Canonical density matrix perturbation theory.
Niklasson, Anders M N; Cawkwell, M J; Rubensson, Emanuel H; Rudberg, Elias
2015-12-01
Density matrix perturbation theory [Niklasson and Challacombe, Phys. Rev. Lett. 92, 193001 (2004)] is generalized to canonical (NVT) free-energy ensembles in tight-binding, Hartree-Fock, or Kohn-Sham density-functional theory. The canonical density matrix perturbation theory can be used to calculate temperature-dependent response properties from the coupled perturbed self-consistent field equations as in density-functional perturbation theory. The method is well suited to take advantage of sparse matrix algebra to achieve linear scaling complexity in the computational cost as a function of system size for sufficiently large nonmetallic materials and metals at high temperatures. PMID:26764847
Effective potential in density matrix functional theory.
Nagy, A; Amovilli, C
2004-10-01
In the previous paper it was shown that in the ground state the diagonal of the spin independent second-order density matrix n can be determined by solving a single auxiliary equation of a two-particle problem. Thus the problem of an arbitrary system with even electrons can be reduced to a two-particle problem. The effective potential of the two-particle equation contains a term v(p) of completely kinetic origin. Virial theorem and hierarchy of equations are derived for v(p) and simple approximations are proposed. A relationship between the effective potential u(p) of the shape function equation and the potential v(p) is established. PMID:15473719
Information Theory Density Matrix for a Simple Quantum System.
ERIC Educational Resources Information Center
Titus, William J.
1979-01-01
Derives the density matrix that best describes, according to information theory, a one-dimensional single particle quantum system when the only information available is the values for the linear and quadratic position-momentum moments. (Author/GA)
Density matrix embedding theory for interacting electron-phonon systems
NASA Astrophysics Data System (ADS)
Sandhoefer, Barbara; Chan, Garnet Kin-Lic
2016-08-01
We describe the extension of the density matrix embedding theory framework to coupled interacting fermion-boson systems. This provides a frequency-independent, entanglement embedding formalism to treat bulk fermion-boson problems. We illustrate the concepts within the context of the one-dimensional Hubbard-Holstein model, where the phonon bath states are obtained from the Schmidt decomposition of a self-consistently adjusted coherent state. We benchmark our results against accurate density matrix renormalization group calculations.
Transition matrices and orbitals from reduced density matrix theory
Etienne, Thibaud
2015-06-28
In this contribution, we report two different methodologies for characterizing the electronic structure reorganization occurring when a chromophore undergoes an electronic transition. For the first method, we start by setting the theoretical background necessary to the reinterpretation through simple tensor analysis of (i) the transition density matrix and (ii) the natural transition orbitals in the scope of reduced density matrix theory. This novel interpretation is made more clear thanks to a short compendium of the one-particle reduced density matrix theory in a Fock space. The formalism is further applied to two different classes of excited states calculation methods, both requiring a single-determinant reference, that express an excited state as a hole-particle mono-excited configurations expansion, to which particle-hole correlation is coupled (time-dependent Hartree-Fock/time-dependent density functional theory) or not (configuration interaction single/Tamm-Dancoff approximation). For the second methodology presented in this paper, we introduce a novel and complementary concept related to electronic transitions with the canonical transition density matrix and the canonical transition orbitals. Their expression actually reflects the electronic cloud polarisation in the orbital space with a decomposition based on the actual contribution of one-particle excitations from occupied canonical orbitals to virtual ones. This approach validates our novel interpretation of the transition density matrix elements in terms of the Euclidean norm of elementary transition vectors in a linear tensor space. A proper use of these new concepts leads to the conclusion that despite the different principles underlying their construction, they provide two equivalent excited states topological analyses. This connexion is evidenced through simple illustrations of (in)organic dyes electronic transitions analysis.
Generalized Pauli constraints in reduced density matrix functional theory
Theophilou, Iris; Helbig, Nicole; Lathiotakis, Nektarios N.; Marques, Miguel A. L.
2015-04-21
Functionals of the one-body reduced density matrix (1-RDM) are routinely minimized under Coleman’s ensemble N-representability conditions. Recently, the topic of pure-state N-representability conditions, also known as generalized Pauli constraints, received increased attention following the discovery of a systematic way to derive them for any number of electrons and any finite dimensionality of the Hilbert space. The target of this work is to assess the potential impact of the enforcement of the pure-state conditions on the results of reduced density-matrix functional theory calculations. In particular, we examine whether the standard minimization of typical 1-RDM functionals under the ensemble N-representability conditions violates the pure-state conditions for prototype 3-electron systems. We also enforce the pure-state conditions, in addition to the ensemble ones, for the same systems and functionals and compare the correlation energies and optimal occupation numbers with those obtained by the enforcement of the ensemble conditions alone.
Reduced density-matrix functional theory: Correlation and spectroscopy
Di Sabatino, S.; Romaniello, P.; Berger, J. A.; Reining, L.
2015-07-14
In this work, we explore the performance of approximations to electron correlation in reduced density-matrix functional theory (RDMFT) and of approximations to the observables calculated within this theory. Our analysis focuses on the calculation of total energies, occupation numbers, removal/addition energies, and spectral functions. We use the exactly solvable Hubbard dimer at 1/4 and 1/2 fillings as test systems. This allows us to analyze the underlying physics and to elucidate the origin of the observed trends. For comparison, we also report the results of the GW approximation, where the self-energy functional is approximated, but no further hypothesis is made concerning the approximations of the observables. In particular, we focus on the atomic limit, where the two sites of the dimer are pulled apart and electrons localize on either site with equal probability, unless a small perturbation is present: this is the regime of strong electron correlation. In this limit, using the Hubbard dimer at 1/2 filling with or without a spin-symmetry-broken ground state allows us to explore how degeneracies and spin-symmetry breaking are treated in RDMFT. We find that, within the used approximations, neither in RDMFT nor in GW, the signature of strong correlation is present, when looking at the removal/addition energies and spectral function from the spin-singlet ground state, whereas both give the exact result for the spin-symmetry broken case. Moreover, we show how the spectroscopic properties change from one spin structure to the other.
The problem of the universal density functional and the density matrix functional theory
Bobrov, V. B. Trigger, S. A.
2013-04-15
The analysis in this paper shows that the Hohenberg-Kohn theorem is the constellation of two statements: (i) the mathematically rigorous Hohenberg-Kohn lemma, which demonstrates that the same ground-state density cannot correspond to two different potentials of an external field, and (ii) the hypothesis of the existence of the universal density functional. Based on the obtained explicit expression for the nonrel-ativistic particle energy in a local external field, we prove that the energy of the system of more than two non-interacting electrons cannot be a functional of the inhomogeneous density. This result is generalized to the system of interacting electrons. It means that the Hohenberg-Kohn lemma cannot provide justification of the universal density functional for fermions. At the same time, statements of the density functional theory remain valid when considering any number of noninteracting ground-state bosons due to the Bose condensation effect. In the framework of the density matrix functional theory, the hypothesis of the existence of the universal density matrix functional corresponds to the cases of noninteracting particles and to interaction in the Hartree-Fock approximation.
Performance of the density matrix functional theory in the quantum theory of atoms in molecules.
García-Revilla, Marco; Francisco, E; Costales, A; Martín Pendás, A
2012-02-01
The generalization to arbitrary molecular geometries of the energetic partitioning provided by the atomic virial theorem of the quantum theory of atoms in molecules (QTAIM) leads to an exact and chemically intuitive energy partitioning scheme, the interacting quantum atoms (IQA) approach, that depends on the availability of second-order reduced density matrices (2-RDMs). This work explores the performance of this approach in particular and of the QTAIM in general with approximate 2-RDMs obtained from the density matrix functional theory (DMFT), which rests on the natural expansion (natural orbitals and their corresponding occupation numbers) of the first-order reduced density matrix (1-RDM). A number of these functionals have been implemented in the promolden code and used to perform QTAIM and IQA analyses on several representative molecules and model chemical reactions. Total energies, covalent intra- and interbasin exchange-correlation interactions, as well as localization and delocalization indices have been determined with these functionals from 1-RDMs obtained at different levels of theory. Results are compared to the values computed from the exact 2-RDMs, whenever possible. PMID:21943031
Conditions for Describing Triplet States in Reduced Density Matrix Functional Theory.
Theophilou, Iris; Lathiotakis, Nektarios N; Helbig, Nicole
2016-06-14
We consider necessary conditions for the one-body reduced density matrix (1RDM) to correspond to a triplet wave function of a two-electron system. The conditions concern the occupation numbers and are different for the high spin projections, Sz = ±1, and the Sz = 0 projection. Hence, they can be used to test if an approximate 1RDM functional yields the same energies for both projections. We employ these conditions in reduced density matrix functional theory calculations for the triplet excitations of two-electron systems. In addition, we propose that these conditions can be used in the calculation of triplet states of systems with more than two electrons by restricting the active space. We assess this procedure in calculations for a few atomic and molecular systems. We show that the quality of the optimal 1RDMs improves by applying the conditions in all the cases we studied. PMID:27171683
A practical guide to density matrix embedding theory in quantum chemistry
Wouters, Sebastian; Jimenez-Hoyos, Carlos A.; Sun, Qiming; Chan, Garnet K.-L.
2016-05-09
Density matrix embedding theory (DMET) (Knizia, G.; Chan, G. K.-L. Phys. Rev. Lett. 2012, 109, 186404) provides a theoretical framework to treat finite fragments in the presence of a surrounding molecular or bulk environment, even when there is significant correlation or entanglement between the two. In this work, we give a practically oriented and explicit description of the numerical and theoretical formulation of DMET. We also describe in detail how to perform self-consistent DMET optimizations. Furthermore, we explore different embedding strategies with and without a self-consistency condition in hydrogen rings, beryllium rings, and a sample SN2 reaction.
Reconstructive approaches to one- and two-electron density matrix theory
NASA Astrophysics Data System (ADS)
Herbert, John Michael
Novel computational methods for electronic structure theory are explored, in which the fundamental variable is either the one- or the two-electron reduced density matrix (1- or 2-RDM), rather than the electronic wavefunction. A unifying theme among these methods is density matrix reconstruction, that is, decoupling approximations that express higher-order density matrices as functionals of lower-order ones. On the 2-RDM side, a connected (extensive) version of the Contracted Schrodinger Equation (CSE) is developed, in which the basic unknowns are the RDM cumulants through order four. Reconstruction functionals that neglect the 3- and 4-RDM cumulants are examined and revealed to be significantly less accurate than suggested by previous minimal-basis results. Exact 3-RDM cumulants for some four-electron systems are calculated and found to be comparable in importance to unconnected products of lower-order cumulants. Decoupling approximations for the 3- and 4-RDM cumulants are developed based upon a renormalized, diagrammatic perturbation theory for the three- and four-particle Green's functions, in which the effective, pairwise interaction is extracted from the two-particle cumulant. Diagram rules suitable for both the time-dependent and time-independent versions of this perturbation theory are derived. Reconstructive approaches to natural orbital (1-RDM) functional theory are also examined, wherein the 2-RDM is parametrized in terms of the natural orbitals and their (generally fractional) occupancies. It is demonstrated, at the theorem level, that proposed "corrected Hartree" and "corrected Hartree-Fock" natural orbital functionals necessarily violate positivity of the 2-RDM, which is closely related to their failure to respect antisymmetry. Calculations demonstrate that negative eigenvalues of the 2-RDM are associated with a large, stabilizing (but ultimately spurious) contribution to the energy. Nevertheless, a partially self-interaction-corrected version of the
NASA Astrophysics Data System (ADS)
Liang, Wenkel; Isborn, Christine M.; Li, Xiaosong
2009-11-01
The calculation of doubly excited states is one of the major problems plaguing the modern day excited state workhorse methodology of linear response time dependent Hartree-Fock (TDHF) and density function theory (TDDFT). We have previously shown that the use of a resonantly tuned field within real-time TDHF and TDDFT is able to simultaneously excite both the α and β electrons to achieve the two-electron excited states of minimal basis H2 and HeH+ [C. M. Isborn and X. Li, J. Chem. Phys. 129, 204107 (2008)]. We now extend this method to many electron systems with the use of our Car-Parrinello density matrix search (CP-DMS) with a first-principles fictitious mass method for wave function optimization [X. Li, C. L. Moss, W. Liang, and Y. Feng, J. Chem. Phys. 130, 234115 (2009)]. Real-time TDHF/TDDFT is used during the application of the laser field perturbation, driving the electron density toward the doubly excited state. The CP-DMS method then converges the density to the nearest stationary state. We present these stationary state doubly excited state energies and properties at the HF and DFT levels for H2, HeH+, lithium hydride, ethylene, and butadiene.
Quasi-particle energy spectra in local reduced density matrix functional theory.
Lathiotakis, Nektarios N; Helbig, Nicole; Rubio, Angel; Gidopoulos, Nikitas I
2014-10-28
Recently, we introduced [N. N. Lathiotakis, N. Helbig, A. Rubio, and N. I. Gidopoulos, Phys. Rev. A 90, 032511 (2014)] local reduced density matrix functional theory (local RDMFT), a theoretical scheme capable of incorporating static correlation effects in Kohn-Sham equations. Here, we apply local RDMFT to molecular systems of relatively large size, as a demonstration of its computational efficiency and its accuracy in predicting single-electron properties from the eigenvalue spectrum of the single-particle Hamiltonian with a local effective potential. We present encouraging results on the photoelectron spectrum of molecular systems and the relative stability of C20 isotopes. In addition, we propose a modelling of the fractional occupancies as functions of the orbital energies that further improves the efficiency of the method useful in applications to large systems and solids. PMID:25362285
Quasi-particle energy spectra in local reduced density matrix functional theory
Lathiotakis, Nektarios N.; Helbig, Nicole; Rubio, Angel
2014-10-28
Recently, we introduced [N. N. Lathiotakis, N. Helbig, A. Rubio, and N. I. Gidopoulos, Phys. Rev. A 90, 032511 (2014)] local reduced density matrix functional theory (local RDMFT), a theoretical scheme capable of incorporating static correlation effects in Kohn-Sham equations. Here, we apply local RDMFT to molecular systems of relatively large size, as a demonstration of its computational efficiency and its accuracy in predicting single-electron properties from the eigenvalue spectrum of the single-particle Hamiltonian with a local effective potential. We present encouraging results on the photoelectron spectrum of molecular systems and the relative stability of C{sub 20} isotopes. In addition, we propose a modelling of the fractional occupancies as functions of the orbital energies that further improves the efficiency of the method useful in applications to large systems and solids.
A Practical Guide to Density Matrix Embedding Theory in Quantum Chemistry.
Wouters, Sebastian; Jiménez-Hoyos, Carlos A; Sun, Qiming; Chan, Garnet K-L
2016-06-14
Density matrix embedding theory (DMET) (Knizia, G.; Chan, G. K.-L. Phys. Rev. Lett. 2012, 109, 186404) provides a theoretical framework to treat finite fragments in the presence of a surrounding molecular or bulk environment, even when there is significant correlation or entanglement between the two. In this work, we give a practically oriented and explicit description of the numerical and theoretical formulation of DMET. We also describe in detail how to perform self-consistent DMET optimizations. We explore different embedding strategies with and without a self-consistency condition in hydrogen rings, beryllium rings, and a sample SN2 reaction. The source code for the calculations in this work can be obtained from https://github.com/sebwouters/qc-dmet . PMID:27159268
NASA Astrophysics Data System (ADS)
Putaja, A.; Eich, F. G.; Baldsiefen, T.; Räsänen, E.
2016-03-01
Physically valid and numerically efficient approximations for the exchange and correlation energy are critical for reduced-density-matrix-functional theory to become a widely used method in electronic structure calculations. Here we examine the physical limits of power functionals of the form f (n ,n') =(nn')α for the scaling function in the exchange-correlation energy. To this end we obtain numerically the minimizing momentum distributions for the three- and two-dimensional homogeneous electron gas, respectively. In particular, we examine the limiting values for the power α to yield physically sound solutions that satisfy the Lieb-Oxford lower bound for the exchange-correlation energy and exclude pinned states with the condition n (k )<1 for all wave vectors k . The results refine the constraints previously obtained from trial momentum distributions. We also compute the values for α that yield the exact correlation energy and its kinetic part for both the three- and two-dimensional electron gas. In both systems, narrow regimes of validity and accuracy are found at α ≳0.6 and at rs≳10 for the density parameter, corresponding to relatively low densities.
NASA Astrophysics Data System (ADS)
Nakatani, Naoki; Wouters, Sebastian; Van Neck, Dimitri; Chan, Garnet Kin-Lic
2014-01-01
Linear response theory for the density matrix renormalization group (DMRG-LRT) was first presented in terms of the DMRG renormalization projectors [J. J. Dorando, J. Hachmann, and G. K.-L. Chan, J. Chem. Phys. 130, 184111 (2009)]. Later, with an understanding of the manifold structure of the matrix product state (MPS) ansatz, which lies at the basis of the DMRG algorithm, a way was found to construct the linear response space for general choices of the MPS gauge in terms of the tangent space vectors [J. Haegeman, J. I. Cirac, T. J. Osborne, I. Pižorn, H. Verschelde, and F. Verstraete, Phys. Rev. Lett. 107, 070601 (2011)]. These two developments led to the formulation of the Tamm-Dancoff and random phase approximations (TDA and RPA) for MPS. This work describes how these LRTs may be efficiently implemented through minor modifications of the DMRG sweep algorithm, at a computational cost which scales the same as the ground-state DMRG algorithm. In fact, the mixed canonical MPS form implicit to the DMRG sweep is essential for efficient implementation of the RPA, due to the structure of the second-order tangent space. We present ab initio DMRG-TDA results for excited states of polyenes, the water molecule, and a [2Fe-2S] iron-sulfur cluster.
Implementing the density matrix embedding theory with the hierarchical mean-field approach
NASA Astrophysics Data System (ADS)
Qin, Jingbo; Jie, Quanlin; Fan, Zhuo
2016-07-01
We show an implementation of density matrix embedding theory (DMET) for the spin lattice of infinite size. It is indeed a special form of hierarchical mean-field (HMF) theory. In the method, we divide the lattice into a small part and a large part. View the small part as an impurity, embedding in the large part, which is viewed as the environment. We deal the impurity with a high accuracy method. But treat the environment with a low-level method: the states of the environment nearby the impurity are expressed by a set of multiple block product states, while the distant parts are treated by mean-field consideration. Our method allows for the computation of the ground state of the infinite two-dimensional quantum spin systems. In the text, we take the frustrated Heisenberg model as an example to test our method. The ground state energy we calculated can reach a high accuracy. We also calculate the magnetization, and the fidelity to study the quantum phase transitions.
Density matrix embedding theory studies of the two-dimensional Hubbard model
NASA Astrophysics Data System (ADS)
Zheng, Bo-Xiao
Density matrix embedding theory (DMET) provides a quantum embedding framework to compute the electronic structure in strongly correlated lattice systems. It has been applied to various model Hamiltonians and ab initio systems. In this talk, I will review the results obtained in the two-dimensional one-band Hubbard model using DMET. Over the last years, we mapped a calibrated ground-state phase diagram of the two-dimensional Hubbard model, concerning magnetic, superconducting and various inhomogeneous phases. Based on the results from this work, as well as the consistent data from other numerical methods, we are able to conclude that many parts of the Hubbard phase diagram is already settled up to an accurate energy scale of 0.001t. Recently, by using large-scale auxiliary-field quantum Monte Carlo (AFQMC) in the impurity problem, we are able to treat much larger embedded clusters at half-filling (and with the constrained path approximation at non-half-filling), which provides a deeper understanding on the finite-size effects of energy and observables in both quantum embedding and finite cluster numerical methods. Finally, we systematically investigated the putative inhomogeneous phases in the underdoped, strong coupling Hubbard model, proposing new inhomogeneous patterns as strong candidates for the ground state. Reference: [1] Bo-Xiao Zheng, Garnet K.-L. Chan, arXiv:1504.01784 [2] J.P.F. Leblanc, Andrey E. Antipov, et al., arXiv:1505.02290 We acknowledge funding from the US Department of Energy, Office of Science, through DE-SC0008624 and DE-SC0010530. This work was also performed as part of the Simons Collaboration on the Many Electron Problem, sponsored by the Simons Foundation.
Long-range density-matrix-functional theory: Application to a modified homogeneous electron gas
Pernal, Katarzyna
2010-05-15
We propose a method that employs functionals of the one-electron reduced density matrix (density matrix) to capture long-range effects of electron correlation. The complementary short-range regime is treated with density functionals. In an effort to find approximations for the long-range density-matrix functional, a modified power functional is applied to the homogeneous electron gas with Coulomb interactions replaced by their corresponding long-range counterparts. For the power {beta}=1/2 and the range-separation parameter {omega}=1/r{sub s}, the functional reproduces the correlation and the kinetic correlation energies with a remarkable accuracy for intermediate and large values of r{sub s}. Analysis of the Euler equation corresponding to this functional reveals correct r{sub s} expansion of the correlation energy in the limit of large r{sub s}. The first expansion coefficient is in very good agreement with that obtained from the modified Wigner-Seitz model.
Adiabatic approximation in time-dependent reduced-density-matrix functional theory
Requist, Ryan; Pankratov, Oleg
2010-04-15
With the aim of describing real-time electron dynamics, we introduce an adiabatic approximation for the equation of motion of the one-body reduced density matrix (one-matrix). The eigenvalues of the one-matrix, which represent the occupation numbers of single-particle orbitals, are obtained from the constrained minimization of the instantaneous ground-state energy functional rather than from their dynamical equations. The performance of the approximation vis-a-vis nonadiabatic effects is assessed in real-time simulations of a two-site Hubbard model. Due to Landau-Zener-type transitions, the system evolves into a nonstationary state with persistent oscillations in the observables. The amplitude of the oscillations displays a strongly nonmonotonic dependence on the strength of the electron-electron interaction and the rate of variation of the external potential. We interpret an associated resonance behavior in the phase of the oscillations in terms of 'scattering' with spectator energy levels. To clarify the motivation for the minimization condition, we derive a sequence of energy functionals E{sub v}{sup (n)}, for which the corresponding sequence of minimizing one-matrices is asymptotic to the exact one-matrix in the adiabatic limit.
NASA Astrophysics Data System (ADS)
Yang, Chun; Feiguin, Adrian E.
2016-02-01
We study the spectral function of the two-dimensional Hubbard model using cluster perturbation theory, and a density matrix renormalization group as a cluster solver. We reconstruct the two-dimensional dispersion at and away from half-filling using 2 ×L ladders, with L up to 80 sites, yielding results with unprecedented resolution in excellent agreement with quantum Monte Carlo. The main features of the spectrum can be described with a mean-field dispersion, with kinks and pseudogap traced back to scattering between spin and charge degrees of freedom.
NASA Astrophysics Data System (ADS)
Saitow, Masaaki; Kurashige, Yuki; Yanai, Takeshi
2013-07-01
We report development of the multireference configuration interaction (MRCI) method that can use active space scalable to much larger size references than has previously been possible. The recent development of the density matrix renormalization group (DMRG) method in multireference quantum chemistry offers the ability to describe static correlation in a large active space. The present MRCI method provides a critical correction to the DMRG reference by including high-level dynamic correlation through the CI treatment. When the DMRG and MRCI theories are combined (DMRG-MRCI), the full internal contraction of the reference in the MRCI ansatz, including contraction of semi-internal states, plays a central role. However, it is thought to involve formidable complexity because of the presence of the five-particle rank reduced-density matrix (RDM) in the Hamiltonian matrix elements. To address this complexity, we express the Hamiltonian matrix using commutators, which allows the five-particle rank RDM to be canceled out without any approximation. Then we introduce an approximation to the four-particle rank RDM by using a cumulant reconstruction from lower-particle rank RDMs. A computer-aided approach is employed to derive the exceedingly complex equations of the MRCI in tensor-contracted form and to implement them into an efficient parallel computer code. This approach extends to the size-consistency-corrected variants of MRCI, such as the MRCI+Q, MR-ACPF, and MR-AQCC methods. We demonstrate the capability of the DMRG-MRCI method in several benchmark applications, including the evaluation of single-triplet gap of free-base porphyrin using 24 active orbitals.
SivaRanjan, Uppala; Ramachandran, Ramesh
2014-02-07
A quantum-mechanical model integrating the concepts of reduced density matrix and effective Hamiltonians is proposed to explain the multi-spin effects observed in rotational resonance (R{sup 2}) nuclear magnetic resonance (NMR) experiments. Employing this approach, the spin system of interest is described in a reduced subspace inclusive of its coupling to the surroundings. Through suitable model systems, the utility of our theory is demonstrated and verified with simulations emerging from both analytic and numerical methods. The analytic results presented in this article provide an accurate description/interpretation of R{sup 2} experimental results and could serve as a test-bed for distinguishing coherent/incoherent effects in solid-state NMR.
Yan, YiJing
2014-02-07
This work establishes a strongly correlated system-and-bath dynamics theory, the many-dissipaton density operators formalism. It puts forward a quasi-particle picture for environmental influences. This picture unifies the physical descriptions and algebraic treatments on three distinct classes of quantum environments, electron bath, phonon bath, and two-level spin or exciton bath, as their participating in quantum dissipation processes. Dynamical variables for theoretical description are no longer just the reduced density matrix for system, but remarkably also those for quasi-particles of bath. The present theoretical formalism offers efficient and accurate means for the study of steady-state (nonequilibrium and equilibrium) and real-time dynamical properties of both systems and hybridizing environments. It further provides universal evaluations, exact in principle, on various correlation functions, including even those of environmental degrees of freedom in coupling with systems. Induced environmental dynamics could be reflected directly in experimentally measurable quantities, such as Fano resonances and quantum transport current shot noise statistics.
Requist, Ryan; Pankratov, Oleg
2011-05-15
We prove that if the two-body terms in the equation of motion for the one-body reduced density matrix are approximated by ground-state functionals, the eigenvalues of the one-body reduced density matrix (occupation numbers) remain constant in time. This deficiency is related to the inability of such an approximation to account for relative phases in the two-body reduced density matrix. We derive an exact differential equation giving the functional dependence of these phases in an interacting Landau-Zener model and study their behavior in short- and long-time regimes. The phases undergo resonances whenever the occupation numbers approach the boundaries of the interval [0,1]. In the long-time regime, the occupation numbers display correlation-induced oscillations and the memory dependence of the functionals assumes a simple form.
Palenik, Mark C.; Dunlap, Brett I.
2015-07-28
Despite the fundamental importance of electron density in density functional theory, perturbations are still usually dealt with using Hartree-Fock-like orbital equations known as coupled-perturbed Kohn-Sham (CPKS). As an alternative, we develop a perturbation theory that solves for the perturbed density directly, removing the need for CPKS. This replaces CPKS with a true Hohenberg-Kohn density perturbation theory. In CPKS, the perturbed density is found in the basis of products of occupied and virtual orbitals, which becomes ever more over-complete as the size of the orbital basis set increases. In our method, the perturbation to the density is expanded in terms of a series of density basis functions and found directly. It is possible to solve for the density in such a way that it makes the total energy stationary even if the density basis is incomplete.
NASA Astrophysics Data System (ADS)
van Meer, R.; Gritsenko, O. V.; Baerends, E. J.
2014-01-01
Time dependent density matrix functional theory in its adiabatic linear response formulation delivers exact excitation energies ωα and oscillator strengths fα for two-electron systems if extended to the so-called phase including natural orbital (PINO) theory. The Löwdin-Shull expression for the energy of two-electron systems in terms of the natural orbitals and their phases affords in this case an exact phase-including natural orbital functional (PILS), which is non-primitive (contains other than just J and K integrals). In this paper, the extension of the PILS functional to N-electron systems is investigated. With the example of an elementary primitive NO functional (BBC1) it is shown that current density matrix functional theory ground state functionals, which were designed to produce decent approximations to the total energy, fail to deliver a qualitatively correct structure of the (inverse) response function, due to essential deficiencies in the reconstruction of the two-body reduced density matrix (2RDM). We now deduce essential features of an N-electron functional from a wavefunction Ansatz: The extension of the two-electron Löwdin-Shull wavefunction to the N-electron case informs about the phase information. In this paper, applications of this extended Löwdin-Shull (ELS) functional are considered for the simplest case, ELS(1): one (dissociating) two-electron bond in the field of occupied (including core) orbitals. ELS(1) produces high quality ωα(R) curves along the bond dissociation coordinate R for the molecules LiH, Li2, and BH with the two outer valence electrons correlated. All of these results indicate that response properties are much more sensitive to deficiencies in the reconstruction of the 2RDM than the ground state energy, since derivatives of the functional with respect to both the NOs and the occupation numbers need to be accurate.
Meer, R. van; Gritsenko, O. V.; Baerends, E. J.
2014-01-14
Time dependent density matrix functional theory in its adiabatic linear response formulation delivers exact excitation energies ω{sub α} and oscillator strengths f{sub α} for two-electron systems if extended to the so-called phase including natural orbital (PINO) theory. The Löwdin-Shull expression for the energy of two-electron systems in terms of the natural orbitals and their phases affords in this case an exact phase-including natural orbital functional (PILS), which is non-primitive (contains other than just J and K integrals). In this paper, the extension of the PILS functional to N-electron systems is investigated. With the example of an elementary primitive NO functional (BBC1) it is shown that current density matrix functional theory ground state functionals, which were designed to produce decent approximations to the total energy, fail to deliver a qualitatively correct structure of the (inverse) response function, due to essential deficiencies in the reconstruction of the two-body reduced density matrix (2RDM). We now deduce essential features of an N-electron functional from a wavefunction Ansatz: The extension of the two-electron Löwdin-Shull wavefunction to the N-electron case informs about the phase information. In this paper, applications of this extended Löwdin-Shull (ELS) functional are considered for the simplest case, ELS(1): one (dissociating) two-electron bond in the field of occupied (including core) orbitals. ELS(1) produces high quality ω{sub α}(R) curves along the bond dissociation coordinate R for the molecules LiH, Li{sub 2}, and BH with the two outer valence electrons correlated. All of these results indicate that response properties are much more sensitive to deficiencies in the reconstruction of the 2RDM than the ground state energy, since derivatives of the functional with respect to both the NOs and the occupation numbers need to be accurate.
van Meer, R; Gritsenko, O V; Baerends, E J
2014-01-14
Time dependent density matrix functional theory in its adiabatic linear response formulation delivers exact excitation energies ωα and oscillator strengths fα for two-electron systems if extended to the so-called phase including natural orbital (PINO) theory. The Löwdin-Shull expression for the energy of two-electron systems in terms of the natural orbitals and their phases affords in this case an exact phase-including natural orbital functional (PILS), which is non-primitive (contains other than just J and K integrals). In this paper, the extension of the PILS functional to N-electron systems is investigated. With the example of an elementary primitive NO functional (BBC1) it is shown that current density matrix functional theory ground state functionals, which were designed to produce decent approximations to the total energy, fail to deliver a qualitatively correct structure of the (inverse) response function, due to essential deficiencies in the reconstruction of the two-body reduced density matrix (2RDM). We now deduce essential features of an N-electron functional from a wavefunction Ansatz: The extension of the two-electron Löwdin-Shull wavefunction to the N-electron case informs about the phase information. In this paper, applications of this extended Löwdin-Shull (ELS) functional are considered for the simplest case, ELS(1): one (dissociating) two-electron bond in the field of occupied (including core) orbitals. ELS(1) produces high quality ωα(R) curves along the bond dissociation coordinate R for the molecules LiH, Li2, and BH with the two outer valence electrons correlated. All of these results indicate that response properties are much more sensitive to deficiencies in the reconstruction of the 2RDM than the ground state energy, since derivatives of the functional with respect to both the NOs and the occupation numbers need to be accurate. PMID:24437859
Chen, Zhenhua; Chen, Xun; Wu, Wei
2013-04-28
In this series, the n-body reduced density matrix (n-RDM) approach for nonorthogonal orbitals and their applications to ab initio valence bond (VB) methods are presented. As the first paper of this series, Hamiltonian matrix elements between internally contracted VB wave functions are explicitly provided by means of nonorthogonal orbital based RDM approach. To this end, a more generalized Wick's theorem, called enhanced Wick's theorem, is presented both in arithmetical and in graphical forms, by which the deduction of expressions for the matrix elements between internally contracted VB wave functions is dramatically simplified, and the matrix elements are finally expressed in terms of tensor contractions of electronic integrals and n-RDMs of the reference VB self-consistent field wave function. A string-based algorithm is developed for the purpose of evaluating n-RDMs in an efficient way. Using the techniques presented in this paper, one is able to develop new methods and efficient algorithms for nonorthogonal orbital based many-electron theory much easier than by use of the first quantized formulism. PMID:23635123
NASA Astrophysics Data System (ADS)
Chen, Zhenhua; Chen, Xun; Wu, Wei
2013-04-01
In this series, the n-body reduced density matrix (n-RDM) approach for nonorthogonal orbitals and their applications to ab initio valence bond (VB) methods are presented. As the first paper of this series, Hamiltonian matrix elements between internally contracted VB wave functions are explicitly provided by means of nonorthogonal orbital based RDM approach. To this end, a more generalized Wick's theorem, called enhanced Wick's theorem, is presented both in arithmetical and in graphical forms, by which the deduction of expressions for the matrix elements between internally contracted VB wave functions is dramatically simplified, and the matrix elements are finally expressed in terms of tensor contractions of electronic integrals and n-RDMs of the reference VB self-consistent field wave function. A string-based algorithm is developed for the purpose of evaluating n-RDMs in an efficient way. Using the techniques presented in this paper, one is able to develop new methods and efficient algorithms for nonorthogonal orbital based many-electron theory much easier than by use of the first quantized formulism.
Phung, Quan Manh; Wouters, Sebastian; Pierloot, Kristine
2016-09-13
The complete active space second order perturbation theory (CASPT2) can be extended to larger active spaces by using the density matrix renormalization group (DMRG) as solver. Two variants are commonly used: the costly DMRG-CASPT2 with exact 4-particle reduced density matrix (4-RDM) and the cheaper DMRG-cu(4)-CASPT2 in which the 4-cumulant is discarded. To assess the accuracy and limitations of the latter variant DMRG-cu(4)-CASPT2 we study the spin state energetics of iron porphyrin Fe(P) and its model compound FeL2, a model for the active center of NiFe hydrogenase, and manganese-oxo porphyrin MnO(P)(+); a series of excited states of chromium hexacarbonyl Cr(CO)6; and the interconversion of two Cu2O2(2+) isomers. Our results clearly show that PT2 on top of DMRG is essential in order to obtain quantitative results for transition metal complexes. Good results were obtained with DMRG-cu(4)-CASPT2 as compared to full CASPT2 and DMRG-CASPT2 in calculations with small- and medium-sized active spaces. In calculations with large-sized active spaces (∼30 active orbitals), the performance of DMRG-cu(4)-CASPT2 is less impressive due to the errors originating from both the finite number of renormalized states m and the 4-RDM approximation. PMID:27547847
NASA Astrophysics Data System (ADS)
Yao, J. M.; Song, L. S.; Hagino, K.; Ring, P.; Meng, J.
2015-02-01
We report a systematic study of nuclear matrix elements (NMEs) in neutrinoless double-β decays with a state-of-the-art beyond-mean-field covariant density functional theory. The dynamic effects of particle-number and angular-momentum conservations as well as quadrupole shape fluctuations are taken into account with projections and generator coordinate method for both initial and final nuclei. The full relativistic transition operator is adopted to calculate the NMEs. The present systematic studies show that in most of the cases there is a much better agreement with the previous nonrelativistic calculation based on the Gogny force than in the case of the nucleus 150Nd found by Song et al. [Phys. Rev. C 90, 054309 (2014), 10.1103/PhysRevC.90.054309]. In particular, we find that the total NMEs can be well approximated by the pure axial-vector coupling term with a considerable reduction of the computational effort.
Saitow, Masaaki; Kurashige, Yuki; Yanai, Takeshi
2015-11-10
We present an extended implementation of the multireference configuration interaction (MRCI) method combined with the quantum-chemical density matrix renormalization group (DMRG). In the previous study, we introduced the combined theory, referred to as DMRGMRCI, as a method to calculate high-level dynamic electron correlation on top of the DMRG wave function that accounts for active-space (or strong) correlation using a large number of active orbitals. The DMRG-MRCI method is built on the full internal-contraction scheme for the compact reference treatment and on the cumulant approximation for the treatment of the four-particle rank reduced density matrix (4-RDM). The previous implementation achieved the MRCI calculations with the active space (24e,24o), which are deemed the record largest, whereas the inherent Nact 8 × N complexity of computation was found a hindrance to using further large active space. In this study, an extended optimization of the tensor contractions is developed by explicitly incorporating the rank reduction of the decomposed form of the cumulant-approximated 4-RDM into the factorization. It reduces the computational scaling (to Nact7 × N) as well as the cache-miss penalty associated with direct evaluation of complex cumulant reconstruction. The present scheme, however, faces the increased complexity of factorization patterns for optimally implementing the tensor contraction terms involving the decomposed 4-RDM objects. We address this complexity using the enhanced symbolic manipulation computer program for deriving and coding programmable equations. The new DMRG-MRCI implementation is applied to the determination of the stability of the iron(IV)-oxo porphyrin relative to the iron(V) electronic isomer (electromer) using the active space (29e,29o) (including four second d-shell orbitals of iron) with triple-ζ-quality atomic orbital basis sets. The DMRG-cu(4)-MRCI+Q model is shown to favor the triradicaloid iron(IV)-oxo state as the lowest
Partition density functional theory
NASA Astrophysics Data System (ADS)
Nafziger, Jonathan
Partition density functional theory (PDFT) is a method for dividing a molecular electronic structure calculation into fragment calculations. The molecular density and energy corresponding to Kohn Sham density-functional theory (KS-DFT) may be exactly recovered from these fragments. Each fragment acts as an isolated system except for the influence of a global one-body 'partition' potential which deforms the fragment densities. In this work, the developments of PDFT are put into the context of other fragment-based density functional methods. We developed three numerical implementations of PDFT: One within the NWChem computational chemistry package using basis sets, and the other two developed from scratch using real-space grids. It is shown that all three of these programs can exactly reproduce a KS-DFT calculation via fragment calculations. The first of our in-house codes handles non-interacting electrons in arbitrary one-dimensional potentials with any number of fragments. This code is used to explore how the exact partition potential changes for different partitionings of the same system and also to study features which determine which systems yield non-integer PDFT occupations and which systems are locked into integer PDFT occupations. The second in-house code, CADMium, performs real-space calculations of diatomic molecules. Features of the exact partition potential are studied for a variety of cases and an analytical formula determining singularities in the partition potential is derived. We introduce an approximation for the non-additive kinetic energy and show how this quantity can be computed exactly. Finally a PDFT functional is developed to address the issues of static correlation and delocalization errors in approximations within DFT. The functional is applied to the dissociation of H2 + and H2.
NASA Astrophysics Data System (ADS)
Ramirez-Torres, Alfredo; Turkowski, Volodymyr; Rahman, Talat S.
2014-08-01
To examine optically excited bound states, excitons and trions, in monolayer MoS2,MoSe2, and WSe2, we have formulated and applied a generalized time-dependent density-matrix functional theory approach. Three different types of exchange-correlation (XC) kernels were used and their validity was evaluated through comparison with available experimental data. For excitons, we find that the local kernels, from the local density approximation and its gradient-corrected form, lead to much smaller binding energy than that extracted from experimental data, while those based on long-range (LR) interactions fare much better. The same is the case for the trion binding energy once screening effects are taken into account. Our results suggest that for both excitons and trions, the LR form of the XC kernel is necessary to describe bound states. These results confirm information from experimental data on single-layer dichalcogenides that their exciton and trion binding energies are of the order of hundreds (excitons) and tens (trions) of milli-electron volts, a result that may suggest technological application of these materials at room temperature. The proposed methodology can be straightforwardly extended to bound states with a larger number of electrons and holes than considered here.
NASA Astrophysics Data System (ADS)
Nagata, Keitaro; Nishimura, Jun; Shimasaki, Shinji
2016-07-01
Recently, the complex Langevin method has been applied successfully to finite density QCD either in the deconfinement phase or in the heavy dense limit with the aid of a new technique called the gauge cooling. In the confinement phase with light quarks, however, convergence to wrong limits occurs due to the singularity in the drift term caused by small eigenvalues of the Dirac operator including the mass term. We propose that this singular-drift problem should also be overcome by the gauge cooling with different criteria for choosing the complexified gauge transformation. The idea is tested in chiral Random Matrix Theory for finite density QCD, where exact results are reproduced at zero temperature with light quarks. It is shown that the gauge cooling indeed changes drastically the eigenvalue distribution of the Dirac operator measured during the Langevin process. Despite its non-holomorphic nature, this eigenvalue distribution has a universal diverging behavior at the origin in the chiral limit due to a generalized Banks-Casher relation as we confirm explicitly.
Adiabatic approximation for the density matrix
NASA Astrophysics Data System (ADS)
Band, Yehuda B.
1992-05-01
An adiabatic approximation for the Liouville density-matrix equation which includes decay terms is developed. The adiabatic approximation employs the eigenvectors of the non-normal Liouville operator. The approximation is valid when there exists a complete set of eigenvectors of the non-normal Liouville operator (i.e., the eigenvectors span the density-matrix space), the time rate of change of the Liouville operator is small, and an auxiliary matrix is nonsingular. Numerical examples are presented involving efficient population transfer in a molecule by stimulated Raman scattering, with the intermediate level of the molecule decaying on a time scale that is fast compared with the pulse durations of the pump and Stokes fields. The adiabatic density-matrix approximation can be simply used to determine the density matrix for atomic or molecular systems interacting with cw electromagnetic fields when spontaneous emission or other decay mechanisms prevail.
Random Matrix Theory and Econophysics
NASA Astrophysics Data System (ADS)
Rosenow, Bernd
2000-03-01
Random Matrix Theory (RMT) [1] is used in many branches of physics as a ``zero information hypothesis''. It describes generic behavior of different classes of systems, while deviations from its universal predictions allow to identify system specific properties. We use methods of RMT to analyze the cross-correlation matrix C of stock price changes [2] of the largest 1000 US companies. In addition to its scientific interest, the study of correlations between the returns of different stocks is also of practical relevance in quantifying the risk of a given stock portfolio. We find [3,4] that the statistics of most of the eigenvalues of the spectrum of C agree with the predictions of RMT, while there are deviations for some of the largest eigenvalues. We interpret these deviations as a system specific property, e.g. containing genuine information about correlations in the stock market. We demonstrate that C shares universal properties with the Gaussian orthogonal ensemble of random matrices. Furthermore, we analyze the eigenvectors of C through their inverse participation ratio and find eigenvectors with large ratios at both edges of the eigenvalue spectrum - a situation reminiscent of localization theory results. This work was done in collaboration with V. Plerou, P. Gopikrishnan, T. Guhr, L.A.N. Amaral, and H.E Stanley and is related to recent work of Laloux et al.. 1. T. Guhr, A. Müller Groeling, and H.A. Weidenmüller, ``Random Matrix Theories in Quantum Physics: Common Concepts'', Phys. Rep. 299, 190 (1998). 2. See, e.g. R.N. Mantegna and H.E. Stanley, Econophysics: Correlations and Complexity in Finance (Cambridge University Press, Cambridge, England, 1999). 3. V. Plerou, P. Gopikrishnan, B. Rosenow, L.A.N. Amaral, and H.E. Stanley, ``Universal and Nonuniversal Properties of Cross Correlations in Financial Time Series'', Phys. Rev. Lett. 83, 1471 (1999). 4. V. Plerou, P. Gopikrishnan, T. Guhr, B. Rosenow, L.A.N. Amaral, and H.E. Stanley, ``Random Matrix Theory
Polarizable Embedding Density Matrix Renormalization Group.
Hedegård, Erik D; Reiher, Markus
2016-09-13
The polarizable embedding (PE) approach is a flexible embedding model where a preselected region out of a larger system is described quantum mechanically, while the interaction with the surrounding environment is modeled through an effective operator. This effective operator represents the environment by atom-centered multipoles and polarizabilities derived from quantum mechanical calculations on (fragments of) the environment. Thereby, the polarization of the environment is explicitly accounted for. Here, we present the coupling of the PE approach with the density matrix renormalization group (DMRG). This PE-DMRG method is particularly suitable for embedded subsystems that feature a dense manifold of frontier orbitals which requires large active spaces. Recovering such static electron-correlation effects in multiconfigurational electronic structure problems, while accounting for both electrostatics and polarization of a surrounding environment, allows us to describe strongly correlated electronic structures in complex molecular environments. We investigate various embedding potentials for the well-studied first excited state of water with active spaces that correspond to a full configuration-interaction treatment. Moreover, we study the environment effect on the first excited state of a retinylidene Schiff base within a channelrhodopsin protein. For this system, we also investigate the effect of dynamical correlation included through short-range density functional theory. PMID:27537835
Density functional theory: Foundations reviewed
NASA Astrophysics Data System (ADS)
Kryachko, Eugene S.; Ludeña, Eduardo V.
2014-11-01
Guided by the above motto (quotation), we review a broad range of issues lying at the foundations of Density Functional Theory, DFT, a theory which is currently omnipresent in our everyday computational study of atoms and molecules, solids and nano-materials, and which lies at the heart of modern many-body computational technologies. The key goal is to demonstrate that there are definitely the ways to improve DFT. We start by considering DFT in the larger context provided by reduced density matrix theory (RDMT) and natural orbital functional theory (NOFT), and examine the implications that N-representability conditions on the second-order reduced density matrix (2-RDM) have not only on RDMT and NOFT but, also, by extension, on the functionals of DFT. This examination is timely in view of the fact that necessary and sufficient N-representability conditions on the 2-RDM have recently been attained. In the second place, we review some problems appearing in the original formulation of the first Hohenberg-Kohn theorem which is still a subject of some controversy. In this vein we recall Lieb's comment on this proof and the extension to this proof given by Pino et al. (2009), and in this context examine the conditions that must be met in order that the one-to-one correspondence between ground-state densities and external potentials remains valid for finite subspaces (namely, the subspaces where all Kohn-Sham solutions are obtained in practical applications). We also consider the issue of whether the Kohn-Sham equations can be derived from basic principles or whether they are postulated. We examine this problem in relation to ab initio DFT. The possibility of postulating arbitrary Kohn-Sham-type equations, where the effective potential is by definition some arbitrary mixture of local and non-local terms, is discussed. We also deal with the issue of whether there exists a universal functional, or whether one should advocate instead the construction of problem
Interaction picture density matrix quantum Monte Carlo
Malone, Fionn D. Lee, D. K. K.; Foulkes, W. M. C.; Blunt, N. S.; Shepherd, James J.; Spencer, J. S.
2015-07-28
The recently developed density matrix quantum Monte Carlo (DMQMC) algorithm stochastically samples the N-body thermal density matrix and hence provides access to exact properties of many-particle quantum systems at arbitrary temperatures. We demonstrate that moving to the interaction picture provides substantial benefits when applying DMQMC to interacting fermions. In this first study, we focus on a system of much recent interest: the uniform electron gas in the warm dense regime. The basis set incompleteness error at finite temperature is investigated and extrapolated via a simple Monte Carlo sampling procedure. Finally, we provide benchmark calculations for a four-electron system, comparing our results to previous work where possible.
On solving for the density matrix
NASA Astrophysics Data System (ADS)
Cummings, F. W.
1985-11-01
A “generating matrix” formalism is presented which is useful in the solution of a class of time-dependent quantum density matrix problems. Three examples of its use are sketched, giving a unified approach to the solution of the problem of the spontaneous emission of electromagnetic radiation from a single atom in various environments.
Interaction picture density matrix quantum Monte Carlo.
Malone, Fionn D; Blunt, N S; Shepherd, James J; Lee, D K K; Spencer, J S; Foulkes, W M C
2015-07-28
The recently developed density matrix quantum Monte Carlo (DMQMC) algorithm stochastically samples the N-body thermal density matrix and hence provides access to exact properties of many-particle quantum systems at arbitrary temperatures. We demonstrate that moving to the interaction picture provides substantial benefits when applying DMQMC to interacting fermions. In this first study, we focus on a system of much recent interest: the uniform electron gas in the warm dense regime. The basis set incompleteness error at finite temperature is investigated and extrapolated via a simple Monte Carlo sampling procedure. Finally, we provide benchmark calculations for a four-electron system, comparing our results to previous work where possible. PMID:26233116
Measuring Entanglement Spectrum via Density Matrix Exponentiation
NASA Astrophysics Data System (ADS)
Zhu, Guanyu; Seif, Alireza; Pichler, Hannes; Zoller, Peter; Hafezi, Mohammad
Entanglement spectrum (ES), the eigenvalues of the reduced density matrix of a subsystem, serves as a powerful theoretical tool to study many-body systems. For example, the gap and degeneracies of the entanglement spectrum have been used to identify various topological phases. However, the usefulness of such a concept in real experiments has been debated, since it is believed that obtaining the ES requires full state tomography, at a cost which exponentially grows with the systems size. Inspired by a recent density matrix exponentiation technique, we propose a scheme to measure ES by evolving the system with a Hamiltonian that is the subsystem's own reduced density matrix. Such a time evolution can be induced by an ancilla photon that is coupled to multiple qubits at the same time. The phase associated with the time evolution can be detected and converted into ES through either a digital or an analogue scheme. The digital scheme involves a modified quantum phase estimation algorithm based on random time evolution, while the analogue scheme is in the spirit of Ramsey interferometry. Both schemes are not limited by the size of the system, and are especially sensitive to the gap and degeneracies. We also discuss the implementation in cavity/circuit-QED and ion trap systems.
NASA Astrophysics Data System (ADS)
Schuck, Peter; Tohyama, Mitsuru
2016-04-01
The Bogoliubov-Born-Green-Kirkwood-Yvon or time-dependent density matrix (TDDM) hierarchy of equations for higher density matrices is truncated at the three-body level in approximating the three-body correlation function by a quadratic form of two-body ones, closing the equations in this way. The procedure is discussed in detail and it is shown in nontrivial model cases that the approximate inclusion of three-body correlation functions is very important to obtain precise results. A small amplitude approximation of this time-dependent nonlinear equation for the two-body correlation function is performed (STDDM*-b) and it is shown that the one-body sector of this generalized nonlinear second random phase approximation (RPA) equation is equivalent to the self-consistent RPA (SCRPA) approach which had been derived previously by different techniques. It is discussed in which way SCRPA also contains the three-body correlations. TDDM and SCRPA are tested versus exactly solvable model cases.
The Theory of Quaternion Matrix Derivatives
NASA Astrophysics Data System (ADS)
Xu, Dongpo; Mandic, Danilo P.
2015-03-01
A systematic theory is introduced for calculating the derivatives of quaternion matrix function with respect to quaternion matrix variables. The proposed methodology is equipped with the matrix product rule and chain rule and it is able to handle both analytic and nonanalytic functions. This corrects a flaw in the existing methods, that is, the incorrect use of the traditional product rule. In the framework introduced, the derivatives of quaternion matrix functions can be calculated directly without the differential of this function. Key results are summarized in tables. Several examples show how the quaternion matrix derivatives can be used as an important tool for solving problems related to signal processing.
Density-orbital embedding theory
Gritsenko, O. V.; Visscher, L.
2010-09-15
In the article density-orbital embedding (DOE) theory is proposed. DOE is based on the concept of density orbital (DO), which is a generalization of the square root of the density for real functions and fractional electron numbers. The basic feature of DOE is the representation of the total supermolecular density {rho}{sub s} as the square of the sum of the DO {phi}{sub a}, which represents the active subsystem A and the square root of the frozen density {rho}{sub f} of the environment F. The correct {rho}{sub s} is obtained with {phi}{sub a} being negative in the regions in which {rho}{sub f} might exceed {rho}{sub s}. This makes it possible to obtain the correct {rho}{sub s} with a broad range of the input frozen densities {rho}{sub f} so that DOE resolves the problem of the frozen-density admissibility of the current frozen-density embedding theory. The DOE Euler equation for the DO {phi}{sub a} is derived with the characteristic embedding potential representing the effect of the environment. The DO square {phi}{sub a}{sup 2} is determined from the orbitals of the effective Kohn-Sham (KS) system. Self-consistent solution of the corresponding one-electron KS equations yields not only {phi}{sub a}{sup 2}, but also the DO {phi}{sub a} itself.
U-duality between NCOS theory and matrix theory
NASA Astrophysics Data System (ADS)
Hyun, Seungjoon
2001-03-01
We show that the NCOS (noncommutative open string) theories on torus T p ( p⩽5) are U-dual to matrix theory on torus with electric flux background. Under U-duality, the number of D-branes and the number of units of electric flux get interchanged. Furthermore, under the same U-duality the decoupling limit taken in the NCOS theory maps to the decoupling limit taken in the matrix theory, thus ensure the U-duality between those two class of theories. We consider the energy needed for Higgsing process and some bound states with finite energy and find agreements in both theories.
NASA Astrophysics Data System (ADS)
Akai, Nobuyuki; Kudoh, Satoshi; Takayanagi, Masao; Nakata, Munetaka
2002-09-01
Photoreaction mechanisms of 2-bromo, 2-bromo-4-chloro and 2,4-dibromophenols in low-temperature argon matrices have been investigated by Fourier transform infrared spectroscopy. Density-functional-theory calculations are performed to assign the observed infrared bands of photoproducts, where a 6-311+G(d,p) basis set is used to optimize geometrical structures. It is concluded that 4-bromo-2,5-cyclohexadienone is mainly produced from 2-bromophenol, while formation of cyclopentadienylidenemethanone⋯HBr complex is a minor pathway, in contrast to the case of 2-chlorophenols. The branching ratio between the two reaction pathways is estimated from the absorbance changes of the infrared bands to be 5.4±0.3.
NASA Technical Reports Server (NTRS)
Halasinski, Thomas M.; Weisman, Jennifer L.; Lee, Timothy J.; Salama, Farid; Head-Gordon, Martin; Kwak, Dochan (Technical Monitor)
2002-01-01
We present a full experimental and theoretical study of an interesting series of polycyclic aromatic hydrocarbons, the oligorylenes. The absorption spectra of perylene, terrylene and quaterrylene in neutral, cationic and anionic charge states are obtained by matrix-isolation spectroscopy in Ne. The experimental spectra are dominated by a bright state that red shifts with growing molecular size. Excitation energies and state symmetry assignments are supported by calculations using time dependent density functional theory methods. These calculations also provide new insight into the observed trends in oscillator strength and excitation energy for the bright states: the oscillator strength per unit mass of carbon increases along the series.
Hu, Chunping; Sugino, Osamu; Hirai, Hirotoshi; Tateyama, Yoshitaka
2010-12-15
We study the time-dependent density-functional theory formulation of nonadiabatic couplings (NAC's) to settle problems regarding practical calculations. NAC's have so far been rigorously formulated on the basis of the density response scheme and expressed using the nuclear derivative of the Hamiltonian, {partial_derivative}H/{partial_derivative}R, whereby causing the pseudopotential problem. When rewritten using the nuclear derivative operator, {partial_derivative}/{partial_derivative}R, or the d operator, the formula is found free of the problem and thus provides a working numerical scheme. The d-operator-based formulation also allows us to lay a foundation on the empirical Slater transition-state method and to show an improved way of using the auxiliary excited-state wave-function ansatz, both of which have been utilized in previous works. Evaluation of NAC near either the Jahn-Teller or the Renner-Teller intersection in various molecular systems shows that the values of NAC are much improved over previous calculations when the d-operator formula is implemented in the pseudopotential framework.
Degenerate Open Shell Density Perturbation Theory
NASA Astrophysics Data System (ADS)
Palenik, Mark; Dunlap, Brett
The density perturbation theory (DPT) methodology we have developed applies the Hohenberg-Kohn theorem to perturbations in density functional theory. At each order, the energy is directly minimized with respect to the density at all lower orders. The difference between the perturbed and unperturbed densities is expanded in terms of a finite number of basis functions, and a single matrix inversion in this space reduces the complexity of the problem to that of non-interacting perturbation theory. For open-shell systems with symmetry, however, the situation becomes more complex. Typically, the perturbation will break the symmetry leading to a zeroth-order shift in the Kohn-Sham potential. Because the symmetry breaking is independent of the strength of the perturbation, the mapping from the initial to the perturbed KS potential is discontinuous and techniques from perturbation theory for noninteracting particles fail. We describe a rigorous formulation of DPT for use in systems that display an initial degeneracy, such as atoms and Fe55Cp*12 clusters and present initial calculations on these systems.
Orbital-optimized density cumulant functional theory
Sokolov, Alexander Yu. Schaefer, Henry F.
2013-11-28
In density cumulant functional theory (DCFT) the electronic energy is evaluated from the one-particle density matrix and two-particle density cumulant, circumventing the computation of the wavefunction. To achieve this, the one-particle density matrix is decomposed exactly into the mean-field (idempotent) and correlation components. While the latter can be entirely derived from the density cumulant, the former must be obtained by choosing a specific set of orbitals. In the original DCFT formulation [W. Kutzelnigg, J. Chem. Phys. 125, 171101 (2006)] the orbitals were determined by diagonalizing the effective Fock operator, which introduces partial orbital relaxation. Here we present a new orbital-optimized formulation of DCFT where the energy is variationally minimized with respect to orbital rotations. This introduces important energy contributions and significantly improves the description of the dynamic correlation. In addition, it greatly simplifies the computation of analytic gradients, for which expressions are also presented. We offer a perturbative analysis of the new orbital stationarity conditions and benchmark their performance for a variety of chemical systems.
Covariantized matrix theory for D-particles
NASA Astrophysics Data System (ADS)
Yoneya, Tamiaki
2016-06-01
We reformulate the Matrix theory of D-particles in a manifestly Lorentz-covariant fashion in the sense of 11 dimesnional flat Minkowski space-time, from the view-point of the so-called DLCQ interpretation of the light-front Matrix theory. The theory is characterized by various symmetry properties including higher gauge symmetries, which contain the usual SU( N ) symmetry as a special case and are extended from the structure naturally appearing in association with a discretized version of Nambu's 3-bracket. The theory is scale invariant, and the emergence of the 11 dimensional gravitational length, or M-theory scale, is interpreted as a consequence of a breaking of the scaling symmetry through a super-selection rule. In the light-front gauge with the DLCQ compactification of 11 dimensions, the theory reduces to the usual light-front formulation. In the time-like gauge with the ordinary M-theory spatial compactification, it reduces to a non-Abelian Born-Infeld-like theory, which in the limit of large N becomes equivalent with the original BFSS theory.
NASA Astrophysics Data System (ADS)
Chan, Garnet Kin-Lic; Keselman, Anna; Nakatani, Naoki; Li, Zhendong; White, Steven R.
2016-07-01
Current descriptions of the ab initio density matrix renormalization group (DMRG) algorithm use two superficially different languages: an older language of the renormalization group and renormalized operators, and a more recent language of matrix product states and matrix product operators. The same algorithm can appear dramatically different when written in the two different vocabularies. In this work, we carefully describe the translation between the two languages in several contexts. First, we describe how to efficiently implement the ab initio DMRG sweep using a matrix product operator based code, and the equivalence to the original renormalized operator implementation. Next we describe how to implement the general matrix product operator/matrix product state algebra within a pure renormalized operator-based DMRG code. Finally, we discuss two improvements of the ab initio DMRG sweep algorithm motivated by matrix product operator language: Hamiltonian compression, and a sum over operators representation that allows for perfect computational parallelism. The connections and correspondences described here serve to link the future developments with the past and are important in the efficient implementation of continuing advances in ab initio DMRG and related algorithms.
Chan, Garnet Kin-Lic; Keselman, Anna; Nakatani, Naoki; Li, Zhendong; White, Steven R
2016-07-01
Current descriptions of the ab initio density matrix renormalization group (DMRG) algorithm use two superficially different languages: an older language of the renormalization group and renormalized operators, and a more recent language of matrix product states and matrix product operators. The same algorithm can appear dramatically different when written in the two different vocabularies. In this work, we carefully describe the translation between the two languages in several contexts. First, we describe how to efficiently implement the ab initio DMRG sweep using a matrix product operator based code, and the equivalence to the original renormalized operator implementation. Next we describe how to implement the general matrix product operator/matrix product state algebra within a pure renormalized operator-based DMRG code. Finally, we discuss two improvements of the ab initio DMRG sweep algorithm motivated by matrix product operator language: Hamiltonian compression, and a sum over operators representation that allows for perfect computational parallelism. The connections and correspondences described here serve to link the future developments with the past and are important in the efficient implementation of continuing advances in ab initio DMRG and related algorithms. PMID:27394094
Ohno, Keiichi; Okimura, Mari; Akai, Nobuyuki; Katsumoto, Yukiteru
2005-08-21
Infrared spectra of the water clusters have been measured in the N2 + O2 matrix. The aggregation process of water in the matrix has been monitored by annealing the deposited samples up to 40 K and UV irradiation. The monomer, dimer, cyclic trimer and cyclic pentamer are found as water clusters in the matrix. For the hexamer, several structures such as chair, cage, prism, bag 1 and/or book 1 are likely to exist. By UV irradiation, the cyclic pentamer is predominantly formed from the monomer and dimer. On the other hand, by annealing the deposited sample, several hexamers are formed. The theoretical calculation for water clusters has revealed that the formation of one hydrogen bonding in a hydrogen-bonded chain cooperatively enhances or diminishes the strength of another hydrogen bond. Both proton donor (D) and acceptor (A) participating in a hydrogen-bonding pair DA are capable of forming hydrogen bonding with the other water molecules; D can additionally accept two protons and donate one proton, and A can additionally donate two protons and accept one proton. We have proposed the classification of hydrogen-bonding patterns considering the cooperativity, denoting as d'a'DAd''a'', where d and a are integers indicating the number of proton donors and acceptors to D (the single prime) and A (the double prime), respectively. Then, a magnitude given by MOH = -d' + a' + d'' - a'' has been introduced, which is very useful for connecting the hydrogen-bonding patterns to their OH wavenumbers. As a result, it is revealed that the OH stretching bands of water clusters are characterized by eight indicators (free and MOH = -2, -1, 0, 1, 2, 3 and 4). The classification proposed here is applicable to the OH band analysis for the hydrogen-bonded water and alcohols in a condensed phase. PMID:16186903
Social patterns revealed through random matrix theory
NASA Astrophysics Data System (ADS)
Sarkar, Camellia; Jalan, Sarika
2014-11-01
Despite the tremendous advancements in the field of network theory, very few studies have taken weights in the interactions into consideration that emerge naturally in all real-world systems. Using random matrix analysis of a weighted social network, we demonstrate the profound impact of weights in interactions on emerging structural properties. The analysis reveals that randomness existing in particular time frame affects the decisions of individuals rendering them more freedom of choice in situations of financial security. While the structural organization of networks remains the same throughout all datasets, random matrix theory provides insight into the interaction pattern of individuals of the society in situations of crisis. It has also been contemplated that individual accountability in terms of weighted interactions remains as a key to success unless segregation of tasks comes into play.
