±11), being overweight and having high levels of total cholesterol and low levels of high-density lipoprotein cholesterol, were enrolled in this study. A positive correlation between the θ parameter and more anti-atherogenic pattern for cardiometabolic biomarkers together with a negative correlation for an atherogenic pattern was found. Regarding the parameters related with an atherogenic low-density lipoprotein profile, the θ parameter was negatively correlated with a more atherogenic pattern. By using Z-scan measurements, we were able to find an association between oxidized low-density lipoprotein state and multiple cardiometabolic biomarkers in samples from individuals with different cardiovascular risk factors.

  9. ApoAV reduces plasma triglycerides by inhibiting very low density lipoprotein-triglyceride (VLDL-TG) production and stimulating lipoprotein lipase-mediated VLDL-TG hydrolysis.

    PubMed

    Schaap, Frank G; Rensen, Patrick C N; Voshol, Peter J; Vrins, Carlos; van der Vliet, Hendrik N; Chamuleau, Robert A F M; Havekes, Louis M; Groen, Albert K; van Dijk, Ko Willems

    2004-07-01

    ApoAV has been discovered recently as a novel modifier of triglyceride (TG) metabolism, but the pathways involved are currently unknown. To gain insight into the function of apoAV, adenovirus-mediated gene transfer of murine apoa5 to C57Bl/6 mice was employed. The injection of low doses of Ad-apoa5 (1-5 x 10(8) plaqueforming units/mouse) dose-dependently reduced plasma very low density lipoprotein (VLDL)-TG levels. First, we evaluated whether a reduced hepatic VLDL production contributed to the TG-lowering effect. Ad-apoa5 treatment dose-dependently diminished (29-37%) the VLDL-TG production rate without affecting VLDL particle production, suggesting that apoAV impairs the lipidation of apoB. Second, Ad-apoa5 treatment dose-dependently reduced (68-88%) the postprandial hypertriglyceridemia following an intragastric fat load, suggesting that apoAV also stimulates the lipoprotein lipase (LPL)-dependent clearance of TG-rich lipoproteins. Indeed, recombinant apoAV was found to dose-dependently stimulate LPL activity up to 2.3-fold in vitro. Accordingly, intravenously injected VLDL-like TG-rich emulsions were cleared at an accelerated rate concomitant with the increased uptake of emulsion TG-derived fatty acids by skeletal muscle and white adipose tissue in Ad-apoa5-treated mice. From these data, we conclude that apoAV is a potent stimulator of LPL activity. Thus, apoAV lowers plasma TG by both reducing the hepatic VLDL-TG production rate and by enhancing the lipolytic conversion of TG-rich lipoproteins.

  10. Increased Small Dense LDL and Intermediate-Density Lipoprotein With Albuminuria in Type 1 Diabetes

    PubMed Central

    Sibley, Shalamar D.; Hokanson, John E.; Steffes, Michael W.; Purnell, Jonathan Q; Marcovina, Santica M.; Cleary, Patricia A.; Brunzell, John D.

    2009-01-01

    OBJECTIVE This population study examines the relationship between LDL density and persistent albuminuria in subjects with type 1 diabetes at the end of the Diabetes Control and Complications Trial (DCCT). RESEARCH DESIGN AND METHODS Subjects were classified as persistently normoalbuminuric (albumin excretion rate [AER] <30 mg/d, n = 1,056), microalbuminuric (AER ≥30–299 mg/day, n = 80), and macroalbuminuric (AER = 300 mg/day, n = 24) based on the last two AER measures. RESULTS Triglyceride (P <0.01) and LDL cholesterol (P <0.01) levels were higher in macroalbuminuric subjects compared with normoalbuminuric subjects. Cholesterol distribution by density-gradient ultracentrifugation showed an increase in intermediate-density lipoprotein (IDL) and a shift in peak LDL from buoyant toward more dense particles with progressive albuminuria. In the entire group, there was a significant negative correlation between the peak buoyancy of LDL particles and albuminuria (r = −0.238, P <0.001, n = 1,160). This correlation persisted in the normoalbuminuric DCCT group (r = −0.138, P<0.001, n = 1,056). CONCLUSIONS As albuminuria increases in subjects with type 1 diabetes, dyslipidemia occurs with an increase in IDL and dense LDL that may lead to increased cardiovascular disease. PMID:10388983

  11. Studies on the structure of low density lipoproteins isolated from Macaca fascicularis fed an atherogenic diet.

    PubMed

    Tall, A R; Small, D M; Atkinson, D; Rudel, L L

    1978-12-01

    Cynomolgus monkeys, Macaca fascicularis, fed cholesterol-containing saturated-fat diets develop increased levels of high molecular weight plasma low density lipoproteins (LDL), associated with accelerated atherosclerosis. To study the composition and structure of these abnormal particles, LDL from monkeys, fed atherogenic and control diets, were characterized chemically and examined by differential scanning calorimetry and low-angle X-ray scattering. LDL from animals on the experimental diet showed an increase in molecular weight (4.0 to 7.0 x 10(6), experimental diet compared with 3.0 to 3.7 x 10(6), control diet) associated with a large increase in cholesterol ester content and concomitant smaller increases in protein, phospholipid, and free cholesterol. There was a strong positive correlation between molecular weight and the number of saturated and monounsaturated cholesterol esters in the particle. In contrast, particle content of polyunsaturated cholesterol esters remained constant despite large changes in total particle cholesterol esters.When examined by calorimetry and X-ray scattering, LDL from monkeys on both diets diplayed a reversible transition of cholesterol esters from an ordered smeticlike (layered) structure to a more disordered state. For all animals on the experimental diet, the peak temperature of the cholesterol-ester transition (42-48 degrees C) was above body temperature (39 degrees C), but below body temperature on the control diet (34-38.5 degrees C). In the experimental group, the transition temperature was correlated with the LDL molecular weight. However, after thermal disruption of LDL, liquid-crystalline transitions of LDL cholesterol esters were observed in the same temperature range as in the intact lipoprotein, which shows that changes in particle size had little effect on the cholesterol-ester transition temperature. Rather, the transition temperature was determined by the degree of saturation of the LDL cholesterol ester fatty

  12. Physical inactivity interacts with an endothelial lipase polymorphism to modulate high density lipoprotein cholesterol in the GOLDN study

    Technology Transfer Automated Retrieval System (TEKTRAN)

    BACKGROUND: Plasma high density lipoprotein (HDL) cholesterol (HDL-C) concentration is highly heritable but is also modifiable by environmental factors including physical activity. HDL-C response to exercise varies among individuals, and this variability may be associated with genetic polymorphism...

  13. Relation of Black Race between High Density Lipoprotein Cholesterol Content, High Density Lipoprotein Particles and Coronary Events (From the Dallas Heart Study)

    PubMed Central

    Chandra, Alvin; Neeland, Ian J.; Das, Sandeep R.; Khera, Amit; Turer, Aslan T.; Ayers, Colby R.; McGuire, Darren K.; Rohatgi, Anand

    2015-01-01

    Therapies targeting high density lipoprotein cholesterol content (HDL-C) have not improved coronary heart disease (CHD) outcomes. HDL particle concentration (HDL-P) may better predict CHD. However, the impact of race/ethnicity on the relations between HDL-P and subclinical atherosclerosis/ incident CHD events has not been described. Participants from the Dallas Heart Study, a multiethnic, probability-based, population cohort of Dallas County adults had the following baseline measurements: HDL-C, HDL-P by nuclear magnetic resonance imaging (NMR), and coronary artery calcium (CAC) by electron beam computed tomography. Participants were followed for a median of 9.3 years for incident CHD events (composite of first myocardial infarction, stroke, coronary revascularization, or cardiovascular death). The study comprised 1977 participants free from CHD (51% women, 46% Black). In adjusted models, HDL-C was not associated with prevalent CAC (p=0.13) or incident CHD overall (HR per 1SD: 0.89, 95% CI 0.76–1.05). However, HDL-C was inversely associated with incident CHD among non-Black (adjusted HR per 1SD 0.67, 95% CI 0.46–0.97) but not Black participants (HR 0.94, 95% CI 0.78–1.13, pinteraction = 0.05). Conversely, HDL-P, adjusted for risk factors and HDL-C, was inversely associated with prevalent CAC (p=0.009) and with incident CHD overall (adjusted HR per 1SD: 0.73, 95% CI 0.62–0.86) with no interaction by Black race/ethnicity (pinteraction = 0.57). In conclusion, in contrast to HDL-C, the inverse relationship between HDL-P and incident CHD events is consistent across ethnicities. These findings suggest that HDL-P is superior to HDL-C in predicting both prevalent atherosclerosis as well as incident CHD events across a diverse population and should be considered as a therapeutic target. PMID:25661572

  14. Oxidized low density lipoprotein (LDL) affects hyaluronan synthesis in human aortic smooth muscle cells.

    PubMed

    Viola, Manuela; Bartolini, Barbara; Vigetti, Davide; Karousou, Evgenia; Moretto, Paola; Deleonibus, Sara; Sawamura, Tatsuya; Wight, Thomas N; Hascall, Vincent C; De Luca, Giancarlo; Passi, Alberto

    2013-10-11

    Thickening of the vessel in response to high low density lipoprotein(s) (LDL) levels is a hallmark of atherosclerosis, characterized by increased hyaluronan (HA) deposition in the neointima. Human native LDL trapped within the arterial wall undergoes modifications such as oxidation (oxLDL). The aim of our study is to elucidate the link between internalization of oxLDL and HA production in vitro, using human aortic smooth muscle cells. LDL were used at an effective protein concentration of 20-50 μg/ml, which allowed 80% cell viability. HA content in the medium of untreated cells was 28.9 ± 3.7 nmol HA-disaccharide/cell and increased after oxLDL treatment to 53.9 ± 5.6. OxLDL treatments doubled the transcripts of HA synthase HAS2 and HAS3. Accumulated HA stimulated migration of aortic smooth muscle cells and monocyte adhesiveness to extracellular matrix. The effects induced by oxLDL were inhibited by blocking LOX-1 scavenger receptor with a specific antibody (10 μg/ml). The cholesterol moiety of LDL has an important role in HA accumulation because cholesterol-free oxLDL failed to induce HA synthesis. Nevertheless, cholesterol-free oxLDL and unmodified cholesterol (20 μg/ml) induce only HAS3 transcription, whereas 22,oxysterol affects both HAS2 and HAS3. Moreover, HA deposition was associated with higher expression of endoplasmic reticulum stress markers (CHOP and GRP78). Our data suggest that HA synthesis can be induced in response to specific oxidized sterol-related species delivered through oxLDL.

  15. Cholesterol-Dependent Anaplasma phagocytophilum Exploits the Low-Density Lipoprotein Uptake Pathway

    PubMed Central

    Xiong, Qingming; Lin, Mingqun; Rikihisa, Yasuko

    2009-01-01

    In eukaryotes, intracellular cholesterol homeostasis and trafficking are tightly regulated. Certain bacteria, such as Anaplasma phagocytophilum, also require cholesterol; it is unknown, however, how this cholesterol-dependent obligatory intracellular bacterium of granulocytes interacts with the host cell cholesterol regulatory pathway to acquire cholesterol. Here, we report that total host cell cholesterol increased >2-fold during A. phagocytophilum infection in a human promyelocytic leukemia cell line. Cellular free cholesterol was enriched in A. phagocytophilum inclusions as detected by filipin staining. We determined that A. phagocytophilum requires cholesterol derived from low-density lipoprotein (LDL), because its replication was significantly inhibited by depleting the growth medium of cholesterol-containing lipoproteins, by blocking LDL uptake with a monoclonal antibody against LDL receptor (LDLR), or by treating the host cells with inhibitors that block LDL-derived cholesterol egress from late endosomes or lysosomes. However, de novo cholesterol biosynthesis is not required, since inhibition of the biosynthesis pathway did not inhibit A. phagocytophilum infection. The uptake of fluorescence-labeled LDL was enhanced in infected cells, and LDLR expression was up-regulated at both the mRNA and protein levels. A. phagocytophilum infection stabilized LDLR mRNA through the 3′ UTR region, but not through activation of the sterol regulatory element binding proteins. Extracellular signal–regulated kinase (ERK) was up-regulated by A. phagocytophilum infection, and inhibition of its upstream kinase, MEK, by a specific inhibitor or siRNA knockdown, reduced A. phagocytophilum infection. Up-regulation of LDLR mRNA by A. phagocytophilum was also inhibited by the MEK inhibitor; however, it was unclear whether ERK activation is required for LDLR mRNA up-regulation by A. phagocytophilum. These data reveal that A. phagocytophilum exploits the host LDL uptake pathway and

  16. Modification of High Density Lipoprotein by Myeloperoxidase Generates a Pro-inflammatory Particle*

    PubMed Central

    Undurti, Arundhati; Huang, Ying; Lupica, Joseph A.; Smith, Jonathan D.; DiDonato, Joseph A.; Hazen, Stanley L.

    2009-01-01

    High density lipoprotein (HDL) is the major atheroprotective particle in plasma. Recent studies demonstrate that myeloperoxidase (MPO) binds to HDL in vivo, selectively targeting apolipoprotein A1 (apoA1) of HDL for oxidative modification and concurrent loss in cholesterol efflux and lecithin cholesterol acyl transferase activating activities, generating a “dysfunctional HDL” particle. We now show that (patho)physiologically relevant levels of MPO-catalyzed oxidation result in loss of non-cholesterol efflux activities of HDL including anti-apoptotic and anti-inflammatory functions. One mechanism responsible is shown to involve the loss of modified HDL binding to the HDL receptor, scavenger receptor B1, and concurrent acquisition of saturable and specific binding to a novel unknown receptor independent of scavenger receptors CD36 and SR-A1. HDL modification by MPO is further shown to confer pro-inflammatory gain of function activities as monitored by NF-κB activation and surface vascular cell adhesion molecule levels on aortic endothelial cells exposed to MPO-oxidized HDL. The loss of non-cholesterol efflux activities and the gain of pro-inflammatory functions requires modification of the entire particle and can be recapitulated by oxidation of reconstituted HDL particles comprised of apoA1 and nonoxidizable phosphatidylcholine species. Multiple site-directed mutagenesis studies of apoA1 suggest that the pro-inflammatory activity of MPO-modified HDL does not involve methionine, tyrosine, or tryptophan, oxidant-sensitive residues previously mapped as sites of apoA1 oxidation within human atheroma. Thus, MPO-catalyzed oxidation of HDL results not only in the loss of classic atheroprotective reverse cholesterol transport activities of the lipoprotein but also both the loss of non-cholesterol efflux related activities and the gain of pro-inflammatory functions. PMID:19726691

  17. Oxidized Low Density Lipoprotein (LDL) Affects Hyaluronan Synthesis in Human Aortic Smooth Muscle Cells*

    PubMed Central

    Viola, Manuela; Bartolini, Barbara; Vigetti, Davide; Karousou, Evgenia; Moretto, Paola; Deleonibus, Sara; Sawamura, Tatsuya; Wight, Thomas N.; Hascall, Vincent C.; De Luca, Giancarlo; Passi, Alberto

    2013-01-01

    Thickening of the vessel in response to high low density lipoprotein(s) (LDL) levels is a hallmark of atherosclerosis, characterized by increased hyaluronan (HA) deposition in the neointima. Human native LDL trapped within the arterial wall undergoes modifications such as oxidation (oxLDL). The aim of our study is to elucidate the link between internalization of oxLDL and HA production in vitro, using human aortic smooth muscle cells. LDL were used at an effective protein concentration of 20–50 μg/ml, which allowed 80% cell viability. HA content in the medium of untreated cells was 28.9 ± 3.7 nmol HA-disaccharide/cell and increased after oxLDL treatment to 53.9 ± 5.6. OxLDL treatments doubled the transcripts of HA synthase HAS2 and HAS3. Accumulated HA stimulated migration of aortic smooth muscle cells and monocyte adhesiveness to extracellular matrix. The effects induced by oxLDL were inhibited by blocking LOX-1 scavenger receptor with a specific antibody (10 μg/ml). The cholesterol moiety of LDL has an important role in HA accumulation because cholesterol-free oxLDL failed to induce HA synthesis. Nevertheless, cholesterol-free oxLDL and unmodified cholesterol (20 μg/ml) induce only HAS3 transcription, whereas 22,oxysterol affects both HAS2 and HAS3. Moreover, HA deposition was associated with higher expression of endoplasmic reticulum stress markers (CHOP and GRP78). Our data suggest that HA synthesis can be induced in response to specific oxidized sterol-related species delivered through oxLDL. PMID:23979132

  18. Triglyceride-rich lipoproteins and high-density lipoprotein cholesterol in patients at high risk of cardiovascular disease: evidence and guidance for management.

    PubMed

    Chapman, M John; Ginsberg, Henry N; Amarenco, Pierre; Andreotti, Felicita; Borén, Jan; Catapano, Alberico L; Descamps, Olivier S; Fisher, Edward; Kovanen, Petri T; Kuivenhoven, Jan Albert; Lesnik, Philippe; Masana, Luis; Nordestgaard, Børge G; Ray, Kausik K; Reiner, Zeljko; Taskinen, Marja-Riitta; Tokgözoglu, Lale; Tybjærg-Hansen, Anne; Watts, Gerald F

    2011-06-01

    Even at low-density lipoprotein cholesterol (LDL-C) goal, patients with cardiometabolic abnormalities remain at high risk of cardiovascular events. This paper aims (i) to critically appraise evidence for elevated levels of triglyceride-rich lipoproteins (TRLs) and low levels of high-density lipoprotein cholesterol (HDL-C) as cardiovascular risk factors, and (ii) to advise on therapeutic strategies for management. Current evidence supports a causal association between elevated TRL and their remnants, low HDL-C, and cardiovascular risk. This interpretation is based on mechanistic and genetic studies for TRL and remnants, together with the epidemiological data suggestive of the association for circulating triglycerides and cardiovascular disease. For HDL, epidemiological, mechanistic, and clinical intervention data are consistent with the view that low HDL-C contributes to elevated cardiovascular risk; genetic evidence is unclear however, potentially reflecting the complexity of HDL metabolism. The Panel believes that therapeutic targeting of elevated triglycerides (≥ 1.7 mmol/L or 150 mg/dL), a marker of TRL and their remnants, and/or low HDL-C (<1.0 mmol/L or 40 mg/dL) may provide further benefit. The first step should be lifestyle interventions together with consideration of compliance with pharmacotherapy and secondary causes of dyslipidaemia. If inadequately corrected, adding niacin or a fibrate, or intensifying LDL-C lowering therapy may be considered. Treatment decisions regarding statin combination therapy should take into account relevant safety concerns, i.e. the risk of elevation of blood glucose, uric acid or liver enzymes with niacin, and myopathy, increased serum creatinine and cholelithiasis with fibrates. These recommendations will facilitate reduction in the substantial cardiovascular risk that persists in patients with cardiometabolic abnormalities at LDL-C goal. PMID:21531743

  19. Collagenase-3 binds to a specific receptor and requires the low density lipoprotein receptor-related protein for internalization

    NASA Technical Reports Server (NTRS)

    Barmina, O. Y.; Walling, H. W.; Fiacco, G. J.; Freije, J. M.; Lopez-Otin, C.; Jeffrey, J. J.; Partridge, N. C.

    1999-01-01

    We have previously identified a specific receptor for collagenase-3 that mediates the binding, internalization, and degradation of this ligand in UMR 106-01 rat osteoblastic osteosarcoma cells. In the present study, we show that collagenase-3 binding is calcium-dependent and occurs in a variety of cell types, including osteoblastic and fibroblastic cells. We also present evidence supporting a two-step mechanism of collagenase-3 binding and internalization involving both a specific collagenase-3 receptor and the low density lipoprotein receptor-related protein. Ligand blot analysis shows that (125)I-collagenase-3 binds specifically to two proteins ( approximately 170 kDa and approximately 600 kDa) present in UMR 106-01 cells. Western blotting identified the 600-kDa protein as the low density lipoprotein receptor-related protein. Our data suggest that the 170-kDa protein is a specific collagenase-3 receptor. Low density lipoprotein receptor-related protein-null mouse embryo fibroblasts bind but fail to internalize collagenase-3, whereas UMR 106-01 and wild-type mouse embryo fibroblasts bind and internalize collagenase-3. Internalization, but not binding, is inhibited by the 39-kDa receptor-associated protein. We conclude that the internalization of collagenase-3 requires the participation of the low density lipoprotein receptor-related protein and propose a model in which the cell surface interaction of this ligand requires a sequential contribution from two receptors, with the collagenase-3 receptor acting as a high affinity primary binding site and the low density lipoprotein receptor-related protein mediating internalization.

  20. Lipopolysaccharide Is Cleared from the Circulation by Hepatocytes via the Low Density Lipoprotein Receptor

    PubMed Central

    Topchiy, Elena; Cirstea, Mihai; Kong, HyeJin Julia; Boyd, John H.; Wang, Yingjin; Russell, James A.; Walley, Keith R.

    2016-01-01

    Sepsis is the leading cause of death in critically ill patients. While decreased Proprotein Convertase Subtilisin/Kexin type 9 (PCSK9) function improves clinical outcomes in murine and human sepsis, the mechanisms involved have not been fully elucidated. We tested the hypothesis that lipopolysaccharide (LPS), the major Gram-negative bacteria endotoxin, is cleared from the circulation by hepatocyte Low Density Lipoprotein Receptors (LDLR)—receptors downregulated by PCSK9. We directly visualized LPS uptake and found that LPS is rapidly taken up by hepatocytes into the cell periphery. Over the course of 4 hours LPS is transported towards the cell center. We next found that clearance of injected LPS from the blood was reduced substantially in Ldlr knockout (Ldlr-/-) mice compared to wild type controls and, simultaneously, hepatic uptake of LPS was also reduced in Ldlr-/- mice. Specifically examining the role of hepatocytes, we further found that primary hepatocytes isolated from Ldlr-/- mice had greatly decreased LPS uptake. In the HepG2 immortalized human hepatocyte cell line, LDLR silencing similarly resulted in decreased LPS uptake. PCSK9 treatment reduces LDLR density on hepatocytes and, therefore, was another independent strategy to test our hypothesis. Incubation with PCSK9 reduced LPS uptake by hepatocytes. Taken together, these findings demonstrate that hepatocytes clear LPS from the circulation via the LDLR and PCSK9 regulates LPS clearance from the circulation during sepsis by downregulation of hepatic LDLR. PMID:27171436

  1. Bone and high-density lipoprotein: The beginning of a beautiful friendship

    PubMed Central

    Papachristou, Dionysios J; Blair, Harry C

    2016-01-01

    There is a tight link between bone and lipid metabolic pathways. In this vein, several studies focused on the exploration of high-density lipoprotein (HDL) in the pathobiology of bone diseases, with emphasis to the osteoarthritis (OA) and osteoporosis, the most common bone pathologies. Indeed, epidemiological and in vitro data have connected reduced HDL levels or dysfunctional HDL with cartilage destruction and OA development. Recent studies uncovered functional links between HDL and OA fueling the interesting hypothesis that OA could be a chronic element of the metabolic syndrome. Other studies have linked HDL to bone mineral density. Even though at epidemiological levels the results are conflicting, studies in animals as well as in vitro experiments have shown that HDL facilitates osteoblastogensis and bone synthesis and most probably affects osteoclastogenesis and osteoclast bone resorption. Notably, reduced HDL levels result in increased bone marrow adiposity affecting bone cells function. Unveiling the mechanisms that connect HDL and bone/cartilage homeostasis may contribute to the design of novel therapeutic agents for the improvement of bone and cartilage quality and thus for the treatment of related pathological conditions. PMID:26925377

  2. PFOS induced lipid metabolism disturbances in BALB/c mice through inhibition of low density lipoproteins excretion.

    PubMed

    Wang, Ling; Wang, Yu; Liang, Yong; Li, Jia; Liu, Yuchen; Zhang, Jie; Zhang, Aiqian; Fu, Jianjie; Jiang, Guibin

    2014-04-03

    Male BALB/c mice fed with either a regular or high fat diet were exposed to 0, 5 or 20 mg/kg perfluorooctane sulfonate (PFOS) for 14 days. Increased body weight, serum glucose, cholesterol and lipoprotein levels were observed in mice given a high fat diet. However, all PFOS-treated mice got reduced levels of serum lipid and lipoprotein. Decreasing liver glycogen content was also observed, accompanied by reduced serum glucose levels. Histological and ultrastructural examination detected more lipid droplets accumulated in hepatocytes after PFOS exposure. Moreover, transcripitonal activity of lipid metabolism related genes suggests that PFOS toxicity is probably unrelevant to PPARα's transcription. The present study demonstrates a lipid disturbance caused by PFOS and thus point to its role in inhibiting the secretion and normal function of low density lipoproteins.

  3. PFOS induced lipid metabolism disturbances in BALB/c mice through inhibition of low density lipoproteins excretion

    PubMed Central

    Wang, Ling; Wang, Yu; Liang, Yong; Li, Jia; Liu, Yuchen; Zhang, Jie; Zhang, Aiqian; Fu, Jianjie; Jiang, Guibin

    2014-01-01

    Male BALB/c mice fed with either a regular or high fat diet were exposed to 0, 5 or 20 mg/kg perfluorooctane sulfonate (PFOS) for 14 days. Increased body weight, serum glucose, cholesterol and lipoprotein levels were observed in mice given a high fat diet. However, all PFOS-treated mice got reduced levels of serum lipid and lipoprotein. Decreasing liver glycogen content was also observed, accompanied by reduced serum glucose levels. Histological and ultrastructural examination detected more lipid droplets accumulated in hepatocytes after PFOS exposure. Moreover, transcripitonal activity of lipid metabolism related genes suggests that PFOS toxicity is probably unrelevant to PPARα's transcription. The present study demonstrates a lipid disturbance caused by PFOS and thus point to its role in inhibiting the secretion and normal function of low density lipoproteins. PMID:24694979

  4. Mass Spectrometry-Based Proteomic Study Makes High-Density Lipoprotein a Biomarker for Atherosclerotic Vascular Disease

    PubMed Central

    Yang, Chao-Yuh; Tsai, Fuu-Jen; Lin, Shih-Yi

    2015-01-01

    High-density lipoprotein (HDL) is a lipid and protein complex that consists of apolipoproteins and lower level HDL-associated enzymes. HDL dysfunction is a factor in atherosclerosis and decreases patient survival. Mass spectrometry- (MS-) based proteomics provides a high throughput approach for analyzing the composition and modifications of complex HDL proteins in diseases. HDL can be separated according to size, surface charge, electronegativity, or apoprotein composition. MS-based proteomics on subfractionated HDL then allows investigation of lipoprotein roles in diseases. Herein, we review recent developments in MS-based quantitative proteomic techniques, HDL proteomics and lipoprotein modifications in diseases, and HDL subfractionation studies. We also discuss future directions and perspectives in MS-based proteomics on HDL. PMID:26090384

  5. PFOS induced lipid metabolism disturbances in BALB/c mice through inhibition of low density lipoproteins excretion

    NASA Astrophysics Data System (ADS)

    Wang, Ling; Wang, Yu; Liang, Yong; Li, Jia; Liu, Yuchen; Zhang, Jie; Zhang, Aiqian; Fu, Jianjie; Jiang, Guibin

    2014-04-01

    Male BALB/c mice fed with either a regular or high fat diet were exposed to 0, 5 or 20 mg/kg perfluorooctane sulfonate (PFOS) for 14 days. Increased body weight, serum glucose, cholesterol and lipoprotein levels were observed in mice given a high fat diet. However, all PFOS-treated mice got reduced levels of serum lipid and lipoprotein. Decreasing liver glycogen content was also observed, accompanied by reduced serum glucose levels. Histological and ultrastructural examination detected more lipid droplets accumulated in hepatocytes after PFOS exposure. Moreover, transcripitonal activity of lipid metabolism related genes suggests that PFOS toxicity is probably unrelevant to PPARα's transcription. The present study demonstrates a lipid disturbance caused by PFOS and thus point to its role in inhibiting the secretion and normal function of low density lipoproteins.

  6. Red grape seed extract improves lipid profiles and decreases oxidized low-density lipoprotein in patients with mild hyperlipidemia.

    PubMed

    Razavi, Seyed-Mostafa; Gholamin, Sharareh; Eskandari, Ali; Mohsenian, Nakta; Ghorbanihaghjo, Amir; Delazar, Abbas; Rashtchizadeh, Nadereh; Keshtkar-Jahromi, Maryam; Argani, Hassan

    2013-03-01

    Hyperlipidemia can lead to atherosclerosis by lipoprotein deposition inside the vessel wall and oxidative stress induction that leads to the formation of atherosclerotic plaque. Oxidized low-density lipoprotein particles (Ox-LDL) have a key role in the pathogenesis of atherosclerosis. The lipid-lowering properties and antioxidants of the grape seed can be beneficial in atherosclerosis prevention. We conducted a randomized double-blind placebo-controlled crossover clinical trial. Fifty-two mildly hyperlipidemic individuals were divided into two groups that received either 200 mg/day of the red grape seed extract (RGSE) or placebo for 8 weeks. After an 8-week washout period, the groups were crossed over for another 8 weeks. Lipid profiles and Ox-LDL were measured at the beginning and the end of each phase. RGSE consumption reduced total cholesterol (-10.68±26.76 mg/dL, P=.015), LDL cholesterol (-9.66±23.92 mg/dL, P=.014), and Ox-LDL (-5.47±12.12 mg/dL, P=.008). While triglyceride and very low-density lipoprotein cholesterol were decreased and high-density lipoprotein cholesterol was increased by RGSE, the changes were not statistically significant. RGSE consumption decreases Ox-LDL and has beneficial effects on lipid profile-consequently decreasing the risk of atherosclerosis and cardiovascular disorders-in mild hyperlipidemic individuals.

  7. Hepatitis C virus G1b infection decreases the number of small low-density lipoprotein particles

    PubMed Central

    Kinoshita, Chika; Nagano, Tomohisa; Seki, Nobuyoshi; Tomita, Yoichi; Sugita, Tomonori; Aida, Yuta; Itagaki, Munenori; Satoh, Kenichi; Sutoh, Satoshi; Abe, Hiroshi; Tsubota, Akihito; Aizawa, Yoshio

    2016-01-01

    AIM: To investigate how hepatitis C virus (HCV) G1b infection influences the particle number of lipoproteins. METHODS: The numbers of lipoprotein particles in fasting sera from 173 Japanese subjects, 82 with active HCV G1b infection (active HCV group) and 91 with cleared HCV infection (SVR group), were examined. Serum lipoprotein was fractionated by high-performance liquid chromatography into twenty fractions. The cholesterol and triglyceride concentrations in each fraction were measured using LipoSEARCH. The number of lipoprotein particles in each fraction was calculated using a newly developed algorithm, and the relationship between chronic HCV G1b infection and the lipoprotein particle number was determined by multiple linear regression analysis. RESULTS: The median number of low-density lipoprotein (LDL) particles was significantly lower in the active HCV group [1182 nmol/L, interquartile range (IQR): 444 nmol/L] than in the SVR group (1363 nmol/L, IQR: 472 nmol/L, P < 0.001), as was that of high-density lipoprotein (HDL) particles (14168 nmol/L vs 15054 nmol/L, IQR: 4114 nmol/L vs 3385 nmol/L, P = 0.042). The number of very low-density lipoprotein (VLDL) particles was similar between the two groups. Among the four LDL sub-fractions, the number of large LDL particles was similar between the two groups. However, the numbers of medium (median: 533.0 nmol/L, IQR: 214.7 nmol/L vs median: 633.5 nmol/L, IQR: 229.6 nmol/L, P < 0.001), small (median: 190.9 nmol/L, IQR: 152.4 nmol/L vs median: 263.2 nmol/L, IQR: 159.9 nmol/L; P < 0.001), and very small LDL particles (median: 103.5 nmol/L, IQR: 66.8 nmol/L vs median: 139.3 nmol/L, IQR: 67.3 nmol/L, P < 0.001) were significantly lower in the active HCV group than in the SVR group, respectively. Multiple linear regression analysis indicated an association between HCV G1b infection and the decreased numbers of medium, small, and very small LDL particles. However, active HCV infection did not affect the number of large LDL

  8. Elevated High-Density Lipoprotein Cholesterol and Age-Related Macular Degeneration: The Alienor Study

    PubMed Central

    Cougnard-Grégoire, Audrey; Delyfer, Marie-Noëlle; Korobelnik, Jean-François; Rougier, Marie-Bénédicte; Le Goff, Mélanie; Dartigues, Jean-François; Barberger-Gateau, Pascale; Delcourt, Cécile

    2014-01-01

    Background Lipid metabolism and particularly high-density lipoprotein (HDL) may be involved in the pathogenic mechanism of age-related macular degeneration (AMD). However, conflicting results have been reported in the associations of AMD with plasma HDL and other lipids, which may be confounded by the recently reported associations of AMD with HDL-related genes. We explored the association of AMD with plasma lipid levels and lipid-lowering medication use, taking into account most of HDL-related genes associated with AMD. Methods The Alienor study is a population-based study on age-related eye diseases performed in 963 elderly residents of Bordeaux (France). AMD was graded from non mydriatic color retinal photographs in three exclusive stages: no AMD (n = 430 subjects, 938 eyes); large soft distinct drusen and/or large soft indistinct drusen and/or reticular drusen and/or pigmentary abnormalities (early AMD, n = 176, 247); late AMD (n = 40, 61). Associations of AMD with plasma lipids (HDL, total cholesterol (TC), Low-density lipoprotein (LDL), and triglycerides (TG)) were estimated using Generalized Estimating Equation logistic regressions. Statistical analyses included 646 subjects with complete data. Results After multivariate adjustment for age, sex, educational level, smoking, BMI, lipid-lowering medication use, cardiovascular disease and diabetes, and for all relevant genetic polymorphisms (ApoE2, ApoE4, CFH Y402H, ARMS2 A69S, LIPC rs10468017, LIPC rs493258, LPL rs12678919, ABCA1 rs1883025 and CETP rs3764261), higher HDL was significantly associated with an increased risk of early (OR = 2.45, 95%CI: 1.54–3.90; P = 0.0002) and any AMD (OR = 2.29, 95%CI: 1.46–3.59; P = 0.0003). Association with late AMD was far from statistical significance (OR = 1.58, 95%CI: 0.48–5.17; p = 0.45). No associations were found for any stage of AMD with TC, LDL and TG levels, statin or fibrate drug use. Conclusions This study suggests that

  9. Increased expression of apolipoprotein E in transgenic rabbits results in reduced levels of very low density lipoproteins and an accumulation of low density lipoproteins in plasma.

    PubMed Central

    Fan, J; Ji, Z S; Huang, Y; de Silva, H; Sanan, D; Mahley, R W; Innerarity, T L; Taylor, J M

    1998-01-01

    Transgenic rabbits expressing human apo E3 were generated to investigate mechanisms by which apo E modulates plasma lipoprotein metabolism. Compared with nontransgenic littermates expressing approximately 3 mg/dl of endogenous rabbit apo E, male transgenic rabbits expressing approximately 13 mg/dl of human apo E had a 35% decrease in total plasma triglycerides that was due to a reduction in VLDL levels and an absence of large VLDL. With its greater content of apo E, transgenic VLDL had an increased binding affinity for the LDL receptor in vitro, and injected chylomicrons were cleared more rapidly by the liver in transgenic rabbits. In contrast to triglyceride changes, transgenic rabbits had a 70% increase in plasma cholesterol levels due to an accumulation of LDL and apo E-rich HDL. Transgenic and control LDL had the same binding affinity for the LDL receptor. Both transgenic and control rabbits had similar LDL receptor levels, but intravenously injected human LDL were cleared more slowly in transgenic rabbits than in controls. Changes in lipoprotein lipolysis did not contribute to the accumulation of LDL or the reduction in VLDL levels. These observations suggest that the increased content of apo E3 on triglyceride-rich remnant lipoproteins in transgenic rabbits confers a greater affinity for cell surface receptors, thereby increasing remnant clearance from plasma. The apo E-rich large remnants appear to compete more effectively than LDL for receptor-mediated binding and clearance, resulting in delayed clearance and the accumulation of LDL in plasma. PMID:9593771

  10. Correlations of plasma lipoproteins with LDL subfractions by particle size in men and women.

    PubMed

    Williams, P T; Vranizan, K M; Krauss, R M

    1992-05-01

    Nondenaturing gradient gel electrophoresis of plasma low density lipoprotein (LDL) has been used to identify major LDL subclasses that are influenced by genetic and other factors. In the present paper, this technique has been extended by measuring absorbance of lipid- or protein-stained gels as an index of concentration at intervals of 0.05 nm across the entire LDL particle size range (21.8-30 nm) in moderately overweight men (n = 115) and women (n = 78). When LDL absorbance levels were correlated with other lipoprotein variables, we found that the strengths of the correlations with each of triglycerides, apolipoprotein (apo) B, high density lipoprotein (HDL)2, and apoA-I achieve relative maximum values for two regions within the small LDL range (21-26 nm), one within LDL-IVB (22-23.2 nm) and a second within LDL-III (24.2-25.5 nm). We also found that the increase in LDL accompanying higher triglyceride levels occurs below 25.5 nm in men and between 24.5 and 26.5 nm in women, suggesting either that triglycerides are related to different LDL subclasses in men and women, or that particle sizes of metabolically homologous LDL subclasses may differ in men and women. As compared to analytic ultracentrifuge measurements, gradient gel measurements of LDL absorbance by the procedure described here provide greater resolution of LDL subclasses but less precision in estimating LDL levels.

  11. [A history and review of cholesterol ester transfer protein inhibitors and their contribution to the understanding of the physiology and pathophysiology of high density lipoprotein].

    PubMed

    Corral, Pablo; Schreier, Laura

    2014-01-01

    There is irrefutable evidence that statins reduce the risk of cardiovascular events in a magnitude proportional to the intensity of the decrease in cholesterol transport by the low density lipoproteins. Despite this great advance there is still a residual risk of cardiovascular events. For this reason, an increase in the levels of high density lipoprotein is considered in order to boost the main action of this lipoprotein, which is reverse cholesterol transport. Distinct classes of evidence (epidemiological, genetic, and pathophysiological) show that the inhibition and/or modulation of cholesterol ester transfer protein increases plasma high density lipoprotein-cholesterol levels. The main reason for presenting this review is to look at the physiology of cholesterol ester transfer protein, its interrelationship with high density lipoproteins, and to give an update on the development of different cholesterol ester transfer protein inhibitor/modulator molecules. PMID:24094503

  12. [A history and review of cholesterol ester transfer protein inhibitors and their contribution to the understanding of the physiology and pathophysiology of high density lipoprotein].

