Low density microcellular carbon foams and method of preparation
Arnold, C. Jr.; Aubert, J.H.; Clough, R.L.; Rand, P.B.; Sylwester, A.P.
1988-06-20
A low density, open-celled microcellular carbon foam is disclosed which is prepared by dissolving a carbonizable polymer or copolymer in a solvent, pouring the solution into a mold, cooling the solution, removing the solvent, and then carbonizing the polymer or copolymer in a high temperature oven to produce the foam. If desired, an additive can be introduced in order to produce a doped carbon foam, and the foams can be made isotropic by selection of a suitable solvent. The low density, microcellular foams produced by this process are particularly useful in the fabrication of inertial confinement fusion targets, but can also be used as catalysts, absorbents, and electrodes.
Low density microcellular carbon foams and method of preparation
Arnold, Jr., Charles; Aubert, James H.; Clough, Roger L.; Rand, Peter B.; Sylwester, Alan P.
1989-01-01
A low density, open-celled microcellular carbon foam is disclosed which is prepared by dissolving a carbonizable polymer or copolymer in a solvent, pouring the solution into a mold, cooling the solution, removing the solvent, and then carbonizing the polymer or copolymer in a high temperature oven to produce the foam. If desired, an additive can be introduced in order to produce a doped carbon foam, and the foams can be made isotropic by selection of a suitable solvent. The low density, microcellular foams produced by this process are particularly useful in the fabrication of inertial confinement fusion targets, but can also be used as catalysts, absorbents, and electrodes.
Low-density microcellular foam and method of making same
Rinde, James A.
1977-01-01
Low-density microcellular foam having a cell size of not greater than 2 .mu.m and method of making by dissolving cellulose acetate in an acetone-based solvent, gelling the solution in a water bath maintained at 0.degree.-10.degree. C for a selected period of time to allow impurities to diffuse out, freezing the gel, and then freeze-drying wherein water and solvents sublime and the gel structure solidifies into low-density microcellular foam. The foam has a density of 0.065 to 0.6.times.10.sup.3 kg/m.sup.3 and cell size of about 0.3 to 2 .mu.m. The small cell size foam is particularly applicable for encapsulation of laser targets.
Method of making a cellulose acetate low density microcellular foam
Rinde, James A.
1978-01-01
Low-density microcellular foam having a cell size of not greater than 2 .mu.m and method of making by dissolving cellulose acetate in an acetone-based solvent, gelling the solution in a water bath maintained at 0-10.degree. C for a selected period of time to allow impurities to diffuse out, freezing the gel, and then freeze-drying wherein water and solvents sublime and the gel structure solidifies into low-density microcellular foam. The foam has a density of 0.065 to 0.6.times.10.sup.3 kg/m.sup.3 and cell size of about 0.3 to 2 .mu.m. The small cell size foam is particularly adaptable for encapsulation of laser targets.
NASA Astrophysics Data System (ADS)
Ellingham, Thomas; Kharbas, Hrishikesh; Manitiu, Mihai; Scholz, Guenter; Turng, Lih-Sheng
2018-03-01
A three-stage molding process involving microcellular injection molding with core retraction and an "out-of-mold" expansion was developed to manufacture thermoplastic polyurethane into lightweight foams of varying local densities, microstructures, and mechanical properties in the same microcellular injection molded part. Two stages of cavity expansion through sequential core retractions and a third expansion in a separate mold at an elevated temperature were carried out. The densities varied from 0.25 to 0.42 g/cm3 (77% to 62% weight reduction). The mechanical properties varied as well. Cyclic compressive strengths and hysteresis loss ratios, together with the microstructures, were characterized and reported.
Low density, microcellular foams, preparation, and articles
Young, A.T.
1982-03-03
A microcellular low-density foam of poly(4-methyl-1-pentene) particularly useful for forming targets for inertial confinement fusion has been developed. Articles made from the foam have been machined to tolerances of 0.0001 inch, although the densities of the fragile foam are low (about 10 to about 100 mg/cc) and the cell sizes are small (about 10 to about 30 ..mu..m). Methods for forming the foam and articles are given. The yield strength of the foam of the invention is higher than was obtained in other structures of this same material.
Low density, microcellular foams, preparation, and articles
Young, Ainslie T.; Marsters, Robert G.; Moreno, Dawn K.
1984-01-01
A microcellular low density foam of poly(4-methyl-1-pentene) which is particularly useful for forming targets for inertial confinement fusion has been developed. Articles made from the foam have been machined to tolerances of 0.0001 inch, although the densities of the fragile foam are low (about 10 to about 100 mg/cc) and the cell sizes are small (about 10 to about 30 .mu.m). Methods for forming the foam and articles are given; and the yield strength of the foam of the invention is higher than was obtained in other structures of this same material.
High strain rate behaviour of polypropylene microfoams
NASA Astrophysics Data System (ADS)
Gómez-del Río, T.; Garrido, M. A.; Rodríguez, J.; Arencón, D.; Martínez, A. B.
2012-08-01
Microcellular materials such as polypropylene foams are often used in protective applications and passive safety for packaging (electronic components, aeronautical structures, food, etc.) or personal safety (helmets, knee-pads, etc.). In such applications the foams which are used are often designed to absorb the maximum energy and are generally subjected to severe loadings involving high strain rates. The manufacture process to obtain polymeric microcellular foams is based on the polymer saturation with a supercritical gas, at high temperature and pressure. This method presents several advantages over the conventional injection moulding techniques which make it industrially feasible. However, the effect of processing conditions such as blowing agent, concentration and microfoaming time and/or temperature on the microstructure of the resulting microcellular polymer (density, cell size and geometry) is not yet set up. The compressive mechanical behaviour of several microcellular polypropylene foams has been investigated over a wide range of strain rates (0.001 to 3000 s-1) in order to show the effects of the processing parameters and strain rate on the mechanical properties. High strain rate tests were performed using a Split Hopkinson Pressure Bar apparatus (SHPB). Polypropylene and polyethylene-ethylene block copolymer foams of various densities were considered.
Wu, Bei-Zen; Chen, GuanYu; Yak, HwaKwang; Liao, Weisheng; Chiu, KongHwa; Peng, Shie-Ming
2016-06-01
Palladium nanoparticles stabilized in microcellular high-density polyethylene prepared through supercritical foaming, supercritical impregnation, and H2 reduction are used for the hydrodechlorination of lindane and hexachlorobenzene in supercritical carbon dioxide below 100 °C. Both lindane and hexachlorobenzene can be almost 100% transformed to cyclohexane in 1 h. Reaction intermediates, such as lower chlorinated products or benzene, are not observed or exist in trace amount indicating that most of them may undergo reactions without leaving the metal surface. Copyright © 2016 Elsevier Ltd. All rights reserved.
Low density microcellular foams
LeMay, James D.
1992-01-01
Disclosed is a process of producing microcellular from which comprises the steps of: (a) selecting a multifunctional epoxy oligomer resin; (b) mixing said epoxy resin with a non-reactive diluent to form a resin-diluent mixture; (c) forming a diluent containing cross-linked epoxy gel from said resin-diluent mixture; (d) replacing said diluent with a solvent therefore; (e) replacing said solvent with liquid carbon dioxide; and (f) vaporizing off said liquid carbon dioxide under supercritical conditions, whereby a foam having a density in the range of 35-150 mg/cc and cell diameters less than about 1 .mu.m is produced. Also disclosed are the foams produced by the process.
Low density microcellular foams
LeMay, J.D.
1991-11-19
Disclosed is a process of producing microcellular foam which comprises the steps of: (a) selecting a multifunctional epoxy oligomer resin; (b) mixing said epoxy resin with a non-reactive diluent to form a resin-diluent mixture; (c) forming a diluent containing cross-linked epoxy gel from said resin-diluent mixture; (d) replacing said diluent with a solvent therefore; (e) replacing said solvent with liquid carbon dioxide; and (f) vaporizing off said liquid carbon dioxide under supercritical conditions, whereby a foam having a density in the range of 35-150 mg/cc and cell diameters less than about 1 [mu]m is produced. Also disclosed are the foams produced by the process. 8 figures.
Low density microcellular foams
LeMay, James D.
1991-01-01
Disclosed is a process of producing microcellular foam which comprises the steps of: (a) selecting a multifunctional epoxy oligomer resin; (b) mixing said epoxy resin with a non-reactive diluent to form a resin-diluent mixture; (c) forming a diluent containing cross-linked epoxy gel from said resin-diluent mixture; (d) replacing said diluent with a solvent therefore; (e) replacing said solvent with liquid carbon dioxide; and (f) vaporizing off said liquid carbon dioxide under supercritical conditions, whereby a foam having a density in the range of 35-150 mg/cc and cell diameters less than about 1 .mu.m is produced. Also disclosed are the foams produced by the process.
Ultra-low density microcellular polymer foam and method
Simandl, Ronald F.; Brown, John D.
1996-01-01
An ultra-low density, microcellular open-celled polymer foam and a method for making such foam. A polymer is dissolved in a heated solution consisting essentially of at least one solvent for the dissolution of the polymer in the heated solution and the phase inversion of the dissolved polymer to a liquid gel upon sufficient cooling of the heated solution. The heated solution is contained in a containment means provided with a nucleating promoting means having a relatively rough surface formed of fixed nucleating sites. The heated solution is cooled for a period of time sufficient to form a liquid gel of the polymer by phase inversion. From the gel, a porous foam having a density of less than about 12.0 mg/cm.sup.3 and open porosity provided by well interconnected strut morphology is formed.
Ultra-low density microcellular polymer foam and method
Simandl, R.F.; Brown, J.D.
1996-03-19
An ultra-low density, microcellular open-celled polymer foam and a method for making such foam are disclosed. A polymer is dissolved in a heated solution consisting essentially of at least one solvent for the dissolution of the polymer in the heated solution and the phase inversion of the dissolved polymer to a liquid gel upon sufficient cooling of the heated solution. The heated solution is contained in a containment means provided with a nucleating promoting means having a relatively rough surface formed of fixed nucleating sites. The heated solution is cooled for a period of time sufficient to form a liquid gel of the polymer by phase inversion. From the gel, a porous foam having a density of less than about 12.0 mg/cm{sup 3} and open porosity provided by well interconnected strut morphology is formed.
Hopper, Robert W.; Pekala, Richard W.
1989-01-01
Machinable and structurally stable, low density microcellular carbon, and catalytically impregnated carbon, foams, and process for their preparation, are provided. Pulverized sodium chloride is classified to improve particle size uniformity, and the classified particles may be further mixed with a catalyst material. The particles are cold pressed into a compact having internal pores, and then sintered. The sintered compact is immersed and then submerged in a phenolic polymer solution to uniformly fill the pores of the compact with phenolic polymer. The compact is then heated to pyrolyze the phenolic polymer into carbon in the form of a foam. Then the sodium chloride of the compact is leached away with water, and the remaining product is freeze dried to provide the carbon, or catalytically impregnated carbon, foam.
Hopper, Robert W.; Pekala, Richard W.
1988-01-01
Machinable and structurally stable, low density microcellular carbon, and catalytically impregnated carbon, foams, and process for their preparation, are provided. Pulverized sodium chloride is classified to improve particle size uniformity, and the classified particles may be further mixed with a catalyst material. The particles are cold pressed into a compact having internal pores, and then sintered. The sintered compact is immersed and then submerged in a phenolic polymer solution to uniformly fill the pores of the compact with phenolic polymer. The compact is then heated to pyrolyze the phenolic polymer into carbon in the form of a foam. Then the sodium chloride of the compact is leached away with water, and the remaining product is freeze dried to provide the carbon, or catalytically impregnated carbon, foam.
Hooper, R.W.; Pekala, R.W.
1987-04-30
Machinable and structurally stable, low density microcellular carbon, and catalytically impregnated carbon, foams, and process for their preparation, are provided. Pulverized sodium chloride is classified to improve particle size uniformity, and the classified particles may be further mixed with a catalyst material. The particles are cold pressed into a compact having internal pores, and then sintered. The sintered compact is immersed and then submerged in a phenolic polymer solution to uniformly fill the pores of the compact with phenolic polymer. The compact is then heated to pyrolyze the phenolic polymer into carbon in the form of a foam. Then the sodium chloride of the compact is leached away with water, and the remaining product is freeze dried to provide the carbon, or catalytically impregnated carbon, foam.
Electrically conductive composite material
Clough, R.L.; Sylwester, A.P.
1989-05-23
An electrically conductive composite material is disclosed which comprises a conductive open-celled, low density, microcellular carbon foam filled with a non-conductive polymer or resin. The composite material is prepared in a two-step process consisting of first preparing the microcellular carbon foam from a carbonizable polymer or copolymer using a phase separation process, then filling the carbon foam with the desired non-conductive polymer or resin. The electrically conductive composites of the present invention has a uniform and consistent pattern of filler distribution, and as a result is superior over prior art materials when used in battery components, electrodes, and the like. 2 figs.
Electrically conductive composite material
Clough, R.L.; Sylwester, A.P.
1988-06-20
An electrically conductive composite material is disclosed which comprises a conductive open-celled, low density, microcellular carbon foam filled with a non-conductive polymer or resin. The composite material is prepared in a two-step process consisting of first preparing the microcellular carbon foam from a carbonizable polymer or copolymer using a phase separation process, then filling the carbon foam with the desired non-conductive polymer or resin. The electrically conductive composites of the present invention has a uniform and consistent pattern of filler distribution, and as a result is superior over prior art materials when used in battery components, electrodes, and the like. 2 figs.
Electrically conductive composite material
Clough, Roger L.; Sylwester, Alan P.
1989-01-01
An electrically conductive composite material is disclosed which comprises a conductive open-celled, low density, microcellular carbon foam filled with a non-conductive polymer or resin. The composite material is prepared in a two-step process consisting of first preparing the microcellular carbon foam from a carbonizable polymer or copolymer using a phase separation process, then filling the carbon foam with the desired non-conductive polymer or resin. The electrically conductive composites of the present invention has a uniform and consistant pattern of filler distribution, and as a result is superior over prior art materials when used in battery components, electrodes, and the like.
Microcellular carbon foam and method
Simandl, R.F.; Brown, J.D.
1993-12-07
A microcellular carbon foam is characterized by a density in the range of about 30 to 1000 mg/cm[sup 3], substantially uniform distribution of cell sizes of diameters less than 100 [mu]m with a majority of the cells being of a diameter of less than about 10 [mu]m, well interconnected strut morphology providing open porosity, and an expanded d(002) X-ray turbostatic spacing greater than 3.50 angstroms. The precursor for the carbon foam is prepared by the phase inversion of polyacrylonitrile in a solution consisting essentially of at least one alkali metal halide and a phase inversion solvent for the polyacrylonitrile.
Microcellular carbon foam and method
Simandl, Ronald F.; Brown, John D.
1994-01-01
A microcellular carbon foam characterized by a density in the range of about 30 to 1000 mg/cm.sup.3, substantially uniform distribution of cell sizes of diameters less than 100 .mu.m with a majority of the cells being of a diameter of less than about 10 .mu.m, well interconnected strut morphology providing open porosity, and an expanded d(002) X-ray turbostatic spacing greater than 3.50 angstroms. The precursor for the carbon foam is prepared by the phase inversion of polyacrylonitrile in a solution consisting essentially of at least one alkali metal halide and a phase inversion solvent for the polyacrylonitrile.
Microcellular carbon foam and method
Simandl, Ronald F.; Brown, John D.
1993-01-01
A microcellular carbon foam characterized by a density in the range of about 30 to 1000 mg/cm.sup.3, substantially uniform distribution of cell sizes of diameters less than 100 .mu.m with a majority of the cells being of a diameter of less than about 10 .mu.m, well interconnected strut morphology providing open porosity, and an expanded d(002) X-ray turbostatic spacing greater than 3.50 angstroms. The precursor for the carbon foam is prepared by the phase inversion of polyacrylonitrile in a solution consisting essentially of at least one alkali metal halide and a phase inversion solvent for the polyacrylonitrile.
Continuous microcellular foaming of polylactic acid/natural fiber composites
NASA Astrophysics Data System (ADS)
Diaz-Acosta, Carlos A.
Poly(lactic acid) (PLA), a biodegradable thermoplastic derived from renewable resources, stands out as a substitute to petroleum-based plastics. In spite of its excellent properties, commercial applications are limited because PLA is more expensive and more brittle than traditional petroleum-based resins. PLA can be blended with cellulosic fibers to reduce material cost. However, the lowered cost comes at the expense of flexibility and impact strength, which can be enhanced through the production of microcellular structures in the composite. Microcellular foaming uses inert gases (e.g., carbon dioxide) as physical blowing agents to make cellular structures with bubble sizes of less than 10 microm and cell-population densities (number of bubbles per unit volume) greater than 109 cells/cm³. These unique characteristics result in a significant increase in toughness and elongation at break (ductility) compared with unfoamed parts because the presence of small bubbles can blunt the crack-tips increasing the energy needed to propagate the crack. Microcellular foams have been produced through a two step batch process. First, large amounts of gas are dissolved in the solid plastic under high pressure (sorption process) to form a single-phase solution. Second, a thermodynamic instability (sudden drop in solubility) triggers cell nucleation and growth as the gas diffuses out of the plastic. Batch production of microcellular PLA has addressed some of the drawbacks of PLA. Unfortunately, the batch foaming process is not likely to be implemented in the industrial production of foams because it is not cost-effective. This study investigated the continuous microcellular foaming process of PLA and PLA/wood-fiber composites. The effects of the processing temperature and material compositions on the melt viscosity, pressure drop rate, and cell-population density were examined in order to understand the nucleation mechanisms in neat and filled PLA foams. The results indicated that the processing temperature had a strong effect of the rheology of the melt and cell morphology. Processing at a lower temperature significantly increased the cell nucleation rate of neat PLA (amorphous and semi-crystalline) because of the fact that a high melt viscosity induced a high pressure drop rate in the polymer/gas solution. The presence of nanoclay did not affect the homogeneous nucleation but increased the heterogeneous nucleation, allowing both nucleation mechanisms to occur during the foaming process. The effect of wood-flour (0-30 wt.%) and rheology modifier contents on the melt viscosity and cell morphology of microcellular foamed composites was investigated. The viscosity of the melt increased with wood-flour content and decreased with rheology modifier content, affecting the processing conditions (i.e., pressure drop and pressure drop rate) and foamability of the composites. Matching the viscosity of the composites with that of neat PLA resulted in the best cell morphologies. Physico-mechanical characterization of microcellular foamed PLA as a function of cell morphology was performed to establish process-morphology-property relationships. The processing variables, i.e., amount of gas injected, flow rate, and processing temperature affected the development of the cellular structure and mechanical properties of the foams.
Cell openness manipulation of low density polyurethane foam for efficient sound absorption
NASA Astrophysics Data System (ADS)
Hyuk Park, Ju; Suh Minn, Kyung; Rae Lee, Hyeong; Hyun Yang, Sei; Bin Yu, Cheng; Yeol Pak, Seong; Sung Oh, Chi; Seok Song, Young; June Kang, Yeon; Ryoun Youn, Jae
2017-10-01
Satisfactory sound absorption using a low mass density foam is an intriguing desire for achieving high fuel efficiency of vehicles. This issue has been dealt with a microcellular geometry manipulation. In this study, we demonstrate the relationship between cell openness of polyurethane (PU) foam and sound absorption behaviors, both theoretically and experimentally. The objective of this work is to mitigate a threshold of mass density by rendering a sound absorber which shows a satisfactory performance. The cell openness, which causes the best sound absorption performance in all cases considered, was estimated as 15% by numerical simulation. Cell openness of PU foam was experimentally manipulated into desired ranges by adjusting rheological properties in a foaming reaction. Microcellular structures of the fabricated PU foams were observed and sound absorption coefficients were measured using a B&K impedance tube. The fabricated PU foam with the best cell openness showed better sound absorption performance than the foam with double mass density. We envisage that this study can help the manufacture of low mass density sound absorbing foams more efficiently and economically.
Improved construction materials for polar regions using microcellular thermoplastic foams
NASA Technical Reports Server (NTRS)
Cunningham, Daniel J.
1994-01-01
Microcellular polymer foams (MCF) are thermoplastic foams with very small cell diameters, less than 10 microns, and very large cell densities, 10(exp 9) to 10(exp 15) cells per cubic centimeter of unfoamed material. The concept of foaming polymers with microcellular voids was conceived to reduce the amount of material used for mass-produced items without compromising the mechanical properties. The reasoning behind this concept was that if voids smaller than the critical flaw size pre-existing in polymers were introduced into the matrix, they would not affect the overall strength of the product. MCF polycarbonate (PC), polystyrene (PS), and polyvinyl chloride (PVC) were examined to determine the effects of the microstructure towards the mechanical properties of the materials at room and arctic temperatures. Batch process parameters were discovered for these materials and foamed samples of three densities were produced for each material. To quantify the toughness and strength of these polymers, the tensile yield strength, tensile toughness, and impact resistance were measured at room and arctic temperatures. The feasibility of MCF polymers has been demonstrated by the consistent and repeatable MCF microstructures formed, but the improvements in the mechanical properties were not conclusive. Therefore the usefulness of the MCF polymers to replace other materials in arctic environments is questionable.
Microcellular carbon foam and method
Simandl, R.F.; Brown, J.D.
1993-05-04
A microcellular carbon foam is characterized by a density in the range of about 30 to 1,000 mg/cm[sup 3], substantially uniform distribution of cell sizes of diameters less than 100 [mu]m with a majority of the cells being of a diameter of less than about 10 [mu]m. The foam has a well interconnected strut morphology providing open porosity, and an expanded d(002) X-ray turbostatic spacing greater than 3.50 angstroms. The precursor for the carbon foam is prepared by the phase inversion of polyacrylonitrile in a solution consisting essentially of at least one alkali metal halide and a phase inversion solvent for the polyacrylonitrile.
Microcellular carbon foam and method
Simandl, R.F.; Brown, J.D.
1994-04-05
A microcellular carbon foam is described which is characterized by a density in the range of about 30 to 1000 mg/cm[sup 3], substantially uniform distribution of cell sizes of diameters less than 100 [mu]m with a majority of the cells being of a diameter of less than about 10 [mu]m, well interconnected strut morphology providing open porosity, and an expanded d(002) X-ray turbostatic spacing greater than 3.50 angstroms. The precursor for the carbon foam is prepared by the phase inversion of polyacrylonitrile in a solution consisting essentially of at least one alkali metal halide and a phase inversion solvent for the polyacrylonitrile.
Method for foam encapsulating laser targets
Hendricks, Charles D.
1977-01-01
Foam encapsulated laser fusion targets are made by positioning a fusion fuel-filled sphere within a mold cavity of suitable configuration and dimensions, and then filling the cavity with a material capable of producing a low density, microcellular foam, such as cellulose acetate dissolved in an acetone-based solvent. The mold assembly is dipped into an ice water bath to gel the material and thereafter soaked in the water bath to leach out undesired components, after which the gel is frozen, then freeze-dried wherein water and solvents sublime and the gel structure solidifies into a low-density microcellular foam, thereafter the resulting foam encapsulated target is removed from the mold cavity. The fuel-filled sphere is surrounded by foam having a thickness of about 10 to 100 .mu.m, a cell size of less than 2 .mu.m, and density of 0.065 to 0.6 .times. 10.sup.3 kg/m.sup.3. Various configured foam-encapsulated targets capable of being made by this encapsulation method are illustrated.
NASA Astrophysics Data System (ADS)
Li, Jiantong; Zhang, Guangcheng; Zhang, Hongming; Fan, Xun; Zhou, Lisheng; Shang, Zhengyang; Shi, Xuetao
2018-01-01
Epoxy/functionalized multi-wall carbon nanotube (EP/F-MWCNT) microcellular foams were fabricated through a supercritical CO2 (scCO2) foaming method. MWCNTs with carboxylation treatment were disentangled by using alpha-zirconium phosphate (ZrP) assisting dispersion method and functionalized with sulfanilamide. The F-MWCNTs were redispersed in acetone for mixing with epoxy resins to prepare nanocomposites. It was found that the dispersion of MWCNTs could be improved, thus heterogeneous nucleation effect of F-MWCNTs took place effectively during the foaming process, resulting in the formation of microcellular structure with larger cell density and smaller cell size. The volume conductivity and electromagnetic interference shielding performance of foamed EP/F-MWCNT nanocomposites were studied. When the F-MWCNT addition was 5 wt%, the conductivity of the foamed EP/F-MWCNT nanocomposites was 3.02 × 10-4 S/cm and the EMI shielding effectiveness (SE) reached 20.5 dB, significantly higher than the corresponding results of nanocomposite counterparts, indicating that introducing microcellular structure in EP/F-MWCNT nanocomposites would beneficial to improve their electrical conductivity and electromagnetic interference shielding performance.
2012-01-01
This article presents the fabrication of size-controllable and shape-flexible microcellular high-density polyethylene-stabilized palladium nanoparticles (Pd/m-HDPE) using supercritical foaming, followed by supercritical impregnation. These nanomaterials are investigated for use as heterogeneous hydrogenation catalysts of biphenyls in supercritical carbon dioxide with no significant surface and inner mass transfer resistance. The morphology of the Pd/m-HDPE is examined using scanning electron microscopy images of the pores inside Pd/m-HDPE catalysts and transmission electron microscopy images of the Pd particles confined in an HDPE structure. This nanocomposite simplifies industrial design and operation. These Pd/m-HDPE catalysts can be recycled easily and reused without complex recovery and cleaning procedures. PMID:22651135
MmWave Vehicle-to-Infrastructure Communication :Analysis of Urban Microcellular Networks
DOT National Transportation Integrated Search
2017-05-01
Vehicle-to-infrastructure (V2I) communication may provide high data rates to vehicles via millimeterwave (mmWave) microcellular networks. This report uses stochastic geometry to analyze the coverage of urban mmWave microcellular networks. Prior work ...
Study of injection molded microcellular polyamide-6 nanocomposites
Mingjun Yuan; Lih-Sheng Turng; Shaoqin Gong; Daniel Caulfield; Chris Hunt; Rick Spindler
2004-01-01
This study aims to explore the processing benefits and property improvements of combining nanocomposites with microcellular injection molding. The microcellular nanocomposite processing was performed on an injection-molding machine equipped with a commercially available supercritical fluid (SCF) system. The molded samples produced based on the Design of Experiments (...
Use of Microcellular Foam Particles for Encapsulation of Viscous fluids
USDA-ARS?s Scientific Manuscript database
A relatively new starch product with various novel applications is a porous microcellular foam [1,2]. The foam product is made by dehydrating a starch hydrogel in a solvent such as ethanol and then removing the solvent to form a foam product [1,2]. Starch microcellular foam has very small pores and ...
Microcellular processing of polylactide-hyperbranched polyester-nanoclay composites
Srikanth Pilla; Adam Kramschuster; Jungjoo Lee; Craig Clemons; Shaoqin Gong; Lih-Sheng Turng
2010-01-01
The effects of addition of hyperbranched polyesters (HBPs) and nanoclay on the material properties of both solid and microcellular polylactide (PLA) produced via a conventional and microcellular injection-molding process, respectively, were investigated. The effects of two different types of HBPs (i.e., Boltorn H2004® and Boltorn H20®) at the same...
Applications of nanocomposites and woodfiber plastics for microcellular injection molding
Lih-Sheng Turng; Mingjun Yuan; Hrishikesh Kharbas; Herman Winata; Daniel F. Caulfield
2003-01-01
The paper reviews the processing advantages and challenges of microcellular injection molding and presents recent research results on applications of nanocomposites and woodfiber-plastic composites as well as new process develop for the microcellular injection molding process. In particular, two types of polyamide (PA-6) neat resins and their filled counterparts, such...
Alireza Javadi; Yottha Srithep; Jungjoo Lee; Srikanth Pilla; Craig Clemons; Shaoqin Gong; Lih-Sheng Turng
2010-01-01
Solid and microcellular components made of poly (3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV)/ poly (butylenes adipate-co-terephthalate) (PBAT) blend (weight ration of PHBV:PBAT = 30:70), recycled wood fiber (RWF), and nanoclay (NC) were prepared via a conventional and microcellular-injection molding process, respectively. Morphology, thermal properties, and...
NASA Astrophysics Data System (ADS)
Yang, Hongli; Yu, Zhi; Wu, Peng; Zou, Huawei; Liu, Pengbo
2018-03-01
A simple and effective method was adopted to fabricate microcellular polyimide (PI)/reduced graphene oxide (GO)/multi-walled carbon nanotubes (MWCNTs) nanocomposites. Firstly, microcellular poly (amic acid) (PAA)/GO/MWCNTs nanocomposites were prepared through solvent evaporation induced phase separation. In this process, PAA and dibutyl phthalate (DBP) co-dissolved in N,N-dimethylacetamide (DMAc) underwent phase separation with DMAc evaporating, and DBP microdomains were formed in continuous PAA phase. Subsequently, PAA was thermally imidized and simultaneously GO was in situ reduced. After DBP was removed, the microcellular PI/reduced GO (RGO)/MWCNTs nanocomposites were finally obtained. When the initial filler loading was 8 wt%, the electrical conductivity of microcellular PI/RGO, PI/MWCNTs and PI/RGO/MWCNTs nanocomposites were 0.05, 0.02 and 1.87 S·m-1, respectively, and the electromagnetic interference (EMI) shielding efficiency (SE) of microcellular PI/RGO, PI/MWCNTs and PI/RGO/MWCNTs nanocomposites were 13.7-15.1, 13.0-14.3 and 16.6-18.2 dB, respectively. The synergistic effect between RGO and MWCNTs enhanced both the electrical conductivity and EMI shielding performance of the microcellular PI/RGO/MWCNTs nanocomposites. The dominating EMI shielding mechanism for these materials was microwave absorption. While the initial loading of GO and MWCNT was 8 wt%, the microcellular PI/RGO/MWCNTs nanocomposite (500 μm thickness) had extremely high specific EMI SE value of 755-823 dB·cm2·g-1. Its thermal stability was also obviously improved, the 5% weight loss temperature in nitrogen was 548 °C. In addition, it also possessed a high Young's modulus of 789 MPa.
First-principles calculation of intrinsic defect chemistry and self-doping in PbTe
Goyal, Anuj; Gorai, Prashun; Toberer, Eric S.; ...
2017-11-10
Semiconductor dopability is inherently limited by intrinsic defect chemistry. In many thermoelectric materials, narrow band gaps due to strong spin-orbit interactions make accurate atomic level predictions of intrinsic defect chemistry and self-doping computationally challenging. For this study, we use different levels of theory to model point defects in PbTe, and compare and contrast the results against each other and a large body of experimental data. We find that to accurately reproduce the intrinsic defect chemistry and known self-doping behavior of PbTe, it is essential to (a) go beyond the semi-local GGA approximation to density functional theory, (b) include spin-orbit coupling,more » and (c) utilize many-body GW theory to describe the positions of individual band edges. The hybrid HSE functional with spin-orbit coupling included, in combination with the band edge shifts from G0W0 is the only approach that accurately captures both the intrinsic conductivity type of PbTe as function of synthesis conditions as well as the measured charge carrier concentrations, without the need for experimental inputs. Our results reaffirm the critical role of the position of individual band edges in defect calculations, and demonstrate that dopability can be accurately predicted in such challenging narrow band gap materials.« less
First-principles calculation of intrinsic defect chemistry and self-doping in PbTe
DOE Office of Scientific and Technical Information (OSTI.GOV)
Goyal, Anuj; Gorai, Prashun; Toberer, Eric S.
Semiconductor dopability is inherently limited by intrinsic defect chemistry. In many thermoelectric materials, narrow band gaps due to strong spin-orbit interactions make accurate atomic level predictions of intrinsic defect chemistry and self-doping computationally challenging. For this study, we use different levels of theory to model point defects in PbTe, and compare and contrast the results against each other and a large body of experimental data. We find that to accurately reproduce the intrinsic defect chemistry and known self-doping behavior of PbTe, it is essential to (a) go beyond the semi-local GGA approximation to density functional theory, (b) include spin-orbit coupling,more » and (c) utilize many-body GW theory to describe the positions of individual band edges. The hybrid HSE functional with spin-orbit coupling included, in combination with the band edge shifts from G0W0 is the only approach that accurately captures both the intrinsic conductivity type of PbTe as function of synthesis conditions as well as the measured charge carrier concentrations, without the need for experimental inputs. Our results reaffirm the critical role of the position of individual band edges in defect calculations, and demonstrate that dopability can be accurately predicted in such challenging narrow band gap materials.« less
First-principles calculation of intrinsic defect chemistry and self-doping in PbTe
NASA Astrophysics Data System (ADS)
Goyal, Anuj; Gorai, Prashun; Toberer, Eric S.; Stevanović, Vladan
2017-10-01
Semiconductor dopability is inherently limited by intrinsic defect chemistry. In many thermoelectric materials, narrow band gaps due to strong spin-orbit interactions make accurate atomic level predictions of intrinsic defect chemistry and self-doping computationally challenging. Here we use different levels of theory to model point defects in PbTe, and compare and contrast the results against each other and a large body of experimental data. We find that to accurately reproduce the intrinsic defect chemistry and known self-doping behavior of PbTe, it is essential to (a) go beyond the semi-local GGA approximation to density functional theory, (b) include spin-orbit coupling, and (c) utilize many-body GW theory to describe the positions of individual band edges. The hybrid HSE functional with spin-orbit coupling included, in combination with the band edge shifts from G0W0 is the only approach that accurately captures both the intrinsic conductivity type of PbTe as function of synthesis conditions as well as the measured charge carrier concentrations, without the need for experimental inputs. Our results reaffirm the critical role of the position of individual band edges in defect calculations, and demonstrate that dopability can be accurately predicted in such challenging narrow band gap materials.
The Gelation of CO(2): A Sustainable Route to the Creation of Microcellular Materials.
Shi; Huang; Kilic; Xu; Enick; Beckman; Carr; Melendez; Hamilton
1999-11-19
Compounds with strong thermodynamic affinity for carbon dioxide (CO(2)) have been designed and synthesized that dissolve in CO(2), then associate to form gels. Upon removal of the CO(2), these gels produced free-standing foams with cells with an average diameter smaller than 1 micrometer and a bulk density reduction of 97 percent relative to the parent material.
Nuckolls, John H.; Thiessen, Albert R.; Dahlbacka, Glen H.
1983-01-01
Foam encapsulated laser-fusion targets wherein a quantity of thermonuclear fuel is embedded in low density, microcellular foam which serves as an electron conduction channel for symmetrical implosion of the fuel by illumination of the target by one or more laser beams. The fuel, such as DT, is contained within a hollow shell constructed of glass, for example, with the foam having a cell size of preferably no greater than 2 .mu.m, a density of 0.065 to 0.6.times.10.sup.3 kg/m.sup.3, and external diameter of less than 200 .mu.m.
Polyurethane foams obtained from residues of PET manufacturing and modified with carbon nanotubes
NASA Astrophysics Data System (ADS)
Stiebra, L.; Cabulis, U.; Knite, M.
2016-04-01
In this work we report the preparation of rigid microcellular polyurethane/carbon nanotube nanocomposites with different CNT loadings (0.09-0.46%) and various isocyanate indexes (110-260). Water was used as a blowing agent for samples. Density of all obtained samples - 200 ± 10 kg/m3. Electrical properties, as well as heat conductivity, cellular structure and mechanical properties of these nanocomposites were investigated.
Microcellular poly(hydroxybutyrate-co-hydroxyvalerate)-hyperbranched polymer-nanoclay nanocomposites
Alireza Javadi; Yottha Srithep; Srikanth Pilla; Craig C. Clemons; Shaoqin Gong; Lih-Sheng Turng
2012-01-01
The effects of incorporating hyperbranched polymers (HBPs) and different nanoclays [Cloisite® 30B and halloysite nanotubes (HNT)] on the mechanical, morphological, and thermal properties of solid and microcellular poly(hydroxybutyrate-co-hydroxyvalerate) (PHBV) were investigated. According to the X-ray diffraction (...
Microcellular nanocomposite injection molding process
Mingjun Yuan; Lih-Sheng Turng; Rick Spindler; Daniel Caulfield; Chris Hunt
2003-01-01
This study aims to explore the processing benefits and property improvements of combining nanocomposites with microcellular injection molding. The molded parts produced based on the Design of Experiments (DOE) matrices were subjected to tensile testing, impact testing, and Scanning Electron Microscope (SEM), Transmission Electron Microscope (TEM), Dynamic Mechanical...
Crystallization behavior of polyamide-6 microcellular nanocomposites
Mingjun Yuan; Lih-Sheng Turng; Shaoqin Gong; Andreas Winardi
2004-09-01
The crystallization behaviors of polyamide-6 (PA-6) and its nanocomposites undergoing the microcellular injection molding process are studied using Transmission Electron Microscopy (TEM), X-ray Diffractometer (XRD), Polarized Optical Microscopy (POM), and Differential Scanning Calorimetry (DSC). The relationships among the morphology, the mechanical property of the...
Structure of Porous Starch Microcellular Foam Particles
USDA-ARS?s Scientific Manuscript database
A relatively new starch product with various novel applications is a porous microcellular foam. The foam product is made by dehydrating a starch hydrogel in a solvent such as ethanol and then removing the solvent to form a foam product. The process involves heating an aqueous slurry of starch (8% w/...
Williams, Jr., Joel M.; Nyitray, Alice M.; Wilkerson, Mark H.
1991-01-01
Composite foams are provided comprising a first rigid, microcellular, open-celled organic polymer foam having a density of from about 0.015 g/cm.sup.3 to about 0.20 g/cm.sup.3 and a pore size of from about 1 micron to about 30 microns, said first foam containing a second polymer having a density of from about 0.015 g/cm.sup.3 to about 0.20 g/cm.sup.3 or a second polymer foam having a density of from about 0.015 g/cm.sup.3 to about 0.20 g/cm.sup.3 and a pore size of from about 0.01 microns to about 1.0 micron within the open cells of said first foam.
Williams, Jr., Joel M.; Nyitray, Alice M.; Wilkerson, Mark H.
1990-01-01
Composite foams are provided comprising a first rigid, microcellular, open-celled organic polymer foam having a density of from about 0.015 g/cm.sup.3 to about 0.20 g/cm.sup.3 and a pore size of from about 1 micron to about 30 microns, said first foam containing a second polymer having a density of from about 0.015 g/cm.sup.3 to about 0.20 g/cm.sup.3 or a second polymer foam having a density of from about 0.015 g/cm.sup.3 to about 0.20 g/cm.sup.3 and a pore size of from about 0.01 microns to about 1.0 micron within the open cells of said first foam.
Jun Peng; Philip J. Walsh; Ronald C. Sabo; Lih-Sheng Turng; Craig M. Clemons
2016-01-01
Cellulose nanocrystals (CNCs) are a biorenewable filler and can be an excellent nucleating agent for the development of microcellular foamed polymeric nanocomposites. However, their relatively low degradation temperature limits their use with engineering resins like polyamide 6 (PA6) in typical melt processing techniques such as injection molding, compounding, and...
Herman Winata; Lih-Sheng Turng; Daniel F. Caulfield; Tom Kuster; Rick Spindler; Rod Jacobson
2003-01-01
In this study, a cellulose-fiber-reinforced Polyamide-6 (PA-6) composite, a hybrid composite (PA-6/cellulose/Wollastonite), and the neat PA-6 resin were injection molded into ASTM testâbar samples with conventional and microcellular injection molding. The impact and tensile strengths of molded samples were measured and the Scanning Electron Microscopy (SEM) images were...
Manning, D P; Jones, C
2001-04-01
Research over a period of about 18 years has shown that a microcellular polyurethane known as AP66033 is the most slip-resistant safety footwear soling material on oily and wet surfaces. In recent years it has been replaced in commercially available footwear by a dual density polyurethane (DDP) which has a dense outer layer and a soft microcellular backing. This research programme has compared the slip resistance of AP66033 with DDP and some rubber solings. In addition, data were obtained on the effects of soling and floor roughness, and floor polish on slip resistance. Some data were also obtained for walking on ice. The coefficient of friction (CoF) of the solings was measured on 19 water wet surfaces in three conditions: (I) when the solings were new, (II) following abrasion to create maximum roughness and (III) after polishing. The CoF was measured on four oily surfaces after each of 11 abrasion or polishing treatments. The profound effects of the roughening of all soles and of floor roughness on the CoF were demonstrated for both wet and oily surfaces. The superior slip resistance of AP66033 was confirmed for oily and wet conditions; however, some rubbers not suitable for safety footwear achieved higher CoF values on wet floors. All of the floor polishes reduced the CoF of all floors when contaminated with water. The mean CoF of DDP solings was lower than the mean for AP66033 on wet and oily surfaces. No safety footwear soling provided adequate grip on dry ice and the CoF was reduced by water on the ice. A rubber used for rock climbing footwear was one of the most slip-resistant solings on wet surfaces in the laboratory but recorded the lowest CoF on ice. It is concluded that the incidence of occupational injuries caused by slipping could be reduced by the following: (A) returning to safety footwear soled with the microcellular polyurethane AP66033; (B) abrading all new and smooth footwear solings with a belt sanding machine coated with P100 grit; (C) avoiding the use of floor polish; (D) informing the general public about the poor slip resistance of ordinary footwear on ice and the lowering of slip resistance in cold weather.
Doping Y 2O 3 with Mn 4+ for energy-efficient lighting
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ming, Wenmei; Shi, Hongliang; Du, Mao-Hua
Developing energy-efficient LEDs that emit warm white light requires new red phosphors with appropriate emission wavelengths and band widths. Mn 4+-activated Y 2O 3 is a potential red LED phosphor with narrow emission and improved emission wavelength compared to previously known Mn 4+-activated oxide phosphors. Here in this work, the dopability and the oxidation state of Mn in Y 2O 3 are investigated based on the formation energies of native defects, Mn dopants, and divalent co-dopants (i.e., Ca, Sr, Cd, and Zn) calculated using hybrid density functional theory. We found that Mn 4+ is difficult to form in Y 2Omore » 3 without co-doping. Stabilizing Mn 4+ on Y 3+ sites (forming Mn + Y donors) requires the co-doping of compensating acceptors (Ca or Sr) in oxygen-rich growth environments.« less
Doping Y 2O 3 with Mn 4+ for energy-efficient lighting
Ming, Wenmei; Shi, Hongliang; Du, Mao-Hua
2018-03-28
Developing energy-efficient LEDs that emit warm white light requires new red phosphors with appropriate emission wavelengths and band widths. Mn 4+-activated Y 2O 3 is a potential red LED phosphor with narrow emission and improved emission wavelength compared to previously known Mn 4+-activated oxide phosphors. Here in this work, the dopability and the oxidation state of Mn in Y 2O 3 are investigated based on the formation energies of native defects, Mn dopants, and divalent co-dopants (i.e., Ca, Sr, Cd, and Zn) calculated using hybrid density functional theory. We found that Mn 4+ is difficult to form in Y 2Omore » 3 without co-doping. Stabilizing Mn 4+ on Y 3+ sites (forming Mn + Y donors) requires the co-doping of compensating acceptors (Ca or Sr) in oxygen-rich growth environments.« less
Effects of glycerol monosterate on TPUs crystallization and its foaming behavior
NASA Astrophysics Data System (ADS)
Hossieny, N.; Nofar, M.; Shaayegan, V.; Park, C. B.
2014-05-01
Thermoplastic polyurethane (TPU) containing 0-2 wt% glycerol monosterate (GMS) were compounded by a twin screw compounder and then foamed using a batch process and n-butane. Differential scanning calorimetry (DSC) and high-pressure DSC were performed to evaluate the effects of GMS and pressurized butane on the crystallization kinetics of TPU. The results showed that the synergistic effect of GMS and high pressure butane significantly promoted hard segment (HS) crystallization in the TPU-GMS samples. The TPU-GMS samples showed significant increase in crystallinity over a wide range of saturation temperatures in the presence of butane compared to neat melt-compounded TPU (PR-TPU). Comparing the foam characteristics of PR-TPU and TPU-GMS samples, it was observed that both samples exhibited microcellular morphology with high cell density over a wide range of processing temperatures of 150°C - 170°C. However at a high foaming temperature (170°C), PR-TPU foams showed high cell coalescence compared to TPU-GMS. Furthermore, TPU-GMS samples showed a much higher expansion ratio compared to PR-TPU over a wide range of processing temperatures. The lubricating effect of GMS assisted the HS to stack together and form crystalline domains. These HS crystalline domains are present at high temperature acting both as a heterogeneous nucleating sites as well as reinforcement leading to the observed microcellular morphology with a high expansion ratio in TPU-GMS samples.
Patents -- Alan J. Heeger (1984 - 1994)
to be doped is employed as one or both of the electrodes, and the electrolyte is a compound which is of novel lightweight secondary batteries which employ doped or dopable conjugated polymers as one or comprises at least one electrode having as an active materials a conjugated polymer, the polymer being doped
Morphology and viscoelastic properties of sealing materials based on EPDM rubber.
Milić, J; Aroguz, A; Budinski-Simendić, J; Radicević, R; Prendzov, S
2008-12-01
In this applicative study, the ratio of active and inactive filler loadings was the prime factor for determining the dynamic-mechanical behaviour of ethylene-propylene-diene monomer rubbers. Scanning electron microscopy was used to study the structure of reinforced dense and microcellular elastomeric materials. The effects of filler and blowing agent content on the morphology of composites were investigated. Microcellular samples cured in salt bath show smaller cells and uniform cell size compared with samples cured in hot air. Dynamic-mechanical thermal analysis showed appreciable changes in the viscoelastic properties by increasing active filler content, which could enable tailoring the material properties to suit sealing applications.
NASA Astrophysics Data System (ADS)
Javadi, Alireza
Petroleum-based polymers have made a significant contribution to human society due to their extraordinary adaptability and processability. However, due to the wide-spread application of plastics over the past few decades, there are growing concerns over depleting fossil resources and the undesirable environmental impact of plastics. Most of the petroleum-based plastics are non-biodegradable and thus will be disposed in landfills. Inappropriate disposal of plastics may also become a potential threat to the environment. Many approaches, such as efficient plastics waste management and replacing petroleum-based plastics with biodegradable materials obtained from renewable resources, have been put forth to overcome these problems. Plastics waste management is at its beginning stages of development which is also more expensive than expected. Thus, there is a growing interest in developing sustainable biobased and biodegradable materials produced from renewable resources such as plants and crops, which can offer comparable performance with additional advantages, such as biodegradability, biocompatibility, and reducing the carbon footprint. Poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) is one of the most promising biobased and biodegradable polymers, In fact many petroleum based polymers such as poly(propylene) (PP) can be potentially replaced by PHBV because of the similarity in their properties. Despite PHBV's attractive properties, there are many drawbacks such as high cost, brittleness, and thermal instability, which hamper the widespread usage of this specific polymer. The goals of this study are to investigate various strategies to address these drawbacks, including blending with other biodegradable polymers such as poly (butylene adipate-coterephthalate) (PBAT) or fillers (e.g., coir fiber, recycled wood fiber, and nanofillers) and use of novel processing technologies such as microcellular injection molding technique. Microcellular injection molding technique will not only reduce cost but also improve processability due to the use of supercritical fluid. Various material properties of the solid (without the foaming agent) and microcellular components (with foaming agent) made of PHBV-based polymer blends or composites were investigated including static mechanical properties (tensile testing), dynamic mechanical properties (dynamic mechanical analysis), thermal properties (differential scanning calorimetry and thermo gravimetric analysis), crystallinity(wide angle X-ray scattering analysis), and morphology (scanning electron microscopy and transmission electron microscopy). The composition-processing-structure-property relationship of these solid and microcellular components were established.
Method of making foam-encapsulated laser targets
Rinde, James A.; Fulton, Fred J.
1977-01-01
Foam-encapsulated laser fusion targets are fabricated by suspending fusion fuel filled shells in a solution of cellulose acetate, extruding the suspension through a small orifice into a bath of ice water, soaking the thus formed shell containing cellulose acetate gel in the water to extract impurities, freezing the gel, and thereafter freeze-drying wherein water and solvents sublime and the gel structure solidifies into a low-density microcellular foam containing one or more encapsulated fuel-filled shells. The thus formed material is thereafter cut and mounted on a support to provide laser fusion targets containing a fuel-filled shell surrounded by foam having a thickness of 10 to 60 .mu.m, a cell size of less than 2 .mu.m, and density of 0.08 to 0.6.times.10.sup.3 kg/m.sup.3. Various configured foam-encapsulated targets capable of being made by the encapsulation method are illustrated.
Amorphous microcellular polytetrafluoroethylene foam film
NASA Astrophysics Data System (ADS)
Tang, Chongzheng
1991-11-01
We report herein the preparation of novel low-density ultramicrocellular fluorocarbon foams and their application. These fluorocarbon foams are of interest for the biochemistry arena in numerous applications including foodstuff, pharmacy, wine making, beer brewery, fermentation medical laboratory, and other processing factories. All of those require good quality processing programs in which, after eliminating bacterium and virus, compressed air is needed. Ordinarily, compressed air contains bacterium and virus, its size is 0.01 - 2 micrometers fluorocarbon foam films. Having average porous diameter 0.04 - 0.1 micrometers , these are stable to high temperature (280 degree(s)C) and chemical environments, and generally have good engineering and mechanical properties (e.g., low coefficient of thermal expansion, high modulus, and good dimensional stability). Our new process for preparing low density fluorocarbon foams provides materials with unique properties. As such, they offer the possibility for being superior to earlier materials for a number of the filter applications mentioned.
Self-organizing feature maps for dynamic control of radio resources in CDMA microcellular networks
NASA Astrophysics Data System (ADS)
Hortos, William S.
1998-03-01
The application of artificial neural networks to the channel assignment problem for cellular code-division multiple access (CDMA) cellular networks has previously been investigated. CDMA takes advantage of voice activity and spatial isolation because its capacity is only interference limited, unlike time-division multiple access (TDMA) and frequency-division multiple access (FDMA) where capacities are bandwidth-limited. Any reduction in interference in CDMA translates linearly into increased capacity. To satisfy the high demands for new services and improved connectivity for mobile communications, microcellular and picocellular systems are being introduced. For these systems, there is a need to develop robust and efficient management procedures for the allocation of power and spectrum to maximize radio capacity. Topology-conserving mappings play an important role in the biological processing of sensory inputs. The same principles underlying Kohonen's self-organizing feature maps (SOFMs) are applied to the adaptive control of radio resources to minimize interference, hence, maximize capacity in direct-sequence (DS) CDMA networks. The approach based on SOFMs is applied to some published examples of both theoretical and empirical models of DS/CDMA microcellular networks in metropolitan areas. The results of the approach for these examples are informally compared to the performance of algorithms, based on Hopfield- Tank neural networks and on genetic algorithms, for the channel assignment problem.
Morrison, Robert L.
1995-01-01
Biofoam is a rigid, opaque microcellular organic foam made from organic materials derived from natural products and biological organisms. Typical organic materials are agar, agarose, gelatin, algin, alginates, gellan gum, and microcrystalline cellulose. The organic material is dissolved in a polar solvent, typically water, and the solution can be gelled immediately. The gel is frozen and freeze-dried to form the biofoam. Alternatively, a nonpolar solvent is added to the solution and emulsified. The resulting emulsion is then gelled, frozen, and freeze-dried. A variety of crystalline, fibrous, or metallic additives may be added to produce lightweight composite materials with enhanced strength and insulating properties. The amount of dilution of the organic material in the solvent(s) determines the density of the resulting biofoams, which ranges from about 1.0 mg/cm.sup.3 to about 500 mg/cm.sup.3.
Jeong, Keuk Min; Hong, Yeo Joo; Saha, Prosenjit; Park, Seong Ho; Kim, Jin Kuk
2014-11-01
In this study, a composite has been prepared by mixing waste rubber, such as ethylene-propylene-diene-monomer and low-density poly ethylene foaming, with supercritical carbon dioxide. In order to optimise the foaming process of the waste ethylene-propylene-diene-monomer-low-density poly ethylene composite, the variations of pressure and temperature on the foamed Microcell formation were studied. As indicated in scanning electron microscope photographs, the most uniform microcellular pattern was found at 200 bar and 100 °C using 30% by weight of waste ethylene-propylene-diene-monomer. Carbon dioxide could not be dissolved uniformly during foaming owing to extensive cross-linking of the waste ethylene-propylene-diene-monomer used for the composite. As a result the presence of un-uniform microcells after foaming were observed in the composite matrix to impart inferior mechanical properties of the composite. This problem was solved with uniform foaming by increasing the cross-link density of low-density poly ethylene using 1.5 parts per hundred dicumyl peroxide that enhances composite tensile and compressive strength up to 57% and 15%, respectively. The composite has the potential to be used as a foaming mat for artificial turf. © The Author(s) 2014.
Channel Measurement and Modeling for 5G Urban Microcellular Scenarios.
Peter, Michael; Weiler, Richard J; Göktepe, Barış; Keusgen, Wilhelm; Sakaguchi, Kei
2016-08-20
In order to support the development of channel models for higher frequency bands, multiple urban microcellular measurement campaigns have been carried out in Berlin, Germany, at 60 and 10 GHz. In this paper, the collected data is uniformly analyzed with focus on the path loss (PL) and the delay spread (DS). It reveals that the ground reflection has a dominant impact on the fading behavior. For line-of-sight conditions, the PL exponents are close to free space propagation at 60 GHz, but slightly smaller (1.62) for the street canyon at 10 GHz. The DS shows a clear dependence on the scenario (median values between 16 and 38 ns) and a strong distance dependence for the open square and the wide street canyon. The dependence is less distinct for the narrow street canyon with residential buildings. This behavior is consistent with complementary ray tracing simulations, though the simplified model tends to overestimate the DS.
Morrison, R.L.
1995-01-17
Biofoam is a rigid, opaque microcellular organic foam made from organic materials derived from natural products and biological organisms. Typical organic materials are agar, agarose, gelatin, algin, alginates, gellan gum, and microcrystalline cellulose. The organic material is dissolved in a polar solvent, typically water, and the solution can be gelled immediately. The gel is frozen and freeze-dried to form the biofoam. Alternatively, a nonpolar solvent is added to the solution and emulsified. The resulting emulsion is then gelled, frozen, and freeze-dried. A variety of crystalline, fibrous, or metallic additives may be added to produce lightweight composite materials with enhanced strength and insulating properties. The amount of dilution of the organic material in the solvent(s) determines the density of the resulting biofoams, which ranges from about 1.0 mg/cm[sup 3] to about 500 mg/cm[sup 3]. 4 figures.
Polling-Based High-Bit-Rate Packet Transfer in a Microcellular Network to Allow Fast Terminals
NASA Astrophysics Data System (ADS)
Hoa, Phan Thanh; Lambertsen, Gaute; Yamada, Takahiko
A microcellular network will be a good candidate for the future broadband mobile network. It is expected to support high-bit-rate connection for many fast mobile users if the handover is processed fast enough to lessen its impact on QoS requirements. One of the promising techniques is believed to use for the wireless interface in such a microcellular network is the WLAN (Wireless LAN) technique due to its very high wireless channel rate. However, the less capability of mobility support of this technique must be improved to be able to expand its utilization for the microcellular environment. The reason of its less support mobility is large handover latency delay caused by contention-based handover to the new BS (base station) and delay of re-forwarding data from the old to new BS. This paper presents a proposal of multi-polling and dynamic LMC (Logical Macro Cell) to reduce mentioned above delays. Polling frame for an MT (Mobile Terminal) is sent from every BS belonging to the same LMC — a virtual single macro cell that is a multicast group of several adjacent micro-cells in which an MT is communicating. Instead of contending for the medium of a new BS during handover, the MT responds to the polling sent from that new BS to enable the transition. Because only one BS of the LMC receives the polling ACK (acknowledgement) directly from the MT, this ACK frame has to be multicast to all BSs of the same LMC through the terrestrial network to continue sending the next polling cycle at each BS. Moreover, when an MT hands over to a new cell, its current LMC is switched over to a newly corresponding LMC to prevent the future contending for a new LMC. By this way, an MT can do handover between micro-cells of an LMC smoothly because the redundant resource is reserved for it at neighboring cells, no need to contend with others. Our simulation results using the OMNeT++ simulator illustrate the performance achievements of the multi-polling and dynamic LMC scheme in eliminating handover latency, packet loss and keeping mobile users' throughput stable in the high traffic load condition though it causes somewhat overhead on the neighboring cells.
Conductor-polymer composite electrode materials
Ginley, D.S.; Kurtz, S.R.; Smyrl, W.H.; Zeigler, J.M.
1984-06-13
A conductive composite material useful as an electrode, comprises a conductor and an organic polymer which is reversibly electrochemically dopable to change its electrical conductivity. Said polymer continuously surrounds the conductor in intimate electrical contact therewith and is prepared by electrochemical growth on said conductor or by reaction of its corresponding monomer(s) on said conductor which has been pre-impregnated or pre-coated with an activator for said polymerization. Amount of the conductor is sufficient to render the resultant composite electrically conductive even when the polymer is in an undoped insulating state.
A preliminary objective evaluation of leprosy footwear using in-shoe pressure measurement.
Linge, K
1996-01-01
The primary function of leprosy shoes, insoles and podiatric orthoses is to provide an underfoot environment capable of distributing the inevitable vertical forces, so reducing areas of peak pressure and ideally the period through which they are applied. Many patients with Hansen's disease have both skeletal deformity and anesthetised feet and the presence of high plantar pressures is the key reason for foot ulceration. This objective investigation using in-shoe dynamic pressure measurements showed that the addition of a shank to control insole rigidity reduced the overall peak pressures under the foot. When a deep canvas shoe was used to test single- and double-thickness insoles of two different types of material it was found in each case that the double-thickness mode was advantageous overall. Microcellular rubber insoles in two types of leprosy shoe were replaced by the polymer Poron. The Poron proved to be superior to both microcellular rubbers. The peak pressure and pressure-time integral should be considered as complimentary variables when determining the efficacy of footwear.
Reduced cost alternatives to premise wiring using ATM and microcellular technologies
NASA Technical Reports Server (NTRS)
Gejji, Raghvendra R.
1993-01-01
The cost of premises wiring keeps increasing due to personnel moves, new equipment, capacity upgrades etc. It would be desirable to have a wireless interface from the workstations to the fixed network, so as to minimize the wiring changes needed. New technologies such as microcellular personal communication systems are promising to bring down the cost of wireless communication. Another promising technology is Code Division Multiple Access (CDMA), which could dramatically increase the bandwidth available for wireless connections. In addition, Asynchronous Transfer Mode (ATM) technology is emerging as a technique for integrated management of voice, data, and video traffic on a single network. The focus of this investigation will be to assess the future utility of these new technologies for reducing the premise wiring cost at KSC. One of the issues to be studied is the cost comparison of 'old' versus 'new,' especially as time and technology progress. An additional issue for closer study is a feasible time-line for progress in technological capability.
21 CFR 182.1711 - Silica aerogel.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Silica aerogel. 182.1711 Section 182.1711 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN....1711 Silica aerogel. (a) Product. Silica aerogel as a finely powdered microcellular silica foam having...
21 CFR 182.1711 - Silica aerogel.
Code of Federal Regulations, 2012 CFR
2012-04-01
... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Silica aerogel. 182.1711 Section 182.1711 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN....1711 Silica aerogel. (a) Product. Silica aerogel as a finely powdered microcellular silica foam having...
Proteins as "dopable" bio-electronic materials
NASA Astrophysics Data System (ADS)
Cahen, David
2013-02-01
Proteins are surprisingly good solid-state electronic conductors. This holds also for proteins without any known biological electron transfer function. How do they do it? To answer this question we measure solid-state electron transport (ETp) across proteins that are "dry" (only tightly bound water, to retain the conformation, still present). We compare results for the electron transfer (ET) protein, Azurin (Az), the proton-pumping membrane protein Bacteriorhodopsin (bR), and for Human and Bovine Serum Albumin (HSA and BSA). Clear differences between these proteins are seen, which preserve their structure in the solid state measurement configuration. Importantly for future bioelectronics, the results are sensitive to protein modification, e.g., removing or disconnecting the retinal in bR and removing or replacing the Cu redox centre in Az. These cofactors can thus be viewed as natural dopants for proteins. Insight in the ETp mechanism comes from temperature-dependent studies. Az shows 40-360K temperature-independent ETp across its 3.5 nm long axis, until its denaturation temperature, indicative of tunneling. Cu removal, replacement (by Zn) or deuteration changes this to thermally activated ETp. This suggests hopping and involvement of the amide backbone in the ETp. The latter, which rhymes with indications from ETp experiments on oligopeptide and simulations of ET in proteins, opens the way for modeling what otherwise is an awfully complex system. Below 200K all proteins and their variants show temperature-independent ETp. We can furthermore make a totally electrically inactive protein, HSA, into an efficient ETp medium by doping it with natural poly-ene. Putting our data in perspective by comparing them to all known protein ETp data in the literature, we conclude that, in general, proteins are well described as dopable molecular wires.
Synthesis of Foam-Shaped Nanoporous Zeolite Material: A Simple Template-Based Method
ERIC Educational Resources Information Center
Saini, Vipin K.; Pires, Joao
2012-01-01
Nanoporous zeolite foam is an interesting crystalline material with an open-cell microcellular structure, similar to polyurethane foam (PUF). The aluminosilicate structure of this material has a large surface area, extended porosity, and mechanical strength. Owing to these properties, this material is suitable for industrial applications such as…
Wang, Lijun; Zhang, Chun; Gong, Wei; Ji, Yubi; Qin, Shuhao; He, Li
2018-01-01
3D cross-linking networks are generated through chemical reactions between thermosetting epoxy resin and hardener during curing. The curing degree of epoxy material can be increased by increasing curing temperature and/or time. The epoxy material must then be fully cured through a postcuring process to optimize its material characteristics. Here, a limited-foaming method is introduced for the preparation of microcellular epoxy foams (Lim-foams) with improved cell morphology, high thermal expansion coefficient, and good compressive properties. Lim-foams exhibit a lower glass transition temperature (T g ) and curing degree than epoxy foams fabricated through free-foaming process (Fre-foams). Surprisingly, however, the T g of Lim-foams is unaffected by postcuring temperature and time. This phenomenon, which is related to high gas pressure in the bubbles, contradicts that indicated by the time-temperature-transformation cure diagram. High bubble pressure promotes the movement of molecular chains under heating at low temperature and simultaneously suppresses the etherification cross-linking reaction during post-curing. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Design of Shallow Acceptors in GaN through Zinc-Magnium Codoping: First-Principles Calculation
NASA Astrophysics Data System (ADS)
Liu, Zhiqiang; Melton, Andrew G.; Yi, Xiaoyan; Wang, Jianwei; Kucukgok, Bahadir; Kang, Jun; Lu, Na; Wang, Junxi; Li, Jinmin; Ferguson, Ian
2013-04-01
In this work, we propose a novel approach to reduce the ionization energy of acceptors in GaN through Zn-Mg codoping. The characteristics of the defect states and the valence-band maximum (VBM) were investigated via first-principles calculation. Our results indicated that the original VBM of the host GaN could be altered by Zn-Mg codoping, thus improving the p-type dopability. We show that the calculated ionization energy ɛ(0/-) of the Zn-Mg acceptor is only 117 meV, which is about 90 meV shallower than that of the isolated Mg acceptor.
Alireza Javadi; Yottha Srithep; Craig C. Clemons; L-S. Turng; Shaoqin Gong
2012-01-01
Supercritical fluid (SCF) N2 was used as a physical foaming agent to fabricate microcellular injection-molded poly(hydroxybutyrate-co-hydroxyvalerate) (PHBV)âpoly(butylene adipate-co-terephthalate) (PBAT)âhyperbranched-polymer (HBP)ânanoclay (NC) bionanocomposites. The effects of incorporating HBP and NC on the morphological, mechanical, and...
Zhao, Haibin; Zhao, Guoqun
2016-01-01
In view of their complementary properties, blending polylactide (PLA) with poly (ε-caprolactone) (PCL) becomes a good choice to improve PLA's properties without compromising its biodegradability. A series of blends of biodegradable PLA and PCL with different mass fraction were prepared by melt mixing. Standard tensile bars were produced by both conventional and microcellular injection molding to study their mechanical and thermal properties. With the increase in PCL content, the blend showed decreased tensile strength and modulus; however, elongation was dramatically increased. With the addition of PCL, the failure mode changed from brittle fracture of the neat PLA to ductile fracture of the blend as demonstrated by tensile test. Various theoretical models based on dispersion and interface adhesion were used to predict the Young's modulus and the results shows the experimental data are consistent with the predictions of the foam model and Kerner-Uemura-Takayangi model. The thermal behavior of the blends was investigated by DSC and TGA. The melting temperature and the degree of crystallinity of PCL in the PLA/PCL did not significantly change with the PCL content increasing in the whole range of blends composition. Copyright © 2015 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Xiong, Jieqing; Huang, Zhitong; Zhuang, Kaiyu; Ji, Yuefeng
2016-08-01
We propose a novel handover scheme for indoor microcellular visible light communication (VLC) network. With such a scheme, the room, which is fully coverage by light, is divided into several microcells according to the layout of light-emitting diodes (LEDs). However, the directionality of light arises new challenges in keeping the connectivity between the mobile devices and light source under the mobile circumstances. The simplest solution is that all LEDs broadcast data of every user simultaneously, but it wastes too much bandwidth resource, especially when the amount of users increases. To solve this key problem, we utilize the optical positioning assisting handover procedure in this paper. In the positioning stage, the network manager obtains the location information of user device via downlink and uplink signal strength information, which is white light and infrared, respectively. After that, a Kalman filter is utilized for improving the tracking performance of a mobile device. Then, the network manager decides how to initiate the handover process by the previous information. Results show that the proposed scheme can achieve low-cost, seamless data communication, and a high probability of successful handover.
Mechanical properties of porous and cellular materials
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sieradzki, K.; Green, D.J.; Gibson, L.J.
1991-01-01
This symposium successfully brought scientists together from a wide variety of disciplines to focus on the mechanical behavior of porous and cellular solids composed of metals, ceramics, polymers, or biological materials. For cellular materials, papers ranged from processing techniques through microstructure-mechanical property relationships to design. In an overview talk, Mike Ashby (Cambridge Univ.) showed how porous cellular materials can be more efficient than dense materials in designs that require minimum weight. He indicated that many biological materials have been able to accomplish such efficiency but there exists an opportunity to design even more efficient, manmade materials controlling microstructures at differentmore » scale levels. In the area of processing, James Aubert (Sandia National Laboratories) discussed techiques for manipulating polymersolvent phase equilibria to control the microstructure of microcellular foams. Other papers on processing discussed the production of cellular ceramics by CVD, HIPing and sol- gel techniques. Papers on the mechanical behavior of cellular materials considered various ceramics microcellular polymers, conventional polymer foams and apples. There were also contributions that considered optimum design procedures for cellular materials. Steven Cowin (City Univ. of New York) discussed procedures to match the discrete microstructural aspects of cellular materials with the continuum mechanics approach to their elastic behavior.« less
Processing and characterization of novel biobased and biodegradable materials
NASA Astrophysics Data System (ADS)
Pilla, Srikanth
Human society has benefited tremendously from the use of petroleum-based plastics. However, there are growing concerns with their adverse environmental impacts and volatile costs attributed to the skyrocketing oil prices. Additionally most of the petroleum-based polymers are non-biodegradable causing problems about their disposal. Thus, during the last couple of decades, scientists ail over the world have been focusing on developing new polymeric materials that are biobased and biodegradable, also termed as green plastics . This study aims to develop green materials based on polylactide (PLA) biopolymer that can be made from plants. Although PLA can provide important advantages in terms of sustainability and biodegradability, it has its own challenges such as high cost, brittleness, and narrow processing window. These challenges are addressed in this study by investigating both new material formulations and processes. To improve the material properties and control the material costs, PLA was blended with various fillers and modifiers. The types of fillers investigated include carbon nanotube (CNT) nanoparticles and various natural fibers such as pine-wood four, recycled-wood fibers and flax fiber. Using natural fibers as fillers for PLA can result in fully biodegradable and eco-friendly biocomposites. Also due to PLA's sensitivity to moisture and temperature, molecular degradation can occur during processing leading to inferior material properties. To address this issue, one of the approaches adopted by this study was to incorporate a multifunctional chain-extender into PLA, which increased the molecular weight of PLA thereby improving the material properties. To improve the processability and reduce the material cost, both microcellular injection molding and extrusion processes have been studied. The microcellular technology allows the materials to be processed at a lower temperature, which is attractive for thermo- and moisture-sensitive materials like PLA. They are also capable of mass-producing foamed plastics with less material and less energy. Injection-molded or extruded components based on a number of different formulations were characterized extensively using various techniques such as tensile testing, dynamical mechanical analysis, differential scanning calorimetry, thermogravimetric analysis, electron microscopy (scanning and transmission), and density and molecular weight measurement, etc. Ultimately, the composition-processing-structure-property relationships in five material systems have been established.
NASA Astrophysics Data System (ADS)
Shah, Bhavesh
This dissertation focuses on overcoming existing limitations of WPCs which prevent them from realizing their full market potential. These limitations include: (i) lack of a continuous extrusion process for microcellular foaming of polyvinyl chloride (PVC) and its composites using supercritical fluids to reduce the high density of the WPCs, (ii) need for an efficient coupling agent for WPCs to overcome the poor compatibility between wood and plastic, and (iii) unproven use of wood as a filler for the biopolymer polylactide (PLA) to make "green" composites. These limitations were addressed through experimentation to develop a continuous extrusion process for microcellular foaming, and through surface modification of wood flour using natural coupling agents. The effects of wood flour, acrylic modifier and plasticizer content on the rheological properties of PVC based WPCs were studied using an extrusion capillary rheometer and a two-level factorial design. Wood flour content and acrylic modifier content were the major factors affecting the die swell ratio. Addition of plasticizer decreased the true viscosity of unfilled and filled PVC, irrespective of the acrylic modifier content. However, the addition of acrylic modifier significantly increased the viscosity of unfilled PVC but decreased the composite viscosity. Results of the rheological study were used to set baseline conditions for the continuous extrusion foaming of PVC WPCs using supercritical CO 2. Effects of material composition and processing conditions on the morphology of foamed samples were investigated. Foamed samples were produced using various material compositions and processing conditions, but steady-state conditions could not be obtained for PVC. Thus the relationships could not be determined. Incompatibility between wood flour and PVC was the focus of another study. The natural polymers chitin and chitosan were used as novel coupling agents to improve interfacial adhesion between the polymer matrix and wood fiber. Results indicated that addition of chitin and chitosan significantly increased the flexural properties and storage modulus of PVC WPCs, compared to composites without coupling agent. Significant improvements were attained with 0.5 wt. % chitosan and with 6.67 wt. % chitin. Based on the efficiency of chitosan as a coupling agent for PVC based WPCs, a biodegradable composite using polylactide (PLA) and chitosan was developed. Wood flour (0--40 wt. %) was evaluated as a filler for PLA composites and its effect on mechanical, thermal and chemical properties was studied with and without chitosan (0--10 wt. %). Addition of wood flour significantly increased the flexural and storage moduli of PLA-wood flour composites, but had no effect on glass transition temperature (Tg). Chitosan had no significant effect on any of the properties of the composites studied. Development of an efficient and effective coupling agent for PVC wood composite is a significant development which will increase performance while reducing cost. Wood filled PLA composites can further expand WPCs into applications such as packaging and automotive. Results from these studies have broadened the current knowledge base for WPC products and will be useful in the continued expansion of wood composites technology into a variety of industries.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Garten, Lauren M.; Zakutayev, Andriy; Perkins, John D.