Autocorrelations from the transfer-matrix density-matrix renormalization-group method
NASA Astrophysics Data System (ADS)
Naef, F.; Wang, X.; Zotos, X.; von der Linden, W.
1999-07-01
Extending the transfer-matrix density-matrix renormalization-group algorithm, we are able to calculate imaginary time spin autocorrelations with high accuracy (absolute error <10-6) over a wide temperature range (0<βJ<20). After analytic continuation using the rules of probability theory along with the entropic prior (MaxEnt), we obtain real frequency spectra for the XY model, the isotropic Heisenberg, and the gapped Heisenberg-Ising model. Available exact results in some limits allow for a critical evaluation of the quality of answers expected from this procedure. We find that high-precision data are still insufficient for resolving specific line shapes such as low-frequency divergences. However, the method is appropriate for identifying low-temperature gaps and peak positions.
Constructing acoustic timefronts using random matrix theory.
Hegewisch, Katherine C; Tomsovic, Steven
2013-10-01
In a recent letter [Hegewisch and Tomsovic, Europhys. Lett. 97, 34002 (2012)], random matrix theory is introduced for long-range acoustic propagation in the ocean. The theory is expressed in terms of unitary propagation matrices that represent the scattering between acoustic modes due to sound speed fluctuations induced by the ocean's internal waves. The scattering exhibits a power-law decay as a function of the differences in mode numbers thereby generating a power-law, banded, random unitary matrix ensemble. This work gives a more complete account of that approach and extends the methods to the construction of an ensemble of acoustic timefronts. The result is a very efficient method for studying the statistical properties of timefronts at various propagation ranges that agrees well with propagation based on the parabolic equation. It helps identify which information about the ocean environment can be deduced from the timefronts and how to connect features of the data to that environmental information. It also makes direct connections to methods used in other disordered waveguide contexts where the use of random matrix theory has a multi-decade history. PMID:24116514
]: a density functional theory investigation
NASA Astrophysics Data System (ADS)
Ulian, Gianfranco; Tosoni, Sergio; Valdrè, Giovanni
2014-09-01
In this work, we modelled the structure, the compressional behaviour and the physical properties of talc over a wide range of pressure using a quantum mechanical approach based on periodic boundary conditions. We adopted the density functional theory using the B3LYP-D* functional, which includes a correction for the dispersive forces and all-electron Gaussian-type orbitals basis sets. An atomic level description of the athermal pressure-induced structural modification of talc is provided. From the compression results, we obtained the athermal ( T = 0 K) bulk modulus ( K T0), its first derivative ( K') and the athermal volume at zero pressure ( V 0) by a third-order Birch-Murnaghan equation with parameters K T0 = 56.25 GPa, K' = 5.66 and V 0 = 450.34 Å3. The mechanical behaviour is highly anisotropic, as observed by the axial compressibility. The presented data are in very good agreement with recent experimental results obtained by single-crystal neutron and X-ray diffraction experiments.
Raney Distributions and Random Matrix Theory
NASA Astrophysics Data System (ADS)
Forrester, Peter J.; Liu, Dang-Zheng
2015-03-01
Recent works have shown that the family of probability distributions with moments given by the Fuss-Catalan numbers permit a simple parameterized form for their density. We extend this result to the Raney distribution which by definition has its moments given by a generalization of the Fuss-Catalan numbers. Such computations begin with an algebraic equation satisfied by the Stieltjes transform, which we show can be derived from the linear differential equation satisfied by the characteristic polynomial of random matrix realizations of the Raney distribution. For the Fuss-Catalan distribution, an equilibrium problem characterizing the density is identified. The Stieltjes transform for the limiting spectral density of the singular values squared of the matrix product formed from inverse standard Gaussian matrices, and standard Gaussian matrices, is shown to satisfy a variant of the algebraic equation relating to the Raney distribution. Supported on , we show that it too permits a simple functional form upon the introduction of an appropriate choice of parameterization. As an application, the leading asymptotic form of the density as the endpoints of the support are approached is computed, and is shown to have some universal features.
Density matrix embedding in an antisymmetrized geminal power bath
Tsuchimochi, Takashi; Welborn, Matthew; Van Voorhis, Troy
2015-07-14
Density matrix embedding theory (DMET) has emerged as a powerful tool for performing wave function-in-wave function embedding for strongly correlated systems. In traditional DMET, an accurate calculation is performed on a small impurity embedded in a mean field bath. Here, we extend the original DMET equations to account for correlation in the bath via an antisymmetrized geminal power (AGP) wave function. The resulting formalism has a number of advantages. First, it allows one to properly treat the weak correlation limit of independent pairs, which DMET is unable to do with a mean-field bath. Second, it associates a size extensive correlation energy with a given density matrix (for the models tested), which AGP by itself is incapable of providing. Third, it provides a reasonable description of charge redistribution in strongly correlated but non-periodic systems. Thus, AGP-DMET appears to be a good starting point for describing electron correlation in molecules, which are aperiodic and possess both strong and weak electron correlation.
Universal shocks in random matrix theory
NASA Astrophysics Data System (ADS)
Blaizot, Jean-Paul; Nowak, Maciej A.
2010-11-01
We link the appearance of universal kernels in random matrix ensembles to the phenomenon of shock formation in some fluid dynamical equations. Such equations are derived from Dyson’s random walks after a proper rescaling of the time. In the case of the Gaussian unitary ensemble, on which we focus in this paper, we show that the characteristics polynomials and their inverse evolve according to a viscid Burgers equation with an effective “spectral viscosity” νs=1/2N , where N is the size of the matrices. We relate the edge of the spectrum of eigenvalues to the shock that naturally appears in the Burgers equation for appropriate initial conditions, thereby suggesting a connection between the well-known microscopic universality of random matrix theory and the universal properties of the solution of the Burgers equation in the vicinity of a shock.
Matrix product states for gauge field theories.
Buyens, Boye; Haegeman, Jutho; Van Acoleyen, Karel; Verschelde, Henri; Verstraete, Frank
2014-08-29
The matrix product state formalism is used to simulate Hamiltonian lattice gauge theories. To this end, we define matrix product state manifolds which are manifestly gauge invariant. As an application, we study (1+1)-dimensional one flavor quantum electrodynamics, also known as the massive Schwinger model, and are able to determine very accurately the ground-state properties and elementary one-particle excitations in the continuum limit. In particular, a novel particle excitation in the form of a heavy vector boson is uncovered, compatible with the strong coupling expansion in the continuum. We also study full quantum nonequilibrium dynamics by simulating the real-time evolution of the system induced by a quench in the form of a uniform background electric field. PMID:25215973
Hedegård, Erik Donovan Knecht, Stefan; Reiher, Markus; Kielberg, Jesper Skau; Jensen, Hans Jørgen Aagaard
2015-06-14
We present a new hybrid multiconfigurational method based on the concept of range-separation that combines the density matrix renormalization group approach with density functional theory. This new method is designed for the simultaneous description of dynamical and static electron-correlation effects in multiconfigurational electronic structure problems.
Schwarzschild Black Holes from Matrix Theory
Banks, T.; Fischler, W.; Klebanov, I.R.; Susskind, L.
1998-01-01
We consider matrix theory compactified on T{sup 3} and show that it correctly describes the properties of Schwarzschild black holes in 7+1 dimensions, including the mass-entropy relation, the Hawking temperature, and the physical size, up to numerical factors of order unity. The most economical description involves setting the cutoff N in the discretized light-cone quantization to be of order the black hole entropy. A crucial ingredient necessary for our work is the recently proposed equation of state for 3+1 dimensional supersymmetric Yang-Mills theory with 16supercharges. We give detailed arguments for the range of validity of this equation following the methods of Horowitz and Polchinski. {copyright} {ital 1998} {ital The American Physical Society}
Schwarzschild Black Holes from Matrix Theory
NASA Astrophysics Data System (ADS)
Banks, T.; Fischler, W.; Klebanov, I. R.; Susskind, L.
1998-01-01
We consider matrix theory compactified on T3 and show that it correctly describes the properties of Schwarzschild black holes in 7+1 dimensions, including the mass-entropy relation, the Hawking temperature, and the physical size, up to numerical factors of order unity. The most economical description involves setting the cutoff N in the discretized light-cone quantization to be of order the black hole entropy. A crucial ingredient necessary for our work is the recently proposed equation of state for 3+1 dimensional supersymmetric Yang-Mills theory with 16 supercharges. We give detailed arguments for the range of validity of this equation following the methods of Horowitz and Polchinski.
NASA Astrophysics Data System (ADS)
Wouters, Sebastian; Nakatani, Naoki; Van Neck, Dimitri; Chan, Garnet Kin-Lic
2013-08-01
The similarities between Hartree-Fock (HF) theory and the density matrix renormalization group (DMRG) are explored. Both methods can be formulated as the variational optimization of a wave-function Ansatz. Linearization of the time-dependent variational principle near a variational minimum allows to derive the random phase approximation (RPA). We show that the nonredundant parameterization of the matrix product state (MPS) tangent space [J. Haegeman, J. I. Cirac, T. J. Osborne, I. Pižorn, H. Verschelde, and F. Verstraete, Phys. Rev. Lett.PRLTAO0031-900710.1103/PhysRevLett.107.070601 107, 070601 (2011)] leads to the Thouless theorem for MPS, i.e., an explicit nonredundant parameterization of the entire MPS manifold, starting from a specific MPS reference. Excitation operators are identified, which extends the analogy between HF and DMRG to the Tamm-Dancoff approximation (TDA), the configuration interaction (CI) expansion, and coupled cluster theory. For a small one-dimensional Hubbard chain, we use a CI-MPS Ansatz with single and double excitations to improve on the ground state and to calculate low-lying excitation energies. For a symmetry-broken ground state of this model, we show that RPA-MPS allows to retrieve the Goldstone mode. We also discuss calculations of the RPA-MPS correlation energy. With the long-range quantum chemical Pariser-Parr-Pople Hamiltonian, low-lying TDA-MPS and RPA-MPS excitation energies for polyenes are obtained.
Generalized local-spin-density-functional theory
NASA Astrophysics Data System (ADS)
Guo, Yufei; Whitehead, M. A.
1991-01-01
An alternative density-functional theory, the generalized local-spin-density-functional (G-LSD) theory, is proposed based on the boundary conditions and sum rule of the Fermi-correlation factor in the Hartree-Fock (HF) limit. It avoids the physical restrictions to the boundary conditions and the sum rule used in the generalized exchange local-spin-density-functional (GX-LSD) theory completely, the homogeneous electron-density approximation in the Hartree-Fock-Slater (HFS) theory and in the Gáspár-Kohn-Sham (GKS) theory partly, and the time-consuming step to search for the optimal exchange parameter for each atom or ion in the Xα and Ξa theories. The alternative G-LSD theory generates the GX-LSD, HFS, GKS, Xα, and Ξa theories, when additional approximations or certain Fermi-hole shapes or high electron-density limit in a system are used. Theoretically, the G-LSD theory is more rigorous than the GX-LSD, HFS, GKS, and Ξa theories. Numerically, the statistical total energies for atoms in the G-LSD theory are in excellent agreement with the HF results, when the Gopinathan, Whitehead, and Bogdanovic [Phys. Rev. A 14, 1 (1976)] Fermi-hole parameters are used.
Flexoelectricity from density-functional perturbation theory
NASA Astrophysics Data System (ADS)
Stengel, Massimiliano
2013-11-01
We derive the complete flexoelectric tensor, including electronic and lattice-mediated effects, of an arbitrary insulator in terms of the microscopic linear response of the crystal to atomic displacements. The basic ingredient, which can be readily calculated from first principles in the framework of density-functional perturbation theory, is the quantum-mechanical probability current response to a long-wavelength acoustic phonon. Its second-order Taylor expansion in the wave vector q around the Γ (q=0) point in the Brillouin zone naturally yields the flexoelectric tensor. At order one in q we recover Martin's theory of piezoelectricity [Martin, Phys. Rev. B 5, 1607 (1972)], thus providing an alternative derivation thereof. To put our derivations on firm theoretical grounds, we perform a thorough analysis of the nonanalytic behavior of the dynamical matrix and other response functions in a vicinity of Γ. Based on this analysis, we find that there is an ambiguity in the specification of the “zero macroscopic field” condition in the flexoelectric case; such arbitrariness can be related to an analytic band-structure term, in close analogy to the theory of deformation potentials. As a by-product, we derive a rigorous generalization of the Cochran-Cowley formula [Cochran and Cowley, J. Phys. Chem. Solids 23, 447 (1962)] to higher orders in q. This can be of great utility in building reliable atomistic models of electromechanical phenomena, as well as for improving the accuracy of the calculation of phonon dispersion curves. Finally, we discuss the physical interpretation of the various contributions to the flexoelectric response, either in the static or dynamic regime, and we relate our findings to earlier theoretical works on the subject.
Communication: Generalized canonical purification for density matrix minimization
NASA Astrophysics Data System (ADS)
Truflandier, Lionel A.; Dianzinga, Rivo M.; Bowler, David R.
2016-03-01
A Lagrangian formulation for the constrained search for the N-representable one-particle density matrix based on the McWeeny idempotency error minimization is proposed, which converges systematically to the ground state. A closed form of the canonical purification is derived for which no a posteriori adjustment on the trace of the density matrix is needed. The relationship with comparable methods is discussed, showing their possible generalization through the hole-particle duality. The appealing simplicity of this self-consistent recursion relation along with its low computational complexity could prove useful as an alternative to diagonalization in solving dense and sparse matrix eigenvalue problems.
Communication: Generalized canonical purification for density matrix minimization.
Truflandier, Lionel A; Dianzinga, Rivo M; Bowler, David R
2016-03-01
A Lagrangian formulation for the constrained search for the N-representable one-particle density matrix based on the McWeeny idempotency error minimization is proposed, which converges systematically to the ground state. A closed form of the canonical purification is derived for which no a posteriori adjustment on the trace of the density matrix is needed. The relationship with comparable methods is discussed, showing their possible generalization through the hole-particle duality. The appealing simplicity of this self-consistent recursion relation along with its low computational complexity could prove useful as an alternative to diagonalization in solving dense and sparse matrix eigenvalue problems. PMID:26957150
Density functional theory for Yukawa fluids
NASA Astrophysics Data System (ADS)
Hatlo, Marius M.; Banerjee, Priyanka; Forsman, Jan; Lue, Leo
2012-08-01
We develop an approximate field theory for particles interacting with a generalized Yukawa potential. This theory improves and extends a previous splitting field theory, originally developed for counterions around a fixed charge distribution. The resulting theory bridges between the second virial approximation, which is accurate at low particle densities, and the mean-field approximation, accurate at high densities. We apply this theory to charged, screened ions in bulk solution, modeled to interact with a Yukawa potential; the theory is able to accurately reproduce the thermodynamic properties of the system over a broad range of conditions. The theory is also applied to "dressed counterions," interacting with a screened electrostatic potential, contained between charged plates. It is found to work well from the weak coupling to the strong coupling limits. The theory is able to reproduce the counterion profiles and force curves for closed and open systems obtained from Monte Carlo simulations.
Quantum graphs and random-matrix theory
NASA Astrophysics Data System (ADS)
Pluhař, Z.; Weidenmüller, H. A.
2015-07-01
For simple connected graphs with incommensurate bond lengths and with unitary symmetry we prove the Bohigas-Giannoni-Schmit (BGS) conjecture in its most general form. Using supersymmetry and taking the limit of infinite graph size, we show that the generating function for every (P,Q) correlation function for both closed and open graphs coincides with the corresponding expression of random-matrix theory. We show that the classical Perron-Frobenius operator is bistochastic and possesses a single eigenvalue +1. In the quantum case that implies the existence of a zero (or massless) mode of the effective action. That mode causes universal fluctuation properties. Avoiding the saddle-point approximation we show that for graphs that are classically mixing (i.e. for which the spectrum of the classical Perron-Frobenius operator possesses a finite gap) and that do not carry a special class of bound states, the zero mode dominates in the limit of infinite graph size.
A Safari Through Density Functional Theory
NASA Astrophysics Data System (ADS)
Dreizler, Reiner M.; Lüdde, Cora S.
Density functional theory is widely used to treat quantum many body problems in many areas of physics and related fields. A brief survey of this method covering foundations, functionals and applications is presented here.
Information theory and the earth's density distribution
NASA Technical Reports Server (NTRS)
Rubincam, D. P.
1978-01-01
The present paper argues for using the information theory approach as an inference technique in solid earth geophysics. A spherically symmetric density distribution is derived as an example of the method. A simple model of the earth plus knowledge of its mass and moment of inertia leads to a density distribution. Future directions for the information theory approach in solid earth geophysics as well as its strengths and weaknesses are discussed.
Information Theory and the Earth's Density Distribution
NASA Technical Reports Server (NTRS)
Rubincam, D. P.
1979-01-01
An argument for using the information theory approach as an inference technique in solid earth geophysics. A spherically symmetric density distribution is derived as an example of the method. A simple model of the earth plus knowledge of its mass and moment of inertia lead to a density distribution which was surprisingly close to the optimum distribution. Future directions for the information theory approach in solid earth geophysics as well as its strengths and weaknesses are discussed.
Hadronic density of states from string theory.
Pando Zayas, Leopoldo A; Vaman, Diana
2003-09-12
We present an exact calculation of the finite temperature partition function for the hadronic states corresponding to a Penrose-Güven limit of the Maldacena-Nùñez embedding of the N=1 super Yang-Mills (SYM) into string theory. It is established that the theory exhibits a Hagedorn density of states. We propose a semiclassical string approximation to the finite temperature partition function for confining gauge theories admitting a supergravity dual, by performing an expansion around classical solutions characterized by temporal windings. This semiclassical approximation reveals a hadronic energy density of states of a Hagedorn type, with the coefficient determined by the gauge theory string tension as expected for confining theories. We argue that our proposal captures primarily information about states of pure N=1 SYM theory, given that this semiclassical approximation does not entail a projection onto states of large U(1) charge. PMID:14525414
The ab-initio density matrix renormalization group in practice
Olivares-Amaya, Roberto; Hu, Weifeng; Sharma, Sandeep; Yang, Jun; Chan, Garnet Kin-Lic; Nakatani, Naoki
2015-01-21
The ab-initio density matrix renormalization group (DMRG) is a tool that can be applied to a wide variety of interesting problems in quantum chemistry. Here, we examine the density matrix renormalization group from the vantage point of the quantum chemistry user. What kinds of problems is the DMRG well-suited to? What are the largest systems that can be treated at practical cost? What sort of accuracies can be obtained, and how do we reason about the computational difficulty in different molecules? By examining a diverse benchmark set of molecules: π-electron systems, benchmark main-group and transition metal dimers, and the Mn-oxo-salen and Fe-porphine organometallic compounds, we provide some answers to these questions, and show how the density matrix renormalization group is used in practice.
Maslow's Implied Matrix: A Clarification of the Need Hierarchy Theory.
ERIC Educational Resources Information Center
Marsh, Edward
1978-01-01
Maslow's need hierarchy theory is restated by means of a matrix arrangement of the constructs within the theory. After consideration of the consequences of this restatement, some significant research is discussed and directions for future research suggested. (Author)
Particle conservation in dynamical density functional theory
NASA Astrophysics Data System (ADS)
de las Heras, Daniel; Brader, Joseph M.; Fortini, Andrea; Schmidt, Matthias
2016-06-01
We present the exact adiabatic theory for the dynamics of the inhomogeneous density distribution of a classical fluid. Erroneous particle number fluctuations of dynamical density functional theory are absent, both for canonical and grand canonical initial conditions. We obtain the canonical free energy functional, which yields the adiabatic interparticle forces of overdamped Brownian motion. Using an exact and one of the most advanced approximate hard core free energy functionals, we obtain excellent agreement with simulations. The theory applies to finite systems in and out of equilibrium.
Particle conservation in dynamical density functional theory.
de Las Heras, Daniel; Brader, Joseph M; Fortini, Andrea; Schmidt, Matthias
2016-06-22
We present the exact adiabatic theory for the dynamics of the inhomogeneous density distribution of a classical fluid. Erroneous particle number fluctuations of dynamical density functional theory are absent, both for canonical and grand canonical initial conditions. We obtain the canonical free energy functional, which yields the adiabatic interparticle forces of overdamped Brownian motion. Using an exact and one of the most advanced approximate hard core free energy functionals, we obtain excellent agreement with simulations. The theory applies to finite systems in and out of equilibrium. PMID:27115673
Density functional theory for carbon dioxide crystal
Chang, Yiwen; Mi, Jianguo Zhong, Chongli
2014-05-28
We present a density functional approach to describe the solid−liquid phase transition, interfacial and crystal structure, and properties of polyatomic CO{sub 2}. Unlike previous phase field crystal model or density functional theory, which are derived from the second order direct correlation function, the present density functional approach is based on the fundamental measure theory for hard-sphere repulsion in solid. More importantly, the contributions of enthalpic interactions due to the dispersive attractions and of entropic interactions arising from the molecular architecture are integrated in the density functional model. Using the theoretical model, the predicted liquid and solid densities of CO{sub 2} at equilibrium triple point are in good agreement with the experimental values. Based on the structure of crystal-liquid interfaces in different planes, the corresponding interfacial tensions are predicted. Their respective accuracies need to be tested.
Applications of optical Boolean matrix operations to graph theory.
Gibson, P M; Caulfield, H J
1991-09-10
The transition from optical numerical matrix algebra to optical Boolean matrix algebra is explored in detail. All important Boolean matrix algebra tasks can be performed optically. Quantitative measurement is replaced by a simple light-or-no-light decision, something optics can do well. The parallelism advantage of optics becomes greater as the matrix size increases. As an illustration of utility, we consider graph theory. PMID:20706446
Density-Functional Theory of Thermal Transport
NASA Astrophysics Data System (ADS)
Eich, F. G.; Principi, A.; di Ventra, M.; Vignale, G.
2014-03-01
We have recently introduced a non-equilibrium density-functional theory of local temperature and associated energy density that is suitable for the study of thermoelectric phenomena from first principles. This theory rests on a local temperature field coupled to the energy-density operator. Here we apply the theory to a simple two-terminal setup, in which the terminals are held at different temperatures. We show that our treatment becomes equivalent to the standard Landauer-Büttiker formulation of thermal transport in the non-interacting limit. We gratefully acknowledge support from DOE under Grant No. DE-FG02-05ER46203 (FGE, AP, GV) and DE-FG02-05ER46204 (MD).
Magnetic fields and density functional theory
Salsbury Jr., Freddie
1999-02-01
A major focus of this dissertation is the development of functionals for the magnetic susceptibility and the chemical shielding within the context of magnetic field density functional theory (BDFT). These functionals depend on the electron density in the absence of the field, which is unlike any other treatment of these responses. There have been several advances made within this theory. The first of which is the development of local density functionals for chemical shieldings and magnetic susceptibilities. There are the first such functionals ever proposed. These parameters have been studied by constructing functionals for the current density and then using the Biot-Savart equations to obtain the responses. In order to examine the advantages and disadvantages of the local functionals, they were tested numerically on some small molecules.
Large N (=3) neutrinos and random matrix theory
NASA Astrophysics Data System (ADS)
Bai, Yang; Torroba, Gonzalo
2012-12-01
The large N limit has been successfully applied to QCD, leading to qualitatively correct results even for N = 3. In this work, we propose to treat the number N = 3 of Standard Model generations as a large number. Specifically, we apply this idea to the neutrino anarchy scenario and study neutrino physics using Random Matrix Theory, finding new results in both areas. For neutrino physics, we obtain predictions for the masses and mixing angles as a function of the generation number N. The Seesaw mechanism produces a hierarchy of order 1 /N 3 between the lightest and heaviest neutrino, and a θ 13 mixing angle of order 1 /N, in parametric agreement with experimental data when N goes to 3. For Random Matrix Theory, this motivates the introduction of a new type of ensemble of random matrices, the "Seesaw ensemble." Basic properties of such matrices are studied, including the eigenvalue density and the interpretation as a Coulomb gas system. Besides its mathematical interest, the Seesaw ensemble may be useful in random systems where two hierarchical scales exist.
Connection formulas for thermal density functional theory
NASA Astrophysics Data System (ADS)
Pribram-Jones, A.; Burke, K.
2016-05-01
The adiabatic connection formula of ground-state density functional theory relates the correlation energy to a coupling-constant integral over a purely potential contribution, and is widely used to understand and improve approximations. The corresponding formula for thermal density functional theory is cast as an integral over temperatures instead, ranging upward from the system's physical temperature. We also show how to relate different correlation components to each other, either in terms of temperature or coupling-constant integrations. We illustrate our results on the uniform electron gas.
NASA Technical Reports Server (NTRS)
Bhatt, Ramakrishna T.; Kiser, Lames D.
1990-01-01
The room temperature mechanical properties were measured for SiC fiber reinforced reaction-bonded silicon nitride composites (SiC/RBSN) of different densities. The composites consisted of approx. 30 vol percent uniaxially aligned 142 micron diameter SiC fibers (Textron SCS-6) in a reaction-bonded Si3N4 matrix. The composite density was varied by changing the consolidation pressure during RBSN processing and by hot isostatically pressing the SiC/RBSN composites. Results indicate that as the consolidation pressure was increased from 27 to 138 MPa, the average pore size of the nitrided composites decreased from 0.04 to 0.02 microns and the composite density increased from 2.07 to 2.45 gm/cc. Nonetheless, these improvements resulted in only small increases in the first matrix cracking stress, primary elastic modulus, and ultimate tensile strength values of the composites. In contrast, HIP consolidation of SiC/RBSN resulted in a fully dense material whose first matrix cracking stress and elastic modulus were approx. 15 and 50 percent higher, respectively, and ultimate tensile strength values were approx. 40 percent lower than those for unHIPed SiC/RBSN composites. The modulus behavior for all specimens can be explained by simple rule-of-mixture theory. Also, the loss in ultimate strength for the HIPed composites appears to be related to a degradation in fiber strength at the HIP temperature. However, the density effect on matrix fracture strength was much less than would be expected based on typical monolithic Si3N4 behavior, suggesting that composite theory is indeed operating. Possible practical implications of these observations are discussed.
Bhatt, R.T.; Kiser, L.D.
1990-08-01
The room temperature mechanical properties were measured for SiC fiber reinforced reaction-bonded silicon nitride composites (SiC/RBSN) of different densities. The composites consisted of approx. 30 vol percent uniaxially aligned 142 micron diameter SiC fibers (Textron SCS-6) in a reaction-bonded Si3N4 matrix. The composite density was varied by changing the consolidation pressure during RBSN processing and by hot isostatically pressing the SiC/RBSN composites. Results indicate that as the consolidation pressure was increased from 27 to 138 MPa, the average pore size of the nitrided composites decreased from 0.04 to 0.02 microns and the composite density increased from 2.07 to 2.45 gm/cc. Nonetheless, these improvements resulted in only small increases in the first matrix cracking stress, primary elastic modulus, and ultimate tensile strength values of the composites. In contrast, HIP consolidation of SiC/RBSN resulted in a fully dense material whose first matrix cracking stress and elastic modulus were approx. 15 and 50 percent higher, respectively, and ultimate tensile strength values were approx. 40 percent lower than those for unHIPed SiC/RBSN composites. The modulus behavior for all specimens can be explained by simple rule-of-mixture theory. Also, the loss in ultimate strength for the HIPed composites appears to be related to a degradation in fiber strength at the HIP temperature. However, the density effect on matrix fracture strength was much less than would be expected based on typical monolithic Si3N4 behavior, suggesting that composite theory is indeed operating. Possible practical implications of these observations are discussed. 18 refs.
Smallwood, D. O.
1996-01-01
It is shown that the usual method for estimating the coherence functions (ordinary, partial, and multiple) for a general multiple-input! multiple-output problem can be expressed as a modified form of Cholesky decomposition of the cross-spectral density matrix of the input and output records. The results can be equivalently obtained using singular value decomposition (SVD) of the cross-spectral density matrix. Using SVD suggests a new form of fractional coherence. The formulation as a SVD problem also suggests a way to order the inputs when a natural physical order of the inputs is absent.
Chen, Zhenhua; Chen, Xun; Wu, Wei
2013-04-28
In this paper, by applying the reduced density matrix (RDM) approach for nonorthogonal orbitals developed in the first paper of this series, efficient algorithms for matrix elements between VB structures and energy gradients in valence bond self-consistent field (VBSCF) method were presented. Both algorithms scale only as nm(4) for integral transformation and d(2)n(β)(2) for VB matrix elements and 3-RDM evaluation, while the computational costs of other procedures are negligible, where n, m, d, and n(β )are the numbers of variable occupied active orbitals, basis functions, determinants, and active β electrons, respectively. Using tensor properties of the energy gradients with respect to the orbital coefficients presented in the first paper of this series, a partial orthogonal auxiliary orbital set was introduced to reduce the computational cost of VBSCF calculation in which orbitals are flexibly defined. Test calculations on the Diels-Alder reaction of butadiene and ethylene have shown that the novel algorithm is very efficient for VBSCF calculations. PMID:23635124
NASA Astrophysics Data System (ADS)
Pribram-Jones, Aurora
Warm dense matter (WDM) is a high energy phase between solids and plasmas, with characteristics of both. It is present in the centers of giant planets, within the earth's core, and on the path to ignition of inertial confinement fusion. The high temperatures and pressures of warm dense matter lead to complications in its simulation, as both classical and quantum effects must be included. One of the most successful simulation methods is density functional theory-molecular dynamics (DFT-MD). Despite great success in a diverse array of applications, DFT-MD remains computationally expensive and it neglects the explicit temperature dependence of electron-electron interactions known to exist within exact DFT. Finite-temperature density functional theory (FT DFT) is an extension of the wildly successful ground-state DFT formalism via thermal ensembles, broadening its quantum mechanical treatment of electrons to include systems at non-zero temperatures. Exact mathematical conditions have been used to predict the behavior of approximations in limiting conditions and to connect FT DFT to the ground-state theory. An introduction to FT DFT is given within the context of ensemble DFT and the larger field of DFT is discussed for context. Ensemble DFT is used to describe ensembles of ground-state and excited systems. Exact conditions in ensemble DFT and the performance of approximations depend on ensemble weights. Using an inversion method, exact Kohn-Sham ensemble potentials are found and compared to approximations. The symmetry eigenstate Hartree-exchange approximation is in good agreement with exact calculations because of its inclusion of an ensemble derivative discontinuity. Since ensemble weights in FT DFT are temperature-dependent Fermi weights, this insight may help develop approximations well-suited to both ground-state and FT DFT. A novel, highly efficient approach to free energy calculations, finite-temperature potential functional theory, is derived, which has the
Nuclear moments in covariant density functional theory
NASA Astrophysics Data System (ADS)
Meng, J.; Zhao, P. W.; Zhang, S. Q.; Hu, J. N.; Li, J.
2014-05-01
Recent progresses on microscopic and self-consistent description of the nuclear moments in covariant density functional theory based on a point-coupling interaction are briefly reviewed. In particular, the electric quadrupole moments of Cd isotopes and the magnetic moments of Pb isotopes are discussed.
Supersymmetry of Green-Schwarz superstring and matrix string theory
Hyun, Seungjoon; Shin, Hyeonjoon
2001-08-15
We study the dynamics of a Green-Schwarz superstring on the gravitational wave background corresponding to the matrix string theory and the supersymmetry transformation rules of the superstring. The dynamics is obtained in the light-cone formulation and is shown to agree with that derived from matrix string theory. The supersymmetry structure has corrections due to the effect of the background and is identified with that of the low-energy one-loop effective action of matrix string theory in a two superstring background in the weak string coupling limit.
Teaching Density Functional Theory Through Experiential Learning
NASA Astrophysics Data System (ADS)
Narasimhan, Shobhana
2015-09-01
Today, quantum mechanical density functional theory is often the method of choice for performing accurate calculations on atomic, molecular and condensed matter systems. Here, I share some of my experiences in teaching the necessary basics of solid state physics, as well as the theory and practice of density functional theory, in a number of workshops held in developing countries over the past two decades. I discuss the advantages of supplementing the usual mathematically formal teaching methods, characteristic of graduate courses, with the use of visual imagery and analogies. I also describe a successful experiment we carried out, which resulted in a joint publication co-authored by 67 lecturers and students participating in a summer school.
Localized density matrix minimization and linear-scaling algorithms
NASA Astrophysics Data System (ADS)
Lai, Rongjie; Lu, Jianfeng
2016-06-01
We propose a convex variational approach to compute localized density matrices for both zero temperature and finite temperature cases, by adding an entry-wise ℓ1 regularization to the free energy of the quantum system. Based on the fact that the density matrix decays exponentially away from the diagonal for insulating systems or systems at finite temperature, the proposed ℓ1 regularized variational method provides an effective way to approximate the original quantum system. We provide theoretical analysis of the approximation behavior and also design convergence guaranteed numerical algorithms based on Bregman iteration. More importantly, the ℓ1 regularized system naturally leads to localized density matrices with banded structure, which enables us to develop approximating algorithms to find the localized density matrices with computation cost linearly dependent on the problem size.
Communication: Embedded fragment stochastic density functional theory
Neuhauser, Daniel; Baer, Roi; Rabani, Eran
2014-07-28
We develop a method in which the electronic densities of small fragments determined by Kohn-Sham density functional theory (DFT) are embedded using stochastic DFT to form the exact density of the full system. The new method preserves the scaling and the simplicity of the stochastic DFT but cures the slow convergence that occurs when weakly coupled subsystems are treated. It overcomes the spurious charge fluctuations that impair the applications of the original stochastic DFT approach. We demonstrate the new approach on a fullerene dimer and on clusters of water molecules and show that the density of states and the total energy can be accurately described with a relatively small number of stochastic orbitals.
Neutrinoless double-beta decay in covariant density functional theory
Ring, P.; Yao, J. M.; Song, L. S.; Hagino, K.; Meng, J.
2015-10-15
We use covariant density functional theory beyond mean field in order to describe neutrinoless double-beta decay in a fully relativistic way. The dynamic effects of particle-number and angular-momentum conservations as well as shape fluctuations of quadrupole character are taken into account within the generator coordinate method for both initial and final nuclei. The calculations are based on the full relativistic transition operator. The nuclear matrix elements (NME’s) for a large number of possible transitions are investigated. The results are compared with various non-relativistic calculations, in particular also with the density functional theory based on the Gogny force. We find that the non-relativistic approximation is justified and that the total NME’s can be well approximated by the pure axial-vector coupling term. This corresponds to a considerable reduction of the computational effort.
Neutrinoless double-beta decay in covariant density functional theory
NASA Astrophysics Data System (ADS)
Ring, P.; Yao, J. M.; Song, L. S.; Hagino, K.; Meng, J.
2015-10-01
We use covariant density functional theory beyond mean field in order to describe neutrinoless double-beta decay in a fully relativistic way. The dynamic effects of particle-number and angular-momentum conservations as well as shape fluctuations of quadrupole character are taken into account within the generator coordinate method for both initial and final nuclei. The calculations are based on the full relativistic transition operator. The nuclear matrix elements (NME's) for a large number of possible transitions are investigated. The results are compared with various non-relativistic calculations, in particular also with the density functional theory based on the Gogny force. We find that the non-relativistic approximation is justified and that the total NME's can be well approximated by the pure axial-vector coupling term. This corresponds to a considerable reduction of the computational effort.
Periodic subsystem density-functional theory
Genova, Alessandro; Pavanello, Michele; Ceresoli, Davide
2014-11-07
By partitioning the electron density into subsystem contributions, the Frozen Density Embedding (FDE) formulation of subsystem Density Functional Theory (DFT) has recently emerged as a powerful tool for reducing the computational scaling of Kohn–Sham DFT. To date, however, FDE has been employed to molecular systems only. Periodic systems, such as metals, semiconductors, and other crystalline solids have been outside the applicability of FDE, mostly because of the lack of a periodic FDE implementation. To fill this gap, in this work we aim at extending FDE to treat subsystems of molecular and periodic character. This goal is achieved by a dual approach. On one side, the development of a theoretical framework for periodic subsystem DFT. On the other, the realization of the method into a parallel computer code. We find that periodic FDE is capable of reproducing total electron densities and (to a lesser extent) also interaction energies of molecular systems weakly interacting with metallic surfaces. In the pilot calculations considered, we find that FDE fails in those cases where there is appreciable density overlap between the subsystems. Conversely, we find FDE to be in semiquantitative agreement with Kohn–Sham DFT when the inter-subsystem density overlap is low. We also conclude that to make FDE a suitable method for describing molecular adsorption at surfaces, kinetic energy density functionals that go beyond the GGA level must be employed.
Density Functional Theory Models for Radiation Damage
NASA Astrophysics Data System (ADS)
Dudarev, S. L.
2013-07-01
Density functional theory models developed over the past decade provide unique information about the structure of nanoscale defects produced by irradiation and about the nature of short-range interaction between radiation defects, clustering of defects, and their migration pathways. These ab initio models, involving no experimental input parameters, appear to be as quantitatively accurate and informative as the most advanced experimental techniques developed for the observation of radiation damage phenomena. Density functional theory models have effectively created a new paradigm for the scientific investigation and assessment of radiation damage effects, offering new insight into the origin of temperature- and dose-dependent response of materials to irradiation, a problem of pivotal significance for applications.
Derivation of the density matrix of a single photon produced in parametric down-conversion
Kolenderski, Piotr; Wasilewski, Wojciech
2009-07-15
We discuss an effective numerical method of density matrix determination of fiber coupled single photon generated in process of spontaneous parametric down conversion in type I noncollinear configuration. The presented theory has been successfully applied in case of source utilized to demonstrate the experimental characterization of spectral state of single photon, what was reported in Wasilewski, Kolenderski, and Frankowski [Phys. Rev. Lett. 99, 123601 (2007)].
Density functional theory studies of etoricoxib
NASA Astrophysics Data System (ADS)
Sachdeva, Ritika; Kaur, Prabhjot; Singh, V. P.; Saini, G. S. S.
2016-05-01
Etoricoxib is a COX-2 selective inhibitor drug with molecular formula C18H15ClN2O2S. It is primarily used for the treatment of arthritis(rheumatoid, psoriatic, osteoarthritis), ankylosing spondylitis, gout and chronic low back pain. Theoretical studies of the molecule including geometry optimization and vibrational frequency calculations were carried out with the help of density functional theory calculations using 6-311++ g (d, p) basis set and B3LYP functional.
Looking for a Matrix model for ABJM theory
Mohammed, Asadig; Murugan, Jeff; Nastase, Horatiu
2010-10-15
Encouraged by the recent construction of fuzzy sphere solutions in the Aharony, Bergman, Jafferis, and Maldacena (ABJM) theory, we re-analyze the latter from the perspective of a Matrix-like model. In particular, we argue that a vortex solution exhibits properties of a supergraviton, while a kink represents a 2-brane. Other solutions are also consistent with the Matrix-type interpretation. We study vortex scattering and compare with graviton scattering in the massive ABJM background, however our results are inconclusive. We speculate on how to extend our results to construct a Matrix theory of ABJM.
Koopmans' condition for density-functional theory
Dabo, Ismaila; Ferretti, Andrea; Poilvert, Nicolas; Marzari, Nicola; Li, Yanli; Cococcioni, Matteo
2010-09-15
In approximate Kohn-Sham density-functional theory, self-interaction manifests itself as the dependence of the energy of an orbital on its fractional occupation. This unphysical behavior translates into qualitative and quantitative errors that pervade many fundamental aspects of density-functional predictions. Here, we first examine self-interaction in terms of the discrepancy between total and partial electron removal energies, and then highlight the importance of imposing the generalized Koopmans' condition - that identifies orbital energies as opposite total electron removal energies - to resolve this discrepancy. In the process, we derive a correction to approximate functionals that, in the frozen-orbital approximation, eliminates the unphysical occupation dependence of orbital energies up to the third order in the single-particle densities. This non-Koopmans correction brings physical meaning to single-particle energies; when applied to common local or semilocal density functionals it provides results that are in excellent agreement with experimental data - with an accuracy comparable to that of GW many-body perturbation theory - while providing an explicit total energy functional that preserves or improves on the description of established structural properties.
Big bang and big crunch in matrix string theory
Bedford, J.; Ward, J.; Papageorgakis, C.; Rodriguez-Gomez, D.
2007-04-15
Following the holographic description of linear dilaton null cosmologies with a big bang in terms of matrix string theory put forward by Craps, Sethi, and Verlinde, we propose an extended background describing a universe including both big bang and big crunch singularities. This belongs to a class of exact string backgrounds and is perturbative in the string coupling far away from the singularities, both of which can be resolved using matrix string theory. We provide a simple theory capable of describing the complete evolution of this closed universe.
Big bang and big crunch in matrix string theory
NASA Astrophysics Data System (ADS)
Bedford, J.; Papageorgakis, C.; Rodríguez-Gómez, D.; Ward, J.
2007-04-01
Following the holographic description of linear dilaton null cosmologies with a big bang in terms of matrix string theory put forward by Craps, Sethi, and Verlinde, we propose an extended background describing a universe including both big bang and big crunch singularities. This belongs to a class of exact string backgrounds and is perturbative in the string coupling far away from the singularities, both of which can be resolved using matrix string theory. We provide a simple theory capable of describing the complete evolution of this closed universe.
Recent progress in density functional theory
NASA Astrophysics Data System (ADS)
Truhlar, Donald
2014-03-01
Ongoing work involves several areas of density functional theory: new methods for computing electronic excitation energies, including a new way to remove spin contamination in the spin-flip Tamm-Dancoff approximation and a configuration-interaction-corrected Tamm-Dancoff Approximation for treating conical intersections; new ways to treat open-shell states, including a reinterpreted broken-symmetry method and multi-configuration Kohn-Sham theory; a new exchange-correlation functional; new tests of density functional theory against databases for electronic transition energies and molecules and solids containing metal atoms; and applications. A selection of results will be presented. I am grateful to the following collaborators for contributions to the ongoing work: Boris Averkiev, Rebecca Carlson, Laura Fernandez, Laura Gagliardi, Chad Hoyer, Francesc Illas, Miho Isegawa, Shaohong Li, Giovanni Li Manni, Sijie Luo, Dongxia Ma, Remi Maurice, Rubén Means-Pañeda, Roberto Peverati, Nora Planas, Prasenjit Seal, Pragya Verma, Bo Wang, Xuefei Xu, Ke R. Yang, Haoyu Yu, Wenjing Zhang, and Jingjing Zheng. Supported in part by the AFOSR and U.S. DOE.
Electron correlation in solids via density embedding theory
Bulik, Ireneusz W.; Chen, Weibing; Scuseria, Gustavo E.
2014-08-07
Density matrix embedding theory [G. Knizia and G. K.-L. Chan, Phys. Rev. Lett. 109, 186404 (2012)] and density embedding theory [I. W. Bulik, G. E. Scuseria, and J. Dukelsky, Phys. Rev. B 89, 035140 (2014)] have recently been introduced for model lattice Hamiltonians and molecular systems. In the present work, the formalism is extended to the ab initio description of infinite systems. An appropriate definition of the impurity Hamiltonian for such systems is presented and demonstrated in cases of 1, 2, and 3 dimensions, using coupled cluster theory as the impurity solver. Additionally, we discuss the challenges related to disentanglement of fragment and bath states. The current approach yields results comparable to coupled cluster calculations of infinite systems even when using a single unit cell as the fragment. The theory is formulated in the basis of Wannier functions but it does not require separate localization of unoccupied bands. The embedding scheme presented here is a promising way of employing highly accurate electronic structure methods for extended systems at a fraction of their original computational cost.
Measurement of the Density Matrix of a Longitudinally Modulated Atomic Beam
NASA Astrophysics Data System (ADS)
Rubenstein, Richard A.; Kokorowski, David A.; Dhirani, Al-Amin; Roberts, Tony D.; Gupta, Subhadeep; Lehner, Jana; Smith, Winthrop W.; Smith, Edward T.; Bernstein, Herbert J.; Pritchard, David E.
1999-09-01
We present the first measurement of the longitudinal density matrix of a matter-wave beam. Using a unique interferometric scheme, both the amplitude and phase of off-diagonal density matrix elements were determined directly, without the use of traditional tomographic techniques. The measured density matrix of a doubly amplitude modulated atomic sodium beam compares well with theoretical predictions.
Physical interpretation of time-dependent Hartree-Fock density matrix for heavy ion scattering
NASA Astrophysics Data System (ADS)
Klein, Abraham; Umar, A. S.
1987-05-01
We suggest a quantum mechanical interpretation of the density matrix of the time-dependent Hartree-Fock theory for heavy ion scattering. We show how with this interpretation the time-dependent Hartree-Fock equations can be derived provided we admit (i) a generalized factorization of a suitably defined average of two-body density matrix elements in terms of a sum of products of the corresponding one-particle elements and (ii) additional semiclassical approximations which convert a sum of products into an antisymmetric product of sums. These ideas, previously recognized within the framework of soliton models, are extended here to include inelastic processes with the excitation of collective modes as the mechanism for producing deep inelastic scattering. An essential feature of the approach is that it provides, in principle, a theoretical method of obtaining exclusive amplitudes. We describe how these might be calculated.
Density-functional theory of superconductivity
NASA Astrophysics Data System (ADS)
Gross, E. K. U.
2008-03-01
A prominent challenge of modern condensed-matter theory is to predict reliably material-specific properties of superconductors, such as the critical temperature. The traditional model of Bardeen, Cooper and Schrieffer (BCS) properly describes the universal features that all conventional superconductors have in common, but it is not able to make accurate predictions of material-specific properties. To tackle this problem, a density-functional formalism has been developed [1] which describes superconductors in thermal equilibrium in terms of three quantities: the ordinary density, the superconducting order parameter, and the nuclear N-body density. These three ``densities'' are determined self-consistently through a set of Kohn-Sham equations. Approximations of the universal exchange-correlation functional are derived on the basis of many-body perturbation theory. In this way, a true ab-initio description is achieved which does not contain any adjustable parameters such as the μ* of Eliashberg theory. Numerical results for the critical temperature, the isotope effect, the gap function and the jump of the specific heat will be presented for simple metals, for MgB2 [2] and CaBeSi, and for calcium intercalated graphite (CaC6) [3]. Furthermore, results for Li, Al, K, and H under pressure will be discussed. The calculations explain why Li and Al behave very differently, leading to a strong enhancement of superconductivity for Li and to a clear suppression for Al with increasing pressure [4]. For K we predict a behavior similar to Li, i.e. a strong increase of Tc with increasing pressure. Finally, hydrogen is found to be a three-gap superconductor whose critical temperature increases with increasing pressure until about 100K (at 500 GPa). [1] M. Lüders, M.A.L. Marques, N.N. Lathiotakis, A. Floris,G. Profeta, L. Fast, A.Continenza, S. Massidda, E.K.U. Gross, PRB 72, 024545 (2005). [2] A. Floris, G. Profeta, N.N. Lathiotakis, M. Lüders, M.A.L. Marques, C. Franchini, E
Matrix theory interpretation of discrete light cone quantization string worldsheets
Grignani; Orland; Paniak; Semenoff
2000-10-16
We study the null compactification of type-IIA string perturbation theory at finite temperature. We prove a theorem about Riemann surfaces establishing that the moduli spaces of infinite-momentum-frame superstring worldsheets are identical to those of branched-cover instantons in the matrix-string model conjectured to describe M theory. This means that the identification of string degrees of freedom in the matrix model proposed by Dijkgraaf, Verlinde, and Verlinde is correct and that its natural generalization produces the moduli space of Riemann surfaces at all orders in the genus expansion. PMID:11030892
Matrix density effects on the mechanical properties of SiC/RBSN composites
NASA Technical Reports Server (NTRS)
Bhatt, Ramakrishna T.; Kiser, James D.
1990-01-01
The room temperature mechanical properties were measured for SiC fiber reinforced reaction-bonded silicon nitride composites (SiC/RBSN) of different densities. The composites consisted of approx. 30 vol percent uniaxially aligned 142 micron diameter SiC fibers (Textron SCS-6) in a reaction-bonded Si3N4 matrix. The composite density was varied by changing the consolidation pressure during RBSN processing and by hot isostatically pressing the SiC/RBSN composites. Results indicate that as the consolidation pressure was increased from 27 to 138 MPa, the average pore size of the nitrided composites decreased from 0.04 to 0.02 microns and the composite density increased from 2.07 to 2.45 gm/cc. Nonetheless, these improvements resulted in only small increases in the first matrix cracking stress, primary elastic modulus, and ultimate tensile strength values of the composites. In contrast, HIP consolidation of SiC/RBSN resulted in a fully dense material whose first matrix cracking stress and elastic modulus were approx. 15 and 50 percent higher, respectively, and ultimate tensile strength values were approx. 40 percent lower than those for unHIPed SiC/RBSN composites. The modulus behavior for all specimens can be explained by simple rule-of-mixture theory. Also, the loss in ultimate strength for the HIPed composites appears to be related to a degradation in fiber strength at the HIP temperature. However, the density effect on matrix fracture strength was much less than would be expected based on typical monolithic Si3N4 behavior, suggesting that composite theory is indeed operating. Possible practical implications of these observations are discussed.
Recent progress in ab initio density matrix renormalization group methodology
NASA Astrophysics Data System (ADS)
Hachmann, Johannes; Dorando, Jonathan J.; Kin-Lic Chan, Garnet
2008-03-01
We present some recent developments in the ab initio density matrix renormalization group (DMRG) method for quantum chemical problems, in particular our local, quadratic scaling algorithm [1] for low dimensional systems. This method is particularly suited for the description of strong nondynamic correlation, and allows us to compute numerically exact (FCI) correlated energies for large active spaces, up to one order of magnitude larger then can be done by conventional CASCI techniques. Other features of this method are its inherent multireference nature, compactness, variational results, size-consistency and size-extensivity. In addition we will review the problems (predominantly organic electronic materials) on which we applied the ab initio DMRG: 1) metal-insulator transition in hydrogen chains [1] 2) all-trans polyacetylene [1] 3) acenes [2] 4) polydiacetylenes [3]. References [1] Hachmann, Cardoen, Chan, JCP 125 (2006), 144101. [2] Hachmann, Dorando, Avil'es, Chan, JCP 127 (2007), 134309. [3] unpublished.
Reduced density-matrix functionals applied to the Hubbard dimer
NASA Astrophysics Data System (ADS)
Kamil, Ebad; Schade, Robert; Pruschke, Thomas; Blöchl, Peter E.
2016-02-01
Common density-matrix functionals, the Müller and the power functional, have been benchmarked for the half-filled Hubbard dimer, which allows us to model the bond dissociation problem and the transition from the weakly to the strongly correlated limit. Unbiased numerical calculations are combined with analytical results. Despite the well known successes of the Müller functional, the ground state is degenerate with a one-dimensional manifold of ferromagnetic solutions. The resulting infinite magnetic susceptibility indicates another qualitative flaw of the Müller functional. The derivative discontinuity with respect to particle number is not present indicating an incorrect metal-like behavior. The power functional actually favors the ferromagnetic state for weak interaction. Analogous to the Hartree-Fock approximation, the power functional undergoes a transition beyond a critical interaction strength, in this case, however, to a noncollinear antiferromagnetic state.
Quantum equivalence of noncommutative and Yang-Mills gauge theories in 2D and matrix theory
Ydri, Badis
2007-05-15
We construct noncommutative U(1) gauge theory on the fuzzy sphere S{sub N}{sup 2} as a unitary 2Nx2N matrix model. In the quantum theory the model is equivalent to a non-Abelian U(N) Yang-Mills theory on a two-dimensional lattice with two plaquettes. This equivalence holds in the 'fuzzy sphere' phase where we observe a 3rd order phase transition between weak-coupling and strong-coupling phases of the gauge theory. In the matrix phase we have a U(N) gauge theory on a single point.
Stochastic Optimally Tuned Range-Separated Hybrid Density Functional Theory.
Neuhauser, Daniel; Rabani, Eran; Cytter, Yael; Baer, Roi
2016-05-19
We develop a stochastic formulation of the optimally tuned range-separated hybrid density functional theory that enables significant reduction of the computational effort and scaling of the nonlocal exchange operator at the price of introducing a controllable statistical error. Our method is based on stochastic representations of the Coulomb convolution integral and of the generalized Kohn-Sham density matrix. The computational cost of the approach is similar to that of usual Kohn-Sham density functional theory, yet it provides a much more accurate description of the quasiparticle energies for the frontier orbitals. This is illustrated for a series of silicon nanocrystals up to sizes exceeding 3000 electrons. Comparison with the stochastic GW many-body perturbation technique indicates excellent agreement for the fundamental band gap energies, good agreement for the band edge quasiparticle excitations, and very low statistical errors in the total energy for large systems. The present approach has a major advantage over one-shot GW by providing a self-consistent Hamiltonian that is central for additional postprocessing, for example, in the stochastic Bethe-Salpeter approach. PMID:26651840
Phases of Polonium via Density Functional Theory
NASA Astrophysics Data System (ADS)
Verstraete, Matthieu J.
2010-01-01
The thermodynamical properties of the main phases of metallic polonium are examined using density functional theory. The exceptional nature of the solid-solid phase transition of α to β Po is underlined: it induces a lowering in symmetry, from cubic to rhombohedral, with increasing temperature. This is explained as the result of a delicate balance between bonding and entropic effects. Overall agreement with existing experimental data is good by state-of-the-art standards. The phonons of Po present Kohn anomalies, and it is shown that the effect of spin-orbit interactions is the inverse of that in normal metals: due to the nonspherical nature of the Fermi Surface, spin-orbit effects reduce nesting and harden most phonon frequencies.
Pseudospectral time-dependent density functional theory
NASA Astrophysics Data System (ADS)
Ko, Chaehyuk; Malick, David K.; Braden, Dale A.; Friesner, Richard A.; Martínez, Todd J.
2008-03-01
Time-dependent density functional theory (TDDFT) is implemented within the Tamm-Dancoff approximation (TDA) using a pseudospectral approach to evaluate two-electron repulsion integrals. The pseudospectral approximation uses a split representation with both spectral basis functions and a physical space grid to achieve a reduction in the scaling behavior of electronic structure methods. We demonstrate here that exceptionally sparse grids may be used in the excitation energy calculation, following earlier work employing the pseudospectral approximation for determining correlation energies in wavefunction-based methods with similar conclusions. The pseudospectral TDA-TDDFT method is shown to be up to ten times faster than a conventional algorithm for hybrid functionals without sacrificing chemical accuracy.
On matrix model formulations of noncommutative Yang-Mills theories
Azeyanagi, Tatsuo; Hirata, Tomoyoshi; Hanada, Masanori
2008-11-15
We study the stability of noncommutative spaces in matrix models and discuss the continuum limit which leads to the noncommutative Yang-Mills theories. It turns out that most noncommutative spaces in bosonic models are unstable. This indicates perturbative instability of fuzzy R{sup D} pointed out by Van Raamsdonk and Armoni et al. persists to nonperturbative level in these cases. In this sense, these bosonic noncommutative Yang-Mills theories are not well-defined, or at least their matrix model formulations studied in this paper do not work. We also show that noncommutative backgrounds are stable in a supersymmetric matrix model deformed by a cubic Myers term, though the deformation itself breaks supersymmetry.
Low-temperature random matrix theory at the soft edge
Edelman, Alan; Persson, Per-Olof; Sutton, Brian D.
2014-06-15
“Low temperature” random matrix theory is the study of random eigenvalues as energy is removed. In standard notation, β is identified with inverse temperature, and low temperatures are achieved through the limit β → ∞. In this paper, we derive statistics for low-temperature random matrices at the “soft edge,” which describes the extreme eigenvalues for many random matrix distributions. Specifically, new asymptotics are found for the expected value and standard deviation of the general-β Tracy-Widom distribution. The new techniques utilize beta ensembles, stochastic differential operators, and Riccati diffusions. The asymptotics fit known high-temperature statistics curiously well and contribute to the larger program of general-β random matrix theory.
Perturbation Theory for Parent Hamiltonians of Matrix Product States
NASA Astrophysics Data System (ADS)
Szehr, Oleg; Wolf, Michael M.
2015-05-01
This article investigates the stability of the ground state subspace of a canonical parent Hamiltonian of a Matrix product state against local perturbations. We prove that the spectral gap of such a Hamiltonian remains stable under weak local perturbations even in the thermodynamic limit, where the entire perturbation might not be bounded. Our discussion is based on preceding work by Yarotsky that develops a perturbation theory for relatively bounded quantum perturbations of classical Hamiltonians. We exploit a renormalization procedure, which on large scale transforms the parent Hamiltonian of a Matrix product state into a classical Hamiltonian plus some perturbation. We can thus extend Yarotsky's results to provide a perturbation theory for parent Hamiltonians of Matrix product states and recover some of the findings of the independent contributions (Cirac et al in Phys Rev B 8(11):115108, 2013) and (Michalakis and Pytel in Comm Math Phys 322(2):277-302, 2013).
Gedanken densities and exact constraints in density functional theory
Perdew, John P.; Ruzsinszky, Adrienn; Sun, Jianwei; Burke, Kieron
2014-05-14
Approximations to the exact density functional for the exchange-correlation energy of a many-electron ground state can be constructed by satisfying constraints that are universal, i.e., valid for all electron densities. Gedanken densities are designed for the purpose of this construction, but need not be realistic. The uniform electron gas is an old gedanken density. Here, we propose a spherical two-electron gedanken density in which the dimensionless density gradient can be an arbitrary positive constant wherever the density is non-zero. The Lieb-Oxford lower bound on the exchange energy can be satisfied within a generalized gradient approximation (GGA) by bounding its enhancement factor or simplest GGA exchange-energy density. This enhancement-factor bound is well known to be sufficient, but our gedanken density shows that it is also necessary. The conventional exact exchange-energy density satisfies no such local bound, but energy densities are not unique, and the simplest GGA exchange-energy density is not an approximation to it. We further derive a strongly and optimally tightened bound on the exchange enhancement factor of a two-electron density, which is satisfied by the local density approximation but is violated by all published GGA's or meta-GGA’s. Finally, some consequences of the non-uniform density-scaling behavior for the asymptotics of the exchange enhancement factor of a GGA or meta-GGA are given.
New U-matrix theory in quantum mechanics
NASA Astrophysics Data System (ADS)
Lam, C. C.; Fung, P. C. W.
1983-04-01
We have analyzed Dyson's U-matrix theory of solving the Schrödinger equation in the interaction picture and are able to express the U matrix as a dominant term plus an infinite series involving multiple integrals of time. For a certain rather restrictive class of Hamiltonians, our theory is exact for a general time-dependent problem. For other Hamiltonians, we can only obtain approximate expressions for our U matrix and hence the wave function. Treating a time-independent problem as a special case of the time-dependent situation with a sudden-switching process, we have shown that our U matrix is exact. To demonstrate the working procedures of our theory, we apply it to study the well-known time-independent charged harmonic-oscillator problem and the more general harmonic oscillator with a time-dependent driving force. Compared with other methods, our new theory appears to lead to a result which contains more information than others due to the inclusion of noncommutability properties of operators in the operator Schrödinger equation. It has been shown that the classical Feynman path-integral formalism can be deduced from quantum mechanics with the use of the Green's-function operator. It is interesting to note that apart from a step function, the Green's-function operator is the same as that of our U(s) matrix, which is the U matrix obtained within the regime of the Schrödinger picture for a time-independent Hamiltonian, as a special case of our general time-dependent treatment.