    PubMed

    Corral, Pablo; Schreier, Laura

    2014-01-01

    There is irrefutable evidence that statins reduce the risk of cardiovascular events in a magnitude proportional to the intensity of the decrease in cholesterol transport by the low density lipoproteins. Despite this great advance there is still a residual risk of cardiovascular events. For this reason, an increase in the levels of high density lipoprotein is considered in order to boost the main action of this lipoprotein, which is reverse cholesterol transport. Distinct classes of evidence (epidemiological, genetic, and pathophysiological) show that the inhibition and/or modulation of cholesterol ester transfer protein increases plasma high density lipoprotein-cholesterol levels. The main reason for presenting this review is to look at the physiology of cholesterol ester transfer protein, its interrelationship with high density lipoproteins, and to give an update on the development of different cholesterol ester transfer protein inhibitor/modulator molecules.

  13. High-Density Lipoproteins Rescue Diabetes-Impaired Angiogenesis via Scavenger Receptor Class B Type I.

    PubMed

    Tan, Joanne T M; Prosser, Hamish C G; Dunn, Louise L; Vanags, Laura Z; Ridiandries, Anisyah; Tsatralis, Tania; Leece, Laura; Clayton, Zoë E; Yuen, Sui Ching G; Robertson, Stacy; Lam, Yuen Ting; Celermajer, David S; Ng, Martin K C; Bursill, Christina A

    2016-10-01

    Disordered neovascularization and impaired wound healing are important contributors to diabetic vascular complications. We recently showed that high-density lipoproteins (HDLs) enhance ischemia-mediated neovascularization, and mounting evidence suggests HDL have antidiabetic properties. We therefore hypothesized that HDL rescue diabetes-impaired neovascularization. Streptozotocin-induced diabetic mice had reduced blood flow recovery and neovessel formation in a hindlimb ischemia model compared with nondiabetic mice. Reconstituted HDL (rHDL) infusions in diabetic mice restored blood flow recovery and capillary density to nondiabetic levels. Topical rHDL application rescued diabetes-impaired wound closure, wound angiogenesis, and capillary density. In vitro, rHDL increased key mediators involved in hypoxia-inducible factor-1α (HIF-1α) stabilization, including the phosphoinositide 3-kinase/Akt pathway, Siah1, and Siah2, and suppressed the prolyl hydroxylases (PHD) 2 and PHD3. rHDL rescued high glucose-induced impairment of tubulogenesis and vascular endothelial growth factor (VEGF) A protein production, a finding associated with enhanced phosphorylation of proangiogenic mediators VEGF receptor 2 and endothelial nitric oxide synthase. Siah1/2 small interfering RNA knockdown confirmed the importance of HIF-1α stability in mediating rHDL action. Lentiviral short hairpin RNA knockdown of scavenger receptor class B type I (SR-BI) in vitro and SR-BI(-/-) diabetic mice in vivo attenuated rHDL rescue of diabetes-impaired angiogenesis, indicating a key role for SR-BI. These findings provide a greater understanding of the vascular biological effects of HDL, with potential therapeutic implications for diabetic vascular complications. PMID:27284113

  14. Characterization of native and drug-loaded human low density lipoproteins.

    PubMed

    Westesen, K; Gerke, A; Koch, M H

    1995-02-01

    Low-density lipoproteins (LDLs), the physiological vehicles for lipids, are potentially useful drug delivery devices for (hydrophobic) drugs. The physicochemical characteristics of LDL loaded with the adriamycin derivative AD 32 or the N-mustard derivative WB 4291 were compared to that of native and reconstituted LDL at different temperatures. X-ray solution scattering indicates that loading with AD 32 has no detectable effect on the particle structure at room temperature, in contrast to WB 4291. According to 19F NMR data, AD 32 molecules are located in two distinct chemical environments with restricted motional freedom of the CF3 groups in samples stored as lyophilisates. 1H NMR signals from AD 32 were not observed, while those from WB 4291 could be distinguished from those of LDL constituents. WB 4291 molecules are in an environment with a higher motional freedom than AD 32 molecules. 1H NMR data suggest a higher fluidity of the core components for the WB-loaded LDLs compared to the other LDL preparations. While the motional freedom of the phospholipid head groups seems to be temperature independent, there is an increase in the mobility of the lipid components in the core region of the LDL particles with temperature. PMID:7738790

  15. Enhanced Sphingomyelinase Activity Contributes to the Apoptotic Capacity of Electronegative Low-Density Lipoprotein.

    PubMed

    Ke, Liang-Yin; Chan, Hua-Chen; Chen, Chih-Chieh; Lu, Jonathan; Marathe, Gopal K; Chu, Chih-Sheng; Chan, Hsiu-Chuan; Wang, Chung-Ya; Tung, Yi-Ching; McIntyre, Thomas M; Yen, Jeng-Hsien; Chen, Chu-Huang

    2016-02-11

    Sphingomyelinase (SMase) catalyzes the degradation of sphingomyelin to ceramide. In patients with metabolic syndrome or diabetes, circulating plasma ceramide levels are significantly higher than in normal individuals. Our data indicate that electronegative low-density lipoprotein (LDL) shows SMase activity, which leads to increased ceramide levels that can produce pro-inflammatory effects and susceptibility to aggregation. According to sequence alignment and protein structure predictions, the putative catalytic site of SMase activity is in the α2 region of apoB-100. To identify specific post-translational modifications of apoB100 near the catalytic region, we performed data-independent, parallel-fragmentation liquid chromatography/mass spectrometry (LC/MS(E)), followed by data analysis with ProteinLynx GlobalServer v2.4. Results showed that the serine of apoB100 in electronegative LDL was highly O-glycosylated, including S(1732), S(1959), S(2378), S(2408), and S(2429). These findings may support the changing of the α-helix/β-pleated sheets ratio in protein structure analysis. Further study is necessary to confirm the activation of SMase activity by electronegative LDL. PMID:26766134

  16. Spin-labeling study of the oxidative damage to low-density lipoprotein.

    PubMed

    Singh, R J; Feix, J B; Mchaourab, H S; Hogg, N; Kalyanaraman, B

    1995-06-20

    In this study, we have spin-labeled the lysine and cysteine residues of low-density lipoprotein (LDL) using N-4-(2,2,6,6-tetramethylpiperidinyl-1-oxyl-4-yl) maleimide (MAL-6) and succinimidyl-2,2,5,5-tetramethyl-3-pyrroline-1-oxyl-3-carboxylate (SSL), respectively. The electron spin resonance (ESR) spectrum of SSL bound to LDL indicated that the nitroxide moiety was relatively mobile. In contrast, the ESR spectrum of MAL-6 bound to LDL showed that the nitroxide moiety was rotationally restricted. Using the continuous-wave power saturation technique in the presence of hydrophobic and hydrophilic paramagnetic relaxing agents, we have determined that (i) approximately 60-70% of lysine-bound SSL is exposed to the aqueous phase, (ii) approximately 30-40% of SSL-LDL is buried in a hydrophobic region, and (iii) MAL-6 bound to LDL is localized predominantly in the hydrophobic region. During Cu(2+)-initiated oxidation of spin-labeled LDL, nitroxide labels located in a hydrophobic environment were predominantly degraded. Nitroxide destruction was inhibited by butylated hydroxytoluene, indicating the role of lipid peroxidation in this process. ESR data also showed that Cu2+ binding to lysine is essential for LDL oxidation. The spin label methodology may be useful for the investigation of site-specific radical reactions in LDL.

  17. Ethnicity and coronary artery disease: the role of high-density lipoprotein - a change in paradigm.

    PubMed

    Bravo, Katia; Velarde, Gladys P

    2015-01-01

    Cardiovascular disease (CVD) is the number one killer of men and women across ethnic groups in the USA. Health disparities in CVD, especially coronary artery disease (CAD), are well documented in the diverse American population. Despite efforts taken toward reducing cardiovascular health disparities, there are still gaps in its diagnosis and management. Current risk assessment guidelines consider high high-density lipoprotein (HDL) levels a protective factor against CAD, although its significance across races remains poorly understood. Recent clinical trials focused on increasing HDL levels have been disappointing. In this article, the authors have explored the role of HDL in CAD, have analyzed its significance across gender and ethnic groups and have challenged the broad application of widely used HDL level cutoffs in CAD risk assessment tools across these vulnerable groups. The current evidence suggests a paradigm change from HDL quantity to quality and function in future CVD risk research. This may better explain why some ethnic minority groups with a seemingly more benign lipid profile experience a higher CAD burden.

  18. l-Cystathionine Inhibits the Mitochondria-Mediated Macrophage Apoptosis Induced by Oxidized Low Density Lipoprotein

    PubMed Central

    Zhu, Mingzhu; Du, Junbao; Chen, Siyao; Liu, Angie Dong; Holmberg, Lukas; Chen, Yonghong; Zhang, Chunyu; Tang, Chaoshu; Jin, Hongfang

    2014-01-01

    This study was designed to investigate the regulatory role of l-cystathionine in human macrophage apoptosis induced by oxidized low density lipoprotein (ox-LDL) and its possible mechanisms. THP-1 cells were induced with phorbol 12-myristate 13-acetate (PMA) and differentiated into macrophages. Macrophages were incubated with ox-LDL after pretreatment with l-cystathionine. Superoxide anion, apoptosis, mitochondrial membrane potential, and mitochondrial permeability transition pore (MPTP) opening were examined. Caspase-9 activities and expression of cleaved caspase-3 were measured. The results showed that compared with control group, ox-LDL treatment significantly promoted superoxide anion generation, release of cytochrome c (cytc) from mitochondrion into cytoplasm, caspase-9 activities, cleavage of caspase-3, and cell apoptosis, in addition to reduced mitochondrial membrane potential as well as increased MPTP opening. However, 0.3 and 1.0 mmol/L l-cystathionine significantly reduced superoxide anion generation, increased mitochondrial membrane potential, and markedly decreased MPTP opening in ox-LDL + l-cystathionine macrophages. Moreover, compared to ox-LDL treated-cells, release of cytc from mitochondrion into cytoplasm, caspase-9 activities, cleavage of caspase-3, and apoptosis levels in l-cystathionine pretreated cells were profoundly attenuated. Taken together, our results suggested that l-cystathionine could antagonize mitochondria-mediated human macrophage apoptosis induced by ox-LDL via inhibition of cytc release and caspase activation. PMID:25514411

  19. Structure-based Design Targeted at LOX-1, a Receptor for Oxidized Low-Density Lipoprotein.

    PubMed

    Thakkar, Shraddha; Wang, Xianwei; Khaidakov, Magomed; Dai, Yao; Gokulan, Kuppan; Mehta, Jawahar L; Varughese, Kottayil I

    2015-01-01

    Atherosclerosis related cardiovascular diseases continue to be the primary cause of mortality in developed countries. The elevated level of low density lipoprotein (LDL) is generally considered to be the driver of atherosclerosis, but recent years have seen a shift in this perception in that the vascular plaque buildup is mainly caused by oxidized LDL (ox-LDL) rather than native-LDL. The scavenger receptor LOX-1 found in endothelial cells binds and internalizes ox-LDL which leads to the initiation of plaque formation in arteries. Using virtual screening techniques, we identified a few potential small molecule inhibitors of LOX-1 and tested their inhibitory potential using differential scanning fluorimetry and various cellular assays. Two of these molecules significantly reduced the uptake of ox-LDL by human endothelial cells, LOX-1 transcription and the activation of ERK1/2 and p38 MAPKs in human endothelial cells. In addition, these molecules suppressed ox-LDL-induced VCAM-1 expression and monocyte adhesion onto human endothelial cells demonstrating their therapeutic potential. PMID:26578342

  20. Terminalia bellirica Extract Inhibits Low-Density Lipoprotein Oxidation and Macrophage Inflammatory Response in Vitro.

    PubMed

    Tanaka, Miori; Kishimoto, Yoshimi; Saita, Emi; Suzuki-Sugihara, Norie; Kamiya, Tomoyasu; Taguchi, Chie; Iida, Kaoruko; Kondo, Kazuo

    2016-01-01

    The deciduous tree Terminalia bellirica found in Southeast Asia is extensively used in traditional Indian Ayurvedic medicine for the treatment of hypertension, rheumatism, and diabetes. The anti-atherogenic effect of Terminalia bellirica fruit has not been fully elucidated. Here, we investigated the effect of Terminalia bellirica extract (TBE) on low-density lipoprotein (LDL) oxidation and inflammation in macrophages. TBE showed 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical scavenging activity (EC50: 7.2 ± 1.2 μg/mL) and 15-lipoxygenase inhibitory activity. TBE also significantly inhibited free radical-induced LDL oxidation compared to the solvent control in vitro. In THP-1 macrophages, TBE treatment resulted in significant decreases of the mRNA expression of tumor necrosis factor-alpha (TNF-α), interleukin-1beta (IL-1β), and lectin-like oxidized LDL receptor-1 (LOX-1). TBE also reduced matrix metalloproteinase (MMP)-9 secretion and intracellular reactive oxygen species (ROS) production in THP-1 macrophages. These results show that TBE has the inhibitory effects on LDL oxidation and macrophage inflammatory response in vitro, suggesting that its in vivo use might inhibit atherosclerosis plaque progression. PMID:27314393

  1. Aggregation and fusion of low-density lipoproteins in vivo and in vitro

    PubMed Central

    Gursky, Olga

    2014-01-01

    Low-density lipoproteins (LDLs, also known as ‘bad cholesterol’) are the major carriers of circulating cholesterol and the main causative risk factor of atherosclerosis. Plasma LDLs are 20- to 25-nm nanoparticles containing a core of cholesterol esters surrounded by a phospholipid monolayer and a single copy of apolipoprotein B (550 kDa). An early sign of atherosclerosis is the accumulation of LDL-derived lipid droplets in the arterial wall. According to the widely accepted ‘response-to-retention hypothesis’, LDL binding to the extracellular matrix proteoglycans in the arterial intima induces hydrolytic and oxidative modifications that promote LDL aggregation and fusion. This enhances LDL uptake by the arterial macrophages and triggers a cascade of pathogenic responses that culminate in the development of atherosclerotic lesions. Hence, LDL aggregation, fusion, and lipid droplet formation are important early steps in atherogenesis. In vitro, a variety of enzymatic and nonenzymatic modifications of LDL can induce these reactions and thereby provide useful models for their detailed analysis. Here, we summarize current knowledge of the in vivo and in vitro modifications of LDLs leading to their aggregation, fusion, and lipid droplet formation; outline the techniques used to study these reactions; and propose a molecular mechanism that underlies these pro-atherogenic processes. Such knowledge is essential in identifying endogenous and exogenous factors that can promote or prevent LDL aggregation and fusion in vivo and to help establish new potential therapeutic targets to decelerate or even block these pathogenic reactions. PMID:25197325

  2. Rspo2 suppresses CD36-mediated apoptosis in oxidized low density lipoprotein-induced macrophages.

    PubMed

    Yan, Hui; Wang, Shuai; Li, Zhenwei; Sun, Zewei; Zan, Jie; Zhao, Wenting; Pan, Yanyun; Wang, Zhen; Wu, Mingjie; Zhu, Jianhua

    2016-10-01

    Oxidized low density lipoprotein (oxLDL)-induced apoptosis of macrophages contributes to the formation of atherosclerotic plaques. R‑spondin 2 (Rspo2), a member of the cysteine‑rich secreted proteins, has been shown to be involved in the oncogenesis of several types of cancer. It has also been found to be abundantly expressed among the four R‑spondin members in macrophages. The present study was performed to determine whether Rspo2 is involved in the ox‑LDL‑induced apoptosis of macrophages. It was identified that Rspo2 inhibited oxLDL‑induced apoptosis in the presence of endoplasmic reticulum (ER) stress activator using flow cytometry. In addition, Rspo2 was observed to suppress oxLDL‑induced ER stress and reactive oxygen species production as demonstrated by western blotting. Furthermore, analysis of the role of Rspo2 in macrophage lipid uptake identified that Rspo2 negatively regulated the Dil‑oxLDL uptake by inhibiting the expression of cluster of differentiation (CD)36, through the transcription factor, peroxisome proliferator‑activated receptor (PPAR)‑γ. The manipulation of Rspo2 had a direct effect on PPAR‑γ nuclear translocation. In addition, chromatin immunoprecipitation analysis revealed that Rspo2 manipulation led to regulation of the direct binding between PPAR‑γ and CD36. In conclusion, Rspo2 was found to have a negative regulatory effect during oxLDL‑induced macrophage apoptosis by regulating lipid uptake. PMID:27571704

  3. Equilibrium and kinetic studies of the interactions of a porphyrin with low-density lipoproteins.

    PubMed Central

    Bonneau, Stéphanie; Vever-Bizet, Christine; Morlière, Patrice; Mazière, Jean-Claude; Brault, Daniel

    2002-01-01

    Low-density lipoproteins (LDL) play a key role in the delivery of photosensitizers to tumor cells in photodynamic therapy. The interaction of deuteroporphyrin, an amphiphilic porphyrin, with LDL is examined at equilibrium and the kinetics of association/dissociation are determined by stopped-flow. Changes in apoprotein and porphyrin fluorescence suggest two classes of bound porphyrins. The first class, characterized by tryptophan fluorescence quenching, involves four well-defined sites. The affinity constant per site is 8.75 x 10(7) M(-1) (cumulative affinity 3.5 x 10(8) M(-1)). The second class corresponds to the incorporation of up to 50 molecules into the outer lipidic layer of LDL with an affinity constant of 2 x 10(8) M(-1). Stopped-flow experiments involving direct LDL porphyrin mixing or porphyrin transfer from preloaded LDL to albumin provide kinetic characterization of the two classes. The rate constants for dissociation of the first and second classes are 5.8 and 15 s(-1); the association rate constants are 5 x 10(8) M(-1) s(-1) per site and 3 x 10(9) M(-1) s(-1), respectively. Both fluorescence and kinetic analysis indicate that the first class involves regions at the boundary between lipids and the apoprotein. The kinetics of porphyrin-LDL interactions indicates that changes in the distribution of photosensitizers among various carriers could be very sensitive to the specific tumor microenvironment. PMID:12496113

  4. High-Density Lipoprotein-Mediated Transcellular Cholesterol Transport in Mouse Aortic Endothelial Cells

    PubMed Central

    Miao, LiXia; Okoro, Emmanuel U.; Cao, ZhiJan; Yang, Hong; Motley-Johnson, Evangeline; Guo, Zhongmao

    2015-01-01

    Accumulation of unesterified cholesterol-rich lipid vesicles in the subendothelial space contributes to atherogenesis. Transport of cholesterol from the subendothelial intima back to the circulating blood inhibits atherosclerosis development; however, the mechanism for this process has not been fully defined. Using cultured mouse aortic endothelial cells (MAECs), we observed that unesterified cholesterol can be transported across the endothelial cell monolayer from the basolateral to the apical compartment. Administration of high-density lipoprotein (HDL) or apolipoprotein AI (apoAI) to the apical compartment enhanced transendothelial cholesterol transport in a concentration-dependent manner. Knockdown of ATP-binding cassette transporter G1 (ABCG1) or scavenger receptor class B type I (SR-B1), or inhibition of SR-B1 diminished HDL-induced transendothelial cholesterol transport; while knockdown of ABCA1 reduced apoAI-mediated cholesterol transport. HDL enhanced phosphorylation of phosphatidylinositol 3-kinase (PI3K) and Akt in MAECs. However, inhibition PI3K or Akt did not reduce HDL-induced transendothelial cholesterol transport. These results suggest that HDL enhances transendothelial cholesterol transport by activation of a mechanism involving ABCA1, ABCA1 and SR-B1 but not involving PI3K and Akt. PMID:26255968

  5. Relative efficacy of antilipemic agents in non–high-density lipoprotein cholesterol reduction.

    PubMed

    Santee, Jennifer; Lindsey, Cameron; Pace, Heather

    2012-08-01

    The investigators sought to summarize the percentage reduction in non–high-density lipoprotein cholesterol (non-HDL-C) achieved with various antilipemic regimens and to determine whether certain antilipemic regimens have been proven more effective in lowering non-HDL-C. A search of MEDLINE, International Pharmaceutical Abstracts, and Iowa Drug Information Service Database from 1970 to May 2011 was performed. Criteria were used to exclude studies not published in English, studies with methodology limitations, and studies with variables that may affect efficacy beyond the antilipemic agent administered. Only randomized, controlled trials comparing medications approved by the Food and Drug Administration were reviewed to determine whether significant differences in percentage reduction in non-HDL-C had been observed between different medication regimens. A total of 51 trials reported data that could be used to determine the range of percentage reduction in non-HDL-C achieved by select antilipemic regimens. Of these 51 trials, 38 provided head-to-head comparisons of antilipemic regimens. Rosuvastatin and atorvastatin are the most potent 3-hydroxy-3-methylglutaryl coenzyme A reductase inhibitors (statins) in lowering non-HDL-C. Adding ezetimibe, fibric acid derivatives, and omega-3 fatty acids to antilipemic monotherapy may result in further reduction in non-HDL-C. Subjects with certain characteristics (eg, nonwhite) were not prevalent in these studies. PMID:22551562

  6. Antioxidant effects of 14 Chinese traditional medicinal herbs against human low-density lipoprotein oxidation

    PubMed Central

    Lin, Hsin-Hung; Charles, Albert Linton; Hsieh, Chang-Wei; Lee, Ya-Chi; Ciou, Jhih-Ying

    2014-01-01

    The relationship between the antioxidant activities and inhibitory effect of 14 Chinese medicinal herbs against oxidized low-density lipoprotein (LDL) formation was evaluated. Prolongation of the lag phase of LDL oxidation depended on the concentration of the herbs. The concentration of each herb that was able to prolong the lag time by about two-fold was calculated and expressed as doubling-time concentration. The lower the doubling-time concentration, the stronger the inhibitory effect exhibited toward LDL oxidation. Among them, Chrysanthemi Flos (Chrysanthemum morifolium ramat; 甘菊花 gān jú huā), Crataegi Fructus (Crataegus pinnatifida Bge. var. major N.E.Br.; 山楂 shān zhā), and Roselle (Hibiscus sabdariffa Linn.; 洛神 luò shén) showed significant inhibitory effects. Correlation coefficients between doubling-time concentration and radical-scavenging activities were high; the total phenolic content was also high. In conclusion, phenolic compounds contributed not only to antioxidant activities, but also to the inhibitory effect against LDL oxidation. Chrysanthemi Flos, Crataegi Fructus, and H. sabdariffa, with lower doubling-time concentrations, could be potent phytochemical agents to reduce LDL oxidation and prevent the progression of atherosclerosis. PMID:26151009

  7. Low-density Lipoprotein Improves Motility and Plasma Membrane Integrity of Cryopreserved Canine Epididymal Spermatozoa.

    PubMed

    Prapaiwan, N; Tharasanit, T; Punjachaipornpol, S; Yamtang, D; Roongsitthichai, A; Moonarmart, W; Kaeoket, K; Manee-In, S

    2016-05-01

    Cryopreservation of caudal epididymal spermatozoa is an effective technique to conserve genetic potentials of superior dogs when it is not possible to collect ejaculated spermatozoa. Although hen egg yolk is commonly supplemented into the semen extender, active substances within the egg yolk which protect sperm against cryoinjury remain to be discovered. Among its compositions, low-density lipoprotein (LDL) has been reported to have a cryoprotective property for sperm cryopreservation. However, the effects of LDL on dog epididymal spermatozoa during cryopreservation have not yet been investigated. This study aimed to investigate the effects of LDL on epididymal spermatozoa quality following cryopreservation and thawing. After routine castration of 12 dogs, caudal epididymides from individuals were separated from the testes and cut into a few pieces in a Tris-buffer. Spermatozoa recovered from each sample were examined at once for sperm quality and divided into six groups of extender: no LDL, 20% egg yolk, 4%, 8%, 16%, and 24% LDL, before cryopreservation. The sperm aliquots were then equilibrated and conventionally frozen. After thawing, sperm motility, morphology, plasma membrane integrity, and acrosome integrity were evaluated. The results revealed that 4% LDL and 20% egg yolk yielded significantly higher sperm motility (57.69% and 52.69%, respectively, p<0.05) than other LDLs. In addition, 4% LDL yielded the significantly highest plasma membrane integrity (70.54%, p<0.05). In conclusion, the supplementation of 4% LDL in Tris-glucose extender could be applied for cryopreservation of canine epididymal spermatozoa. PMID:26954170

  8. Low-density lipoprotein peptide-combined DNA nanocomplex as an efficient anticancer drug delivery vehicle.

    PubMed

    Zhang, Nan; Tao, Jun; Hua, Haiying; Sun, Pengchao; Zhao, Yongxing

    2015-08-01

    DNA is a type of potential biomaterials for drug delivery due to its nanoscale geometry, loading capacity of therapeutics, biocompatibility, and biodegradability. Unfortunately, DNA is easily degraded by DNases in the body circulation and has low intracellular uptake. In the present study, we selected three cationic polymers polyethylenimine (PEI), hexadecyl trimethyl ammonium bromide (CTAB), and low-density lipoprotein (LDL) receptor targeted peptide (RLT), to modify DNA and improve the issues. A potent anti-tumor anthracycline-doxorubicin (DOX) was intercalated into DNA non-covalently and the DOX/DNA was then combined with PEI, CTAB, and RLT, respectively. Compact nanocomplexes were formed by electrostatic interaction and could potentially protect DNA from DNases. More importantly, RLT had the potential to enhance intracellular uptake by LDL receptor mediated endocytosis. In a series of in vitro experiments, RLT complexed DNA enhanced intracellular delivery of DOX, increased tumor cell death and intracellular ROS production, and reduced intracellular elimination of DOX. All results suggested that the easily prepared and targeted RLT/DNA nanocomplexes had great potential to be developed into a formulation for doxorubicin with enhanced anti-tumor activity.

  9. Structure-based Design Targeted at LOX-1, a Receptor for Oxidized Low-Density Lipoprotein.

    PubMed

    Thakkar, Shraddha; Wang, Xianwei; Khaidakov, Magomed; Dai, Yao; Gokulan, Kuppan; Mehta, Jawahar L; Varughese, Kottayil I

    2015-11-18

    Atherosclerosis related cardiovascular diseases continue to be the primary cause of mortality in developed countries. The elevated level of low density lipoprotein (LDL) is generally considered to be the driver of atherosclerosis, but recent years have seen a shift in this perception in that the vascular plaque buildup is mainly caused by oxidized LDL (ox-LDL) rather than native-LDL. The scavenger receptor LOX-1 found in endothelial cells binds and internalizes ox-LDL which leads to the initiation of plaque formation in arteries. Using virtual screening techniques, we identified a few potential small molecule inhibitors of LOX-1 and tested their inhibitory potential using differential scanning fluorimetry and various cellular assays. Two of these molecules significantly reduced the uptake of ox-LDL by human endothelial cells, LOX-1 transcription and the activation of ERK1/2 and p38 MAPKs in human endothelial cells. In addition, these molecules suppressed ox-LDL-induced VCAM-1 expression and monocyte adhesion onto human endothelial cells demonstrating their therapeutic potential.

  10. Novel fluorescently labeled peptide compounds for detection of oxidized low-density lipoprotein at high specificity.

    PubMed

    Sato, Akira; Yamanaka, Hikaru; Oe, Keitaro; Yamazaki, Yoji; Ebina, Keiichi

    2014-10-01

    The probes for specific detection of oxidized low-density lipoprotein (ox-LDL) in plasma and in atherosclerotic plaques are expected to be useful for the identification, diagnosis, prevention, and treatment for atherosclerosis. In this study, to develop a fluorescent peptide probe for specific detection of ox-LDL, we investigated the interaction of fluorescein isothiocyanate (FITC)-labeled peptides with ox-LDL using polyacrylamide gel electrophoresis. Two heptapeptides (KWYKDGD and KP6) coupled through the ε-amino group of K at the N-terminus to FITC in the presence/absence of 6-amino-n-caproic acid (AC) linker to FITC--(FITC-AC)KP6 and (FITC)KP6--both bound with high specificity to ox-LDL in a dose-dependent manner. In contrast, a tetrapeptide (YKDG) labeled with FITC at the N-terminus and a pentapeptide (YKDGK) coupled through the ε-amino group of K at the C-terminus to FITC did not bind selectively to ox-LDL. Furthermore, (FITC)KP6 and (FITC-AC)KP6 bound with high specificity to the protein in mouse plasma (probably ox-LDL fraction). These findings strongly suggest that (FITC)KP6 and (FITC-AC)KP6 may be effective novel fluorescent probes for specific detection of ox-LDL.

  11. Oxidized low density lipoprotein increases acetylcholinesterase activity correlating with reactive oxygen species production.

    PubMed

    Yamchuen, Panit; Aimjongjun, Sathid; Limpeanchob, Nanteetip

    2014-12-01

    Hyperlipidemia, low density lipoproteins (LDL) and their oxidized forms, and oxidative stress are suspected to be a key combination in the onset of AD and acetylcholinesterase (AChE) plays a part in this pathology. The present study aimed to link these parameters using differentiated SH-SY5Y human neuroblastoma cells in culture. Both mildly and fully oxidized human LDL (mox- and fox-LDL), but not native (non-oxidized) LDL were cytotoxic in dose- and time-dependent patterns and this was accompanied by an increased production of intracellular reactive oxygen species (ROS). Oxidized LDL (10-200 μg/mL) augmented AChE activity after 4 and 24h treatments, respectively while the native LDL was without effect. The increased AChE with oxidized LDLs was accompanied by a proportionate increase in intracellular ROS formation (R=0.904). These findings support the notion that oxidized LDLs are cytotoxic and that their action on AChE may reduce central cholinergic transmission in AD and affirm AChE as a continued rational for anticholinesterase therapy but in conjunction with antioxidant/antihyperlipidemic cotreatments.

  12. Oxidized low-density lipoprotein (Oxidized LDL) and the risk of preeclampsia.

    PubMed

    Qiu, C; Phung, T T T; Vadachkoria, S; Muy-Rivera, M; Sanchez, S E; Williams, M A

    2006-01-01

    Oxidative stress plays an important role in the pathophysiology of preeclampsia. In a case-control study of 99 women with preeclampsia and 99 controls, we assessed maternal plasma oxidized low-density lipoprotein (oxidized LDL) in relation to preeclampsia risk. Logistic regression procedures were used to derive odds ratios (OR) and 95 % confidence intervals (CI). Plasma oxidized LDL was determined using enzyme immunoassay. Maternal plasma oxidized LDL was significantly positively correlated with lipids in both cases and controls. After adjusting for nulliparity, pre-pregnancy body mass index, physical inactivity, family history of chronic hypertension and plasma vitamin C concentrations, women who had elevated oxidized LDL concentrations ( > or = 50 U/l) experienced a 2.9-fold increased risk of preeclampsia when compared with women having lower oxidized LDL concentrations (95 % CI 1.4-5.9). The risk of preeclampsia was markedly increased in women who had both elevated oxidized LDL and elevated triglyceride concentrations (OR=8.9, 95 % CI 3.1-26.2). Women with both elevated oxidized LDL and low vitamin C concentrations experienced a 9.8-fold increased risk of preeclampsia (95 % CI 3.0-32.2). Our results confirm the role of oxidative stress in the pathogenesis of preeclampsia. Prospective studies are needed to determine if elevated oxidized LDL concentrations can predict the occurrence of preeclampsia.

  13. How Do PCSK9 Inhibitors Stack Up to Statins for Low-Density Lipoprotein Cholesterol Control?

    PubMed Central

    Zimmerman, Marj P.

    2015-01-01

    Despite advances in the approach toward treating hypercholesterolemia and widespread access to statin medications, not all people are able to reach target low-density lipoprotein cholesterol (LDL-C) levels to reduce their cardiovascular risk. Some of the reasons include the inability to tolerate statin therapy, LDL-C levels that remain high even in the presence of statin therapy, and a familial disorder that is characterized by extremely high levels of LDL-C. A new therapeutic class, proprotein convertase subtilisin/kexin type 9 (PCSK9) inhibitors, represents a novel and promising approach to reducing LDL-C levels using a mechanism at the LDL receptor level. The recent approval of the first 2 PCSK9 inhibitors and the anticipated approval of the third agent in this class within approximately 1 year may provide clinicians powerful new weapons to lower LDL-C levels in patients who are not satisfactorily managed with statins. However, the results of long-term studies of the ability of these new medications to influence cardiovascular outcomes will not be known for several years. PMID:26702335

  14. Clinical efficacy and safety of evolocumab for low-density lipoprotein cholesterol reduction.

    PubMed

    Henry, Courtney A; Lyon, Ronald A; Ling, Hua

    2016-01-01

    Multiple categories of medications have been developed to manage lipid profiles and reduce the risk of cardiovascular events in patients with heart disease. However, currently marketed medications have not solved the problems associated with preventing and treating cardiovascular diseases completely. A substantial population of patients cannot take advantage of statin therapy due to statin intolerance, heart failure, or kidney hemodialysis, suggesting a need for additional effective agents to reduce low-density lipoprotein cholesterol (LDL-C) levels. Proprotein convertase subtilisin/kexin type 9 (PCSK9) was discovered in 2003 and subsequently emerged as a novel target for LDL-C-lowering therapy. Evolocumab is a fully human monoclonal immunoglobulin G2 (IgG2) directed against human PCSK9. By inactivating PCSK9, evolocumab upregulates LDL receptors causing increased catabolism of LDL-C and the consequent reduction of LDL-C levels in blood. Overall, evolocumab has had notable efficacy, with LDL-C reduction ranging from 53% to 75% in monotherapy and combination therapies, and is associated with minor adverse effects. However, studies regarding the ability of evolocumab to reduce mortality as well as long-term safety concerns are limited. The fact that the drug was introduced at a cost much higher than the existing medications and shows a low incremental mortality benefit suggests that many payers will consider evolocumab to have an unfavorable cost-benefit ratio.

  15. High Density Lipoprotein: A Novel Target for Anti-Restenosis Therapy

    PubMed Central

    Yin, Kai; Agrawal, Devendra K

    2014-01-01

    Restenosis is an integral pathological process central to the recurrent vessel narrowing after interventional procedures. Although the mechanisms for restenosis are diverse in different pathological conditions, endothelial dysfunction, inflammation, vascular smooth muscle cell (SMC) proliferation and myofibroblasts transition have been thought to play crucial role in the development of restenosis. Indeed, there is an inverse relationship between high-density lipoprotein (HDL) levels and risk for coronary heart disease (CHD). However, relatively studies on the direct assessment of HDL effect on restenosis are limited. In addition to involvement in the cholesterol reverse transport (RCT), many vascular protective effects of HDL, including protection of endothelium, anti-inflammation, anti-thrombus actions, inhibition of SMC proliferation, and regulation by adventitial effects may contribute to the inhibition of restenosis, though the exact relationships between HDL and restenosis remain to be elucidated. This review summarizes the vascular protective effects of HDL, emphasizing the potential role of HDL in intimal hyperplasia and vascular remodeling, which may provide novel prophylactic and therapeutic strategies for anti-restenosis. PMID:25043950

  16. Effect of ethyl esterification of phenolic acids on low-density lipoprotein oxidation.

    PubMed

    Chalas, J; Claise, C; Edeas, M; Messaoudi, C; Vergnes, L; Abella, A; Lindenbaum, A

    2001-02-01

    Inhibition of copper-induced low-density lipoprotein (LDL) oxidation by phenolic acids and their ethyl esters was investigated. LDL oxidation was evaluated by the hydroperoxide concentration and the chromatographic pattern of apoprotein fractions after fast protein liquid chromatography (FPLC). Antiradical properties against 1,1-diphenyl-2-picryl hydrazyl (DPPH) radical and 2,2'-azobis(2-amidinopropane)dihydrochloride (AAPH) were also investigated, and lipophilicity determined by thin-layer chromatography. Caffeic acid at 5 microM and sinapic acid at 10 microM protected LDL against oxidation, inhibiting both hydroperoxide formation and the increase of apoprotein negative charge. Ferulic, gallic and p-hydroxy cinnamic acids were ineffective. Ethyl esterification increased the lipophilicity of the five acids, and enhanced the antioxidant properties of caffeic, sinapic and ferulic acids. Ethyl caffeate was protective at 1 microM. In contrast, gallic and p-hydroxy cinnamic ethyl esters were ineffective. Our results indicate that ethyl esterification of phenolic acids increases lipophilicity of their ethyl esters and may enable a better incorporation into the lipid layer of the LDL particle and the exertion of their antioxidant effect in the true site of lipoperoxidation. However, increasing lipophilicity is not the only mechanism able to potentiate preexisting antioxidant properties of molecules, and probably other mechanisms are implicated.

  17. Anti-psoriatic treatment extends beyond the skin: Recovering of high-density lipoprotein function

    PubMed Central

    Marsche, Gunther; Holzer, Michael; Wolf, Peter

    2016-01-01

    Epidemiological and clinical studies have shown a consistent association of psoriasis with systemic metabolic disorders including an increased prevalence of diabetes, obesity and cardiovascular disease. Psoriasis is accompanied by systemic inflammation and low levels of high-density lipoprotein (HDL)-cholesterol. Recent studies provided clear evidence that psoriasis affects HDL composition and function. HDL isolated from psoriatic patients showed a significantly impaired capability to mobilize cholesterol from macrophages, a crucial step in reverse cholesterol transport and markedly lower paraoxonase activity, a protein that co-transports with HDL in serum with well-known anti-atherogenic properties. Of particular interest, successful anti-psoriatic therapy significantly improved HDL composition and function independently of serum HDL-cholesterol levels. These novel findings suggest that the conventional approaches of evaluating cardiovascular risk in psoriasis may be in need of refinement. As these data argue for a loss of beneficial activities of HDL in psoriatic patients, altered HDL functionality should be considered when evaluating the lipid status of patients. PMID:24980461

  18. Intercorrelations among plasma high density lipoprotein, obesity and triglycerides in a normal population

    SciTech Connect

    Albrink, M.J.; Krauss, R.M.; Lindgren, F.T.; von der Groeben, J.; Pan, S.; Wood, P.D.

    1980-01-01

    The interrelationships among fatness measures, plasma triglycerides and high density lipoproteins (HDL) were examined in 131 normal adult subjects: 38 men aged 27 to 46, 50 men aged 47 to 66, 29 women aged 27 to 46 and 24 women aged 47 to 66. None of the women were taking estrogens or oral contraceptive medication. The HDL concentration was subdivided into HDL/sub 2b/, HDL/sub 2a/ and HDL by a computerized fitting of the total schileren pattern to reference schlieren patterns. Anthropometric measures employed included skinfolds at 3 sites, 2 weight/height indices and 2 girth measurements. A high correlation was found among the various fatness measures. These measures were negatively correlated with total HDL, reflecting the negative correlation between fatness measures and HDL/sub 2/ (as the sum of HDL/sub 2a/ and /sub 2b/). Fatness measures showed no relationship to HDL/sub 3/. There was also an inverse correlation between triglyceride concentration and HDL/sub 2/. No particular fatness measure was better than any other for demonstrating the inverse correlation with HDL but multiple correlations using all of the measures of obesity improved the correlations. Partial correlations controlling for fatness did not reduce any of the significnt correlations between triglycerides and HDL/sub 2/ to insignificance. The weak correlation between fatness and triglycerides was reduced to insigifnicance when controlled for HDL/sub 2/.

