DOE Office of Scientific and Technical Information (OSTI.GOV)
Shiraga, H.; Mahigashi, N.; Yamada, T.
2008-10-15
Low-density plastic foam filled with liquid deuterium is one of the candidates for inertial fusion target. Density profile and trajectory of 527 nm laser-irradiated planer foam-deuterium target in the acceleration phase were observed with streaked side-on x-ray backlighting. An x-ray imager employing twin slits coupled to an x-ray streak camera was used to simultaneously observe three images of the target: self-emission from the target, x-ray backlighter profile, and the backlit target. The experimentally obtained density profile and trajectory were in good agreement with predictions by one-dimensional hydrodynamic simulation code ILESTA-1D.
NASA Astrophysics Data System (ADS)
Durazo, Juan A.; Kostelich, Eric J.; Mahalov, Alex
2017-09-01
We propose a targeted observation strategy, based on the influence matrix diagnostic, that optimally selects where additional observations may be placed to improve ionospheric forecasts. This strategy is applied in data assimilation observing system experiments, where synthetic electron density vertical profiles, which represent those of Constellation Observing System for Meteorology, Ionosphere, and Climate/Formosa satellite 3, are assimilated into the Thermosphere-Ionosphere-Electrodynamics General Circulation Model using the local ensemble transform Kalman filter during the 26 September 2011 geomagnetic storm. During each analysis step, the observation vector is augmented with five synthetic vertical profiles optimally placed to target electron density errors, using our targeted observation strategy. Forecast improvement due to assimilation of augmented vertical profiles is measured with the root-mean-square error (RMSE) of analyzed electron density, averaged over 600 km regions centered around the augmented vertical profile locations. Assimilating vertical profiles with targeted locations yields about 60%-80% reduction in electron density RMSE, compared to a 15% average reduction when assimilating randomly placed vertical profiles. Assimilating vertical profiles whose locations target the zonal component of neutral winds (Un) yields on average a 25% RMSE reduction in Un estimates, compared to a 2% average improvement obtained with randomly placed vertical profiles. These results demonstrate that our targeted strategy can improve data assimilation efforts during extreme events by detecting regions where additional observations would provide the largest benefit to the forecast.
NASA Astrophysics Data System (ADS)
Kawakami, Todd Mori
In April of 1995, the launch of the GPS Meteorology Experiment (GPS/MET) onboard the Orbview-1 satellite, formerly known as Microlab-1, provided the first technology demonstration of active limb sounding of the Earth's atmosphere with a low Earth orbiting spacecraft utilizing the signals transmitted by the satellites of the Global Positioning System (GPS). Though the experiment's primary mission was to probe the troposphere and stratosphere, GPS/MET was also capable of making radio occultation observations of the ionosphere. The application of the GPS occultation technique to the upper atmosphere created a unique opportunity to conduct ionospheric research with an unprecedented global distribution of observations. For operational support requirements, the Abel transform could be employed to invert the horizontal TEC profiles computed from the L1 and L2 phase measurements observed by GPS/MET into electron density profiles versus altitude in near real time. The usefulness of the method depends on how effectively the TEC limb profiles can be transformed into vertical electron density profiles. An assessment of GPS/MET's ability to determine electron density profiles needs to be examined to validate the significance of the GPS occultation method as a new and complementary ionospheric research tool to enhance the observational databases and improve space weather modeling and forecasting. To that end, simulations of the occultation observations and their inversions have been conducted to test the Abel transform algorithm and to provide qualitative information about the type and range of errors that might be experienced during the processing of real data. Comparisons of the electron density profiles inferred from real GPS/MET observations are then compared with coincident in situ measurements from the satellites of Defense Meteorological Satellite Program (DMSP) and ground-based remote sensing from digisonde and incoherent scatter radar facilities. The principal focus of this study is the validation of the electron density profiles inferred from GPS occultation observations using the Abel transform.
Light impurity transport in JET ILW L-mode plasmas
NASA Astrophysics Data System (ADS)
Bonanomi, N.; Mantica, P.; Giroud, C.; Angioni, C.; Manas, P.; Menmuir, S.; Contributors, JET
2018-03-01
A series of experimental observations of light impurity profiles was carried out in JET (Joint European Torus) ITER-like wall (ILW) L-mode plasmas in order to investigate their transport mechanisms. These discharges feature the presence of 3He, Be, C, N, Ne, whose profiles measured by active Charge Exchange diagnostics are compared with quasi-linear and non-linear gyro-kinetic simulations. The peaking of 3He density follows the electron density peaking, Be and Ne are also peaked, while the density profiles of C and N are flat in the mid plasma region. Gyro-kinetic simulations predict peaked density profiles for all the light impurities studied and at all the radial positions considered, and fail predicting the flat or hollow profiles observed for C and N at mid radius in our cases.
NASA Astrophysics Data System (ADS)
Jee, G.; Kim, E.; Kwak, Y. S.; Kim, Y.; Kil, H.
2017-12-01
We investigate the climatological characteristics of the ionospheric electron density profiles in the auroral and polar cap regions in comparison with the mid-latitude ionosphere using incoherent scatter radars (ISR) observations from Svalbard (78.15N, 16.05E), Tromso (69.59N, 19.23E), and Millstone Hill (42.6N, 288.5E) during a period of 1995 - 2015. Diurnal variations of electron density profiles from 100 to 500 km are compared among the three radar observations during equinox, summer and winter solstice for different solar and geomagnetic activities. Also investigated are the physical characteristics of E-region and F-region peak parameters of electron density profiles in the auroral and polar cap regions, which are significantly different from the mid-latitude ionosphere. In the polar ionosphere, the diurnal variations of density profiles are extremely small in summer hemisphere. Semiannual anomaly hardly appears for all latitudes, but winter anomaly occurs at mid-latitude and auroral ionospheres for high solar activity. Nighttime density becomes larger than daytime density in the winter polar cap ionosphere for high solar activity. The E-region peak is very distinctive in the nighttime auroral region and the peak height is nearly constant at about 110 km for all conditions. Compared with the F-region peak density, the E-region peak density does not change much with solar activity. Furthermore, the E-region peak density can be even larger than F-region density for low solar activity in the auroral region, particularly during disturbed condition.
Synopsis of the D- and E-regions during the energy budget campaign
NASA Technical Reports Server (NTRS)
Friedrich, M.; Baker, K. D.; Dickinson, P. H. G.; Dumbs, A.; Grandal, B.; Andreassen, O.; Thrane, E. V.; Smith, L. G.; Stauning, P.; Torkar, K. M.
1985-01-01
Electron density profiles derived from rocket-borne measurements are presented. These data were obtained at two different sites in northern Scandinavia under various degrees of geophysical disturbance. The observed electron density profiles are related to ionospheric absorption as observed with the dense riometer network in that area.
Results of Detailed Modeling of the Narrow-Line Region of Seyfert Galaxies
NASA Technical Reports Server (NTRS)
Moore, David; Cohen, Ross D.
1996-01-01
We present model line profiles of [O II] lambda3727, [Ne III] lambda3869, [O I] lambda5007, [Fe VII] lambda6087, [Fe X] lambda6374, [O I] lambda6300, H(alpha) lambda6563, and [S 2] lambda6731. The profiles presented here illustrate explicitly the pronounced effects that collisional de-excitation, and that spatial variations in both the ionization parameter and cloud column density, have on Narrow-Line Region (NLR) model profiles. The above effects were included only qualitatively in a previous analytical treatment by Moore and Cohen. By making a direct correspondence between these model profiles and the analytical model profiles of Moore and Cohen, and by comparing with the observed profiles presented in a companion paper and also with those presented elsewhere in the literature, we strengthen some of the conclusions of Moore and Cohen. Most notably, we argue for constant ionization parameter, uniformly accelerated outflow of clouds that are individually stratified in ionization, and the interpretation of emission-line width correlations with ionization potential as a column density effect. For comparison with previous observational studies, such as our own in a companion paper, we also calculate profile parameters for some of the models, and we present and discuss the resulting line width correlations with critical density (n(sub cr)) and Ionization Potential (IP). Because the models we favor are those that produce extended profile wings as observed in high spectral resolution studies, the line width correlations of our favoured models are of particular interest. Line width correlations with n(sub cr) and/or IP result only if the width parameter is more sensitive to extended profile wings than is the Full Width at Half-Maximum (FWHM). Correlations between FWHM and n(sub cr) and/or IP result only after convolving the model profiles with a broad instrumental profile that simulates the lower spectral resolution used in early observational studies. The model in agreement with the greatest number of observational considerations has electron density decreasing outward from n(sub e) approx. equals 10(exp 6)/cu cm to n(sub e) approx. equals 10(exp 2)/cu cm and, due to collisional de-excitation effects in the lowest velocity clouds, it generates broad flat-topped profile peaks in the lines of lowest critical density (e.g., [O II] lambda3727 and [S II] lambda(lambda)6716, 6731). Because the observed profile peaks of both low and high critical density lines are often very similar, our favored model requires a contribution to NLR emission-line spectra from low-velocity, low-density, and low-ionization gas not included in the model NLR.