Local spin analyses using density functional theory
NASA Astrophysics Data System (ADS)
Abate, Bayileyegn; Peralta, Juan
Local spin analysis is a valuable technique in computational investigations magnetic interactions on mono- and polynuclear transition metal complexes, which play vital roles in catalysis, molecular magnetism, artificial photosynthesis, and several other commercially important materials. The relative size and complex electronic structure of transition metal complexes often prohibits the use of multi-determinant approaches, and hence, practical calculations are often limited to single-determinant methods. Density functional theory (DFT) has become one of the most successful and widely used computational tools for the electronic structure study of complex chemical systems; transition metal complexes in particular. Within the DFT formalism, a more flexible and complete theoretical modeling of transition metal complexes can be achieved by considering noncollinear spins, in which the spin density is 'allowed to' adopt noncollinear structures in stead of being constrained to align parallel/antiparallel to a universal axis of magnetization. In this meeting, I will present local spin analyses results obtained using different DFT functionals. Local projection operators are used to decompose the expectation value
Optimization of constrained density functional theory
NASA Astrophysics Data System (ADS)
O'Regan, David D.; Teobaldi, Gilberto
2016-07-01
Constrained density functional theory (cDFT) is a versatile electronic structure method that enables ground-state calculations to be performed subject to physical constraints. It thereby broadens their applicability and utility. Automated Lagrange multiplier optimization is necessary for multiple constraints to be applied efficiently in cDFT, for it to be used in tandem with geometry optimization, or with molecular dynamics. In order to facilitate this, we comprehensively develop the connection between cDFT energy derivatives and response functions, providing a rigorous assessment of the uniqueness and character of cDFT stationary points while accounting for electronic interactions and screening. In particular, we provide a nonperturbative proof that stable stationary points of linear density constraints occur only at energy maxima with respect to their Lagrange multipliers. We show that multiple solutions, hysteresis, and energy discontinuities may occur in cDFT. Expressions are derived, in terms of convenient by-products of cDFT optimization, for quantities such as the dielectric function and a condition number quantifying ill definition in multiple constraint cDFT.
Random matrix theory and portfolio optimization in Moroccan stock exchange
NASA Astrophysics Data System (ADS)
El Alaoui, Marwane
2015-09-01
In this work, we use random matrix theory to analyze eigenvalues and see if there is a presence of pertinent information by using Marčenko-Pastur distribution. Thus, we study cross-correlation among stocks of Casablanca Stock Exchange. Moreover, we clean correlation matrix from noisy elements to see if the gap between predicted risk and realized risk would be reduced. We also analyze eigenvectors components distributions and their degree of deviations by computing the inverse participation ratio. This analysis is a way to understand the correlation structure among stocks of Casablanca Stock Exchange portfolio.
β -decay study within multireference density functional theory and beyond
NASA Astrophysics Data System (ADS)
Konieczka, M.; Bączyk, P.; Satuła, W.
2016-04-01
A pioneering study of Gamow-Teller (GT) and Fermi matrix elements (MEs) using no-core-configuration-interaction formalism rooted in multireference density functional theory is presented. After a successful test performed for 6He→6Liβ decay, the model is applied to compute MEs in the s d - and p f -shell T =1 /2 mirror nuclei. The calculated GT MEs and the isospin-symmetry-breaking corrections to the Fermi branch are found to be in very good agreement with shell-model predictions in spite of fundamental differences between these models concerning model space, treatment of correlations, or inclusion of a core. This result indirectly supports the two-body-current-based scenarios behind the quenching of the axial-vector coupling constant.
Iterative solutions to the steady-state density matrix for optomechanical systems.
Nation, P D; Johansson, J R; Blencowe, M P; Rimberg, A J
2015-01-01
We present a sparse matrix permutation from graph theory that gives stable incomplete lower-upper preconditioners necessary for iterative solutions to the steady-state density matrix for quantum optomechanical systems. This reordering is efficient, adding little overhead to the computation, and results in a marked reduction in both memory and runtime requirements compared to other solution methods, with performance gains increasing with system size. Either of these benchmarks can be tuned via the preconditioner accuracy and solution tolerance. This reordering optimizes the condition number of the approximate inverse and is the only method found to be stable at large Hilbert space dimensions. This allows for steady-state solutions to otherwise intractable quantum optomechanical systems. PMID:25679739
Chemistry by Way of Density Functional Theory
NASA Technical Reports Server (NTRS)
Bauschlicher, Charles W., Jr.; Ricca, Alessandra; Partridge, Harry; Langohff, Stephen R.; Arnold, James O. (Technical Monitor)
1996-01-01
In this work we demonstrate that density functional theory (DFT) methods make an important contribution to understanding chemical systems and are an important additional method for the computational chemist. We report calibration calculations obtained with different functionals for the 55 G2 molecules to justify our selection of the B3LYP functional. We show that accurate geometries and vibrational frequencies obtained at the B3LYP level can be combined with traditional methods to simplify the calculation of accurate heats of formation. We illustrate the application of the B3LYP approach to a variety of chemical problems from the vibrational frequencies of polycyclic aromatic hydrocarbons to transition metal systems. We show that the B3LYP method typically performs better than the MP2 method at a significantly lower computational cost. Thus the B3LYP method allows us to extend our studies to much larger systems while maintaining a high degree of accuracy. We show that for transition metal systems, the B3LYP bond energies are typically of sufficient accuracy that they can be used to explain experimental trends and even differentiate between different experimental values. We show that for boron clusters the B3LYP energetics are not as good as for many of the other systems presented, but even in this case the B3LYP approach is able to help understand the experimental trends.
Density functional theory in the solid state
Hasnip, Philip J.; Refson, Keith; Probert, Matt I. J.; Yates, Jonathan R.; Clark, Stewart J.; Pickard, Chris J.
2014-01-01
Density functional theory (DFT) has been used in many fields of the physical sciences, but none so successfully as in the solid state. From its origins in condensed matter physics, it has expanded into materials science, high-pressure physics and mineralogy, solid-state chemistry and more, powering entire computational subdisciplines. Modern DFT simulation codes can calculate a vast range of structural, chemical, optical, spectroscopic, elastic, vibrational and thermodynamic phenomena. The ability to predict structure–property relationships has revolutionized experimental fields, such as vibrational and solid-state NMR spectroscopy, where it is the primary method to analyse and interpret experimental spectra. In semiconductor physics, great progress has been made in the electronic structure of bulk and defect states despite the severe challenges presented by the description of excited states. Studies are no longer restricted to known crystallographic structures. DFT is increasingly used as an exploratory tool for materials discovery and computational experiments, culminating in ex nihilo crystal structure prediction, which addresses the long-standing difficult problem of how to predict crystal structure polymorphs from nothing but a specified chemical composition. We present an overview of the capabilities of solid-state DFT simulations in all of these topics, illustrated with recent examples using the CASTEP computer program. PMID:24516184
Photostriction in Ferroelectrics from Density Functional Theory
NASA Astrophysics Data System (ADS)
Paillard, Charles; Xu, Bin; Dkhil, Brahim; Geneste, Grégory; Bellaiche, L.
2016-06-01
An ab initio procedure allowing the computation of the deformation of ferroelectric-based materials under light is presented. This numerical scheme consists in structurally relaxing the system under the constraint of a fixed ne concentration of electrons photoexcited into a specific conduction band edge state from a chosen valence band state, via the use of a constrained density functional theory method. The resulting change in lattice constant along a selected crystallographic direction is then calculated for a reasonable estimate of ne. This method is applied to bulk multiferroic BiFeO3 and predicts a photostriction effect of the same order of magnitude than the ones recently observed. A strong dependence of photostrictive response on both the reached conduction state and the crystallographic direction (along which this effect is determined) is also revealed. Furthermore, analysis of the results demonstrates that the photostriction mechanism mostly originates from the screening of the spontaneous polarization by the photoexcited electrons in combination with the inverse piezoelectric effect.
Dynamical density functional theory for microswimmers
NASA Astrophysics Data System (ADS)
Menzel, Andreas M.; Saha, Arnab; Hoell, Christian; Löwen, Hartmut
2016-01-01
Dynamical density functional theory (DDFT) has been successfully derived and applied to describe on one hand passive colloidal suspensions, including hydrodynamic interactions between individual particles. On the other hand, active "dry" crowds of self-propelled particles have been characterized using DDFT. Here, we go one essential step further and combine these two approaches. We establish a DDFT for active microswimmer suspensions. For this purpose, simple minimal model microswimmers are introduced. These microswimmers self-propel by setting the surrounding fluid into motion. They hydrodynamically interact with each other through their actively self-induced fluid flows and via the common "passive" hydrodynamic interactions. An effective soft steric repulsion is also taken into account. We derive the DDFT starting from common statistical approaches. Our DDFT is then tested and applied by characterizing a suspension of microswimmers, the motion of which is restricted to a plane within a three-dimensional bulk fluid. Moreover, the swimmers are confined by a radially symmetric trapping potential. In certain parameter ranges, we find rotational symmetry breaking in combination with the formation of a "hydrodynamic pumping state," which has previously been observed in the literature as a result of particle-based simulations. An additional instability of this pumping state is revealed.
Photostriction in Ferroelectrics from Density Functional Theory.
Paillard, Charles; Xu, Bin; Dkhil, Brahim; Geneste, Grégory; Bellaiche, L
2016-06-17
An ab initio procedure allowing the computation of the deformation of ferroelectric-based materials under light is presented. This numerical scheme consists in structurally relaxing the system under the constraint of a fixed n_{e} concentration of electrons photoexcited into a specific conduction band edge state from a chosen valence band state, via the use of a constrained density functional theory method. The resulting change in lattice constant along a selected crystallographic direction is then calculated for a reasonable estimate of n_{e}. This method is applied to bulk multiferroic BiFeO_{3} and predicts a photostriction effect of the same order of magnitude than the ones recently observed. A strong dependence of photostrictive response on both the reached conduction state and the crystallographic direction (along which this effect is determined) is also revealed. Furthermore, analysis of the results demonstrates that the photostriction mechanism mostly originates from the screening of the spontaneous polarization by the photoexcited electrons in combination with the inverse piezoelectric effect. PMID:27367406
Semiclassical origins of density functional theory
NASA Astrophysics Data System (ADS)
Burke, Kieron
2009-03-01
Until the seminal work of Hohenberg, Kohn, and Sham of the mid 60's, most density functional theory (DFT) was derived from semiclassical approximations. This non-empirical approach shows an intrinsic difference between solids (for which DFT was originally developed) and molecules, and explains many of its more mysterious manifestations. For example, the success of DFT for molecules has nothing to do with the uniform gas. Results include [1] a derivation of the empirical parameter in the B88 exchange functional, [2] PBEsol, a new GGA that restores the exchange gradient expansion and improves lattice constants in solids, [3] a novel approach to ``orbital-free'' DFT that, in preliminary tests, is 40 times more accurate than its DFT counterpart. The talk is aimed at a general theoretical audience. Detailed technical knowledge of DFT is neither needed, nor desirable. [4pt] [1] J.P. Perdew, L.A. Constantin, E. Sagvolden, and KB, Phys. Rev. Lett. 97, 223002 (2006). [0pt] [2] J.P. Perdew, A. Ruzsinszky, G.I. Csonka, O.A. Vydrov, G.E. Scuseria, L.A. Constantin, X. Zhou, and KB, Phys. Rev. Lett. 100, 136406 (2008). [0pt] [3] Peter Elliott, Donghyung Lee, Attila Cangi, KB, Phys. Rev. Lett. 100, 256406 (2008).
Density matrix reconstruction of a large angular momentum
NASA Astrophysics Data System (ADS)
Klose, Gerd
2001-10-01
A complete description of the quantum state of a physical system is the fundamental knowledge necessary to statistically predict the outcome of measurements. In turning this statement around, Wolfgang Pauli raised already in 1933 the question, whether an unknown quantum state could be uniquely determined by appropriate measurements-a problem that has gained new relevance in recent years. In order to harness the prospects of quantum computing, secure communication, teleportation, and the like, the development of techniques to accurately control and measure quantum states has now become a matter of practical as well as fundamental interest. However, there is no general answer to Pauli's very basic question, and quantum state reconstruction algorithms have been developed and experimentally demonstrated only for a few systems so far. This thesis presents a novel experimental method to measure the unknown and generally mixed quantum state for an angular momentum of arbitrary magnitude. The (2F + 1) x (2F + 1) density matrix describing the quantum state is hereby completely determined from a set of Stern-Gerlach measurements with (4F + 1) different orientations of the quantization axis. This protocol is implemented for laser cooled Cesium atoms in the 6S1/2(F = 4) hyperfine ground state manifold, and is applied to a number of test states prepared by optical pumping and Larmor precession. A comparison of the input and the measured states shows successful reconstructions with fidelities of about 0.95.
Random-matrix theory of Majorana fermions and topological superconductors
NASA Astrophysics Data System (ADS)
Beenakker, C. W. J.
2015-07-01
The theory of random matrices originated half a century ago as a universal description of the spectral statistics of atoms and nuclei, dependent only on the presence or absence of fundamental symmetries. Applications to quantum dots (artificial atoms) followed, stimulated by developments in the field of quantum chaos, as well as applications to Andreev billiards—quantum dots with induced superconductivity. Superconductors with topologically protected subgap states, Majorana zero modes, and Majorana edge modes, provide a new arena for applications of random-matrix theory. These recent developments are reviewed, with an emphasis on electrical and thermal transport properties that can probe the Majorana fermions.
Matrix models and stochastic growth in Donaldson-Thomas theory
Szabo, Richard J.; Tierz, Miguel
2012-10-15
We show that the partition functions which enumerate Donaldson-Thomas invariants of local toric Calabi-Yau threefolds without compact divisors can be expressed in terms of specializations of the Schur measure. We also discuss the relevance of the Hall-Littlewood and Jack measures in the context of BPS state counting and study the partition functions at arbitrary points of the Kaehler moduli space. This rewriting in terms of symmetric functions leads to a unitary one-matrix model representation for Donaldson-Thomas theory. We describe explicitly how this result is related to the unitary matrix model description of Chern-Simons gauge theory. This representation is used to show that the generating functions for Donaldson-Thomas invariants are related to tau-functions of the integrable Toda and Toeplitz lattice hierarchies. The matrix model also leads to an interpretation of Donaldson-Thomas theory in terms of non-intersecting paths in the lock-step model of vicious walkers. We further show that these generating functions can be interpreted as normalization constants of a corner growth/last-passage stochastic model.
Mniszewski, S M; Cawkwell, M J; Wall, M E; Mohd-Yusof, J; Bock, N; Germann, T C; Niklasson, A M N
2015-10-13
We present an algorithm for the calculation of the density matrix that for insulators scales linearly with system size and parallelizes efficiently on multicore, shared memory platforms with small and controllable numerical errors. The algorithm is based on an implementation of the second-order spectral projection (SP2) algorithm [ Niklasson, A. M. N. Phys. Rev. B 2002 , 66 , 155115 ] in sparse matrix algebra with the ELLPACK-R data format. We illustrate the performance of the algorithm within self-consistent tight binding theory by total energy calculations of gas phase poly(ethylene) molecules and periodic liquid water systems containing up to 15,000 atoms on up to 16 CPU cores. We consider algorithm-specific performance aspects, such as local vs nonlocal memory access and the degree of matrix sparsity. Comparisons to sparse matrix algebra implementations using off-the-shelf libraries on multicore CPUs, graphics processing units (GPUs), and the Intel many integrated core (MIC) architecture are also presented. The accuracy and stability of the algorithm are illustrated with long duration Born-Oppenheimer molecular dynamics simulations of 1000 water molecules and a 303 atom Trp cage protein solvated by 2682 water molecules. PMID:26574255
Fission matrix capability for MCNP, Part I - Theory
Brown, F. B.; Carney, S. E.; Kiedrowski, B. C.; Martin, W. R.
2013-07-01
The theory underlying the fission matrix method is derived using a rigorous Green's function approach. The method is then used to investigate fundamental properties of the transport equation for a continuous-energy physics treatment. We provide evidence that an infinite set of discrete, real eigenvalues and eigenfunctions exist for the continuous-energy problem, and that the eigenvalue spectrum converges smoothly as the spatial mesh for the fission matrix is refined. We also derive equations for the adjoint solution. We show that if the mesh is sufficiently refined so that both forward and adjoint solutions are valid, then the adjoint fission matrix is identical to the transpose of the forward matrix. While the energy-dependent transport equation is strictly bi-orthogonal, we provide surprising results that the forward modes are very nearly self-adjoint for a variety of continuous-energy problems. A companion paper (Part II - Applications) describes the initial experience and results from implementing this fission matrix capability into the MCNP Monte Carlo code. (authors)
NASA Astrophysics Data System (ADS)
Belluzzi, L.; Landi Degl'Innocenti, E.; Trujillo Bueno, J.
2013-04-01
Within the framework of the density matrix theory for the generation and transfer of polarized radiation, velocity density matrix correlations represent an important physical aspect that, however, is often neglected in practical applications when adopting the simplifying approximation of complete redistribution on velocity. In this paper, we present an application of the non-LTE problem for polarized radiation taking such correlations into account through the velocity-space density matrix formalism. We consider a two-level atom with infinitely sharp upper and lower levels, and we derive the corresponding statistical equilibrium equations, neglecting the contribution of velocity-changing collisions. Coupling such equations with the radiative transfer equations for polarized radiation, we derive a set of coupled equations for the velocity-dependent source function. This set of equations is then particularized to the case of a plane-parallel atmosphere. The equations presented in this paper provide a complete and solid description of the physics of pure Doppler redistribution, a phenomenon generally described within the framework of the redistribution matrix formalism. The redistribution matrix corresponding to this problem (generally referred to as RI) is derived starting from the statistical equilibrium equations for the velocity-space density matrix and from the radiative transfer equations for polarized radiation, thus showing the equivalence of the two approaches.
The origin of linear scaling Fock matrix calculation with density prescreening
Mitin, Alexander V.
2015-12-31
A theorem was proven, which reads that the number of nonzero two-electron integrals scales linearly with respect to the number of basis functions for large molecular systems. This permits to show that linear scaling property of the Fock matrix calculation with using density prescreening arises due to linear scaling properties of the number of nonzero two-electron integrals and the number of leading matrix elements of density matrix. This property is reinforced by employing the density prescreening technique. The use of the density difference prescreening further improves the linear scaling property of the Fock matrix calculation method. As a result, the linear scaling regime of the Fock matrix calculation can begin from the number of basis functions of 2000–3000 in dependence on the basis function type in molecular calculations. It was also shown that the conventional algorithm of Fock matrix calculation from stored nonzero two-electron integrals with density prescreening possesses linear scaling property.
Density functional theory for polymeric systems in 2D
NASA Astrophysics Data System (ADS)
Słyk, Edyta; Roth, Roland; Bryk, Paweł
2016-06-01
We propose density functional theory for polymeric fluids in two dimensions. The approach is based on Wertheim’s first order thermodynamic perturbation theory (TPT) and closely follows density functional theory for polymers proposed by Yu and Wu (2002 J. Chem. Phys. 117 2368). As a simple application we evaluate the density profiles of tangent hard-disk polymers at hard walls. The theoretical predictions are compared against the results of the Monte Carlo simulations. We find that for short chain lengths the theoretical density profiles are in an excellent agreement with the Monte Carlo data. The agreement is less satisfactory for longer chains. The performance of the theory can be improved by recasting the approach using the self-consistent field theory formalism. When the self-avoiding chain statistics is used, the theory yields a marked improvement in the low density limit. Further improvements for long chains could be reached by going beyond the first order of TPT.
Density functional theory for polymeric systems in 2D.
Słyk, Edyta; Roth, Roland; Bryk, Paweł
2016-06-22
We propose density functional theory for polymeric fluids in two dimensions. The approach is based on Wertheim's first order thermodynamic perturbation theory (TPT) and closely follows density functional theory for polymers proposed by Yu and Wu (2002 J. Chem. Phys. 117 2368). As a simple application we evaluate the density profiles of tangent hard-disk polymers at hard walls. The theoretical predictions are compared against the results of the Monte Carlo simulations. We find that for short chain lengths the theoretical density profiles are in an excellent agreement with the Monte Carlo data. The agreement is less satisfactory for longer chains. The performance of the theory can be improved by recasting the approach using the self-consistent field theory formalism. When the self-avoiding chain statistics is used, the theory yields a marked improvement in the low density limit. Further improvements for long chains could be reached by going beyond the first order of TPT. PMID:27115343
Type-IIB-string-M-theory duality and longitudinal membranes in M(atrix) theory
NASA Astrophysics Data System (ADS)
Ho, Pei-Ming; Wu, Yong-Shi
1998-02-01
In this paper we study duality properties of the M(atrix) theory compactified on a circle. We present evidence for the equivalence of this theory to the strong coupling limit of type-IIB string theory compactified on a circle. In the M(atrix) theory context, our evidence for this duality consists of showing the appearance (upon compactification) of a topological term recently discovered in the D-string action, identifying the BPS states of type-IIB strings in the spectrum and finding the remnant symmetry of SL(2,Z) and the associated τ moduli. By this type-IIB-string-M-theory duality, a number of insights are gained into the physics of longitudinal membranes in the infinite momentum frame.
Quasi-degenerate perturbation theory using matrix product states.
Sharma, Sandeep; Jeanmairet, Guillaume; Alavi, Ali
2016-01-21
In this work, we generalize the recently proposed matrix product state perturbation theory (MPSPT) for calculating energies of excited states using quasi-degenerate (QD) perturbation theory. Our formulation uses the Kirtman-Certain-Hirschfelder canonical Van Vleck perturbation theory, which gives Hermitian effective Hamiltonians at each order, and also allows one to make use of Wigner's 2n + 1 rule. Further, our formulation satisfies Granovsky's requirement of model space invariance which is important for obtaining smooth potential energy curves. Thus, when we use MPSPT with the Dyall Hamiltonian, we obtain a model space invariant version of quasi-degenerate n-electron valence state perturbation theory (NEVPT), a property that the usual formulation of QD-NEVPT2 based on a multipartitioning technique lacked. We use our method on the benchmark problems of bond breaking of LiF which shows ionic to covalent curve crossing and the twist around the double bond of ethylene where significant valence-Rydberg mixing occurs in the excited states. In accordance with our previous work, we find that multi-reference linearized coupled cluster theory is more accurate than other multi-reference theories of similar cost. PMID:26801016
Quasi-degenerate perturbation theory using matrix product states
NASA Astrophysics Data System (ADS)
Sharma, Sandeep; Jeanmairet, Guillaume; Alavi, Ali
2016-01-01
In this work, we generalize the recently proposed matrix product state perturbation theory (MPSPT) for calculating energies of excited states using quasi-degenerate (QD) perturbation theory. Our formulation uses the Kirtman-Certain-Hirschfelder canonical Van Vleck perturbation theory, which gives Hermitian effective Hamiltonians at each order, and also allows one to make use of Wigner's 2n + 1 rule. Further, our formulation satisfies Granovsky's requirement of model space invariance which is important for obtaining smooth potential energy curves. Thus, when we use MPSPT with the Dyall Hamiltonian, we obtain a model space invariant version of quasi-degenerate n-electron valence state perturbation theory (NEVPT), a property that the usual formulation of QD-NEVPT2 based on a multipartitioning technique lacked. We use our method on the benchmark problems of bond breaking of LiF which shows ionic to covalent curve crossing and the twist around the double bond of ethylene where significant valence-Rydberg mixing occurs in the excited states. In accordance with our previous work, we find that multi-reference linearized coupled cluster theory is more accurate than other multi-reference theories of similar cost.
Random matrix theory and fund of funds portfolio optimisation
NASA Astrophysics Data System (ADS)
Conlon, T.; Ruskin, H. J.; Crane, M.
2007-08-01
The proprietary nature of Hedge Fund investing means that it is common practise for managers to release minimal information about their returns. The construction of a fund of hedge funds portfolio requires a correlation matrix which often has to be estimated using a relatively small sample of monthly returns data which induces noise. In this paper, random matrix theory (RMT) is applied to a cross-correlation matrix C, constructed using hedge fund returns data. The analysis reveals a number of eigenvalues that deviate from the spectrum suggested by RMT. The components of the deviating eigenvectors are found to correspond to distinct groups of strategies that are applied by hedge fund managers. The inverse participation ratio is used to quantify the number of components that participate in each eigenvector. Finally, the correlation matrix is cleaned by separating the noisy part from the non-noisy part of C. This technique is found to greatly reduce the difference between the predicted and realised risk of a portfolio, leading to an improved risk profile for a fund of hedge funds.
Locality of correlation in density functional theory
NASA Astrophysics Data System (ADS)
Burke, Kieron; Cancio, Antonio; Gould, Tim; Pittalis, Stefano
2016-08-01
The Hohenberg-Kohn density functional was long ago shown to reduce to the Thomas-Fermi (TF) approximation in the non-relativistic semiclassical (or large-Z) limit for all matter, i.e., the kinetic energy becomes local. Exchange also becomes local in this limit. Numerical data on the correlation energy of atoms support the conjecture that this is also true for correlation, but much less relevant to atoms. We illustrate how expansions around a large particle number are equivalent to local density approximations and their strong relevance to density functional approximations. Analyzing highly accurate atomic correlation energies, we show that EC → -AC ZlnZ + BCZ as Z → ∞, where Z is the atomic number, AC is known, and we estimate BC to be about 37 mhartree. The local density approximation yields AC exactly, but a very incorrect value for BC, showing that the local approximation is less relevant for the correlation alone. This limit is a benchmark for the non-empirical construction of density functional approximations. We conjecture that, beyond atoms, the leading correction to the local density approximation in the large-Z limit generally takes this form, but with BC a functional of the TF density for the system. The implications for the construction of approximate density functionals are discussed.
Locality of correlation in density functional theory.
Burke, Kieron; Cancio, Antonio; Gould, Tim; Pittalis, Stefano
2016-08-01
The Hohenberg-Kohn density functional was long ago shown to reduce to the Thomas-Fermi (TF) approximation in the non-relativistic semiclassical (or large-Z) limit for all matter, i.e., the kinetic energy becomes local. Exchange also becomes local in this limit. Numerical data on the correlation energy of atoms support the conjecture that this is also true for correlation, but much less relevant to atoms. We illustrate how expansions around a large particle number are equivalent to local density approximations and their strong relevance to density functional approximations. Analyzing highly accurate atomic correlation energies, we show that EC → -AC ZlnZ + BCZ as Z → ∞, where Z is the atomic number, AC is known, and we estimate BC to be about 37 mhartree. The local density approximation yields AC exactly, but a very incorrect value for BC, showing that the local approximation is less relevant for the correlation alone. This limit is a benchmark for the non-empirical construction of density functional approximations. We conjecture that, beyond atoms, the leading correction to the local density approximation in the large-Z limit generally takes this form, but with BC a functional of the TF density for the system. The implications for the construction of approximate density functionals are discussed. PMID:27497544
Introduction to Classical Density Functional Theory by a Computational Experiment
ERIC Educational Resources Information Center
Jeanmairet, Guillaume; Levy, Nicolas; Levesque, Maximilien; Borgis, Daniel
2014-01-01
We propose an in silico experiment to introduce the classical density functional theory (cDFT). Density functional theories, whether quantum or classical, rely on abstract concepts that are nonintuitive; however, they are at the heart of powerful tools and active fields of research in both physics and chemistry. They led to the 1998 Nobel Prize in…
Energy density matrix formalism for interacting quantum systems: a quantum Monte Carlo study
Krogel, Jaron T; Kim, Jeongnim; Reboredo, Fernando A
2014-01-01
We develop an energy density matrix that parallels the one-body reduced density matrix (1RDM) for many-body quantum systems. Just as the density matrix gives access to the number density and occupation numbers, the energy density matrix yields the energy density and orbital occupation energies. The eigenvectors of the matrix provide a natural orbital partitioning of the energy density while the eigenvalues comprise a single particle energy spectrum obeying a total energy sum rule. For mean-field systems the energy density matrix recovers the exact spectrum. When correlation becomes important, the occupation energies resemble quasiparticle energies in some respects. We explore the occupation energy spectrum for the finite 3D homogeneous electron gas in the metallic regime and an isolated oxygen atom with ground state quantum Monte Carlo techniques imple- mented in the QMCPACK simulation code. The occupation energy spectrum for the homogeneous electron gas can be described by an effective mass below the Fermi level. Above the Fermi level evanescent behavior in the occupation energies is observed in similar fashion to the occupation numbers of the 1RDM. A direct comparison with total energy differences demonstrates a quantita- tive connection between the occupation energies and electron addition and removal energies for the electron gas. For the oxygen atom, the association between the ground state occupation energies and particle addition and removal energies becomes only qualitative. The energy density matrix provides a new avenue for describing energetics with quantum Monte Carlo methods which have traditionally been limited to total energies.
A half century of density functional theory
Zangwill, Andrew
2015-07-15
Today’s most popular method for calculating the electronic structure of atoms, molecules, liquids, solids, and plasmas began as a bold hypothesis: The electron density distribution completely characterizes the ground state of a many-electron system.
Inner structure of vehicular ensembles and random matrix theory
NASA Astrophysics Data System (ADS)
Krbálek, Milan; Hobza, Tomáš
2016-05-01
We introduce a special class of random matrices (DUE) whose spectral statistics corresponds to statistics of microscopical quantities detected in vehicular flows. Comparing the level spacing distribution (for ordered eigenvalues in unfolded spectra of DUE matrices) with the time-clearance distribution extracted from various areas of the flux-density diagram (evaluated from original traffic data measured on Czech expressways with high occupancies) we demonstrate that the set of classical systems showing an universality associated with Random Matrix Ensembles can be extended by traffic systems.
Matrix theory on ALE spaces and wrapped membranes
NASA Astrophysics Data System (ADS)
Berenstein, David; Corrado, Richard
1998-09-01
We study the properties of wrapped membranes in matrix theory on ALE spaces. We show that the only BPS bound states of wrapped membranes that can form are roots of the A- D- E group. We determine a bound on the energy of a bound state and find the correct dependence on the blow-up parameters and longitudinal momentum expected from M-theory. For the An-1 series, we construct explicit classical solutions for the wrapped membrane bound states. These states have a very rich structure and have a natural interpretation in terms of non-commutative geometry. In the A1 case, we examine the spectrum of excitations around the wrapped membrane solution and provide an explicit calculation of their energies. The results agree exactly with supergravity calculations.
A state interaction spin-orbit coupling density matrix renormalization group method.
Sayfutyarova, Elvira R; Chan, Garnet Kin-Lic
2016-06-21
We describe a state interaction spin-orbit (SISO) coupling method using density matrix renormalization group (DMRG) wavefunctions and the spin-orbit mean-field (SOMF) operator. We implement our DMRG-SISO scheme using a spin-adapted algorithm that computes transition density matrices between arbitrary matrix product states. To demonstrate the potential of the DMRG-SISO scheme we present accurate benchmark calculations for the zero-field splitting of the copper and gold atoms, comparing to earlier complete active space self-consistent-field and second-order complete active space perturbation theory results in the same basis. We also compute the effects of spin-orbit coupling on the spin-ladder of the iron-sulfur dimer complex [Fe2S2(SCH3)4](3-), determining the splitting of the lowest quartet and sextet states. We find that the magnitude of the zero-field splitting for the higher quartet and sextet states approaches a significant fraction of the Heisenberg exchange parameter. PMID:27334156
A state interaction spin-orbit coupling density matrix renormalization group method
NASA Astrophysics Data System (ADS)
Sayfutyarova, Elvira R.; Chan, Garnet Kin-Lic
2016-06-01
We describe a state interaction spin-orbit (SISO) coupling method using density matrix renormalization group (DMRG) wavefunctions and the spin-orbit mean-field (SOMF) operator. We implement our DMRG-SISO scheme using a spin-adapted algorithm that computes transition density matrices between arbitrary matrix product states. To demonstrate the potential of the DMRG-SISO scheme we present accurate benchmark calculations for the zero-field splitting of the copper and gold atoms, comparing to earlier complete active space self-consistent-field and second-order complete active space perturbation theory results in the same basis. We also compute the effects of spin-orbit coupling on the spin-ladder of the iron-sulfur dimer complex [Fe2S2(SCH3)4]3-, determining the splitting of the lowest quartet and sextet states. We find that the magnitude of the zero-field splitting for the higher quartet and sextet states approaches a significant fraction of the Heisenberg exchange parameter.
Random matrix theory analysis of cross correlations in financial markets
NASA Astrophysics Data System (ADS)
Utsugi, Akihiko; Ino, Kazusumi; Oshikawa, Masaki
2004-08-01
We confirm universal behaviors such as eigenvalue distribution and spacings predicted by random matrix theory (RMT) for the cross correlation matrix of the daily stock prices of Tokyo Stock Exchange from 1993 to 2001, which have been reported for New York Stock Exchange in previous studies. It is shown that the random part of the eigenvalue distribution of the cross correlation matrix is stable even when deterministic correlations are present. Some deviations in the small eigenvalue statistics outside the bounds of the universality class of RMT are not completely explained with the deterministic correlations as proposed in previous studies. We study the effect of randomness on deterministic correlations and find that randomness causes a repulsion between deterministic eigenvalues and the random eigenvalues. This is interpreted as a reminiscent of “level repulsion” in RMT and explains some deviations from the previous studies observed in the market data. We also study correlated groups of issues in these markets and propose a refined method to identify correlated groups based on RMT. Some characteristic differences between properties of Tokyo Stock Exchange and New York Stock Exchange are found.
NASA Astrophysics Data System (ADS)
Kurashige, Yuki
2014-06-01
Recent advances in quantum chemical density matrix renormalisation group (DMRG) theory are presented. The DMRG, originally devised as an alternative to the exact diagonalisation in condensed matter physics, has become a powerful quantum chemical method for molecular systems that exhibit a multireference character, e.g., excited states, π-conjugated systems, transition metal complexes, and in particular for large systems by combining it with conventional multireference electron correlation methods. The capability of the current quantum chemical DMRG is demonstrated for an application involving the potential energy curve of the chromium dimer, which is one of the most demanding multireference systems and thus requires the best electronic structure treatment for non-dynamical and dynamical correlation as well as large basis sets.
NASA Astrophysics Data System (ADS)
Obregón, Octavio; Cabo Bizet, Nana Geraldine
2016-03-01
Generalized information (entanglement) entropy(ies) that depend only on the probability (the density matrix) will be exhibited. It will be shown that these generalized information entropy(ies) are obtained by means of the superstatistics proposal and they correspond to generalized entanglement entropy(ies) that are at the same time a consequence of generalizing the Replica trick. Following the entropic force formulation, these generalized entropy(ies) provide a modified Newtońs law of gravitation. We discuss the difficulties to get an associated theory of gravity. Moreover, our results show corrections to the von Neumann entropy S0 that are larger than the usual UV ones and also than the corrections to the length dependent AdS3 entropy which result comparable to the UV ones. The correction terms due to the new entropy would modify the Ryu-Takayanagi identification between the CFT and the gravitational AdS3 entropies.
The variational two-electron reduced-density-matrix method for extended systems
NASA Astrophysics Data System (ADS)
Rubin, Nicholas C.
In this thesis we develop the variational two-electron reduced-density-matrix method for extended systems. Extended systems are represented in two ways: i) lattice models describing the dominant valence electronic structure with periodic boundaries to account for their extended nature and ii) a crystalline-orbital basis built from atomic orbitals using the generalization of molecular orbital theory to polymers. The first part of this thesis (Ch. 3--4) examines the performance of the variational 2-RDM method on lattice systems with tunable electron correlation. The first of these systems is the classic Hubbard model with linear and ladder lattice topologies. Because electron correlation functions, such as charge- and spin-ordering, are linear functions of the 2-RDM, the difference in electronic structure between one- and quasi-one-dimensional systems is accurately characterized. The second model contains only two-body interactions and is unique among typical spin models in that it does not have a mean-field reference wave function. The ground state wave functions from all Hamiltonians in the model have the same 1-electron reduced density matrix; consequently, one-electron theories are largely inapplicable. The superconducting eta-pairing ground states make the model a unique tool for demonstrating the necessary N-representability in highly correlated environments. The second part of this thesis (Ch. 5--6) develops a formalism for modeling materials by solving the full Schrodinger equation. Crystalline-orbital Hartree-Fock provides a set of orbitals and integral tensors for the variational 2-RDM method. We demonstrate that time-reversal symmetry, which is implicitly included in position space electronic structure calculations, must be explicitly included as an N-representability constraint on the 2-RDM when using a momentum space basis. The necessity of these equality constraints is demonstrated by the accurate recovery of the binding energy of two polymers and the
Daubechies wavelets for linear scaling density functional theory.
Mohr, Stephan; Ratcliff, Laura E; Boulanger, Paul; Genovese, Luigi; Caliste, Damien; Deutsch, Thierry; Goedecker, Stefan
2014-05-28
We demonstrate that Daubechies wavelets can be used to construct a minimal set of optimized localized adaptively contracted basis functions in which the Kohn-Sham orbitals can be represented with an arbitrarily high, controllable precision. Ground state energies and the forces acting on the ions can be calculated in this basis with the same accuracy as if they were calculated directly in a Daubechies wavelets basis, provided that the amplitude of these adaptively contracted basis functions is sufficiently small on the surface of the localization region, which is guaranteed by the optimization procedure described in this work. This approach reduces the computational costs of density functional theory calculations, and can be combined with sparse matrix algebra to obtain linear scaling with respect to the number of electrons in the system. Calculations on systems of 10,000 atoms or more thus become feasible in a systematic basis set with moderate computational resources. Further computational savings can be achieved by exploiting the similarity of the adaptively contracted basis functions for closely related environments, e.g., in geometry optimizations or combined calculations of neutral and charged systems. PMID:24880269
Daubechies wavelets for linear scaling density functional theory
Mohr, Stephan; Ratcliff, Laura E.; Genovese, Luigi; Caliste, Damien; Deutsch, Thierry; Boulanger, Paul; Goedecker, Stefan
2014-05-28
We demonstrate that Daubechies wavelets can be used to construct a minimal set of optimized localized adaptively contracted basis functions in which the Kohn-Sham orbitals can be represented with an arbitrarily high, controllable precision. Ground state energies and the forces acting on the ions can be calculated in this basis with the same accuracy as if they were calculated directly in a Daubechies wavelets basis, provided that the amplitude of these adaptively contracted basis functions is sufficiently small on the surface of the localization region, which is guaranteed by the optimization procedure described in this work. This approach reduces the computational costs of density functional theory calculations, and can be combined with sparse matrix algebra to obtain linear scaling with respect to the number of electrons in the system. Calculations on systems of 10 000 atoms or more thus become feasible in a systematic basis set with moderate computational resources. Further computational savings can be achieved by exploiting the similarity of the adaptively contracted basis functions for closely related environments, e.g., in geometry optimizations or combined calculations of neutral and charged systems.
Noncommutative gauge theory and symmetry breaking in matrix models
Grosse, Harald; Steinacker, Harold; Lizzi, Fedele
2010-04-15
We show how the fields and particles of the standard model can be naturally realized in noncommutative gauge theory. Starting with a Yang-Mills matrix model in more than four dimensions, an SU(n) gauge theory on a Moyal-Weyl space arises with all matter and fields in the adjoint of the gauge group. We show how this gauge symmetry can be broken spontaneously down to SU(3){sub c}xSU(2){sub L}xU(1){sub Q}[resp. SU(3){sub c}xU(1){sub Q}], which couples appropriately to all fields in the standard model. An additional U(1){sub B} gauge group arises which is anomalous at low energies, while the trace-U(1) sector is understood in terms of emergent gravity. A number of additional fields arise, which we assume to be massive, in a pattern that is reminiscent of supersymmetry. The symmetry breaking might arise via spontaneously generated fuzzy spheres, in which case the mechanism is similar to brane constructions in string theory.
Cohomological gauge theory, quiver matrix models and Donaldson-Thomas theory
NASA Astrophysics Data System (ADS)
Cirafici, Michele; Sinkovics, Annamaria; Szabo, Richard J.
2009-03-01
We study the relation between Donaldson-Thomas theory of Calabi-Yau threefolds and a six-dimensional topological Yang-Mills theory. Our main example is the topological U(N) gauge theory on flat space in its Coulomb branch. To evaluate its partition function we use equivariant localization techniques on its noncommutative deformation. As a result the gauge theory localizes on noncommutative instantons which can be classified in terms of N-coloured three-dimensional Young diagrams. We give to these noncommutative instantons a geometrical description in terms of certain stable framed coherent sheaves on projective space by using a higher-dimensional generalization of the ADHM formalism. From this formalism we construct a topological matrix quantum mechanics which computes an index of BPS states and provides an alternative approach to the six-dimensional gauge theory.
Density perturbations in general modified gravitational theories
De Felice, Antonio; Tsujikawa, Shinji; Mukohyama, Shinji
2010-07-15
We derive the equations of linear cosmological perturbations for the general Lagrangian density f(R,{phi},X)/2+L{sub c}, where R is a Ricci scalar, {phi} is a scalar field, and X=-{partial_derivative}{sup {mu}{phi}{partial_derivative}}{sub {mu}{phi}/}2 is a field kinetic energy. We take into account a nonlinear self-interaction term L{sub c}={xi}({phi}) {open_square}{phi}({partial_derivative}{sup {mu}{phi}{partial_derivative}}{sub {mu}{phi}}) recently studied in the context of ''Galileon'' cosmology, which keeps the field equations at second order. Taking into account a scalar-field mass explicitly, the equations of matter density perturbations and gravitational potentials are obtained under a quasistatic approximation on subhorizon scales. We also derive conditions for the avoidance of ghosts and Laplacian instabilities associated with propagation speeds. Our analysis includes most of modified gravity models of dark energy proposed in literature; and thus it is convenient to test the viability of such models from both theoretical and observational points of view.
Density Functional Theory with Dissipation: Transport through Single Molecules
Kieron Burke
2012-04-30
A huge amount of fundamental research was performed on this grant. Most of it focussed on fundamental issues of electronic structure calculations of transport through single molecules, using density functional theory. Achievements were: (1) First density functional theory with dissipation; (2) Pseudopotential plane wave calculations with master equation; (3) Weak bias limit; (4) Long-chain conductance; and (5) Self-interaction effects in tunneling.
Preface: Special Topic on Advances in Density Functional Theory
Yang, Weitao
2014-05-14
This Special Topic Issue on the Advances in Density Functional Theory, published as a celebration of the fifty years of density functional theory, contains a retrospective article, a perspective article, and a collection of original research articles that showcase recent theoretical advances in the field. It provides a timely discussion reflecting a cross section of our understanding, and the theoretical and computational developments, which have significant implications in broad areas of sciences and engineering.
Preface: Special topic on advances in density functional theory.
Yang, Weitao
2014-05-14
This Special Topic Issue on the Advances in Density Functional Theory, published as a celebration of the fifty years of density functional theory, contains a retrospective article, a perspective article, and a collection of original research articles that showcase recent theoretical advances in the field. It provides a timely discussion reflecting a cross section of our understanding, and the theoretical and computational developments, which have significant implications in broad areas of sciences and engineering. PMID:24832306
Generalized van der Waals density functional theory for nonuniform polymers
Patra, Chandra N.; Yethiraj, Arun
2000-01-15
A density functional theory is presented for the effect of attractions on the structure of polymers at surfaces. The theory treats the ideal gas functional exactly, and uses a weighted density approximation for the hard chain contribution to the excess free energy functional. The attractive interactions are treated using a van der Waals approximation. The theory is in good agreement with computer simulations for the density profiles at surfaces for a wide range of densities and temperatures, except for low polymer densities at low temperatures where it overestimates the depletion of chains from the surface. This deficiency is attributed to the neglect of liquid state correlations in the van der Waals term of the free energy functional. (c) 2000 American Institute of Physics.
NASA Astrophysics Data System (ADS)
Paeßens, Matthias; Schütz, Gunter M.
2002-08-01
The scaling of the viscosity of polymer melts is investigated with regard to the molecular weight. We present a generalization of the Rubinstein-Duke model, which takes constraint releases into account and calculates the effects on the viscosity by the use of the density matrix renormalization group algorithm. Using input from Rouse theory, the rates for the constraint releases are determined in a self-consistent way. We conclude that shape fluctuations of the tube caused by constraint release are not a likely candidate for improving Doi's crossover theory for the scaling of the polymer viscosity.
Charting an Inflationary Landscape with Random Matrix Theory
Marsh, M.C. David; McAllister, Liam; Pajer, Enrico; Wrase, Timm E-mail: mcallister@cornell.edu E-mail: timm.wrase@stanford.edu
2013-11-01
We construct a class of random potentials for N >> 1 scalar fields using non-equilibrium random matrix theory, and then characterize multifield inflation in this setting. By stipulating that the Hessian matrices in adjacent coordinate patches are related by Dyson Brownian motion, we define the potential in the vicinity of a trajectory. This method remains computationally efficient at large N, permitting us to study much larger systems than has been possible with other constructions. We illustrate the utility of our approach with a numerical study of inflation in systems with up to 100 coupled scalar fields. A significant finding is that eigenvalue repulsion sharply reduces the duration of inflation near a critical point of the potential: even if the curvature of the potential is fine-tuned to be small at the critical point, small cross-couplings in the Hessian cause the curvature to grow in the neighborhood of the critical point.
Matrix operator theory of radiative transfer. I - Rayleigh scattering.
NASA Technical Reports Server (NTRS)
Plass, G. N.; Kattawar, G. W.; Catchings, F. E.
1973-01-01
An entirely rigorous method for the solution of the equations for radiative transfer based on the matrix operator theory is reviewed. The advantages of the present method are: (1) all orders of the reflection and transmission matrices are calculated at once; (2) layers of any thickness may be combined, so that a realistic model of the atmosphere can be developed from any arbitrary number of layers, each with different properties and thicknesses; (3) calculations can readily be made for large optical depths and with highly anisotropic phase functions; (4) results are obtained for any desired value of the surface albedo including the value unity and for a large number of polar and azimuthal angles; (5) all fundamental equations can be interpreted immediately in terms of the physical interactions appropriate to the problem; and (6) both upward and downward radiance can be calculated at interior points from relatively simple expressions.
The Local-Density Theory: Application to Atoms and Molecules
NASA Astrophysics Data System (ADS)
Guo, Yufei
1990-01-01
The generalized local-spin-density functional (G-LSD) theory is proposed which avoids (a) the physical restriction used in the generalized exchange local-spin -density functional (GX-LSD) theory; (b) the homogeneous electron-density approximation in the Hartree-Fock-Slater (HFS) theory and in the Gaspar-Kohn-Sham (GKS) theory; and (c) the time-consuming step to search the optimal exchange parameter for each atom or ion in the Xalpha and Xia theories. Theoretically, the G-LSD theory is more rigorous than the GX-LSD, HFS, GKS, and Xia theories. Numerically, the statistical total energies for atoms are better in the G-LSD theory than in the GKS theory. Ionization potentials and electron affinities of atoms, the stability of singly and doubly charged negative ions, and the electronegativities, and hardnesses of the fractional charged atoms with Z < 37 are calculated by the SIC-GX-LSD theory with the GWB Fermi -hole parameters and electron-correlation correction. The self-interaction correction (SIC) is introduced into the multiple-Scattering Xalpha (MS-Xalpha) method and used to calculate some molecules and molecular anions. The results show that the ionization potentials from the negative of the one-electron eigenvalues are as good as those obtained in the transition state calculation and in very good agreement with experiment.
Collective field theory of a singular supersymmetric matrix model
de Mello Koch, R.; Rodrigues, J.P.
1995-05-15
The supersymmetric collective field theory with the potential {ital v}{prime}({ital x})={omega}{ital x}{minus}{eta}/{ital x} is studied. Consistency with supersymmetry enforces a two band solution. A supersymmetric classical configuration is found, and interpreted in terms of the density of zeroes of certain Laguerre polynomials. The spectrum of the model is then studied and is seen to correspond to a massless scalar and a Majorana fermion. The {ital x} space eigenfunctions are constructed and expressed in terms of Chebyshev polynomials. Higher order interactions are also discussed.
Ions in solution: Density corrected density functional theory (DC-DFT)
Kim, Min-Cheol; Sim, Eunji; Burke, Kieron
2014-05-14
Standard density functional approximations often give questionable results for odd-electron radical complexes, with the error typically attributed to self-interaction. In density corrected density functional theory (DC-DFT), certain classes of density functional theory calculations are significantly improved by using densities more accurate than the self-consistent densities. We discuss how to identify such cases, and how DC-DFT applies more generally. To illustrate, we calculate potential energy surfaces of HO·Cl{sup −} and HO·H{sub 2}O complexes using various common approximate functionals, with and without this density correction. Commonly used approximations yield wrongly shaped surfaces and/or incorrect minima when calculated self consistently, while yielding almost identical shapes and minima when density corrected. This improvement is retained even in the presence of implicit solvent.
Molecular density functional theory of water including density-polarization coupling.
Jeanmairet, Guillaume; Levy, Nicolas; Levesque, Maximilien; Borgis, Daniel
2016-06-22
We present a three-dimensional molecular density functional theory of water derived from first-principles that relies on the particle's density and multipolar polarization density and includes the density-polarization coupling. This brings two main benefits: (i) scalar density and vectorial multipolar polarization density fields are much more tractable and give more physical insight than the full position and orientation densities, and (ii) it includes the full density-polarization coupling of water, that is known to be non-vanishing but has never been taken into account. Furthermore, the theory requires only the partial charge distribution of a water molecule and three measurable bulk properties, namely the structure factor and the Fourier components of the longitudinal and transverse dielectric susceptibilities. PMID:27116250
Experimental determination of the density matrix describing collisionally produced H(n = 3) atoms
Havener, C.C.; Rouze, N.; Westerveld, W.B.; Risley, A.J.S.
1986-01-01
An experimental technique and analysis procedure is described for determining the axially symmetric density matrix for collisionally produced H(n = 3) atoms by measuring the Stokes parameters which characterize the emitted Balmer- radiation as a function of axial and transverse electric fields applied in the collision cell. The electric fields induce strong characteristic variations in the Stokes parameters. The 14 independent elements of the density matrix are determined by fitting the observed Stokes parameters with signals calculated from a theoretical analysis of the experiment. The physical interpretation of the density matrix is presented in terms of graphs of the electron probability distribution and the electron current distribution. Examples of the determination of the density matrix are given for 40-, 60-, and 80-keV H +He electron-transfer collisions.
Technology Transfer Automated Retrieval System (TEKTRAN)
Ecological edge effects are sensitive to landscape context. In particular, edge effects can be altered by matrix type and by the presence of other nearby edges. We experimentally altered patch configurations in an African savanna to determine how edge density and matrix type influence edge effect de...
Charge and spin fluctuations in the density functional theory
Gyoerffy, B.L.; Barbieri, A. . H.H. Wills Physics Lab.); Staunton, J.B. . Dept. of Physics); Shelton, W.A.; Stocks, G.M. )
1990-01-01
We introduce a conceptual framework which allow us to treat charge and spin fluctuations about the Local density Approximation (LDA) to the Density Functional Theory (DFT). We illustrate the approach by explicit study of the Disordered Local Moment (DLM) state in Fe above the Curie Temperature {Tc} and the Mott insulating state in MnO. 27 refs., 6 figs.
Algebraic methods for diagonalization of a quaternion matrix in quaternionic quantum theory
Jiang Tongsong
2005-05-01
By means of complex representation and real representation of a quaternion matrix, this paper studies the problem of diagonalization of a quaternion matrix, gives two algebraic methods for diagonalization of quaternion matrices in quaternionic quantum theory.
Search for Off-Diagonal Density Matrix Elements for Atoms in a Supersonic Beam
NASA Astrophysics Data System (ADS)
Rubenstein, Richard A.; Dhirani, Al-Amin; Kokorowski, David A.; Roberts, Tony D.; Smith, Edward T.; Smith, Winthrop W.; Bernstein, Herbert J.; Lehner, Jana; Gupta, Subhadeep; Pritchard, David E.
1999-03-01
We demonstrate the absence of off-diagonal elements for the density matrix of a supersonic Na atomic beam, thus showing that there are no coherent wave packets emerging from this source. We used a differentially detuned separated oscillatory field longitudinal interferometer to search for off-diagonal density matrix elements in the longitudinal energy/momentum basis. Our study places a stringent lower bound on their possible size over an off-diagonal energy range from 0 to 100 kHz.
Use of R-matrix theory in light element evaluations
Hale, G.M.
1992-12-31
R-matrix theory is a general framework for describing nuclear reactions (neutron- and charged-particle-induced) that is particularly well-suited for including resonances. We will review some unconventional properties of resonances that arise from this theory, including non-Breit-Wigner (BW) resonances and shadow poles, and discuss their physical consequences. Examples will be given from the analyses of several light systems that have been used in ENDF evaluations, including {sup 4}He, {sup 5}He, {sup 15}N, and {sup 17}O. The resonances in the helium systems tend to be significantly non-BW in character, while almost all the resonances in {sup 15}N and {sup 17}O are Breit-Wigner. An interesting exception in the case of {sup 15}N indicates that some of the sub-threshold levels that have been assumed to be bound might be virtual. We find that fitting data from all possible reactions simultaneously results in level schemes for the compound systems that differ in some cases significantly from the ``accepted`` published level information.
Optimal-transport formulation of electronic density-functional theory
NASA Astrophysics Data System (ADS)
Buttazzo, Giuseppe; De Pascale, Luigi; Gori-Giorgi, Paola
2012-06-01
The most challenging scenario for Kohn-Sham density-functional theory, that is, when the electrons move relatively slowly trying to avoid each other as much as possible because of their repulsion (strong-interaction limit), is reformulated here as an optimal transport (or mass transportation theory) problem, a well-established field of mathematics and economics. In practice, we show that to solve the problem of finding the minimum possible internal repulsion energy for N electrons in a given density ρ(r) is equivalent to find the optimal way of transporting N-1 times the density ρ into itself, with the cost function given by the Coulomb repulsion. We use this link to set the strong-interaction limit of density-functional theory on firm ground and to discuss the potential practical aspects of this reformulation.
NASA Astrophysics Data System (ADS)
Dai, Jian; Wu, Yong-Shi
2005-02-01
With the deconstruction technique, the geometric information of a torus can be encoded in a sequence of orbifolds. By studying the matrix theory on these orbifolds as quiver mechanics, we present a formulation that (de)constructs the torus of generic shape on which matrix theory is "compactified". The continuum limit of the quiver mechanics gives rise to a (1 + 2)-dimensional SYM. A hidden (fourth) dimension, that was introduced before in the matrix theory literature to argue for the electric-magnetic duality, can be easily identified in our formalism. We construct membrane wrapping states rigorously in terms of Dunford calculus in the context of matrix regularization. Unwanted degeneracy in the spectrum of the wrapping states is eliminated by using SL(2,Z) symmetry and the relations to the FD-string bound states. The dual IIB circle emerges in the continuum limit, constituting a critical evidence for IIB/M duality.
A general parallel sparse-blocked matrix multiply for linear scaling SCF theory
NASA Astrophysics Data System (ADS)
Challacombe, Matt
2000-06-01
A general approach to the parallel sparse-blocked matrix-matrix multiply is developed in the context of linear scaling self-consistent-field (SCF) theory. The data-parallel message passing method uses non-blocking communication to overlap computation and communication. The space filling curve heuristic is used to achieve data locality for sparse matrix elements that decay with “separation”. Load balance is achieved by solving the bin packing problem for blocks with variable size.With this new method as the kernel, parallel performance of the simplified density matrix minimization (SDMM) for solution of the SCF equations is investigated for RHF/6-31G ∗∗ water clusters and RHF/3-21G estane globules. Sustained rates above 5.7 GFLOPS for the SDMM have been achieved for (H 2 O) 200 with 95 Origin 2000 processors. Scalability is found to be limited by load imbalance, which increases with decreasing granularity, due primarily to the inhomogeneous distribution of variable block sizes.
Construct order parameters from the reduced density matrix spectra
Gu, Shi-Jian; Yu, Wing Chi; Lin, Hai-Qing
2013-09-15
In this paper, we try to establish a connection between a quantum information concept, i.e., the mutual information, and the conventional order parameter in condensed matter physics. We show that non-vanishing mutual information between two subsystems separated by a long distance means the existence of long-range orders in the system. By analyzing the spectra of the reduced density matrices that are used to calculate the mutual information, we show how to derive the local order operators that identify various ordered phases in condensed matter physics. -- Highlights: •Discussed the relation between long-range order and the mutual information (MI). •Pointed out how to check the existence of long-range order from MI. •Proposed a scheme to derive the diagonal and off-diagonal order parameter. •Gave three examples to show the effectiveness of the scheme.
Reactivity of Graphene Investigated by Density-Functional Theory
NASA Astrophysics Data System (ADS)
Soni, Himadri; Gebhardt, Julian; Görling, Andreas; Chair of Theoretical Chemistry Team
Using spin-polarized density-functional theory, we study the adsorption and reaction of hydrogen and fluorine with graphene. Graphene has a bipartite lattice with two different sublattices and hence, due to Lieb's theorem, the inequality between two sublattices should lead to a net magnetic moment upon adsorption of hydrogen or fluorine. Our calculations using density-functional theory with the generalized gradient approximation predict a magnetic moment of 1 µB for a single hydrogen adsorbed on graphene but not for a single fluorine atom adsorbed on graphene. Switching to hybrid density-functional theory with the HSE functional, we obtain a magnetic moment of 1 µB for of a single fluorine atom adsorption on graphene. This is in line with work of Kim et al., who also found in density-functional theory calculations with the HSE exchange-correlation functional spin-polarization for a fluorine adatom on graphene. Here, we present a systematic study of the reactivity and relevant adsorption mechanism for single-sided graphene, i.e., a graphene sheet which is accessible by an adsorbate from only one side with hydrogen and fluorine using hybrid density-functional theory. German Research Council (DFG) by the Collaborative Research Center 953.
Density-potential mapping in time-dependent density-functional theory
Maitra, N. T.; Todorov, T. N.; Woodward, C.; Burke, K.
2010-04-15
The key questions of uniqueness and existence in time-dependent density-functional theory are usually formulated only for potentials and densities that are analytic in time. Simple examples, standard in quantum mechanics, lead, however, to nonanalyticities. We reformulate these questions in terms of a nonlinear Schroedinger equation with a potential that depends nonlocally on the wave function.
Density Functional Theory study of the equilibrium density of water at normal conditions
NASA Astrophysics Data System (ADS)
Wang, Jue; Roman-Perez, Guillermo; Soler, Jose M.; Artacho, Emilio; Fernandez-Serra, Marivi
2010-03-01
Ab initio molecular dynamics of liquid water with the use of density functional theory (DFT) currently underperform experimental equilibrium density 1g/cm^3 under room temperature. At constant density, not much is known about the equilibrium density of commonly used GGA functionals in liquid water simulations. We present a DFT-based AIMD study of liquid water at different densities and analyze the structure and diffusivity of water with different exchange and correlation functionals. We show that all current GGA functionals fail to reproduce experimental density, however, the explicit description of long range correlations through a Van der Walls density functional (DRSLL)footnotetextM. Dion, H. Rydberg, E. Schr"oder, D. C. Langreth, and B. I. Lundqvist, Phys. Rev. Lett. 92, 246401 (2004) can potentially transform our current understanding of the structure of liquid water. Our results shows that this new functional improves density, with only 2% error to experiment. But it underperforms GGA functionals in terms of structure.
Random matrix theory and the sixth Painlevé equation
NASA Astrophysics Data System (ADS)
Forrester, P. J.; Witte, N. S.
2006-09-01
A feature of certain ensembles of random matrices is that the corresponding measure is invariant under conjugation by unitary matrices. Study of such ensembles realized by matrices with Gaussian entries leads to statistical quantities related to the eigenspectrum, such as the distribution of the largest eigenvalue, which can be expressed as multidimensional integrals or equivalently as determinants. These distributions are well known to be τ-functions for Painlevé systems, allowing for the former to be characterized as the solution of certain nonlinear equations. We consider the random matrix ensembles for which the nonlinear equation is the σ form of PVI. Known results are reviewed, as is their implication by way of series expansions for the distributions. New results are given for the boundary conditions in the neighbourhood of the fixed singularities at t = 0, 1, ∞ of σPVI displayed by a generalization of the generating function for the distributions. The structure of these expansions is related to Jimbo's general expansions for the τ-function of σPVI in the neighbourhood of its fixed singularities, and this theory is itself put in its context of the linear isomonodromy problem relating to PVI.
Advances in random matrix theory, zeta functions, and sphere packing.
Hales, T C; Sarnak, P; Pugh, M C
2000-11-21
Over four hundred years ago, Sir Walter Raleigh asked his mathematical assistant to find formulas for the number of cannonballs in regularly stacked piles. These investigations aroused the curiosity of the astronomer Johannes Kepler and led to a problem that has gone centuries without a solution: why is the familiar cannonball stack the most efficient arrangement possible? Here we discuss the solution that Hales found in 1998. Almost every part of the 282-page proof relies on long computer verifications. Random matrix theory was developed by physicists to describe the spectra of complex nuclei. In particular, the statistical fluctuations of the eigenvalues ("the energy levels") follow certain universal laws based on symmetry types. We describe these and then discuss the remarkable appearance of these laws for zeros of the Riemann zeta function (which is the generating function for prime numbers and is the last special function from the last century that is not understood today.) Explaining this phenomenon is a central problem. These topics are distinct, so we present them separately with their own introductory remarks. PMID:11058156
Advances in random matrix theory, zeta functions, and sphere packing
Hales, T. C.; Sarnak, P.; Pugh, M. C.