Beta-gallium oxide (β-Ga 2O 3) is of increasing interest to the optoelectronic community for transparent conductor and power electronic applications. Considerable variability exists in the literature on the growth and doping of Ga 2O 3 films, especially as a function of growth approach, temperature, and oxygen partial pressure. Here pulsed laser deposition (PLD) was used to grow high-quality β-Ga 2O 3 films on (0001) sapphire and (–201) Ga 2O 3 single crystals and to explore the growth, stability, and dopability of these films as function of temperature and oxygen partial pressure. As a result, there is a strong temperature dependencemore » to the phase formation, morphology, and electronic properties of β-Ga 2O 3 from 350 to 550 °C.« less
Mi, Hao-Yang; Salick, Max R; Jing, Xin; Jacques, Brianna R; Crone, Wendy C; Peng, Xiang-Fang; Turng, Lih-Sheng
2013-12-01
Polylactic acid (PLA) and thermoplastic polyurethane (TPU) are two kinds of biocompatible and biodegradable polymers that can be used in biomedical applications. PLA has rigid mechanical properties while TPU possesses flexible mechanical properties. Blended TPU/PLA tissue engineering scaffolds at different ratios for tunable properties were fabricated via twin screw extrusion and microcellular injection molding techniques for the first time. Multiple test methods were used to characterize these materials. Fourier transform infrared spectroscopy (FTIR) confirmed the existence of the two components in the blends; differential scanning calorimetry (DSC) and dynamic mechanical analysis (DMA) confirmed the immiscibility between the TPU and PLA. Scanning electron microscopy (SEM) images verified that, at the composition ratios studied, PLA was dispersed as spheres or islands inside the TPU matrix and that this phase morphology further influenced the scaffold's microstructure and surface roughness. The blends exhibited a large range of mechanical properties that covered several human tissue requirements. 3T3 fibroblast cell culture showed that the scaffolds supported cell proliferation and migration properly. Most importantly, this study demonstrated the feasibility of mass producing biocompatible PLA/TPU scaffolds with tunable microstructures, surface roughnesses, and mechanical properties that have the potential to be used as artificial scaffolds in multiple tissue engineering applications. © 2013.
Mi, Hao-Yang; Salick, Max R.; Jing, Xin; Jacques, Brianna R.; Crone, Wendy C.; Peng, Xiang-Fang; Turng, Lih-Sheng
2015-01-01
Polylactic acid (PLA) and thermoplastic polyurethane (TPU) are two kinds of biocompatible and biodegradable polymers that can be used in biomedical applications. PLA has rigid mechanical properties while TPU possesses flexible mechanical properties. Blended TPU/PLA tissue engineering scaffolds at different ratios for tunable properties were fabricated via twin screw extrusion and microcellular injection molding techniques for the first time. Multiple test methods were used to characterize these materials. Fourier transform infrared spectroscopy (FTIR) confirmed the existence of the two components in the blends; differential scanning calorimetry (DSC) and dynamic mechanical analysis (DMA) confirmed the immiscibility between the TPU and PLA. Scanning electron microscopy (SEM) images verified that, at the composition ratios studied, PLA was dispersed as spheres or islands inside the TPU matrix and that this phase morphology further influenced the scaffold’s microstructure and surface roughness. The blends exhibited a large range of mechanical properties that covered several human tissue requirements. 3T3 fibroblast cell culture showed that the scaffolds supported cell proliferation and migration properly. Most importantly, this study demonstrated the feasibility of mass producing biocompatible PLA/TPU scaffolds with tunable microstructures, surface roughnesses, and mechanical properties that have the potential to be used as artificial scaffolds in multiple tissue engineering applications. PMID:24094186
Borkotoky, Shasanka Sekhar; Dhar, Prodyut; Katiyar, Vimal
2018-01-01
This article addresses the elegant and green approach for fabrication of bio-based poly (lactic acid) (PLA)/cellulose nanocrystal (CNCs) bionanocomposite foam (PLA/CNC) with cellular morphology and hydrophobic surface behavior. Highly porous (porosity >80%) structure is obtained with interconnected pores and the effect of CNCs in the cell density (N f ) and cell size of foams are thoroughly investigated by morphological analysis. The thermo-mechanical investigations are performed for the foam samples and almost ∼1.7 and ∼2.2 fold increase in storage modulus is observed for the compressive and tensile mode respectively. PLA/CNC based bionanocomposite foams displayed similar thermal stability as base PLA foam. Detailed investigations of decomposition behavior are studied by using hyphenated thermogravimetric analysis-fourier transmission infrared spectroscopy (TGA-FTIR) system. Almost ∼13% increment is observed in crystallinity at highest loading of CNCs compared to neat counterpart. To investigate the splitting and spreading phenomenon of the wettability of the samples, linear model is used to find the Young's contact angle and contact angle hysteresis (CAH). Besides, ∼6.1 folds reduction in the density of PLA and the nanocomposite foams compared to PLA carries much significance in specialized application areas where weight is an important concern. Copyright © 2017 Elsevier B.V. All rights reserved.
Low density microcellular foams
Aubert, J.H.; Clough, R.L.; Curro, J.G.; Quintana, C.A.; Russick, E.M.; Shaw, M.T.
1985-10-02
Low density, microporous polymer foams are provided by a process which comprises forming a solution of polymer and a suitable solvent followed by rapid cooling of the solution to form a phase-separated system and freeze the phase-separated system. The phase-separated system comprises a polymer phase and a solvent phase, each of which is substantially continuous within the other. The morphology of the polymer phase prior to and subsequent to freezing determine the morphology of the resultant foam. Both isotropic and anisotropic foams can be produced. If isotropic foams are produced, the polymer and solvent are tailored such that the solution spontaneously phase-separates prior to the point at which any component freezes. The morphology of the resultant polymer phase determines the morphology of the reusltant foam and the morphology of the polymer phase is retained by cooling the system at a rate sufficient to freeze one or both components of the system before a change in morphology can occur. Anisotropic foams are produced by forming a solution of polymer and solvent that will not phase separate prior to freezing of one or both components of the solution. In such a process, the solvent typically freezes before phase separation occurs. The morphology of the resultant frozen two-phase system determines the morphology of the resultant foam. The process involves subjecting the solution to essentially one-dimensional cooling. Foams having a density of less than 0.1 g/cc and a uniform cell size of less than 10 ..mu..m and a volume such that the foams have a length greater than 1 cm are provided.
Bipolar doping and band-gap anomalies in delafossite transparent conductive oxides.
Nie, Xiliang; Wei, Su-Huai; Zhang, S B
2002-02-11
Doping wide-gap materials p type is highly desirable but often difficult. This makes the recent discovery of p-type delafossite oxides, CuM(III)O2, very attractive. The CuM(III)O2 also show unique and unexplained physical properties: Increasing band gap from M(III) = Al,Ga, to In, not seen in conventional semiconductors. The largest gap CuInO2 can be mysteriously doped both n and p type but not the smaller gaps CuAlO2 and CuGaO2. Here, we show that both properties are results of a large disparity between the fundamental gap and the apparent optical gap, a finding that could lead to a breakthrough in the study of bipolarly dopable wide-gap semiconductor oxides.
Design of optimal buffer layers for CuInGaSe2 thin-film solar cells(Conference Presentation)
NASA Astrophysics Data System (ADS)
Lordi, Vincenzo; Varley, Joel B.; He, Xiaoqing; Rockett, Angus A.; Bailey, Jeff; Zapalac, Geordie H.; Mackie, Neil; Poplavskyy, Dmitry; Bayman, Atiye
2016-09-01
Optimizing the buffer layer in manufactured thin-film PV is essential to maximize device efficiency. Here, we describe a combined synthesis, characterization, and theory effort to design optimal buffers based on the (Cd,Zn)(O,S) alloy system for CIGS devices. Optimization of buffer composition and absorber/buffer interface properties in light of several competing requirements for maximum device efficiency were performed, along with process variations to control the film and interface quality. The most relevant buffer properties controlling performance include band gap, conduction band offset with absorber, dopability, interface quality, and film crystallinity. Control of an all-PVD deposition process enabled variation of buffer composition, crystallinity, doping, and quality of the absorber/buffer interface. Analytical electron microscopy was used to characterize the film composition and morphology, while hybrid density functional theory was used to predict optimal compositions and growth parameters based on computed material properties. Process variations were developed to produce layers with controlled crystallinity, varying from amorphous to fully epitaxial, depending primarily on oxygen content. Elemental intermixing between buffer and absorber, particularly involving Cd and Cu, also is controlled and significantly affects device performance. Secondary phase formation at the interface is observed for some conditions and may be detrimental depending on the morphology. Theoretical calculations suggest optimal composition ranges for the buffer based on a suite of computed properties and drive process optimizations connected with observed film properties. Prepared by LLNL under Contract DE-AC52-07NA27344.
Sorption and vapor transmission properties of uncompressed and compressed microcellular starch foam.
Glenn, Gregory M; Klamczynski, Artur P; Takeoka, Gary; Orts, William J; Wood, Delilah; Widmaier, Robert
2002-11-20
Microcellular starch foams (MCFs) are made by a solvent-exchange process and consist of a porous matrix with pores generally ranging from approximately 2 microm to submicrometer size. MCF may potentially be useful as a slow-release agent for volatile compounds because of its ability to sorb chemicals from the atmosphere and to absorb liquids into its porous structure, and because it can be compressed to form a starch plastic. MCF made of high-amylose corn and wheat starches was prepared with or without 2% (w/w) silicone oil (SO) or palmitic acid (PA). The MCF was loaded with 1% of various volatile compounds with vapor pressures ranging from 0.02 to 28 mm. The MCF depressed the vapor pressure from 0.37 to 37% compared to a control containing no MCF. Incorporating SO or PA in the matrix of the MCF had little effect on sorption of volatiles. Compressing MCF at 1.4, 6.9, and 69 MPa made a starch plastic with varying porosity. The vapor transmission rate of various volatile compounds through MCF was positively correlated to the vapor pressure of the test compound but was inversely proportional to the compression force used to form the starch plastic. The results indicate that uncompressed and compressed MCFs could be effective slow-release agents for a variety of volatile compounds, especially if used together.
NASA Astrophysics Data System (ADS)
Park, Ju Hyuk; Yang, Sei Hyun; Lee, Hyeong Rae; Yu, Cheng Bin; Pak, Seong Yeol; Oh, Chi Sung; Kang, Yeon June; Youn, Jae Ryoun
2017-06-01
Sound absorption of a polyurethane (PU) foam was predicted for various geometries to fabricate the optimum microstructure of a sound absorbing foam. Multiscale numerical analysis for sound absorption was carried out by solving flow problems in representative unit cell (RUC) and the pressure acoustics equation using Johnson-Champoux-Allard (JCA) model. From the numerical analysis, theoretical optimum cell diameter for low frequency sound absorption was evaluated in the vicinity of 400 μm under the condition of 2 cm-80 K (thickness of 2 cm and density of 80 kg/m3) foam. An ultrasonic foaming method was employed to modulate microcellular structure of PU foam. Mechanical activation was only employed to manipulate the internal structure of PU foam without any other treatment. A mean cell diameter of PU foam was gradually decreased with increase in the amplitude of ultrasonic waves. It was empirically found that the reduction of mean cell diameter induced by the ultrasonic wave enhances acoustic damping efficiency in low frequency ranges. Moreover, further analyses were performed with several acoustic evaluation factors; root mean square (RMS) values, noise reduction coefficients (NRC), and 1/3 octave band spectrograms.
Fabrication of superhydrophobic film by microcellular plastic foaming method
NASA Astrophysics Data System (ADS)
Zhang, Zhen Xiu; Li, Ya Nan; Xia, Lin; Ma, Zhen Guo; Xin, Zhen Xiang; Kim, Jin Kuk
2014-08-01
To solve the complicated manufacturing operation and the usage of toxic solvent problems, a simple and novel method to fabricate superhydrophobic film by surface foaming method was introduced in this paper. The superhydrophobic property of the foamed material was obtained at a contact angle >150° and a rolling angle about 8°. The foamed material can instantly generate its superhydrophobicity via peeling process. The effects of blowing agent content, foaming time and peeling rate on the foam structure and superhydrophobicity were studied.
Low density microcellular foams
Aubert, James H.; Clough, Roger L.; Curro, John G.; Quintana, Carlos A.; Russick, Edward M.; Shaw, Montgomery T.
1987-01-01
Low density, microporous polymer foams are provided by a process which comprises forming a solution of polymer and a suitable solvent followed by rapid cooling of the solution to form a phase-separated system and freeze the phase-separated system. The phase-separated system comprises a polymer phase and a solvent phase, each of which is substantially continuous within the other. The morphology of the polymer phase prior to and subsequent to freezing determine the morphology of the resultant foam. Both isotropic and anisotropic foams can be produced. If isotropic foams are produced, the polymer and solvent are tailored such that the solution spontaneously phase-separates prior to the point at which any component freezes. The morphology of the resultant polymer phase determines the morphology of the resultant foam and the morphology of the polymer phase is retained by cooling the system at a rate sufficient to freeze one or both components of the system before a change in morphology can occur. Anisotropic foams are produced by forming a solution of polymer and solvent that will not phase separate prior to freezing of one or both components of the solution. In such a process, the solvent typically freezes before phase separation occurs. The morphology of the resultant frozen two-phase system determines the morphology of the resultant foam. The process involves subjecting the solution to essentially one-dimensional cooling. Means for subjecting such a solvent to one-dimensional cooling are also provided. Foams having a density of less than 0.1 g/cc and a uniform cell size of less than 10 .mu.m and a volume such that the foams have a length greater than 1 cm are provided.
Effects of urban microcellular environments on ray-tracing-based coverage predictions.
Liu, Zhongyu; Guo, Lixin; Guan, Xiaowei; Sun, Jiejing
2016-09-01
The ray-tracing (RT) algorithm, which is based on geometrical optics and the uniform theory of diffraction, has become a typical deterministic approach of studying wave-propagation characteristics. Under urban microcellular environments, the RT method highly depends on detailed environmental information. The aim of this paper is to provide help in selecting the appropriate level of accuracy required in building databases to achieve good tradeoffs between database costs and prediction accuracy. After familiarization with the operating procedures of the RT-based prediction model, this study focuses on the effect of errors in environmental information on prediction results. The environmental information consists of two parts, namely, geometric and electrical parameters. The geometric information can be obtained from a digital map of a city. To study the effects of inaccuracies in geometry information (building layout) on RT-based coverage prediction, two different artificial erroneous maps are generated based on the original digital map, and systematic analysis is performed by comparing the predictions with the erroneous maps and measurements or the predictions with the original digital map. To make the conclusion more persuasive, the influence of random errors on RMS delay spread results is investigated. Furthermore, given the electrical parameters' effect on the accuracy of the predicted results of the RT model, the dielectric constant and conductivity of building materials are set with different values. The path loss and RMS delay spread under the same circumstances are simulated by the RT prediction model.
Garten, Lauren M.; Zakutayev, Andriy; Perkins, John D.; ...
2016-11-21
Beta-gallium oxide (β-Ga 2O 3) is of increasing interest to the optoelectronic community for transparent conductor and power electronic applications. Considerable variability exists in the literature on the growth and doping of Ga 2O 3 films, especially as a function of growth approach, temperature, and oxygen partial pressure. Here pulsed laser deposition (PLD) was used to grow high-quality β-Ga 2O 3 films on (0001) sapphire and (–201) Ga 2O 3 single crystals and to explore the growth, stability, and dopability of these films as function of temperature and oxygen partial pressure. As a result, there is a strong temperature dependencemore » to the phase formation, morphology, and electronic properties of β-Ga 2O 3 from 350 to 550 °C.« less
Synthesis, structure, and optoelectronic properties of II-IV-V 2 materials
Martinez, Aaron D.; Fioretti, Angela N.; Toberer, Eric S.; ...
2017-03-07
II-IV-V 2 materials offer the promise of enhanced functionality in optoelectronic devices due to their rich ternary chemistry. In this review, we consider the potential for new optoelectronic devices based on nitride, phosphide, and arsenide II-IV-V 2 materials. As ternary analogs to the III-V materials, these compounds share many of the attractive features that have made the III-Vs the basis of modern optoelectronic devices (e.g. high mobility, strong optical absorption). Control of cation order parameter in the II-IV-V 2 materials can produce significant changes in optoelectronic properties at fixed chemical composition, including decoupling band gap from lattice parameter. Recent progressmore » has begun to resolve outstanding questions concerning the structure, dopability, and optical properties of the II-IV-V 2 materials. Furthermore, remaining research challenges include growth optimization and integration into heterostructures and devices.« less
Efficient n-type doping of zinc-blende III-V semiconductor nanowires
NASA Astrophysics Data System (ADS)
Besteiro, Lucas V.; Tortajada, Luis; Souto, J.; Gallego, L. J.; Chelikowsky, James R.; Alemany, M. M. G.
2014-03-01
We demonstrate that it is preferable to dope III-V semiconductor nanowires by n-type anion substitution as opposed to cation substitution. Specifically, we show the dopability of zinc-blende nanowires is more efficient when the dopants are placed at the anion site as quantified by formation energies and the stabilization of DX-like defect centers. The comparison with previous work on n - type III-V semiconductor nanocrystals also allows to determine the role of dimensionality and quantum confinement on doping characteristics of materials. Our results are based on first-principles calculations of InP nanowires by using the PARSEC code. Work supported by the Spanish MICINN (FIS2012-33126) and Xunta de Galicia (GPC2013-043) in conjunction with FEDER. JRC acknowledges support from DoE (DE-FG02-06ER46286 and DESC0008877). Computational support was provided in part by CESGA.
NASA Astrophysics Data System (ADS)
Rezvanpanah, Elham; Ghaffarian Anbaran, S. Reza
2017-11-01
This study establishes a model and simulation scheme to describe the effect of crystallinity as one of the most effective parameters on cell growth phenomena in a solid batch foaming process. The governing model of cell growth dynamics, based on the well-known ‘Cell model’, is attained in details. To include the effect of crystallinity in the model, the properties of the polymer/gas mixtures (i.e. solubility, diffusivity, surface tension and viscosity) are estimated by modifying relations to consider the effect of crystallinity. A finite element-finite difference (FEFD) method is employed to solve the highly nonlinear and coupled equations of cell growth dynamics. The proposed simulation is able to evaluate all properties of the system at the given process condition and uses them to calculate the cell size, pressure and gas concentration gradient with time. A high-density polyethylene/nitrogen (HDPE/N2) system is used herein as a case study. Comparing the simulation results with the others works and experimental results verify the accuracy of the simulation scheme. The cell growth is a complicated combination of several phenomena. This study attempted to reach a better understanding of cell growth trend, driving and retarding forces and the effect of crystallinity on them.
Naisberg, Y; Weizman, A
1999-03-01
This article describes a working hypothesis of the nature of the 'suicide condition' (SC). The authors contend that the SC emerges as a specialized result of two-phase impairment in the neuroimmunological 'inherited schematic representation' (ISR) involving: (a) the formation of a 'microcellular suicide' phenomenon; and (b) the establishment of a 'macro-organismic suicide' program. Our hypothesis, unlike earlier ones, is based on scientific evidence spanning diverse clinical diagnostic areas indicating that the SC is induced by a local histoincompatibility across distinct tissue structures and/or a remodeling of one or more neurimmunological ISR designs due to biophysical ion shunt bypass and neglect, whereas a normal neuroimmunological ISR complex produces an all-embracing organismic histocompatible tissue-syntonic-to-ego-syntonic expression. The presence of abnormal 'microcellular suicide' assemblies leads to cell syntonic-to-cell dystonic transformation and initiates the first modification phase by contaminating certain neurimmunological ISR programs which in turn trigger the onset of partial ego syntonic-to-ego-dystonic conversion. This is translated by the self-conscious experience as partial self-to-alien tissue translocation. These formations accumulate at a rate, arriving at the second phase in SC establishment when they reach a magnitude resolution that surpasses the organismic suicide threshold level and increase the amount of ego-syntonic-to-ego-dystonic inclusion. This is then translated by the self-conscious experience as a 'foreseeable and inescapable death' that is based on severe self-to-alien multiorgan substitution. The latter overcomes the rules and regulations prescribed by impulse-induced inner events, regardless of outer psychosocial events, and leads to an irrevocable drive to suicide.
Permeability of starch gel matrices and select films to solvent vapors.
Glenn, Gregory M; Klamczynski, Artur P; Ludvik, Charles; Shey, Justin; Imam, Syed H; Chiou, Bor-Sen; McHugh, Tara; DeGrandi-Hoffman, Gloria; Orts, William; Wood, Delilah; Offeman, Rick
2006-05-03
Volatile agrochemicals such as 2-heptanone have potential in safely and effectively controlling important agricultural pests provided that they are properly delivered. The present study reports the permeability of starch gel matrices and various coatings, some of which are agricultural-based, that could be used in controlled release devices. Low-density, microcellular starch foam was made from wheat, Dent corn, and high amylose corn starches. The foam density ranged from 0.14 to 0.34 g/cm3, the pore volume ranged from 74 to 89%, and the loading capacity ranged from 2.3 to 7.2 times the foam weight. The compressive properties of the foam were not markedly affected by saturating the pore volume with silicone oil. The vapor transmission rate (VTR) and vapor permeability (VP) were measured in dry, porous starch foam and silicone-saturated starch gels. VTR values were highest in foam samples containing solvents with high vapor pressures. Silicone oil-saturated gels had lower VTR and VP values as compared to the dry foam. However, the silicone oil gel did not markedly reduce the VP for 2-heptanone and an additional vapor barrier or coating was needed to adequately reduce the evaporation rate. The VP of films of beeswax, paraffin, ethylene vinyl alcohol, a fruit film, and a laminate comprised of beeswax and fruit film was measured. The fruit film had a relatively high VP for polar solvents and a very low VP for nonpolar solvents. The laminate film provided a low VP for polar and nonpolar solvents. Perforating the fruit film portion of the laminate provided a method of attaining the target flux rate of 2-heptanone. The results demonstrate that the vapor flux rate of biologically active solvents can be controlled using agricultural materials.
A low cost, all-organic Na-ion Battery Based on Polymeric Cathode and Anode
Deng, Wenwen; Liang, Xinmiao; Wu, Xianyong; Qian, Jiangfeng; Cao, Yuliang; Ai, Xinping; Feng, Jiwen; Yang, Hanxi
2013-01-01
Current battery systems have severe cost and resource restrictions, difficultly to meet the large scale electric storage applications. Herein, we report an all-organic Na-ion battery using p-dopable polytriphenylamine as cathode and n-type redox-active poly(anthraquinonyl sulphide) as anode, excluding the use of transition-metals as in conventional electrochemical batteries. Such a Na-ion battery can work well with a voltage output of 1.8 V and realize a considerable specific energy of 92 Wh kg−1. Due to the structural flexibility and stability of the redox-active polymers, this battery has a superior rate capability with 60% capacity released at a very high rate of 16 C (3200 mA g−1) and also exhibit an excellent cycling stability with 85% capacity retention after 500 cycles at 8 C rate. Most significantly, this type of all-organic batteries could be made from renewable and earth-abundant materials, thus offering a new possibility for widespread energy storage applications. PMID:24036973
Easily doped p-type, low hole effective mass, transparent oxides
Sarmadian, Nasrin; Saniz, Rolando; Partoens, Bart; Lamoen, Dirk
2016-01-01
Fulfillment of the promise of transparent electronics has been hindered until now largely by the lack of semiconductors that can be doped p-type in a stable way, and that at the same time present high hole mobility and are highly transparent in the visible spectrum. Here, a high-throughput study based on first-principles methods reveals four oxides, namely X2SeO2, with X = La, Pr, Nd, and Gd, which are unique in that they exhibit excellent characteristics for transparent electronic device applications – i.e., a direct band gap larger than 3.1 eV, an average hole effective mass below the electron rest mass, and good p-type dopability. Furthermore, for La2SeO2 it is explicitly shown that Na impurities substituting La are shallow acceptors in moderate to strong anion-rich growth conditions, with low formation energy, and that they will not be compensated by anion vacancies VO or VSe. PMID:26854336
NASA Astrophysics Data System (ADS)
Miyamoto, Ryoma; Utano, Tatsumi; Yasuhara, Shunya; Ishihara, Shota; Ohshima, Masahiro
2015-05-01
In this study, the core-back foam injection molding was used for preparing microcelluar polypropylene (PP) foam with either a 1,3:2,4 bis-O-(4-methylbenzylidene)-D-sorbitol gelling agent (Gel-all MD) or a fibros network polymer additive (Metablen 3000). Both agent and addiive could effectively control the celluar morphology in foams but somehow different ways. In course of cooling the polymer with Gel-all MD in the mold caity, the agent enhanced the crystal nucleation and resulted in the large number of small crystals. The crystals acted as effective bubble nucleation agent in foaming process. Thus, the agent reduced the cell size and increased the cell density, drastically. Furthermore, the small crystals provided an inhomogenuity to the expanding cell wall and produced the high open cell content with nano-scale fibril structure. Gell-all as well as Metablene 3000 formed a gel-like fibrous network in melt. The network increased the elongational viscosity and tended to prevent the cell wall from breaking up. The foaming temperature window was widened by the presence of the network. Especially, the temperature window where the macro-fibrous structure was formed was expanded to the higher temperature. The effects of crystal nucleating agent and PTFE on crystals' size and number, viscoelsticity, rheological propreties of PP and cellular morphology were compared and thorougly investigated.
Micro- and nanotechnology in cardiovascular tissue engineering.
Zhang, Boyang; Xiao, Yun; Hsieh, Anne; Thavandiran, Nimalan; Radisic, Milica
2011-12-09
While in nature the formation of complex tissues is gradually shaped by the long journey of development, in tissue engineering constructing complex tissues relies heavily on our ability to directly manipulate and control the micro-cellular environment in vitro. Not surprisingly, advancements in both microfabrication and nanofabrication have powered the field of tissue engineering in many aspects. Focusing on cardiac tissue engineering, this paper highlights the applications of fabrication techniques in various aspects of tissue engineering research: (1) cell responses to micro- and nanopatterned topographical cues, (2) cell responses to patterned biochemical cues, (3) controlled 3D scaffolds, (4) patterned tissue vascularization and (5) electromechanical regulation of tissue assembly and function.
Computationally guided discovery of thermoelectric materials
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gorai, Prashun; Stevanović, Vladan; Toberer, Eric S.
The potential for advances in thermoelectric materials, and thus solid-state refrigeration and power generation, is immense. Progress so far has been limited by both the breadth and diversity of the chemical space and the serial nature of experimental work. In this Review, we discuss how recent computational advances are revolutionizing our ability to predict electron and phonon transport and scattering, as well as materials dopability, and we examine efficient approaches to calculating critical transport properties across large chemical spaces. When coupled with experimental feedback, these high-throughput approaches can stimulate the discovery of new classes of thermoelectric materials. Within smaller materialsmore » subsets, computations can guide the optimal chemical and structural tailoring to enhance materials performance and provide insight into the underlying transport physics. Beyond perfect materials, computations can be used for the rational design of structural and chemical modifications (such as defects, interfaces, dopants and alloys) to provide additional control on transport properties to optimize performance. Through computational predictions for both materials searches and design, a new paradigm in thermoelectric materials discovery is emerging.« less
Computationally guided discovery of thermoelectric materials
Gorai, Prashun; Stevanović, Vladan; Toberer, Eric S.
2017-08-22
The potential for advances in thermoelectric materials, and thus solid-state refrigeration and power generation, is immense. Progress so far has been limited by both the breadth and diversity of the chemical space and the serial nature of experimental work. In this Review, we discuss how recent computational advances are revolutionizing our ability to predict electron and phonon transport and scattering, as well as materials dopability, and we examine efficient approaches to calculating critical transport properties across large chemical spaces. When coupled with experimental feedback, these high-throughput approaches can stimulate the discovery of new classes of thermoelectric materials. Within smaller materialsmore » subsets, computations can guide the optimal chemical and structural tailoring to enhance materials performance and provide insight into the underlying transport physics. Beyond perfect materials, computations can be used for the rational design of structural and chemical modifications (such as defects, interfaces, dopants and alloys) to provide additional control on transport properties to optimize performance. Through computational predictions for both materials searches and design, a new paradigm in thermoelectric materials discovery is emerging.« less
Formation of mixed organic layers by stepwise electrochemical reduction of diazonium compounds.
Santos, Luis; Ghilane, Jalal; Lacroix, Jean Christophe
2012-03-28
This work describes the formation of a mixed organic layer covalently attached to a carbon electrode. The strategy adopted is based on two successive electrochemical reductions of diazonium salts. First, bithiophene phenyl (BTB) diazonium salt is reduced using host/guest complexation in a water/cyclodextrin (β-CD) solution. The resulting layer consists of grafted BTB oligomers and cyclodextrin that can be removed from the surface. The electrochemical response of several outer-sphere redox probes on such BTB/CD electrodes is close to that of a diode, thanks to the easily p-dopable oligo(BTB) moieties. When CD is removed from the surface, pinholes are created and this diode like behavior is lost. Following this, nitrophenyl (NP) diazonium is reduced to graft a second component. Electrochemical study shows that upon grafting NP insulating moieties, the diode-like behavior of the layer is restored which demonstrates that NP is grafted predominately in the empty spaces generated by β-CD desorption. As a result, a mixed BTB/NP organic layer covalently attached to a carbon electrode is obtained using a stepwise electrochemical reduction of two diazonium compounds.
Intact capture of hypervelocity projectiles
NASA Technical Reports Server (NTRS)
Tsou, P.
1990-01-01
The ability to capture projectiles intact at hypervelocities opens new applications in science and technology that would either not be possible or would be very costly by other means. This capability has been demonstrated in the laboratory for aluminum projectiles of 1.6 mm diameter, captured at 6 km/s, in one unmelted piece, and retaining up to 95% of the original mass. Furthermore, capture was accomplished passively using microcellular underdense polymer foam. Another advantage of capturing projectiles in an underdense medium is the ability of such a medium to preserve a record of the projectile's original velocity components of speed and direction. A survey of these experimental results is described in terms of a dozen parameters which characterize the amount of capture and the effect on the projectile due to different capture media.
Intact capture of hypervelocity projectiles.
Tsou, P
1990-01-01
The ability to capture projectiles intact at hypervelocities opens new applications in science and technology that would either not be possible or would be very costly by other means. This capability has been demonstrated in the laboratory for aluminum projectiles of 1.6 mm diameter, captured at 6 km/s, in one unmelted piece, and retaining up to 95% of the original mass. Furthermore, capture was accomplished passively using microcellular underdense polymer foam. Another advantage of capturing projectiles in an underdense medium is the ability of such a medium to preserve a record of the projectile's original velocity components of speed and direction. A survey of these experimental results is described in terms of a dozen parameters which characterize the amount of capture and the effect on the projectile due to different capture media.
NASA/ASEE Summer Faculty Fellowship Program
NASA Technical Reports Server (NTRS)
Hosler, E. Ramon (Editor); Valdes, Carol (Editor); Brown, Tom (Editor)
1993-01-01
This document is a collection of technical reports on research conducted by the participants in the 1993 NASA/ASEE Summer Faculty Fellowship Program at KSC. The basic common objectives of the Program are: to further the professional knowledge of qualified engineering and science faculty members; to stimulate an exchange of ideas between participants and NASA; to enrich and refresh the research and teaching activities of participants' institutions; and to contribute to the research objectives of the NASA centers. 1993 topics include wide band fiber optic communications, a prototype expert/information system for examining environmental risks of KSC activities, alternatives to premise wiring using ATM and microcellular technologies, rack insertion end effector (RIEE) automation, FTIR quantification of industrial hydraulic fluids in perchloroethylene, switch configuration for migration to optical fiber network, and more.
Morrison, R.L.
1994-11-01
Biofoam is a rigid, microcellular organic foam made from organic materials derived from natural products and biological organisms. Starting materials include agar, agarose, gelatin, algin, alginates, gellan gum, and microcrystalline cellulose. The organic material is dissolved in a polar solvent, typically water, and the mixture is gelled. The water in the gel pores is replaced at least once with another solvent to reduce the pore size of the final biofoam. The solvent in the gel pores may be replaced several times. After the final replacement of solvent, the gel is frozen and freeze-dried to form a biofoam. Translucent biofoams are formed by selecting a final solvent that forms very small crystals. A variety of crystalline, fibrous, amorphous, or metallic additives may be incorporated into the foam structure to produce lightweight composite materials with enhanced strength and insulating properties. 1 fig.
Morrison, Robert L.
1994-01-01
Biofoam is a rigid, microcellular organic foam made from organic materials derived from natural products and biological organisms. Starting materials include agar, agarose, gelatin, algin, alginates, gellan gum, and microcrystalline cellulose. The organic material is dissolved in a polar solvent, typically water, and the mixture is gelled. The water in the gel pores is replaced at least once with another solvent to reduce the pore size of the final biofoam. The solvent in the gel pores may be replaced several times. After the final replacement of solvent, the gel is frozen and freeze-dried to form a biofoam. Translucent biofoams are formed by selecting a final solvent that forms very small crystals. A variety of crystalline, fibrous, amorphous, or metallic additives may be incorporated into the foam structure to produce lightweight composite materials with enhanced strength and insulating properties.
Analysis of foliage effects on mobile propagation in dense urban environments
NASA Astrophysics Data System (ADS)
Bronshtein, Alexander; Mazar, Reuven; Lu, I.-Tai
2000-07-01
Attempts to reduce the interference level and to increase the spectral efficiency of cellular radio communication systems operating in dense urban and suburban areas lead to the microcellular approach with a consequent requirement to lower antenna heights. In large metropolitan areas having high buildings this requirement causes a situation where the transmitting and receiving antennas are both located below the rooftops, and the city street acts as a type of a waveguiding channel for the propagating signal. In this work, the city street is modeled as a random multislit waveguide with randomly distributed regions of foliage parallel to the building boundaries. The statistical propagation characteristics are expressed in terms of multiple ray-fields approaching the observer. Algorithms for predicting the path-loss along the waveguide and for computing the transverse field structure are presented.
Microcellular foaming of arabinoxylan and PEGylated arabinoxylan with supercritical CO2.
Härdelin, Linda; Ström, Anna; Di Maio, Ernesto; Iannace, Salvatore; Larsson, Anette
2018-02-01
In this study, arabinoxylan extracted from barley husks was reacted with polyethylene glycol (PEG) of various molecular weights to introduce an internal plasticizer into the polymer matrix. A successful PEGylation reaction was identified using FTIR and elemental analysis. Thermal and mechanical properties were studied using dynamic mechanical analysis, which revealed that the attachment of PEG chains reduced the glass transition temperature by up to 25°C. Foaming experiments were conducted under different test conditions in a batch foaming process with supercritical CO 2 in a thermoregulated and pressurized cylinder. The foams were evaluated using SEM by studying the morphology of the samples foamed at different temperatures. The unmodified arabinoxylan sample was found to produce the best foam morphology, though the PEGylated samples could be produced at lower temperatures than could the unmodified arabinoxylan. This was interpreted as due to the decrease in the glass transition temperature. Copyright © 2017. Published by Elsevier Ltd.
Exploring Cd-Zn-O-S alloys for improved buffer layers in thin-film photovoltaics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Varley, J. B.; Lordi, V.; He, X.
Here, to compete with existing and more mature solar cell technologies such as crystalline Si, thin-film photovoltaics require optimization of every aspect in the device heterostructure to reach maximum efficiencies and cost effectiveness. For absorbers like CdTe, Cu(In,Ga)Se 2 (CIGSe), and Cu 2ZnSn(S,Se) 4 (CZTSSe), improving the n-type buffer layer partner beyond conventional CdS is one avenue that can reduce photocurrent losses and improve overall performance. Here, we use first-principles calculations based on hybrid functionals to explore alloys spanning the Cd-, Zn-, O-, and S-containing phase space to identify compositions that may be superior to common buffers like pure CdSmore » or Zn(O,S). We address issues highly correlated with device performance such as lattice-matching for improved buffer-absorber epitaxy and interface quality, dopability, the band gap for reduced absorption losses in the buffer, and the conduction-band offsets shown to facilitate improved charge separation from photoexcited carriers. We supplement our analysis with device-level simulations as parameterized from our calculations and real devices to assess our conclusions of low-Zn and O content buffers showing improved performance with respect to CdS buffers.« less
Exploring Cd-Zn-O-S alloys for improved buffer layers in thin-film photovoltaics
Varley, J. B.; Lordi, V.; He, X.; ...
2017-07-17
Here, to compete with existing and more mature solar cell technologies such as crystalline Si, thin-film photovoltaics require optimization of every aspect in the device heterostructure to reach maximum efficiencies and cost effectiveness. For absorbers like CdTe, Cu(In,Ga)Se 2 (CIGSe), and Cu 2ZnSn(S,Se) 4 (CZTSSe), improving the n-type buffer layer partner beyond conventional CdS is one avenue that can reduce photocurrent losses and improve overall performance. Here, we use first-principles calculations based on hybrid functionals to explore alloys spanning the Cd-, Zn-, O-, and S-containing phase space to identify compositions that may be superior to common buffers like pure CdSmore » or Zn(O,S). We address issues highly correlated with device performance such as lattice-matching for improved buffer-absorber epitaxy and interface quality, dopability, the band gap for reduced absorption losses in the buffer, and the conduction-band offsets shown to facilitate improved charge separation from photoexcited carriers. We supplement our analysis with device-level simulations as parameterized from our calculations and real devices to assess our conclusions of low-Zn and O content buffers showing improved performance with respect to CdS buffers.« less
NASA Technical Reports Server (NTRS)
Kanai, T.; Kramer, M.; McAuley, A. J.; Nowack, S.; Pinck, D. S.; Ramirez, G.; Stewart, I.; Tohme, H.; Tong, L.
1995-01-01
This paper describes results from several wireless field trials in New Jersey, California, and Colorado, conducted jointly by researchers at Bellcore, JPL, and US West over the course of 1993 and 1994. During these trials, applications communicated over multiple wireless networks including satellite, low power PCS, high power cellular, packet data, and the wireline Public Switched Telecommunications Network (PSTN). Key goals included 1) designing data applications and an API suited to mobile users, 2) investigating internetworking issues, 3) characterizing wireless networks under various field conditions, and 4) comparing the performance of different protocol mechanisms over the diverse networks and applications. We describe experimental results for different protocol mechanisms and parameters, such as acknowledgment schemes and packet sizes. We show the need for powerful error control mechanisms such as selective acknowledgements and combining data from multiple transmissions. We highlight the possibility of a common protocol for all wireless networks, from micro-cellular PCS to satellite networks.
Ultra-Lightweight Nanocomposite Foams and Sandwich Structures for Space Structure Applications
NASA Technical Reports Server (NTRS)
Tan, Seng
2012-01-01
Microcellular nanocomposite foams and sandwich structures have been created to have excellent electrical conductivity and radiation-resistant properties using a new method that does not involve or release any toxicity. The nanocomposite structures have been scaled up in size to 12 X 12 in. (30 X 30 cm) for components fabrication. These sandwich materials were fabricated mainly from PE, CNF, and carbon fibers. Test results indicate that they have very good compression and compression-after-impact properties, excellent electrical conductivity, and superior space environment durability. Compression tests show that 1000 ESH (equivalent Sun hours) of UV exposure has no effect on the structural properties of the sandwich structures. The structures are considerably lighter than aluminum alloy (= 36 percent lighter), which translates to 36 percent weight savings of the electronic enclosure and its housing. The good mechanical properties of the materials may enable the electronic housing to be fabricated with a thinner structure that further reduces the weight. There was no difficulty in machining the sandwich specimens into electronic enclosure housing.
Ardanuy, Mònica; Antunes, Marcelo; Velasco, José Ignacio
2012-02-01
Novel lightweight composite foams based on recycled polypropylene reinforced with cellulosic fibres obtained from agricultural residues were prepared and characterized. These composites, initially prepared by melt-mixing recycled polypropylene with variable fibre concentrations (10-25 wt.%), were foamed by high-pressure CO(2) dissolution, a clean process which avoids the use of chemical blowing agents. With the aim of studying the influence of the fibre characteristics on the resultant foams, two chemical treatments were applied to the barley straw in order to increase the α-cellulose content of the fibres. The chemical composition, morphology and thermal stability of the fibres and composites were analyzed. Results indicate that fibre chemical treatment and later foaming of the composites resulted in foams with characteristic closed-cell microcellular structures, their specific storage modulus significantly increasing due to the higher stiffness of the fibres. The addition of the fibres also resulted in an increase in the glass transition temperature of PP in both the solid composites and more significantly in the foams. Copyright © 2011 Elsevier Ltd. All rights reserved.
Abrahám, E; Karácsonyi, L; Dinya, E
1990-12-30
In 1975 in one of the major industrial districts of Budapest some longitudinal epidemiological examinations were carried out with the aim of, among others, determination of connection between environmental injuries and lung cancer incidence in connection with determination of lung cancer risk groups. Between 1975-1989 out of the environmental injuries the most important was the radioactive contamination observed due to the atomic power station catastrophe in Chernobil (1986). In 1987 the incidence of lung cancer increased. The increase was significant among the 50-69-year-old women, and expressly among the heavy smokers. In 1987, especially among women, but also in both sexes, the ratio among the major cell types of lung cancer shifted towards micro-cellular ones. In 1988 and 1989 lung cancer incidence has decreased. In view of the above a hypothesis was raised: patients who have previously suffered immunobiological hurt, could not prevent the increased radioactive burden and got ill with lung cancer earlier, than it should have been happened without this increased burden. For clarification this question further examinations are considered to be necessary.
Primal Eukaryogenesis: On the Communal Nature of Precellular States, Ancestral to Modern Life
Egel, Richard
2012-01-01
This problem-oriented, exploratory and hypothesis-driven discourse toward the unknown combines several basic tenets: (i) a photo-active metal sulfide scenario of primal biogenesis in the porespace of shallow sedimentary flats, in contrast to hot deep-sea hydrothermal vent conditions; (ii) an inherently complex communal system at the common root of present life forms; (iii) a high degree of internal compartmentalization at this communal root, progressively resembling coenocytic (syncytial) super-cells; (iv) a direct connection from such communal super-cells to proto-eukaryotic macro-cell organization; and (v) multiple rounds of micro-cellular escape with streamlined reductive evolution-leading to the major prokaryotic cell lines, as well as to megaviruses and other viral lineages. Hopefully, such nontraditional concepts and approaches will contribute to coherent and plausible views about the origins and early life on Earth. In particular, the coevolutionary emergence from a communal system at the common root can most naturally explain the vast discrepancy in subcellular organization between modern eukaryotes on the one hand and both archaea and bacteria on the other. PMID:25382122
Antia, N H
1990-03-01
The anaesthetic foot in leprosy poses the most major problem in the rehabilitation of its patients. Various attempts have been made to produce protective footwear such as the microcellular rubber-car-tyre sandals. Unfortunately these attempts have had little success on a large scale because of the inability to produce them in large numbers and the stigma attached to such unusual footwear. While such footwear may be superior to the 'tennis' shoe in protecting the foot from injury by the penetration of sharp objects, it fails to distribute the weight-bearing forces which is the major cause of plantar damage and ulceration in the anaesthetic foot. This can be achieved by providing rigidity to the sole, as demonstrated by the healing of ulcers in plaster of paris casts or the rigid wooden clog. A new type of moulded plastic footwear has been evolved in conjunction with the plastic footwear industry which provides footwear that can be mass produced at a low price and which overcomes the stigma of leprosy. Controlled rigidity is provided by the incorporation of a spring steel shank between the sponge insole and the hard wearing plastic sole. Trials have demonstrated both the acceptability of the footwear and its protective effects as well as its hard wearing properties.
Defect identification in semiconductors with positron annihilation: experiment and theory
NASA Astrophysics Data System (ADS)
Tuomisto, Filip
2015-03-01
Positron annihilation spectroscopy is a very powerful technique for the detection, identification and quantification of vacancy-type defects in semiconductors. In the past decades, it has been used to reveal the relationship between opto-electronic properties and specific defects in a wide variety of materials - examples include parasitic yellow luminescence in GaN, dominant acceptor defects in ZnO and broad-band absorption causing brown coloration in natural diamond. In typical binary compound semiconductors, the selective sensitivity of the technique is rather strongly limited to cation vacancies that possess significant open volume and suitable charge (negative of neutral). On the other hand, oxygen vacancies in oxide semiconductors are a widely debated topic. The properties attributed to oxygen vacancies include the inherent n-type conduction, poor p-type dopability, coloration (absorption), deep level luminescence and non-radiative recombination, while the only direct experimental evidence of their existence has been obtained on the crystal surface. We will present recent advances in combining state-of-the-art positron annihilation experiments and ab initio computational approaches. The latter can be used to model both the positron lifetime and the electron-positron momentum distribution - quantities that can be directly compared with experimental results. We have applied these methods to study vacancy-type defects in III-nitride semiconductors (GaN, AlN, InN) and oxides such as ZnO, SnO2, In2O3andGa2O3. We will show that cation-vacancy-related defects are important compensating centers in all these materials when they are n-type. In addition, we will show that anion (N, O) vacancies can be detected when they appear as complexes with cation vacancies.
Li, Huan; Sinha, Tridib K; Oh, Jeong Seok; Kim, Jin Kuk
2018-04-25
Inspired by the epidermis-dermis composition of human skin, here we have simply developed a lightweight, robust, flexible, and biocompatible single-electrode triboelectric nanogenerator (S-TENG)-based prototype of bilayer artificial skin, by attaching one induction electrode with unfoamed skin layer of microcellular thermoplastic polyurethane (TPU) foam, which shows high-performance object manipulation [by responding differently toward different objects, viz., aluminum foil, balloon, cotton glove, human finger, glass, rubber glove, artificial leather, polyimide, poly(tetrafluoroethylene) (PTFE), paper, and wood], due to electrification and electrostatic induction during contact with the objects having different chemical functionalities. Comparative foaming behavior of ecofriendly supercritical fluids, viz., CO 2 over N 2 under variable temperatures (e.g., 130 and 150 °C) and constant pressure (15 MPa), have been examined here to pursue the soft and flexible triboelectric TPU foam. The foam derived by CO 2 foaming at 150 °C has been prioritized for development of S-TENG. Foam derived by CO 2 foaming at 130 °C did not respond as well due to the smaller cell size, higher hardness, and thicker skin. Inflexible N 2 -derived foam was not considered for S-TENG fabrication. Object manipulation performance has been visualized by principal component analysis (PCA), which shows good discrimination among responses to different objects.
Zacharzewska-Gondek, Anna; Maksymowicz, Hanna; Szymczyk, Małgorzata; Sąsiadek, Marek; Bladowska, Joanna
2017-01-01
Restricted diffusion that is found on magnetic resonance diffusion-weighted imaging (DWI) typically indicates acute ischaemic stroke. However, restricted diffusion can also occur in other diseases, like metastatic brain tumours, which we describe in this case report. A 57-year-old male, with a diagnosis of small-cell cancer of the right lung (microcellular anaplastic carcinoma), was admitted with focal neurological symptoms. Initial brain MRI revealed multiple, disseminated lesions that were hyperintense on T2-weighted images and did not enhance after contrast administration; notably, some lesions manifested restricted diffusion on DWI images. Based on these findings, disseminated ischaemic lesions were diagnosed. On follow-up MRI that was performed after 2 weeks, we observed enlargement of the lesions; there were multiple, disseminated, sharply outlined, contrast-enhancing, oval foci with persistent restriction of diffusion. We diagnosed the lesions as disseminated brain metastases due to lung cancer. To our knowledge, this is the first description of a patient with brain metastases that were characterised by restricted diffusion and no contrast enhancement. Multiple, disseminated brain lesions, that are characterised by restricted diffusion on DWI, typically indicate acute or hyperacute ischemic infarcts; however, they can also be due to hypercellular metastases, even if no contrast enhancement is observed. This latter possibility should be considered particularly in patients with cancer.
The incidence of malignancy in heart transplant recipients.
Garlicki, M; Wierzbicki, K; Przybyłowski, P; Drop, D; Biernat, M; Rudziński, P; Olszewska, B; Dziatkowiak, A
1998-01-01
219 heart transplant recipients with survival over 3 months were retro- and prospectively analysed for the incidence of primary neoplasms. Patients received immunosuppressive drugs (cyclosporine A, azathioprine, steroids) with a 4-5 days induction course of Rabbit Anti-Thymocyte Immunoglobulin (RATG) or monoclonal antibodies induction /OKT3/ in some cases. Anti-rejection treatment consisted of pulse doses of methyloprednisolon or RATG. 9 cases of malignancy (4.1%) with one case of pre-malignant liver condition (dysplasia gigantocellulare, 0.45%) were found (8M; 1F; age: 45-67 y.o., x57.7). Symptoms of neoplasms occurred 7-79 months (x31.4) postoperatively. Skin carcinomas: planoepitheliale, spinocellulare, soft tissue neoplasms/mesenchymal sarcoma, larynx Ca planoepitheliale, lung: adenocarcinoma and Ca microcellulare, kidney Ca clarocellulare and post transplant non-Hodgkin lymphoma were diagnosed. Chemo- and radiotherapy, surgery and reduction of immunosuppression did not change the outcome of malignancy in 6 pts.; (regression-1 pt was., remission-2 pts). Patients died 7-86 months after Htx (x41), 4-25 mos. (x12.5) after suffering from first symptoms and 0-10 months (x4.9) after pathology-based diagnosis of neoplasm. Heart transplant recipients have an increased risk of carcinogenesis. The incidence of malignancies in the studied group is similar or even lower than in other reports.
Han, Jung H; Patel, Dhaval; Kim, Jung Eun; Min, Sea C
2014-11-01
An antimicrobial sachet containing microcellular foam starch (MFS) with embedded rosemary oil and thyme oil was developed to reduce bacterial growth in shredded mozzarella cheese. The efficacy of the volatiles of oils at various concentrations in reducing Listeria monocytogenes as well as the release of the oils from the MFS have been also determined in this study. The cheese, inoculated with a cocktail of 5 strains of L. monocytogenes (approximately 3 log CFU/g), was packaged in a Nylon/EVOH/PE bag. A paper sachet containing MFS embedded with rosemary oil and thyme oil, separately or together, was inserted into the bag. Rosemary and thyme oil volatiles released from the sachet restricted the growth of L. monocytogenes, resulting in a 2.5 log CFU/g reduction on day 9 at 10 °C. The volatile oils also showed inhibitory effects on the growth of lactic acid bacteria (LAB) and total aerobic bacteria (TAB). After 15 d at 10 °C, the numbers of LAB and TAB in the samples containing the sachet with both oils experienced a 1.2 and 1.4 log CFU/g reduction, respectively, compared to untreated samples. Nonetheless, the sachet treatment produced a distinct odor, unfavorably received by the panelists. The results suggest the potential for application of the sachet system for the reduction of growth of L. monocytogenes, LAB, and TAB in food products. © 2014 Institute of Food Technologists®
Wheel liner design for improved sound and structural performances
NASA Astrophysics Data System (ADS)
Oltean, Alexandru; Diaconescu, Claudiu; Tabacu, Ştefan
2017-10-01
Vehicle noise is composed mainly of wheel-road noise and noise from the power unit. At low speeds power unit noise dominates while at high speeds wheel-road noise dominates as wheel-road noise level increases approximately logarithmically with speed. The wheel liner is designed as a component of the vehicle that has a multiple role. It has to prevent the dirt or water from the road surface that are engaged by the wheel to access the engine/front bay. Same time it has the important role to reduce perceived noised in the passenger’s compartment that comes from the wheel-road interaction. Progress in plastic injection moulding technology allowed for new structures to be developed - nonwoven materials in combination with a PP based carrier structure which benefits from a cell structure caused by MuCell injection moulding. The results are light parts with increased sound absorption performances. An adapted combination of materials and production processes can provide the solution for stiff yet soundproofing structures valued for modern vehicles. Sound absorption characteristics of materials used for wheel liners applications were reported in this study. Different polypropylene and polyester fibre-based thermally bonded nonwovens varying in weight and thickness were investigated. Having as a background the performances of the nonwoven material the microcellular structure was part of the analysis. Acoustical absorptive behaviour was explained by analysing the results obtained using the impedance tube and correlating with the knowledge of materials structure.
Nouman, Muhammad; Leelasamran, Wipawan; Chatpun, Surapong
2017-08-01
Using a total contact orthosis (TCO) is an effective method to offload in diabetic patients with foot neuropathy. However, the redistribution of peak plantar pressure is mostly observed during level walking, which may differ from other walking activities. The aim of this study was to investigate the plantar pressure from 4 regions of the foot during different walking activities (level walking, ramp ascending, ramp descending, stair ascending, and stair descending) in neuropathic diabetic patients with and without a TCO. Sixteen neuropathic diabetic patients aged 40 to 60 years with calluses and hallux valgus were included in this study and were provided with TCOs made up of multifoam, Plastazote, and microcellular rubber. The plantar pressure and contact area with the TCO and without the TCO were recorded using the Pedar X system during different walking activities. A significant reduction of plantar pressure during different walking activities at the toes and forefoot regions was observed while walking with the TCO compared with walking without the TCO (control condition). Plantar pressure increased at the midfoot region when walking with the TCO, and no significant difference was observed at the hindfoot region between the control and TCO conditions. Furthermore, maximum contact area was observed during level walking with the TCO compared with other walking activities. The TCO significantly reduced and redistributed the peak plantar pressure from the sites where the ulceration rate is higher at the toes and forefoot compared with the other regions of the foot. Therapeutic level II, lesser quality randomized controlled trial.
LUNG CANCER AND PULMONARY THROMBOEMBOLISM
Cukic, Vesna; Ustamujic, Aida
2015-01-01
Introduction: Malignant diseases including lung cancer are the risk for development of pulmonary thromboembolism (PTE). Objective: To show the number of PTE in patients with lung cancer treated in Clinic for pulmonary diseases and TB “Podhrastovi” in three-year period: from 2012-2014. Material and methods: This is the retrospective study in which we present the number of various types of lung cancer treated in three-year period, number and per cent of PTE in different types of lung carcinoma, number and per cent of PTE of all diagnosed PTE in lung carcinoma according to the type of carcinoma. Results: In three-year period (from 2012 to 2014) 1609 patients with lung cancer were treated in Clinic for pulmonary diseases and TB “Podhrastovi” Clinical Centre of Sarajevo University. 42 patients: 25 men middle –aged 64.4 years and 17 women middle- aged 66.7 or 2.61% of all patients with lung cancer had diagnosed PTE. That was the 16. 7% of all patients with PTE treated in Clinic “Podhrastovi “in that three-year period. Of all 42 patients with lung cancer and diagnosed PTE 3 patients (7.14%) had planocellular cancer, 4 patients (9.53%) had squamocellular cancer, 9 (21.43%) had adenocarcinoma, 1 (2.38%) had NSCLC, 3 (7.14 %) had microcellular cancer, 1 (2.38%) had neuroendocrine cancer, 2 (4.76%) had large cell-macrocellular and 19 (45.24%) had histological non-differentiated lung carcinoma. Conclusion: Malignant diseases, including lung cancer, are the risk factor for development of PTE. It is important to consider the including anticoagulant prophylaxis in these patients and so to slow down the course of diseases in these patients. PMID:26622205
NASA Astrophysics Data System (ADS)
Arcila Velez, Margarita Rosa
Supercapacitors (SCs) are promising energy storage devices because they deliver energy faster than Li-ion batteries and store larger amounts of charge compared to dielectric capacitors. SCs are classified in electrical double layer capacitors (EDLCs) and pseudocapacitors, based on their charge storage mechanism. EDLCs store charge electrostatically, i.e. by physical charge separation. This mechanism limits the storable amount of energy to the available surface area of the electrode, typically made of carbon materials, but grants good cycling stability of the SC device. Pseudocapacitor electrodes, commonly made of conducting polymers or metal oxides, store charge faradaically, i.e. through redox reactions throughout the bulk material, which allows them to store significantly larger amounts of energy than EDLCs, but their stability is compromised due to the partial irreversibility of the faradaic processes. To accomplish the commercialization of SCs, devices must show a combination of high charge storage capacities and long-term stability, besides being cost-effective. To tackle the current issues of SCs, this field of study has taken mainly two directions: 1) the development of new architectures and nanostructures of the active materials, which has shown to increase the surface area, enhance stability, and facilitate ion diffusion; and 2) fabrication of composites between non-faradaic (carbon), faradaic materials, and/or redox-active components to achieve a balance between the amount of energy stored and the stability. Following the first approach, a continuous process to grow vertically aligned carbon nanotubes (VACNTs) on cost-effective aluminum foil was developed. The resulting electrodes were analyzed as SC electrodes and in symmetric cells, and the influence of the arrangement of the nanotubes and the synthesis conditions was studied. The performance of the VACNTs produced continuously showed similar performance to the VACNTs produced stationarily and the ordered structure of the VACNTs showed superior performance compared to randomly oriented CNTs. To increase the energy density, the second approach was taken, by combining pre-synthesized conducting polymers (CPs) and carbon nanotubes (CNTs) using a facile scalable dispersion filtration method to produce free-standing electrodes. Composites with the three main CPs were prepared, analyzed in various electrolytes, and their performance was comparable with polymer/ CNT films prepared with more complex techniques such as in-situ polymerization and pellet pressing. Then, based on the idea that the quinone molecules present in lignin store charge by undergoing a 2 proton, 2 electron redox reaction, a composite between polypyrrole, a stable conducting polymer, and the prototypical molecule p-benzoquinone was fabricated by electropolymerization of pyrrole in the presence of the redox molecule. A significant increase in capacitance and capacity was obtained with respect to polypyrrole films. Furthermore, an important obstacle in the application of CPs in SCs is the lack of easily reduced (n-dopable) polymers. Poly(aminoanthraquinone) (PAQ) is a conjugated polymer that shows electroactivity in the negative potential range of 0 to -2 V, due to the redox moieties of the polymer. PAQ was electropolymerized on free-standing CNT films and its performance as anode for SCs was studied. The materials and processing techniques described in this dissertation are useful to further develop high power/high energy electrodes for SCs.
Amorphous and nanocrystalline phase formation in highly-driven Al-based binary alloys
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kalay, Yunus Eren
2009-01-01
Remarkable advances have been made since rapid solidification was first introduced to the field of materials science and technology. New types of materials such as amorphous alloys and nanostructure materials have been developed as a result of rapid solidification techniques. While these advances are, in many respects, ground breaking, much remains to be discerned concerning the fundamental relationships that exist between a liquid and a rapidly solidified solid. The scope of the current dissertation involves an extensive set of experimental, analytical, and computational studies designed to increase the overall understanding of morphological selection, phase competition, and structural hierarchy that occursmore » under far-from equilibrium conditions. High pressure gas atomization and Cu-block melt-spinning are the two different rapid solidification techniques applied in this study. The research is mainly focused on Al-Si and Al-Sm alloy systems. Silicon and samarium produce different, yet favorable, systems for exploration when alloyed with aluminum under far-from equilibrium conditions. One of the main differences comes from the positions of their respective T 0 curves, which makes Al-Si a good candidate for solubility extension while the plunging T 0 line in Al-Sm promotes glass formation. The rapidly solidified gas-atomized Al-Si powders within a composition range of 15 to 50 wt% Si are examined using scanning and transmission electron microscopy. The non-equilibrium partitioning and morphological selection observed by examining powders at different size classes are described via a microstructure map. The interface velocities and the amount of undercooling present in the powders are estimated from measured eutectic spacings based on Jackson-Hunt (JH) and Trivedi-Magnin-Kurz (TMK) models, which permit a direct comparison of theoretical predictions. For an average particle size of 10 {micro}m with a Peclet number of ~0.2, JH and TMK deviate from each other. This deviation indicates an adiabatic type solidification path where heat of fusion is reabsorbed. It is interesting that this particle size range is also consistent with the appearance of a microcellular growth. While no glass formation is observed within this system, the smallest size powders appear to consist of a mixture of nanocrystalline Si and Al. Al-Sm alloys have been investigated within a composition range of 34 to 42 wt% Sm. Gas atomized powders of Al-Sm are investigated to explore the morphological and structural hierarchy that correlates with different degrees of departure from full equilibrium conditions. The resultant powders show a variety of structural selection with respect to amount of undercooling, with an amorphous structure appearing at the highest cooling rates. Because of the chaotic nature of gas atomization, Cu-block melt-spinning is used to produce a homogeneous amorphous structure. The as-quenched structure within Al-34 to 42 wt% Sm consists of nanocrystalline fcc-Al (on the order of 5 nm) embedded in an amorphous matrix. The nucleation density of fcc-Al after initial crystallization is on the order of 10 22-10 23m -3, which is 10 5-10 6 orders of magnitude higher than what classical nucleation theory predicts. Detailed analysis of liquid and as-quenched structures using high energy synchrotron X-ray diffraction, high energy transmission electron microscopy, and atom probe tomography techniques revealed an Al-Sm network similar in appearance to a medium range order (MRO) structure. A model whereby these MRO clusters promote the observed high nucleation density of fcc-Al nanocrystals is proposed. The devitrification path was identified using high temperature, in-situ, high energy synchrotron X-ray diffraction techniques and the crystallization kinetics were described using an analytical Johnson-Mehl-Avrami (JMA) approach.« less
Deformational characteristics of thermoplastic elastomers
NASA Astrophysics Data System (ADS)
Indukuri, Kishore K.
This thesis focuses primarily on the structure-property relationships of poly (styrene-ethylene-butylene-styrene) triblock copolymer TPEs. First evidence for strain-induced crystallization occurring in certain SEBS block copolymers has been established using unique techniques like deformation calorimetry, combined in-situ small angle X-ray and wide angle X-ray diffraction (SAXD/WAXD). Also the ramifications of such strain-induced crystallization on the mechanical properties like cyclic hysteresis, stress relaxation/creep retention of these SEBS systems have been studied. In addition, the structural changes in the morphology of these systems on deformation have been investigated using combined SAXD/WAXD setup. Small angle X-ray diffraction probed the changes at the nano-scale of polystyrene (PS) cylinders, while wide angle X-ray diffraction probed the changes at molecular length scales of the amorphous/crystalline domains of the elastomeric mid-block in these systems. New structural features at both these length scales have been observed and incorporated into the overall deformation mechanisms of the material. Continuous processing techniques like extrusion have been used to obtain ultra long-range order and orientation in these SEBS systems. Thus well ordered crystal like hexagonal packing of cylinders, where in each element in this hexagonal lattice can be individually addressed without any grain boundaries can be realized using these robust techniques. The effect of long-range order/orientation on the mechanical properties has been studied. In addition, these well ordered systems serve as model systems for evaluating deformation mechanisms of these SEBS systems, where the relative contributions of each of the phases can be estimated. EPDM/i-PP thermoplastic vulcanizates (TPVs) have micron size scale phase separated morphologies of EPDM rubber dispersed in a semicrystalline i-PP matrix as a result of the dynamic vulcanization process. Confocal microscopy studies, along with scanning electron microscopy (SEM) studies show that the morphology of these EPDM/i-PP systems resembles a microcellular "filled" foam in which i-PP occupies the strut regions and EPDM the inner core. Based on this, an analytical model has been developed that takes into account composition information, molecular weight, cure state and morphology into account.
Fouka, Evangelia; Stephanopoulou, Pinelopi; Konstantinou, Eleftheria; Loridas, Nikolaos; Kalaitzidou, Eftixia
2012-01-01
Background Tuberculosis can affect barely all parts of the intestine, though the main location is in the ileocecal region. Tuberculous meningitis is the most common form of CNS involvement, with immunosuppression being the major predisposing factor in adults. Presentation of an interesting case of pulmonary tuberculosis with associated extrapulmonary manifestations. Patients and methods A 74 year-old female was admitted in our clinic for investigation of fever, multiple bilateral pulmonary infiltrates and nodular cavitation in the left upper lobe. The patient reported a short-standing history of rheumatoid arthritis treated with Methotrexate and Infliximab. The patient had been recently investigated for hypochromic microcellular anemia. Colonoscopy revealed a circular lesion in the ascending colon with histological findings negative for malignancy. The subsequent laparotomy was indicative of widespread carcinomatosis, nevertheless cytologic examination of ascitic fluid was still negative for malignancy. Histological examination of tissue specimens did not confirm malignancy, on contrast revealed confluent granulomas without central necrosis and giant Langerhans’ cells accumulation. On presentation the patient was febrile, with obvious wound suppuration. Physical examination of the chest showed mild bilateral crackles at the lung bases. Pulmonary function was satisfactory. During hospitalization, the patient experienced seizures that responded well in anti-epileptic therapy, while the CT scan of the brain revealed only findings of cerebral atrophy. Mantoux test was negative and laboratory findings were normal, apart from mild anemia and elevated ESR. Bronchoscopic findings were inconclusive. The patient underwent colonoscopy which revealed an ulcerative lesion in caecum, with tissue PCR and culture positive for M. Tuberculosis. Results In conjunction with the radiological findings of the chest, the patient was administered promptly anti-tuberculous therapy and the diagnosis was confirmed by positive cultures from the bronchial wash and gastric fluid. Assuming CNS involvement due to hematogenous spread of the lung disease, the patient underwent further investigation with brain MRI, which confirmed the diagnosis of leptomeningeal tuberculosis. Conclusions Extrapulmonary tuberculosis may have atypical presentation, especially in immunocompromised patients. In such cases, a high degree of suspicion and consideration of clinical and laboratory findings is essential.
Lee, Yu Bin; Kim, Eun Mi; Byun, Hayeon; Chang, Hyung-Kwan; Jeong, Kwanghee; Aman, Zachary M; Choi, Yu Suk; Park, Jungyul; Shin, Heungsoo
2018-05-01
Numerous methods have been reported for the fabrication of 3D multi-cellular spheroids and their use in stem cell culture. Current methods typically relying on the self-assembly of trypsinized, suspended stem cells, however, show limitations with respect to cell viability, throughput, and accurate recapitulation of the natural microenvironment. In this study, we developed a new system for engineering cell spheroids by self-assembly of micro-scale monolayer of stem cells. We prepared synthetic hydrogels with the surface of chemically formed micropatterns (squares/circles with width/diameter of 200 μm) on which mesenchymal stem cells isolated from human nasal turbinate tissue (hTMSCs) were selectively attached and formed a monolayer. The hydrogel is capable of thermally controlled expansion. As the temperature was decreased from 37 to 4 °C, the cell layer detached rapidly (<10 min) and assembled to form spheroids with consistent size (∼100 μm) and high viability (>90%). Spheroidization was significantly delayed and occurred with reduced efficiency on circle patterns compared to square patterns. Multi-physics mapping supported that delamination of the micro-scale monolayer may be affected by stress concentrated at the corners of the square pattern. In contrast, stress was distributed symmetrically along the boundary of the circle pattern. In addition, treatment of the micro-scale monolayer with a ROCK inhibitor significantly retarded spheroidization, highlighting the importance of contraction mediated by actin stress fibers for the stable generation of spheroidal stem cell structures. Spheroids prepared from the assembly of monolayers showed higher expression, both on the mRNA and protein levels, of ECM proteins (fibronectin and laminin) and stemness markers (Oct4, Sox2, and Nanog) compared to spheroids prepared from low-attachment plates, in which trypsinized single cells are assembled. The hTMSC spheroids also presented enhanced expression levels of markers related to tri-lineage (osteogenic, chondrogenic and adipogenic) differentiation. The changes in microcellular environments and functionalities were double-confirmed by using adipose derived mesenchymal stem cells (ADSCs). This spheroid engineering technique may have versatile applications in regenerative medicine for functionally improved 3D culture and therapeutic cell delivery. Copyright © 2018 Elsevier Ltd. All rights reserved.
[Merkel cell carcinoma of the vulva - case report and the literature review].
Jońska-Gmyrek, Joanna; Bobkiewicz, Piotr; Gmyrek, Leszek; Zółciak-Siwińska, Agnieszka; Lindner, Bogusław; Staniaszek, Jagna
2013-05-01
Merkel cell carcinoma (MCC) is a rare malignant neoplasm, mostly affecting the skin (97% of cases). It is usually found in elderly people, in the sun-exposed areas of the skin. About 50-60% of MCC cases are located on the head and the neck, less often on the extremities and the torso, and extremely rarely in the genital area. Ultraviolet radiation may be the main factor responsible for the development of the tumors but viral etiology is also debated. Due to extremely rare incidence of MCC in the area of the vulva, proper management remains a challenging task. To present a case of an aggressive MCC of the vulva and a review of the literature. A previously healthy 72-year-old patient presented at the Oncology Center of the Maria Sklodowska-Curie Institute, Warsaw, in June 2010. Four months previously the patient noticed a painless lump in the vestibular region of the vagina. She received anti-inflammatory treatment at her local gynecological clinic, with no success. In February the patient underwent removal of the vulvar tumor Histopathological examination confirmed anaplastic carcinoma. Microscopic evaluation revealed the tumor diameter to be 15mm. Surgical margins were free of neoplastic infiltration. The patient did not receive adjuvant therapy due to the results from the histopathological protocol. The disease recurred after three months. Radical vulvectomy and bilateral inguinal femoral lymphadenectomy were performed in May 2010. Histopathological examination confirmed microcellular carcinoma with no metastases to the lymph nodes and complete resection of the tumor (RO). The disease recurred in the next two months: a 50-mm tumor was found in the right inguinal lymph nodes. The decision to verify all histopathological material obtained during all procedures performed so far was made. Immunohistochemical evaluation confirmed MCC. Adjuvant radiotherapy was recommended. The area of the vulva, pelvic and inguinal lymph nodes were irradiated. One month after therapy completion the patient complained of pain in the lumbar area. An ultrasound examination of the abdomen revealed a tumor (9 cm in diameter) in the para-aortic region but it was not histopathologically verified due to extremely poor overall condition of the patient. As the condition of the woman deteriorated systematically the patient was referred to a hospice facility where she died 9 months since the primary diagnosis. MCC of the vulva is a rare neoplasm with an aggressive course. Clinical and histopathological diagnostic difficulties and consequently lack of standardized management, result in low survival rates.