Observational and Numerical Diagnostics of Galaxy Cluster Outer Regions
NASA Technical Reports Server (NTRS)
Eckert, D.; Vazza, F.; Ettori, S.; Molendi, S.; Nagai, D.; Lau, E.; Roncarelli, M.; Rossetti, M.; Snowden, S. L.; Gastaldello, F.
2011-01-01
Aims. We present the analysis of a local (z = 0.04 - 0.2) sample of 31 galaxy clusters with the aim of measuring the density of the X-ray emitting gas in cluster outskirts. We compare our results with numerical simulations to set constraints on the azimuthal symmetry and gas clumping in the outer regions of galaxy clusters. Methods. We exploit the large field-of-view and low instrumental background of ROSAT/PSPC to trace the density of the intracluster gas out to the virial radius. We perform a stacking of the density profiles to detect a signal beyond r(sub 200) and measure the typical density and scatter in cluster outskirts. We also compute the azimuthal scatter of the profiles with respect to the mean value to look for deviations from spherical symmetry. Finally, we compare our average density and scatter profiles with the results of numerical simulations. Results. As opposed to several recent results, we observe a steepening of the density profiles beyond approximately 0.3r(sub 500). Comparing our density profiles with simulations, we find that non-radiative runs predict too steep density profiles, whereas runs including additional physics and/or gas clumping are in better agreement with the observed gas distribution. We note a systematic difference between cool-core and non-cool core clusters beyond approximately 0.3r(sub 200), which we explain by a different distribution of the gas in the two classes. Beyond approximately r(sub 500), galaxy clusters deviate significantly from spherical symmetry, with only little differences between relaxed and disturbed systems. We find good agreement between the observed and predicted scatter profiles, but only when the 1% densest clumps are filtered out in the simulations. Conclusions. The general trend of steepening density around the virial radius indicates that the shallow density profiles found in several recent works were probably obtained along particular directions (e.g., filaments) and are not representative of the typical behavior of clusters. Comparing our results with numerical simulations, we find that non-radiative simulations fail to reproduce the gas distribution, even well outside cluster cores. Therefore, a detailed treatment of gas cooling, star formation, clumping, and AGN feedback is required to construct realistic models of cluster outer regions.
NASA Astrophysics Data System (ADS)
Pätzold, M.; Bird, M. K.; Häusler, B.; Peter, K.; Tellmann, S.; Tyler, G. L.
2016-10-01
In their recent paper, Grandin et al. (2014) claim to have developed a novel approach, principally a ray tracing method, to analyze radio sounding data from occulted spacecraft signals by planetary atmospheres without the usual assumptions of the radio occultation inversion method of a stratified, layered, symmetric atmosphere. They apply their "new approach" to observations of the Mars Express Radio Science (MaRS) experiment and compare their resulting temperature, neutral number density, and electron density profiles with those from MaRS, claiming that there is good agreement with the observations. The fact is, however, that there are serious disagreements in the most important altitude ranges. Their temperature profile shows a 30 K shift or a 300σ (1σ standard deviation = 0.1 K for the MaRS profile near the surface) difference toward warmer temperatures at the surface when compared with MaRS, while the MaRS profile is in best agreement with the profile from the Mars Climate Data Base V5.0 (MCD V5.0). Their full temperature profile from the surface to 250 km altitude deviates significantly from the MCD V5.0 profile. Their ionospheric electron density profile is considerably different from that derived from the MaRs observations. Although Grandin et al. (2014) claim to derive the neutral number density and temperature profiles above 200 km, including the asymptotic exosphere temperature, it is simply not possible to derive this information from what is essentially noise.
Detection of an electron beam in a high density plasma via an electrostatic probe
NASA Astrophysics Data System (ADS)
Majeski, Stephen; Yoo, Jongsoo; Zweben, Stewart; Yamada, Masaaki
2018-07-01
An electron beam is detected by a 1D floating potential probe array in a relatively high density (1012–1013 cm‑3) and low temperature (∼5 eV) plasma of the Magnetic Reconnection Experiment. Clear perturbations in the floating potential profile by the electron beam are observed. Based on the floating potential profile and a current balance equation to the probe array tips, the effective width of the electron beam is determined, from which we determine the radial and toroidal beam current density profiles. After the profile of the electron beam is specified from the measured beam current, we demonstrate the consistency of the current balance equation and the location of the perturbation is also in agreement with field line mapping. No significant broadening of the electron beam is observed after the beam propagates for tens of centimeters through the high density plasma. These results prove that the field line mapping is, in principle, possible in high density plasmas.
Detection of an electron beam in a high density plasma via an electrostatic probe
DOE Office of Scientific and Technical Information (OSTI.GOV)
Majeski, Stephen; Yoo, Jongsoo; Zweben, Stewart
Here, an electron beam is detected by a 1D floating potential probe array in a relatively high density (10 12–10 13 cm -3) and low temperature (~5 eV) plasma of the Magnetic Reconnection Experiment. Clear perturbations in the floating potential profile by the electron beam are observed. Based on the floating potential profile and a current balance equation to the probe array tips, the effective width of the electron beam is determined, from which we determine the radial and toroidal beam current density profiles. After the profile of the electron beam is specified from the measured beam current, we demonstratemore » the consistency of the current balance equation and the location of the perturbation is also in agreement with field line mapping. No significant broadening of the electron beam is observed after the beam propagates for tens of centimeters through the high density plasma. These results prove that the field line mapping is, in principle, possible in high density plasmas.« less
Detection of an electron beam in a high density plasma via an electrostatic probe
Majeski, Stephen; Yoo, Jongsoo; Zweben, Stewart; ...
2018-05-08
Here, an electron beam is detected by a 1D floating potential probe array in a relatively high density (10 12–10 13 cm -3) and low temperature (~5 eV) plasma of the Magnetic Reconnection Experiment. Clear perturbations in the floating potential profile by the electron beam are observed. Based on the floating potential profile and a current balance equation to the probe array tips, the effective width of the electron beam is determined, from which we determine the radial and toroidal beam current density profiles. After the profile of the electron beam is specified from the measured beam current, we demonstratemore » the consistency of the current balance equation and the location of the perturbation is also in agreement with field line mapping. No significant broadening of the electron beam is observed after the beam propagates for tens of centimeters through the high density plasma. These results prove that the field line mapping is, in principle, possible in high density plasmas.« less
The Gas Distribution in the Outer Regions of Galaxy Clusters
NASA Technical Reports Server (NTRS)
Eckert, D.; Vazza, F.; Ettori, S.; Molendi, S.; Nagai, D.; Lau, E. T.; Roncarelli, M.; Rossetti, M.; Snowden, L.; Gastaldello, F.
2012-01-01
Aims. We present our analysis of a local (z = 0.04 - 0.2) sample of 31 galaxy clusters with the aim of measuring the density of the X-ray emitting gas in cluster outskirts. We compare our results with numerical simulations to set constraints on the azimuthal symmetry and gas clumping in the outer regions of galaxy clusters. Methods. We have exploited the large field-of-view and low instrumental background of ROSAT/PSPC to trace the density of the intracluster gas out to the virial radius, We stacked the density profiles to detect a signal beyond T200 and measured the typical density and scatter in cluster outskirts. We also computed the azimuthal scatter of the profiles with respect to the mean value to look for deviations from spherical symmetry. Finally, we compared our average density and scatter profiles with the results of numerical simulations. Results. As opposed to some recent Suzaku results, and confirming previous evidence from ROSAT and Chandra, we observe a steepening of the density profiles beyond approximately r(sub 500). Comparing our density profiles with simulations, we find that non-radiative runs predict density profiles that are too steep, whereas runs including additional physics and/ or treating gas clumping agree better with the observed gas distribution. We report high-confidence detection of a systematic difference between cool-core and non cool-core clusters beyond approximately 0.3r(sub 200), which we explain by a different distribution of the gas in the two classes. Beyond approximately r(sub 500), galaxy clusters deviate significantly from spherical symmetry, with only small differences between relaxed and disturbed systems. We find good agreement between the observed and predicted scatter profiles, but only when the 1% densest clumps are filtered out in the ENZO simulations. Conclusions. Comparing our results with numerical simulations, we find that non-radiative simulations fail to reproduce the gas distribution, even well outside cluster cores. Although their general behavior agrees more closely with the observations, simulations including cooling and star formation convert a large amount of gas into stars, which results in a low gas fraction with respect to the observations. Consequently, a detailed treatment of gas cooling, star formation, AGN feedback, and consideration of gas clumping is required to construct realistic models of the outer regions of clusters.