2000-01-01
Over four hundred years ago, Sir Walter Raleigh asked his mathematical assistant to find formulas for the number of cannonballs in regularly stacked piles. These investigations aroused the curiosity of the astronomer Johannes Kepler and led to a problem that has gone centuries without a solution: why is the familiar cannonball stack the most efficient arrangement possible? Here we discuss the solution that Hales found in 1998. Almost every part of the 282-page proof relies on long computer verifications. Random matrix theory was developed by physicists to describe the spectra of complex nuclei. In particular, the statistical fluctuations of the eigenvalues (“the energy levels”) follow certain universal laws based on symmetry types. We describe these and then discuss the remarkable appearance of these laws for zeros of the Riemann zeta function (which is the generating function for prime numbers and is the last special function from the last century that is not understood today.) Explaining this phenomenon is a central problem. These topics are distinct, so we present them separately with their own introductory remarks. PMID:11058156
Density-functional theory of inhomogeneous systems of hard spherocylinders
Velasco; Mederos; Sullivan
2000-09-01
The smectic-A phase boundaries of a hard-spherocylinder fluid are calculated using a density-functional theory based on one proposed earlier by Somoza and Tarazona [Phys. Rev. A 41, 965 (1990)]. Our calculations do not employ the translation-rotation decoupling approximation used in previous density-functional theories. The calculated phase boundaries agree well with computer simulation results up to aspect ratios L/D approximately 5 and are in better agreement with the simulations than are previous theories. We generalize the model fluid by including long-range interactions with quadrupolar orientational symmetry, which are taken into account by mean-field approximation. For sufficiently large strength, these interactions produce a smectic-C phase, which undergoes either a continuous or weakly first-order transition to the smectic-A phase. The theory and numerical methods discussed here can be applied to the analysis of interfacial phenomena. PMID:11088887
The benchmark of gutzwiller density functional theory in hydrogen systems
Yao, Y.; Wang, Cai-Zhuang; Ho, Kai-Ming
2012-02-23
We propose an approximate form of the exchange-correlation energy functional for the Gutzwiller density functional theory. It satisfies certain physical constraints in both weak and strong electron correlation limits. We benchmark the Gutzwiller density functional approximation in the hydrogen systems, where the static correlation error is shown to be negligible. The good transferability is demonstrated by applications to the hydrogen molecule and some crystal structures.
The Benchmark of Gutzwiller Density Functional Theory in Hydrogen Systems
Yao, Yongxin; Wang, Cai-Zhuang; Ho, Kai-Ming
2011-01-13
We propose an approximate form of the exchange-correlation energy functional for the Gutzwiller density functional theory. It satisfies certain physical constraints in both weak and strong electron correlation limits. We benchmark the Gutzwiller density functional approximation in the hydrogen systems, where the static correlation error is shown to be negligible. The good transferability is demonstrated by applications to the hydrogen molecule and some crystal structures. © 2011 Wiley Periodicals, Inc. Int J Quantum Chem, 2012
Gutzwiller density functional theory for correlated electron systems
Ho, K. M.; Schmalian, J.; Wang, C. Z.
2008-02-04
We develop a density functional theory (DFT) and formalism for correlated electron systems by taking as reference an interacting electron system that has a ground state wave function which exactly obeys the Gutzwiller approximation for all one-particle operators. The solution of the many-electron problem is mapped onto the self-consistent solution of a set of single-particle Schroedinger equations, analogously to standard DFT-local density approximation calculations.
Lipid Bilayer Phase Transition: Density Measurements and Theory
Nagle, J. F.
1973-01-01
The overall change of density for dipalmitoyl lecithin bilayers agrees with a general order-disorder theory and yields about seven gauche rotations per molecule for the biologically relevant high-temperature phase. The shape of the curve of density against temperature is similar to the result of an exact calculation on a specific model, which gives a 3/2-order phase transition. PMID:4519637
Reflection-Asymmetric Nuclear Deformations within the Density Functional Theory
Olsen, E; Erler, J; Nazarewicz, W.; Stoitsov, M
2012-01-01
Within the nuclear density functional theory (DFT) we study the effect of reflection- asymmetric shapes on ground-state binding energies and binding energy differences. To this end, we developed the new DFT solver axialhfb that uses an approximate second-order gradient to solve the Hartree-Fock-Bogoliubov equations of superconducting DFT with the quasi-local Skyrme energy density functionals. Illustrative calculations are carried out for even- even isotopes of radium and thorium.
Goodwin, D. L.; Kuprov, Ilya
2015-08-28
Auxiliary matrix exponential method is used to derive simple and numerically efficient general expressions for the following, historically rather cumbersome, and hard to compute, theoretical methods: (1) average Hamiltonian theory following interaction representation transformations; (2) Bloch-Redfield-Wangsness theory of nuclear and electron relaxation; (3) gradient ascent pulse engineering version of quantum optimal control theory. In the context of spin dynamics, the auxiliary matrix exponential method is more efficient than methods based on matrix factorizations and also exhibits more favourable complexity scaling with the dimension of the Hamiltonian matrix.
Perspective: Fundamental aspects of time-dependent density functional theory
NASA Astrophysics Data System (ADS)
Maitra, Neepa T.
2016-06-01
In the thirty-two years since the birth of the foundational theorems, time-dependent density functional theory has had a tremendous impact on calculations of electronic spectra and dynamics in chemistry, biology, solid-state physics, and materials science. Alongside the wide-ranging applications, there has been much progress in understanding fundamental aspects of the functionals and the theory itself. This Perspective looks back to some of these developments, reports on some recent progress and current challenges for functionals, and speculates on future directions to improve the accuracy of approximations used in this relatively young theory.
Phonons in nonlocal van der Waals density functional theory
NASA Astrophysics Data System (ADS)
Sabatini, Riccardo; Küçükbenli, Emine; Pham, Cong Huy; de Gironcoli, Stefano
2016-06-01
We extend the formulation of density functional perturbation theory to treat nonlocal density functionals, accounting for van der Waals interactions, in a rigorous and efficient way. We provide a general formalism, suitable for any functional in this family, and give specific equations for the most widely used ones. We then study the lattice dynamics of graphite, comparing several nonlocal functionals and the local density approximation, showing that our recent revision of the VV10 functional [R. Sabatini et al., Phys. Rev. B 87, 041108(R) (2013), 10.1103/PhysRevB.87.041108] gives the best comparison with experiments.
Dynamical density functional theory for colloidal dispersions including hydrodynamic interactions
NASA Astrophysics Data System (ADS)
Rex, M.; Löwen, H.
2009-02-01
A dynamical density functional theory (DDFT) for translational Brownian dynamics is derived which includes hydrodynamic interactions. The theory reduces to the simple Brownian DDFT proposed by Marconi and Tarazona (U. Marini Bettolo Marconi and P. Tarazona, J. Chem. Phys. 110, 8032 (1999); J. Phys.: Condens. Matter 12, A413 (2000)) when hydrodynamic interactions are neglected. The derivation is based on Smoluchowski’s equation for the time evolution of the probability density with pairwise hydrodynamic interactions. The theory is applied to hard-sphere colloids in an oscillating spherical optical trap which switches periodically in time from a stable confining to an unstable potential. Rosenfeld’s fundamental measure theory for the equilibrium density functional is used and hydrodynamics are incorporated on the Rotne-Prager level. The results for the time-dependent density profiles are compared to extensive Brownian dynamics simulations which are performed on the same Rotne-Prager level and excellent agreement is obtained. It is further found that hydrodynamic interactions damp and slow the dynamics of the confined colloid cluster in comparison to the same situation with neglected hydrodynamic interactions.
Parkhomenko, A I; Shalagin, Anatolii M
2011-11-30
Using the eikonal approximation, we have calculated effective collision frequencies in density-matrix kinetic equations describing nonlinear effects in the wings of spectral lines. We have established the relation between the probabilities of absorption and stimulated emission and the characteristics of the radiation and elementary scattering event. The example of the power interaction potential shows that quantum mechanical calculation of the collision frequencies in the eikonal approximation and previously known spectral line wing theory give similar results for the probability of radiation absorption.
Self consistent theories of superfluid density and collective modes in BCS-BEC
NASA Astrophysics Data System (ADS)
Boyack, Rufus; Anderson, Brandon; Wu, Chien-Te; Levin, Kathryn
Establishing fully self consistent and sum rule compatible response functions in strongly correlated Fermi superfluids has been a historically challenging subject. In this talk, we present recent progress pertaining to response functions in many-body Fermi systems. We note that even in strict BCS theory, the textbook derivation of density and current response functions in the gradient expansion breaks certain conservation laws such as the compressibility sum rule. To include additional contributions that preserve all expected conservation laws, we show how to exploit Ward identities within two different t-matrix schemes. In this way we address the density-density response (including collective modes) and the superfluid density. Finally, we characterize approximations made in the literature where some consistency requirements have been dropped.
Semilocal density functional theory with correct surface asymptotics
NASA Astrophysics Data System (ADS)
Constantin, Lucian A.; Fabiano, Eduardo; Pitarke, J. M.; Della Sala, Fabio
2016-03-01
Semilocal density functional theory is the most used computational method for electronic structure calculations in theoretical solid-state physics and quantum chemistry of large systems, providing good accuracy with a very attractive computational cost. Nevertheless, because of the nonlocality of the exchange-correlation hole outside a metal surface, it was always considered inappropriate to describe the correct surface asymptotics. Here, we derive, within the semilocal density functional theory formalism, an exact condition for the imagelike surface asymptotics of both the exchange-correlation energy per particle and potential. We show that this condition can be easily incorporated into a practical computational tool, at the simple meta-generalized-gradient approximation level of theory. Using this tool, we also show that the Airy-gas model exhibits asymptotic properties that are closely related to those at metal surfaces. This result highlights the relevance of the linear effective potential model to the metal surface asymptotics.
Relativistic density functional theory for finite nuclei and neutron stars
NASA Astrophysics Data System (ADS)
Piekarewicz, Jorge
In 1939 Oppenheimer and Volkoff demonstrated using Einstein's theory of general relativity that a neutron star supported exclusively by neutron degeneracy pressure will collapse into a black hole if its mass exceeds seven tenths of a solar mass. Seventy five years after such a pioneering prediction the existence of neutron stars with masses as large as two solar masses has been firmly established. This fact alone highlights the critical role that nuclear interactions play in explaining the structure of neutron stars. Indeed, a neutron star is a gold mine for the study of nuclear phenomena that span an enormous range of densities and neutron-proton asymmetries. Physical phenomena over such diverse scales are best described by a formalism based on Relativistic Density Functional Theory. In this contribution I focus on the synergy between theory, experiment, and observation that is needed to elucidate the myriad of exotic states of matter that are believed to exist in a neutron star.
Steady-State Density Functional Theory for Finite Bias Conductances.
Stefanucci, G; Kurth, S
2015-12-01
In the framework of density functional theory, a formalism to describe electronic transport in the steady state is proposed which uses the density on the junction and the steady current as basic variables. We prove that, in a finite window around zero bias, there is a one-to-one map between the basic variables and both local potential on as well as bias across the junction. The resulting Kohn-Sham system features two exchange-correlation (xc) potentials, a local xc potential, and an xc contribution to the bias. For weakly coupled junctions the xc potentials exhibit steps in the density-current plane which are shown to be crucial to describe the Coulomb blockade diamonds. At small currents these steps emerge as the equilibrium xc discontinuity bifurcates. The formalism is applied to a model benzene junction, finding perfect agreement with the orthodox theory of Coulomb blockade. PMID:26571349
Addressing spectroscopic quality of covariant density functional theory
NASA Astrophysics Data System (ADS)
Afanasjev, A. V.
2015-03-01
The spectroscopic quality of covariant density functional theory has been accessed by analyzing the accuracy and theoretical uncertainties in the description of spectroscopic observables. Such analysis is first presented for the energies of the single-particle states in spherical and deformed nuclei. It is also shown that the inclusion of particle-vibration coupling improves the description of the energies of predominantly single-particle states in medium and heavy-mass spherical nuclei. However, the remaining differences between theory and experiment clearly indicate missing physics and missing terms in covariant energy density functionals. The uncertainties in the predictions of the position of two-neutron drip line sensitively depend on the uncertainties in the prediction of the energies of the single-particle states. On the other hand, many spectroscopic observables in well deformed nuclei at ground state and finite spin only weakly depend on the choice of covariant energy density functional.
Subsystem real-time time dependent density functional theory
NASA Astrophysics Data System (ADS)
Krishtal, Alisa; Ceresoli, Davide; Pavanello, Michele
2015-04-01
We present the extension of Frozen Density Embedding (FDE) formulation of subsystem Density Functional Theory (DFT) to real-time Time Dependent Density Functional Theory (rt-TDDFT). FDE is a DFT-in-DFT embedding method that allows to partition a larger Kohn-Sham system into a set of smaller, coupled Kohn-Sham systems. Additional to the computational advantage, FDE provides physical insight into the properties of embedded systems and the coupling interactions between them. The extension to rt-TDDFT is done straightforwardly by evolving the Kohn-Sham subsystems in time simultaneously, while updating the embedding potential between the systems at every time step. Two main applications are presented: the explicit excitation energy transfer in real time between subsystems is demonstrated for the case of the Na4 cluster and the effect of the embedding on optical spectra of coupled chromophores. In particular, the importance of including the full dynamic response in the embedding potential is demonstrated.
Matrix sublimation method for the formation of high-density amorphous ice
NASA Astrophysics Data System (ADS)
Kouchi, A.; Hama, T.; Kimura, Y.; Hidaka, H.; Escribano, R.; Watanabe, N.
2016-08-01
A novel method for the formation of amorphous ice involving matrix sublimation has been developed. A CO-rich CO:H2O mixed ice was deposited at 8-10 K under ultra-high vacuum condition, which was then allowed to warm. After the sublimation of matrix CO at 35 K, amorphous ice remained. The amorphous ice formed exhibits a highly porous microscale texture; however, it also rather exhibits a density similar to that of high-density amorphous ice formed under high pressure. Furthermore, unlike conventional vapor-deposited amorphous ice, the amorphous ice is stable up to 140 K, where it transforms directly to cubic ice Ic.
Microscopic theory of dynamical matrix in itinerant model of antiferromagnetism
NASA Astrophysics Data System (ADS)
Ami, Seiju; Cade, N. A.; Young, W.
1983-02-01
The dynamical matrix and the elastic constants are derived for an itinerant antiferromagnet. An orbital representation is used which bypasses the problem of large matrix inversion in reciprocal space. We show that exchange enhancement and antiferromagnetic ordering leads to softening of some of the elastic constants.
Edgar, Lowell T; Underwood, Clayton J; Guilkey, James E; Hoying, James B; Weiss, Jeffrey A
2014-01-01
Angiogenesis is regulated by the local microenvironment, including the mechanical interactions between neovessel sprouts and the extracellular matrix (ECM). However, the mechanisms controlling the relationship of mechanical and biophysical properties of the ECM to neovessel growth during sprouting angiogenesis are just beginning to be understood. In this research, we characterized the relationship between matrix density and microvascular topology in an in vitro 3D organ culture model of sprouting angiogenesis. We used these results to design and calibrate a computational growth model to demonstrate how changes in individual neovessel behavior produce the changes in vascular topology that were observed experimentally. Vascularized gels with higher collagen densities produced neovasculatures with shorter vessel lengths, less branch points, and reduced network interconnectivity. The computational model was able to predict these experimental results by scaling the rates of neovessel growth and branching according to local matrix density. As a final demonstration of utility of the modeling framework, we used our growth model to predict several scenarios of practical interest that could not be investigated experimentally using the organ culture model. Increasing the density of the ECM significantly reduced angiogenesis and network formation within a 3D organ culture model of angiogenesis. Increasing the density of the matrix increases the stiffness of the ECM, changing how neovessels are able to deform and remodel their surroundings. The computational framework outlined in this study was capable of predicting this observed experimental behavior by adjusting neovessel growth rate and branching probability according to local ECM density, demonstrating that altering the stiffness of the ECM via increasing matrix density affects neovessel behavior, thereby regulated vascular topology during angiogenesis. PMID:24465500
Sharma, Sandeep; Alavi, Ali
2015-09-14
We propose a multireference linearized coupled cluster theory using matrix product states (MPSs-LCC) which provides remarkably accurate ground-state energies, at a computational cost that has the same scaling as multireference configuration interaction singles and doubles, for a wide variety of electronic Hamiltonians. These range from first-row dimers at equilibrium and stretched geometries to highly multireference systems such as the chromium dimer and lattice models such as periodic two-dimensional 1-band and 3-band Hubbard models. The MPS-LCC theory shows a speed up of several orders of magnitude over the usual Density Matrix Renormalization Group (DMRG) algorithm while delivering energies in excellent agreement with converged DMRG calculations. Also, in all the benchmark calculations presented here, MPS-LCC outperformed the commonly used multi-reference quantum chemistry methods in some cases giving energies in excess of an order of magnitude more accurate. As a size-extensive method that can treat large active spaces, MPS-LCC opens up the use of multireference quantum chemical techniques in strongly correlated ab initio Hamiltonians, including two- and three-dimensional solids. PMID:26374008
Sharma, Sandeep; Alavi, Ali
2015-09-14
We propose a multireference linearized coupled cluster theory using matrix product states (MPSs-LCC) which provides remarkably accurate ground-state energies, at a computational cost that has the same scaling as multireference configuration interaction singles and doubles, for a wide variety of electronic Hamiltonians. These range from first-row dimers at equilibrium and stretched geometries to highly multireference systems such as the chromium dimer and lattice models such as periodic two-dimensional 1-band and 3-band Hubbard models. The MPS-LCC theory shows a speed up of several orders of magnitude over the usual Density Matrix Renormalization Group (DMRG) algorithm while delivering energies in excellent agreement with converged DMRG calculations. Also, in all the benchmark calculations presented here, MPS-LCC outperformed the commonly used multi-reference quantum chemistry methods in some cases giving energies in excess of an order of magnitude more accurate. As a size-extensive method that can treat large active spaces, MPS-LCC opens up the use of multireference quantum chemical techniques in strongly correlated ab initio Hamiltonians, including two- and three-dimensional solids.
Exact maps in density functional theory for lattice models
NASA Astrophysics Data System (ADS)
Dimitrov, Tanja; Appel, Heiko; Fuks, Johanna I.; Rubio, Angel
2016-08-01
In the present work, we employ exact diagonalization for model systems on a real-space lattice to explicitly construct the exact density-to-potential and graphically illustrate the complete exact density-to-wavefunction map that underly the Hohenberg–Kohn theorem in density functional theory. Having the explicit wavefunction-to-density map at hand, we are able to construct arbitrary observables as functionals of the ground-state density. We analyze the density-to-potential map as the distance between the fragments of a system increases and the correlation in the system grows. We observe a feature that gradually develops in the density-to-potential map as well as in the density-to-wavefunction map. This feature is inherited by arbitrary expectation values as functional of the ground-state density. We explicitly show the excited-state energies, the excited-state densities, and the correlation entropy as functionals of the ground-state density. All of them show this exact feature that sharpens as the coupling of the fragments decreases and the correlation grows. We denominate this feature as intra-system steepening and discuss how it relates to the well-known inter-system derivative discontinuity. The inter-system derivative discontinuity is an exact concept for coupled subsystems with degenerate ground state. However, the coupling between subsystems as in charge transfer processes can lift the degeneracy. An important conclusion is that for such systems with a near-degenerate ground state, the corresponding cut along the particle number N of the exact density functionals is differentiable with a well-defined gradient near integer particle number.
Fluctuation-dissipation theorem density-functional theory
NASA Astrophysics Data System (ADS)
Furche, Filipp; Van Voorhis, Troy
2005-04-01
Using the fluctuation-dissipation theorem (FDT) in the context of density-functional theory (DFT), one can derive an exact expression for the ground-state correlation energy in terms of the frequency-dependent density response function. When combined with time-dependent density-functional theory, a new class of density functionals results that use approximations to the exchange-correlation kernel fxc as input. This FDT-DFT scheme holds promise to solve two of the most distressing problems of conventional Kohn-Sham DFT: (i) It leads to correlation energy functionals compatible with exact exchange, and (ii) it naturally includes dispersion. The price is a moderately expensive O(N6) scaling of computational cost and a slower basis set convergence. These general features of FDT-DFT have all been recognized previously. In this paper, we present the first benchmark results for a set of molecules using FDT-DFT beyond the random-phase approximation (RPA)—that is, the first such results with fxc≠0. We show that kernels derived from the adiabatic local-density approximation and other semilocal functionals suffer from an "ultraviolet catastrophe," producing a pair density that diverges at small interparticle distance. Nevertheless, dispersion interactions can be treated accurately if hybrid functionals are employed, as is demonstrated for He2 and HeNe. We outline constraints that future approximations to fxc should satisfy and discuss the prospects of FDT-DFT.
Self-Averaging Stochastic Kohn-Sham Density-Functional Theory
NASA Astrophysics Data System (ADS)
Baer, Roi; Neuhauser, Daniel; Rabani, Eran
2013-09-01
We formulate the Kohn-Sham density functional theory (KS-DFT) as a statistical theory in which the electron density is determined from an average of correlated stochastic densities in a trace formula. The key idea is that it is sufficient to converge the total energy per electron to within a predefined statistical error in order to obtain reliable estimates of the electronic band structure, the forces on nuclei, the density and its moments, etc. The fluctuations in the total energy per electron are guaranteed to decay to zero as the system size increases. This facilitates “self-averaging” which leads to the first ever report of sublinear scaling KS-DFT electronic structure. The approach sidesteps calculation of the density matrix and thus, is insensitive to its evasive sparseness, as demonstrated here for silicon nanocrystals. The formalism is not only appealing in terms of its promise to far push the limits of application of KS-DFT, but also represents a cognitive change in the way we think of electronic structure calculations as this stochastic theory seamlessly converges to the thermodynamic limit.
Kinetic equations for a density matrix describing nonlinear effects in spectral line wings
Parkhomenko, A. I. Shalagin, A. M.
2011-11-15
Kinetic quantum equations are derived for a density matrix with collision integrals describing nonlinear effects in spectra line wings. These equations take into account the earlier established inequality of the spectral densities of Einstein coefficients for absorption and stimulated radiation emission by a two-level quantum system in the far wing of a spectral line in the case of frequent collisions. The relationship of the absorption and stimulated emission probabilities with the characteristics of radiation and an elementary scattering event is found.
Differentiability of Lieb functional in electronic density functional theory
NASA Astrophysics Data System (ADS)
Lammert, Paul E.
A solid understanding of the Lieb functional FL is important because of its centrality in the foundations of electronic density functional theory. A basic question is whether directional derivatives of FL at an ensemble-V-representable density are given by (minus) the potential. A widely accepted purported proof that FL is Gâteaux differentiable at EV-representable densities would say, ?yes.? But that proof is fallacious, as shown here. FL is not Gâteaux differentiable in the normal sense, nor is it continuous. By means of a constructive approach, however, we are able to show that the derivative of FL at an EV-representable density ?0 in the direction of ?1 is given by the potential if ?0 and ?1 are everywhere strictly greater than zero, and they and the ground state wave function have square integrable derivatives through second order.
Energy Densities in the Strong-Interaction Limit of Density Functional Theory.
Mirtschink, André; Seidl, Michael; Gori-Giorgi, Paola
2012-09-11
We discuss energy densities in the strong-interaction limit of density functional theory, deriving an exact expression within the definition (gauge) of the electrostatic potential of the exchange-correlation hole. Exact results for small atoms and small model quantum dots (Hooke's atoms) are compared with available approximations defined in the same gauge. The idea of a local interpolation along the adiabatic connection is discussed, comparing the energy densities of the Kohn-Sham, the physical, and the strong-interacting systems. We also use our results to analyze the local version of the Lieb-Oxford bound, widely used in the construction of approximate exchange-correlation functionals. PMID:26605721
Density Functional Theory for Steady-State Nonequilibrium Molecular Junctions
NASA Astrophysics Data System (ADS)
Liu, Shuanglong; Nurbawono, Argo; Zhang, Chun
2015-10-01
We present a density functional theory (DFT) for steady-state nonequilibrium quantum systems such as molecular junctions under a finite bias. Based on the steady-state nonequilibrium statistics that maps nonequilibrium to an effective equilibrium, we show that ground-state DFT (GS-DFT) is not applicable in this case and two densities, the total electron density and the density of current-carrying electrons, are needed to uniquely determine the properties of the corresponding nonequilibrium system. A self-consistent mean-field approach based on two densities is then derived. The theory is implemented into SIESTA computational package and applied to study nonequilibrium electronic/transport properties of a realistic carbon-nanotube (CNT)/Benzene junction. Results obtained from our steady-state DFT (SS-DFT) are compared with those of conventional GS-DFT based transport calculations. We show that SS-DFT yields energetically more stable nonequilibrium steady state, predicts significantly lower electric current, and is able to produce correct electronic structures in local equilibrium under a limiting case.
Conformational Analysis of Thioether Musks Using Density Functional Theory
Setzer, William N.
2009-01-01
A conformational analysis of nine macrocyclic thioether musks has been carried out using molecular mechanics (MMFF), density functional theory (DFT) using both B3LYP and M06 functionals, as well as Hartree-Fock and post-Hartree-Fock (MP2) ab initio methods. 6-Thia-, 10-thia- and 4-methyl-5-thia-14-tetradecananolide, 4-thia-, 7-thia-, 11-thia- and 12-thia-15-pentadecanolide and 6-thia- and 12-thia-16-hexadecanolide were modeled. Unfortunately, there was little agreement between the computational methods at the levels of theory used in this study. PMID:20111690
Nonlinear eigenvalue problems in Density Functional Theory calculations
Fattebert, J
2009-08-28
Developed in the 1960's by W. Kohn and coauthors, Density Functional Theory (DFT) is a very popular quantum model for First-Principles simulations in chemistry and material sciences. It allows calculations of systems made of hundreds of atoms. Indeed DFT reduces the 3N-dimensional Schroedinger electronic structure problem to the search for a ground state electronic density in 3D. In practice it leads to the search for N electronic wave functions solutions of an energy minimization problem in 3D, or equivalently the solution of an eigenvalue problem with a non-linear operator.
NASA Astrophysics Data System (ADS)
Bochevarov, Arteum D.; Friesner, Richard A.
2008-01-01
We investigate one of the fundamental observables, electronic charge density, as produced by a number of popular functionals of the density functional theory (DFT): SVWN5, B3LYP, B3LYP, OLYP, O3LYP, BP86, B3P86, O3P86, and PBE using restricted and unrestricted orbitals. Measuring and comparing the quality of the densities could tell us more about the physical soundness of the functional models. The study is performed on the small molecules He, H2, LiH, H4 in an extensive range of correlation-consistent basis sets. We compare DFT densities to those of full configuration interaction (FCI) under the assumption that the FCI density in the largest employed basis set is sufficiently close to the exact one. For LiH and H4, we also compare the DFT densities to those of CCSD. The SVWN5 functional consistently shows the worst performance. The OPTX exchange functional regularly beats the Becke exchange. Among the best performers are all the hybrid functionals, the novel O3P86 being the most accurate in most cases. The popular functional B3LYP was consistently outmatched by O3LYP, and produced, in fact, some of the poorest densities among the hybrids. CCSD was found to produce much more accurate densities than any DFT functional in the case of LiH in equilibrium geometry, but was sometimes outperformed by DFT in the case of slightly stretched H4, where CCSD theory itself starts to break down. Surprisingly, as one stretches the H2 molecule, BP86 and PBE improve the description of density although such behavior is not observed in other systems. We conclude by reasoning how functionals such as B3LYP, despite being quite average for density, could still be very successful in predicting thermodynamic properties.
Giesbertz, K. J. H.; Gritsenko, O. V.; Baerends, E. J.
2014-05-14
Recently, we have demonstrated that the problems finding a suitable adiabatic approximation in time-dependent one-body reduced density matrix functional theory can be remedied by introducing an additional degree of freedom to describe the system: the phase of the natural orbitals [K. J. H. Giesbertz, O. V. Gritsenko, and E. J. Baerends, Phys. Rev. Lett. 105, 013002 (2010); K. J. H. Giesbertz, O. V. Gritsenko, and E. J. Baerends, J. Chem. Phys. 133, 174119 (2010)]. In this article we will show in detail how the frequency-dependent response equations give the proper static limit (ω → 0), including the perturbation in the chemical potential, which is required in static response theory to ensure the correct number of particles. Additionally we show results for the polarizability for H{sub 2} and compare the performance of two different two-electron functionals: the phase-including Löwdin–Shull functional and the density matrix form of the Löwdin–Shull functional.
Density Functional Theory of Biologically Relevant Metal Centers
NASA Astrophysics Data System (ADS)
Siegbahn, Per E. M.; Blomberg, Margareta R. A.
1999-10-01
Recent applications of density functional theory to biologically relevant metal centers are reviewed. The emphasis is on reaction mechanisms, structures, and modeling. The accuracy of different functionals is discussed for standard benchmark tests of first- and second-row molecules and for transition metal systems. Modeling aspects of the protein metal complexes are discussed regarding both the size of the model being treated quantum mechanically and the treatment of the protein surrounding it. To illustrate the effects, structures computed without the effects of the protein are compared with experimental structures from enzymes, and results from simple dielectric models of the protein for electron transfer processes are described. The choice of spin state is discussed for multimetal complexes. Examples of mechanisms studied recently by density functional theory are described, such as O2 and methane activation in methane monooxygenase and O2 formation in photosystem II.
Improved association in a classical density functional theory for water.
Krebs, Eric J; Schulte, Jeff B; Roundy, David
2014-03-28
We present a modification to our recently published statistical associating fluid theory-based classical density functional theory for water. We have recently developed and tested a functional for the averaged radial distribution function at contact of the hard-sphere fluid that is dramatically more accurate at interfaces than earlier approximations. We now incorporate this improved functional into the association term of our free energy functional for water, improving its description of hydrogen bonding. We examine the effect of this improvement by studying two hard solutes (a hard hydrophobic rod and a hard sphere) and a Lennard-Jones approximation of a krypton atom solute. The improved functional leads to a moderate change in the density profile and a large decrease in the number of hydrogen bonds broken in the vicinity of the hard solutes. We find an improvement of the partial radial distribution for a krypton atom in water when compared with experiment. PMID:24697459
Covariant density functional theory: The role of the pion
Lalazissis, G. A.; Karatzikos, S.; Serra, M.; Otsuka, T.; Ring, P.
2009-10-15
We investigate the role of the pion in covariant density functional theory. Starting from conventional relativistic mean field (RMF) theory with a nonlinear coupling of the {sigma} meson and without exchange terms we add pions with a pseudovector coupling to the nucleons in relativistic Hartree-Fock approximation. In order to take into account the change of the pion field in the nuclear medium the effective coupling constant of the pion is treated as a free parameter. It is found that the inclusion of the pion to this sort of density functionals does not destroy the overall description of the bulk properties by RMF. On the other hand, the noncentral contribution of the pion (tensor coupling) does have effects on single particle energies and on binding energies of certain nuclei.
Improved association in a classical density functional theory for water
Krebs, Eric J.; Schulte, Jeff B.; Roundy, David
2014-03-28
We present a modification to our recently published statistical associating fluid theory-based classical density functional theory for water. We have recently developed and tested a functional for the averaged radial distribution function at contact of the hard-sphere fluid that is dramatically more accurate at interfaces than earlier approximations. We now incorporate this improved functional into the association term of our free energy functional for water, improving its description of hydrogen bonding. We examine the effect of this improvement by studying two hard solutes (a hard hydrophobic rod and a hard sphere) and a Lennard-Jones approximation of a krypton atom solute. The improved functional leads to a moderate change in the density profile and a large decrease in the number of hydrogen bonds broken in the vicinity of the hard solutes. We find an improvement of the partial radial distribution for a krypton atom in water when compared with experiment.
Novaes, Marcel
2015-06-15
We consider the statistics of time delay in a chaotic cavity having M open channels, in the absence of time-reversal invariance. In the random matrix theory approach, we compute the average value of polynomial functions of the time delay matrix Q = − iħS{sup †}dS/dE, where S is the scattering matrix. Our results do not assume M to be large. In a companion paper, we develop a semiclassical approximation to S-matrix correlation functions, from which the statistics of Q can also be derived. Together, these papers contribute to establishing the conjectured equivalence between the random matrix and the semiclassical approaches.
Autoionization in time-dependent density-functional theory
NASA Astrophysics Data System (ADS)
Kapoor, V.
2016-06-01
We compute the exact exchange-correlation potential of the time-dependent density-functional theory (TDDFT) for the correlated process of autoionization. The potential develops barriers which regulate the autoionization rate. TDDFT employing known and practicable exchange-correlation potentials does not capture any autoionization dynamics. Approximate exchange-correlation potentials capturing such dynamics would necessarily require memory effects and are unlikely to be developed, as will be illustrated.
Density functional theory across chemistry, physics and biology
van Mourik, Tanja; Bühl, Michael; Gaigeot, Marie-Pierre
2014-01-01
The past decades have seen density functional theory (DFT) evolve from a rising star in computational quantum chemistry to one of its major players. This Theme Issue, which comes half a century after the publication of the Hohenberg–Kohn theorems that laid the foundations of modern DFT, reviews progress and challenges in present-day DFT research. Rather than trying to be comprehensive, this Theme Issue attempts to give a flavour of selected aspects of DFT. PMID:24516181
Density functional theory across chemistry, physics and biology.
van Mourik, Tanja; Bühl, Michael; Gaigeot, Marie-Pierre
2014-03-13
The past decades have seen density functional theory (DFT) evolve from a rising star in computational quantum chemistry to one of its major players. This Theme Issue, which comes half a century after the publication of the Hohenberg-Kohn theorems that laid the foundations of modern DFT, reviews progress and challenges in present-day DFT research. Rather than trying to be comprehensive, this Theme Issue attempts to give a flavour of selected aspects of DFT. PMID:24516181
Giesbertz, Klaas J H
2016-08-01
One of the major computational bottlenecks in one-body reduced density matrix (1RDM) functional theory is the evaluation of approximate 1RDM functionals and their derivatives. The reason is that more advanced approximate functionals are almost exclusively defined in the natural orbital basis, so a 4-index transformation of the two-electron integrals appears to be unavoidable. I will show that this is not the case and that so-called separable functionals can be evaluated much more efficiently, i.e. only at cubic cost in the basis size. Since most approximate functionals are actually separable, this new algorithm is an important development to make 1RDM functional theory calculations feasible for large electronic systems. PMID:26908059
NASA Astrophysics Data System (ADS)
Bhuyan, M.; Panda, R. N.; Routray, T. R.; Patra, S. K.
2010-12-01
In the framework of relativistic mean field (RMF) theory, we have calculated the density distribution of protons and neutrons for Ca40,42,44,48 with NL3 and G2 parameter sets. The microscopic proton-nucleus optical potentials for p+Ca40,42,44,48 systems are evaluated from the Dirac nucleon-nucleon scattering amplitude and the density of the target nucleus using relativistic-Love-Franey and McNeil-Ray-Wallace parametrizations. We have estimated the scattering observables, such as the elastic differential scattering cross section, analyzing power and the spin observables with the relativistic impulse approximation (RIA). The results have been compared with the experimental data for a few selective cases and we find that the use of density as well as the scattering matrix parametrizations are crucial for the theoretical prediction.
Bhuyan, M.; Panda, R. N.; Routray, T. R.; Patra, S. K.
2010-12-15
In the framework of relativistic mean field (RMF) theory, we have calculated the density distribution of protons and neutrons for {sup 40,42,44,48}Ca with NL3 and G2 parameter sets. The microscopic proton-nucleus optical potentials for p+{sup 40,42,44,48}Ca systems are evaluated from the Dirac nucleon-nucleon scattering amplitude and the density of the target nucleus using relativistic-Love-Franey and McNeil-Ray-Wallace parametrizations. We have estimated the scattering observables, such as the elastic differential scattering cross section, analyzing power and the spin observables with the relativistic impulse approximation (RIA). The results have been compared with the experimental data for a few selective cases and we find that the use of density as well as the scattering matrix parametrizations are crucial for the theoretical prediction.
Richter, Marten Knorr, Andreas
2010-04-15
Time convolution less density matrix theory (TCL) is a powerful and well established tool to investigate strong system-bath coupling for linear optical spectra. We show that TCL equations can be generalised to the nonlinear optical response up to a chosen order in the optical field. This goal is achieved via an time convolution less perturbation scheme for the reduced density matrices of the electronic system. In our approach, the most important results are the inclusion of a electron-phonon coupling non-diagonal in the electronic states and memory effects of the bath: First, the considered model system is introduced. Second, the time evolution of the statistical operator is expanded with respect to the external optical field. This expansion is the starting point to explain how a TCL theory can treat the response up to in a certain order in the external field. Third, new TCL equations, including bath memory effects, are derived and the problem of information loss in the reduced density matrix is analysed. For this purpose, new dimensions are added to the reduced statistical operator to compensate lack of information in comparison with the full statistical operator. The theory is benchmarked with a two level system and applied to a three level system including non-diagonal phonon coupling. In our analysis of pump-probe experiments, the bath memory is influenced by the system state occupied between pump and probe pulse. In particular, the memory of the bath influences the dephasing process of electronic coherences developing during the time interval between pump and probe pulses.
Density-matrix Chern insulators: Finite-temperature generalization of topological insulators
NASA Astrophysics Data System (ADS)
Rivas, A.; Viyuela, O.; Martin-Delgado, M. A.
2013-10-01
Thermal noise can destroy topological insulators (TI). However, we demonstrate how TIs can be made stable in dissipative systems. To that aim, we introduce the notion of band Liouvillian as the dissipative counterpart of band Hamiltonian, and show a method to evaluate the topological order of its steady state. This is based on a generalization of the Chern number valid for general mixed states (referred to as density-matrix Chern value), which witnesses topological order in a system coupled to external noise. Additionally, we study its relation with the electrical conductivity at finite temperature, which is not a topological property. Nonetheless, the density-matrix Chern value represents the part of the conductivity which is topological due to the presence of quantum mixed edge states at finite temperature. To make our formalism concrete, we apply these concepts to the two-dimensional Haldane model in the presence of thermal dissipation, but our results hold for arbitrary dimensions and density matrices.
Jankowski, K; Nowakowski, K; Grabowski, I; Wasilewski, J
2009-04-28
The problem of linking the dynamic electron correlation effects defined in traditional ab initio methods [or wave function theories (WFTs)] with the structure of the individual density functional theory (DFT) exchange and correlation functionals has been analyzed for the Ne atom, for which nondynamic correlation effects play a negligible role. A density-based approach directly hinged on difference radial-density (DRD) distributions defined with respect the Hartree-Fock radial density has been employed for analyzing the impact of dynamic correlation effects on the density. Attention has been paid to the elimination of basis-set incompleteness errors. The DRD distributions calculated by several ab initio methods have been compared to their DFT counterparts generated for representatives of several generations of broadly used exchange-correlation functionals and for the recently developed orbital-dependent OEP2 exchange-correlation functional [Bartlett et al., J. Chem. Phys. 122, 034104 (2005)]. For the local, generalized-gradient, and hybrid functionals it has been found that the dynamic correlation effects are to a large extend accounted for by densities resulting from exchange-only calculations. Additional calculations with self-interaction corrected exchange potentials indicate that this finding cannot be explained as an artifact caused by the self-interaction error. It has been demonstrated that the VWN5 and LYP correlation functionals do not represent any substantial dynamical correlation effects on the electron density, whereas these effects are well represented by the orbital-dependent OEP2 correlation functional. Critical comparison of the present results with their counterparts reported in literature has been made. Some attention has been paid to demonstrating the differences between the energy- and density-based perspectives. They indicate the usefulness of density-based criteria for developing new exchange-correlation functionals. PMID:19405556
NASA Astrophysics Data System (ADS)
Jankowski, K.; Nowakowski, K.; Grabowski, I.; Wasilewski, J.
2009-04-01
The problem of linking the dynamic electron correlation effects defined in traditional ab initio methods [or wave function theories (WFTs)] with the structure of the individual density functional theory (DFT) exchange and correlation functionals has been analyzed for the Ne atom, for which nondynamic correlation effects play a negligible role. A density-based approach directly hinged on difference radial-density (DRD) distributions defined with respect the Hartree-Fock radial density has been employed for analyzing the impact of dynamic correlation effects on the density. Attention has been paid to the elimination of basis-set incompleteness errors. The DRD distributions calculated by several ab initio methods have been compared to their DFT counterparts generated for representatives of several generations of broadly used exchange-correlation functionals and for the recently developed orbital-dependent OEP2 exchange-correlation functional [Bartlett et al., J. Chem. Phys. 122, 034104 (2005)]. For the local, generalized-gradient, and hybrid functionals it has been found that the dynamic correlation effects are to a large extend accounted for by densities resulting from exchange-only calculations. Additional calculations with self-interaction corrected exchange potentials indicate that this finding cannot be explained as an artifact caused by the self-interaction error. It has been demonstrated that the VWN5 and LYP correlation functionals do not represent any substantial dynamical correlation effects on the electron density, whereas these effects are well represented by the orbital-dependent OEP2 correlation functional. Critical comparison of the present results with their counterparts reported in literature has been made. Some attention has been paid to demonstrating the differences between the energy- and density-based perspectives. They indicate the usefulness of density-based criteria for developing new exchange-correlation functionals.
Precise effective masses from density functional perturbation theory
NASA Astrophysics Data System (ADS)
Laflamme Janssen, J.; Gillet, Y.; Poncé, S.; Martin, A.; Torrent, M.; Gonze, X.
2016-05-01
The knowledge of effective masses is a key ingredient to analyze numerous properties of semiconductors, like carrier mobilities, (magneto)transport properties, or band extrema characteristics yielding carrier densities and density of states. Currently, these masses are usually calculated using finite-difference estimation of density functional theory (DFT) electronic band curvatures. However, finite differences require an additional convergence study and are prone to numerical noise. Moreover, the concept of effective mass breaks down at degenerate band extrema. We assess the former limitation by developing a method that allows to obtain the Hessian of DFT bands directly, using density functional perturbation theory. Then, we solve the latter issue by adapting the concept of "transport equivalent effective mass" to the k .p ̂ framework. The numerical noise inherent to finite-difference methods is thus eliminated, along with the associated convergence study. The resulting method is therefore more general, more robust, and simpler to use, which makes it especially appropriate for high-throughput computing. After validating the developed techniques, we apply them to the study of silicon, graphane, and arsenic. The formalism is implemented into the abinit software and supports the norm-conserving pseudopotential approach, the projector augmented-wave method, and the inclusion of spin-orbit coupling. The derived expressions also apply to the ultrasoft pseudopotential method.
Semiclassical theory for spatial density oscillations in fermionic systems.
Roccia, J; Brack, M; Koch, A
2010-01-01
We investigate the particle and kinetic-energy densities for a system of N fermions bound in a local (mean-field) potential V(r) . We generalize a recently developed semiclassical theory [J. Roccia and M. Brack, Phys. Rev. Lett. 100, 200408 (2008)] in which the densities are calculated in terms of the closed orbits of the corresponding classical system to D>1 dimensions. We regularize the semiclassical results (i) for the U(1) symmetry breaking occurring for spherical systems at r=0 and (ii) near the classical turning points where the Friedel oscillations are predominant and well reproduced by the shortest orbit going from r to the closest turning point and back. For systems with spherical symmetry, we show that there exist two types of oscillations which can be attributed to radial and nonradial orbits, respectively. The semiclassical theory is tested against exact quantum-mechanical calculations for a variety of model potentials. We find a very good overall numerical agreement between semiclassical and exact numerical densities even for moderate particle numbers N . Using a "local virial theorem," shown to be valid (except for a small region around the classical turning points) for arbitrary local potentials, we can prove that the Thomas-Fermi functional tau(TF)[rho] reproduces the oscillations in the quantum-mechanical densities to first order in the oscillating parts. PMID:20365334
An information theory approach to the density of the earth
NASA Technical Reports Server (NTRS)
Graber, M. A.
1977-01-01
Information theory can develop a technique which takes experimentally determined numbers and produces a uniquely specified best density model satisfying those numbers. A model was generated using five numerical parameters: the mass of the earth, its moment of inertia, three zero-node torsional normal modes (L = 2, 8, 26). In order to determine the stability of the solution, six additional densities were generated, in each of which the period of one of the three normal modes was increased or decreased by one standard deviation. The superposition of the seven models is shown. It indicates that current knowledge of the torsional modes is sufficient to specify the density in the upper mantle but that the lower mantle and core will require smaller standard deviations before they can be accurately specified.
Computational complexity of time-dependent density functional theory
NASA Astrophysics Data System (ADS)
Whitfield, J. D.; Yung, M.-H.; Tempel, D. G.; Boixo, S.; Aspuru-Guzik, A.
2014-08-01
Time-dependent density functional theory (TDDFT) is rapidly emerging as a premier method for solving dynamical many-body problems in physics and chemistry. The mathematical foundations of TDDFT are established through the formal existence of a fictitious non-interacting system (known as the Kohn-Sham system), which can reproduce the one-electron reduced probability density of the actual system. We build upon these works and show that on the interior of the domain of existence, the Kohn-Sham system can be efficiently obtained given the time-dependent density. We introduce a V-representability parameter which diverges at the boundary of the existence domain and serves to quantify the numerical difficulty of constructing the Kohn-Sham potential. For bounded values of V-representability, we present a polynomial time quantum algorithm to generate the time-dependent Kohn-Sham potential with controllable error bounds.
External orthogonality in subsystem time-dependent density functional theory.
Chulhai, Dhabih V; Jensen, Lasse
2016-08-01
Subsystem density functional theory (subsystem DFT) is a DFT partitioning method that is exact in principle, but depends on approximations to the kinetic energy density functional (KEDF). One may avoid the use of approximate KEDFs by ensuring that the inter-subsystem molecular orbitals are orthogonal, termed external orthogonality (EO). We present a method that extends a subsystem DFT method, that includes EO, into the time-dependent DFT (TDDFT) regime. This method therefore removes the need for approximations to the kinetic energy potential and kernel, and we show that it can accurately reproduce the supermolecular TDDFT results for weakly and strongly coupled subsystems, and for systems with strongly overlapping densities (where KEDF approximations traditionally fail). PMID:26932176
Applying Density Functional Theory for Atomic Vacancies in Solids
NASA Astrophysics Data System (ADS)
Zhou, Xiaolan; Perdew, John P.
2008-03-01
We use a new generalized gradient approximation of density functional theory -- PBEsol, a revised Perdew-Burke-Ernzerhof GGA, to calculate the vacancy formation energies and other properties of metals and semiconductors: Al, Pt, Pd, GaN [1], etc. By restoring the gradient expansion over a wide range of density gradients, PBEsol [2] yields excellent jellium exchange and correlation surface energies. We expect that this new functional will improve the description of vacancies in real materials, since the vacancy formation energy is essentially the work needed to create an interior surface. [1] Thomas R.Mattsson and Ann E. Mattson. Phys. Rev. B 66, 214410 (2002). [2] John P. Perdew, Adrienn Ruzsinszky, Gabor I. Csonka, Oleg A. Vydrov, Gustavo E. Scuseria, Lucian A. Constantin, Xiaolan Zhou, and Kieron Burke, Restoring the density-gradient expansion for exchange in solids and surfaces, http://arxiv.org/abs/0711.0156
Quark Physics without Quarks: A Review of Recent Developments in S-Matrix Theory.
ERIC Educational Resources Information Center
Capra, Fritjof
1979-01-01
Reviews the developments in S-matrix theory over the past five years which have made it possible to derive results characteristic of quark models without any need to postulate the existence of physical quarks. In the new approach, the quark patterns emerge as a consequence of combining the general S-matrix principles with the concept of order.…
The Moduli Space and M(Atrix) Theory of 9d N=1 Backgrounds of M/String Theory
Aharony, Ofer; Komargodski, Zohar; Patir, Assaf; /Weizmann Inst.
2007-03-21
We discuss the moduli space of nine dimensional N = 1 supersymmetric compactifications of M theory/string theory with reduced rank (rank 10 or rank 2), exhibiting how all the different theories (including M theory compactified on a Klein bottle and on a Moebius strip, the Dabholkar-Park background, CHL strings and asymmetric orbifolds of type II strings on a circle) fit together, and what are the weakly coupled descriptions in different regions of the moduli space. We argue that there are two disconnected components in the moduli space of theories with rank 2. We analyze in detail the limits of the M theory compactifications on a Klein bottle and on a Moebius strip which naively give type IIA string theory with an uncharged orientifold 8-plane carrying discrete RR flux. In order to consistently describe these limits we conjecture that this orientifold non-perturbatively splits into a D8-brane and an orientifold plane of charge (-1) which sits at infinite coupling. We construct the M(atrix) theory for M theory on a Klein bottle (and the theories related to it), which is given by a 2 + 1 dimensional gauge theory with a varying gauge coupling compactified on a cylinder with specific boundary conditions. We also clarify the construction of the M(atrix) theory for backgrounds of rank 18, including the heterotic string on a circle.
Hydrogel core flexible matrix composite (H-FMC) actuators: theory and preliminary modelling
NASA Astrophysics Data System (ADS)
Dicker, M. P. M.; Weaver, P. M.; Rossiter, J. M.; Bond, I. P.
2014-09-01
The underlying theory of a new actuator concept based on hydrogel core flexible matrix composites (H-FMC) is presented. The key principle that underlines the H-FMC actuator operation is that the three-dimensional swelling of a hydrogel is partially constrained in order to improve the amount of useful work done. The partial constraint is applied to the hydrogel by a flexible matrix composite (FMC) that minimizes the hydrogel's volume expansion while swelling. This constraint serves to maximize the fixed charge density and resulting osmotic pressure, the driving force behind actuation. In addition, for certain FMC fibre orientations the Poisson's ratio of the anisotropic FMC laminate converts previously unused hydrogel swelling in the radial and circumferential directions into useful axial strains. The potential benefit of the H-FMC concept to hydrogel actuator performance is shown through comparison of force-stroke curves and evaluation of improvements in useful actuation work. The model used to achieve this couples chemical and electrical components, represented with the Nernst-Plank and Poisson equations, as well as a linear elastic mechanical material model, encompassing limited geometric nonlinearities. It is found that improvements in useful actuation work in the order of 1500% over bare hydrogel performance are achieved by the H-FMC concept. A parametric study is also undertaken to determine the effect of various FMC design parameters on actuator free strain and blocking stress. A comparison to other actuator concepts is also included.
NASA Astrophysics Data System (ADS)
Lemieux, M.-A.; Tremblay, A.-M. S.
1987-07-01
It is shown that various numerical methods to compute densities of states, projected densities of states (relevant for light scattering spectra), electrical or elastic properties of disordered media can all be considered as special cases of a general approach to these problems. This approach is based on a recursive evaluation of a generating function which in appropriate limits reduces, for example, to the approach based on the negative-eigenvalue theorem or to Gaussian elimination optimized for symmetric sparse matrices. The approach is simple and systematic. It also leads to an alternate proof of the negative-eigenvalue theorem. The general formalism and various special cases are discussed in detail. Comparisons with other methods such as the transfer-matrix, conjugate-gradient, and Haydock-Lanczos methods are provided.
Theory of melting at high pressures: Amending density functional theory with quantum Monte Carlo
Shulenburger, L.; Desjarlais, M. P.; Mattsson, T. R.
2014-10-01
We present an improved first-principles description of melting under pressure based on thermodynamic integration comparing Density Functional Theory (DFT) and quantum Monte Carlo (QMC) treatments of the system. The method is applied to address the longstanding discrepancy between density functional theory (DFT) calculations and diamond anvil cell (DAC) experiments on the melting curve of xenon, a noble gas solid where van der Waals binding is challenging for traditional DFT methods. The calculations show excellent agreement with data below 20 GPa and that the high-pressure melt curve is well described by a Lindemann behavior up to at least 80 GPa, a finding in stark contrast to DAC data.
Plato: A localised orbital based density functional theory code
NASA Astrophysics Data System (ADS)
Kenny, S. D.; Horsfield, A. P.
2009-12-01
The Plato package allows both orthogonal and non-orthogonal tight-binding as well as density functional theory (DFT) calculations to be performed within a single framework. The package also provides extensive tools for analysing the results of simulations as well as a number of tools for creating input files. The code is based upon the ideas first discussed in Sankey and Niklewski (1989) [1] with extensions to allow high-quality DFT calculations to be performed. DFT calculations can utilise either the local density approximation or the generalised gradient approximation. Basis sets from minimal basis through to ones containing multiple radial functions per angular momenta and polarisation functions can be used. Illustrations of how the package has been employed are given along with instructions for its utilisation. Program summaryProgram title: Plato Catalogue identifier: AEFC_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEFC_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 219 974 No. of bytes in distributed program, including test data, etc.: 1 821 493 Distribution format: tar.gz Programming language: C/MPI and PERL Computer: Apple Macintosh, PC, Unix machines Operating system: Unix, Linux and Mac OS X Has the code been vectorised or parallelised?: Yes, up to 256 processors tested RAM: Up to 2 Gbytes per processor Classification: 7.3 External routines: LAPACK, BLAS and optionally ScaLAPACK, BLACS, PBLAS, FFTW Nature of problem: Density functional theory study of electronic structure and total energies of molecules, crystals and surfaces. Solution method: Localised orbital based density functional theory. Restrictions: Tight-binding and density functional theory only, no exact exchange. Unusual features: Both atom centred and uniform meshes available
Density functional theory and phytochemical study of 8-hydroxyisodiospyrin
NASA Astrophysics Data System (ADS)
Ullah, Zakir; Ata-ur-Rahman; Fazl-i-Sattar; Rauf, Abdur; Yaseen, Muhammad; Hassan, Waseem; Tariq, Muhammad; Ayub, Khurshid; Tahir, Asif Ali; Ullah, Habib
2015-09-01
Comprehensive theoretical and experimental studies of a natural product, 8-hydroxyisodiospyrin (HDO) have been carried out. Based on the correlation of experimental and theoretical data, an appropriate computational model was developed for obtaining the electronic, spectroscopic, and thermodynamic parameters of HDO. First of all, the exact structure of HDO is confirmed from the nice correlation of theory and experiment, prior to determination of its electroactive nature. Hybrid density functional theory (DFT) is employed for all theoretical simulations. The experimental and predicted IR and UV-vis spectra [B3LYP/6-31+G(d,p) level of theory] have excellent correlation. Inter-molecular non-covalent interaction of HDO with different gases such as NH3, CO2, CO, H2O is investigated through geometrical counterpoise (gCP) i.e., B3LYP-gCP-D3/6-31G∗ method. Furthermore, the inter-molecular interaction is also supported by geometrical parameters, electronic properties, thermodynamic parameters and charge analysis. All these characterizations have corroborated each other and confirmed the electroactive nature (non-covalent interaction ability) of HDO for the studied gases. Electronic properties such as Ionization Potential (IP), Electron Affinities (EA), electrostatic potential (ESP), density of states (DOS), HOMO, LUMO, and band gap of HDO have been estimated for the first time theoretically.
Curvature and Frontier Orbital Energies in Density Functional Theory
Stein, Tamar; Autschbach, Jochen; Govind, Niranjan; Kronik, Leeor; Baer, Roi
2012-12-20
Perdew et al. [Phys. Rev. Lett 49, 1691 (1982)] discovered and proved two different properties that exact Kohn-Sham density functional theory (DFT) must obey: (i) The exact total energy versus particle number must be a series of linear segments between integer electron points; (ii) Across an integer number of electrons, the exchange-correlation potential may ``jump’’ by a constant, known as the derivative discontinuity (DD). Here, we show analytically that in both the original and the generalized Kohn-Sham formulation of DFT, the two are in fact two sides of the same coin. Absence of a derivative discontinuity necessitates deviation from piecewise linearity, and the latter can be used to correct for the former, thereby restoring the physical meaning of the orbital energies. Using selected small molecules, we show that this results in a simple correction scheme for any underlying functional, including semi-local and hybrid functionals as well as Hartree-Fock theory, suggesting a practical correction for the infamous gap problem of density functional theory. Moreover, we show that optimally-tuned range-separated hybrid functionals can inherently minimize both DD and curvature, thus requiring no correction, and show that this can be used as a sound theoretical basis for novel tuning strategies.
Dynamic density functional theory with hydrodynamic interactions and fluctuations.
Donev, Aleksandar; Vanden-Eijnden, Eric
2014-06-21
We derive a closed equation for the empirical concentration of colloidal particles in the presence of both hydrodynamic and direct interactions. The ensemble average of our functional Langevin equation reproduces known deterministic Dynamic Density Functional Theory (DDFT) [M. Rex and H. Löwen, "Dynamical density functional theory with hydrodynamic interactions and colloids in unstable traps," Phys. Rev. Lett. 101(14), 148302 (2008)], and, at the same time, it also describes the microscopic fluctuations around the mean behavior. We suggest separating the ideal (non-interacting) contribution from additional corrections due to pairwise interactions. We find that, for an incompressible fluid and in the absence of direct interactions, the mean concentration follows Fick's law just as for uncorrelated walkers. At the same time, the nature of the stochastic terms in fluctuating DDFT is shown to be distinctly different for hydrodynamically-correlated and uncorrelated walkers. This leads to striking differences in the behavior of the fluctuations around Fick's law, even in the absence of pairwise interactions. We connect our own prior work [A. Donev, T. G. Fai, and E. Vanden-Eijnden, "A reversible mesoscopic model of diffusion in liquids: from giant fluctuations to Fick's law," J. Stat. Mech.: Theory Exp. (2014) P04004] on fluctuating hydrodynamics of diffusion in liquids to the DDFT literature, and demonstrate that the fluid cannot easily be eliminated from consideration if one wants to describe the collective diffusion in colloidal suspensions. PMID:24952531
Dynamic density functional theory with hydrodynamic interactions and fluctuations
NASA Astrophysics Data System (ADS)
Donev, Aleksandar; Vanden-Eijnden, Eric
2014-06-01
We derive a closed equation for the empirical concentration of colloidal particles in the presence of both hydrodynamic and direct interactions. The ensemble average of our functional Langevin equation reproduces known deterministic Dynamic Density Functional Theory (DDFT) [M. Rex and H. Löwen, "Dynamical density functional theory with hydrodynamic interactions and colloids in unstable traps," Phys. Rev. Lett. 101(14), 148302 (2008)], and, at the same time, it also describes the microscopic fluctuations around the mean behavior. We suggest separating the ideal (non-interacting) contribution from additional corrections due to pairwise interactions. We find that, for an incompressible fluid and in the absence of direct interactions, the mean concentration follows Fick's law just as for uncorrelated walkers. At the same time, the nature of the stochastic terms in fluctuating DDFT is shown to be distinctly different for hydrodynamically-correlated and uncorrelated walkers. This leads to striking differences in the behavior of the fluctuations around Fick's law, even in the absence of pairwise interactions. We connect our own prior work [A. Donev, T. G. Fai, and E. Vanden-Eijnden, "A reversible mesoscopic model of diffusion in liquids: from giant fluctuations to Fick's law," J. Stat. Mech.: Theory Exp. (2014) P04004] on fluctuating hydrodynamics of diffusion in liquids to the DDFT literature, and demonstrate that the fluid cannot easily be eliminated from consideration if one wants to describe the collective diffusion in colloidal suspensions.
Dynamic density functional theory with hydrodynamic interactions and fluctuations
Donev, Aleksandar Vanden-Eijnden, Eric
2014-06-21
We derive a closed equation for the empirical concentration of colloidal particles in the presence of both hydrodynamic and direct interactions. The ensemble average of our functional Langevin equation reproduces known deterministic Dynamic Density Functional Theory (DDFT) [M. Rex and H. Löwen, “Dynamical density functional theory with hydrodynamic interactions and colloids in unstable traps,” Phys. Rev. Lett. 101(14), 148302 (2008)], and, at the same time, it also describes the microscopic fluctuations around the mean behavior. We suggest separating the ideal (non-interacting) contribution from additional corrections due to pairwise interactions. We find that, for an incompressible fluid and in the absence of direct interactions, the mean concentration follows Fick's law just as for uncorrelated walkers. At the same time, the nature of the stochastic terms in fluctuating DDFT is shown to be distinctly different for hydrodynamically-correlated and uncorrelated walkers. This leads to striking differences in the behavior of the fluctuations around Fick's law, even in the absence of pairwise interactions. We connect our own prior work [A. Donev, T. G. Fai, and E. Vanden-Eijnden, “A reversible mesoscopic model of diffusion in liquids: from giant fluctuations to Fick's law,” J. Stat. Mech.: Theory Exp. (2014) P04004] on fluctuating hydrodynamics of diffusion in liquids to the DDFT literature, and demonstrate that the fluid cannot easily be eliminated from consideration if one wants to describe the collective diffusion in colloidal suspensions.
Nonlinear density fluctuation field theory for large scale structure
NASA Astrophysics Data System (ADS)
Zhang, Yang; Miao, Hai-Xing
2009-05-01
We develop an effective field theory of density fluctuations for a Newtonian self-gravitating N-body system in quasi-equilibrium and apply it to a homogeneous universe with small density fluctuations. Keeping the density fluctuations up to second order, we obtain the nonlinear field equation of 2-pt correlation ξ(r), which contains 3-pt correlation and formal ultra-violet divergences. By the Groth-Peebles hierarchical ansatz and mass renormalization, the equation becomes closed with two new terms beyond the Gaussian approximation, and their coefficients are taken as parameters. The analytic solution is obtained in terms of the hypergeometric functions, which is checked numerically. With one single set of two fixed parameters, the correlation ξ(r) and the corresponding power spectrum P(κ) simultaneously match the results from all the major surveys, such as APM, SDSS, 2dfGRS, and REFLEX. The model gives a unifying understanding of several seemingly unrelated features of large scale structure from a field-theoretical perspective. The theory is worth extending to study the evolution effects in an expanding universe.
A Wigner Monte Carlo approach to density functional theory
NASA Astrophysics Data System (ADS)
Sellier, J. M.; Dimov, I.
2014-08-01
In order to simulate quantum N-body systems, stationary and time-dependent density functional theories rely on the capacity of calculating the single-electron wave-functions of a system from which one obtains the total electron density (Kohn-Sham systems). In this paper, we introduce the use of the Wigner Monte Carlo method in ab-initio calculations. This approach allows time-dependent simulations of chemical systems in the presence of reflective and absorbing boundary conditions. It also enables an intuitive comprehension of chemical systems in terms of the Wigner formalism based on the concept of phase-space. Finally, being based on a Monte Carlo method, it scales very well on parallel machines paving the way towards the time-dependent simulation of very complex molecules. A validation is performed by studying the electron distribution of three different systems, a Lithium atom, a Boron atom and a hydrogenic molecule. For the sake of simplicity, we start from initial conditions not too far from equilibrium and show that the systems reach a stationary regime, as expected (despite no restriction is imposed in the choice of the initial conditions). We also show a good agreement with the standard density functional theory for the hydrogenic molecule. These results demonstrate that the combination of the Wigner Monte Carlo method and Kohn-Sham systems provides a reliable computational tool which could, eventually, be applied to more sophisticated problems.