  19. Accumulation of 99mTc-low-density lipoprotein in human malignant glioma.

    PubMed Central

    Leppälä, J.; Kallio, M.; Nikula, T.; Nikkinen, P.; Liewendahl, K.; Jääskeläinen, J.; Savolainen, S.; Gylling, H.; Hiltunen, J.; Callaway, J.

    1995-01-01

    Low-density lipoprotein (LDL) uptake in gliomas was studied to find out if LDL has potential as a drug carrier of boron, especially for boron neutron capture therapy. Single photon emission tomography (SPET) was performed 2 h and 20 h after intravenous injection of autologous 99mTc-labelled LDL in four patients with untreated and five patients with recurrent glioma. 99mTc-LDL uptake was compared with the uptake of 99mTc-labelled human serum albumin (HSA), an established blood pool marker. The intra- and peritumoral distributions of radioactivity in the SPET images were not identical for radiolabelled LDL and HSA. The mean LDL tumour to brain ratio, determined from transversal SPET slices at 20 h post injection, was 1.5 in untreated and 2.2 in recurrent gliomas; the corresponding ratios for HSA were 1.6 and 3.4. The brain to blood ratio remained constant at 2 h and 20 h in both types of tumours. These data are not consistent with highly selective, homogeneous uptake of LDL in gliomas. However, the different tumoral distribution and rate of uptake of 99mTc-LDL, as compared with 99mTc-HSA, indicate that the uptake of LDL is different from that of HSA and that further studies on the mechanism of LDL uptake in glioma are warranted. Images Figure 1 Figure 2 Figure 3 Figure 4 PMID:7841057

  20. Prostaglandin E1 decreases the low-density-lipoprotein entry into rabbit arterial wall.

    PubMed Central

    Sinzinger, H.; Virgolini, I.; Lupattelli, G.; Molinari, E.; Gerakakis, A.; Angelberger, P.

    1991-01-01

    1. In 72 male rabbits fed a 1% cholesterol supplemented diet the effect of a 4 weeks daily infusion of prostaglandin E1 (PGE1, 20 micrograms kg-1 min-1 over 2 h) on [125I]-low density lipoprotein (LDL) accumulation (10 microCi; 0.5 mg protein ml-1) was examined versus sham-treatment after removal of the endothelium of the abdominal aorta by a Fogarthy catheter. 2. The uptake of [125I]-LDL was significantly (P less than 0.01) higher in endothelium-free aortic segments (showing the highest peak maximum at around 12 h after 125I-injection) as compared to aortic segments with endothelium intact (showing the lowest uptake of [125I]-LDL with the peak maximum at 48 h, last control time). Segments with the endothelium restored showed a similar LDL-retention curve to segments with endothelium however, being again significantly (P less than 0.01) higher. 3. PGE1-treatment caused reduction in LDL-accumulation, being significantly (P less than 0.001) pronounced in segments without endothelium and in segments with endothelium restored. 4. The findings indicate a beneficial effect of PGE1 in lipid metabolism by decreasing the LDL-influx into the arterial wall in-vivo. PMID:1933127

  1. Structure-based Design Targeted at LOX-1, a Receptor for Oxidized Low-Density Lipoprotein

    NASA Astrophysics Data System (ADS)

    Thakkar, Shraddha; Wang, Xianwei; Khaidakov, Magomed; Dai, Yao; Gokulan, Kuppan; Mehta, Jawahar L.; Varughese, Kottayil I.

    2015-11-01

    Atherosclerosis related cardiovascular diseases continue to be the primary cause of mortality in developed countries. The elevated level of low density lipoprotein (LDL) is generally considered to be the driver of atherosclerosis, but recent years have seen a shift in this perception in that the vascular plaque buildup is mainly caused by oxidized LDL (ox-LDL) rather than native-LDL. The scavenger receptor LOX-1 found in endothelial cells binds and internalizes ox-LDL which leads to the initiation of plaque formation in arteries. Using virtual screening techniques, we identified a few potential small molecule inhibitors of LOX-1 and tested their inhibitory potential using differential scanning fluorimetry and various cellular assays. Two of these molecules significantly reduced the uptake of ox-LDL by human endothelial cells, LOX-1 transcription and the activation of ERK1/2 and p38 MAPKs in human endothelial cells. In addition, these molecules suppressed ox-LDL-induced VCAM-1 expression and monocyte adhesion onto human endothelial cells demonstrating their therapeutic potential.

  2. Chitosan-modified carbon nanotubes-based platform for low-density lipoprotein detection.

    PubMed

    Ali, Md Azahar; Singh, Nawab; Srivastava, Saurabh; Agrawal, Ved V; John, Renu; Onoda, M; Malhotra, Bansi D

    2014-10-01

    We have fabricated an immunosensor based on carbon nanotubes and chitosan (CNT-CH) composite for detection of low density lipoprotein (LDL) molecules via electrochemical impedance technique. The CNT-CH composite deposited on indium tin oxide (ITO)-coated glass electrode has been used to covalently interact with anti-apolipoprotein B (antibody: AAB) via a co-entrapment method. The biofunctionalization of AAB on carboxylated CNT-CH surface has been confirmed by Fourier transform infrared spectroscopic and electron microscopic studies. The covalent functionalization of antibody on transducer surface reveals higher stability and reproducibility of the fabricated immunosensor. Electrochemical properties of the AAB/CNT-CH/ITO electrode have been investigated using cyclic voltammetric and impedimetric techniques. The impedimetric response of the AAB/CNT-CH/ITO immunoelectrode shows a high sensitivity of 0.953 Ω/(mg/dL)/cm(2) in a detection range of 0-120 mg/dL and low detection limit of 12.5 mg/dL with a regression coefficient of 0.996. The observed low value of association constant (0.34 M(-1)s(-1)) indicates high affinity of AAB/CNT-CH/ITO immunoelectrode towards LDL molecules. This fabricated immunosensor allows quantitative estimation of LDL concentration with distinguishable variation in the impedance signal.

  3. High-density lipoprotein-cholesterol and diet in a healthy elderly population.

    PubMed

    Hooper, P L; Garry, P J; Goodwin, J S; Hooper, E M; Leonard, A G

    1982-01-01

    This study examined how high-density lipoprotein-cholesterol (HDL-C) correlated with a 3-day food record of fat, protein, carbohydrate, and alcohol consumption in a group of 270 healthy subjects over age 60. HDL-C concentrations correlated with alcohol consumption (expressed as grams/day) (r = + .25, P less than .001), and inversely with total carbohydrate (r = - .18, P less than .01) and refined carbohydrate (r = - .17, P less than .01) ingestion (expressed as a percent of total caloric intake). Subjects consuming diets low in either total carbohydrate or refined carbohydrate had 10 to 20% higher HDL-C levels than did those consuming diets high in these food substances. The relationships between HDL-C levels and alcohol and carbohydrate ingestion were independent of other variables which correlated with HDL-C levels. Dietary fat (total fat, saturated fat, unsaturated fat, and cholesterol) did not correlate with HDL-C. LDL-cholesterol and triglyceride levels did not correlate with any dietary variable measured.

  4. The myeloperoxidase product hypochlorous acid generates irreversible high-density lipoprotein receptor inhibitors

    PubMed Central

    Binder, Veronika; Ljubojevic, Senka; Haybaeck, Johannes; Holzer, Michael; El-Gamal, Dalia; Schicho, Rudolf; Pieske, Burkert; Heinemann, Akos; Marsche, Gunther

    2014-01-01

    Objective Elevated levels of advanced oxidation protein products (AOPPs) have been described in several chronic inflammatory diseases, like chronic renal insufficiency, rheumatoid arthritis and atherosclerosis. Recent findings revealed that AOPPs are inhibitors of the major high-density lipoprotein (HDL) receptor, scavenger receptor class B, type 1 (SR-BI). Here we investigated what oxidation induced structural alterations convert plasma albumin into an HDL-receptor inhibitor. Approach and Results Exposure of albumin to the physiological oxidant, hypochlorous acid, generated high affinity SR-BI ligands. Protection of albumin lysine-residues prior exposure to hypochlorous acid as well as regeneration of N-chloramines after oxidation of albumin completely prevented binding of oxidized albumin to SR-BI, indicating that modification of albumin lysine-residues is required to generate SR-BI ligands. Of particular interest, N-chloramines within oxidized albumin promoted irreversible binding to SR-BI, resulting in permanent receptor blockade. We observed that the SR-BI inhibitory activity of albumin isolated from chronic kidney disease patients correlated with the content of the myeloperoxidase-specific oxidation product 3-chlorotyrosine and was associated with alterations in the composition of HDL. Conclusion Given that several potential atheroprotective activities of HDL are mediated by SR-BI, the present results raise the possibility that oxidized plasma albumin, through permanent SR-BI blockade, contributes to the pathophysiology of cardiovascular disease. PMID:23493288

  5. Sphingomyelin in High-Density Lipoproteins: Structural Role and Biological Function

    PubMed Central

    Martínez-Beamonte, Roberto; Lou-Bonafonte, Jose M.; Martínez-Gracia, María V.; Osada, Jesús

    2013-01-01

    High-density lipoprotein (HDL) levels are an inverse risk factor for cardiovascular diseases, and sphingomyelin (SM) is the second most abundant phospholipid component and the major sphingolipid in HDL. Considering the marked presence of SM, the present review has focused on the current knowledge about this phospholipid by addressing its variable distribution among HDL lipoparticles, how they acquire this phospholipid, and the important role that SM plays in regulating their fluidity and cholesterol efflux from different cells. In addition, plasma enzymes involved in HDL metabolism such as lecithin–cholesterol acyltransferase or phospholipid transfer protein are inhibited by HDL SM content. Likewise, HDL SM levels are influenced by dietary maneuvers (source of protein or fat), drugs (statins or diuretics) and modified in diseases such as diabetes, renal failure or Niemann–Pick disease. Furthermore, increased levels of HDL SM have been shown to be an inverse risk factor for coronary heart disease. The complexity of SM species, described using new lipidomic methodologies, and their distribution in different HDL particles under many experimental conditions are promising avenues for further research in the future. PMID:23571495

  6. Synthetic High-Density Lipoprotein-Like Nanoparticles as Cancer Therapy

    PubMed Central

    McMahon, Kaylin M.; Foit, Linda; Angeloni, Nicholas L.; Giles, Francis J.; Gordon, Leo I.; Thaxton, C. Shad

    2015-01-01

    High-density lipoproteins (HDL) are diverse natural nanoparticles that carry cholesterol and are best known for the role that they play in cardiovascular disease. However, due to their unique targeting capabilities, diverse molecular cargo, and natural functions beyond cholesterol transport, it is becoming increasingly appreciated that HDLs are critical to cancer development and progression. Accordingly, this chapter highlights ongoing research focused on the connections between HDL and cancer in order to design new drugs and targeted drug delivery vehicles. Research is focused on synthesizing biomimetic HDL-like nanoparticles (NP) that can be loaded with diverse therapeutic cargo (e.g. chemotherapies, nucleic acids, proteins) and specifically targeted to cancer cells. Beyond drug delivery, new data is emerging that HDL-like NPs may be therapeutically active in certain tumor types, for example B cell lymphoma. Overall, HDL-like NPs are becoming increasingly appreciated as targeted, biocompatible, and efficient therapies for cancer, and may soon become indispensable agents in the cancer therapeutic armamentarium. PMID:25895867

  7. How Do PCSK9 Inhibitors Stack Up to Statins for Low-Density Lipoprotein Cholesterol Control?

    PubMed

    Zimmerman, Marj P

    2015-11-01

    Despite advances in the approach toward treating hypercholesterolemia and widespread access to statin medications, not all people are able to reach target low-density lipoprotein cholesterol (LDL-C) levels to reduce their cardiovascular risk. Some of the reasons include the inability to tolerate statin therapy, LDL-C levels that remain high even in the presence of statin therapy, and a familial disorder that is characterized by extremely high levels of LDL-C. A new therapeutic class, proprotein convertase subtilisin/kexin type 9 (PCSK9) inhibitors, represents a novel and promising approach to reducing LDL-C levels using a mechanism at the LDL receptor level. The recent approval of the first 2 PCSK9 inhibitors and the anticipated approval of the third agent in this class within approximately 1 year may provide clinicians powerful new weapons to lower LDL-C levels in patients who are not satisfactorily managed with statins. However, the results of long-term studies of the ability of these new medications to influence cardiovascular outcomes will not be known for several years. PMID:26702335

  8. Reduction of low-density lipoprotein cholesterol by monoclonal antibody inhibition of PCSK9.

    PubMed

    Stein, Evan A; Raal, Frederick

    2014-01-01

    Published phase I and II trials with two fully human monoclonal antibodies to PCSK9 have provided comprehensive evidence that inhibiting PCSK9 is a very effective method to reduce low-density lipoprotein cholesterol (LDL-C). In all populations studied so far, whether on statins or LDL-C-reducing diet alone, with or without a genetic defect in the LDL receptor, and in subjects intolerant to statins, the LDL-C reductions have been large and consistent. Even the most efficacious statin, rosuvastatin, at its highest dose has not achieved such reductions. The clinical trials have established that monoclonal antibody therapy targeted to PCSK9 may be administered subcutaneously every two or four weeks. Current data suggest these drugs will provide an effective therapeutic option for LDL-C reduction and that, if proven safe in phase III trials, they will be as important to LDL-C control, and likely to cardiovascular disease risk reduction, as statins have been over the past three decades. PMID:24422577

  9. The effects of ascorbate and dehydroascorbate on the oxidation of low-density lipoprotein.

    PubMed Central

    Stait, S E; Leake, D S

    1996-01-01

    Ascorbate at concentrations of 60-100 microM inhibits the modification of freshly prepared low-density lipoprotein (LDL) by macrophages. With 'moderately oxidized' LDL (produced by prolonged storage in a refrigerator), however, ascorbate does not inhibit LDL modification by macrophages and actually modifies the LDL itself in the absence of macrophages [Stait and Leake (1994) FEBS Lett. 341, 263-267]. We have now shown that dehydroascorbate can modify both 'fresh' LDL and moderately oxidized LDL in a dose-dependent manner to increase its uptake by macrophages. The modification of moderately oxidized LDL by ascorbate and dehydroascorbate or of 'fresh' LDL by dehydroascorbate is dependent on the presence of iron or copper. In 'fresh' LDL, ascorbate inhibited conjugated-diene formation by copper. In moderately oxidized LDL, the number of conjugated dienes present was decreased rapidly in the presence of copper and ascorbate. Dehydroascorbate decreased the lag phase and increased the rate of copper-induced conjugated-diene formation in 'fresh' LDL (although in some experiments it inhibited the formation of conjugated dienes). The ascorbate-modified moderately oxidized LDL was taken up by macrophages by their scavenger receptors, as the uptake was inhibited by polyinosinic acid or fucoidan. Ascorbate and dehydroascorbate therefore have the potential to increase LDL oxidation under certain conditions, but whether or not they do so in vivo is unknown. PMID:8973543

  10. Whole-Cell Analysis of Low-Density Lipoprotein Uptake by Macrophages Using STEM Tomography

    PubMed Central

    Baudoin, Jean-Pierre; Jerome, W. Gray; Kübel, Christian; de Jonge, Niels

    2013-01-01

    Nanoparticles of heavy materials such as gold can be used as markers in quantitative electron microscopic studies of protein distributions in cells with nanometer spatial resolution. Studying nanoparticles within the context of cells is also relevant for nanotoxicological research. Here, we report a method to quantify the locations and the number of nanoparticles, and of clusters of nanoparticles inside whole eukaryotic cells in three dimensions using scanning transmission electron microscopy (STEM) tomography. Whole-mount fixed cellular samples were prepared, avoiding sectioning or slicing. The level of membrane staining was kept much lower than is common practice in transmission electron microscopy (TEM), such that the nanoparticles could be detected throughout the entire cellular thickness. Tilt-series were recorded with a limited tilt-range of 80° thereby preventing excessive beam broadening occurring at higher tilt angles. The 3D locations of the nanoparticles were nevertheless determined with high precision using computation. The obtained information differed from that obtained with conventional TEM tomography data since the nanoparticles were highlighted while only faint contrast was obtained on the cellular material. Similar as in fluorescence microscopy, a particular set of labels can be studied. This method was applied to study the fate of sequentially up-taken low-density lipoprotein (LDL) conjugated to gold nanoparticles in macrophages. Analysis of a 3D reconstruction revealed that newly up-taken LDL-gold was delivered to lysosomes containing previously up-taken LDL-gold thereby forming onion-like clusters. PMID:23383042

  11. A Systems Genetic Analysis of High Density Lipoprotein Metabolism and Network Preservation across Mouse Models

    PubMed Central

    Langfelder, Peter; Castellani, Lawrence W.; Zhou, Zhiqiang; Paul, Eric; Davis, Richard; Schadt, Eric E.; Lusis, Aldons J.; Horvath, Steve; Mehrabian, Margarete

    2011-01-01

    We report a systems genetics analysis of high density lipoproteins (HDL) levels in an F2 intercross between inbred strains CAST/EiJ and C57BL/6J. We previously showed that there are dramatic differences in HDL metabolism in a cross between these strains, and we now report co-expression network analysis of HDL that integrates global expression data from liver and adipose with relevant metabolic traits. Using data from a total of 293 F2 intercross mice, we constructed weighted gene co-expression networks and identified modules (subnetworks) associated with HDL and clinical traits. These were examined for genes implicated in HDL levels based on large human genome-wide associations studies (GWAS) and examined with respect to conservation between tissue and sexes in a total of 9 data sets. We identify genes that are consistently ranked high by association with HDL across the 9 data sets. We focus in particular on two genes, Wfdc2 and Hdac3, that are located in close proximity to HDL QTL peaks where causal testing indicates that they may affect HDL. Our results provide a rich resource for studies of complex metabolic interactions involving HDL. PMID:21807117

  12. Functional Differences of Very-Low-Density Lipoprotein Receptor Splice Variants in Regulating Wnt Signaling

    PubMed Central

    Chen, Qian; Takahashi, Yusuke; Oka, Kazuhiro

    2016-01-01

    The very-low-density lipoprotein receptor (VLDLR) negatively regulates Wnt signaling. VLDLR has two major alternative splice variants, VLDLRI and VLDLRII, but their biological significance and distinction are unknown. Here we found that most tissues expressed both VLDLRI and VLDLRII, while the retina expressed only VLDLRII. The shed soluble VLDLR extracellular domain (sVLDLR-N) was detected in the conditioned medium of retinal pigment epithelial cells, interphotoreceptor matrix, and mouse plasma, indicating that ectodomain shedding of VLDLR occurs endogenously. VLDLRII displayed a higher ectodomain shedding rate and a more potent inhibitory effect on Wnt signaling than VLDLRI in vitro and in vivo. O-glycosylation, which is present in VLDLRI but not VLDLRII, determined the differential ectodomain shedding rates. Moreover, the release of sVLDLR-N was inhibited by a metalloproteinase inhibitor, TAPI-1, while it was promoted by phorbol 12-myristate 13-acetate (PMA). In addition, sVLDLR-N shedding was suppressed under hypoxia. Further, plasma levels of sVLDLR-N were reduced in both type 1 and type 2 diabetic mouse models. We concluded that VLDLRI and VLDLRII had differential roles in regulating Wnt signaling and that decreased plasma levels of sVLDLR-N may contribute to Wnt signaling activation in diabetic complications. Our study reveals a novel mechanism for intercellular regulation of Wnt signaling through VLDLR ectodomain shedding. PMID:27528615

  13. Ordering and stability in lipid droplets with applications to low-density lipoproteins.

    PubMed

    Lancaster, Jarrett L; Antonijevic, Todor; Starobin, Joseph M

    2014-06-01

    In this article, we present a framework for investigating the order-disorder transition in lipid droplets using the standard Ising model. While a single lipid droplet is itself a complex system whose constituent cholesteryl esters each possesses many degrees of freedom, we present justification for using this effective approach to isolate the underlying physics. It is argued that the behavior of the esters confined within lipid droplets is significantly different from that of a bulk system of similar esters, which is adequately described by continuum mean-field theory in the thermodynamic limit. When the droplet's shell is modeled as an elastic membrane, a simple picture emerges for a transition between two ordered phases within the core which is tuned by the strength of interactions between the esters. Triglyceride concentration is proposed as a variable which strongly influences the strength of interactions between cholesteryl esters within droplets. The possible relevance of this mechanism to the well known atherogenic nature of small low-density lipoprotein particles is discussed in detail.

  14. Oxidized low-density lipoproteins upregulate proline oxidase to initiate ROS-dependent autophagy.

    PubMed

    Zabirnyk, Olga; Liu, Wei; Khalil, Shadi; Sharma, Anit; Phang, James M

    2010-03-01

    Epidemiological studies showed that high levels of oxidized low-density lipoproteins (oxLDLs) are associated with increased cancer risk. We examined the direct effect of physiologic concentrations oxLDL on cancer cells. OxLDLs were cytotoxic and activate both apoptosis and autophagy. OxLDLs have ligands for peroxisome proliferator-activated receptor gamma and upregulated proline oxidase (POX) through this nuclear receptor. We identified 7-ketocholesterol (7KC) as a main component responsible for the latter. To elucidate the role of POX in oxLDL-mediated cytotoxicity, we knocked down POX via small interfering RNA and found that this (i) further reduced viability of cancer cells treated with oxLDL; (ii) decreased oxLDL-associated reactive oxygen species generation; (iii) decreased autophagy measured via beclin-1 protein level and light-chain 3 protein (LC3)-I into LC3-II conversion. Using POX-expressing cell model, we established that single POX overexpression was sufficient to activate autophagy. Thus, it led to autophagosomes accumulation and increased conversion of LC3-I into LC3-II. Moreover, beclin-1 gene expression was directly dependent on POX catalytic activity, namely the generation of POX-dependent superoxide. We conclude that POX is critical in the cellular response to the noxious effects of oxLDL by activating protective autophagy.

  15. Cell-density-dependent expression of Borrelia burgdorferi lipoproteins in vitro.

    PubMed Central

    Indest, K J; Ramamoorthy, R; Solé, M; Gilmore, R D; Johnson, B J; Philipp, M T

    1997-01-01

    Previously, we had identified non-OspA-OspB surface proteins of Borrelia burgdorferi that are targeted by the antibody-dependent complement-mediated killing mechanism. Here we demonstrate by Western blotting that one of these proteins, P35, is upregulated at the onset of stationary phase in vitro. Northern analysis revealed that the upregulation of P35 is at the level of transcription. In addition, the expression of an open reading frame (ORF) located downstream of the p35 gene was found to be regulated in the same fashion as that of P35. This ORF encodes a 7.5-kDa lipoprotein. The transcriptional start sites for both of these genes were determined, to aid in the identification of the putative promoter regions. Additional sequencing of the 5' flanking region of the p35 gene revealed a region of dyad symmetry 52 bp upstream of the transcription start site. Southern analysis demonstrated that the expression of these genes was not due to a cell-density-dependent rearrangement in the genome of B. burgdorferi. These findings provide an in vitro model for studying mechanisms of gene regulation in B. burgdorferi. PMID:9119447

  16. Acceleration of atherogenesis by COX-1-dependent prostanoid formation in low density lipoprotein receptor knockout mice.

    PubMed

    Praticò, D; Tillmann, C; Zhang, Z B; Li, H; FitzGerald, G A

    2001-03-13

    The cyclooxygenase (COX) product, prostacyclin (PGI(2)), inhibits platelet activation and vascular smooth-muscle cell migration and proliferation. Biochemically selective inhibition of COX-2 reduces PGI(2) biosynthesis substantially in humans. Because deletion of the PGI(2) receptor accelerates atherogenesis in the fat-fed low density lipoprotein receptor knockout mouse, we wished to determine whether selective inhibition of COX-2 would accelerate atherogenesis in this model. To address this hypothesis, we used dosing with nimesulide, which inhibited COX-2 ex vivo, depressed urinary 2,3 dinor 6-keto PGF(1alpha) by approximately 60% but had no effect on thromboxane formation by platelets, which only express COX-1. By contrast, the isoform nonspecific inhibitor, indomethacin, suppressed platelet function and thromboxane formation ex vivo and in vivo, coincident with effects on PGI(2) biosynthesis indistinguishable from nimesulide. Indomethacin reduced the extent of atherosclerosis by 55 +/- 4%, whereas nimesulide failed to increase the rate of atherogenesis. Despite their divergent effects on atherogenesis, both drugs depressed two indices of systemic inflammation, soluble intracellular adhesion molecule-1, and monocyte chemoattractant protein-1 to a similar but incomplete degree. Neither drug altered serum lipids and the marked increase in vascular expression of COX-2 during atherogenesis. Accelerated progression of atherosclerosis is unlikely during chronic intake of specific COX-2 inhibitors. Furthermore, evidence that COX-1-derived prostanoids contribute to atherogenesis suggests that controlled evaluation of the effects of nonsteroidal anti-inflammatory drugs and/or aspirin on plaque progression in humans is timely.

  17. A statin-loaded reconstituted high-density lipoprotein nanoparticle inhibits atherosclerotic plaque inflammation

    NASA Astrophysics Data System (ADS)

    Duivenvoorden, Raphaël; Tang, Jun; Cormode, David P.; Mieszawska, Aneta J.; Izquierdo-Garcia, David; Ozcan, Canturk; Otten, Maarten J.; Zaidi, Neeha; Lobatto, Mark E.; van Rijs, Sarian M.; Priem, Bram; Kuan, Emma L.; Martel, Catherine; Hewing, Bernd; Sager, Hendrik; Nahrendorf, Matthias; Randolph, Gwendalyn J.; Stroes, Erik S. G.; Fuster, Valentin; Fisher, Edward A.; Fayad, Zahi A.; Mulder, Willem J. M.

    2014-01-01

    Inflammation is a key feature of atherosclerosis and a target for therapy. Statins have potent anti-inflammatory properties but these cannot be fully exploited with oral statin therapy due to low systemic bioavailability. Here we present an injectable reconstituted high-density lipoprotein (rHDL) nanoparticle carrier vehicle that delivers statins to atherosclerotic plaques. We demonstrate the anti-inflammatory effect of statin-rHDL in vitro and show that this effect is mediated through the inhibition of the mevalonate pathway. We also apply statin-rHDL nanoparticles in vivo in an apolipoprotein E-knockout mouse model of atherosclerosis and show that they accumulate in atherosclerotic lesions in which they directly affect plaque macrophages. Finally, we demonstrate that a 3-month low-dose statin-rHDL treatment regimen inhibits plaque inflammation progression, while a 1-week high-dose regimen markedly decreases inflammation in advanced atherosclerotic plaques. Statin-rHDL represents a novel potent atherosclerosis nanotherapy that directly affects plaque inflammation.

  18. Targeted Delivery of Small Interfering RNA Using Reconstituted High-Density Lipoprotein Nanoparticles12

    PubMed Central

    Shahzad, Mian MK; Mangala, Lingegowda S; Han, Hee Dong; Lu, Chunhua; Bottsford-Miller, Justin; Nishimura, Masato; Mora, Edna M; Lee, Jeong-Won; Stone, Rebecca L; Pecot, Chad V; Thanapprapasr, Duangmani; Roh, Ju-Won; Gaur, Puja; Nair, Maya P; Park, Yun-Yong; Sabnis, Nirupama; Deavers, Michael T; Lee, Ju-Seog; Ellis, Lee M; Lopez-Berestein, Gabriel; McConathy, Walter J; Prokai, Laszlo; Lacko, Andras G; Sood, Anil K

    2011-01-01

    RNA interference holds tremendous potential as a therapeutic approach, especially in the treatment of malignant tumors. However, efficient and biocompatible delivery methods are needed for systemic delivery of small interfering RNA (siRNA). To maintain a high level of growth, tumor cells scavenge high-density lipoprotein (HDL) particles by overexpressing its receptor: scavenger receptor type B1 (SR-B1). In this study, we exploited this cellular characteristic to achieve efficient siRNA delivery and established a novel formulation of siRNA by incorporating it into reconstituted HDL (rHDL) nanoparticles. Here, we demonstrate that rHDL nanoparticles facilitate highly efficient systemic delivery of siRNA in vivo, mediated by the SR-B1. Moreover, in therapeutic proof-of-concept studies, these nanoparticles were effective in silencing the expression of two proteins that are key to cancer growth and metastasis (signal transducer and activator of transcription 3 and focal adhesion kinase) in orthotopic mouse models of ovarian and colorectal cancer. These data indicate that an rHDL nanoparticle is a novel and highly efficient siRNA carrier, and therefore, this novel technology could serve as the foundation for new cancer therapeutic approaches. PMID:21472135

  19. High-density lipoprotein and atherosclerosis regression: evidence from preclinical and clinical studies.

    PubMed

    Feig, Jonathan E; Hewing, Bernd; Smith, Jonathan D; Hazen, Stanley L; Fisher, Edward A

    2014-01-01

    High-density lipoprotein (HDL) particles transport (among other molecules) cholesterol (HDL-C). In epidemiological studies, plasma HDL-C levels have an inverse relationship to the risk of atherosclerotic cardiovascular disease. It has been assumed that this reflects the protective functions of HDL, which include their ability to promote cholesterol efflux. Yet, several recent pharmacological and genetic studies have failed to demonstrate that increased plasma levels of HDL-C resulted in decreased cardiovascular disease risk, giving rise to a controversy regarding whether plasma levels of HDL-C reflect HDL function, or that HDL is even as protective as assumed. The evidence from preclinical and (limited) clinical studies shows that HDL can promote the regression of atherosclerosis when the levels of functional particles are increased from endogenous or exogenous sources. The data show that regression results from a combination of reduced plaque lipid and macrophage contents, as well as from a reduction in its inflammatory state. Although more research will be needed regarding basic mechanisms and to establish that these changes translate clinically to reduced cardiovascular disease events, that HDL can regress plaques suggests that the recent trial failures do not eliminate HDL from consideration as an atheroprotective agent but rather emphasizes the important distinction between HDL function and plasma levels of HDL-C.

  20. The advantages of combining low-density lipoproteins with glutamine for cryopreservation of canine semen.

    PubMed

    Bencharif, D; Amirat, L; Pascal, O; Anton, M; Schmitt, E; Desherces, S; Delhomme, G; Langlois, M-L; Barrière, P; Larrat, M; Tainturier, D

    2010-04-01

    Twenty sperm samples from five dogs were frozen in liquid nitrogen at -196 degrees C in 16 different media, two control media containing 20% egg yolk and 6% low-density lipoproteins (LDL); 10 test media containing 6% LDL (the active cryoprotective ingredient of chicken egg yolk) combined with 10, 20, 30, 40, 50, 60, 70, 80, 90, and 100 mmol of glutamine respectively at 4%, 5%, 7%, and 8% LDL. Following thawing, sperm mobility was assessed using an image analyser, HAMILTON THORN CERROS 12. The percentage of mobile spermatozoa was 62.05% in the 6% LDL + 20 mmol glutamine medium compared with 48.90% in the egg yolk-based medium (p < 0.05) or 57.55% for the 6% LDL medium (p < 0.05). Furthermore, in most cases, the motility parameters (average path velocity, curvilinear velocity, straight line velocity) in the 6% LDL + 20 mmol glutamine medium, were superior, to a statistically significant extent, to those in the control media. Finally, the 6% LDL + 20 mmol glutamine combination provides spermatozoa with better protection during freezing than egg yolk or the 6% LDL medium alone in terms of acrosome integrity (fluorescein isothiocyanate--Pisum sativum agglutinin test: p < 0.05), the flagellar plasma membrane (hypo-osmotic test: p < 0.05 for 6% LDL), the DNA (acridine orange test; no significant difference) and the integrity of the acrosome (Spermac test: no significant difference).

  1. Bile acids reduce endocytosis of high-density lipoprotein (HDL) in HepG2 cells.

    PubMed

    Röhrl, Clemens; Eigner, Karin; Fruhwürth, Stefanie; Stangl, Herbert

    2014-01-01

    High-density lipoprotein (HDL) transports lipids to hepatic cells and the majority of HDL-associated cholesterol is destined for biliary excretion. Cholesterol is excreted into the bile directly or after conversion to bile acids, which are also present in the plasma as they are effectively reabsorbed through the enterohepatic cycle. Here, we provide evidence that bile acids affect HDL endocytosis. Using fluorescent and radiolabeled HDL, we show that HDL endocytosis was reduced in the presence of high concentrations of taurocholate, a natural non-cell-permeable bile acid, in human hepatic HepG2 and HuH7 cells. In contrast, selective cholesteryl-ester (CE) uptake was increased. Taurocholate exerted these effects extracellularly and independently of HDL modification, cell membrane perturbation or blocking of endocytic trafficking. Instead, this reduction of endocytosis and increase in selective uptake was dependent on SR-BI. In addition, cell-permeable bile acids reduced HDL endocytosis by farnesoid X receptor (FXR) activation: chenodeoxycholate and the non-steroidal FXR agonist GW4064 reduced HDL endocytosis, whereas selective CE uptake was unaltered. Reduced HDL endocytosis by FXR activation was independent of SR-BI and was likely mediated by impaired expression of the scavenger receptor cluster of differentiation 36 (CD36). Taken together we have shown that bile acids reduce HDL endocytosis by transcriptional and non-transcriptional mechanisms. Further, we suggest that HDL endocytosis and selective lipid uptake are not necessarily tightly linked to each other.

  2. Metabolism of low-density lipoprotein free cholesterol by human plasma lecithin-cholesterol acyltransferase

    SciTech Connect

    Fielding, P.E.; Miida, Takashi; Fielding, C.J. )

    1991-09-03

    The metabolism of cholesterol derived from ({sup 3}H) cholesterol-labeled low-density lipoprotein (LDL) was determined in human blood plasma. LDL-derived free cholesterol first appeared in large {alpha}-migrating HDL (HDL{sub 2}) and was then transferred to small {alpha}-HDL (HDL{sub 3}) for esterification. The major part of such esters was retained within HDL of increasing size in the course of lecithin-cholesterol acyltransferase (LCAT) activity; the balance was recovered in LDL. Transfer of preformed cholesteryl esters within HDL contributed little to the labeled cholesteryl ester accumulating HDL{sub 2}. When cholesterol for esterification was derived instead from cell membranes, a significantly smaller proportion of this cholesteryl ester was subsequently recovered in LDL. These data suggest compartmentation of cholesteryl esters within plasma that have been formed from cell membrane or LDL free cholesterol, and the role for HDL{sub 2} as a relatively unreactive sink for LCAT-derived cholesteryl esters.

  3. Drinking deep seawater decreases serum total and low-density lipoprotein-cholesterol in hypercholesterolemic subjects.

    PubMed

    Fu, Zhao-Yang; Yang, Feili Lo; Hsu, Hsin-Wen; Lu, Yi-Fa

    2012-06-01

    Drinking deep seawater (DSW) with high levels of magnesium (Mg) decreased serum lipids in animal studies. Therefore the effects of drinking DSW on blood lipids and its antioxidant capacity in hypercholesterolemic subjects were investigated. DSW was first prepared by a process of filtration and reverse osmosis, and then the concentrated DSW with high levels of Mg was diluted as drinking DSW. Forty-two hypercholesterolemic volunteers were randomly divided into three groups: reverse osmotic (RO) water, DSW (Mg: 395 mg/L, hardness 1410 ppm), and magnesium-chloride fortified (MCF) water (Mg: 386 mg/L, hardness 1430 ppm). The subjects drank 1050 mL of water daily for 6 weeks, and blood samples were collected and analyzed on weeks 0, 3, and 6. Drinking DSW caused a decrease in blood total cholesterol levels and this effect was progressively enhanced with time. Serum low-density lipoprotein-cholesterol (LDL-C) was also decreased by DSW. Further, total cholesterol levels of subjects in the DSW group were significantly lower than those in the MCF water or RO water groups. Compared with week 0, the DSW group had higher blood Mg level on weeks 3 and 6, but the Mg levels were within the normal range in all three groups. DSW consumption also lowered thiobarbituric acid-reactive substances (TBARS) values in serum. In conclusion, DSW was apparently effective in reducing blood total cholesterol and LDL-C, and also in decreasing lipid peroxidation in hypercholesterolemic subjects.

  4. Cellular uptake of a dexamethasone palmitate-low density lipoprotein complex by macrophages and foam cells.

    PubMed

    Tauchi, Yoshihiko; Chono, Sumio; Morimoto, Kazuhiro

    2003-04-01

    To evaluate the utility of a dexamethasone palmitate (DP)-low density lipoprotein (LDL) complex to transport drug into foam cells, the cellular uptake of DP-LDL complex by macrophages and foam cells was examined. The DP-LDL complex was prepared by incubation with DP and LDL, and the DP-LDL complex and murine macrophages were incubated. No cellular uptake of the DP-LDL complex by macrophages was found until 6 h after the start of incubation, but this gradually increased from 12 to 48 h. On the other hand, the cellular uptake of the oxidized DP-LDL complex was already apparent at 3 h after the start incubation, and then markedly increased until 48 h incubation along with that of the lipid emulsion (LE) containing DP (DP-LE). The cellular uptake of DP-LE by foam cells was significantly lower than that by macrophages. However, the cellular uptake of DP-LDL complex by foam cells was similar to that by macrophages. These findings suggest that the DP-LDL complex is oxidatively modified, and then incorporated into macrophages and foam cells through the scavenger receptor pathway. Since selective delivery of drugs into foam cells in the early stage of atherosclerosis is a useful protocol for antiatherosclerosis treatment, the DP-LDL complex appears to be a potentially useful drug-carrier complex for future antiatherosclerotic therapy.

  5. Fluorescence correlation spectroscopy to measure the metabolism of high-density lipoprotein

    NASA Astrophysics Data System (ADS)

    Deitrick, Russell; Gibson, Emily; Razzaghi, Hamid

    2009-10-01

    High-density lipoprotein (HDL), referred to as the ``good cholesterol'', carries free cholesterol to the liver to be filtered from the bloodstream and is important to our understanding of atherosclerosis. HDL is metabolized in part by the enzyme Endothelial Lipase (EL). With this project we will use fluorescence correlation spectroscopy (FCS) to study the metabolism of HDL by EL comparing wild type with different genetic mutations. FCS is an advanced microscopy technique in which we record fluctuations in the fluorescence of dye-labeled molecules (in this case, HDL labeled with Nile Red) as they freely diffuse through a small focal volume. This data can be analyzed mathematically using the cross-correlation function, from which we can ultimately ascertain much information. In our case, we are interested in the diffusion coefficient which, via the Stokes-Einstein relation for a sphere, we can determine the size of HDL as it undergoes the process of metabolism. Preliminary results seem to indicate that the metabolic process occurs very quickly, that the final size of HDL depends primarily on the concentration of EL, and that the wild and mutant variants of EL have a similar effectiveness. In following experiments, we hope to investigate these relationships further.