The Gas Distribution in Galaxy Cluster Outer Regions
NASA Technical Reports Server (NTRS)
Eckert, D.; Vazza, F.; Ettori, S.; Molendi, S.; Nagai, D.; Laue, E. T.; Roncarelli, M.; Rossetti, M.; Snowden, S. L.; Gastaldello, F.
2012-01-01
Aims. We present the analysis of a local (z = 0.04 - 0.2) sample of 31 galaxy clusters with the aim of measuring the density of the X-ray emitting gas in cluster outskirts. We compare our results with numerical simulations to set constraints on the azimuthal symmetry and gas clumping in the outer regions of galaxy clusters. Methods. We exploit the large field-of-view and low instrumental background of ROSAT/PSPC to trace the density of the intracluster gas out to the virial radius. We perform a stacking of the density profiles to detect a signal beyond r200 and measure the typical density and scatter in cluster outskirts. We also compute the azimuthal scatter of the profiles with respect to the mean value to look for deviations from spherical symmetry. Finally, we compare our average density and scatter profiles with the results of numerical simulations. Results. As opposed to some recent Suzaku results, and confirming previous evidence from ROSAT and Chandra, we observe a steepening of the density profiles beyond approximately r(sub 500). Comparing our density profiles with simulations, we find that non-radiative runs predict too steep density profiles, whereas runs including additional physics and/or treating gas clumping are in better agreement with the observed gas distribution. We report for the first time the high-confidence detection of a systematic difference between cool-core and non-cool core clusters beyond 0.3r(sub 200), which we explain by a different distribution of the gas in the two classes. Beyond r(sub 500), galaxy clusters deviate significantly from spherical symmetry, with only little differences between relaxed and disturbed systems. We find good agreement between the observed and predicted scatter profiles, but only when the 1% densest clumps are filtered out in the simulations. Conclusions. Comparing our results with numerical simulations, we find that non-radiative simulations fail to reproduce the gas distribution, even well outside cluster cores. Although their general behavior is in better agreement with the observations, simulations including cooling and star formation convert a large amount of gas into stars, which results in a low gas fraction with respect to the observations. Consequently, a detailed treatment of gas cooling, star formation, AGN feedback, and taking into account gas clumping is required to construct realistic models of cluster outer regions.
Vertical and Lateral Electron Content in the Martian Ionosphere
NASA Astrophysics Data System (ADS)
Paetzold, M. P.; Peter, K.; Bird, M. K.; Häusler, B.; Tellmann, S.
2016-12-01
The radio-science experiment MaRS (Mars Express Radio Science) on the Mars Express spacecraft sounds the neutral atmosphere and ionosphere of Mars since 2004. Approximately 800 vertical profiles of the ionospheric electron density have been acquired until today. The vertical electron content (TEC) is easily computed from the vertical electron density profile by integrating along the altitude. The TEC is typically a fraction of a TEC unit (1E16 m^-2) and depends on the solar zenith angle. The magnitude of the TEC is however fully dominated by the electron density contained in the main layer M2. The contributions by the M1 layer below M2 or the topside is marginal. MaRS is using two radio frequencies for the sounding of the ionosphere. The directly observed differential Doppler from the two received frequencies is a measure of the lateral electron content that means along the ray path and perpendicular to the vertical electron density profile. Combining both the vertical electron density profile, the vertical TEC and the directly observed lateral TEC describes the lateral electron density distribution in the ionosphere.
Coronal loop seismology using damping of standing kink oscillations by mode coupling
NASA Astrophysics Data System (ADS)
Pascoe, D. J.; Goddard, C. R.; Nisticò, G.; Anfinogentov, S.; Nakariakov, V. M.
2016-05-01
Context. Kink oscillations of solar coronal loops are frequently observed to be strongly damped. The damping can be explained by mode coupling on the condition that loops have a finite inhomogeneous layer between the higher density core and lower density background. The damping rate depends on the loop density contrast ratio and inhomogeneous layer width. Aims: The theoretical description for mode coupling of kink waves has been extended to include the initial Gaussian damping regime in addition to the exponential asymptotic state. Observation of these damping regimes would provide information about the structuring of the coronal loop and so provide a seismological tool. Methods: We consider three examples of standing kink oscillations observed by the Atmospheric Imaging Assembly (AIA) of the Solar Dynamics Observatory (SDO) for which the general damping profile (Gaussian and exponential regimes) can be fitted. Determining the Gaussian and exponential damping times allows us to perform seismological inversions for the loop density contrast ratio and the inhomogeneous layer width normalised to the loop radius. The layer width and loop minor radius are found separately by comparing the observed loop intensity profile with forward modelling based on our seismological results. Results: The seismological method which allows the density contrast ratio and inhomogeneous layer width to be simultaneously determined from the kink mode damping profile has been applied to observational data for the first time. This allows the internal and external Alfvén speeds to be calculated, and estimates for the magnetic field strength can be dramatically improved using the given plasma density. Conclusions: The kink mode damping rate can be used as a powerful diagnostic tool to determine the coronal loop density profile. This information can be used for further calculations such as the magnetic field strength or phase mixing rate.
NASA Astrophysics Data System (ADS)
Lau, C.; Lin, Y.; Wallace, G.; Wukitch, S. J.; Hanson, G. R.; Labombard, B.; Ochoukov, R.; Shiraiwa, S.; Terry, J.
2013-09-01
A dedicated experiment during simultaneous lower hybrid (LH) and ion cyclotron range-of-frequencies (ICRF) operations is carried out to evaluate and understand the effects of ICRF power on the scrape-off-layer (SOL) density profiles and on the resultant LH coupling for a wide range of plasma parameters on Alcator C-Mod. Operation of the LH launcher with the adjacent ICRF antenna significantly degrades LH coupling while operation with the ICRF antenna that is not magnetically connected to the LH launcher minimally affects LH coupling. An X-mode reflectometer system at three poloidal locations adjacent to the LH launcher and a visible video camera imaging the LH launcher are used to measure local SOL density profile and emissivity modifications with the application of LH and LH + ICRF power. These measurements confirm that the density in front of the LH launcher depends strongly on the magnetic field line mapping of the active ICRF antenna. Reflectometer measurements also observe both ICRF-driven and LH-driven poloidal density profile asymmetries, especially a strong density depletion at certain poloidal locations in front of the LH launcher during operation with a magnetically connected ICRF antenna. The results indicate that understanding both LH-driven flows and ICRF sheath driven flows may be necessary to understand the observed density profile modifications and LH coupling results during simultaneous LH + ICRF operation.
Density profiles of supernova matter and determination of neutrino parameters
NASA Astrophysics Data System (ADS)
Chiu, Shao-Hsuan
2007-08-01
The flavor conversion of supernova neutrinos can lead to observable signatures related to the unknown neutrino parameters. As one of the determinants in dictating the efficiency of resonant flavor conversion, the local density profile near the Mikheyev-Smirnov-Wolfenstein (MSW) resonance in a supernova environment is, however, not so well understood. In this analysis, variable power-law functions are adopted to represent the independent local density profiles near the locations of resonance. It is shown that the uncertain matter density profile in a supernova, the possible neutrino mass hierarchies, and the undetermined 1-3 mixing angle would result in six distinct scenarios in terms of the survival probabilities of νe and ν¯e. The feasibility of probing the undetermined neutrino mass hierarchy and the 1-3 mixing angle with the supernova neutrinos is then examined using several proposed experimental observables. Given the incomplete knowledge of the supernova matter profile, the analysis is further expanded to incorporate the Earth matter effect. The possible impact due to the choice of models, which differ in the average energy and in the luminosity of neutrinos, is also addressed in the analysis.
Bird migration flight altitudes studied by a network of operational weather radars.
Dokter, Adriaan M; Liechti, Felix; Stark, Herbert; Delobbe, Laurent; Tabary, Pierre; Holleman, Iwan
2011-01-06
A fully automated method for the detection and quantification of bird migration was developed for operational C-band weather radar, measuring bird density, speed and direction as a function of altitude. These weather radar bird observations have been validated with data from a high-accuracy dedicated bird radar, which was stationed in the measurement volume of weather radar sites in The Netherlands, Belgium and France for a full migration season during autumn 2007 and spring 2008. We show that weather radar can extract near real-time bird density altitude profiles that closely correspond to the density profiles measured by dedicated bird radar. Doppler weather radar can thus be used as a reliable sensor for quantifying bird densities aloft in an operational setting, which--when extended to multiple radars--enables the mapping and continuous monitoring of bird migration flyways. By applying the automated method to a network of weather radars, we observed how mesoscale variability in weather conditions structured the timing and altitude profile of bird migration within single nights. Bird density altitude profiles were observed that consisted of multiple layers, which could be explained from the distinct wind conditions at different take-off sites. Consistently lower bird densities are recorded in The Netherlands compared with sites in France and eastern Belgium, which reveals some of the spatial extent of the dominant Scandinavian flyway over continental Europe.