Subsystem real-time time dependent density functional theory.
Krishtal, Alisa; Ceresoli, Davide; Pavanello, Michele
2015-04-21
We present the extension of Frozen Density Embedding (FDE) formulation of subsystem Density Functional Theory (DFT) to real-time Time Dependent Density Functional Theory (rt-TDDFT). FDE is a DFT-in-DFT embedding method that allows to partition a larger Kohn-Sham system into a set of smaller, coupled Kohn-Sham systems. Additional to the computational advantage, FDE provides physical insight into the properties of embedded systems and the coupling interactions between them. The extension to rt-TDDFT is done straightforwardly by evolving the Kohn-Sham subsystems in time simultaneously, while updating the embedding potential between the systems at every time step. Two main applications are presented: the explicit excitation energy transfer in real time between subsystems is demonstrated for the case of the Na4 cluster and the effect of the embedding on optical spectra of coupled chromophores. In particular, the importance of including the full dynamic response in the embedding potential is demonstrated. PMID:25903875
Computational difficulty of global variations in the density matrix renormalization group.
Eisert, J
2006-12-31
The density matrix renormalization group approach is arguably the most successful method to numerically find ground states of quantum spin chains. It amounts to iteratively locally optimizing matrix-product states, aiming at better and better approximating the true ground state. To date, both a proof of convergence to the globally best approximation and an assessment of its complexity are lacking. Here we establish a result on the computational complexity of an approximation with matrix-product states: The surprising result is that when one globally optimizes over several sites of local Hamiltonians, avoiding local optima, one encounters in the worst case a computationally difficult NP-hard problem (hard even in approximation). The proof exploits a novel way of relating it to binary quadratic programming. We discuss intriguing ramifications on the difficulty of describing quantum many-body systems. PMID:17280410
Roemelt, Michael
2015-07-28
Spin Orbit Coupling (SOC) is introduced to molecular ab initio density matrix renormalization group (DMRG) calculations. In the presented scheme, one first approximates the electronic ground state and a number of excited states of the Born-Oppenheimer (BO) Hamiltonian with the aid of the DMRG algorithm. Owing to the spin-adaptation of the algorithm, the total spin S is a good quantum number for these states. After the non-relativistic DMRG calculation is finished, all magnetic sublevels of the calculated states are constructed explicitly, and the SOC operator is expanded in the resulting basis. To this end, spin orbit coupled energies and wavefunctions are obtained as eigenvalues and eigenfunctions of the full Hamiltonian matrix which is composed of the SOC operator matrix and the BO Hamiltonian matrix. This treatment corresponds to a quasi-degenerate perturbation theory approach and can be regarded as the molecular equivalent to atomic Russell-Saunders coupling. For the evaluation of SOC matrix elements, the full Breit-Pauli SOC Hamiltonian is approximated by the widely used spin-orbit mean field operator. This operator allows for an efficient use of the second quantized triplet replacement operators that are readily generated during the non-relativistic DMRG algorithm, together with the Wigner-Eckart theorem. With a set of spin-orbit coupled wavefunctions at hand, the molecular g-tensors are calculated following the scheme proposed by Gerloch and McMeeking. It interprets the effective molecular g-values as the slope of the energy difference between the lowest Kramers pair with respect to the strength of the applied magnetic field. Test calculations on a chemically relevant Mo complex demonstrate the capabilities of the presented method.
NASA Astrophysics Data System (ADS)
Roemelt, Michael
2015-07-01
Spin Orbit Coupling (SOC) is introduced to molecular ab initio density matrix renormalization group (DMRG) calculations. In the presented scheme, one first approximates the electronic ground state and a number of excited states of the Born-Oppenheimer (BO) Hamiltonian with the aid of the DMRG algorithm. Owing to the spin-adaptation of the algorithm, the total spin S is a good quantum number for these states. After the non-relativistic DMRG calculation is finished, all magnetic sublevels of the calculated states are constructed explicitly, and the SOC operator is expanded in the resulting basis. To this end, spin orbit coupled energies and wavefunctions are obtained as eigenvalues and eigenfunctions of the full Hamiltonian matrix which is composed of the SOC operator matrix and the BO Hamiltonian matrix. This treatment corresponds to a quasi-degenerate perturbation theory approach and can be regarded as the molecular equivalent to atomic Russell-Saunders coupling. For the evaluation of SOC matrix elements, the full Breit-Pauli SOC Hamiltonian is approximated by the widely used spin-orbit mean field operator. This operator allows for an efficient use of the second quantized triplet replacement operators that are readily generated during the non-relativistic DMRG algorithm, together with the Wigner-Eckart theorem. With a set of spin-orbit coupled wavefunctions at hand, the molecular g-tensors are calculated following the scheme proposed by Gerloch and McMeeking. It interprets the effective molecular g-values as the slope of the energy difference between the lowest Kramers pair with respect to the strength of the applied magnetic field. Test calculations on a chemically relevant Mo complex demonstrate the capabilities of the presented method.
Roemelt, Michael
2015-07-28
Spin Orbit Coupling (SOC) is introduced to molecular ab initio density matrix renormalization group (DMRG) calculations. In the presented scheme, one first approximates the electronic ground state and a number of excited states of the Born-Oppenheimer (BO) Hamiltonian with the aid of the DMRG algorithm. Owing to the spin-adaptation of the algorithm, the total spin S is a good quantum number for these states. After the non-relativistic DMRG calculation is finished, all magnetic sublevels of the calculated states are constructed explicitly, and the SOC operator is expanded in the resulting basis. To this end, spin orbit coupled energies and wavefunctions are obtained as eigenvalues and eigenfunctions of the full Hamiltonian matrix which is composed of the SOC operator matrix and the BO Hamiltonian matrix. This treatment corresponds to a quasi-degenerate perturbation theory approach and can be regarded as the molecular equivalent to atomic Russell-Saunders coupling. For the evaluation of SOC matrix elements, the full Breit-Pauli SOC Hamiltonian is approximated by the widely used spin-orbit mean field operator. This operator allows for an efficient use of the second quantized triplet replacement operators that are readily generated during the non-relativistic DMRG algorithm, together with the Wigner-Eckart theorem. With a set of spin-orbit coupled wavefunctions at hand, the molecular g-tensors are calculated following the scheme proposed by Gerloch and McMeeking. It interprets the effective molecular g-values as the slope of the energy difference between the lowest Kramers pair with respect to the strength of the applied magnetic field. Test calculations on a chemically relevant Mo complex demonstrate the capabilities of the presented method. PMID:26233112
Billeter, Salomon R; Egli, Daniel
2006-12-14
This paper generalizes the recently proposed approaches for calculating the derivative couplings between adiabatic states in density-functional theory (DFT) based on a Slater transition-state density to transitions such as singlet-singlet excitations, where a single-determinant ansatz is insufficient. The proposed approach is based on restricted open-shell Frank et al. [J. Chem. Phys. 108, 4060 (1998)] theory used to describe a spin-adapted Slater transition state. To treat the dependence of electron-electron interactions on the nuclear positions, variational linear-response density-functional perturbation theory is generalized to reference states with an orbital-dependent Kohn-Sham Hamiltonian and nontrivial occupation patterns. The methods proposed in this paper are not limited to the calculation of derivative coupling vectors, but can also be used for the calculation of other transition matrix elements. Moreover, they can be used to calculate the linear response of open-shell systems to arbitrary external perturbations in DFT. PMID:17176130
Computation of the high temperature Coulomb density matrix in periodic boundary conditions
NASA Astrophysics Data System (ADS)
Militzer, B.
2016-07-01
The high temperature many-body density matrix is fundamental to path integral computation. The pair approximation, where the interaction part is written as a product of pair density matrices, is commonly used and is accurate to order τ2, where τ is the step size in the imaginary time. Here we present a method for systems with Coulomb interactions in periodic boundary conditions that consistently treats the all interactions with the same level of accuracy. It is shown that this leads to a more accurate high temperature solution of the Bloch equation. The method is applied to many-body simulation and tests for the isolated hydrogen atom and molecule are presented.
Transfer Matrix Approach to 1d Random Band Matrices: Density of States
NASA Astrophysics Data System (ADS)
Shcherbina, Mariya; Shcherbina, Tatyana
2016-08-01
We study the special case of n× n 1D Gaussian Hermitian random band matrices, when the covariance of the elements is determined by the matrix J=(-W^2triangle +1)^{-1} . Assuming that n≥ CW log W≫ 1 , we prove that the averaged density of states coincides with the Wigner semicircle law up to the correction of order W^{-1}.
Uncertainty Quantification and Propagation in Nuclear Density Functional Theory
Schunck, N; McDonnell, J D; Higdon, D; Sarich, J; Wild, S M
2015-03-17
Nuclear density functional theory (DFT) is one of the main theoretical tools used to study the properties of heavy and superheavy elements, or to describe the structure of nuclei far from stability. While on-going eff orts seek to better root nuclear DFT in the theory of nuclear forces, energy functionals remain semi-phenomenological constructions that depend on a set of parameters adjusted to experimental data in fi nite nuclei. In this paper, we review recent eff orts to quantify the related uncertainties, and propagate them to model predictions. In particular, we cover the topics of parameter estimation for inverse problems, statistical analysis of model uncertainties and Bayesian inference methods. Illustrative examples are taken from the literature.
Van der Waals Interactions in Density Functional Theory: Intermolecular Complexes
NASA Astrophysics Data System (ADS)
Kannemann, Felix; Becke, Axel
2010-03-01
Conventional density functional theory (GGA and hybrid functionals) fails to account for dispersion interactions and is therefore not applicable to systems where van der Waals interactions play a dominant role, such as intermolecular complexes and biomolecules. The exchange-hole dipole moment (XDM) dispersion model of Becke and Johnson [A. D. Becke and E. R. Johnson, J. Chem. Phys. 127, 154108 (2007)] corrects for this deficiency. We have previously shown that the XDM dispersion model can be combined with standard GGA functionals (PW86 for exchange and PBE for correlation) to give accurate binding energy curves for rare-gas diatomics [F. O. Kannemann and A. D. Becke, J. Chem. Theory Comput. 5, 719 (2009)]. Here we present further tests of the GGA-XDM method using benchmark sets including hydrogen bonding, electrostatic, dispersion and stacking interactions, and systems ranging from rare-gas diatomics to biomolecular complexes.
Descriptions of carbon isotopes within the energy density functional theory
Ismail, Atef; Cheong, Lee Yen; Yahya, Noorhana; Tammam, M.
2014-10-24
Within the energy density functional (EDF) theory, the structure properties of Carbon isotopes are systematically studied. The shell model calculations are done for both even-A and odd-A nuclei, to study the structure of rich-neutron Carbon isotopes. The EDF theory indicates the single-neutron halo structures in {sup 15}C, {sup 17}C and {sup 19}C, and the two-neutron halo structures in {sup 16}C and {sup 22}C nuclei. It is also found that close to the neutron drip-line, there exist amazing increase in the neutron radii and decrease on the binding energies BE, which are tightly related with the blocking effect and correspondingly the blocking effect plays a significant role in the shell model configurations.
Effective quadrupole-quadrupole interaction from density functional theory
NASA Astrophysics Data System (ADS)
Alhassid, Y.; Bertsch, G. F.; Fang, L.; Sabbey, B.
2006-09-01
The density functional theory of nuclear structure provides a many-particle wave function that is useful for static properties, but an extension of the theory is necessary to describe correlation effects or other dynamic properties. We propose a procedure to extend the theory by mapping the properties of a self-consistent mean-field theory onto an effective shell-model Hamiltonian with quadrupole-quadrupole interaction. In this initial study, we consider the sd-shell nuclei Ne20, Mg24, Si28, and Ar36. The method is first tested with the USD shell-model Hamiltonian, using its mean-field approximation to construct an effective Hamiltonian and partially recover correlation effects. We find that more than half of the correlation energy is due to the quadrupole interaction. We then follow a similar procedure but using the SLy4 Skyrme energy functional as our starting point and truncating the space to the spherical sd shell. The constructed shell-model Hamiltonian is found to satisfy minimal consistency requirements to reproduce the properties of the mean-field solution. The quadrupolar correlation energies computed with the mapped Hamiltonian are reasonable compared with those computed by other methods. The method also provides a well-defined renormalization of the quadrupole operator in the shell-model space, the “effective charge” of the phenomenological shell model.
Dynamic density functional theory of solid tumor growth: Preliminary models.
Chauviere, Arnaud; Hatzikirou, Haralambos; Kevrekidis, Ioannis G; Lowengrub, John S; Cristini, Vittorio
2012-03-01
Cancer is a disease that can be seen as a complex system whose dynamics and growth result from nonlinear processes coupled across wide ranges of spatio-temporal scales. The current mathematical modeling literature addresses issues at various scales but the development of theoretical methodologies capable of bridging gaps across scales needs further study. We present a new theoretical framework based on Dynamic Density Functional Theory (DDFT) extended, for the first time, to the dynamics of living tissues by accounting for cell density correlations, different cell types, phenotypes and cell birth/death processes, in order to provide a biophysically consistent description of processes across the scales. We present an application of this approach to tumor growth. PMID:22489279
Sublinear scaling for time-dependent stochastic density functional theory
Gao, Yi; Neuhauser, Daniel; Baer, Roi; Rabani, Eran
2015-01-21
A stochastic approach to time-dependent density functional theory is developed for computing the absorption cross section and the random phase approximation (RPA) correlation energy. The core idea of the approach involves time-propagation of a small set of stochastic orbitals which are first projected on the occupied space and then propagated in time according to the time-dependent Kohn-Sham equations. The evolving electron density is exactly represented when the number of random orbitals is infinite, but even a small number (≈16) of such orbitals is enough to obtain meaningful results for absorption spectrum and the RPA correlation energy per electron. We implement the approach for silicon nanocrystals using real-space grids and find that the overall scaling of the algorithm is sublinear with computational time and memory.
Excitations and benchmark ensemble density functional theory for two electrons
Pribram-Jones, Aurora; Burke, Kieron; Yang, Zeng-hui; Ullrich, Carsten A.; Trail, John R.; Needs, Richard J.
2014-05-14
A new method for extracting ensemble Kohn-Sham potentials from accurate excited state densities is applied to a variety of two-electron systems, exploring the behavior of exact ensemble density functional theory. The issue of separating the Hartree energy and the choice of degenerate eigenstates is explored. A new approximation, spin eigenstate Hartree-exchange, is derived. Exact conditions that are proven include the signs of the correlation energy components and the asymptotic behavior of the potential for small weights of the excited states. Many energy components are given as a function of the weights for two electrons in a one-dimensional flat box, in a box with a large barrier to create charge transfer excitations, in a three-dimensional harmonic well (Hooke's atom), and for the He atom singlet-triplet ensemble, singlet-triplet-singlet ensemble, and triplet bi-ensemble.
Hubbard operator density functional theory for Fermionic lattice models
NASA Astrophysics Data System (ADS)
Cheng, Zhengqian; Marianetti, Chris
We formulate an effective action as a functional of Hubbard operator densities whose stationary point delivers all local static information of the interacting lattice model. Using the variational principle, we get a self-consistent equation for Hubbard operator densities. The computational cost of our approach is set by diagonalizing the local Fock space. We apply our method to the one and two band Hubbard model (including crystal field and on-site exchange) in infinite dimensions where the exact solution is known. Excellent agreement is obtained for the one-band model. In the two-band model, good agreement is obtained in the metallic region of the phase diagram in addition to the metal-insulator transition. While our approach does not address frequency dependent observables, it has a negligible computational cost as compared to dynamical mean field theory and could be highly applicable in the context total energies of strongly correlated materials and molecules.
Nuclear chiral and magnetic rotation in covariant density functional theory
NASA Astrophysics Data System (ADS)
Meng, Jie; Zhao, Pengwei
2016-05-01
Excitations of chiral rotation observed in triaxial nuclei and magnetic and/or antimagnetic rotations (AMR) seen in near-spherical nuclei have attracted a lot of attention. Unlike conventional rotation in well-deformed or superdeformed nuclei, here the rotational axis is not necessary coinciding with any principal axis of the nuclear density distribution. Thus, tilted axis cranking (TAC) is mandatory to describe these excitations self-consistently in the framework of covariant density functional theory (CDFT). We will briefly introduce the formalism of TAC–CDFT and its application for magnetic and AMR phenomena. Configuration-fixed CDFT and its predictions for nuclear chiral configurations and for favorable triaxial deformation parameters are also presented, and the discoveries of the multiple chiral doublets in 133Ce and 103Rh are discussed.
Advances in time-dependent current-density functional theory
NASA Astrophysics Data System (ADS)
Berger, Arjan
In this work we solve the problem of the gauge dependence of molecular magnetic properties (magnetizabilities, circular dichroism) using time-dependent current-density functional theory [1]. We also present a new functional that accurately describes the optical absorption spectra of insulators, semiconductors and metals [2] N. Raimbault, P.L. de Boeij, P. Romaniello, and J.A. Berger Phys. Rev. Lett. 114, 066404 (2015) J.A. Berger, Phys. Rev. Lett. 115, 137402 (2015) This study has been partially supported through the Grant NEXT No. ANR-10-LABX-0037 in the framework of the Programme des Investissements d'Avenir.
Application of Density Functional Theory to Systems Containing Metal Atoms
NASA Technical Reports Server (NTRS)
Bauschlicher, Charles W., Jr.; Arnold, James O. (Technical Monitor)
1997-01-01
The accuracy of density functional theory (DFT) for problems involving metal atoms is considered. The DFT results are compared with experiment as well as results obtained using the coupled cluster approach. The comparisons include geometries, frequencies, and bond energies. The systems considered include MO2, M(OH)+(sub n), MNO+, and MCO+(sub 2). The DFT works well for frequencies and geometries, even in cases with symmetry breaking; however, some examples have been found where the symmetry breaking is quite severe and the DFT methods do not work well. The calculation of bond energies is more difficult and examples of the successes as well as failures of DFT will be given.
Quantification of Uncertainties in Nuclear Density Functional Theory
Schunck, N.; McDonnell, J.D.; Higdon, D.; Sarich, J.; Wild, S.
2015-01-15
Reliable predictions of nuclear properties are needed as much to answer fundamental science questions as in applications such as reactor physics or data evaluation. Nuclear density functional theory is currently the only microscopic, global approach to nuclear structure that is applicable throughout the nuclear chart. In the past few years, a lot of effort has been devoted to setting up a general methodology to assess theoretical uncertainties in nuclear DFT calculations. In this paper, we summarize some of the recent progress in this direction. Most of the new material discussed here will be be published in separate articles.
What Density Functional Theory could do for Quantum Information
NASA Astrophysics Data System (ADS)
Mattsson, Ann
2015-03-01
The Hohenberg-Kohn theorem of Density Functional Theory (DFT), and extensions thereof, tells us that all properties of a system of electrons can be determined through their density, which uniquely determines the many-body wave-function. Given access to the appropriate, universal, functionals of the density we would, in theory, be able to determine all observables of any electronic system, without explicit reference to the wave-function. On the other hand, the wave-function is at the core of Quantum Information (QI), with the wave-function of a set of qubits being the central computational resource in a quantum computer. While there is seemingly little overlap between DFT and QI, reliance upon observables form a key connection. Though the time-evolution of the wave-function and associated phase information is fundamental to quantum computation, the initial and final states of a quantum computer are characterized by observables of the system. While observables can be extracted directly from a system's wave-function, DFT tells us that we may be able to intuit a method for extracting them from its density. In this talk, I will review the fundamentals of DFT and how these principles connect to the world of QI. This will range from DFT's utility in the engineering of physical qubits, to the possibility of using it to efficiently (but approximately) simulate Hamiltonians at the logical level. The apparent paradox of describing algorithms based on the quantum mechanical many-body wave-function with a DFT-like theory based on observables will remain a focus throughout. The ultimate goal of this talk is to initiate a dialog about what DFT could do for QI, in theory and in practice. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.
Application of Density Functional Theory to Systems Containing Metal Atoms
NASA Technical Reports Server (NTRS)
Bauschlicher, Charles W., Jr.
2006-01-01
The accuracy of density functional theory (DFT) for problems involving metal atoms is considered. The DFT results are compared with experiment as well as results obtained using the coupled cluster approach. The comparisons include geometries, frequencies, and bond energies. The systems considered include MO2, M(OH)+n, MNO+, and MCO+2. The DFT works well for frequencies and geometries, even in case with symmetry breaking; however, some examples have been found where the symmetry breaking is quite severe and the DFT methods do not work well. The calculation of bond energies is more difficult and examples of successes as well as failures of DFT will be given.
Atomistic force field for alumina fit to density functional theory
Sarsam, Joanne; Finnis, Michael W.; Tangney, Paul
2013-11-28
We present a force field for bulk alumina (Al{sub 2}O{sub 3}), which has been parametrized by fitting the energies, forces, and stresses of a large database of reference configurations to those calculated with density functional theory (DFT). We use a functional form that is simpler and computationally more efficient than some existing models of alumina parametrized by a similar technique. Nevertheless, we demonstrate an accuracy of our potential that is comparable to those existing models and to DFT. We present calculations of crystal structures and energies, elastic constants, phonon spectra, thermal expansion, and point defect formation energies.
Density functional theory for strongly-correlated ultracold dipolar gases
NASA Astrophysics Data System (ADS)
Malet Giralt, Francesc; Reimann, Stephanie; Gori-Giorgi, Paola; Lund University Collaboration
2014-03-01
We address quasi-one-dimensional strongly-correlated dipolar ultracold gases by means of density functional theory. We make use of an approximation for the Hartree-exchange-correlation that has been shown to be very accurate for electronic systems with coulombic interactions. We show that this approach allows to treat systems with very large particle numbers at relatively low computational cost. This work has been supported by a VIDI grant of the NWO and a Marie Curie grant within the FP7 programme.
Density functional theory calculations of Rh-β-diketonato complexes.
Conradie, J
2015-01-28
Density functional theory (DFT) results on the geometry, energies and charges of selected Rh-β-diketonato reactants, products and transition states are discussed. Various DFT techniques are used to increase our understanding of the orientation of ligands coordinated to Rh, to identify the lowest energy geometry of possible geometrical isomers and to get a molecular orbital understanding of ground and transition states. Trends and relationships obtained between DFT calculated energies and charges, experimentally measured values and electronic parameters describing the electron donating power of groups and ligands, enable the design of ligands and complexes of specific reactivity. PMID:25429658
Numerical density-to-potential inversions in time-dependent density functional theory.
Jensen, Daniel S; Wasserman, Adam
2016-08-01
We treat the density-to-potential inverse problem of time-dependent density functional theory as an optimization problem with a partial differential equation constraint. The unknown potential is recovered from a target density by applying a multilevel optimization method controlled by error estimates. We employ a classical optimization routine using gradients efficiently computed by the discrete adjoint method. The inverted potential has both a real and imaginary part to reduce reflections at the boundaries and other numerical artifacts. We demonstrate this method on model one-dimensional systems. The method can be straightforwardly extended to a variety of numerical solvers of the time-dependent Kohn-Sham equations and to systems in higher dimensions. PMID:26984427
Laktionov, Andrey; Chemineau-Chalaye, Emilie; Wesolowski, Tomasz A
2016-08-21
Besides molecular electron densities obtained within the Born-Oppenheimer approximation (ρB(r)) to represent the environment, the ensemble averaged density (〈ρB〉(r)) is also admissible in frozen-density embedding theory (FDET) [Wesolowski, Phys. Rev. A, 2008, 77, 11444]. This makes it possible to introduce an approximation in the evaluation of the solvent effect on quantum mechanical observables consisting of replacing the ensemble averaged observable by the observable evaluated at ensemble averaged ρB(r). This approximation is shown to affect negligibly the solvatochromic shift in the absorption of hydrated acetone. The proposed model provides a continuum type of representation of the solvent, which reflects nevertheless its local structure, and it is to be applied as a post-simulation analysis tool in atomistic level simulations. PMID:26984532
Comments on the locality in density-functional theory
Lindgren, Ingvar; Salomonson, Sten
2003-05-01
The 'locality hypothesis' in density-functional theory (DFT), implying that the functional derivative is equivalent to a multiplicative local function, forms the basis of models of Kohn-Sham type. This has been generally accepted by the community since the advent of the model, and has later been formally proved for a large class of functionals. The hypothesis has recently been questioned by Nesbet [Phys. Rev. A 58, R12 (1998) and Phys. Rev. A 65, 010502 (2001)], who claims that it fails for the kinetic-energy functional for a system with more than two noninteracting electrons with a nondegenerate ground state. This conclusion has been questioned by Gal [Phys. Rev. A 62, 044501 (2000)] and by Holas and March [Phys. Rev. A 64, 016501 (2001)]. We claim that the arguments of Nesbet are incorrect, since the orbital functional used for the kinetic energy is not a unique functional of the total density in the domain of unnormalized orbitals. We have demonstrated that with a proper definition of the kinetic energy, which is a unique density functional also in the unnormalized region, the derivative can be represented by a single local multiplicative function for all v-representable densities. Therefore, we consider the controversy connected with the issue raised by Nesbet as resolved. We believe that the proof of the differentiability given here can be extended to larger groups of DFT functionals, and works along these lines are in progress.
Superfluid density in the slave-boson theory
NASA Astrophysics Data System (ADS)
Zhong, Yin; Lu, Han-Tao; Luo, Hong-Gang
2016-02-01
Despite of the success of the slave-boson theory in capturing qualitative physics of high-temperature superconductors like cuprates, it fails to reproduce the correct temperature-dependent behavior of superfluid density, let alone the independence of the linear temperature term on doping in the underdoped regimes of hole-doped cuprate, a common experimental observation in different cuprates. It remains puzzling up to now in spite of intensive theoretical efforts. For electron-doped case, even qualitative treatment is not reported at present time. Here we revisit these problems and provide an alternative superfluid density formulation by using the London relation instead of employing the paramagnetic current-current correlation function. The obtained formula, on the one hand, provides the correct temperature-dependent behavior of the superfluid density in the whole temperature regime, on the other hand, makes the doping dependence of the linear temperature term substantially weaken and a possible interpretation for its independence on doping is proposed. As an application, electron-doped cuprate is studied, whose result qualitatively agrees with existing experiments and successfully explains the origin of d- to anisotropic s-wave transition across the optimal doping. Our result remedies some failures of the slave-boson theory as employed to calculate superfluid density in cuprates and may be useful in the understanding of the related physics in other strongly correlated systems, e.g. Na x CoO2· yH2O and certain iron-based superconductors with dominating local magnetic exchange interaction.
The non-Abelian gauge theory of matrix big bangs
NASA Astrophysics Data System (ADS)
O'Loughlin, Martin; Seri, Lorenzo
2010-07-01
We study at the classical and quantum mechanical level the time-dependent Yang-Mills theory that one obtains via the generalisation of discrete light-cone quantization to singular homogeneous plane waves. The non-Abelian nature of this theory is known to be important for physics near the singularity, at least as far as the number of degrees of freedom is concerned. We will show that the quartic interaction is always subleading as one approaches the singularity and that close enough to t = 0 the evolution is driven by the diverging tachyonic mass term. The evolution towards asymptotically flat space-time also reveals some surprising features.
Memory matrix theory of magnetotransport in strange metals
NASA Astrophysics Data System (ADS)
Lucas, Andrew; Sachdev, Subir
2015-05-01
We model strange metals as quantum liquids without quasiparticle excitations, but with slow momentum relaxation and with slow diffusive dynamics of a conserved charge and energy. General expressions are obtained for electrical, thermal, and thermoelectric transport in the presence of an applied magnetic field using the memory matrix formalism. In the appropriate limits, our expressions agree with previous hydrodynamic and holographic results. We discuss the relationship of such results to thermoelectric and Hall transport measurements in the strange-metal phase of the hole-doped cuprates.
Guidez, Emilie B; Gordon, Mark S
2015-03-12
The modeling of dispersion interactions in density functional theory (DFT) is commonly performed using an energy correction that involves empirically fitted parameters for all atom pairs of the system investigated. In this study, the first-principles-derived dispersion energy from the effective fragment potential (EFP) method is implemented for the density functional theory (DFT-D(EFP)) and Hartree-Fock (HF-D(EFP)) energies. Overall, DFT-D(EFP) performs similarly to the semiempirical DFT-D corrections for the test cases investigated in this work. HF-D(EFP) tends to underestimate binding energies and overestimate intermolecular equilibrium distances, relative to coupled cluster theory, most likely due to incomplete accounting for electron correlation. Overall, this first-principles dispersion correction yields results that are in good agreement with coupled-cluster calculations at a low computational cost. PMID:25651435
NASA Technical Reports Server (NTRS)
Arenburg, R. T.; Reddy, J. N.
1991-01-01
The micromechanical constitutive theory is used to examine the nonlinear behavior of continuous-fiber-reinforced metal-matrix composite structures. Effective lamina constitutive relations based on the Abouli micromechanics theory are presented. The inelastic matrix behavior is modeled by the unified viscoplasticity theory of Bodner and Partom. The laminate constitutive relations are incorporated into a first-order deformation plate theory. The resulting boundary value problem is solved by utilizing the finite element method. Attention is also given to computational aspects of the numerical solution, including the temporal integration of the inelastic strains and the spatial integration of bending moments. Numerical results the nonlinear response of metal matrix composites subjected to extensional and bending loads are presented.
Density functional theory for protein transfer free energy.
Mills, Eric A; Plotkin, Steven S
2013-10-24
We cast the problem of protein transfer free energy within the formalism of density functional theory (DFT), treating the protein as a source of external potential that acts upon the solvent. Solvent excluded volume, solvent-accessible surface area, and temperature dependence of the transfer free energy all emerge naturally within this formalism, and may be compared with simplified "back of the envelope" models, which are also developed here. Depletion contributions to osmolyte induced stability range from 5 to 10 kBT for typical protein lengths. The general DFT transfer theory developed here may be simplified to reproduce a Langmuir isotherm condensation mechanism on the protein surface in the limits of short-ranged interactions, and dilute solute. Extending the equation of state to higher solute densities results in non-monotonic behavior of the free energy driving protein or polymer collapse. Effective interaction potentials between protein backbone or side chains and TMAO are obtained, assuming a simple backbone/side chain two-bead model for the protein with an effective 6-12 potential with the osmolyte. The transfer free energy δg shows significant entropy: d(δg)/dT ≈ 20 kB for a 100-residue protein. The application of DFT to effective solvent forces for use in implicit-solvent molecular dynamics is also developed. The simplest DFT expressions for implicit-solvent forces contain both depletion interactions and an "impeded-solvation" repulsive force at larger distances. PMID:23944753
Kinetic Density Functional Theory: A Microscopic Approach to Fluid Mechanics
NASA Astrophysics Data System (ADS)
Umberto Marini Bettolo, Marconi; Simone, Melchionna
2014-10-01
In the present paper we give a brief summary of some recent theoretical advances in the treatment of inhomogeneous fluids and methods which have applications in the study of dynamical properties of liquids in situations of extreme confinement, such as nanopores, nanodevices, etc. The approach obtained by combining kinetic and density functional methods is microscopic, fully self-consistent and allows to determine both configurational and flow properties of dense fluids. The theory predicts the correct hydrodynamic behavior and provides a practical and numerical tool to determine how the transport properties are modified when the length scales of the confining channels are comparable with the size of the molecules. The applications range from the dynamics of simple fluids under confinement, to that of neutral binary mixtures and electrolytes where the theory in the limit of slow gradients reproduces the known phenomenological equations such as the Planck—Nernst—Poisson and the Smolochowski equations. The approach here illustrated allows for fast numerical solution of the evolution equations for the one-particle phase-space distributions by means of the weighted density lattice Boltzmann method and is particularly useful when one considers flows in complex geometries.
Direct Neutron Capture Calculations with Covariant Density Functional Theory Inputs
NASA Astrophysics Data System (ADS)
Zhang, Shi-Sheng; Peng, Jin-Peng; Smith, Michael S.; Arbanas, Goran; Kozub, Ray L.
2014-09-01
Predictions of direct neutron capture are of vital importance for simulations of nucleosynthesis in supernovae, merging neutron stars, and other astrophysical environments. We calculate the direct capture cross sections for E1 transitions using nuclear structure information from a covariant density functional theory as input for the FRESCO coupled-channels reaction code. We find good agreement of our predictions with experimental cross section data on the double closed-shell targets 16O, 48Ca, and 90Zr, and the exotic nucleus 36S. Extensions of the technique for unstable nuclei and for large-scale calculations will be discussed. Predictions of direct neutron capture are of vital importance for simulations of nucleosynthesis in supernovae, merging neutron stars, and other astrophysical environments. We calculate the direct capture cross sections for E1 transitions using nuclear structure information from a covariant density functional theory as input for the FRESCO coupled-channels reaction code. We find good agreement of our predictions with experimental cross section data on the double closed-shell targets 16O, 48Ca, and 90Zr, and the exotic nucleus 36S. Extensions of the technique for unstable nuclei and for large-scale calculations will be discussed. Supported by the U.S. Dept. of Energy, Office of Nuclear Physics.
NASA Astrophysics Data System (ADS)
Ruggenthaler, Michael; Flick, Johannes; Pellegrini, Camilla; Appel, Heiko; Tokatly, Ilya V.; Rubio, Angel
2014-07-01
In this work, we give a comprehensive derivation of an exact and numerically feasible method to perform ab initio calculations of quantum particles interacting with a quantized electromagnetic field. We present a hierarchy of density-functional-type theories that describe the interaction of charged particles with photons and introduce the appropriate Kohn-Sham schemes. We show how the evolution of a system described by quantum electrodynamics in Coulomb gauge is uniquely determined by its initial state and two reduced quantities. These two fundamental observables, the polarization of the Dirac field and the vector potential of the photon field, can be calculated by solving two coupled, nonlinear evolution equations without the need to explicitly determine the (numerically infeasible) many-body wave function of the coupled quantum system. To find reliable approximations to the implicit functionals, we present the appropriate Kohn-Sham construction. In the nonrelativistic limit, this density-functional-type theory of quantum electrodynamics reduces to the density-functional reformulation of the Pauli-Fierz Hamiltonian, which is based on the current density of the electrons and the vector potential of the photon field. By making further approximations, e.g., restricting the allowed modes of the photon field, we derive further density-functional-type theories of coupled matter-photon systems for the corresponding approximate Hamiltonians. In the limit of only two sites and one mode we deduce the appropriate effective theory for the two-site Hubbard model coupled to one photonic mode. This model system is used to illustrate the basic ideas of a density-functional reformulation in great detail and we present the exact Kohn-Sham potentials for our coupled matter-photon model system.
Two functions of the density matrix and their relation to the chemical bond
NASA Astrophysics Data System (ADS)
Schmider, Hartmut L.; Becke, Axel D.
2002-02-01
We examine and compare two previously introduced functions of the one-particle density matrix that are suitable to represent its off-diagonal structure in a condensed form and that have illustrative connections to the nature of the chemical bond. One of them, the Localized-Orbital Locator (LOL) [J. Molec. Struct. (THEOCHEM) 527, 51 (2000)], is based only on the noninteracting kinetic-energy density τ and the charge density ρ at a point, and gives an intuitive measure of the relative speed of electrons in its vicinity. Alternatively, LOL focuses on regions that are dominated by single localized orbitals. The other one, the Parity Function P [J. Chem. Phys. 105, 11134 (1996)], is a section through the Wigner phase-space function at zero momentum, and contains information about the phase of the interference of atomiclike orbital contributions from bound centers. In this paper, we discuss the way in which these functions condense information in the density matrix, and illustrate on a variety of examples of unusual chemical bonds how they can help to understand the nature of "covalence."
Density hysteresis of heavy water confined in a nanoporous silica matrix
Zhang, Yang; Faraone, Antonio; Kamitakahara, William; Liu, Kao-Hsiang; Mou, Chung-Yuan; Leao, Juscelino B; Chang, Sung C; Chen, Sow-hsin H
2011-01-01
A neutron scattering technique was developed to measure the density of heavy water confined in a nanoporous silica matrix in a temperature-pressure range, from 300 to 130 K and from 1 to 2,900 bars, where bulk water will crystalize. We observed a prominent hysteresis phenomenon in the measured density profiles between warming and cooling scans above 1,000 bars. We inter- pret this hysteresis phenomenon as support (although not a proof) of the hypothetical existence of a first-order liquid liquid phase transition of water that would exist in the macroscopic system if crystallization could be avoided in the relevant phase region. Moreover, the density data we obtained for the confined heavy water under these conditions are valuable to large communities in biology and earth and planetary sciences interested in phenomena in which nanometer-sized water layers are involved.
Lithium adsorption on graphite from density functional theory calculations.
Valencia, Felipe; Romero, Aldo H; Ancilotto, Francesco; Silvestrelli, Pier Luigi
2006-08-01
The structural, energetic, and electronic properties of the Li/graphite system are studied through density functional theory (DFT) calculations using both the local spin density approximation (LSDA), and the gradient-corrected Perdew-Burke-Ernzerhof (PBE) approximation to the exchange-correlation energy. The calculations were performed using plane waves basis, and the electron-core interactions are described using pseudopotentials. We consider a disperse phase of the adsorbate comprising one Li atom for each 16 graphite surface cells, in a slab geometry. The close contact between the Li nucleus and the graphene plane results in a relatively large binding energy (larger than 1.1 eV). A detailed analysis of the electronic charge distribution, density difference distribution, and band structures indicates that one valence electron is entirely transferred from the atom to the surface, which gives rise to a strong interaction between the resulting lithium ion and the cloud of pi electrons in the substrate. We show that it is possible to explain the differences in the binding of Li, Na, and K adatoms on graphite considering the properties of the corresponding cation/aromatic complexes. PMID:16869593
Constrained Density Functional Theory by Imaginary Time-Step Method
NASA Astrophysics Data System (ADS)
Kidd, Daniel
Constrained Density Functional Theory (CDFT) has been a popular choice within the last decade for sidestepping the self interaction problem within long-range charge transfer calculations. Typically an inner constraint loop is added within the self-consistent field iterations of DFT in order to enforce this charge transfer state by means of a Lagrange multiplier method. In this work, an alternate implementation of CDFT is introduced, that of the imaginary time-step method, which lends itself more readily to real space calculations in the ability to solve numerically for 3D local external potentials which enforce arbitrary given densities. This method has been shown to reproduce the proper 1 / R dependence of charge transfer systems in real space calculations as well as the ability to generate useful constraint potentials. As an example application, this method is shown to be capable of describing defects within periodic systems using finite calculations by constraining the 3D density to that of the periodically calculated perfect system at the boundaries.
NASA Astrophysics Data System (ADS)
Rahman, Md. Mahmudur; Lee, Donghee; Bhagirath, Divya; Zhao, Xiangshan; Band, Vimla; Ryu, Sangjin
2014-03-01
It is widely accepted that cells behave differently responding to the stiffness of extracellular matrix (ECM). Such observations were made by culturing cells on hydrogel substrates of tunable stiffness. However, it was recently proposed that cells actually sense how strongly they are tethered to ECM, not the local stiffness of ECM. To investigate the hypothesis, we develop constant-stiffness hydrogel substrates with varying matrix tethering density (the number of anchoring sites between the gel and the ECM protein molecules). We fabricate polyacrylamide gel of static stiffness and conjugate ECM proteins to the gel using a cross-linker. When treating the gel with the cross-linker, we control positioning of cross-linker solutions with different concentrations using superhydrophobic barriers on glass, functionalize the gel by pressing it to the aligned cross-linker solutions, and conjugate an ECM protein of constant concentration to the gel. We expect that the gel will be functionalized to different degrees depending on the concentration distribution of the cross-linker and thus the gel will have variations of matrix tethering density even with constant ECM protein concentration. We acknowledge support from Bioengineering for Human Health grant of UNL-UNMC.
Extending the range of real time density matrix renormalization group simulations
NASA Astrophysics Data System (ADS)
Kennes, D. M.; Karrasch, C.
2016-03-01
We discuss a few simple modifications to time-dependent density matrix renormalization group (DMRG) algorithms which allow to access larger time scales. We specifically aim at beginners and present practical aspects of how to implement these modifications within any standard matrix product state (MPS) based formulation of the method. Most importantly, we show how to 'combine' the Schrödinger and Heisenberg time evolutions of arbitrary pure states | ψ > and operators A in the evaluation of ψ(t) = < ψ | A(t) | ψ > . This includes quantum quenches. The generalization to (non-)thermal mixed state dynamics ρ(t) =Tr [ ρA(t) ] induced by an initial density matrix ρ is straightforward. In the context of linear response (ground state or finite temperature T > 0) correlation functions, one can extend the simulation time by a factor of two by 'exploiting time translation invariance', which is efficiently implementable within MPS DMRG. We present a simple analytic argument for why a recently-introduced disentangler succeeds in reducing the effort of time-dependent simulations at T > 0. Finally, we advocate the python programming language as an elegant option for beginners to set up a DMRG code.
Internal one-particle density matrix for Bose-Einstein condensates with finite number of particles in a harmonic potential
Yamada, Taiichi; Funaki, Yasuro; Horiuchi, Hisashi; Roepke, Gerd; Schuck, Peter; Tohsaki, Akihiro
2009-05-15
Investigations on the internal one-particle density matrix in the case of Bose-Einstein condensates with a finite number (N) of particles in a harmonic potential are performed. We solve the eigenvalue problem of the Pethick-Pitaevskii-type internal density matrix and find a fragmented condensate. On the contrary the condensate Jacobi-type internal density matrix gives complete condensation into a single state. The internal one-particle density matrix is, therefore, shown to be different in general for different choices of the internal coordinate system. We propose two physically motivated criteria for the choice of the adequate coordinate systems that give us a unique answer for the internal one-particle density matrix. One criterion is that in the infinite particle number limit (N={infinity}) the internal one-particle density matrix should have the same eigenvalues and eigenfunctions as those of the corresponding ideal Bose-Einstein condensate in the laboratory frame. The other criterion is that the coordinate of the internal one-particle density matrix should be orthogonal to the remaining (N-2) internal coordinates, though the (N-2) coordinates, in general, do not need to be mutually orthogonal. This second criterion is shown to imply the first criterion. It is shown that the internal Jacobi coordinate system satisfies these two criteria while the internal coordinate system adopted by Pethick and Pitaevskii for the construction of the internal one-particle density matrix does not. It is demonstrated that these two criteria uniquely determine the internal one-particle density matrix that is identical to that calculated with the Jacobi coordinates. The relevance of this work concerning {alpha}-particle condensates in nuclei, as well as bosonic atoms in traps, is pointed out.
McMahon, Suzanne; Amirjalayer, Saeed; Buma, Wybren J; Halpin, Yvonne; Long, Conor; Rooney, A Denise; Woutersen, Sander; Pryce, Mary T
2015-09-21
The photophysics and photochemistry of [(CO)5MC(OMe)Me] (M = Cr or W) were investigated using picosecond time-resolved infrared spectroscopy (M = Cr or W), low-temperature matrix isolation techniques (M = Cr), and time-dependent density functional calculations (M = Cr or W). These studies provide unambiguous evidence for the photochemical formation of a long-lived, 18-electron metallaketene species capable of acting as a synthetically useful intermediate. For the Cr complex, an intermediate metallacyclopropanone singlet excited state was detected on the reaction path to the metallaketene species. This metallacyclopropanone excited state species has a lifetime of less than 100 ps and a characteristic bridging carbonyl band at 1770 cm(-1). The tungsten ketene species was also detected but in contrast to the chromium system, this forms directly from a low-lying triplet excited state. The electrochemical release of CO showed a greater efficiency for the chromium complex when compared to the tungsten. PMID:26089130
Gap probabilities in non-Hermitian random matrix theory
NASA Astrophysics Data System (ADS)
Akemann, G.; Phillips, M. J.; Shifrin, L.
2009-06-01
We compute the gap probability that a circle of radius r around the origin contains exactly k complex eigenvalues. Four different ensembles of random matrices are considered: the Ginibre ensembles and their chiral complex counterparts, with both complex (β =2) or quaternion real (β =4) matrix elements. For general non-Gaussian weights we give a Fredholm determinant or Pfaffian representation respectively, depending on the non-Hermiticity parameter. At maximal non-Hermiticity, that is, for rotationally invariant weights, the product of Fredholm eigenvalues for β =4 follows from the β =2 case by skipping every second factor, in contrast to the known relation for Hermitian ensembles. On additionally choosing Gaussian weights we give new explicit expressions for the Fredholm eigenvalues in the chiral case, in terms of Bessel-K and incomplete Bessel-I functions. This compares with known results for the Ginibre ensembles in terms of incomplete exponentials. Furthermore, we present an asymptotic expansion of the logarithm of the gap probability for large argument r at large N in all four ensembles, up to and including the third order linear term. We can provide strict upper and lower bounds and present numerical evidence for the conjectured values of the linear term, depending on the number of exact zero eigenvalues in the chiral ensembles. For the Ginibre ensemble at β =2, exact results were previously derived by Forrester [Phys. Lett. A 169, 21 (1992)].
Sadeghian, Keyarash; Bocola, Marco; Schütz, Martin
2011-05-01
The intermolecular interactions of the photodamaged cyclobutane pyrimidine dimer (CPD) lesion with adjacent nucleobases in the native intrahelical DNA double strand are investigated at the level of density functional theory symmetry-adapted perturbation theory (DFT-SAPT) and compared to the original (or repaired) case with pyrimidines (TpT) instead of CPD. The CPD aggregation is on average destabilized by about 6 kcal mol(-1) relative to that involving TpT. The effect of destabilization is asymmetric, that is, it involves a single H-bonding (Watson-Crick (WC) type) base-pair interaction. PMID:21452189
Nitrotyrosine adsorption on defective graphene: A density functional theory study
NASA Astrophysics Data System (ADS)
Majidi, R.; Karami, A. R.
2015-06-01
We have applied density functional theory to study adsorption of nitrotyrosine on perfect and defective graphene sheets. The graphene sheets with Stone-Wales (SW) defect, pentagon-nonagon (5-9) single vacancy, and pentagon-octagon-pentagon (5-8-5) double vacancy were considered. The calculations of adsorption energy showed that nitrotyrosine presents a more strong interaction with defective graphene rather than with perfect graphene sheet. The order of interaction strength is: SW>5-9>5-8-5>perfect graphene. It is found that the electronic properties of perfect and defective graphene are sensitive to the presence of nitrotyrosine. Hence, graphene sheets can be considered as a good sensor for detection of nitrotyrosine molecule which is observed in connection with several human disorders, such as Parkinson's and Alzheimer's disease.
A numerical efficient way to minimize classical density functional theory
NASA Astrophysics Data System (ADS)
Edelmann, Markus; Roth, Roland
2016-02-01
The minimization of the functional of the grand potential within the framework of classical density functional theory in three spatial dimensions can be numerically very demanding. The Picard iteration, that is often employed, is very simple and robust but can be rather slow. While a number of different algorithms for optimization problems have been suggested, there is still great need for additional strategies. Here, we present an approach based on the limited memory Broyden algorithm that is efficient and relatively simple to implement. We demonstrate the performance of this algorithm with the minimization of an inhomogeneous bulk structure of a fluid with competing interactions. For the problems we studied, we find that the presented algorithm improves performance by roughly a factor of three.
Computational predictions of energy materials using density functional theory
NASA Astrophysics Data System (ADS)
Jain, Anubhav; Shin, Yongwoo; Persson, Kristin A.
2016-01-01
In the search for new functional materials, quantum mechanics is an exciting starting point. The fundamental laws that govern the behaviour of electrons have the possibility, at the other end of the scale, to predict the performance of a material for a targeted application. In some cases, this is achievable using density functional theory (DFT). In this Review, we highlight DFT studies predicting energy-related materials that were subsequently confirmed experimentally. The attributes and limitations of DFT for the computational design of materials for lithium-ion batteries, hydrogen production and storage materials, superconductors, photovoltaics and thermoelectric materials are discussed. In the future, we expect that the accuracy of DFT-based methods will continue to improve and that growth in computing power will enable millions of materials to be virtually screened for specific applications. Thus, these examples represent a first glimpse of what may become a routine and integral step in materials discovery.
Density functional theory an effective method to model polythiophenes
NASA Astrophysics Data System (ADS)
Venkateswaran, S.
The luminescent polymer, poly[2-(3-thienyl)ethanol butoxycarbonyl-methyl urethane, called popularly as PURET, has rekindled research interests due to the recent discovery of its ability for detection of explosives at trace levels of molecules in their vapor phase. In this computational study, Hartree-Fock and/or Density Functional Theory (DFT) methods are applied, using Gaussian09 W software, for calculating the HOMO-LUMO energy levels, the Dipole Moment, and the UV-Vis and IR spectra for the Oligomers of PURET monomer, dimer, and trimer. Similar calculations for a few other Thiophene derivatives, such as TAA. TMA, 3HT, and TTZ, are also shown. DFT-based calculations, employing especially the B3LYP functional, are shown to systematically converge to experimental levels of accuracy for PURET Oligomers.
Self-consistent polarization density functional theory: Application to Argon
Maerzke, Katie A.; Murdachaew, Garold; Mundy, Christopher J.; Schenter, Gregory K.; Siepmann, J. I.
2009-03-12
We present a comprehensive set of results for argon, a case study in weak interactions, using the selfconsistent polarization density functional theory (SCP-DFT). With minimal parameterization, SCPDFT is found is give excellent results for the dimer interaction energy, the second virial coefficient, the liquid structure, and the lattice constant and cohesion energy of the face-centered cubic (fcc) crystal compared to both accurate theoretical and experimental benchmarks. Thus, SCP-DFT holds promise as a fast, efficient, and accurate method for performing ab initio dynamics that include additional polarization and dispersion interactions for large, complex systems involving solvation and bond breaking. This work was supported by the U.S. Department of Energy's (DOE) Office of Basic Energy Sciences, Chemical Sciences program. The Pacific Northwest National Laboratory is operated by Battelle for DOE.
Applications of large-scale density functional theory in biology
NASA Astrophysics Data System (ADS)
Cole, Daniel J.; Hine, Nicholas D. M.
2016-10-01
Density functional theory (DFT) has become a routine tool for the computation of electronic structure in the physics, materials and chemistry fields. Yet the application of traditional DFT to problems in the biological sciences is hindered, to a large extent, by the unfavourable scaling of the computational effort with system size. Here, we review some of the major software and functionality advances that enable insightful electronic structure calculations to be performed on systems comprising many thousands of atoms. We describe some of the early applications of large-scale DFT to the computation of the electronic properties and structure of biomolecules, as well as to paradigmatic problems in enzymology, metalloproteins, photosynthesis and computer-aided drug design. With this review, we hope to demonstrate that first principles modelling of biological structure-function relationships are approaching a reality.
Applications of large-scale density functional theory in biology.
Cole, Daniel J; Hine, Nicholas D M
2016-10-01
Density functional theory (DFT) has become a routine tool for the computation of electronic structure in the physics, materials and chemistry fields. Yet the application of traditional DFT to problems in the biological sciences is hindered, to a large extent, by the unfavourable scaling of the computational effort with system size. Here, we review some of the major software and functionality advances that enable insightful electronic structure calculations to be performed on systems comprising many thousands of atoms. We describe some of the early applications of large-scale DFT to the computation of the electronic properties and structure of biomolecules, as well as to paradigmatic problems in enzymology, metalloproteins, photosynthesis and computer-aided drug design. With this review, we hope to demonstrate that first principles modelling of biological structure-function relationships are approaching a reality. PMID:27494095
Density functional theory study of rutile VO2 surfaces
NASA Astrophysics Data System (ADS)
Mellan, Thomas A.; Grau-Crespo, Ricardo
2012-10-01
We present the results of a density functional theory investigation of the surfaces of rutile-like vanadium dioxide, VO2(R). We calculate the surface energies of low Miller index planes and find that the most stable surface orientation is the (110). The equilibrium morphology of a VO2(R) particle has an acicular shape, laterally confined by (110) planes and topped by (011) planes. The redox properties of the (110) surface are investigated by calculating the relative surface free energies of the non-stoichiometric compositions as a function of oxygen chemical potential. It is found that the VO2(110) surface is oxidized with respect to the stoichiometric composition, not only at ambient conditions but also at the more reducing conditions under which bulk VO2 is stable in comparison with bulk V2O5. The adsorbed oxygen forms surface vanadyl species much more favorably than surface peroxo species.
Reproducibility in density functional theory calculations of solids.
Lejaeghere, Kurt; Bihlmayer, Gustav; Björkman, Torbjörn; Blaha, Peter; Blügel, Stefan; Blum, Volker; Caliste, Damien; Castelli, Ivano E; Clark, Stewart J; Dal Corso, Andrea; de Gironcoli, Stefano; Deutsch, Thierry; Dewhurst, John Kay; Di Marco, Igor; Draxl, Claudia; Dułak, Marcin; Eriksson, Olle; Flores-Livas, José A; Garrity, Kevin F; Genovese, Luigi; Giannozzi, Paolo; Giantomassi, Matteo; Goedecker, Stefan; Gonze, Xavier; Grånäs, Oscar; Gross, E K U; Gulans, Andris; Gygi, François; Hamann, D R; Hasnip, Phil J; Holzwarth, N A W; Iuşan, Diana; Jochym, Dominik B; Jollet, François; Jones, Daniel; Kresse, Georg; Koepernik, Klaus; Küçükbenli, Emine; Kvashnin, Yaroslav O; Locht, Inka L M; Lubeck, Sven; Marsman, Martijn; Marzari, Nicola; Nitzsche, Ulrike; Nordström, Lars; Ozaki, Taisuke; Paulatto, Lorenzo; Pickard, Chris J; Poelmans, Ward; Probert, Matt I J; Refson, Keith; Richter, Manuel; Rignanese, Gian-Marco; Saha, Santanu; Scheffler, Matthias; Schlipf, Martin; Schwarz, Karlheinz; Sharma, Sangeeta; Tavazza, Francesca; Thunström, Patrik; Tkatchenko, Alexandre; Torrent, Marc; Vanderbilt, David; van Setten, Michiel J; Van Speybroeck, Veronique; Wills, John M; Yates, Jonathan R; Zhang, Guo-Xu; Cottenier, Stefaan
2016-03-25
The widespread popularity of density functional theory has given rise to an extensive range of dedicated codes for predicting molecular and crystalline properties. However, each code implements the formalism in a different way, raising questions about the reproducibility of such predictions. We report the results of a community-wide effort that compared 15 solid-state codes, using 40 different potentials or basis set types, to assess the quality of the Perdew-Burke-Ernzerhof equations of state for 71 elemental crystals. We conclude that predictions from recent codes and pseudopotentials agree very well, with pairwise differences that are comparable to those between different high-precision experiments. Older methods, however, have less precise agreement. Our benchmark provides a framework for users and developers to document the precision of new applications and methodological improvements. PMID:27013736
Fundamental gap of molecular crystals via constrained density functional theory
NASA Astrophysics Data System (ADS)
Droghetti, Andrea; Rungger, Ivan; Das Pemmaraju, Chaitanya; Sanvito, Stefano
2016-05-01
The energy gap of a molecular crystal is one of the most important properties since it determines the crystal charge transport when the material is utilized in electronic devices. This is, however, a quantity difficult to calculate and standard theoretical approaches based on density functional theory (DFT) have proven unable to provide accurate estimates. In fact, besides the well-known band-gap problem, DFT completely fails in capturing the fundamental gap reduction occurring when molecules are packed in a crystal structures. The failure has to be associated with the inability of describing the electronic polarization and the real space localization of the charged states. Here we describe a scheme based on constrained DFT, which can improve upon the shortcomings of standard DFT. The method is applied to the benzene crystal, where we show that accurate results can be achieved for both the band gap and also the energy level alignment.
Time-Dependent Density Functional Theory for Universal Quantum Computation
NASA Astrophysics Data System (ADS)
Tempel, David
2015-03-01
In this talk, I will discuss how the theorems of TDDFT can be applied to a class of qubit Hamiltonians that are universal for quantum computation. The theorems of TDDFT applied to universal Hamiltonians imply that single-qubit expectation values can be used as the basic variables in quantum computation and information theory, rather than wavefunctions. From a practical standpoint this opens the possibility of approximating observables of interest in quantum computations directly in terms of single-qubit quantities (i.e. as density functionals). Additionally, I will discuss how TDDFT provides an exact prescription for simulating universal Hamiltonians with other universal Hamiltonians that have different, and possibly easier-to-realize two-qubit interactions.
Density functional theory studies of HCOOH decomposition on Pd(111)
NASA Astrophysics Data System (ADS)
Scaranto, Jessica; Mavrikakis, Manos
2016-08-01
The investigation of formic acid (HCOOH) decomposition on transition metal surfaces is important to derive useful insights for vapor phase catalysis involving HCOOH and for the development of direct HCOOH fuel cells (DFAFC). Here we present the results obtained from periodic, self-consistent, density functional theory (DFT-GGA) calculations for the elementary steps involved in the gas-phase decomposition of HCOOH on Pd(111). Accordingly, we analyzed the minimum energy paths for HCOOH dehydrogenation to CO2 + H2 and dehydration to CO + H2O through the carboxyl (COOH) and formate (HCOO) intermediates. Our results suggest that HCOO formation is easier than COOH formation, but HCOO decomposition is more difficult than COOH decomposition, in particular in the presence of co-adsorbed O and OH species. Therefore, both paths may contribute to HCOOH decomposition. CO formation goes mainly through COOH decomposition.
Turbo charging time-dependent density-functional theory with Lanczos chains
NASA Astrophysics Data System (ADS)
Rocca, Dario; Gebauer, Ralph; Saad, Yousef; Baroni, Stefano
2008-04-01
We introduce a new implementation of time-dependent density-functional theory which allows the entire spectrum of a molecule or extended system to be computed with a numerical effort comparable to that of a single standard ground-state calculation. This method is particularly well suited for large systems and/or large basis sets, such as plane waves or real-space grids. By using a superoperator formulation of linearized time-dependent density-functional theory, we first represent the dynamical polarizability of an interacting-electron system as an off-diagonal matrix element of the resolvent of the Liouvillian superoperator. One-electron operators and density matrices are treated using a representation borrowed from time-independent density-functional perturbation theory, which permits us to avoid the calculation of unoccupied Kohn-Sham orbitals. The resolvent of the Liouvillian is evaluated through a newly developed algorithm based on the nonsymmetric Lanczos method. Each step of the Lanczos recursion essentially requires twice as many operations as a single step of the iterative diagonalization of the unperturbed Kohn-Sham Hamiltonian. Suitable extrapolation of the Lanczos coefficients allows for a dramatic reduction of the number of Lanczos steps necessary to obtain well converged spectra, bringing such number down to hundreds (or a few thousands, at worst) in typical plane-wave pseudopotential applications. The resulting numerical workload is only a few times larger than that needed by a ground-state Kohn-Sham calculation for a same system. Our method is demonstrated with the calculation of the spectra of benzene, C60 fullerene, and of chlorophyll a.
Theory of melting at high pressures: Amending density functional theory with quantum Monte Carlo
Shulenburger, L.; Desjarlais, M. P.; Mattsson, T. R.
2014-10-01
We present an improved first-principles description of melting under pressure based on thermodynamic integration comparing Density Functional Theory (DFT) and quantum Monte Carlo (QMC) treatments of the system. The method is applied to address the longstanding discrepancy between density functional theory (DFT) calculations and diamond anvil cell (DAC) experiments on the melting curve of xenon, a noble gas solid where van der Waals binding is challenging for traditional DFT methods. The calculations show excellent agreement with data below 20 GPa and that the high-pressure melt curve is well described by a Lindemann behavior up to at least 80 GPa, amore » finding in stark contrast to DAC data.« less
Reduced-density-matrix description for pump-probe optical phenomena in moving atomic systems
NASA Astrophysics Data System (ADS)
Jacobs, V. L.
2014-09-01
Linear and nonlinear (especially coherent) electromagnetic interactions of moving many-electron atoms are investigated using a reduced-density-matrix description, which is applied to electromagnetically induced transparency and related resonant pump-probe optical phenomena. External magnetic fields are included on an equal footing with the electromagnetic fields and spin-Zeeman interactions are taken into account. Complimentary time-domain (equation-of-motion) and frequency-domain (resolvent-operator) formulations of the reduced-density-matrix description are self-consistently developed. The general nonperturbative and non-Markovian formulations provide a fundamental framework for systematic evaluations of corrections to the standard Born (lowest-order-perturbation) and Markov (short-memory-time) approximations. The macroscopic electromagnetic response is described semiclassically, employing a perturbation expansion of the reduced-density operator in powers of the classical electromagnetic field. Our primary results are compact Liouville-space operator expressions for the linear and general (nth-order) nonlinear macroscopic electromagnetic-response tensors, which can be evaluated for nonlocal and nonstationary optical media described by multilevel atomic-system representations. Interactions among atoms and with environmental photons are treated as line-broadening effects by means of a general Liouville-space self-energy operator, for which the tetradic-matrix elements are explicitly evaluated in the diagonal, lowest-order, and Markov approximations. The compact Liouville-space operator expressions that are derived for the macroscopic electromagnetic-response tensors are introduced into the dynamical description of the electromagnetic-field propagation. It is pointed out that a quantized-electromagnetic-field approach will be required for a fully self-consistent quantum-mechanical treatment of local-field effects and radiative corrections.