Separation of solids by varying the bulk density of a fluid separating medium
Peterson, Palmer L.; Duffy, James B.; Tokarz, Richard D.
1978-01-01
A method and apparatus for separating objects having a density greater than a selected density value from objects having a density less than said selected density value. The method typically comprises: (a) providing a separation vessel having an upper and lower portion, said vessel containing a liquid having a density exceeding said selected density value; (b) reducing the apparent density of the liquid to said selected density value by introducing solid, bubble-like bodies having a density less than that of the liquid into the lower portion of the vessel and permitting them to rise therethrough; (c) introducing the objects to be separated into the separation vessel and permitting the objects having a density greater than the apparent density of the liquid to sink to the lower portion of the vessel, while the objects having a density less than said selected density value float in the upper portion of the vessel; and (d) separately removing the higher density objects in the lower portion and the lower density objects in the upper portion from the separation vessel. The apparatus typically comprises: (a) a vessel containing a liquid having a density such that at least part of said objects having a density exceeding said selected density value will float therein; (b) means to place said objects into said vessel; (c) means to reduce the effective density of at least a portion of said liquid to said selected density value, whereby said objects having a density exceeding said selected density value sink into said liquid and said objects having a density less than said selected density value remain afloat, said means to adjust the effective density comprising solid, bubble-like bodies having a density less than said selected density value and means for introducing said bodies into said liquid; and (d) means for separately removing said objects having a density exceeding said selected density value and said objects having a density less than said selected density value from said vessel.
... Bone Density Exam/Testing › Low Bone Density Low Bone Density Low bone density is when your bone ... to people with normal bone density. Detecting Low Bone Density A bone density test will determine whether ...
Evaluation of double-layer density modulated Si thin films as Li-ion battery anodes
NASA Astrophysics Data System (ADS)
Taha Demirkan, Muhammed; Yurukcu, Mesut; Dursun, Burcu; Demir-Cakan, Rezan; Karabacak, Tansel
2017-10-01
Double-layer density modulated silicon thin films which contain alternating low and high density Si film layers were fabricated by magnetron sputtering. Two different samples consisting of alternating layers of high-density/low-density and low-density/high-density Si thin film layers were investigated as anode electrodes in Li-ion batteries. Si thin film in which the terminating layer at the top is low density Si layer-quoted as low-density/high-density film (LD/HD)- exhibits better performance than Si thin film that has high density layer at the top, -quoted as high-density/low-density (HD/LD). A highly stabilized cycling performance with the specific charge capacities of 2000 mAh g-1 at the 150th cycle at C/2 current density, and 1200 mAh g-1 at the 240th cycle at 10 C current density were observed for the LD/HD Si anode in the presence of fluoroethylene carbonate (FEC) electrolyte additive.
Effects of density on growth, metamorphosis, and survivorship in tadpoles of Scaphiopus holbrooki
DOE Office of Scientific and Technical Information (OSTI.GOV)
Semlitsch, R.D.; Caldwell, J.P.
1982-08-01
Density-dependent aspects of growth, metamorphosis, and survivorship of Scaphiopus holbrooki tadpoles were examined in the laboratory under two experimental regimes. In the first density experiment, the growth index (W) of tadpoles decreased exponentially with density. Mean growth rate varied from 0.023 mL/d at the lowest density to 0.006 mL/d at the highest density. The mean number of days to metamorphic climax was positively associated with the initial density treatment: 27 d at the lowest density to 86 d at the highest density. The body size of tadpoles at metamorphosis showed a concave curvilinear relationship to initial density, indicating tadpoles atmore » the highest densities are apparently capable to growth recovery once released from density stress. The survival of tadpoles decreased exponentially with initial density, from 90% at the lowest density to 20% at the highest initial density. In the second experiment a cross-classified design was used to examine the effects of density and duration of treatment (time) on growth and metamorphosis. Density and time had significant effects on body size at metamorphosis and days to metamorphosis. There was no significant interaction between density and time. These results indicate that the inhibitory effect of density stress varies with the duration of the stress. Scaphiopus holbrooki tadpoles exhibit developmental traits (rapid growth, short larval period, small body size at metamorphosis) that should be favored by natural selection in high density habitats. Dispersability may be a mechanism whereby S. holbrooki can minimize the detrimental effects of density stress.« less
Ferreira, Lizé-Mari; Eaby, Alan; Dillen, Jan
2017-12-15
The topology of the Coulomb potential density has been studied within the context of the theory of Atoms in Molecules and has been compared with the topologies of the electron density, the virial energy density and the Ehrenfest force density. The Coulomb potential density is found to be mainly structurally homeomorphic with the electron density. The Coulomb potential density reproduces the non-nuclear attractor which is observed experimentally in the molecular graph of the electron density of a Mg dimer, thus, for the first time ever providing an alternative and energetic foundation for the existence of this critical point. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.
NASA Astrophysics Data System (ADS)
Liu, Baoliang; Liu, Ying; Liu, Ziyi; Qiu, Denggao; Sun, Guoxiang; Li, Xian
2014-09-01
Atlantic salmon Salmo salar were reared at four stocking densities—high density D 1 (final density ˜39 kg/m3), medium densities D 2 (˜29 kg/m3) and D 3 (˜19 kg/m3), and low density D 4 (˜12 kg/m3)—for 40 days to investigate the effect of stocking density on their growth performance, body composition and energy budgets. Stocking density did not significantly affect specific growth rate in terms of weight (SGRw) but did affect specific growth rate in terms of energy (SGRe). Stocking density significantly influenced the ration level (RLw and RLe), feed conversion ratio (FCRw and FCRe) and apparent digestibility rate (ADR). Ration level and FCRw tended to increase with increasing density. Fish at the highest density D 1 and lowest density D 4 showed lower FCRe and higher ADR than at medium densities. Stocking density significantly affected protein and energy contents of the body but did not affect its moisture, lipid, or ash contents. The expenditure of energy for metabolism in the low-density and high-density groups was lower than that in the medium-density groups. Stocking density affected energy utilization from the feces but had no effect on excretion rate. The greater energy allocation to growth at high density and low density may be attributed to reduced metabolic rate and increased apparent digestibility rate. These findings provide information that will assist selection of suitable stocking densities in the Atlantic-salmon-farming industry.
Statistical density modification using local pattern matching
Terwilliger, Thomas C.
2007-01-23
A computer implemented method modifies an experimental electron density map. A set of selected known experimental and model electron density maps is provided and standard templates of electron density are created from the selected experimental and model electron density maps by clustering and averaging values of electron density in a spherical region about each point in a grid that defines each selected known experimental and model electron density maps. Histograms are also created from the selected experimental and model electron density maps that relate the value of electron density at the center of each of the spherical regions to a correlation coefficient of a density surrounding each corresponding grid point in each one of the standard templates. The standard templates and the histograms are applied to grid points on the experimental electron density map to form new estimates of electron density at each grid point in the experimental electron density map.
Singh, Tulika; Sharma, Madhurima; Singla, Veenu; Khandelwal, Niranjan
2016-01-01
The objective of our study was to calculate mammographic breast density with a fully automated volumetric breast density measurement method and to compare it to breast imaging reporting and data system (BI-RADS) breast density categories assigned by two radiologists. A total of 476 full-field digital mammography examinations with standard mediolateral oblique and craniocaudal views were evaluated by two blinded radiologists and BI-RADS density categories were assigned. Using a fully automated software, mean fibroglandular tissue volume, mean breast volume, and mean volumetric breast density were calculated. Based on percentage volumetric breast density, a volumetric density grade was assigned from 1 to 4. The weighted overall kappa was 0.895 (almost perfect agreement) for the two radiologists' BI-RADS density estimates. A statistically significant difference was seen in mean volumetric breast density among the BI-RADS density categories. With increased BI-RADS density category, increase in mean volumetric breast density was also seen (P < 0.001). A significant positive correlation was found between BI-RADS categories and volumetric density grading by fully automated software (ρ = 0.728, P < 0.001 for first radiologist and ρ = 0.725, P < 0.001 for second radiologist). Pairwise estimates of the weighted kappa between Volpara density grade and BI-RADS density category by two observers showed fair agreement (κ = 0.398 and 0.388, respectively). In our study, a good correlation was seen between density grading using fully automated volumetric method and density grading using BI-RADS density categories assigned by the two radiologists. Thus, the fully automated volumetric method may be used to quantify breast density on routine mammography. Copyright © 2016 The Association of University Radiologists. Published by Elsevier Inc. All rights reserved.
Kvaal, Simen; Helgaker, Trygve
2015-11-14
The relationship between the densities of ground-state wave functions (i.e., the minimizers of the Rayleigh-Ritz variation principle) and the ground-state densities in density-functional theory (i.e., the minimizers of the Hohenberg-Kohn variation principle) is studied within the framework of convex conjugation, in a generic setting covering molecular systems, solid-state systems, and more. Having introduced admissible density functionals as functionals that produce the exact ground-state energy for a given external potential by minimizing over densities in the Hohenberg-Kohn variation principle, necessary and sufficient conditions on such functionals are established to ensure that the Rayleigh-Ritz ground-state densities and the Hohenberg-Kohn ground-state densities are identical. We apply the results to molecular systems in the Born-Oppenheimer approximation. For any given potential v ∈ L(3/2)(ℝ(3)) + L(∞)(ℝ(3)), we establish a one-to-one correspondence between the mixed ground-state densities of the Rayleigh-Ritz variation principle and the mixed ground-state densities of the Hohenberg-Kohn variation principle when the Lieb density-matrix constrained-search universal density functional is taken as the admissible functional. A similar one-to-one correspondence is established between the pure ground-state densities of the Rayleigh-Ritz variation principle and the pure ground-state densities obtained using the Hohenberg-Kohn variation principle with the Levy-Lieb pure-state constrained-search functional. In other words, all physical ground-state densities (pure or mixed) are recovered with these functionals and no false densities (i.e., minimizing densities that are not physical) exist. The importance of topology (i.e., choice of Banach space of densities and potentials) is emphasized and illustrated. The relevance of these results for current-density-functional theory is examined.
Gedanken densities and exact constraints in density functional theory.
Perdew, John P; Ruzsinszky, Adrienn; Sun, Jianwei; Burke, Kieron
2014-05-14
Approximations to the exact density functional for the exchange-correlation energy of a many-electron ground state can be constructed by satisfying constraints that are universal, i.e., valid for all electron densities. Gedanken densities are designed for the purpose of this construction, but need not be realistic. The uniform electron gas is an old gedanken density. Here, we propose a spherical two-electron gedanken density in which the dimensionless density gradient can be an arbitrary positive constant wherever the density is non-zero. The Lieb-Oxford lower bound on the exchange energy can be satisfied within a generalized gradient approximation (GGA) by bounding its enhancement factor or simplest GGA exchange-energy density. This enhancement-factor bound is well known to be sufficient, but our gedanken density shows that it is also necessary. The conventional exact exchange-energy density satisfies no such local bound, but energy densities are not unique, and the simplest GGA exchange-energy density is not an approximation to it. We further derive a strongly and optimally tightened bound on the exchange enhancement factor of a two-electron density, which is satisfied by the local density approximation but is violated by all published GGA's or meta-GGA's. Finally, some consequences of the non-uniform density-scaling behavior for the asymptotics of the exchange enhancement factor of a GGA or meta-GGA are given.
Immigration Rates during Population Density Reduction in a Coral Reef Fish
Turgeon, Katrine; Kramer, Donald L.
2016-01-01
Although the importance of density-dependent dispersal has been recognized in theory, few empirical studies have examined how immigration changes over a wide range of densities. In a replicated experiment using a novel approach allowing within-site comparison, we examined changes in immigration rate following the gradual removal of territorial damselfish from a limited area within a much larger patch of continuous habitat. In all sites, immigration occurred at intermediate densities but did not occur before the start of removals and only rarely as density approached zero. In the combined data and in 5 of 7 sites, the number of immigrants was a hump-shaped function of density. This is the first experimental evidence for hump-shaped, density-dependent immigration. This pattern may be more widespread than previously recognized because studies over more limited density ranges have identified positive density dependence at low densities and negative density dependence at high densities. Positive density dependence at low density can arise from limits to the number of potential immigrants and from behavioral preferences for settling near conspecifics. Negative density dependence at high density can arise from competition for resources, especially high quality territories. The potential for non-linear effects of local density on immigration needs to be recognized for robust predictions of conservation reserve function, harvest impacts, pest control, and the dynamics of fragmented populations. PMID:27271081
Assessment of Density Variations of Marine Sediments with Ocean and Sediment Depths
Tenzer, R.; Gladkikh, V.
2014-01-01
We analyze the density distribution of marine sediments using density samples taken from 716 drill sites of the Deep Sea Drilling Project (DSDP). The samples taken within the upper stratigraphic layer exhibit a prevailing trend of the decreasing density with the increasing ocean depth (at a rate of −0.05 g/cm3 per 1 km). Our results confirm findings of published studies that the density nonlinearly increases with the increasing sediment depth due to compaction. We further establish a 3D density model of marine sediments and propose theoretical models of the ocean-sediment and sediment-bedrock density contrasts. The sediment density-depth equation approximates density samples with an average uncertainty of about 10% and better represents the density distribution especially at deeper sections of basin sediments than a uniform density model. The analysis of DSDP density data also reveals that the average density of marine sediments is 1.70 g/cm3 and the average density of the ocean bedrock is 2.9 g/cm3. PMID:24744686
Normal and abnormal evolution of argon metastable density in high-density plasmas
DOE Office of Scientific and Technical Information (OSTI.GOV)
Seo, B. H.; Kim, J. H., E-mail: jhkim86@kriss.re.kr; You, S. J., E-mail: sjyou@cnu.ac.kr
2015-05-15
A controversial problem on the evolution of Ar metastable density as a function of electron density (increasing trend versus decreasing trend) was resolved by discovering the anomalous evolution of the argon metastable density with increasing electron density (discharge power), including both trends of the metastable density [Daltrini et al., Appl. Phys. Lett. 92, 061504 (2008)]. Later, by virtue of an adequate physical explanation based on a simple global model, both evolutions of the metastable density were comprehensively understood as part of the abnormal evolution occurring at low- and high-density regimes, respectively, and thus the physics behind the metastable evolution hasmore » seemed to be clearly disclosed. In this study, however, a remarkable result for the metastable density behavior with increasing electron density was observed: even in the same electron density regime, there are both normal and abnormal evolutions of metastable-state density with electron density depending on the measurement position: The metastable density increases with increasing electron density at a position far from the inductively coupled plasma antenna but decreases at a position close to the antenna. The effect of electron temperature, which is spatially nonuniform in the plasma, on the electron population and depopulation processes of Argon metastable atoms with increasing electron density is a clue to understanding the results. The calculated results of the global model, including multistep ionization for the argon metastable state and measured electron temperature, are in a good agreement with the experimental results.« less
Richard-Davis, Gloria; Whittemore, Brianna; Disher, Anthony; Rice, Valerie Montgomery; Lenin, Rathinasamy B; Dollins, Camille; Siegel, Eric R; Eswaran, Hari
2018-01-01
Increased mammographic breast density is a well-established risk factor for breast cancer development, regardless of age or ethnic background. The current gold standard for categorizing breast density consists of a radiologist estimation of percent density according to the American College of Radiology (ACR) Breast Imaging Reporting and Data System (BI-RADS) criteria. This study compares paired qualitative interpretations of breast density on digital mammograms with quantitative measurement of density using Hologic's Food and Drug Administration-approved R2 Quantra volumetric breast density assessment tool. Our goal was to find the best cutoff value of Quantra-calculated breast density for stratifying patients accurately into high-risk and low-risk breast density categories. Screening digital mammograms from 385 subjects, aged 18 to 64 years, were evaluated. These mammograms were interpreted by a radiologist using the ACR's BI-RADS density method, and had quantitative density measured using the R2 Quantra breast density assessment tool. The appropriate cutoff for breast density-based risk stratification using Quantra software was calculated using manually determined BI-RADS scores as a gold standard, in which scores of D3/D4 denoted high-risk densities and D1/D2 denoted low-risk densities. The best cutoff value for risk stratification using Quantra-calculated breast density was found to be 14.0%, yielding a sensitivity of 65%, specificity of 77%, and positive and negative predictive values of 75% and 69%, respectively. Under bootstrap analysis, the best cutoff value had a mean ± SD of 13.70% ± 0.89%. Our study is the first to publish on a North American population that assesses the accuracy of the R2 Quantra system at breast density stratification. Quantitative breast density measures will improve accuracy and reliability of density determination, assisting future researchers to accurately calculate breast cancer risks associated with density increase.
Analysis of computed tomography density of liver before and after amiodarone administration.
Matsuda, Masazumi; Otaka, Aoi; Tozawa, Tomoki; Asano, Tomoyuki; Ishiyama, Koichi; Hashimoto, Manabu
2018-05-01
To evaluate CT density of liver changes between before and after amiodarone administration. Twenty-five patients underwent non-enhanced CT including the liver before and after amiodarone administration. We set regions of interest (ROIs) at liver S8, spleen, paraspinal muscle, and calculated average CT density in these ROIs, then compared CT density between liver and other organs. Statistical differences between CT density of liver and various ratios before and after administration were determined, along with correlations between cumulative dose of amiodarone and liver density after administration, density change of liver, and various ratios after administration. Liver density, liver-to-spleen ratio, and liver-to-paraspinal muscle ratio differed significantly between before and after amiodarone administration. No significant correlations were found between cumulative doses of amiodarone and any of liver density after administration, density change of liver, or various ratios after administration. CT density of liver after amiodarone administration was significantly higher than that before administration. No correlations were identified between cumulative dose of amiodarone and either liver density after administration or density change of liver. Amiodarone usage should be checked when radiologists identify high density of the liver on CT.
Measured acoustic properties of variable and low density bulk absorbers
NASA Technical Reports Server (NTRS)
Dahl, M. D.; Rice, E. J.
1985-01-01
Experimental data were taken to determine the acoustic absorbing properties of uniform low density and layered variable density samples using a bulk absober with a perforated plate facing to hold the material in place. In the layered variable density case, the bulk absorber was packed such that the lowest density layer began at the surface of the sample and progressed to higher density layers deeper inside. The samples were placed in a rectangular duct and measurements were taken using the two microphone method. The data were used to calculate specific acoustic impedances and normal incidence absorption coefficients. Results showed that for uniform density samples the absorption coefficient at low frequencies decreased with increasing density and resonances occurred in the absorption coefficient curve at lower densities. These results were confirmed by a model for uniform density bulk absorbers. Results from layered variable density samples showed that low frequency absorption was the highest when the lowest density possible was packed in the first layer near the exposed surface. The layers of increasing density within the sample had the effect of damping the resonances.
Precision Orbit Derived Atmospheric Density: Development and Performance
NASA Astrophysics Data System (ADS)
McLaughlin, C.; Hiatt, A.; Lechtenberg, T.; Fattig, E.; Mehta, P.
2012-09-01
Precision orbit ephemerides (POE) are used to estimate atmospheric density along the orbits of CHAMP (Challenging Minisatellite Payload) and GRACE (Gravity Recovery and Climate Experiment). The densities are calibrated against accelerometer derived densities and considering ballistic coefficient estimation results. The 14-hour density solutions are stitched together using a linear weighted blending technique to obtain continuous solutions over the entire mission life of CHAMP and through 2011 for GRACE. POE derived densities outperform the High Accuracy Satellite Drag Model (HASDM), Jacchia 71 model, and NRLMSISE-2000 model densities when comparing cross correlation and RMS with accelerometer derived densities. Drag is the largest error source for estimating and predicting orbits for low Earth orbit satellites. This is one of the major areas that should be addressed to improve overall space surveillance capabilities; in particular, catalog maintenance. Generally, density is the largest error source in satellite drag calculations and current empirical density models such as Jacchia 71 and NRLMSISE-2000 have significant errors. Dynamic calibration of the atmosphere (DCA) has provided measurable improvements to the empirical density models and accelerometer derived densities of extremely high precision are available for a few satellites. However, DCA generally relies on observations of limited accuracy and accelerometer derived densities are extremely limited in terms of measurement coverage at any given time. The goal of this research is to provide an additional data source using satellites that have precision orbits available using Global Positioning System measurements and/or satellite laser ranging. These measurements strike a balance between the global coverage provided by DCA and the precise measurements of accelerometers. The temporal resolution of the POE derived density estimates is around 20-30 minutes, which is significantly worse than that of accelerometer derived density estimates. However, major variations in density are observed in the POE derived densities. These POE derived densities in combination with other data sources can be assimilated into physics based general circulation models of the thermosphere and ionosphere with the possibility of providing improved density forecasts for satellite drag analysis. POE derived density estimates were initially developed using CHAMP and GRACE data so comparisons could be made with accelerometer derived density estimates. This paper presents the results of the most extensive calibration of POE derived densities compared to accelerometer derived densities and provides the reasoning for selecting certain parameters in the estimation process. The factors taken into account for these selections are the cross correlation and RMS performance compared to the accelerometer derived densities and the output of the ballistic coefficient estimation that occurs simultaneously with the density estimation. This paper also presents the complete data set of CHAMP and GRACE results and shows that the POE derived densities match the accelerometer densities better than empirical models or DCA. This paves the way to expand the POE derived densities to include other satellites with quality GPS and/or satellite laser ranging observations.
Molecular density functional theory of water including density-polarization coupling.
Jeanmairet, Guillaume; Levy, Nicolas; Levesque, Maximilien; Borgis, Daniel
2016-06-22
We present a three-dimensional molecular density functional theory of water derived from first-principles that relies on the particle's density and multipolar polarization density and includes the density-polarization coupling. This brings two main benefits: (i) scalar density and vectorial multipolar polarization density fields are much more tractable and give more physical insight than the full position and orientation densities, and (ii) it includes the full density-polarization coupling of water, that is known to be non-vanishing but has never been taken into account. Furthermore, the theory requires only the partial charge distribution of a water molecule and three measurable bulk properties, namely the structure factor and the Fourier components of the longitudinal and transverse dielectric susceptibilities.
Anomalous evolution of Ar metastable density with electron density in high density Ar discharge
DOE Office of Scientific and Technical Information (OSTI.GOV)
Park, Min; Chang, Hong-Young; You, Shin-Jae
2011-10-15
Recently, an anomalous evolution of argon metastable density with plasma discharge power (electron density) was reported [A. M. Daltrini, S. A. Moshkalev, T. J. Morgan, R. B. Piejak, and W. G. Graham, Appl. Phys. Lett. 92, 061504 (2008)]. Although the importance of the metastable atom and its density has been reported in a lot of literature, however, a basic physics behind the anomalous evolution of metastable density has not been clearly understood yet. In this study, we investigated a simple global model to elucidate the underlying physics of the anomalous evolution of argon metastable density with the electron density. Onmore » the basis of the proposed simple model, we reproduced the anomalous evolution of the metastable density and disclosed the detailed physics for the anomalous result. Drastic changes of dominant mechanisms for the population and depopulation processes of Ar metastable atoms with electron density, which take place even in relatively low electron density regime, is the clue to understand the result.« less
Kim, Won Hwa; Cho, Nariya; Kim, Young-Seon; Yi, Ann
2018-04-06
To evaluate the changes in mammographic density after tamoxifen discontinuation in premenopausal women with oestrogen receptor-positive breast cancers and the underlying factors METHODS: A total of 213 consecutive premenopausal women with breast cancer who received tamoxifen treatment after curative surgery and underwent three mammograms (baseline, after tamoxifen treatment, after tamoxifen discontinuation) were included. Changes in mammographic density after tamoxifen discontinuation were assessed qualitatively (decrease, no change, or increase) by two readers and measured quantitatively by semi-automated software. The association between % density change and clinicopathological factors was evaluated using univariate and multivariate regression analyses. After tamoxifen discontinuation, a mammographic density increase was observed in 31.9% (68/213, reader 1) to 22.1% (47/213, reader 2) by qualitative assessment, with a mean density increase of 1.8% by quantitative assessment compared to density before tamoxifen discontinuation. In multivariate analysis, younger age (≤ 39 years) and greater % density decline after tamoxifen treatment (≥ 17.0%) were independent factors associated with density change after tamoxifen discontinuation (p < .001 and p = .003, respectively). Tamoxifen discontinuation was associated with mammographic density change with a mean density increase of 1.8%, which was associated with younger age and greater density change after tamoxifen treatment. • Increased mammographic density after tamoxifen discontinuation can occur in premenopausal women. • Mean density increase after tamoxifen discontinuation was 1.8%. • Density increase is associated with age and density decrease after tamoxifen.
Gonis, A.; Zhang, X. G.; Stocks, G. M.; ...
2015-10-23
Density functional theory for the case of general, N-representable densities is reformulated in terms of density functional derivatives of expectation values of operators evaluated with wave functions leading to a density, making no reference to the concept of potential. The developments provide a complete solution of the v-representability problem by establishing a mathematical procedure that determines whether a density is v-representable and in the case of an affirmative answer determines the potential (within an additive constant) as a derivative with respect to the density of a constrained search functional. It also establishes the existence of an energy functional of themore » density that, for v-representable densities, assumes its minimum value at the density describing the ground state of an interacting many-particle system. The theorems of Hohenberg and Kohn emerge as special cases of the formalism.« less
Densities and temperatures in the polar thermosphere
NASA Technical Reports Server (NTRS)
Gardner, L. J.
1977-01-01
The atomic oxygen density at 120 km, the 630 nm airglow temperature, the helium density at 300 km and the molecular nitrogen density near 400 km were examined as functions of geomagnetic latitude, geomagnetic time, season and magnetic activity level. The long-term averages of these quantities were examined so as to provide a baseline of these thermospheric parameters from which future studies may be made for comparison. The hours around magnetic noon are characterized by low temperatures, high 0 and He densities, and median nitrogen densities. The pre-midnight hours exhibit high temperatures, high He density, low nitrogen density and median 0 densities. The post-midnight sector shows low 0 and He densities, median temperatures and high nitrogen densities. These results are compared to recent models and observations and are discussed with respect to their causes due to divergence of the wind field and energy deposition in the thermosphere.
The density-salinity relation of standard seawater
NASA Astrophysics Data System (ADS)
Schmidt, Hannes; Seitz, Steffen; Hassel, Egon; Wolf, Henning
2018-01-01
The determination of salinity by means of electrical conductivity relies on stable salt proportions in the North Atlantic Ocean, because standard seawater, which is required for salinometer calibration, is produced from water of the North Atlantic. To verify the long-term stability of the standard seawater composition, it was proposed to perform measurements of the standard seawater density. Since the density is sensitive to all salt components, a density measurement can detect any change in the composition. A conversion of the density values to salinity can be performed by means of a density-salinity relation. To use such a relation with a target uncertainty in salinity comparable to that in salinity obtained from conductivity measurements, a density measurement with an uncertainty of 2 g m-3 is mandatory. We present a new density-salinity relation based on such accurate density measurements. The substitution measurement method used is described and density corrections for uniform isotopic and chemical compositions are reported. The comparison of densities calculated using the new relation with those calculated using the present reference equations of state TEOS-10 suggests that the density accuracy of TEOS-10 (as well as that of EOS-80) has been overestimated, as the accuracy of some of its underlying density measurements had been overestimated. The new density-salinity relation may be used to verify the stable composition of standard seawater by means of routine density measurements.
Richard-Davis, Gloria; Whittemore, Brianna; Disher, Anthony; Rice, Valerie Montgomery; Lenin, Rathinasamy B; Dollins, Camille; Siegel, Eric R; Eswaran, Hari
2018-01-01
Objective: Increased mammographic breast density is a well-established risk factor for breast cancer development, regardless of age or ethnic background. The current gold standard for categorizing breast density consists of a radiologist estimation of percent density according to the American College of Radiology (ACR) Breast Imaging Reporting and Data System (BI-RADS) criteria. This study compares paired qualitative interpretations of breast density on digital mammograms with quantitative measurement of density using Hologic’s Food and Drug Administration–approved R2 Quantra volumetric breast density assessment tool. Our goal was to find the best cutoff value of Quantra-calculated breast density for stratifying patients accurately into high-risk and low-risk breast density categories. Methods: Screening digital mammograms from 385 subjects, aged 18 to 64 years, were evaluated. These mammograms were interpreted by a radiologist using the ACR’s BI-RADS density method, and had quantitative density measured using the R2 Quantra breast density assessment tool. The appropriate cutoff for breast density–based risk stratification using Quantra software was calculated using manually determined BI-RADS scores as a gold standard, in which scores of D3/D4 denoted high-risk densities and D1/D2 denoted low-risk densities. Results: The best cutoff value for risk stratification using Quantra-calculated breast density was found to be 14.0%, yielding a sensitivity of 65%, specificity of 77%, and positive and negative predictive values of 75% and 69%, respectively. Under bootstrap analysis, the best cutoff value had a mean ± SD of 13.70% ± 0.89%. Conclusions: Our study is the first to publish on a North American population that assesses the accuracy of the R2 Quantra system at breast density stratification. Quantitative breast density measures will improve accuracy and reliability of density determination, assisting future researchers to accurately calculate breast cancer risks associated with density increase. PMID:29511356
Multiconfiguration Pair-Density Functional Theory.
Li Manni, Giovanni; Carlson, Rebecca K; Luo, Sijie; Ma, Dongxia; Olsen, Jeppe; Truhlar, Donald G; Gagliardi, Laura
2014-09-09
We present a new theoretical framework, called Multiconfiguration Pair-Density Functional Theory (MC-PDFT), which combines multiconfigurational wave functions with a generalization of density functional theory (DFT). A multiconfigurational self-consistent-field (MCSCF) wave function with correct spin and space symmetry is used to compute the total electronic density, its gradient, the on-top pair density, and the kinetic and Coulomb contributions to the total electronic energy. We then use a functional of the total density, its gradient, and the on-top pair density to calculate the remaining part of the energy, which we call the on-top-density-functional energy in contrast to the exchange-correlation energy of Kohn-Sham DFT. Because the on-top pair density is an element of the two-particle density matrix, this goes beyond the Hohenberg-Kohn theorem that refers only to the one-particle density. To illustrate the theory, we obtain first approximations to the required new type of density functionals by translating conventional density functionals of the spin densities using a simple prescription, and we perform post-SCF density functional calculations using the total density, density gradient, and on-top pair density from the MCSCF calculations. Double counting of dynamic correlation or exchange does not occur because the MCSCF energy is not used. The theory is illustrated by applications to the bond energies and potential energy curves of H2, N2, F2, CaO, Cr2, and NiCl and the electronic excitation energies of Be, C, N, N(+), O, O(+), Sc(+), Mn, Co, Mo, Ru, N2, HCHO, C4H6, c-C5H6, and pyrazine. The method presented has a computational cost and scaling similar to MCSCF, but a quantitative accuracy, even with the present first approximations to the new types of density functionals, that is comparable to much more expensive multireference perturbation theory methods.
Silicon-Based Lithium-Ion Capacitor for High Energy and High Power Application
NASA Technical Reports Server (NTRS)
Wu, James J.; Demattia, Brianne; Loyselle, Patricia; Reid, Concha; Kohout, Lisa
2017-01-01
Si-based Li-ion capacitor has been developed and demonstrated. The results show it is feasible to improve both power density and energy density in this configuration. The applied current density impacts the power and energy density: low current favors energy density while high current favors power density. Active carbon has a better rate capability than Si. Next StepsFuture Directions. Si electrode needs to be further studied and improved. Further optimization of SiAC ratio and evaluation of its impact on energy density and power density.
A straightforward method for measuring the range of apparent density of microplastics.
Li, Lingyun; Li, Mengmeng; Deng, Hua; Cai, Li; Cai, Huiwen; Yan, Beizhan; Hu, Jun; Shi, Huahong
2018-10-15
Density of microplastics has been regarded as the primary property that affect the distribution and bioavailability of microplastics in the water column. For measuring the density of microplastis, we developed a simple and rapid method based on density gradient solutions. In this study, we tested four solvents to make the density gradient solutions, i.e., ethanol (0.8 g/cm 3 ), ultrapure water (1.0 g/cm 3 ), saturated NaI (1.8 g/cm 3 ) and ZnCl 2 (1.8 g/cm 3 ). Density of microplastics was measured via observing the float or sink status in the density gradient solutions. We found that density gradient solutions made from ZnCl 2 had a larger uncertainty in measuring density than that from NaI, most likely due to a higher surface tension of ZnCl 2 solution. Solutions made from ethanol, ultrapure water, and NaI showed consistent density results with listed densities of commercial products, indicating that these density gradient solutions were suitable for measuring microplastics with a density range of 0.8-1.8 g/cm 3 . Copyright © 2018 Elsevier B.V. All rights reserved.
High population density enhances recruitment and survival of a harvested coral reef fish.
Wormald, Clare L; Steele, Mark A; Forrester, Graham E
2013-03-01
A negative relationship between population growth and population density (direct density dependence) is necessary for population regulation and is assumed in most models of harvested populations. Experimental tests for density dependence are lacking for large-bodied, harvested fish because of the difficulty of manipulating population density over large areas. We studied a harvested coral reef fish, Lutjanus apodus (schoolmaster snapper), using eight large, isolated natural reefs (0.4-1.6 ha) in the Bahamas as replicates. An initial observational test for density dependence was followed by a manipulation of population density. The manipulation weakened an association between density and shelter-providing habitat features and revealed a positive effect of population density on recruitment and survival (inverse density dependence), but no effect of density on somatic growth. The snappers on an individual reef were organized into a few shoals, and we hypothesize that large shoals on high-density reefs were less vulnerable to large piscivores (groupers and barracudas) than the small shoals on low-density reefs. Reductions in predation risk for individuals in large social groups are well documented, but because snapper shoals occupied reefs the size of small marine reserves, these ecological interactions may influence the outcome of management actions.
NASA Astrophysics Data System (ADS)
Lechtenberg, Travis; McLaughlin, Craig A.; Locke, Travis; Krishna, Dhaval Mysore
2013-01-01
paper examines atmospheric density estimated using precision orbit ephemerides (POE) from the CHAMP and GRACE satellites during short periods of greater atmospheric density variability. The results of the calibration of CHAMP densities derived using POEs with those derived using accelerometers are examined for three different types of density perturbations, [traveling atmospheric disturbances (TADs), geomagnetic cusp phenomena, and midnight density maxima] in order to determine the temporal resolution of POE solutions. In addition, the densities are compared to High-Accuracy Satellite Drag Model (HASDM) densities to compare temporal resolution for both types of corrections. The resolution for these models of thermospheric density was found to be inadequate to sufficiently characterize the short-term density variations examined here. Also examined in this paper is the effect of differing density estimation schemes by propagating an initial orbit state forward in time and examining induced errors. The propagated POE-derived densities incurred errors of a smaller magnitude than the empirical models and errors on the same scale or better than those incurred using the HASDM model.
Density Measurement System for Weights of 1 kg to 20 kg Using Hydrostatic Weighing
NASA Astrophysics Data System (ADS)
Lee, Yong Jae; Lee, Woo Gab; Abdurahman, Mohammed; Kim, Kwang Pyo
This paper presents a density measurement system to determine density of weights from 1 kg to 20 kg using hydrostatic weighing. The system works based on Archimedes principle. The density of reference liquid is determined using this setup while determining the density of the test weight. Density sphere is used as standard density ball to determine density of the reference liquid. A new immersion pan is designed for dual purpose to carry the density sphere and the cylindrical test weight for weighing in liquid. Main parts of the setup are an electronic balance, a thermostat controlled liquid bath, reference weights designed for bottom weighing, dual purpose immersion pans and stepping motors to load and unload in weighing process. The results of density measurement will be evaluated as uncertainties for weights of 1 kg to 20 kg.
Reineke’s stand density index: a quantitative and non-unitless measure of stand density
Curtis L. VanderSchaaf
2013-01-01
When used as a measure of relative density, Reinekeâs stand density index (SDI) can be made unitless by relating the current SDI to a standard density but when used as a quantitative measure of stand density SDI is not unitless. Reinekeâs SDI relates the current stand density to an equivalent number of trees per unit area in a stand with a quadratic mean diameter (Dq)...
Federal Register 2010, 2011, 2012, 2013, 2014
2011-12-27
... option of obtaining several cabinet sizes and power densities. The co-located customer may obtain a half cabinet, a low density cabinet, a medium density cabinet, a medium-high density cabinet and a high density...-location customer may obtain more power by choosing a combination of lower power density cabinets. However...
Federal Register 2010, 2011, 2012, 2013, 2014
2011-12-27
... cabinet sizes and power densities. The co-located customer may obtain a half cabinet, a low density cabinet, a medium density cabinet, a medium-high density cabinet and a high density cabinet. Each cabinet... obtain more power by choosing a combination of lower power density cabinets. However, the Exchange is...
Federal Register 2010, 2011, 2012, 2013, 2014
2011-12-27
... power densities. The co-located customer may obtain a half cabinet, a low density cabinet, a medium density cabinet, a medium-high density cabinet and a high density cabinet.\\3\\ Each cabinet may vary in... by choosing a combination of lower power density cabinets. However, the Exchange is providing a...
Fajardo, A
2018-05-01
The wood economics spectrum provides a general framework for interspecific trait-trait coordination across wide environmental gradients. Whether global patterns are mirrored within species constitutes a poorly explored subject. In this study, I first determined whether wood density co-varies together with elevation, tree growth and height at the within-species level. Second, I determined the variation of wood density in different stem parts (trunk, branch and twigs). In situ trunk sapwood, trunk heartwood, branch and twig densities, in addition to stem growth rates and tree height were determined in adult trees of Nothofagus pumilio at four elevations in five locations spanning 18° of latitude. Mixed effects models were fitted to test relationships among variables. The variation in wood density reported in this study was narrow (ca. 0.4-0.6 g cm -3 ) relative to global density variation (ca. 0.3-1.0 g cm -3 ). There was no significant relationship between stem growth rates and wood density. Furthermore, the elevation gradient did not alter the wood density of any stem part. Trunk sapwood density was negatively related to tree height. Twig density was higher than branch and trunk densities. Trunk heartwood density was always significantly higher than sapwood density. Negative across-species trends found in the growth-wood density relationship may not emerge as the aggregate of parallel intraspecific patterns. Actually, trees with contrasting growth rates show similar wood density values. Tree height, which is tightly related to elevation, showed a negative relationship with sapwood density. © 2018 German Society for Plant Sciences and The Royal Botanical Society of the Netherlands.
Combining Step Gradients and Linear Gradients in Density.
Kumar, Ashok A; Walz, Jenna A; Gonidec, Mathieu; Mace, Charles R; Whitesides, George M
2015-06-16
Combining aqueous multiphase systems (AMPS) and magnetic levitation (MagLev) provides a method to produce hybrid gradients in apparent density. AMPS—solutions of different polymers, salts, or surfactants that spontaneously separate into immiscible but predominantly aqueous phases—offer thermodynamically stable steps in density that can be tuned by the concentration of solutes. MagLev—the levitation of diamagnetic objects in a paramagnetic fluid within a magnetic field gradient—can be arranged to provide a near-linear gradient in effective density where the height of a levitating object above the surface of the magnet corresponds to its density; the strength of the gradient in effective density can be tuned by the choice of paramagnetic salt and its concentrations and by the strength and gradient in the magnetic field. Including paramagnetic salts (e.g., MnSO4 or MnCl2) in AMPS, and placing them in a magnetic field gradient, enables their use as media for MagLev. The potential to create large steps in density with AMPS allows separations of objects across a range of densities. The gradients produced by MagLev provide resolution over a continuous range of densities. By combining these approaches, mixtures of objects with large differences in density can be separated and analyzed simultaneously. Using MagLev to add an effective gradient in density also enables tuning the range of densities captured at an interface of an AMPS by simply changing the position of the container in the magnetic field. Further, by creating AMPS in which phases have different concentrations of paramagnetic ions, the phases can provide different resolutions in density. These results suggest that combining steps in density with gradients in density can enable new classes of separations based on density.
Comparison of subjective and fully automated methods for measuring mammographic density.
Moshina, Nataliia; Roman, Marta; Sebuødegård, Sofie; Waade, Gunvor G; Ursin, Giske; Hofvind, Solveig
2018-02-01
Background Breast radiologists of the Norwegian Breast Cancer Screening Program subjectively classified mammographic density using a three-point scale between 1996 and 2012 and changed into the fourth edition of the BI-RADS classification since 2013. In 2015, an automated volumetric breast density assessment software was installed at two screening units. Purpose To compare volumetric breast density measurements from the automated method with two subjective methods: the three-point scale and the BI-RADS density classification. Material and Methods Information on subjective and automated density assessment was obtained from screening examinations of 3635 women recalled for further assessment due to positive screening mammography between 2007 and 2015. The score of the three-point scale (I = fatty; II = medium dense; III = dense) was available for 2310 women. The BI-RADS density score was provided for 1325 women. Mean volumetric breast density was estimated for each category of the subjective classifications. The automated software assigned volumetric breast density to four categories. The agreement between BI-RADS and volumetric breast density categories was assessed using weighted kappa (k w ). Results Mean volumetric breast density was 4.5%, 7.5%, and 13.4% for categories I, II, and III of the three-point scale, respectively, and 4.4%, 7.5%, 9.9%, and 13.9% for the BI-RADS density categories, respectively ( P for trend < 0.001 for both subjective classifications). The agreement between BI-RADS and volumetric breast density categories was k w = 0.5 (95% CI = 0.47-0.53; P < 0.001). Conclusion Mean values of volumetric breast density increased with increasing density category of the subjective classifications. The agreement between BI-RADS and volumetric breast density categories was moderate.
One vs. Two Breast Density Measures to Predict 5- and 10- Year Breast Cancer Risk
Kerlikowske, Karla; Gard, Charlotte C.; Sprague, Brian L.; Tice, Jeffrey A.; Miglioretti, Diana L.
2015-01-01
Background One measure of Breast Imaging Reporting and Data System (BI-RADS) breast density improves 5-year breast cancer risk prediction, but the value of sequential measures is unknown. We determined if two BI-RADS density measures improves the predictive accuracy of the Breast Cancer Surveillance Consortium 5-year risk model compared to one measure. Methods We included 722,654 women aged 35–74 years with two mammograms with BI-RADS density measures on average 1.8 years apart; 13,715 developed invasive breast cancer. We used Cox regression to estimate the relative hazards of breast cancer for age, race/ethnicity, family history of breast cancer, history of breast biopsy, and one or two density measures. We developed a risk prediction model by combining these estimates with 2000–2010 Surveillance, Epidemiology, and End Results incidence and 2010 vital statistics for competing risk of death. Results The two-measure density model had marginally greater discriminatory accuracy than the one-measure model (AUC=0.640 vs. 0.635). Of 18.6% of women (134,404/722,654) who decreased density categories, 15.4% (20,741/134,404) of women whose density decreased from heterogeneously or extremely dense to a lower density category with one other risk factor had a clinically meaningful increase in 5-year risk from <1.67% with the one-density model to ≥1.67% with the two-density model. Conclusion The two-density model has similar overall discrimination to the one-density model for predicting 5-year breast cancer risk and improves risk classification for women with risk factors and a decrease in density. Impact A two-density model should be considered for women whose density decreases when calculating breast cancer risk. PMID:25824444
One versus Two Breast Density Measures to Predict 5- and 10-Year Breast Cancer Risk.
Kerlikowske, Karla; Gard, Charlotte C; Sprague, Brian L; Tice, Jeffrey A; Miglioretti, Diana L
2015-06-01
One measure of Breast Imaging Reporting and Data System (BI-RADS) breast density improves 5-year breast cancer risk prediction, but the value of sequential measures is unknown. We determined whether two BI-RADS density measures improve the predictive accuracy of the Breast Cancer Surveillance Consortium 5-year risk model compared with one measure. We included 722,654 women of ages 35 to 74 years with two mammograms with BI-RADS density measures on average 1.8 years apart; 13,715 developed invasive breast cancer. We used Cox regression to estimate the relative hazards of breast cancer for age, race/ethnicity, family history of breast cancer, history of breast biopsy, and one or two density measures. We developed a risk prediction model by combining these estimates with 2000-2010 Surveillance, Epidemiology, and End Results incidence and 2010 vital statistics for competing risk of death. The two-measure density model had marginally greater discriminatory accuracy than the one-measure model (AUC, 0.640 vs. 0.635). Of 18.6% of women (134,404 of 722,654) who decreased density categories, 15.4% (20,741 of 134,404) of women whose density decreased from heterogeneously or extremely dense to a lower density category with one other risk factor had a clinically meaningful increase in 5-year risk from <1.67% with the one-density model to ≥1.67% with the two-density model. The two-density model has similar overall discrimination to the one-density model for predicting 5-year breast cancer risk and improves risk classification for women with risk factors and a decrease in density. A two-density model should be considered for women whose density decreases when calculating breast cancer risk. ©2015 American Association for Cancer Research.
NASA Astrophysics Data System (ADS)
Moorhead, Althea V.; Blaauw, Rhiannon C.; Moser, Danielle E.; Campbell-Brown, Margaret D.; Brown, Peter G.; Cooke, William J.
2017-12-01
The bulk density of a meteoroid affects its dynamics in space, its ablation in the atmosphere, and the damage it does to spacecraft and lunar or planetary surfaces. Meteoroid bulk densities are also notoriously difficult to measure, and we are typically forced to assume a density or attempt to measure it via a proxy. In this paper, we construct a density distribution for sporadic meteoroids based on existing density measurements. We considered two possible proxies for density: the KB parameter introduced by Ceplecha and Tisserand parameter, TJ. Although KB is frequently cited as a proxy for meteoroid material properties, we find that it is poorly correlated with ablation-model-derived densities. We therefore follow the example of Kikwaya et al. in associating density with the Tisserand parameter. We fit two density distributions to meteoroids originating from Halley-type comets (TJ < 2) and those originating from all other parent bodies (TJ > 2); the resulting two-population density distribution is the most detailed sporadic meteoroid density distribution justified by the available data. Finally, we discuss the implications for meteoroid environment models and spacecraft risk assessments. We find that correcting for density increases the fraction of meteoroid-induced spacecraft damage produced by the helion/antihelion source.
Current and Future Methods for Measuring Breast Density: A Brief Comparative Review
Sak, Mark A.; Littrup, Peter J.; Duric, Neb; Mullooly, Maeve; Sherman, Mark E.; Gierach, Gretchen L.
2017-01-01
Breast density is one of the strongest predictors of breast cancer risk. Women with the densest breasts are 4 to 6 times more likely to develop cancer compared with those with the lowest densities. Breast density is generally assessed using mammographic imaging; however, this approach has limitations. Magnetic resonance imaging and ultrasound tomography are some alternative imaging modalities that can aid mammography in patient screening and the measurement of breast density. As breast density becomes more commonly discussed, knowledge of the advantages and limitations of breast density as a marker of risk will become more critical. This review article discusses the relationship between breast density and breast cancer risk, lists the benefits and drawbacks of using multiple different imaging modalities to measure density and briefly discusses how breast density will be applied to aid in breast cancer prevention and treatment. PMID:28943893
Fu, Shuangcheng; Fang, Yong; Yuan, Huixin; Tan, Wanjiang; Dong, Yiwen
2017-09-01
Hydrocyclones can be applied to recycle waste plastics with different densities through separating plastics based on their differences in densities. In the process, the medium density is one of key parameters and the value of the medium's density is not just the average of the density of two kinds of plastics separated. Based on the force analysis and establishing the equation of motion of particles in the hydrocyclone, a formula to calculate the optimum separation medium density has been deduced. This value of the medium's density is a function of various parameters including the diameter, density, radial position and tangential velocity of particles, and viscosity of the medium. Tests on the separation performance of the hydrocyclone has been conducted with PET and PVC particles. The theoretical result appeared to be in good agreement with experimental results. Copyright © 2017 Elsevier Ltd. All rights reserved.
Active Space Dependence in Multiconfiguration Pair-Density Functional Theory.
Sharma, Prachi; Truhlar, Donald G; Gagliardi, Laura
2018-02-13
In multiconfiguration pair-density functional theory (MC-PDFT), multiconfiguration self-consistent-field calculations and on-top density functionals are combined to describe both static and dynamic correlation. Here, we investigate how the MC-PDFT total energy and its components depend on the active space choice in the case of the H 2 and N 2 molecules. The active space dependence of the on-top pair density, the total density, the ratio of on-top pair density to half the square of the electron density, and the satisfaction of the virial theorem are also explored. We find that the density and on-top pair density do not change significantly with changes in the active space. However, the on-top ratio does change significantly with respect to active space change, and this affects the on-top energy. This study provides a foundation for designing on-top density functionals and automatizing the active space choice in MC-PDFT.
Breast density in multiethnic women presenting for screening mammography.
Oppong, Bridget A; Dash, Chiranjeev; O'Neill, Suzanne; Li, Yinan; Makambi, Kepher; Pien, Edward; Makariou, Erini; Coleman, Tesha; Adams-Campbell, Lucile L
2018-05-01
Data on ethnic variations in breast density are limited and often not inclusive of underrepresented minorities. As breast density is associated with elevated breast cancer risk, investigating racial and ethnic difference may elucidate the observed differences in breast cancer risk among different populations. We reviewed breast density from initial screening of women from the Capital Breast Care Center and Georgetown University Hospital from 2010 to 2014. Patient demographics including race, age at screening, education, menopausal status, and body mass index were abstracted. We recorded the BI-RADS density categories: (1) "fatty," (2) "scattered fibroglandular densities," (3) "heterogeneously dense," and (4) "extremely dense." Multivariable unconditional logistic regression was used to identify predictors of breast density. Density categorization was recorded for 2146 women over the 5-year period, comprising Blacks (n = 940), Hispanics (n = 893), and Whites (n = 314). Analysis of subject characteristics by breast density showed that high category is observed in younger, Hispanic, nulliparous, premenopausal, and nonobese women (t-test or chi-square test, P-values <.0001). Obese women are 70% less likely to have high density. Being Hispanic, premenopausal, and nonobese were predictive of high density on logistic regression. In this analysis of density distribution in a diverse sample, Hispanic women have the highest breast density, followed by Blacks and Whites. Unique in our findings is women who identify as Hispanic have the highest breast density and lower rates of obesity. Further investigation of the impact of obesity on breast density, especially in the understudied Hispanic group is needed. © 2017 Wiley Periodicals, Inc.
Flockhart, D. T. Tyler; Martin, Tara G.; Norris, D. Ryan
2012-01-01
A central goal of population ecology is to identify the factors that regulate population growth. Monarch butterflies (Danaus plexippus) in eastern North America re-colonize the breeding range over several generations that result in population densities that vary across space and time during the breeding season. We used laboratory experiments to measure the strength of density-dependent intraspecific competition on egg laying rate and larval survival and then applied our results to density estimates of wild monarch populations to model the strength of density dependence during the breeding season. Egg laying rates did not change with density but larvae at high densities were smaller, had lower survival, and weighed less as adults compared to lower densities. Using mean larval densities from field surveys resulted in conservative estimates of density-dependent population reduction that varied between breeding regions and different phases of the breeding season. Our results suggest the highest levels of population reduction due to density-dependent intraspecific competition occur early in the breeding season in the southern portion of the breeding range. However, we also found that the strength of density dependence could be almost five times higher depending on how many life-stages were used as part of field estimates. Our study is the first to link experimental results of a density-dependent reduction in vital rates to observed monarch densities in the wild and show that the effects of density dependent competition in monarchs varies across space and time, providing valuable information for developing robust, year-round population models in this migratory organism. PMID:22984614
Estimating loblolly pine size-density trajectories across a range of planting densities
Curtis L. VanderSchaaf; Harold E. Burkhart
2013-01-01
Size-density trajectories on the logarithmic (ln) scale are generally thought to consist of two major stages. The first is often referred to as the density-independent mortality stage where the probability of mortality is independent of stand density; in the second, often referred to as the density-dependent mortality or self-thinning stage, the probability of...
Spectral density of mixtures of random density matrices for qubits
NASA Astrophysics Data System (ADS)
Zhang, Lin; Wang, Jiamei; Chen, Zhihua
2018-06-01
We derive the spectral density of the equiprobable mixture of two random density matrices of a two-level quantum system. We also work out the spectral density of mixture under the so-called quantum addition rule. We use the spectral densities to calculate the average entropy of mixtures of random density matrices, and show that the average entropy of the arithmetic-mean-state of n qubit density matrices randomly chosen from the Hilbert-Schmidt ensemble is never decreasing with the number n. We also get the exact value of the average squared fidelity. Some conjectures and open problems related to von Neumann entropy are also proposed.
Correlation of quantitative computed tomographic subchondral bone density and ash density in horses.
Drum, M G; Les, C M; Park, R D; Norrdin, R W; McIlwraith, C W; Kawcak, C E
2009-02-01
The purpose of this study was to compare subchondral bone density obtained using quantitative computed tomography with ash density values from intact equine joints, and to determine if there are measurable anatomic variations in mean subchondral bone density. Five adult equine metacarpophalangeal joints were scanned with computed tomography (CT), disarticulated, and four 1-cm(3) regions of interest (ROI) cut from the distal third metacarpal bone. Bone cubes were ashed, and percent mineralization and ash density were recorded. Three-dimensional models were created of the distal third metacarpal bone from CT images. Four ROIs were measured on the distal aspect of the third metacarpal bone at axial and abaxial sites of the medial and lateral condyles for correlation with ash samples. Overall correlations of mean quantitative CT (QCT) density with ash density (r=0.82) and percent mineralization (r=0.93) were strong. There were significant differences between abaxial and axial ROIs for mean QCT density, percent bone mineralization and ash density (p<0.05). QCT appears to be a good measure of bone density in equine subchondral bone. Additionally, differences existed between axial and abaxial subchondral bone density in the equine distal third metacarpal bone.
Energy density of bloaters in the upper Great Lakes
Pothoven, Steven A.; Bunnell, David B.; Madenjian, Charles P.; Gorman, Owen T.; Roseman, Edward F.
2012-01-01
We evaluated the energy density of bloaters Coregonus hoyi as a function of fish size across Lakes Michigan, Huron, and Superior in 2008–2009 and assessed how differences in energy density are related to factors such as biomass density of bloaters and availability of prey. Additional objectives were to compare energy density between sexes and to compare energy densities of bloaters in Lake Michigan between two time periods (1998–2001 and 2008–2009). For the cross-lake comparisons in 2008, energy density increased with fish total length (TL) only in Lake Michigan. Mean energy density adjusted for fish size was 8% higher in bloaters from Lake Superior than in bloaters from Lake Huron. Relative to fish in these two lakes, small (175 mm TL) bloaters had higher energy density. In 2009, energy density increased with bloater size, and mean energy density adjusted for fish size was about 9% higher in Lake Michigan than in Lake Huron (Lake Superior was not sampled during 2009). Energy density of bloaters in Lake Huron was generally the lowest among lakes, reflecting the relatively low densities of opossum shrimp Mysis diluviana and the relatively high biomass of bloaters reported for that lake. Other factors, such as energy content of prey, growing season, or ontogenetic differences in energy use strategies, may also influence cross-lake variation in energy density. Mean energy density adjusted for length was 7% higher for female bloaters than for male bloaters in Lakes Michigan and Huron. In Lake Superior, energy density did not differ between males and females. Finally, energy density of bloaters in Lake Michigan was similar between the periods 2008–2009 and 1998–2001, possibly due to a low population abundance of bloaters, which could offset food availability changes linked to the loss of prey such as the amphipods Diporeia spp.
Zimmermann, Fabian; Ricard, Daniel; Heino, Mikko
2018-05-01
Population regulation is a central concept in ecology, yet in many cases its presence and the underlying mechanisms are difficult to demonstrate. The current paradigm maintains that marine fish populations are predominantly regulated by density-dependent recruitment. While it is known that density-dependent somatic growth can be present too, its general importance remains unknown and most practical applications neglect it. This study aimed to close this gap by for the first time quantifying and comparing density dependence in growth and recruitment over a large set of fish populations. We fitted density-dependent models to time-series data on population size, recruitment and age-specific weight from commercially exploited fish populations in the Northeast Atlantic Ocean and the Baltic Sea. Data were standardized to enable a direct comparison within and among populations, and estimated parameters were used to quantify the impact of density regulation on population biomass. Statistically significant density dependence in recruitment was detected in a large proportion of populations (70%), whereas for density dependence in somatic growth the prevalence of density dependence depended heavily on the method (26% and 69%). Despite age-dependent variability, the density dependence in recruitment was consistently stronger among age groups and between alternative approaches that use weight-at-age or weight increments to assess growth. Estimates of density-dependent reduction in biomass underlined these results: 97% of populations with statistically significant parameters for growth and recruitment showed a larger impact of density-dependent recruitment on population biomass. The results reaffirm the importance of density-dependent recruitment in marine fishes, yet they also show that density dependence in somatic growth is not uncommon. Furthermore, the results are important from an applied perspective because density dependence in somatic growth affects productivity and catch composition, and therefore the benefits of maintaining fish populations at specific densities. © 2018 The Authors. Journal of Animal Ecology published by John Wiley & Sons Ltd on behalf of British Ecological Society.
Imaging Breast Density: Established and Emerging Modalities1
Chen, Jeon-Hor; Gulsen, Gultekin; Su, Min-Ying
2015-01-01
Mammographic density has been proven as an independent risk factor for breast cancer. Women with dense breast tissue visible on a mammogram have a much higher cancer risk than women with little density. A great research effort has been devoted to incorporate breast density into risk prediction models to better estimate each individual’s cancer risk. In recent years, the passage of breast density notification legislation in many states in USA requires that every mammography report should provide information regarding the patient’s breast density. Accurate definition and measurement of breast density are thus important, which may allow all the potential clinical applications of breast density to be implemented. Because the two-dimensional mammography-based measurement is subject to tissue overlapping and thus not able to provide volumetric information, there is an urgent need to develop reliable quantitative measurements of breast density. Various new imaging technologies are being developed. Among these new modalities, volumetric mammographic density methods and three-dimensional magnetic resonance imaging are the most well studied. Besides, emerging modalities, including different x-ray–based, optical imaging, and ultrasound-based methods, have also been investigated. All these modalities may either overcome some fundamental problems related to mammographic density or provide additional density and/or compositional information. The present review article aimed to summarize the current established and emerging imaging techniques for the measurement of breast density and the evidence of the clinical use of these density methods from the literature. PMID:26692524
Impact of density information on Rayleigh surface wave inversion results
NASA Astrophysics Data System (ADS)
Ivanov, Julian; Tsoflias, Georgios; Miller, Richard D.; Peterie, Shelby; Morton, Sarah; Xia, Jianghai
2016-12-01
We assessed the impact of density on the estimation of inverted shear-wave velocity (Vs) using the multi-channel analysis of surface waves (MASW) method. We considered the forward modeling theory, evaluated model sensitivity, and tested the effect of density information on the inversion of seismic data acquired in the Arctic. Theoretical review, numerical modeling and inversion of modeled and real data indicated that the density ratios between layers, not the actual density values, impact the determination of surface-wave phase velocities. Application on real data compared surface-wave inversion results using: a) constant density, the most common approach in practice, b) indirect density estimates derived from refraction compressional-wave velocity observations, and c) from direct density measurements in a borehole. The use of indirect density estimates reduced the final shear-wave velocity (Vs) results typically by 6-7% and the use of densities from a borehole reduced the final Vs estimates by 10-11% compared to those from assumed constant density. In addition to the improved absolute Vs accuracy, the resulting overall Vs changes were unevenly distributed laterally when viewed on a 2-D section leading to an overall Vs model structure that was more representative of the subsurface environment. It was observed that the use of constant density instead of increasing density with depth not only can lead to Vs overestimation but it can also create inaccurate model structures, such as a low-velocity layer. Thus, optimal Vs estimations can be best achieved using field estimates of subsurface density ratios.
Density-dependence interacts with extrinsic mortality in shaping life histories
Burger, Oskar; Kozłowski, Jan
2017-01-01
The role of extrinsic mortality in shaping life histories is poorly understood. However, substantial evidence suggests that extrinsic mortality interacts with density-dependence in crucial ways. We develop a model combining Evolutionarily Stable Strategies with a projection matrix that allows resource allocation to growth, tissue repairs, and reproduction. Our model examines three cases, with density-dependence acting on: (i) mortality, (ii) fecundity, and (iii) production rate. We demonstrate that density-independent extrinsic mortality influences the rate of aging, age at maturity, growth rate, and adult size provided that density-dependence acts on fertility or juvenile mortality. However, density-independent extrinsic mortality has no effect on these life history traits when density-dependence acts on survival. We show that extrinsic mortality interacts with density-dependence via a compensation mechanism: the higher the extrinsic mortality the lower the strength of density-dependence. However, this compensation fully offsets the effect of extrinsic mortality only if density-dependence acts on survival independently of age. Both the age-pattern and the type of density-dependence are crucial for shaping life history traits. PMID:29049399
Breast Density Legislation in New England: A Survey Study of Practicing Radiologists.
Lourenco, Ana P; DiFlorio-Alexander, Roberta M; Slanetz, Priscilla J
2017-10-01
This study aimed to assess radiologists' knowledge about breast density legislation as well as perceived practice changes resulting from the enactment of breast density legislation. This is an institutional review board-exempt anonymous email survey of 523 members of the New England Roentgen Ray Society. In addition to radiologist demographics, survey questions addressed radiologist knowledge of breast density legislation, knowledge of breast density as a risk factor for breast cancer, recommendations for supplemental screening, and perceived practice changes resulting from density notification legislation. Of the 523 members, 96 responded, yielding an 18% response rate. Seventy-three percent of respondents practiced in a state with breast density legislation. Sixty-nine percent felt that breast density notification increased patient anxiety about breast cancer, but also increased patient (74%) and provider (66%) understanding of the effect of breast density on mammographic sensitivity. Radiologist knowledge of the relative risk of breast cancer when comparing breasts of different density was variable. Considerable confusion and controversy regarding breast density persists, even among practicing radiologists. Copyright © 2017 The Association of University Radiologists. Published by Elsevier Inc. All rights reserved.
Sepehrband, Farshid; Clark, Kristi A.; Ullmann, Jeremy F.P.; Kurniawan, Nyoman D.; Leanage, Gayeshika; Reutens, David C.; Yang, Zhengyi
2015-01-01
We examined whether quantitative density measures of cerebral tissue consistent with histology can be obtained from diffusion magnetic resonance imaging (MRI). By incorporating prior knowledge of myelin and cell membrane densities, absolute tissue density values were estimated from relative intra-cellular and intra-neurite density values obtained from diffusion MRI. The NODDI (neurite orientation distribution and density imaging) technique, which can be applied clinically, was used. Myelin density estimates were compared with the results of electron and light microscopy in ex vivo mouse brain and with published density estimates in a healthy human brain. In ex vivo mouse brain, estimated myelin densities in different sub-regions of the mouse corpus callosum were almost identical to values obtained from electron microscopy (Diffusion MRI: 42±6%, 36±4% and 43±5%; electron microscopy: 41±10%, 36±8% and 44±12% in genu, body and splenium, respectively). In the human brain, good agreement was observed between estimated fiber density measurements and previously reported values based on electron microscopy. Estimated density values were unaffected by crossing fibers. PMID:26096639
Are breast density and bone mineral density independent risk factors for breast cancer?
Kerlikowske, Karla; Shepherd, John; Creasman, Jennifer; Tice, Jeffrey A; Ziv, Elad; Cummings, Steve R
2005-03-02
Mammographic breast density and bone mineral density (BMD) are markers of cumulative exposure to estrogen. Previous studies have suggested that women with high mammographic breast density or high BMD are at increased risk of breast cancer. We determined whether mammographic breast density and BMD of the hip and spine are correlated and independently associated with breast cancer risk. We conducted a cross-sectional study (N = 15,254) and a nested case-control study (of 208 women with breast cancer and 436 control subjects) among women aged 28 years or older who had a screening mammography examination and hip BMD measurement within 2 years. Breast density for 3105 of the women was classified using the American College of Radiology Breast Imaging Reporting and Data System (BI-RADS) categories, and percentage mammographic breast density among the case patients and control subjects was quantified with a computer-based threshold method. Spearman rank partial correlation coefficient and Pearson's correlation coefficient were used to examine correlations between BI-RADS breast density and BMD and between percentage mammographic breast density and BMD, respectively, in women without breast cancer. Logistic regression was used to examine the association of breast cancer with percentage mammographic breast density and BMD. All statistical tests were two-sided. Neither BI-RADS breast density nor percentage breast density was correlated with hip or spine BMD (correlation coefficient = -.02 and -.01 for BI-RADS, respectively, and -.06 and .01 for percentage breast density, respectively). Neither hip BMD nor spine BMD had a statistically significant relationship with breast cancer risk. Women with breast density in the highest sextile had an approximately threefold increased risk of breast cancer compared with women in the lowest sextile (odds ratio = 2.7, 95% confidence interval = 1.4 to 5.4); adjusting for hip or spine BMD did not change the association between breast density and breast cancer risk. Breast density is strongly associated with increased risk of breast cancer, even after taking into account reproductive and hormonal risk factors, whereas BMD, although a possible marker of lifetime exposure to estrogen, is not. Thus, a component of breast density that is independent of estrogen-mediated effects may contribute to breast cancer risk.
Propulsion Physics Under the Changing Density Field Model
NASA Technical Reports Server (NTRS)
Robertson, Glen A.
2011-01-01
To grow as a space faring race, future spaceflight systems will requires new propulsion physics. Specifically a propulsion physics model that does not require mass ejection without limiting the high thrust necessary to accelerate within or beyond our solar system and return within a normal work period or lifetime. In 2004 Khoury and Weltman produced a density dependent cosmology theory they called Chameleon Cosmology, as at its nature, it is hidden within known physics. This theory represents a scalar field within and about an object, even in the vacuum. Whereby, these scalar fields can be viewed as vacuum energy fields with definable densities that permeate all matter; having implications to dark matter/energy with universe acceleration properties; implying a new force mechanism for propulsion physics. Using Chameleon Cosmology, the author has developed a new propulsion physics model, called the Changing Density Field (CDF) Model. This model relates to density changes in these density fields, where the density field density changes are related to the acceleration of matter within an object. These density changes in turn change how an object couples to the surrounding density fields. Whereby, thrust is achieved by causing a differential in the coupling to these density fields about an object. Since the model indicates that the density of the density field in an object can be changed by internal mass acceleration, even without exhausting mass, the CDF model implies a new propellant-less propulsion physics model
Marashi-Pour, Sadaf; Cretikos, Michelle; Lyons, Claudine; Rose, Nick; Jalaludin, Bin; Smith, Joanne
2015-01-01
We explored the association between the density of tobacco outlets and neighbourhood socioeconomic status, and between neighbourhood tobacco outlet density and individual smoking status. We also investigated the density of tobacco outlets around primary and secondary schools in New South Wales (NSW). We calculated the mean density of retail tobacco outlets registered in NSW between 2009 and 2011, using kernel density estimation with an adaptive bandwidth. We used generalised ordered logistic regression model to explore the association between socioeconomic status and density of tobacco outlets. The association between neighbourhood tobacco outlet density and individuals' current smoking status was investigated using random-intercept generalised linear mixed models. We also calculated the median tobacco outlet density around NSW schools. More disadvantaged Census Collection Districts (CDs) were significantly more likely to have higher tobacco outlet densities. After adjusting for neighbourhood socioeconomic status and participants' age, sex, country of birth and Aboriginal status, neighbourhood mean tobacco outlet density was significantly and positively associated with individuals' smoking status. The median of tobacco outlet density around schools was significantly higher than the state median. Policymakers could consider exploring a range of strategies that target tobacco outlets in proximity to schools, in more disadvantaged neighbourhoods and in areas of existing high tobacco outlet density. Crown Copyright © 2014. Published by Elsevier Ltd. All rights reserved.
Kannan, Pavitra; Schain, Martin; Kretzschmar, Warren W; Weidner, Lora; Mitsios, Nicholas; Gulyás, Balázs; Blom, Hans; Gottesman, Michael M; Innis, Robert B; Hall, Matthew D; Mulder, Jan
2017-06-01
Changes in P-glycoprotein and ABCG2 densities may play a role in amyloid-beta accumulation in Alzheimer's disease. However, previous studies report conflicting results from different brain regions, without correcting for changes in vessel density. We developed an automated method to measure transporter density exclusively within the vascular space, thereby correcting for vessel density. We then examined variability in transporter density across brain regions, matter, and disease using two cohorts of post-mortem brains from Alzheimer's disease patients and age-matched controls. Changes in transporter density were also investigated in capillaries near plaques and on the mRNA level. P-glycoprotein density varied with brain region and matter, whereas ABCG2 density varied with brain matter. In temporal cortex, P-glycoprotein density was 53% lower in Alzheimer's disease samples than in controls, and was reduced by 35% in capillaries near plaque deposits within Alzheimer's disease samples. ABCG2 density was unaffected in Alzheimer's disease. No differences were detected at the transcript level. Our study indicates that region-specific changes in transporter densities can occur globally and locally near amyloid-beta deposits in Alzheimer's disease, providing an explanation for conflicting results in the literature. When differences in region and matter are accounted for, changes in density can be reproducibly measured using our automated method.
Anode current density distribution in a cusped field thruster
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wu, Huan, E-mail: wuhuan58@qq.com; Liu, Hui, E-mail: hlying@gmail.com; Meng, Yingchao
2015-12-15
The cusped field thruster is a new electric propulsion device that is expected to have a non-uniform radial current density at the anode. To further study the anode current density distribution, a multi-annulus anode is designed to directly measure the anode current density for the first time. The anode current density decreases sharply at larger radii; the magnitude of collected current density at the center is far higher compared with the outer annuli. The anode current density non-uniformity does not demonstrate a significant change with varying working conditions.
Intramolecular Nuclear Flux Densities
NASA Astrophysics Data System (ADS)
Barth, I.; Daniel, C.; Gindensperger, E.; Manz, J.; PéRez-Torres, J. F.; Schild, A.; Stemmle, C.; Sulzer, D.; Yang, Y.