Bird migration flight altitudes studied by a network of operational weather radars
Dokter, Adriaan M.; Liechti, Felix; Stark, Herbert; Delobbe, Laurent; Tabary, Pierre; Holleman, Iwan
2011-01-01
A fully automated method for the detection and quantification of bird migration was developed for operational C-band weather radar, measuring bird density, speed and direction as a function of altitude. These weather radar bird observations have been validated with data from a high-accuracy dedicated bird radar, which was stationed in the measurement volume of weather radar sites in The Netherlands, Belgium and France for a full migration season during autumn 2007 and spring 2008. We show that weather radar can extract near real-time bird density altitude profiles that closely correspond to the density profiles measured by dedicated bird radar. Doppler weather radar can thus be used as a reliable sensor for quantifying bird densities aloft in an operational setting, which—when extended to multiple radars—enables the mapping and continuous monitoring of bird migration flyways. By applying the automated method to a network of weather radars, we observed how mesoscale variability in weather conditions structured the timing and altitude profile of bird migration within single nights. Bird density altitude profiles were observed that consisted of multiple layers, which could be explained from the distinct wind conditions at different take-off sites. Consistently lower bird densities are recorded in The Netherlands compared with sites in France and eastern Belgium, which reveals some of the spatial extent of the dominant Scandinavian flyway over continental Europe. PMID:20519212
LOFAR observations of the quiet solar corona
NASA Astrophysics Data System (ADS)
Vocks, C.; Mann, G.; Breitling, F.; Bisi, M. M.; Dąbrowski, B.; Fallows, R.; Gallagher, P. T.; Krankowski, A.; Magdalenić, J.; Marqué, C.; Morosan, D.; Rucker, H.
2018-06-01
Context. The quiet solar corona emits meter-wave thermal bremsstrahlung. Coronal radio emission can only propagate above that radius, Rω, where the local plasma frequency equals the observing frequency. The radio interferometer LOw Frequency ARray (LOFAR) observes in its low band (10-90 MHz) solar radio emission originating from the middle and upper corona. Aims: We present the first solar aperture synthesis imaging observations in the low band of LOFAR in 12 frequencies each separated by 5 MHz. From each of these radio maps we infer Rω, and a scale height temperature, T. These results can be combined into coronal density and temperature profiles. Methods: We derived radial intensity profiles from the radio images. We focus on polar directions with simpler, radial magnetic field structure. Intensity profiles were modeled by ray-tracing simulations, following wave paths through the refractive solar corona, and including free-free emission and absorption. We fitted model profiles to observations with Rω and T as fitting parameters. Results: In the low corona, Rω < 1.5 solar radii, we find high scale height temperatures up to 2.2 × 106 K, much more than the brightness temperatures usually found there. But if all Rω values are combined into a density profile, this profile can be fitted by a hydrostatic model with the same temperature, thereby confirming this with two independent methods. The density profile deviates from the hydrostatic model above 1.5 solar radii, indicating the transition into the solar wind. Conclusions: These results demonstrate what information can be gleaned from solar low-frequency radio images. The scale height temperatures we find are not only higher than brightness temperatures, but also than temperatures derived from coronograph or extreme ultraviolet (EUV) data. Future observations will provide continuous frequency coverage. This continuous coverage eliminates the need for local hydrostatic density models in the data analysis and enables the analysis of more complex coronal structures such as those with closed magnetic fields.
High-latitude electron density observations from the IMAGE radio plasma imager
NASA Astrophysics Data System (ADS)
Henize, Vance Karl
2003-11-01
Before the IMAGE mission, electron densities in the high latitude, high altitude region of the magnetosphere were measured exclusively by in situ means. The Radio Plasma Imager instrument onboard IMAGE is capable of remotely observing electron densities between 0.01 and 100,000 e-/cm-3 from distances of several Earth radii or more. This allows a global view of the high latitude region that has a far greater accuracy than was previously possible. Soundings of the terrestrial magnetic cusp provide the first remote observations of the dynamics and poleward density profile of this feature continuously over a 60- minute interval. During steady quiet-time solar wind and interplanetary magnetic field conditions, the cusp is shown to be stable in both position and density structure with only slight variations in both. Peak electron densities within the cusp during this time are found to be somewhat higher than predicted. New procedures for deriving electron densities from radio sounding measurements are developed. The addition of curve fitting algorithms significantly increases the amount of useable data. Incorporating forward modeling techniques greatly reduces the computational time over traditional inversion methods. These methods are described in detail. A large number high latitude observations of ducted right-hand extraordinary mode waves made over the course of one year of the IMAGE mission are used to create a three dimensional model of the electron density profile of the terrestrial polar cap region. The dependence of electron density in the polar cap on average geocentric distance (d) is found to vary as d-6.6. This is a significantly steeper gradient than cited in earlier works such as Persoon et al., although the introduction of an asymptotic term provides for basic agreement in the limited region of their joint validity. Latitudinal and longitudinal variations are found to be insignificant. Both the mean profile power law index of the electron density profile and, to a stronger degree, its variance show dependence with the DST index.
Recovering galaxy cluster gas density profiles with XMM-Newton and Chandra
NASA Astrophysics Data System (ADS)
Bartalucci, I.; Arnaud, M.; Pratt, G. W.; Vikhlinin, A.; Pointecouteau, E.; Forman, W. R.; Jones, C.; Mazzotta, P.; Andrade-Santos, F.
2017-12-01
We examined the reconstruction of galaxy cluster radial density profiles obtained from Chandra and XMM-Newton X-ray observations, using high quality data for a sample of twelve objects covering a range of morphologies and redshifts. By comparing the results obtained from the two observatories and by varying key aspects of the analysis procedure, we examined the impact of instrumental effects and of differences in the methodology used in the recovery of the density profiles. We find that the final density profile shape is particularly robust. We adapted the photon weighting vignetting correction method developed for XMM-Newton for use with Chandra data, and confirm that the resulting Chandra profiles are consistent with those corrected a posteriori for vignetting effects. Profiles obtained from direct deprojection and those derived using parametric models are consistent at the 1% level. At radii larger than 6″, the agreement between Chandra and XMM-Newton is better than 1%, confirming an excellent understanding of the XMM-Newton PSF. Furthermore, we find no significant energy dependence. The impact of the well-known offset between Chandra and XMM-Newton gas temperature determinations on the density profiles is found to be negligible. However, we find an overall normalisation offset in density profiles of the order of 2.5%, which is linked to absolute flux cross-calibration issues. As a final result, the weighted ratios of Chandra to XMM-Newton gas masses computed at R2500 and R500 are r = 1.03 ± 0.01 and r = 1.03 ± 0.03, respectively. Our study confirms that the radial density profiles are robustly recovered, and that any differences between Chandra and XMM-Newton can be constrained to the 2.5% level, regardless of the exact data analysis details. These encouraging results open the way for the true combination of X-ray observations of galaxy clusters, fully leveraging the high resolution of Chandra and the high throughput of XMM-Newton.
Variation of D-region nitric-oxide density with solar activity and season at the dip equator
NASA Technical Reports Server (NTRS)
Chakrabarty, D. K.; Pakhomov, S. V.; Beig, G.
1989-01-01
To study the solar control on electron density (N sub e) in the equatorial D region, a program was initiated with Soviet collaboration in 1979. A total of 31 rockets were launched during the high solar activity period, and 47 rockets during the low solar activity period, from Thumba to measure the N sub e profiles. Analysis of the data shows that the average values of N sub e for the high solar activity period are higher by a factor of about 2 to 3 compared to the low solar activity values. It was found that a single nitric oxide density, (NO), profile cannot reproduce all the observed N sub e profiles. An attempt was made to reproduce theoretically the observed N sub e profiles by introducing variation in (NO) for the different solar activity periods and seasons.
Cometary pick-up ions observed near Giacobini-Zinner
NASA Technical Reports Server (NTRS)
Gloeckler, G.; Hovestadt, D.; Ipavich, F. M.; Scholer, M.; Klecker, B.
1986-01-01
The number and energy density of cometary water-group ions observed near Comet Giacobini-Zinner are derived using the rest-frame distribution functions. The data reveal that density profiles of inbound and outbound passes and their shape correlate with pick-up ion production model predictions. The lose rate and production rate of water-group cometary molecules calculated from predicted and measured density profiles are 2 x 10 to the -6th/sec and 2.6 x 10 to the 28th/sec respectively. The shapes of the distribution functions are examined to study the solar wind/cometary ions interaction process.
Cometary pick-up ions observed near Giacobini-Zinner
NASA Astrophysics Data System (ADS)
Gloeckler, G.; Hovestadt, D.; Ipavich, F. M.; Scholer, M.; Klecker, B.; Galvin, A. B.