Random matrix theory for mixed regular-chaotic dynamics in the super-extensive regime
El-Hady, A. Abd; Abul-Magd, A. Y.
2011-10-27
We apply Tsallis's q-indexed nonextensive entropy to formulate a random matrix theory (RMT), which may be suitable for systems with mixed regular-chaotic dynamics. We consider the super-extensive regime of q<1. We obtain analytical expressions for the level-spacing distributions, which are strictly valid for 2 X2 random-matrix ensembles, as usually done in the standard RMT. We compare the results with spacing distributions, numerically calculated for random matrix ensembles describing a harmonic oscillator perturbed by Gaussian orthogonal and unitary ensembles.
NASA Astrophysics Data System (ADS)
Kutzelnigg, Werner; Liu, Wenjian
2008-06-01
Direct perturbation theory (DPT) and its quasi-degenerate version (QD-DPT) in a matrix formulation, i.e. DPT-mat and QD-DPT-mat are derived from the matrix representation of the Dirac operator in a kinetically balanced basis, both in the intermediate and the unitary normalization. The results are compared with those of an earlier formulation in terms of operators and wave functions. In the wave function formulation it is imperative to describe the weak singularities of the wave function at the position of a point nucleus correctly and to satisfy the key relation between large and small components locally. This formulation is incompatible with an expansion in a regular basis. In a matrix formulation in a kinetically balanced basis both the large and the small component are expanded in regular basis sets and the key relation is only satisfied in the mean. DPT is essentially a theory at bispinor level. Although it is possible to eliminate the small component to arrive at a quasi-relativistic theory, this requires some care. A both compact and numerically stable formulation is in terms of the large and the small component. The generalization from a theory for one state to a quasi-degenerate formulation for a set of states, is very simple in the matrix formulation, but rather complicated and somewhat indirect at wave function level, where an intermediate quasi-relativistic step is needed. The advantage of the matrix formulation is particularly pronounced in the unitary normalization.
NASA Astrophysics Data System (ADS)
Freeman, Will
2016-05-01
Dephasing in terahertz quantum cascade structures is studied within a density matrix formalism. We self-consistently calculate the pure dephasing time from the intrasubband interactions within the upper and lower lasing states. Interface roughness and ionized impurity scattering interactions are included in the calculation. Dephasing times are shown to be consistent with measured spontaneous emission spectra, and the lattice temperature dependence of the device output power is consistent with experiment. The importance of including multiple optical transitions when a lower miniband continuum is present and the resulting multi-longitudinal modes within the waveguide resonant cavity are also shown.
Parker, Shane M.; Shiozaki, Toru
2014-12-07
We extend the active space decomposition method, recently developed by us, to more than two active sites using the density matrix renormalization group algorithm. The fragment wave functions are described by complete or restricted active-space wave functions. Numerical results are shown on a benzene pentamer and a perylene diimide trimer. It is found that the truncation errors in our method decrease almost exponentially with respect to the number of renormalization states M, allowing for numerically exact calculations (to a few μE{sub h} or less) with M = 128 in both cases. This rapid convergence is because the renormalization steps are used only for the interfragment electron correlation.
Differential cross sections and spin density matrix elements for the reaction gamma p -> p omega
M. Williams, D. Applegate, M. Bellis, C.A. Meyer
2009-12-01
High-statistics differential cross sections and spin density matrix elements for the reaction gamma p -> p omega have been measured using the CLAS at Jefferson Lab for center-of-mass (CM) energies from threshold up to 2.84 GeV. Results are reported in 112 10-MeV wide CM energy bins, each subdivided into cos(theta_CM) bins of width 0.1. These are the most precise and extensive omega photoproduction measurements to date. A number of prominent structures are clearly present in the data. Many of these have not previously been observed due to limited statistics in earlier measurements.
Density-matrix operatorial solution of the non-Markovian master equation for quantum Brownian motion
Intravaia, F.; Maniscalco, S.; Messina, A.
2003-04-01
An original method to exactly solve the non-Markovian master equation describing the interaction of a single harmonic oscillator with a quantum environment in the weak-coupling limit is reported. By using a superoperatorial approach, we succeed in deriving the operatorial solution for the density matrix of the system. Our method is independent of the physical properties of the environment. We show the usefulness of our solution deriving explicit expressions for the dissipative time evolution of some observables of physical interest for the system, such as, for example, its mean energy.
Spin Density Matrix Elements from {rho}{sup 0} and {phi} Meson Electroproduction at HERMES
Borissov, A.
2009-03-23
Exclusive production of {rho}{sup 0} and {phi} mesons on hydrogen and deuterium targets is studied in the HERMES kinematic region 1density matrix elements are presented. Violation of s-Channel Helicity Conservation is observed through several non-zero values of SDMEs for {rho}{sup 0}, but not for {phi}. In exclusive {rho}{sup 0} production on the proton an indication is observed of a contribution of unnatural-parity exchange amplitudes, for which the dependence on Q{sup 2} and t' is shown.
Spin Density Matrix Elements in exclusive production of ω mesons at Hermes
NASA Astrophysics Data System (ADS)
Marianski, B.; Terkulov, A.
2014-03-01
Spin density matrix elements have been determined for exclusive ω meson production on hydrogen and deuterium targets, in the kinematic region of 1.0 < Q2 < 10.0 GeV2, 3.0 < W < 6.3 GeV and -t' < 0.2 GeV2. The data, from which SDMEs are determined, were accumulated with the HERMES forward spectrometer during the running period of 1996 to 2007 using the 27.6 GeV electron or positron beam of HERA. A sizable contribution of unnatural parity exchange amplitudes is found for exclusive ω meson production.
Metallophilic interactions from dispersion-corrected density-functional theory
Otero-de-la-Roza, Alberto Mallory, Joel D.; Johnson, Erin R.
2014-05-14
In this article, we present the first comprehensive study of metallophilic (aurophilic) interactions using dispersion-corrected density-functional theory. Dispersion interactions (an essential component of metallophilicity) are treated using the exchange-hole dipole moment (XDM) model. By comparing against coupled-cluster benchmark calculations on simple dimers, we show that LC-ωPBE-XDM is a viable functional to study interactions between closed-shell transition metals and that it performs uniformly better than second-order Møller-Plesset theory, the basic computational technique used in previous works. We apply LC-ωPBE-XDM to address several open questions regarding metallophilicity, such as the interplay between dispersion and relativistic effects, the interaction strength along group 11, the additivity of homo- and hetero-metallophilic effects, the stability of [E(AuPH{sub 3}){sub 4}]{sup +} cations (E = N, P, As, Sb), and the role of metallophilic effects in crystal packing. We find that relativistic effects explain the prevalence of aurophilicity not by stabilizing metal-metal contacts, but by preventing gold from forming ionic structures involving bridge anions (which are otherwise common for Ag and Cu) as a result of the increased electron affinity of the metal. Dispersion effects are less important than previously assumed and their stabilization contribution is relatively independent of the metal.
Metallophilic interactions from dispersion-corrected density-functional theory.
Otero-de-la-Roza, Alberto; Mallory, Joel D; Johnson, Erin R
2014-05-14
In this article, we present the first comprehensive study of metallophilic (aurophilic) interactions using dispersion-corrected density-functional theory. Dispersion interactions (an essential component of metallophilicity) are treated using the exchange-hole dipole moment (XDM) model. By comparing against coupled-cluster benchmark calculations on simple dimers, we show that LC-ωPBE-XDM is a viable functional to study interactions between closed-shell transition metals and that it performs uniformly better than second-order Møller-Plesset theory, the basic computational technique used in previous works. We apply LC-ωPBE-XDM to address several open questions regarding metallophilicity, such as the interplay between dispersion and relativistic effects, the interaction strength along group 11, the additivity of homo- and hetero-metallophilic effects, the stability of [E(AuPH3)4](+) cations (E = N, P, As, Sb), and the role of metallophilic effects in crystal packing. We find that relativistic effects explain the prevalence of aurophilicity not by stabilizing metal-metal contacts, but by preventing gold from forming ionic structures involving bridge anions (which are otherwise common for Ag and Cu) as a result of the increased electron affinity of the metal. Dispersion effects are less important than previously assumed and their stabilization contribution is relatively independent of the metal. PMID:24832312
Density functional theory and chromium: Insights from the dimers
Würdemann, Rolf; Kristoffersen, Henrik H.; Moseler, Michael; Walter, Michael
2015-03-28
The binding in small Cr clusters is re-investigated, where the correct description of the dimer in three charge states is used as criterion to assign the most suitable density functional theory approximation. The difficulty in chromium arises from the subtle interplay between energy gain from hybridization and energetic cost due to exchange between s and d based molecular orbitals. Variations in published bond lengths and binding energies are shown to arise from insufficient numerical representation of electron density and Kohn-Sham wave-functions. The best functional performance is found for gradient corrected (GGA) functionals and meta-GGAs, where we find severe differences between functionals from the same family due to the importance of exchange. Only the “best fit” from Bayesian error estimation is able to predict the correct energetics for all three charge states unambiguously. With this knowledge, we predict small bond-lengths to be exclusively present in Cr{sub 2} and Cr{sub 2}{sup −}. Already for the dimer cation, solely long bond-lengths appear, similar to what is found in the trimer and in chromium bulk.
Adiabatic corrections to density functional theory energies and wave functions.
Mohallem, José R; Coura, Thiago de O; Diniz, Leonardo G; de Castro, Gustavo; Assafrão, Denise; Heine, Thomas
2008-09-25
The adiabatic finite-nuclear-mass-correction (FNMC) to the electronic energies and wave functions of atoms and molecules is formulated for density-functional theory and implemented in the deMon code. The approach is tested for a series of local and gradient corrected density functionals, using MP2 results and diagonal-Born-Oppenheimer corrections from the literature for comparison. In the evaluation of absolute energy corrections of nonorganic molecules the LDA PZ81 functional works surprisingly better than the others. For organic molecules the GGA BLYP functional has the best performance. FNMC with GGA functionals, mainly BLYP, show a good performance in the evaluation of relative corrections, except for nonorganic molecules containing H atoms. The PW86 functional stands out with the best evaluation of the barrier of linearity of H2O and the isotopic dipole moment of HDO. In general, DFT functionals display an accuracy superior than the common belief and because the corrections are based on a change of the electronic kinetic energy they are here ranked in a new appropriate way. The approach is applied to obtain the adiabatic correction for full atomization of alcanes C(n)H(2n+2), n = 4-10. The barrier of 1 mHartree is approached for adiabatic corrections, justifying its insertion into DFT. PMID:18537228
A Density Functional Theory Study of Formaldehyde Adsorption on Ceria
Mei, Donghai; Deskins, N. Aaron; Dupuis, Michel
2007-11-01
Molecular adsorption of formaldehyde on the stoichiometric CeO2(111) and CeO2(110) surfaces was studied using periodic density functional theory. Two adsorption modes (strong chemisorbed and weak physisorbed) were identified on both surfaces. This is consistent with recent experimental observations. On the (111) surface, formaldehyde strongly chemisorbs with an adsorption energy of 0.86 eV to form a dioxymethylene-like structure, in which a surface O lifts from the surface to bind with the C of formaldehyde. A weak physisorbed state with adsorption energy of 0.28 eV was found with the O of formaldehyde interacting with a surface Ce. On the (110) surface, dioxymethyelene formation was also observed, with an adsorption energy of 1.31 eV. The weakly adsorbed state of formaldehyde on the (110) surface was energetically comparable to the weak adsorption state on the (111) surface, but adsorption occurred through a formaldehyde C and surface O interaction. Analysis of the local density of states and charge density differences after adsorption shows that strong covalent bonding occurs between the C of formaldehyde and surface O when dioxymethylene forms. Calculated vibrational frequencies also confirm dioxymethylene formation. Our results also show that as the coverage increases, the adsorption of formaldehyde on the (111) surface becomes weak, but is nearly unaffected on the (110) surface. This work was supported by a Laboratory Directed Research and Development (LDRD) project of the Pacific Northwest National Laboratory (PNNL). The computations were performed using the Molecular Science Computing Facility in the William R. Wiley Environmental Molecular Sciences Laboratory, which is a U.S. Department of Energy national scientific user facility located at PNNL in Richland, Washington. Computing time was made under a Computational Grand Challenge “Computational Catalysis”. Part of the computing time was also granted by the National Energy Research Scientific Computing
NASA Astrophysics Data System (ADS)
Zhao, Chao; Yang, Guo-wu; Li, Xiao-yu
2016-09-01
Nowadays, there are plenty of separability criteria which are used to detect entanglement. Many of them are limited to apply for some cases. In this paper, we propose a separability criterion for arbitrary multipartite pure state which is based on the rank of reduced density matrix. It is proved that the rank of reduced density matrices of a multipartite state is closely related to entanglement. In fact it can be used to characterize entanglement. Our separability criterion is a necessary and sufficient condition for detecting entanglement. Furthermore, it is able to help us find the completely separable form of a multipartite pure state according to some explicit examples. Finally it demonstrates that our method are more suitable for some specific case. Our separability criterion are simple to understand and it is operational.
NASA Astrophysics Data System (ADS)
Zhao, Chao; Yang, Guo-wu; Li, Xiao-yu
2016-04-01
Nowadays, there are plenty of separability criteria which are used to detect entanglement. Many of them are limited to apply for some cases. In this paper, we propose a separability criterion for arbitrary multipartite pure state which is based on the rank of reduced density matrix. It is proved that the rank of reduced density matrices of a multipartite state is closely related to entanglement. In fact it can be used to characterize entanglement. Our separability criterion is a necessary and sufficient condition for detecting entanglement. Furthermore, it is able to help us find the completely separable form of a multipartite pure state according to some explicit examples. Finally it demonstrates that our method are more suitable for some specific case. Our separability criterion are simple to understand and it is operational.
Multi-configuration time-dependent density-functional theory based on range separation.
Fromager, Emmanuel; Knecht, Stefan; Jensen, Hans Jørgen Aa
2013-02-28
Multi-configuration range-separated density-functional theory is extended to the time-dependent regime. An exact variational formulation is derived. The approximation, which consists in combining a long-range Multi-Configuration-Self-Consistent Field (MCSCF) treatment with an adiabatic short-range density-functional (DFT) description, is then considered. The resulting time-dependent multi-configuration short-range DFT (TD-MC-srDFT) model is applied to the calculation of singlet excitation energies in H2, Be, and ferrocene, considering both short-range local density (srLDA) and generalized gradient (srGGA) approximations. As expected, when modeling long-range interactions with the MCSCF model instead of the adiabatic Buijse-Baerends density-matrix functional as recently proposed by Pernal [J. Chem. Phys. 136, 184105 (2012)], the description of both the 1(1)D doubly-excited state in Be and the 1(1)Σu(+) state in the stretched H2 molecule are improved, although the latter is still significantly underestimated. Exploratory TD-MC-srDFT/GGA calculations for ferrocene yield in general excitation energies at least as good as TD-DFT using the Coulomb attenuated method based on the three-parameter Becke-Lee-Yang-Parr functional (TD-DFT/CAM-B3LYP), and superior to wave-function (TD-MCSCF, symmetry adapted cluster-configuration interaction) and TD-DFT results based on LDA, GGA, and hybrid functionals. PMID:23464134
Wolthuis, A; Boes, A; Grond, J
1993-10-01
Mesangial cell (MC) hyperplasia and accumulation of extracellular matrix are hallmarks of chronic glomerular disease. The present in vitro study examined the effects of cell density on growth, extracellular matrix formation, and protein synthesis of cultured rat MCs. A negative linear relationship was found between initial plating density and DNA synthesis per cell after 24 hours incubation in medium with 10% fetal calf serum (range: 1 x 10(3) to 7 x 10(5) MCs/2cm2, r = 0.996, P < 0.001). Enzyme-linked immunosorbent assay of the amount of fibronectin in the conditioned medium after 72 hours showed a negative relationship with increasing cell density. In contrast, the amount of cell-associated fibronectin increased to maximal values in confluent cultures, and no further increase was seen at supraconfluency. The relative collagen synthesis in the conditioned medium and cell layer--assessed by collagenase digestion after 5 hours [3H]proline pulse labeling--showed a similar pattern. Secreted collagen decreased with increasing cell density from 3.4% to 0.2% of total protein synthesis. In contrast, cell-associated collagen increased from 1.1% to 11.8% of newly synthesized protein until confluency followed by a decrease to 4.2% at supraconfluency. Specific immunoprecipitation of collagen types I, III, and IV revealed a significant (twofold) increase in collagen I synthesis per cell at confluency. Collagen III and IV synthesis was not affected by cell density. Specific protein expression in both the medium and cell layer were analyzed by two-dimensional polyacrylamide gel electrophoresis (150 to 20 kd, pI 5.0 to 7.0) after 20 hours steady-state metabolic labeling with [35S]methionine. Supraconfluent MCs displayed overexpression of 10, underexpression of four, new expression of five, and changed mobility of three different intracellular proteins. Of interest was the overexpression of two proteins (89 kd, pI 5.31 and 72 kd, pI 5.32) that were identified by immunoblotting as
Current density partitioning in time-dependent current density functional theory
Mosquera, Martín A.; Wasserman, Adam; Department of Physics, Purdue University, West Lafayette, Indiana 47907
2014-05-14
We adapt time-dependent current density functional theory to allow for a fragment-based solution of the many-electron problem of molecules in the presence of time-dependent electric and magnetic fields. Regarding a molecule as a set of non-interacting subsystems that individually evolve under the influence of an auxiliary external electromagnetic vector-scalar potential pair, the partition 4-potential, we show that there are one-to-one mappings between this auxiliary potential, a sharply-defined set of fragment current densities, and the total current density of the system. The partition electromagnetic (EM) 4-potential is expressed in terms of the real EM 4-potential of the system and a gluing EM 4-potential that accounts for exchange-correlation effects and mutual interaction forces between fragments that are required to yield the correct electron dynamics. We prove the zero-force theorem for the fragmented system, establish a variational formulation in terms of action functionals, and provide a simple illustration for a charged particle in a ring.
A complete active space SCF method (CASSCF) using a density matrix formulated super-CI approach
NASA Astrophysics Data System (ADS)
Roos, Björn O.; Taylor, Peter R.; Si≐gbahn, Per E. M.
1980-05-01
A density matrix formulation of the super-CI MCSCF method is presented. The MC expansion is assumed to be complete in an active subset of the orbital space, and the corresponding CI secular problem is solved by a direct scheme using the unitary group approach. With a density matrix formulation the orbital optimization step becomes independent of the size of the CI expansion. It is possible to formulate the super-CI in terms of density matrices defined only in the small active subspace; the doubly occupied orbitals (the inactive subspace) do not enter. Further, in the unitary group formalism it is straightforward and simple to obtain the necessary density matrices from the symbolic formula list. It then becomes possible to treat very long MC expansions, the largest so far comprising 726 configurations. The method is demonstrated in a calculation of the potential curves for the three lowest states ( 1Σ +g, 3Σ +u and 3Π g) of the N 2 molecule, using a medium-sized gaussian basis set. Seven active orbitals were used yielding the following results: De: 8.76 (9.90), 2.43 (3.68) and 3.39 (4.90) eV; re: 1.108 (1.098), 1.309 (1.287) and 1.230 (1.213) Å; ω e: 2333 (2359), 1385 (1461) and 1680 (1733) cm -1, for the three states (experimental values within parentheses). The results of these calculations indicate that it is important to consider not only the dissociation limit but also the united atom limit in partitioning the occupied orbital space into an active and an inactive part.
NASA Astrophysics Data System (ADS)
Akune, Tadahiro; Sakamoto, Nobuyoshi
2009-03-01
In a multifilamentary wire proximity-currents between filaments show a close resemblance with the inter-grain current in a high-Tc superconductor. The critical current densities of the proximity-induced superconducting matrix Jcm can be estimated from measured twist-pitch dependence of magnetization and have been shown to follow the well-known scaling law of the pinning strength. The grained Bean model is applied on the multifilamentary wire to obtain Jcm, where the filaments are immersed in the proximity-induced superconducting matrix. Difference of the superconducting characteristics of the filament, the matrix and the filament content factor give a variety of deformation on the AC susceptibility curves. The computed AC susceptibility curves of multifilamentary wires using the grained Bean model are favorably compared with the experimental results. The values of Jcm estimated from the susceptibilities using the grained Bean model are comparable to those estimated from measured twist-pitch dependence of magnetization. The applicability of the grained Bean model on the multifilamentary wire is discussed in detail.
Comments on fusion matrix in N = 1 super Liouville field theory
NASA Astrophysics Data System (ADS)
Poghosyan, Hasmik; Sarkissian, Gor
2016-08-01
We study several aspects of the N = 1 super Liouville theory. We show that certain elements of the fusion matrix in the Neveu-Schwarz sector are related to the structure constants according to the same rules which we observe in rational conformal field theory. We collect some evidences that these relations should hold also in the Ramond sector. Using them the Cardy-Lewellen equation for defects is studied, and defects are constructed.
Study of spin-density matrix in exclusive electroproduction of ω meson at HERMES
NASA Astrophysics Data System (ADS)
Manaenkov, S. I.
2016-02-01
Exclusive electroproduction of ω mesons on unpolarized hydrogen and deuterium targets is studied in the kinematic region of Q2 > 1.0 GeV2, 3.0 GeV < W < 6.3 GeV, and -t' < 0.2 GeV2. The data were accumulated with the HERMES forward spectrometer during the 1996-2007 running period using the 27.6 GeV longitudinally polarized electron or positron beam of HERA. Spin-density matrix elements are presented in projections of Q2 or -t'. Violation of s-channel helicity conservation is observed for some of these elements. A sizable contribution from unnatural-parity-exchange amplitudes is established for special combinations of spin-density matrix elements. The determination of the virtual-photon longitudinal-to- transverse cross-section ratio reveals that a dominant part of the cross section arises from transversely polarized photons. Good agreement is found between the HERMES proton data and results of a pQCD-inspired Goloskokov-Kroll model that includes pion-pole contributions.
Pan, Li-Long; Wang, Xian-Li; Wang, Xi-Ling; Zhu, Yi-Zhun
2014-01-01
The aim was to examine the role of exogenous hydrogen sulfide (H2S) on cardiac remodeling in post-myocardial infarction (MI) rats. MI was induced in rats by ligation of coronary artery. After treatment with sodium hydrosulfide (NaHS, an exogenous H2S donor, 56 μM/kg·day) for 42 days, the effects of NaHS on left ventricular morphometric features, echocardiographic parameters, heme oxygenase-1 (HO-1), matrix metalloproteinases-9 (MMP-9), type I and type III collagen, vascular endothelial growth factor (VEGF), CD34, and α-smooth muscle actin (α-SMA) in the border zone of infarct area were analyzed to elucidate the protective mechanisms of exogenous H2S on cardiac function and fibrosis. Forty-two days post MI, NaHS-treatment resulted in a decrease in myocardial fibrotic area in association with decreased levels of type I, type III collagen and MMP-9 and improved cardiac function. Meanwhile, NaHS administration significantly increased cystathionine γ-lyase (CSE), HO-1, α-SMA, and VEGF expression. This effect was accompanied by an increase in vascular density in the border zone of infarcted myocardium. Our results provided the strong evidences that exogenous H2S prevented cardiac remodeling, at least in part, through inhibition of extracellular matrix accumulation and increase in vascular density. PMID:25514418
Leptogenesis with heavy neutrino flavours: from density matrix to Boltzmann equations
Blanchet, Steve; Bari, Pasquale Di; Jones, David A.; Marzola, Luca E-mail: pdb1d08@soton.ac.uk E-mail: daj1g08@soton.ac.uk
2013-01-01
Leptogenesis with heavy neutrino flavours is discussed within a density matrix formalism. We write the density matrix equation, describing the generation of the matter-antimatter asymmetry, for an arbitrary choice of the right-handed (RH) neutrino masses. For hierarchical RH neutrino masses lying in the fully flavoured regimes, this reduces to multiple-stage Boltzmann equations. In this case we recover and extend results previously derived within a quantum state collapse description. We confirm the generic existence of phantom terms. However, taking into account the effect of gauge interactions, we show that they are washed out at the production with a wash-out rate that is halved compared to that one acting on the total asymmetry. In the N{sub 1}-dominated scenario they cancel without contributing to the final baryon asymmetry. In other scenarios they do not in general and they have to be taken into account. We also confirm that there is a (orthogonal) component in the asymmetry produced by the heavier RH neutrinos which completely escapes the washout from the lighter RH neutrinos and show that phantom terms additionally contribute to it. The other (parallel) component is washed out with the usual exponential factor, even for weak washout. Finally, as an illustration, we study the two RH neutrino model in the light of the above findings, showing that phantom terms can contribute to the final asymmetry also in this case.
NASA Astrophysics Data System (ADS)
Mewes, Stefanie A.; Plasser, Felix; Dreuw, Andreas
2015-11-01
Excited-state descriptors based on the one-particle transition density matrix referring to the exciton picture have been implemented for time-dependent density functional theory. State characters such as local, extended ππ∗, Rydberg, or charge transfer can be intuitively classified by simple comparison of these descriptors. Strong effects of the choice of the exchange-correlation kernel on the physical nature of excited states can be found and decomposed in detail leading to a new perspective on functional performance and the design of new functionals.
NASA Astrophysics Data System (ADS)
Mattsson, Thomas R.
2007-06-01
Atomistic simulations employing Density Functional Theory (DFT) have recently emerged as a powerful way of increasing our understanding of materials and processes in high energy density physics. Knowledge of the properties of water (equation of state, electrical conductivity, diffusion, low-energy opacity) is essential for correctly describing the physics of giant planets as well as shock waves in water. Although a qualitative picture of water electrical conductivity has emerged, the necessary quantitative information is scarce over a wide range of temperature and density. Since experiments can only access certain areas of phase space, and often require modeling as a part of the analysis, Quantum Molecular Dynamics simulations play a vital role. Using finite-temperature density functional theory (FT-DFT), we have investigated the structure and electronic conductivity of water across three phase transitions (molecular liquid/ ionic liquid/ superionic/ electronic liquid). The ionic contribution to the conduction is calculated from proton diffusion and the electronic contribution is calculated using the Kubo-Greenwood formula. The calculations are performed with VASP, a plane-wave pseudo-potential code. There is a rapid transition to ionic conduction at 2000 K and 2 g/cm^3, whereas electronic conduction dominates at temperatures at and above 6000 K&[tilde;1]. Contrary to earlier results using the Car-Parrinello method&[tilde;2], we predict that the fluid bordering the superionic phase is conducting above 4000 K and 100 GPa. Our comprehensive use of FT-DFT explains the new findings. The calculated conductivity is compared to experimental data. I gratefully acknowledge Mike Desjarlais, my collaborator in this effort. The LDRD office at Sandia supported this work. Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL
Understanding density functional theory (DFT) and completing it in practice
Bagayoko, Diola
2014-12-15
We review some salient points in the derivation of density functional theory (DFT) and of the local density approximation (LDA) of it. We then articulate an understanding of DFT and LDA that seems to be ignored in the literature. We note the well-established failures of many DFT and LDA calculations to reproduce the measured energy gaps of finite systems and band gaps of semiconductors and insulators. We then illustrate significant differences between the results from self consistent calculations using single trial basis sets and those from computations following the Bagayoko, Zhao, and Williams (BZW) method, as enhanced by Ekuma and Franklin (BZW-EF). Unlike the former, the latter calculations verifiably attain the absolute minima of the occupied energies, as required by DFT. These minima are one of the reasons for the agreement between their results and corresponding, experimental ones for the band gap and a host of other properties. Further, we note predictions of DFT BZW-EF calculations that have been confirmed by experiment. Our subsequent description of the BZW-EF method ends with the application of the Rayleigh theorem in the selection, among the several calculations the method requires, of the one whose results have a full, physics content ascribed to DFT. This application of the Rayleigh theorem adds to or completes DFT, in practice, to preserve the physical content of unoccupied, low energy levels. Discussions, including implications of the method, and a short conclusion follow the description of the method. The successive augmentation of the basis set in the BZW-EF method, needed for the application of the Rayleigh theorem, is also necessary in the search for the absolute minima of the occupied energies, in practice.
NASA Astrophysics Data System (ADS)
Gunawardana, K. G. S. H.
The rapid development of nanotechnology has enabled the fabrication of structures much smaller than the mean free path of electrons and phonons. In modern electronics, miniaturization is desired to increase the transistor density and the clock speed. Electronic transport on the nanoscale has been studied for over three decades and fascinating quantum effects have been observed. Phonon transport on this scale is of significant interest because of the increased power dissipation in nanoelectronics, which undermines the correct functionality of devices and limits their lifetime. Apart from the effort to minimize heat generation, an efficient heat management scheme is necessary. Historically, thermal transport in bulk materials was described by the Fourier's law, in which the thermal conductivity is an intrinsic property of the material. Later a more descriptive model, the Boltzmann approach for thermal transport, was developed and could explain the thermal conductivity down to a 100 nm length scale at high temperatures. At low temperatures and in structures smaller than roughly 100 nm, thermal transport is described by the fully quantum mechanical Landauer- Butticker formalism. In this context, accurate calculation of phonon transmission probabilities is very important. In this dissertation, I develop a continuum model to calculate phonon transmission probabilities between media, which have high contrast in the elastic properties. In this work, we include an interface transition layer between the two media and look for interface properties that improve thermal transport. Secondly, I develop a new theoretical tool based on the R-Matrix theory to calculate phonon transmission probabilities on the atomic scale. R-matrix theory is a well developed theoretical approach commonly used in nuclear and atomic physics to solve scattering problems. Recently, this approach has been successfully developed to calculate electronic scattering in mesoscopic quantum devices. The key
Light-like big bang singularities in string and matrix theories
NASA Astrophysics Data System (ADS)
Craps, Ben; Evnin, Oleg
2011-10-01
Important open questions in cosmology require a better understanding of the big bang singularity. In string and matrix theories, light-like analogues of cosmological singularities (singular plane wave backgrounds) turn out to be particularly tractable. We give a status report on the current understanding of such light-like big bang models, presenting both solved and open problems.
Improving the orbital-free density functional theory description of covalent materials
NASA Astrophysics Data System (ADS)
Zhou, Baojing; Ligneres, Vincent L.; Carter, Emily A.
2005-01-01
The essential challenge in orbital-free density functional theory (OF-DFT) is to construct accurate kinetic energy density functionals (KEDFs) with general applicability (i.e., transferability). During the last decade, several linear-response (LR)-based KEDFs have been proposed. Among them, the Wang-Govind-Carter (WGC) KEDF, containing a density-dependent response kernel, is one of the most accurate that still affords a linear scaling algorithm. For nearly-free-electron-like metals such as Al and its alloys, OF-DFT employing the WGC KEDF produces bulk properties in good agreement with orbital-based Kohn-Sham (KS) DFT predictions. However, when OF-DFT, using the WGC KEDF combined with a recently proposed bulk-derived local pseudopotential (BLPS), was applied to semiconducting and metallic phases of Si, problems arose with convergence of the self-consistent density and energy, leading to poor results. Here we provide evidence that the convergence problem is very likely caused by the use of a truncated Taylor series expansion of the WGC response kernel. Moreover, we show that a defect in the ansatz for the first-order reduced density matrix underlying the LR KEDFs limits the accuracy of these KEDFs. By optimizing the two free parameters involved in the WGC KEDF, the two-body Fermi wave vector mixing parameter γ and the reference density ρ* used in the Taylor expansion, OF-DFT calculations with the BLPS can achieve semiquantitative results for nine phases of bulk silicon. These new parameters are recommended whenever the WGC KEDF is used to study nonmetallic systems.
Cembran, Alessandro; Song, Lingchun; Mo, Yirong; Gao, Jiali
2010-01-01
A multistate density functional theory in the framework of the valence bond model is described. The method is based on a block-localized density functional theory (BLDFT) for the construction of valence-bond-like diabatic electronic states and is suitable for the study of electron transfer reactions and for the representation of reactive potential energy surfaces. The method is equivalent to a valence bond theory with the treatment of the localized configurations by using density functional theory (VBDFT). In VBDFT, the electron densities and energies of the valence bond states are determined by BLDFT. A functional estimate of the off-diagonal matrix elements of the VB Hamiltonian is proposed, making use of the overlap integral between Kohn–Sham determinants and the exchange-correlation functional for the ground state substituted with the transition (exchange) density. In addition, we describe an approximate approach, in which the off-diagonal matrix element is computed by wave function theory using block-localized Kohn–Sham orbitals. The key feature is that the electron density of the adiabatic ground state is not directly computed nor used to obtain the ground-state energy; the energy is determined by diagonalization of the multistate valence bond Hamiltonian. This represents a departure from the standard single-determinant Kohn–Sham density functional theory. The multistate VBDFT method is illustrated by the bond dissociation of H2+ and a set of three nucleophilic substitution reactions in the DBH24 database. In the dissociation of H2+, the VBDFT method yields the correct asymptotic behavior as the two protons stretch to infinity, whereas approximate functionals fail badly. For the SN2 nucleophilic substitution reactions, the hybrid functional B3LYP severely underestimates the barrier heights, while the approximate two-state VBDFT method overcomes the self-interaction error, and overestimates the barrier heights. Inclusion of the ionic state in a three
Spectra of empirical autocorrelation matrices: A random-matrix-theory-inspired perspective
NASA Astrophysics Data System (ADS)
Jamali, Tayeb; Jafari, G. R.
2015-07-01
We construct an autocorrelation matrix of a time series and analyze it based on the random-matrix theory (RMT) approach. The autocorrelation matrix is capable of extracting information which is not easily accessible by the direct analysis of the autocorrelation function. In order to provide a precise conclusion based on the information extracted from the autocorrelation matrix, the results must be first evaluated. In other words they need to be compared with some sort of criterion to provide a basis for the most suitable and applicable conclusions. In the context of the present study, the criterion is selected to be the well-known fractional Gaussian noise (fGn). We illustrate the applicability of our method in the context of stock markets. For the former, despite the non-Gaussianity in returns of the stock markets, a remarkable agreement with the fGn is achieved.
NASA Astrophysics Data System (ADS)
Jacobs, Verne; Kutana, Alex
The frequency-dependent transition rates for single-photon and multi-photon processes in quantized many-electron systems are evaluated using a reduced-density-matrix approach. We provide a fundamental quantum-mechanical foundation for systematic spectral simulations. A perturbation expansion of the frequency-domain Liouville-space self-energy operator is introduced for detailed evaluations of the spectral-line shapes. In the diagonal-resolvent (isolated-line) and short-memory-time (Markov) approximations, the lowest-order contributions to the spectral-line widths and shifts associated with environmental electron-photon and electron-phonon interactions are systematically evaluated. Our description is directly applicable to electromagnetic processes in a wide variety of many-electron systems, without premature approximations. In particular, our approach can be applied to investigate quantum optical phenomena involving electrons in both bulk and nanoscale semiconductor materials entirely from first principles, using a single-electron basis set obtained from density functional theory as a starting point for a many-electron description. Work supported by the Office of Naval Research through the Basic Research Program at The Naval Research Laboratory. A portion of this work was performed under the ASEE post doc program at NRL.
NASA Astrophysics Data System (ADS)
Schoonmaker, Robert; Clark, Stewart; Lancaster, Tom; Frawley, Thomas; Hatton, Peter
Iron arsenide intersects interesting physics between novel superconductors and other helical magnetic ordering in Pnma metal arsenide materials. Recent diffraction data has found a more complex ordering than a simple helical incommensurate spin density wave. Instead iron arsenide exhibits a definite chirality to the helimagnetism, an ellipticity in the spiral not aligned with the crystal axis, and resonant diffraction peaks forbidden by the Pnma symmetry. From non-magnetic and collinear density functional theory calculations we present insight into the mechanisms for the formation of this helimagnetic state. We find that ferromagnetic superexchange is a likely mechanism for the spin ordering and that the noncollinear ordering under this regime is caused by the spins on neighbouring irons arranging to minimise direct exchange between iron atoms, and also minimize disruption of the ferromagnetic superexchange between priveleged iron-arsenic pairs. To explain the forbidden peaks in the diffraction we have performed second-order spin-orbit perturbation calculations on the nonmagnetic calculation, which finds that the orbital ordering on the iron atoms coupled to the helimagnetism will lead to the otherwise symmetry-forbidden peaks.
Reflection asymmetric shapes in covariant density functional theory
NASA Astrophysics Data System (ADS)
Afanasjev, A. V.; Agbemava, S.; Ring, P.
2014-03-01
Reflection asymmetric (octupole deformed) shapes play an important role in some areas of nuclear chart. For example, the outer fission barriers in actinides and superheavy nuclei are strongly affected by such shapes. The recent progress in the study of such shapes and octupole softness at ground states of lanthanides (A ~ 145) and actinides (A ~ 224) as well as at outer fission barriers of actinides and superheavy nuclei within the covariant density functional theory will be reviewed. New results obtained within the relativistic Hartree-Bogoliubov framework with separable limit of finite range Gogny D1S pairing in the pairing channel will be discussed. The experimental data will be systematically compared with model calculations. The work on the extension of the relativistic Hartree-Bogoliubov formalism to the description of odd, odd-odd and rotating nuclei with reflections asymmetric shapes is currently in progress. New results obtained with these extensions will be reported. This work has been supported by the U.S. Department of Energy under the grant DE-FG02-07ER41459 and by the DFG cluster of excellence ``Origin and Structure of the Universe '' (www.universe-cluster.de).
Designing Meaningful Density Functional Theory Calculations in Materials Science
NASA Astrophysics Data System (ADS)
Mattsson, A. E.
2005-07-01
Density functional theory (DFT) methods for calculating the quantum mechanical ground states of condensed matter systems are now a common and significant component of materials research. These methods are also increasingly used in Equation of State work, in particular in the warm dense matter regime. The growing importance of DFT reflects the development of sufficiently accurate functionals, efficient algorithms, and continuing improvements in computing capabilities. As the materials problems to which DFT is applied have become large and complex, so have the sets of calculations necessary to investigate a given problem. Highly versatile, powerful codes exist to serve the practitioner, but designing useful simulations is a complicated task, involving intricate manipulation of many variables, with many pitfalls for the unwary and the inexperienced. We give an overview of DFT and discuss several of the most important issues that go into designing a meaningful DFT calculation. Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy's National Nuclear Security Administration under Contract DE-AC04-94AL85000.
Predicting Stability Constants for Uranyl Complexes Using Density Functional Theory
Vukovic, Sinisa; Hay, Benjamin P.; Bryantsev, Vyacheslav S.
2015-04-02
The ability to predict the equilibrium constants for the formation of 1:1 uranyl:ligand complexes (log K_{1 }values) provides the essential foundation for the rational design of ligands with enhanced uranyl affinity and selectivity. We also use density functional theory (B3LYP) and the IEFPCM continuum solvation model to compute aqueous stability constants for UO_{2}^{2+} complexes with 18 donor ligands. Theoretical calculations permit reasonably good estimates of relative binding strengths, while the absolute log K_{1} values are significantly overestimated. Accurate predictions of the absolute log K_{1} values (root mean square deviation from experiment < 1.0 for log K_{1} values ranging from 0 to 16.8) can be obtained by fitting the experimental data for two groups of mono and divalent negative oxygen donor ligands. The utility of correlations is demonstrated for amidoxime and imide dioxime ligands, providing a useful means of screening for new ligands with strong chelate capability to uranyl.
Predicting Stability Constants for Uranyl Complexes Using Density Functional Theory
Vukovic, Sinisa; Hay, Benjamin P.; Bryantsev, Vyacheslav S.
2015-04-02
The ability to predict the equilibrium constants for the formation of 1:1 uranyl:ligand complexes (log K1 values) provides the essential foundation for the rational design of ligands with enhanced uranyl affinity and selectivity. We also use density functional theory (B3LYP) and the IEFPCM continuum solvation model to compute aqueous stability constants for UO22+ complexes with 18 donor ligands. Theoretical calculations permit reasonably good estimates of relative binding strengths, while the absolute log K1 values are significantly overestimated. Accurate predictions of the absolute log K1 values (root mean square deviation from experiment < 1.0 for log K1 values ranging from 0more » to 16.8) can be obtained by fitting the experimental data for two groups of mono and divalent negative oxygen donor ligands. The utility of correlations is demonstrated for amidoxime and imide dioxime ligands, providing a useful means of screening for new ligands with strong chelate capability to uranyl.« less
Effects of Methylation on Zebularine Studied by Density Functional Theory
NASA Astrophysics Data System (ADS)
Selvam, Lalitha; Vasilyev, Vladislav; Wang, Feng; Vasilyev, Vladislav
2009-06-01
1-(β -D-ribofuranosyl)-2-pyrimidone (zebularine or zeb) and 1-(β -D-ribofuranosyl)-5-methyl-2-pyrimidinone (d5) are effective inhibitors of cytidine deaminases (CDA). Methyl modification of zeb at the C(5) position in the base moiety produces d5. A density functional theory (DFT) study reveals the impact of the methyl group on the electronic structures and spectra of the nucleoside pair. It is found that the addition of methyl group has little effect on the geometry of the nucleosides as well as their sugar puckering, but affects anisotropic properties such as dihedral angles, condensed Fukui functions and charge distribution can be seen in their molecular electrostatic potentials (MEPs). Electron spectra serve as the fingerprint for the methyl group. The valence spectra clearly indicate that the molecular pair is related in the inner valence space of IP > 20 eV, whereas the outer valence space reveals the methyl associated electronic structural modifications of the molecular pair. In the present study, the molecular orbitals (MO) such as MO8, MO18 and MO37 (HOMO as MO1) are identified as the fingerprint MOs for methyl, whereas other MOs marked in the figure are secondary methyl related MOs. Chemical shift in the inner shell and their spectra are also calculated. It reveals the similarities and differences of methyl effect to large nucleosides and small amino acids such as L-alanine.
Density functional theory study of oxygen migration in molten carbonate
NASA Astrophysics Data System (ADS)
Lei, Xueling; Haines, Kahla; Huang, Kevin; Qin, Changyong
2016-02-01
The process of oxygen migration in alkali molten carbonate salts has been examined using density functional theory method. All geometries were optimized at the B3LYP/6-31G(d) level, while single point energy corrections were performed using MP4 and CCSD(T). At TS, a O-O-O linkage is formed and O-O bond forming and breaking is concerted. A cooperative "cogwheel" mechanism as described in the equation of CO42- + CO32- → CO32- ⋯O ⋯ CO32- → CO32- + CO42- is involved. The energy barrier is calculated to be 103.0, 136.3 and 127.9 kJ/mol through an intra-carbonate pathway in lithium, sodium and potassium carbonate, respectively. The reliability and accuracy of B3LYP/6-31G(d) were confirmed by CCSD(T). The calculated low values of activation energy indicate that the oxygen transfer in molten carbonate salts is fairly easy. In addition, it is found that lithium carbonate is not only a favorable molten carbonate salt for better cathode kinetics, but also it is widely used for reducing the melting point of Li/Na and Li/K eutectic MC mixtures. The current results imply that the process of oxygen reduction in MC modified cathodes is facilitated by the presence of MC, resulting in an enhancement of cell performance at low operating temperatures.
Physical basis for constrained lattice density functional theory.
Men, Yumei; Zhang, Xianren
2012-03-28
To study nucleation phenomena in an open system, a constrained lattice density functional theory (LDFT) method has been developed before to identify the unstable directions of grand potential functional and to stabilize nuclei by imposing a suitable constraint. In this work, we answer several questions about the method on a fundamental level, and give a firmer basis for the constrained LDFT method. First, we demonstrate that the nucleus structure and free energy barrier from a volume constraint method are equivalent to those from a surface constraint method. Then, we show that for the critical nucleus, the constrained LDFT method in fact produces a bias-free solution for both the nucleus structure and nucleation barrier. Finally, we give a physical interpretation of the Lagrange multiplier in the constraint method, which provides the generalized force to stabilize a nucleus in an open system. The Lagrange multiplier is found to consist of two parts: part I of the constraint produces an effective pressure, and part II imposes a constraint to counteract the supersaturation. PMID:22462885
Dynamical Density Functional Theory and Hydrodynamic Interactions in Confined Systems
NASA Astrophysics Data System (ADS)
Goddard, Benjamin; Kalliadasis, Serafim; Nold, Andreas
Colloidal systems consist of nano-micrometer sized particles suspended in a bath of many more, much smaller and much lighter particles. When the colloidal particles move through the bath, e.g. when driven by external forces such as gravity, flows are induced in the bath. These flows in turn impart forces on the colloid particles. These bath-mediated forces, known as Hydrodynamic Interactions (HI) strongly influence the dynamics of the colloid particles. This is particularly true in confined systems, in which the presence of walls substantially modifies the HI compared to unbounded geometries. For many-particle systems, the number of degrees of freedom prohibit a direct solution of the underlying stochastic equations and a reduced model is necessary. We model such systems through Dynamical Density Functional Theory (DDFT), the computational complexity of which is independent of the number of particles. We include both inter-particle and particle-wall HI, demonstrating both their combined and relative effects. Funded by EPSRC Grant No. EP/L025159/1.
Density-functional theory: time to move up?
NASA Astrophysics Data System (ADS)
Marzari, Nicola
2013-03-01
Materials' simulations based on density-functional theory (DFT) have become an extremely powerful and widely used tool for scientific discovery and technological advancement. Still, in the current approximations, they remain an imperfect tool for predicting materials' properties, with open and urgent challenges in the quest towards qualitative and quantitative accuracy. Several of these challenges stem from the remnants of self-interaction in the electronic-structure framework, leading to qualitative failures in describing some of the fundamental processes involved e.g. in energy applications - from charge-transfer excitations to photoemission spectra to the structure and reactivity of transition-metal complexes. I'll discuss these challenges in realistic case studies, and present a brief overview of some of our suggestions for possible solutions - including constrained DFT, DFT + onsite and intersite Hubbard terms, and Koopmans' compliant energy functionals. In particular, I'll highlight how Koopmans' compliant functionals point to a beyond-DFT formulation where both total energies and spectroscopic properties can be accounted for. Such framework will be illustrated with applications to real systems and with simplified models that can be solved exactly. Work done in collaboration with Patrick H-L Sit, Heather Kulik, Damian Scherlis, Matteo Cococcioni, Ismaila Dabo, Andrea Ferretti, Nicolas Poilvert, Cheol-Hwan Park, Giovanni Borghi, and Linh Nguyen.
Self-interaction corrections in density functional theory
Tsuneda, Takao; Hirao, Kimihiko
2014-05-14
Self-interaction corrections for Kohn-Sham density functional theory are reviewed for their physical meanings, formulations, and applications. The self-interaction corrections get rid of the self-interaction error, which is the sum of the Coulomb and exchange self-interactions that remains because of the use of an approximate exchange functional. The most frequently used self-interaction correction is the Perdew-Zunger correction. However, this correction leads to instabilities in the electronic state calculations of molecules. To avoid these instabilities, several self-interaction corrections have been developed on the basis of the characteristic behaviors of self-interacting electrons, which have no two-electron interactions. These include the von Weizsäcker kinetic energy and long-range (far-from-nucleus) asymptotic correction. Applications of self-interaction corrections have shown that the self-interaction error has a serious effect on the states of core electrons, but it has a smaller than expected effect on valence electrons. This finding is supported by the fact that the distribution of self-interacting electrons indicates that they are near atomic nuclei rather than in chemical bonds.
Predicting stability constants for uranyl complexes using density functional theory.
Vukovic, Sinisa; Hay, Benjamin P; Bryantsev, Vyacheslav S
2015-04-20
The ability to predict the equilibrium constants for the formation of 1:1 uranyl/ligand complexes (log K1 values) provides the essential foundation for the rational design of ligands with enhanced uranyl affinity and selectivity. We use density functional theory (B3LYP) and the integral equation formalism polarizable continuum model (IEF-PCM) to compute aqueous stability constants for UO2(2+) complexes with 18 donor ligands. Theoretical calculations permit reasonably good estimates of relative binding strengths, while the absolute log K1 values are significantly overestimated. Accurate predictions of the absolute log K1 values (root-mean-square deviation from experiment <1.0 for log K1 values ranging from 0 to 16.8) can be obtained by fitting the experimental data for two groups of mono- and divalent negative oxygen donor ligands. The utility of correlations is demonstrated for amidoxime and imide dioxime ligands, providing a useful means of screening for new ligands with strong chelating capability to uranyl. PMID:25835578
Time-dependent density functional theory of extreme environments
NASA Astrophysics Data System (ADS)
Shulenburger, Luke; Desjarlais, Michael; Magyar, Rudolph
2013-04-01
We describe the challenges involved when using time-dependent density functional theory (TDDFT) to describe warm dense matter (WDM) within a plane-wave, real-time formulation. WDM occurs under conditions of temperature and pressure (over 1000 K and 1 Mbar) where plasma physics meets condensed matter physics. TDDFT is especially important in this regime as it can describe ions and electrons strongly out of equilibrium. Several theoretical challenges must be overcome including assignment of initial state orbitals, choice of time-propogation scheme, treatment of PAW potentials, and inclusion of non-adiabatic effects in the potential energy surfaces. The results of these simulations are critical in several applications. For example, we will explain how the TDDFT calculation can resolve modeling inconsistencies in X-ray Thompson cross-sections, thereby improving an important temperature diagnostic in experiments. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.
Excess electrons in ice: a density functional theory study.
Bhattacharya, Somesh Kr; Inam, Fakharul; Scandolo, Sandro
2014-02-21
We present a density functional theory study of the localization of excess electrons in the bulk and on the surface of crystalline and amorphous water ice. We analyze the initial stages of electron solvation in crystalline and amorphous ice. In the case of crystalline ice we find that excess electrons favor surface states over bulk states, even when the latter are localized at defect sites. In contrast, in amorphous ice excess electrons find it equally favorable to localize in bulk and in surface states which we attribute to the preexisting precursor states in the disordered structure. In all cases excess electrons are found to occupy the vacuum regions of the molecular network. The electron localization in the bulk of amorphous ice is assisted by its distorted hydrogen bonding network as opposed to the crystalline phase. Although qualitative, our results provide a simple interpretation of the large differences observed in the dynamics and localization of excess electrons in crystalline and amorphous ice films on metals. PMID:24401958
Simple preconditioning for time-dependent density functional perturbation theory.
Lehtovaara, Lauri; Marques, Miguel A L
2011-07-01
By far, the most common use of time-dependent density functional theory is in the linear-reponse regime, where it provides information about electronic excitations. Ideally, the linear-response equations should be solved by a method that avoids the use of the unoccupied Kohn-Sham states--such as the Sternheimer method--as this reduces the complexity and increases the precision of the calculation. However, the Sternheimer equation becomes ill-conditioned near and indefinite above the first resonant frequency, seriously hindering the use of efficient iterative solution methods. To overcome this serious limitation, and to improve the general convergence properties of the iterative techniques, we propose a simple preconditioning strategy. In our method, the Sternheimer equation is solved directly as a linear equation using an iterative Krylov subspace method, i.e., no self-consistent cycle is required. Furthermore, the preconditioner uses the information of just a few unoccupied states and requires simple and minimal modifications to existing implementations. In this way, convergence can be reached faster and in a considerably wider frequency range than the traditional approach. PMID:21744884
Augmented Lagrangian formulation of orbital-free density functional theory
Suryanarayana, Phanish Phanish, Deepa
2014-10-15
We present an Augmented Lagrangian formulation and its real-space implementation for non-periodic Orbital-Free Density Functional Theory (OF-DFT) calculations. In particular, we rewrite the constrained minimization problem of OF-DFT as a sequence of minimization problems without any constraint, thereby making it amenable to powerful unconstrained optimization algorithms. Further, we develop a parallel implementation of this approach for the Thomas–Fermi–von Weizsacker (TFW) kinetic energy functional in the framework of higher-order finite-differences and the conjugate gradient method. With this implementation, we establish that the Augmented Lagrangian approach is highly competitive compared to the penalty and Lagrange multiplier methods. Additionally, we show that higher-order finite-differences represent a computationally efficient discretization for performing OF-DFT simulations. Overall, we demonstrate that the proposed formulation and implementation are both efficient and robust by studying selected examples, including systems consisting of thousands of atoms. We validate the accuracy of the computed energies and forces by comparing them with those obtained by existing plane-wave methods.
Density functional theory simulation of liquid helium-4 in aerogel
NASA Astrophysics Data System (ADS)
Lysogorskiy, Yu. V.; Tayurskii, D. A.
2013-10-01
The distribution of liquid 4He in different types of confinements—adsorbing and nonadsorbing aerogel on the basis of silicon dioxide SiO2 and an absorbing homogeneous strand—has been studied using the density functional theory. It has been demonstrated that the helium atoms tend to be adsorbed on the concave aerogel surface. It has been shown that, in the confinement with fractional mass dimension within certain scales, liquid helium also has a fractional mass dimension within these scales. The dependence of the energy of liquid helium on the number of atoms has been studied for different types of adsorbing surfaces. It has been established that the specific energy of liquid helium behaves differently in the cases of attractive and unattractive potentials with decreasing number of particles. This indicates that the system under consideration is nonextensive. Thus, the necessity of taking into account the surface effects and the fractional mass dimension in the studies of the properties of liquid helium in the restricted space geometry has been demonstrated.
Applications of density functional theory in materials science and engineering
NASA Astrophysics Data System (ADS)
Alvarado, Manuel, Jr.
Density Functional Theory (DFT) is a powerful tool that can be used to model various systems in materials science. Our research applies DFT to two problems of interest. First, an organic/inorganic complex dye system known as a Mayan pigment is modeled to determine chemical binding sites, verifying each model with physical data such as UV/Vis spectra. Preliminary studies on palygorskite-based mayan pigments (mayacrom blue, mayacrom purple) show excellent agreement with experimental studies when using a dimer dye geometry binding with tetrahedrally-coordinated aluminum impurity sites in palygorksite. This approach is applied to a sepiolite-based organic/inorganic dye system using thioindigo attached to a tetrahedral aluminum impurity site with an additional aluminum impurity site in close proximity to the binding site. As a second application of DFT, various grain orientations in beta-Sn are modeled under imposed strains in order to calculate elastic properties of this system. These calculations are intended to clarify discrepancies in published, experimental crystal compliance values.
Cell response to RGD density in cross-linked artificial extracellular matrix protein films.
Liu, Julie C; Tirrell, David A
2008-11-01
This study examines the adhesion, spreading, and migration of human umbilical vein endothelial cells on cross-linked films of artificial extracellular matrix (aECM) proteins. The aECM proteins described here were designed for application in small-diameter grafts and are composed of elastin-like structural repeats and fibronectin cell-binding domains. aECM-RGD contains the RGD sequence derived from fibronectin; the negative control protein aECM-RDG contains a scrambled cell-binding domain. The covalent attachment of poly(ethylene glycol) (PEG) to aECM substrates reduced nonspecific cell adhesion to aECM-RDG-PEG but did not preclude sequence-specific adhesion of endothelial cells to aECM-RGD-PEG. Variation in ligand density was accomplished by the mixing of aECM-RGD-PEG and aECM-RDG-PEG prior to cross-linking. Increasing the density of RGD domains in cross-linked films resulted in more robust cell adhesion and spreading but did not affect cell migration speed. Control of cell-binding domain density in aECM proteins can thus be used to modulate cell adhesion and spreading and will serve as an important design tool as these materials are further developed for use in surgery, tissue engineering, and regenerative medicine. PMID:18826275
Johnson, Christopher D; Worrall, Fred
2007-06-01
This paper reports the preparation and properties of a new low density granular absorbent material based on a zeolite/vermiculite composite. The composite prepared addresses a number of important issues relating to the use of zeolites in environmental and waste management applications. The material prepared has large particle size due to binderless adhesion of zeolite crystals within the protective lamellar matrix provided by the vermiculite granule. Additionally, the porous nature of new material ensures that it outperforms natural zeolite grains in ion-exchange tests. The material was shown to have a low bulk density (0.75 g cm(-3)) adding the benefit that the majority of grains float on water for over 15 h. The conclusion of the study is that the use of composite matrices enable the preparation of materials which show the physical properties of the host, (e.g., granular and low density), whilst maintaining the powder-like properties (e.g., high ion-exchange and small crystal size) of the active component. The resulting material can be easily handled and separated from aqueous waste streams using either flotation or exploiting its granular nature. PMID:17368511
Theory of melting at high pressures: Amending density functional theory with quantum Monte Carlo
NASA Astrophysics Data System (ADS)
Shulenburger, L.; Desjarlais, M. P.; Mattsson, T. R.
2014-10-01
We present an improved first-principles description of melting under pressure based on thermodynamic integration comparing density functional theory (DFT) and quantum Monte Carlo (QMC) treatments. The method is applied to address the longstanding discrepancy between DFT calculations and diamond anvil cell (DAC) experiments on the melting curve of xenon, a noble gas solid where van der Waals binding is challenging for traditional DFT methods. The calculations show agreement with data below 20 GPa and that the high-pressure melt curve is well described by a Lindemann behavior up to at least 80 GPa, in contrast to DAC data.
Gonis, A.; Zhang, X. G.; Stocks, G. M.; Nicholson, D. M.
2015-10-23
Density functional theory for the case of general, N-representable densities is reformulated in terms of density functional derivatives of expectation values of operators evaluated with wave functions leading to a density, making no reference to the concept of potential. The developments provide a complete solution of the v-representability problem by establishing a mathematical procedure that determines whether a density is v-representable and in the case of an affirmative answer determines the potential (within an additive constant) as a derivative with respect to the density of a constrained search functional. It also establishes the existence of an energy functional of the density that, for v-representable densities, assumes its minimum value at the density describing the ground state of an interacting many-particle system. The theorems of Hohenberg and Kohn emerge as special cases of the formalism.
Gonis, A.; Zhang, X. G.; Stocks, G. M.; Nicholson, D. M.
2015-10-23
Density functional theory for the case of general, N-representable densities is reformulated in terms of density functional derivatives of expectation values of operators evaluated with wave functions leading to a density, making no reference to the concept of potential. The developments provide a complete solution of the v-representability problem by establishing a mathematical procedure that determines whether a density is v-representable and in the case of an affirmative answer determines the potential (within an additive constant) as a derivative with respect to the density of a constrained search functional. It also establishes the existence of an energy functional of themore » density that, for v-representable densities, assumes its minimum value at the density describing the ground state of an interacting many-particle system. The theorems of Hohenberg and Kohn emerge as special cases of the formalism.« less
Kohn-Sham density-functional theory and renormalization of many-body perturbation expansions
NASA Astrophysics Data System (ADS)
Valiev, Marat
1998-03-01
Numerous practical applications provide strong evidence that despite its simplicity and crude approximations, density-functional theory leads to a rather accurate description of ground state properties of various condensed matter systems. Although well documented numerically, to our knowledge a theoretical explanation of the accuracy of density-functional theory has not been given. This issue is clarified in this work by demonstrating that density-functional theory represents a particular renormalization procedure of a many-body perturbation expansion. In other words, it is shown that density-functional theory is a many-body perturbation theory whose convergence properties have been optimized. The realization of this fact brings new meaning into density-functional theory and explains the success of density-functional based calculations. For more information go to http://alchemy.ucsd.edu/marat/ .
Luo, Da-Wei; Xu, Jing-Bo
2015-03-15
We use an alternative method to investigate the quantum criticality at zero and finite temperature using trace distance along with the density matrix renormalization group. It is shown that the average correlation measured by the trace distance between the system block and environment block in a DMRG sweep is able to detect the critical points of quantum phase transitions at finite temperature. As illustrative examples, we study spin-1 XXZ chains with uniaxial single-ion-type anisotropy and the Heisenberg spin chain with staggered coupling and external magnetic field. It is found that the trace distance shows discontinuity at the critical points of quantum phase transition and can be used as an indicator of QPTs.
Electrically tunable spin polarization in silicene: A multi-terminal spin density matrix approach
NASA Astrophysics Data System (ADS)
Chen, Son-Hsien
2016-05-01
Recent realized silicene field-effect transistor yields promising electronic applications. Using a multi-terminal spin density matrix approach, this paper presents an analysis of the spin polarizations in a silicene structure of the spin field-effect transistor by considering the intertwined intrinsic and Rashba spin-orbit couplings, gate voltage, Zeeman splitting, as well as disorder. Coexistence of the stagger potential and intrinsic spin-orbit coupling results in spin precession, making any in-plane polarization directions reachable by the gate voltage; specifically, the intrinsic coupling allows one to electrically adjust the in-plane components of the polarizations, while the Rashba coupling to adjust the out-of-plan polarizations. Larger electrically tunable ranges of in-plan polarizations are found in oppositely gated silicene than in the uniformly gated silicene. Polarizations in different phases behave distinguishably in weak disorder regime, while independent of the phases, stronger disorder leads to a saturation value.
Density matrix renormalization group study of triangular Kitaev-Heisenberg model
NASA Astrophysics Data System (ADS)
Sota, Shigetoshi; Sjinjo, Kazuya; Shirakawa, Tomonori; Tohyama, Takami; Yunoki, Seiji
2015-03-01
Topological insulator has been one of the most active subjects in the current condensed matter physics. For most of topological insulators electron correlations are considered to be not essential. However, in the case where electron correlations are strong, novel phases such as a spin liquid phase can emerge in competition with a spin-orbit coupling. Here, using the density matrix renormalization group method, we investigate magnetic phase of a triangular Kitaev-Heisenberg (quantum compass) model that contains a spin-orbital interaction and spin frustration in the antiferromagnetic region. The triangular Kitaev-Heisenberg model is regarded as a dual model of the honeycomb Kitaev-Heisenberg model that is usually employed to discuss A2CuO3 (A=Na, K). Systematically calculating ground state energy, entanglement entropy, entanglement spectrum, and spin-spin correlation functions, we discuss the duality between the triangular and the honeycomb Kitaev-Heisenberg model as well as the ground state magnetic phases.