The topic of this survey article has seen a renaissance during the past couple of years. Here we present and extend the results for various phenomena which we have published from 2012-2014, with gratitude to our coauthors. The new phenomena include (a) the first reduced nuclear flux densities in vibrating diatomic molecules or ions which have been deduced from experimental pump-probe spectra; these "experimental" nuclear flux densities reveal several quantum effects including (b) the "quantum accordion", i.e., during the turn from bond stretch to bond compression, the diatomic system never stands still — instead, various parts of it with different bond lengths flow into opposite directions. (c) Wavepacket interferometry has been extended from nuclear densities to flux densities, again revealing new phenomena: For example, (d) a vibrating nuclear wave function with compact initial shape may split into two partial waves which run into opposite directions, thus causing interfering flux densities. (e) Tunneling in symmetric 1-dimensional double-well systems yields maximum values of the associated nuclear flux density just below the potential barrier; this is in marked contrast with negligible values of the nuclear density just below the barrier. (f) Nuclear flux densities of pseudorotating nuclei may induce huge magnetic fields. A common methodologic theme of all topics is the continuity equation which connects the time derivative of the nuclear density to the divergence of the flux density, subject to the proper boundary conditions. (g) Nearly identical nuclear densities with different boundary conditions may be related to entirely different flux densities, e.g., during tunneling in cyclic versus non-cyclic systems. The original continuity equation, density and flux density of all nuclei, or of all nuclear degrees of freedom, may be reduced to the corresponding quantities for just a single nucleus, or just a single degree of freedom.
Feng, Shu; Gale, Michael J; Fay, Jonathan D; Faridi, Ambar; Titus, Hope E; Garg, Anupam K; Michaels, Keith V; Erker, Laura R; Peters, Dawn; Smith, Travis B; Pennesi, Mark E
2015-09-01
To describe a standardized flood-illuminated adaptive optics (AO) imaging protocol suitable for the clinical setting and to assess sampling methods for measuring cone density. Cone density was calculated following three measurement protocols: 50 × 50-μm sampling window values every 0.5° along the horizontal and vertical meridians (fixed-interval method), the mean density of expanding 0.5°-wide arcuate areas in the nasal, temporal, superior, and inferior quadrants (arcuate mean method), and the peak cone density of a 50 × 50-μm sampling window within expanding arcuate areas near the meridian (peak density method). Repeated imaging was performed in nine subjects to determine intersession repeatability of cone density. Cone density montages could be created for 67 of the 74 subjects. Image quality was determined to be adequate for automated cone counting for 35 (52%) of the 67 subjects. We found that cone density varied with different sampling methods and regions tested. In the nasal and temporal quadrants, peak density most closely resembled histological data, whereas the arcuate mean and fixed-interval methods tended to underestimate the density compared with histological data. However, in the inferior and superior quadrants, arcuate mean and fixed-interval methods most closely matched histological data, whereas the peak density method overestimated cone density compared with histological data. Intersession repeatability testing showed that repeatability was greatest when sampling by arcuate mean and lowest when sampling by fixed interval. We show that different methods of sampling can significantly affect cone density measurements. Therefore, care must be taken when interpreting cone density results, even in a normal population.
Population density predicts outcome from out-of-hospital cardiac arrest in Victoria, Australia.
Nehme, Ziad; Andrew, Emily; Cameron, Peter A; Bray, Janet E; Bernard, Stephen A; Meredith, Ian T; Smith, Karen
2014-05-05
To examine the impact of population density on incidence and outcome of out-of-hospital cardiac arrest (OHCA). Data were extracted from the Victorian Ambulance Cardiac Arrest Registry for all adult OHCA cases of presumed cardiac aetiology attended by the emergency medical service (EMS) between 1 January 2003 and 31 December 2011. Cases were allocated into one of five population density groups according to their statistical local area: very low density (≤ 10 people/km(2)), low density (11-200 people/km(2)), medium density (201-1000 people/km(2)), high density (1001-3000 people/km(2)), and very high density (> 3000 people/km(2)). Survival to hospital and survival to hospital discharge. The EMS attended 27 705 adult presumed cardiac OHCA cases across 204 Victorian regions. In 12 007 of these (43.3%), resuscitation was attempted by the EMS. Incidence was lower and arrest characteristics were consistently less favourable for lower population density groups. Survival outcomes, including return of spontaneous circulation, survival to hospital and survival to hospital discharge, were significantly poorer in less densely populated groups (P < 0.001 for all comparisons). When compared with very low density populations, the risk-adjusted odds ratios of surviving to hospital discharge were: low density, 1.88 (95% CI, 1.15-3.07); medium density, 2.49 (95% CI, 1.55-4.02); high density, 3.47 (95% CI, 2.20-5.48) and very high density, 4.32 (95% CI, 2.67-6.99). Population density is independently associated with survival after OHCA, and significant variation in the incidence and characteristics of these events are observed across the state.
Tirumani, Sree Harsha; Wagner, Andrew J; Tirumani, Harika; Shinagare, Atul B; Jagannathan, Jyothi P; Hornick, Jason L; George, Suzanne; Ramaiya, Nikhil H
2015-06-01
To define the various CT densities of nonlipomatous component of dedifferentiated liposarcoma (DDLPS) and to determine if the rate of growth varies with density. This study identified 60 patients with DDPLS (38 men, 22 women; mean age at diagnosis 59 years, range, 35-82 years) who had one or more resections. CT scan immediately before the surgical resection (presurgery) and up to a maximum of one year before the surgery (baseline) was reviewed by two radiologists to note the density of the nonlipomatous elements and rate of growth during that period. Clinical and histopathological data were extracted from electronic medical records. Rate of growth of various densities was compared using Kruskal-Wallis test. Three distinct densities of the nonlipomatous component were noted: soft tissue density (SD), fluid density (FD), and mixed density (MD). Of 109 lesions on the presurgery scan (SD = 78; MD = 22; FD = 9), scans at baseline were available for 72/109 lesions (SD = 49; MD = 14; FD = 9). Median growth rate/month without treatment, with chemotherapy, and with radiotherapy were 40%, 24%, and 62%, respectively, for SD lesions and 28%, 61%, and 52% for MD lesions. For FD lesions, it was 72% and 35%, respectively, without treatment and with chemotherapy. There was no statistical difference in the rate of growth of various densities. Density changed over time in 8/72 (11%) lesions, including 2/49 SD lesions (to MD), 1/14 MD lesions (to SD), and 5/9 FD lesions (to SD). DDLPS has three distinct CT densities of which soft tissue density is the most common. Despite not being statistically significant, fluid density lesions had rapid growth rate and often converted to soft tissue density in our study.
Leicht-Young, S. A.; Latimer, A.M.; Silander, J.A.
2011-01-01
The neighborhood density of plants strongly affects their growth, reproduction, and survival. In most cases, high density increases competition and negatively affects a focal plant in predictable ways, leading to the self-thinning law. There are, however, situations in which high densities of plants facilitate focal plant performance, resulting in positive density dependence. Despite their importance in forest gap dynamics and distinctive growth form, there have been very few studies of the effect of density on lianas or vines. We grew an invasive (Celastrus orbiculatus) and a native (Celastrus scandens) liana species together in three different density treatments, while also manipulating the light and support availability. We found that across treatment conditions, C. orbiculatus always out-performed C. scandens, showing greater relative growth rate in height and diameter, greater biomass and higher survival. Both species responded similarly to the density treatments: with plants in high density not showing a decrease in relative height growth rate compared to medium density. Aboveground biomass for C. scandens was not affected by density, while for C. orbiculatus, the most massive plants were growing in medium density without support. More surprisingly, survival analysis indicated that the two species both had significantly lower mortality rates in the highest density treatment; this trend held true across the other treatments of light and supports. More generally, this study demonstrates that these lianas can escape the consequences of high density and thus the self-thinning law that affects self-supporting plants. This suggests a broader hypothesis about lianas in general: their greater flexibility in allocating growth resources allows them to grow taller and thinner without collapsing and thereby potentially escape shading and mortality even at high densities.
Feng, Shu; Gale, Michael J.; Fay, Jonathan D.; Faridi, Ambar; Titus, Hope E.; Garg, Anupam K.; Michaels, Keith V.; Erker, Laura R.; Peters, Dawn; Smith, Travis B.; Pennesi, Mark E.
2015-01-01
Purpose To describe a standardized flood-illuminated adaptive optics (AO) imaging protocol suitable for the clinical setting and to assess sampling methods for measuring cone density. Methods Cone density was calculated following three measurement protocols: 50 × 50-μm sampling window values every 0.5° along the horizontal and vertical meridians (fixed-interval method), the mean density of expanding 0.5°-wide arcuate areas in the nasal, temporal, superior, and inferior quadrants (arcuate mean method), and the peak cone density of a 50 × 50-μm sampling window within expanding arcuate areas near the meridian (peak density method). Repeated imaging was performed in nine subjects to determine intersession repeatability of cone density. Results Cone density montages could be created for 67 of the 74 subjects. Image quality was determined to be adequate for automated cone counting for 35 (52%) of the 67 subjects. We found that cone density varied with different sampling methods and regions tested. In the nasal and temporal quadrants, peak density most closely resembled histological data, whereas the arcuate mean and fixed-interval methods tended to underestimate the density compared with histological data. However, in the inferior and superior quadrants, arcuate mean and fixed-interval methods most closely matched histological data, whereas the peak density method overestimated cone density compared with histological data. Intersession repeatability testing showed that repeatability was greatest when sampling by arcuate mean and lowest when sampling by fixed interval. Conclusions We show that different methods of sampling can significantly affect cone density measurements. Therefore, care must be taken when interpreting cone density results, even in a normal population. PMID:26325414
NASA Astrophysics Data System (ADS)
Perconti, Philip; Loew, Murray
2006-03-01
Automatic classification of the density of breast parenchyma is shown using a measure that is correlated to the human observer performance, and compared against the BI-RADS density rating. Increasingly popular in the United States, the Breast Imaging Reporting and Data System (BI-RADS) is used to draw attention to the increased screening difficulty associated with greater breast density; however, the BI-RADS rating scheme is subjective and is not intended as an objective measure of breast density. So, while popular, BI-RADS does not define density classes using a standardized measure, which leads to increased variability among observers. The adaptive thresholding technique is a more quantitative approach for assessing the percentage breast density, but considerable reader interaction is required. We calculate an objective density rating that is derived using a measure of local feature salience. Previously, this measure was shown to correlate well with radiologists' localization and discrimination of true positive and true negative regions-of-interest. Using conspicuous spatial frequency features, an objective density rating is obtained and correlated with adaptive thresholding, and the subjectively ascertained BI-RADS density ratings. Using 100 cases, obtained from the University of South Florida's DDSM database, we show that an automated breast density measure can be derived that is correlated with the interactive thresholding method for continuous percentage breast density, but not with the BI-RADS density rating categories for the selected cases. Comparison between interactive thresholding and the new salience percentage density resulted in a Pearson correlation of 76.7%. Using a four-category scale equivalent to the BI-RADS density categories, a Spearman correlation coefficient of 79.8% was found.
Density-dependent natural selection and trade-offs in life history traits.
Mueller, L D; Guo, P Z; Ayala, F J
1991-07-26
Theories of density-dependent natural selection state that at extreme population densities evolution produces alternative life histories due to trade-offs. The trade-offs are presumed to arise because those genotypes with highest fitness at high population densities will not also have high fitness at low density and vice-versa. These predictions were tested by taking samples from six populations of Drosophila melanogaster kept at low population densities (r-populations) for nearly 200 generations and placing them in crowded cultures (K-populations). After 25 generations in the crowded cultures, the derived K-populations showed growth rate and productivity that at high densities were elevated relative to the controls, but at low density were depressed.
Local density measurement of additive manufactured copper parts by instrumented indentation
NASA Astrophysics Data System (ADS)
Santo, Loredana; Quadrini, Fabrizio; Bellisario, Denise; Tedde, Giovanni Matteo; Zarcone, Mariano; Di Domenico, Gildo; D'Angelo, Pierpaolo; Corona, Diego
2018-05-01
Instrumented flat indentation has been used to evaluate local density of additive manufactured (AM) copper samples with different relative density. Indentations were made by using tungsten carbide (WC) flat pins with 1 mm diameter. Pure copper powders were used in a selective laser melting (SLM) machine to produce samples to test. By changing process parameters, samples density was changed from the relative density of 63% to 71%. Indentation tests were performed on the xy surface of the AM samples. In order to make a correlation between indentation test results and sample density, the indentation pressure at fixed displacement was selected. Results show that instrumented indentation is a valid technique to measure density distribution along the geometry of an SLM part. In fact, a linear trend between indentation pressure and sample density was found for the selected density range.
Groot, P H; Scheek, L M; Jansen, H
1983-05-16
Human sera were incubated with rat liver lipase after inactivation of lecithin:cholesterol acyltransferase, and the changes in serum lipoprotein composition were measured. In the presence of liver lipase serum triacylglycerol and phosphatidylcholine were hydrolyzed. The main changes in the concentrations of these lipids were found in the high-density lipoprotein fraction. Subfractionation of high-density lipoprotein by rate-zonal ultracentrifugation showed a prominent decrease in all constituents of high-density lipoprotein2, a smaller decrease in the 'light' high-density lipoprotein3 and an increase in the 'heavy' high-density lipoprotein3. These data support a concept in which liver lipase is involved in high-density lipoprotein2 phospholipid and triacylglycerol catabolism and suggest that as a result of this action high-density lipoprotein2 is converted into high-density lipoprotein3.
Gard, Charlotte C.; Aiello Bowles, Erin J.; Miglioretti, Diana L.; Taplin, Stephen H.; Rutter, Carolyn M.
2015-01-01
U.S. states have begun legislating mammographic breast density reporting to women, requiring that women undergoing screening mammography who have dense breast tissue (BI-RADS density c or d) receive written notification of their breast density; however, the impact that misclassification of breast density will have on this reporting remains unclear. The aim of this study was to assess reproducibility of the four-category Breast Imaging Reporting and Data System (BI-RADS) density measure and examine its relationship with a continuous measure of percent density. We enrolled 19 radiologists, experienced in breast imaging, from a single integrated healthcare system. Radiologists interpreted 341 screening mammograms at two points in time six months apart. We assessed intra- and inter-observer agreement in radiologists’ interpretations of BI-RADS density and explored whether agreement depended upon radiologist characteristics. We examined the relationship between BI-RADS density and percent density in a subset of 282 examinations. Intra-radiologist agreement was moderate to substantial, with kappa varying across radiologists from 0.50–0.81 (mean=0.69, 95% CI (0.63, 0.73)). Intra-radiologist agreement was higher for radiologists with ≥10 years experience interpreting mammograms (difference in mean kappa=0.10, 95% CI (0.01, 0.24)). Inter-radiologist agreement varied widely across radiologist pairs from slight to substantial, with kappa ranging from 0.02–0.72 (mean=0.46, 95% CI (0.36, 0.55)). Of 145 examinations interpreted as “non-dense” (BI-RADS density a or b) by the majority of radiologists, 82.8% were interpreted as “dense” (BI-RADS density c or d) by at least one radiologist. Of 187 examinations interpreted as “dense” by the majority of radiologists, 47.1% were interpreted as “non-dense” by at least one radiologist. While the examinations of almost half of the women in our study were interpreted clinically as having BI-RADS density c or d, only about 10% of examinations had percent density >50%. Our results suggest that breast density reporting based on a single BI-RADS density interpretation may be misleading due to high inter-radiologist variability and a lack of correspondence between BI-RADS density and percent density. PMID:26133090
24 CFR 971.5 - Long-term viability.
Code of Federal Regulations, 2010 CFR
2010-04-01
... amended accordingly.) (b) Density. Density reduction measures would have to result in a public housing community with a density approaching that which prevails in the community for similar types of housing (typically family), or a lower density. If the development's density already meets this description, further...
Review of non-nuclear density gauges as possible replacements for ITD's nuclear density gauges.
DOT National Transportation Integrated Search
2015-01-01
This report examines the possibility of replacing nuclear density gauges (NDGs) with non-nuclear density gauges (NNDGs) to : measure density of hot mix asphalt (HMA) and unbound pavement layers in the field. The research team evaluated the : effectiv...
24 CFR 971.5 - Long-term viability.
Code of Federal Regulations, 2012 CFR
2012-04-01
... amended accordingly.) (b) Density. Density reduction measures would have to result in a public housing community with a density approaching that which prevails in the community for similar types of housing (typically family), or a lower density. If the development's density already meets this description, further...
24 CFR 971.5 - Long-term viability.
Code of Federal Regulations, 2014 CFR
2014-04-01
... amended accordingly.) (b) Density. Density reduction measures would have to result in a public housing community with a density approaching that which prevails in the community for similar types of housing (typically family), or a lower density. If the development's density already meets this description, further...
24 CFR 971.5 - Long-term viability.
Code of Federal Regulations, 2011 CFR
2011-04-01
... amended accordingly.) (b) Density. Density reduction measures would have to result in a public housing community with a density approaching that which prevails in the community for similar types of housing (typically family), or a lower density. If the development's density already meets this description, further...
24 CFR 971.5 - Long-term viability.
Code of Federal Regulations, 2013 CFR
2013-04-01
... amended accordingly.) (b) Density. Density reduction measures would have to result in a public housing community with a density approaching that which prevails in the community for similar types of housing (typically family), or a lower density. If the development's density already meets this description, further...
Improving hot region prediction by parameter optimization of density clustering in PPI.
Hu, Jing; Zhang, Xiaolong
2016-11-01
This paper proposed an optimized algorithm which combines density clustering of parameter selection with feature-based classification for hot region prediction. First, all the residues are classified by SVM to remove non-hot spot residues, then density clustering of parameter selection is used to find hot regions. In the density clustering, this paper studies how to select input parameters. There are two parameters radius and density in density-based incremental clustering. We firstly fix density and enumerate radius to find a pair of parameters which leads to maximum number of clusters, and then we fix radius and enumerate density to find another pair of parameters which leads to maximum number of clusters. Experiment results show that the proposed method using both two pairs of parameters provides better prediction performance than the other method, and compare these two predictive results, the result by fixing radius and enumerating density have slightly higher prediction accuracy than that by fixing density and enumerating radius. Copyright © 2016. Published by Elsevier Inc.
Chen, S. N.; Iwawaki, T.; Morita, K.; Antici, P.; Baton, S. D.; Filippi, F.; Habara, H.; Nakatsutsumi, M.; Nicolaï , P.; Nazarov, W.; Rousseaux, C.; Starodubstev, M.; Tanaka, K. A.; Fuchs, J.
2016-01-01
The ability to produce long-scale length (i.e. millimeter scale-length), homogeneous plasmas is of interest in studying a wide range of fundamental plasma processes. We present here a validated experimental platform to create and diagnose uniform plasmas with a density close or above the critical density. The target consists of a polyimide tube filled with an ultra low-density plastic foam where it was heated by x-rays, produced by a long pulse laser irradiating a copper foil placed at one end of the tube. The density and temperature of the ionized foam was retrieved by using x-ray radiography and proton radiography was used to verify the uniformity of the plasma. Plasma temperatures of 5–10 eV and densities around 1021 cm−3 are measured. This well-characterized platform of uniform density and temperature plasma is of interest for experiments using large-scale laser platforms conducting High Energy Density Physics investigations. PMID:26923471
Tao, Jianmin; Ye, Lin -Hui; Duan, Yuhua
2017-11-20
The primary goal of Kohn–Sham density functional theory is to evaluate the exchange-correlation contribution to electronic properties. However, the accuracy of a density functional can be affected by the electron density. Here we apply the nonempirical Tao–Mo (TM) semilocal functional to study the influence of the electron density on the exchange and correlation energies of atoms and ions, and compare the results with the commonly used nonempirical semilocal functionals local spin-density approximation (LSDA), Perdew–Burke–Ernzerhof (PBE), Tao–Perdew–Staroverov–Scuseria (TPSS), and hybrid functional PBE0. We find that the spin-restricted Hartree–Fock density yields the exchange and correlation energies in good agreement with the Optimizedmore » Effective Potential method, particularly for spherical atoms and ions. However, the errors of these semilocal and hybrid functionals become larger for self-consistent densities. We further find that the quality of the electron density have greater effect on the exchange-correlation energies of kinetic energy density-dependent meta-GGA functionals TPSS and TM than on those of the LSDA and GGA, and therefore, should have greater influence on the performance of meta-GGA functionals. Lastly, we show that the influence of the density quality on PBE0 is slightly reduced, compared to that of PBE, due to the exact mixing.« less
NASA Astrophysics Data System (ADS)
Tao, Jianmin; Ye, Lin-Hui; Duan, Yuhua
2017-12-01
The primary goal of Kohn-Sham density functional theory is to evaluate the exchange-correlation contribution to electronic properties. However, the accuracy of a density functional can be affected by the electron density. Here we apply the nonempirical Tao-Mo (TM) semilocal functional to study the influence of the electron density on the exchange and correlation energies of atoms and ions, and compare the results with the commonly used nonempirical semilocal functionals local spin-density approximation (LSDA), Perdew-Burke-Ernzerhof (PBE), Tao-Perdew-Staroverov-Scuseria (TPSS), and hybrid functional PBE0. We find that the spin-restricted Hartree-Fock density yields the exchange and correlation energies in good agreement with the Optimized Effective Potential method, particularly for spherical atoms and ions. However, the errors of these semilocal and hybrid functionals become larger for self-consistent densities. We further find that the quality of the electron density have greater effect on the exchange-correlation energies of kinetic energy density-dependent meta-GGA functionals TPSS and TM than on those of the LSDA and GGA, and therefore, should have greater influence on the performance of meta-GGA functionals. Finally, we show that the influence of the density quality on PBE0 is slightly reduced, compared to that of PBE, due to the exact mixing.
Crandall, Carolyn J; Zheng, Yan; Karlamangla, Arun; Sternfeld, Barbara; Habel, Laurel A; Oestreicher, Nina; Johnston, Janet; Cauley, Jane A; Greendale, Gail A
2007-08-01
Bone mineral density and mammographic breast density are each associated with markers of lifetime estrogen exposure. The association between mammographic breast density and bone mineral density in early perimenopausal women is unknown. We analyzed data from a cohort (n = 501) of premenopausal (no change in menstrual regularity) and early perimenopausal (decreased menstrual regularity in past 3 months) participants of African-American, Caucasian, Chinese, and Japanese ethnicity in the Study of Women's Health Across the Nation. Using multivariable linear regression, we examined the cross-sectional association between percent mammographic density and bone mineral density (BMD). Percent mammographic density was statistically significantly inversely associated with hip BMD and lumbar spine BMD after adjustment (body mass index, ethnicity, age, study site, parity, alcohol intake, cigarette smoking, physical activity, age at first childbirth) in early perimenopausal, but not premenopausal, women. In early perimenopausal women, every 0.1g/cm(2) greater hip BMD predicted a 2% lower percent mammographic density (95% confidence interval -37.0 to -0.6%, p = 0.04). Mammographic breast density is inversely associated with BMD in the perimenopausal participants of this community-based cohort. The biological underpinnings of these findings may reflect differential responsiveness of breast and bone mineral density to the steroid milieu.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tao, Jianmin; Ye, Lin -Hui; Duan, Yuhua
The primary goal of Kohn–Sham density functional theory is to evaluate the exchange-correlation contribution to electronic properties. However, the accuracy of a density functional can be affected by the electron density. Here we apply the nonempirical Tao–Mo (TM) semilocal functional to study the influence of the electron density on the exchange and correlation energies of atoms and ions, and compare the results with the commonly used nonempirical semilocal functionals local spin-density approximation (LSDA), Perdew–Burke–Ernzerhof (PBE), Tao–Perdew–Staroverov–Scuseria (TPSS), and hybrid functional PBE0. We find that the spin-restricted Hartree–Fock density yields the exchange and correlation energies in good agreement with the Optimizedmore » Effective Potential method, particularly for spherical atoms and ions. However, the errors of these semilocal and hybrid functionals become larger for self-consistent densities. We further find that the quality of the electron density have greater effect on the exchange-correlation energies of kinetic energy density-dependent meta-GGA functionals TPSS and TM than on those of the LSDA and GGA, and therefore, should have greater influence on the performance of meta-GGA functionals. Lastly, we show that the influence of the density quality on PBE0 is slightly reduced, compared to that of PBE, due to the exact mixing.« less
Björklund, Jesper; Seftigen, Kristina; Schweingruber, Fritz; Fonti, Patrick; von Arx, Georg; Bryukhanova, Marina V; Cuny, Henri E; Carrer, Marco; Castagneri, Daniele; Frank, David C
2017-11-01
Interannual variability of wood density - an important plant functional trait and environmental proxy - in conifers is poorly understood. We therefore explored the anatomical basis of density. We hypothesized that earlywood density is determined by tracheid size and latewood density by wall dimensions, reflecting their different functional tasks. To determine general patterns of variability, density parameters from 27 species and 349 sites across the Northern Hemisphere were correlated to tree-ring width parameters and local climate. We performed the same analyses with density and width derived from anatomical data comprising two species and eight sites. The contributions of tracheid size and wall dimensions to density were disentangled with sensitivity analyses. Notably, correlations between density and width shifted from negative to positive moving from earlywood to latewood. Temperature responses of density varied intraseasonally in strength and sign. The sensitivity analyses revealed tracheid size as the main determinant of earlywood density, while wall dimensions become more influential for latewood density. Our novel approach of integrating detailed anatomical data with large-scale tree-ring data allowed us to contribute to an improved understanding of interannual variations of conifer growth and to illustrate how conifers balance investments in the competing xylem functions of hydraulics and mechanical support. © 2017 The Authors. New Phytologist © 2017 New Phytologist Trust.
Change-in-ratio density estimator for feral pigs is less biased than closed mark-recapture estimates
Hanson, L.B.; Grand, J.B.; Mitchell, M.S.; Jolley, D.B.; Sparklin, B.D.; Ditchkoff, S.S.
2008-01-01
Closed-population capture-mark-recapture (CMR) methods can produce biased density estimates for species with low or heterogeneous detection probabilities. In an attempt to address such biases, we developed a density-estimation method based on the change in ratio (CIR) of survival between two populations where survival, calculated using an open-population CMR model, is known to differ. We used our method to estimate density for a feral pig (Sus scrofa) population on Fort Benning, Georgia, USA. To assess its validity, we compared it to an estimate of the minimum density of pigs known to be alive and two estimates based on closed-population CMR models. Comparison of the density estimates revealed that the CIR estimator produced a density estimate with low precision that was reasonable with respect to minimum known density. By contrast, density point estimates using the closed-population CMR models were less than the minimum known density, consistent with biases created by low and heterogeneous capture probabilities for species like feral pigs that may occur in low density or are difficult to capture. Our CIR density estimator may be useful for tracking broad-scale, long-term changes in species, such as large cats, for which closed CMR models are unlikely to work. ?? CSIRO 2008.
Evolution in population parameters: density-dependent selection or density-dependent fitness?
Travis, Joseph; Leips, Jeff; Rodd, F Helen
2013-05-01
Density-dependent selection is one of earliest topics of joint interest to both ecologists and evolutionary biologists and thus occupies an important position in the histories of these disciplines. This joint interest is driven by the fact that density-dependent selection is the simplest form of feedback between an ecological effect of an organism's own making (crowding due to sustained population growth) and the selective response to the resulting conditions. This makes density-dependent selection perhaps the simplest process through which we see the full reciprocity between ecology and evolution. In this article, we begin by tracing the history of studying the reciprocity between ecology and evolution, which we see as combining the questions of evolutionary ecology with the assumptions and approaches of ecological genetics. In particular, density-dependent fitness and density-dependent selection were critical concepts underlying ideas about adaptation to biotic selection pressures and the coadaptation of interacting species. However, theory points to a critical distinction between density-dependent fitness and density-dependent selection in their influences on complex evolutionary and ecological interactions among coexisting species. Although density-dependent fitness is manifestly evident in empirical studies, evidence of density-dependent selection is much less common. This leads to the larger question of how prevalent and important density-dependent selection might really be. Life-history variation in the least killifish Heterandria formosa appears to reflect the action of density-dependent selection, and yet compelling evidence is elusive, even in this well-studied system, which suggests some important challenges for understanding density-driven feedbacks between ecology and evolution.
A note on the accuracy of KS-DFT densities
NASA Astrophysics Data System (ADS)
Ranasinghe, Duminda S.; Perera, Ajith; Bartlett, Rodney J.
2017-11-01
The accuracy of the density of wave function methods and Kohn-Sham (KS) density functionals is studied using moments of the density, ⟨rn ⟩ =∫ ρ (r )rnd τ =∫0∞4 π r2ρ (r ) rnd r ,where n =-1 ,-2,0,1,2 ,and 3 provides information about the short- and long-range behavior of the density. Coupled cluster (CC) singles, doubles, and perturbative triples (CCSD(T)) is considered as the reference density. Three test sets are considered: boron through neon neutral atoms, two and four electron cations, and 3d transition metals. The total density and valence only density are distinguished by dropping appropriate core orbitals. Among density functionals tested, CAMQTP00 and ωB97x show the least deviation for boron through neon neutral atoms. They also show accurate eigenvalues for the HOMO indicating that they should have a more correct long-range behavior for the density. For transition metals, some density functional approximations outperform some wave function methods, suggesting that the KS determinant could be a better starting point for some kinds of correlated calculations. By using generalized many-body perturbation theory (MBPT), the convergence of second-, third-, and fourth-order KS-MBPT for the density is addressed as it converges to the infinite-order coupled cluster result. For the transition metal test set, the deviations in the KS density functional theory methods depend on the amount of exact exchange the functional uses. Functionals with exact exchange close to 25% show smaller deviations from the CCSD(T) density.
On extending Kohn-Sham density functionals to systems with fractional number of electrons.
Li, Chen; Lu, Jianfeng; Yang, Weitao
2017-06-07
We analyze four ways of formulating the Kohn-Sham (KS) density functionals with a fractional number of electrons, through extending the constrained search space from the Kohn-Sham and the generalized Kohn-Sham (GKS) non-interacting v-representable density domain for integer systems to four different sets of densities for fractional systems. In particular, these density sets are (I) ensemble interacting N-representable densities, (II) ensemble non-interacting N-representable densities, (III) non-interacting densities by the Janak construction, and (IV) non-interacting densities whose composing orbitals satisfy the Aufbau occupation principle. By proving the equivalence of the underlying first order reduced density matrices associated with these densities, we show that sets (I), (II), and (III) are equivalent, and all reduce to the Janak construction. Moreover, for functionals with the ensemble v-representable assumption at the minimizer, (III) reduces to (IV) and thus justifies the previous use of the Aufbau protocol within the (G)KS framework in the study of the ground state of fractional electron systems, as defined in the grand canonical ensemble at zero temperature. By further analyzing the Aufbau solution for different density functional approximations (DFAs) in the (G)KS scheme, we rigorously prove that there can be one and only one fractional occupation for the Hartree Fock functional, while there can be multiple fractional occupations for general DFAs in the presence of degeneracy. This has been confirmed by numerical calculations using the local density approximation as a representative of general DFAs. This work thus clarifies important issues on density functional theory calculations for fractional electron systems.
Anthropogenically-Mediated Density Dependence in a Declining Farmland Bird
Dunn, Jenny C.; Hamer, Keith C.; Benton, Tim G.
2015-01-01
Land management intrinsically influences the distribution of animals and can consequently alter the potential for density-dependent processes to act within populations. For declining species, high densities of breeding territories are typically considered to represent productive populations. However, as density-dependent effects of food limitation or predator pressure may occur (especially when species are dependent upon separate nesting and foraging habitats), high territory density may limit per-capita productivity. Here, we use a declining but widespread European farmland bird, the yellowhammer Emberiza citrinella L., as a model system to test whether higher territory densities result in lower fledging success, parental provisioning rates or nestling growth rates compared to lower densities. Organic landscapes held higher territory densities, but nests on organic farms fledged fewer nestlings, translating to a 5 times higher rate of population shrinkage on organic farms compared to conventional. In addition, when parental provisioning behaviour was not restricted by predation risk (i.e., at times of low corvid activity), nestling provisioning rates were higher at lower territory densities, resulting in a much greater increase in nestling mass in low density areas, suggesting that food limitation occurred at high densities. These findings in turn suggest an ecological trap, whereby preferred nesting habitat does not provide sufficient food for rearing nestlings at high population density, creating a population sink. Habitat management for farmland birds should focus not simply on creating a high nesting density, but also on ensuring heterogeneous habitats to provide food resources in close proximity to nesting birds, even if this occurs through potentially restricting overall nest density but increasing population-level breeding success. PMID:26431173
Density of wild prey modulates lynx kill rates on free-ranging domestic sheep.
Odden, John; Nilsen, Erlend B; Linnell, John D C
2013-01-01
Understanding the factors shaping the dynamics of carnivore-livestock conflicts is vital to facilitate large carnivore conservation in multi-use landscapes. We investigated how the density of their main wild prey, roe deer Capreolus capreolus, modulates individual Eurasian lynx Lynx lynx kill rates on free-ranging domestic sheep Ovis aries across a range of sheep and roe deer densities. Lynx kill rates on free-ranging domestic sheep were collected in south-eastern Norway from 1995 to 2011 along a gradient of different livestock and wild prey densities using VHF and GPS telemetry. We used zero-inflated negative binomial (ZINB) models including lynx sex, sheep density and an index of roe deer density as explanatory variables to model observed kill rates on sheep, and ranked the models based on their AICc values. The model including the effects of lynx sex and sheep density in the zero-inflation model and the effect of lynx sex and roe deer density in the negative binomial part received most support. Irrespective of sheep density and sex, we found the lowest sheep kill rates in areas with high densities of roe deer. As roe deer density decreased, males killed sheep at higher rates, and this pattern held for both high and low sheep densities. Similarly, females killed sheep at higher rates in areas with high densities of sheep and low densities of roe deer. However, when sheep densities were low females rarely killed sheep irrespective of roe deer density. Our quantification of depredation rates can be the first step towards establishing fairer compensation systems based on more accurate and area specific estimation of losses. This study demonstrates how we can use ecological theory to predict where losses of sheep will be greatest, and can be used to identify areas where mitigation measures are most likely to be needed.
Density of Wild Prey Modulates Lynx Kill Rates on Free-Ranging Domestic Sheep
Odden, John; Nilsen, Erlend B.; Linnell, John D. C.
2013-01-01
Understanding the factors shaping the dynamics of carnivore–livestock conflicts is vital to facilitate large carnivore conservation in multi-use landscapes. We investigated how the density of their main wild prey, roe deer Capreolus capreolus, modulates individual Eurasian lynx Lynx lynx kill rates on free-ranging domestic sheep Ovis aries across a range of sheep and roe deer densities. Lynx kill rates on free-ranging domestic sheep were collected in south-eastern Norway from 1995 to 2011 along a gradient of different livestock and wild prey densities using VHF and GPS telemetry. We used zero-inflated negative binomial (ZINB) models including lynx sex, sheep density and an index of roe deer density as explanatory variables to model observed kill rates on sheep, and ranked the models based on their AICc values. The model including the effects of lynx sex and sheep density in the zero-inflation model and the effect of lynx sex and roe deer density in the negative binomial part received most support. Irrespective of sheep density and sex, we found the lowest sheep kill rates in areas with high densities of roe deer. As roe deer density decreased, males killed sheep at higher rates, and this pattern held for both high and low sheep densities. Similarly, females killed sheep at higher rates in areas with high densities of sheep and low densities of roe deer. However, when sheep densities were low females rarely killed sheep irrespective of roe deer density. Our quantification of depredation rates can be the first step towards establishing fairer compensation systems based on more accurate and area specific estimation of losses. This study demonstrates how we can use ecological theory to predict where losses of sheep will be greatest, and can be used to identify areas where mitigation measures are most likely to be needed. PMID:24278123
Density Gradients in Chemistry Teaching
ERIC Educational Resources Information Center
Miller, P. J.
1972-01-01
Outlines experiments in which a density gradient might be used to advantage. A density gradient consists of a column of liquid, the composition and density of which varies along its length. The procedure can be used in analysis of solutions and mixtures and in density measures of solids. (Author/TS)
16 CFR 1209.4 - Test procedures for determining settled density.
Code of Federal Regulations, 2012 CFR
2012-01-01
... density. 1209.4 Section 1209.4 Commercial Practices CONSUMER PRODUCT SAFETY COMMISSION CONSUMER PRODUCT... procedures for determining settled density. The settled density of lose fill insulation must be determined.... This section describes the procedure for determining the settled density of loose fill insulation. (a...
16 CFR 1209.4 - Test procedures for determining settled density.
Code of Federal Regulations, 2014 CFR
2014-01-01
... density. 1209.4 Section 1209.4 Commercial Practices CONSUMER PRODUCT SAFETY COMMISSION CONSUMER PRODUCT... procedures for determining settled density. The settled density of lose fill insulation must be determined.... This section describes the procedure for determining the settled density of loose fill insulation. (a...
16 CFR 1209.4 - Test procedures for determining settled density.
Code of Federal Regulations, 2011 CFR
2011-01-01
... density. 1209.4 Section 1209.4 Commercial Practices CONSUMER PRODUCT SAFETY COMMISSION CONSUMER PRODUCT... procedures for determining settled density. The settled density of lose fill insulation must be determined.... This section describes the procedure for determining the settled density of loose fill insulation. (a...
16 CFR 1209.4 - Test procedures for determining settled density.
Code of Federal Regulations, 2010 CFR
2010-01-01
... density. 1209.4 Section 1209.4 Commercial Practices CONSUMER PRODUCT SAFETY COMMISSION CONSUMER PRODUCT... procedures for determining settled density. The settled density of lose fill insulation must be determined.... This section describes the procedure for determining the settled density of loose fill insulation. (a...
1990-04-11
triglycerides , insulin, glucagon, cholesterol (total, high density lipoprotein ( HDL ), low density lipoprotein (LDL)I, cortisol, thyroid hormone...thyroid function, triglycerides , total cholesterol , high density lipoprotein cholesterol ( HDL ), low density lipoprotein cholesterol (LDL), ketone... density lipoprotein ( HDL ) fraction of cholesterol was
16 CFR § 1209.4 - Test procedures for determining settled density.
Code of Federal Regulations, 2013 CFR
2013-01-01
... density. § 1209.4 Section § 1209.4 Commercial Practices CONSUMER PRODUCT SAFETY COMMISSION CONSUMER... procedures for determining settled density. The settled density of lose fill insulation must be determined.... This section describes the procedure for determining the settled density of loose fill insulation. (a...
47 CFR 69.110 - Entrance facilities.
Code of Federal Regulations, 2012 CFR
2012-10-01
... company has assigned to the lowest priced density pricing zone (zone 1) under an approved density pricing... lowest priced density pricing zone (zone 1). (g) In study areas in which the telephone company has implemented density zone pricing, but no offices have been assigned to the lowest price density pricing zone...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jiang, Zhang; Chen, Wei
Generalized skew-symmetric probability density functions are proposed to model asymmetric interfacial density distributions for the parameterization of any arbitrary density profiles in the `effective-density model'. The penetration of the densities into adjacent layers can be selectively controlled and parameterized. A continuous density profile is generated and discretized into many independent slices of very thin thickness with constant density values and sharp interfaces. The discretized profile can be used to calculate reflectivities via Parratt's recursive formula, or small-angle scattering via the concentric onion model that is also developed in this work.
Jiang, Zhang; Chen, Wei
2017-11-03
Generalized skew-symmetric probability density functions are proposed to model asymmetric interfacial density distributions for the parameterization of any arbitrary density profiles in the `effective-density model'. The penetration of the densities into adjacent layers can be selectively controlled and parameterized. A continuous density profile is generated and discretized into many independent slices of very thin thickness with constant density values and sharp interfaces. The discretized profile can be used to calculate reflectivities via Parratt's recursive formula, or small-angle scattering via the concentric onion model that is also developed in this work.
Trivial constraints on orbital-free kinetic energy density functionals
NASA Astrophysics Data System (ADS)
Luo, Kai; Trickey, S. B.
2018-03-01
Approximate kinetic energy density functionals (KEDFs) are central to orbital-free density functional theory. Limitations on the spatial derivative dependencies of KEDFs have been claimed from differential virial theorems. We identify a central defect in the argument: the relationships are not true for an arbitrary density but hold only for the minimizing density and corresponding chemical potential. Contrary to the claims therefore, the relationships are not constraints and provide no independent information about the spatial derivative dependencies of approximate KEDFs. A simple argument also shows that validity for arbitrary v-representable densities is not restored by appeal to the density-potential bijection.
Procedure for Uranium-Molybdenum Density Measurements and Porosity Determination
DOE Office of Scientific and Technical Information (OSTI.GOV)
Prabhakaran, Ramprashad; Devaraj, Arun; Joshi, Vineet V.
2016-08-13
The purpose of this document is to provide guidelines for preparing uranium-molybdenum (U-Mo) specimens, performing density measurements, and computing sample porosity. Typical specimens (solids) will be sheared to small rectangular foils, disks, or pieces of metal. A mass balance, solid density determination kit, and a liquid of known density will be used to determine the density of U-Mo specimens using the Archimedes principle. A standard test weight of known density would be used to verify proper operation of the system. By measuring the density of a U-Mo sample, it is possible to determine its porosity.
Spatial-size scaling of pedestrian groups under growing density conditions
NASA Astrophysics Data System (ADS)
Zanlungo, Francesco; Brščić, Dražen; Kanda, Takayuki
2015-06-01
We study the dependence on crowd density of the spatial size, configuration, and velocity of pedestrian social groups. We find that, in the investigated density range, the extension of pedestrian groups in the direction orthogonal to that of motion decreases linearly with the pedestrian density around them, both for two- and three-person groups. Furthermore, we observe that at all densities, three-person groups walk slower than two-person groups, and the latter are slower than individual pedestrians, the differences in velocities being weakly affected by density. Finally, we observe that three-person groups walk in a V-shaped formation regardless of density, with a distance between the pedestrians in the front and back again almost independent of density, although the configuration appears to be less stable at higher densities. These findings may facilitate the development of more realistic crowd dynamics models and simulators.
Evidence for a Low Bulk Crustal Density for Mars from Gravity and Topography.
Goossens, Sander; Sabaka, Terence J; Genova, Antonio; Mazarico, Erwan; Nicholas, Joseph B; Neumann, Gregory A
2017-08-16
Knowledge of the average density of the crust of a planet is important in determining its interior structure. The combination of high-resolution gravity and topography data has yielded a low density for the Moon's crust, yet for other terrestrial planets the resolution of the gravity field models has hampered reasonable estimates. By using well-chosen constraints derived from topography during gravity field model determination using satellite tracking data, we show that we can robustly and independently determine the average bulk crustal density directly from the tracking data, using the admittance between topography and imperfect gravity. We find a low average bulk crustal density for Mars, 2582 ± 209 kg m -3 . This bulk crustal density is lower than that assumed until now. Densities for volcanic complexes are higher, consistent with earlier estimates, implying large lateral variations in crustal density. In addition, we find indications that the crustal density increases with depth.
Effects of thermal treatment on energy density and hardness of torrefied wood pellets
DOE Office of Scientific and Technical Information (OSTI.GOV)
Peng, Jianghong; Wang, Jingsong; Bi, Xiaotao T.
Here, three types of wood pellets samples, including two types of commercial pellets and one type of lab-made control pellets were torrefied in a fixed bed unit to study the effect of thermal pretreatment on the quality of wood pellets. The quality of wood pellets was mainly characterized by the pellet density, bulk density, higher heating value, Meyer hardness, saturated moisture uptake, volumetric energy density, and energy yield. Results showed that torrefaction significantly decreased the pellet density, hardness, volumetric energy density, and energy yield. The higher heating value increased and the saturated moisture content decreased after torrefaction. In view ofmore » the lower density, lower hardness, lower volumetric energy density, and energy yield of torrefied pellets, it is recommended that biomass should be torrefied and then compressed to make strong pellets of high hydrophobicity and volumetric energy density.« less
Effects of thermal treatment on energy density and hardness of torrefied wood pellets
Peng, Jianghong; Wang, Jingsong; Bi, Xiaotao T.; ...
2014-09-27
Here, three types of wood pellets samples, including two types of commercial pellets and one type of lab-made control pellets were torrefied in a fixed bed unit to study the effect of thermal pretreatment on the quality of wood pellets. The quality of wood pellets was mainly characterized by the pellet density, bulk density, higher heating value, Meyer hardness, saturated moisture uptake, volumetric energy density, and energy yield. Results showed that torrefaction significantly decreased the pellet density, hardness, volumetric energy density, and energy yield. The higher heating value increased and the saturated moisture content decreased after torrefaction. In view ofmore » the lower density, lower hardness, lower volumetric energy density, and energy yield of torrefied pellets, it is recommended that biomass should be torrefied and then compressed to make strong pellets of high hydrophobicity and volumetric energy density.« less
Dung Yun Trieu, Phuong; Mello-Thoms, Claudia; Peat, Jennifer K; Doan Do, Thuan; Brennan, Patrick C
2017-07-01
The aim of this study was to investigate how breast density interacted with demographic, reproductive, and lifestyle features among Vietnamese women. Mammographic density and established risk factors for breast cancer were collected from 1651 women (345 cancer cases and 1306 normal cases) in Vietnam. The association of breast density categories with potential risk factors was investigated using Spearman's test for continuous variables and χ 2 tests for categorical variables. Independent factors associated with high breast density and breast cancer in specific density groupings were assessed using logistic regression. Results showed that high breast density was significantly associated with young age, low body mass index, low number of children, early age at having the last child, premenopausal status, and increased vegetable consumption. Reproductive factors were key agents associated with breast cancer for women with high breast density, which was not so evident for women with low breast density.
NASA Technical Reports Server (NTRS)
Dunning, J. W., Jr.; Lancashire, R. B.; Manista, E. J.
1976-01-01
Measurements have been conducted of the effect of the convection of ions and electrons on the discharge characteristics in a large scale laser. The results are presented for one particular distribution of ballast resistance. Values of electric field, current density, input power density, ratio of electric field to neutral gas density (E/N), and electron number density were calculated on the basis of measurements of the discharge properties. In a number of graphs, the E/N ratio, current density, power density, and electron density are plotted as a function of row number (downstream position) with total discharge current and gas velocity as parameters. From the dependence of the current distribution on the total current, it appears that the electron production in the first two rows significantly affects the current flowing in the succeeding rows.
Dynamic Density: An Air Traffic Management Metric
NASA Technical Reports Server (NTRS)
Laudeman, I. V.; Shelden, S. G.; Branstrom, R.; Brasil, C. L.
1998-01-01
The definition of a metric of air traffic controller workload based on air traffic characteristics is essential to the development of both air traffic management automation and air traffic procedures. Dynamic density is a proposed concept for a metric that includes both traffic density (a count of aircraft in a volume of airspace) and traffic complexity (a measure of the complexity of the air traffic in a volume of airspace). It was hypothesized that a metric that includes terms that capture air traffic complexity will be a better measure of air traffic controller workload than current measures based only on traffic density. A weighted linear dynamic density function was developed and validated operationally. The proposed dynamic density function includes a traffic density term and eight traffic complexity terms. A unit-weighted dynamic density function was able to account for an average of 22% of the variance in observed controller activity not accounted for by traffic density alone. A comparative analysis of unit weights, subjective weights, and regression weights for the terms in the dynamic density equation was conducted. The best predictor of controller activity was the dynamic density equation with regression-weighted complexity terms.
Sexual segregation in North American elk: the role of density dependence
Stewart, Kelley M; Walsh, Danielle R; Kie, John G; Dick, Brian L; Bowyer, R Terry
2015-01-01
We investigated how density-dependent processes and subsequent variation in nutritional condition of individuals influenced both timing and duration of sexual segregation and selection of resources. During 1999–2001, we experimentally created two population densities of North American elk (Cervus elaphus), a high-density population at 20 elk/km2, and a low-density population at 4 elk/km2 to test hypotheses relative to timing and duration of sexual segregation and variation in selection of resources. We used multi-response permutation procedures to investigate patterns of sexual segregation, and resource selection functions to document differences in selection of resources by individuals in high- and low-density populations during sexual segregation and aggregation. The duration of sexual segregation was 2 months longer in the high-density population and likely was influenced by individuals in poorer nutritional condition, which corresponded with later conception and parturition, than at low density. Males and females in the high-density population overlapped in selection of resources to a greater extent than in the low-density population, probably resulting from density-dependent effects of increased intraspecific competition and lower availability of resources. PMID:25691992
Feedback controlled, reactor relevant, high-density, high-confinement scenarios at ASDEX Upgrade
NASA Astrophysics Data System (ADS)
Lang, P. T.; Blanken, T. C.; Dunne, M.; McDermott, R. M.; Wolfrum, E.; Bobkov, V.; Felici, F.; Fischer, R.; Janky, F.; Kallenbach, A.; Kardaun, O.; Kudlacek, O.; Mertens, V.; Mlynek, A.; Ploeckl, B.; Stober, J. K.; Treutterer, W.; Zohm, H.; ASDEX Upgrade Team
2018-03-01
One main programme topic at the ASDEX Upgrade all-metal-wall tokamak is development of a high-density regime with central densities at reactor grade level while retaining high-confinement properties. This required development of appropriate control techniques capable of coping with the pellet tool, a powerful means of fuelling but one which presented challenges to the control system for handling of related perturbations. Real-time density profile control was demonstrated, raising the core density well above the Greenwald density while retaining the edge density in order to avoid confinement losses. Recently, a new model-based approach was implemented that allows direct control of the central density. Investigations focussed first on the N-seeding scenario owing to its proven potential to yield confinement enhancements. Combining pellets and N seeding was found to improve the divertor buffering further and enhance the operational range accessible. For core densities up to about the Greenwald density, a clear improvement with respect to the non-seeding reference was achieved; however, at higher densities this benefit is reduced. This behaviour is attributed to recurrence of an outward shift of the edge density profile, resulting in a reduced peeling-ballooning stability. This is similar to the shift seen during strong gas puffing, which is required to prevent impurity influx in ASDEX Upgrade. First tests indicate that highly-shaped plasma configurations like the ITER base-line scenario, respond very well to pellet injection, showing efficient fuelling with no measurable impact on the edge density profile.
Di Stefano, Danilo Alessio; Arosio, Paolo
2016-01-01
Bone density at implant placement sites is one of the key factors affecting implant primary stability, which is a determinant for implant osseointegration and rehabilitation success. Site-specific bone density assessment is, therefore, of paramount importance. Recently, an implant micromotor endowed with an instantaneous torque-measuring system has been introduced. The aim of this study was to assess the reliability of this system. Five blocks with different densities (0.16, 0.26, 0.33, 0.49, and 0.65 g/cm(3)) were used. A single trained operator measured the density of one of them (0.33 g/cm(3)), by means of five different devices (20 measurements/device). The five resulting datasets were analyzed through the analysis of variance (ANOVA) model to investigate interdevice variability. As differences were not significant (P = .41), the five devices were each assigned to a different operator, who collected 20 density measurements for each block, both under irrigation (I) and without irrigation (NI). Measurements were pooled and averaged for each block, and their correlation with the actual block-density values was investigated using linear regression analysis. The possible effect of irrigation on density measurement was additionally assessed. Different devices provided reproducible, homogenous results. No significant interoperator variability was observed. Within the physiologic range of densities (> 0.30 g/cm(3)), the linear regression analysis showed a significant linear correlation between the mean torque measurements and the actual bone densities under both drilling conditions (r = 0.990 [I], r = 0.999 [NI]). Calibration lines were drawn under both conditions. Values collected under irrigation were lower than those collected without irrigation at all densities. The NI/I mean torque ratio was shown to decrease linearly with density (r = 0.998). The mean error introduced by the device-operator system was less than 10% in the range of normal jawbone density. Measurements performed with the device were linearly correlated with the blocks' bone densities. The results validate the device as an objective intraoperative tool for bone-density assessment that may contribute to proper jawbone-density evaluation and implant-insertion planning.
Daswani, Bhavna; Desai, Meena; Mitra, Sumegha; Gavali, Shubhangi; Patil, Anushree; Kukreja, Subhash; Khatkhatay, M Ikram
2016-03-01
Fracture risk assessment tool® calculations can be performed with or without addition of bone mineral density; however, the impact of this addition on fracture risk assessment tool® scores has not been studied in Indian women. Given the limited availability and high cost of bone mineral density testing in India, it is important to know the influence of bone mineral density on fracture risk assessment tool® scores in Indian women. Therefore, our aim was to assess the contribution of bone mineral density in fracture risk assessment tool® outcome in Indian women. Apparently healthy postmenopausal Indian women (n = 506), aged 40-72 years, without clinical risk factors for bone disease, were retrospectively selected, and their fracture risk assessment tool® scores calculated with and without bone mineral density were compared. Based on WHO criteria, 30% women were osteoporotic, 42.9% were osteopenic and 27.1% had normal bone mineral density. Fracture risk assessment tool® scores for risk of both major osteoporotic fracture and hip fracture significantly increased on including bone mineral density (P < 0.0001). When criteria of National Osteoporosis Foundation, US was applied number of participants eligible for medical therapy increased upon inclusion of bone mineral density, (for major osteoporotic fracture risk number of women eligible without bone mineral density was 0 and with bone mineral density was 1, P > 0.05, whereas, for hip fracture risk number of women eligible without bone mineral density was 2 and with bone mineral density was 17, P < 0.0001). Until the establishment of country-specific medication intervention thresholds, bone mineral density should be included while calculating fracture risk assessment tool® scores in Indian women. © The Author(s) 2016.
NASA Astrophysics Data System (ADS)
De Ridder, Maaike; De Haulleville, Thalès; Kearsley, Elizabeth; Van den Bulcke, Jan; Van Acker, Joris; Beeckman, Hans
2014-05-01
It is commonly acknowledged that allometric equations for aboveground biomass and carbon stock estimates are improved significantly if density is included as a variable. However, not much attention is given to this variable in terms of exact, measured values and density profiles from pith to bark. Most published case-studies obtain density values from literature sources or databases, this way using large ranges of density values and possible causing significant errors in carbon stock estimates. The use of one single fixed value for density is also not recommended if carbon stock increments are estimated. Therefore, our objective is to measure and analyze a large number of tree species occurring in two Biosphere Reserves (Luki and Yangambi). Nevertheless, the diversity of tree species in these tropical forests is too high to perform this kind of detailed analysis on all tree species (> 200/ha). Therefore, we focus on the most frequently encountered tree species with high abundance (trees/ha) and dominance (basal area/ha) for this study. Increment cores were scanned with a helical X-ray protocol to obtain density profiles from pith to bark. This way, we aim at dividing the tree species with a distinct type of density profile into separate groups. If, e.g., slopes in density values from pith to bark remain stable over larger samples of one tree species, this slope could also be used to correct for errors in carbon (increment) estimates, caused by density values from simplified density measurements or density values from literature. In summary, this is most likely the first study in the Congo Basin that focuses on density patterns in order to check their influence on carbon stocks and differences in carbon stocking based on species composition (density profiles ~ temperament of tree species).
New support for an old hypothesis: density affects extra-pair paternity
Mayer, Christian; Pasinelli, Gilberto
2013-01-01
Density has been suggested to affect variation in extra-pair paternity (EPP) in avian mating systems, because increasing density promotes encounter rates and thus mating opportunities. However, the significance of density affecting EPP variation in intra- and interspecific comparisons has remained controversial, with more support from intraspecific comparisons. Neither experimental nor empirical studies have consistently provided support for the density hypothesis. Testing the density hypothesis is challenging because density measures may not necessarily reflect extra-pair mating opportunities, mate guarding efforts may covary with density, populations studied may differ in migratory behavior and/or climatic conditions, and variation in density may be insufficient. Accounting for these potentially confounding factors, we tested whether EPP rates within and among subpopulations of the reed bunting (Emberiza schoeniclus) were related to density. Our analyses were based on data from 13 subpopulations studied over 4 years. Overall, 56.4% of totally 181 broods contained at least one extra-pair young (EPY) and 37.1% of totally 669 young were of extra-pair origin. Roughly 90% of the extra-pair fathers were from the adjacent territory or from the territory after the next one. Within subpopulations, the proportion of EPY in broods was positively related to local breeding density. Similarly, among subpopulations, proportion of EPY was positively associated with population density. EPP was absent in subpopulations consisting of single breeding pairs, that is, without extra-pair mating opportunities. Our study confirms that density is an important biological factor, which significantly influences the amount of EPP within and among subpopulations, but also suggests that other mechanisms influence EPP beyond the variation explained by density. PMID:23533071
Karslake, Jason; Maltas, Jeff; Brumm, Peter; Wood, Kevin B
2016-10-01
The inoculum effect (IE) is an increase in the minimum inhibitory concentration (MIC) of an antibiotic as a function of the initial size of a microbial population. The IE has been observed in a wide range of bacteria, implying that antibiotic efficacy may depend on population density. Such density dependence could have dramatic effects on bacterial population dynamics and potential treatment strategies, but explicit measures of per capita growth as a function of density are generally not available. Instead, the IE measures MIC as a function of initial population size, and population density changes by many orders of magnitude on the timescale of the experiment. Therefore, the functional relationship between population density and antibiotic inhibition is generally not known, leaving many questions about the impact of the IE on different treatment strategies unanswered. To address these questions, here we directly measured real-time per capita growth of Enterococcus faecalis populations exposed to antibiotic at fixed population densities using multiplexed computer-automated culture devices. We show that density-dependent growth inhibition is pervasive for commonly used antibiotics, with some drugs showing increased inhibition and others decreased inhibition at high densities. For several drugs, the density dependence is mediated by changes in extracellular pH, a community-level phenomenon not previously linked with the IE. Using a simple mathematical model, we demonstrate how this density dependence can modulate population dynamics in constant drug environments. Then, we illustrate how time-dependent dosing strategies can mitigate the negative effects of density-dependence. Finally, we show that these density effects lead to bistable treatment outcomes for a wide range of antibiotic concentrations in a pharmacological model of antibiotic treatment. As a result, infections exceeding a critical density often survive otherwise effective treatments.
Anteau, M.J.; Afton, A.D.; Anteau, A.C.E.; Moser, E.B.
2010-01-01
Gammarus lacustris and Hyalella azteca (hereafter G. lacustris and H. azteca, respectively) are important components of secondary production in wetlands and shallow lakes of the upper Midwest, USA. Within the past 50 years, amphipod densities have decreased while occurrences of fish and intensity of agricultural land use have increased markedly across this landscape. We investigated influences of fish, sedimentation, and submerged aquatic vegetation (SAV) on densities of G. lacustris and H. azteca in semipermanent and permanent wetlands and shallow lakes (n = 283) throughout seven eco-physiographic regions of Iowa, Minnesota, and North Dakota during 2004-2005. G. lacustris and H. azteca densities were positively correlated with densities of SAV (P<0.001 and P<0.001, respectively). Both species were negatively correlated with densities of large fish (non-Cyprinidae; P = 0.01 and P = 0.013, respectively) and with high densities of fathead minnows (Pimephales promelas; P<0.001 and P = 0.033, respectively). H. azteca densities also were negatively correlated with densities of small fish (e.g., other minnows [Cyprinidae] and sticklebacks [Gasterosteidae]; P = 0.048) and common carp (Cyprinus spp.; P = 0.022). G. lacustris densities were negatively correlated with high levels of suspended solids (an index for sedimentation; P<0.001). H. azteca densities were positively correlated with the width of upland-vegetation buffers (P = 0.004). Our results indicate that sedimentation and fish reduce amphipod densities and may contribute to the current low densities of amphipods in the upper Midwest. Thus, removing/excluding fish, and providing a thick buffer of upland vegetation around wetlands may help restore amphipod densities and wetland and water quality within this landscape. ?? Springer Science+Business Media B.V. (outside the USA) 2011.
Maltas, Jeff; Brumm, Peter; Wood, Kevin B.
2016-01-01
The inoculum effect (IE) is an increase in the minimum inhibitory concentration (MIC) of an antibiotic as a function of the initial size of a microbial population. The IE has been observed in a wide range of bacteria, implying that antibiotic efficacy may depend on population density. Such density dependence could have dramatic effects on bacterial population dynamics and potential treatment strategies, but explicit measures of per capita growth as a function of density are generally not available. Instead, the IE measures MIC as a function of initial population size, and population density changes by many orders of magnitude on the timescale of the experiment. Therefore, the functional relationship between population density and antibiotic inhibition is generally not known, leaving many questions about the impact of the IE on different treatment strategies unanswered. To address these questions, here we directly measured real-time per capita growth of Enterococcus faecalis populations exposed to antibiotic at fixed population densities using multiplexed computer-automated culture devices. We show that density-dependent growth inhibition is pervasive for commonly used antibiotics, with some drugs showing increased inhibition and others decreased inhibition at high densities. For several drugs, the density dependence is mediated by changes in extracellular pH, a community-level phenomenon not previously linked with the IE. Using a simple mathematical model, we demonstrate how this density dependence can modulate population dynamics in constant drug environments. Then, we illustrate how time-dependent dosing strategies can mitigate the negative effects of density-dependence. Finally, we show that these density effects lead to bistable treatment outcomes for a wide range of antibiotic concentrations in a pharmacological model of antibiotic treatment. As a result, infections exceeding a critical density often survive otherwise effective treatments. PMID:27764095
Chung, Jae Keun; Hwang, Young Hoon; Wi, Jae Min; Kim, Mijin; Jung, Jong Jin
2017-11-01
To investigate the glaucoma diagnostic abilities of vessel density parameters as determined by optical coherence tomography (OCT) angiography in different stages of glaucoma. A total of 113 healthy eyes and 140 glaucomatous eyes were enrolled. Diagnostic abilities of the OCT vessel density parameters in the optic nerve head (ONH), peripapillary, and macular regions were evaluated by calculating the area under the receiver operation characteristic curves (AUCs). AUCs of the peripapillary vessel density parameters and circumpapillary retinal nerve fiber layer (RNFL) thickness were compared. OCT angiography vessel densities in the ONH, peripapillary, and macular regions in the glaucomatous eyes were significantly lower than those in the healthy eyes (P < 0.05). Among the vessel density parameters, the average peripapillary vessel density showed higher AUC than the ONH and macular region (AUCs: 0.807, 0.566, and 0.651, respectively) for glaucoma detection. The peripapillary vessel density parameters showed similar AUCs with the corresponding sectoral RNFL thickness (P > 0.05). However, in the early stage of glaucoma, the AUCs of the inferotemporal and temporal peripapillary vessel densities were significantly lower than that of the RNFL thickness (P < 0.05). The glaucomatous eyes showed decreased vessel density as determined by OCT angiography. Although the peripapillary vessel density parameters showed similar glaucoma diagnostic ability with circumpapillary RNFL thickness, in the early stage, the vessel density parameters showed limited clinical value.
Radiographic absorptiometry method in measurement of localized alveolar bone density changes.
Kuhl, E D; Nummikoski, P V
2000-03-01
The objective of this study was to measure the accuracy and precision of a radiographic absorptiometry method by using an occlusal density reference wedge in quantification of localized alveolar bone density changes. Twenty-two volunteer subjects had baseline and follow-up radiographs taken of mandibular premolar-molar regions with an occlusal density reference wedge in both films and added bone chips in the baseline films. The absolute bone equivalent densities were calculated in the areas that contained bone chips from the baseline and follow-up radiographs. The differences in densities described the masses of the added bone chips that were then compared with the true masses by using regression analysis. The correlation between the estimated and true bone-chip masses ranged from R = 0.82 to 0.94, depending on the background bone density. There was an average 22% overestimation of the mass of the bone chips when they were in low-density background, and up to 69% overestimation when in high-density background. The precision error of the method, which was calculated from duplicate bone density measurements of non-changing areas in both films, was 4.5%. The accuracy of the intraoral radiographic absorptiometry method is low when used for absolute quantification of bone density. However, the precision of the method is good and the correlation is linear, indicating that the method can be used for serial assessment of bone density changes at individual sites.
Profound Effects of Population Density on Fitness-Related Traits in an Invasive Freshwater Snail
Zachar, Nicholas; Neiman, Maurine
2013-01-01
Population density can profoundly influence fitness-related traits and population dynamics, and density dependence plays a key role in many prominent ecological and evolutionary hypotheses. Here, we evaluated how individual-level changes in population density affect growth rate and embryo production early in reproductive maturity in two different asexual lineages of Potamopyrgus antipodarum, a New Zealand freshwater snail that is an important model system for ecotoxicology and the evolution of sexual reproduction as well as a potentially destructive worldwide invader. We showed that population density had a major influence on individual growth rate and early-maturity embryo production, effects that were often apparent even when comparing treatments that differed in population density by only one individual. While individual growth rate generally decreased as population density increased, we detected a hump-shaped relationship between embryo production and density, with females from intermediate-density treatments producing the most embryos and females from low- and high-density treatments producing the fewest embryos. The two lineages responded similarly to the treatments, indicating that these effects of population density might apply more broadly across P. antipodarum. These results indicate that there are profound and complex relationships between population density, growth rate, and early-maturity embryo production in at least two lineages of this important model system, with potential implications for the study of invasive populations, research on the maintenance of sex, and approaches used in ecotoxicology. PMID:24278240
Profound effects of population density on fitness-related traits in an invasive freshwater snail.
Zachar, Nicholas; Neiman, Maurine
2013-01-01
Population density can profoundly influence fitness-related traits and population dynamics, and density dependence plays a key role in many prominent ecological and evolutionary hypotheses. Here, we evaluated how individual-level changes in population density affect growth rate and embryo production early in reproductive maturity in two different asexual lineages of Potamopyrgus antipodarum, a New Zealand freshwater snail that is an important model system for ecotoxicology and the evolution of sexual reproduction as well as a potentially destructive worldwide invader. We showed that population density had a major influence on individual growth rate and early-maturity embryo production, effects that were often apparent even when comparing treatments that differed in population density by only one individual. While individual growth rate generally decreased as population density increased, we detected a hump-shaped relationship between embryo production and density, with females from intermediate-density treatments producing the most embryos and females from low- and high-density treatments producing the fewest embryos. The two lineages responded similarly to the treatments, indicating that these effects of population density might apply more broadly across P. antipodarum. These results indicate that there are profound and complex relationships between population density, growth rate, and early-maturity embryo production in at least two lineages of this important model system, with potential implications for the study of invasive populations, research on the maintenance of sex, and approaches used in ecotoxicology.
Millimeter-wave Line Ratios and Sub-beam Volume Density Distributions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Leroy, Adam K.; Gallagher, Molly; Usero, Antonio
We explore the use of mm-wave emission line ratios to trace molecular gas density when observations integrate over a wide range of volume densities within a single telescope beam. For observations targeting external galaxies, this case is unavoidable. Using a framework similar to that of Krumholz and Thompson, we model emission for a set of common extragalactic lines from lognormal and power law density distributions. We consider the median density of gas that produces emission and the ability to predict density variations from observed line ratios. We emphasize line ratio variations because these do not require us to know themore » absolute abundance of our tracers. Patterns of line ratio variations have the potential to illuminate the high-end shape of the density distribution, and to capture changes in the dense gas fraction and median volume density. Our results with and without a high-density power law tail differ appreciably; we highlight better knowledge of the probability density function (PDF) shape as an important area. We also show the implications of sub-beam density distributions for isotopologue studies targeting dense gas tracers. Differential excitation often implies a significant correction to the naive case. We provide tabulated versions of many of our results, which can be used to interpret changes in mm-wave line ratios in terms of adjustments to the underlying density distributions.« less
Increased consumer density reduces the strength of neighborhood effects in a model system.
Merwin, Andrew C; Underwood, Nora; Inouye, Brian D
2017-11-01
An individual's susceptibility to attack can be influenced by conspecific and heterospecifics neighbors. Predicting how these neighborhood effects contribute to population-level processes such as competition and evolution requires an understanding of how the strength of neighborhood effects is modified by changes in the abundances of both consumers and neighboring resource species. We show for the first time that consumer density can interact with the density and frequency of neighboring organisms to determine the magnitude of neighborhood effects. We used the bean beetle, Callosobruchus maculatus, and two of its host beans, Vigna unguiculata and V. radiata, to perform a response-surface experiment with a range of resource densities and three consumer densities. At low beetle density, damage to beans was reduced with increasing conspecific density (i.e., resource dilution) and damage to the less preferred host, V. unguiculata, was reduced with increasing V. radiata frequency (i.e., frequency-dependent associational resistance). As beetle density increased, however, neighborhood effects were reduced; at the highest beetle densities neither focal nor neighboring resource density nor frequency influenced damage. These findings illustrate the importance of consumer density in mediating indirect effects among resources, and suggest that accounting for consumer density may improve our ability to predict population-level outcomes of neighborhood effects and our use of them in applications such as mixed-crop pest management. © 2017 by the Ecological Society of America.
The influence of landscape features on road development in a loess region, China.
Bi, Xiaoli; Wang, Hui; Zhou, Rui
2011-10-01
Many ecologists focus on the effects of roads on landscapes, yet few consider how landscapes affect road systems. In this study, therefore, we quantitatively evaluated how land cover, topography, and building density affected the length density, node density, spatial pattern, and location of roads in Dongzhi Yuan, a typical loess region in China. Landscape factors and roads were mapped using images from SPOT satellite (Système Probatoire d'Observation de la Terre), initiated by the French space agency and a digital elevation model (DEM). Detrended canonical correspondence analysis (DCCA), a useful ordination technique to explain species-environment relations in community ecology, was applied to evaluate the ways in which landscapes may influence roads. The results showed that both farmland area and building density were positively correlated with road variables, whereas gully density and the coefficient of variation (CV of DEM) showed negative correlations. The CV of DEM, farmland area, grassland area, and building density explained variation in node density, length density, and the spatial pattern of roads, whereas gully density and building density explained variation in variables representing road location. In addition, node density, rather than length density, was the primary road variable affected by landscape variables. The results showed that the DCCA was effective in explaining road-landscape relations. Understanding these relations can provide information for landscape managers and transportation planners.
The Complexity of Teaching Density in Middle School
ERIC Educational Resources Information Center
Hashweh, Maher Z.
2016-01-01
Background: Density is difficult to learn and teach in middle schools. This study, hypothesizing that the density concept develops as part of a conceptual system, used a conceptual change approach to teaching density. The approach emphasized the use of multiple strategies to teach the density concept and the associated concepts in the conceptual…
Design Difficulties in Stand Density Studies
Frank A. Bennett
1969-01-01
Designing unbiased stand density studies is difficult. An acceptable sample requires stratification of the plots of age, site, and density. When basal area, percent stocking, or Reineke's stand density index is used as the density measure, this stratification forces a high negative correlation between site and number of trees per acre. Mortality in trees per acre...
NASA Astrophysics Data System (ADS)
Leonard, A. W.; McLean, A. G.; Makowski, M. A.; Stangeby, P. C.
2017-08-01
The midplane separatrix density is characterized in response to variations in upstream parallel heat flux density and central density through deuterium gas injection. The midplane density is determined from a high spatial resolution Thomson scattering diagnostic at the midplane with power balance analysis to determine the separatrix location. The heat flux density is varied by scans of three parameters, auxiliary heating, toroidal field with fixed plasma current, and plasma current with fixed safety factor, q 95. The separatrix density just before divertor detachment onset is found to scale consistent with the two-point model when radiative dissipation is taken into account. The ratio of separatrix to pedestal density, n e,sep/n e,ped varies from ⩽30% to ⩾60% over the dataset, helping to resolve the conflicting scaling of core plasma density limit and divertor detachment onset. The scaling of the separatrix density at detachment onset is combined with H-mode power threshold scaling to obtain a scaling ratio of minimum n e,sep/n e,ped expected in future devices.