1986-03-01
The number and energy density of cometary water-group ions observed near Comet Giacobini-Zinner are derived using the rest-frame distribution functions. The data reveal that density profiles of inbound and outbound passes and their shape correlate with pick-up ion production model predictions. The lose rate and production rate of water-group cometary molecules calculated from predicted and measured density profiles are 2 x 10 to the -6th/sec and 2.6 x 10 to the 28th/sec respectively. The shapes of the distribution functions are examined to study the solar wind/cometary ions interaction process.
NASA Technical Reports Server (NTRS)
Gangopadhyay, P.; Judge, D. L.
1996-01-01
Our knowledge of the various heliospheric phenomena (location of the solar wind termination shock, heliopause configuration and very local interstellar medium parameters) is limited by uncertainties in the available heliospheric plasma models and by calibration uncertainties in the observing instruments. There is, thus, a strong motivation to develop model insensitive and calibration independent methods to reduce the uncertainties in the relevant heliospheric parameters. We have developed such a method to constrain the downstream neutral hydrogen density inside the heliospheric tail. In our approach we have taken advantage of the relative insensitivity of the downstream neutral hydrogen density profile to the specific plasma model adopted. We have also used the fact that the presence of an asymmetric neutral hydrogen cavity surrounding the sun, characteristic of all neutral densities models, results in a higher multiple scattering contribution to the observed glow in the downstream region than in the upstream region. This allows us to approximate the actual density profile with one which is spatially uniform for the purpose of calculating the downstream backscattered glow. Using different spatially constant density profiles, radiative transfer calculations are performed, and the radial dependence of the predicted glow is compared with the observed I/R dependence of Pioneer 10 UV data. Such a comparison bounds the large distance heliospheric neutral hydrogen density in the downstream direction to a value between 0.05 and 0.1/cc.
Impurity profiles and radial transport in the EXTRAP-T2 reversed field pinch
NASA Astrophysics Data System (ADS)
Sallander, J.
1999-05-01
Radially resolved spectroscopy has been used to measure the radial distribution of impurity ions (O III-O V and C III-CVI) in the EXTRAP-T2 reversed field pinch (RFP). The radial profile of the emission is reconstructed from line emission measured along five lines of sight. The ion density profile is the fitted quantity in the reconstruction of the brightness profile and is thus obtained directly in this process. These measurements are then used to adjust the parameters in transport calculations in order to obtain consistency with the observed ion density profiles. Comparison between model and measurements show that a radial dependence in the diffusion is needed to explain the measured ion densities.
NASA Astrophysics Data System (ADS)
Ma, Xinxing; Ennis, D. A.; Hanson, J. D.; Hartwell, G. J.; Knowlton, S. F.; Maurer, D. A.
2017-10-01
Non-axisymmetric equilibrium reconstructions have been routinely performed with the V3FIT code in the Compact Toroidal Hybrid (CTH), a stellarator/tokamak hybrid. In addition to 50 external magnetic measurements, 160 SXR emissivity measurements are incorporated into V3FIT to reconstruct the magnetic flux surface geometry and infer the current distribution within the plasma. Improved reconstructions of current and q profiles provide insight into understanding the physics of density limit disruptions observed in current-carrying discharges in CTH. It is confirmed that the final scenario of the density limit of CTH plasmas is consistent with classic observations in tokamaks: current profile shrinkage leads to growing MHD instabilities (tearing modes) followed by a loss of MHD equilibrium. It is also observed that the density limit at a given current linearly increases with increasing amounts of 3D shaping fields. Consequently, plasmas with densities up to two times the Greenwald limit are attained. Equilibrium reconstructions show that addition of 3D fields effectively moves resonance surfaces towards the edge of the plasma where the current profile gradient is less, providing a stabilizing effect. This work is supported by US Department of Energy Grant No. DE-FG02-00ER54610.
Raman Scattering from Atmospheric Nitrogen in the Stratosphere
NASA Technical Reports Server (NTRS)
Garvey, M. J.; Kent, G. S.
1973-01-01
The Mark II laser radar system at Kingston, Jamaica, has been used to make observations on the Raman shifted line from atmospheric nitrogen at 828.5 nm. The size of the system makes it possible to detect signals from heights of up to 40 kilometres. The effects of aerosol scattering observed using a single wavelength are almost eliminated, and a profile of nitrogen density may be obtained. Assuming a constant mixing ratio, this may be interpreted as a profile of atmospheric density whose accuracy is comparable to that obtained from routine meteorological soundings. In order to obtain an accurate profile several interfering effects have had to be examined and, where necessary, eliminated. These include: 1) Fluorescence in optical components 2) Leakage of signal at 694.3 nm. 3) Overload effects and non-linearities in the receiving and counting electronics. Most of these effects have been carefully examined and comparisons are being made between the observed atmospheric density profiles and local meteorological radio-sonde measurements. Good agreement has been obtained over the region of overlap (15 - 30 KID), discrepancies being of the same order as the experimental accuracy (1-10%), depending on height and length of period of observation.
NASA Astrophysics Data System (ADS)
Brook, Chris B.
2015-12-01
Rotation curves of galaxies show a wide range of shapes, which can be paramaterized as scatter in Vrot(1 kpc)/Vmax , i.e. the ratio of the rotation velocity measured at 1 kpc and the maximum measured rotation velocity. We examine whether the observed scatter can be accounted for by combining scatters in disc scalelengths, the concentration-halo mass relation, and the M⋆-Mhalo relation. We use these scatters to create model galaxy populations; when housed within dark matter haloes that have universal, Navarro, Frenk & White density profiles, the model does not match the lowest observed values of Vrot(1 kpc)/Vmax and has too little scatter in Vrot(1 kpc)/Vmax compared to observations. By contrast, a model using a mass-dependent dark matter profile, where the inner slope is determined by the ratio of M⋆/Mhalo, produces galaxies with low values of Vrot(1 kpc)/Vmax and a much larger scatter, both in agreement with observation. We conclude that the large observed scatter in Vrot(1 kpc)/Vmax favours density profiles that are significantly affected by baryonic processes. Alternative dark matter core formation models such as self-interacting dark matter may also account for the observed variation in rotation curve shapes, but these observations may provide important constraints in terms of core sizes, and whether they vary with halo mass and/or merger history.
NASA Astrophysics Data System (ADS)
McElroy, Kenneth L., Jr.
1992-12-01
A method is presented for the determination of neutral gas densities in the ionosphere from rocket-borne measurements of UV atmospheric emissions. Computer models were used to calculate an initial guess for the neutral atmosphere. Using this neutral atmosphere, intensity profiles for the N2 (0,5) Vegard-Kaplan band, the N2 Lyman-Birge-Hopfield band system, and the OI2972 A line were calculated and compared with the March 1990 NPS MUSTANG data. The neutral atmospheric model was modified and the intensity profiles recalculated until a fit with the data was obtained. The neutral atmosphere corresponding to the intensity profile that fit the data was assumed to be the atmospheric composition prevailing at the time of the observation. The ion densities were then calculated from the neutral atmosphere using a photochemical model. The electron density profile calculated by this model was compared with the electron density profile measured by the U.S. Air Force Geophysics Laboratory at a nearby site.
NASA Astrophysics Data System (ADS)
Peter, Kerstin; Pätzold, Martin; Molina-Cuberos, Gregorio; Witasse, Olivier; González-Galindo, F.; Withers, Paul; Bird, Michael K.; Häusler, Bernd; Hinson, David P.; Tellmann, Silvia; Tyler, G. Leonard
2014-05-01
The electron density distributions of the lower ionospheres of Mars and Venus are mainly dependent on the solar X-ray and EUV flux and the solar zenith angle. The influence of an increasing solar flux is clearly seen in the increase of the observed peak electron density and total electron content (TEC) of the main ionospheric layers. The model “Ionization in Atmospheres” (IonA) was developed to compare ionospheric radio sounding observations, which were performed with the radio science experiments MaRS on Mars Express and VeRa on Venus Express, with simulated electron density profiles of the Mars and Venus ionospheres. This was done for actual observation conditions (solar flux, solar zenith angle, planetary coordinates) from the bases of the ionospheres to ∼160 km altitude. IonA uses models of the neutral atmospheres at ionospheric altitudes (Mars Climate Database (MCD) v4.3 for Mars; VenusGRAM/VIRA for Venus) and solar flux information in the 0.5-95 nm wavelength range (X-ray to EUV) from the SOLAR2000 data base. The comparison between the observed electron density profiles and the IonA profiles for Mars, simulated for a selected MCD scenario (background atmosphere), shows that the general behavior of the Mars ionosphere is reproduced by all scenarios. The MCD “low solar flux/clear atmosphere” and “low solar flux/MY24” scenarios agree best (on average) with the MaRS set of observations, although the actual Mars atmosphere seemed to be still slightly colder at ionospheric altitudes. For Venus, the VenusGRAM model, based on VIRA, is too limited to be used for the IonA simulation of electron density profiles. The behavior of the V2 peak electron density and TEC as a function of solar zenith angle are in general reproduced, but the peak densities and the TEC are either over- or underestimated for low or high solar EUV fluxes, respectively. The simulated V2 peak altitudes are systematically underestimated by 5 km on average for solar zenith angles less than 45° and the peak altitudes rise for zenith angles larger than 60°. The latter is the opposite of the observed behavior. The explanation is that VIRA and VenusGRAM are valid only for high solar activity, although there is also very poor agreement with VeRa observations from the recent solar cycle, in which the solar activity increases to high values. The disagreement between the observation and simulation of the Venus electron density profiles proves, that the true encountered Venus atmosphere at ionospheric altitudes was denser but locally cooler than predicted by VIRA.