Hu, Weifeng; Chan, Garnet Kin-Lic
2015-07-14
We describe and extend the formalism of state-specific analytic density matrix renormalization group (DMRG) energy gradients, first used by Liu et al. [J. Chem. Theor. Comput. 2013, 9, 4462]. We introduce a DMRG wave function maximum overlap following technique to facilitate state-specific DMRG excited-state optimization. Using DMRG configuration interaction (DMRG-CI) gradients, we relax the low-lying singlet states of a series of trans-polyenes up to C20H22. Using the relaxed excited-state geometries, as well as correlation functions, we elucidate the exciton, soliton, and bimagnon ("single-fission") character of the excited states, and find evidence for a planar conical intersection. PMID:26575737
Juhász, Tamás; Mazziotti, David A
2006-11-01
Several measures of electron correlation are compared based on two criteria: (i) the presence of a unique mapping between the reduced variables in the measure and the many-electron wave function and (ii) the linear scaling of the measure and its variables with system size. We propose the squared Frobenius norm of the cumulant part of the two-particle reduced density matrix (2-RDM) as a measure of electron correlation that satisfies these criteria. An advantage of this cumulant-based norm is its ability to measure the correlation from spin entanglement, which is not contained in the correlation energy. Alternative measures based on the 2-RDM, such as the von Neumann entropy, do not scale linearly with system size. Properties of the measures are demonstrated with Be, F(2), HF, N(2), and a hydrogen chain. PMID:17100427
Differential cross sections and spin density matrix elements for the reaction γp→pω
NASA Astrophysics Data System (ADS)
Williams, M.; Applegate, D.; Bellis, M.; Meyer, C. A.; Adhikari, K. P.; Anghinolfi, M.; Baghdasaryan, H.; Ball, J.; Battaglieri, M.; Bedlinskiy, I.; Berman, B. L.; Biselli, A. S.; Bookwalter, C.; Briscoe, W. J.; Brooks, W. K.; Burkert, V. D.; Careccia, S. L.; Carman, D. S.; Cole, P. L.; Collins, P.; Crede, V.; D'Angelo, A.; Daniel, A.; Vita, R. De; Sanctis, E. De; Deur, A.; Dey, B.; Dhamija, S.; Dickson, R.; Djalali, C.; Dodge, G. E.; Doughty, D.; Dugger, M.; Dupre, R.; Alaoui, A. El; Elouadrhiri, L.; Eugenio, P.; Fedotov, G.; Fegan, S.; Fradi, A.; Gabrielyan, M. Y.; Garçon, M.; Gevorgyan, N.; Gilfoyle, G. P.; Giovanetti, K. L.; Girod, F. X.; Gohn, W.; Golovatch, E.; Gothe, R. W.; Griffioen, K. A.; Guidal, M.; Guo, L.; Hafidi, K.; Hakobyan, H.; Hanretty, C.; Hassall, N.; Hicks, K.; Holtrop, M.; Ilieva, Y.; Ireland, D. G.; Ishkhanov, B. S.; Isupov, E. L.; Jawalkar, S. S.; Jo, H. S.; Johnstone, J. R.; Joo, K.; Keller, D.; Khandaker, M.; Khetarpal, P.; Kim, W.; Klein, A.; Klein, F. J.; Krahn, Z.; Kubarovsky, V.; Kuleshov, S. V.; Kuznetsov, V.; Livingston, K.; Lu, H. Y.; Mayer, M.; McAndrew, J.; McCracken, M. E.; McKinnon, B.; Mikhailov, K.; Mirazita, M.; Mokeev, V.; Moreno, B.; Moriya, K.; Morrison, B.; Moutarde, H.; Munevar, E.; Nadel-Turonski, P.; Nepali, C. S.; Niccolai, S.; Niculescu, G.; Niculescu, I.; Niroula, M. R.; Niyazov, R. A.; Osipenko, M.; Ostrovidov, A. I.; Paris, M.; Park, K.; Park, S.; Pasyuk, E.; Pereira, S. Anefalos; Perrin, Y.; Pisano, S.; Pogorelko, O.; Pozdniakov, S.; Price, J. W.; Procureur, S.; Protopopescu, D.; Raue, B. A.; Ricco, G.; Ripani, M.; Ritchie, B. G.; Rosner, G.; Rossi, P.; Sabatié, F.; Saini, M. S.; Salamanca, J.; Salgado, C.; Schott, D.; Schumacher, R. A.; Seraydaryan, H.; Sharabian, Y. G.; Smith, E. S.; Sober, D. I.; Sokhan, D.; Stepanyan, S. S.; Stoler, P.; Strakovsky, I. I.; Strauch, S.; Taiuti, M.; Tedeschi, D. J.; Tkachenko, S.; Ungaro, M.; Vineyard, M. F.; Voutier, E.; Watts, D. P.; Weinstein, L. B.; Weygand, D. P.; Wood, M. H.; Zhang, J.; Zhao, B.
2009-12-01
High-statistics differential cross sections and spin-density matrix elements for the reaction γp→pω have been measured using the CEBAF large acceptance spectrometer (CLAS) at Jefferson Lab for center-of-mass (c.m.) energies from threshold up to 2.84 GeV. Results are reported in 11210-MeV wide c.m. energy bins, each subdivided into cosθc.m.ω bins of width 0.1. These are the most precise and extensive ω photoproduction measurements to date. A number of prominent structures are clearly present in the data. Many of these have not previously been observed due to limited statistics in earlier measurements.
Low-density, high-strength intermetallic matrix composites by XD (trademark) synthesis
NASA Technical Reports Server (NTRS)
Kumar, K. S.; Dipietro, M. S.; Brown, S. A.; Whittenberger, J. D.
1991-01-01
A feasibility study was conducted to evaluate the potential of particulate composites based on low-density, L1(sub 2) trialuminide matrices for high-temperature applications. The compounds evaluated included Al22Fe3Ti8 (as a multiphase matrix), Al67Ti25Cr8, and Al66Ti25Mn9. The reinforcement consisted of TiB2 particulates. The TiB2 composites were processed by ingot and powder metallurgy techniques. Microstructural characterization and mechanical testing were performed in the hot-pressed and hot-isostatic-pressed condition. The casting were sectioned and isothermally forged into pancakes. All the materials were tested in compression as a function of temperature, and at high temperatures as a function of strain rate. The test results are discussed.
Gorissen, Mieke; Hooyberghs, Jef; Vanderzande, Carlo
2009-02-01
Cumulants of a fluctuating current can be obtained from a free-energy-like generating function, which for Markov processes equals the largest eigenvalue of a generalized generator. We determine this eigenvalue with the density-matrix renormalization group for stochastic systems. We calculate the variance of the current in the different phases, and at the phase transitions, of the totally asymmetric exclusion process. Our results can be described in the terms of a scaling ansatz that involves the dynamical exponent z . We also calculate the generating function of the dynamical activity (total number of configuration changes) near the absorbing-state transition of the contact process. Its scaling properties can be expressed in terms of known critical exponents. PMID:19391693
Symmetry-conserving purification of quantum states within the density matrix renormalization group
Nocera, Alberto; Alvarez, Gonzalo
2016-01-28
The density matrix renormalization group (DMRG) algorithm was originally designed to efficiently compute the zero-temperature or ground-state properties of one-dimensional strongly correlated quantum systems. The development of the algorithm at finite temperature has been a topic of much interest, because of the usefulness of thermodynamics quantities in understanding the physics of condensed matter systems, and because of the increased complexity associated with efficiently computing temperature-dependent properties. The ancilla method is a DMRG technique that enables the computation of these thermodynamic quantities. In this paper, we review the ancilla method, and improve its performance by working on reduced Hilbert spaces andmore » using canonical approaches. Furthermore we explore its applicability beyond spins systems to t-J and Hubbard models.« less
NASA Astrophysics Data System (ADS)
Dmitriev, K. V.
2015-11-01
Matrix Green's functions are introduced for a linearized system of hydrodynamic equations. The relations between the retarded and advanced Green's functions and Green's functions of the direct and conjugate operators of the system of hydrodynamic equations are determined. An expression for the reciprocity principle and a relation like the Marchenko equation are derived. The proposed mathematical apparatus is used to analyze scattering by a quasi-point refraction-density inhomogeneity of a medium. The phase and amplitude limitations are obtained for the scattering coefficients of such an inhomogeneity. The existence of the largest possible amplitude of the scattered field should be taken into account in designing metamaterials consisting of individual elements whose sizes are small compared to the wavelength, including those with resonance properties.
Hybrid-Space Density Matrix Renormalization Group Study of the Two-Dimensional Hubbard Model
NASA Astrophysics Data System (ADS)
Ehlers, Georg; Noack, Reinhard M.
We investigate the ground state of the two-dimensional Hubbard model on a cylinder geometry at intermediate coupling and weak doping. We study properties such as the behavior of the ground-state energy, pair-field correlations, and the appearance of stripes. We find striped ground states generically, with the width of the stripes depending on the filling, the boundary conditions, and the circumference of the cylinder. Furthermore, we analyse the interplay between the different stripe configurations and the decay of the pairing correlations. Our analysis is based on a hybrid-space density matrix renormalization group (DMRG) approach, which uses a momentum-space representation in the transverse and a real-space representation in the longitudinal direction. Exploiting the transverse momentum quantum number makes significant speedup and memory savings compared to the real-space DMRG possible. In particular, we obtain computational costs that are independent of the cylinder width for fixed size of the truncated Hilbert space.
Layered Low-Density Generator Matrix Codes for Super High Definition Scalable Video Coding System
NASA Astrophysics Data System (ADS)
Tonomura, Yoshihide; Shirai, Daisuke; Nakachi, Takayuki; Fujii, Tatsuya; Kiya, Hitoshi
In this paper, we introduce layered low-density generator matrix (Layered-LDGM) codes for super high definition (SHD) scalable video systems. The layered-LDGM codes maintain the correspondence relationship of each layer from the encoder side to the decoder side. This resulting structure supports partial decoding. Furthermore, the proposed layered-LDGM codes create highly efficient forward error correcting (FEC) data by considering the relationship between each scalable component. Therefore, the proposed layered-LDGM codes raise the probability of restoring the important components. Simulations show that the proposed layered-LDGM codes offer better error resiliency than the existing method which creates FEC data for each scalable component independently. The proposed layered-LDGM codes support partial decoding and raise the probability of restoring the base component. These characteristics are very suitable for scalable video coding systems.
Quantum Drude friction for time-dependent density functional theory
NASA Astrophysics Data System (ADS)
Neuhauser, Daniel; Lopata, Kenneth
2008-10-01
way to very simple finite grid description of scattering and multistage conductance using time-dependent density functional theory away from the linear regime, just as absorbing potentials and self-energies are useful for noninteracting systems and leads.
TIEG1-NULL OSTEOCYTES DISPLAY DEFECTS IN THEIR MORPHOLOGY, DENSITY AND SURROUNDING BONE MATRIX
Haddad, Oualid; Hawse, John R.; Subramaniam, Malayannan; Spelsberg, Thomas C.; Bensamoun, Sabine F.
2011-01-01
Through the development of TGFβ-inducible early gene-1 (TIEG1) knockout (KO) mice, we have demonstrated that TIEG1 plays an important role in osteoblast-mediated bone mineralization, and in bone resistance to mechanical strain. To further investigate the influence of TIEG1 in skeletal maintenance, osteocytes were analyzed by transmission electron microscopy using TIEG1 KO and wild-type mouse femurs at one, three and eight months of age. The results revealed an age-dependent change in osteocyte surface and density, suggesting a role for TIEG1 in osteocyte development. Moreover, there was a decrease in the amount of hypomineralized bone matrix surrounding the osteocytes in TIEG1 KO mice relative to wild-type controls. While little is known about the function or importance of this hypomineralized bone matrix immediately adjacent to osteocytes, this study reveals significant differences in this bone microenvironment and suggests that osteocyte function may be compromised in the absence of TIEG1 expression. PMID:22121306
Constructing Multi-Slater-Jastrow Wavefunctions via Reduced Density Matrix Covariance
NASA Astrophysics Data System (ADS)
Williams, Kiel; Wagner, Lucas
2015-03-01
The multi-determinant Slater-Jastrow ansatz wavefunction is a powerful tool for conducting ab initio electronic structure calculations in strongly correlated systems. We illustrate a new method of systematically constructing multi-determinant expansions by analyzing the covariance of elements of the two-body reduced density matrix (2RDM) with respect to the local energy distribution for a Slater-Jastrow wave function. By ordering the elements of the 2RDM with respect to their computed mean and associating each matrix element with a new determinant, we construct new multi-determinant expansions. We show that the energies of an H2 and stretched N2 molecule converge more rapidly with respect to the number of included determinants using this technique than in conventional configuration interaction calculations. This suggests that our analysis of the 2RDM captures qualitative differences between the single Slater determinant and the Slater-Jastrow wave function. This method provides a new way of diagnosing and correcting the deficiencies of certain trial wavefunction types in quantum Monte Carlo calculations. This work was supported by NSF DMR 12-06242.
Moritz, Gerrit; Reiher, Markus
2006-01-21
The application of the quantum-chemical density-matrix renormalization group (DMRG) algorithm is cumbersome for complex electronic structures with many active orbitals. The high computational cost is mainly due to the poor convergence of standard DMRG calculations. A factor which affects the convergence behavior of the calculations is the choice of the start-up procedure. In this start-up step matrix representations of operators have to be calculated in a guessed many-electron basis of the DMRG environment block. Different possibilities for the construction of these basis states exist, and we first compare four procedures to approximate the environment states using Slater determinants explicitly. These start-up procedures are applied to DMRG calculations on a sophisticated test system: the chromium dimer. It is found that the converged energies and the rate of convergence depend significantly on the choice of the start-up procedure. However, since already the most simple start-up procedure, which uses only the Hartree-Fock determinant, is comparatively good, Slater determinants, in general, appear not to be a good choice as approximate environment basis states for convergence acceleration. Based on extensive test calculations it is demonstrated that the computational cost can be significantly reduced if the number of total states m is successively increased. This is done in such a way that the environment states are built up stepwise from system states of previous truncated DMRG sweeps for slowly increasing m values. PMID:16438563
NASA Astrophysics Data System (ADS)
Moritz, Gerrit; Reiher, Markus
2006-01-01
The application of the quantum-chemical density-matrix renormalization group (DMRG) algorithm is cumbersome for complex electronic structures with many active orbitals. The high computational cost is mainly due to the poor convergence of standard DMRG calculations. A factor which affects the convergence behavior of the calculations is the choice of the start-up procedure. In this start-up step matrix representations of operators have to be calculated in a guessed many-electron basis of the DMRG environment block. Different possibilities for the construction of these basis states exist, and we first compare four procedures to approximate the environment states using Slater determinants explicitly. These start-up procedures are applied to DMRG calculations on a sophisticated test system: the chromium dimer. It is found that the converged energies and the rate of convergence depend significantly on the choice of the start-up procedure. However, since already the most simple start-up procedure, which uses only the Hartree-Fock determinant, is comparatively good, Slater determinants, in general, appear not to be a good choice as approximate environment basis states for convergence acceleration. Based on extensive test calculations it is demonstrated that the computational cost can be significantly reduced if the number of total states m is successively increased. This is done in such a way that the environment states are built up stepwise from system states of previous truncated DMRG sweeps for slowly increasing m values.
Magnitude and significance of the higher-order reduced density matrix cumulants
NASA Astrophysics Data System (ADS)
Herbert, John M.
Using full configuration interaction wave functions for Be and LiH, in both minimal and extended basis sets, we examine the absolute magnitude and energetic significance of various contributions to the three-electron reduced density matrix (3-RDM) and its connected (size-consistent) component, the 3-RDM cumulant (3-RDMC). Minimal basis sets are shown to suppress the magnitude of the 3-RDMC in an artificial manner, whereas in extended basis sets, 3-RDMC matrix elements are often comparable in magnitude to the corresponding 3-RDM elements, even in cases where this result is not required by spin angular momentum coupling. Formal considerations suggest that these observations should generalize to higher-order p-RDMs and p-RDMCs (p > 3). This result is discussed within the context of electronic structure methods based on the contracted Schrödinger equation (CSE), as solution of the CSE relies on 3- and 4-RDM ?reconstruction functionals? that neglect the 3-RDMC, the 4-RDMC, or both. Although the 3-RDMC is responsible for at most 0.2% of the total electronic energy in Be and LiH, it accounts for up to 70% of the correlation energy, raising questions regarding whether (and how) the CSE can offer a useful computational methodology.
One plus two-body random matrix ensembles with parity: Density of states and parity ratios
Vyas, Manan; Srivastava, P. C.; Kota, V. K. B.
2011-06-15
One plus two-body embedded Gaussian orthogonal ensemble of random matrices with parity [EGOE(1+2)-{pi}] generated by a random two-body interaction (modeled by GOE in two-particle spaces) in the presence of a mean field for spinless identical fermion systems is defined, generalizing the two-body ensemble with parity analyzed by Papenbrock and Weidenmueller [Phys. Rev. C 78, 054305 (2008)], in terms of two mixing parameters and a gap between the positive ({pi}=+) and negative ({pi}=-) parity single-particle (sp) states. Numerical calculations are used to demonstrate, using realistic values of the mixing parameters appropriate for some nuclei, that the EGOE(1+2)-{pi} ensemble generates Gaussian form (with corrections) for fixed parity eigenvalue densities (i.e., state densities). The random matrix model also generates many features in parity ratios of state densities that are similar to those predicted by a method based on the Fermi-gas model for nuclei. We have also obtained, by applying the formulation due to Chang et al. [Ann. Phys. (NY) 66, 137 (1971)], a simple formula for the spectral variances defined over fixed-(m{sub 1},m{sub 2}) spaces, where m{sub 1} is the number of fermions in the positive parity sp states and m{sub 2} is the number of fermions in the negative parity sp states. Similarly, using the binary correlation approximation, in the dilute limit, we have derived expressions for the lowest two-shape parameters. The smoothed densities generated by the sum of fixed-(m{sub 1},m{sub 2}) Gaussians with lowest two-shape corrections describe the numerical results in many situations. The model also generates preponderance of positive parity ground states for small values of the mixing parameters, and this is a feature seen in nuclear shell-model results.
Drábek, Jiří
2016-01-01
In this paper I tested whether Contradictory Matrix with 40 Inventive Principles, the simplest instrument from the Theory of Inventive Problem Solving (TRIZ), is a useful approach to a real-life PCR scenario. The PCR challenge consisted of standardization of fluorescence melting curve measurements in Competitive Amplification of Differentially Melting Amplicons (CADMA) PCR for multiple targets. Here I describe my way of using the TRIZ Matrix to generate seven alternative solutions from which I can choose the successful solution, consisting of repeated cycles of amplification and melting in a single PCR run. PMID:26835236
Li, Qu; Yang, Jianhua; Xu, Ning
2014-01-01
Online friend recommendation is a fast developing topic in web mining. In this paper, we used SVD matrix factorization to model user and item feature vector and used stochastic gradient descent to amend parameter and improve accuracy. To tackle cold start problem and data sparsity, we used KNN model to influence user feature vector. At the same time, we used graph theory to partition communities with fairly low time and space complexity. What is more, matrix factorization can combine online and offline recommendation. Experiments showed that the hybrid recommendation algorithm is able to recommend online friends with good accuracy. PMID:24757410
Density functional theory and phytochemical study of Pistagremic acid
NASA Astrophysics Data System (ADS)
Ullah, Habib; Rauf, Abdur; Ullah, Zakir; Fazl-i-Sattar; Anwar, Muhammad; Shah, Anwar-ul-Haq Ali; Uddin, Ghias; Ayub, Khurshid
2014-01-01
We report here for the first time a comparative theoretical and experimental study of Pistagremic acid (P.A). We have developed a theoretical model for obtaining the electronic and spectroscopic properties of P.A. The simulated data showed nice correlation with the experimental data. The geometric and electronic properties were simulated at B3LYP/6-31 G (d, p) level of density functional theory (DFT). The optimized geometric parameters of P.A were found consistent with those from X-ray crystal structure. Differences of about 0.01 and 0.15 Å in bond length and 0.19-1.30° degree in the angles, respectively; were observed between the experimental and theoretical data. The theoretical vibrational bands of P.A were found to correlate with the experimental IR spectrum after a common scaling factor of 0.963. The experimental and predicted UV-Vis spectra (at B3LYP/6-31+G (d, p)) have 36 nm differences. This difference from experimental results is because of the condensed phase nature of P.A. Electronic properties such as Ionization Potential (I.P), Electron Affinities (E.A), co-efficient of highest occupied molecular orbital (HOMO), co-efficient of lowest unoccupied molecular orbital (LUMO) of P.A were estimated for the first time however, no correlation can be made with experiment. Inter-molecular interaction and its effect on vibrational (IR), electronic and geometric parameters were simulated by using Formic acid as model for hydrogen bonding in P.A.
Density functional theory based generalized effective fragment potential method
Nguyen, Kiet A. E-mail: ruth.pachter@wpafb.af.mil; Pachter, Ruth E-mail: ruth.pachter@wpafb.af.mil; Day, Paul N.
2014-06-28
We present a generalized Kohn-Sham (KS) density functional theory (DFT) based effective fragment potential (EFP2-DFT) method for the treatment of solvent effects. Similar to the original Hartree-Fock (HF) based potential with fitted parameters for water (EFP1) and the generalized HF based potential (EFP2-HF), EFP2-DFT includes electrostatic, exchange-repulsion, polarization, and dispersion potentials, which are generated for a chosen DFT functional for a given isolated molecule. The method does not have fitted parameters, except for implicit parameters within a chosen functional and the dispersion correction to the potential. The electrostatic potential is modeled with a multipolar expansion at each atomic center and bond midpoint using Stone's distributed multipolar analysis. The exchange-repulsion potential between two fragments is composed of the overlap and kinetic energy integrals and the nondiagonal KS matrices in the localized molecular orbital basis. The polarization potential is derived from the static molecular polarizability. The dispersion potential includes the intermolecular D3 dispersion correction of Grimme et al. [J. Chem. Phys. 132, 154104 (2010)]. The potential generated from the CAMB3LYP functional has mean unsigned errors (MUEs) with respect to results from coupled cluster singles, doubles, and perturbative triples with a complete basis set limit (CCSD(T)/CBS) extrapolation, of 1.7, 2.2, 2.0, and 0.5 kcal/mol, for the S22, water-benzene clusters, water clusters, and n-alkane dimers benchmark sets, respectively. The corresponding EFP2-HF errors for the respective benchmarks are 2.41, 3.1, 1.8, and 2.5 kcal/mol. Thus, the new EFP2-DFT-D3 method with the CAMB3LYP functional provides comparable or improved results at lower computational cost and, therefore, extends the range of applicability of EFP2 to larger system sizes.
Global and local curvature in density functional theory
NASA Astrophysics Data System (ADS)
Zhao, Qing; Ioannidis, Efthymios I.; Kulik, Heather J.
2016-08-01
Piecewise linearity of the energy with respect to fractional electron removal or addition is a requirement of an electronic structure method that necessitates the presence of a derivative discontinuity at integer electron occupation. Semi-local exchange-correlation (xc) approximations within density functional theory (DFT) fail to reproduce this behavior, giving rise to deviations from linearity with a convex global curvature that is evidence of many-electron, self-interaction error and electron delocalization. Popular functional tuning strategies focus on reproducing piecewise linearity, especially to improve predictions of optical properties. In a divergent approach, Hubbard U-augmented DFT (i.e., DFT+U) treats self-interaction errors by reducing the local curvature of the energy with respect to electron removal or addition from one localized subshell to the surrounding system. Although it has been suggested that DFT+U should simultaneously alleviate global and local curvature in the atomic limit, no detailed study on real systems has been carried out to probe the validity of this statement. In this work, we show when DFT+U should minimize deviations from linearity and demonstrate that a "+U" correction will never worsen the deviation from linearity of the underlying xc approximation. However, we explain varying degrees of efficiency of the approach over 27 octahedral transition metal complexes with respect to transition metal (Sc-Cu) and ligand strength (CO, NH3, and H2O) and investigate select pathological cases where the delocalization error is invisible to DFT+U within an atomic projection framework. Finally, we demonstrate that the global and local curvatures represent different quantities that show opposing behavior with increasing ligand field strength, and we identify where these two may still coincide.
Global and local curvature in density functional theory.
Zhao, Qing; Ioannidis, Efthymios I; Kulik, Heather J
2016-08-01
Piecewise linearity of the energy with respect to fractional electron removal or addition is a requirement of an electronic structure method that necessitates the presence of a derivative discontinuity at integer electron occupation. Semi-local exchange-correlation (xc) approximations within density functional theory (DFT) fail to reproduce this behavior, giving rise to deviations from linearity with a convex global curvature that is evidence of many-electron, self-interaction error and electron delocalization. Popular functional tuning strategies focus on reproducing piecewise linearity, especially to improve predictions of optical properties. In a divergent approach, Hubbard U-augmented DFT (i.e., DFT+U) treats self-interaction errors by reducing the local curvature of the energy with respect to electron removal or addition from one localized subshell to the surrounding system. Although it has been suggested that DFT+U should simultaneously alleviate global and local curvature in the atomic limit, no detailed study on real systems has been carried out to probe the validity of this statement. In this work, we show when DFT+U should minimize deviations from linearity and demonstrate that a "+U" correction will never worsen the deviation from linearity of the underlying xc approximation. However, we explain varying degrees of efficiency of the approach over 27 octahedral transition metal complexes with respect to transition metal (Sc-Cu) and ligand strength (CO, NH3, and H2O) and investigate select pathological cases where the delocalization error is invisible to DFT+U within an atomic projection framework. Finally, we demonstrate that the global and local curvatures represent different quantities that show opposing behavior with increasing ligand field strength, and we identify where these two may still coincide. PMID:27497541
Rationale for switching to nonlocal functionals in density functional theory
NASA Astrophysics Data System (ADS)
Lazić, P.; Atodiresei, N.; Caciuc, V.; Brako, R.; Gumhalter, B.; Blügel, S.
2012-10-01
Density functional theory (DFT) has been steadily improving over the past few decades, becoming the standard tool for electronic structure calculations. The early local functionals (LDA) were eventually replaced by more accurate semilocal functionals (GGA) which are in use today. A major persisting drawback is the lack of the nonlocal correlation which is at the core of dispersive (van der Waals) forces, so that a large and important class of systems remains outside the scope of DFT. The vdW-DF correlation functional of Langreth and Lundqvist, published in 2004, was the first nonlocal functional which could be easily implemented. Beyond expectations, the nonlocal functional has brought significant improvement to systems that were believed not to be sensitive to nonlocal correlations. In this paper, we use the example of graphene nanodomes growing on the Ir(111) surface, where with an increase of the size of the graphene islands the character of the bonding changes from strong chemisorption towards almost pure physisorption. We demonstrate how the seamless character of the vdW-DF functionals makes it possible to treat all regimes self-consistently, proving to be a systematic and consistent improvement of DFT regardless of the nature of bonding. We also discuss the typical surface science example of CO adsorption on (111) surfaces of metals, which shows that the nonlocal correlation may also be crucial for strongly chemisorbed systems. We briefly discuss open questions, in particular the choice of the most appropriate exchange part of the functional. As the vdW-DF begins to appear implemented self-consistently in a number of popular DFT codes, with numerical costs close to the GGA calculations, we draw the attention of the DFT community to the advantages and benefits of the adoption of this new class of functionals.
Density functional theory based generalized effective fragment potential method.
Nguyen, Kiet A; Pachter, Ruth; Day, Paul N
2014-06-28
We present a generalized Kohn-Sham (KS) density functional theory (DFT) based effective fragment potential (EFP2-DFT) method for the treatment of solvent effects. Similar to the original Hartree-Fock (HF) based potential with fitted parameters for water (EFP1) and the generalized HF based potential (EFP2-HF), EFP2-DFT includes electrostatic, exchange-repulsion, polarization, and dispersion potentials, which are generated for a chosen DFT functional for a given isolated molecule. The method does not have fitted parameters, except for implicit parameters within a chosen functional and the dispersion correction to the potential. The electrostatic potential is modeled with a multipolar expansion at each atomic center and bond midpoint using Stone's distributed multipolar analysis. The exchange-repulsion potential between two fragments is composed of the overlap and kinetic energy integrals and the nondiagonal KS matrices in the localized molecular orbital basis. The polarization potential is derived from the static molecular polarizability. The dispersion potential includes the intermolecular D3 dispersion correction of Grimme et al. [J. Chem. Phys. 132, 154104 (2010)]. The potential generated from the CAMB3LYP functional has mean unsigned errors (MUEs) with respect to results from coupled cluster singles, doubles, and perturbative triples with a complete basis set limit (CCSD(T)/CBS) extrapolation, of 1.7, 2.2, 2.0, and 0.5 kcal/mol, for the S22, water-benzene clusters, water clusters, and n-alkane dimers benchmark sets, respectively. The corresponding EFP2-HF errors for the respective benchmarks are 2.41, 3.1, 1.8, and 2.5 kcal/mol. Thus, the new EFP2-DFT-D3 method with the CAMB3LYP functional provides comparable or improved results at lower computational cost and, therefore, extends the range of applicability of EFP2 to larger system sizes. PMID:24985612
Density functional theory study of neutral and oxidized thiophene oligomers
NASA Astrophysics Data System (ADS)
Dai, Yafei; Wei, Chengwei; Blaisten-Barojas, Estela
2013-11-01
The effect of oxidation on the energetics and structure of thiophene (Th) oligomers is studied with density functional theory at the B3PW91/6-311++G(d,p) level. Neutral n-Th oligomers (2 < n < 13) are gently curved planar chains. Ionization potential and electron affinity results show that n-Th oligomers are easier to be oxidized as their chain length increases. Oxidation states +2, +4, +6, and +8 are energetically stable in 12-Th. Upon oxidation the conjugated backbone of 12-Th switches from extended benzenoid phase to quinoid phase localized on groups of monomers regularly spaced along the chain. Oxidized states +2, +4, +6, and +8 of 12-Th display two +1e localized at the ends of their chains only because of the finite size of the chains. In 12-Th this end-effect extends over the two terminal monomers forming a positive-negative charge duet. This peculiar charge localization makes n-Th oligomers different from other conducting polymers with similar structure, such as polypyrrole. The spectrum of single-electron molecular states of oxidized 12-Th displays two localized single-electron states in the HOMO-LUMO energy gap per +2 oxidation state. Oligothiophene 12-Th doped with F atoms at 1:2 concentration presents a charge transfer of 3.4 e from oligomer to dopants that increases to 4.8 e in the presence of solvent. The charge distribution in these F-doped oligomers is similar to the +4 oxidation state of 12-Th. It is predicted that dopants produce an enhanced charge transfer localized in the proximity of their locations enhancing the formation of bipolarons in the central part of the oligomer chain.
Density functional theory and phytochemical study of Pistagremic acid.
Ullah, Habib; Rauf, Abdur; Ullah, Zakir; Fazl-i-Sattar; Anwar, Muhammad; Shah, Anwar-ul-Haq Ali; Uddin, Ghias; Ayub, Khurshid
2014-01-24
We report here for the first time a comparative theoretical and experimental study of Pistagremic acid (P.A). We have developed a theoretical model for obtaining the electronic and spectroscopic properties of P.A. The simulated data showed nice correlation with the experimental data. The geometric and electronic properties were simulated at B3LYP/6-31 G (d, p) level of density functional theory (DFT). The optimized geometric parameters of P.A were found consistent with those from X-ray crystal structure. Differences of about 0.01 and 0.15 Å in bond length and 0.19-1.30° degree in the angles, respectively; were observed between the experimental and theoretical data. The theoretical vibrational bands of P.A were found to correlate with the experimental IR spectrum after a common scaling factor of 0.963. The experimental and predicted UV-Vis spectra (at B3LYP/6-31+G (d, p)) have 36 nm differences. This difference from experimental results is because of the condensed phase nature of P.A. Electronic properties such as Ionization Potential (I.P), Electron Affinities (E.A), co-efficient of highest occupied molecular orbital (HOMO), co-efficient of lowest unoccupied molecular orbital (LUMO) of P.A were estimated for the first time however, no correlation can be made with experiment. Inter-molecular interaction and its effect on vibrational (IR), electronic and geometric parameters were simulated by using Formic acid as model for hydrogen bonding in P.A. PMID:24051292
NASA Astrophysics Data System (ADS)
Orantin, N.
2007-09-01
The 2-matrix model has been introduced to study Ising model on random surfaces. Since then, the link between matrix models and combinatorics of discrete surfaces has strongly tightened. This manuscript aims to investigate these deep links and extend them beyond the matrix models, following my work's evolution. First, I take care to define properly the hermitian 2 matrix model which gives rise to generating functions of discrete surfaces equipped with a spin structure. Then, I show how to compute all the terms in the topological expansion of any observable by using algebraic geometry tools. They are obtained as differential forms on an algebraic curve associated to the model: the spectral curve. In a second part, I show how to define such differentials on any algebraic curve even if it does not come from a matrix model. I then study their numerous symmetry properties under deformations of the algebraic curve. In particular, I show that these objects coincide with the topological expansion of the observable of a matrix model if the algebraic curve is the spectral curve of this model. Finally, I show that fine tuning the parameters ensure that these objects can be promoted to modular invariants and satisfy the holomorphic anomaly equation of the Kodaira-Spencer theory. This gives a new hint that the Dijkgraaf-Vafa conjecture is correct.
Correlated R-matrix theory of electron scattering: A coupled-cluster approach
NASA Astrophysics Data System (ADS)
Sur, Chiranjib; Pradhan, Anil; Sadayappan, P.
2007-06-01
Study of electron scattering from heavy atoms/ions not only demands high speed computing machines but also improved theoretical descriptions of the relativistic and correlation effects for the target atoms/ions as well. We will give an outline of the coupled-cluster R-matrix (CCRM) theory to incorporate the effect of electron correlation through coupled-cluster theory (CCT), the size extensive and one of the most accurate many body theories which is equivalant to an all-order many-body perturbation theory (MBPT). General theoretical formulation of CCRM and the computational implementation using the high level Mathematica style language compiler known as Tensor Contraction Engine (TCE) will be presented. Electronic structure calculations using CCT involve large collections of tensor contractions (generalized matrix multiplications). TCE searches for an optimal implementation of these tensor contraction expressions and generates high performance FORTRAN code for CCT. We will also comment on the interfacing of TCE generated code with the Breit-Pauli R-matrix code to make a next generation CCRM software package. This theoretical formulation and the new sets of codes can be used to study electron scattering / photoionization in heavy atomic systems where relativistic and electron correlation effects are very important.
Archer, A J; Evans, R
2013-01-01
The local molecular field theory (LMF) developed by Weeks and co-workers has proved successful for treating the structure and thermodynamics of a variety of non-uniform liquids. By reformulating LMF in terms of one-body direct correlation functions we recast the theory in the framework of classical density functional theory (DFT). We show that the general LMF equation for the effective reference potential φ(R)(r) follows directly from the standard mean-field DFT treatment of attractive interatomic forces. Using an accurate (fundamental measures) DFT for the non-uniform hard-sphere reference fluid we determine φ(R)(r) for a hard-core Yukawa liquid adsorbed at a planar hard wall. In the approach to bulk liquid-gas coexistence we find the effective potentials exhibit rich structure that can include damped oscillations at large distances from the wall as well as the repulsive hump near the wall required to generate the low density "gas" layer characteristic of complete drying. We argue that it would be difficult to obtain the same level of detail from other (non-DFT based) implementations of LMF. LMF emphasizes the importance of making an intelligent division of the interatomic pair potential of the full system into a reference part and a remainder that can be treated in mean-field approximation. We investigate different divisions for an exactly solvable one-dimensional model where the pair potential has a hard-core plus a linear attractive tail. Results for the structure factor and the equation of state of the uniform fluid show that including a significant portion of the attraction in the reference system can be much more accurate than treating the full attractive tail in mean-field approximation. We discuss further aspects of the relationship between LMF and DFT. PMID:23298050
NASA Astrophysics Data System (ADS)
Kemper, A.; Schadschneider, A.; Zittartz, J.
2001-05-01
We apply the transfer-matrix density-matrix renormalization group (TMRG) to a stochastic model, the Domany-Kinzel cellular automaton, which exhibits a non-equilibrium phase transition in the directed percolation universality class. Estimates for the stochastic time evolution, phase boundaries and critical exponents can be obtained with high precision. This is possible using only modest numerical effort since the thermodynamic limit can be taken analytically in our approach. We also point out further advantages of the TMRG over other numerical approaches, such as classical DMRG or Monte Carlo simulations.
Density-matrix based determination of low-energy model Hamiltonians from ab initio wavefunctions
Changlani, Hitesh J.; Zheng, Huihuo; Wagner, Lucas K.
2015-09-14
We propose a way of obtaining effective low energy Hubbard-like model Hamiltonians from ab initio quantum Monte Carlo calculations for molecular and extended systems. The Hamiltonian parameters are fit to best match the ab initio two-body density matrices and energies of the ground and excited states, and thus we refer to the method as ab initio density matrix based downfolding. For benzene (a finite system), we find good agreement with experimentally available energy gaps without using any experimental inputs. For graphene, a two dimensional solid (extended system) with periodic boundary conditions, we find the effective on-site Hubbard U{sup ∗}/t to be 1.3 ± 0.2, comparable to a recent estimate based on the constrained random phase approximation. For molecules, such parameterizations enable calculation of excited states that are usually not accessible within ground state approaches. For solids, the effective Hamiltonian enables large-scale calculations using techniques designed for lattice models.
Density matrix renormalization group study of the Anyon-Hubbard model
NASA Astrophysics Data System (ADS)
Arcila-Forero, J.; Franco, R.; Silva-Valencia, J.
2016-02-01
Recently optical lattices allow us to observe phase transition without the uncertainty posed by complex materials, and the simulations of these systems are an excellent bridge between materials-based condensed matter physics and cold atoms. In this way, the computational physics related to many-body problems have increased in importance. Using the density matrix renormalization group method, we studied a Hubbard model for anyons, which is an equivalent to a variant of the Bose-Hubbard model in which the bosonic hopping depends on the local density. This is an exact mapping between anyons and bosons in one dimension. The anyons interlope between bosons and fermions. For two anyons under particle exchange, the wave function acquires a fractional phase eiθ . We conclude that this system exhibits two phases: Mott-insulator and superfluid. We present the phase diagram for some angles. The Mott lobe increases with an increase of the statistical. We observed a reentrance phase transition for all lobes. We showed that the model studied is in the same universality class as the Bose-Hubbard model with two-body interactions.
NASA Astrophysics Data System (ADS)
Gavryusev, V.; Signoles, A.; Ferreira-Cao, M.; Zürn, G.; Hofmann, C. S.; Günter, G.; Schempp, H.; Robert-de-Saint-Vincent, M.; Whitlock, S.; Weidemüller, M.
2016-08-01
We present combined measurements of the spatially resolved optical spectrum and the total excited-atom number in an ultracold gas of three-level atoms under electromagnetically induced transparency conditions involving high-lying Rydberg states. The observed optical transmission of a weak probe laser at the center of the coupling region exhibits a double peaked spectrum as a function of detuning, while the Rydberg atom number shows a comparatively narrow single resonance. By imaging the transmitted light onto a charge-coupled-device camera, we record hundreds of spectra in parallel, which are used to map out the spatial profile of Rabi frequencies of the coupling laser. Using all the information available we can reconstruct the full one-body density matrix of the three-level system, which provides the optical susceptibility and the Rydberg density as a function of spatial position. These results help elucidate the connection between three-level interference phenomena, including the interplay of matter and light degrees of freedom and will facilitate new studies of many-body effects in optically driven Rydberg gases.
J-matrix method of scattering in one dimension: The nonrelativistic theory
Alhaidari, A.D. Bahlouli, H.; Abdelmonem, M.S.
2009-12-15
We formulate a theory of nonrelativistic scattering in one dimension based on the J-matrix method. The scattering potential is assumed to have a finite range such that it is well represented by its matrix elements in a finite subset of a basis that supports a tridiagonal matrix representation for the reference wave operator. Contrary to our expectation, the 1D formulation reveals a rich and highly nontrivial structure compared to the 3D formulation. Examples are given to demonstrate the utility and accuracy of the method. It is hoped that this formulation constitutes a viable alternative to the classical treatment of 1D scattering problem and that it will help unveil new and interesting applications.
Kinematic matrix theory and universalities in self-propellers and active swimmers.
Nourhani, Amir; Lammert, Paul E; Borhan, Ali; Crespi, Vincent H
2014-06-01
We describe an efficient and parsimonious matrix-based theory for studying the ensemble behavior of self-propellers and active swimmers, such as nanomotors or motile bacteria, that are typically studied by differential-equation-based Langevin or Fokker-Planck formalisms. The kinematic effects for elementary processes of motion are incorporated into a matrix, called the "kinematrix," from which we immediately obtain correlators and the mean and variance of angular and position variables (and thus effective diffusivity) by simple matrix algebra. The kinematrix formalism enables us recast the behaviors of a diverse range of self-propellers into a unified form, revealing universalities in their ensemble behavior in terms of new emergent time scales. Active fluctuations and hydrodynamic interactions can be expressed as an additive composition of separate self-propellers. PMID:25019773
A T-matrix theory of galactic heavy-ion fragmentation
NASA Technical Reports Server (NTRS)
Norbury, J. W.; Townsend, L. W.; Deutchman, P. A.
1985-01-01
The theory of galactic heavy ion fragmentation is furthered by incorporating a T matrix approach into the description of the three step process of abrasion, ablation, and final state interations. The connection between this T matrix and the interaction potential is derived. For resonant states, the substitution of complex energies for real energies in the transition rate is formerly justified for up to third order processes. The previously developed abrasion-ablation fragmentation theory is rederived from first principles and is shown to result from time ordering, classical probability, and zero width resonance approximations. Improvements in the accuracy of the total fragmentation cross sections require an alternative to the latter two approximations. A Lorentz invariant differential abrasion-ablation cross section is derived which explicitly includes the previously derived abrasion total cross sections. It is demonstrated that spectral and angular distributions can be obtained from the general Lorentz invariant form.
NASA Astrophysics Data System (ADS)
Kanazawa, Takuya; Yamamoto, Arata
2016-01-01
We apply QCD-inspired techniques to study nonrelativistic N -component degenerate fermions with attractive interactions. By analyzing the singular-value spectrum of the fermion matrix in the Lagrangian, we derive several exact relations that characterize spontaneous symmetry breaking U (1 )×SU (N )→Sp (N ) through bifermion condensates. These are nonrelativistic analogues of the Banks-Casher relation and the Smilga-Stern relation in QCD. Nonlocal order parameters are also introduced and their spectral representations are derived, from which a nontrivial constraint on the phase diagram is obtained. The effective theory of soft collective excitations is derived, and its equivalence to random matrix theory is demonstrated in the ɛ regime. We numerically confirm the above analytical predictions in Monte Carlo simulations.
NASA Technical Reports Server (NTRS)
Goldberg, Robert K.
2000-01-01
A research program is in progress to develop strain rate dependent deformation and failure models for the analysis of polymer matrix composites subject to impact loads. Previously, strain rate dependent inelastic constitutive equations developed to model the polymer matrix were implemented into a mechanics of materials based micromechanics method. In the current work, the computation of the effective inelastic strain in the micromechanics model was modified to fully incorporate the Poisson effect. The micromechanics equations were also combined with classical laminate theory to enable the analysis of symmetric multilayered laminates subject to in-plane loading. A quasi-incremental trapezoidal integration method was implemented to integrate the constitutive equations within the laminate theory. Verification studies were conducted using an AS4/PEEK composite using a variety of laminate configurations and strain rates. The predicted results compared well with experimentally obtained values.
A revised electronic Hessian for approximate time-dependent density functional theory.
Ziegler, Tom; Seth, Michael; Krykunov, Mykhaylo; Autschbach, Jochen
2008-11-14
Time-dependent density functional theory (TD-DFT) at the generalized gradient level of approximation (GGA) has shown systematic errors in the calculated excitation energies. This is especially the case for energies representing electron transitions between two separated regions of space or between orbitals of different spatial extents. It will be shown that these limitations can be attributed to the electronic ground state Hessian G(GGA). Specifically, we shall demonstrate that the Hessian G(GGA) can be used to describe changes in energy due to small perturbations of the electron density (Deltarho), but it should not be applied to one-electron excitations involving the density rearrangement (Deltarho) of a full electron charge. This is in contrast to Hartree-Fock theory where G(HF) has a trust region that is accurate for both small perturbations and one-electron excitations. The large trust radius of G(HF) can be traced back to the complete cancellation of Coulomb and exchange terms in Hartree-Fock (HF) theory representing self-interaction (complete self-interaction cancellation, CSIC). On the other hand, it is shown that the small trust radius for G(GGA) can be attributed to the fact that CSIC is assumed for GGA in the derivation of G(GGA) although GGA (and many other approximate DFT schemes) exhibits incomplete self-interaction cancellation (ISIC). It is further shown that one can derive a new matrix G(R-DFT) with the same trust region as G(HF) by taking terms due to ISIC properly into account. Further, with TD-DFT based on G(R-DFT), energies for state-to-state transitions represented by a one-electron excitation (psi(i)-->psi(a)) are approximately calculated as DeltaE(ai). Here DeltaE(ai) is the energy difference between the ground state Kohn-Sham Slater determinant and the energy of a Kohn-Sham Slater determinant where psi(i) has been replaced by psi(a). We make use of the new Hessian in two numerical applications involving charge-transfer excitations. It is
Time-dependent-S-matrix Hartree-Fock theory of complex reactions
NASA Astrophysics Data System (ADS)
Griffin, James J.; Lichtner, Peter C.; Dworzecka, Maria
1980-04-01
Some limitations of the conventional time-dependent Hartree-Fock method for describing complex reactions are noted, and one particular ubiquitous defect is discussed in detail: the post-breakup spurious cross channel correlations which arise whenever several asymptotic reaction channels must be simultaneously described by a single determinant. A reformulated time-dependent-S-matrix Hartree-Fock theory is proposed, which obviates this difficulty. Axiomatic requirements minimal to assure that the time-dependent-S-matrix Hartree-Fock theory represents an unambiguous and physically interpretable asymptotic reaction theory are utilized to prescribe conditions upon the definition of acceptable asymptotic channels. That definition, in turn, defines the physical range of the time-dependent-S-matrix Hartree-Fock theory to encompass the collisions of mathematically well-defined "time-dependent Hartree-Fock droplets." The physical properties of these objects then circumscribe the content of the Hartree-Fock single determinantal description. If their periodic vibrations occur for continuous ranges of energy then the resulting "classical" time-dependent Hartree-Fock droplets are seen to be intrinsically dissipative, and the single determinantal description of their collisions reduces to a "trajectory" theory which can describe the masses and relative motions of the fragments but can provide no information about specific asymptotic excited states beyond their constants of motion, or the average properties of the limit, if it exists, of their equilibrization process. If, on the other hand, the periodic vibrations of the time-dependent Hartree-Fock droplets are discrete in energy, then the time-dependent-S-matrix Hartree-Fock theory can describe asymptotically the time-average properties of the whole spectrum of such periodic vibrations of these "quantized" time-dependent Hartree-Fock droplets which are asymptotically stationary on a time-averaged basis. Such quantized time
Density functional theory modeling of multilayer "epitaxial" graphene oxide.
Zhou, Si; Bongiorno, Angelo
2014-11-18
CONSPECTUS: Graphene oxide (GO) is a complex material of both fundamental and applied interest. Elucidating the structure of GO is crucial to achieve control over its properties and technological applications. GO is a nonstoichiometric and hygroscopic material with a lamellar structure, and its physical chemical properties depend critically on synthesis procedures and postsynthesis treatments. Numerous efforts are in place to both understand and exploit this versatile layered carbon material. This Account reports on recent density functional theory (DFT) studies of "epitaxial" graphene oxide (hereafter EGO), a type of GO obtained by oxidation of graphene films grown epitaxially on silicon carbide. Here, we rely on selected X-ray photoelectron spectroscopy (XPS), infrared spectroscopy (IR), and X-ray diffraction (XRD) measurements of EGO, and we discuss in great detail how we utilized DFT-based techniques to project out from the experimental data basic atomistic information about the chemistry and structure of these films. This Account provides an example as to how DFT modeling can be used to elucidate complex materials such as GO from a limited set of experimental information. EGO exhibits a uniform layered structure, consisting of a stack of graphene planes hosting predominantly epoxide and hydroxyl groups, and water molecules intercalated between the oxidized carbon layers. Here, we first focus on XPS measurements of EGO, and we use DFT to generate realistic model structures, calculate core-level chemical shifts, and through the comparison with experiment, gain insight on the chemical composition and metastability characteristics of EGO. DFT calculations are then used to devise a simplistic but accurate simulation scheme to study thermodynamic and kinetic stability and to predict the intralayer structure of EGO films aged at room temperature. Our simulations show that aged EGO encompasses layers with nanosized oxidized domains presenting a high concentration of
Density Functional Theory Calculations of Mass Transport in UO2
Andersson, Anders D.; Dorado, Boris; Uberuaga, Blas P.; Stanek, Christopher R.
2012-06-26
In this talk we present results of density functional theory (DFT) calculations of U, O and fission gas diffusion in UO{sub 2}. These processes all impact nuclear fuel performance. For example, the formation and retention of fission gas bubbles induce fuel swelling, which leads to mechanical interaction with the clad thereby increasing the probability for clad breach. Alternatively, fission gas can be released from the fuel to the plenum, which increases the pressure on the clad walls and decreases the gap thermal conductivity. The evolution of fuel microstructure features is strongly coupled to diffusion of U vacancies. Since both U and fission gas transport rates vary strongly with the O stoichiometry, it is also important to understand O diffusion. In order to better understand bulk Xe behavior in UO{sub 2{+-}x} we first calculate the relevant activation energies using DFT techniques. By analyzing a combination of Xe solution thermodynamics, migration barriers and the interaction of dissolved Xe atoms with U, we demonstrate that Xe diffusion predominantly occurs via a vacancy-mediated mechanism. Since Xe transport is closely related to diffusion of U vacancies, we have also studied the activation energy for this process. In order to explain the low value of 2.4 eV found for U migration from independent damage experiments (not thermal equilibrium) the presence of vacancy clusters must be included in the analysis. Next we investigate species transport on the (111) UO{sub 2} surface, which is motivated by the formation of small voids partially filled with fission gas atoms (bubbles) in UO{sub 2} under irradiation. Surface diffusion could be the rate-limiting step for diffusion of such bubbles, which is an alternative mechanism for mass transport in these materials. As expected, the activation energy for surface diffusion is significantly lower than for bulk transport. These results are further discussed in terms of engineering-scale fission gas release models
Zinc surface complexes on birnessite: A density functional theory study
Kwon, Kideok D.; Refson, Keith; Sposito, Garrison
2009-01-05
Biogeochemical cycling of zinc is strongly influenced by sorption on birnessite minerals (layer-type MnO2), which are found in diverse terrestrial and aquatic environments. Zinc has been observed to form both tetrahedral (Zn{sup IV}) and octahedral (Zn{sup VI}) triple-corner-sharing surface complexes (TCS) at Mn(IV) vacancy sites in hexagonal birnessite. The octahedral complex is expected to be similar to that of Zn in the Mn oxide mineral, chalcophanite (ZnMn{sub 3}O{sub 7} {center_dot} 3H{sub 2}O), but the reason for the occurrence of the four-coordinate Zn surface species remains unclear. We address this issue computationally using spin-polarized Density Functional Theory (DFT) to examine the Zn{sub IV}-TCS and Zn{sup VI}-TCS species. Structural parameters obtained by DFT geometry optimization were in excellent agreement with available experimental data on Zn-birnessites. Total energy, magnetic moments, and electron-overlap populations obtained by DFT for isolated Zn{sup IV}-TCS revealed that this species is stable in birnessite without a need for Mn(III) substitution in the octahedral sheet and that it is more effective in reducing undersaturation of surface O at a Mn vacancy than is Zn{sub VI}-TCS. Comparison between geometry-optimized ZnMn{sub 3}O{sub 7} {center_dot} 3H{sub 2}O (chalcophanite) and the hypothetical monohydrate mineral, ZnMn{sub 3}O{sub 7} {center_dot} H{sub 2}O, which contains only tetrahedral Zn, showed that the hydration state of Zn significantly affects birnessite structural stability. Finally, our study also revealed that, relative to their positions in an ideal vacancy-free MnO{sub 2}, Mn nearest to Zn in a TCS surface complex move toward the vacancy by 0.08-0.11 {angstrom}, while surface O bordering the vacancy move away from it by 0.16-0.21 {angstrom}, in agreement with recent X-ray absorption spectroscopic analyses.
NASA Astrophysics Data System (ADS)
Franco de Carvalho, F.; Tavernelli, I.
2015-12-01
In this work, we derive a method to perform trajectory-based nonadiabatic dynamics that is able to describe both nonadiabatic transitions and intersystem crossing events (transitions between states of different spin-multiplicity) at the same level of theory, namely, time-dependent density functional theory (TDDFT). To this end, we combined our previously developed TDDFT-based trajectory surface hopping scheme with an accurate and efficient algorithm for the calculation of the spin-orbit coupling (SOC) matrix elements. More specifically, we designed two algorithms for the calculation of intersystem crossing transitions, one based on an extended Tully's surface hopping scheme including SOC and the second based on a Landau-Zener approximation applied to the spin sector of the electronic Hilbert space. This development allows for the design of an efficient on-the-fly nonadiabatic approach that can handle, on an equal footing, nonadiabatic and intersystem crossing transitions. The method is applied to the study of the photophysics of sulfur dioxide (SO2) in gas and liquid phases.
Franco de Carvalho, F.; Tavernelli, I.
2015-12-14
In this work, we derive a method to perform trajectory-based nonadiabatic dynamics that is able to describe both nonadiabatic transitions and intersystem crossing events (transitions between states of different spin-multiplicity) at the same level of theory, namely, time-dependent density functional theory (TDDFT). To this end, we combined our previously developed TDDFT-based trajectory surface hopping scheme with an accurate and efficient algorithm for the calculation of the spin-orbit coupling (SOC) matrix elements. More specifically, we designed two algorithms for the calculation of intersystem crossing transitions, one based on an extended Tully’s surface hopping scheme including SOC and the second based on a Landau-Zener approximation applied to the spin sector of the electronic Hilbert space. This development allows for the design of an efficient on-the-fly nonadiabatic approach that can handle, on an equal footing, nonadiabatic and intersystem crossing transitions. The method is applied to the study of the photophysics of sulfur dioxide (SO{sub 2}) in gas and liquid phases.
Franco de Carvalho, F; Tavernelli, I
2015-12-14
In this work, we derive a method to perform trajectory-based nonadiabatic dynamics that is able to describe both nonadiabatic transitions and intersystem crossing events (transitions between states of different spin-multiplicity) at the same level of theory, namely, time-dependent density functional theory (TDDFT). To this end, we combined our previously developed TDDFT-based trajectory surface hopping scheme with an accurate and efficient algorithm for the calculation of the spin-orbit coupling (SOC) matrix elements. More specifically, we designed two algorithms for the calculation of intersystem crossing transitions, one based on an extended Tully's surface hopping scheme including SOC and the second based on a Landau-Zener approximation applied to the spin sector of the electronic Hilbert space. This development allows for the design of an efficient on-the-fly nonadiabatic approach that can handle, on an equal footing, nonadiabatic and intersystem crossing transitions. The method is applied to the study of the photophysics of sulfur dioxide (SO2) in gas and liquid phases. PMID:26671356
Fragment approach to constrained density functional theory calculations using Daubechies wavelets
Ratcliff, Laura E.; Genovese, Luigi; Mohr, Stephan; Deutsch, Thierry
2015-06-21
In a recent paper, we presented a linear scaling Kohn-Sham density functional theory (DFT) code based on Daubechies wavelets, where a minimal set of localized support functions are optimized in situ and therefore adapted to the chemical properties of the molecular system. Thanks to the systematically controllable accuracy of the underlying basis set, this approach is able to provide an optimal contracted basis for a given system: accuracies for ground state energies and atomic forces are of the same quality as an uncontracted, cubic scaling approach. This basis set offers, by construction, a natural subset where the density matrix of the system can be projected. In this paper, we demonstrate the flexibility of this minimal basis formalism in providing a basis set that can be reused as-is, i.e., without reoptimization, for charge-constrained DFT calculations within a fragment approach. Support functions, represented in the underlying wavelet grid, of the template fragments are roto-translated with high numerical precision to the required positions and used as projectors for the charge weight function. We demonstrate the interest of this approach to express highly precise and efficient calculations for preparing diabatic states and for the computational setup of systems in complex environments.
Fragment approach to constrained density functional theory calculations using Daubechies wavelets.
Ratcliff, Laura E; Genovese, Luigi; Mohr, Stephan; Deutsch, Thierry
2015-06-21
In a recent paper, we presented a linear scaling Kohn-Sham density functional theory (DFT) code based on Daubechies wavelets, where a minimal set of localized support functions are optimized in situ and therefore adapted to the chemical properties of the molecular system. Thanks to the systematically controllable accuracy of the underlying basis set, this approach is able to provide an optimal contracted basis for a given system: accuracies for ground state energies and atomic forces are of the same quality as an uncontracted, cubic scaling approach. This basis set offers, by construction, a natural subset where the density matrix of the system can be projected. In this paper, we demonstrate the flexibility of this minimal basis formalism in providing a basis set that can be reused as-is, i.e., without reoptimization, for charge-constrained DFT calculations within a fragment approach. Support functions, represented in the underlying wavelet grid, of the template fragments are roto-translated with high numerical precision to the required positions and used as projectors for the charge weight function. We demonstrate the interest of this approach to express highly precise and efficient calculations for preparing diabatic states and for the computational setup of systems in complex environments. PMID:26093548
Analysis of the local-density approximation of density-functional theory
NASA Astrophysics Data System (ADS)
Sahni, Viraht; Bohnen, K.-P.; Harbola, Manoj K.
1988-03-01
In this paper we perform a configuration-space analysis of the local-density approximation (LDA) for the exchange-correlation energy functional of Kohn-Sham density-functional theory in terms of the corresponding average exchange-correlation charge (hole) and energy densities. According to our analysis, the explanation for the quantitative success of the LDA based on the hole charge-conservation sum rule and the assumed consequent cancellation of errors in the spherical averages of the hole is inadequate. The principal conclusion of our work is that the constraint of charge neutrality is a necessary but not sufficient condition for an approximate energy functional to lead to accurate ground-state energies and ionization potentials. The significant additional requirement for the functional is that it must, at least qualitatively, reproduce correctly the structure of the hole as a function of electron position. We perform our calculations within the exchange-only approximation as applied to atoms and jellium metal surfaces. In atoms the Fermi hole is localized about the nucleus; as a consequence the LDA Fermi hole is accurate only for electron positions close to it. However, we show that the spherically averaged LDA hole is accurate for electron positions in the shell regions; it is substantially in error in the intershell and classically forbidden regions. The fact that the principal contribution to the exchange energy comes from the inner-shell region of the atom, where the LDA hole is accurate, explains why the errors in the LDA ground-state energies are small. However, the ionization potential, which depends on the structure of the hole in the outer regions of the atom, is substantially in error in the LDA since here the LDA hole differs significantly from the exact one. For metallic surfaces, on the other hand, as an electron is pulled from within the metal to infinity outside, the Fermi hole is delocalized and spread throughout the crystal. As a consequence
Kussmann, Jörg; Luenser, Arne; Beer, Matthias; Ochsenfeld, Christian
2015-03-07
An analytical method to calculate the molecular vibrational Hessian matrix at the self-consistent field level is presented. By analysis of the multipole expansions of the relevant derivatives of Coulomb-type two-electron integral contractions, we show that the effect of the perturbation on the electronic structure due to the displacement of nuclei decays at least as r{sup −2} instead of r{sup −1}. The perturbation is asymptotically local, and the computation of the Hessian matrix can, in principle, be performed with O(N) complexity. Our implementation exhibits linear scaling in all time-determining steps, with some rapid but quadratic-complexity steps remaining. Sample calculations illustrate linear or near-linear scaling in the construction of the complete nuclear Hessian matrix for sparse systems. For more demanding systems, scaling is still considerably sub-quadratic to quadratic, depending on the density of the underlying electronic structure.
NASA Astrophysics Data System (ADS)
Zhu, W.; Gong, S. S.; Haldane, F. D. M.; Sheng, D. N.
2015-10-01
The non-Abelian topological order has attracted a lot of attention for its fundamental importance and exciting prospect of topological quantum computation. However, explicit demonstration or identification of the non-Abelian states and the associated statistics in a microscopic model is very challenging. Here, based on a density-matrix renormalization-group calculation, we provide a complete characterization of the universal properties of the bosonic Moore-Read state on a Haldane honeycomb lattice model at filling number ν =1 for larger systems, including both the edge spectrum and the bulk anyonic quasiparticle (QP) statistics. We first demonstrate that there are three degenerating ground states for each of which there is a definite anyonic flux threading through the cylinder. We identify the nontrivial countings for the entanglement spectrum in accordance with the corresponding conformal field theory. Through simulating a flux-inserting experiment, it is found that two of the Abelian ground states can be adiabatically connected, whereas the ground state in the Ising anyon sector evolves back to itself, which reveals the fusion rules between different QPs in real space. Furthermore, we calculate the modular matrices S and U , which contain all the information for the anyonic QPs, such as quantum dimensions, fusion rule, and topological spins.