  6. High-Density Lipoproteins (HDL) – Nature’s Multi-Functional Nanoparticles

    PubMed Central

    Kuai, Rui; Li, Dan; Chen, Y. Eugene; Moon, James J.; Schwendeman, Anna

    2016-01-01

    High-density lipoproteins (HDL) are endogenous nanoparticles involved in the transport and metabolism of cholesterol, phospholipids, and triglycerides. HDL is well known as the ―good‖ cholesterol because it not only removes excess cholesterol from atherosclerotic plaques but also has anti-inflammatory and anti-oxidative properties, which protect the cardiovascular system. Circulating HDL also transports endogenous proteins, vitamins, hormones, and microRNA to various organs. Compared with other synthetic nanocarriers, such as liposomes, micelles, inorganic and polymeric nanoparticles, HDL has unique features that allow them to deliver cargo to specific targets more efficiently. These attributes include their ultra-small size (8-12 nm in diameter), high tolerability in humans (up to 8 g of protein per infusion), long circulating half-life (12-24 hours), and intrinsic targeting properties to different recipient cells. Various recombinant ApoA proteins and ApoA mimetic peptides have been recently developed for the preparation of reconstituted HDL that exhibits properties similar to endogenous HDL and has a potential for industrial scale-up. In this review, we will summarize: a) clinical pharmacokinetics and safety of reconstituted HDL products, b) comparison of HDL with inorganic and other organic nanoparticles, c) the rationale for using HDL as drug delivery vehicles for important therapeutic indications, d) the current state-of-the-art in HDL production, and e) HDL-based drug delivery strategies for small molecules, peptides/proteins, nucleic acids, and imaging agents targeted to various organs. PMID:26889958

  7. Analysis of non-Newtonian effects on Low-Density Lipoprotein accumulation in an artery.

    PubMed

    Iasiello, Marcello; Vafai, Kambiz; Andreozzi, Assunta; Bianco, Nicola

    2016-06-14

    In this work, non-Newtonian effects on Low-Density Lipoprotein (LDL) transport across an artery are analyzed with a multi-layer model. Four rheological models (Carreau, Carreau-Yasuda, power-law and Newtonian) are used for the blood flow through the lumen. For the non-Newtonian cases, the arterial wall is modeled with a generalized momentum equation. Convection-diffusion equation is used for the LDL transport through the lumen, while Staverman-Kedem-Katchalsky, combined with porous media equations, are used for the LDL transport through the wall. Results are presented in terms of filtration velocity, Wall Shear Stresses (WSS) and concentration profiles. It is shown that non-Newtonian effects on mass transport are negligible for a healthy intramural pressure value. Non-Newtonian effects increase slightly with intramural pressure, but Newtonian assumption can still be considered reliable. Effects of arterial size are also analyzed, showing that Newtonian assumption can be considered valid for both medium and large arteries, in predicting LDL deposition. Finally, non-Newtonian effects are also analyzed for an aorta-common iliac bifurcation, showing that Newtonian assumption is valid for mass transport at low Reynolds numbers. At a high Reynolds number, it has been shown that a non-Newtonian fluid model can have more impact due to the presence of flow recirculation. PMID:27055766

  8. Tumor-targeted delivery of paclitaxel using low density lipoprotein-mimetic solid lipid nanoparticles.

    PubMed

    Kim, Jin-Ho; Kim, Youngwook; Bae, Ki Hyun; Park, Tae Gwan; Lee, Jung Hee; Park, Keunchil

    2015-04-01

    Water-insoluble anticancer drugs, including paclitaxel, present severe clinical side effects when administered to patients, primarily associated with the toxicity of reagents used to solubilize the drugs. In efforts to develop alternative formulations of water-insoluble anticancer drugs suitable for intravenous administration, we developed biocompatible anticancer therapeutic solid lipid nanoparticles (SLNs), mimicking the structure and composition of natural particles, low-density lipoproteins (LDLs), for tumor-targeted delivery of paclitaxel. These therapeutic nanoparticles contained water-insoluble paclitaxel in the core with tumor-targeting ligand covalently conjugated on the polyethylene glycol (PEG)-modified surface (targeted PtSLNs). In preclinical human cancer xenograft mouse model studies, the paclitaxel-containing tumor-targeting SLNs exhibited pronounced in vivo stability and enhanced biocompatibility. Furthermore, these SLNs had superior antitumor activity to in-class nanoparticular therapeutics in clinical use (Taxol and Genexol-PM) and yielded long-term complete responses. The in vivo targeted antitumor activities of the SLN formulations in a mouse tumor model suggest that LDL-mimetic SLN formulations can be utilized as a biocompatible, tumor-targeting platform for the delivery of various anticancer therapeutics.

  9. Clinical efficacy and safety of evolocumab for low-density lipoprotein cholesterol reduction

    PubMed Central

    Henry, Courtney A; Lyon, Ronald A; Ling, Hua

    2016-01-01

    Multiple categories of medications have been developed to manage lipid profiles and reduce the risk of cardiovascular events in patients with heart disease. However, currently marketed medications have not solved the problems associated with preventing and treating cardiovascular diseases completely. A substantial population of patients cannot take advantage of statin therapy due to statin intolerance, heart failure, or kidney hemodialysis, suggesting a need for additional effective agents to reduce low-density lipoprotein cholesterol (LDL-C) levels. Proprotein convertase subtilisin/kexin type 9 (PCSK9) was discovered in 2003 and subsequently emerged as a novel target for LDL-C-lowering therapy. Evolocumab is a fully human monoclonal immunoglobulin G2 (IgG2) directed against human PCSK9. By inactivating PCSK9, evolocumab upregulates LDL receptors causing increased catabolism of LDL-C and the consequent reduction of LDL-C levels in blood. Overall, evolocumab has had notable efficacy, with LDL-C reduction ranging from 53% to 75% in monotherapy and combination therapies, and is associated with minor adverse effects. However, studies regarding the ability of evolocumab to reduce mortality as well as long-term safety concerns are limited. The fact that the drug was introduced at a cost much higher than the existing medications and shows a low incremental mortality benefit suggests that many payers will consider evolocumab to have an unfavorable cost–benefit ratio. PMID:27143910

  10. Clinical efficacy and safety of evolocumab for low-density lipoprotein cholesterol reduction.

    PubMed

    Henry, Courtney A; Lyon, Ronald A; Ling, Hua

    2016-01-01

    Multiple categories of medications have been developed to manage lipid profiles and reduce the risk of cardiovascular events in patients with heart disease. However, currently marketed medications have not solved the problems associated with preventing and treating cardiovascular diseases completely. A substantial population of patients cannot take advantage of statin therapy due to statin intolerance, heart failure, or kidney hemodialysis, suggesting a need for additional effective agents to reduce low-density lipoprotein cholesterol (LDL-C) levels. Proprotein convertase subtilisin/kexin type 9 (PCSK9) was discovered in 2003 and subsequently emerged as a novel target for LDL-C-lowering therapy. Evolocumab is a fully human monoclonal immunoglobulin G2 (IgG2) directed against human PCSK9. By inactivating PCSK9, evolocumab upregulates LDL receptors causing increased catabolism of LDL-C and the consequent reduction of LDL-C levels in blood. Overall, evolocumab has had notable efficacy, with LDL-C reduction ranging from 53% to 75% in monotherapy and combination therapies, and is associated with minor adverse effects. However, studies regarding the ability of evolocumab to reduce mortality as well as long-term safety concerns are limited. The fact that the drug was introduced at a cost much higher than the existing medications and shows a low incremental mortality benefit suggests that many payers will consider evolocumab to have an unfavorable cost-benefit ratio. PMID:27143910

  11. Bile acids reduce endocytosis of high-density lipoprotein (HDL) in HepG2 cells.

    PubMed

    Röhrl, Clemens; Eigner, Karin; Fruhwürth, Stefanie; Stangl, Herbert

    2014-01-01

    High-density lipoprotein (HDL) transports lipids to hepatic cells and the majority of HDL-associated cholesterol is destined for biliary excretion. Cholesterol is excreted into the bile directly or after conversion to bile acids, which are also present in the plasma as they are effectively reabsorbed through the enterohepatic cycle. Here, we provide evidence that bile acids affect HDL endocytosis. Using fluorescent and radiolabeled HDL, we show that HDL endocytosis was reduced in the presence of high concentrations of taurocholate, a natural non-cell-permeable bile acid, in human hepatic HepG2 and HuH7 cells. In contrast, selective cholesteryl-ester (CE) uptake was increased. Taurocholate exerted these effects extracellularly and independently of HDL modification, cell membrane perturbation or blocking of endocytic trafficking. Instead, this reduction of endocytosis and increase in selective uptake was dependent on SR-BI. In addition, cell-permeable bile acids reduced HDL endocytosis by farnesoid X receptor (FXR) activation: chenodeoxycholate and the non-steroidal FXR agonist GW4064 reduced HDL endocytosis, whereas selective CE uptake was unaltered. Reduced HDL endocytosis by FXR activation was independent of SR-BI and was likely mediated by impaired expression of the scavenger receptor cluster of differentiation 36 (CD36). Taken together we have shown that bile acids reduce HDL endocytosis by transcriptional and non-transcriptional mechanisms. Further, we suggest that HDL endocytosis and selective lipid uptake are not necessarily tightly linked to each other. PMID:25010412

  12. Macrophage uptake of low-density lipoprotein modified by 4-hydroxynonenal. An ultrastructural study

    SciTech Connect

    Hoff, H.F.; Cole, T.B. )

    1991-02-01

    We have documented the ultrastructural characteristics of the uptake and processing by mouse peritoneal macrophages (MPM) of low-density lipoprotein (LDL) modified with 4-hydroxynonenal (HNE), an intermediate of lipid peroxidation. This was performed as part of a larger biochemical study assessing the role of LDL oxidation in lipid loading of macrophages during atherogenesis. Gold-labeled LDL that was modified with HNE leading to particle aggregation represented the morphologic probe used. When incubated with MPM, the probe became associated with short segments of cell membrane, probably derived from blebs or from lysed cells. At 37 degrees C there was a time-dependent increase in uptake by MPM, and at 4 hours the increase paralleled the degradation by MPM of 125I-labeled HNE-LDL-cAu. Clathrin-coated pits on the cell surface were consistently associated with probe. Uptake of probe appeared to occur via phagocytosis, because pseudopods frequently surrounded probe, and cytochalasin D quantitatively prevented probe uptake. A time-dependent increase was found in the number of gold particles per unit area within vacuoles, some of which were secondary lysosomes, based on acid phosphatase-positive staining. Thus, HNE-induced aggregation of LDL during oxidation, binding of aggregates to clathrin-coated pits on MPM, and subsequent phagocytosis may represent one of the ways lipid-laden foam cells are formed in vivo.

  13. Evalution of in vitro effect of flavonoids on human low-density lipoprotein carbamylation.

    PubMed

    Ghaffari, Mohammad Ali; Shanaki, Mehrnoosh

    2010-01-01

    The non-enzymatic carbamylation of low density lipoprotein (LDL) is a naturally occurring chemical modification of apolipoprotein B as a result of condensation between lysine residues and cyanate derived from urea. Carbamylated LDL is poorly recognized by LDL receptors and initiates different processes that can be considered proatherogenic. Thus, LDL carbamylation may contribute to the increased risk of atherosclerosis in patients with kidney failure. The objective of this study was to investigate in vitro effects of flavonoids on LDL carbamylation. LDL was isolated from plasma using ultracentrifuge technique with a single step discontinuous gradient. Then, cyanate was added to LDL and LDL carbamylation level was estimated in absence and presence of flavonoids by a colorimetric method at 530 nm. The results of this study showed that a number of flavonoids including rutin, catechin, morin, myricetin, kaempferol, taxifolin, luteolin, naringin and quercetin decreased LDL carbamylation in a dose dependent manner. Also, it was demonstrated that these nutrients decreased electrophoretic mobility of carbamylated LDL. Based on the results obtained in this study, it is suggested that flavonoids are able to inhibit LDL carbamylation (probably by scavenging cyanate ions) and thus, may have a role in ameliorating atherosclerotic risk of patients with kidney failure.

  14. Revising the high-density lipoprotein targeting strategies - insights from human and preclinical studies.

    PubMed

    Nesan, Dinushan; Ng, Dominic S

    2014-12-01

    In recent years, the high-density lipoprotein (HDL) hypothesis has been challenged. Several completed randomized clinical trials continue to fall short in demonstrating HDL, or at least HDL-cholesterol (HDL-C) levels, as being a consistent target in the prevention of cardiovascular diseases. However, population studies and findings in lipid modifying trials continue to strongly support HDL-C as a superb risk predictor. It is increasingly evident that the complexity of HDL metabolism confounds the use of HDL-C concentration as a unified target. However, important insights continue to emerge from the post hoc analyses of recently completed (i) fibrate-based FIELD and ACCORD trials, including the unexpected beneficial effect of fibrates in microvascular diseases, (ii) the niacin-based AIM-HIGH and HPS2-THRIVE studies, (iii) recombinant HDL-based as well as (iv) the completed CETP inhibitor-based trials. These together with on-going mechanistic studies on novel pathways, which include the unique roles of microRNAs, post-translational remodeling of HDL and novel pathways related to HDL modulators will provide valuable insights to guide how best to refocus and redesign the conceptual framework for selecting HDL-based targets. PMID:25115413

  15. Proteome analysis of human monocytic THP-1 cells primed with oxidized low-density lipoproteins.

    PubMed

    Kang, Jeong Han; Kim, Hyun Tae; Choi, Myung-Sook; Lee, Won Ha; Huh, Tae-Lin; Park, Yong Bok; Moon, Byung Jo; Kwon, Oh-Shin

    2006-02-01

    Native low-density lipoprotein (LDL) and oxidized LDL (oxLDL) possess a wide variety of biological properties, and play a central role in atherogenesis. In this study, we used a proteomic analysis of human monocyte THP-1 cells induced with oxLDL or with LDL, to identify proteins potentially involved in atherosclerotic processes. Of the 2500 proteins detected, 93 were differentially expressed as a result of priming with LDL or oxLDL. The proteins were unambiguously identified by comparing the masses of their tryptic peptides with those of all known proteins using MALDI-TOF MS and the NCBI database. The largest differences in expression were observed for vimentin (94-fold increase), meningioma-expressed antigen 6 (48-fold increase), serine/threonine protein phosphatase 2A (40-fold increase), and beta-1,3-galactosyltransferase (15-fold increase). In contrast, the abundance of an unnamed protein product and phosphogluconate dehydrogenase decreased 30-fold and 25-fold, respectively. The expression of some selected proteins was confirmed by Western blot and RT-PCR analyses. The proteins identified in this study are attractive candidates for further biomarker research. This description of the altered protein profiles induced by oxLDL in human monocytes will support functional studies of the macrophage-derived foam cells involved in the pathogenesis of atherosclerosis. PMID:16402358

  16. Alpinia zerumbet potentially elevates high-density lipoprotein cholesterol level in hamsters.

    PubMed

    Lin, Li-Yun; Peng, Chiung-Chi; Liang, Yu-Jing; Yeh, Wan-Ting; Wang, Hui-Er; Yu, Tung-Hsi; Peng, Robert Y

    2008-06-25

    In folkloric plant medicines, Alpinia zerumbet (AZ) has been popularly recognized as an exellent hepatoprotector. To search for a good high-density lipoprotein cholesterol (HDL-C) elevating herbal preparation, we examined AZ for its antioxidant and hypolipidaemic bioactivities, especially its HDL-C elevating activity. AZ seeds contain 0.51% essential oils (SO), which are comprised of monoterpenoids, oxygenated monoterpenoids, sesquiterpenoids, oxygenated sesquiterpenoids, aldehydes, acid, and esters. Gas chromatography/mass spectrometry analysis indicated that most of the monoterpenes and sesquiterpenes were recoverable in pentane eluent, whilst the oxygenated monoterpenoids and sesquiterpenoids remained in ether eluent. The high contents of rutin, quercetin, and polyphenolics in ethanolic extract of AZ seeds exhibit moderate antilipoperoxidative but potent DPPH free radical scavenging bioactivities. Conclusively, both seed powder (SP) and SO are effective hypolipidaemics with amazingly potent HDL-C elevating capabilities. On the basis of hepatoprotectivity, SP is a more feasible hypolipidemic agent as well as a promising HDL-C elevating plant medicine.

  17. Adrenal imaging with technetium-99m-labelled low density lipoproteins

    SciTech Connect

    Isaacsohn, J.L.; Lees, A.M.; Lees, R.S.; Strauss, H.W.; Barlai-Kovach, M.; Moore, T.J.

    1986-04-01

    Evaluation of adrenal cortical function by external imaging is currently accomplished by injection of radiolabelled analogs of cholesterol. Although the adrenals do utilized exogenous cholesterol for steroid hormone synthesis, the cholesterol is delivered to the glands not as free cholesterol but through the uptake of low density lipoproteins (LDL), which are subsequently degraded within the adrenal cortical cells to provide cholesterol. Thus, we sought to assess the use of /sup 99m/Tc-labelled LDL injected into rabbits to obtain external images of the adrenal glands. Adrenal images of all nine rabbits tested were obtained within 18 to 21 hours after injection of /sup 99m/Tc-LDL. Seven of the rabbits were subjected to adrenal cortical suppression with dexamethasone and then all nine rabbits were imaged a second time. In the untreated animals, visualization of the adrenal glands was accompanied by normal serum cortisol concentrations and accumulation of radiolabel in the adrenals, whereas in the dexamethasone-treated animals, lack of visualization of the adrenal glands was correlated with low serum cortisols, and greatly decreased accumulation of the radionuclide in the adrenals. These findings demonstrate for the first time that LDL, when labelled with /sup 99m/Tc, can be used to evaluate adrenal cortical function by external imaging.

  18. Involvement of second messengers in regulation of the low-density lipoprotein receptor gene

    SciTech Connect

    Auwerx, J.H. . ECHEM Labs.); Chait, A.; Wolfbauer, G.; Deeb, S.S. . Dept. of Medicine)

    1989-06-01

    Transcription of the low-density lipoprotein receptor (LDL-R) gene in the human monocytic leukemic cell line THP-1 and in the human hepatocarcinoma cell line Hep-G2 is regulated by second messengers of the diacylglycerol-protein kinase C (DAG-PKC), inositol 1,4,5-triphosphate-Ca/sup 2+/, and cyclic AMP pathways. Exogeneous phospholipase C (which releases DAG and inositol 1,4,5-triphosphate), PKC activators (phorbol esters and DAG), Ca/sup 2+/ ionophores, and a cyclic AMP analog all transiently induced accumulation of LDL-R mRNA. The effects of these three signal-transducing pathways were to a large extend additive. Furthermore, PKC stimulation effected an increase in LDL binding, which suggested that the increase in LDL-R mRNA resulted in an increase in functional cell surface receptor activity. These results suggest that uptake of cholesterol by these cells is under control of both intracellular cholesterol levels and external signals.

  19. Antibodies against low-density lipoprotein receptor-related protein 4 induce myasthenia gravis.

    PubMed

    Shen, Chengyong; Lu, Yisheng; Zhang, Bin; Figueiredo, Dwight; Bean, Jonathan; Jung, Jiung; Wu, Haitao; Barik, Arnab; Yin, Dong-Min; Xiong, Wen-Cheng; Mei, Lin

    2013-12-01

    Myasthenia gravis (MG) is the most common disorder affecting the neuromuscular junction (NMJ). MG is frequently caused by autoantibodies against acetylcholine receptor (AChR) and a kinase critical for NMJ formation, MuSK; however, a proportion of MG patients are double-negative for anti-AChR and anti-MuSK antibodies. Recent studies in these subjects have identified autoantibodies against low-density lipoprotein receptor-related protein 4 (LRP4), an agrin receptor also critical for NMJ formation. LRP4 autoantibodies have not previously been implicated in MG pathogenesis. Here we demonstrate that mice immunized with the extracellular domain of LRP4 generated anti-LRP4 antibodies and exhibited MG-associated symptoms, including muscle weakness, reduced compound muscle action potentials (CMAPs), and compromised neuromuscular transmission. Additionally, fragmented and distorted NMJs were evident at both the light microscopic and electron microscopic levels. We found that anti-LRP4 sera decreased cell surface LRP4 levels, inhibited agrin-induced MuSK activation and AChR clustering, and activated complements, revealing potential pathophysiological mechanisms. To further confirm the pathogenicity of LRP4 antibodies, we transferred IgGs purified from LRP4-immunized rabbits into naive mice and found that they exhibited MG-like symptoms, including reduced CMAP and impaired neuromuscular transmission. Together, these data demonstrate that LRP4 autoantibodies induce MG and that LRP4 contributes to NMJ maintenance in adulthood. PMID:24200689

  20. Antibodies against low-density lipoprotein receptor–related protein 4 induce myasthenia gravis

    PubMed Central

    Shen, Chengyong; Lu, Yisheng; Zhang, Bin; Figueiredo, Dwight; Bean, Jonathan; Jung, Jiung; Wu, Haitao; Barik, Arnab; Yin, Dong-Min; Xiong, Wen-Cheng; Mei, Lin

    2013-01-01

    Myasthenia gravis (MG) is the most common disorder affecting the neuromuscular junction (NMJ). MG is frequently caused by autoantibodies against acetylcholine receptor (AChR) and a kinase critical for NMJ formation, MuSK; however, a proportion of MG patients are double-negative for anti-AChR and anti-MuSK antibodies. Recent studies in these subjects have identified autoantibodies against low-density lipoprotein receptor–related protein 4 (LRP4), an agrin receptor also critical for NMJ formation. LRP4 autoantibodies have not previously been implicated in MG pathogenesis. Here we demonstrate that mice immunized with the extracellular domain of LRP4 generated anti-LRP4 antibodies and exhibited MG-associated symptoms, including muscle weakness, reduced compound muscle action potentials (CMAPs), and compromised neuromuscular transmission. Additionally, fragmented and distorted NMJs were evident at both the light microscopic and electron microscopic levels. We found that anti-LRP4 sera decreased cell surface LRP4 levels, inhibited agrin-induced MuSK activation and AChR clustering, and activated complements, revealing potential pathophysiological mechanisms. To further confirm the pathogenicity of LRP4 antibodies, we transferred IgGs purified from LRP4-immunized rabbits into naive mice and found that they exhibited MG-like symptoms, including reduced CMAP and impaired neuromuscular transmission. Together, these data demonstrate that LRP4 autoantibodies induce MG and that LRP4 contributes to NMJ maintenance in adulthood. PMID:24200689

  1. Oxidized low-density lipoproteins induced inflammatory process during atherogenesis with aging

    NASA Astrophysics Data System (ADS)

    Larbi, Anis; Khalil, Abdelouahed; Douziech, Nadine; Guérard, Karl-Philippe; Fülöp, Tamàs

    2005-02-01

    Atherosclerosis is a chronic disease developing through decades with two life-threatening complications: myocardial infarction and stroke. Oxidized low-density lipoproteins (oxLDL) produced by oxidative modifications of LDL in the subendothelial space have been demonstrated to be critically involved in atherogenesis through their intensive pro-inflammatory activity. Recently, it was shown that oxLDL have an apoptosis-inducing effect in T cells depending on time and degree of oxidation. The goal of the current study is to elucidate the molecular mechanisms underlying the apoptotic-inducing effects of oxLDL on T lymphocytes. T cells of young and elderly subjects were incubated for various periods of time with LDL oxidized to various degrees. The proliferation, the apoptosis, the MAPK ERK1/2 activation and the expression of the Bcl-2 protein family members were measured upon different LDL treatments. Thus, more the LDL are oxidized more they induce apoptosis and this effect is highly accentuated with aging. The oxLDL decrease the activation of the surviving molecule ERK1/2 and modulate the ratio of Bax/Bcl-2 towards a pro-apoptotic profile, which is also accentuated with aging. These results partly explain why atherosclerosis is increasing with aging concomitantly to its complications.

  2. High Density Lipoproteins for the Systemic Delivery of short interfering RNA

    PubMed Central

    McMahon, Kaylin M.; Thaxton, C. Shad

    2014-01-01

    Introduction RNA interference (RNAi) is a powerful mechanism for gene silencing with the potential to greatly impact the development of new therapies for many human diseases. Short interfering RNAs (siRNAs) may be the ideal molecules for therapeutic RNAi. However, therapeutic siRNAs face significant challenges that must be overcome prior to widespread clinical use. Many efforts have been made to overcome the hurdles associated with systemic administration of siRNA; however, current approaches are still limited. As such, there is an urgent need to develop new strategies for siRNA delivery that have the potential to impact a broad spectrum of systemic diseases. Areas covered This review focuses on the promise of siRNA therapies and highlights current siRNA delivery methods. With an eye toward new strategies, this review first introduces high density lipoproteins (HDL) and their natural functions, and then transitions into how HDLs may provide significant opportunities as next generation siRNA delivery vehicles. Importantly, this review describes how synthetic HDLs leverage the natural ability of HDL to stabilize and deliver siRNAs. Expert Opinion HDLs are natural nanoparticles that are critical to understanding the systemic delivery of therapeutic nucleic acids, like siRNA. Methods to synthesize biomimetic HDLs are being explored and data demonstrate that this type of delivery vehicle may be highly beneficial for targeted and efficacious systemic delivery of siRNAs. PMID:24313310

  3. Rspo2 suppresses CD36-mediated apoptosis in oxidized low density lipoprotein-induced macrophages

    PubMed Central

    Yan, Hui; Wang, Shuai; Li, Zhenwei; Sun, Zewei; Zan, Jie; Zhao, Wenting; Pan, Yanyun; Wang, Zhen; Wu, Mingjie; Zhu, Jianhua

    2016-01-01

    Oxidized low density lipoprotein (oxLDL)-induced apoptosis of macrophages contributes to the formation of atherosclerotic plaques. R-spondin 2 (Rspo2), a member of the cysteine-rich secreted proteins, has been shown to be involved in the oncogenesis of several types of cancer. It has also been found to be abundantly expressed among the four R-spondin members in macrophages. The present study was performed to determine whether Rspo2 is involved in the ox-LDL-induced apoptosis of macrophages. It was identified that Rspo2 inhibited oxLDL-induced apoptosis in the presence of endoplasmic reticulum (ER) stress activator using flow cytometry. In addition, Rspo2 was observed to suppress oxLDL-induced ER stress and reactive oxygen species production as demonstrated by western blotting. Furthermore, analysis of the role of Rspo2 in macrophage lipid uptake identified that Rspo2 negatively regulated the Dil-oxLDL uptake by inhibiting the expression of cluster of differentiation (CD)36, through the transcription factor, peroxisome proliferator-activated receptor (PPAR)-γ. The manipulation of Rspo2 had a direct effect on PPAR-γ nuclear translocation. In addition, chromatin immunoprecipitation analysis revealed that Rspo2 manipulation led to regulation of the direct binding between PPAR-γ and CD36. In conclusion, Rspo2 was found to have a negative regulatory effect during oxLDL-induced macrophage apoptosis by regulating lipid uptake. PMID:27571704

  4. Very-low-density lipoprotein triglyceride kinetics in acute and chronic carbohydrate-fed rats

    SciTech Connect

    Hirano, T.; Mamo, J.; Poapst, M.; Steiner, G.

    1988-09-01

    Very-low-density lipoprotein (VLDL)-triglyceride (TG) kinetics were examined in rats maintained on either chow and water (control) or chow and a 10% carbohydrate drinking solution (fructose or glucose). The hexose solutions were available for an acute (16 h) or chronic (14 day) period. The acute fructose (AF), acute glucose (AG), and chronic fructose (CF) groups were hypertriglyceridemic (HTG) compared with control. Plasma TG concentration in chronic glucose (CG)-fed rats was similar to control. VLDL-TG was endogenously radiolabeled in donor rats with (2-3H)-glycerol. The fractional catabolic rate (FCR) was then determined by monitoring the clearance of plasma (3H)VLDL-TG in recipient animals. Donors and recipients were treated in an identical manner. AF and CF groups had an FCR significantly lower than rats given glucose for comparable periods. Both fructose groups and the AG group also had a lower FCR than control. In contrast, FCR in the CG group was significantly higher than controls. TG production rate (TGPR) in both AF and CF fed rats did not significantly differ from controls, suggesting that the HTG observed in these animals was solely from a catabolic defect. AG- and CG-treated glucose animals both had TGPR significantly higher than controls. Therefore, overproduction of VLDL-TG contributed to the HTG associated with this carbohydrate.

  5. Polymorphism of the low-density lipoprotein receptor-related protein 5 gene and fracture risk.

    PubMed

    Wang, Chao; Zhang, Gang; Gu, Mingyong; Zhou, Zhenyu; Cao, Xuecheng

    2014-01-01

    Several molecular epidemiological studies have been conducted to examine the association between low-density lipoprotein receptor-related proteins (LRP5) Ala1330Val polymorphism and fracture; however, the conclusions remained controversial. We therefore performed an extensive meta-analysis on 10 published studies with 184479 subjects. Electronic databases, including PubMed, Excerpta Medica Database (EMBASE), Cochrane, Elsevier Science Direct and China National Knowledge Infrastructure (CNKI) databases were searched. Summary odds ratios (ORs) and corresponding 95% confidence intervals (CIs) were estimated using random-effects models. LRP5 Ala1330Val polymorphism was associated with a significantly increased risk of fracture (OR = 1.10; 95% CI, 1.06-1.14; I(2) = 29%). We also found that this polymorphism increased fracture risk in Caucasians. In the subgroup analysis according to gender, women was significantly associated with risk of fracture. In the subgroup analysis by type of fracture, LRP5 Ala1330Val polymorphism showed increased osteoporotic fracture risk. In conclusion, this meta-analysis suggested that an increased risk of fracture was associated with the LRP5 Ala1330Val polymorphism.

  6. Long term stability of paraoxonase-1 and high-density lipoprotein in human serum

    PubMed Central

    2012-01-01

    Background Paraoxonase-1 (PON1) is an enzyme with numerous functions and receives an increasing interest in clinical and epidemiological studies. Sometimes samples are stored for longer periods at a certain temperature. Therefore the stability of PON1 activity must be checked and retained upon storage for longer periods. Results In this study the stability of PON1 activity has been tested in human serum samples during storage up to 12 months at 3 commonly used temperatures, -20°C, -70°C and −196°C. It was found that the stability of the PON1 activity is constant during 12 months of storage at −70°C and −196°C. Storage at −20°C resulted in a small but statistically significant decrease after 6 months to about 94% of its original value. Nonetheless, the rank order between the samples at T = 0 and 12 months remained the same. The same temperature dependence was found for the associated high-density lipoprotein. Conclusions It can be concluded that −70°C is the right temperature for storage to maintain the PON1 activity for at least one year. Storage at a lower temperature in liquid nitrogen (−196°C) is not necessary. PMID:22584062

  7. Effect of Albizia julibrissin water extracts on low-density lipoprotein oxidization.

    PubMed

    Vaughn, Katherine; McClain, Colt; Carrier, Danielle Julie; Wallace, Sunny; King, Jerry; Nagarajan, Shanmugam; Clausen, Edgar

    2007-06-13

    High-value phytochemicals could be extracted from biomass prior to the current cellulosic pretreatment technologies (i.e., lime, ammonia, dilute acid, or pressurized hot water treatments) provided that the extraction is performed with a solvent that is compatible with the pretreatment. This work reports on the extraction of flavonoids from Albizia julibrissin biomass. While extracting A. julibrissin foliage with 50 degrees C water, 2.227 mg/g of hyperoside and 8.134 mg/g quercitrin were obtained, which is in the realm of what was obtained with 60% methanol. A. julibrissin foliage, flower, and whole plant extracts were tested in terms of their potential to inhibit low-density lipoprotein (LDL) oxidization. The highest inhibition was obtained with foliage water extracts, which were standardized at 2.5 microM of flavonoids. Also, the 2.5 microM foliage water extract resulted in a reduction from 43% to only 1% of the observed monocyte adherence. To have commercial application, A. julibrissin water extracts should be devoid of toxicity. The A. julibrissin foliage, flower, and whole plant water extracts were not toxic to Vero 76 cells. In summary, A. julibrissin biomass can be extracted with 50 degrees C water to yield an antioxidant stream, showing that it may be possible to couple extraction of valuable phytochemicals to the cellulosic pretreatment step. PMID:17497875

  8. Terminalia bellirica Extract Inhibits Low-Density Lipoprotein Oxidation and Macrophage Inflammatory Response in Vitro

    PubMed Central

    Tanaka, Miori; Kishimoto, Yoshimi; Saita, Emi; Suzuki-Sugihara, Norie; Kamiya, Tomoyasu; Taguchi, Chie; Iida, Kaoruko; Kondo, Kazuo

    2016-01-01

    The deciduous tree Terminalia bellirica found in Southeast Asia is extensively used in traditional Indian Ayurvedic medicine for the treatment of hypertension, rheumatism, and diabetes. The anti-atherogenic effect of Terminalia bellirica fruit has not been fully elucidated. Here, we investigated the effect of Terminalia bellirica extract (TBE) on low-density lipoprotein (LDL) oxidation and inflammation in macrophages. TBE showed 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical scavenging activity (EC50: 7.2 ± 1.2 μg/mL) and 15-lipoxygenase inhibitory activity. TBE also significantly inhibited free radical-induced LDL oxidation compared to the solvent control in vitro. In THP-1 macrophages, TBE treatment resulted in significant decreases of the mRNA expression of tumor necrosis factor-alpha (TNF-α), interleukin-1beta (IL-1β), and lectin-like oxidized LDL receptor-1 (LOX-1). TBE also reduced matrix metalloproteinase (MMP)-9 secretion and intracellular reactive oxygen species (ROS) production in THP-1 macrophages. These results show that TBE has the inhibitory effects on LDL oxidation and macrophage inflammatory response in vitro, suggesting that its in vivo use might inhibit atherosclerosis plaque progression. PMID:27314393

  9. High-Density Lipoprotein Function in Exudative Age-Related Macular Degeneration

    PubMed Central

    Pertl, Laura; Kern, Sabine; Weger, Martin; Hausberger, Silke; Trieb, Markus; Gasser-Steiner, Vanessa; Haas, Anton; Scharnagl, Hubert; Heinemann, Akos; Marsche, Gunther

    2016-01-01

    Purpose High-density lipoproteins (HDL) have long been implicated in the pathogenesis of age-related macular degeneration (AMD). However, conflicting results have been reported with regard to the associations of AMD with HDL-cholesterol levels. The present study is the first to assess HDL composition and metrics of HDL function in patients with exudative AMD and control patients. Methods Blood samples were collected from 29 patients with exudative AMD and 26 age-matched control patients. Major HDL associated apolipoproteins were determined in apoB-depleted serum by immunoturbidimetry or ELISA, HDL-associated lipids were quantified enzymatically. To get an integrated measure of HDL quantity and quality, we assessed several metrics of HDL function, including cholesterol efflux capacity, anti-oxidative and anti-inflammatory activities using apoB-depleted serum from study participants. Results In our study, we observed that the HDL associated acute phase protein serum amyloid A (SAA) was significantly increased in AMD patients (p<0.01), whereas all other assessed apolipoproteins including ApoA-I, apoA-II, apoC-II, apoC-III and apoE as well as major HDL associated lipids were not altered. HDL efflux capacity, anti-oxidative capacity and arylesterase activity were not different in AMD patients when compared with the control group. The ability of apoB-depleted serum to inhibit monocyte NF-κB expression was significantly improved in AMD patients (mean difference (MD) -5.6, p<0.01). Moreover, lipoprotein-associated phospholipase A2 activity, a marker of vascular inflammation, was decreased in AMD subjects (MD -24.1, p<0.01). Conclusions The investigated metrics of HDL composition and HDL function were not associated with exudative AMD in this study, despite an increased content of HDL associated SAA in AMD patients. Unexpectedly, anti-inflammatory activity of apoB-depleted serum was even increased in our study. Our data suggest that the investigated parameters of serum HDL

  10. Comparison of two low-density lipoprotein apheresis systems in patients with homozygous familial hypercholesterolemia.