KINK AND SAUSAGE MODES IN NONUNIFORM MAGNETIC SLABS WITH CONTINUOUS TRANSVERSE DENSITY DISTRIBUTIONS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yu, Hui; Li, Bo; Chen, Shao-Xia
2015-11-20
We examine the influence of a continuous density structuring transverse to coronal slabs on the dispersive properties of fundamental standing kink and sausage modes supported therein. We derive generic dispersion relations (DRs) governing linear fast waves in pressureless straight slabs with general transverse density distributions, and focus on cases where the density inhomogeneity takes place in a layer of arbitrary width and in arbitrary form. The physical relevance of the solutions to the DRs is demonstrated by the corresponding time-dependent computations. For all profiles examined, the lowest order kink modes are trapped regardless of longitudinal wavenumber k. A continuous density distribution introducesmore » a difference to their periods of ≲13% when k is the observed range relative to the case where the density profile takes a step function form. Sausage modes and other branches of kink modes are leaky at small k, and their periods and damping times are heavily influenced by how the transverse density profile is prescribed, in particular the length scale. These modes have sufficiently high quality to be observable only for physical parameters representative of flare loops. We conclude that while the simpler DR pertinent to a step function profile can be used for the lowest order kink modes, the detailed information on the transverse density structuring needs to be incorporated into studies of sausage modes and higher order kink modes.« less
NASA Astrophysics Data System (ADS)
Nakayama, Masaki; Katano, Hiroaki; Sato, Haruki
2014-05-01
A precise determination of the critical temperature and density for technically important fluids would be possible on the basis of the digital image for the visual observation of the phase boundary in the vicinity of the critical point since the sensitivity and resolution are higher than those of naked eyes. In addition, the digital image can avoid the personal uncertainty of an observer. A strong density gradient occurs in a sample cell at the critical point due to gravity. It was carefully assessed to determine the critical density, where the density profile in the sample cell can be observed from the luminance profile of a digital image. The density-gradient profile becomes symmetric at the critical point. One of the best fluids, whose thermodynamic properties have been measured with the highest reliability among technically important fluids, would be carbon dioxide. In order to confirm the reliability of the proposed method, the critical temperature and density of carbon dioxide were determined using the digital image. The critical temperature and density values of carbon dioxide are ( and ( kg m, respectively. The critical temperature and density values agree with the existing best values within estimated uncertainties. The reliability of the method was confirmed. The critical pressure, 7.3795 MPa, corresponding to the determined critical temperature of 304.143 K is also proposed. A new set of parameters for the vapor-pressure equation is also provided.
NASA Astrophysics Data System (ADS)
Roncarelli, M.; Ettori, S.; Dolag, K.; Moscardini, L.; Borgani, S.; Murante, G.
2006-12-01
Using a set of hydrodynamical simulations of nine galaxy clusters with masses in the range 1.5 × 1014 < Mvir < 3.4 × 1015Msolar, we have studied the density, temperature and X-ray surface brightness profiles of the intracluster medium in the regions around the virial radius. We have analysed the profiles in the radial range well above the cluster core, the physics of which are still unclear and matter of tension between simulated and observed properties, and up to the virial radius and beyond, where present observations are unable to provide any constraints. We have modelled the radial profiles between 0.3R200 and 3R200 with power laws with one index, two indexes and a rolling index. The simulated temperature and [0.5-2] keV surface brightness profiles well reproduce the observed behaviours outside the core. The shape of all these profiles in the radial range considered depends mainly on the activity of the gravitational collapse, with no significant difference among models including extraphysics. The profiles steepen in the outskirts, with the slope of the power-law fit that changes from -2.5 to -3.4 in the gas density, from -0.5 to -1.8 in the gas temperature and from -3.5 to -5.0 in the X-ray soft surface brightness. We predict that the gas density, temperature and [0.5-2] keV surface brightness values at R200 are, on average, 0.05, 0.60, 0.008 times the measured values at 0.3R200. At 2R200, these values decrease by an order of magnitude in the gas density and surface brightness, by a factor of 2 in the temperature, putting stringent limits on the detectable properties of the intracluster-medium (ICM) in the virial regions.
NASA Astrophysics Data System (ADS)
Metivier, L.; Greff-Lefftz, M.; Panet, I.; Pajot-Métivier, G.; Caron, L.
2014-12-01
Joint inversion of the observed geoid and seismic velocities has been commonly used to constrain the viscosity profile within the mantle as well as the lateral density variations. Recent satellite measurements of the second-order derivatives of the Earth's gravity potential give new possibilities to understand these mantle properties. We use lateral density variations in the Earth's mantle based on slab history or deduced from seismic tomography. The main uncertainties are the relationship between seismic velocity and density -the so-called density/velocity scaling factor- and the variation with depth of the density contrast between the cold slabs and the surrounding mantle, introduced here as a scaling factor with respect to a constant value. The geoid, gravity and gravity gradients at the altitude of the GOCE satellite (about 255 km) are derived using geoid kernels for given viscosity depth profiles. We assume a layered mantle model with viscosity and conversion factor constant in each layer, and we fix the viscosity of the lithosphere. We perform a Monte Carlo search for the viscosity and the density/velocity scaling factor profiles within the mantle which allow to fit the observed geoid, gravity and gradients of gravity. We test a 2-layer, a 3-layer and 4-layer mantle. For each model, we compute the posterior probability distribution of the unknown parameters, and we discuss the respective contributions of the geoid, gravity and gravity gradients in the inversion. Finally, for the best fit, we present the viscosity and scaling factor profiles obtained for the lateral density variations derived from seismic velocities and for slabs sinking into the mantle.
Helicon wave field measurements in Proto-MPEX
NASA Astrophysics Data System (ADS)
Caneses, Juan Francisco; Piotrowicz, Pawel; Goulding, Richard; Caughman, John; Showers, Missy; Kafle, Nischal; Rapp, Juergen; Campbell, Ian; Proto-MPEX Team
2016-10-01
A high density Deuterium discharge (ne 5e19 m-3, Te 4 eV) has been recently observed in ProtoMPEX (Prototype Material Plasma Exposure eXperiment). The discharge (100 kW, 13.56 MHz, D2, 700 G at the source, 1e4 G at the Target) begins with a low density plasma with hollow Te profile and transitions in about 100 ms to a high density mode with flat Te profile. It is believed that the transition to the high density mode is produced by a ``helicon resonance'' as evidenced by the centrally-peaked power deposition profile observed with IR imaging on a 2 mm thick metallic target plate. In this work, we present b-dot probe measurements of the radial helicon wavefields 30 cm downstream of the antenna during both the low and high density modes. In addition, we compare the experimental results with full wave simulations. This manuscript has been authored by UT-Battelle, LLC, under Contract No. DE-AC05-00OR22725 with the U.S. Department of Energy.
Meteoroid stream flux densities and the zenith exponent
NASA Astrophysics Data System (ADS)
Molau, Sirko; Barentsen, Geert
2013-01-01
The MetRec software was recently extended to measure the limiting magnitude in real-time, and to determine meteoroid stream flux densities. This paper gives a short overview of the applied algorithms. We introduce the MetRec Flux Viewer, a web tool to visualize activity profiles on- line. Starting from the Lyrids 2011, high-quality flux density profiles were derived from IMO Video Network observations for every major meteor shower. They are often in good agreement with visual data. Analyzing the 2011 Perseids, we found systematic daily variations in the flux density profile, which can be attributed to a zenith exponent gamma > 1.0. We analyzed a number of meteor showers in detail and found zenith exponent variations from shower to shower in the range between 1.55 and 2.0. The average value over all analyzed showers is gamma = 1.75. In order to determine the zenith exponent precisely, the observations must cover a large altitude range (at least 45 degrees).
Using Ice and Dust Lines to Constrain the Surface Densities of Protoplanetary Disks
NASA Astrophysics Data System (ADS)
Powell, Diana; Murray-Clay, Ruth; Schlichting, Hilke E.