Idrissi, Abdenacer; Vyalov, Ivan; Georgi, Nikolaj; Kiselev, Michael
2013-10-10
We combined molecular dynamics simulation and DBSCAN algorithm (Density Based Spatial Clustering of Application with Noise) in order to characterize the local density inhomogeneity distribution in supercritical fluids. The DBSCAN is an algorithm that is capable of finding arbitrarily shaped density domains, where domains are defined as dense regions separated by low-density regions. The inhomogeneity of density domain distributions of Ar system in sub- and supercritical conditions along the 50 bar isobar is associated with the occurrence of a maximum in the fluctuation of number of particles of the density domains. This maximum coincides with the temperature, Tα, at which the thermal expansion occurs. Furthermore, using Voronoi polyhedral analysis, we characterized the structure of the density domains. The results show that with increasing temperature below Tα, the increase of the inhomogeneity is mainly associated with the density fluctuation of the border particles of the density domains, while with increasing temperature above Tα, the decrease of the inhomogeneity is associated with the core particles.
Favre-Averaged Turbulence Statistics in Variable Density Mixing of Buoyant Jets
NASA Astrophysics Data System (ADS)
Charonko, John; Prestridge, Kathy
2014-11-01
Variable density mixing of a heavy fluid jet with lower density ambient fluid in a subsonic wind tunnel was experimentally studied using Particle Image Velocimetry and Planar Laser Induced Fluorescence to simultaneously measure velocity and density. Flows involving the mixing of fluids with large density ratios are important in a range of physical problems including atmospheric and oceanic flows, industrial processes, and inertial confinement fusion. Here we focus on buoyant jets with coflow. Results from two different Atwood numbers, 0.1 (Boussinesq limit) and 0.6 (non-Boussinesq case), reveal that buoyancy is important for most of the turbulent quantities measured. Statistical characteristics of the mixing important for modeling these flows such as the PDFs of density and density gradients, turbulent kinetic energy, Favre averaged Reynolds stress, turbulent mass flux velocity, density-specific volume correlation, and density power spectra were also examined and compared with previous direct numerical simulations. Additionally, a method for directly estimating Reynolds-averaged velocity statistics on a per-pixel basis is extended to Favre-averages, yielding improved accuracy and spatial resolution as compared to traditional post-processing of velocity and density fields.
Particle Density Substitution Method for Trafficability of Soil in Different Gravity Environments
NASA Astrophysics Data System (ADS)
Huang, Chuan; Gao, Feng; Xie, Xiaolin; Jiang, Hui; Zeng, Wen
2017-12-01
By selecting metal powders with comparable particle size class, similar shape and material and almost the same void ratio but different particle densities, the influence of different gravity on the trafficability of soil under different states of gravitational fields is found to be equivalent to the change in particle density. This method is named particle density substitution. The shearing and bearing characteristics of simulated soil were studied. An influence of different factors on the experimental results was achieved, and a minimal influence of factors other than particle density on experimental results was obtained. Regression of shearing and bearing characteristics of the simulated soil was designed. The relationship between particle density and mechanical parameters of soil was fitted with curves. The formulation between particle density and maximal static thrust was established. By analyzing these data, the maximal static thrust slowly decreased with increasing particle density, reached the minimum when particle density was 3 g/cm3, and then sharply increased. This trend is consistent with the theoretical result. It can also certify that the particle density substitution method established here is reasonable.
Universality of quantum information in chaotic CFTs
NASA Astrophysics Data System (ADS)
Lashkari, Nima; Dymarsky, Anatoly; Liu, Hong
2018-03-01
We study the Eigenstate Thermalization Hypothesis (ETH) in chaotic conformal field theories (CFTs) of arbitrary dimensions. Assuming local ETH, we compute the reduced density matrix of a ball-shaped subsystem of finite size in the infinite volume limit when the full system is an energy eigenstate. This reduced density matrix is close in trace distance to a density matrix, to which we refer as the ETH density matrix, that is independent of all the details of an eigenstate except its energy and charges under global symmetries. In two dimensions, the ETH density matrix is universal for all theories with the same value of central charge. We argue that the ETH density matrix is close in trace distance to the reduced density matrix of the (micro)canonical ensemble. We support the argument in higher dimensions by comparing the Von Neumann entropy of the ETH density matrix with the entropy of a black hole in holographic systems in the low temperature limit. Finally, we generalize our analysis to the coherent states with energy density that varies slowly in space, and show that locally such states are well described by the ETH density matrix.
Activation of lipoprotein lipase by lipoprotein fractions of human serum.
Bier, D M; Havel, R J
1970-11-01
Triglycerides in fat emulsions are hydrolyzed by lipoprotein lipase only when they are "activated" by serum lipoproteins. The contribution of different lipoprotein fractions to hydrolysis of triglycerides in soybean oil emulsion was assessed by determining the quantity of lipoprotein fraction required to give half-maximal hydrolysis. Most of the activator property of whole serum from normolipidemic, postabsorptive subjects was in high density lipoproteins. Low density lipoproteins and serum from which all lipoprotein classes were removed had little or no activity. Also, little activator was present in guinea pig serum or in very low density poor serum from an individual with lecithin:cholesterol acyltransferase deficiency, both of which are deficient in high density lipoproteins. Human very low density lipoproteins are potent activators and are much more active than predicted from their content of high density lipoprotein-protein. Per unit weight of protein, very low density lipoproteins had 13 times the activity of high density lipoproteins. These observations suggest that one or more of the major apoproteins of very low density lipoproteins, present as a minor constituent of high density lipoproteins, may be required for the activation process.
Density dependence in demography and dispersal generates fluctuating invasion speeds
Li, Bingtuan; Miller, Tom E. X.
2017-01-01
Density dependence plays an important role in population regulation and is known to generate temporal fluctuations in population density. However, the ways in which density dependence affects spatial population processes, such as species invasions, are less understood. Although classical ecological theory suggests that invasions should advance at a constant speed, empirical work is illuminating the highly variable nature of biological invasions, which often exhibit nonconstant spreading speeds, even in simple, controlled settings. Here, we explore endogenous density dependence as a mechanism for inducing variability in biological invasions with a set of population models that incorporate density dependence in demographic and dispersal parameters. We show that density dependence in demography at low population densities—i.e., an Allee effect—combined with spatiotemporal variability in population density behind the invasion front can produce fluctuations in spreading speed. The density fluctuations behind the front can arise from either overcompensatory population growth or density-dependent dispersal, both of which are common in nature. Our results show that simple rules can generate complex spread dynamics and highlight a source of variability in biological invasions that may aid in ecological forecasting. PMID:28442569
Shaw, Richard; Nazroo, James; Stafford, Mai; Albor, Christo; Atkin, Karl; Kiernan, Kathleen; Wilkinson, Richard; Pickett, Kate
2012-01-01
It has been suggested that people in racial/ethnic minority groups are healthier when they live in areas with a higher concentration of people from their own ethnic group, a so-called ethnic density effect. Ethnic density effects are still contested, and the pathways by which ethnic density operates are poorly understood. The aim of this study was to systematically review the literature examining the ethnic density effect on physical health, mortality, and health behaviors. Most studies report a null association between ethnic density and health. Protective ethnic density effects are more common than adverse associations, particularly for health behaviors and among Hispanic people. Limitations of the literature include inadequate adjustment for area deprivation and limited statistical power across ethnic density measures and study samples. PMID:23078507
Compaction of AWBA fuel pellets without binders (AWBA Development Program)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Johnson, R.G.R.
1982-08-01
Highly active oxide fuel powders, composed of UO/sub 2/, UO/sub 2/-ThO/sub 2/, or ThO/sub 2/, were compacted into ultra-high density pellets without the use of binders. The objective of the study was to select the optimum die lubricant for compacting these powders into pellets in preparation for sintering to densities in excess of 97% Theoretical Density. The results showed that sintered density was a function of both the lubricant bulk density and concentration with the lowest bulk density lubricant giving the highest sintered densities with a lubricant concentration of 0.1 weight percent. Five calcium and zinc stearates were evaluated withmore » a calcium stearate with a 15 lb/ft/sup 3/ bulk density being the best lubricant.« less
NASA Astrophysics Data System (ADS)
Li, Xian; Liu, Ying; Blancheton, Jean-Paul
2013-05-01
Limited information has been available about the influence of loading density on the performances of Scophthalmus maximus, especially in recirculating aquaculture systems (RAS). In this study, turbot (13.84±2.74 g; average weight±SD) were reared at four different initial densities (low 0.66, medium 1.26, sub-high 2.56, high 4.00 kg/m2) for 10 weeks in RAS at 23±1°C. Final densities were 4.67, 7.25, 14.16, and 17.47 kg/m2, respectively, which translate to 82, 108, 214, and 282 percent coverage of the tank bottom. Density had both negative and independent impacts on growth. The final mean weight, specific growth rate (SGR), and voluntary feed intake significantly decreased and the coefficient of variation (CV) of final body weight increased with increase in stocking density. The medium and sub-high density groups did not differ significantly in SGR, mean weight, CV, food conversion rate (FCR), feed intake, blood parameters, and digestive enzymes. The protease activities of the digestive tract at pH 7, 8.5, 9, and 10 were significantly higher for the highest density group, but tended to be lower (not significantly) at pH 4 and 8.5 for the lowest density group. The intensity of protease activity was inversely related to feed intake at the different densities. Catalase activity was higher (but not significantly) at the highest density, perhaps because high density started to induce an oxidative effect in turbot. In conclusion, turbot can be cultured in RAS at a density of less than 17.47 kg/m2. With good water quality and no feed limitation, initial density between 1.26 and 2.56 kg/m2 (final: 7.25 and 14.16 kg/m2) would not negatively affect the turbot cultured in RAS. For culture at higher density, multi-level feeding devices are suggested to ease feeding competition.
Crandall, Carolyn; Palla, Shana; Reboussin, Beth A; Ursin, Giske; Greendale, Gail A
2005-01-01
Introduction Mammographic breast density is a strong independent risk factor for breast cancer. We hypothesized that demonstration of an association between mammographic breast density and bone mineral density (BMD) would suggest a unifying underlying mechanism influencing both breast density and BMD. Methods In a cross-sectional analysis of baseline data from the Postmenopausal Estrogen/Progestin Interventions Study (PEPI), participants were aged 45 to 64 years and were at least 1 year postmenopausal. Mammographic breast density (percentage of the breast composed of dense tissue), the outcome, was assessed with a computer-assisted percentage-density method. BMD, the primary predictor, was measured with dual-energy X-ray absorptiometry. Women quitting menopausal hormone therapy to join PEPI were designated recent hormone users. Results The mean age of the 594 women was 56 years. The average time since menopause was 5.6 years. After adjustment for age, body mass index, and cigarette smoking, in women who were not recent hormone users before trial enrollment (n = 415), mammographic density was positively associated with total hip (P = 0.04) and lumbar (P = 0.08) BMD. Mammographic density of recent hormone users (n = 171) was not significantly related to either total hip (P = 0.51) or lumbar (P = 0.44) BMD. In participants who were not recent hormone users, mammographic density was 4% greater in the highest quartile of total hip BMD than in the lowest. In participants who were not recent hormone users, mammographic density was 5% greater in the highest quartile of lumbar spine BMD than in the lowest. Conclusion Mammographic density and BMD are positively associated in women who have not recently used postmenopausal hormones. A unifying biological mechanism may link mammographic density and BMD. Recent exogenous postmenopausal hormone use may obscure the association between mammographic density and BMD by having a persistent effect on breast tissue. PMID:16280044
Mass of a black hole firewall.
Abramowicz, M A; Kluźniak, W; Lasota, J-P
2014-03-07
Quantum entanglement of Hawking radiation has been supposed to give rise to a Planck density "firewall" near the event horizon of old black holes. We show that Planck density firewalls are excluded by Einstein's equations for black holes of mass exceeding the Planck mass. We find an upper limit of 1/(8πM) to the surface density of a firewall in a Schwarzschild black hole of mass M, translating for astrophysical black holes into a firewall density smaller than the Planck density by more than 30 orders of magnitude. A strict upper limit on the firewall density is given by the Planck density times the ratio M(Pl)/(8πM).
Hybrid neural network for density limit disruption prediction and avoidance on J-TEXT tokamak
NASA Astrophysics Data System (ADS)
Zheng, W.; Hu, F. R.; Zhang, M.; Chen, Z. Y.; Zhao, X. Q.; Wang, X. L.; Shi, P.; Zhang, X. L.; Zhang, X. Q.; Zhou, Y. N.; Wei, Y. N.; Pan, Y.; J-TEXT team
2018-05-01
Increasing the plasma density is one of the key methods in achieving an efficient fusion reaction. High-density operation is one of the hot topics in tokamak plasmas. Density limit disruptions remain an important issue for safe operation. An effective density limit disruption prediction and avoidance system is the key to avoid density limit disruptions for long pulse steady state operations. An artificial neural network has been developed for the prediction of density limit disruptions on the J-TEXT tokamak. The neural network has been improved from a simple multi-layer design to a hybrid two-stage structure. The first stage is a custom network which uses time series diagnostics as inputs to predict plasma density, and the second stage is a three-layer feedforward neural network to predict the probability of density limit disruptions. It is found that hybrid neural network structure, combined with radiation profile information as an input can significantly improve the prediction performance, especially the average warning time ({{T}warn} ). In particular, the {{T}warn} is eight times better than that in previous work (Wang et al 2016 Plasma Phys. Control. Fusion 58 055014) (from 5 ms to 40 ms). The success rate for density limit disruptive shots is above 90%, while, the false alarm rate for other shots is below 10%. Based on the density limit disruption prediction system and the real-time density feedback control system, the on-line density limit disruption avoidance system has been implemented on the J-TEXT tokamak.
Breast density measurements using ultrasound tomography for patients undergoing tamoxifen treatment
NASA Astrophysics Data System (ADS)
Sak, Mark; Duric, Neb; Littrup, Peter; Li, Cuiping; Bey-Knight, Lisa; Sherman, Mark; Boyd, Norman; Gierach, Gretchen
2013-03-01
Women with high breast density have an increased risk of developing breast cancer. Women treated with the selective estrogen receptor modulator tamoxifen for estrogen receptor positive breast cancer experience a 50% reduction in risk of contralateral breast cancer and overall reduction of similar magnitude has been identified among high-risk women receiving the drug for prevention. Tamoxifen has been shown to reduce mammographic density, and in the IBIS-1 chemoprevention trial, risk reduction and decline in density were significantly associated. Ultrasound tomography (UST) is an imaging modality that can create tomographic sound speed images of the breast. These sound speed images are useful because breast density is proportional to sound speed. The aim of this work is to examine the relationship between USTmeasured breast density and the use of tamoxifen. So far, preliminary results for a small number of patients have been observed and are promising. Correlations between the UST-measured density and mammographic density are strong and positive, while relationships between UST density with some patient specific risk factors behave as expected. Initial results of UST examinations of tamoxifen treated patients show that approximately 45% of the patients have a decrease in density in the contralateral breast after only several months of treatment. The true effect of tamoxifen on UST-measured density cannot yet be fully determined until more data are collected. However, these promising results suggest that UST can be used to reliably assess quantitative changes in breast density over short intervals and therefore suggest that UST may enable rapid assessment of density changes associated with therapeutic and preventative interventions.
Variable Bone Density of Scaphoid: Importance of Subchondral Screw Placement.
Swanstrom, Morgan M; Morse, Kyle W; Lipman, Joseph D; Hearns, Krystle A; Carlson, Michelle G
2018-02-01
Background Ideal internal fixation of the scaphoid relies on adequate bone stock for screw purchase; so, knowledge of regional bone density of the scaphoid is crucial. Questions/Purpose The purpose of this study was to evaluate regional variations in scaphoid bone density. Materials and Methods Three-dimensional CT models of fractured scaphoids were created and sectioned into proximal/distal segments and then into quadrants (volar/dorsal/radial/ulnar). Concentric shells in the proximal and distal pole were constructed in 2-mm increments moving from exterior to interior. Bone density was measured in Hounsfield units (HU). Results Bone density of the distal scaphoid (453.2 ± 70.8 HU) was less than the proximal scaphoid (619.8 ± 124.2 HU). There was no difference in bone density between the four quadrants in either pole. In both the poles, the first subchondral shell was the densest. In both the proximal and distal poles, bone density decreased significantly in all three deeper shells. Conclusion The proximal scaphoid had a greater density than the distal scaphoid. Within the poles, there was no difference in bone density between the quadrants. The subchondral 2-mm shell had the greatest density. Bone density dropped off significantly between the first and second shell in both the proximal and distal scaphoids. Clinical Relevance In scaphoid fracture ORIF, optimal screw placement engages the subchondral 2-mm shell, especially in the distal pole, which has an overall lower bone density, and the second shell has only two-third the density of the first shell.
Breast density estimation from high spectral and spatial resolution MRI
Li, Hui; Weiss, William A.; Medved, Milica; Abe, Hiroyuki; Newstead, Gillian M.; Karczmar, Gregory S.; Giger, Maryellen L.
2016-01-01
Abstract. A three-dimensional breast density estimation method is presented for high spectral and spatial resolution (HiSS) MR imaging. Twenty-two patients were recruited (under an Institutional Review Board--approved Health Insurance Portability and Accountability Act-compliant protocol) for high-risk breast cancer screening. Each patient received standard-of-care clinical digital x-ray mammograms and MR scans, as well as HiSS scans. The algorithm for breast density estimation includes breast mask generating, breast skin removal, and breast percentage density calculation. The inter- and intra-user variabilities of the HiSS-based density estimation were determined using correlation analysis and limits of agreement. Correlation analysis was also performed between the HiSS-based density estimation and radiologists’ breast imaging-reporting and data system (BI-RADS) density ratings. A correlation coefficient of 0.91 (p<0.0001) was obtained between left and right breast density estimations. An interclass correlation coefficient of 0.99 (p<0.0001) indicated high reliability for the inter-user variability of the HiSS-based breast density estimations. A moderate correlation coefficient of 0.55 (p=0.0076) was observed between HiSS-based breast density estimations and radiologists’ BI-RADS. In summary, an objective density estimation method using HiSS spectral data from breast MRI was developed. The high reproducibility with low inter- and low intra-user variabilities shown in this preliminary study suggest that such a HiSS-based density metric may be potentially beneficial in programs requiring breast density such as in breast cancer risk assessment and monitoring effects of therapy. PMID:28042590
Changes in Serving Size, Calories, and Sodium Content in Processed Foods From 2009 to 2015.
Clapp, Jenifer E; Niederman, Sarah A; Leonard, Elizabeth; Curtis, Christine J
2018-03-15
Approximately 60% of the American diet comes from processed foods, which makes improving their nutritional quality important for Americans' health. The objective of this study was to measure changes in serving sizes, calories, and sodium in top-selling processed foods that were on the market in 2009 and 2015. We analyzed products in the top 80% of sales in the 54 processed food categories with consistent serving sizes and sales metrics that were on the market in both 2009 and 2015. Mean serving size, calories (per serving and density), sodium (per serving and density), and sales were calculated for 2,979 branded processed food products. For each stratification of calorie density and sodium density (decreased, increased, or did not change), we calculated the mean serving size, calorie density, sodium density, and sales for each year. From 2009 to 2015, we found decreases in serving size (-2.3%, P < .001), calories per serving (-2.0%, P < .001), calorie density (-1.1%, P < .001), sodium per serving (-7.6%, P < .001), and sodium density (-6.0%, P < .001). A decrease in calorie density did not correspond to an increase in sodium density or vice versa. A decline in sales was observed regardless of whether calorie density or sodium density decreased, increased, or did not change. Reductions in calorie and sodium density occurred in tandem, suggesting that manufacturers reformulated for more than one health goal at the same time. Instead of unintended negative consequences of encouraging companies to reformulate for one nutrient, an overall net nutritional benefit occurred.
Impact crater densities on volcanoes and coronae on venus: implications for volcanic resurfacing.
Namiki, N; Solomon, S C
1994-08-12
The density of impact craters on large volcanoes on Venus is half the average crater density for the planet. The crater density on some classes of coronae is not significantly different from the global average density, but coronae with extensive associated volcanic deposits have lower crater densities. These results are inconsistent with both single-age and steady-state models for global resurfacing and suggest that volcanoes and coronae with associated volcanism have been active on Venus over the last 500 million years.
Field test results--a new logging tool for formation density and lithology measurements
DOE Office of Scientific and Technical Information (OSTI.GOV)
Borai, A.M.; Muhsin, M.A.
1983-03-01
The formation porosity can be determined from borehole density measurements if the density of the rock is known. Generally, this is determined from the lithology. The Litho-Density Tool, LDT, provides an improved measurement of the formation density and a new measurement of lithology. Field tests of LDT proved that the tool could be run alone in a wide range of formations to provide porosity values comparable to those obtained by running a density log combined with a neutron log.
The role of adequate reference materials in density measurements in hemodialysis
NASA Astrophysics Data System (ADS)
Furtado, A.; Moutinho, J.; Moura, S.; Oliveira, F.; Filipe, E.
2015-02-01
In hemodialysis, oscillation-type density meters are used to measure the density of the acid component of the dialysate solutions used in the treatment of kidney patients. An incorrect density determination of this solution used in hemodialysis treatments can cause several and adverse events to patients. Therefore, despite the Fresenius Medical Care (FME) tight control of the density meters calibration results, this study shows the benefits of mimic the matrix usually measured to produce suitable reference materials for the density meter calibrations.
Sumi, Takuto; Miura, Kazuki; Miyatake, Takahisa
2017-01-01
Previous studies showed that the survival rate of Wolbachia decreases under high temperature in incubators. It is also known that a high density of Wolbachia in the host body reduces the host emergence rate, while low densities fail to change reproduction rates. However, few studies have examined the density of Wolbachia in hosts in the field. Here, we focus on Wolbachia infection of the pale grass blue butterfly, Zizeeria maha (Lepidoptera: Lycaenidae), which is distributed throughout the Japanese islands. We examined the rate and density of Wolbachia infection in the bodies of butterflies at thirteen locations in Japan. At seven of these places, we collected butterflies in different seasons to determine seasonal differences in the infection rate and density and found that Wolbachia density has seasonal differences within the same population. Moreover, to determine whether Wolbachia density has a geographical cline, we compared the infection density of Wolbachia amongst all geographical populations. In addition, we determined the sequences of Wolbachia wsp and host mtDNA CO1 haplotypes of all populations. The results showed that Wolbachia density increased in early summer and decreased in autumn. Further, the density of Wolbachia infecting the same strain of Z. maha varied amongst populations, although no tendency in geographical cline was observed. PMID:28403227
Density scaling on n = 1 error field penetration in ohmically heated discharges in EAST
NASA Astrophysics Data System (ADS)
Wang, Hui-Hui; Sun, You-Wen; Shi, Tong-Hui; Zang, Qing; Liu, Yue-Qiang; Yang, Xu; Gu, Shuai; He, Kai-Yang; Gu, Xiang; Qian, Jin-Ping; Shen, Biao; Luo, Zheng-Ping; Chu, Nan; Jia, Man-Ni; Sheng, Zhi-Cai; Liu, Hai-Qing; Gong, Xian-Zu; Wan, Bao-Nian; Contributors, EAST
2018-05-01
Density scaling of error field penetration in EAST is investigated with different n = 1 magnetic perturbation coil configurations in ohmically heated discharges. The density scalings of error field penetration thresholds under two magnetic perturbation spectra are br\\propto n_e0.5 and br\\propto n_e0.6 , where b r is the error field and n e is the line averaged electron density. One difficulty in understanding the density scaling is that key parameters other than density in determining the field penetration process may also be changed when the plasma density changes. Therefore, they should be determined from experiments. The estimated theoretical analysis (br\\propto n_e0.54 in lower density region and br\\propto n_e0.40 in higher density region), using the density dependence of viscosity diffusion time, electron temperature and mode frequency measured from the experiments, is consistent with the observed scaling. One of the key points to reproduce the observed scaling in EAST is that the viscosity diffusion time estimated from energy confinement time is almost constant. It means that the plasma confinement lies in saturation ohmic confinement regime rather than the linear Neo-Alcator regime causing weak density dependence in the previous theoretical studies.
Comparison of density determination of liquid samples by density meters
NASA Astrophysics Data System (ADS)
Buchner, C.; Wolf, H.; Vámossy, C.; Lorefice, S.; Lenard, E.; Spohr, I.; Mares, G.; Perkin, M.; Parlic-Risovic, T.; Grue, L.-L.; Tammik, K.; van Andel, I.; Zelenka, Z.
2016-01-01
Hydrostatic density determinations of liquids as reference material are mainly performed by National Metrology Institutes to provide means for calibrating or checking liquid density measuring instruments such as oscillation-type density meters. These density meters are used by most of the metrology institutes for their calibration and scientific work. The aim of this project was to compare the results of the liquid density determination by oscillating density meters of the participating laboratories. The results were linked to CCM.D.K-2 partly via Project EURAMET.M.D.K-2 (1019) "Comparison of liquid density standards" by hydrostatic weighing piloted by BEV in 2008. In this comparison pentadecane, water and of oil with a high viscosity were measured at atmospheric pressure using oscillation type density meter. The temperature range was from 15 °C to 40 °C. The measurement results were in some cases discrepant. Further studies, comparisons are essential to explore the capability and uncertainty of the density meters Main text To reach the main text of this paper, click on Final Report. Note that this text is that which appears in Appendix B of the BIPM key comparison database kcdb.bipm.org/. The final report has been peer-reviewed and approved for publication by the CCM, according to the provisions of the CIPM Mutual Recognition Arrangement (CIPM MRA).
Optimization of Layer Densities for Spacecraft Multilayered Insulation Systems
NASA Technical Reports Server (NTRS)
Johnson, W. L.
2009-01-01
Numerous tests of various multilayer insulation systems have indicated that there are optimal densities for these systems. However, the only method of calculating this optimal density was by a complex physics based algorithm developed by McIntosh. In the 1970's much data were collected on the performance of these insulation systems with many different variables analyzed. All formulas generated included number of layers and layer density as geometric variables in solving for the heat flux, none of them was in a differentiable form for a single geometric variable. It was recently discovered that by converting the equations from heat flux to thermal conductivity using Fourier's Law, the equations became functions of layer density, temperatures, and material properties only. The thickness and number of layers of the blanket were merged into a layer density. These equations were then differentiated with respect to layer density. By setting the first derivative equal to zero, and solving for the layer density, the critical layer density was determined. Taking a second derivative showed that the critical layer density is a minimum in the function and thus the optimum density for minimal heat leak, this is confirmed by plotting the original function. This method was checked and validated using test data from the Multipurpose Hydrogen Testbed which was designed using McIntosh's algorithm.
Sumi, Takuto; Miura, Kazuki; Miyatake, Takahisa
2017-01-01
Previous studies showed that the survival rate of Wolbachia decreases under high temperature in incubators. It is also known that a high density of Wolbachia in the host body reduces the host emergence rate, while low densities fail to change reproduction rates. However, few studies have examined the density of Wolbachia in hosts in the field. Here, we focus on Wolbachia infection of the pale grass blue butterfly, Zizeeria maha (Lepidoptera: Lycaenidae), which is distributed throughout the Japanese islands. We examined the rate and density of Wolbachia infection in the bodies of butterflies at thirteen locations in Japan. At seven of these places, we collected butterflies in different seasons to determine seasonal differences in the infection rate and density and found that Wolbachia density has seasonal differences within the same population. Moreover, to determine whether Wolbachia density has a geographical cline, we compared the infection density of Wolbachia amongst all geographical populations. In addition, we determined the sequences of Wolbachia wsp and host mtDNA CO1 haplotypes of all populations. The results showed that Wolbachia density increased in early summer and decreased in autumn. Further, the density of Wolbachia infecting the same strain of Z. maha varied amongst populations, although no tendency in geographical cline was observed.
Sofaer, Helen R; Sillett, T Scott; Langin, Kathryn M; Morrison, Scott A; Ghalambor, Cameron K
2014-01-01
Ecological factors often shape demography through multiple mechanisms, making it difficult to identify the sources of demographic variation. In particular, conspecific density can influence both the strength of competition and the predation rate, but density-dependent competition has received more attention, particularly among terrestrial vertebrates and in island populations. A better understanding of how both competition and predation contribute to density-dependent variation in fecundity can be gained by partitioning the effects of density on offspring number from its effects on reproductive failure, while also evaluating how biotic and abiotic factors jointly shape demography. We examined the effects of population density and precipitation on fecundity, nest survival, and adult survival in an insular population of orange-crowned warblers (Oreothlypis celata) that breeds at high densities and exhibits a suite of traits suggesting strong intraspecific competition. Breeding density had a negative influence on fecundity, but it acted by increasing the probability of reproductive failure through nest predation, rather than through competition, which was predicted to reduce the number of offspring produced by successful individuals. Our results demonstrate that density-dependent nest predation can underlie the relationship between population density and fecundity even in a high-density, insular population where intraspecific competition should be strong. PMID:25077023
Sofaer, Helen R; Sillett, T Scott; Langin, Kathryn M; Morrison, Scott A; Ghalambor, Cameron K
2014-07-01
Ecological factors often shape demography through multiple mechanisms, making it difficult to identify the sources of demographic variation. In particular, conspecific density can influence both the strength of competition and the predation rate, but density-dependent competition has received more attention, particularly among terrestrial vertebrates and in island populations. A better understanding of how both competition and predation contribute to density-dependent variation in fecundity can be gained by partitioning the effects of density on offspring number from its effects on reproductive failure, while also evaluating how biotic and abiotic factors jointly shape demography. We examined the effects of population density and precipitation on fecundity, nest survival, and adult survival in an insular population of orange-crowned warblers (Oreothlypis celata) that breeds at high densities and exhibits a suite of traits suggesting strong intraspecific competition. Breeding density had a negative influence on fecundity, but it acted by increasing the probability of reproductive failure through nest predation, rather than through competition, which was predicted to reduce the number of offspring produced by successful individuals. Our results demonstrate that density-dependent nest predation can underlie the relationship between population density and fecundity even in a high-density, insular population where intraspecific competition should be strong.
Hak, Sjoerd; Garaiova, Zuzana; Olsen, Linda Therese; Nilsen, Asbjørn Magne; de Lange Davies, Catharina
2015-04-01
Lipid-based nanoparticles are extensively studied for drug delivery. These nanoparticles are often surface-coated with polyethylene glycol (PEG) to improve their biodistribution. Until now, the effects of varying PEG surface density have been studied in a narrow and low range. Here, the effects of high and a broad range of PEG surface densities on the in vivo performance of lipid-based nanoparticles were studied. Oil-in-water nanoemulsions were prepared with PEG surface densities of 5-50 mol%. Confocal microscopy was used to assess intracellular disintegration in vitro. In vivo pharmacokinetics and biodistribution in tumor bearing mice were studied using a small animal optical imager. PEG surface density did not affect intracellular nanoemulsion stability. Surprisingly, circulation half-lives decreased with increasing PEG surface density. A plausible explanation was that nanoemulsion with high (50 mol%) PEG surface density activated the complement in a whole blood assay, whereas nanoemulsion with low (5 mol%) PEG density did not. In vivo, nanoemulsion with low PEG surface density was mostly confined to the tumor and organs of the mononuclear phagocyte system, whereas nanoemulsion with high PEG density accumulated throughout the mouse. Optimal PEG surface density of lipid-based nanoparticles for tumor targeting was found to be below 10 mol%.
Lass, Jonathan H; Gal, Robin L; Ruedy, Katrina J; Benetz, Beth Ann; Beck, Roy W; Baratz, Keith H; Holland, Edward J; Kalajian, Andrea; Kollman, Craig; Manning, Francis J; Mannis, Mark J; McCoy, Kristen; Montoya, Monty; Stulting, Doyle; Xing, Dongyuan
2005-03-01
The Specular Microscopy Ancillary Study was designed to examine donor corneal endothelial specular image quality, compare the central endothelial cell density determined by eye banks with the endothelial cell density determined by a central specular microscopy reading center, and evaluate donor factors that may have an impact on specular image quality and endothelial cell density accuracy. Nonrandomized comparative trial. Endothelial specular images of donor corneas assigned in the Cornea Donor Study. Certified readers assessed donor image quality (analyzable from fair to excellent vs. unanalyzable) and determined the central endothelial cell density. Independent adjudication was performed if there was a difference in the quality of grading or if the endothelial cell density varied by > or =5.0% between readers. Average reading center-determined endothelial cell density was compared with the endothelial cell density determined by each eye bank. Evaluation of image quality and accuracy of endothelial cell density. Of 688 donor endothelial images submitted by 23 eye banks, 663 (96%) were analyzable (excellent, 40 [6%]; good, 302 [44%]; fair, 321 [47%]), and 25 (4%) were unanalyzable by reading center standards. In situ retrieval and greater epithelial exposure correlated with a higher image quality grading. The eye bank-determined endothelial cell density of 434 of the 663 (65%) analyzable images were within 10% of the endothelial cell density determined by the reading center, whereas 185 (28%) were more than 10% higher and 44 (7%) were more than 10% lower. Greater variation in endothelial cell density between the eye banks and the reading center was observed with shorter time of death to preservation, presence of an epithelial defect, folds in Descemet's membrane, lower image quality, and the use of fixed-frame or center method endothelial cell density analysis. Overall, donor endothelial specular image quality and accuracy of endothelial cell density determination were good. However, the data suggest that factors that may affect image quality and contribute to variation in interpretation of the endothelial cell density should be addressed, because the donor endothelial cell density is an important parameter for assessing long-term corneal graft survival.
Faith Inman-Narahari; Rebecca Ostertag; Stephen P. Hubbell; Christian P. Giardina; Susan Cordell; Lawren Sack; Andrew MacDougall
2016-01-01
Conspecific density may contribute to patterns of species assembly through negative density dependence (NDD) as predicted by the Janzen-Connell hypothesis, or through facilitation (positive density dependence; PDD). Conspecific density effects are expected to be more negative in darker and wetter environments due to higher pathogen abundance and...
2008-03-01
behavior of moisture content-dry density Proctor curves......................................... 16 Figure 8. Moisture- density data scatter for an... density . Built-in higher order regression equations allow the user to visua- lize complete curves for Proctor density , as-built California Bearing Ratio...requirements involving soil are optimum moisture content (OMC) and maximum dry density (MDD) as determined from a laboratory compaction or Proctor test
Federal Register 2010, 2011, 2012, 2013, 2014
2012-01-26
... chambers for a total discharge volume of 210 in\\3\\) with a 1,200 m long hydrophone streamer. GI guns will... require the Navy to use species-specific mean maximum densities, rather than the mean average densities... use mean maximum densities, rather than mean average densities. Marine mammal population density...
Particle Image Velocimetry Study of Density Current Fronts
ERIC Educational Resources Information Center
Martin, Juan Ezequiel
2009-01-01
Gravity currents are flows that occur when a horizontal density difference causes fluid to move under the action of gravity; density currents are a particular case, for which the scalar causing the density difference is conserved. Flows with a strong effect of the horizontal density difference, even if only partially driven by it--such as the…
Effect of cell density on adipogenic differentiation of mesenchymal stem cells
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lu, Hongxu; Biomaterials Center, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki 305-0044; Guo, Likun
2009-04-10
The effect of cell density on the adipogenic differentiation of human bone marrow-derived mesenchymal stem cells (MSCs) was investigated by using a patterning technique to induce the formation of a cell density gradient on a micropatterned surface. The adipogenic differentiation of MSCs at a density gradient from 5 x 10{sup 3} to 3 x 10{sup 4} cells/cm{sup 2} was examined. Lipid vacuoles were observed at all cell densities after 1-3 weeks of culture in adipogenic differentiation medium although the lipid vacuoles were scarce at the low cell density and abundant at the high cell density. Real-time RT-PCR analysis showed thatmore » adipogenesis marker genes encoding peroxisome proliferator-activated receptor {gamma}2 (PPAR{gamma}2), lipoprotein lipase (LPL), and fatty acid binding protein-4 (FABP4) were detected in the MSCs cultured at all cell densities. The results suggest that there was no apparent effect of cell density on the adipogenic differentiation of human MSCs.« less
True density and apparent density during the drying process for vegetables and fruits: a review.
Rodríguez-Ramírez, J; Méndez-Lagunas, L; López-Ortiz, A; Torres, S Sandoval
2012-12-01
This review presents the concepts involved in determining the density of foodstuffs, and summarizes the volumetric determination techniques used to calculate true density and apparent density in foodstuffs exposed to the drying process. The behavior of density with respect to moisture content (X) and drying temperature (T) is presented and explained with a basis in changes in structure, conformation, chemical composition, and second-order phase changes that occur in the processes of mass and heat transport, as reported to date in the literature. A review of the empirical and theoretical equations that represent density is presented, and their application in foodstuffs is discussed. This review also addresses cases with nonideal density behavior, including variations in ρ(s) and ρ(w) as a function of the inside temperature of the material, depending on drying conditions (X, T). A compilation of studies regarding the density of dehydrated foodstuffs is also presented. © 2012 Institute of Food Technologists®
Spin-Multiplet Components and Energy Splittings by Multistate Density Functional Theory.
Grofe, Adam; Chen, Xin; Liu, Wenjian; Gao, Jiali
2017-10-05
Kohn-Sham density functional theory has been tremendously successful in chemistry and physics. Yet, it is unable to describe the energy degeneracy of spin-multiplet components with any approximate functional. This work features two contributions. (1) We present a multistate density functional theory (MSDFT) to represent spin-multiplet components and to determine multiplet energies. MSDFT is a hybrid approach, taking advantage of both wave function theory and density functional theory. Thus, the wave functions, electron densities and energy density-functionals for ground and excited states and for different components are treated on the same footing. The method is illustrated on valence excitations of atoms and molecules. (2) Importantly, a key result is that for cases in which the high-spin components can be determined separately by Kohn-Sham density functional theory, the transition density functional in MSDFT (which describes electronic coupling) can be defined rigorously. The numerical results may be explored to design and optimize transition density functionals for configuration coupling in multiconfigurational DFT.
Ghaedi, Gholamreza; Falahatkar, Bahram; Yavari, Vahid; Sheibani, Mohammad T; Broujeni, Gholamreza Nikbakht
2015-04-01
The present study made an attempt to measure the cortisol content, as an indicator of stress response, in rainbow trout embryos which were exposed to different densities and handling stress (air exposure) during incubation. The three densities of experimental embryos at early development stages were considered as 2.55 embryos/cm(2) (low density), 5.10 embryos/cm(2) (normal density) and 7.65 embryos/cm(2) (high density). The cortisol content of eggs (5.09 ± 0.12 ng/g) decreased to 3.68 ± 0.14 ng/g in newly fertilized eggs. Resting level of cortisol dropped at three densities by day 18 of post fertilization. Then, cortisol increased at hatching stage to 1.16 ± 0.11, 1.20 ± 0.12 and 1.21 ± 0.14 ng/g at low, normal and high densities, respectively. There were no statistically significant differences between cortisol concentrations in three densities. The acute handling stress test (5-min out-of-water), conducted on embryos (48 h post fertilization, organogenesis and eyed stage) in three densities, revealed no differences in whole-body cortisol levels between stressed and unstressed experimental groups. At hatching stage in low-density group, level of cortisol increased but the difference with the pre-stress levels was not statistically significant. Furthermore, significant differences in cortisol levels of stressed and unstressed embryos were detected on hatching in normal and high density groups [1.20 ± 0.12 at time 0-1.49 ± 0.11 ng/g at 1 hps (hours post stress) and from 1.21 ± 0.14 at time 0 to 1.53 ± 0.10 ng/g at 3 hps, respectively]. The results showed no difference in profile of cortisol in different densities, but acute stress conducted on embryos, incubated in different densities, revealed differences in cortisol stress response at hatching between normal and high density, which lead to cortisol increase at hatching time. It indicates that the lag time in the cortisol response to stressors immediately after hatching does not occur when the siblings were stressed during the embryo stage. Results, finally, indicated that hypothalamus-pituitary-interrenal axis was active and responded to an acute stressor under normal and high density, but it is unresponsive to a stressor around hatching under low density.
Creating Great Neighborhoods: Density in Your Community
This report highlights nine community-led efforts to create vibrant neighborhoods through density, discusses the connections between smart growth and density, and introduces design principles to ensure that density becomes a community asset.
Relationship of grapevine yield and growth to nematode densities.
Ferris, H; McKenry, M V
1975-07-01
Yield, growth, and vigor of individual grape vines were correlated with nematode population densities in a series of California vineyards. In a Hanford sandy loam soil, Xiphinema americanum densities showed negative correlations with yield, growth, and vigor of vines. When vines were categorized according to vigor, X. americanurn densities had little relationship to yield of high-vigor vines, but were negatively correlated with yield of low-vigor vines. Densities of Paratylenchus harnatus were positively correlated with yield, growth, and vigor of vines. Correlations between Meloidogyne spp. densities and vine performance were variable, even when the vines were separated according to soil type and plant vigor. Densities of Meloidogyne spp. populations were generally higher on coarser-textured, sandy soils and the vines were less vigorous there. Densities of P. hamatus were greater in fine-textured soils.
AlHasan, Dana M; Eberth, Jan Marie
2016-01-05
Studies suggest that the built environment with high numbers of fast food restaurants and convenience stores and low numbers of super stores and grocery stores are related to obesity, type II diabetes mellitus, and other chronic diseases. Since few studies assess these relationships at the county level, we aim to examine fast food restaurant density, convenience store density, super store density, and grocery store density and prevalence of type II diabetes among counties in South Carolina. Pearson's correlation between four types of food outlet densities- fast food restaurants, convenience stores, super stores, and grocery stores- and prevalence of type II diabetes were computed. The relationship between each of these food outlet densities were mapped with prevalence of type II diabetes, and OLS regression analysis was completed adjusting for county-level rates of obesity, physical inactivity, density of recreation facilities, unemployment, households with no car and limited access to stores, education, and race. We showed a significant, negative relationship between fast food restaurant density and prevalence of type II diabetes, and a significant, positive relationship between convenience store density and prevalence of type II diabetes. In adjusted analysis, the food outlet densities (of any type) was not associated with prevalence of type II diabetes. This ecological analysis showed no associations between fast food restaurants, convenience stores, super stores, or grocery stores densities and the prevalence of type II diabetes. Consideration of environmental, social, and cultural determinants, as well as individual behaviors is needed in future research.
Effects of high density on spacing behaviour and reproduction in Akodon azarae: A fencing experiment
NASA Astrophysics Data System (ADS)
Ávila, Belén; Bonatto, Florencia; Priotto, José; Steinmann, Andrea R.
2016-01-01
We studied the short term spacing behavioural responses of Pampean grassland mouse (Akodon azarae) with regard to population density in four 0.25 ha enclosures (two control and two experimental) in the 2011 breeding season. Based on the hypothesis that A. azarae breeding females exhibit spacing behaviour, and breeding males show a fusion spatial response, we tested the following predictions: (1) home range size and intrasexual overlap degree of females are independent of population density values; (2) at high population density, home range size of males decreases and the intrasexual home range overlap degree increases. To determine if female reproductive success decreases at high population density, we analyzed pregnancy rate, size and weight of litters, and period until fecundation in both low and high enclosure population density. We found that both males and females varied their home range size in relation to population density. Although male home ranges were always bigger than those of females in populations with high density, home range sizes of both sexes decreased. Females kept exclusive home ranges independent of density values meanwhile males decreased home range overlap in high breeding density populations. Although females produced litters of similar size in both treatments, weight of litter, pregnant rate and period until fecundation varied in relation to population density. Our results did not support the hypothesis that at high density females of A. azarae exhibit spacing behaviour neither that males exhibit a fusion spatial response.
Trunk density profile estimates from dual X-ray absorptiometry.
Wicke, Jason; Dumas, Geneviève A; Costigan, Patrick A
2008-01-01
Accurate body segment parameters are necessary to estimate joint loads when using biomechanical models. Geometric methods can provide individualized data for these models but the accuracy of the geometric methods depends on accurate segment density estimates. The trunk, which is important in many biomechanical models, has the largest variability in density along its length. Therefore, the objectives of this study were to: (1) develop a new method for modeling trunk density profiles based on dual X-ray absorptiometry (DXA) and (2) develop a trunk density function for college-aged females and males that can be used in geometric methods. To this end, the density profiles of 25 females and 24 males were determined by combining the measurements from a photogrammetric method and DXA readings. A discrete Fourier transformation was then used to develop the density functions for each sex. The individual density and average density profiles compare well with the literature. There were distinct differences between the profiles of two of participants (one female and one male), and the average for their sex. It is believed that the variations in these two participants' density profiles were a result of the amount and distribution of fat they possessed. Further studies are needed to support this possibility. The new density functions eliminate the uniform density assumption associated with some geometric models thus providing more accurate trunk segment parameter estimates. In turn, more accurate moments and forces can be estimated for the kinetic analyses of certain human movements.
Density-Dependent Effects on Group Size Are Sex-Specific in a Gregarious Ungulate
Vander Wal, Eric; van Beest, Floris M.; Brook, Ryan K.
2013-01-01
Density dependence can have marked effects on social behaviors such as group size. We tested whether changes in population density of a large herbivore (elk, Cervus canadensis) affected sex-specific group size and whether the response was density- or frequency-dependent. We quantified the probability and strength of changes in group sizes and dispersion as population density changed for each sex. We used group size data from a population of elk in Manitoba, Canada, that was experimentally reduced from 1.20 to 0.67 elk/km2 between 2002 and 2009. Our results indicated that functional responses of group size to population density are sex-specific. Females showed a positive density-dependent response in group size at population densities ≥0.70 elk/km2 and we found evidence for a minimum group size at population density ≤0.70 elk/km2. Changes in male group size were also density-dependent; however, the strength of the relationship was lower than for females. Density dependence in male group size was predominantly a result of fusion of solitary males into larger groups, rather than fusion among existing groups. Our study revealed that density affects group size of a large herbivore differently between males and females, which has important implications for the benefits e.g., alleviating predation risk, and costs of social behaviors e.g., competition for resources and mates, and intra-specific pathogen transmission. PMID:23326502
Ku, Lixia; Zhang, Liangkun; Tian, Zhiqiang; Guo, Shulei; Su, Huihui; Ren, Zhenzhen; Wang, Zhiyong; Li, Guohui; Wang, Xiaobo; Zhu, Yuguang; Zhou, Jinlong; Chen, Yanhui
2015-08-01
Plant height is one of the most heritable traits in maize (Zea mays L.). Understanding the genetic control of plant height is important for elucidating the molecular mechanisms that regulate maize development. To investigate the genetic basis of the plant height response to density in maize, we evaluated the effects of two different plant densities (60,000 and 120,000 plant/hm(2)) on three plant height-related traits (plant height, ear height, and ear height-to-plant height ratio) using four sets of recombinant inbred line populations. The phenotypes observed under the two-plant density treatments indicated that high plant density increased the phenotypic performance values of the three measured traits. Twenty-three quantitative trait loci (QTLs) were detected under the two-plant density treatments, and five QTL clusters were located. Nine QTLs were detected under the low plant density treatment, and seven QTLs were detected under the high plant density treatment. Our results suggested that plant height may be controlled mainly by a common set of genes that could be influenced by additional genetic mechanisms when the plants were grown under high plant density. Fine mapping for genetic regions of the stable QTLs across different plant density environments may provide additional information about their different responses to density. The results presented here provide useful information for further research and will help to reveal the molecular mechanisms related to plant height in response to density.
Denton, Ellen-Ge D; Shaffer, Jonathan A; Alcantara, Carmela; Cadermil, Esteban
2016-02-01
The Ethnic Density hypothesis posits that living around others from similar ethnic backgrounds reduces the risk of adverse mental health outcomes such as depression. Contrary to this hypothesis, previous work has shown that Hispanic ethnic density is cross-sectionally associated with increased depressive symptom severity among patients hospitalized with an acute coronary syndrome (ACS; myocardial infarction or unstable angina pectoris). To date, no study has examined the prospective association of Hispanic ethnic density on long-term depressive symptom severity following an acute medical event. We prospectively assessed the impact of Hispanic ethnic density on depressive symptoms, 1-year following an ACS event, among Hispanic adult patients. We tested the non-linear association between ethnic density and depressive symptoms to account for inconsistent findings on the ethnic density hypothesis. At the time of an index ACS event (i.e., baseline, N = 326) and 1-year later (N = 252), Hispanic patients from the Prescription Usage, Lifestyle, and Stress Evaluation prospective cohort study completed the Beck Depression Inventory as a measure of depressive symptom severity. Hispanic ethnic density was defined by the percentage of Hispanic residents within each patient's census tract using data extracted from the American Community Survey Census (2010-2013). Covariates included baseline demographic factors (age, gender, English fluency, education, nativity status), cardiovascular factors (Charlson comorbidity index, left ventricular ejection fraction, Global Registry of Acute Coronary Events 6-month prognostic risk score), and neighborhood factors (residential density, income, and percentage of households receiving public assistance). In an adjusted multivariable linear regression analysis there was a significant curvilinear association between Hispanic ethnic density and depressive symptom severity at 1 year. As Hispanic ethnic density increased from low to moderate density, there was an increase in depressive symptoms, but depressive symptoms slightly declined in census tracts with the highest density of Hispanics. Furthermore, gender significantly moderated the relation between Hispanic ethnic density and 1-year depressive symptom severity, such that Hispanic ethnic density was significantly associated with increased depressive symptom severity for female Hispanic patients with ACS, but not for male Hispanic patients. Previous research suggests that ethnic density may be protective against depression in Hispanic enclaves; however, our findings suggest a non-linear ethnic density effect and an overall more complex association between ethnic density and depression. These data add to a growing body of literature on the effects of sociodemographic and contextual factors on health.
Denton, Ellen-ge D.; Shaffer, Jonathan A.; Alcantara, Carmela; Cadermil, Esteban
2015-01-01
The Ethnic Density hypothesis posits that living around others from similar ethnic backgrounds reduces the risk of adverse mental health outcomes such as depression. Contrary to this hypothesis, previous work has shown that Hispanic ethnic density is cross-sectionally associated with increased depressive symptom severity among patients hospitalized with an acute coronary syndrome (ACS; myocardial infarction or unstable angina pectoris). To date, no study has examined the prospective association of Hispanic ethnic density on long-term depressive symptom severity following an acute medical event. We prospectively assessed the impact of Hispanic ethnic density on depressive symptoms, 1-year following an ACS event, among Hispanic adult patients. We tested the non-linear association between ethnic density and depressive symptoms to account for inconsistent findings on the ethnic density hypothesis. At the time of an index ACS event (i.e., baseline, N = 326) and 1-year later (N = 252), Hispanic patients from the Prescription Usage, Lifestyle, and Stress Evaluation prospective cohort study completed the Beck Depression Inventory as a measure of depressive symptom severity. Hispanic ethnic density was defined by the percentage of Hispanic residents within each patient's census tract using data extracted from the American Community Survey Census (2010–2013). Covariates included baseline demographic factors (age, gender, English fluency, education, nativity status), cardiovascular factors (Charlson comorbidity index, left ventricular ejection fraction, Global Registry of Acute Coronary Events 6-month prognostic risk score), and neighborhood factors (residential density, income, and percentage of households receiving public assistance). In an adjusted multivariable linear regression analysis there was a significant curvilinear association between Hispanic ethnic density and depressive symptom severity at 1 year. As Hispanic ethnic density increased from low to moderate density, there was an increase in depressive symptoms, but depressive symptoms slightly declined in census tracts with the highest density of Hispanics. Furthermore, gender significantly moderated the relation between Hispanic ethnic density and 1-year depressive symptom severity, such that Hispanic ethnic density was significantly associated with increased depressive symptom severity for female Hispanic patients with ACS, but not for male Hispanic patients. Previous research suggests that ethnic density may be protective against depression in Hispanic enclaves; however, our findings suggest a non-linear ethnic density effect and an overall more complex association between ethnic density and depression. These data add to a growing body of literature on the effects of sociodemographic and contextual factors on health. PMID:26407692
The factors controlling species density in herbaceous plant communities: An assessment
Grace, J.B.
1999-01-01
This paper evaluates both the ideas and empirical evidence pertaining to the control of species density in herbaceous plant communities. While most theoretical discussions of species density have emphasized the importance of habitat productivity and disturbance regimes, many other factors (e.g. species pools, plant litter accumulation, plant morphology) have been proposed to be important. A review of literature presenting observations on the density of species in small plots (in the vicinity of a few square meters or less), as well as experimental studies, suggests several generalizations: (1) Available data are consistent with an underlying unimodal relationship between species density and total community biomass. While variance in species density is often poorly explained by predictor variables, there is strong evidence that high levels of community biomass are antagonistic to high species density. (2) Community biomass is just one of several factors affecting variations in species density. Multivariate analyses typically explain more than twice as much variance in species density as can be explained by community biomass alone. (3) Disturbance has important and sometimes complex effects on species density. In general, the evidence is consistent with the intermediate disturbance hypothesis but exceptions exist and effects can be complex. (4) Gradients in the species pool can have important influences on patterns of species density. Evidence is mounting that a considerable amount of the observed variability in species density within a landscape or region may result from environmental effects on the species pool. (5) Several additional factors deserve greater consideration, including time lags, species composition, plant morphology, plant density and soil microbial effects. Based on the available evidence, a conceptual model of the primary factors controlling species density is presented here. This model suggests that species density is controlled by the effects of disturbance, total community biomass, colonization, the species pool and spatial heterogeneity. The structure of the model leads to two main expectations: (1) while community biomass is important, multivariate approaches will be required to understand patterns of variation in species density, and (2) species density will be more highly correlated with light penetration to the soil surface, than with above-ground biomass, and even less well correlated with plant growth rates (productivity) or habitat fertility. At present, data are insufficient to evaluate the relative importance of the processes controlling species density. Much more work is needed if we are to adequately predict the effects of environmental changes on plant communities and species diversity.
Quartz resonator fluid density and viscosity monitor
Martin, Stephen J.; Wiczer, James J.; Cernosek, Richard W.; Frye, Gregory C.; Gebert, Charles T.; Casaus, Leonard; Mitchell, Mary A.
1998-01-01
A pair of thickness-shear mode resonators, one smooth and one with a textured surface, allows fluid density and viscosity to be independently resolved. A textured surface, either randomly rough or regularly patterned, leads to trapping of liquid at the device surface. The synchronous motion of this trapped liquid with the oscillating device surface allows the device to weigh the liquid; this leads to an additional response that depends on liquid density. This additional response enables a pair of devices, one smooth and one textured, to independently resolve liquid density and viscosity; the difference in responses determines the density while the smooth device determines the density-viscosity product, and thus, the pair determines both density and viscosity.
Textured-surface quartz resonator fluid density and viscosity monitor
Martin, Stephen J.; Wiczer, James J.; Cernosek, Richard W.; Frye, Gregory C.; Gebert, Charles T.; Casaus, Leonard; Mitchell, Mary A.
1998-08-25
A pair of thickness-shear mode resonators, one smooth and one with a textured surface, allows fluid density and viscosity to be independently resolved. A textured surface, either randomly rough or regularly patterned, leads to trapping of liquid at the device surface. The synchronous motion of this trapped liquid with the oscillating device surface allows the device to weigh the liquid; this leads to an additional response that depends on liquid density. This additional response enables a pair of devices, one smooth and one textured, to independently resolve liquid density and viscosity; the difference in responses determines the density while the smooth device determines the density-viscosity product, and thus, the pair determines both density and viscosity.
Relative density: the key to stocking assessment in regional analysisa forest survey viewpoint.
Colin D. MacLean
1979-01-01
Relative density is a measure of tree crowding compared to a reference level such as normal density. This stand attribute, when compared to management standards, indicates adequacy of stocking. The Pacific Coast Forest Survey Unit assesses the relative density of each stand sampled by summing the individual density contributions of each tree tallied, thus quantifying...
ERIC Educational Resources Information Center
Mohazzabi, Pirooz
2010-01-01
When an object is immersed in a liquid and released, it may sink to the bottom or rise to the surface and float. If the object's density is greater than that of the liquid, it sinks. If the object's density is less than the density of the liquid, it floats. In the special case when the object's density matches the density of the liquid, it will…
How Thin Is Foil? Applying Density to Find the Thickness of Aluminum Foil
ERIC Educational Resources Information Center
Concannon, James P.
2011-01-01
In this activity, I show how high school students apply their knowledge of density to solve an unknown variable, such as thickness. Students leave this activity with a better understanding of density, the knowledge that density is a characteristic property of a given substance, and the ways density can be measured. (Contains 4 figures and 1 table.)
J. Y. Zhu; C. Tim Scott; Karen L. Scallon; Gary C. Myers
2007-01-01
This study demonstrated that average ring width (or average annual radial growth rate) is a reliable parameter to quantify the effects of tree plantation density (growth suppression) on wood density and tracheid anatomical properties. The average ring width successfully correlated wood density and tracheid anatomical properties of red pines (Pinus resinosa Ait.) from a...
The relative density of forests in the United States
Christopher W. Woodall; Charles H. Perry; Patrick D. Miles
2006-01-01
A relative stand density assessment technique, using the mean specific gravity of all trees in a stand to predict its maximum stand density index (SDI) and subsequently its relative stand density (current SDI divided by maximum SDI), was used to estimate the relative density of forests across the United States using a national-scale forest inventory. Live tree biomass...
Single fiber lignin distributions based on the density gradient column method
Brian Boyer; Alan W. Rudie
2007-01-01
The density gradient column method was used to determine the effects of uniform and non-uniform pulping processes on variation in individual fiber lignin concentrations of the resulting pulps. A density gradient column uses solvents of different densities and a mixing process to produce a column of liquid with a smooth transition from higher density at the bottom to...
The density dilemma: limitations on juvenile production in threatened salmon populations
Walters, Annika W.; Copeland, Timothy; Venditti, David A.
2013-01-01
Density-dependent processes have repeatedly been shown to have a central role in salmonid population dynamics, but are often assumed to be negligible for populations at low abundances relative to historical records. Density dependence has been observed in overall spring/summer Snake River Chinook salmon Oncorhynchus tshawytscha production, but it is not clear how patterns observed at the aggregate level relate to individual populations within the basin. We used a Bayesian hierarchical modelling approach to explore the degree of density dependence in juvenile production for nine Idaho populations. Our results indicate that density dependence is ubiquitous, although its strength varies between populations. We also investigated the processes driving the population-level pattern and found density-dependent growth and mortality present for both common life-history strategies, but no evidence of density-dependent movement. Overwinter mortality, spatial clustering of redds and limited resource availability were identified as potentially important limiting factors contributing to density dependence. The ubiquity of density dependence for these threatened populations is alarming as stability at present low abundance levels suggests recovery may be difficult without major changes. We conclude that density dependence at the population level is common and must be considered in demographic analysis and management.
NASA Astrophysics Data System (ADS)
Mosquera, Martín A.
2017-10-01
Provided the initial state, the Runge-Gross theorem establishes that the time-dependent (TD) external potential of a system of non-relativistic electrons determines uniquely their TD electronic density, and vice versa (up to a constant in the potential). This theorem requires the TD external potential and density to be Taylor-expandable around the initial time of the propagation. This paper presents an extension without this restriction. Given the initial state of the system and evolution of the density due to some TD scalar potential, we show that a perturbative (not necessarily weak) TD potential that induces a non-zero divergence of the external force-density, inside a small spatial subset and immediately after the initial propagation time, will cause a change in the density within that subset, implying that the TD potential uniquely determines the TD density. In this proof, we assume unitary evolution of wavefunctions and first-order differentiability (which does not imply analyticity) in time of the internal and external force-densities, electronic density, current density, and their spatial derivatives over the small spatial subset and short time interval.
Muographic mapping of the subsurface density structures in Miura, Boso and Izu peninsulas, Japan
NASA Astrophysics Data System (ADS)
Tanaka, Hiroyuki K. M.
2015-02-01
While the benefits of determining the bulk density distribution of a landmass are evident, established experimental techniques reliant on gravity measurements cannot uniquely determine the underground density distribution. We address this problem by taking advantage of traffic tunnels densely distributed throughout the country. Cosmic ray muon flux is measured in the tunnels to determine the average density of each rock overburden. After analyzing the data collected from 146 observation points in Miura, South-Boso and South-Izu Peninsula, Japan as an example, we mapped out the shallow density distribution of an area of 1340 km2. We find a good agreement between muographically determined density distribution and geologic features as described in existing geological studies. The average shallow density distribution below each peninsula was determined with a great accuracy (less than +/-0.8%). We also observed a significant reduction in density along fault lines and interpreted that as due to the presence of multiple cracks caused by mechanical stress during recurrent seismic events. We show that this new type of muography technique can be applied to estimate the terrain density and porosity distribution, thus determining more precise Bouguer reduction densities.
Muographic mapping of the subsurface density structures in Miura, Boso and Izu peninsulas, Japan
Tanaka, Hiroyuki K. M.
2015-01-01
While the benefits of determining the bulk density distribution of a landmass are evident, established experimental techniques reliant on gravity measurements cannot uniquely determine the underground density distribution. We address this problem by taking advantage of traffic tunnels densely distributed throughout the country. Cosmic ray muon flux is measured in the tunnels to determine the average density of each rock overburden. After analyzing the data collected from 146 observation points in Miura, South-Boso and South-Izu Peninsula, Japan as an example, we mapped out the shallow density distribution of an area of 1340 km2. We find a good agreement between muographically determined density distribution and geologic features as described in existing geological studies. The average shallow density distribution below each peninsula was determined with a great accuracy (less than ±0.8%). We also observed a significant reduction in density along fault lines and interpreted that as due to the presence of multiple cracks caused by mechanical stress during recurrent seismic events. We show that this new type of muography technique can be applied to estimate the terrain density and porosity distribution, thus determining more precise Bouguer reduction densities. PMID:25660352
Density-dependent adjustment of inducible defenses.
Tollrian, Ralph; Duggen, Sonja; Weiss, Linda C; Laforsch, Christian; Kopp, Michael
2015-08-03
Predation is a major factor driving evolution, and organisms have evolved adaptations increasing their survival chances. However, most defenses incur trade-offs between benefits and costs. Many organisms save costs by employing inducible defenses as responses to fluctuating predation risk. The level of defense often increases with predator densities. However, individual predation risk should not only depend on predator density but also on the density of conspecifics. If the predator has a saturating functional response one would predict a negative correlation between prey density and individual predation risk and hence defense expression. Here, we tested this hypothesis using six model systems, covering a taxonomic range from protozoa to rotifers and crustaceans. In all six systems, we found that the level of defense expression increased with predator density but decreased with prey density. In one of our systems, i.e. in Daphnia, we further show that the response to prey density is triggered by a chemical cue released by conspecifics and congeners. Our results indicate that organisms adjust the degree of defense to the acute predation risk, rather than merely to predators' densities. Our study suggests that density-dependent defense expression reflects accurate predation-risk assessment and is a general principle in many inducible-defense systems.
Using ultrasound tomography to identify the distributions of density throughout the breast
NASA Astrophysics Data System (ADS)
Sak, Mark; Duric, Neb; Littrup, Peter; Sherman, Mark E.; Gierach, Gretchen L.
2016-04-01
Women with high breast density are at increased risk of developing breast cancer. Breast density has usually been defined using mammography as the ratio of fibroglandular tissue to total breast area. Ultrasound tomography (UST) is an emerging modality that can also be used to measure breast density. UST creates tomographic sound speed images of the patient's breast which is useful as sound speed is directly proportional to tissue density. Furthermore, the volumetric and quantitative information contained in the sound speed images can be used to describe the distribution of breast density. The work presented here measures the UST sound speed density distributions of 165 women with negative screening mammography. Frequency distributions of the sound speed voxel information were examined for each patient. In a preliminary analysis, the UST sound speed distributions were averaged across patients and grouped by various patient and density-related factors (e.g., age, body mass index, menopausal status, average mammographic breast density). It was found that differences in the distribution of density could be easily visualized for different patient groupings. Furthermore, findings suggest that the shape of the distributions may be used to identify participants with varying amounts of dense and non-dense tissue.
Muographic mapping of the subsurface density structures in Miura, Boso and Izu peninsulas, Japan.
Tanaka, Hiroyuki K M
2015-02-09
While the benefits of determining the bulk density distribution of a landmass are evident, established experimental techniques reliant on gravity measurements cannot uniquely determine the underground density distribution. We address this problem by taking advantage of traffic tunnels densely distributed throughout the country. Cosmic ray muon flux is measured in the tunnels to determine the average density of each rock overburden. After analyzing the data collected from 146 observation points in Miura, South-Boso and South-Izu Peninsula, Japan as an example, we mapped out the shallow density distribution of an area of 1340 km(2). We find a good agreement between muographically determined density distribution and geologic features as described in existing geological studies. The average shallow density distribution below each peninsula was determined with a great accuracy (less than ±0.8%). We also observed a significant reduction in density along fault lines and interpreted that as due to the presence of multiple cracks caused by mechanical stress during recurrent seismic events. We show that this new type of muography technique can be applied to estimate the terrain density and porosity distribution, thus determining more precise Bouguer reduction densities.
NASA Technical Reports Server (NTRS)
Hedin, A. E.
1979-01-01
The tables contain the neutral temperature, neutral densities for N2, O2, O, Ar, He and H, mean molecular weight, and total mass density as predicted by the Mass Spectrometer and Incoherent Scatter empirical thermosphere model for selected altitudes, latitudes, local times, days and other geophysical conditions. The model is based on a least squares fit to density data from mass spectrometers on five satellites and temperature data from four incoherent scatter stations, providing coverage for most of solar sunspot cycle 20. Included in the model data base are longitudinally average N3, He, and O densities from the OGO-6 mass spectrometer longitudinally average N2, He, O and Ar densities from the AEROS-A (NATE) mass spectrometer the N2, He, O, and Ar densities from the San Marco 3 mass spectrometer the N2 densities from the AE-B mass spectrometer and the N2, He, O, and Ar densities from the AE-C (OSS, NACE, NATE) mass spectrometers. The O2 and H densities are inferred using ion mass spectrometer data from AE-C (BIMS). Neutral exospheric temperature data are included from Arecibo, St. Santin, Millstone Hill and Jicamarca.
Density-dependent adjustment of inducible defenses
Tollrian, Ralph; Duggen, Sonja; Weiss, Linda C.; Laforsch, Christian; Kopp, Michael
2015-01-01
Predation is a major factor driving evolution, and organisms have evolved adaptations increasing their survival chances. However, most defenses incur trade-offs between benefits and costs. Many organisms save costs by employing inducible defenses as responses to fluctuating predation risk. The level of defense often increases with predator densities. However, individual predation risk should not only depend on predator density but also on the density of conspecifics. If the predator has a saturating functional response one would predict a negative correlation between prey density and individual predation risk and hence defense expression. Here, we tested this hypothesis using six model systems, covering a taxonomic range from protozoa to rotifers and crustaceans. In all six systems, we found that the level of defense expression increased with predator density but decreased with prey density. In one of our systems, i.e. in Daphnia, we further show that the response to prey density is triggered by a chemical cue released by conspecifics and congeners. Our results indicate that organisms adjust the degree of defense to the acute predation risk, rather than merely to predators’ densities. Our study suggests that density-dependent defense expression reflects accurate predation-risk assessment and is a general principle in many inducible-defense systems. PMID:26235428
Determining Core Plasmaspheric Electron Densities with the Van Allen Probes
NASA Astrophysics Data System (ADS)
De Pascuale, S.; Hartley, D.; Kurth, W. S.; Kletzing, C.; Thaller, S. A.; Wygant, J. R.
2016-12-01
We survey three methods for obtaining electron densities inside of the core plasmasphere region (L < 4) to the perigee of the Van Allen Probes (L 1.1) from September 2012 to December 2014. Using the EMFISIS instrument on board the Van Allen Probes, electron densities are extracted from the upper hybrid resonance to an uncertainty of 10%. Some measurements are subject to larger errors given interpretational issues, especially at low densities (L > 4) resulting from geomagnetic activity. At high densities EMFISIS is restricted by an upper observable limit near 3000 cm-3. As this limit is encountered above perigee, we employ two additional methods validated against EMFISIS measurements to determine electron densities deep within the plasmasphere (L < 2). EMFISIS can extrapolate density estimates to lower L by calculating high densities, in good agreement with the upper hybrid technique when applicable, from plasma wave properties. Calibrated measurements, from the Van Allen Probes EFW potential instrument, also extend into this range. In comparison with the published EMFISIS database we provide a metric for the validity of core plasmaspheric density measurements obtained from these methods and an empirical density model for use in wave and particle simulations.
NASA Astrophysics Data System (ADS)
Myc, Lukasz; Duric, Neb; Littrup, Peter; Li, Cuiping; Ranger, Bryan; Lupinacci, Jessica; Schmidt, Steven; Rama, Olsi; Bey-Knight, Lisa
2010-03-01
Since a 1976 study by Wolfe, high breast density has gained recognition as a factor strongly correlating with an increased incidence of breast cancer. These observations have led to mammographic density being designated a "risk factor" for breast cancer. Clinically, the exclusive reliance on mammography for breast density measurement has forestalled the inclusion of breast density into statistical risk models. This exclusion has in large part been due to the ionizing radiation associated with the method. Additionally, the use of mammography as valid tool for measuring a three dimensional characteristic (breast density) has been criticized for its prima facie incongruity. These shortfalls have prompted MRI studies of breast density as an alternative three-dimensional method of assessing breast density. Although, MRI is safe and can be used to measure volumetric density, its cost has prohibited its use in screening. Here, we report that sound speed measurements using a prototype ultrasound tomography device have potential for use as surrogates for breast density measurement. Accordingly, we report a strong positive linear correlation between volume-averaged sound speed of the breast and percent glandular tissue volume as assessed by MR.
Santiago-Rivas, Marimer; Benjamin, Shayna; Andrews, Janna Z; Jandorf, Lina
2017-08-14
The objectives of this study were to assess breast density knowledge and breast density awareness, and to identify information associated with intention to complete routine and supplemental screening for breast cancer in a diverse sample of women age eligible for mammography. We quantitatively (self-report) assessed breast density awareness and knowledge (N = 264) in black (47.7%), Latina (35.2%), and white (17%) women recruited online and in the community. Most participants reported having heard about breast density (69.2%); less than one third knew their own breast density status (30.4%). Knowing their own breast density, believing that women should be notified of their breast density in their mammogram report, and feeling informed if being provided this information are associated with likelihood of completing mammogram. Intending mammogram completion and knowledge regarding the impact of breast density on mammogram accuracy are associated with likelihood of completing supplemental ultrasound tests of the breast. These findings help inform practitioners and policy makers about information and communication factors that influence breast cancer screening concerns and decisions. Knowing this information should prepare practitioners to better identify women who may have not been exposed to breast density messages.