    PubMed

    Drouin-Chartier, Jean-Philippe; Tremblay, André J; Bergeron, Jean; Pelletier, Maude; Laflamme, Nathalie; Lamarche, Benoît; Couture, Patrick

    2016-08-01

    Low-density lipoprotein (LDL) apheresis (LA) is a reliable method to decrease LDL-C concentrations and remains the gold standard therapy in homozygous familial hypercholesterolemia (HoFH). The objective of this study was to compare the efficacy of two LA systems [heparin-induced extracorporeal LDL precipitation (HELP) vs. dextran sulfate adsorption (DS) on the reduction of lipids, inflammatory markers, and adhesion molecules in a sample of genetically defined HoFH subjects (n = 9)]. Fasting blood samples were collected before and after LA. All subjects served as their own control and were first treated with the HELP system then with DS in this single sequence study. Compared with HELP, DS led to significantly greater reductions in total cholesterol (-63.3% vs. -59.9%; P = 0.05), LDL-C (-70.5% vs. -63.0%; P = 0.02), CRP (-75.3% vs. -48.8%; P < 0.0001), and TNF-α (-23.7% vs. +14.7%; P = 0.003). Reductions in the plasma levels of PCSK9 (-45.3% vs. -63.4%; P = 0.31), lipoprotein (a) (-70.6% vs. -65.0%; P = 0.30), E-selectin (-16.6% vs. -18.3%; P = 0.65), ICAM-1 (-4.0 vs. 5.6%; P = 0.56), and VCAM-1 (8.3% vs. -1.8%; P = 0.08) were not different between the two systems. For the same volume of filtered plasma (3,000 mL), however, HELP led to greater reductions in plasma apoB (-63.1% vs. -58.3%; P = 0.04), HDL-C (-20.6% vs. -6.5%; P = 0.003), and PCSK9 (-63.4% vs. -28.5%; P = 0.02) levels. These results suggest that both LA systems are effective in reducing plasma lipids and inflammatory markers in HoFH. Compared with HELP, greater reductions in lipid levels and inflammatory markers were achieved with DS, most likely because this method allows for a larger plasma volume to be filtered. J. Clin. Apheresis 31:359-367, 2016. © 2015 Wiley Periodicals, Inc. PMID:26011648

  11. Candidate genetic analysis of plasma high-density lipoprotein-cholesterol and severity of coronary atherosclerosis

    PubMed Central

    Chen, Suet Nee; Cilingiroglu, Mehmet; Todd, Josh; Lombardi, Raffaella; Willerson, James T; Gotto, Antonio M; Ballantyne, Christie M; Marian, AJ

    2009-01-01

    Background Plasma level of high-density lipoprotein-cholesterol (HDL-C), a heritable trait, is an important determinant of susceptibility to atherosclerosis. Non-synonymous and regulatory single nucleotide polymorphisms (SNPs) in genes implicated in HDL-C synthesis and metabolism are likely to influence plasma HDL-C, apolipoprotein A-I (apo A-I) levels and severity of coronary atherosclerosis. Methods We genotyped 784 unrelated Caucasian individuals from two sets of populations (Lipoprotein and Coronary Atherosclerosis Study- LCAS, N = 333 and TexGen, N = 451) for 94 SNPs in 42 candidate genes by 5' nuclease assays. We tested the distribution of the phenotypes by the Shapiro-Wilk normality test. We used Box-Cox regression to analyze associations of the non-normally distributed phenotypes (plasma HDL-C and apo A-I levels) with the genotypes. We included sex, age, body mass index (BMI), diabetes mellitus (DM), and cigarette smoking as covariates. We calculated the q values as indicators of the false positive discovery rate (FDR). Results Plasma HDL-C levels were associated with sex (higher in females), BMI (inversely), smoking (lower in smokers), DM (lower in those with DM) and SNPs in APOA5, APOC2, CETP, LPL and LIPC (each q ≤0.01). Likewise, plasma apo A-I levels, available in the LCAS subset, were associated with SNPs in CETP, APOA5, and APOC2 as well as with BMI, sex and age (all q values ≤0.03). The APOA5 variant S19W was also associated with minimal lumen diameter (MLD) of coronary atherosclerotic lesions, a quantitative index of severity of coronary atherosclerosis (q = 0.018); mean number of coronary artery occlusions (p = 0.034) at the baseline and progression of coronary atherosclerosis, as indicated by the loss of MLD. Conclusion Putatively functional variants of APOA2, APOA5, APOC2, CETP, LPL, LIPC and SOAT2 are independent genetic determinants of plasma HDL-C levels. The non-synonymous S19W SNP in APOA5 is also an independent determinant of plasma

  12. Triglycerides and atherogenic lipoproteins: rationale for lipid management.

    PubMed

    Krauss, R M

    1998-07-01

    Epidemiologic and clinical studies have demonstrated a relation between plasma triglyceride levels and risk of coronary artery disease and an amplification of risk with combined elevations of triglyceride and low-density lipoprotein (LDL) cholesterol. In patients with coronary disease, angiographic progression and clinical events have been correlated with concentrations of smaller very-low-density lipoproteins (VLDL) and intermediate-density lipoproteins (IDL), consistent with evidence for enhanced atherogenicity of lipolytic products of triglyceride-rich lipoprotein metabolism, including postprandial lipoproteins. IDL levels also have been shown to be strongly and independently predictive of progression of carotid artery intimal-medial thickness, a measure of early atherogenesis that is related to coronary disease risk. Although there is evidence that these triglyceride-rich lipoprotein species may have direct atherogenic effects, other lipoprotein changes associated with altered triglyceride metabolism may be of particular importance in the development of coronary artery disease. These include reductions in high-density lipoprotein (HDL) and increases in small, dense LDL particles (LDL subclass pattern B). Because of the strong interrelations among elevated triglyceride, reduced HDL, and small dense LDL, it is difficult to use statistical techniques to determine the independent contributions of these traits to coronary disease risk. Based on their biologic properties, it is likely that each are involved in multiple steps of the disease process. Moreover, this cluster of lipoprotein changes is associated with other conditions that can promote vascular disease, including increases in coagulation factors and reduced insulin sensitivity. Analyses from intervention trials in patients with coronary disease have indicated that measurement of plasma triglyceride and LDL particle distributions can be of value in predicting the benefits of specific lipid-altering therapies

  13. Carbohydrate composition of circulating multiple-modified low-density lipoprotein

    PubMed Central

    Zakiev, Emile R; Sobenin, Igor A; Sukhorukov, Vasily N; Myasoedova, Veronika A; Ivanova, Ekaterina A; Orekhov, Alexander N

    2016-01-01

    Atherogenic modification of low-density lipoprotein (LDL) plays a crucial role in the pathogenesis of atherosclerosis, as modified LDL, but not native LDL, induces pronounced accumulation of cholesterol and lipids in the arterial wall. It is likely that LDL particles undergo multiple modifications in human plasma: desialylation, changes in size and density, acquisition of negative electric charge, oxidation, and complex formation. In a total LDL preparation isolated from pooled plasma of patients with coronary atherosclerosis and from healthy subjects, two subfractions of LDL could be identified: desialylated LDL bound by a lectin affinity column and normally sialylated (native) LDL that passed through the column. The desialylated LDL subfraction therefore represents circulating modified LDL. In this work, we performed a careful analysis of LDL particles to reveal changes in the composition of glycoconjugates associated with proteins and lipids. Protein fraction of LDL from atherosclerotic patients contained similar amounts of glucosamine, galactose, and mannose, but a 1.6-fold lower level of sialic acid as compared to healthy donors. Lipid-bound glycoconjugates of total LDL from patients with coronary atherosclerosis contained 1.5–2-fold less neutral monosaccharides than total LDL from healthy donors. Patient-derived LDL also contained significantly less sialic acid. Our results demonstrate that carbohydrate composition of LDL from atherosclerotic patients was altered in comparison to healthy controls. In particular, prominent decrease in the sialic acid content was observed. This strengthens the hypothesis of multiple modification of LDL particles in the bloodstream and underscores the clinical importance of desialylated LDL as a possible marker of atherosclerosis progression. PMID:27789955

  14. In vitro studies of PBT Nonwoven Fabrics adsorbent for the removal of low density lipoprotein from hyperlipemia plasma

    NASA Astrophysics Data System (ADS)

    Cao, Ye; Wang, Hong; Yang, Chao; Zhong, Rui; Lei, Yu; Sun, Kang; Liu, Jiaxin

    2011-06-01

    Polyanion ligands such as acrylic acid (AA) and heparin were grafted on PBT Nonwoven Fabrics (PBTNF) to study their effect on the adsorption of low density lipoprotein (LDL). These modified PBTNFs were characterized by Horizontal Attenuated Total Reflectance Fourier Transform Infrared spectroscopy and X-ray Photoelectron spectroscopy. The blood compatibilities of the modified PBTNFs were examined using in vitro hemolysis rate (HR), platelet adhesion, total protein (TP) and activated partial thromboplastin time. The results showed that direct immobilized heparin could improve PBTNF-PAA's blood compatibility and decrease the adsorption capability of useful high density lipoprotein, but would possess so low bioactivity that could not further improve the absorption of LDL and TC. Since the PBTNF-PAA55-Heparin adsorbent had quite good adsorption selectivity for these proteins, it can be an excellent candidate for depletion of LDL with good blood compatibility.

  15. Modified Low Density Lipoprotein and Lipoprotein-Containing Circulating Immune Complexes as Diagnostic and Prognostic Biomarkers of Atherosclerosis and Type 1 Diabetes Macrovascular Disease

    PubMed Central

    Orekhov, Alexander N.; Bobryshev, Yuri V.; Sobenin, Igor A.; Melnichenko, Alexandra A.; Chistiakov, Dimitry A.

    2014-01-01

    In atherosclerosis; blood low-density lipoproteins (LDL) are subjected to multiple enzymatic and non-enzymatic modifications that increase their atherogenicity and induce immunogenicity. Modified LDL are capable of inducing vascular inflammation through activation of innate immunity; thus, contributing to the progression of atherogenesis. The immunogenicity of modified LDL results in induction of self-antibodies specific to a certain type of modified LDL. The antibodies react with modified LDL forming circulating immune complexes. Circulating immune complexes exhibit prominent immunomodulatory properties that influence atherosclerotic inflammation. Compared to freely circulating modified LDL; modified LDL associated with the immune complexes have a more robust atherogenic and proinflammatory potential. Various lipid components of the immune complexes may serve not only as diagnostic but also as essential predictive markers of cardiovascular events in atherosclerosis. Accumulating evidence indicates that LDL-containing immune complexes can also serve as biomarker for macrovascular disease in type 1 diabetes. PMID:25050779

  16. Role of non-high-density lipoprotein cholesterol in predicting cerebrovascular events in patients following myocardial infarction.

    PubMed

    Mahajan, Nitin; Ference, Brian A; Arora, Natasha; Madhavan, Ramesh; Bhattacharya, Pratik; Sudhakar, Rajeev; Sagar, Amit; Wang, Yun; Sacks, Frank; Afonso, Luis

    2012-06-15

    Although there appears to be a role for statins in reducing cerebrovascular events, the exact role of different lipid fractions in the etiopathogenesis of cerebrovascular disease (CVD) is not well understood. A secondary analysis of data collected for the placebo arm (n = 2,078) of the Cholesterol and Recurrent Events (CARE) trial was performed. The CARE trial was a placebo-controlled trial aimed at testing the effect of pravastatin on patients after myocardial infarction. Patients with histories of CVD were excluded from the study. A Cox proportional-hazards model was used to evaluate the association between plausible risk factors (including lipid fractions) and risk for first incident CVD in patients after myocardial infarction. At the end of 5 years, 123 patients (6%) had incident CVD after myocardial infarction (76 with stroke and 47 with transient ischemic attack). Baseline non-high-density lipoprotein (HDL) cholesterol level emerged as the only significant lipid risk factor that predicted CVD; low-density lipoprotein cholesterol and HDL cholesterol were not significant. The adjusted hazard ratios (adjusted for age, gender, hypertension, diabetes mellitus, and smoking) for CVD were 1.28 (95% confidence interval [CI] 1.06 to 1.53) for non-HDL cholesterol, 1.14 (95% CI 0.96 to 1.37) for low-density lipoprotein cholesterol, and 0.90 (95% CI 0.75 to 1.09) for HDL cholesterol (per unit SD change of lipid fractions). This relation held true regardless of the level of triglycerides. After adjustment for age and gender, the hazard ratio for the highest natural quartile of non-HDL was 1.76 (95% CI 1.05 to 2.54), compared to 1.36 (95% CI 0.89 to 1.90) for low-density lipoprotein cholesterol. In conclusion, non-HDL cholesterol is the strongest predictor among the lipid risk factors of incident CVD in patients with established coronary heart disease.

  17. Serum amyloid A stimulates macrophage foam cell formation via lectin-like oxidized low-density lipoprotein receptor 1 upregulation

    SciTech Connect

    Lee, Ha Young; Kim, Sang Doo; Baek, Suk-Hwan; Choi, Joon Hyuk; Cho, Kyung-Hyun; Zabel, Brian A.; Bae, Yoe-Sik

    2013-03-29

    Highlights: ► SAA induced macrophage foam cell formation. ► SAA stimulated upregulation of lectin-like oxidized low-density lipoprotein receptor 1 (LOX1). ► SAA-induced LOX1 expression and foam cell formation is mediated by JNK/NF-κB signaling. ► HDL-conjugated SAA also stimulates foam cell formation via LOX1 upregulation. ► The finding reveals a novel mechanism of action of SAA in the pathogenesis of atherosclerosis. -- Abstract: Elevated levels of serum amyloid A (SAA) is a risk factor for cardiovascular diseases, however, the role of SAA in the pathophysiology of atherosclerosis remains unclear. Here we show that SAA induced macrophage foam cell formation. SAA-stimulated foam cell formation was mediated by c-jun N-terminal kinase (JNK) signaling. Moreover, both SAA and SAA-conjugated high density lipoprotein stimulated the expression of the important scavenger receptor lectin-like oxidized low-density lipoprotein receptor 1 (LOX1) via nuclear factor-κB (NF-κB). A LOX1 antagonist carrageenan significantly blocked SAA-induced foam cell formation, indicating that SAA promotes foam cell formation via LOX1 expression. Our findings therefore suggest that SAA stimulates foam cell formation via LOX1 induction, and thus likely contributes to atherogenesis.

  18. Proprotein convertase subtilisin kexin type 9 and high-density lipoprotein metabolism: experimental animal models and clinical evidence.

    PubMed

    Ferri, Nicola; Corsini, Alberto; Macchi, Chiara; Magni, Paolo; Ruscica, Massimiliano

    2016-07-01

    Proprotein convertase subtilisin kexin type 9 (PCSK9) belongs to the proprotein convertase family. Several studies have demonstrated its involvement in the regulation of low-density lipoprotein (LDL) cholesterol levels by inducing the degradation of the LDL receptor (LDLR). However, experimental, epidemiologic, and pharmacologic data provide important evidence on the role of PCSK9 also on high-density lipoproteins (HDLs). In mice, PCSK9 regulates the HDL cholesterol (HDL-C) levels by the degradation of hepatic LDLR, thus inhibiting the uptake of apolipoprotein (Apo)E-containing HDLs. Several epidemiologic and genetic studies reported positive relationship between PCSK9 and HDL-C levels, likely by reducing the uptake of the ApoE-containing HDL particles. PCSK9 enhances also the degradation of LDLR's closest family members, ApoE receptor 2, very low-density lipoprotein receptor, and LDLR-related protein 1. This feature provides a molecular mechanism by which PCSK9 may affect HDL metabolism. Experimental studies demonstrated that PCSK9 directly interacts with HDL by modulating PCSK9 self-assembly and its binding to the LDLR. Finally, the inhibition of PCSK9 by means of monoclonal antibodies directed to PCSK9 (ie, evolocumab and alirocumab) determines an increase of HDL-C fraction by 7% and 4.2%, respectively. Thus, the understanding of the role of PCSK9 on HDL metabolism needs to be elucidated with a particular focus on the effect of PCSK9 on HDL-mediated reverse cholesterol transport. PMID:26548330

  19. Plasma Nitration of High-Density and Low-Density Lipoproteins in Chronic Kidney Disease Patients Receiving Kidney Transplants

    PubMed Central

    Bakillah, Ahmed; Tedla, Fasika; Ayoub, Isabelle; John, Devon; Norin, Allen J.; Hussain, M. Mahmood; Brown, Clinton

    2015-01-01

    Background. Functional abnormalities of high-density lipoprotein (HDL) could contribute to cardiovascular disease in chronic kidney disease patients. We measured a validated marker of HDL dysfunction, nitrated apolipoprotein A-I, in kidney transplant recipients to test the hypothesis that a functioning kidney transplant reduces serum nitrated apoA-I concentrations. Methods. Concentrations of nitrated apoA-I and apoB were measured using indirect sandwich ELISA assays on sera collected from each transplant subject before transplantation and at 1, 3, and 12 months after transplantation. Patients were excluded if they have history of diabetes, treatment with lipid-lowering medications or HIV protease inhibitors, prednisone dose > 15 mg/day, nephrotic range proteinuria, serum creatinine > 1.5 mg/dL, or active inflammatory disease. Sera from 18 transplanted patients were analyzed. Four subjects were excluded due to insufficient data. Twelve and eight patients had creatinine < 1.5 mg/dL at 3 and 12 months after transplantation, respectively. Results. Nitrated apoA-I was significantly reduced at 12 months after transplantation (p = 0.039). The decrease in apoA-I nitration was associated with significant reduction in myeloperoxidase (MPO) activity (p = 0.047). In contrast to apoA-I, nitrated apoB was not affected after kidney transplantation. Conclusions. Patients with well-functioning grafts had significant reduction in nitrated apoA-I 12 months after kidney transplantation. Further studies are needed in a large cohort to determine if nitrated apoA-I can be used as a valuable marker for cardiovascular risk stratification in chronic kidney disease. PMID:26648662

  20. Impaired High-Density Lipoprotein Anti-Oxidant Function Predicts Poor Outcome in Critically Ill Patients

    PubMed Central

    Schrutka, Lore; Goliasch, Georg; Meyer, Brigitte; Wurm, Raphael; Koller, Lorenz; Kriechbaumer, Lukas; Heinz, Gottfried; Pacher, Richard; Lang, Irene M

    2016-01-01

    Introduction Oxidative stress affects clinical outcome in critically ill patients. Although high-density lipoprotein (HDL) particles generally possess anti-oxidant capacities, deleterious properties of HDL have been described in acutely ill patients. The impact of anti-oxidant HDL capacities on clinical outcome in critically ill patients is unknown. We therefore analyzed the predictive value of anti-oxidant HDL function on mortality in an unselected cohort of critically ill patients. Method We prospectively enrolled 270 consecutive patients admitted to a university-affiliated intensive care unit (ICU) and determined anti-oxidant HDL function using the HDL oxidant index (HOI). Based on their HOI, the study population was stratified into patients with impaired anti-oxidant HDL function and the residual study population. Results During a median follow-up time of 9.8 years (IQR: 9.2 to 10.0), 69% of patients died. Cox regression analysis revealed a significant and independent association between impaired anti-oxidant HDL function and short-term mortality with an adjusted HR of 1.65 (95% CI 1.22–2.24; p = 0.001) as well as 10-year mortality with an adj. HR of 1.19 (95% CI 1.02–1.40; p = 0.032) when compared to the residual study population. Anti-oxidant HDL function correlated with the amount of oxidative stress as determined by Cu/Zn superoxide dismutase (r = 0.38; p<0.001). Conclusion Impaired anti-oxidant HDL function represents a strong and independent predictor of 30-day mortality as well as long-term mortality in critically ill patients. PMID:26978526

  1. Increased uptake of alpha-hydroxy aldehyde-modified low density lipoprotein by macrophage scavenger receptors.

    PubMed

    Kawamura, M; Heinecke, J W; Chait, A

    2000-07-01

    Reactive aldehydes can be formed during the oxidation of lipids, glucose, and amino acids and during the nonenzymatic glycation of proteins. Low density lipoprotein (LDL) modified with malondialdehyde are taken up by scavenger receptors on macrophages. In the current studies we determined whether alpha-hydroxy aldehydes also modify LDL to a form recognized by macrophage scavenger receptors. LDL modified by incubation with glycolaldehyde, glyceraldehyde, erythrose, arabinose, or glucose (alpha-hydroxy aldehydes that possess two, three, four, five, and six carbon atoms, respectively) exhibited decreased free amino groups and increased mobility on agarose gel electrophoresis. The lower the molecular weight of the aldehyde used for LDL modification, the more rapid and extensive was the derivatization of free amino groups. Approximately 50-75% of free lysine groups in LDL were modified after incubation with glyceraldehyde, glycolaldehyde, or erythrose for 24-48 h. Less extensive reductions in free amino groups were observed when LDL was incubated with arabinose or glucose, even at high concentration for up to 5 days. LDL modified with glycolaldehyde and glyceraldehyde labeled with (125)I was degraded more extensively by human monocyte-derived macrophages than was (125)I-labeled native LDL. Conversely, LDL modified with (125)I-labeled erythrose, arabinose, or glucose was degraded less rapidly than (125)I-labeled native LDL. Competition for the degradation of LDL modified with (125)I-labeled glyceraldehyde was nearly complete with acetyl-, glycolaldehyde-, and glyceraldehyde-modified LDL, fucoidin, and advanced glycation end product-modified bovine serum albumin, and absent with unlabeled native LDL. These results suggest that short-chain alpha-hydroxy aldehydes react with amino groups on LDL to yield moieties that are important determinants of recognition by macrophage scavenger receptors.

  2. Oxidized low-density lipoprotein-induced apoptotic dendritic cells as a novel therapy for atherosclerosis.

    PubMed

    Frodermann, Vanessa; van Puijvelde, Gijs H M; Wierts, Laura; Lagraauw, H Maxime; Foks, Amanda C; van Santbrink, Peter J; Bot, Ilze; Kuiper, Johan; de Jager, Saskia C A

    2015-03-01

    Modulation of immune responses may form a powerful approach to treat atherosclerosis. It was shown that clearance of apoptotic cells results in tolerance induction to cleared Ags by dendritic cells (DCs); however, this seems impaired in atherosclerosis because Ag-specific tolerance is lacking. This could result, in part, from decreased emigration of DCs from atherosclerotic lesions because of the high-cholesterol environment. Nonetheless, local induction of anti-inflammatory responses by apoptotic cell clearance seems to dampen atherosclerosis, because inhibition of apoptotic cell clearance worsens atherosclerosis. In this study, we assessed whether i.v. administration of oxLDL-induced apoptotic DCs (apop(ox)-DCs) and, as a control, unpulsed apoptotic DCs could modulate atherosclerosis by inducing tolerance. Adoptive transfer of apop(ox)-DCs into low-density lipoprotein receptor knockout mice either before or during feeding of a Western-type diet resulted in increased numbers of CD103(+) tolerogenic splenic DCs, with a concomitant increase in regulatory T cells. Interestingly, both types of apoptotic DCs induced an immediate 40% decrease in Ly-6C(hi) monocyte numbers and a 50% decrease in circulating CCL2 levels, but only apop(ox)-DC treatment resulted in long-term effects on monocytes and CCL2 levels. Although initial lesion development was reduced by 40% in both treatment groups, only apop(ox)-DC treatment prevented lesion progression by 28%. Moreover, progressed lesions of apop(ox)-DC-treated mice showed a robust 45% increase in collagen content, indicating an enhanced stability of lesions. Our findings clearly show that apoptotic DC treatment significantly decreases lesion development, but only apop(ox)-DCs can positively modulate lesion progression and stability. These findings may translate into a safe treatment for patients with established cardiovascular diseases using patient-derived apop(ox)-DCs.

  3. High-Density Lipoprotein Function Measurement in Human Studies: Focus on Cholesterol Efflux Capacity.

    PubMed

    Rohatgi, Anand

    2015-01-01

    A low plasma level of high-density lipoprotein (HDL) cholesterol (HDL-C) is a major risk factor for the development of atherosclerotic cardiovascular disease (ASCVD). However, several observations have highlighted the shortcomings of using cholesterol content as the sole reflection of HDL metabolism. In particular, several large randomized controlled trials of extended release niacin and cholesteryl-ester transfer protein (CETP) inhibitors on background statin therapy have failed to show improvement in ASCVD outcomes despite significant increases in HDL-C. Reverse cholesterol transport (RCT) is the principal HDL function that impacts macrophage foam cell formation and other functions such as endothelial activation of endothelial nitric oxide synthase, monocyte adhesion, and platelet aggregation. Cholesterol efflux from macrophages to plasma/serum reflects the first critical step of RCT and is considered a key anti-atherosclerotic function of HDL. Whether this function is operative in humans remains to be seen, but recent studies assessing cholesterol efflux in humans suggest that the cholesterol efflux capacity (CEC) of human plasma or serum is a potent marker of ASCVD risk. This review describes the methodology of measuring CEC ex vivo from human samples and the findings to date linking CEC to human disease. Studies to date confirm that CEC can be reliably measured using stored human blood samples as cholesterol acceptors and suggest that CEC may be a promising new biomarker for atherosclerotic and metabolic diseases. Further studies are needed to standardize measurements and clarify the role CEC may play in predicting risk of developing disease and response to therapies. PMID:25968932

  4. Roles of High-Density Lipoprotein Cholesterol in Patients With Acute Myocardial Infarction.

    PubMed

    Lee, Cheol Hyun; Woo, Jong Shin; Park, Chang Bum; Cho, Jin Man; Ahn, Young Keun; Kim, Chong Jin; Jeong, Myung Ho; Kim, Weon

    2016-05-01

    Many observational studies showed hogh-density lipoprotein cholesterol (HDL-C) is a strong inverse predictor of cardiovascular (CV) outcome. However, recent large clinical trials evaluating therapies to raise HDL-C level in those already on statin therapy have been discouraging. This complexity is not well-known.A total of 28,357 acute myocardial infarction (AMI) patients were enrolled in the Korea Acute Myocardial Infarction Registry (KAMIR), which was a prospective, multicenter, nationwide, web-based database of AMI in Korea. From this registry, we evaluated 3574 patients with AMI who have follow-up HDL-C level to investigate its association with clinical outcomes. The primary endpoint was the relationship between follow-up change in HDL-C and a 12-month composite of major adverse cardiac events (MACEs).Patients with initial HDL-C ≥ 40 mg/dL showed significantly lower rates of 12-month MACEs, especially cardiac and all-cause mortalities (P < 0.001). When patients were stratified into 4 groups according to the change of HDL-C, patients with decreasing HDL-C showed significantly higher rates of 12-month MACEs as comparable with patients with increasing HLD-C. A multivariate analysis indicated that HDL-C level was a significant predictor of CV events (hazard ratio, 1.38; 95% confidence interval, 1.12-1.71) after correcting for confounding variables.The follow-up change in HDL-C level was significantly related with CV outcomes in patients with AMI. PMID:27149442

  5. High density lipoprotein cholesterol as a determinant factor in coronary heart disease in Africans.

    PubMed Central

    Adebonojo, S. A.; Ogunnaike, H. O.

    1989-01-01

    A study of the lipid profile of 200 normal Nigerian subjects (Group A) shows a steady increase in the total cholesterol and triglyceride values with increasing age in both sexes, while the high density lipoprotein (HDL) cholesterol and percent HDL cholesterol values show a steady decrease with increasing age in both sexes. A similar study of 160 patients with high-risk factors (Group B), ie, patients with hypertension, diabetes mellitus, cigarette smokers, and obese patients, shows significantly higher values of mean triglyceride than in the normal subjects (P less than 0.001). The HDL cholesterol and percent HDL cholesterol values are significantly lower in the high risk patients than in the normal subjects (P less than 0.001). A study of the lipid profile of 15 Nigerian patients with coronary heart disease (CHD) (Group C) shows significantly lower in the high-risk patients than in the percent HDL cholesterol than normal subjects (P less than 0.001). These values were also found to be significantly lower in Group C patients than in Group B patients (P less than 0.01). A comparison of the lipid profile of normal Nigerian subjects with those of black Americans shows that the total cholesterol values of normal black Americans are significantly higher than those of normal Nigerians of comparable age and sex (P less than 0.001). Although there is no significant difference in the HDL cholesterol values of both black American and Nigerian males and females, the values of the percent HDL cholesterol of black Americans are significantly lower (P less than 0.01) than those of Nigerians of comparable age and sex.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:2746678

  6. Assessment of the Validity of the Double Superhelix Model for Reconstituted High Density Lipoproteins

    PubMed Central

    Jones, Martin K.; Zhang, Lei; Catte, Andrea; Li, Ling; Oda, Michael N.; Ren, Gang; Segrest, Jere P.

    2010-01-01

    For several decades, the standard model for high density lipoprotein (HDL) particles reconstituted from apolipoprotein A-I (apoA-I) and phospholipid (apoA-I/HDL) has been a discoidal particle ∼100 Å in diameter and the thickness of a phospholipid bilayer. Recently, Wu et al. (Wu, Z., Gogonea, V., Lee, X., Wagner, M. A., Li, X. M., Huang, Y., Undurti, A., May, R. P., Haertlein, M., Moulin, M., Gutsche, I., Zaccai, G., Didonato, J. A., and Hazen, S. L. (2009) J. Biol. Chem. 284, 36605–36619) used small angle neutron scattering to develop a new model they termed double superhelix (DSH) apoA-I that is dramatically different from the standard model. Their model possesses an open helical shape that wraps around a prolate ellipsoidal type I hexagonal lyotropic liquid crystalline phase. Here, we used three independent approaches, molecular dynamics, EM tomography, and fluorescence resonance energy transfer spectroscopy (FRET) to assess the validity of the DSH model. (i) By using molecular dynamics, two different approaches, all-atom simulated annealing and coarse-grained simulation, show that initial ellipsoidal DSH particles rapidly collapse to discoidal bilayer structures. These results suggest that, compatible with current knowledge of lipid phase diagrams, apoA-I cannot stabilize hexagonal I phase particles of phospholipid. (ii) By using EM, two different approaches, negative stain and cryo-EM tomography, show that reconstituted apoA-I/HDL particles are discoidal in shape. (iii) By using FRET, reconstituted apoA-I/HDL particles show a 28–34-Å intermolecular separation between terminal domain residues 40 and 240, a distance that is incompatible with the dimensions of the DSH model. Therefore, we suggest that, although novel, the DSH model is energetically unfavorable and not likely to be correct. Rather, we conclude that all evidence supports the likelihood that reconstituted apoA-I/HDL particles, in general, are discoidal in shape. PMID:20974855

  7. Electronegative Low-density Lipoprotein Increases Coronary Artery Disease Risk in Uremia Patients on Maintenance Hemodialysis

    PubMed Central

    Chang, Chiz-Tzung; Wang, Guei-Jane; Kuo, Chin-Chi; Hsieh, Ju-Yi; Lee, An-Sean; Chang, Chia-Ming; Wang, Chun-Cheng; Shen, Ming-Yi; Huang, Chiu-Ching; Sawamura, Tatsuya; Yang, Chao-Yuh; Stancel, Nicole; Chen, Chu-Huang

    2016-01-01

    Abstract Electronegative low-density lipoprotein (LDL) is a recognized factor in the pathogenesis of coronary artery disease (CAD) in the general population, but its role in the development of CAD in uremia patients is unknown. L5 is the most electronegative subfraction of LDL isolated from human plasma. In this study, we examined the distribution of L5 (L5%) and its association with CAD risk in uremia patients. The LDL of 39 uremia patients on maintenance hemodialysis and 21 healthy controls was separated into 5 subfractions, L1–L5, with increasing electronegativity. We compared the distribution and composition of plasma L5 between uremia patients and controls, examined the association between plasma L5% and CAD risk in uremia patients, and studied the effects of L5 from uremia patients on endothelial function. Compared to controls, uremia patients had significantly increased L5% (P < 0.001) and L5 that was rich in apolipoprotein C3 and triglycerides. L5% was significantly higher in uremia patients with CAD (n = 10) than in those without CAD (n = 29) (P < 0.05). Independent of other major CAD risk factors, the adjusted odds ratio for CAD was 1.88 per percent increase in plasma L5% (95% CI, 1.01–3.53), with a near-linear dose–response relationship. Compared with controls, uremia patients had decreased flow-mediated vascular dilatation. In ex vivo studies with preconstricted rat thoracic aortic rings, L5 from uremia patients inhibited acetylcholine-induced relaxation. In cultured human endothelial cells, L5 inhibited endothelial nitric oxide synthase activation and induced endothelial dysfunction. Our findings suggest that elevated plasma L5% may induce endothelial dysfunction and play an important role in the increased risk of CAD in uremia patients. PMID:26765403

  8. Proton pump inhibitors and statins: a possible interaction that favors low-density lipoprotein cholesterol reduction?

    PubMed Central

    Barkas, F; Elisaf, M; Rizos, CV; Klouras, E; Kostapanos, MS; Liberopoulos, E

    2015-01-01

    Background: Proton pump inhibitors (PPIs) might influence the metabolism of cholesterol and statins in the liver. Aim: The impact of PPIs on low-density lipoprotein cholesterol (LDL-C) levels in statin-treated patients. Methods: Retrospective observational study including consecutive statin-treated individuals followed for ≥3 years in a university hospital lipid clinic. Demographic characteristics as well as clinical and laboratory data were recorded at baseline and the most recent visit. High, moderate and low-intensity statin therapy was defined according to the expected LDL-C reduction (≥50%, 30-50%, and <30%, respectively). We compared the LDL-C reduction in subjects receiving statin + PPI with those on statin alone and assessed the overall effect of PPI administration on LDL-C lowering. Results: Of 648 statin-treated subjects, 7% were also taking a PPI. There was no difference between PPI vs. non-PPI group regarding baseline characteristics and intensity of lipid-lowering therapy. Stepwise linear regression analysis showed that PPI use was significantly associated with LDL-C reduction (b =0.104, p =0.005) along with baseline LDL-C levels (b =0.482, p <0.001), treatment with ezetimibe (b =0.198, p <0.001), presence of diabetes (b =0.168, p <0.001), compliance with treatment (b =0.205, p <0.001), intensity of statin treatment (b =0.101, p =0.005) and cardiovascular risk (b =0.082, p =0.049). Subjects receiving statin + PPI had a higher LDL-C reduction by 6.4% compared with those taking a statin alone (fully adjusted p =0.005). Conclusions: PPIs may modestly boost the statin-mediated LDL-C reduction. This effect should be confirmed by prospective clinical studies. Hippokratia 2015; 19 (4): 332-337.

  9. CD36 binds oxidized low density lipoprotein (LDL) in a mechanism dependent upon fatty acid binding.

    PubMed

    Jay, Anthony G; Chen, Alexander N; Paz, Miguel A; Hung, Justin P; Hamilton, James A

    2015-02-20

    The association of unesterified fatty acid (FA) with the scavenger receptor CD36 has been actively researched, with focuses on FA and oxidized low density lipoprotein (oxLDL) uptake. CD36 has been shown to bind FA, but this interaction has been poorly characterized to date. To gain new insights into the physiological relevance of binding of FA to CD36, we characterized FA binding to the ectodomain of CD36 by the biophysical method surface plasmon resonance. Five structurally distinct FAs (saturated, monounsaturated (cis and trans), polyunsaturated, and oxidized) were pulsed across surface plasmon resonance channels, generating association and dissociation binding curves. Except for the oxidized FA HODE, all FAs bound to CD36, with rapid association and dissociation kinetics similar to HSA. Next, to elucidate the role that each FA might play in CD36-mediated oxLDL uptake, we used a fluorescent oxLDL (Dii-oxLDL) live cell assay with confocal microscopy imaging. CD36-mediated uptake in serum-free medium was very low but greatly increased when serum was present. The addition of exogenous FA in serum-free medium increased oxLDL binding and uptake to levels found with serum and affected CD36 plasma membrane distribution. Binding/uptake of oxLDL was dependent upon the FA dose, except for docosahexaenoic acid, which exhibited binding to CD36 but did not activate the uptake of oxLDL. HODE also did not affect oxLDL uptake. High affinity FA binding to CD36 and the effects of each FA on oxLDL uptake have important implications for protein conformation, binding of other ligands, functional properties of CD36, and high plasma FA levels in obesity and type 2 diabetes.

  10. Oxidized low-density lipoprotein is associated with advanced-stage prostate cancer.

    PubMed

    Wan, Fangning; Qin, Xiaojian; Zhang, Guiming; Lu, Xiaolin; Zhu, Yao; Zhang, Hailiang; Dai, Bo; Shi, Guohai; Ye, Dingwei

    2015-05-01

    Clinical and epidemiological data suggest coronary artery disease shares etiology with prostate cancer (PCa). The aim of this work was to assess the effects of several serum markers reported in cardiovascular disease on PCa. Serum markers (oxidized low-density lipoprotein [ox-LDL], apolipoprotein [apo] B100, and apoB48) in peripheral blood samples from 50 patients from Fudan University Shanghai Cancer Center (FUSCC) with localized or lymph node metastatic PCa were investigated in this study. Twenty-five samples from normal individuals were set as controls. We first conducted enzyme-linked immunosorbent assay analysis to select candidate markers that were significantly different between these patients and controls. Then, the clinical relevance between OLR1 (the ox-LDL receptor) expression and PCa was analyzed in The Cancer Genome Atlas (TCGA) cohort. We also investigated the function of ox-LDL in PCa cell lines in vitro. Phosphorylation protein chips were used to analyze cell signaling pathways in ox-LDL-treated PC-3 cells. The ox-LDL level was found to be significantly correlated with N stage of prostate cancer. OLR1 expression was correlated with lymph node metastasis in the TCGA cohort. In vitro, ox-LDL stimulated the proliferation, migration, and invasion of LNCaP and PC-3 in a dose-dependent manner. The results of phosphoprotein microarray illustrated that ox-LDL could influence multiple signaling pathways of PC-3. Activation of proliferation promoting signaling pathways (including β-catenin, cMyc, NF-κB, STAT1, STAT3) as well as apoptosis-associating signaling pathways (including p27, caspase-3) demonstrated that ox-LDL had complicated effects on prostate cancer. Increased serum ox-LDL level and OLR1 expression may indicate advanced-stage PCa and lymph node metastasis. Moreover, ox-LDL could stimulate PCa proliferation, migration, and invasion in vitro.

  11. High-density lipoproteins induce a rapid and transient release of Ca2+ in cultured fibroblasts.

    PubMed

    Pörn, M I; Akerman, K E; Slotte, J P

    1991-10-01

    Several different cell types showed increased rates of proliferation and cholesterol mobilization in response to treatment with high-density lipoprotein (HDL). This would suggest that one main function of HDL is the activation of signal pathways in cells. In the current study we have used the fluorescent indicator fura-2 to monitor the level of cytosolic Ca2+ ([Ca2+]i) in human skin fibroblasts. Exposure of subconfluent as well as confluent fibroblasts to HDL3 (20-60 micrograms/ml) resulted in a rapid and transient increase in [Ca2+]i. Sequential additions of HDL3 resulted in diminished rises in [Ca2+]i. The transient rise in [Ca2+]i was observed with HDL prepared from plasma either by conventional ultracentrifugation or by precipitation with dextran sulphate. Chelation of the extracellular Ca2+ with EGTA prior to the addition of HDL3 did not prevent the HDL3-induced rise in [Ca2+]i, suggesting that the mobilized Ca2+ was derived mainly from intracellular stores. Covalent modification of the apoproteins of HDL3 with dimethyl suberimidate or tetranitromethane did not inhibit the HDL3-induced rise in [Ca2+]i. This indicates that the binding of HDL3 to cell surface receptors may not be necessary for the mobilization of intracellular Ca2+. Moreover, the Ca(2+)-releasing effect of HDL3 was not inhibited by the presence of albumin (1%, w/v) in the extracellular medium, suggesting that non-esterified fatty acids were not the cause of the increased [Ca2+]i. The exposure of fibroblasts to lysophosphatidic acid, a potent mitogen and Ca(2+)-releasing agent, before addition of HDL3 completely inhibited the HDL3-induced rise in [Ca2+]i. Furthermore, phorbol 12-myristate 13-acetate blocked the HDL3-induced rise in [Ca2+]i. The results of this study imply that exposure of cells to HDL generates an intracellular signal which is induced by a component of the lipid fraction.