2017-05-01
We present a novel method for determining the surface density of protoplanetary disks through consideration of disk “dust lines,” which indicate the observed disk radial scale at different observational wavelengths. This method relies on the assumption that the processes of particle growth and drift control the radial scale of the disk at late stages of disk evolution such that the lifetime of the disk is equal to both the drift timescale and growth timescale of the maximum particle size at a given dust line. We provide an initial proof of concept of our model through an application to the disk TW Hya and are able to estimate the disk dust-to-gas ratio, CO abundance, and accretion rate in addition to the total disk surface density. We find that our derived surface density profile and dust-to-gas ratio are consistent with the lower limits found through measurements of HD gas. The CO ice line also depends on surface density through grain adsorption rates and drift and we find that our theoretical CO ice line estimates have clear observational analogues. We further apply our model to a large parameter space of theoretical disks and find three observational diagnostics that may be used to test its validity. First, we predict that the dust lines of disks other than TW Hya will be consistent with the normalized CO surface density profile shape for those disks. Second, surface density profiles that we derive from disk ice lines should match those derived from disk dust lines. Finally, we predict that disk dust and ice lines will scale oppositely, as a function of surface density, across a large sample of disks.
The density compression ratio of shock fronts associated with coronal mass ejections
NASA Astrophysics Data System (ADS)
Kwon, Ryun-Young; Vourlidas, Angelos
2018-02-01
We present a new method to extract the three-dimensional electron density profile and density compression ratio of shock fronts associated with coronal mass ejections (CMEs) observed in white light coronagraph images. We demonstrate the method with two examples of fast halo CMEs (˜2000 km s-1) observed on 2011 March 7 and 2014 February 25. Our method uses the ellipsoid model to derive the three-dimensional geometry and kinematics of the fronts. The density profiles of the sheaths are modeled with double-Gaussian functions with four free parameters, and the electrons are distributed within thin shells behind the front. The modeled densities are integrated along the lines of sight to be compared with the observed brightness in COR2-A, and a χ2 approach is used to obtain the optimal parameters for the Gaussian profiles. The upstream densities are obtained from both the inversion of the brightness in a pre-event image and an empirical model. Then the density ratio and Alfvénic Mach number are derived. We find that the density compression peaks around the CME nose, and decreases at larger position angles. The behavior is consistent with a driven shock at the nose and a freely propagating shock wave at the CME flanks. Interestingly, we find that the supercritical region extends over a large area of the shock and lasts longer (several tens of minutes) than past reports. It follows that CME shocks are capable of accelerating energetic particles in the corona over extended spatial and temporal scales and are likely responsible for the wide longitudinal distribution of these particles in the inner heliosphere. Our results also demonstrate the power of multi-viewpoint coronagraphic observations and forward modeling in remotely deriving key shock properties in an otherwise inaccessible regime.
December anomaly in ionosphere using FORMOSAT-3/COSMIC electron density profiles
NASA Astrophysics Data System (ADS)
Dashnyam, G.; Lin, C. C. H.; Rajesh, P. K.; Lin, J. T.
2017-12-01
December anomaly in ionosphere refers to the observation of greater value of global average ionospheric peak electron density (NmF2) in December-January months than in June-July months. So far there has been no satisfactory explanation to account for this difference, which is also known as annual asymmetry, leading to the speculation that forcing from lower atmosphere may be important. In this work, FORMOSAT-3/COSMIC electron density profiles are used to investigate the characteristics of December anomaly at different local times and longitudes in varying levels of solar activity. The observations in the years 2008, 2009 and 2012 are used for the study. The results suggest that the anomaly exists in all the three years, and is pronounced during day. Detailed analysis is carried out using latitude-altitude electron density profiles at selected longitude sectors, revealing that neutral wind may play dominant role. SAMI2 model is used to further examine the role of neutral wind influencing the electron density in different solstices. Tidal decomposition of the wind is carried out to understand the dominant tidal components that give rise to the larger electron density in the December-January months.
The H I-to-H2 Transition in a Turbulent Medium
NASA Astrophysics Data System (ADS)
Bialy, Shmuel; Burkhart, Blakesley; Sternberg, Amiel
2017-07-01
We study the effect of density fluctuations induced by turbulence on the H I/H2 structure in photodissociation regions (PDRs) both analytically and numerically. We perform magnetohydrodynamic numerical simulations for both subsonic and supersonic turbulent gas and chemical H I/H2 balance calculations. We derive atomic-to-molecular density profiles and the H I column density probability density function (PDF) assuming chemical equilibrium. We find that, while the H I/H2 density profiles are strongly perturbed in turbulent gas, the mean H I column density is well approximated by the uniform-density analytic formula of Sternberg et al. The PDF width depends on (a) the radiation intensity-to-mean density ratio, (b) the sonic Mach number, and (c) the turbulence decorrelation scale, or driving scale. We derive an analytic model for the H I PDF and demonstrate how our model, combined with 21 cm observations, can be used to constrain the Mach number and driving scale of turbulent gas. As an example, we apply our model to observations of H I in the Perseus molecular cloud. We show that a narrow observed H I PDF may imply small-scale decorrelation, pointing to the potential importance of subcloud-scale turbulence driving.
Interplanetary Type III Bursts and Electron Density Fluctuations in the Solar Wind
NASA Astrophysics Data System (ADS)
Krupar, V.; Maksimovic, M.; Kontar, E. P.; Zaslavsky, A.; Santolik, O.; Soucek, J.; Kruparova, O.; Eastwood, J. P.; Szabo, A.
2018-04-01
Type III bursts are generated by fast electron beams originated from magnetic reconnection sites of solar flares. As propagation of radio waves in the interplanetary medium is strongly affected by random electron density fluctuations, type III bursts provide us with a unique diagnostic tool for solar wind remote plasma measurements. Here, we performed a statistical survey of 152 simple and isolated type III bursts observed by the twin-spacecraft Solar TErrestrial RElations Observatory mission. We investigated their time–frequency profiles in order to retrieve decay times as a function of frequency. Next, we performed Monte Carlo simulations to study the role of scattering due to random electron density fluctuations on time–frequency profiles of radio emissions generated in the interplanetary medium. For simplification, we assumed the presence of isotropic electron density fluctuations described by a power law with the Kolmogorov spectral index. Decay times obtained from observations and simulations were compared. We found that the characteristic exponential decay profile of type III bursts can be explained by the scattering of the fundamental component between the source and the observer despite restrictive assumptions included in the Monte Carlo simulation algorithm. Our results suggest that relative electron density fluctuations < δ {n}{{e}}> /{n}{{e}} in the solar wind are 0.06–0.07 over wide range of heliospheric distances.
Compton profiles of NiO and TiO2 obtained from first principles GWA spectral function
NASA Astrophysics Data System (ADS)
S, M. Khidzir; M, F. M. Halid; W, A. T. Wan Abdullah
2016-06-01
In this work, we first use momentum density studies to understand strongly correlated electron behavior, which is typically seen in transition metal oxides. We observe that correlated electron behavior as seen in bulk NiO is due to the Fermi break located in the middle of overlapping spectral functions obtained from a GW (G is Green’s function and W is the screened Coulomb interaction) approximation (GWA) calculation while in the case of TiO2 we can see that the origin of the constant momentum distribution in lower momenta is due to a pile up of spectra before the Fermi energy. These observations are then used to compare our calculated Compton profiles with previous experimental studies of Fukamachi and Limandri. Our calculations for NiO are observed to follow the same trend as the experimental profile but it is seen to have a wide difference in the case of TiO2before the Fermi break. The ground state momentum densities differ significantly from the quasiparticle momentum density, thus stressing the importance of the quasiparticle wave function as the input for the study of charge density and the electron localization function. Finally we perform a calculation of the quasiparticle renormalization function, giving a quantitative description of the discontinuity of the GWA momentum density.
Polaron Thermodynamics of Spin-Imbalanced Quasi-Two-Dimensional Fermi Gases
NASA Astrophysics Data System (ADS)
Ong, Willie; Cheng, Chingyun; Arakelyan, Ilya; Thomas, John
2015-05-01
We present the first spatial profile measurements for spin-imbalanced mixtures of atomic 6Li fermions in a quasi-2D geometry with tunable strong interactions. The observed minority and majority profiles are not correctly predicted by BCS theory for a true 2D system, but are reasonably well fit by a 2D-polaron model of the free energy. Density difference profiles reveal a flat center with two peaks at the edges, consistent with a fully paired core of the corresponding 2D density profiles. These features are more prominent for higher interaction strengths. Not predicted by the polaron model is an observed transition from a spin-imbalanced normal fluid phase to a spin-balanced central core above a critical imbalance. Supported by ARO, DOE, AFOSR, NSF.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sigut, T. A. A.; Tycner, C.; Jansen, B.