Use of burrow entrances to indicate densities of Townsend's ground squirrels
Van Horne, Beatrice; Schooley, Robert L.; Knick, Steven T.; Olson, G.S.; Burnham, K.P.
1997-01-01
Counts of burrow entrances have been positively correlated with densities of semi-fossorial rodents and used as an index of densities. We evaluated their effectiveness in indexing densities of Townsend's ground squirrels (Spermophilus townsendii) in the Snake River Birds of Prey National Conservation Area (SRBOPNCA), Idaho, by comparing burrow entrance densities to densities of ground squirrels estimated from livetrapping in 2 consecutive years over which squirrel populations declined by >75%. We did not detect a consistent relation between burrow entrance counts and ground squirrel density estimates within or among habitat types. Scatter plots indicated that burrow entrances had little predictive power at intermediate densities. Burrow entrance counts did not reflect the magnitude of a between-year density decline. Repeated counts of entrances late in the squirrels' active season varied in a manner that would be difficult to use for calibration of transects sampled only once during this period. Annual persistence of burrow entrances varied between habitats. Trained observers were inconsistent in assigning active-inactive status to entrances. We recommend that burrow entrance counts not be used as measures or indices of ground squirrel densities in shrubsteppe habitats, and that the method be verified thoroughly before being used in other habitats.
NASA Astrophysics Data System (ADS)
Płonka, Agnieszka; Fichtner, Andreas
2017-04-01
Lateral density variations are the source of mass transport in the Earth at all scales, acting as drivers of convective motion. However, the density structure of the Earth remains largely unknown since classic seismic observables and gravity provide only weak constraints with strong trade-offs. Current density models are therefore often based on velocity scaling, making strong assumptions on the origin of structural heterogeneities, which may not necessarily be correct. Our goal is to assess if 3D density structure may be resolvable with emerging full-waveform inversion techniques. We have previously quantified the impact of regional-scale crustal density structure on seismic waveforms with the conclusion that reasonably sized density variations within the crust can leave a strong imprint on both travel times and amplitudes, and, while this can produce significant biases in velocity and Q estimates, the seismic waveform inversion for density may become feasible. In this study we perform principal component analyses of sensitivity kernels for P velocity, S velocity, and density. This is intended to establish the extent to which these kernels are linearly independent, i.e. the extent to which the different parameters may be constrained independently. We apply the method to data from 81 events around the Iberian Penninsula, registered in total by 492 stations. The objective is to find a principal kernel which would maximize the sensitivity to density, potentially allowing for as independent as possible density resolution. We find that surface (mosty Rayleigh) waves have significant sensitivity to density, and that the trade-off with velocity is negligible. We also show the preliminary results of the inversion.
Poot, Hanneke; ter Maat, Andries; Trost, Lisa; Schwabl, Ingrid; Jansen, René F; Gahr, Manfred
2012-02-01
Zebra Finches (Taeniopygia guttata) are highly social and monogamous birds that display relatively low levels of aggression and coordinate group life mainly by means of vocal communication. In the wild, small groups may congregate to larger flocks of up to 150-350 birds. Little is known, however, about possible effects of population density on development in captivity. Investigating density effects on physiology and behaviour might be helpful in identifying optimal group size, in order to optimise Zebra Finch wellbeing. A direct effect of population density on development and reproduction was found: birds in lower density conditions produced significantly more and larger (body mass, tarsus length) surviving offspring than birds in high density conditions. Furthermore, offspring in low density aviaries produced slightly longer song motifs and more different syllables than their tutors, whereas offspring in high density aviaries produced shorter motifs and a smaller or similar number of different syllables than their tutors. Aggression levels within the populations were low throughout the experiment, but the number of aggressive interactions was significantly higher in high density aviaries. Baseline corticosterone levels did not differ significantly between high- and low density aviaries for either adult or offspring birds. On day 15 post hatching, brood size and baseline corticosterone levels were positively correlated. On days 60 and 100 post hatching this correlation was no longer present. The results of this study prove that population density affects various aspects of Zebra Finch development, with birds living in low population density conditions having an advantage over those living under higher population density conditions. Copyright © 2011 Elsevier Inc. All rights reserved.
Subgrid-scale effects in compressible variable-density decaying turbulence
GS, Sidharth; Candler, Graham V.
2018-05-08
We present that many turbulent flows are characterized by complex scale interactions and vorticity generation caused by compressibility and variable-density effects. In the large-eddy simulation of variable-density flows, these processes manifest themselves as subgrid-scale (SGS) terms that interact with the resolved-scale flow. This paper studies the effect of the variable-density SGS terms and quantifies their relative importance. We consider the SGS terms appearing in the density-weighted Favre-filtered equations and in the unweighted Reynolds-filtered equations. The conventional form of the Reynolds-filtered momentum equation is complicated by a temporal SGS term; therefore, we derive a new form of the Reynolds-filtered governing equationsmore » that does not contain this term and has only double-correlation SGS terms. The new form of the filtered equations has terms that represent the SGS mass flux, pressure-gradient acceleration and velocity-dilatation correlation. To evaluate the dynamical significance of the variable-density SGS effects, we carry out direct numerical simulations of compressible decaying turbulence at a turbulent Mach number of 0.3. Two different initial thermodynamic conditions are investigated: homentropic and a thermally inhomogeneous gas with regions of differing densities. The simulated flow fields are explicitly filtered to evaluate the SGS terms. The importance of the variable-density SGS terms is quantified relative to the SGS specific stress, which is the only SGS term active in incompressible constant-density turbulence. It is found that while the variable-density SGS terms in the homentropic case are negligible, they are dynamically significant in the thermally inhomogeneous flows. Investigation of the variable-density SGS terms is therefore important, not only to develop variable-density closures but also to improve the understanding of scale interactions in variable-density flows.« less
Subgrid-scale effects in compressible variable-density decaying turbulence
DOE Office of Scientific and Technical Information (OSTI.GOV)
GS, Sidharth; Candler, Graham V.
We present that many turbulent flows are characterized by complex scale interactions and vorticity generation caused by compressibility and variable-density effects. In the large-eddy simulation of variable-density flows, these processes manifest themselves as subgrid-scale (SGS) terms that interact with the resolved-scale flow. This paper studies the effect of the variable-density SGS terms and quantifies their relative importance. We consider the SGS terms appearing in the density-weighted Favre-filtered equations and in the unweighted Reynolds-filtered equations. The conventional form of the Reynolds-filtered momentum equation is complicated by a temporal SGS term; therefore, we derive a new form of the Reynolds-filtered governing equationsmore » that does not contain this term and has only double-correlation SGS terms. The new form of the filtered equations has terms that represent the SGS mass flux, pressure-gradient acceleration and velocity-dilatation correlation. To evaluate the dynamical significance of the variable-density SGS effects, we carry out direct numerical simulations of compressible decaying turbulence at a turbulent Mach number of 0.3. Two different initial thermodynamic conditions are investigated: homentropic and a thermally inhomogeneous gas with regions of differing densities. The simulated flow fields are explicitly filtered to evaluate the SGS terms. The importance of the variable-density SGS terms is quantified relative to the SGS specific stress, which is the only SGS term active in incompressible constant-density turbulence. It is found that while the variable-density SGS terms in the homentropic case are negligible, they are dynamically significant in the thermally inhomogeneous flows. Investigation of the variable-density SGS terms is therefore important, not only to develop variable-density closures but also to improve the understanding of scale interactions in variable-density flows.« less
Tatara, Christopher P.; Riley, Stephen C.; Berejikian, Barry A.
2011-01-01
Hatchery supplementation of steelhead Oncorhynchus mykiss raises concerns about the impacts on natural populations, including reduced growth and survival, displacement, and increased predation. The potential risks may be density dependent.We examined how hatchery stocking density and the opportunity to emigrate affect the responses of natural steelhead parr in an experimental stream channel and after 15 d found no density-dependent effects on growth, emigration, or survival at densities ranging from 1-6 hatchery parr/m2. The opportunity for steelhead parr to emigrate reduced predation by coastal cutthroat trout O. clarkii clarkii on both hatchery and natural steelhead parr. The cutthroat trout exhibited a type-I functional response (constant predation rate with increased prey density) for the hatchery and composite populations. In contrast, the predation rate on natural parr decreased as hatchery stocking density increased. Supplementation with hatchery parr at any experimental stocking density reduced the final natural parr density. This decline was explained by increased emigration fromthe supplemented groups. Natural parr had higher mean instantaneous growth rates than hatchery parr. The proportion of parr emigrating decreased as parr size increased over successive experimental trials. Smaller parr had lower survival and suffered higher predation. The final density of the composite population, a measure of supplementation effectiveness, increased with the hatchery steelhead stocking rate. Our results indicate that stocking larger hatchery parr (over 50 d postemergence) at densities within the carrying capacity would have low short-term impact on the growth, survival, and emigration of natural parr while increasing the density of the composite population; in addition, a stocking density greater than 3 fish/m2 might be a good starting point for the evaluation of parr stocking in natural streams.
Potential misuse of avian density as a conservation metric
Skagen, Susan K.; Yackel Adams, Amy A.
2011-01-01
Effective conservation metrics are needed to evaluate the success of management in a rapidly changing world. Reproductive rates and densities of breeding birds (as a surrogate for reproductive rate) have been used to indicate the quality of avian breeding habitat, but the underlying assumptions of these metrics rarely have been examined. When birds are attracted to breeding areas in part by the presence of conspecifics and when breeding in groups influences predation rates, the effectiveness of density and reproductive rate as indicators of habitat quality is reduced. It is beneficial to clearly distinguish between individual- and population-level processes when evaluating habitat quality. We use the term reproductive rate to refer to both levels and further distinguish among levels by using the terms per capita fecundity (number of female offspring per female per year, individual level) and population growth rate (the product of density and per capita fecundity, population level). We predicted how density and reproductive rate interact over time under density-independent and density-dependent scenarios, assuming the ideal free distribution model of how birds settle in breeding habitats. We predicted population density of small populations would be correlated positively with both per capita fecundity and population growth rate due to the Allee effect. For populations in the density-dependent growth phase, we predicted no relation between density and per capita fecundity (because individuals in all patches will equilibrate to the same success rate) and a positive relation between density and population growth rate. Several ecological theories collectively suggest that positive correlations between density and per capita fecundity would be difficult to detect. We constructed a decision tree to guide interpretation of positive, neutral, nonlinear, and negative relations between density and reproductive rates at individual and population levels. ?? 2010 Society for Conservation Biology.
Directional power absorption in helicon plasma sources excited by a half-helix antenna
NASA Astrophysics Data System (ADS)
Afsharmanesh, Mohsen; Habibi, Morteza
2017-10-01
This paper deals with the investigation of the power absorption in helicon plasma excited through a half-helix antenna driven at 13.56 {{MHz}}. The simulations were carried out by means of a code, HELIC. They were carried out by taking into account different inhomogeneous radial density profiles and for a wide range of plasma densities, from {10}11 {{{cm}}}-3 to {10}13 {{{cm}}}-3. The magnetic field was 200, 400, 600 and 1000 {{G}}. A three-parameter function was used for generating various density profiles with different volume gradients, edge gradients and density widths. The density profile had a large effect on the efficient Trivelpiece-Gould (TG) and helicon mode excitation and antenna coupling to the plasma. The fraction of power deposition via the TG mode was extremely dependent on the plasma density near the plasma boundary. Interestingly, the obtained efficient parallel helicon wavelength was close to the anticipated value for Gaussian radial density profile. Power deposition was considerably asymmetric when the \\tfrac{n}{{B}0} ratio was more than a specific value for a determined density width. The longitudinal power absorption was symmetric at approximately {n}0={10}11 {{{cm}}}-3, irrespective of the magnetic field supposed. The asymmetry became more pronounced when the plasma density was {10}12 {{{cm}}}-3. The ratio of density width to the magnetic field was an important parameter in the power coupling. At high magnetic fields, the maximum of the power absorption was reached at higher plasma density widths. There was at least one combination of the plasma density, magnetic field and density width for which the RF power deposition at both side of the tube reached its maximum value.
Kim, Song Soo; Seo, Joon Beom; Kim, Namkug; Chae, Eun Jin; Lee, Young Kyung; Oh, Yeon Mok; Lee, Sang Do
2014-01-01
To determine the improvement of emphysema quantification with density correction and to determine the optimal site to use for air density correction on volumetric computed tomography (CT). Seventy-eight CT scans of COPD patients (GOLD II-IV, smoking history 39.2±25.3 pack-years) were obtained from several single-vendor 16-MDCT scanners. After density measurement of aorta, tracheal- and external air, volumetric CT density correction was conducted (two reference values: air, -1,000 HU/blood, +50 HU). Using in-house software, emphysema index (EI) and mean lung density (MLD) were calculated. Differences in air densities, MLD and EI prior to and after density correction were evaluated (paired t-test). Correlation between those parameters and FEV1 and FEV1/FVC were compared (age- and sex adjusted partial correlation analysis). Measured densities (HU) of tracheal- and external air differed significantly (-990 ± 14, -1016 ± 9, P<0.001). MLD and EI on original CT data, after density correction using tracheal- and external air also differed significantly (MLD: -874.9 ± 27.6 vs. -882.3 ± 24.9 vs. -860.5 ± 26.6; EI: 16.8 ± 13.4 vs. 21.1 ± 14.5 vs. 9.7 ± 10.5, respectively, P<0.001). The correlation coefficients between CT quantification indices and FEV1, and FEV1/FVC increased after density correction. The tracheal air correction showed better results than the external air correction. Density correction of volumetric CT data can improve correlations of emphysema quantification and PFT. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.
Vaissi, Somaye; Sharifi, Mozafar
2016-11-01
In this study, we examined cannibalistic behavior, growth, metamorphosis, and survival in larval and post-metamorph endangered yellow spotted mountain newts Neurergus microspilotus hatched and reared in a captive breeding facility. We designed a 2 × 2 factorial experiment, crossing two levels of food with two levels of density including high food/high density, high food/low density, low food/high density, and low food/low density. The level of cannibalistic behavior (including the loss of fore and hind limbs, missing toes, tail, gills, body damage, and whole body consumption) changed as the larvae grew, from a low level during the first 4 weeks, peaking from weeks 7 to 12, and then dropped during weeks 14-52. Both food level and density had a significant effect on cannibalism. The highest frequency of cannibalism was recorded for larvae reared in the low food/high density and lowest in high food/low density treatments. Growth, percent of larval metamorphosed, and survival were all highest in the high food/low density and lowest in low food/high density treatment. Food level had a significant effect on growth, metamorphosis, and survival. However, the two levels of density did not influence growth and metamorphosis but showed a significant effect on survival. Similarly, combined effects of food level and density showed significant effects on growth, metamorphosis, and survival over time. Information obtained from current experiment could improve productivity of captive breeding facilities to ensure the release of adequate numbers of individuals for reintroduction programs. Zoo Biol. 35:513-521, 2016. © 2016 The Authors. Zoo Biology published by Wiley Periodicals, Inc. © 2016 The Authors. Zoo Biology published by Wiley Periodicals, Inc.
Changes in Serving Size, Calories, and Sodium Content in Processed Foods From 2009 to 2015
Niederman, Sarah A.; Leonard, Elizabeth; Curtis, Christine J.
2018-01-01
Introduction Approximately 60% of the American diet comes from processed foods, which makes improving their nutritional quality important for Americans’ health. The objective of this study was to measure changes in serving sizes, calories, and sodium in top-selling processed foods that were on the market in 2009 and 2015. Methods We analyzed products in the top 80% of sales in the 54 processed food categories with consistent serving sizes and sales metrics that were on the market in both 2009 and 2015. Mean serving size, calories (per serving and density), sodium (per serving and density), and sales were calculated for 2,979 branded processed food products. For each stratification of calorie density and sodium density (decreased, increased, or did not change), we calculated the mean serving size, calorie density, sodium density, and sales for each year. Results From 2009 to 2015, we found decreases in serving size (−2.3%, P < .001), calories per serving (−2.0%, P < .001), calorie density (−1.1%, P < .001), sodium per serving (−7.6%, P < .001), and sodium density (−6.0%, P < .001). A decrease in calorie density did not correspond to an increase in sodium density or vice versa. A decline in sales was observed regardless of whether calorie density or sodium density decreased, increased, or did not change. Conclusion Reductions in calorie and sodium density occurred in tandem, suggesting that manufacturers reformulated for more than one health goal at the same time. Instead of unintended negative consequences of encouraging companies to reformulate for one nutrient, an overall net nutritional benefit occurred. PMID:29543584
Moghadam, M Bakhtiari; Vazan, S; Darvishi, B; Golzardi, F; Farahani, M Esfini
2011-01-01
Living mulch is a suitable solution for weeds ecological management and is considered as an effective method in decreasing of weeds density and dry weight. In order to evaluate of mungbean living mulch effect on density and dry weight of weeds in corn field, an experiment was conducted as a split plot based on randomized complete block design with four blocks in Research Field of Department of Agronomy, Karaj Branch, Islamic Azad University in 2010. Main plots were time of mungbean suppression with 2,4-D herbicide in four levels (4, 6, 8 and 10 leaves stages of corn) and control without weeding and sub plots were densities of mungbean in three levels (50%, 100% and 150% more than optimum density). Density and dry weight of the weeds were measured in all plots with a quadrate (60 x 100 cm) in 10 days after tasseling. Totally, 9 species of weeds were identified in the field, which included 4 broad leave species that were existed in all plots. The results showed that the best time for suppression of mungbean is the 8 leaves stage of corn, which decreased density and dry weight of weeds, 53% and 51% in comparison with control, respectively. Increase of density of mungbean from 50% into 150% more than optimum density, decrease the density and dry weight of weeds, 27.5% and 22%, respectively. It is concluded that the best time and density for suppression mungbean was 8 leaves stage of corn, and 150% more than optimum density, which decreased density and dry weight of the weeds 69% and 63.5% in comparison with control, respectively.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wilbanks, Matt C.; Yuter, S. E.; de Szoeke, S.
2015-09-01
Density currents (i.e. cold pools or outflows) beneath marine stratocumulus clouds are characterized using a 30-d data set of ship-based observations obtained during the 2008 Variability of American Monsoon Systems (VAMOS) Ocean-Cloud-Atmosphere-Land Study Regional Experiment (VOCALS-REx) in the southeast Pacific. An objective method identifies 71 density current fronts using an air density criterion and isolates each density current’s core (peak density) and tail (dissipating) zone. Compared to front and core zones, most density current tails exhibited weaker density gradients and wind anomalies elongated about the axis of the mean wind. The mean cloud-level advection relative to the surface layer windmore » (1.9 m s-1) nearly matches the mean density current propagation speed (1.8 m s-1). The similarity in speeds allows drizzle cells to deposit tails in their wakes. Based on high-resolution scanning Doppler lidar data, prefrontal updrafts had a mean intensity of 0.91 m s-1, reached an average altitude of 800 m, and were often surmounted by low-lying shelf clouds not connected to the overlying stratocumulus cloud. Nearly 90% of density currents were identified when C-band radar estimated 30-km diameter areal average rain rates exceeded 1 mm d-1. Rather than peaking when rain rates are highest overnight, density current occurrence peaks between 0600 and 0800 local solar time when enhanced local drizzle co-occurs with shallow subcloud dry and stable layers. The dry layers may contribute to density current formation by enhancing subcloud evaporation of drizzle. Density currents preferentially occur in regions of open cells but also occur in regions of closed cells.« less
Congestion relaxation due to density-dependent junction rules in TASEP network
NASA Astrophysics Data System (ADS)
Tannai, Takahiro; Nishinari, Katsuhiro
2017-09-01
We now consider a small network module of Totally Asymmetric Simple Exclusion Process with branching and aggregation points, and rules of junctions dependent on the densities of segments of the network module. We also focus on the interaction among junctions which are branching and aggregation. The interaction among junctions with density-dependent rules possesses more complexity than those with density-independent rules studied in the previous papers. In conclusion, we confirm the result that density-dependent rules enable vehicles to move more effectively than the density-independent rules.
Carbon nanotube growth density control
NASA Technical Reports Server (NTRS)
Delzeit, Lance D. (Inventor); Schipper, John F. (Inventor)
2010-01-01
Method and system for combined coarse scale control and fine scale control of growth density of a carbon nanotube (CNT) array on a substrate, using a selected electrical field adjacent to a substrate surface for coarse scale density control (by one or more orders of magnitude) and a selected CNT growth temperature range for fine scale density control (by multiplicative factors of less than an order of magnitude) of CNT growth density. Two spaced apart regions on a substrate may have different CNT growth densities and/or may use different feed gases for CNT growth.
Impelluso, Thomas J
2003-06-01
An algorithm for bone remodeling is presented which allows for both a redistribution of density and a continuous change of principal material directions for the orthotropic material properties of bone. It employs a modal analysis to add density for growth and a local effective strain based analysis to redistribute density. General re-distribution functions are presented. The model utilizes theories of cellular solids to relate density and strength. The code predicts the same general density distributions and local orthotropy as observed in reality.
Thermal Performance of Cryogenic Multilayer Insulation at Various Layer Spacings
NASA Technical Reports Server (NTRS)
Johnson, Wesley Louis
2010-01-01
Multilayer insulation (MLI) has been shown to be the best performing cryogenic insulation system at high vacuum (less that 10 (exp 3) torr), and is widely used on spaceflight vehicles. Over the past 50 years, many investigations into MLI have yielded a general understanding of the many variables that are associated with MLI. MLI has been shown to be a function of variables such as warm boundary temperature, the number of reflector layers, and the spacer material in between reflectors, the interstitial gas pressure and the interstitial gas. Since the conduction between reflectors increases with the thickness of the spacer material, yet the radiation heat transfer is inversely proportional to the number of layers, it stands to reason that the thermal performance of MLI is a function of the number of layers per thickness, or layer density. Empirical equations that were derived based on some of the early tests showed that the conduction term was proportional to the layer density to a power. This power depended on the material combination and was determined by empirical test data. Many authors have graphically shown such optimal layer density, but none have provided any data at such low densities, or any method of determining this density. Keller, Cunnington, and Glassford showed MLI thermal performance as a function of layer density of high layer densities, but they didn't show a minimal layer density or any data below the supposed optimal layer density. However, it was recently discovered that by manipulating the derived empirical equations and taking a derivative with respect to layer density yields a solution for on optimal layer density. Various manufacturers have begun manufacturing MLI at densities below the optimal density. They began this based on the theory that increasing the distance between layers lowered the conductive heat transfer and they had no limitations on volume. By modifying the circumference of these blankets, the layer density can easily be varied. The simplest method of determining the thermal performance of MLI at cryogenic temperature is by boil-off calorimetry. Several blankets were procured and tested at various layer densities at the Cryogenics Test Laboratory at Kennedy Space Center. The densities that the blankets were tested over covered a wide range of layer densities including the analytical minimum. Several of the blankets were tested at the same insulation thickness while changing the layer density (thus a different number of reflector layers). Optimizing the layer density of multilayer insulation systems for heat transfer would remove a layer density from the complex method of designing such insulation systems. Additional testing was performed at various warm boundary temperatures and pressures. The testing and analysis was performed to simplify the analysis of cryogenic thermal insulation systems. This research was funded by the National Aeronautics and Space Administration's Exploration Technology Development Program's Cryogenic Fluid Management Project
Resolvability of regional density structure
NASA Astrophysics Data System (ADS)
Plonka, A.; Fichtner, A.
2016-12-01
Lateral density variations are the source of mass transport in the Earth at all scales, acting as drivers of convectivemotion. However, the density structure of the Earth remains largely unknown since classic seismic observables and gravityprovide only weak constraints with strong trade-offs. Current density models are therefore often based on velocity scaling,making strong assumptions on the origin of structural heterogeneities, which may not necessarily be correct. Our goal is to assessif 3D density structure may be resolvable with emerging full-waveform inversion techniques. We have previously quantified the impact of regional-scale crustal density structure on seismic waveforms with the conclusion that reasonably sized density variations within thecrust can leave a strong imprint on both travel times and amplitudes, and, while this can produce significant biases in velocity and Q estimates, the seismic waveform inversion for density may become feasible. In this study we performprincipal component analyses of sensitivity kernels for P velocity, S velocity, and density. This is intended to establish theextent to which these kernels are linearly independent, i.e. the extent to which the different parameters may be constrainedindependently. Since the density imprint we observe is not exclusively linked to travel times and amplitudes of specific phases,we consider waveform differences between complete seismograms. We test the method using a known smooth model of the crust and seismograms with clear Love and Rayleigh waves, showing that - as expected - the first principal kernel maximizes sensitivity to SH and SV velocity structure, respectively, and that the leakage between S velocity, P velocity and density parameter spaces is minimal in the chosen setup. Next, we apply the method to data from 81 events around the Iberian Penninsula, registered in total by 492 stations. The objective is to find a principal kernel which would maximize the sensitivity to density, potentially allowing for independent density resolution, and, as the final goal, for direct density inversion.
On the Origin of the High Column Density Turnover in the HI Column Density Distribution
DOE Office of Scientific and Technical Information (OSTI.GOV)
Erkal, Denis; Gnedin, Nickolay Y.; Kravtsov, Andrey V.
We study the high column density regime of the HI column density distribution function and argue that there are two distinct features: a turnover at NHI ~ 10^21 cm^-2 which is present at both z=0 and z ~ 3, and a lack of systems above NHI ~ 10^22 cm^-2 at z=0. Using observations of the column density distribution, we argue that the HI-H2 transition does not cause the turnover at NHI ~ 10^21 cm^-2, but can plausibly explain the turnover at NHI > 10^22 cm^-2. We compute the HI column density distribution of individual galaxies in the THINGS sample andmore » show that the turnover column density depends only weakly on metallicity. Furthermore, we show that the column density distribution of galaxies, corrected for inclination, is insensitive to the resolution of the HI map or to averaging in radial shells. Our results indicate that the similarity of HI column density distributions at z=3 and z=0 is due to the similarity of the maximum HI surface densities of high-z and low-z disks, set presumably by universal processes that shape properties of the gaseous disks of galaxies. Using fully cosmological simulations, we explore other candidate physical mechanisms that could produce a turnover in the column density distribution. We show that while turbulence within GMCs cannot affect the DLA column density distribution, stellar feedback can affect it significantly if the feedback is sufficiently effective in removing gas from the central 2-3 kpc of high-redshift galaxies. Finally, we argue that it is meaningful to compare column densities averaged over ~ kpc scales with those estimated from quasar spectra which probe sub-pc scales due to the steep power spectrum of HI column density fluctuations observed in nearby galaxies.« less
The energy density distribution of an ideal gas and Bernoulli’s equations
NASA Astrophysics Data System (ADS)
Santos, Leonardo S. F.
2018-05-01
This work discusses the energy density distribution in an ideal gas and the consequences of Bernoulli’s equation and the corresponding relation for compressible fluids. The aim of this work is to study how Bernoulli’s equation determines the energy flow in a fluid, although Bernoulli’s equation does not describe the energy density itself. The model from molecular dynamic considerations that describes an ideal gas at rest with uniform density is modified to explore the gas in motion with non-uniform density and gravitational effects. The difference between the component of the speed of a particle that is parallel to the gas speed and the gas speed itself is called ‘parallel random speed’. The pressure from the ‘parallel random speed’ is denominated as parallel pressure. The modified model predicts that the energy density is the sum of kinetic and potential gravitational energy densities plus two terms with static and parallel pressures. The application of Bernoulli’s equation and the corresponding relation for compressible fluids in the energy density expression has resulted in two new formulations. For incompressible and compressible gas, the energy density expressions are written as a function of stagnation, static and parallel pressures, without any dependence on kinetic or gravitational potential energy densities. These expressions of the energy density are the main contributions of this work. When the parallel pressure was uniform, the energy density distribution for incompressible approximation and compressible gas did not converge to zero for the limit of null static pressure. This result is rather unusual because the temperature tends to zero for null pressure. When the gas was considered incompressible and the parallel pressure was equal to static pressure, the energy density maintained this unusual behaviour with small pressures. If the parallel pressure was equal to static pressure, the energy density converged to zero for the limit of the null pressure only if the gas was compressible. Only the last situation describes an intuitive behaviour for an ideal gas.
Impact of Te and ne on edge current density profiles in ELM mitigated regimes on ASDEX Upgrade
NASA Astrophysics Data System (ADS)
Dunne, M. G.; Rathgeber, S.; Burckhart, A.; Fischer, R.; Giannone, L.; McCarthy, P. J.; Schneider, P. A.; Wolfrum, E.; the ASDEX Upgrade Team
2015-01-01
ELM resolved edge current density profiles are reconstructed using the CLISTE equilibrium code. As input, highly spatially and temporally resolved edge electron temperature and density profiles are used in addition to data from the extensive set of external poloidal field measurements available at ASDEX Upgrade, flux loop difference measurements, and current measurements in the scrape-off layer. Both the local and flux surface averaged current density profiles are analysed for several ELM mitigation regimes. The focus throughout is on the impact of altered temperature and density profiles on the current density. In particular, many ELM mitigation regimes rely on operation at high density. Two reference plasmas with type-I ELMs are analysed, one with a deuterium gas puff and one without, in order to provide a reference for the behaviour in type-II ELMy regimes and high density ELM mitigation with external magnetic perturbations at ASDEX Upgrade. For type-II ELMs it is found that while a similar pedestal top pressure is sustained at the higher density, the temperature gradient decreases in the pedestal. This results in lower local and flux surface averaged current densities in these phases, which reduces the drive for the peeling mode. No significant differences between the current density measured in the type-I phase and ELM mitigated phase is seen when external perturbations are applied, though the pedestal top density was increased. Finally, ELMs during the nitrogen seeded phase of a high performance discharge are analysed and compared to ELMs in the reference phase. An increased pedestal pressure gradient, which is the source of confinement improvement in impurity seeded discharges, causes a local current density increase. However, the increased Zeff in the pedestal acts to reduce the flux surface averaged current density. This dichotomy, which is not observed in other mitigation regimes, could act to stabilize both the ballooning mode and the peeling mode at the same time.
NASA Astrophysics Data System (ADS)
Delabie, E.; Hillesheim, J. C.; Mailloux, J.; Maggi, C. F.; Rimini, F.; Solano, E. R.; JET contributors Team
2016-10-01
The threshold power to access H-mode on JET-ILW has a minimum as function of density. Power ramps in the low and high density branch show qualitatively very different behavior above threshold. In the high density branch, edge density and temperature abruptly increase after the L-H transition, and the plasma evolves into a type I ELMy H-mode. Transitions in the low density branch are gradual and lead to the formation of a temperature pedestal, without increase in edge density. These characteristics are reminiscent of the I-mode regime, but with high frequency ELM activity. The small ELMs allow stable H-mode operation with tolerable tungsten contamination, as long as both density and power stay below the type I ELM boundary. The density range in which the low density branch can be accessed scales favourably with toroidal field but unfavourably with isotope mass. At BT=3.4T, a stable H-mode has been obtained at
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fujita-Yoshigaki, Junko; Katsumata, Osamu; Matsuki, Miwako
Secretory granules (SGs) are considered to be generated as immature granules and to mature by condensation of their contents. In this study, SGs of parotid gland were separated into low-, medium-, and high-density granule fractions by Percoll-density gradient centrifugation, since it was proposed that the density corresponds to the degree of maturation. The observation with electron microscopy showed that granules in the three fractions were very similar. The average diameter of high-density granules was a little but significantly larger than that of low-density granules. Although the three fractions contained amylase, suggesting that they are all SGs, distribution of membrane proteinsmore » was markedly different. Syntaxin6 and VAMP4 were localized in the low-density granule fraction, while VAMP2 was concentrated in the high-density granule fraction. Immunoprecipitation with anti-syntaxin6 antibody caused coprecipitation of VAMP2 from the medium-density granule fraction without solubilization, but not from Triton X-100-solubilized fraction, while VAMP4 was coprecipitated from both fractions. Therefore, VAMP2 is present on the same granules, but is separated from syntaxin6 and VAMP4, which are expected to be removed from immature granules. These results suggest that the medium-density granules are intermediates from low- to high-density granules, and that the membrane components of SGs dynamically change by budding and fusion during maturation.« less
Zheng, Jun-Sheng; Zhang, Lei; Shellikeri, Annadanesh; Cao, Wanjun; Wu, Qiang; Zheng, Jim P
2017-02-07
Li ion battery (LIB) and electrochemical capacitor (EC) are considered as the most widely used energy storage systems (ESSs) because they can produce a high energy density or a high power density, but it is a huge challenge to achieve both the demands of a high energy density as well as a high power density on their own. A new hybrid Li ion capacitor (HyLIC), which combines the advantages of LIB and Li ion capacitor (LIC), is proposed. This device can successfully realize a potential match between LIB and LIC and can avoid the excessive depletion of electrolyte during the charge process. The galvanostatic charge-discharge cycling tests reveal that at low current, the HyLIC exhibits a high energy density, while at high current, it demonstrates a high power density. Ragone plot confirms that this device can make a synergetic balance between energy and power and achieve a highest energy density in the power density range of 80 to 300 W kg -1 . The cycle life test proves that HyLIC exhibits a good cycle life and an excellent coulombic efficiency. The present study shows that HyLIC, which is capable of achieving a high energy density, a long cycle life and an excellent power density, has the potential to achieve the winning combination of a high energy and power density.
Electron density and gas density measurements in a millimeter-wave discharge
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schaub, S. C., E-mail: sschaub@mit.edu; Hummelt, J. S.; Guss, W. C.
2016-08-15
Electron density and neutral gas density have been measured in a non-equilibrium air breakdown plasma using optical emission spectroscopy and two-dimensional laser interferometry, respectively. A plasma was created with a focused high frequency microwave beam in air. Experiments were run with 110 GHz and 124.5 GHz microwaves at powers up to 1.2 MW. Microwave pulses were 3 μs long at 110 GHz and 2.2 μs long at 124.5 GHz. Electron density was measured over a pressure range of 25 to 700 Torr as the input microwave power was varied. Electron density was found to be close to the critical density, where the collisional plasma frequency is equal tomore » the microwave frequency, over the pressure range studied and to vary weakly with input power. Neutral gas density was measured over a pressure range from 150 to 750 Torr at power levels high above the threshold for initiating breakdown. The two-dimensional structure of the neutral gas density was resolved. Intense, localized heating was found to occur hundreds of nanoseconds after visible plasma formed. This heating led to neutral gas density reductions of greater than 80% where peak plasma densities occurred. Spatial structure and temporal dynamics of gas heating at atmospheric pressure were found to agree well with published numerical simulations.« less
Density-Dependent Growth in Invasive Lionfish (Pterois volitans)
Benkwitt, Cassandra E.
2013-01-01
Direct demographic density dependence is necessary for population regulation and is a central concept in ecology, yet has not been studied in many invasive species, including any invasive marine fish. The red lionfish (Pterois volitans) is an invasive predatory marine fish that is undergoing exponential population growth throughout the tropical western Atlantic. Invasive lionfish threaten coral-reef ecosystems, but there is currently no evidence of any natural population control. Therefore, a manipulative field experiment was conducted to test for density dependence in lionfish. Juvenile lionfish densities were adjusted on small reefs and several demographic rates (growth, recruitment, immigration, and loss) were measured throughout an 8-week period. Invasive lionfish exhibited direct density dependence in individual growth rates, as lionfish grew slower at higher densities throughout the study. Individual growth in length declined linearly with increasing lionfish density, while growth in mass declined exponentially with increasing density. There was no evidence, however, for density dependence in recruitment, immigration, or loss (mortality plus emigration) of invasive lionfish. The observed density-dependent growth rates may have implications for which native species are susceptible to lionfish predation, as the size and type of prey that lionfish consume is directly related to their body size. The absence of density-dependent loss, however, contrasts with many native coral-reef fish species and suggests that for the foreseeable future manual removals may be the only effective local control of this invasion. PMID:23825604
Density-dependent growth in invasive Lionfish (Pterois volitans).
Benkwitt, Cassandra E
2013-01-01
Direct demographic density dependence is necessary for population regulation and is a central concept in ecology, yet has not been studied in many invasive species, including any invasive marine fish. The red lionfish (Pterois volitans) is an invasive predatory marine fish that is undergoing exponential population growth throughout the tropical western Atlantic. Invasive lionfish threaten coral-reef ecosystems, but there is currently no evidence of any natural population control. Therefore, a manipulative field experiment was conducted to test for density dependence in lionfish. Juvenile lionfish densities were adjusted on small reefs and several demographic rates (growth, recruitment, immigration, and loss) were measured throughout an 8-week period. Invasive lionfish exhibited direct density dependence in individual growth rates, as lionfish grew slower at higher densities throughout the study. Individual growth in length declined linearly with increasing lionfish density, while growth in mass declined exponentially with increasing density. There was no evidence, however, for density dependence in recruitment, immigration, or loss (mortality plus emigration) of invasive lionfish. The observed density-dependent growth rates may have implications for which native species are susceptible to lionfish predation, as the size and type of prey that lionfish consume is directly related to their body size. The absence of density-dependent loss, however, contrasts with many native coral-reef fish species and suggests that for the foreseeable future manual removals may be the only effective local control of this invasion.
Straka, Levi; Rittmann, Bruce E
2018-02-01
The viability of large-scale microalgae cultivation depends on providing optimal growth conditions, for which a key operational parameter is culture density. Using Synechocystis sp. PCC 6803, we conducted a series of fixed-density, steady-state experiments and one batch-growth experiment to investigate the role of culture density on biomass production and light utilization efficiency. In all cases, the fixed-density, steady-state experiments and batch-growth experiment showed good agreement. The highest biomass production rates (260 mg L -1 d -1 ) and efficiency for converting light energy to biomass (0.80 μg (μmol photons) -1 ) occurred together at a culture density near 760 mg L -1 , which approximately corresponded to the lowest culture density where almost all incident light was absorbed. The ratio of OD 680 /OD 735 increased with culture density up to the point of maximum productivity, where it plateaued (at a value of 2.4) for higher culture densities. This change in OD 680 /OD 735 indicates a photoacclimation effect that depended on culture density. Very high culture densities led to a sharp decline in efficiency of biomass production per photons absorbed, likely due to a combination of increased decay relative to growth, metabolic changes due to cell-cell interactions, and photodamage due to mixing between regions with high light intensity and zero light intensity. © 2017 Wiley Periodicals, Inc.
Investigation of physical processes limiting plasma density in H-mode on DIII-D
DOE Office of Scientific and Technical Information (OSTI.GOV)
Maingi, R.; Mahdavi, M.A.; Jernigan, T.C.
1996-12-01
A series of experiments was conducted on the DIII-D tokamak to investigate the physical processes which limit density in high confinement mode (H-mode) discharges. The typical H-mode to low confinement mode (L-mode) transition limit at high density near the empirical Greenwald density limit was avoided by divertor pumping, which reduced divertor neutral pressure and prevented formation of a high density, intense radiation zone (MARFE) near the X-point. It was determined that the density decay time after pellet injection was independent of density relative to the Greenwald limit and increased non-linearly with the plasma current. Magnetohydrodynamic (MHD) activity in pellet-fueled plasmasmore » was observed at all power levels, and often caused unacceptable confinement degradation, except when the neutral beam injected (NBI) power was {le} 3 MW. Formation of MARFEs on closed field lines was avoided with low safety factor (q) operation but was observed at high q, qualitatively consistent with theory. By using pellet fueling and optimizing discharge parameters to avoid each of these limits, an operational space was accessed in which density {approximately} 1.5 {times} Greenwald limit was achieved for 600 ms, and good H-mode confinement was maintained for 300 ms of the density flattop. More significantly, the density was successfully increased to the limit where a central radiative collapse was observed, the most fundamental density limit in tokamaks.« less
Holley, R W; Armour, R; Baldwin, J H; Brown, K D; Yeh, Y C
1977-01-01
BSC-1 cells grow slowly, to high cell density, in medium with 0.1% calf serum. An increase in the serum concentration increases both the growth rate of the cells and the final cell density. The serum can be replaced to some extent by epidermal growth factor (EGF). Initiation of DNA synthesis in BSC-1 cells that have spread into a "wound" in a crowded cell layer requires the addition of a trace of serum or EGF, if the cells have previously been deprived of serum. The binding of 125I-labeled EGF to low-density and high-density BSC-1 cells has been studied. Binding is faster to low-density cells. Cells at low cell density also bind much more EGF per cell than cells at high cell density. The fraction of bound 125I-labeled EGF that is present on the cell surface as intact EGF is larger at low than at high cell density. The results indicate that the number of available EGF receptors per cell decreases drastically as the cell density increases. It is suggested that a decrease in the number of available EGF receptor sites per cell, and the accompanying decrease in sensitivity of the cells to EGF, contributes to density-dependent regulation of growth of these cells. Images PMID:303774
Zheng, Jun-Sheng; Zhang, Lei; Shellikeri, Annadanesh; Cao, Wanjun; Wu, Qiang; Zheng, Jim P.
2017-01-01
Li ion battery (LIB) and electrochemical capacitor (EC) are considered as the most widely used energy storage systems (ESSs) because they can produce a high energy density or a high power density, but it is a huge challenge to achieve both the demands of a high energy density as well as a high power density on their own. A new hybrid Li ion capacitor (HyLIC), which combines the advantages of LIB and Li ion capacitor (LIC), is proposed. This device can successfully realize a potential match between LIB and LIC and can avoid the excessive depletion of electrolyte during the charge process. The galvanostatic charge-discharge cycling tests reveal that at low current, the HyLIC exhibits a high energy density, while at high current, it demonstrates a high power density. Ragone plot confirms that this device can make a synergetic balance between energy and power and achieve a highest energy density in the power density range of 80 to 300 W kg−1. The cycle life test proves that HyLIC exhibits a good cycle life and an excellent coulombic efficiency. The present study shows that HyLIC, which is capable of achieving a high energy density, a long cycle life and an excellent power density, has the potential to achieve the winning combination of a high energy and power density. PMID:28169329
Impact of the California breast density law on primary care physicians.
Khong, Kathleen A; Hargreaves, Jonathan; Aminololama-Shakeri, Shadi; Lindfors, Karen K
2015-03-01
To investigate primary physician awareness of the California Breast Density Notification Law and its impact on primary care practice. An online survey was distributed to 174 physicians within a single primary care network system 10 months after California's breast density notification law took effect. The survey assessed physicians' awareness of the law, perceived changes in patient levels of concern about breast density, and physician comfort levels in handling breast density management issues. The survey was completed by 77 physicians (45%). Roughly half of those surveyed (49%) reported no knowledge of the breast density notification legislation. Only 32% of respondents noted an increase in patient levels of concern about breast density compared to prior years. The majority were only "somewhat comfortable" (55%) or "not comfortable" (12%) with breast density questions, and almost one-third (32%) had referred patients to a breast health clinic for these discussions. A total of 75% of those surveyed would be interested in more specific education on the subject. Awareness among primary care clinicians of the California Breast Density Notification Law is low, and many do not feel comfortable answering breast density-related patient questions. Breast imagers and institutions may need to devote additional time and resources to primary physician education in order for density notification laws to have significant impact on patient care. Copyright © 2015 American College of Radiology. Published by Elsevier Inc. All rights reserved.
Dormitory Density and Helping Behavior
ERIC Educational Resources Information Center
Bickman, Leonard; And Others
1973-01-01
Investigated was the relationship between dormitory density and attitudes of residents. Students in higher-density dormitories were less trusting, cooperative and friendly than students in lower-density dormitories. The implications of these relults for planners and architects were discussed. (JP)
IRAS galaxies versus POTENT mass - Density fields, biasing, and Omega
NASA Technical Reports Server (NTRS)
Dekel, Avishai; Bertschinger, Edmund; Yahil, Amos; Strauss, Michael A.; Davis, Marc; Huchra, John P.
1993-01-01
A comparison of the galaxy density field extracted from a complete redshift survey of IRAS galaxies brighter than 1.936 Jy with the mass-density field reconstructed by the POTENT procedure from the observed peculiar velocities of 493 objects is presented. A strong correlation is found between the galaxy and mass-density fields; both feature the Great Attractor, part of the Perseus-Pisces supercluster, and the large void between them. Monte Carlo noise simulations show that the data are consistent with the hypotheses that the smoothed fluctuations of galaxy and mass densities at each point are proportional to each other with the 'biasing' factor of IRAS galaxies, b(I), and that the peculiar velocity field is related to the mass-density field as expected according to the gravitational instability theory. Under these hypotheses, the two density fields can be related by specifying b(I) and the cosmological density parameter, Omega.
Handling Density Conversion in TPS.
Isobe, Tomonori; Mori, Yutaro; Takei, Hideyuki; Sato, Eisuke; Tadano, Kiichi; Kobayashi, Daisuke; Tomita, Tetsuya; Sakae, Takeji
2016-01-01
Conversion from CT value to density is essential to a radiation treatment planning system. Generally CT value is converted to the electron density in photon therapy. In the energy range of therapeutic photon, interactions between photons and materials are dominated with Compton scattering which the cross-section depends on the electron density. The dose distribution is obtained by calculating TERMA and kernel using electron density where TERMA is the energy transferred from primary photons and kernel is a volume considering spread electrons. Recently, a new method was introduced which uses the physical density. This method is expected to be faster and more accurate than that using the electron density. As for particle therapy, dose can be calculated with CT-to-stopping power conversion since the stopping power depends on the electron density. CT-to-stopping power conversion table is also called as CT-to-water-equivalent range and is an essential concept for the particle therapy.
NASA Astrophysics Data System (ADS)
Lazzeretti, Paolo
2018-04-01
It is shown that nonsymmetric second-rank current density tensors, related to the current densities induced by magnetic fields and nuclear magnetic dipole moments, are fundamental properties of a molecule. Together with magnetizability, nuclear magnetic shielding, and nuclear spin-spin coupling, they completely characterize its response to magnetic perturbations. Gauge invariance, resolution into isotropic, deviatoric, and antisymmetric parts, and contributions of current density tensors to magnetic properties are discussed. The components of the second-rank tensor properties are rationalized via relationships explicitly connecting them to the direction of the induced current density vectors and to the components of the current density tensors. The contribution of the deviatoric part to the average value of magnetizability, nuclear shielding, and nuclear spin-spin coupling, uniquely determined by the antisymmetric part of current density tensors, vanishes identically. The physical meaning of isotropic and anisotropic invariants of current density tensors has been investigated, and the connection between anisotropy magnitude and electron delocalization has been discussed.
The importance of bulk density determination in gravity data processing for structure interpretation
NASA Astrophysics Data System (ADS)
Wildan, D.; Akbar, A. M.; Novranza, K. M. S.; Sobirin, R.; Permadi, A. N.; Supriyanto
2017-07-01
Gravity method use rock density variation for determining subsurface lithology and geological structure. In the "green area" where measurement of rock density has not been done, an attemp to find density is usually performed by calculating using Parasnis method, or by using using the average of rock density in the earth's crust (2,67 gr/cm3) or by using theoritical value of dominant rock density in the survey area (2,90 gr/cm3). Those three values of densities are applied to gravity data analysis in the hilly "X" area. And we have compared all together in order to observed which value has represented the structure better. The result showed that the higher value of rock density, the more obvious structure in the Bouguer anomaly profile. It is due to the contrast of maximum and minimum value of Bouguer anomaly that will affect the exageration in distance vs Bouguer anomaly graphic.
Snowden, Aleksandra J; Freiburger, Tina L
2015-05-01
We estimated spatially lagged regression and spatial regime models to determine if the variation in total, on-premise, and off-premise alcohol outlet(1) density is related to robbery density, while controlling for direct and moderating effects of social disorganization.(2) Results suggest that the relationship between alcohol outlet density and robbery density is sensitive to the measurement of social disorganization levels. Total alcohol outlet density and off-premise alcohol outlet density were significantly associated with robbery density when social disorganization variables were included separately in the models. However, when social disorganization levels were captured as a four item index, only the association between off-premise alcohol outlets and robbery density remained significant. More work is warranted in identifying the role of off-premise alcohol outlets and their characteristics in robbery incidents. Copyright © 2015 Elsevier Inc. All rights reserved.
Obesity and Regional Immigrant Density.
Emerson, Scott D; Carbert, Nicole S
2017-11-24
Canada has an increasingly large immigrant population. Areas of higher immigrant density, may relate to immigrants' health through reduced acculturation to Western foods, greater access to cultural foods, and/or promotion of salubrious values/practices. It is unclear, however, whether an association exists between Canada-wide regional immigrant density and obesity among immigrants. Thus, we examined whether regional immigrant density was related to obesity, among immigrants. Adult immigrant respondents (n = 15,595) to a national population-level health survey were merged with region-level immigrant density data. Multi-level logistic regression was used to model the odds of obesity associated with increased immigrant density. The prevalence of obesity among the analytic sample was 16%. Increasing regional immigrant density was associated with lower odds of obesity among minority immigrants and long-term white immigrants. Immigrant density at the region-level in Canada may be an important contextual factor to consider when examining obesity among immigrants.
Mangrove canopy density analysis using Sentinel-2A imagery satellite data
NASA Astrophysics Data System (ADS)
Wachid, M. N.; Hapsara, R. P.; Cahyo, R. D.; Wahyu, G. N.; Syarif, A. M.; Umarhadi, D. A.; Fitriani, A. N.; Ramadhanningrum, D. P.; Widyatmanti, W.
2017-06-01
Teluk Jor has alluvium surface sediment that came from volcanic materials. Sea wave that relatively calm and the closed beach shape support the existence of mangrove forest at Teluk Jor. Sentinel-2A imagery has a good spatial and spectral resolution for mangrove density study. The regression between samples and the NDVI values of Sentinel-2A used to analyze the mangrove canopy density. Mangrove canopy density was identified using field survey with transect method. The regression analysis shows field data and NDVI value has correlation R=0.7739 and coefficient of determination R2=0.5989. The result of the analysis shows area of low density 397,900 m2, moderate density 336,200 m2, the high density has 110,300 m2 and very high density has 500 m2. This research also found that mangrove genus in Teluk Jor consists of Rhizopora, Ceriops, Aegiceras and Sonneratia.
Effects of particle packing on the sintered microstructure
NASA Astrophysics Data System (ADS)
Barringer, E. A.; Bowen, H. K.
1988-04-01
The sintering process is shown to be critically dependent on particle-packing density and porosity uniformity. Sintering experiments were conducted on compacts consisting of monodisperse, spherical TiO2 particles. Densification kinetics and microstructure evolution for two initial packing densities, 55% and 69% of theoretical, were investigated. The lower-density compacts sintered rapidly to theoretical density, yet improved particle-packing density and uniformity significantly enhanced densification.
Site preparation effects on soil bulk density and pine seedling growth
John J. Stransky
1981-01-01
Soil bulk density was sampled the first and third growing seasons after site preparation and pine planting on three clearcut pine-hardwood forest sites in eastern Texas. Bulk density was measured 10 cm below the surface of mineral soil using a surface moisture-density probe. Plots that had been KG-bladed and chopped had significanlty higher bulk density than those that...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tang, G; LoSasso, T; Saleh, Z
2015-06-15
Purpose: Due to saturation, high density materials Result in an apparent density of 3.2 g/cm{sup 3} in CT images. The true density of traditional titanium stabilization rods (∼4.4 g/cm{sup 3}) is typically ignored in treatment planning. This may not be acceptable for new cobalt-chrome rods with a density of 8.5 g/cm{sup 3}. This study reports the dosimetric impact of cobalt-chrome rods in paraspinal radiotherapy. Methods: For titanium and cobalt-chrome rods, two planning studies were done for both IMRT and VMAT in Varian Eclipse using AAA. 1) The effect of planning without assigning the true rod density was assessed by comparingmore » plans generated with the apparent density and recalculated with the true density for titanium and cobalt-chrome. 2) To test if TPS can compensate for high density rods during optimization. Furthermore, TPS calculation accuracy was verified using MapCheck for a single 20 x 10 cm{sup 2} field. The MapCheck was incrementally shifted to achieve measurement resolution of 1 mm. Results: PTV coverage was ∼0.3% and ∼4.7% lower in plans that were recalculated with the true rod density of titanium and cobalt-chrome, respectively. PTV coverage can be maintained if the correct density is used in optimization. Measurements showed that TPS overestimated the dose locally by up to 11% for cobalt-chrome rods and up to 4% for titanium rods if the density is incorrect. With density corrected, maximum local differences of 6% and 3% were seen for cobalt-chrome and titanium rods, respectively. At 2 cm beneath a rod, electrons scattered from the side of the rod increased the lateral dose and diminished as depth increases. TPS was not able to account for this effect properly even with the true rod density assigned. Conclusion: Neglecting the true density of cobalt-chrome rods can cause under coverage to the PTV. Assigning the correct density during treatment planning can minimize unexpected decrease in PTV dose.« less
The role of disappeared disturbances in driving the North American prairie-forest boundary
NASA Astrophysics Data System (ADS)
Heilman, K.; McLachlan, J. S.; Staver, A. C.
2016-12-01
Globally, transitions from savanna to forest are often characterized by abrupt changes in tree density that cannot be fully explained by climate and edaphic factors. In the tropics, fire-vegetation feedbacks drive a bimodal distribution in tree cover that leads to alternative forest and savanna stable states within the same climate space. In temperate North America, the pre-European settlement prairie-forest transition has also been hypothesized to be influenced by widespread fires (anthropogenic or natural). However, large scale evidence for fire disturbance feedbacks on tree density in the temperate zone is currently lacking. We investigate both the pre-European and modern tree density along the North American prairie-forest boundary. We hypothesized that the pre-European distribution of tree density was distinctly bimodal due to intact vegetation-disturbance feedbacks along the prairie-forest boundary before settlement, but that fragmentation and fire suppression has produced a modern prairie-forest boundary that is less abrupt and less bimodal. We estimated tree density from aggregated Public Land Survey (PLS) data collected before the time of European agricultural settlement in Minnesota, Wisconsin, Michigan, Indiana, and Illinois and compared PLS density distributions to tree density estimated from modern USFS Forest Inventory Analysis (FIA) data. PLS tree density follows a bimodal distribution that abruptly shifts from savanna to forest at the boundary. Only 15% of the variance in pre-settlement tree density is explained by historical Mean Annual Precipitation (MAP), suggesting that the bimodality may be due to internal feedbacks in the vegetation-disturbance system, rather than to the past underlying environmental gradient. On the modern landscape, MAP explains 6% of FIA tree density variance, and tree density is not bimodal. Regions that had low tree density savannas in the PLS era have significantly increased in tree density, suggesting that the disappearance of disturbances that accompanied agricultural settlement resulted in closed forests where savannas were once an alternative stable state (p < 0.01). Additionally, the once high tree density forests in the PLS have significantly declined in density, suggesting that logging has contributed to land cover change in North America.
Meteoroid Bulk Density and Ceplecha Types
NASA Technical Reports Server (NTRS)
Blaauw, R. C.; Moser, D. E.; Moorhead, A. V.
2017-01-01
The determination of asteroid bulk density is an important aspect of Near Earth Object (NEO) characterization. A fraction of meteoroids originate from asteroids (including some NEOs), thus in lieu of mutual perturbations, satellites, or expensive spacecraft missions, a study of meteoroid bulk densities can potentially provide useful insights into the densities of NEOs and PHOs (Potentially Hazardous Objects). Meteoroid bulk density is still inherently difficult to measure, and is most often determined by modeling the ablation of the meteoroid. One approach towards determining a meteoroid density distribution entails using a more easily measured proxy for the densities, then calibrating the proxy with known densities from meteorite falls, ablation modelling, and other sources. An obvious proxy choice is the Ceplecha type, KB (Ceplecha, 1958), which is thought to indicate the strength of a meteoroid and often correlated to different bulk densities in literature. KB is calculated using the air density at the beginning height of the meteor, the initial velocity, and the zenith angle of the radiant; quantities more readily determined than meteoroid bulk density itself. Numerical values of K(sub B) are sorted into groups (A, B, C, etc.), which have been matched to meteorite falls or meteor showers with known composition such as the porous Draconids. An extensive survey was conducted to establish the strength of the relationship between bulk density and K(sub B), specifically looking at those that additionally determined K(sub B) for the meteors. In examining the modeling of high-resolution meteor data from Kikwaya et al. (2011), the correlation between K(sub B) and bulk density was not as strong as hoped. However, a distinct split by dynamical type was seen with Jovian Tisserand parameter (T(sub J)), with meteoroids from Halley Type comets (T(sub J) < 2) exhibiting much lower bulk densities than those originating from Jupiter Family comets and asteroids (T(sub J) > 2). Therefore, this work indicates that the dynamical classification of a meteoroid is a better indicator of the density than the strength proxy, a somewhat surprising result.
Estimating peer density effects on oral health for community-based older adults.
Chakraborty, Bibhas; Widener, Michael J; Mirzaei Salehabadi, Sedigheh; Northridge, Mary E; Kum, Susan S; Jin, Zhu; Kunzel, Carol; Palmer, Harvey D; Metcalf, Sara S
2017-12-29
As part of a long-standing line of research regarding how peer density affects health, researchers have sought to understand the multifaceted ways that the density of contemporaries living and interacting in proximity to one another influence social networks and knowledge diffusion, and subsequently health and well-being. This study examined peer density effects on oral health for racial/ethnic minority older adults living in northern Manhattan and the Bronx, New York, NY. Peer age-group density was estimated by smoothing US Census data with 4 kernel bandwidths ranging from 0.25 to 1.50 mile. Logistic regression models were developed using these spatial measures and data from the ElderSmile oral and general health screening program that serves predominantly racial/ethnic minority older adults at community centers in northern Manhattan and the Bronx. The oral health outcomes modeled as dependent variables were ordinal dentition status and binary self-rated oral health. After construction of kernel density surfaces and multiple imputation of missing data, logistic regression analyses were performed to estimate the effects of peer density and other sociodemographic characteristics on the oral health outcomes of dentition status and self-rated oral health. Overall, higher peer density was associated with better oral health for older adults when estimated using smaller bandwidths (0.25 and 0.50 mile). That is, statistically significant relationships (p < 0.01) between peer density and improved dentition status were found when peer density was measured assuming a more local social network. As with dentition status, a positive significant association was found between peer density and fair or better self-rated oral health when peer density was measured assuming a more local social network. This study provides novel evidence that the oral health of community-based older adults is affected by peer density in an urban environment. To the extent that peer density signifies the potential for social interaction and support, the positive significant effects of peer density on improved oral health point to the importance of place in promoting social interaction as a component of healthy aging. Proximity to peers and their knowledge of local resources may facilitate utilization of community-based oral health care.
Density-dependent selection on mate search and evolution of Allee effects.
Berec, Luděk; Kramer, Andrew M; Bernhauerová, Veronika; Drake, John M
2018-01-01
Sexually reproducing organisms require males and females to find each other. Increased difficulty of females finding mates as male density declines is the most frequently reported mechanism of Allee effects in animals. Evolving more effective mate search may alleviate Allee effects, but may depend on density regimes a population experiences. In particular, high-density populations may evolve mechanisms that induce Allee effects which become detrimental when populations are reduced and maintained at a low density. We develop an individual-based, eco-genetic model to study how mating systems and fitness trade-offs interact with changes in population density to drive evolution of the rate at which males or females search for mates. Finite mate search rate triggers Allee effects in our model and we explore how these Allee effects respond to such evolution. We allow a population to adapt to several population density regimes and examine whether high-density populations are likely to reverse adaptations attained at low densities. We find density-dependent selection in most of scenarios, leading to search rates that result in lower Allee thresholds in populations kept at lower densities. This mainly occurs when fecundity costs are imposed on mate search, and provides an explanation for why Allee effects are often observed in anthropogenically rare species. Optimizing selection, where the attained trait value minimizes the Allee threshold independent of population density, depended on the trade-off between search and survival, combined with monogamy when females were searching. Other scenarios led to runaway selection on the mate search rate, including evolutionary suicide. Trade-offs involved in mate search may thus be crucial to determining how density influences the evolution of Allee effects. Previous studies did not examine evolution of a trait related to the strength of Allee effects under density variation. We emphasize the crucial role that mating systems, fitness trade-offs and the evolving sex have in determining the density threshold for population persistence, in particular since evolution need not always take the Allee threshold to its minimum value. © 2017 The Authors. Journal of Animal Ecology © 2017 British Ecological Society.
Bone Mineral 31P and Matrix-Bound Water Densities Measured by Solid-State 1H and 31P MRI
Seifert, Alan C.; Li, Cheng; Rajapakse, Chamith S.; Bashoor- Zadeh, Mahdieh; Bhagat, Yusuf A.; Wright, Alexander C.; Zemel, Babette S.; Zavaliangos, Antonios; Wehrli, Felix W.
2014-01-01
Bone is a composite material consisting of mineral and hydrated collagen fractions. MRI of bone is challenging due to extremely short transverse relaxation times, but solid-state imaging sequences exist that can acquire the short-lived signal from bone tissue. Previous work to quantify bone density via MRI used powerful experimental scanners. This work seeks to establish the feasibility of MRI-based measurement on clinical scanners of bone mineral and collagen-bound water densities, the latter as a surrogate of matrix density, and to examine the associations of these parameters with porosity and donors’ age. Mineral and matrix-bound water images of reference phantoms and cortical bone from 16 human donors, ages 27-97 years, were acquired by zero-echo-time 31P and 1H MRI on whole body 7T and 3T scanners, respectively. Images were corrected for relaxation and RF inhomogeneity to obtain density maps. Cortical porosity was measured by micro-CT, and apparent mineral density by pQCT. MRI-derived densities were compared to x-ray-based measurements by least-squares regression. Mean bone mineral 31P density was 6.74±1.22 mol/L (corresponding to 1129±204 mg/cc mineral), and mean bound water 1H density was 31.3±4.2 mol/L (corresponding to 28.3±3.7 %v/v). Both 31P and bound water (BW) densities were correlated negatively with porosity (31P: R2 = 0.32, p < 0.005; BW: R2 = 0.63, p < 0.0005) and age (31P: R2 = 0.39, p < 0.05; BW: R2 = 0.70, p < 0.0001), and positively with pQCT density (31P: R2 = 0.46, p < 0.05; BW: R2 = 0.50, p < 0.005). In contrast, the bone mineralization ratio (expressed here as the ratio of 31P density to bound water density), which is proportional to true bone mineralization, was found to be uncorrelated with porosity, age, or pQCT density. This work establishes the feasibility of image-based quantification of bone mineral and bound water densities using clinical hardware. PMID:24846186
Association between mammogram density and background parenchymal enhancement of breast MRI
NASA Astrophysics Data System (ADS)
Aghaei, Faranak; Danala, Gopichandh; Wang, Yunzhi; Zarafshani, Ali; Qian, Wei; Liu, Hong; Zheng, Bin
2018-02-01
Breast density has been widely considered as an important risk factor for breast cancer. The purpose of this study is to examine the association between mammogram density results and background parenchymal enhancement (BPE) of breast MRI. A dataset involving breast MR images was acquired from 65 high-risk women. Based on mammography density (BIRADS) results, the dataset was divided into two groups of low and high breast density cases. The Low-Density group has 15 cases with mammographic density (BIRADS 1 and 2), while the High-density group includes 50 cases, which were rated by radiologists as mammographic density BIRADS 3 and 4. A computer-aided detection (CAD) scheme was applied to segment and register breast regions depicted on sequential images of breast MRI scans. CAD scheme computed 20 global BPE features from the entire two breast regions, separately from the left and right breast region, as well as from the bilateral difference between left and right breast regions. An image feature selection method namely, CFS method, was applied to remove the most redundant features and select optimal features from the initial feature pool. Then, a logistic regression classifier was built using the optimal features to predict the mammogram density from the BPE features. Using a leave-one-case-out validation method, the classifier yields the accuracy of 82% and area under ROC curve, AUC=0.81+/-0.09. Also, the box-plot based analysis shows a negative association between mammogram density results and BPE features in the MRI images. This study demonstrated a negative association between mammogram density and BPE of breast MRI images.
Influence of lifestyle factors on mammographic density in postmenopausal women.
Brand, Judith S; Czene, Kamila; Eriksson, Louise; Trinh, Thang; Bhoo-Pathy, Nirmala; Hall, Per; Celebioglu, Fuat
2013-01-01
Mammographic density is a strong risk factor for breast cancer. Apart from hormone replacement therapy (HRT), little is known about lifestyle factors that influence breast density. We examined the effect of smoking, alcohol and physical activity on mammographic density in a population-based sample of postmenopausal women without breast cancer. Lifestyle factors were assessed by a questionnaire and percentage and area measures of mammographic density were measured using computer-assisted software. General linear models were used to assess the association between lifestyle factors and mammographic density and effect modification by body mass index (BMI) and HRT was studied. Overall, alcohol intake was positively associated with percent mammographic density (P trend = 0.07). This association was modified by HRT use (P interaction = 0.06): increasing alcohol intake was associated with increasing percent density in current HRT users (P trend = 0.01) but not in non-current users (P trend = 0.82). A similar interaction between alcohol and HRT was found for the absolute dense area, with a positive association being present in current HRT users only (P interaction = 0.04). No differences in mammographic density were observed across categories of smoking and physical activity, neither overall nor in stratified analyses by BMI and HRT use. Increasing alcohol intake is associated with an increase in mammography density, whereas smoking and physical activity do not seem to influence density. The observed interaction between alcohol and HRT may pose an opportunity for HRT users to lower their mammographic density and breast cancer risk.
Alcohol outlet density and violence: A geographically weighted regression approach.
Cameron, Michael P; Cochrane, William; Gordon, Craig; Livingston, Michael
2016-05-01
We investigate the relationship between outlet density (of different types) and violence (as measured by police activity) across the North Island of New Zealand, specifically looking at whether the relationships vary spatially. We use New Zealand data at the census area unit (approximately suburb) level, on police-attended violent incidents and outlet density (by type of outlet), controlling for population density and local social deprivation. We employed geographically weighted regression to obtain both global average and locally specific estimates of the relationships between alcohol outlet density and violence. We find that bar and night club density, and licensed club density (e.g. sports clubs) have statistically significant and positive relationships with violence, with an additional bar or night club is associated with nearly 5.3 additional violent events per year, and an additional licensed club associated with 0.8 additional violent events per year. These relationships do not show significant spatial variation. In contrast, the effects of off-licence density and restaurant/café density do exhibit significant spatial variation. However, the non-varying effects of bar and night club density are larger than the locally specific effects of other outlet types. The relationships between outlet density and violence vary significantly across space for off-licences and restaurants/cafés. These results suggest that in order to minimise alcohol-related harms, such as violence, locally specific policy interventions are likely to be necessary. [Cameron MP, Cochrane W, Gordon C, Livingston M. Alcohol outlet density and violence: A geographically weighted regression approach. Drug Alcohol Rev 2016;35:280-288]. © 2015 Australasian Professional Society on Alcohol and other Drugs.
Influence of Lifestyle Factors on Mammographic Density in Postmenopausal Women
Brand, Judith S.; Czene, Kamila; Eriksson, Louise; Trinh, Thang; Bhoo-Pathy, Nirmala; Hall, Per; Celebioglu, Fuat
2013-01-01
Background Mammographic density is a strong risk factor for breast cancer. Apart from hormone replacement therapy (HRT), little is known about lifestyle factors that influence breast density. Methods We examined the effect of smoking, alcohol and physical activity on mammographic density in a population-based sample of postmenopausal women without breast cancer. Lifestyle factors were assessed by a questionnaire and percentage and area measures of mammographic density were measured using computer-assisted software. General linear models were used to assess the association between lifestyle factors and mammographic density and effect modification by body mass index (BMI) and HRT was studied. Results Overall, alcohol intake was positively associated with percent mammographic density (P trend = 0.07). This association was modified by HRT use (P interaction = 0.06): increasing alcohol intake was associated with increasing percent density in current HRT users (P trend = 0.01) but not in non-current users (P trend = 0.82). A similar interaction between alcohol and HRT was found for the absolute dense area, with a positive association being present in current HRT users only (P interaction = 0.04). No differences in mammographic density were observed across categories of smoking and physical activity, neither overall nor in stratified analyses by BMI and HRT use. Conclusions Increasing alcohol intake is associated with an increase in mammography density, whereas smoking and physical activity do not seem to influence density. The observed interaction between alcohol and HRT may pose an opportunity for HRT users to lower their mammographic density and breast cancer risk. PMID:24349146
Chiavacci, Scott J; Bednarz, James C; McKay, Tanja
2014-08-01
The emergence densities of cicadas tend to be patchy at multiple spatial scales. While studies have identified habitat conditions related to these patchy distributions, their interpretation has been based primarily on periodical cicada species; habitat factors associated with densities of nonperiodical (i.e., annual) cicadas have remained under studied. This is despite their widespread distribution, diversity, and role as an important trophic resource for many other organisms, particularly within riparian areas. We studied habitat factors associated with the emergence densities of Tibicen spp. in a bottomland hardwood forest in east-central Arkansas. We found emergence densities were greatest in areas of high sapling densities and increased toward forest edges, although sapling density was a much stronger predictor of emergence density. Emergence densities also differed among sample areas within our study system. The habitat features predicting nymph densities were likely driven by a combination of factors affecting female selection of oviposition sites and the effects of habitat conditions on nymph survival. The differences in nymph densities between areas of our system were likely a result of the differential effects of flooding in these areas. Interestingly, our findings were similar to observations of periodical species, suggesting that both types of cicadas select similar habitat characteristics for ovipositing or are under comparable selective pressures during development. Our findings also imply that changes in habitat characteristics because of anthropogenically altered disturbance regimes (e.g., flooding) have the potential to negatively impact both periodical and annual species, which could have dramatic consequences for organisms at numerous trophic levels.
Intraspecific competition and density dependence of food consumption and growth in Arctic charr.
Amundsen, Per-Arne; Knudsen, Rune; Klemetsen, Anders
2007-01-01
1. Intraspecific competition for restricted food resources is considered to play a fundamental part in density dependence of somatic growth and other population characteristics, but studies simultaneously addressing the interrelationships between population density, food acquisition and somatic growth have been missing. 2. We explored the food consumption and individual growth rates of Arctic charr Salvelinus alpinus in a long-term survey following a large-scale density manipulation experiment in a subarctic lake. 3. Prior to the initiation of the experiment, the population density was high and the somatic growth rates low, revealing a severely overcrowded and stunted fish population. 4. During the 6-year period of stock depletion the population density of Arctic charr was reduced with about 75%, resulting in an almost twofold increase in food consumption rates and enhanced individual growth rates of the fish. 5. Over the decade following the density manipulation experiment, the population density gradually rose to intermediate levels, accompanied by corresponding reductions in food consumption and somatic growth rates. 6. The study revealed negative relationships with population density for both food consumption and individual growth rates, reflecting a strong positive correlation between quantitative food intake and somatic growth rates. 7. Both the growth and consumption rate relationships with population density were well described by negative power curves, suggesting that large density perturbations are necessary to induce improved feeding conditions and growth rates in stunted fish populations. 8. The findings demonstrate that quantitative food consumption represents the connective link between population density and individual growth rates, apparently being highly influenced by intraspecific competition for limited resources.