  12. Vitamin D Supplementation and High-Density Lipoprotein Cholesterol: A Study in Healthy School Children

    PubMed Central

    Tavakoli, Fatemeh; Namakin, Kokab; Zardast, Mahmood

    2016-01-01

    Background The high-density lipoprotein cholesterol (HDL-C) level has been shown to have a significant role in the prevention of cardiovascular diseases and atherosclerosis. Low vitamin D levels have been shown to be correlated with dyslipidemia, but limited data exist on indigenous children. Objectives We aimed to investigate the effect of vitamin D supplementation on HDL-C levels in school-aged Iranian children. Methods In this prospective controlled clinical trial, 47 healthy children (23 boys) aged 10 - 14 years, students of Birjand (Iran) elementary schools, were selected and randomly divided into two groups. The study group received a vitamin D supplement (1000 mg capsule) daily for one month, and placebo tablets were prescribed to the controls. Before and after the treatment course, the serum HDL-C and 25-hydroxy vitamin D levels of both groups were measured. The data were analyzed by SPSS, ver. 16, and Chi-square tests, Fisher’s exact test, paired-sample t-tests, and Pearson’s correlation were used, wherever appropriate. The significance level was set at P < 0.05. Results Forty children completed the study; their mean age was 11.5 ± 1.175 years. The mean serum levels of both HDL-C and vitamin D showed a significant rise following the treatment in the study group (P = 0.007 and P < 0.001, respectively), whereas both variables decreased slightly in the control group (P = 0.27). There was no statistically significant difference in the mean serum levels of HDL-C and vitamin D between the two groups after the intervention (P = 0.11 and P = 0.20, respectively). Conclusions Vitamin D supplements seem to have a positive impact on serum HDL-C levels and may be effective in reducing the risk of cardiovascular diseases in the long term. PMID:27713805

  13. Biomarkers associated with high-density lipoproteins in atherosclerotic kidney disease.

    PubMed

    Rye, Kerry-Anne

    2014-04-01

    High-density lipoproteins (HDL) originate as discoidal particles that are rapidly converted by lecithin:cholesterol acyltransferase (LCAT) into the spherical particles that predominate in normal human plasma. Spherical HDL consist of multiple populations of particles that vary widely in size, composition and function. Human population studies have established that high plasma HDL cholesterol levels are associated with a reduced incidence of cardiovascular disease. The mechanistic basis of this relationship is not well understood, but most likely involves a number of the cardioprotective functions of HDL. These include the ability of apolipoprotein (apo) A-I, the main apolipoprotein constituent of HDL, to remove cholesterol from macrophages in the artery wall. HDL also have antioxidant and anti-inflammatory properties that are potentially cardioprotective. Evidence that some of these beneficial properties are compromised in people with diabetes and renal disease is emerging. Persistently elevated plasma glucose levels in people with diabetes and poor glycemic control can lead to irreversible, non-enzymatic glycation of plasma proteins, including apoA-I. Non-enzymatically glycated proteins are also prevalent in people with diabetes and end-stage renal disease who are at high cardiovascular risk. Evidence that non-enzymatically glycated apoA-I inhibits the LCAT reaction and impairs some of the cardioprotective properties of HDL is also emerging. This review is concerned with how non-enzymatic glycation of apoA-I affects the ability of LCAT to convert discoidal HDL into spherical HDL, how it affects cholesterol efflux from macrophages and how it affects the anti-inflammatory and antioxidant properties of HDL.

  14. High-Density Lipoprotein Function Measurement in Human Studies: Focus on Cholesterol Efflux Capacity

    PubMed Central

    Rohatgi, Anand

    2015-01-01

    A low plasma level of high-density lipoprotein (HDL) cholesterol (HDL-C) is a major risk factor for the development of atherosclerotic cardiovascular disease (ASCVD). However, several observations have highlighted the shortcomings of using cholesterol content as the sole reflection of HDL metabolism. In particular, several large randomized controlled trials of extended release niacin and cholesteryl-ester transfer protein (CETP) inhibitors on background statin therapy have failed to show improvement in ASCVD outcomes despite significant increases in HDL-C. Reverse cholesterol transport (RCT) is the principal HDL function that impacts macrophage foam cell formation and other functions such as endothelial activation of endothelial nitric oxide synthase, monocyte adhesion, and platelet aggregation. Cholesterol efflux from macrophages to plasma/serum reflects the first critical step of RCT and is considered a key anti-atherosclerotic function of HDL. Whether this function is operative in humans remains to be seen, but recent studies assessing cholesterol efflux in humans suggest that the cholesterol efflux capacity (CEC) of human plasma or serum is a potent marker of ASCVD risk. This review describes the methodology of measuring CEC ex vivo from human samples and the findings to date linking CEC to human disease. Studies to date confirm that CEC can be reliably measured using stored human blood samples as cholesterol acceptors and suggest that CEC may be a promising new biomarker for atherosclerotic and metabolic diseases. Further studies are needed to standardize measurements and clarify the role CEC may play in predicting risk of developing disease and response to therapies. PMID:25968932

  15. Association of lipoarabinomannan with high density lipoprotein in blood: implications for diagnostics.

    PubMed

    Sakamuri, Rama Murthy; Price, Dominique N; Lee, Myungsun; Cho, Sang Nae; Barry, Clifton E; Via, Laura E; Swanson, Basil I; Mukundan, Harshini

    2013-05-01

    Understanding the pathophysiology of tuberculosis, and the bio-distribution of pathogen-associated molecules in the host is essential for the development of efficient methods of intervention. One of the key virulence factors in the pathology of tuberculosis infection is Lipoarabinomannan (LAM). Previously, we have demonstrated the reliable detection of LAM in urine from tuberculosis patients in a sandwich immunoassay format. We have also applied an ultra-sensitive detection strategy developed for amphiphilic biomarkers, membrane insertion, to the detection of LAM with a limit of detection of 10 fM. Herein, we evaluate the application of membrane insertion to the detection of LAM in patient serum, and demonstrate that the circulating concentrations of 'monomeric' LAM in serum are very low, despite significantly higher concentrations in the urine. Using spiked samples, we demonstrate that this discrepancy is due to the association of LAM with high-density lipoprotein (HDL) nanodiscs in human serum. Indeed, pull-down of HDL nanodiscs from human serum allows for the recovery of HDL-associated LAM. These studies suggest that LAM is likely associated with carrier molecules such as HDL in the blood of patients infected with tuberculosis. This phenomenon may not be limited to LAM in that many pathogen-associated molecular patterns like LAM are amphiphilic in nature and may also be associated with host lipid carriers. Such interactions are likely to affect host-pathogen interactions, pathogen bio-distribution and clearance in the host, and must be thoroughly understood for the effective design of vaccines and diagnostics. PMID:23507184

  16. Photodynamic targeting of human retinoblastoma cells using covalent low-density lipoprotein conjugates.

    PubMed Central

    Schmidt-Erfurth, U.; Diddens, H.; Birngruber, R.; Hasan, T.

    1997-01-01

    Combination of photosensitizers with carrier molecules has been shown to enhance the efficiency of photodynamic therapy (PDT). Owing to an increased expression of their receptors on some malignant and proliferating cells, low-density lipoproteins (LDLs) are potential endogenous carriers. A photosensitizer, chlorin e6 (Ce6), was covalently bound to LDL via carbodiimide activation. The Ce6-LDL conjugate was evaluated on a fibroblast cell line with defined LDL receptor expression and a retinoblastoma cell line (Y79). Uptake of free Ce6 and Ce6 either covalently bound to or complexed with LDL was measured by spectrofluorimetry. Phototoxicity after irradiation at 660 nm was determined by a mitochondrial activity assay (MTT). Covalent binding to LDL significantly increased the uptake of Ce6 for both cell lines by a factor of 4-5. A Ce6: LDL binding ratio of 50:1 was optimal. A receptor-mediated uptake was demonstrated by saturability and competitive inhibition by free LDL. Binding also occurred at 2 degrees C and was attributed to non-specific associations. Irradiation with 10 J cm-2 of 660 nm light after treatment of cells with Ce6-LDL conjugate reduced the MTT activity by 80%, while free or mixed Ce6 induced a maximum of 10% reduction in the MTT activity following identical treatment conditions. These data suggest that targeting of LDL receptor-bearing cells using covalently bound carriers, such as LDL, might increase the efficiency and selectivity of PDT. Intraocular tumours such as retinoblastomas could be appropriate targets for such an approach owing to the ease of access of light sources and the need for non-invasive approaches in sensitive ocular sites. PMID:9000598

  17. Association of lipoarabinomannan with high density lipoprotein in blood: Implications for diagnostics

    DOE PAGESBeta

    Sakamuri, Rama Murthy; Price, Dominique N.; Lee, Myungsun; Cho, Sang Nae; Barry, Clifton E.; Via, Laura E.; Swanson, Basil I.; Mukundan, Harshini

    2013-02-14

    Understanding the pathophysiology of tuberculosis, and the bio-distribution of pathogen-associated molecules in the host is essential for the development of efficient methods of intervention. One of the key virulence factors in the pathology of tuberculosis infection is Lipoarabinomannan (LAM). Previously, we have demonstrated the reliable detection of LAM in urine from tuberculosis patients in a sandwich immunoassay format. We also applied an ultra-sensitive detection strategy developed for amphiphilic biomarkers, membrane insertion, to the detection of LAM with a limit of detection of 10 fM. Herein, we evaluate the application of membrane insertion to the detection of LAM in patient serum,more » and demonstrate that the circulating concentrations of ‘monomeric’ LAM in serum are very low, despite significantly higher concentrations in the urine. Using spiked samples, we demonstrate that this discrepancy is due to the association of LAM with high-density lipoprotein (HDL) nanodiscs in human serum. Indeed, pull-down of HDL nanodiscs from human serum allows for the recovery of HDL-associated LAM. These studies suggest that LAM is likely associated with carrier molecules such as HDL in the blood of patients infected with tuberculosis. Furthermore, this phenomenon may not be limited to LAM in that many pathogen-associated molecular patterns like LAM are amphiphilic in nature and may also be associated with host lipid carriers. Such interactions are likely to affect host–pathogen interactions, pathogen bio-distribution and clearance in the host, and must be thoroughly understood for the effective design of vaccines and diagnostics.« less

  18. Association of lipoarabinomannan with high density lipoprotein in blood: Implications for diagnostics

    SciTech Connect

    Sakamuri, Rama Murthy; Price, Dominique N.; Lee, Myungsun; Cho, Sang Nae; Barry, Clifton E.; Via, Laura E.; Swanson, Basil I.; Mukundan, Harshini

    2013-02-14

    Understanding the pathophysiology of tuberculosis, and the bio-distribution of pathogen-associated molecules in the host is essential for the development of efficient methods of intervention. One of the key virulence factors in the pathology of tuberculosis infection is Lipoarabinomannan (LAM). Previously, we have demonstrated the reliable detection of LAM in urine from tuberculosis patients in a sandwich immunoassay format. We also applied an ultra-sensitive detection strategy developed for amphiphilic biomarkers, membrane insertion, to the detection of LAM with a limit of detection of 10 fM. Herein, we evaluate the application of membrane insertion to the detection of LAM in patient serum, and demonstrate that the circulating concentrations of ‘monomeric’ LAM in serum are very low, despite significantly higher concentrations in the urine. Using spiked samples, we demonstrate that this discrepancy is due to the association of LAM with high-density lipoprotein (HDL) nanodiscs in human serum. Indeed, pull-down of HDL nanodiscs from human serum allows for the recovery of HDL-associated LAM. These studies suggest that LAM is likely associated with carrier molecules such as HDL in the blood of patients infected with tuberculosis. Furthermore, this phenomenon may not be limited to LAM in that many pathogen-associated molecular patterns like LAM are amphiphilic in nature and may also be associated with host lipid carriers. Such interactions are likely to affect host–pathogen interactions, pathogen bio-distribution and clearance in the host, and must be thoroughly understood for the effective design of vaccines and diagnostics.

  19. Serum LDL (Low Density Lipoprotein) As a Risk Factor for Ischemic Stroke.

    PubMed

    Biswas, N; Sangma, M A

    2016-07-01

    Atherosclerosis is the main risk factor of ischaemic stroke. Dyslipidaemia is the main cause of atherosclerosis. High levels of LDL, also called "bad" cholesterol, seem to provoke stroke. This case control study was conducted in Mymensingh Medical College Hospital during the period of January 2012 to December 2012. The study was carried out to measure the level of serum LDL (Low Density Lipoprotein) of ischaemic stroke patients admitted in Medicine wards of Mymensingh Medical College Hospital and the result of this study was compared with the level of LDL cholesterol in age matched controls. Sample size was 384 which had been selected by inclusion and exclusion criteria. Out of 384 samples 192 were cases and 192 were controls. Mean age ±SD was 57.0±10.85 years in cases and 57.43±10.64 years in controls. Elderly people are the most vulnerable group for developing stroke. LDL cholesterol level was more than 130mg/dl was found 88.54% among cases and 33.85% among controls, the difference was statistically significant (p<0.05). Mean LDL level ±SD were 145±13.59mg/dl in cases and 125.01±10.73mg/dl in controls. Odds ratio of LDL cholesterol were 15.0979 and 95% confidence limits were 8.8396 to 25.7869 among cases and controls. This study explored study population with higher LDL cholesterol was over fifteen times more likely to developed ischaemic stroke. Early detection of high LDL cholesterol in the way to prevent ischaemic stroke and thereby reduced the morbidity and mortality of ischaemic stroke. PMID:27612886

  20. Role of liver sinusoidal endothelial cells and stabilins in elimination of oxidized low-density lipoproteins

    PubMed Central

    Li, Ruomei; Oteiza, Ana; Sørensen, Karen Kristine; McCourt, Peter; Olsen, Randi; Svistounov, Dmitri

    2011-01-01

    Atherogenesis is associated with elevated levels of low-density lipoprotein (LDL) and its oxidized form (oxLDL) in the blood. The liver is an important scavenger organ for circulating oxLDLs. The present study aimed to examine endocytosis of mildly oxLDL (the major circulating form of oxLDLs) in liver sinusoidal endothelial cells (LSECs) and the involvement of the scavenger receptors stabilin-1 and stabilin-2 in this process. Freshly isolated LSECs, Kupffer cells (KCs), and stabilin-1- and stabilin-2-transfected human embryonic kidney cells were incubated with fluorescently labeled or radiolabeled oxLDLs [oxidized for 3 h (oxLDL3), 6 h, or 24 h (oxLDL24)] to measure endocytosis. The intracellular localization of oxLDLs and stabilins in LSECs was examined by immunofluorescence and immunogold electron microscopy. Whereas oxLDL24 was endocytosed both by LSECs and KCs, oxLDL3 (mildly oxLDL) was taken up by LSECs only. The LSEC uptake of oxLDLs was significantly inhibited by the scavenger receptor ligand formaldehyde-treated serum albumin. Uptake of all modified LDLs was high in stabilin-1-transfected cells, whereas stabilin-2-transfected cells preferentially took up oxLDL24, suggesting that stabilin-1 is a more important receptor for mildly oxLDLs than stabilin-2. Double immunogold labeling experiments in LSECs indicated interactions of stabilin-1 and stabilin-2 with oxLDL3 on the cell surface, in coated pits, and endocytic vesicles. LSECs but not KCs endocytosed mildly oxLDL. Both stabilin-1 and stabilin-2 were involved in the LSEC endocytosis of oxLDLs, but experiments with stabilin-transfected cells pointed to stabilin-1 as the most important receptor for mildly oxLDL. PMID:21030611

  1. Low-Density-Lipoprotein Particle Size Predicts a Poor Outcome in Patients with Atherothrombotic Stroke

    PubMed Central

    Song, Tae-Jin; Cho, Hyun-Ji; Chang, Yoonkyung; Youn, Minjung; Shin, Min-Jeong; Jo, Inho; Heo, Ji Hoe

    2015-01-01

    Background and Purpose Low-density lipoprotein (LDL) particle size is considered to be one of the more important cardiovascular risk factors, and small LDL particles are known to have atherogenic potential. The aim of this study was to determine whether LDL particle size is associated with stroke severity and functional outcome in patients with atherothrombotic stroke. Methods Between January 2009 and May 2011, 248 patients with first-episode cerebral infarction who were admitted to our hospital within 7 days after symptom onset were prospectively enrolled. LDL particle size was measured using the nondenaturing polyacrylamide gradient gel electrophoresis assay. Stroke severity was assessed by applying the National Institutes of Health Stroke Scale (NIHSS) at admission. Functional outcome was investigated at 3 months after the index stroke using the modified Rankin Scale (mRS), and poor functional outcome was defined as an mRS score of ≥3. Results The LDL particle size in the 248 patients was 25.9±0.9 nm (mean±SD). LDL particle size was inversely correlated with the degree of cerebral artery stenosis (p=0.010). Multinomial multivariate logistic analysis revealed that after adjustment for age, sex, and variables with p<0.1 in univariate analysis, LDL particle size was independently and inversely associated with stroke severity (NIHSS score ≥5; reference, NIHSS score 0-2; odds ratio=0.38, p=0.028) and poor functional outcome (odds ratio=0.44, p=0.038). Conclusions The results of this study demonstrate that small LDL particles are independently correlated with stroke outcomes. LDL particle size is thus a potential biomarker for the prognosis of atherothrombotic stroke. PMID:25628741

  2. Reduction in Postoperative High-Density Lipoprotein Cholesterol Levels in Children Undergoing the Fontan Operation

    PubMed Central

    Argraves, W. Scott; Graham, Eric M.; Slate, Elizabeth H.; Atz, Andrew M.; Bradley, Scott M.; McQuinn, Tim C.; Wilkerson, Brent A.; Wing, Shane B.

    2015-01-01

    Despite the emerging relevance of high-density lipoprotein (HDL) in the inflammatory cascade and vascular barrier integrity, HDL levels in children undergoing cardiac surgery are unexplored. As a measure of HDL levels, the HDL-cholesterol (HDL-C) in single-ventricle patients was quantified before and after the Fontan operation, and it was determined whether relationships existed between the duration and the type of postoperative pleural effusions. The study prospectively enrolled 12 children undergoing the Fontan operation. Plasma HDL-C levels were measured before and after cardiopulmonary bypass. The outcome variables of interest were the duration and type of chest tube drainage (chylous vs. nonchylous). The Kendall rank correlation coefficient and the Wilcoxon rank sum test were used. There were 11 complete observations. The median preoperative HDL-C level for all the subjects was 30 mg/dl (range, 24–53 mg/dl), and the median postcardiopulmonary bypass level was 21 mg/dl (range, 14–46 mg/dl) (p = 0.004). There was a tendency toward a moderate inverse correlation (–0.42) between the postcardiopulmonary bypass HDL-C level and the duration of chest tube drainage, but the result was not statistically significant (p = 0.07). In the chylous effusion group, the median postcardiopulmonary bypass HDL-C tended to be lower (16 vs. 23 mg/dl; p = 0.09). After the Fontan operation, the plasma HDL-C levels in children are significantly reduced. It is reasonable to conclude that the reduction in HDL-C reflects reduced plasma levels of HDL particles, which may have pertinent implications in postoperative pleural effusions given the antiinflammatory and endothelial barrier functions of HDL. PMID:22411716

  3. Cholesteryl Ester Hydroperoxides Are Biologically Active Components of Minimally Oxidized Low Density Lipoprotein*S⃞

    PubMed Central

    Harkewicz, Richard; Hartvigsen, Karsten; Almazan, Felicidad; Dennis, Edward A.; Witztum, Joseph L.; Miller, Yury I.

    2008-01-01

    Oxidation of low density lipoprotein (LDL) occurs in vivo and significantly contributes to the development of atherosclerosis. An important mechanism of LDL oxidation in vivo is its modification with 12/15-lipoxygenase (LO). We have developed a model of minimally oxidized LDL (mmLDL) in which native LDL is modified by cells expressing 12/15LO. This mmLDL activates macrophages inducing membrane ruffling and cell spreading, activation of ERK1/2 and Akt signaling, and secretion of proinflammatory cytokines. In this study, we found that many of the biological activities of mmLDL were associated with cholesteryl ester (CE) hydroperoxides and were diminished by ebselen, a reducing agent. Liquid chromatography coupled with mass spectroscopy demonstrated the presence of many mono- and polyoxygenated CE species in mmLDL but not in native LDL. Nonpolar lipid extracts of mmLDL activated macrophages, although to a lesser degree than intact mmLDL. The macrophage responses were also induced by LDL directly modified with immobilized 12/15LO, and the nonpolar lipids extracted from 12/15LO-modified LDL contained a similar set of oxidized CE. Cholesteryl arachidonate modified with 12/15LO also activated macrophages and contained a similar collection of oxidized CE molecules. Remarkably, many of these oxidized CE were found in the extracts of atherosclerotic lesions isolated from hyperlipidemic apoE–/– mice. These results suggest that CE hydroperoxides constitute a class of biologically active components of mmLDL that may be relevant to proinflammatory activation of macrophages in atherosclerotic lesions. PMID:18263582

  4. High-Density Lipoprotein Function Measurement in Human Studies: Focus on Cholesterol Efflux Capacity.

    PubMed

    Rohatgi, Anand

    2015-01-01

    A low plasma level of high-density lipoprotein (HDL) cholesterol (HDL-C) is a major risk factor for the development of atherosclerotic cardiovascular disease (ASCVD). However, several observations have highlighted the shortcomings of using cholesterol content as the sole reflection of HDL metabolism. In particular, several large randomized controlled trials of extended release niacin and cholesteryl-ester transfer protein (CETP) inhibitors on background statin therapy have failed to show improvement in ASCVD outcomes despite significant increases in HDL-C. Reverse cholesterol transport (RCT) is the principal HDL function that impacts macrophage foam cell formation and other functions such as endothelial activation of endothelial nitric oxide synthase, monocyte adhesion, and platelet aggregation. Cholesterol efflux from macrophages to plasma/serum reflects the first critical step of RCT and is considered a key anti-atherosclerotic function of HDL. Whether this function is operative in humans remains to be seen, but recent studies assessing cholesterol efflux in humans suggest that the cholesterol efflux capacity (CEC) of human plasma or serum is a potent marker of ASCVD risk. This review describes the methodology of measuring CEC ex vivo from human samples and the findings to date linking CEC to human disease. Studies to date confirm that CEC can be reliably measured using stored human blood samples as cholesterol acceptors and suggest that CEC may be a promising new biomarker for atherosclerotic and metabolic diseases. Further studies are needed to standardize measurements and clarify the role CEC may play in predicting risk of developing disease and response to therapies.

  5. Antioxidant activities of black and yellow soybeans against low density lipoprotein oxidation.

    PubMed

    Takahashi, Rie; Ohmori, Reiko; Kiyose, Chikako; Momiyama, Yukihiko; Ohsuzu, Fumitaka; Kondo, Kazuo

    2005-06-01

    Several studies have demonstrated that the daily intakes of soy foods were associated with a reduced cardiovascular risk. The aim of our study was to investigate the inhibitory effect of black soybeans on low density lipoprotein (LDL) oxidation in comparison to yellow soybeans. The extract from black soybean had a longer LDL oxidation lag time than that from yellow soybean (205 +/- 16 and 65 +/- 3 min, respectively). When both soybeans were divided into the seed coat and the mixture of the germ and cotyledon, the diluted extract solution from the black soybean seed coat prolonged the lag time significantly more than the original extract of the yellow soybean seed coat. On the other hand, antioxidant effects of the extract from the mixture of germs and cotyledons were similar in both soybeans. Regarding total polyphenol contents, the seed coat of black soybean had a higher polyphenol content than that of yellow soybean (29.0 +/- 0.56 and 0.45 +/- 0.02 mg/g, respectively). Interestingly, the mixture of the germ and cotyledon hydrolyzed by beta-glucosidase in both soybeans showed a stronger inhibitory effect on LDL oxidation than that before being hydrolyzed by beta-glucosidase. These results suggest that black soybeans may be more effective in inhibiting LDL oxidation than yellow soybeans because of total polyphenols contents in its seed coat. In addition, aglycones, which are rich in soybeans fermented or hydrolyzed by beta-glucosidase, may play a crucial role in the prevention of oxidation-related diseases. PMID:15913328

  6. Low-density lipoprotein receptor–related protein 5 governs Wnt-mediated osteoarthritic cartilage destruction

    PubMed Central

    2014-01-01

    Introduction Wnt ligands bind to low-density lipoprotein receptor–related protein (LRP) 5 or 6, triggering a cascade of downstream events that include β-catenin signaling. Here we explored the roles of LRP5 in interleukin 1β (IL-1β)- or Wnt-mediated osteoarthritic (OA) cartilage destruction in mice. Methods The expression levels of LRP5, type II collagen, and catabolic factors were determined in mouse articular chondrocytes, human OA cartilage, and mouse experimental OA cartilage. Experimental OA in wild-type, Lrp5 total knockout (Lrp5-/-) and chondrocyte-specific knockout (Lrp5fl/fl;Col2a1-cre) mice was caused by aging, destabilization of the medial meniscus (DMM), or intra-articular injection of collagenase. The role of LRP5 was confirmed in vitro by small interfering RNA–mediated knockdown of Lrp5 or in Lrp5-/- cells treated with IL-1β or Wnt proteins. Results IL-1β treatment increased the expression of LRP5 (but not LRP6) via JNK and NF-κB signaling. LRP5 was upregulated in human and mouse OA cartilage, and Lrp5 deficiency in mice inhibited cartilage destruction. Treatment with IL-1β or Wnt decreased the level of Col2a1 and increased those of Mmp3 or Mmp13, whereas Lrp5 knockdown ameliorated these effects. In addition, we found that the functions of LRP5 in arthritic cartilage were subject to transcriptional activation by β-catenin. Moreover, Lrp5-/- and Lrp5fl/fl;Col2a1-cre mice exhibited decreased cartilage destruction (and related changes in gene expression) in response to experimental OA. Conclusions Our findings indicate that LRP5 (but not LRP6) plays an essential role in Wnt/β-catenin-signaling-mediated OA cartilage destruction in part by regulating the expression levels of type II collagen, MMP3, and MMP13. PMID:24479426

  7. Systemic Free Fatty Acid Disposal Into Very Low-Density Lipoprotein Triglycerides

    PubMed Central

    Koutsari, Christina; Mundi, Manpreet S.; Ali, Asem H.; Patterson, Bruce W.; Jensen, Michael D.

    2013-01-01

    We measured the incorporation of systemic free fatty acids (FFA) into circulating very low-density lipoprotein triglycerides (VLDL-TGs) under postabsorptive, postprandial, and walking conditions in humans. Fifty-five men and 85 premenopausal women with BMI 18–24 (lean) and 27–36 kg/m2 (overweight/obese) received an intravenous bolus injection of [1,1,2,3,3-2H5]glycerol (to measure VLDL-TG kinetics) and either [1-14C]palmitate or [9,10-3H]palmitate to determine the proportion of systemic FFA that is converted to VLDL-TG. Experiments started at 0630 h after a 12-h overnight fast. In the postabsorptive protocol, participants rested and remained fasted until 1330 h. In the postprandial protocol, volunteers ingested frequent portions of a fat-free smoothie. In the walking protocol, participants walked on a treadmill for 5.5 h at ∼3× resting energy expenditure. Approximately 7% of circulating FFA was converted into VLDL-TG. VLDL-TG secretion rates (SRs) were not statistically different among protocols. Visceral fat mass was the only independent predictor of VLDL-TG secretion, explaining 33–57% of the variance. The small proportion of systemic FFA that is converted to VLDL-TG can confound the expected relationship between plasma FFA concentration and VLDL-TG SRs. Regulation of VLDL-TG secretion is complex in that, despite a broad spectrum of physiological FFA concentrations, VLDL-TG SRs did not vary based on different acute substrate availability. PMID:23434937

  8. Regulation of Rac1 activation by the low density lipoprotein receptor-related protein.

    PubMed

    Ma, Zhong; Thomas, Keena S; Webb, Donna J; Moravec, Radim; Salicioni, Ana Maria; Mars, Wendy M; Gonias, Steven L

    2002-12-23

    The low density lipoprotein receptor-related protein (LRP-1) binds and mediates the endocytosis of multiple ligands, transports the urokinase-type plasminogen activator receptor (uPAR) and other membrane proteins into endosomes, and binds intracellular adaptor proteins involved in cell signaling. In this paper, we show that in murine embryonic fibroblasts (MEFs) and L929 cells, LRP-1 functions as a major regulator of Rac1 activation, and that this activity depends on uPAR. LRP-1-deficient MEFs demonstrated increased Rac1 activation compared with LRP-1-expressing MEFs, and this property was reversed by expressing the VLDL receptor, a member of the same gene family as LRP-1, with overlapping ligand-binding specificity. Neutralizing the activity of LRP-1 with receptor-associated protein (RAP) increased Rac1 activation and cell migration in MEFs and L929 cells. The same parameters were unaffected by RAP in uPAR-/- MEFs, prepared from uPAR gene knockout embryos, and in uPAR-deficient LM-TK- cells. Untreated uPAR+/+ MEFs demonstrated substantially increased Rac1 activation compared with uPAR-/- MEFs. In addition to Rac1, LRP-1 suppressed activation of extracellular signal-regulated kinase (ERK) in MEFs; however, it was Rac1 (and not ERK) that was responsible for the effects of LRP-1 on MEF migration. Thus, LRP-1 regulates two signaling proteins in the same cell (Rac1 and ERK), both of which may impact on cell migration. In uPAR-negative cells, LRP-1 neutralization does not affect Rac1 activation, and other mechanisms by which LRP-1 may regulate cell migration are not unmasked.

  9. Does high-density lipoprotein protect vascular function in healthy pregnancy?

    PubMed

    Sulaiman, Wan N Wan; Caslake, Muriel J; Delles, Christian; Karlsson, Helen; Mulder, Monique T; Graham, Delyth; Freeman, Dilys J

    2016-04-01

    The maternal adaptation to pregnancy includes hyperlipidaemia, oxidative stress and chronic inflammation. In non-pregnant individuals, these processes are usually associated with poor vascular function. However, maternal vascular function is enhanced in pregnancy. It is not understood how this is achieved in the face of the adverse metabolic and inflammatory environment. Research into cardiovascular disease demonstrates that plasma HDL (high-density lipoprotein), by merit of its functionality rather than its plasma concentration, exerts protective effects on the vascular endothelium. HDL has vasodilatory, antioxidant, anti-thrombotic and anti-inflammatory effects, and can protect against endothelial cell damage. In pregnancy, the plasma HDL concentration starts to rise at 10 weeks of gestation, peaking at 20 weeks. The initial rise in plasma HDL occurs around the time of the establishment of the feto-placental circulation, a time when the trophoblast plugs in the maternal spiral arteries are released, generating oxidative stress. Thus there is the intriguing possibility that new HDL of improved function is synthesized around the time of the establishment of the feto-placental circulation. In obese pregnancy and, to a greater extent, in pre-eclampsia, plasma HDL levels are significantly decreased and maternal vascular function is reduced. Wire myography studies have shown an association between the plasma content of apolipoprotein AI, the major protein constituent of HDL, and blood vessel relaxation. These observations lead us to hypothesize that HDL concentration, and function, increases in pregnancy in order to protect the maternal vascular endothelium and that in pre-eclampsia this fails to occur.

  10. Pharmacokinetics and atherosclerotic lesions targeting effects of tanshinone IIA discoidal and spherical biomimetic high density lipoproteins.

    PubMed

    Zhang, Wenli; He, Hongliang; Liu, Jianping; Wang, Ji; Zhang, Suyang; Zhang, Shuangshuang; Wu, Zimei

    2013-01-01

    High density lipoproteins (HDL) have been successfully reconstructed to deliver a large number of lipophilic drugs. Here, discoidal and spherical recombinant HDL loaded with cardiovascular drug tanshinone IIA (TA) were constructed (TA-d-rHDL and TA-s-rHDL), respectively. And next their in vitro physiochemical and biomimetic properties were characterized. Furthermore, pharmacokinetics, atherosclerotic lesions targeting effects and antiatherogenic efficacies were elaborately performed and compared in atherosclerotic New Zealand White (NZW) rabbits. In vitro characterizations results showed that both TA-d-rHDL and TA-s-rHDL had nano-size diameter, high entrapment efficiency (EE) and drug-loading capacity (DL). Additionally, similar to their native counterparts, TA-d-rHDL maintained remodeling behaviors induced by lecithin cholesterol acyltransferase (LCAT), and TA leaked during remodeling behaviors. Pharmacokinetic studies manifested that both TA-d-rHDL and TA-s-rHDL markedly improved pharmacokinetic behaviors of TA in vivo. Ex vivo imaging demonstrated that both d-rHDL and s-rHDL bound more avidly to atherosclerotic lesions than to normal vessel walls, and s-rHDL had better targeting effect than d-rHDL. Pharmacodynamic tests illustrated that both TA-d-rHDL and TA-s-rHDL had much stronger antiatherogenic efficacies than conventional TA nanostructured lipid carriers (TA-NLC), TA liposomes (TA-L) and commercially available preparation Sulfotanshinone Sodium Injection (SSI). Moreover, TA-s-rHDL had more potent antiatherogenic efficacies than TA-d-rHDL. Collectively our studies indicated that rHDL could be exploited as potential delivery vehicles of TA targeting atherosclerotic lesions as well as synergistically improving efficacies, especially for s-rHDL. PMID:23069716

  11. Agonistic Human Antibodies Binding to Lecithin-Cholesterol Acyltransferase Modulate High Density Lipoprotein Metabolism.

    PubMed

    Gunawardane, Ruwanthi N; Fordstrom, Preston; Piper, Derek E; Masterman, Stephanie; Siu, Sophia; Liu, Dongming; Brown, Mike; Lu, Mei; Tang, Jie; Zhang, Richard; Cheng, Janet; Gates, Andrew; Meininger, David; Chan, Joyce; Carlson, Tim; Walker, Nigel; Schwarz, Margrit; Delaney, John; Zhou, Mingyue

    2016-02-01

    Drug discovery opportunities where loss-of-function alleles of a target gene link to a disease-relevant phenotype often require an agonism approach to up-regulate or re-establish the activity of the target gene. Antibody therapy is increasingly recognized as a favored drug modality due to multiple desirable pharmacological properties. However, agonistic antibodies that enhance the activities of the target enzymes are rarely developed because the discovery of agonistic antibodies remains elusive. Here we report an innovative scheme of discovery and characterization of human antibodies capable of binding to and agonizing a circulating enzyme lecithin cholesterol acyltransferase (LCAT). Utilizing a modified human LCAT protein with enhanced enzymatic activity as an immunogen, we generated fully human monoclonal antibodies using the XenoMouse(TM) platform. One of the resultant agonistic antibodies, 27C3, binds to and substantially enhances the activity of LCAT from humans and cynomolgus macaques. X-ray crystallographic analysis of the 2.45 Å LCAT-27C3 complex shows that 27C3 binding does not induce notable structural changes in LCAT. A single administration of 27C3 to cynomolgus monkeys led to a rapid increase of plasma LCAT enzymatic activity and a 35% increase of the high density lipoprotein cholesterol that was observed up to 32 days after 27C3 administration. Thus, this novel scheme of immunization in conjunction with high throughput screening may represent an effective strategy for discovering agonistic antibodies against other enzyme targets. 27C3 and other agonistic human anti-human LCAT monoclonal antibodies described herein hold potential for therapeutic development for the treatment of dyslipidemia and cardiovascular disease. PMID:26644477

  12. Agonistic Human Antibodies Binding to Lecithin-Cholesterol Acyltransferase Modulate High Density Lipoprotein Metabolism*

    PubMed Central

    Gunawardane, Ruwanthi N.; Fordstrom, Preston; Piper, Derek E.; Masterman, Stephanie; Siu, Sophia; Liu, Dongming; Brown, Mike; Lu, Mei; Tang, Jie; Zhang, Richard; Cheng, Janet; Gates, Andrew; Meininger, David; Chan, Joyce; Carlson, Tim; Walker, Nigel; Schwarz, Margrit; Delaney, John; Zhou, Mingyue

    2016-01-01

    Drug discovery opportunities where loss-of-function alleles of a target gene link to a disease-relevant phenotype often require an agonism approach to up-regulate or re-establish the activity of the target gene. Antibody therapy is increasingly recognized as a favored drug modality due to multiple desirable pharmacological properties. However, agonistic antibodies that enhance the activities of the target enzymes are rarely developed because the discovery of agonistic antibodies remains elusive. Here we report an innovative scheme of discovery and characterization of human antibodies capable of binding to and agonizing a circulating enzyme lecithin cholesterol acyltransferase (LCAT). Utilizing a modified human LCAT protein with enhanced enzymatic activity as an immunogen, we generated fully human monoclonal antibodies using the XenoMouseTM platform. One of the resultant agonistic antibodies, 27C3, binds to and substantially enhances the activity of LCAT from humans and cynomolgus macaques. X-ray crystallographic analysis of the 2.45 Å LCAT-27C3 complex shows that 27C3 binding does not induce notable structural changes in LCAT. A single administration of 27C3 to cynomolgus monkeys led to a rapid increase of plasma LCAT enzymatic activity and a 35% increase of the high density lipoprotein cholesterol that was observed up to 32 days after 27C3 administration. Thus, this novel scheme of immunization in conjunction with high throughput screening may represent an effective strategy for discovering agonistic antibodies against other enzyme targets. 27C3 and other agonistic human anti-human LCAT monoclonal antibodies described herein hold potential for therapeutic development for the treatment of dyslipidemia and cardiovascular disease. PMID:26644477

  13. Biomarkers associated with high-density lipoproteins in atherosclerotic kidney disease.

    PubMed

    Rye, Kerry-Anne

    2014-04-01

    High-density lipoproteins (HDL) originate as discoidal particles that are rapidly converted by lecithin:cholesterol acyltransferase (LCAT) into the spherical particles that predominate in normal human plasma. Spherical HDL consist of multiple populations of particles that vary widely in size, composition and function. Human population studies have established that high plasma HDL cholesterol levels are associated with a reduced incidence of cardiovascular disease. The mechanistic basis of this relationship is not well understood, but most likely involves a number of the cardioprotective functions of HDL. These include the ability of apolipoprotein (apo) A-I, the main apolipoprotein constituent of HDL, to remove cholesterol from macrophages in the artery wall. HDL also have antioxidant and anti-inflammatory properties that are potentially cardioprotective. Evidence that some of these beneficial properties are compromised in people with diabetes and renal disease is emerging. Persistently elevated plasma glucose levels in people with diabetes and poor glycemic control can lead to irreversible, non-enzymatic glycation of plasma proteins, including apoA-I. Non-enzymatically glycated proteins are also prevalent in people with diabetes and end-stage renal disease who are at high cardiovascular risk. Evidence that non-enzymatically glycated apoA-I inhibits the LCAT reaction and impairs some of the cardioprotective properties of HDL is also emerging. This review is concerned with how non-enzymatic glycation of apoA-I affects the ability of LCAT to convert discoidal HDL into spherical HDL, how it affects cholesterol efflux from macrophages and how it affects the anti-inflammatory and antioxidant properties of HDL. PMID:24052156

  14. Influence of alcohol intake on high density lipoprotein cholesterol levels in middle-aged men.

    PubMed

    Gupta, R; Jain, B K; Nag, A K

    1994-01-01

    To study the influence of alcohol (ethanol) intake on high density lipoprotein cholesterol (HDLC) levels, we studied 210 healthy middle-aged men (age 45 +/- 8 years). Other factors influencing HDLC (physical exercise, diet, smoking and body mass index) were also studied. Individuals were classified according to daily ethanol consumption. There were 39 teetotallers, 29 took drink, 30 took 1-1.9, 25 took 2-2.9, 26 took 3-3.9, 28 took 4-4.9 and 33 took 5 or more drinks per day (1 drink = 14 gm ethanol). The overall mean serum total cholesterol was 191.4 +/- 53 mg/dl and HDLC was 46.4 +/- 9 mg/dl. Total cholesterol in teetotallers was not different from those consuming different amounts of alcohol. HDLC in teetotallers (44.5 +/- 8 mg/dl) was significantly lower than in those taking 1-1.9 drinks (46.7 +/- 11 mg/dl, p < 0.05) and 2-2.9 drinks/day (51.4 +/- 9 mg/dl, p < 0.01) but was not different from those consuming > or = 3.0 drinks. There was a weak positive linear correlation between ethanol and HDLC (r = 0.016). HDLC levels were significantly lower in smokers (43.5 +/- 9 vs 47.2 +/- 11 mg/dl in non-smokers), in non-vegetarians (43.5 +/- 10 vs 46.2 +/- 9 mg/dl in vegetarians) and in those with sedentary habits (42.4 +/- 7 vs 46.1 +/- 10 mg/dl in physically active). Low level ethanol consumption (< 3 drinks or 42 gm per day) is associated with increased HDLC levels.