Hammond, Jeff R.; Mazziotti, David A.
2006-01-15
An alternative approach to open-shell molecular calculations using the variational two-electron reduced-density-matrix (2-RDM) theory [Mazziotti, Phys. Rev. Lett. 93, 213001 (2004)] is presented. The energy and 2-RDM of the open-shell molecule (or radical) are computed from the limit of dissociating one or more hydrogen atoms from a molecule in a singlet state. Because the ground-state energy of an 'infinitely' separated hydrogen atom in a given finite basis is known, we can determine the energy of the radical by subtracting the energy of one or more hydrogen atoms from the energy of the total dissociated system. The 2-RDM is constrained to have singlet symmetry in all calculations. Two sets of N-representability conditions are employed: (i) two-positivity conditions, and (ii) two-positivity conditions plus the T{sub 2} condition, which is a subset of the three-positivity conditions. Optimization of the energy with respect to the 2-RDM is performed with a first-order algorithm for solving the semidefinite program within the variational 2-RDM method. We present calculations of several radicals near equilibrium as well as the dissociation curves of the diatomic radicals CH and OH.
Petrenko, Taras; Kossmann, Simone; Neese, Frank
2011-02-01
In this paper, we present the implementation of efficient approximations to time-dependent density functional theory (TDDFT) within the Tamm-Dancoff approximation (TDA) for hybrid density functionals. For the calculation of the TDDFT/TDA excitation energies and analytical gradients, we combine the resolution of identity (RI-J) algorithm for the computation of the Coulomb terms and the recently introduced "chain of spheres exchange" (COSX) algorithm for the calculation of the exchange terms. It is shown that for extended basis sets, the RIJCOSX approximation leads to speedups of up to 2 orders of magnitude compared to traditional methods, as demonstrated for hydrocarbon chains. The accuracy of the adiabatic transition energies, excited state structures, and vibrational frequencies is assessed on a set of 27 excited states for 25 molecules with the configuration interaction singles and hybrid TDDFT/TDA methods using various basis sets. Compared to the canonical values, the typical error in transition energies is of the order of 0.01 eV. Similar to the ground-state results, excited state equilibrium geometries differ by less than 0.3 pm in the bond distances and 0.5° in the bond angles from the canonical values. The typical error in the calculated excited state normal coordinate displacements is of the order of 0.01, and relative error in the calculated excited state vibrational frequencies is less than 1%. The errors introduced by the RIJCOSX approximation are, thus, insignificant compared to the errors related to the approximate nature of the TDDFT methods and basis set truncation. For TDDFT/TDA energy and gradient calculations on Ag-TB2-helicate (156 atoms, 2732 basis functions), it is demonstrated that the COSX algorithm parallelizes almost perfectly (speedup ~26-29 for 30 processors). The exchange-correlation terms also parallelize well (speedup ~27-29 for 30 processors). The solution of the Z-vector equations shows a speedup of ~24 on 30 processors. The
NASA Astrophysics Data System (ADS)
Petrenko, Taras; Kossmann, Simone; Neese, Frank
2011-02-01
In this paper, we present the implementation of efficient approximations to time-dependent density functional theory (TDDFT) within the Tamm-Dancoff approximation (TDA) for hybrid density functionals. For the calculation of the TDDFT/TDA excitation energies and analytical gradients, we combine the resolution of identity (RI-J) algorithm for the computation of the Coulomb terms and the recently introduced "chain of spheres exchange" (COSX) algorithm for the calculation of the exchange terms. It is shown that for extended basis sets, the RIJCOSX approximation leads to speedups of up to 2 orders of magnitude compared to traditional methods, as demonstrated for hydrocarbon chains. The accuracy of the adiabatic transition energies, excited state structures, and vibrational frequencies is assessed on a set of 27 excited states for 25 molecules with the configuration interaction singles and hybrid TDDFT/TDA methods using various basis sets. Compared to the canonical values, the typical error in transition energies is of the order of 0.01 eV. Similar to the ground-state results, excited state equilibrium geometries differ by less than 0.3 pm in the bond distances and 0.5° in the bond angles from the canonical values. The typical error in the calculated excited state normal coordinate displacements is of the order of 0.01, and relative error in the calculated excited state vibrational frequencies is less than 1%. The errors introduced by the RIJCOSX approximation are, thus, insignificant compared to the errors related to the approximate nature of the TDDFT methods and basis set truncation. For TDDFT/TDA energy and gradient calculations on Ag-TB2-helicate (156 atoms, 2732 basis functions), it is demonstrated that the COSX algorithm parallelizes almost perfectly (speedup ˜26-29 for 30 processors). The exchange-correlation terms also parallelize well (speedup ˜27-29 for 30 processors). The solution of the Z-vector equations shows a speedup of ˜24 on 30 processors. The
Gong, Zu-Yong; Duan, Sai; Tian, Guangjun; Jiang, Jun; Xu, Xin; Luo, Yi
2015-05-21
We performed systematic theoretical studies on small anionic water/deuterated water clusters W/D(-)(N=2-6) at both density functional theory (B3LYP) and wavefunction theory (MP2) levels. The focus of the study is to examine the convergence of calculated infrared (IR) spectra with respect to the increasing number of diffuse functions. It is found that at the MP2 level for larger clusters (n = 4-6), only one extra diffuse function is needed to obtain the converged relative IR intensities, while two or three more sets of extra diffuse functions are needed for smaller clusters. Such behaviour is strongly associated with the convergence of the electronic structure of corresponding clusters at the MP2 level. It is striking to observe that at the B3LYP level, the calculated relative IR intensities for all the clusters under investigations are diverse and show no trend of convergence upon increasing the number of diffuse functions. Moreover, the increasing contribution from the extra diffuse functions to the dynamic IR dipole moment indicates that the B3LYP electronic structure also fails to converge. These results manifest that MP2 is a preferential theoretical method, as compared to the widely used B3LYP, for the IR intensity of dipole bounded electron systems. PMID:25903989
Chung, Moses; Qin, Hong; Davidson, Ronald C.; /Princeton U., Plasma Physics Lab.
2010-07-01
Courant-Snyder (CS) theory for one degree of freedom has recently been generalized by Qin and Davidson to the case of coupled transverse dynamics with two degrees of freedom. The generalized theory has four basic components of the original CS theory, i.e., the envelope equation, phase advance, transfer matrix, and the CS invariant, all of which have their counterparts in the original CS theory with remarkably similar expressions and physical meanings. In this brief communication, we further extend this remarkable similarity between the original and generalized CS theories and construct the Twiss parameters and beam matrix in generalized forms for the case of a strong coupling system.
NASA Astrophysics Data System (ADS)
Lim, S. P.; Sheng, D. N.
2016-07-01
A many-body localized (MBL) state is a new state of matter emerging in a disordered interacting system at high-energy densities through a disorder-driven dynamic phase transition. The nature of the phase transition and the evolution of the MBL phase near the transition are the focus of intense theoretical studies with open issues in the field. We develop an entanglement density matrix renormalization group (En-DMRG) algorithm to accurately target highly excited states for MBL systems. By studying the one-dimensional Heisenberg spin chain in a random field, we demonstrate the accuracy of the method in obtaining energy eigenstates and the corresponding statistical results of quantum states in the MBL phase. Based on large system simulations by En-DMRG for excited states, we demonstrate some interesting features in the entanglement entropy distribution function, which is characterized by two peaks: one at zero and another one at the quantized entropy S =ln2 with an exponential decay tail on the S >ln2 side. Combining En-DMRG with exact diagonalization simulations, we demonstrate that the transition from the MBL phase to the delocalized ergodic phase is driven by rare events where the locally entangled spin pairs develop power-law correlations. The corresponding phase diagram contains an intermediate or crossover regime, which has power-law spin-z correlations resulting from contributions of the rare events. We discuss the physical picture for the numerical observations in this regime, where various distribution functions are distinctly different from results deep in the ergodic and MBL phases for finite-size systems. Our results may provide new insights for understanding the phase transition in such systems.
Exploration of ultra-fast electron dynamics using time-dependent R-matrix theory
NASA Astrophysics Data System (ADS)
van der Hart, Hugo; Rey, Hector; Hassouneh, Ola; Brown, Andrew
2014-05-01
When an atom is subjected to an intense laser field, the full atomic response can involve a collective response involving several electrons. This collective response will be affected by electron-electron repulsion, coupling the overall electron dynamics. In order to investigate this dynamics for a multi-electron system from first principles, we have developed time-dependent R-matrix theory. The theory applies the basic principles of R-matrix theory, in which all interactions between all electrons are taken into account close to the nucleus, but exchange interactions are neglected when one electron has become distanced from the parent atom. In this contribution, we will explain the basic principles of this theory and demonstrate its application to ultra-fast dynamics in C+, and harmonic generation in singly ionised noble-gas atoms. Both studies demonstrate that it is important to go beyond the single-active-electron approximation. This research has been supported by EPSRC UK, and by the EU Initial Training Network CORINF.
Spin Density Matrix Elements in Exclusive Production of Omega Mesons at HERMES
NASA Astrophysics Data System (ADS)
Marukyan, Hrachya
2016-02-01
Exclusive electroproduction of ω mesons on unpolarized hydrogen and deuterium targets is studied at HERMES in the kinematic region of Q2 > 1.0GeV2, 3.0GeV < W < 6.3GeV, and ‑ t‧ < 0.2GeV2. The data were accumulated during the 1996-2007 running period using the 27.6GeV longitudinally polarized electron or positron beams at HERA. The determination of the virtual-photon longitudinal-to-transverse cross-section ratio shows that a considerable part of the cross section arises from transversely polarized photons. Spin density matrix elements are derived and presented in projections of Q2 or ‑ t‧. Violation of s-channel helicity conservation is observed for some of these elements. A sizable contribution from unnatural-parity-exchange amplitudes is found and the phase shift between those amplitudes that describe transverse ω production by longitudinal and transverse virtual photons is determined for the first time. Good agreement is found between the HERMES proton data and results of a pQCD-inspired phenomenological model that includes pion-pole contributions.
Density matrix renormalization group study of Y-junction spin systems
NASA Astrophysics Data System (ADS)
Guo, Haihui
Junction systems are important to understand both from the fundamental and the practical point of view, as they are essential components in existing and future electronic and spintronic devices. With the continuous advance of technology, device size will eventual reach the atomic scale. Some of the most interesting and useful junction systems will be strongly correlated. We chose the Density Matrix Renormalization Group method to study two types of Y-junction systems, the Y and YDelta junctions, on strongly correlated spin chains. With new ideas coming from the quantum information field, we have made a very efficient. Y-junction DMRG algorithm, which improves the overall CUB cost from O(m6) to O(m4), where m is the number of states kept per block. We studied the ground state properties, the correlation length, and investigated the degeneracy problem on the Y and YDelta junctions. For the excited states, we researched the existence of magnon bound states for various conditions, and have shown that the bound state exists when the central coupling constant is small.
Reduced-density-matrix spectrum and block entropy of permutationally invariant many-body systems.
Salerno, Mario; Popkov, Vladislav
2010-07-01
Spectral properties of the reduced density matrix (RDM) of permutational invariant quantum many-body systems are investigated. The RDM block diagonalization which accounts for all symmetries of the Hamiltonian is achieved. The analytical expression of the RDM spectrum is provided for arbitrary parameters and rigorously proved in the thermodynamical limit. The existence of several sum rules and recurrence relations among RDM eigenvalues is also demonstrated and the distribution function of RDM eigenvalues (including degeneracies) characterized. In particular, we prove that the distribution function approaches a two-dimensional Gaussian in the limit of large subsystem sizes n>1. As a physical application we discuss the von Neumann entropy (VNE) of a block of size n for a system of hard-core bosons on a complete graph, as a function of n and of the temperature T. The occurrence of a crossover of VNE from purely logarithmic behavior at T=0 to a purely linear behavior in n for T≥Tc, is demonstrated. PMID:20866600
Quantum confined stark effect in wide parabolic quantum wells: real density matrix approach
NASA Astrophysics Data System (ADS)
Zielińska-Raczyńska, Sylwia; Czajkowski, Gerard; Ziemkiewicz, David
2015-12-01
We show how to compute the optical functions of wide parabolic quantum wells (WPQWs) exposed to uniform electric F applied in the growth direction, in the excitonic energy region. The effect of the coherence between the electron-hole pair and the electromagnetic field of the propagating wave including the electron-hole screened Coulomb potential is adopted, and the valence band structure is taken into account in the cylindrical approximation. The role of the interaction potential and of the applied electric field, which mix the energy states according to different quantum numbers and create symmetry forbidden transitions, is stressed. We use the real density matrix approach (RDMA) and an effective e-h potential, which enable to derive analytical expressions for the WPQWs electrooptical functions. Choosing the susceptibility, we performed numerical calculations appropriate to a GaAs/GaAlAs WPQWs. We have obtained a red shift of the absorption maxima (quantum confined Stark effect), asymmetric upon the change of the direction of the applied field ( F → - F), parabolic for the ground state and strongly dependent on the confinement parameters (the QWs sizes), changes in the oscillator strengths, and new peaks related to the states with different parity for electron and hole.
Decomposition of density matrix renormalization group states into a Slater determinant basis
NASA Astrophysics Data System (ADS)
Moritz, Gerrit; Reiher, Markus
2007-06-01
The quantum chemical density matrix renormalization group (DMRG) algorithm is difficult to analyze because of the many numerical transformation steps involved. In particular, a decomposition of the intermediate and the converged DMRG states in terms of Slater determinants has not been accomplished yet. This, however, would allow one to better understand the convergence of the algorithm in terms of a configuration interaction expansion of the states. In this work, the authors fill this gap and provide a determinantal analysis of DMRG states upon convergence to the final states. The authors show that upon convergence, DMRG provides the same complete-active-space expansion for a given set of active orbitals as obtained from a corresponding configuration interaction calculation. Additional insight into DMRG convergence is provided, which cannot be obtained from the inspection of the total electronic energy alone. Indeed, we will show that the total energy can be misleading as a decrease of this observable during DMRG microiteration steps may not necessarily be taken as an indication for the pickup of essential configurations in the configuration interaction expansion. One result of this work is that a fine balance can be shown to exist between the chosen orbital ordering, the guess for the environment operators, and the choice of the number of renormalized states. This balance can be well understood in terms of the decomposition of total and system states in terms of Slater determinants.
Decomposition of density matrix renormalization group states into a Slater determinant basis.
Moritz, Gerrit; Reiher, Markus
2007-06-28
The quantum chemical density matrix renormalization group (DMRG) algorithm is difficult to analyze because of the many numerical transformation steps involved. In particular, a decomposition of the intermediate and the converged DMRG states in terms of Slater determinants has not been accomplished yet. This, however, would allow one to better understand the convergence of the algorithm in terms of a configuration interaction expansion of the states. In this work, the authors fill this gap and provide a determinantal analysis of DMRG states upon convergence to the final states. The authors show that upon convergence, DMRG provides the same complete-active-space expansion for a given set of active orbitals as obtained from a corresponding configuration interaction calculation. Additional insight into DMRG convergence is provided, which cannot be obtained from the inspection of the total electronic energy alone. Indeed, we will show that the total energy can be misleading as a decrease of this observable during DMRG microiteration steps may not necessarily be taken as an indication for the pickup of essential configurations in the configuration interaction expansion. One result of this work is that a fine balance can be shown to exist between the chosen orbital ordering, the guess for the environment operators, and the choice of the number of renormalized states. This balance can be well understood in terms of the decomposition of total and system states in terms of Slater determinants. PMID:17614539
Coupled-Channels Density-Matrix Approach to Low-Energy Nuclear Reaction Dynamics
Diaz-Torres, Alexis
2011-10-28
Atomic nuclei are complex, quantum many-body systems whose structure manifests itself through intrinsic quantum states associated with different excitation modes or degrees of freedom. Collective modes (vibration and/or rotation) dominate at low energy (near the ground-state). The associated states are usually employed, within a truncated model space, as a basis in (coherent) coupled channels approaches to low-energy reaction dynamics. However, excluded states can be essential, and their effects on the open (nuclear) system dynamics are usually treated through complex potentials. Is this a complete description of open system dynamics? Does it include effects of quantum decoherence? Can decoherence be manifested in reaction observables? In this contribution, I discuss these issues and the main ideas of a coupled-channels density-matrix approach that makes it possible to quantify the role and importance of quantum decoherence in low-energy nuclear reaction dynamics. Topical applications, which refer to understanding the astrophysically important collision {sup 12}C+{sup 12}C and achieving a unified quantum dynamical description of relevant reaction processes of weakly-bound nuclei, are highlighted.
Density-matrix renormalization group study of the extended Kitaev-Heisenberg model
NASA Astrophysics Data System (ADS)
Shinjo, Kazuya; Sota, Shigetoshi; Tohyama, Takami
2015-02-01
We study an extended Kitaev-Heisenberg model including additional anisotropic couplings by using the two-dimensional density-matrix renormalization group method. Calculating the ground-state energy, entanglement entropy, and spin-spin correlation functions, we make a phase diagram of the extended Kitaev-Heisenberg model around the spin-liquid phase. We find a zigzag antiferromagnetic phase, a ferromagnetic phase, a 120∘ antiferromagnetic phase, and two kinds of incommensurate phases around the Kitaev spin-liquid phase. Furthermore, we study the entanglement spectrum of the model, and we find that entanglement levels in the Kitaev spin-liquid phase are degenerate forming pairs, but those in the magnetically ordered phases are nondegenerate. The Schmidt gap defined as the energy difference between the lowest two levels changes at the phase boundary adjacent to the Kitaev spin-liquid phase. However, we find that phase boundaries between magnetically ordered phases do not necessarily agree with the change of the Schmidt gap.
Modeling the Pauli potential in the pair density functional theory.
Amovilli, C; Nagy, A
2008-11-28
In the ground state the pair density can be determined by solving a single auxiliary equation of a two-particle problem. A novel method for determining the Pauli potential entering this equation is presented and, starting from a reliable description of the pair density, an analytical expression is derived for atomic systems. Test calculations are presented for Be and isoelectronic C(2+) and O(4+) ions. PMID:19045853
Edge currents in non-commutative Chern-Simons theory from a new matrix model
NASA Astrophysics Data System (ADS)
Balachandran, Aiyalam P.; Kürkçüoglu, Seçkin; Gupta, Kumar S.
2003-09-01
This paper discusses the formulation of the non-commutative Chern-Simons (CS) theory where the spatial slice, an infinite strip, is a manifold with boundaries. As standard *-products are not correct for such manifolds, the standard non-commutative CS theory is not also appropriate here. Instead we formulate a new finite-dimensional matrix CS model as an approximation to the CS theory on the strip. A work which has points of contact with ours is due to Lizzi, Vitale and Zampini where the authors obtain a description for the fuzzy disc. The gauge fields in our approach are operators supported on a subspace of finite dimension N+eta of the Hilbert space of eigenstates of a simple harmonic oscillator with N ,etainBbb Z+ and N\
Variational density matrices in quantum field theory at finite temperature and chemical potential
Nadeau, H.
1996-07-01
I evaluate the Helmholtz free energy of finite temperature {lambda}{var_phi}{sup 4} theory, both real and complex, using a variational quadratic {ital ansatz} for the density matrix. Minimizing with respect to the variational parameters produces results identical to those obtained by summing the daisy and superdaisy diagrams. In the nonrelativistic limit this is equivalent to a Hartree-Fock mean field with an effective mass. Quartic terms are then included by means of a relativistic generalization of the hypernetted-chain approximation without exchange terms, called the {open_quote}{open_quote}direct approximation.{close_quote}{close_quote} In this way infinite groups of rings and ladders are summed, giving nonperturbative expressions for the internal energy and four-point function in terms of a small number of Dyson-like integral equations. An expression is obtained for the internal energy of a zero-temperature system in terms of only two variational parameters. Because the hypernetted-chain approximation preserves the Euler-Lagrange variational principle, minimizing the internal energy with respect to these parameters should provide a semiquantitative upper bound on the ground state energy of an interacting relativistic system at zero temperature. For the full finite temperature theory in the direct approximation, there are now three variational parameters and it is necessary to obtain the entropy in a approximation comparable to that for the internal energy. This is done in an analogous manner to the separability approximation of nonrelativistic hypernetted-chain theory. Finally, an improvement on the direct approximation is attained by including exchange terms of all types. This proceeds along the lines of parquet summations, resulting in a set of integral equations that, when solved self-consistently, includes all series and parallel connections of direct and exchange diagrams. {copyright} {ital 1996 The American Physical Society.}
Abe, Yasuhiro
2010-02-15
In M(atrix) theory, there exist membranes and longitudinal 5-branes (L5-branes) as extended objects. Transverse components of these brane solutions are known to be described by fuzzy CP{sup k} (k=1, 2), where k=1 and k=2 correspond to spherical membranes and L5-branes of CP{sup 2}xS{sup 1} world-volume geometry, respectively. In addition to these solutions, we here show the existence of L7-branes of CP{sup 3}xS{sup 1} geometry, introducing extra potentials to the M(atrix) theory Lagrangian. As in the cases of k=1, 2, the L7-branes (corresponding to k=3) also break the supersymmetries of M(atrix) theory. The extra potentials are introduced such that the energy of a static L7-brane solution becomes finite in the large N limit where N represents the matrix dimension of fuzzy CP{sup 3}. As a consequence, fluctuations from the L7-branes are suppressed, which effectively describes compactification of M(atrix) theory down to 7 dimensions. We show that one of the extra potentials can be considered as a matrix-valued 7-form. The presence of the 7-form in turn supports a possibility of Freund-Rubin type compactification. This suggests that our modification of M(atrix) theory can also lead to a physically interesting matrix model in four dimensions. In hope of such a possibility, we further consider compactification of M(atrix) theory down to fuzzy S{sup 4} which can be defined in terms of fuzzy CP{sup 3}. Along the way, we also find a new L5-brane solution to M(atrix) theory which has purely spherical geometry in the transverse directions.
Cao, Haihui; Ackerman, Jerome L; Hrovat, Mirko I; Graham, Lila; Glimcher, Melvin J; Wu, Yaotang
2008-12-01
The density of the organic matrix of bone substance is a critical parameter necessary to clinically evaluate and distinguish structural and metabolic pathological conditions such as osteomalacia in adults and rickets in growing children. Water- and fat-suppressed proton projection MRI (WASPI) was developed as a noninvasive means to obtain this information. In this study, a density calibration phantom was developed to convert WASPI intensity to true bone matrix density. The phantom contained a specifically designed poly(ethylene oxide)/poly(methyl methacrylate) (PEO/PMMA) blend, whose MRI properties (T(1), T(2), and resonance linewidth) were similar to those of solid bone matrix (collagen, tightly bound water, and other immobile molecules), minimizing the need to correct for differences in T(1) and/or T(2) relaxation between the phantom and the subject. Cortical and trabecular porcine bone specimens were imaged using WASPI with the calibration phantom in the field of view (FOV) as a stable intensity reference. Gravimetric and amino acid analyses were carried out on the same specimens after WASPI, and the chemical results were found to be highly correlated (r(2) = 0.98 and 0.95, respectively) to the WASPI intensity. By this procedure the WASPI intensity can be used to obtain the true bone matrix mass density in g cm(-3). PMID:19025909
On the definition of the spin-free cumulant of the second-order reduced density matrix
NASA Astrophysics Data System (ADS)
Lain, Luis; Torre, Alicia; Bochicchio, Roberto
2002-09-01
This note deals with the appropriate definition for the spin-free cumulant of the second-order reduced density matrix. Our approach leads to a direct derivation of one of the proposals reported by Kutzelnigg and Mukherjee [J. Chem. Phys. 116, 4787 (2002)] and it points out its suitability.
Element orbitals for Kohn-Sham density functional theory
Lin, Lin; Ying, Lexing
2012-05-08
We present a method to discretize the Kohn-Sham Hamiltonian matrix in the pseudopotential framework by a small set of basis functions automatically contracted from a uniform basis set such as planewaves. Each basis function is localized around an element, which is a small part of the global domain containing multiple atoms. We demonstrate that the resulting basis set achieves meV accuracy for 3D densely packed systems with a small number of basis functions per atom. The procedure is applicable to insulating and metallic systems.
Gauge invariance and anomalous theories at finite fermionic density
Roberge, A. )
1990-04-15
We investigate the issue of stability of anomalous matter at finite fermionic density using a two-dimensional toy model. In particular, we pay careful attention to the issue of gauge invariance. We find that, contrary to some recent claims, the effective free energy (obtained by integrating out the fermions) cannot be obtained by the simple inclusion of a Chern-Simons term multiplying the fermionic chemical potential. We obtain some conditions for stability of anomalous charges when some finite density of conserved charge is present as well as for the neutral case. We also show that, under reasonable conditions, no sphaleron-type solution can exist in the toy model unless the anomalous charge density vanishes. We argue that this could be the case for more realistic models as well.
The computational foundations of time dependent density functional theory
NASA Astrophysics Data System (ADS)
Whitfield, James
2014-03-01
The mathematical foundations of TDDFT are established through the formal existence of a fictitious non-interacting system (known as the Kohn-Sham system), which can reproduce the one-electron reduced probability density of the actual system. We build upon these works and show that on the interior of the domain of existence, the Kohn-Sham system can be efficiently obtained given the time-dependent density. Since a quantum computer can efficiently produce such time-dependent densities, we present a polynomial time quantum algorithm to generate the time-dependent Kohn-Sham potential with controllable error bounds. Further, we find that systems do not immediately become non-representable but rather become ill-representable as one approaches this boundary. A representability parameter is defined in our work which quantifies the distance to the boundary of representability and the computational difficulty of finding the Kohn-Sham system.
Density Functional Theory in Surface Chemistry and Catalysis
Norskov, Jens
2011-05-19
Recent advances in the understanding of reactivity trends for chemistry at transition metal surfaces have enabled in silico design of heterogeneous catalysts in a few cases. Current status of the field is discussed with an emphasis on the role of coupling between theory and experiment and future challenges.
Density functional theory in surface chemistry and catalysis
Nørskov, Jens K.; Abild-Pedersen, Frank; Studt, Felix; Bligaard, Thomas
2011-01-01
Recent advances in the understanding of reactivity trends for chemistry at transition-metal surfaces have enabled in silico design of heterogeneous catalysts in a few cases. The current status of the field is discussed with an emphasis on the role of coupling theory and experiment and future challenges. PMID:21220337
A density functional theory for colloids with two multiple bonding associating sites.
Haghmoradi, Amin; Wang, Le; Chapman, Walter G
2016-06-22
Wertheim's multi-density formalism is extended for patchy colloidal fluids with two multiple bonding patches. The theory is developed as a density functional theory to predict the properties of an associating inhomogeneous fluid. The equation of state developed for this fluid depends on the size of the patch, and includes formation of cyclic, branched and linear clusters of associated species. The theory predicts the density profile and the fractions of colloids in different bonding states versus the distance from one wall as a function of bulk density and temperature. The predictions from our theory are compared with previous results for a confined fluid with four single bonding association sites. Also, comparison between the present theory and Monte Carlo simulation indicates a good agreement. PMID:27115237
A density functional theory for colloids with two multiple bonding associating sites
NASA Astrophysics Data System (ADS)
Haghmoradi, Amin; Wang, Le; Chapman, Walter G.
2016-06-01
Wertheim’s multi-density formalism is extended for patchy colloidal fluids with two multiple bonding patches. The theory is developed as a density functional theory to predict the properties of an associating inhomogeneous fluid. The equation of state developed for this fluid depends on the size of the patch, and includes formation of cyclic, branched and linear clusters of associated species. The theory predicts the density profile and the fractions of colloids in different bonding states versus the distance from one wall as a function of bulk density and temperature. The predictions from our theory are compared with previous results for a confined fluid with four single bonding association sites. Also, comparison between the present theory and Monte Carlo simulation indicates a good agreement.
NASA Astrophysics Data System (ADS)
Anagnostopoulos, K.; Azuma, T.; Nishimura, J.
The IKKT or IIB matrix model has been postulated to be a non perturbative definition of superstring theory. It has the attractive feature that spacetime is dynamically generated, which makes possible the scenario of dynamical compactification of extra dimensions, which in the Euclidean model manifests by spontaneously breaking the SO(10) rotational invariance (SSB). In this work we study using Monte Carlo simulations the 6 dimensional version of the Euclidean IIB matrix model. Simulations are found to be plagued by a strong complex action problem and the factorization method is used for effective sampling and computing expectation values of the extent of spacetime in various dimensions. Our results are consistent with calculations using the Gaussian Expansion method which predict SSB to SO(3) symmetric vacua, a finite universal extent of the compactified dimensions and finite spacetime volume.
Patching the Exchange-Correlation Potential in Density Functional Theory.
Huang, Chen
2016-05-10
A method for directly patching exchange-correlation (XC) potentials in materials is derived. The electron density of a system is partitioned into subsystem densities by dividing its Kohn-Sham (KS) potential among the subsystems. Inside each subsystem, its projected KS potential is required to become the total system's KS potential. This requirement, together with the nearsightedness principle of electronic matters, ensures that the electronic structures inside subsystems can be good approximations to the total system's electronic structure. The nearsightedness principle also ensures that subsystem densities could be well localized in their regions, making it possible to use high-level methods to invert the XC potentials for subsystem densities. Two XC patching methods are developed. In the local XC patching method, the total system's XC potential is improved in the cluster region. We show that the coupling between a cluster and its environment is important for achieving a fast convergence of the electronic structure in the cluster region. In the global XC patching method, we discuss how to patch the subsystem XC potentials to construct the XC potential in the total system, aiming to scale up high-level quantum mechanics simulations of materials. Proof-of-principle examples are given. PMID:27049843
The spin polarized linear response from density functional theory: theory and application to atoms.
Fias, Stijn; Boisdenghien, Zino; De Proft, Frank; Geerlings, Paul
2014-11-14
Within the context of spin polarized conceptual density functional theory, the spin polarized linear response functions are introduced both in the [N, N(s)] and [N(α), N(β)] representations. The mathematical relations between the spin polarized linear response functions in both representations are examined and an analytical expression for the spin polarized linear response functions in the [N(α), N(β)] representation is derived. The spin polarized linear response functions were calculated for all atoms up to and including argon. To simplify the plotting of our results, we integrated χ(r, r') to a quantity χ(r, r'), circumventing the θ and ϕ dependence. This allows us to plot and to investigate the periodicity throughout the first three rows in the periodic table within the two different representations. For the first time, χ(αβ)(r, r'), χ(βα)(r, r'), and χ(SS)(r, r') plots have been calculated and discussed. By integration of the spin polarized linear response functions, different components to the polarisability, α(αα), α(αβ), α(βα), and α(ββ) have been calculated. PMID:25399132
The spin polarized linear response from density functional theory: Theory and application to atoms
Fias, Stijn Boisdenghien, Zino; De Proft, Frank; Geerlings, Paul
2014-11-14
Within the context of spin polarized conceptual density functional theory, the spin polarized linear response functions are introduced both in the [N, N{sub s}] and [N{sub α}, N{sub β}] representations. The mathematical relations between the spin polarized linear response functions in both representations are examined and an analytical expression for the spin polarized linear response functions in the [N{sub α}, N{sub β}] representation is derived. The spin polarized linear response functions were calculated for all atoms up to and including argon. To simplify the plotting of our results, we integrated χ(r, r′) to a quantity χ(r, r{sup ′}), circumventing the θ and ϕ dependence. This allows us to plot and to investigate the periodicity throughout the first three rows in the periodic table within the two different representations. For the first time, χ{sub αβ}(r, r{sup ′}), χ{sub βα}(r, r{sup ′}), and χ{sub SS}(r, r{sup ′}) plots have been calculated and discussed. By integration of the spin polarized linear response functions, different components to the polarisability, α{sub αα}, α{sub αβ}, α{sub βα}, and α{sub ββ} have been calculated.
Harris, Travis V.; Morokuma, Keiji; Kurashige, Yuki; Yanai, Takeshi
2014-02-07
The applicability of ab initio multireference wavefunction-based methods to the study of magnetic complexes has been restricted by the quickly rising active-space requirements of oligonuclear systems and dinuclear complexes with S > 1 spin centers. Ab initio density matrix renormalization group (DMRG) methods built upon an efficient parameterization of the correlation network enable the use of much larger active spaces, and therefore may offer a way forward. Here, we apply DMRG-CASSCF to the dinuclear complexes [Fe{sub 2}OCl{sub 6}]{sup 2−} and [Cr{sub 2}O(NH{sub 3}){sub 10}]{sup 4+}. After developing the methodology through systematic basis set and DMRG M testing, we explore the effects of extended active spaces that are beyond the limit of conventional methods. We find that DMRG-CASSCF with active spaces including the metal d orbitals, occupied bridging-ligand orbitals, and their virtual double shells already capture a major portion of the dynamic correlation effects, accurately reproducing the experimental magnetic coupling constant (J) of [Fe{sub 2}OCl{sub 6}]{sup 2−} with (16e,26o), and considerably improving the smaller active space results for [Cr{sub 2}O(NH{sub 3}){sub 10}]{sup 4+} with (12e,32o). For comparison, we perform conventional MRCI+Q calculations and find the J values to be consistent with those from DMRG-CASSCF. In contrast to previous studies, the higher spin states of the two systems show similar deviations from the Heisenberg spectrum, regardless of the computational method.
Local thermodynamic mapping for effective liquid density-functional theory
NASA Technical Reports Server (NTRS)
Kyrlidis, Agathagelos; Brown, Robert A.
1992-01-01
The structural-mapping approximation introduced by Lutsko and Baus (1990) in the generalized effective-liquid approximation is extended to include a local thermodynamic mapping based on a spatially dependent effective density for approximating the solid phase in terms of the uniform liquid. This latter approximation, called the local generalized effective-liquid approximation (LGELA) yields excellent predictions for the free energy of hard-sphere solids and for the conditions of coexistence of a hard-sphere fcc solid with a liquid. Moreover, the predicted free energy remains single valued for calculations with more loosely packed crystalline structures, such as the diamond lattice. The spatial dependence of the weighted density makes the LGELA useful in the study of inhomogeneous solids.
Streubel, A; Siepmann, J; Bodmeier, R
2003-01-01
The aim of this study was to develop and physicochemically characterize single unit, floating controlled drug delivery systems consisting of (i). polypropylene foam powder, (ii). matrix-forming polymer(s), (iii). drug, and (iv). filler (optional). The highly porous foam powder provided low density and, thus, excellent in vitro floating behavior of the tablets. All foam powder-containing tablets remained floating for at least 8 h in 0.1 N HCl at 37 degrees C. Different types of matrix-forming polymers were studied: hydroxypropyl methylcellulose (HPMC), polyacrylates, sodium alginate, corn starch, carrageenan, gum guar and gum arabic. The tablets eroded upon contact with the release medium, and the relative importance of drug diffusion, polymer swelling and tablet erosion for the resulting release patterns varied significantly with the type of matrix former. The release rate could effectively be modified by varying the "matrix-forming polymer/foam powder" ratio, the initial drug loading, the tablet geometry (radius and height), the type of matrix-forming polymer, the use of polymer blends and the addition of water-soluble or water-insoluble fillers (such as lactose or microcrystalline cellulose). The floating behavior of the low density drug delivery systems could successfully be combined with accurate control of the drug release patterns. PMID:12554071
Density functional theory: Its origins, rise to prominence, and future
NASA Astrophysics Data System (ADS)
Jones, R. O.
2015-07-01
In little more than 20 years, the number of applications of the density functional (DF) formalism in chemistry and materials science has grown in an astonishing fashion. The number of publications alone shows that DF calculations make up a huge success story, and many younger colleagues are surprised to learn that the widespread application of density functional methods, particularly in chemistry, began only after 1990. This is indeed unexpected, because the origins are usually traced to the papers of Hohenberg, Kohn, and Sham more than a quarter of a century earlier. The DF formalism, its applications, and prospects were reviewed for this journal in 1989. About the same time, the combination of DF calculations with molecular dynamics promised to provide an efficient way to study structures and reactions in molecules and extended systems. This paper reviews the development of density-related methods back to the early years of quantum mechanics and follows the breakthrough in their application after 1990. The two examples from biochemistry and materials science are among the many current applications that were simply far beyond expectations in 1990. The reasons why—50 years after its modern formulation and after two decades of rapid expansion—some of the most cited practitioners in the field are concerned about its future are discussed.
Communication: Self-interaction correction with unitary invariance in density functional theory
Pederson, Mark R.; Ruzsinszky, Adrienn; Perdew, John P.; Department of Chemistry, Temple University, Philadelphia, Pennsylvania 19122
2014-03-28
Standard spin-density functionals for the exchange-correlation energy of a many-electron ground state make serious self-interaction errors which can be corrected by the Perdew-Zunger self-interaction correction (SIC). We propose a size-extensive construction of SIC orbitals which, unlike earlier constructions, makes SIC computationally efficient, and a true spin-density functional. The SIC orbitals are constructed from a unitary transformation that is explicitly dependent on the non-interacting one-particle density matrix. When this SIC is applied to the local spin-density approximation, improvements are found for the atomization energies of molecules.
String states, loops and effective actions in noncommutative field theory and matrix models
NASA Astrophysics Data System (ADS)
Steinacker, Harold C.
2016-09-01
Refining previous work by Iso, Kawai and Kitazawa, we discuss bi-local string states as a tool for loop computations in noncommutative field theory and matrix models. Defined in terms of coherent states, they exhibit the stringy features of noncommutative field theory. This leads to a closed form for the 1-loop effective action in position space, capturing the long-range non-local UV/IR mixing for scalar fields. The formalism applies to generic fuzzy spaces. The non-locality is tamed in the maximally supersymmetric IKKT or IIB model, where it gives rise to supergravity. The linearized supergravity interactions are obtained directly in position space at one loop using string states on generic noncommutative branes.
Horizon in Random Matrix Theory, the Hawking Radiation, and Flow of Cold Atoms
Franchini, Fabio; Kravtsov, Vladimir E.
2009-10-16
We propose a Gaussian scalar field theory in a curved 2D metric with an event horizon as the low-energy effective theory for a weakly confined, invariant random matrix ensemble (RME). The presence of an event horizon naturally generates a bath of Hawking radiation, which introduces a finite temperature in the model in a nontrivial way. A similar mapping with a gravitational analogue model has been constructed for a Bose-Einstein condensate (BEC) pushed to flow at a velocity higher than its speed of sound, with Hawking radiation as sound waves propagating over the cold atoms. Our work suggests a threefold connection between a moving BEC system, black-hole physics and unconventional RMEs with possible experimental applications.
Horizon in random matrix theory, the Hawking radiation, and flow of cold atoms.
Franchini, Fabio; Kravtsov, Vladimir E
2009-10-16
We propose a Gaussian scalar field theory in a curved 2D metric with an event horizon as the low-energy effective theory for a weakly confined, invariant random matrix ensemble (RME). The presence of an event horizon naturally generates a bath of Hawking radiation, which introduces a finite temperature in the model in a nontrivial way. A similar mapping with a gravitational analogue model has been constructed for a Bose-Einstein condensate (BEC) pushed to flow at a velocity higher than its speed of sound, with Hawking radiation as sound waves propagating over the cold atoms. Our work suggests a threefold connection between a moving BEC system, black-hole physics and unconventional RMEs with possible experimental applications. PMID:19905710
NASA Astrophysics Data System (ADS)
Nakatani, Naoki; Chan, Garnet Kin-Lic
2013-04-01
We investigate tree tensor network states for quantum chemistry. Tree tensor network states represent one of the simplest generalizations of matrix product states and the density matrix renormalization group. While matrix product states encode a one-dimensional entanglement structure, tree tensor network states encode a tree entanglement structure, allowing for a more flexible description of general molecules. We describe an optimal tree tensor network state algorithm for quantum chemistry. We introduce the concept of half-renormalization which greatly improves the efficiency of the calculations. Using our efficient formulation we demonstrate the strengths and weaknesses of tree tensor network states versus matrix product states. We carry out benchmark calculations both on tree systems (hydrogen trees and π-conjugated dendrimers) as well as non-tree molecules (hydrogen chains, nitrogen dimer, and chromium dimer). In general, tree tensor network states require much fewer renormalized states to achieve the same accuracy as matrix product states. In non-tree molecules, whether this translates into a computational savings is system dependent, due to the higher prefactor and computational scaling associated with tree algorithms. In tree like molecules, tree network states are easily superior to matrix product states. As an illustration, our largest dendrimer calculation with tree tensor network states correlates 110 electrons in 110 active orbitals.
NASA Astrophysics Data System (ADS)
Dimakis, Nicholas; Farooqi, Mohammed Junaid; Garza, Emily Sofia; Bunker, Grant
2008-03-01
Density functional theory (DFT) and x-ray absorption fine structure (XAFS) spectroscopy are complementary tools for the biophysical study of active sites in metalloproteins. DFT is used to compute XAFS multiple scattering Debye Waller factors, which are then employed in genetic algorithm-based fitting process to obtain a global fit to the XAFS in the space of fitting parameters. Zn-Cys sites, which serve important functions as transcriptional switches in Zn finger proteins and matrix metalloproteinases, previously have proven intractable by this method; here these limitations are removed. In this work we evaluate optimal DFT nonlocal functionals and basis sets for determining optimal geometries and vibrational densities of states of mixed ligation Zn(His)4-n(Cys)n sites. Theoretical results are compared to experimental XAFS measurements and Raman spectra from the literature and tabulated for use.
Band alignment of semiconductors from density-functional theory and many-body perturbation theory
NASA Astrophysics Data System (ADS)
Hinuma, Yoyo; Grüneis, Andreas; Kresse, Georg; Oba, Fumiyasu
2014-10-01
The band lineup, or alignment, of semiconductors is investigated via first-principles calculations based on density functional theory (DFT) and many-body perturbation theory (MBPT). Twenty-one semiconductors including C, Si, and Ge in the diamond structure, BN, AlP, AlAs, AlSb, GaP, GaAs, GaSb, InP, InAs, InSb, ZnS, ZnSe, ZnTe, CdS, CdSe, and CdTe in the zinc-blende structure, and GaN and ZnO in the wurtzite structure are considered in view of their fundamental and technological importance. Band alignments are determined using the valence and conduction band offsets from heterointerface calculations, the ionization potential (IP) and electron affinity (EA) from surface calculations, and the valence band maximum and conduction band minimum relative to the branch point energy, or charge neutrality level, from bulk calculations. The performance of various approximations to DFT and MBPT, namely the Perdew-Burke-Ernzerhof (PBE) semilocal functional, the Heyd-Scuseria-Ernzerhof (HSE) hybrid functional, and the GW approximation with and without vertex corrections in the screened Coulomb interaction, is assessed using the GWΓ1 approximation as a reference, where first-order vertex corrections are included in the self-energy. The experimental IPs, EAs, and band offsets are well reproduced by GWΓ1 for most of the semiconductor surfaces and heterointerfaces considered in this study. The PBE and HSE functionals show sizable errors in the IPs and EAs, in particular for group II-VI semiconductors with wide band gaps, but are much better in the prediction of relative band positions or band offsets due to error cancellation. The performance of the GW approximation is almost on par with GWΓ1 as far as relative band positions are concerned. The band alignments based on average interfacial band offsets for all pairs of 17 semiconductors and branch point energies agree with explicitly calculated interfacial band offsets with small mean absolute errors of both ˜0.1eV, indicating a
Density functional theory investigation of hyperfine coupling constants in peroxyl radicals
NASA Astrophysics Data System (ADS)
Wetmore, Stacey D.; Boyd, Russell J.; Eriksson, Leif A.
1997-05-01
The geometries and 17O hyperfine coupling constants in several peroxyl radicals have been determined through the use of density functional theory. Becke's three-parameter hybrid exchange functional (B3) together with the correlation functional of Lee, Yang, and Parr (LYP) in combination with a variety of basis sets was used to study basis set effects. Subsequently, the effects of different gradient-correlated functionals were also examined. Results comparable to experimental values are obtained for all of the alkyl peroxyl radicals at the B3LYP level with IGLO-III or s-shell decontracted IGLO-III, 6-311G(d,p), 6-311+G(2df,p), and the augmented correlation-consistent polarized-valence triple-zeta basis set of D. E. Woon and T. H. Dunning [J. Chem. Phys. 98, 1358 (1993)], R. E. Kendall, T. H. Dunning, and R. J. Harrison [J. Chem. Phys. 96, 6796 (1992)], and T. H. Dunning [J. Chem. Phys. 90, 1007 (1989)]. Calculations imply that the spin density ratio between the inner and outer oxygens is 0.3:0.7, supporting earlier theoretical work [S. L. Boyd, R. J. Boyd, and L. R. C. Barclay, J. Am. Chem. Soc. 112, 5724 (1990)]. Erratic and strongly fluctuating results are exhibited for the fluoroperoxyl radical. Geometries close to the experimental values can be obtained at the B3LYP level, but at the expense of considerable spin contamination. A high degree of spin contamination can also be observed in calculations of the hyperfine coupling constants for this molecule. Possible explanations for the apparent failure to obtain converged results for FOO, apart from the considerable spin contamination, include vibrational, multireference, and matrix effects.
NASA Astrophysics Data System (ADS)
Spohn, Herbert
2011-03-01
In 1986 Kardar, Parisi, and Zhang (KPZ) proposed a stochastic evolution equation for growing interfaces, thereby triggering an intense study of growth processes with local growth rules. Specifically we have in mind the recent spectacular experiment of Takeuchi and Sano on droplet growth in a thin film of turbulent liquid crystal. Over the last ten years one has studied universal probability density functions on the basis of simplified lattice growth models. Surprisingly enough the one-point shape fluctuations are governed by the same statistical laws as the largest eigenvalue of a random matrix, Gaussian Unitary Ensemble (GUE) in case of a curved front and Gaussian Orthogonal Ensemble (GOE) for a flat front. Recently we obtained the first exact solution of the KPZ equation for initial conditions corresponding to droplet growth, thereby providing the probability density function for the height at any time. For long times we recover the universal statistical properties as computed from lattice growth models.
Poelmans, Ward; Van Raemdonck, Mario; Verstichel, Brecht; De Baerdemacker, Stijn; Torre, Alicia; Lain, Luis; Massaccesi, Gustavo E; Alcoba, Diego R; Bultinck, Patrick; Van Neck, Dimitri
2015-09-01
We perform a direct variational determination of the second-order (two-particle) density matrix corresponding to a many-electron system, under a restricted set of the two-index N-representability P-, Q-, and G-conditions. In addition, we impose a set of necessary constraints that the two-particle density matrix must be derivable from a doubly occupied many-electron wave function, i.e., a singlet wave function for which the Slater determinant decomposition only contains determinants in which spatial orbitals are doubly occupied. We rederive the two-index N-representability conditions first found by Weinhold and Wilson and apply them to various benchmark systems (linear hydrogen chains, He, N2, and CN(-)). This work is motivated by the fact that a doubly occupied many-electron wave function captures in many cases the bulk of the static correlation. Compared to the general case, the structure of doubly occupied two-particle density matrices causes the associate semidefinite program to have a very favorable scaling as L(3), where L is the number of spatial orbitals. Since the doubly occupied Hilbert space depends on the choice of the orbitals, variational calculation steps of the two-particle density matrix are interspersed with orbital-optimization steps (based on Jacobi rotations in the space of the spatial orbitals). We also point to the importance of symmetry breaking of the orbitals when performing calculations in a doubly occupied framework. PMID:26575902
First-Principles Atomic Force Microscopy Image Simulations with Density Embedding Theory.
Sakai, Yuki; Lee, Alex J; Chelikowsky, James R
2016-05-11
We present an efficient first-principles method for simulating noncontact atomic force microscopy (nc-AFM) images using a "frozen density" embedding theory. Frozen density embedding theory enables one to efficiently compute the tip-sample interaction by considering a sample as a frozen external field. This method reduces the extensive computational load of first-principles AFM simulations by avoiding consideration of the entire tip-sample system and focusing on the tip alone. We demonstrate that our simulation with frozen density embedding theory accurately reproduces full density functional theory simulations of freestanding hydrocarbon molecules while the computational time is significantly reduced. Our method also captures the electronic effect of a Cu(111) substrate on the AFM image of pentacene and reproduces the experimental AFM image of Cu2N on a Cu(100) surface. This approach is applicable for theoretical imaging applications on large molecules, two-dimensional materials, and materials surfaces. PMID:27050710
An introduction to inhomogeneous liquids, density functional theory, and the wetting transition
NASA Astrophysics Data System (ADS)
Hughes, Adam P.; Thiele, Uwe; Archer, Andrew J.
2014-12-01
Classical density functional theory (DFT) is a statistical mechanical theory for calculating the density profiles of the molecules in a liquid. It is widely used, for example, to study the density distribution of the molecules near a confining wall, the interfacial tension, wetting behavior, and many other properties of nonuniform liquids. DFT can, however, be somewhat daunting to students entering the field because of the many connections to other areas of liquid-state science that are required and used to develop the theories. Here, we give an introduction to some of the key ideas, based on a lattice-gas (Ising) model fluid. This approach builds on knowledge covered in most undergraduate statistical mechanics and thermodynamics courses, so students can quickly get to the stage of calculating density profiles, etc., for themselves. We derive a simple DFT for the lattice gas and present some typical results that can readily be calculated using the theory.
Berkolaiko, G.; Kuipers, J.
2013-11-15
To study electronic transport through chaotic quantum dots, there are two main theoretical approaches. One involves substituting the quantum system with a random scattering matrix and performing appropriate ensemble averaging. The other treats the transport in the semiclassical approximation and studies correlations among sets of classical trajectories. There are established evaluation procedures within the semiclassical evaluation that, for several linear and nonlinear transport moments to which they were applied, have always resulted in the agreement with random matrix predictions. We prove that this agreement is universal: any semiclassical evaluation within the accepted procedures is equivalent to the evaluation within random matrix theory. The equivalence is shown by developing a combinatorial interpretation of the trajectory sets as ribbon graphs (maps) with certain properties and exhibiting systematic cancellations among their contributions. Remaining trajectory sets can be identified with primitive (palindromic) factorisations whose number gives the coefficients in the corresponding expansion of the moments of random matrices. The equivalence is proved for systems with and without time reversal symmetry.
Discovering cell types in flow cytometry data with random matrix theory
NASA Astrophysics Data System (ADS)
Shen, Yang; Nussenblatt, Robert; Losert, Wolfgang
Flow cytometry is a widely used experimental technique in immunology research. During the experiments, peripheral blood mononuclear cells (PBMC) from a single patient, labeled with multiple fluorescent stains that bind to different proteins, are illuminated by a laser. The intensity of each stain on a single cell is recorded and reflects the amount of protein expressed by that cell. The data analysis focuses on identifying specific cell types related to a disease. Different cell types can be identified by the type and amount of protein they express. To date, this has most often been done manually by labelling a protein as expressed or not while ignoring the amount of expression. Using a cross correlation matrix of stain intensities, which contains both information on the proteins expressed and their amount, has been largely ignored by researchers as it suffers from measurement noise. Here we present an algorithm to identify cell types in flow cytometry data which uses random matrix theory (RMT) to reduce noise in a cross correlation matrix. We demonstrate our method using a published flow cytometry data set. Compared with previous analysis techniques, we were able to rediscover relevant cell types in an automatic way. Department of Physics, University of Maryland, College Park, MD 20742.
Density Functional Theory (dft) Simulations of Shocked Liquid Xenon
NASA Astrophysics Data System (ADS)
Mattsson, Thomas R.; Magyar, Rudolph J.
2009-12-01
Xenon is not only a technologically important element used in laser technologies and jet propulsion, but it is also one of the most accessible materials in which to study the metal-insulator transition with increasing pressure. Because of its closed shell electronic configuration, xenon is often assumed to be chemically inert, interacting almost entirely through the van der Waals interaction, and at liquid density, is typically modeled well using Leonard-Jones potentials. However, such modeling has a limited range of validity as xenon is known to form compounds under normal conditions and likely exhibits considerably more chemistry at higher densities when hybridization of occupied orbitals becomes significant. We present DFT-MD simulations of shocked liquid xenon with the goal of developing an improved equation of state. The calculated Hugoniot to 2 MPa compares well with available experimental shock data. Sandia is a mul-tiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.
Density Functional Theory (DFT) Simulations of Shocked Liquid Xenon
NASA Astrophysics Data System (ADS)
Mattsson, Thomas R.; Magyar, Rudolph J.
2009-06-01
Xenon is not only a technologically important element used in laser technologies and jet propulsion, but it is also one of the most accessible materials in which to study the metal-insulator transition with increasing pressure. Because of its closed shell electronic configuration, Xenon is often assumed to be chemically inert, interacting almost entirely through the van der Waals interaction, and at liquid density, is typically modeled well using Leonard-Jones potentials. However, such modeling has a limited range of validity as Xenon is known to form compounds at normal conditions and likely exhibits considerably more chemistry at higher densities when hybridization of occupied orbitals becomes significant. In this talk, we present DFT-MD simulations of shocked liquid Xenon with the goal of developing an improved equation of state. Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.
Matrix theory, AdS/CFT and Higgs-Coulomb equivalence
NASA Astrophysics Data System (ADS)
Berkooz, Micha; Verlinde, Herman
1999-11-01
We discuss the relation between the Matrix theory definitions of a class of decoupled theories and their AdS/CFT description in terms of the corresponding near-horizon geometry. The near horizon geometry, naively part of the Coulomb branch, is embedded in the Higgs branch via a natural change of variables. The principles of the map apply to all DLCQ descriptions in terms of hyper-Kähler quotients, such as the ADHM quantum mechanics for the D1-D5 system. We then focus the (2,0) field theory, and obtain an explicit mapping from all states in the N0 = 1 momentum sector of N4 M5-branes to states in (a DLCQ version of) AdS7 × S4. We show that, even for a single D0-brane, the space-time coordinates become non-commuting variables, suggesting an inherent non-commutativity of space-time in the presence of field strengths even for theories with gravity.
The Worldsheet S-Matrix of Planar N = 4 Gauge Theory (Abstract)
Beisert, N.
2007-10-03
Maximally supersymmetric Yang-Mills theory in the 't Hooft limit is apparently completely integrable. Bethe equations then enable us to compute anomalous dimensions, for example those of twist-two operators, exactly at very high perturbative orders. The Bethe ansatz in turn is based on the (worldsheet) S-matrix which is reviewed in this talk. The flavour structure of the S-matrix is completely fixed by symmetry and an overall phase is partially constrained by a crossing relation. In hep-th/0610251 we have recently proposed an expression for this phase to all perturbative orders which is consistent with presently available data. For instance, it leads to an integral equation for the high-spin limit of twist-two operators (also known as the cusp/soft anomalous dimension) at finite coupling. In fact, this result appears to be a part of the corresponding analytic answer for *every* four-dimensional gauge theory including QCD.The putatively exact phase also leads to one of the strongest tests of the AdS/CFT conjecture to date: We can now show complete agreement with dynamical results in non-interacting IIB superstrings on the AdS{sub 5}xS{sup 5} background by reexpanding the phase at strong coupling.
NASA Astrophysics Data System (ADS)
Rajagopal, A. K.; Mochena, Mogus
2000-12-01
The group-theory framework developed by Fukutome for a systematic analysis of the various broken-symmetry types of Hartree-Fock solution exhibiting spin structures is here extended to the general many-body context using spinor Green function formalism for describing magnetic systems. Consequences of this theory are discussed for examining the magnetism of itinerant electrons in nanometric systems of current interest as well as bulk systems where a vector spin-density form is required, by specializing our work to spin-density-functional formalism. We also formulate the linear-response theory for such a system and compare and contrast our results with the recent results obtained for localized electron systems. The various phenomenological treatments of itinerant magnetic systems are here unified in this group-theoretical description. We apply this theory to the one-band Hubbard model to illustrate the usefulness of this approach.
Covariant Density Functional Theory--highlights on recent progress and applications
Meng, J.; Li, J.; Zhao, P. W.; Liang, H. Z.; Yao, J. M.
2011-05-06
The density functional theory with a few number of parameters allows a very successful phenomenological description of ground state properties of nuclei all over the nuclear chart. The recent progress on the application of the covariant density functional theory (CDFT) for nuclear structure and astrophysics as well as its extensions by the group in Beijing is summarized. In particular, its application to magnetic moments is discussed in details.
Carlson, Rebecca K; Li Manni, Giovanni; Sonnenberger, Andrew L; Truhlar, Donald G; Gagliardi, Laura
2015-01-13
Kohn-Sham density functional theory, resting on the representation of the electronic density and kinetic energy by a single Slater determinant, has revolutionized chemistry, but for open-shell systems, the Kohn-Sham Slater determinant has the wrong symmetry properties as compared to an accurate wave function. We have recently proposed a theory, called multiconfiguration pair-density functional theory (MC-PDFT), in which the electronic kinetic energy and classical Coulomb energy are calculated from a multiconfiguration wave function with the correct symmetry properties, and the rest of the energy is calculated from a density functional, called the on-top density functional, that depends on the density and the on-top pair density calculated from this wave function. We also proposed a simple way to approximate the on-top density functional by translation of Kohn-Sham exchange-correlation functionals. The method is much less expensive than other post-SCF methods for calculating the dynamical correlation energy starting with a multiconfiguration self-consistent-field wave function as the reference wave function, and initial tests of the theory were quite encouraging. Here, we provide a broader test of the theory by applying it to bond energies of main-group molecules and transition metal complexes, barrier heights and reaction energies for diverse chemical reactions, proton affinities, and the water dimerization energy. Averaged over 56 data points, the mean unsigned error is 3.2 kcal/mol for MC-PDFT, as compared to 6.9 kcal/mol for Kohn-Sham theory with a comparable density functional. MC-PDFT is more accurate on average than complete active space second-order perturbation theory (CASPT2) for main-group small-molecule bond energies, alkyl bond dissociation energies, transition-metal-ligand bond energies, proton affinities, and the water dimerization energy. PMID:26574206
Pairing Nambu-Goldstone Modes within Nuclear Density Functional Theory.
Hinohara, Nobuo; Nazarewicz, Witold
2016-04-15
We show that the Nambu-Goldstone formalism of the broken gauge symmetry in the presence of the T=1 pairing condensate offers a quantitative description of the binding-energy differences of open-shell superfluid nuclei. We conclude that the pairing-rotational moments of inertia are excellent pairing indicators, which are free from ambiguities attributed to odd-mass systems. We offer a new, unified interpretation of the binding-energy differences traditionally viewed in the shell model picture as signatures of the valence nucleon properties. We present the first systematic analysis of the off-diagonal pairing-rotational moments of inertia and demonstrate the mixing of the neutron and proton pairing-rotational modes in the ground states of even-even nuclei. Finally, we discuss the importance of mass measurements of neutron-rich nuclei for constraining the pairing energy density functional. PMID:27127964
Antisites in III-V semiconductors: Density functional theory calculations
NASA Astrophysics Data System (ADS)
Chroneos, A.; Tahini, H. A.; Schwingenschlögl, U.; Grimes, R. W.
2014-07-01
Density functional based simulation, corrected for finite size effects, is used to investigate systematically the formation of antisite defects in III-V semiconductors (III = Al, Ga, and In and V = P, As, and Sb). Different charge states are modelled as a function of the Fermi level and under different growth conditions. The formation energies of group III antisites ( III V q) decrease with increasing covalent radius of the group V atom though not group III radius, whereas group V antisites ( V I I I q) show a consistent decrease in formation energies with increase in group III and group V covalent radii. In general, III V q defects dominate under III-rich conditions and V I I I q under V-rich conditions. Comparison with equivalent vacancy formation energy simulations shows that while antisite concentrations are always dominant under stoichiometric conditions, modest variation in growth or doping conditions can lead to a significantly higher concentration of vacancies.
Periodic Density Functional Theory Solver using Multiresolution Analysis with MADNESS
NASA Astrophysics Data System (ADS)
Harrison, Robert; Thornton, William
2011-03-01
We describe the first implementation of the all-electron Kohn-Sham density functional periodic solver (DFT) using multi-wavelets and fast integral equations using MADNESS (multiresolution adaptive numerical environment for scientific simulation; http://code.google.com/p/m-a-d-n-e-s-s). The multiresolution nature of a multi-wavelet basis allows for fast computation with guaranteed precision. By reformulating the Kohn-Sham eigenvalue equation into the Lippmann-Schwinger equation, we can avoid using the derivative operator which allows better control of overall precision for the all-electron problem. Other highlights include the development of periodic integral operators with low-rank separation, an adaptable model potential for nuclear potential, and an implementation for Hartree Fock exchange. This work was supported by NSF project OCI-0904972 and made use of resources at the Center for Computational Sciences at Oak Ridge National Laboratory under contract DE-AC05-00OR22725.
Theory of charge-density-wave non-contact nanofriction
NASA Astrophysics Data System (ADS)
Tosatti, Erio; Pellegrini, Franco; Santoro, Giuseppe E.
2014-03-01
Bulk dissipation caused by charge-density-wave (CDW) voltage-induced depinning and sliding is a classic subject. We present a local, nanoscale mechanism describing the occurrence of distance-dependent dissipation in the dynamics of an atomic force microscope tip oscillating over the surface of a CDW material. A mechanical tip hysteresis is predicted in correspondence to localized 2 slips of the CDW phase, giving rise to large tip dissipation peaks at selected distances. Results of static and dynamic numerical simulations of the tip-surface interaction are believed to be relevant to recent experiments on the layer compound NbSe . Supported by SNF Contract CRSII2136287/1 and by ERC Advanced Grant 320796 - MODPHYSFRICT.