Sass, G.G.; Hewett, S.W.; Beard, T.D.; Fayram, A.H.; Kitchell, J.F.
2004-01-01
We assessed density-related changes in growth of walleye Sander vitreus in the ceded territory of northern Wisconsin from 1977 to 1999. We used asymptotic length (Lz), growth rate near t0 (??), and body condition as measures of walleye growth to determine the relationship between growth and density. Among lakes, there was weak evidence of density-dependent growth: adult density explained only 0-6% of the variability in the growth metrics. Within lakes, growth was density dependent. Lz, ??, and body condition of walleyes changing with density for 69, 28, and 62% of the populations examined, respectively. Our results suggest that walleye growth was density dependent within individual lakes. However, growth was not coherently density dependent among lakes, which was possibly due to inherent differences in the productivity, surface area, forage base, landscape position, species composition, and management regime of lakes in the ceded territory. Densities of adult walleyes averaged 8.3 fish/ha and did not change significantly during 1990-1999. Mean Lz and body condition of walleyes were signilicantly higher before 1990 than after 1990, which may indicate an increase in density due to changes in management regimes. The observed growth changes do not appear to be a consequence of the statewide 15-in minimum size limit adopted in 1990 but rather a response to the treaty rights management regime. We conclude that walleye growth has the potential to predict regional-scale adult walleye densities if lake-specific variables are included in a model to account for regional-scale differences among walleye populations and lakes.
Mammographic density estimation with automated volumetric breast density measurement.
Ko, Su Yeon; Kim, Eun-Kyung; Kim, Min Jung; Moon, Hee Jung
2014-01-01
To compare automated volumetric breast density measurement (VBDM) with radiologists' evaluations based on the Breast Imaging Reporting and Data System (BI-RADS), and to identify the factors associated with technical failure of VBDM. In this study, 1129 women aged 19-82 years who underwent mammography from December 2011 to January 2012 were included. Breast density evaluations by radiologists based on BI-RADS and by VBDM (Volpara Version 1.5.1) were compared. The agreement in interpreting breast density between radiologists and VBDM was determined based on four density grades (D1, D2, D3, and D4) and a binary classification of fatty (D1-2) vs. dense (D3-4) breast using kappa statistics. The association between technical failure of VBDM and patient age, total breast volume, fibroglandular tissue volume, history of partial mastectomy, the frequency of mass > 3 cm, and breast density was analyzed. The agreement between breast density evaluations by radiologists and VBDM was fair (k value = 0.26) when the four density grades (D1/D2/D3/D4) were used and moderate (k value = 0.47) for the binary classification (D1-2/D3-4). Twenty-seven women (2.4%) showed failure of VBDM. Small total breast volume, history of partial mastectomy, and high breast density were significantly associated with technical failure of VBDM (p = 0.001 to 0.015). There is fair or moderate agreement in breast density evaluation between radiologists and VBDM. Technical failure of VBDM may be related to small total breast volume, a history of partial mastectomy, and high breast density.
Prostate specific antigen and acinar density: a new dimension, the "Prostatocrit".
Robinson, Simon; Laniado, Marc; Montgomery, Bruce
2017-01-01
Prostate-specific antigen densities have limited success in diagnosing prostate cancer. We emphasise the importance of the peripheral zone when considered with its cellular constituents, the "prostatocrit". Using zonal volumes and asymmetry of glandular acini, we generate a peripheral zone acinar volume and density. With the ratio to the whole gland, we can better predict high grade and all grade cancer. We can model the gland into its acinar and stromal elements. This new "prostatocrit" model could offer more accurate nomograms for biopsy. 674 patients underwent TRUS and biopsy. Whole gland and zonal volumes were recorded. We compared ratio and acinar volumes when added to a "clinic" model using traditional PSA density. Univariate logistic regression was used to find significant predictors for all and high grade cancer. Backwards multiple logistic regression was used to generate ROC curves comparing the new model to conventional density and PSA alone. Prediction of all grades of prostate cancer: significant variables revealed four significant "prostatocrit" parameters: log peripheral zone acinar density; peripheral zone acinar volume/whole gland acinar volume; peripheral zone acinar density/whole gland volume; peripheral zone acinar density. Acinar model (AUC 0.774), clinic model (AUC 0.745) (P=0.0105). Prediction of high grade prostate cancer: peripheral zone acinar density ("prostatocrit") was the only significant density predictor. Acinar model (AUC 0.811), clinic model (AUC 0.769) (P=0.0005). There is renewed use for ratio and "prostatocrit" density of the peripheral zone in predicting cancer. This outperforms all traditional density measurements. Copyright® by the International Brazilian Journal of Urology.
Pan, Ping; Han, Tian Yi; OuYang, Xun Zhi; Liu, Yuan Qiu; Zang, Hao; Ning, Jin Kui; Yang, Yang
2017-12-01
The distribution characteristics of carbon density under aerially seeded Pinus massoniana plantations in Ganzhou City of Jiangxi Province were studied. Total 15 factors, including site, stand, understory vegetation, litter and so on were selected to establish a relationship model between stand carbon density and influencing factors, and the main influencing factors were also screened. The results showed that the average carbon density was 98.29 t·hm -2 at stand level with soil layer (49.58 t·hm -2 ) > tree layer (45.25 t·hm -2 ) > understory vegetation layer (2.23 t·hm -2 ) > litter layer (1.23 t·hm -2 ). Significantly positive correlations were found among the tree, litter and soil layers, but not among the other layers. The main factors were tree density, avera-ge diameter at breast height (DBH), soil thickness, slope position, stand age and canopy density to affect carbon density in aerially seeded P. massoniana plantations. The partial correlation coefficients of the six main factors ranged from 0.331 to 0.434 with significance by t test. The multiple correlation coefficient of quantitative model I reached 0.796 with significance by F test (F=9.28). For stand density, the best tree density and canopy density were 1500-2100 plants·hm -2 and 0.4-0.7, respectively. The moderate density was helpful to improve ecosystem carbon sequestration. The carbon density increased with increasing stand age, DBH and soil thickness, and was higher in lower than middle and upper slope positions.
Meteoroid Bulk Density and Ceplecha Types
NASA Technical Reports Server (NTRS)
Blaauw, R. C.; Moser, D. E.; Moorhead, A. V.
2017-01-01
Determination of asteroid bulk density is an important aspect of NEO characterization, yet difficult to measure. As a fraction of meteoroids originate from asteroids (including some NEOs), a study of meteoroid bulk densities can potentially provide useful insights into the densities of NEOs and PHOs in lieu of mutual perturbations, satellite, or expensive spacecraft missions. NASA's Meteoroid Environment Office characterizes the meteoroid environment for the purpose of spacecraft risk and operations. To accurately determine the risk, a distribution of meteoroid bulk densities are needed. This is not trivial to determine. If the particle survives to the ground the bulk density can be directly measured, however only the most dense particles land on the Earth. The next best approach is to model the meteor's ablation, which is not straightforward. Clear deceleration is necessary to do this and there are discrepancies in results between models. One approach to a distribution of bulk density is to use a measured proxy for the densities, then calibrate the proxy with known densities from meteorite falls, ablation modelling, and other sources. An obvious proxy choice is the Ceplecha type, K(sub B), thought to indicate the strength of a meteoroid. KB is frequented cited as a good proxy for meteoroid densities, but we find it is poorly correlated with density. However, a distinct split by dynamical type was seen with Jovian Tisserand parameter, T(sub J), with meteoroids from Halley Type comets (T(sub J less than 2 ) exhibiting much lower densities than those originating from Jupiter and asteroids (T(sub J greater than 2).
Mammographic breast density in recent and longer-standing ethiopian immigrants to israel.
Sklair-Levy, Miri; Segev, Anat; Sella, Tamar; Calderon-Margalit, Ronit; Zippel, Douglas
2018-04-23
High breast density is associated with an increased risk of breast cancer development. Little is known concerning ethnic variations in breast density and its relevant contributing factors. We aimed to study breast density among Ethiopian immigrants to Israel in comparison with Israeli-born women and to determine any effect on breast density of the length of residency in the immigrant population. Mammographic breast density using the BI-RADS system was estimated and compared between 77 women of Ethiopian origin who live in Israel and 177 Israeli-born controls. Logistic regression analysis was performed to estimate the odds ratios (OR) for high density (BI-RADS score ≥ 3) vs low density (BI-RADS score < 3) cases, comparing the 2 origin groups. Ethiopian-born women had a crude OR of 0.15 (95% CI: 0.08-0.26) for high breast density compared with Israeli-born women. Adjustments for various cofounders did not affect the results. Time since immigration to Israel seemed to modify the relationship, with a stronger association for women who immigrated within 2 years prior to mammography (OR:0.07, 95% CI: 0.03-0.17) as opposed to women with a longer residency stay in Israel (OR:0.23, 95% CI:0.10-0.50). Adjustments of various confounders did not alter these findings. Breast density in Ethiopian immigrants to Israel is significantly lower than that of Israeli-born controls. Our study suggests a positive association between time since immigration and breast density. Future studies are required to define the possible effects of dietary change on mammographic density following immigration. © 2018 Wiley Periodicals, Inc.
Huntington, Brittany E; Miller, Margaret W; Pausch, Rachel; Richter, Lee
2017-05-01
Recovery of the threatened staghorn coral (Acropora cervicornis) is posited to play a key role in Caribbean reef resilience. At four Caribbean locations (including one restored and three extant populations), we quantified characteristics of contemporary staghorn coral across increasing conspecific densities, and investigated a hypothesis of facilitation between staghorn coral and reef fishes. High staghorn densities in the Dry Tortugas exhibited significantly less partial mortality, higher branch growth, and supported greater fish abundances compared to lower densities within the same population. In contrast, partial mortality, branch growth, and fish community composition did not vary with staghorn density at the three other study locations where staghorn densities were lower overall. This suggests that density-dependent effects between the coral and fish community may only manifest at high staghorn densities. We then evaluated one facilitative mechanism for such density-dependence, whereby abundant fishes sheltering in dense staghorn aggregations deliver nutrients back to the coral, fueling faster coral growth, thereby creating more fish habitat. Indeed, dense staghorn aggregations within the Dry Tortugas exhibited significantly higher growth rates, tissue nitrogen, and zooxanthellae densities than sparse aggregations. Similarly, higher tissue nitrogen was induced in a macroalgae bioassay outplanted into the same dense and sparse aggregations, confirming greater bioavailability of nutrients at high staghorn densities. Our findings inform staghorn restoration efforts, suggesting that the most effective targets may be higher coral densities than previously thought. These coral-dense aggregations may reap the benefits of positive facilitation between the staghorn and fish community, favoring the growth and survivorship of this threatened species.
Variational and robust density fitting of four-center two-electron integrals in local metrics
NASA Astrophysics Data System (ADS)
Reine, Simen; Tellgren, Erik; Krapp, Andreas; Kjærgaard, Thomas; Helgaker, Trygve; Jansik, Branislav; Høst, Stinne; Salek, Paweł
2008-09-01
Density fitting is an important method for speeding up quantum-chemical calculations. Linear-scaling developments in Hartree-Fock and density-functional theories have highlighted the need for linear-scaling density-fitting schemes. In this paper, we present a robust variational density-fitting scheme that allows for solving the fitting equations in local metrics instead of the traditional Coulomb metric, as required for linear scaling. Results of fitting four-center two-electron integrals in the overlap and the attenuated Gaussian damped Coulomb metric are presented, and we conclude that density fitting can be performed in local metrics at little loss of chemical accuracy. We further propose to use this theory in linear-scaling density-fitting developments.
Variational and robust density fitting of four-center two-electron integrals in local metrics.
Reine, Simen; Tellgren, Erik; Krapp, Andreas; Kjaergaard, Thomas; Helgaker, Trygve; Jansik, Branislav; Host, Stinne; Salek, Paweł
2008-09-14
Density fitting is an important method for speeding up quantum-chemical calculations. Linear-scaling developments in Hartree-Fock and density-functional theories have highlighted the need for linear-scaling density-fitting schemes. In this paper, we present a robust variational density-fitting scheme that allows for solving the fitting equations in local metrics instead of the traditional Coulomb metric, as required for linear scaling. Results of fitting four-center two-electron integrals in the overlap and the attenuated Gaussian damped Coulomb metric are presented, and we conclude that density fitting can be performed in local metrics at little loss of chemical accuracy. We further propose to use this theory in linear-scaling density-fitting developments.
Kerlikowske, Karla; Scott, Christopher G; Mahmoudzadeh, Amir P; Ma, Lin; Winham, Stacey; Jensen, Matthew R; Wu, Fang Fang; Malkov, Serghei; Pankratz, V Shane; Cummings, Steven R; Shepherd, John A; Brandt, Kathleen R; Miglioretti, Diana L; Vachon, Celine M
2018-06-05
In 30 states, women who have had screening mammography are informed of their breast density on the basis of Breast Imaging Reporting and Data System (BI-RADS) density categories estimated subjectively by radiologists. Variation in these clinical categories across and within radiologists has led to discussion about whether automated BI-RADS density should be reported instead. To determine whether breast cancer risk and detection are similar for automated and clinical BI-RADS density measures. Case-control. San Francisco Mammography Registry and Mayo Clinic. 1609 women with screen-detected cancer, 351 women with interval invasive cancer, and 4409 matched control participants. Automated and clinical BI-RADS density assessed on digital mammography at 2 time points from September 2006 to October 2014, interval and screen-detected breast cancer risk, and mammography sensitivity. Of women whose breast density was categorized by automated BI-RADS more than 6 months to 5 years before diagnosis, those with extremely dense breasts had a 5.65-fold higher interval cancer risk (95% CI, 3.33 to 9.60) and a 1.43-fold higher screen-detected risk (CI, 1.14 to 1.79) than those with scattered fibroglandular densities. Associations of interval and screen-detected cancer with clinical BI-RADS density were similar to those with automated BI-RADS density, regardless of whether density was measured more than 6 months to less than 2 years or 2 to 5 years before diagnosis. Automated and clinical BI-RADS density measures had similar discriminatory accuracy, which was higher for interval than screen-detected cancer (c-statistics: 0.70 vs. 0.62 [P < 0.001] and 0.72 vs. 0.62 [P < 0.001], respectively). Mammography sensitivity was similar for automated and clinical BI-RADS categories: fatty, 93% versus 92%; scattered fibroglandular densities, 90% versus 90%; heterogeneously dense, 82% versus 78%; and extremely dense, 63% versus 64%, respectively. Neither automated nor clinical BI-RADS density was assessed on tomosynthesis, an emerging breast screening method. Automated and clinical BI-RADS density similarly predict interval and screen-detected cancer risk, suggesting that either measure may be used to inform women of their breast density. National Cancer Institute.
2014-01-01
Background Climate change can affect the activity and distribution of species, including pathogens and parasites. The densities and distribution range of the sheep tick (Ixodes ricinus) and it’s transmitted pathogens appears to be increasing. Thus, a better understanding of questing tick densities in relation to climate and weather conditions is urgently needed. The aim of this study was to test predictions regarding the temporal pattern of questing tick densities at two different elevations in Norway. We predict that questing tick densities will decrease with increasing elevations and increase with increasing temperatures, but predict that humidity levels will rarely affect ticks in this northern, coastal climate with high humidity. Methods We described the temporal pattern of questing tick densities at ~100 and ~400 m a.s.l. along twelve transects in the coastal region of Norway. We used the cloth lure method at 14-day intervals during the snow-free season to count ticks in two consecutive years in 20 m2 plots. We linked the temporal pattern of questing tick densities to local measurements of the prevailing weather. Results The questing tick densities were much higher and the season was longer at ~100 compared to at ~400 m a.s.l. There was a prominent spring peak in both years and a smaller autumn peak in one year at ~100 m a.s.l.; but no marked peak at ~400 m a.s.l. Tick densities correlated positively with temperature, from low densities <5°C, then increasing and levelling off >15-17°C. We found no evidence for reduced questing densities during the driest conditions measured. Conclusions Tick questing densities differed even locally linked to elevation (on the same hillside, a few kilometers apart). The tick densities were strongly hampered by low temperatures that limited the duration of the questing seasons, whereas the humidity appeared not to be a limiting factor under the humid conditions at our study site. We expect rising global temperatures to increase tick densities and lead to a transition from a short questing season with low densities in the current cold and sub-optimal tick habitats, to longer questing seasons with overall higher densities and a marked spring peak. PMID:24725997
Precision Electron Density Measurements in the SSX MHD Wind Tunnel
NASA Astrophysics Data System (ADS)
Suen-Lewis, Emma M.; Barbano, Luke J.; Shrock, Jaron E.; Kaur, Manjit; Schaffner, David A.; Brown, Michael R.
2017-10-01
We characterize fluctuations of the line averaged electron density of Taylor states produced by the magnetized coaxial plasma gun of the SSX device using a 632.8 nm HeNe laser interferometer. The analysis method uses the electron density dependence of the refractive index of the plasma to determine the electron density of the Taylor states. Typical magnetic field and density values in the SSX device approach about B ≅ 0.3 T and n = 0 . 4 ×1016 cm-3 . Analysis is improved from previous density measurement methods by developing a post-processing method to remove relative phase error between interferometer outputs and to account for approximately linear phase drift due to low-frequency mechanical vibrations of the interferometer. Precision density measurements coupled with local measurements of the magnetic field will allow us to characterize the wave composition of SSX plasma via density vs. magnetic field correlation analysis, and compare the wave composition of SSX plasma with that of the solar wind. Preliminary results indicate that density and magnetic field appear negatively correlated. Work supported by DOE ARPA-E ALPHA program.
Density-functional theory for internal magnetic fields
NASA Astrophysics Data System (ADS)
Tellgren, Erik I.
2018-01-01
A density-functional theory is developed based on the Maxwell-Schrödinger equation with an internal magnetic field in addition to the external electromagnetic potentials. The basic variables of this theory are the electron density and the total magnetic field, which can equivalently be represented as a physical current density. Hence, the theory can be regarded as a physical current density-functional theory and an alternative to the paramagnetic current density-functional theory due to Vignale and Rasolt. The energy functional has strong enough convexity properties to allow a formulation that generalizes Lieb's convex analysis formulation of standard density-functional theory. Several variational principles as well as a Hohenberg-Kohn-like mapping between potentials and ground-state densities follow from the underlying convex structure. Moreover, the energy functional can be regarded as the result of a standard approximation technique (Moreau-Yosida regularization) applied to the conventional Schrödinger ground-state energy, which imposes limits on the maximum curvature of the energy (with respect to the magnetic field) and enables construction of a (Fréchet) differentiable universal density functional.
Sun, Changquan Calvin
2006-12-01
True density results for a batch of commercial aspartame are highly variable when helium pycnometry is used. Alternatively, the true density of the problematic aspartame lot was obtained by fitting tablet density versus pressure data. The fitted true density was in excellent agreement with that predicted from single crystal structure. Tablet porosity was calculated from the true density and tablet apparent density. After making the necessary measurements for calculating tablet apparent density, the breaking force of each intact tablet was measured and tensile strength was calculated. With the knowledge of compaction pressure, tablet porosity and tensile strength, powder compaction properties were characterized using tabletability (tensile strength versus pressure), compactibility (tensile strength versus porosity), compressibility (porosity versus pressure) and Heckel analysis. Thus, a wealth of additional information on the compaction properties of the powder was obtained through little added work. A total of approximately 4 g of powder was used in this study. Depending on the size of tablet tooling, tablet thickness and true density, 2-10 g of powder would be sufficient for characterizing most pharmaceutical powders.
The many faces of population density.
Mayor, Stephen J; Schaefer, James A
2005-09-01
Population density, one of the most fundamental demographic attributes, may vary systematically with spatial scale, but this scale-sensitivity is incompletely understood. We used a novel approach-based on fully censused and mapped distributions of eastern grey squirrel (Sciurus carolinensis) dreys, beaver (Castor canadensis) lodges, and moose (Alces alces)--to explore the scale-dependence of population density and its relationship to landscape features. We identified population units at several scales, both objectively, using cluster analysis, and arbitrarily, using artificial bounds centred on high-abundance sites. Densities declined with census area. For dreys, this relationship was stronger in objective versus arbitrary population units. Drey density was inconsistently related to patch area, a relationship that was positive for all patches but negative when non-occupied patches were excluded. Drey density was negatively related to the proportion of green-space and positively related to the density of buildings or roads, relationships that were accentuated at coarser scales. Mean drey densities were more sensitive to scale when calculated as organism-weighted versus area-weighted averages. Greater understanding of these scaling effects is required to facilitate comparisons of population density across studies.
Paramagnetic ionic liquids for measurements of density using magnetic levitation.
Bwambok, David K; Thuo, Martin M; Atkinson, Manza B J; Mirica, Katherine A; Shapiro, Nathan D; Whitesides, George M
2013-09-03
Paramagnetic ionic liquids (PILs) provide new capabilities to measurements of density using magnetic levitation (MagLev). In a typical measurement, a diamagnetic object of unknown density is placed in a container containing a PIL. The container is placed between two magnets (typically NdFeB, oriented with like poles facing). The density of the diamagnetic object can be determined by measuring its position in the magnetic field along the vertical axis (levitation height, h), either as an absolute value or relative to internal standards of known density. For density measurements by MagLev, PILs have three advantages over solutions of paramagnetic salts in aqueous or organic solutions: (i) negligible vapor pressures; (ii) low melting points; (iii) high thermal stabilities. In addition, the densities, magnetic susceptibilities, glass transition temperatures, thermal decomposition temperatures, viscosities, and hydrophobicities of PILs can be tuned over broad ranges by choosing the cation-anion pair. The low melting points and high thermal stabilities of PILs provide large liquidus windows for density measurements. This paper demonstrates applications and advantages of PILs in density-based analyses using MagLev.
Baldwin, C J; Kelly, E J; Batchelor, A G
2010-04-01
The proportions of glandular and adipose tissue within the breast vary. This study records the variation in density of breast tissue excised at 40 consecutive bilateral breast reductions. Age, body mass index (BMI), breast size and wound healing problems were related to breast density. The removed breast tissue was weighed and volume determined by water displacement. Delayed wound healing was defined as any breast unhealed after 2 weeks. The density of excised tissue varied between 0.8 and 1.2g/cm(3). There was no correlation between age or BMI and breast density. Delayed wound healing occurred in 32% of patients. There was no correlation between delayed wound healing and breast density. However, there was a direct relationship between increasing BMI and delayed wound healing. In this study, breast density varied by up to 50%. The density of breast tissue cannot be predicted by age, BMI or breast size. There is no relationship between delayed wound healing and breast density. Copyright 2009. Published by Elsevier Ltd.
Situated Naïve Physics: Task Constraints Decide what Children Know about Density
Kloos, Heidi; Fisher, Anna; Van Orden, Guy C.
2013-01-01
Children’s understanding of density is riddled with misconceptions – or so it seems. Yet even preschoolers at times appear to understand density. This article seeks to reconcile these conflicting outcomes by investigating the nature of constraints available in different experimental protocols. Protocols that report misconceptions about density used stimulus arrangements that make differences in mass and volume more salient than differences in density. In contrast, protocols that report successful performance used stimulus arrangements that might have increased the salience of density. To test this hypothesis, the present experiments manipulate the salience of object density. Children between 2 and 9 years of age and adults responded whether an object would sink or float when placed in water. Results indicated that children’s performance on exactly the same objects differed as a function of the saliency of the dimension of density, relative to the dimensions of mass and volume. These results support the idea that constraints – rather than stable knowledge – drive performance, with implications for teaching children about non-obvious concepts such as density. PMID:20853994
What regulates crab predation on mangrove propagules?
NASA Astrophysics Data System (ADS)
Van Nedervelde, Fleur; Cannicci, Stefano; Koedam, Nico; Bosire, Jared; Dahdouh-Guebas, Farid
2015-02-01
Crabs play a major role in some ecosystems. To increase our knowledge about the factors that influence crab predation on propagules in mangrove forests, we performed experiments in Gazi Bay, Kenya in July 2009. We tested whether: (1) crab density influences propagule predation rate; (2) crab size influences food competition and predation rate; (3) crabs depredate at different rates according to propagule and canopy cover species; (4) vegetation density is correlated with crab density; (5) food preferences of herbivorous crabs are determined by size, shape and nutritional value. We found that (1) propagule predation rate was positively correlated to crab density. (2) Crab competitive abilities were unrelated to their size. (3) Avicennia marina propagules were consumed more quickly than Ceriops tagal except under C. tagal canopies. (4) Crab density was negatively correlated with the density of A. marina trees and pneumatophores. (5) Crabs prefer small items with a lower C:N ratio. Vegetation density influences crab density, and crab density affects propagule availability and hence vegetation recruitment rate. Consequently, the mutual relationships between vegetation and crab populations could be important for forest restoration success and management.
Cosmic dust particle densities - Evidence for two populations of stony micrometeorites
NASA Technical Reports Server (NTRS)
Flynn, G. J.; Sutton, S. R.
1991-01-01
The existence of two populations of stony micrometeorites of distinctly different densities would result in significantly different orbital evolution properties for particles from each group. The densities inferred from deceleration of meteors in the earth's atmosphere suggest a substantial amount of the meteoric material has densities of 1 g/cu cm or less (Verniani, 1973). However, measurements of microcraters on lunar rock surfaces led Brownlee et al. (1973) to the conclusion that most micrometeoroids impacting the moon had densities in the 2-4 g/cu cm range, and low-density micrometeoroids were rare. The recovery of stony micrometeorites from the earth's stratosphere after atmospheric deceleration provides the opportunity to resolve the discrepancies. Here, the densities of 12 stony micrometeorites are determined, using synchrotron X-ray fluorescence to infer the particle mass and optical microscope measurements of the volumes. The particles fall into two distinct density groups, with mean values of 0.6 and 1.9 g/cu cm. The factor of 3 difference in the mean densities between the two populations implies differences in the orbital evolution time scales.
Influence of predator density on nonindependent effects of multiple predator species.
Griffen, Blaine D; Williamson, Tucker
2008-02-01
Interactions between multiple predator species are frequent in natural communities and can have important implications for shared prey survival. Predator density may be an important component of these interactions between predator species, as the frequency of interactions between species is largely determined by species density. Here we experimentally examine the importance of predator density for interactions between predator species and subsequent impacts on prey. We show that aggressive interactions between the predatory shore crabs Carcinus maenas and Hemigrapsus sanguineus increased with predator density, yet did not increase as fast as negative interactions between conspecifics. At low density, interactions between conspecific and heterospecific predators had similar inhibitory impacts on predator function, whereas conspecific interference was greater than interference from heterospecifics at high predator density. Thus the impact of conspecific interference at high predator density was sufficient in itself that interactions with a second predator species had no additional impact on per capita predation. Spatial and temporal variability in predator density is a ubiquitous characteristic of natural systems that should be considered in studies of multiple predator species.
Range of Density Variability from Surface To 120 km Altitude
NASA Technical Reports Server (NTRS)
Smith, Orvel E.; Chenoweth, Halsey B.
1961-01-01
A re-entry space vehicle development program, such as Project Apollo, requires a knowledge of the variability of atmospheric density from the surface of the earth to re-entry altitude (120 km). This report summarizes the data on density given in the most recent literature on the subject. The range of atmospheric density with respect to the ARDC 1959 Model Atmosphere is determined and shown graphically. From the surface to 30 km altitude abundant information on density is available. From 30 to 90 km altitude the summarized reports of observations made at a limited number of stations have been used. Between 90 and 120 km altitude the density is somewhat speculative, there being but few measurements available. Therefore, the qualitative values for the variability of density above 30 km must be considered tentative. Variations of atmospheric density by latitude and seasons made it necessary to develop a family of curves rather than a single profile. Three curves are presented to show the range of density deviation versus altitudes with respect to the ARDC 1959 Model Atmosphere. Each curve is used for a specific latitude range and season.
2011-01-01
cholesterol , triglycerides , high - density cholesterol (HDL), and calculated low- density lipoprotein (LDL)), and blood glucose level. 2.3. Assessments 2.3.1...separately; BP: blood pressure; HDL: high - density lipoprotein ; LDL: low- density lipoprotein . at or above threshold with those who do not among a group of...261, 2001. [11] G. R. Warnick, R. H. Knopp, V. Fitzpatrick, and L. Branson, “Estimating low- density lipoprotein
Experimental study of high density foods for the Space Operations Center
NASA Technical Reports Server (NTRS)
Ahmed, S. M.
1981-01-01
The experimental study of high density foods for the Space Operations Center is described. A sensory evaluation of the high density foods was conducted first to test the acceptability of the products. A shelf-life study of the high density foods was also conducted for three different time lengths at three different temperatures. The nutritional analysis of the high density foods is at present incomplete.
Variable Density Effects in Stochastic Lagrangian Models for Turbulent Combustion
2016-07-20
PDF methods in dealing with chemical reaction and convection are preserved irrespective of density variation. Since the density variation in a typical...combustion process may be as large as factor of seven, including variable- density effects in PDF methods is of significance. Conventionally, the...strategy of modelling variable density flows in PDF methods is similar to that used for second-moment closure models (SMCM): models are developed based on
Nonlinear density waves in planetary rings
NASA Technical Reports Server (NTRS)
Borderies, Nicole; Goldreich, Peter; Tremaine, Scott
1986-01-01
The steady-state structure of planetary rings in the presence of density waves at the Lindblad resonances of a satellite is indicated. The study is based on the dispersion relation and damping rate for nonlinear density waves, derived by Shu et al. (1985) and by Borderies, Goldreich, and Tremaine (1985). It is shown that strong density waves lead to an enhancement of the background surface density in the wave zone.
Direct Measure of the Dense Methane Phase in Gas Shale Organic Porosity by Neutron Scattering
Eberle, Aaron P. R.; King, Hubert E.; Ravikovitch, Peter I.; ...
2016-08-30
Here, we report the first direct measurements of methane density in shale gas using small-angle neutron scattering. At a constant pressure, the density of methane in the inorganic pores is similar to the gas bulk density of the system conditions. Conversely, the methane density is 2.1 ± 0.2 times greater in the organic mesopores. Furthermore, classical density functional theory calculations show that this excess density in the organic pores persists to elevated temperatures, typical of shale gas reservoir conditions, providing new insight into the hydrocarbon storage mechanisms within these reservoirs.
NASA Astrophysics Data System (ADS)
Oyama, Takuro; Ikabata, Yasuhiro; Seino, Junji; Nakai, Hiromi
2017-07-01
This Letter proposes a density functional treatment based on the two-component relativistic scheme at the infinite-order Douglas-Kroll-Hess (IODKH) level. The exchange-correlation energy and potential are calculated using the electron density based on the picture-change corrected density operator transformed by the IODKH method. Numerical assessments indicated that the picture-change uncorrected density functional terms generate significant errors, on the order of hartree for heavy atoms. The present scheme was found to reproduce the energetics in the four-component treatment with high accuracy.
High Precision 2-D Grating Groove Density Measurement
NASA Astrophysics Data System (ADS)
Zhang, Ningxiao; McEntaffer, Randall; Tedesco, Ross
2017-08-01
Our research group at Penn State University is working on producing X-ray reflection gratings with high spectral resolving power and high diffraction efficiency. To estimate our fabrication accuracy, we apply a precise 2-D grating groove density measurement to plot groove density distributions of gratings on 6-inch wafers. In addition to plotting a fixed groove density distribution, this method is also sensitive to measuring the variation of the groove density simultaneously. This system can reach a measuring accuracy (ΔN/N) of 10-3. Here we present this groove density measurement and some applications.
Accuracy and borehole influences in pulsed neutron gamma density logging while drilling.
Yu, Huawei; Sun, Jianmeng; Wang, Jiaxin; Gardner, Robin P
2011-09-01
A new pulsed neutron gamma density (NGD) logging has been developed to replace radioactive chemical sources in oil logging tools. The present paper describes studies of near and far density measurement accuracy of NGD logging at two spacings and the borehole influences using Monte-Carlo simulation. The results show that the accuracy of near density is not as good as far density. It is difficult to correct this for borehole effects by using conventional methods because both near and far density measurement is significantly sensitive to standoffs and mud properties. Copyright © 2011 Elsevier Ltd. All rights reserved.
Yunoki, Shunji; Sugiura, Hiroaki; Ikoma, Toshiyuki; Kondo, Eiji; Yasuda, Kazunori; Tanaka, Junzo
2011-02-01
The aim of this study was to evaluate the effects of increased collagen-matrix density on the mechanical properties and in vivo absorbability of porous hydroxyapatite (HAp)-collagen composites as artificial bone materials. Seven types of porous HAp-collagen composites were prepared from HAp nanocrystals and dense collagen fibrils. Their densities and HAp/collagen weight ratios ranged from 122 to 331 mg cm⁻³ and from 20/80 to 80/20, respectively. The flexural modulus and strength increased with an increase in density, reaching 2.46 ± 0.48 and 0.651 ± 0.103 MPa, respectively. The porous composites with a higher collagen-matrix density exhibited much higher mechanical properties at the same densities, suggesting that increasing the collagen-matrix density is an effective way of improving the mechanical properties. It was also suggested that other structural factors in addition to collagen-matrix density are required to achieve bone-like mechanical properties. The in vivo absorbability of the composites was investigated in bone defects of rabbit femurs, demonstrating that the absorption rate decreased with increases in the composite density. An exhaustive increase in density is probably limited by decreases in absorbability as artificial bones.
Computation of mass-density images from x-ray refraction-angle images.
Wernick, Miles N; Yang, Yongyi; Mondal, Indrasis; Chapman, Dean; Hasnah, Moumen; Parham, Christopher; Pisano, Etta; Zhong, Zhong
2006-04-07
In this paper, we investigate the possibility of computing quantitatively accurate images of mass density variations in soft tissue. This is a challenging task, because density variations in soft tissue, such as the breast, can be very subtle. Beginning from an image of refraction angle created by either diffraction-enhanced imaging (DEI) or multiple-image radiography (MIR), we estimate the mass-density image using a constrained least squares (CLS) method. The CLS algorithm yields accurate density estimates while effectively suppressing noise. Our method improves on an analytical method proposed by Hasnah et al (2005 Med. Phys. 32 549-52), which can produce significant artefacts when even a modest level of noise is present. We present a quantitative evaluation study to determine the accuracy with which mass density can be determined in the presence of noise. Based on computer simulations, we find that the mass-density estimation error can be as low as a few per cent for typical density variations found in the breast. Example images computed from less-noisy real data are also shown to illustrate the feasibility of the technique. We anticipate that density imaging may have application in assessment of water content of cartilage resulting from osteoarthritis, in evaluation of bone density, and in mammographic interpretation.
Effects of population density on corticosterone levels of prairie voles in the field
Blondel, Dimitri V.; Wallace, Gerard N.; Calderone, Stefanie; Gorinshteyn, Marija; St. Mary, Colette M.; Phelps, Steven M.
2015-01-01
High population density is often associated with increased levels of stress-related hormones, such as corticosterone (CORT). Prairie voles (Microtus ochrogaster) are a socially monogamous species known for their large population density fluctuations in the wild. Although CORT influences the social behavior of prairie voles in the lab, the effect of population density on CORT has not previously been quantified in this species in the field. We validated a non-invasive hormone assay for measuring CORT metabolites in prairie vole feces. We then used semi-natural enclosures to experimentally manipulate population density, and measured density effects on male space use and fecal CORT levels. Our enclosures generated patterns of space use and social interaction that were consistent with previous prairie vole field studies. Contrary to the positive relationship between CORT and density typical of other taxa, we found that lower population densities (80 animals/ha) produced higher fecal CORT than high densities (240/ha). Combined with prior work in the lab and field, the data suggest that high prairie vole population densities indicate favorable environments, perhaps through reduced predation risk. Lastly, we found that field animals had lower fecal CORT levels than laboratory-living animals. The data emphasize the usefulness of prairie voles as models for integrating ecological, evolutionary and mechanistic questions in social behavior. PMID:26342968
Evensen, Nicolas R.; Gómez-Lemos, Luis A.; Babcock, Russell C.
2017-01-01
Population growth involves demographic bottlenecks that regulate recruitment success during various early life-history stages. The success of each early life-history stage can vary in response to population density, interacting with intrinsic (e.g. behavioural) and environmental (e.g. competition, predation) factors. Here, we used the common reef-building coral Acropora millepora to investigate how density-dependence influences larval survival and settlement in laboratory experiments that isolated intrinsic effects, and post-settlement survival in a field experiment that examined interactions with environmental factors. Larval survival was exceptionally high (greater than 80%) and density-independent from 2.5 to 12 days following spawning. By contrast, there was a weak positive effect of larval density on settlement, driven by gregarious behaviour at the highest density. When larval supply was saturated, settlement was three times higher in crevices compared with exposed microhabitats, but a negative relationship between settler density and post-settlement survival in crevices and density-independent survival on exposed surfaces resulted in similar recruit densities just one month following settlement. Moreover, a negative relationship was found between turf algae and settler survival in crevices, whereas gregarious settlement improved settler survival on exposed surfaces. Overall, our findings reveal divergent responses by coral larvae and newly settled recruits to density-dependent regulation, mediated by intrinsic and environmental interactions. PMID:28573015
Busignies, Virginie; Leclerc, Bernard; Porion, Patrice; Evesque, Pierre; Couarraze, Guy; Tchoreloff, Pierre
2006-08-01
Direct compaction is a complex process that results in a density distribution inside the tablets which is often heterogeneous. Therefore, the density variations may affect the compact properties. A quantitative analysis of this phenomenon is still lacking. Recently, X-ray microtomography has been successfully used in pharmaceutical development to study qualitatively the impact of tablet shape and break-line in the density of pharmaceutical tablets. In this study, we evaluate the density profile in microcrystalline cellulose (Vivapur 12) compacts obtained at different mean porosity (ranging from 7.7% to 33.5%) using X-ray tomography technique. First, the validity of the Beer-Lambert law is studied. Then, density calibration is performed and density maps of cylindrical tablets are obtained and visualized using a process with colour-scale calibration plot which is explained. As expected, important heterogeneity in density is observed and quantified. The higher densities in peripheral region were particularly investigated and appraised in regard to the lower densities observed in the middle of the tablet. The results also underlined that in the case of pharmaceutical tablets, it is important to differentiate the mechanical properties representative of the total volume tablet and the mechanical properties that only characterize the tablet surface like the Brinell hardness measurements.
Aggressive and foraging behavioral interactions among ruffe
Savino, Jacqueline F.; Kostich, Melissa J.
2000-01-01
The ruffe, Gymnocephalus cernuus, is a nonindigenous percid in the Great Lakes. Ruffe are aggressive benthivores and forage over soft substrates. Laboratory studies in pools (100 cm in diameter, 15 cm water depth) were conducted to determine whether fish density (low = 2, medium = 4, high = 6 ruffe per pool) changed foraging and aggressive behaviors with a limited food supply of chironomid larvae. All fish densities demonstrated a hierarchy based on aggressive interactions, but ruffe were most aggressive at low and high fish densities. Time spent in foraging was lowest at the low fish density. The best forager at the low fish density was the most aggressive individual, but the second most aggressive fish at the medium and high fish density was the best forager and also the one chased most frequently. A medium fish density offered the best energetic benefits to ruffe by providing the lowest ratio of time spent in aggression to that spent foraging. Based on our results, ruffe should grow best at an intermediate density. With high ruffe densities, we would also expect disparity in size as the more aggressive fish are able to garner a disproportionate amount of the resources. Alternatively, as the Great Lakes are a fairly open system, ruffe could migrate out of one area to colonize another as populations exceed optimal densities.
A method to describe inelastic gamma field distribution in neutron gamma density logging.
Zhang, Feng; Zhang, Quanying; Liu, Juntao; Wang, Xinguang; Wu, He; Jia, Wenbao; Ti, Yongzhou; Qiu, Fei; Zhang, Xiaoyang
2017-11-01
Pulsed neutron gamma density logging (NGD) is of great significance for radioprotection and density measurement in LWD, however, the current methods have difficulty in quantitative calculation and single factor analysis for the inelastic gamma field distribution. In order to clarify the NGD mechanism, a new method is developed to describe the inelastic gamma field distribution. Based on the fast-neutron scattering and gamma attenuation, the inelastic gamma field distribution is characterized by the inelastic scattering cross section, fast-neutron scattering free path, formation density and other parameters. And the contribution of formation parameters on the field distribution is quantitatively analyzed. The results shows the contribution of density attenuation is opposite to that of inelastic scattering cross section and fast-neutron scattering free path. And as the detector-spacing increases, the density attenuation gradually plays a dominant role in the gamma field distribution, which means large detector-spacing is more favorable for the density measurement. Besides, the relationship of density sensitivity and detector spacing was studied according to this gamma field distribution, therefore, the spacing of near and far gamma ray detector is determined. The research provides theoretical guidance for the tool parameter design and density determination of pulsed neutron gamma density logging technique. Copyright © 2017 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Xia, Junchao; Carter, Emily
2014-03-01
We propose a density decomposition scheme using a Wang-Govind-Carter (WGC)-based kinetic energy density functional (KEDF) to accurately and efficiently simulate covalent systems within orbital-free (OF) density functional theory (DFT). By using a local, density-dependent scale function, the total density is decomposed into a localized density within covalent bond regions and a flattened delocalized density, with the former described by semilocal KEDFs and the latter treated by the WGC KEDF. The new model predicts reasonable equilibrium volumes, bulk moduli, and phase ordering energies for various semiconductors compared to Kohn-Sham (KS) DFT benchmarks. The surface energy of Si(100) also agrees well with KSDFT. We further apply the model to study mechanical properties of Li-Si alloys, which have been recently recognized as a promising candidate for next-generation anodes of Li-ion batteries with outstanding capacity. We study multiple crystalline Li-Si alloys. The WGCD KEDF predicts accurate cell lattice vectors, equilibrium volumes, elastic moduli, electron densities, alloy formation and Li adsorption energies. Because of its quasilinear scaling, coupled with the level of accuracy shown here, OFDFT appears quite promising for large-scale simulation of such materials phenomena. Office of Naval Research, National Science Foundation, Tigress High Performance Computing Center.
NASA Astrophysics Data System (ADS)
Gupta, Raj K.; Singh, Dalip; Kumar, Raj; Greiner, Walter
2009-07-01
The universal function of the nuclear proximity potential is obtained for the Skyrme nucleus-nucleus interaction in the semiclassical extended Thomas-Fermi (ETF) approach. This is obtained as a sum of the spin-orbit-density-independent and spin-orbit-density-dependent parts of the Hamiltonian density, since the two terms behave differently, the spin-orbit-density-independent part mainly attractive and the spin-orbit-density-dependent part mainly repulsive. The semiclassical expansions of kinetic energy density and spin-orbit density are allowed up to second order, and the two-parameter Fermi density, with its parameters fitted to experiments, is used for the nuclear density. The universal functions or the resulting nuclear proximity potential reproduce the 'exact' Skyrme nucleus-nucleus interaction potential in the semiclassical approach, within less than ~1 MeV of difference, both at the maximum attraction and in the surface region. An application of the resulting interaction potential to fusion excitation functions shows clearly that the parameterized universal functions of nuclear proximity potential substitute completely the 'exact' potential in the Skyrme energy density formalism based on the semiclassical ETF method, including also the modifications of interaction barriers at sub-barrier energies in terms of modifying the constants of the universal functions.
Paradoxical effects of density on measurement of copper tolerance in Silene paradoxa L.
Capuana, Maurizio; Colzi, Ilaria; Buccianti, Antonella; Coppi, Andrea; Palm, Emily; Del Bubba, Massimo; Gonnelli, Cristina
2018-01-01
This work investigated if the assessment of tolerance to trace metals can depend on plant density in the experimental design. A non-metallicolous and a metallicolous populations of Silene paradoxa were hydroponically cultivated at increasing density and in both the absence (-Cu conditions) and excess of copper (+Cu conditions). In -Cu conditions, the metallicolous population showed a lower susceptibility to plant density in comparison to the non-metallicolous one, explained by a higher capacity of the metallicolous population to exploit resources. In +Cu conditions, an alleviating effect of increasing density was found in roots. Such effect was present to a greater extent in the non-metallicolous population, thus making the populations equally copper-tolerant at the highest density used. In shoots, an additive effect of increasing plant density to copper toxicity was reported. Its higher intensity in the metallicolous population reverted the copper tolerance relationship at the highest plant densities used. In both populations, a density-induced decrease in root copper accumulation was observed, thus concurring to the reported mitigation in +Cu conditions. Our work revealed the importance of density studies on the optimization of eco-toxicological bioassays and of metal tolerance assessment and it can be considered the first example of an alleviating effect of increasing plant number on copper stress in a metallophyte.
Preantral follicle density in ovarian biopsy fragments and effects of mare age.
Alves, K A; Alves, B G; Gastal, G D A; Haag, K T; Gastal, M O; Figueiredo, J R; Gambarini, M L; Gastal, E L
2017-04-01
The aims of the present study were to: (1) evaluate preantral follicle density in ovarian biopsy fragments within and among mares; (2) assess the effects of mare age on the density and quality of preantral follicles; and (3) determine the minimum number of ovarian fragments and histological sections needed to estimate equine follicle density using a mathematical model. The ovarian biopsy pick-up method was used in three groups of mares separated according to age (5-6, 7-10 and 11-16 years). Overall, 336 preantral follicles were recorded with a mean follicle density of 3.7 follicles per cm 2 . Follicle density differed (P<0.05) among animals, ovarian fragments from the same animal, histological sections and age groups. More (P<0.05) normal follicles were observed in the 5-6 years (97%) than the 11-16 years (84%) age group. Monte Carlo simulations showed a higher probability (90%; P<0.05) of detecting follicle density using two experimental designs with 65 histological sections and three to four ovarian fragments. In summary, equine follicle density differed among animals and within ovarian fragments from the same animal, and follicle density and morphology were negatively affected by aging. Moreover, three to four ovarian fragments with 65 histological sections were required to accurately estimate follicle density in equine ovarian biopsy fragments.
Fine-scale habitat use of reintroduced black-footed ferrets on prairie dog colonies in New Mexico
Chipault, Jennifer G.; Biggins, Dean E.; Detling, James K.; Long, Dustin H.; Reich, Robin M.
2012-01-01
Black-footed ferrets (Mustela nigripes) are among the most endangered animals in North America. Reintroductions of captive-born ferrets onto prairie dog (Cynomys spp.) colonies are crucial to the conservation of the species. In September 2007, captive-born ferrets were released on a black-tailed prairie dog (Cynomys ludovicianus) colony at the Vermejo Park Ranch, New Mexico. Ferret kits experimentally released in areas of comparatively low and high prairie dog burrow densities were located via spotlight surveys. Some maturing ferret kits were subsequently translocated to areas of low and high burrow densities on nearby prairie dog colonies. For 2 months, fine-scale habitat use was quantified by mapping all burrow openings within a 30-m radius of each ferret location. Spatial statistics accounted for autocorrelation in the burrow densities in areas used by ferrets. It was hypothesized that ferrets would select areas of high burrow densities within colonies; however, burrow densities in areas used by ferrets were generally similar to the available burrow densities. Because ferrets used areas with burrow densities similar to densities available at the colony level and because of the potential energetic benefits for ferrets using areas with high burrow densities, releasing ferrets on colonies with high burrow densities might increase reintroduction success.
Bone density among infants of gestational diabetic mothers and macrosomic neonates.
Schushan-Eisen, Irit; Cohen, Mor; Leibovitch, Leah; Maayan-Metzger, Ayala; Strauss, Tzipora
2015-03-01
Decreased bone density has been found among infants of diabetic mothers and among large-for-gestational-age newborns. To evaluate which etiologies (physical or metabolic effect) have the greatest impact on neonatal bone density. A case-control study was conducted that included two study groups: one comprising 20 appropriate-for-gestational-age (AGA) infants of gestational diabetic mothers (IGDM) and matched controls, and the other comprising 20 macrosomic infants (birth weight > 4 kg) and matched controls. Bone density was examined along the tibia bone using quantitative ultrasound that measured speed of sound. Bone density among the group of macrosomic infants was significantly lower than among the control group (2,976 vs. 3,120 m/s respectively, p < 0.005). No differences in bone density were found between infants of diabetic mothers and their controls (3,005 vs. 3,043 m/s respectively, p = 0.286). Low bone density was predicted only by birth weight (for every increase of 100 g) (OR 1.148 [CI 1.014-1.299], p = 0.003). Bone density was found to be low among macrosomic newborn infants, whereas among AGA-IGDM infants bone density was similar to that of the control group. These findings strengthen the hypothesis that reduced fetal movements secondary to fetal macrosomia constitute the mechanism for reduced bone density.
The complexity of teaching density in middle school
NASA Astrophysics Data System (ADS)
Hashweh, Maher Z.
2016-01-01
Background: Density is difficult to learn and teach in middle schools. This study, hypothesizing that the density concept develops as part of a conceptual system, used a conceptual change approach to teaching density. The approach emphasized the use of multiple strategies to teach the density concept and the associated concepts in the conceptual system. Purpose: This study assessed post-instructional understanding of different aspects of density in a sample of seventh grade students, examined the effectiveness of the multi-dimensional approach in teaching density, investigated the relations between prior student characteristics and their post-instructional understanding, and investigated if the concept of density develops as part of a conceptual system. Program description: In the first part of the study, student understanding of density was assessed in regular classrooms. In the second part, the investigator and a science teacher co-taught the density unit over a two-week period emphasizing relations between density, mass, volume, part-whole relations, and a scientific particulate conception of matter. A conceptual change approach was used which emphasized multiple representations of knowledge and the use of analogies. Sample: The sample in regular classes consisted of 1645 seventh graders in 51 schools in the West Bank, Palestine. The intervention group consisted of 29 students in one school. Design and methods: The post-instructional understanding of density in 51 regularly taught classrooms was assessed in the first part of the study using a pencil-and paper test. In the second part, a pre-test was used with the intervention group. Students in both parts of the study took the same post-test. Descriptive statistics were calculated to describe student performance. Comparison between pre-test and post-test performance of students in the intervention group was conducted using t-test and ANOVA. Correlations between pre-test sub-scores and post-test scores for students in the intervention class also were calculated. X2 was used to test for co-development of the density concept and other concepts using the different items of the post-test for all groups. Results: Student understanding of density was found poor after instruction, while the intervention had a moderate effect on understanding. Students who started with a basic understanding of some aspects of density gained more from the intervention. The density concept co-developed with the concept of volume and a particulate conception of matter. Conclusions: Teaching density as part of a conceptual system helps promote understanding of the concept. This requires the continuous development and refinement of a learning progression of density, volume, and the particulate nature of matter on the one hand, and an in-depth treatment while teaching the concept on the other hand.
Effective size of density-dependent two-sex populations: the effect of mating systems.
Myhre, A M; Engen, S; SAEther, B-E
2017-08-01
Density dependence in vital rates is a key feature affecting temporal fluctuations of natural populations. This has important implications for the rate of random genetic drift. Mating systems also greatly affect effective population sizes, but knowledge of how mating system and density regulation interact to affect random genetic drift is poor. Using theoretical models and simulations, we compare N e in short-lived, density-dependent animal populations with different mating systems. We study the impact of a fluctuating, density-dependent sex ratio and consider both a stable and a fluctuating environment. We find a negative relationship between annual N e /N and adult population size N due to density dependence, suggesting that loss of genetic variation is reduced at small densities. The magnitude of this decrease was affected by mating system and life history. A male-biased, density-dependent sex ratio reduces the rate of genetic drift compared to an equal, density-independent sex ratio, but a stochastic change towards male bias reduces the N e /N ratio. Environmental stochasticity amplifies temporal fluctuations in population size and is thus vital to consider in estimation of effective population sizes over longer time periods. Our results on the reduced loss of genetic variation at small densities, particularly in polygamous populations, indicate that density regulation may facilitate adaptive evolution at small population sizes. © 2017 European Society For Evolutionary Biology. Journal of Evolutionary Biology © 2017 European Society For Evolutionary Biology.
Emerson, Kevin J; Glaser, Robert L
2017-08-07
Wolbachia pipientis , a bacterial symbiont infecting arthropods and nematodes, is vertically transmitted through the female germline and manipulates its host's reproduction to favor infected females. Wolbachia also infects somatic tissues where it can cause nonreproductive phenotypes in its host, including resistance to viral pathogens. Wolbachia -mediated phenotypes are strongly associated with the density of Wolbachia in host tissues. Little is known, however, about how Wolbachia density is regulated in native or heterologous hosts. Here, we measure the broad-sense heritability of Wolbachia density among families in field populations of the mosquito Culex pipiens , and show that densities in ovary and nongonadal tissues of females in the same family are not correlated, suggesting that Wolbachia density is determined by distinct mechanisms in the two tissues. Using introgression analysis between two different strains of the closely related species C. quinquefasciatus , we show that Wolbachia densities in ovary tissues are determined primarily by cytoplasmic genotype, while densities in nongonadal tissues are determined by both cytoplasmic and nuclear genotypes and their epistatic interactions. Quantitative-trait-locus mapping identified two major-effect quantitative-trait loci in the C. quinquefasciatus genome explaining a combined 23% of variance in Wolbachia density, specifically in nongonadal tissues. A better understanding of how Wolbachia density is regulated will provide insights into how Wolbachia density can vary spatiotemporally in insect populations, leading to changes in Wolbachia -mediated phenotypes such as viral pathogen resistance. Copyright © 2017 Emerson, Glaser.
NASA Astrophysics Data System (ADS)
Chen, Biao; Ruth, Chris; Jing, Zhenxue; Ren, Baorui; Smith, Andrew; Kshirsagar, Ashwini
2014-03-01
Breast density has been identified to be a risk factor of developing breast cancer and an indicator of lesion diagnostic obstruction due to masking effect. Volumetric density measurement evaluates fibro-glandular volume, breast volume, and breast volume density measures that have potential advantages over area density measurement in risk assessment. One class of volume density computing methods is based on the finding of the relative fibro-glandular tissue attenuation with regards to the reference fat tissue, and the estimation of the effective x-ray tissue attenuation differences between the fibro-glandular and fat tissue is key to volumetric breast density computing. We have modeled the effective attenuation difference as a function of actual x-ray skin entrance spectrum, breast thickness, fibro-glandular tissue thickness distribution, and detector efficiency. Compared to other approaches, our method has threefold advantages: (1) avoids the system calibration-based creation of effective attenuation differences which may introduce tedious calibrations for each imaging system and may not reflect the spectrum change and scatter induced overestimation or underestimation of breast density; (2) obtains the system specific separate and differential attenuation values of fibroglandular and fat for each mammographic image; and (3) further reduces the impact of breast thickness accuracy to volumetric breast density. A quantitative breast volume phantom with a set of equivalent fibro-glandular thicknesses has been used to evaluate the volume breast density measurement with the proposed method. The experimental results have shown that the method has significantly improved the accuracy of estimating breast density.
NASA Astrophysics Data System (ADS)
Jourde, K.; Gibert, D.; Marteau, J.
2015-04-01
This paper examines how the resolution of small-scale geological density models is improved through the fusion of information provided by gravity measurements and density muon radiographies. Muon radiography aims at determining the density of geological bodies by measuring their screening effect on the natural flux of cosmic muons. Muon radiography essentially works like medical X-ray scan and integrates density information along elongated narrow conical volumes. Gravity measurements are linked to density by a 3-D integration encompassing the whole studied domain. We establish the mathematical expressions of these integration formulas - called acquisition kernels - and derive the resolving kernels that are spatial filters relating the true unknown density structure to the density distribution actually recovered from the available data. The resolving kernels approach allows to quantitatively describe the improvement of the resolution of the density models achieved by merging gravity data and muon radiographies. The method developed in this paper may be used to optimally design the geometry of the field measurements to perform in order to obtain a given spatial resolution pattern of the density model to construct. The resolving kernels derived in the joined muon/gravimetry case indicate that gravity data are almost useless to constrain the density structure in regions sampled by more than two muon tomography acquisitions. Interestingly the resolution in deeper regions not sampled by muon tomography is significantly improved by joining the two techniques. The method is illustrated with examples for La Soufrière of Guadeloupe volcano.
APPROXIMATION AND ESTIMATION OF s-CONCAVE DENSITIES VIA RÉNYI DIVERGENCES.
Han, Qiyang; Wellner, Jon A
2016-01-01
In this paper, we study the approximation and estimation of s -concave densities via Rényi divergence. We first show that the approximation of a probability measure Q by an s -concave density exists and is unique via the procedure of minimizing a divergence functional proposed by [ Ann. Statist. 38 (2010) 2998-3027] if and only if Q admits full-dimensional support and a first moment. We also show continuity of the divergence functional in Q : if Q n → Q in the Wasserstein metric, then the projected densities converge in weighted L 1 metrics and uniformly on closed subsets of the continuity set of the limit. Moreover, directional derivatives of the projected densities also enjoy local uniform convergence. This contains both on-the-model and off-the-model situations, and entails strong consistency of the divergence estimator of an s -concave density under mild conditions. One interesting and important feature for the Rényi divergence estimator of an s -concave density is that the estimator is intrinsically related with the estimation of log-concave densities via maximum likelihood methods. In fact, we show that for d = 1 at least, the Rényi divergence estimators for s -concave densities converge to the maximum likelihood estimator of a log-concave density as s ↗ 0. The Rényi divergence estimator shares similar characterizations as the MLE for log-concave distributions, which allows us to develop pointwise asymptotic distribution theory assuming that the underlying density is s -concave.
APPROXIMATION AND ESTIMATION OF s-CONCAVE DENSITIES VIA RÉNYI DIVERGENCES
Han, Qiyang; Wellner, Jon A.
2017-01-01
In this paper, we study the approximation and estimation of s-concave densities via Rényi divergence. We first show that the approximation of a probability measure Q by an s-concave density exists and is unique via the procedure of minimizing a divergence functional proposed by [Ann. Statist. 38 (2010) 2998–3027] if and only if Q admits full-dimensional support and a first moment. We also show continuity of the divergence functional in Q: if Qn → Q in the Wasserstein metric, then the projected densities converge in weighted L1 metrics and uniformly on closed subsets of the continuity set of the limit. Moreover, directional derivatives of the projected densities also enjoy local uniform convergence. This contains both on-the-model and off-the-model situations, and entails strong consistency of the divergence estimator of an s-concave density under mild conditions. One interesting and important feature for the Rényi divergence estimator of an s-concave density is that the estimator is intrinsically related with the estimation of log-concave densities via maximum likelihood methods. In fact, we show that for d = 1 at least, the Rényi divergence estimators for s-concave densities converge to the maximum likelihood estimator of a log-concave density as s ↗ 0. The Rényi divergence estimator shares similar characterizations as the MLE for log-concave distributions, which allows us to develop pointwise asymptotic distribution theory assuming that the underlying density is s-concave. PMID:28966410
The relationship between breast density and bone mineral density in postmenopausal women.
Buist, Diana S M; Anderson, Melissa L; Taplin, Stephen H; LaCroix, Andrea Z
2004-11-01
It is not well understood whether breast density is a marker of cumulative exposure to estrogen or a marker of recent exposure to estrogen. The authors examined the relationship between bone mineral density (BMD; a marker of lifetime estrogen exposure) and breast density. The authors conducted a cross-sectional analysis among 1800 postmenopausal women > or = 54 years. BMD data were taken from two population-based studies conducted in 1992-1993 (n = 1055) and in 1998-1999 (n = 753). The authors linked BMD data with breast density information collected as part of a mammography screening program. They used linear regression to evaluate the density relationship, adjusted for age, hormone therapy use, body mass index (BMI), and reproductive covariates. There was a small but significant negative association between BMD and breast density. The negative correlation between density measures was not explained by hormone therapy or age, and BMI was the only covariate that notably influenced the relationship. Stratification by BMI only revealed the negative correlation between bone and breast densities in women with normal BMI. There was no relationship in overweight or obese women. The same relationship was seen for all women who had never used hormone therapy, but it was not significant once stratified by BMI. BMD and breast density were not positively associated although both are independently associated with estrogen exposure. It is likely that unique organ responses obscure the relationship between the two as indicators of cumulative estrogen exposure.
NASA Astrophysics Data System (ADS)
Vogt, Marissa F.; Withers, Paul; Fallows, Kathryn; Flynn, Casey L.; Andrews, David J.; Duru, Firdevs; Morgan, David D.
2016-10-01
Radio occultation electron densities measurements from the Mariner 9 and Viking spacecraft, which orbited Mars in the 1970s, have recently become available in a digital format. These data are highly complementary to the radio occultation electron density profiles from Mars Global Surveyor, which were restricted in solar zenith angle and altitude. We have compiled data from the Mariner 9, Viking, and Mars Global Surveyor radio occultation experiments for comparison to electron density measurements made by Mars Advanced Radar for Subsurface and Ionosphere Sounding (MARSIS), the topside radar sounder on Mars Express, and MARSIS-based empirical density models. We find that the electron densities measured by radio occultation are in generally good agreement with the MARSIS data and model, especially near the altitude of the peak electron density but that the MARSIS data and model display a larger plasma scale height than the radio occultation profiles at altitudes between the peak density and 200 km. Consequently, the MARSIS-measured and model electron densities are consistently larger than radio occultation densities at altitudes 200-300 km. Finally, we have analyzed transitions in the topside ionosphere, at the boundary between the photochemically controlled and transport-controlled regions, and identified the average transition altitude, or altitude at which a change in scale height occurs. The average transition altitude is 200 km in the Mariner 9 and Viking radio occultation profiles and in profiles of the median MARSIS radar sounding electron densities.
Bluegill growth as modified by plant density: an exploration of underlying mechanisms
Savino, Jacqueline F.; Marschall, Elizabeth A.; Stein, Roy A.
1992-01-01
Bluegill (Lepomis macrochira) growth varies inconsistently with plant density. In laboratory and field experiments, we explored mechanisms underlying bluegill growth as a function of plant and invertebrate density. In the laboratory, bluegills captured more chironomids (Chironomus riparius) than damselflies (Enallagma spp. and Ischnura spp.), but energy intake per time spent searching did not differ between damselfly and chironomid treatments. From laboratory data, we described prey encounter rates as functions of plant and invertebrate density. In Clark Lake, Ohio, we created 0.05-ha mesocosms of inshore vegetation to generate macrophyte densities of 125, 270, and 385 stems/m2 of Potamogeton and Ceratophyllum and added 46-mm bluegill (1/m2). In these mesocosms, invertebrate density increased as a function of macrophyte density. Combining this function with encounter rate functions derived from laboratory data, we predicted that bluegill growth should peak at a high macrophyte density, greater than 1000 stems/m2, even though growth should change only slightly beyond 100 stems/m2. Consistent with our predictions, bluegills did not grow differentially, nor did their use of different prey taxa differ, across macrophyte densities in the field. Bluegills preferred chironomid pupae, which were relatively few in numbers but vulnerable to predation, whereas more cryptic, chironomid larvae, which were associated with vegetation but were relatively abundant, were eaten as encountered. Bluegill avoided physid snails. Contrary to previous work, vegetation did not influence growth or diet of bluegill beyond relatively low densities owing to the interaction between capture probabilities and macroinvertebrate densities.
Volumetric breast density affects performance of digital screening mammography.
Wanders, Johanna O P; Holland, Katharina; Veldhuis, Wouter B; Mann, Ritse M; Pijnappel, Ruud M; Peeters, Petra H M; van Gils, Carla H; Karssemeijer, Nico
2017-02-01
To determine to what extent automatically measured volumetric mammographic density influences screening performance when using digital mammography (DM). We collected a consecutive series of 111,898 DM examinations (2003-2011) from one screening unit of the Dutch biennial screening program (age 50-75 years). Volumetric mammographic density was automatically assessed using Volpara. We determined screening performance measures for four density categories comparable to the American College of Radiology (ACR) breast density categories. Of all the examinations, 21.6% were categorized as density category 1 ('almost entirely fatty') and 41.5, 28.9, and 8.0% as category 2-4 ('extremely dense'), respectively. We identified 667 screen-detected and 234 interval cancers. Interval cancer rates were 0.7, 1.9, 2.9, and 4.4‰ and false positive rates were 11.2, 15.1, 18.2, and 23.8‰ for categories 1-4, respectively (both p-trend < 0.001). The screening sensitivity, calculated as the proportion of screen-detected among the total of screen-detected and interval tumors, was lower in higher density categories: 85.7, 77.6, 69.5, and 61.0% for categories 1-4, respectively (p-trend < 0.001). Volumetric mammographic density, automatically measured on digital mammograms, impacts screening performance measures along the same patterns as established with ACR breast density categories. Since measuring breast density fully automatically has much higher reproducibility than visual assessment, this automatic method could help with implementing density-based supplemental screening.
NASA Astrophysics Data System (ADS)
Horvath, Ildiko; Lovell, Brian C.
2018-02-01
This study investigates various types of neutral density features developed in the cusp region during magnetically active and quiet times. Multi-instrument Challenging Minisatellite Payload data provide neutral density, electron temperature, neutral wind speed, and small-scale field-aligned current (SS-FAC) values. Gravity Recovery and Climate Experiment neutral density data are also employed. During active times, cusp densities or density spikes appeared with their underlying flow channels (FCs) and enhanced SS-FACs implying upwelling, fueled by Joule heating, within/above FCs. Both the moderate nightside cusp enhancements under disturbed conditions and the minor dayside cusp enhancements under quiet conditions developed without any underlying FC and enhanced SS-FACs implying the role of particle precipitation in their development. Observations demonstrate the relations of FCs, density spikes, and upwelling-related divergent flows and their connections to the underlying (1) dayside magnetopause reconnection depositing magnetospheric energy into the high-latitude region and (2) Joule heating-driven disturbance dynamo effects. Results provide observational evidence that the moderate nightside cusp enhancements and the minor dayside cusp enhancements detected developed due to direct heating by weak particle precipitation. Chemical compositions related to the dayside density spike and low cusp densities are modeled by Naval Research Laboratory Mass Spectrometer Incoherent Scatter Radar Extended 2000. Modeled composition outputs for the dayside density spike's plasma environment depict some characteristic upwelling signatures. Oppositely, in the case of low dayside cusp densities, composition outputs show opposite characteristics due to the absence of upwelling.
Takeshima, T; Takahashi, T; Yamashita, J; Okada, Y; Watanabe, S
2018-05-25
Multi-emitter fitting algorithms have been developed to improve the temporal resolution of single-molecule switching nanoscopy, but the molecular density range they can analyse is narrow and the computation required is intensive, significantly limiting their practical application. Here, we propose a computationally fast method, wedged template matching (WTM), an algorithm that uses a template matching technique to localise molecules at any overlapping molecular density from sparse to ultrahigh density with subdiffraction resolution. WTM achieves the localization of overlapping molecules at densities up to 600 molecules μm -2 with a high detection sensitivity and fast computational speed. WTM also shows localization precision comparable with that of DAOSTORM (an algorithm for high-density super-resolution microscopy), at densities up to 20 molecules μm -2 , and better than DAOSTORM at higher molecular densities. The application of WTM to a high-density biological sample image demonstrated that it resolved protein dynamics from live cell images with subdiffraction resolution and a temporal resolution of several hundred milliseconds or less through a significant reduction in the number of camera images required for a high-density reconstruction. WTM algorithm is a computationally fast, multi-emitter fitting algorithm that can analyse over a wide range of molecular densities. The algorithm is available through the website. https://doi.org/10.17632/bf3z6xpn5j.1. © 2018 The Authors. Journal of Microscopy published by JohnWiley & Sons Ltd on behalf of Royal Microscopical Society.
Romley, John A; Cohen, Deborah; Ringel, Jeanne; Sturm, Roland
2007-01-01
This study had two purposes: (1) to characterize the density of liquor stores and bars that individuals face according to race, economic status, and age in the urban United States and (2) to assess alternative measures of retailer density based on the road network and population. We used census data on business counts and sociodemographic characteristics to compute the densities facing individuals in 9,361 urban zip codes. Blacks face higher densities of liquor stores than do whites. The density of liquor stores is greater among nonwhites in lower-income areas than among whites in lower- and higher-income areas and nonwhites in higher-income areas. Nonwhite youths face higher densities of liquor stores than white youths. The density of liquor stores and bars is lower in higher-income areas, especially for nonwhites. Mismatches between alcohol demand and the supply of liquor stores within urban neighborhoods constitute an environmental injustice for minorities and lower-income persons, with potential adverse consequences for drinking behavior and other social ills. Our results for bars are sensitive to the measure of outlet density as well as population density. Although neither measure is clearly superior, a measure that accounts for roadway miles may reflect proximity to alcohol retailers and thus serve as a useful refinement to the per-capita measure. If so, alcohol policy might also focus on density per roadway mile. Further research on the existence, causes, and consequences of environmental injustice in alcohol retailing is warranted.
Unexpected storm-time nightside plasmaspheric density enhancement at low L shell
NASA Astrophysics Data System (ADS)
Chu, X.; Bortnik, J.; Denton, R. E.; Yue, C.
2017-12-01
We have developed a three-dimensional dynamic electron density (DEN3D) model in the inner magnetosphere using a neural network approach. The DEN3D model can provide spatiotemporal distribution of the electron density at any location and time that spacecraft observations are not available. Given DEN3D's good performance in predicting the structure and dynamic evolution of the plasma density, the salient features of the DEN3D model can be used to gain further insight into the physics. For instance, the DEN3D models can be used to find unusual phenomena that are difficult to detect in observations or simulations. We report, for the first time, an unexpected plasmaspheric density increase at low L shell regions on the nightside during the main phase of a moderate storm during 12-16 October 2004, as opposed to the expected density decrease due to storm-time plasmaspheric erosion. The unexpected density increase is first discovered in the modeled electron density distribution using the DEN3D model, and then validated using in-situ density measurements obtained from the IMAGE satellite. The density increase was likely caused by increased earthward transverse field plasma transport due to enhanced nightside ExB drift, which coincided with enhanced solar wind electric field and substorm activity. This is consistent with the results of physics-based simulation SAMI3 model which show earthward enhanced plasma transport and electron density increase at low L shells during storm main phase.
Subalpine bumble bee foraging distances and densities in relation to flower availability.