  15. Synthetic High-Density Lipoprotein (sHDL) Inhibits Steroid Production in HAC15 Adrenal Cells.

    PubMed

    Taylor, Matthew J; Sanjanwala, Aalok R; Morin, Emily E; Rowland-Fisher, Elizabeth; Anderson, Kyle; Schwendeman, Anna; Rainey, William E

    2016-08-01

    High density lipoprotein (HDL) transported cholesterol represents one of the sources of substrate for adrenal steroid production. Synthetic HDL (sHDL) particles represent a new therapeutic option to reduce atherosclerotic plaque burden by increasing cholesterol efflux from macrophage cells. The effects of the sHDL particles on steroidogenic cells have not been explored. sHDL, specifically ETC-642, was studied in HAC15 adrenocortical cells. Cells were treated with sHDL, forskolin, 22R-hydroxycholesterol, or pregnenolone. Experiments included time and concentration response curves, followed by steroid assay. Quantitative real-time RT-PCR was used to study mRNA of 3-hydroxy-3-methyl-glutaryl-coenzyme A reductase, lanosterol 14-α-methylase, cholesterol side-chain cleavage enzyme, and steroid acute regulatory protein. Cholesterol assay was performed using cell culture media and cell lipid extracts from a dose response experiment. sHDL significantly inhibited production of cortisol. Inhibition occurred in a concentration- and time-dependent manner and in a concentration range of 3μM-50μM. Forskolin (10μM) stimulated cortisol production was also inhibited. Incubation with 22R-hydroxycholesterol (10μM) and pregnenolone (10μM) increased cortisol production, which was unaffected by sHDL treatment. sHDL increased transcript levels for the rate-limiting cholesterol biosynthetic enzyme, 3-hydroxy-3-methyl-glutaryl-coenzyme A reductase. Extracellular cholesterol assayed in culture media showed a positive correlation with increasing concentration of sHDL, whereas intracellular cholesterol decreased after treatment with sHDL. The current study suggests that sHDL inhibits HAC15 adrenal cell steroid production by efflux of cholesterol, leading to an overall decrease in steroid production and an adaptive rise in adrenal cholesterol biosynthesis. PMID:27253994

  16. Intensive Lowering of Low-Density Lipoprotein Cholesterol Levels for Primary Prevention of Coronary Artery Disease

    PubMed Central

    Karalis, Dean G.

    2009-01-01

    Coronary artery disease (CAD) is the leading cause of morbidity and mortality in the United States, and a high concentration of low-density lipoprotein cholesterol (LDL-C) is a major risk factor for CAD. Current guidelines recommend the use of statins to lower LDL-C levels for the primary prevention of CAD based on an individual's risk factor profile and baseline LDL-C level. For moderaterisk individuals, those with 2 or more major risk factors for CAD and a Framingham risk score of 10% to 20%, the recommendation is to use a statin to lower LDL-C levels to less than 130 mg/dL. However, up to 40% of individuals who develop CAD have LDL-C levels lower than this cutoff. In 2004, the National Cholesterol Education Program Adult Treatment Panel III guidelines were updated to include an LDL-C goal of less than 100 mg/dL for individuals at moderately high risk of developing CAD. The guidelines identified several risk factors that when present would favor the use of pharmacological therapy to achieve this more aggressive LDL-C goal. This review evaluates the evidence supporting an LDL-C target of less than 100 mg/dL for moderately high-risk individuals and reviews those risk factors that when present help identify patients who would benefit from achieving this lower LDL-C goal. English-language publications in MEDLINE and references from relevant articles published between January 1, 1980, and November 30, 2008, were reviewed. Main keywords searched were coronary artery disease, hyperlipidemia, statins, cardiac risk factors, inflammatory markers, metabolic syndrome, and coronary artery calcium. PMID:19339653

  17. Production of oxidized lipids during modification of low-density lipoprotein by macrophages or copper.

    PubMed Central

    Carpenter, K L; Wilkins, G M; Fussell, B; Ballantine, J A; Taylor, S E; Mitchinson, M J; Leake, D S

    1994-01-01

    The oxidation of low-density lipoprotein (LDL) is implicated in atherosclerosis. Lipids and oxidized lipids were analysed by gas chromatography and gas chromatography-mass spectrometry in human LDL incubated with mouse peritoneal macrophages (MPM) or copper (II) sulphate in Ham's F-10 medium or medium alone (control). MPM-modification and copper-catalysed oxidation of LDL resulted in the formation of oxysterols, mainly cholest-5-en-3 beta,7 beta-diol (7 beta-OH-CHOL); 7%-19% of the initial cholesterol was converted to 7 beta-OH-CHOL in 24 h. 7 beta-OH-CHOL levels in control LDL were very low. The increase in 7 beta-OH-CHOL in MPM and copper-oxidized LDL was accompanied by decreases in linoleate and arachidonate and increases in the electrophoretic mobility and degradation of LDL protein by 'target' macrophages. The concerted occurrence of these processes and their similarity in both MPM-modification and copper-catalysed oxidation of LDL were suggested by the highly significant cross-correlations. The fall in polyunsaturated fatty acid (PUFA) was accompanied by a directly proportional increase in electrophoretic mobility of the LDL. Production of 7 beta-OH-CHOL and protein degradation by macrophages showed modest elevations during the initial steep fall in PUFA, and showed their greatest increases as the levels of PUFA slowly approached zero. The levels of 7 beta-OH-CHOL and the degradation of LDL by macrophages were directly proportional. The degradation of LDL by macrophages increased rapidly as the electrophoretic mobility of LDL was slowly approaching its maximum level. PMID:7999000

  18. Uptake and Accumulation of Oxidized Low-Density Lipoprotein during Mycobacterium tuberculosis Infection in Guinea Pigs

    PubMed Central

    Palanisamy, Gopinath S.; Kirk, Natalie M.; Ackart, David F.; Obregón-Henao, Andrés; Shanley, Crystal A.; Orme, Ian M.; Basaraba, Randall J.

    2012-01-01

    The typical host response to infection of humans and some animals by M. tuberculosis is the accumulation of reactive oxygen species generating inflammatory cells into discrete granulomas, which frequently develop central caseous necrosis. In previous studies we showed that infection of immunologically naïve guinea pigs with M. tuberculosis leads to localized and systemic oxidative stress that results in a significant depletion of serum total antioxidant capacity and the accumulation of malondialdehyde, a bi-product of lipid peroxidation. Here we show that in addition, the generation of excessive reactive oxygen species in vivo resulted in the accumulation of oxidized low density lipoproteins (OxLDL) in pulmonary and extrapulmonary granulomas, serum and lung macrophages collected by bronchoalveolar lavage. Macrophages from immunologically naïve guinea pigs infected with M. tuberculosis also had increased surface expression of the type 1 scavenger receptors CD36 and LOX1, which facilitate the uptake of oxidized host macromolecules including OxLDL. Vaccination of guinea pigs with Bacillus Calmette Guerin (BCG) prior to aerosol challenge reduced the bacterial burden as well as the intracellular accumulation of OxLDL and the expression of macrophage CD36 and LOX1. In vitro loading of guinea pig lung macrophages with OxLDL resulted in enhanced replication of bacilli compared to macrophages loaded with non-oxidized LDL. Overall, this study provides additional evidence of oxidative stress in M. tuberculosis infected guinea pigs and the potential role OxLDL laden macrophages have in supporting intracellular bacilli survival and persistence. PMID:22493658

  19. APOM and high-density lipoprotein cholesterol are associated with lung function and per cent emphysema.

    PubMed

    Burkart, Kristin M; Manichaikul, Ani; Wilk, Jemma B; Ahmed, Firas S; Burke, Gregory L; Enright, Paul; Hansel, Nadia N; Haynes, Demondes; Heckbert, Susan R; Hoffman, Eric A; Kaufman, Joel D; Kurai, Jun; Loehr, Laura; London, Stephanie J; Meng, Yang; O'Connor, George T; Oelsner, Elizabeth; Petrini, Marcy; Pottinger, Tess D; Powell, Charles A; Redline, Susan; Rotter, Jerome I; Smith, Lewis J; Soler Artigas, María; Tobin, Martin D; Tsai, Michael Y; Watson, Karol; White, Wendy; Young, Taylor R; Rich, Stephen S; Barr, R Graham

    2014-04-01

    Chronic obstructive pulmonary disease (COPD) is linked to cardiovascular disease; however, there are few studies on the associations of cardiovascular genes with COPD. We assessed the association of lung function with 2100 genes selected for cardiovascular diseases among 20 077 European-Americans and 6900 African-Americans. We performed replication of significant loci in the other racial group and an independent consortium of Europeans, tested the associations of significant loci with per cent emphysema and examined gene expression in an independent sample. We then tested the association of a related lipid biomarker with forced expiratory volume in 1 s (FEV1)/forced vital capacity (FVC) ratio and per cent emphysema. We identified one new polymorphism for FEV1/FVC (rs805301) in European-Americans (p=1.3×10(-6)) and a second (rs707974) in the combined European-American and African-American analysis (p=1.38×10(-7)). Both single-nucleotide polymorphisms (SNPs) flank the gene for apolipoprotein M (APOM), a component of high-density lipoprotein (HDL) cholesterol. Both were replicated in an independent cohort. SNPs in a second gene related to apolipoprotein M and HDL, PCSK9, were associated with FEV1/FVC ratio among African-Americans. rs707974 was associated with per cent emphysema among European-Americans and African-Americans and APOM expression was related to FEV1/FVC ratio and per cent emphysema. Higher HDL levels were associated with lower FEV1/FVC ratio and greater per cent emphysema. These findings suggest a novel role for the apolipoprotein M/HDL pathway in the pathogenesis of COPD and emphysema.

  20. High-Density and Very-Low-Density Lipoprotein Have Opposing Roles in Regulating Tumor-Initiating Cells and Sensitivity to Radiation in Inflammatory Breast Cancer

    SciTech Connect

    Wolfe, Adam R.; Atkinson, Rachel L.; Reddy, Jay P.; Debeb, Bisrat G.; Larson, Richard; Li, Li; Masuda, Hiroko; Brewer, Takae; Atkinson, Bradley J.; Brewster, Abeena; Ueno, Naoto T.; Woodward, Wendy A.

    2015-04-01

    Purpose: We previously demonstrated that cholesterol-lowering agents regulate radiation sensitivity of inflammatory breast cancer (IBC) cell lines in vitro and are associated with less radiation resistance among IBC patients who undergo postmastectomy radiation. We hypothesized that decreasing IBC cellular cholesterol induced by treatment with lipoproteins would increase radiation sensitivity. Here, we examined the impact of specific transporters of cholesterol (ie lipoproteins) on the responses of IBC cells to self-renewal and to radiation in vitro and on clinical outcomes in IBC patients. Methods and Materials: Two patient-derived IBC cell lines, SUM 149 and KPL4, were incubated with low-density lipoproteins (LDL), very-low-density lipoproteins (VLDL), or high-density lipoproteins (HDL) for 24 hours prior to irradiation (0-6 Gy) and mammosphere formation assay. Cholesterol panels were examined in a cohort of patients with primary IBC diagnosed between 1995 and 2011 at MD Anderson Cancer Center. Lipoprotein levels were then correlated to patient outcome, using the log rank statistical model, and examined in multivariate analysis using Cox regression. Results: VLDL increased and HDL decreased mammosphere formation compared to untreated SUM 149 and KPL4 cells. Survival curves showed enhancement of survival in both of the IBC cell lines when pretreated with VLDL and, conversely, radiation sensitization in all cell lines when pretreated with HDL. In IBC patients, higher VLDL values (>30 mg/dL) predicted a lower 5-year overall survival rate than normal values (hazard ratio [HR] = 1.9 [95% confidence interval [CI]: 1.05-3.45], P=.035). Lower-than-normal patient HDL values (<60 mg/dL) predicted a lower 5-year overall survival rate than values higher than 60 mg/dL (HR = 3.21 [95% CI: 1.25-8.27], P=.015). Conclusions: This study discovered a relationship among the plasma levels of lipoproteins, overall patient response, and radiation resistance in IBC patients

  1. In silico modeling of the dynamics of low density lipoprotein composition via a single plasma sample.

    PubMed

    Jansen, Martin; Pfaffelhuber, Peter; Hoffmann, Michael M; Puetz, Gerhard; Winkler, Karl

    2016-05-01

    Lipoproteins play a key role in the development of CVD, but the dynamics of lipoprotein metabolism are difficult to address experimentally. This article describes a novel two-step combined in vitro and in silico approach that enables the estimation of key reactions in lipoprotein metabolism using just one blood sample. Lipoproteins were isolated by ultracentrifugation from fasting plasma stored at 4°C. Plasma incubated at 37°C is no longer in a steady state, and changes in composition may be determined. From these changes, we estimated rates for reactions like LCAT (56.3 µM/h), β-LCAT (15.62 µM/h), and cholesteryl ester (CE) transfer protein-mediated flux of CE from HDL to IDL/VLDL (21.5 µM/h) based on data from 15 healthy individuals. In a second step, we estimated LDL's HL activity (3.19 pools/day) and, for the very first time, selective CE efflux from LDL (8.39 µM/h) by relying on the previously derived reaction rates. The estimated metabolic rates were then confirmed in an independent group (n = 10). Although measurement uncertainties do not permit us to estimate parameters in individuals, the novel approach we describe here offers the unique possibility to investigate lipoprotein dynamics in various diseases like atherosclerosis or diabetes. PMID:27015744

  2. Low-density lipoprotein apheresis using the Liposorber dextran sulfate cellulose system for patients with hypercholesterolemia refractory to medical therapy.

    PubMed

    Gordon, B R; Saal, S D

    1996-01-01

    A subset of patients with familial hypercholesterolemia (FH) have an inadequate lipid-lowering response to diet and drug treatment and should be considered for low-density lipoprotein (LDL)-apheresis therapy. This procedure selectively removes apolipoprotein B-containing particles [LDL, very-low-density lipoprotein, lipoprotein(a)] from plasma independent of diet and drug therapy. Methods for performing LDL-apheresis include dextran sulfate cellulose adsorption, immunoadsorption, and heparin-induced extracorporeal precipitation. The Liposorber Study Group evaluated LDL removal using the Liposorber LA-15 LDL-apheresis System in 64 patients with FH who had not responded adequately to diet and maximal drug therapy. Mean acute reductions in LDL cholesterol (LDL-C) were 76% in heterozygous FH (HtFH) patients and 81% in homozygous FH (HoFH) patients. Time-averaged levels of LDL-C were lowered 41% in HtFH and 53% in HoFH patients. Hypotension was the most frequent side effect, occurring in 3% of procedures. The Liposorber LA-15 System has been approved by the Food and Drug Administration and is recommended for 1) patients with functional homozygous FH (LDL-C level > 500 mg/dL; 2) patients with coronary artery disease (CAD) and LDL-C levels > or = 200 mg/dL; 3) patients without CAD, but an LDL-C level > or = 300 mg/dL. PMID:8915816

  3. High-density lipoprotein remains elevated despite reductions in total cholesterol in fasting adult male elephant seals (Mirounga angustirostris).

    PubMed

    Tift, Michael S; Houser, Dorian S; Crocker, Daniel E

    2011-08-01

    We examined changes in lipid profiles of 40 adult northern elephant seal bulls over the 3-month breeding fast and the 1-month molting fast to investigate impacts of fasting on serum total cholesterol (TC), triglycerides (TG) and lipoproteins. Total cholesterol and low-density lipoprotein (LDL) levels were initially high (3930 ± 190mgL(-1)and 1610 ± 170mgL(-1), respectively) and decreased significantly over the breeding season. Total cholesterol and LDL declined significantly with adipose tissue reserves (p<0.001), and LDL levels as low as 43 mgL(-1) were measured in seals late in the breeding fast. Less dramatic but similar changes in lipid metabolism were observed across the molting fast. High-density lipoproteins (HDL) remained consistently elevated (>1750 mgL(-1)) suggesting that elephant seals defend HDL concentrations, despite significant depletion of TC and LDL across the breeding fast. Triglyceride levels were significantly higher during the molt, consistent with lower rates of lipid oxidation needed to meet metabolic energy demands during this period. The maintenance of HDL during breeding is consistent with its role in delivering cholesterol from adipose tissue for steroidogenesis and spermatogenesis and potentially mitigates oxidative stress associated with fasting.

  4. Noninvasive imaging of 99mtechnetium-labeled low density lipoprotein uptake by tendon xanthomas in hypercholesterolemic patients.

    PubMed

    Ginsberg, H N; Goldsmith, S J; Vallabhajosula, S

    1990-01-01

    Technetium-labeled low density lipoproteins (Tc-LDL) appear to be useful for describing LDL biodistribution in normal and dyslipidemic subjects. We injected 99mTc-LDL into subjects with large tendon xanthomas secondary to homozygous familial hypercholesterolemia or sitosterolemia. Rapid (4 hours) accumulation of Tc-99m activity in xanthomas was observed, and this accumulation increased over a 24-hour period. No comparable accumulations of Tc-99m activity were noted in normal subjects or in a subject with heterozygous familial hypercholesterolemia who had very small tendon xanthomas. These findings support previous biopsy data indicating active uptake of LDL by macrophages within xanthoma and suggest that 99mTc-LDL imaging of xanthomas may be useful in studies of the effects of diet and drugs on the accumulation of lipoproteins by atherosclerotic plaques.

  5. [A rapid method for continuous flow measurement of cholesterol contained in high density lipoproteins (HDL) (author's transl)].

    PubMed

    Ponsot, P; Yvert, J P; Chevrier, M; Bon, R

    1981-01-01

    The authors utilized a reagent containing concanavalin A, a vegetal lecithin, to selectively precipitate lipoproteins containing apoprotein B, a component of VLDL, LDL, and Lp (a) which are well known for their atherogenic risk. During this precipitation "true" high density lipoproteins remain in solution. HDL cholesterol determination which constitutes an indirect indication of HDL activity or concentrations is performed by an enzymatic method using an automated continuous flow technique carried out on an Auto Analyzer II (Technicon Corp.). This rapid, easy determination obtains results comparable to other methods, particularly those chosen by the Société Française de Biologie Clinique (French Society of Clinical Biology). This technique should permit all laboratories to confirm an atherogenic index.

  6. Non-High-Density Lipoprotein Cholesterol in Children with Diabetes: Proposed Treatment Recommendations Based on Glycemic Control, Body Mass Index, Age, Sex, and Generally Accepted Cut Points.

    PubMed

    Schwab, K Otfried; Doerfer, Jürgen; Hungele, Andreas; Scheuing, Nicole; Krebs, Andreas; Dost, Axel; Rohrer, Tilman R; Hofer, Sabine; Holl, Reinhard W

    2015-12-01

    Percentile-based non-high-density lipoprotein cholesterol levels were analyzed by glycemic control, weight, age, and sex of children with type 1 diabetes (n = 26,358). Ten percent of all children and 25% of overweight adolescent girls require both immediate lipid-lowering medication and lifestyle changes to achieve non-high-density lipoprotein cholesterol levels <120 mg/dL and cardiovascular risk reduction.

  7. Pro-inflammatory high-density lipoproteins and atherosclerosis are induced in lupus-prone mice by a high-fat diet and leptin.

    PubMed

    Hahn, B H; Lourencço, E V; McMahon, M; Skaggs, B; Le, E; Anderson, M; Iikuni, N; Lai, C K; La Cava, A

    2010-07-01

    Atherosclerosis is accelerated in people with systemic lupus erythematosus, and the presence of dysfunctional, pro-inflammatory high-density lipoproteins is a marker of increased risk. We developed a mouse model of multigenic lupus exposed to environmental factors known to accelerate atherosclerosis in humans - high-fat diet with or without injections of the adipokine leptin. BWF1 mice were the lupus-prone model; BALB/c were non-autoimmune controls. High-fat diet increased total serum cholesterol in both strains. In BALB/c mice, non-high-density lipoprotein cholesterol levels increased; they did not develop atherosclerosis. In contrast, BWF1 mice on high-fat diets developed increased quantities of high-density lipoproteins as well as elevated high-density lipoprotein scores, indicating pro-inflammatory high-density lipoproteins; they also developed atherosclerosis. In the lupus-prone strain, addition of leptin increased pro-inflammatory high-density lipoprotein scores and atherosclerosis, and accelerated proteinuria. These data suggest that environmental factors associated with obesity and metabolic syndrome can accelerate atherosclerosis and disease in a lupus-prone background.

  8. High-density lipoproteins potentiate α1-antitrypsin therapy in elastase-induced pulmonary emphysema.

    PubMed

    Moreno, Juan-Antonio; Ortega-Gomez, Almudena; Rubio-Navarro, Alfonso; Louedec, Liliane; Ho-Tin-Noé, Benoit; Caligiuri, Giuseppina; Nicoletti, Antonino; Levoye, Angelique; Plantier, Laurent; Meilhac, Olivier

    2014-10-01

    Several studies report that high-density lipoproteins (HDLs) can carry α1-antitrypsin (AAT; an elastase inhibitor). We aimed to determine whether injection of exogenous HDL, enriched or not in AAT, may have protective effects against pulmonary emphysema. After tracheal instillation of saline or elastase, mice were randomly treated intravenously with saline, human plasma HDL (75 mg apolipoprotein A1/kg), HDL-AAT (75 mg apolipoprotein A1-3.75 mg AAT/kg), or AAT alone (3.75 mg/kg) at 2, 24, 48, and 72 hours. We have shown that HDL-AAT reached the lung and prevented the development of pulmonary emphysema by 59.3% at 3 weeks (alveoli mean chord length, 22.9 ± 2.8 μm versus 30.7 ± 4.5 μm; P < 0.001), whereas injection of HDL or AAT alone only showed a moderate, nonsignificant protective effect (28.2 ± 4.2 μm versus 30.7 ± 5 μm [P = 0.23] and 27.3 ± 5.66 μm versus 30.71 ± 4.96 μm [P = 0.18], respectively). Indeed, protection by HDL-AAT was significantly higher than that observed with HDL or AAT (P = 0.006 and P = 0.048, respectively). This protective effect was associated (at 6, 24, and 72 h) with: (1) a reduction in neutrophil and macrophage number in the bronchoalveolar lavage fluid; (2) decreased concentrations of IL-6, monocyte chemoattractant protein-1, and TNF-α in both bronchoalveolar lavage fluid and plasma; (3) a reduction in matrix metalloproteinase-2 and matrix metalloproteinase-9 activities; and (4) a reduction in the degradation of fibronectin, a marker of tissue damage. In addition, HDL-AAT reduced acute cigarette smoke-induced inflammatory response. Intravenous HDL-AAT treatment afforded a better protection against elastase-induced pulmonary emphysema than AAT alone, and may represent a significant development for the management of emphysema associated with AAT deficiency.

  9. Different responses to oxidized low-density lipoproteins in human polarized macrophages

    PubMed Central

    2011-01-01

    Background Oxidized low-density lipoprotein (oxLDL) uptake by macrophages plays an important role in foam cell formation. It has been suggested the presence of heterogeneous subsets of macrophage, such as M1 and M2, in human atherosclerotic lesions. To evaluate which types of macrophages contribute to atherogenesis, we performed cDNA microarray analysis to determine oxLDL-induced transcriptional alterations of each subset of macrophages. Results Human monocyte-derived macrophages were polarized toward the M1 or M2 subset, followed by treatment with oxLDL. Then gene expression levels during oxLDL treatment in each subset of macrophages were evaluated by cDNA microarray analysis and quantitative real-time RT-PCR. In terms of high-ranking upregulated genes and functional ontologies, the alterations during oxLDL treatment in M2 macrophages were similar to those in nonpolarized macrophages (M0). Molecular network analysis showed that most of the molecules in the oxLDL-induced highest scoring molecular network of M1 macrophages were directly or indirectly related to transforming growth factor (TGF)-β1. Hierarchical cluster analysis revealed commonly upregulated genes in all subset of macrophages, some of which contained antioxidant response elements (ARE) in their promoter regions. A cluster of genes that were specifically upregulated in M1 macrophages included those encoding molecules related to nuclear factor of kappa light polypeptide gene enhancer in B-cells (NF-κB) signaling pathway. Quantitative real-time RT-PCR showed that the gene expression of interleukin (IL)-8 after oxLDL treatment in M2 macrophages was markedly lower than those in M0 and M1 cells. HMOX1 gene expression levels were almost the same in all 3 subsets of macrophages even after oxLDL treatment. Conclusions The present study demonstrated transcriptional alterations in polarized macrophages during oxLDL treatment. The data suggested that oxLDL uptake may affect TGF-β1- and NF

  10. [Oxidized low density lipoprotein induces macrophage endoplasmic reticulum stress via CD36.].

    PubMed

    Yao, Shu-Tong; Sang, Hui; Yang, Na-Na; Kang, Li; Tian, Hua; Zhang, Ying; Song, Guo-Hua; Qin, Shu-Cun

    2010-10-25

    The purpose of the present study is to explore the effect of oxidized low density lipoprotein (ox-LDL) on the induction of endoplasmic reticulum stress (ERS) and the underlying mechanisms in ox-LDL-induced macrophage foam-forming process. RAW264.7 macrophages were cultured in DMEM medium containing 10% fetal bovine serum, and then treated with ox-LDL (25, 50 and 100 mg/L), anti-CD36 monoclonal antibody+ox-LDL and tunicamycin (TM), respectively. After incubation for 24 h, the cells were collected. The cellular lipid accumulation was showed by oil red O staining and the content of cellular total cholesterol was quantified by enzymatic colorimetry. The expression of glucose-regulated protein 94 (GRP94), a molecular marker of ERS, was determined by immunocytochemistry assay. The levels of GRP94 protein, phosphorylated inositol-requiring enzyme 1 (p-IRE1) and X box binding protein 1 (XBP1) in RAW264.7 cells were detected by Western blotting. The results indicated that after incubation with ox-LDL (25, 50 and 100 mg/L) for 24 h, a large amount of lipid droplets were found in the cytoplasm, and the contents of cellular total cholesterol were increased by 2.1, 2.8 and 3.1 folds compared with the control, respectively. Anti-CD36 antibody decreased markedly the cellular lipid accumulation induced by ox-LDL at 100 mg/L. Both ox-LDL and TM, a specific ERS inducer, could up-regulate the protein expression of GRP94 in a dose-dependent manner. Furthermore, p-IRE1 and XBP1, two key components of the unfolded protein response, were also significantly induced by the treatment with ox-LDL. The up-regulations of the three proteins induced by ox-LDL were inhibited significantly when the macrophages were pre-incubated with anti-CD36 antibody. These results suggest that ox-LDL may induce ERS in a dose-dependent way and subsequently activate the unfolded protein response signaling pathway in RAW264.7 macrophages, which is potentially mediated by scavenger receptor CD36. PMID:20945046

  11. Effects of oxidized low density lipoprotein on transformation of valvular myofibroblasts to osteoblast-like phenotype.

    PubMed

    Chen, Di; Shen, Ying-Lian; Hu, Wei-Lin; Chen, Zheng-Ping; Li, Yong-Sheng

    2015-06-01

    In order to investigate the roles of Wnt signal pathway in transformation of cardiac valvular myofibroblasts to the osteoblast-like phenotype, the primary cultured porcine aortic valve myofibroblasts were incubated with oxidized low density lipoprotein (ox-LDL, 50 mg/L), and divided into four groups according to the ox-LDL treatment time: control group, ox-LDL 24-h group, ox-LDL 48-h group, and ox-LDL 72-h group. Wnt signal pathway blocker Dickkopf-1 (DDK-1, 100 μg/L) was added in ox-LDL 72-h group. The expression of a-smooth muscle actin (α-SMA), bone morphogenetic protein 2 (BMP2), alkaline phosphatase (ALP), and osteogenic transcription factor Cbfa-1 was detected by Western blotting, and that of β-catenin, a key mediator of Wnt signal pathway by immunocytochemical staining method. The Wnt/β-catenin was observed and the transformation of myofibroblasts to the osteoblast-like phenotype was examined. The expression of α-SMA, BMP2, ALP and Cbfa-1 proteins in the control group was weaker than in the ox-LDL-treated groups. In ox-LDL-treated groups, the protein expression of a-SMA, BMP2, ALP, and Cbfa-1 was significantly increased in a time-dependent manner as compared with the control group, and there was significant difference among the three ox-LDL-treated groups (P<0.05 for all); β-catenin protein was also up-regulated in the ox-LDL-treated groups in a time-dependent manner as compared with the control group (P<0.05), and its transfer from cytoplasm to nucleus and accumulation in the nucleus were increased in the same fashion (P<0.05). After addition of DKK-1, the expression of α-SMA, bone-related proteins and β-catenin protein was significantly reduced as compared with ox-LDL 72-h group (P<0.05). The Wnt/ β-catenin signaling pathway may play an important role in transformation of valvular myofibroblasts to the osteoblast-like phenotype.

  12. [New biochemical methods for evaluation of the oxidative-antioxidative potential of low-density lipoproteins].

    PubMed

    Ragino, Iu I; Voevoda, M I; Kashtanova, E V; Ivanova, M V; Nikitin, Iu P

    2005-04-01

    Today one of the leading theories in the concept of atherogenesis underlines the key role of oxidized low-density lipoproteins (LDL). This paper describes new original and easy-to-use biochemical methods for evaluating the oxidative-antioxidative potential (LDL resistance to oxidation in vitro and the LDL level of alpha-tocopherol and retinol), as well as the results of their development and testing in 2 groups (62 patients with coronary atherosclerosis and 95 healthy individuals). LDL were isolated from their sera via precipitation with heparin and MnCl2. The precipitated LDL were washed in 0.9% NaCl solution and dissolved in 1 M NaCl solution. For evaluation of the resistance of LDL to oxidation in vitro, the precipitated LDL were incubated at 37 degrees C with 50 microM of copper ions; before and 0.5 h, 1.0 h, and 2.0 h after LDL incubation, TBARS products were determined by the fluorimetric technique after Schun J. et al. (1978). For evaluation of the antioxidative potntial of LDL, the concentrations of alpha-tocopheral and retinol in the precipitated LDL were measured by using the fluorimetric technique described by Taylor S. L. et al. (1976). The new methods were found to be highly reproducible. There was a high positive correlation (r = +0.98 +/- 0.04, p < 0.001) between the oxidative resistance of the LDL isolated from sera by ultracentrifugation and that of the precipitated LDL. There was also a high positive correlation (r = +0.79 +/- 0.09, p < 0.01) between the alpha-tocopherol and retinol levels determined by the fluorimetric technique and the LDL levels measured by the authors' method. The new methods were clinically tested with success. The significantly elevated baseline level of lipid perioxidation products in the precipitated LDL, the low oxidative resistance of the precipitated LDL in vitro, and reduced concentrations of alpha-tocopherol and retinol in the precipitated LDL were recorded in the patients with coronary atherosclerosis as compared to

  13. High-density lipoprotein-cholesterol levels and risk of cancer in HIV-infected subjects

    PubMed Central

    Squillace, Nicola; Galli, Laura; Bandera, Alessandra; Castagna, Antonella; Madeddu, Giordano; Caramello, Pietro; Antinori, Andrea; Cattelan, Annamaria; Maggiolo, Franco; Cingolani, Antonella; Gori, Andrea; Monforte, Antonella d’Arminio

    2016-01-01

    Abstract Investigation of the relationship between high-density lipoprotein-cholesterol (HDL-c) and the risk of developing cancer in a prospective cohort of human immunodeficiency virus (HIV)-infected patients. The Italian Cohort of Antiretroviral-naïve Patients Foundation Cohort is an Italian multicenter observational study recruiting HIV-positive patients while still antiretroviral treatment-naïve, regardless of the reason since 1997. Patients with at least 1 HDL-c value per year since enrollment and one such value before antiretroviral treatment initiation were included. HDL-c values were categorized as either low (<39 mg/dL in males or <49 mg/dL in females) or normal. Cancer diagnoses were classified as AIDS-defining malignancies (ADMs) or non-AIDS-defining malignancies (NADMs). Kaplan–Meier curves and Cox proportional-hazards regression models were used. Among 4897 patients (13,440 person-years of follow-up [PYFU]), 104 diagnoses of cancer were observed (56 ADMs, 48 NADMs) for an overall incidence rate of 7.7 (95% confidence interval [CI] 6.3–9.2) per 1000 PYFU. Low HDL-c values at enrollment were associated with higher risk both of cancer (crude hazard ratio [HR] 1.72, 95% CI 1.16–2.56, P = 0.007) and of NADM (crude HR 2.50, 95% CI 1.35–4.76, P = 0.003). Multivariate analysis showed that the risk of cancer diagnosis was higher in patients with low HDL-c values (adjusted HR [AHR] 1.87, 95% CI 1.18–2.95, P = 0.007) in older patients, those patients more recently enrolled, and in those with low current cluster of differentiation 4+ levels, and/or high current HIV-ribonucleic acid. The multivariate model confirmed an association between HDL-c (AHR 2.61, 95% CI 1.40–4.89, P = 0.003) and risk of NADM. Low HDL-c is an independent predictor of cancer in HIV-1-infected subjects. PMID:27603338

  14. High-Density Lipoprotein Biogenesis: Defining the Domains Involved in Human Apolipoprotein A-I Lipidation.

    PubMed

    Pollard, Ricquita D; Fulp, Brian; Sorci-Thomas, Mary G; Thomas, Michael J

    2016-09-01

    The first step in removing cholesterol from a cell is the ATP-binding cassette transporter 1 (ABCA1)-driven transfer of cholesterol to lipid-free or lipid-poor apolipoprotein A-I (apoA-I), which yields cholesterol-rich nascent high-density lipoprotein (nHDL) that then matures in plasma to spherical, cholesteryl ester-rich HDL. However, lipid-free apoA-I has a three-dimensional (3D) conformation that is significantly different from that of lipidated apoA-I on nHDL. By comparing the lipid-free apoA-I 3D conformation of apoA-I to that of 9-14 nm diameter nHDL, we formulated the hypothetical helical domain transitions that might drive particle formation. To test the hypothesis, ten apoA-I mutants were prepared that contained two strategically placed cysteines several of which could form intramolecular disulfide bonds and others that could not form these bonds. Mass spectrometry was used to identify amino acid sequence and intramolecular disulfide bond formation. Recombinant HDL (rHDL) formation was assessed with this group of apoA-I mutants. ABCA1-driven nHDL formation was measured in four mutants and wild-type apoA-I. The mutants contained cysteine substitutions in one of three regions: the N-terminus, amino acids 34 and 55 (E34C to S55C), central domain amino acids 104 and 162 (F104C to H162C), and the C-terminus, amino acids 200 and 233 (L200C to L233C). Mutants were studied in the locked form, with an intramolecular disulfide bond present, or unlocked form, with the cysteine thiol blocked by alkylation. Only small amounts of rHDL or nHDL were formed upon locking the central domain. We conclude that both the N- and C-terminal ends assist in the initial steps in lipid acquisition, but that opening of the central domain was essential for particle formation.

  15. Synthesis and Characterization of Biomimetic High Density Lipoprotein Nanoparticles To Treat Lymphoma

    NASA Astrophysics Data System (ADS)

    Damiano, Marina Giacoma

    High density lipoproteins (HDLs), natural nanoparticles that function as vehicles for cholesterol transport, have enhanced uptake by several human cancers. This uptake is mediated, in part, by the high affinity HDL receptor, scavenger receptor B-1 (SR-B1). More specifically, studies show that the rate of cellular proliferation of lymphoma, a cancer of the lymphocytes, is directly proportional to the amount of HDL-cholesterol available. Thus, targeting of HDL-cholesterol uptake by these cells could be an effective therapeutic approach that may have lower toxicity to healthy cells compared to conventional therapies. Biomimetic HDL can be synthesized using a gold nanoparticle template (HDL-AuNPs), which provides control over size, shape, and surface chemistry. Like their natural counterparts, HDL-AuNPs sequester cholesterol. However, since the gold nanoparticle replaces the cholesterol core of natural HDL, HDL-AuNPs inherently deliver less cholesterol. We show that HDL-AuNPs are able to induce dose dependent apoptosis in B cell lymphoma cell lines and reduce tumor volume following systemic administration to mice bearing B cell lymphoma tumors. Furthermore, HDL-AuNPs are neither toxic to healthy human lymphocytes (SR-B1-), nor to hepatocytes and macrophages (SR-B1+), which are cells naturally encountered by HDLs. Manipulation of cholesterol flux and targeting of SR-B1 are responsible for the efficacy of HDL-AuNPs against B cell lymphoma. HDL-AuNPs could be used to treat B cell lymphomas and other diseases that involve pathologic accumulation of cholesterol. Titanium dioxide nanoparticle (TiO2 NP) core HDLs (HDL-TiO 2 NPs) have been synthesized for high resolution cellular localization studies and for future use as a therapeutic and imaging agent. In initial studies, HDL-TiO(2 NPs display maximum uptake in B cell lymphoma cell lines. X-ray fluorescence microscopy studies show interaction between HDL-TiO2 NPs and cells 10 minutes after treatment and internalization after

  16. Genetic analysis of long-lived families reveals novel variants influencing high density-lipoprotein cholesterol

    PubMed Central

    Feitosa, Mary F.; Wojczynski, Mary K.; Straka, Robert; Kammerer, Candace M.; Lee, Joseph H.; Kraja, Aldi T.; Christensen, Kaare; Newman, Anne B.; Province, Michael A.; Borecki, Ingrid B.