Elliott, Susan E
2009-06-01
Bees feed almost exclusively on nectar and pollen from flowers. However, little is known about how food availability limits bee populations, especially in high elevation areas. Foraging distances and relationships between forager densities and resource availability can provide insights into the potential for food limitation in mobile consumer populations. For example, if floral resources are limited, bee consumers should fly farther to forage, and they should be more abundant in areas with more flowers. I estimated subalpine bumble bee foraging distances by calculating forager recapture probabilities at increasing distances from eight marking locations. I measured forager and flower densities over the flowering season in six half-hectare plots. Because subalpine bumble bees have little time to build their colonies, they may forage over short distances and forager density may not be constrained by flower density. However, late in the season, when floral resources dwindle, foraging distances may increase, and there may be stronger relationships between forager and flower densities. Throughout the flowering season, marked bees were primarily found within 100 m (and never >1,000 m) from their original marking location, suggesting that they typically did not fly far to forage. Although the density of early season foraging queens increased with early-season flower density, the density of mid- and late-season workers and males did not vary with flower density. Short foraging distances and no relationships between mid- and late-season forager and flower densities suggest that high elevation bumble bees may have ample floral resources for colony growth reproduction.
On the modelling of scalar and mass transport in combustor flows
NASA Technical Reports Server (NTRS)
Nikjooy, M.; So, R. M. C.
1989-01-01
Results are presented of a numerical study of swirling and nonswirling combustor flows with and without density variations. Constant-density arguments are used to justify closure assumptions invoked for the transport equations for turbulent momentum and scalar fluxes, which are written in terms of density-weighted variables. Comparisons are carried out with measurements obtained from three different axisymmetric model combustor experiments covering recirculating flow, swirling flow, and variable-density swirling flow inside the model combustors. Results show that the Reynolds stress/flux models do a credible job of predicting constant-density swirling and nonswirling combustor flows with passive scalar transport. However, their improvements over algebraic stress/flux models are marginal. The extension of the constant-density models to variable-density flow calculations shows that the models are equally valid for such flows.
Fujiwara, Y; Hirano, Y; Kiyama, S; Nakamiya, A; Koguchi, H; Sakakita, H
2014-02-01
The self-focusing phenomenon has been observed in a high current density and low energy ion beam. In order to study the mechanism of this phenomenon, a special designed double probe to measure the electron density and temperature is installed into the chamber where the high current density ion beam is injected. Electron density profile is successfully measured without the influence of the ion beam components. Estimated electron temperature and density are ∼0.9 eV and ∼8 × 10(8) cm(-3) at the center of ion beam cross section, respectively. It was found that a large amount of electrons are spontaneously accumulated in the ion beam line in the case of self-forcing state.
NASA Astrophysics Data System (ADS)
Mount, Christopher P.; Titus, Timothy N.
2015-07-01
Small-scale variations of seasonal ice are explored at different geomorphic units on the Northern Polar Seasonal Cap (NPSC). We use seasonal rock shadow measurements, combined with visible and thermal observations, to calculate density over time. The coupling of volume density and albedo allows us to determine the microphysical state of the seasonal CO2 ice. We find two distinct end-members across the NPSC: (1) Snow deposits may anneal to form an overlying slab layer that fractures. These low-density deposits maintain relatively constant densities over springtime. (2) Porous slab deposits likely anneal rapidly in early spring and fracture in late spring. These high-density deposits dramatically increase in density over time. The end-members appear to be correlated with latitude.
Determinants of elephant distribution at Nazinga Game Ranch, Burkina Faso
Jenks, Jonathan A.; Klaver, Robert W.; Wicks, Zeno W.
2007-01-01
We used seasonal ground total counts and remote sensing and GIS technology to relate elephant (Loxodonta africana africana) distribution at Nazinga Game Ranch to environmental and anthropogenic factors. Variables used in analyses were normalized difference vegetation index, elevation, stream density, density of poaching and human illegal activities, distance to dams, distance to rivers, distance to roads, and distance to poaching risk. Contrary to our expectation, road traffic did not disturb elephants. Strong negative relationships were documented between elephant abundance and stream density, distance to dams, and poaching density. Density of poaching and other human illegal activities explained 81%, vegetation greenness 6%, and stream density 3% of the variation in elephant density. Elephant distribution represented a survival strategy affected by poaching, food quality and abundance, and water availability.
NASA Astrophysics Data System (ADS)
Ma, Chun-Wang; Bai, Xiao-Man; Yu, Jiao; Wei, Hui-Ling
2014-09-01
The isobaric yield ratio difference (IBD) between two reactions of similar experimental setups is found to be sensitive to nuclear density differences between projectiles. In this article, the IBD probe is used to study the density variation in neutron-rich 48Ca . By adjusting diffuseness in the neutron density distribution, three different neutron density distributions of 48Ca are obtained. The yields of fragments in the 80 A MeV 40, 48Ca + 12C reactions are calculated by using a modified statistical abrasion-ablation model. It is found that the IBD results obtained from the prefragments are sensitive to the density distribution of the projectile, while the IBD results from the final fragments are less sensitive to the density distribution of the projectile.
Linear increases in carbon nanotube density through multiple transfer technique.
Shulaker, Max M; Wei, Hai; Patil, Nishant; Provine, J; Chen, Hong-Yu; Wong, H-S P; Mitra, Subhasish
2011-05-11
We present a technique to increase carbon nanotube (CNT) density beyond the as-grown CNT density. We perform multiple transfers, whereby we transfer CNTs from several growth wafers onto the same target surface, thereby linearly increasing CNT density on the target substrate. This process, called transfer of nanotubes through multiple sacrificial layers, is highly scalable, and we demonstrate linear CNT density scaling up to 5 transfers. We also demonstrate that this linear CNT density increase results in an ideal linear increase in drain-source currents of carbon nanotube field effect transistors (CNFETs). Experimental results demonstrate that CNT density can be improved from 2 to 8 CNTs/μm, accompanied by an increase in drain-source CNFET current from 4.3 to 17.4 μA/μm.
Mount, Christopher P.; Titus, Timothy N.
2015-01-01
Small scale variations of seasonal ice are explored at different geomorphic units on the Northern Polar Seasonal Cap (NPSC). We use seasonal rock shadow measurements, combined with visible and thermal observations, to calculate density over time. The coupling of volume density and albedo allows us to determine the microphysical state of the seasonal CO2 ice. We find two distinct endmembers across the NPSC: 1) Snow deposits may anneal to form an overlying slab layer that fractures. These low density deposits maintain relatively constant densities over springtime. 2) Porous slab deposits likely anneal rapidly in early spring and fracture in late spring. These high density deposits dramatically increase in density over time. The endmembers appear to be correlated with latitude.
Neutron matter within QCD sum rules
NASA Astrophysics Data System (ADS)
Cai, Bao-Jun; Chen, Lie-Wen
2018-05-01
The equation of state (EOS) of pure neutron matter (PNM) is studied in QCD sum rules (QCDSRs ). It is found that the QCDSR results on the EOS of PNM are in good agreement with predictions by current advanced microscopic many-body theories. Moreover, the higher-order density terms in quark condensates are shown to be important to describe the empirical EOS of PNM in the density region around and above nuclear saturation density although they play a minor role at subsaturation densities. The chiral condensates in PNM are also studied, and our results indicate that the higher-order density terms in quark condensates, which are introduced to reasonably describe the empirical EOS of PNM at suprasaturation densities, tend to hinder the appearance of chiral symmetry restoration in PNM at high densities.
Densities of 5-15 micron interplanetary dust particles
NASA Technical Reports Server (NTRS)
Love, S. G.; Joswiak, D. J.; Brownlee, D. E.
1993-01-01
We have measured the densities of about 100 5-15 micron stratospheric IDPs. Great care was taken to minimize selection bias in the sample population. Masses were determined using an absolute x-ray analysis technique with a transmission electron microscope, and volumes were found using scanning electron microscope imagery. Unmelted chondritic particles have densities between 0.5 and 6.0 g/cc. Roughly half of the particles have densities below 2 g/cc, indicating appreciable porosity, but porosities greater than about 70 percent are rare. IDPs with densities above 3.5 g/cc usually contain large sulfide grains. We find no evidence of bimodality in the unmelted particle density distribution. Chondritic spherules (melted particles) have densities near 3.5 g/cc, consistent with previous results for deep sea spherules.
NASA Technical Reports Server (NTRS)
Ford, H. C.; Ciardullo, R.; Harms, R. J.; Bartko, F.
1981-01-01
The radial velocities of cluster members of two rich, large superclusters have been measured in order to probe the supercluster mass densities, and simple evolutionary models have been computed to place limits upon the mass density within each supercluster. These superclusters represent true physical associations of size of about 100 Mpc seen presently at an early stage of evolution. One supercluster is weakly bound, the other probably barely bound, but possibly marginally unbound. Gravity has noticeably slowed the Hubble expansion of both superclusters. Galaxy surface-density counts and the density enhancement of Abell clusters within each supercluster were used to derive the ratio of mass densities of the superclusters to the mean field mass density. The results strongly exclude a closed universe.
Mammographic Density Estimation with Automated Volumetric Breast Density Measurement
Ko, Su Yeon; Kim, Eun-Kyung; Kim, Min Jung
2014-01-01
Objective To compare automated volumetric breast density measurement (VBDM) with radiologists' evaluations based on the Breast Imaging Reporting and Data System (BI-RADS), and to identify the factors associated with technical failure of VBDM. Materials and Methods In this study, 1129 women aged 19-82 years who underwent mammography from December 2011 to January 2012 were included. Breast density evaluations by radiologists based on BI-RADS and by VBDM (Volpara Version 1.5.1) were compared. The agreement in interpreting breast density between radiologists and VBDM was determined based on four density grades (D1, D2, D3, and D4) and a binary classification of fatty (D1-2) vs. dense (D3-4) breast using kappa statistics. The association between technical failure of VBDM and patient age, total breast volume, fibroglandular tissue volume, history of partial mastectomy, the frequency of mass > 3 cm, and breast density was analyzed. Results The agreement between breast density evaluations by radiologists and VBDM was fair (k value = 0.26) when the four density grades (D1/D2/D3/D4) were used and moderate (k value = 0.47) for the binary classification (D1-2/D3-4). Twenty-seven women (2.4%) showed failure of VBDM. Small total breast volume, history of partial mastectomy, and high breast density were significantly associated with technical failure of VBDM (p = 0.001 to 0.015). Conclusion There is fair or moderate agreement in breast density evaluation between radiologists and VBDM. Technical failure of VBDM may be related to small total breast volume, a history of partial mastectomy, and high breast density. PMID:24843235
Arbieu, Ugo; Grünewald, Claudia; Schleuning, Matthias; Böhning-Gaese, Katrin
2017-01-01
Southern African protected areas (PAs) harbour a great diversity of animals, which represent a large potential for wildlife tourism. In this region, global change is expected to result in vegetation changes, such as bush encroachment and increases in vegetation density. However, little is known on the influence of vegetation structure on wildlife tourists' wildlife viewing experience and satisfaction. In this study, we collected data on vegetation structure and perceived mammal densities along 196 road transects (each 5 km long) and conducted a social survey with 651 questionnaires across four PAs in three Southern African countries. Our objectives were 1) to assess visitors' attitude towards vegetation, 2) to test the influence of perceived mammal density and vegetation structure on the easiness to spot animals, and 3) on visitors' satisfaction during their visit to PAs. Using a Boosted Regression Tree procedure, we found mostly negative non-linear relationships between vegetation density and wildlife tourists' experience, and positive relationships between perceived mammal densities and wildlife tourists' experience. In particular, wildlife tourists disliked road transects with high estimates of vegetation density. Similarly, the easiness to spot animals dropped at thresholds of high vegetation density and at perceived mammal densities lower than 46 individuals per road transect. Finally, tourists' satisfaction declined linearly with vegetation density and dropped at mammal densities smaller than 26 individuals per transect. Our results suggest that vegetation density has important impacts on tourists' wildlife viewing experience and satisfaction. Hence, the management of PAs in savannah landscapes should consider how tourists perceive these landscapes and their mammal diversity in order to maintain and develop a sustainable wildlife tourism.
The frequency-domain approach for apparent density mapping
NASA Astrophysics Data System (ADS)
Tong, T.; Guo, L.
2017-12-01
Apparent density mapping is a technique to estimate density distribution in the subsurface layer from the observed gravity data. It has been widely applied for geologic mapping, tectonic study and mineral exploration for decades. Apparent density mapping usually models the density layer as a collection of vertical, juxtaposed prisms in both horizontal directions, whose top and bottom surfaces are assumed to be horizontal or variable-depth, and then inverts or deconvolves the gravity anomalies to determine the density of each prism. Conventionally, the frequency-domain approach, which assumes that both top and bottom surfaces of the layer are horizontal, is usually utilized for fast density mapping. However, such assumption is not always valid in the real world, since either the top surface or the bottom surface may be variable-depth. Here, we presented a frequency-domain approach for apparent density mapping, which permits both the top and bottom surfaces of the layer to be variable-depth. We first derived the formula for forward calculation of gravity anomalies caused by the density layer, whose top and bottom surfaces are variable-depth, and the formula for inversion of gravity anomalies for the density distribution. Then we proposed the procedure for density mapping based on both the formulas of inversion and forward calculation. We tested the approach on the synthetic data, which verified its effectiveness. We also tested the approach on the real Bouguer gravity anomalies data from the central South China. The top surface was assumed to be flat and was on the sea level, and the bottom surface was considered as the Moho surface. The result presented the crustal density distribution, which was coinciding well with the basic tectonic features in the study area.
High urban population density of birds reflects their timing of urbanization.
Møller, Anders Pape; Diaz, Mario; Flensted-Jensen, Einar; Grim, Tomas; Ibáñez-Álamo, Juan Diego; Jokimäki, Jukka; Mänd, Raivo; Markó, Gábor; Tryjanowski, Piotr
2012-11-01
Living organisms generally occur at the highest population density in the most suitable habitat. Therefore, invasion of and adaptation to novel habitats imply a gradual increase in population density, from that at or below what was found in the ancestral habitat to a density that may reach higher levels in the novel habitat following adaptation to that habitat. We tested this prediction of invasion biology by analyzing data on population density of breeding birds in their ancestral rural habitats and in matched nearby urban habitats that have been colonized recently across a continental latitudinal gradient. We estimated population density in the two types of habitats using extensive point census bird counts, and we obtained information on the year of urbanization when population density in urban habitats reached levels higher than that of the ancestral rural habitat from published records and estimates by experienced ornithologists. Both the difference in population density between urban and rural habitats and the year of urbanization were significantly repeatable when analyzing multiple populations of the same species across Europe. Population density was on average 30 % higher in urban than in rural habitats, although density reached as much as 100-fold higher in urban habitats in some species. Invasive urban bird species that colonized urban environments over a long period achieved the largest increases in population density compared to their ancestral rural habitats. This was independent of whether species were anciently or recently urbanized, providing a unique cross-validation of timing of urban invasions. These results suggest that successful invasion of urban habitats was associated with gradual adaptation to these habitats as shown by a significant increase in population density in urban habitats over time.
Eskandarloo, Amir; Abdinian, Mehrdad; Salemi, Fatemeh; Hashemzadeh, Zahra; Safaei, Mehran
2012-01-01
Background: Bone density measurement in a radiographic view is a valuable method for evaluating the density of bone quality before performing some dental procedures such as, dental implant placements. It seems that Cone-Beam Computed Tomography (CBCT) can be used as a diagnostic tool for evaluating the density of the bone, prior to any treatment, as the reported radiation dose in this method is minimal. The aim of this study is to investigate the effect of object location on the density measurement in CBCT versus Multislice computed tomography (CT). Materials and Methods: In an experimental study, three samples with similar dimensions, but different compositions, different densities (Polyethylene, Polyamide, Polyvinyl Chloride), and three bone pieces of different parts of the mandibular bone were imaged in three different positions by CBCT and Multislice CT sets. The average density value was computed for each sample in each position. Then the data obtained from each CBCT was converted to a Hounsfield unit and evaluated using a single variable T analysis. A P value <0.05 was considered to be significant. Results: The density in a Multislice CT is stable in the form of a Hounsfield Number, but this density is variable in the images acquired through CBCT, and the change in the position results in significant changes in the density. In this study, a statistically significant difference (P value = 0.000) has been observed for the position of the sample and its density in CBCT in comparison to Multislice CT. Conclusions: Density values in CBCT are not real because they are affected by the position of the object in the machine. PMID:23814567
Grünewald, Claudia; Schleuning, Matthias; Böhning-Gaese, Katrin
2017-01-01
Southern African protected areas (PAs) harbour a great diversity of animals, which represent a large potential for wildlife tourism. In this region, global change is expected to result in vegetation changes, such as bush encroachment and increases in vegetation density. However, little is known on the influence of vegetation structure on wildlife tourists’ wildlife viewing experience and satisfaction. In this study, we collected data on vegetation structure and perceived mammal densities along 196 road transects (each 5 km long) and conducted a social survey with 651 questionnaires across four PAs in three Southern African countries. Our objectives were 1) to assess visitors’ attitude towards vegetation, 2) to test the influence of perceived mammal density and vegetation structure on the easiness to spot animals, and 3) on visitors’ satisfaction during their visit to PAs. Using a Boosted Regression Tree procedure, we found mostly negative non-linear relationships between vegetation density and wildlife tourists’ experience, and positive relationships between perceived mammal densities and wildlife tourists’ experience. In particular, wildlife tourists disliked road transects with high estimates of vegetation density. Similarly, the easiness to spot animals dropped at thresholds of high vegetation density and at perceived mammal densities lower than 46 individuals per road transect. Finally, tourists’ satisfaction declined linearly with vegetation density and dropped at mammal densities smaller than 26 individuals per transect. Our results suggest that vegetation density has important impacts on tourists’ wildlife viewing experience and satisfaction. Hence, the management of PAs in savannah landscapes should consider how tourists perceive these landscapes and their mammal diversity in order to maintain and develop a sustainable wildlife tourism. PMID:28957420
NASA Technical Reports Server (NTRS)
Lawson, Anthony L.; Parthasarathy, Ramkumar N.
2005-01-01
The objective of this study was to determine the effects of buoyancy on the absolute instability of low-density gas jets injected into high-density gas mediums. Most of the existing analyses of low-density gas jets injected into a high-density ambient have been carried out neglecting effects of gravity. In order to investigate the influence of gravity on the near-injector development of the flow, a spatio-temporal stability analysis of a low-density round jet injected into a high-density ambient gas was performed. The flow was assumed to be isothermal and locally parallel; viscous and diffusive effects were ignored. The variables were represented as the sum of the mean value and a normal-mode small disturbance. An ordinary differential equation governing the amplitude of the pressure disturbance was derived. The velocity and density profiles in the shear layer, and the Froude number (signifying the effects of gravity) were the three important parameters in this equation. Together with the boundary conditions, an eigenvalue problem was formulated. Assuming that the velocity and density profiles in the shear layer to be represented by hyperbolic tangent functions, the eigenvalue problem was solved for various values of Froude number. The Briggs-Bers criterion was combined with the spatio-temporal stability analysis to determine the nature of the absolute instability of the jet whether absolutely or convectively unstable. The roles of the density ratio, Froude number, Schmidt number, and the lateral shift between the density and velocity profiles on the absolute instability of the jet were determined. Comparisons of the results with previous experimental studies show good agreement when the effects of these variables are combined together. Thus, the combination of these variables determines how absolutely unstable the jet will be.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ruiz Ruiz, J.; White, A. E.; Ren, Y.
2015-12-15
Theory and experiments have shown that electron temperature gradient (ETG) turbulence on the electron gyro-scale, k{sub ⊥}ρ{sub e} ≲ 1, can be responsible for anomalous electron thermal transport in NSTX. Electron scale (high-k) turbulence is diagnosed in NSTX with a high-k microwave scattering system [D. R. Smith et al., Rev. Sci. Instrum. 79, 123501 (2008)]. Here we report on stabilization effects of the electron density gradient on electron-scale density fluctuations in a set of neutral beam injection heated H-mode plasmas. We found that the absence of high-k density fluctuations from measurements is correlated with large equilibrium density gradient, which ismore » shown to be consistent with linear stabilization of ETG modes due to the density gradient using the analytical ETG linear threshold in F. Jenko et al. [Phys. Plasmas 8, 4096 (2001)] and linear gyrokinetic simulations with GS2 [M. Kotschenreuther et al., Comput. Phys. Commun. 88, 128 (1995)]. We also found that the observed power of electron-scale turbulence (when it exists) is anti-correlated with the equilibrium density gradient, suggesting density gradient as a nonlinear stabilizing mechanism. Higher density gradients give rise to lower values of the plasma frame frequency, calculated based on the Doppler shift of the measured density fluctuations. Linear gyrokinetic simulations show that higher values of the electron density gradient reduce the value of the real frequency, in agreement with experimental observation. Nonlinear electron-scale gyrokinetic simulations show that high electron density gradient reduces electron heat flux and stiffness, and increases the ETG nonlinear threshold, consistent with experimental observations.« less
Reconstructing the Initial Density Field of the Local Universe: Methods and Tests with Mock Catalogs
NASA Astrophysics Data System (ADS)
Wang, Huiyuan; Mo, H. J.; Yang, Xiaohu; van den Bosch, Frank C.
2013-07-01
Our research objective in this paper is to reconstruct an initial linear density field, which follows the multivariate Gaussian distribution with variances given by the linear power spectrum of the current cold dark matter model and evolves through gravitational instabilities to the present-day density field in the local universe. For this purpose, we develop a Hamiltonian Markov Chain Monte Carlo method to obtain the linear density field from a posterior probability function that consists of two components: a prior of a Gaussian density field with a given linear spectrum and a likelihood term that is given by the current density field. The present-day density field can be reconstructed from galaxy groups using the method developed in Wang et al. Using a realistic mock Sloan Digital Sky Survey DR7, obtained by populating dark matter halos in the Millennium simulation (MS) with galaxies, we show that our method can effectively and accurately recover both the amplitudes and phases of the initial, linear density field. To examine the accuracy of our method, we use N-body simulations to evolve these reconstructed initial conditions to the present day. The resimulated density field thus obtained accurately matches the original density field of the MS in the density range 0.3 \\lesssim \\rho /\\bar{\\rho } \\lesssim 20 without any significant bias. In particular, the Fourier phases of the resimulated density fields are tightly correlated with those of the original simulation down to a scale corresponding to a wavenumber of ~1 h Mpc-1, much smaller than the translinear scale, which corresponds to a wavenumber of ~0.15 h Mpc-1.
Youk, Ji Hyun; Kim, So Jung; Son, Eun Ju; Gweon, Hye Mi; Kim, Jeong-Ah
2017-09-01
The purpose of this study was to compare visual assessments of mammographic breast density by radiologists using BI-RADS 4th and 5th editions in correlation with automated volumetric breast density measurements. A total of 337 consecutive full-field digital mammographic examinations with standard views were retrospectively assessed by two radiologists for mammographic breast density according to BI-RADS 4th and 5th editions. Fully automated measurement of the volume of fibroglandular tissue and total breast and percentage breast density was performed with a commercially available software program. Interobserver and intraobserver agreement was assessed with kappa statistics. The distributions of breast density categories for both editions of BI-RADS were compared and correlated with volumetric data. Interobserver agreement on breast density category was moderate to substantial (κ = 0.58-0.63) with use of BI-RADS 4th edition and substantial (κ = 0.63-0.66) with use of the 5th edition but without significant difference between the two editions. For intraobserver agreement between the two editions, the distributions of density category were significantly different (p < 0.0001), the proportions of dense breast increased, and the proportion of fatty breast decreased with use of the 5th edition compared with the 4th edition (p < 0.0001). All volumetric breast density data, including percentage breast density, were significantly different among density categories (p < 0.0001) and had significant correlation with visual assessment for both editions of BI-RADS (p < 0.01). Assessment using BI-RADS 5th edition revealed a higher proportion of dense breast than assessment using BI-RADS 4th edition. Nevertheless, automated volumetric density assessment had good correlation with visual assessment for both editions of BI-RADS.
Population-Level Density Dependence Influences the Origin and Maintenance of Parental Care
Reyes, Elijah; Thrasher, Patsy; Bonsall, Michael B.; Klug, Hope
2016-01-01
Parental care is a defining feature of animal breeding systems. We now know that both basic life-history characteristics and ecological factors influence the evolution of care. However, relatively little is known about how these factors interact to influence the origin and maintenance of care. Here, we expand upon previous work and explore the relationship between basic life-history characteristics (stage-specific rates of mortality and maturation) and the fitness benefits associated with the origin and the maintenance of parental care for two broad ecological scenarios: the scenario in which egg survival is density dependent and the case in which adult survival is density dependent. Our findings suggest that high offspring need is likely critical in driving the origin, but not the maintenance, of parental care regardless of whether density dependence acts on egg or adult survival. In general, parental care is more likely to result in greater fitness benefits when baseline adult mortality is low if 1) egg survival is density dependent or 2) adult mortality is density dependent and mutant density is relatively high. When density dependence acts on egg mortality, low rates of egg maturation and high egg densities are less likely to lead to strong fitness benefits of care. However, when density dependence acts on adult mortality, high levels of egg maturation and increasing adult densities are less likely to maintain care. Juvenile survival has relatively little, if any, effect on the origin and maintenance of egg-only care. More generally, our results suggest that the evolution of parental care will be influenced by an organism’s entire life history characteristics, the stage at which density dependence acts, and whether care is originating or being maintained. PMID:27093056
A comprehensive tool for measuring mammographic density changes over time.
Eriksson, Mikael; Li, Jingmei; Leifland, Karin; Czene, Kamila; Hall, Per
2018-06-01
Mammographic density is a marker of breast cancer risk and diagnostics accuracy. Density change over time is a strong proxy for response to endocrine treatment and potentially a stronger predictor of breast cancer incidence. We developed STRATUS to analyse digital and analogue images and enable automated measurements of density changes over time. Raw and processed images from the same mammogram were randomly sampled from 41,353 healthy women. Measurements from raw images (using FDA approved software iCAD) were used as templates for STRATUS to measure density on processed images through machine learning. A similar two-step design was used to train density measures in analogue images. Relative risks of breast cancer were estimated in three unique datasets. An alignment protocol was developed using images from 11,409 women to reduce non-biological variability in density change. The protocol was evaluated in 55,073 women having two regular mammography screens. Differences and variances in densities were compared before and after image alignment. The average relative risk of breast cancer in the three datasets was 1.6 [95% confidence interval (CI) 1.3-1.8] per standard deviation of percent mammographic density. The discrimination was AUC 0.62 (CI 0.60-0.64). The type of image did not significantly influence the risk associations. Alignment decreased the non-biological variability in density change and re-estimated the yearly overall percent density decrease from 1.5 to 0.9%, p < 0.001. The quality of STRATUS density measures was not influenced by mammogram type. The alignment protocol reduced the non-biological variability between images over time. STRATUS has the potential to become a useful tool for epidemiological studies and clinical follow-up.
Racial Differences in Quantitative Measures of Area and Volumetric Breast Density
McCarthy, Anne Marie; Keller, Brad M.; Pantalone, Lauren M.; Hsieh, Meng-Kang; Synnestvedt, Marie; Conant, Emily F.; Armstrong, Katrina; Kontos, Despina
2016-01-01
Abstract Background: Increased breast density is a strong risk factor for breast cancer and also decreases the sensitivity of mammographic screening. The purpose of our study was to compare breast density for black and white women using quantitative measures. Methods: Breast density was assessed among 5282 black and 4216 white women screened using digital mammography. Breast Imaging-Reporting and Data System (BI-RADS) density was obtained from radiologists’ reports. Quantitative measures for dense area, area percent density (PD), dense volume, and volume percent density were estimated using validated, automated software. Breast density was categorized as dense or nondense based on BI-RADS categories or based on values above and below the median for quantitative measures. Logistic regression was used to estimate the odds of having dense breasts by race, adjusted for age, body mass index (BMI), age at menarche, menopause status, family history of breast or ovarian cancer, parity and age at first birth, and current hormone replacement therapy (HRT) use. All statistical tests were two-sided. Results: There was a statistically significant interaction of race and BMI on breast density. After accounting for age, BMI, and breast cancer risk factors, black women had statistically significantly greater odds of high breast density across all quantitative measures (eg, PD nonobese odds ratio [OR] = 1.18, 95% confidence interval [CI] = 1.02 to 1.37, P = .03, PD obese OR = 1.26, 95% CI = 1.04 to 1.53, P = .02). There was no statistically significant difference in BI-RADS density by race. Conclusions: After accounting for age, BMI, and other risk factors, black women had higher breast density than white women across all quantitative measures previously associated with breast cancer risk. These results may have implications for risk assessment and screening. PMID:27130893
NASA Astrophysics Data System (ADS)
de Freitas, Maria Camila Pruper; Figueiredo Neto, Antonio Martins; Giampaoli, Viviane; da Conceição Quintaneiro Aubin, Elisete; de Araújo Lima Barbosa, Milena Maria; Damasceno, Nágila Raquel Teixeira
2016-04-01
The great atherogenic potential of oxidized low-density lipoprotein has been widely described in the literature. The objective of this study was to investigate whether the state of oxidized low-density lipoprotein in human plasma measured by the Z-scan technique has an association with different cardiometabolic biomarkers. Total cholesterol, high-density lipoprotein cholesterol, triacylglycerols, apolipoprotein A-I and apolipoprotein B, paraoxonase-1, and glucose were analyzed using standard commercial kits, and low-density lipoprotein cholesterol was estimated using the Friedewald equation. A sandwich enzyme-linked immunosorbent assay was used to detect electronegative low-density lipoprotein. Low-density lipoprotein and high-density lipoprotein sizes were determined by Lipoprint® system. The Z-scan technique was used to measure the non-linear optical response of low-density lipoprotein solution. Principal component analysis and correlations were used respectively to resize the data from the sample and test association between the θ parameter, measured with the Z-scan technique, and the principal component. A total of 63 individuals, from both sexes, with mean age 52 years (±11), being overweight and having high levels of total cholesterol and low levels of high-density lipoprotein cholesterol, were enrolled in this study. A positive correlation between the θ parameter and more anti-atherogenic pattern for cardiometabolic biomarkers together with a negative correlation for an atherogenic pattern was found. Regarding the parameters related with an atherogenic low-density lipoprotein profile, the θ parameter was negatively correlated with a more atherogenic pattern. By using Z-scan measurements, we were able to find an association between oxidized low-density lipoprotein state and multiple cardiometabolic biomarkers in samples from individuals with different cardiovascular risk factors.
Density Estimation for New Solid and Liquid Explosives
1977-02-17
The group additivity approach was shown to be applicable to density estimation. The densities of approximately 180 explosives and related compounds... of very diverse compositions were estimated, and almost all the estimates were quite reasonable. Of the 168 compounds for which direct comparisons...could be made (see Table 6), 36.9% of the estimated densities were within 1% of the measured densities, 33.3% were within 1-2%, 11.9% were within 2-3
High current density cathode for electrorefining in molten electrolyte
Li, Shelly X.
2010-06-29
A high current density cathode for electrorefining in a molten electrolyte for the continuous production and collection of loose dendritic or powdery deposits. The high current density cathode eliminates the requirement for mechanical scraping and electrochemical stripping of the deposits from the cathode in an anode/cathode module. The high current density cathode comprises a perforated electrical insulated material coating such that the current density is up to 3 A/cm.sup.2.
49 CFR 176.708 - Segregation distances.
Code of Federal Regulations, 2010 CFR
2010-10-01
... of intervening cargo of unit density for persons, and 0, 3, or 6 feet of intervening cargo of unit density for undeveloped film. Cargo of unit density is stowed cargo with a density of 1 long ton (2240 lbs... (unit density) Nil 3 Nil 3 6 Nil 3 6 Nil 3 6 Nil 3 6 Nil 3 6 Nil 3 6 Nil 3 6 Nil 3 6 0.1 to 0.5 5 X 6 X...
49 CFR 176.708 - Segregation distances.
Code of Federal Regulations, 2012 CFR
2012-10-01
... of intervening cargo of unit density for persons, and 0, 3, or 6 feet of intervening cargo of unit density for undeveloped film. Cargo of unit density is stowed cargo with a density of 1 long ton (2240 lbs... (unit density) Nil 3 Nil 3 6 Nil 3 6 Nil 3 6 Nil 3 6 Nil 3 6 Nil 3 6 Nil 3 6 Nil 3 6 0.1 to 0.5 5 X 6 X...
Denton, Ellen-ge D.; Shaffer, Jonathan A.; Alcantara, Carmela; Clemow, Lynn; Brondolo, Elizabeth
2014-01-01
Objective The ethnic density hypothesis suggests that ethnic density confers greater social support and consequently protects against depressive symptoms in ethnic minority individuals. However, the potential benefits of ethnic density have not been examined in individuals who are facing a specific and salient life stressor. We examined the degree to which the effects of Hispanic ethnic density on depressive symptoms are explained by socioeconomic resources and social support. Methods Patients with acute coronary syndrome (ACS, N = 472) completed the Beck Depression Inventory (BDI) and measures of demographics, ACS clinical factors and disease severity, and perceived social support. Neighborhood characteristics, including median income, number of single-parent households, and Hispanic ethnic density, were extracted from the American Community Survey Census (2005 – 2009) for each patient using his/her geocoded address. Results In a linear regression analysis adjusted for demographic and clinical factors, Hispanic ethnic density was positively associated with depressive symptoms (β = .09, SE = .04, p = .03). However, Hispanic density was no longer a significant predictor of depressive symptoms when measures of neighborhood socioeconomic disadvantage were controlled. In addition, the effects of Hispanic density were not the same for all groups. The relationship of Hispanic density on depressive symptoms was moderated by nativity status. Among US-born patients with ACS, there was a significant positive relationship between Hispanic density and depressive symptoms, and social support significantly mediated this effect. There was no observed effect of Hispanic density to depressive symptoms for foreign-born ACS patients. Discussion Although previous research suggests that ethnic density may be protective against depression, our data suggest that among patients with ACS, living in a community with a high concentration of Hispanic individuals is associated with constrained social and economic resources which are themselves associated with greater depressive symptoms. These data add to a growing body of literature on the effects of racial or ethnic segregation on health outcomes. PMID:24985313
NASA Astrophysics Data System (ADS)
Raleigh, M. S.; Smyth, E.; Small, E. E.
2017-12-01
The spatial distribution of snow water equivalent (SWE) is not sufficiently monitored with either remotely sensed or ground-based observations for water resources management. Recent applications of airborne Lidar have yielded basin-wide mapping of SWE when combined with a snow density model. However, in the absence of snow density observations, the uncertainty in these SWE maps is dominated by uncertainty in modeled snow density rather than in Lidar measurement of snow depth. Available observations tend to have a bias in physiographic regime (e.g., flat open areas) and are often insufficient in number to support testing of models across a range of conditions. Thus, there is a need for targeted sampling strategies and controlled model experiments to understand where and why different snow density models diverge. This will enable identification of robust model structures that represent dominant processes controlling snow densification, in support of basin-scale estimation of SWE with remotely-sensed snow depth datasets. The NASA SnowEx mission is a unique opportunity to evaluate sampling strategies of snow density and to quantify and reduce uncertainty in modeled snow density. In this presentation, we present initial field data analyses and modeling results over the Colorado SnowEx domain in the 2016-2017 winter campaign. We detail a framework for spatially mapping the uncertainty in snowpack density, as represented across multiple models. Leveraging the modular SUMMA model, we construct a series of physically-based models to assess systematically the importance of specific process representations to snow density estimates. We will show how models and snow pit observations characterize snow density variations with forest cover in the SnowEx domains. Finally, we will use the spatial maps of density uncertainty to evaluate the selected locations of snow pits, thereby assessing the adequacy of the sampling strategy for targeting uncertainty in modeled snow density.
Scrosati, Ricardo A; Ellrich, Julius A
2017-01-01
Recruitment is a key demographic process for population persistence. This paper focuses on barnacle ( Semibalanus balanoides ) recruitment. In rocky intertidal habitats from the Gulf of St. Lawrence coast of Nova Scotia (Canada), ice scour is common during the winter. At the onset of intertidal barnacle recruitment in early May (after sea ice has fully melted), mostly only adult barnacles and bare substrate are visible at high elevations in wave-exposed habitats. We conducted a multiannual study to investigate if small-scale barnacle recruitment could be predicted from the density of pre-existing adult barnacles. In a year that exhibited a wide adult density range (ca. 0-130 individuals dm -2 ), the relationship between adult density and recruit density (scaled to the available area for recruitment, which excluded adult barnacles) was unimodal. In years that exhibited a lower adult density range (ca. 0-40/50 individuals dm -2 ), the relationship between adult and recruit density was positive and resembled the lower half of the unimodal relationship. Overall, adult barnacle density was able to explain 26-40% of the observed variation in recruit density. The unimodal adult-recruit relationship is consistent with previously documented intraspecific interactions. Between low and intermediate adult densities, the positive nature of the relationship relates to the previously documented fact that settlement-seeking larvae are chemically and visually attracted to adults, which might be important for local population persistence. Between intermediate and high adult densities, where population persistence may be less compromised and the abundant adults may limit recruit growth and survival, the negative nature of the relationship suggests that adult barnacles at increasingly high densities stimulate larvae to settle elsewhere. The unimodal pattern may be especially common on shores with moderate rates of larval supply to the shore, because high rates of larval supply may swamp the coast with settlers, decoupling recruit density from local adult abundance.
Young, R L; DelConte, A
1999-11-01
The aim of this 24-cycle study was to evaluate the effects on serum lipid concentrations of an oral contraceptive preparation containing 100 microg levonorgestrel and 20 microg ethinyl estradiol. Forty-two healthy women were enrolled in a study designed to evaluate the effects on serum lipid concentrations of an oral contraceptive containing 100 microg levonorgestrel and 20 microg ethinyl estradiol. Lipid data were evaluated for 28 women who completed 24 cycles of treatment with a preparation of 100 microg levonorgestrel with 20 microg ethinyl estradiol for 21 days followed by placebo for 7 days. Concentrations of triglycerides, total cholesterol, high-density lipoprotein cholesterol, high-density lipoprotein cholesterol subfractions 2 and 3, low-density lipoprotein cholesterol, and apolipoproteins A-I and B were analyzed. Mean percentage changes from baseline were tested for significance by means of paired Student t tests. Total cholesterol, high-density lipoprotein cholesterol, high-density lipoprotein subfraction 2, and apolipoprotein A-I concentrations were not significantly changed from baseline. Neither was the ratio of high-density lipoprotein subfraction 2 to high-density lipoprotein subfraction 3. Mean percentage increases in concentrations of triglyceride, high-density lipoprotein subfraction 3, apolipoprotein B, and low-density lipoprotein cholesterol and increases in the ratios of total cholesterol to high-density lipoprotein cholesterol, low-density lipoprotein cholesterol to high-density lipoprotein cholesterol, and apolipoprotein B to apolipoprotein A-I were significant (P <.05) at >/=1 cycle. By cycle 24, however, only the concentration of high-density lipoprotein subfraction 3 remained significantly elevated. Changes in the plasma lipid profiles among women receiving monophasic 100 microg levonorgestrel with 20 microg ethinyl estradiol were similar to those seen with other low-dose oral contraceptives, but by cycle 24 only 1 of 7 mean values remained significantly different from baseline.
Robinson, Orin J.; McGowan, Conor P.; Devers, Patrick K.
2017-01-01
Density dependence regulates populations of many species across all taxonomic groups. Understanding density dependence is vital for predicting the effects of climate, habitat loss and/or management actions on wild populations. Migratory species likely experience seasonal changes in the relative influence of density dependence on population processes such as survival and recruitment throughout the annual cycle. These effects must be accounted for when characterizing migratory populations via population models.To evaluate effects of density on seasonal survival and recruitment of a migratory species, we used an existing full annual cycle model framework for American black ducks Anas rubripes, and tested different density effects (including no effects) on survival and recruitment. We then used a Bayesian model weight updating routine to determine which population model best fit observed breeding population survey data between 1990 and 2014.The models that best fit the survey data suggested that survival and recruitment were affected by density dependence and that density effects were stronger on adult survival during the breeding season than during the non-breeding season.Analysis also suggests that regulation of survival and recruitment by density varied over time. Our results showed that different characterizations of density regulations changed every 8–12 years (three times in the 25-year period) for our population.Synthesis and applications. Using a full annual cycle, modelling framework and model weighting routine will be helpful in evaluating density dependence for migratory species in both the short and long term. We used this method to disentangle the seasonal effects of density on the continental American black duck population which will allow managers to better evaluate the effects of habitat loss and potential habitat management actions throughout the annual cycle. The method here may allow researchers to hone in on the proper form and/or strength of density dependence for use in models for conservation recommendations.
Modeling thermospheric neutral density
NASA Astrophysics Data System (ADS)
Qian, Liying
Satellite drag prediction requires determination of thermospheric neutral density. The NCAR Thermosphere-Ionosphere-Electrodynamics General Circulation Model (TIEGCM) and the global-mean Thermosphere-Ionosphere-Mesosphere-Electrodynamics General Circulation Model (TIMEGCM) were used to quantify thermospheric neutral density and its variations, focusing on annual/semiannual variation, the effect of using measured solar irradiance on model calculations of solar-cycle variation, and global change in the thermosphere. Satellite drag data and the MSIS00 empirical model were utilized to compare to the TIEGCM simulations. The TIEGCM simulations indicated that eddy diffusion and its annual/semiannual variation is a mechanism for annual/semiannual density variation in the thermosphere. It was found that eddy diffusion near the turbopause can effectively influence thermospheric neutral density. Eddy diffusion, together with annual insolation variation and large-scale circulation, generated global annual/semiannual density variation observed by satellite drag. Using measured solar irradiance as solar input for the TIEGCM improved the solar-cycle dependency of the density calculation shown in F10.7 -based thermospheric empirical models. It has been found that the empirical models overestimate density at low solar activity. The TIEGCM simulations did not show such solar-cycle dependency. Using historic measurements of CO2 and F 10.7, simulations of the global-mean TIMEGCM showed that thermospheric neutral density at 400 km had an average long-term decrease of 1.7% per decade from 1970 to 2000. A forecast of density decrease for solar cycle 24 suggested that thermospheric density will decrease at 400 km from present to the end of solar cycle 24 at a rate of 2.7% per decade. Reduction in thermospheric density causes less atmospheric drag on earth-orbiting space objects. The implication of this long-term decrease of thermospheric neutral density is that it will increase the lifetime of satellites, but also it will increase the amount of space junk.
Effects of LiDAR point density and landscape context on estimates of urban forest biomass
NASA Astrophysics Data System (ADS)
Singh, Kunwar K.; Chen, Gang; McCarter, James B.; Meentemeyer, Ross K.
2015-03-01
Light Detection and Ranging (LiDAR) data is being increasingly used as an effective alternative to conventional optical remote sensing to accurately estimate aboveground forest biomass ranging from individual tree to stand levels. Recent advancements in LiDAR technology have resulted in higher point densities and improved data accuracies accompanied by challenges for procuring and processing voluminous LiDAR data for large-area assessments. Reducing point density lowers data acquisition costs and overcomes computational challenges for large-area forest assessments. However, how does lower point density impact the accuracy of biomass estimation in forests containing a great level of anthropogenic disturbance? We evaluate the effects of LiDAR point density on the biomass estimation of remnant forests in the rapidly urbanizing region of Charlotte, North Carolina, USA. We used multiple linear regression to establish a statistical relationship between field-measured biomass and predictor variables derived from LiDAR data with varying densities. We compared the estimation accuracies between a general Urban Forest type and three Forest Type models (evergreen, deciduous, and mixed) and quantified the degree to which landscape context influenced biomass estimation. The explained biomass variance of the Urban Forest model, using adjusted R2, was consistent across the reduced point densities, with the highest difference of 11.5% between the 100% and 1% point densities. The combined estimates of Forest Type biomass models outperformed the Urban Forest models at the representative point densities (100% and 40%). The Urban Forest biomass model with development density of 125 m radius produced the highest adjusted R2 (0.83 and 0.82 at 100% and 40% LiDAR point densities, respectively) and the lowest RMSE values, highlighting a distance impact of development on biomass estimation. Our evaluation suggests that reducing LiDAR point density is a viable solution to regional-scale forest assessment without compromising the accuracy of biomass estimates, and these estimates can be further improved using development density.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Seljak, Uroš; McDonald, Patrick, E-mail: useljak@berkeley.edu, E-mail: pvmcdonald@lbl.gov
We develop a phase space distribution function approach to redshift space distortions (RSD), in which the redshift space density can be written as a sum over velocity moments of the distribution function. These moments are density weighted and have well defined physical interpretation: their lowest orders are density, momentum density, and stress energy density. The series expansion is convergent if kμu/aH < 1, where k is the wavevector, H the Hubble parameter, u the typical gravitational velocity and μ = cos θ, with θ being the angle between the Fourier mode and the line of sight. We perform an expansionmore » of these velocity moments into helicity modes, which are eigenmodes under rotation around the axis of Fourier mode direction, generalizing the scalar, vector, tensor decomposition of perturbations to an arbitrary order. We show that only equal helicity moments correlate and derive the angular dependence of the individual contributions to the redshift space power spectrum. We show that the dominant term of μ{sup 2} dependence on large scales is the cross-correlation between the density and scalar part of momentum density, which can be related to the time derivative of the matter power spectrum. Additional terms contributing to μ{sup 2} and dominating on small scales are the vector part of momentum density-momentum density correlations, the energy density-density correlations, and the scalar part of anisotropic stress density-density correlations. The second term is what is usually associated with the small scale Fingers-of-God damping and always suppresses power, but the first term comes with the opposite sign and always adds power. Similarly, we identify 7 terms contributing to μ{sup 4} dependence. Some of the advantages of the distribution function approach are that the series expansion converges on large scales and remains valid in multi-stream situations. We finish with a brief discussion of implications for RSD in galaxies relative to dark matter, highlighting the issue of scale dependent bias of velocity moments correlators.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ren, S; Tianjin University, Tianjin; Hara, W
Purpose: MRI has a number of advantages over CT as a primary modality for radiation treatment planning (RTP). However, one key bottleneck problem still remains, which is the lack of electron density information in MRI. In the work, a reliable method to map electron density is developed by leveraging the differential contrast of multi-parametric MRI. Methods: We propose a probabilistic Bayesian approach for electron density mapping based on T1 and T2-weighted MRI, using multiple patients as atlases. For each voxel, we compute two conditional probabilities: (1) electron density given its image intensity on T1 and T2-weighted MR images, and (2)more » electron density given its geometric location in a reference anatomy. The two sources of information (image intensity and spatial location) are combined into a unifying posterior probability density function using the Bayesian formalism. The mean value of the posterior probability density function provides the estimated electron density. Results: We evaluated the method on 10 head and neck patients and performed leave-one-out cross validation (9 patients as atlases and remaining 1 as test). The proposed method significantly reduced the errors in electron density estimation, with a mean absolute HU error of 138, compared with 193 for the T1-weighted intensity approach and 261 without density correction. For bone detection (HU>200), the proposed method had an accuracy of 84% and a sensitivity of 73% at specificity of 90% (AUC = 87%). In comparison, the AUC for bone detection is 73% and 50% using the intensity approach and without density correction, respectively. Conclusion: The proposed unifying method provides accurate electron density estimation and bone detection based on multi-parametric MRI of the head with highly heterogeneous anatomy. This could allow for accurate dose calculation and reference image generation for patient setup in MRI-based radiation treatment planning.« less
Potential misuse of avian density as a conservation metric.
Skagen, Susan K; Yackel Adams, Amy A
2011-02-01
Effective conservation metrics are needed to evaluate the success of management in a rapidly changing world. Reproductive rates and densities of breeding birds (as a surrogate for reproductive rate) have been used to indicate the quality of avian breeding habitat, but the underlying assumptions of these metrics rarely have been examined. When birds are attracted to breeding areas in part by the presence of conspecifics and when breeding in groups influences predation rates, the effectiveness of density and reproductive rate as indicators of habitat quality is reduced. It is beneficial to clearly distinguish between individual- and population-level processes when evaluating habitat quality. We use the term reproductive rate to refer to both levels and further distinguish among levels by using the terms per capita fecundity (number of female offspring per female per year, individual level) and population growth rate (the product of density and per capita fecundity, population level). We predicted how density and reproductive rate interact over time under density-independent and density-dependent scenarios, assuming the ideal free distribution model of how birds settle in breeding habitats. We predicted population density of small populations would be correlated positively with both per capita fecundity and population growth rate due to the Allee effect. For populations in the density-dependent growth phase, we predicted no relation between density and per capita fecundity (because individuals in all patches will equilibrate to the same success rate) and a positive relation between density and population growth rate. Several ecological theories collectively suggest that positive correlations between density and per capita fecundity would be difficult to detect. We constructed a decision tree to guide interpretation of positive, neutral, nonlinear, and negative relations between density and reproductive rates at individual and population levels. Journal compilation ©2010 Society for Conservation Biology. No claim to original US government works.
ERIC Educational Resources Information Center
Design and Environment, 1972
1972-01-01
Three-part report pinpointing problems and uncovering solutions for the dual concepts of density (ratio of people to space) and crowding (psychological response to density). Section one, A Primer on Crowding,'' reviews new psychological and social findings; section two, Density in the Suburbs,'' shows conflict between status quo and increased…
Laser beat wave excitation of terahertz radiation in a plasma slab
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chauhan, Santosh; Parashar, Jetendra, E-mail: j.p.parashar@gmail.com
2014-10-15
Terahertz (THz) radiation generation by nonlinear mixing of lasers, obliquely incident on a plasma slab is investigated. Two cases are considered: (i) electron density profile is parabolic but density peak is below the critical density corresponding to the beat frequency, (ii) plasma boundaries are sharp and density is uniform. In both cases, nonlinearity arises through the ponderomotive force that gives rise to electron drift at the beat frequency. In the case of inhomogeneous plasma, non zero curl of the nonlinear current density gives rise to electromagnetic THz generation. In case of uniform plasma, the sharp density variation at the plasmamore » boundaries leads to radiation generation. In a slab width of less than a terahertz wavelength, plasma density one fourth of terahertz critical density, laser intensities ∼10{sup 17 }W/cm{sup 2} at 1 μm, one obtains the THz intensity ∼1 GW/cm{sup 2} at 3 THz radiation frequency.« less
Globally optimal superconducting magnets part I: minimum stored energy (MSE) current density map.
Tieng, Quang M; Vegh, Viktor; Brereton, Ian M
2009-01-01
An optimal current density map is crucial in magnet design to provide the initial values within search spaces in an optimization process for determining the final coil arrangement of the magnet. A strategy for obtaining globally optimal current density maps for the purpose of designing magnets with coaxial cylindrical coils in which the stored energy is minimized within a constrained domain is outlined. The current density maps obtained utilising the proposed method suggests that peak current densities occur around the perimeter of the magnet domain, where the adjacent peaks have alternating current directions for the most compact designs. As the dimensions of the domain are increased, the current density maps yield traditional magnet designs of positive current alone. These unique current density maps are obtained by minimizing the stored magnetic energy cost function and therefore suggest magnet coil designs of minimal system energy. Current density maps are provided for a number of different domain arrangements to illustrate the flexibility of the method and the quality of the achievable designs.
Density probability distribution functions of diffuse gas in the Milky Way
NASA Astrophysics Data System (ADS)
Berkhuijsen, E. M.; Fletcher, A.
2008-10-01
In a search for the signature of turbulence in the diffuse interstellar medium (ISM) in gas density distributions, we determined the probability distribution functions (PDFs) of the average volume densities of the diffuse gas. The densities were derived from dispersion measures and HI column densities towards pulsars and stars at known distances. The PDFs of the average densities of the diffuse ionized gas (DIG) and the diffuse atomic gas are close to lognormal, especially when lines of sight at |b| < 5° and |b| >= 5° are considered separately. The PDF of
Dual effects of pedestrian density on emergency evacuation
NASA Astrophysics Data System (ADS)
Ma, Yi; Lee, Eric Wai Ming; Yuen, Richard Kwok Kit
2017-02-01
This paper investigates the effect of the pedestrian density in building on the evacuation dynamic with simulation method. In the simulations, both the visibility in building and the exit limit of building are taken into account. The simulation results show that the effect of the pedestrian density in building on the evacuation dynamics is dual. On the one hand, when the visibility in building is very large, the increased pedestrian density plays a negative effect. On the other hand, when the visibility in building is very small, the increased pedestrian density can play a positive effect. The simulation results also show that when both the exit width and visibility are very small, the varying of evacuation time with regard to the pedestrian density is non-monotonous and presents a U-shaped tendency. That is, in this case, too large or too small pedestrian density in building is disadvantageous to the evacuation process. Our findings provide a new insight about the effect of the pedestrian density in building on the evacuation dynamic.
Transition from Selective Withdrawal to Light Layer Entrainment in an Oil-Water System
NASA Astrophysics Data System (ADS)
Hartenberger, Joel; O'Hern, Timothy; Webb, Stephen; James, Darryl
2010-11-01
Selective withdrawal refers to the selective removal of fluid of one density without entraining an adjacent fluid layer of a different density. Most prior literature has examined removal of the lower density fluid and the transition to entraining the higher density fluid. In the present experiments, a higher density liquid is removed through a tube that extends just below its interface with a lower density fluid. The critical depth for a given flow rate at which the liquid-liquid interface transitions to entrain the lighter fluid was measured. Experiments were performed for a range of different light layer silicone oils and heavy layer water or brine, covering a range of density and viscosity ratios. Applications include density-stratified reservoirs and brine removal from oil storage caverns. Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.
Knowledge of Breast Density and Awareness of Related Breast Cancer Risk
Duric, Neb; Littrup, Peter; Bey-Knight, Lisa; Penner, Louis; Albrecht, Terrance L.
2013-01-01
Little is known about women’s knowledge of breast density or between-race differences in this knowledge. In the current study, we examined knowledge of breast density and awareness of its role as a breast cancer risk factor among women who had previously taken part in a breast imaging study. Seventy-seven women (54.5 % Black) returned a survey assessing perceptions and accuracy of breast density knowledge, knowledge of one’s own breast density, and breast cancer risk awareness. White women had greater perceived knowledge of breast density compared to Black women; however, differences in the accuracy of definitions of breast density were due to education. Black women were less likely to know how dense their own breasts were. Black and White women both lacked awareness that having dense breast increased breast cancer risk. The results highlight the need to disseminate information regarding breast density to women, while ensuring that the information is equally accessible to both Black and White women. PMID:23467999
Knowledge of breast density and awareness of related breast cancer risk.
Manning, Mark A; Duric, Neb; Littrup, Peter; Bey-Knight, Lisa; Penner, Louis; Albrecht, Terrance L
2013-06-01
Little is known about women's knowledge of breast density or between-race differences in this knowledge. In the current study, we examined knowledge of breast density and awareness of its role as a breast cancer risk factor among women who had previously taken part in a breast imaging study. Seventy-seven women (54.5 % Black) returned a survey assessing perceptions and accuracy of breast density knowledge, knowledge of one's own breast density, and breast cancer risk awareness. White women had greater perceived knowledge of breast density compared to Black women; however, differences in the accuracy of definitions of breast density were due to education. Black women were less likely to know how dense their own breasts were. Black and White women both lacked awareness that having dense breast increased breast cancer risk. The results highlight the need to disseminate information regarding breast density to women, while ensuring that the information is equally accessible to both Black and White women.
Real-time electron density measurements from Cotton-Mouton effect in JET machine
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brombin, M.; Electrical Engineering Department, Padova University, via Gradenigo 6-A, 35131 Padova; Boboc, A.
Real-time density profile measurements are essential for advanced fusion tokamak operation and interferometry is a proven method for this task. Nevertheless, as a consequence of edge localized modes, pellet injections, fast density increases, or disruptions, the interferometer is subject to fringe jumps, which produce loss of the signal preventing reliable use of the measured density in a real-time feedback controller. An alternative method to measure the density is polarimetry based on the Cotton-Mouton effect, which is proportional to the line-integrated electron density. A new analysis approach has been implemented and tested to verify the reliability of the Cotton-Mouton measurements formore » a wide range of plasma parameters and to compare the density evaluated from polarimetry with that from interferometry. The density measurements based on polarimetry are going to be integrated in the real-time control system of JET since the difference with the interferometry is within one fringe for more than 90% of the cases.« less
The statistics of peaks of Gaussian random fields. [cosmological density fluctuations
NASA Technical Reports Server (NTRS)
Bardeen, J. M.; Bond, J. R.; Kaiser, N.; Szalay, A. S.
1986-01-01
A set of new mathematical results on the theory of Gaussian random fields is presented, and the application of such calculations in cosmology to treat questions of structure formation from small-amplitude initial density fluctuations is addressed. The point process equation is discussed, giving the general formula for the average number density of peaks. The problem of the proper conditional probability constraints appropriate to maxima are examined using a one-dimensional illustration. The average density of maxima of a general three-dimensional Gaussian field is calculated as a function of heights of the maxima, and the average density of 'upcrossing' points on density contour surfaces is computed. The number density of peaks subject to the constraint that the large-scale density field be fixed is determined and used to discuss the segregation of high peaks from the underlying mass distribution. The machinery to calculate n-point peak-peak correlation functions is determined, as are the shapes of the profiles about maxima.
Nonuniversality of density and disorder in jammed sphere packings
NASA Astrophysics Data System (ADS)
Jiao, Yang; Stillinger, Frank H.; Torquato, Salvatore
2011-01-01
We show for the first time that collectively jammed disordered packings of three-dimensional monodisperse frictionless hard spheres can be produced and tuned using a novel numerical protocol with packing density ϕ as low as 0.6. This is well below the value of 0.64 associated with the maximally random jammed state and entirely unrelated to the ill-defined "random loose packing" state density. Specifically, collectively jammed packings are generated with a very narrow distribution centered at any density ϕ over a wide density range ϕ ɛ(0.6,0.740 48…) with variable disorder. Our results support the view that there is no universal jamming point that is distinguishable based on the packing density and frequency of occurrence. Our jammed packings are mapped onto a density-order-metric plane, which provides a broader characterization of packings than density alone. Other packing characteristics, such as the pair correlation function, average contact number, and fraction of rattlers are quantified and discussed.
NASA Astrophysics Data System (ADS)
Wei, Xixiong; Deng, Wanling; Fang, Jielin; Ma, Xiaoyu; Huang, Junkai
2017-10-01
A physical-based straightforward extraction technique for interface and bulk density of states in metal oxide semiconductor thin film transistors (TFTs) is proposed by using the capacitance-voltage (C-V) characteristics. The interface trap density distribution with energy has been extracted from the analysis of capacitance-voltage characteristics. Using the obtained interface state distribution, the bulk trap density has been determined. With this method, for the interface trap density, it is found that deep state density nearing the mid-gap is approximately constant and tail states density increases exponentially with energy; for the bulk trap density, it is a superposition of exponential deep states and exponential tail states. The validity of the extraction is verified by comparisons with the measured current-voltage (I-V) characteristics and the simulation results by the technology computer-aided design (TCAD) model. This extraction method uses non-numerical iteration which is simple, fast and accurate. Therefore, it is very useful for TFT device characterization.
Host density increases parasite recruitment but decreases host risk in a snail-trematode system.
Buck, J C; Hechinger, R F; Wood, A C; Stewart, T E; Kuris, A M; Lafferty, K D
2017-08-01
Most species aggregate in local patches. High host density in patches increases contact rate between hosts and parasites, increasing parasite transmission success. At the same time, for environmentally transmitted parasites, high host density can decrease infection risk to individual hosts, because infective stages are divided among all hosts in a patch, leading to safety in numbers. We tested these predictions using the California horn snail, Cerithideopsis californica (=Cerithidea californica), which is the first intermediate host for at least 19 digenean trematode species in California estuaries. Snails become infected by ingesting trematode eggs or through penetration by free-swimming miracidia that hatch from trematode eggs deposited with final-host (bird or mammal) feces. This complex life cycle decouples infective-stage production from transmission, raising the possibility of an inverse relationship between host density and infection risk at local scales. In a field survey, higher snail density was associated with increased trematode (infected snail) density, but decreased trematode prevalence, consistent with either safety in numbers, parasitic castration, or both. To determine the extent to which safety in numbers drove the negative snail-density-trematode-prevalence association, we manipulated uninfected snail density in 83 cages at eight sites within Carpinteria Salt Marsh (California, USA). At each site, we quantified snail density and used data on final-host (bird and raccoon) distributions to control for between-site variation in infective-stage supply. After three months, overall trematode infections per cage increased with snail biomass density. For egg-transmitted trematodes, per-snail infection risk decreased with snail biomass density in the cage and surrounding area, whereas per-snail infection risk did not decrease for miracidium-transmitted trematodes. Furthermore, both trematode recruitment and infection risk increased with infective-stage input, but this was significant only for miracidium-transmitted species. A model parameterized with our experimental results and snail densities from 524 field transects estimated that safety in numbers, when combined with patchy host density, halved per capita infection risk in this snail population. We conclude that, depending on transmission mode, host density can enhance parasite recruitment and reduce per capita infection risk. © 2017 by the Ecological Society of America.
Neighbourhood walkability, road density and socio-economic status in Sydney, Australia.
Cowie, Christine T; Ding, Ding; Rolfe, Margaret I; Mayne, Darren J; Jalaludin, Bin; Bauman, Adrian; Morgan, Geoffrey G
2016-04-27
Planning and transport agencies play a vital role in influencing the design of townscapes, travel modes and travel behaviors, which in turn impact on the walkability of neighbourhoods and residents' physical activity opportunities. Optimising neighbourhood walkability is desirable in built environments, however, the population health benefits of walkability may be offset by increased exposure to traffic related air pollution. This paper describes the spatial distribution of neighbourhood walkability and weighted road density, a marker for traffic related air pollution, in Sydney, Australia. As exposure to air pollution is related to socio-economic status in some cities, this paper also examines the spatial distribution of weighted road density and walkability by socio-economic status (SES). We calculated walkability, weighted road density (as a measure of traffic related air pollution) and SES, using predefined and validated measures, for 5858 Sydney neighbourhoods, representing 3.6 million population. We overlaid tertiles of walkability and weighted road density to define "sweet-spots" (high walkability-low weighted road density), and "sour- spots" (low walkability-high weighted road density) neighbourhoods. We also examined the distribution of walkability and weighted road density by SES quintiles. Walkability and weighted road density showed a clear east-west gradient across the region. Our study found that only 4 % of Sydney's population lived in sweet-spot" neighbourhoods with high walkability and low weighted road density (desirable), and these tended to be located closer to the city centre. A greater proportion of neighbourhoods had health limiting attributes of high weighted road density or low walkability (about 20 % each), and over 5 % of the population lived in "sour-spot" neighbourhoods with low walkability and high weighted road density (least desirable). These neighbourhoods were more distant from the city centre and scattered more widely. There were no linear trends between walkability/weighted road density and neighbourhood SES. Our walkability and weighted road density maps and associated analyses by SES can help identify neighbourhoods with inequalities in health-promoting or health-limiting environments. Planning agencies should seek out opportunities for increased neighbourhood walkability through improved urban development and transport planning, which simultaneously minimizes exposure to traffic related air pollution.
Grabowski, Ireneusz; Teale, Andrew M; Śmiga, Szymon; Bartlett, Rodney J
2011-09-21
The framework of ab initio density-functional theory (DFT) has been introduced as a way to provide a seamless connection between the Kohn-Sham (KS) formulation of DFT and wave-function based ab initio approaches [R. J. Bartlett, I. Grabowski, S. Hirata, and S. Ivanov, J. Chem. Phys. 122, 034104 (2005)]. Recently, an analysis of the impact of dynamical correlation effects on the density of the neon atom was presented [K. Jankowski, K. Nowakowski, I. Grabowski, and J. Wasilewski, J. Chem. Phys. 130, 164102 (2009)], contrasting the behaviour for a variety of standard density functionals with that of ab initio approaches based on second-order Møller-Plesset (MP2) and coupled cluster theories at the singles-doubles (CCSD) and singles-doubles perturbative triples [CCSD(T)] levels. In the present work, we consider ab initio density functionals based on second-order many-body perturbation theory and coupled cluster perturbation theory in a similar manner, for a range of small atomic and molecular systems. For comparison, we also consider results obtained from MP2, CCSD, and CCSD(T) calculations. In addition to this density based analysis, we determine the KS correlation potentials corresponding to these densities and compare them with those obtained for a range of ab initio density functionals via the optimized effective potential method. The correlation energies, densities, and potentials calculated using ab initio DFT display a similar systematic behaviour to those derived from electronic densities calculated using ab initio wave function theories. In contrast, typical explicit density functionals for the correlation energy, such as VWN5 and LYP, do not show behaviour consistent with this picture of dynamical correlation, although they may provide some degree of correction for already erroneous explicitly density-dependent exchange-only functionals. The results presented here using orbital dependent ab initio density functionals show that they provide a treatment of exchange and correlation contributions within the KS framework that is more consistent with traditional ab initio wave function based methods.
NASA Technical Reports Server (NTRS)
Richards, P. G.; Buonsanto, M. J.; Reinisch, B. W.; Holt, J.; Fennelly, J. A.; Scali, J. L.; Comfort, R. H.; Germany, G. A.; Spann, J.; Brittnacher, M.
1999-01-01
Measurements from a network of digisondes and an incoherent scatter radar In Eastern North American For January 6-12, 1997 have been compared with the Field Line Interhemispheric Plasma (FLIP) model which now includes the effects of electric field convective. With the exception of Bermuda, the model reproduces the daytime electron density very well most of the time. As is typical behavior for winter solar minimum on magnetically undisturbed nights, the measurements at Millstone Hill show high electron temperatures before midnight followed by a rapid decay, which is accompanied by a pronounced density enhancement in the early morning hours. The FLIP model reproduces the nighttime density enhancement well, provided the model is constrained to follow the topside electron temperature and the flux tube is full. Similar density enhancements are seen at Goose Bay, Wallops Island and Bermuda. However, the peak height variation and auroral images indicate the density enhancements at Goose Bay are most likely due to particle precipitation. Contrary to previously published work we find that the nighttime density variation at Millstone Hill is driven by the temperature behavior and not the other way around. Thus, in both the data and model, the overall nighttime density is lowered and the enhancement does not occur if the temperature remains high all night. Our calculations show that convections of plasma from higher magnetic latitudes does not cause the observed density maximum but it may enhance the density maximum if over-full flux tubes are convected over the station. On the other had, convection of flux tubes with high temperatures and depleted densities may prevent the density maximum from occurring. Despite the success in modeling the nighttime density enhancements, there remain two unresolved problems. First, the measured density decays much faster than the modeled density near sunset at Millstone Hill and Goose Bay though not at lower latitude stations. Second, we cannot fully explain the large temperatures before midnight nor the sudden decay near midnight.
Entanglement classification in the noninteracting Fermi gas
NASA Astrophysics Data System (ADS)
Jafarizadeh, M. A.; Eghbalifam, F.; Nami, S.; Yahyavi, M.
In this paper, entanglement classification shared among the spins of localized fermions in the noninteracting Fermi gas is studied. It is proven that the Fermi gas density matrix is block diagonal on the basis of the projection operators to the irreducible representations of symmetric group Sn. Every block of density matrix is in the form of the direct product of a matrix and identity matrix. Then it is useful to study entanglement in every block of density matrix separately. The basis of corresponding Hilbert space are identified from the Schur-Weyl duality theorem. Also, it can be shown that the symmetric part of the density matrix is fully separable. Then it has been shown that the entanglement measure which is introduced in Eltschka et al. [New J. Phys. 10, 043104 (2008)] and Guhne et al. [New J. Phys. 7, 229 (2005)], is zero for the even n qubit Fermi gas density matrix. Then by focusing on three spin reduced density matrix, the entanglement classes have been investigated. In three qubit states there is an entanglement measure which is called 3-tangle. It can be shown that 3-tangle is zero for three qubit density matrix, but the density matrix is not biseparable for all possible values of its parameters and its eigenvectors are in the form of W-states. Then an entanglement witness for detecting non-separable state and an entanglement witness for detecting nonbiseparable states, have been introduced for three qubit density matrix by using convex optimization problem. Finally, the four spin reduced density matrix has been investigated by restricting the density matrix to the irreducible representations of Sn. The restricted density matrix to the subspaces of the irreducible representations: Ssym, S3,1 and S2,2 are denoted by ρsym, ρ3,1 and ρ2,2, respectively. It has been shown that some highly entangled classes (by using the results of Miyake [Phys. Rev. A 67, 012108 (2003)] for entanglement classification) do not exist in the blocks of density matrix ρ3,1 and ρ2,2, so these classes do not exist in the total Fermi gas density matrix.
NASA Astrophysics Data System (ADS)
Soler, J. D.; Ade, P. A. R.; Angilè, F. E.; Ashton, P.; Benton, S. J.; Devlin, M. J.; Dober, B.; Fissel, L. M.; Fukui, Y.; Galitzki, N.; Gandilo, N. N.; Hennebelle, P.; Klein, J.; Li, Z.-Y.; Korotkov, A. L.; Martin, P. G.; Matthews, T. G.; Moncelsi, L.; Netterfield, C. B.; Novak, G.; Pascale, E.; Poidevin, F.; Santos, F. P.; Savini, G.; Scott, D.; Shariff, J. A.; Thomas, N. E.; Tucker, C. E.; Tucker, G. S.; Ward-Thompson, D.
2017-07-01
We statistically evaluated the relative orientation between gas column density structures, inferred from Herschel submillimetre observations, and the magnetic field projected on the plane of sky, inferred from polarized thermal emission of Galactic dust observed by the Balloon-borne Large-Aperture Submillimetre Telescope for Polarimetry (BLASTPol) at 250, 350, and 500 μm, towards the Vela C molecular complex. First, we find very good agreement between the polarization orientations in the three wavelength-bands, suggesting that, at the considered common angular resolution of 3.´0 that corresponds to a physical scale of approximately 0.61 pc, the inferred magnetic field orientation is not significantly affected by temperature or dust grain alignment effects. Second, we find that the relative orientation between gas column density structures and the magnetic field changes progressively with increasing gas column density, from mostly parallel or having no preferred orientation at low column densities to mostly perpendicular at the highest column densities. This observation is in agreement with previous studies by the Planck collaboration towards more nearby molecular clouds. Finally, we find a correspondencebetween (a) the trends in relative orientation between the column density structures and the projected magnetic field; and (b) the shape of the column density probability distribution functions (PDFs). In the sub-regions of Vela C dominated by one clear filamentary structure, or "ridges", where the high-column density tails of the PDFs are flatter, we find a sharp transition from preferentially parallel or having no preferred relative orientation at low column densities to preferentially perpendicular at highest column densities. In the sub-regions of Vela C dominated by several filamentary structures with multiple orientations, or "nests", where the maximum values of the column density are smaller than in the ridge-like sub-regions and the high-column density tails of the PDFs are steeper, such a transition is also present, but it is clearly less sharp than in the ridge-like sub-regions. Both of these results suggest that the magnetic field is dynamically important for the formation of density structures in this region.