    2014-01-01

    The plasma levels of high-density lipoprotein cholesterol (HDL) have an inverse relationship to the risks of atherosclerosis and cardiovascular disease (CVD), and have also been associated with longevity. We sought to identify novel loci for HDL that could potentially provide new insights into biological regulation of HDL metabolism in healthy-longevous subjects. We performed a genome-wide association (GWA) scan on HDL using a mixed model approach to account for family structure using kinship coefficients. A total of 4114 subjects of European descent (480 families) were genotyped at ~2.3 million SNPs and ~38 million SNPs were imputed using the 1000 Genome Cosmopolitan reference panel in MACH. We identified novel variants near-NLRP1 (17p13) associated with an increase of HDL levels at genome-wide significant level (p < 5.0E-08). Additionally, several CETP (16q21) and ZNF259-APOA5-A4-C3-A1 (11q23.3) variants associated with HDL were found, replicating those previously reported in the literature. A possible regulatory variant upstream of NLRP1 that is associated with HDL in these elderly Long Life Family Study (LLFS) subjects may also contribute to their longevity and health. Our NLRP1 intergenic SNPs show a potential regulatory function in Encyclopedia of DNA Elements (ENCODE); however, it is not clear whether they regulate NLRP1 or other more remote gene. NLRP1 plays an important role in the induction of apoptosis, and its inflammasome is critical for mediating innate immune responses. Nlrp1a (a mouse ortholog of human NLRP1) interacts with SREBP-1a (17p11) which has a fundamental role in lipid concentration and composition, and is involved in innate immune response in macrophages. The NLRP1 region is conserved in mammals, but also has evolved adaptively showing signals of positive selection in European populations that might confer an advantage. NLRP1 intergenic SNPs have also been associated with immunity/inflammasome disorders which highlights the biological

  17. Relationship between oxidized low-density lipoprotein antibodies and obesity in different glycemic situations

    PubMed Central

    Babakr, Abdullatif Taha; Elsheikh, Osman Mohamed; Almarzouki, Abdullah A; Assiri, Adel Mohamed; Abdalla, Badr Eldin Elsonni; Zaki, Hani Yousif; Fatani, Samir H; NourEldin, EssamEldin Mohamed

    2014-01-01

    Background Autoantibodies to oxidized low-density lipoprotein (oxLDL) are a heterogeneous group of antibodies that are controversially discussed to be either pathogenic or protective. Biochemical and anthropometric measurements correlated with increased levels of these antibodies are also controversial, especially in conditions of impaired glucose tolerance and type 2 diabetes mellitus. The present study was conducted to evaluate levels of oxLDL antibodies and their correlation with obesity in different glycemic situations. Methods Two hundred and seventy-four adult males were classified into three subgroups: group 1 (n=125), comprising a control group of nondiabetic subjects; group 2 (n=77), comprising subjects with impaired glucose tolerance; and group 3 (n=72), comprising patients with type 2 diabetes mellitus. Body mass index was calculated, and measurement of oxLDL and oxLDL antibodies was performed. Results Higher mean concentrations of oxLDL were found in the type 2 diabetes mellitus and impaired glucose tolerance groups (143.5±21.9 U/L and 108.7±23.7 U/L, respectively). The mean value for the control group was 73.5±27.5 U/L (P<0.001). Higher mean concentrations of anti-oxLDL antibodies were observed in the type 2 diabetes mellitus and impaired glucose tolerance groups (55.7±17.8 U/L and 40.4±17.6 U/L, respectively). The mean value for the control group was 20.4±10 U/L (P<0.001). Levels of anti-oxLDL antibodies were found to be positively and significantly correlated with body mass index in the control group (r=0.46), impaired glucose tolerance (r=0.51), type 2 diabetes mellitus group (r=0.46), and in the whole study population (r=0.44; P<0.001). Conclusion Anti-oxLDL antibody levels were increased in subjects with type 2 diabetes mellitus and impaired glucose tolerance and were positively correlated with obesity and body mass index. PMID:25368528

  18. Extended-Release Niacin Versus Fenofibrate in HIV-Infected Participants With Low High-Density Lipoprotein Cholesterol: Effects on Endothelial Function, Lipoproteins, and Inflammation

    PubMed Central

    Dubé, Michael P.; Komarow, Lauren; Fichtenbaum, Carl J.; Cadden, Joseph J.; Overton, Edgar T.; Hodis, Howard N.; Currier, Judith S.; Stein, James H.

    2015-01-01

    Background. Low levels of high-density lipoprotein cholesterol (HDL-C) are common in individuals with human immunodeficiency virus (HIV) infection, persist during antiretroviral therapy (ART), and are associated with increased cardiovascular disease (CVD) risk. Methods. Virologically controlled participants without CVD on stable ART with low HDL-C (men <40 mg/dL, women <50 mg/dL) and triglycerides >150 mg/dL were randomized to receive open-label extended-release niacin 1500 mg/day with aspirin 325 mg/day or fenofibrate 200 mg/day for 24 weeks. The primary endpoint was the week 24 within-arm change in brachial artery flow-mediated dilation (FMD) in participants with complete follow-up scans. Results. Of 99 participants, 74 had complete data (35 niacin, 39 fenofibrate). Median age was 45 years, 77% were male, median CD4+ count was 561 cells/µL, and brachial FMD was 4.2%. Median HDL-C was 32 mg/dL for men and 38 mg/dL for women, low-density lipoprotein cholesterol was 103 mg/dL, and triglycerides were 232 mg/dL. In men, HDL-C increased a median of 3 mg/dL with niacin and 6.5 mg/dL with fenofibrate (P < .001 for both). In women, HDL-C increased a median of 16 mg/dL with niacin and 8 mg/dL with fenofibrate (P = .08 for both). After 24 weeks, there was no significant change in FMD in either arm; the median (interquartile range) change was +0.6% (−1.6 to 2.3) with niacin (P = .28) and +0.5% (−1.0 to 3.0) with fenofibrate (P = .19). Neither treatment significantly affected C-reactive protein, interleukin 6, or D-dimer levels. Conclusions. Despite improvements in lipids, niacin or fenofibrate treatment for 24 weeks did not improve endothelial function or inflammatory markers in participants with well-controlled HIV infection and low HDL-C. Clinical Trials Registration. NCT01426438. PMID:25979307

  19. Low density lipoprotein metabolism by human macrophages activated with low density lipoprotein immune complexes. A possible mechanism of foam cell formation

    PubMed Central

    1988-01-01

    Human macrophages play a key role in atherogenesis and are believed to be the progenitors of the cholesteryl ester (CE)-laden foam cells present in early atherosclerotic lesions. Several mechanisms by which macrophages accumulate CE have been recently described. One involves a perturbation in LDL metabolism subsequent to macrophage activation. Thus, we decided to study the effect of macrophage activation by immune complexes on N-LDL metabolism. Initially, LDL-containing immune complexes (LDL-IC) were chosen, since increased plasma levels of these IC have been reported in patients with coronary heart disease. Human macrophages stimulated for 22 h with LDL-IC (250 micrograms/ml) and incubated afterwards for 20 h with 10 micrograms/ml 125I-N-LDL showed a six- and fourfold increase in the accumulation and degradation, respectively, of 125I-N-LDL over the values observed in nonstimulated cells. Scatchard analysis of 125I-N-LDL-specific binding suggests an increase (20-fold) in the number of LDL receptors in macrophages stimulated with LDL-IC. We studied other immune complexes varying in size and antigen composition. Some of the IC were able to stimulate, although to a lesser degree, the uptake of N-LDL by macrophages. Lipoprotein IC are more efficient and have the greatest capacity to increase N-LDL uptake and CE accumulation. We conclude that human macrophage activation by LDL-IC leads to an increase in LDL receptor activity and promotes in vitro foam cell formation. PMID:3171477

  20. Fast and Simplified Method for High Through-put Isolation of miRNA from Highly Purified High Density Lipoprotein

    PubMed Central

    Seneshaw, Mulugeta; Mirshahi, Faridoddin; Min, Hae-Ki; Asgharpour, Amon; Mirshahi, Shervin; Daita, Kalyani; Boyett, Sherry; Santhekadur, Prasanna K.; Fuchs, Michael; Sanyal, Arun J.

    2016-01-01

    Small non-coding RNAs (miRNAs) have been implicated in a variety of human diseases including metabolic syndromes. They may be utilized as biomarkers for diagnosis and prognosis or may serve as targets for drug development, respectively. Recently it has been shown that miRNAs are carried in lipoproteins, particularly high density lipoproteins (HDL) and are delivered to recipient cells for uptake. This raises the possibility that miRNAs play a critical and pivotal role in cellular and organ function via regulation of gene expression as well as messenger for cell-cell communications and crosstalk between organs. Current methods for miRNA isolation from purified HDL are impractical when utilizing small samples on a large scale. This is largely due to the time consuming and laborious methods used for lipoprotein isolation. We have developed a simplified approach to rapidly isolate purified HDL suitable for miRNA analysis from plasma samples. This method should facilitate investigations into the role of miRNAs in health and disease and in particular provide new insights into the variety of biological functions, outside of the reverse cholesterol transport, that have been ascribed to HDL. Also, the miRNA species which are present in HDL can provide valuable information of clinical biomarkers for diagnosis of various diseases. PMID:27501005

  1. Dietary Squalene Increases High Density Lipoprotein-Cholesterol and Paraoxonase 1 and Decreases Oxidative Stress in Mice

    PubMed Central

    Gabás-Rivera, Clara; Barranquero, Cristina; Martínez-Beamonte, Roberto; Navarro, María A.; Surra, Joaquín C.; Osada, Jesús

    2014-01-01

    Background and Purpose Squalene, the main hydrocarbon in the unsaponifiable fraction of virgin olive oil, is involved in cholesterol synthesis and it has been reported to own antiatherosclerotic and antiesteatosic effects. However, the squalene's role on lipid plasma parameters and the influence of genotype on this effect need to be addressed. Experimental Approaches Three male mouse models (wild-type, Apoa1- and Apoe- deficient) were fed chow semisynthetic diets enriched in squalene to provide a dose of 1 g/kg during 11 weeks. After this period, their plasma parameters and lipoprotein profiles were analyzed. Key Results Squalene administration at a dose of 1 g/kg showed decreased reactive oxygen species in lipoprotein fractions independently of the animal background and caused an specific increase in high density lipoprotein (HDL)-cholesterol levels, accompanied by an increase in phosphatidylcholine and paraoxonase 1 and no changes in apolipoproteins A1 and A4 in wild-type mice. In these mice, the cholesterol increase was due to its esterified form and associated with an increased hepatic expression of Lcat. These effects were not observed in absence of apolipoprotein A1. The increases in HDL- paraoxonase 1 were translated into decreased plasma malondialdehyde levels depending on the presence of Apolipoprotein A1. Conclusions and Implications Dietary squalene promotes changes in HDL- cholesterol and paraoxonase 1 and decreases reactive oxygen species in lipoproteins and plasma malondialdehyde levels, providing new benefits of its intake that might contribute to explain the properties of virgin olive oil, although the phenotype related to apolipoproteins A1 and E may be particularly relevant. PMID:25117703

  2. Low density lipoprotein receptor-independent hepatic uptake of a synthetic, cholesterol-scavenging lipoprotein: implications for the treatment of receptor-deficient atherosclerosis

    SciTech Connect

    Williams, K.J.; Vallabhajosula, S.; Rahman, I.U.; Donnelly, T.M.; Parker, T.S.; Weinrauch, M.; Goldsmith, S.J.

    1988-01-01

    The metabolism of infused /sup 111/In-labeled phospholipid liposomes was examined in Watanabe heritable hyperlipidemic (WHHL) rabbits, which lack low density lipoprotein (LDL) receptors, and in normal control rabbits. The half-times (t/sub 1/2/) for clearance of /sup 111/In and excess phospholipid from plasma were 20.8 +/- 0.9 hr and 20.3 +/- 4.6 hr in WHHL and 20.0 +/- 0.8 hr and 19.6 +/- 2.2 hr in the normal rabbits. By 6 hr postinfusion, the plasma concentration of unesterified cholesterol increased by 2.2 +/- 0.23 mmol/liter in WHHL and 2.1 +/- 0.04 mmol/liter in normal rabbits, presumably reflecting mobilization of tissue sores. Disappearance of excess plasma cholesterol was > 90% complete in both groups of rabbits by 70 hr postinfusion. By quantitative ..gamma.. camera imaging, hepatic trapping of /sup 111/In-labeled liposomes over time was indistinguishable between the two groups. At autopsy, the liver was the major organ of clearance. Aortic uptake of /sup 111/In was < 0.02%. Thus, mobilization of cholesterol and hepatic uptake of phospholipid liposomes do not require LDL receptors. Because phospholipid infusions produce rapid substantial regression of atherosclerosis in genetically normal animals, the results suggest that phospholipid liposomes or triglyceride phospholipid emulsions (e.g., Intralipid) might reduce atherosclerosis in WHHL rabbits and in humans with familial hypercholesterolemia.

  3. Interaction of high-density and low-density lipoproteins to solid surfaces coated with cholesterol as determined by an optical fiber-based biosensor

    NASA Astrophysics Data System (ADS)

    Singh, Bal R.; Poirier, Michelle A.

    1993-05-01

    In recent years, the use of fiber optics has become an important tool in biomedicine and biotechnology. We are involved in developing and employing a new system which, through the use of fiber optics, may be capable of measuring the content of cholesterol and lipoproteins in blood samples in real time. In the optical fiber-based biosensor, a laser beam having a wavelength of 512 nm (green light) is launched into an optical fiber, which transmits the light to its distal end. An evanescent wave (travelling just outside the fiber core) is used to excite rhodamine-labelled HDL or LDL which become bound to the fiber or to fiber-bound molecules. The fluorescence (red light) is coupled back into the fiber and detected with a photodiode. Preliminary work has involved testing of high density lipoprotein (HDL) binding to a cholesterol-coated fiber and to a bare fiber and low density lipoprotein (LDL) binding to a cholesterol-coated fiber. A significant difference was observed in the binding rate of HDL (5 (mu) g/mL and lower) to a bare fiber as opposed to a cholesterol-coated fiber. The binding rate of HDL (5 (mu) g/mL) to a bare fiber was 7.5 (mu) V/sec and to a cholesterol-coated fiber was 3.5 (mu) V/sec. We have calculated the binding affinity of LDL to a cholesterol- coated fiber as 1.4 (mu) M-1. These preliminary results suggest that the optical fiber-based biosensor can provide a unique and promising approach to the analysis of lipoprotein interaction with solid surfaces and with cholesterol. More importantly, the results suggest that this technique may be used to assess the binding of blood proteins to artificial organs/tissues, and to measure the amount of cholesterol, HDL and LDL in less than a minute.

  4. Low-density lipoprotein transport through an arterial wall under hyperthermia and hypertension conditions--An analytical solution.

    PubMed

    Iasiello, Marcello; Vafai, Kambiz; Andreozzi, Assunta; Bianco, Nicola

    2016-01-25

    An analytical solution for Low-Density Lipoprotein transport through an arterial wall under hyperthermia conditions is established in this work. A four-layer model is used to characterize the arterial wall. Transport governing equations are obtained as a combination between Staverman-Kedem-Katchalsky membrane equations and volume-averaged porous media equations. Temperature and solute transport fields are coupled by means of Ludwig-Soret effect. Results are in excellent agreement with numerical and analytical literature data under isothermal conditions, and with numerical literature data for the hyperthermia case. Effects of hypertension combined with hyperthermia, are also analyzed in this work.

  5. Increased Free Cholesterol in Plasma Low and Very Low Density Lipoproteins in Non-Insulin-Dependent Diabetes Mellitus: Its Role in the Inhibition of Cholesteryl Ester Transfer

    NASA Astrophysics Data System (ADS)

    Fielding, Christopher J.; Reaven, Gerald M.; Liu, George; Fielding, Phoebe E.

    1984-04-01

    Recombination of low and very low density lipoproteins (VLDL and LDL) from normal subjects with plasma from patients with non-insulin-dependent diabetes mellitus significantly increased the reduced rate of transfer of cholesteryl ester to these lipoproteins, which is characteristic of diabetic plasma, whereas diabetic VLDL and LDL reduced cholesteryl ester transfer rates in normal plasma. VLDL and LDL from diabetic plasma had an increased ratio of free cholesterol to phospholipid compared to normal, and unlike normal VLDL and LDL spontaneously lost free cholesterol to high density lipoprotein. These data suggest that the block to cholesteryl ester transfer to these lipoproteins in non-insulin-dependent diabetes is mediated by their increased free cholesterol content and may be related to the increased risk of these patients for developing atherosclerosis.

  6. Reversal of Small, Dense LDL Subclass Phenotype by Normalization of Adiposity

    PubMed Central

    Siri-Tarino, Patty; Williams, Paxil T.; Fernstrom, Harriet S.; Rawlings, Robin S.; Krauss, Ronald M.

    2010-01-01

    Excess adiposity and high-carbohydrate diets have been associated with an atherogenic lipoprotein phenotype (ALP) characterized by increased concentrations of small, dense low-density lipoprotein (LDL) particles (pattern B). We tested whether weight loss and normalization of adiposity could reverse ALP in overweight men with pattern B. After consuming a moderate-carbohydrate, high-fat diet for 3 weeks, pattern B and nonpattern B (pattern A) men were randomized to a weight loss (n = 60 and n = 36, respectively) or control weight-stable arm (n = 20 and n = 17, respectively). Men in the weight loss arm consumed ∼1,000 fewer calories per day over 9 weeks to induce an average ∼9 kg weight loss. In the control group, weight stability was maintained for 4 weeks after randomization. Weight loss led to the conversion of pattern B to pattern A in 58% of baseline pattern B men. Among men who achieved BMIs of <25kg/m2 (62% of pattern B men vs. 83% of pattern A men), 81% of pattern B men converted to pattern A. Weight loss was associated with a significantly greater decrease in small, dense LDL subclass 3b in pattern B relative to pattern A men. The lipoprotein profiles of pattern A men who converted from pattern B were comparable to those of men with pattern A at baseline. Conversion of LDL subclass pattern B to pattern A and reversal of ALP can be achieved in a high proportion of overweight men by normalization of adiposity. PMID:19498345

  7. High-density lipoprotein acts as an opsonin to enhance phagocytosis of group A streptococcus by U937 cells.

    PubMed

    Liu, Ling; Zhou, Lulei; Li, Yuxin; Bai, Wencheng; Liu, Na; Li, Wenlong; Gao, Yumin; Liu, Zhi; Han, Runlin

    2015-07-01

    We have previously demonstrated that high-density lipoprotein (HDL) can specifically bind to streptococcal collagen-like protein 1 (Scl1) of M41-type group A Streptococcus (GAS). However, the pathological or physiological significance of Scl1-HDL interaction is unknown. Here, the hypothesis that HDL acts as an opsonin to enhance phagocytosis of HDL-bound GAS by monocytes given that some scavenger receptors can mediate the endocytosis of HDL was tested by using FITC-labeled bacteria, human U937 monocytes and HDL for phagocytic assays. HDL (10 µg/mL) was found to significantly enhance internalization of M41-type (ATCC 12373) GAS by U937 cells after 60 min incubation, compared with an HDL-free group. The internalized GAS were dead after 60 min incubation with U937 cells regardless of presence and absence of HDL. Although very-low-density lipoprotein (VLDL) could specifically bind to ATCC 12373 strain, it did not promote phagocytosis of GAS. Additionally, LDL, HDL and VLDL did not enhance phagocytosis of CMCC 32198 strain because this strain did not bind to these lipoproteins. A physiological concentration of HDL (1000 µg/mL) had a similar effect. Anti-CD36 antibody completely abolished opsonic phagocytosis whereas anti-CD4 antibody did not, indicating that CD36 is the major scavenger receptor mediating the uptake of HDL-opsonized GAS by U937 cells. Furthermore, because rScl1 competitively blocked the interaction of ATCC 12373 strain with HDL recombinant Scl1 (rScl1) derived from M41-type GAS, it significantly decreased opsonophagocytosis of ATCC 12373 strain but not of CMCC 32198 strain. Therefore, our findings suggest that HDL may be an opsonin that enhances CD36-dependent opsonophagocytosis of GAS by U937 cells.

  8. A kindred with fish eye disease, corneal opacities, marked high-density lipoprotein deficiency, and statin therapy.

    PubMed

    Dimick, Susan M; Sallee, Brigitte; Asztalos, Bela F; Pritchard, P Haydn; Frohlich, Jiri; Schaefer, Ernst J

    2014-01-01

    A kindred affected with fish eye disease (FED) from Oklahoma is reported. Two probands with corneal opacification had mean levels of high-density lipoprotein (HDL) cholesterol (C), apolipoprotein (apo) A-I, and apoA-I in very large alpha-1 HDL particles that were 9%, 17%, and 5% of normal, whereas their parents and 1 sibling had values that were 61%, 77%, and 72% of normal. The probands had no detectable lipoprotein-X, and had mean low-density lipoprotein cholesterol (LDL-C) and triglyceride levels that were elevated. Their mean lecithin cholesterol acyltransferase (LCAT) activities, cholesterol esterification rates, and free cholesterol levels were 8%, 42%, and 258% of normal, whereas their parents and 1 sibling had values that were 55%, 49%, and 114% of normal. The defect was due to 1 common variant in the LCAT gene in exon 1: c101t causing a proline34leucine substitution and a novel mutation c1177t causing a threonine37methionine substitution, with the former variant being found in the father and 1 sibling, and the latter mutation being found in the mother, and both mutations being present in the 2 probands. FED is distinguished from familial LCAT deficiency (FLD) by the lack of anemia, splenomegaly, and renal insufficiency as well as normal or increased LDL-C. Both FLD and FED cases have marked HDL deficiency and corneal opacification, and FED cases may have premature coronary heart disease in contrast to FLD cases. Therapy, using presently available agents, in FED should be to optimize LDL-C levels, and 1 proband responded well to statin therapy. The investigational use of human recombinant LCAT as an enzyme source is ongoing. PMID:24636183

  9. Oxidized high-density lipoprotein accelerates atherosclerosis progression by inducing the imbalance between treg and teff in LDLR knockout mice.

    PubMed

    Ru, Ding; Zhiqing, He; Lin, Zhu; Feng, Wu; Feng, Zhang; Jiayou, Zhang; Yusheng, Ren; Min, Fan; Chun, Liang; Zonggui, Wu

    2015-05-01

    High density lipoprotein (HDL) dysfunction has been widely reported in clinic, and oxidation of HDL (ox-HDL) was shown to be one of the most common modifications in vivo and participate in the progression of atherosclerosis. But the behind mechanisms are still elusive. In this study, we firstly analyzed and found strong relationship between serum ox-HDL levels and risk factors of coronary artery diseases in clinic, then the effects of ox-HDL in initiation and progression of atherosclerosis in LDLR knockout mice were investigated by infusion of ox-HDL dissolved in chitosan hydrogel before the formation of lesions in vivo. Several new evidence were shown: (i) the serum levels of ox-HDL peaked early before the formation of lesions in LDLR mice fed with high fat diet similar to oxidative low density lipoprotein, (ii) the formation of atherosclerotic lesions could be accelerated by infusion of ox-HDL, (iii) the pro-atherosclerotic effects of ox-HDL were accompanied by imbalanced levels of effector and regulatory T cells and relative gene expressions, which implied that imbalance of teff and treg might contribute to the pro-atherosclerosis effects of ox-HDL.

  10. Antagonism of Secreted PCSK9 Increases Low Density Lipoprotein Receptor Expression in HepG2 Cells

    SciTech Connect

    McNutt, Markey C.; Kwon, Hyock Joo; Chen, Chiyuan; Chen, Justin R.; Horton, Jay D.; Lagace, Thomas A.

    2009-07-10

    PCSK9 is a secreted protein that degrades low density lipoprotein receptors (LDLRs) in liver by binding to the epidermal growth factor-like repeat A (EGF-A) domain of the LDLR. It is not known whether PCSK9 causes degradation of LDLRs within the secretory pathway or following secretion and reuptake via endocytosis. Here we show that a mutation in the LDLR EGF-A domain associated with familial hypercholesterolemia, H306Y, results in increased sensitivity to exogenous PCSK9-mediated cellular degradation because of enhanced PCSK9 binding affinity. The crystal structure of the PCSK9-EGF-A(H306Y) complex shows that Tyr-306 forms a hydrogen bond with Asp-374 in PCSK9 at neutral pH, which strengthens the interaction with PCSK9. To block secreted PCSK9 activity, LDLR (H306Y) subfragments were added to the medium of HepG2 cells stably overexpressing wild-type PCSK9 or gain-of-function PCSK9 mutants associated with hypercholesterolemia (D374Y or S127R). These subfragments blocked secreted PCSK9 binding to cell surface LDLRs and resulted in the recovery of LDLR levels to those of control cells. We conclude that PCSK9 acts primarily as a secreted factor to cause LDLR degradation. These studies support the concept that pharmacological inhibition of the PCSK9-LDLR interaction extracellularly will increase hepatic LDLR expression and lower plasma low density lipoprotein levels.

  11. The effects of weight gain after smoking cessation on atherogenic α1-antitrypsin-low-density lipoprotein.

    PubMed

    Komiyama, Maki; Wada, Hiromichi; Ura, Shuichi; Yamakage, Hajime; Satoh-Asahara, Noriko; Shimada, Sayaka; Akao, Masaharu; Koyama, Hiroshi; Kono, Koichi; Shimatsu, Akira; Takahashi, Yuko; Hasegawa, Koji

    2015-11-01

    Although cardiovascular risks decrease after quitting smoking, body weight often increases in the early period after smoking cessation. We have previously reported that the serum level of the α1-antitrypsin-low-density lipoprotein complex (AT-LDL)-an oxidatively modified low-density lipoprotein that accelerates atherosclerosis-is high in current smokers, and that the level rapidly decreases after smoking cessation. However, the effects of weight gain after smoking cessation on this cardiovascular marker are unknown. In 183 outpatients (134 males, 49 females) who had successfully quit smoking, serum AT-LDL levels were measured using an enzyme-linked immunosorbent assay. For all persons who had successfully quit smoking, body mass index (BMI) significantly increased 12 weeks after the first examination (p < 0.01). Among patients with a BMI increase smaller than the median, a significant decrease (p < 0.01) in serum AT-LDL values was found, but no significant changes in serum AT-LDL values were found in patients with a BMI increase greater than the median. The findings suggest that the decrease in serum AT-LDL levels after quitting smoking is influenced by weight gain after smoking cessation.

  12. Emerging therapies for raising high-density lipoprotein cholesterol (HDL-C) and augmenting HDL particle functionality.

    PubMed

    Barylski, Marcin; Toth, Peter P; Nikolic, Dragana; Banach, Maciej; Rizzo, Manfredi; Montalto, Giuseppe

    2014-06-01

    High-density lipoprotein (HDL) particles are highly complex polymolecular aggregates capable of performing a remarkable range of atheroprotective functions. Considerable research is being performed throughout the world to develop novel pharmacologic approaches to: (1) promote apoprotein A-I and HDL particle biosynthesis; (2) augment capacity for reverse cholesterol transport so as to reduce risk for the development and progression of atherosclerotic disease; and (3) modulate the functionality of HDL particles in order to increase their capacity to antagonize oxidation, inflammation, thrombosis, endothelial dysfunction, insulin resistance, and other processes that participate in arterial wall injury. HDL metabolism and the molecular constitution of HDL particles are highly complex and can change in response to both acute and chronic alterations in the metabolic milieu. To date, some of these interventions have been shown to positively impact rates of coronary artery disease progression. However, none of them have as yet been shown to significantly reduce risk for cardiovascular events. In the next 3-5 years a variety of pharmacologic interventions for modulating HDL metabolism and functionality will be tested in large, randomized, prospective outcomes trials. It is hoped that one or more of these therapeutic approaches will result in the ability to further reduce risk for cardiovascular events once low-density lipoprotein cholesterol and non-HDL-cholesterol targets have been attained. PMID:24840270

  13. Low-Density Lipoprotein Receptor-Related Protein-1 Protects Against Hepatic Insulin Resistance and Hepatic Steatosis.

    PubMed

    Ding, Yinyuan; Xian, Xunde; Holland, William L; Tsai, Shirling; Herz, Joachim

    2016-05-01

    Low-density lipoprotein receptor-related protein-1 (LRP1) is a multifunctional uptake receptor for chylomicron remnants in the liver. In vascular smooth muscle cells LRP1 controls reverse cholesterol transport through platelet-derived growth factor receptor β (PDGFR-β) trafficking and tyrosine kinase activity. Here we show that LRP1 regulates hepatic energy homeostasis by integrating insulin signaling with lipid uptake and secretion. Somatic inactivation of LRP1 in the liver (hLRP1KO) predisposes to diet-induced insulin resistance with dyslipidemia and non-alcoholic hepatic steatosis. On a high-fat diet, hLRP1KO mice develop a severe Metabolic Syndrome secondary to hepatic insulin resistance, reduced expression of insulin receptors on the hepatocyte surface and decreased glucose transporter 2 (GLUT2) translocation. While LRP1 is also required for efficient cell surface insulin receptor expression in the absence of exogenous lipids, this latent state of insulin resistance is unmasked by exposure to fatty acids. This further impairs insulin receptor trafficking and results in increased hepatic lipogenesis, impaired fatty acid oxidation and reduced very low density lipoprotein (VLDL) triglyceride secretion. PMID:27322467

  14. Endothelial NOS-dependent activation of c-Jun NH(2)- terminal kinase by oxidized low-density lipoprotein

    NASA Technical Reports Server (NTRS)

    Go, Y. M.; Levonen, A. L.; Moellering, D.; Ramachandran, A.; Patel, R. P.; Jo, H.; Darley-Usmar, V. M.

    2001-01-01

    Oxidized low-density lipoprotein (oxLDL) is known to activate a number of signal transduction pathways in endothelial cells. Among these are the c-Jun NH(2)-terminal kinase (JNK), also known as stress-activated protein kinase, and extracellular signal-regulated kinase (ERK). These mitogen-activated protein kinases (MAP kinase) determine cell survival in response to environmental stress. Interestingly, JNK signaling involves redox-sensitive mechanisms and is activated by reactive oxygen and nitrogen species derived from both NADPH oxidases, nitric oxide synthases (NOS), peroxides, and oxidized low-density lipoprotein (oxLDL). The role of endothelial NOS (eNOS) in the activation of JNK in response to oxLDL has not been examined. Herein, we show that on exposure of endothelial cells to oxLDL, both ERK and JNK are activated through independent signal transduction pathways. A key role of eNOS activation through a phosphatidylinositol-3-kinase-dependent mechanism leading to phosphorylation of eNOS is demonstrated for oxLDL-dependent activation of JNK. Moreover, we show that activation of ERK by oxLDL is critical in protection against the cytotoxicity of oxLDL.

  15. Characterization of binding sites for acetylated low density lipoprotein in the rat liver in vivo and in vitro.

    PubMed Central

    Dresel, H A; Friedrich, E; Via, D P; Schettler, G; Sinn, H

    1985-01-01

    Acetylated low density lipoprotein (acetyl-LDL) binding to hepatic membrane proteins of rats was analysed in vitro by ligand blotting. Specific binding could be demonstrated to two hepatic proteins with an apparent mol. wt. of 250 kd and 220 kd. Polyanionic competitors and maleylated bovine serum albumin inhibited the binding of acetyl-LDL effectively. To determine the sites of the catabolism of acetyl-LDL, [131I]-acetyl-LDL was injected intravenously into control rats and rats pre-treated with the known competitors of the acetyl-LDL binding. Distribution of the radiolabelled acetyl-LDL was followed by a scintillation camera. Six minutes after injection, the radioactivity was concentrated in the liver. The competitors and unlabelled acetyl-LDL but not native LDL reduced the hepatic uptake of [131I]acetyl-LDL dramatically. Thus, the sensitivity of the 220- and 250-kd membrane binding sites to the competitors for the acetyl-LDL binding resembled that of the hepatic compartment in vivo. Finally, an application of scintigraphy with radiolabelled low density lipoproteins for diagnostic evaluation of tumor compartments is presented. Images Fig. 2. Fig. 4. Fig. 5. PMID:4006910

  16. Oxidized high-density lipoprotein accelerates atherosclerosis progression by inducing the imbalance between treg and teff in LDLR knockout mice.

    PubMed

    Ru, Ding; Zhiqing, He; Lin, Zhu; Feng, Wu; Feng, Zhang; Jiayou, Zhang; Yusheng, Ren; Min, Fan; Chun, Liang; Zonggui, Wu

    2015-05-01

    High density lipoprotein (HDL) dysfunction has been widely reported in clinic, and oxidation of HDL (ox-HDL) was shown to be one of the most common modifications in vivo and participate in the progression of atherosclerosis. But the behind mechanisms are still elusive. In this study, we firstly analyzed and found strong relationship between serum ox-HDL levels and risk factors of coronary artery diseases in clinic, then the effects of ox-HDL in initiation and progression of atherosclerosis in LDLR knockout mice were investigated by infusion of ox-HDL dissolved in chitosan hydrogel before the formation of lesions in vivo. Several new evidence were shown: (i) the serum levels of ox-HDL peaked early before the formation of lesions in LDLR mice fed with high fat diet similar to oxidative low density lipoprotein, (ii) the formation of atherosclerotic lesions could be accelerated by infusion of ox-HDL, (iii) the pro-atherosclerotic effects of ox-HDL were accompanied by imbalanced levels of effector and regulatory T cells and relative gene expressions, which implied that imbalance of teff and treg might contribute to the pro-atherosclerosis effects of ox-HDL. PMID:25912129

  17. A common factor suppresses thickening in young women with malar area port wine stains and delays low density lipoprotein elevation: is it estrogen?

    PubMed

    Klapman, M H; Sosa, V B; Yao, J F

    2014-06-01

    Port wine stains in the malar area of the face can develop thickening in early adult life. We began a study with a hypothesis that this thickening can be associated with elevation of low density lipoprotein. In a retrospective review, we divided 53 subjects with malar port wine stains into 4 groups, adults 25-39 years of age with thickening, that age group without thickening, adults 40+ years of age with thickening, and that age group without thickening. Low density lipoprotein levels in the subjects were compared to age and sex matched controls randomly selected from the general Dermatology clinic. The younger subjects with thickening demonstrated significantly higher low density lipoprotein levels than their controls (p .0082) and without thickening lower low density lipoprotein levels than their controls with great significance (p .00058). The subjects without thickening also consisted mainly of women. The low density lipoprotein levels in the older age groups, whether thickened or not, demonstrated no significant difference in low density lipoprotein levels between subjects and controls. This led to a new hypothesis that there is a factor in a subgroup of young adult women with malar port wine stains that suppresses thickening and delays the elevation of low density lipoprotein and that this factor might be estrogen. The implications of this hypothesis are that it could define a marker for a subset of the population that might be protected from the diseases associated with early elevation of low density lipoprotein and provide a source of cutaneous tissue for studying the basic science of this protection (although limited by cosmetic considerations). Future laboratory research to test the new hypothesis might include testing blood of women with malar port wine stains with or without thickening for estrogen and other sex hormones. It might also include skin biopsies to study receptors for estrogen, other sex hormones, and angiogenic factors in malar port wine

  18. Lipoprotein Subfractions in Metabolic Syndrome and Obesity: Clinical Significance and Therapeutic Approaches

    PubMed Central

    Nikolic, Dragana; Katsiki, Niki; Montalto, Giuseppe; Isenovic, Esma R.; Mikhailidis, Dimitri P.; Rizzo, Manfredi

    2013-01-01

    Small, dense low density lipoprotein (sdLDL) represents an emerging cardiovascular risk factor, since these particles can be associated with cardiovascular disease (CVD) independently of established risk factors, including plasma lipids. Obese subjects frequently have atherogenic dyslipidaemia, including elevated sdLDL levels, in addition to elevated triglycerides (TG), very low density lipoprotein (VLDL) and apolipoprotein-B, as well as decreased high density lipoprotein cholesterol (HDL-C) levels. Obesity-related co-morbidities, such as metabolic syndrome (MetS) are also characterized by dyslipidaemia. Therefore, agents that favourably modulate LDL subclasses may be of clinical value in these subjects. Statins are the lipid-lowering drug of choice. Also, anti-obesity and lipid lowering drugs other than statins could be useful in these patients. However, the effects of anti-obesity drugs on CVD risk factors remain unclear. We review the clinical significance of sdLDL in being overweight and obesity, as well as the efficacy of anti-obesity drugs on LDL subfractions in these individuals; a short comment on HDL subclasses is also included. Our literature search was based on PubMed and Scopus listings. Further research is required to fully explore both the significance of sdLDL and the efficacy of anti-obesity drugs on LDL subfractions in being overweight, obesity and MetS. Improving the lipoprotein profile in these patients may represent an efficient approach for reducing cardiovascular risk. PMID:23507795

  19. Uptake of low density lipoproteins by human leukemic cells in vivo: relation to plasma lipoprotein levels and possible relevance for selective chemotherapy.

    PubMed Central

    Vitols, S; Angelin, B; Ericsson, S; Gahrton, G; Juliusson, G; Masquelier, M; Paul, C; Peterson, C; Rudling, M; Söderberg-Reid, K

    1990-01-01

    The success of cancer chemotherapy is dependent on the possibility to utilize biological differences between malignant and normal cells to selectively destroy the tumor cells. One such difference may be that of receptor-mediated cellular uptake of low density lipoproteins (LDLs). Previous studies have shown that leukemic cells from patients with acute myelogenous leukemia have elevated receptor-mediated uptake and degradation rates of plasma LDL in vitro compared to normal white blood and bone marrow cells, and that plasma cholesterol levels at diagnosis are inversely correlated with the LDL receptor activity of the malignant cells. An important question is whether the uptake of LDL by the leukemic cells is also increased in vivo. To evaluate the in vivo uptake of LDL, 11 adult patients with newly diagnosed acute myelogenous leukemia received an i.v. injection of [14C]-sucrose-labeled LDL. On degradation of [14C]sucrose-LDL, the radiolabeled sucrose moiety is known to remain trapped in the lysosomal compartment of the cells. After injection, radioactivity accumulated progressively for at least 12 hr in the leukemic cells. The uptake of radioactivity in vivo correlated with the rate of receptor-mediated degradation of 125I-labeled LDL by the leukemic cells assayed in vitro (r = +0.88, P less than 0.001). An inverse correlation between plasma LDL cholesterol concentrations and the in vivo cellular uptake of [14C]sucrose-LDL in whole blood (r = -0.76, P less than 0.01) indicates that the hypocholesterolemia is due to elevated LDL uptake by the leukemic cells. Postmortem biopsies from virtually all tissues were obtained from one patient, and the distribution of radioactivity revealed that the liver and bone marrow had accumulated most radioactivity; the adrenals had the highest uptake of label per gram of tissue weight. The results indicate that LDL may be used as a carrier targeting lipophilic cytotoxic drugs to leukemic cells. PMID:2320578

  20. Low density lipoprotein receptor-independent hepatic uptake of a synthetic, cholesterol-scavenging lipoprotein: implications for the treatment of receptor-deficient atherosclerosis.

    PubMed Central

    Williams, K J; Vallabhajosula, S; Rahman, I U; Donnelly, T M; Parker, T S; Weinrauch, M; Goldsmith, S J

    1988-01-01

    The metabolism of infused 111In-labeled phospholipid liposomes was examined in Watanabe heritable hyperlipidemic (WHHL) rabbits, which lack low density lipoprotein (LDL) receptors, and in normal control rabbits. The half-times (t1/2) for clearance of 111In and excess phospholipid from plasma were 20.8 +/- 0.9 hr and 20.3 +/- 4.6 hr in WHHL and 20.0 +/- 0.8 hr and 19.6 +/- 2.2 hr in the normal rabbits (means +/- SEM; n = 4). By 6 hr postinfusion, the plasma concentration of unesterified cholesterol increased by 2.2 +/- 0.23 mmol/liter in WHHL and 2.1 +/- 0.04 mmol/liter in normal rabbits, presumably reflecting mobilization of tissue stores. Disappearance of excess plasma cholesterol was greater than 90% complete in both groups of rabbits by 70 hr postinfusi