Omicron Aquarii is a late-type, Be shell star with a stable and nearly symmetric Hα emission line. We combine Hα interferometric observations obtained with the Navy Precision Optical Interferometer covering 2007 through 2014 with Hα spectroscopic observations over the same period and a 2008 observation of the system's near-infrared spectral energy distribution to constrain the properties of o Aqr's circumstellar disk. All observations are consistent with a circumstellar disk seen at an inclination of 75° ± 3° with a position angle on the sky of 110° ± 8° measured East from North. From the best-fit disk density model, we find that 90% ofmore » the Hα emission arises from within 9.5 stellar radii, and the mass associated with this Hα disk is ∼1.8 × 10{sup −10} of the stellar mass, and that the associated angular momentum, assuming Keplerian rotation for the disk, is ∼1.6 × 10{sup −8} of the total stellar angular momentum. The occurrence of a central quasi-emission feature in Mg ii λ4481 is also predicted by this best-fit disk model and the computed profile compares successfully with observations from 1999. To obtain consistency between the Hα line profile modeling and the other constraints, it was necessary in the profile fitting to weight the line core (emission peaks and central depression) more heavily than the line wings, which were not well reproduced by our models. This may reflect the limitation of assuming a single power law for the disk's variation in equatorial density. The best-fit disk density model for o Aqr predicts that Hα is near its maximum strength as a function of disk density, and hence the Hα equivalent width and line profile change only weakly in response to large (factor of ∼5) changes in the disk density. This may in part explain the remarkable observed stability of o Aqr's Hα emission line profile.« less
Rotation and transport in Alcator C-Mod ITB plasmas
NASA Astrophysics Data System (ADS)
Fiore, C. L.; Rice, J. E.; Podpaly, Y.; Bespamyatnov, I. O.; Rowan, W. L.; Hughes, J. W.; Reinke, M.
2010-06-01
Internal transport barriers (ITBs) are seen under a number of conditions in Alcator C-Mod plasmas. Most typically, radio frequency power in the ion cyclotron range of frequencies (ICRFs) is injected with the second harmonic of the resonant frequency for minority hydrogen ions positioned off-axis at r/a > 0.5 to initiate the ITBs. They can also arise spontaneously in ohmic H-mode plasmas. These ITBs typically persist tens of energy confinement times until the plasma terminates in radiative collapse or a disruption occurs. All C-Mod core barriers exhibit strongly peaked density and pressure profiles, static or peaking temperature profiles, peaking impurity density profiles and thermal transport coefficients that approach neoclassical values in the core. The strongly co-current intrinsic central plasma rotation that is observed following the H-mode transition has a profile that is peaked in the centre of the plasma and decreases towards the edge if the ICRF power deposition is in the plasma centre. When the ICRF resonance is placed off-axis, the rotation develops a well in the core region. The central rotation continues to decrease as long as the central density peaks when an ITB develops. This rotation profile is flat in the centre (0 < r/a < 0.4) but rises steeply in the region where the foot in the ITB density profile is observed (0.5 < r/a < 0.7). A correspondingly strong E × B shear is seen at the location of the ITB foot that is sufficiently large to stabilize ion temperature gradient instabilities that dominate transport in C-Mod high density plasmas.
Aeolian transport in the field: A comparison of the effects of different surface treatments
NASA Astrophysics Data System (ADS)
Dong, Zhibao; Lv, Ping; Zhang, Zhengcai; Qian, Guangqiang; Luo, Wanyin
2012-05-01
Aeolian transport represents the result of wind-surface interactions, and therefore depends strongly on variations in the characteristics of the sediment surface. We conducted field observations of aeolian transport of typical dune sand in three 80 m × 80 m plots with different surface treatments: gravel-covered sand, enclosed shifting sand, and open (unprotected) shifting sand. The study was performed at the Shapotou Aeolian Experiment Site in the southeastern part of China's Tengger Desert to compare the effects of these different surface treatments on aeolian transport. To do so, we analyzed the flux density profiles and transport rates above each surface. The flux density profiles for all three treatments followed the exponential decay law that was proposed by most previous researchers to describe the saltation flux density profiles. Coefficients of the exponential decay function were defined as a function of the surface and the wind velocity. The enclosed and open plots with shifting sand had similar flux density profiles, but the flux density above gravel-covered plots showed that transport decayed more slowly with increasing height, producing flux density profiles with a higher average saltation height. The transport rate above the three treatment plots tended to increase proportionally with the cube of the mean wind velocity and with the maximum wind velocity during the observation period, but was more strongly correlated with the square of drift potential. Transport rates above the plot with open shifting sand were greater than those above the plots with enclosed shifting sand and the gravel-covered plot.
Analysis of Rotation and Transport Data in C-Mod ITB Plasmas
NASA Astrophysics Data System (ADS)
Fiore, C. L.; Rice, J. E.; Reinke, M. L.; Podpaly, Y.; Bespamyatnov, I. O.; Rowan, W. L.
2009-11-01
Internal transport barriers (ITBs) spontaneously form near the half radius of Alcator C-Mod plasmas when the EDA H-mode is sustained for several energy confinement times in either off-axis ICRF heated discharges or in purely ohmic heated plasmas. These plasmas exhibit strongly peaked density and pressure profiles, static or peaking temperature profiles, peaking impurity density profiles, and thermal transport coefficients that approach neoclassical values in the core. It has long been observed that the intrinsic central plasma rotation that is strongly co-current following the H-mode transition slows and often reverses as the density peaks as the ITB forms. Recent spatial measurements demonstrate that the rotation profile develops a well in the core region that decreases continuously as central density rises while the value outside of the core remains strongly co-current. This results in the formation of a steep potential gradient/strong electric field at the location of the foot of the ITB density profile. The resulting E X B shearing rate is also quite significant at the foot. These analyses and the implications for plasma transport and stability will be presented.
First Ionospheric Results From the MAVEN Radio Occultation Science Experiment (ROSE)
NASA Astrophysics Data System (ADS)
Withers, Paul; Felici, M.; Mendillo, M.; Moore, L.; Narvaez, C.; Vogt, M. F.; Jakosky, B. M.
2018-05-01
Radio occultation observations of the ionosphere of Mars can span the full vertical extent of the ionosphere, in contrast to in situ measurements that rarely sample the main region of the ionosphere. However, most existing radio occultation electron density profiles from Mars were acquired without clear context for the solar forcing or magnetospheric conditions, which presents challenges for the interpretation of these profiles. Here we present 48 ionospheric electron density profiles acquired by the Mars Atmosphere and Volatile EvolutioN mission (MAVEN) Radio Occultation Science Experiment (ROSE) from 5 July 2016 to 27 June 2017 at solar zenith angles of 54° to 101°. Latitude coverage is excellent, and comprehensive context for the interpretation of these profiles is provided by other MAVEN instruments. The profiles show a 9-km increase in ionospheric peak altitude in January 2017 that is associated with a lower atmospheric dust storm, variations in electron densities in the M1 layer that cannot be explained by variations in the solar soft X-ray flux, and topside electron densities that are larger in strongly magnetized regions than in weakly magnetized regions. MAVEN Radio Occultation Science Experiment electron density profiles are publicly available on the NASA Planetary Data System.
Observation of ionization fronts in low density foam targets
NASA Astrophysics Data System (ADS)
Hoarty, D.; Willi, O.; Barringer, L.; Vickers, C.; Watt, R.; Nazarov, W.
1999-05-01
Ionization fronts have been observed in low density chlorinated foam targets and low density foams confined in gold tubes using time resolved K-shell absorption spectroscopy. The front was driven by an intense pulse of soft x-rays produced by high power laser irradiation. The density and temperature profiles inferred from the radiographs provided detailed measurement of the conditions. The experimental data were compared to radiation hydrodynamics simulations and reasonable agreement was obtained.
The Structure of Dark Matter Halos in Dwarf Galaxies
NASA Astrophysics Data System (ADS)
Burkert, A.
1995-07-01
Recent observations indicate that dark matter halos have flat central density profiles. Cosmological simulations with nonbaryonic dark matter, however, predict self-similar halos with central density cusps. This contradiction has lead to the conclusion that dark matter must be baryonic. Here it is shown that the dark matter halos of dwarf spiral galaxies represent a one-parameter family with self-similar density profiles. The observed global halo parameters are coupled with each other through simple scaling relations which can be explained by the standard cold dark matter model if one assumes that all the halos formed from density fluctuations with the same primordial amplitude. We find that the finite central halo densities correlate with the other global parameters. This result rules out scenarios where the flat halo cores formed subsequently through violent dynamical processes in the baryonic component. These cores instead provide important information on the origin and nature of dark matter in dwarf galaxies.
Delaney, Kevin P; Kramer, Michael R; Waller, Lance A; Flanders, W Dana; Sullivan, Patrick S
2014-11-18
In the United States, human immunodeficiency virus/acquired immunodeficiency syndrome (HIV/AIDS) continues to have a heavy impact on men who have sex with men (MSM). Among MSM, black men under the age of 30 are at the most risk for being diagnosed with HIV. The US National HIV/AIDS strategy recommends intensifying efforts in communities that are most heavily impacted; to do so requires new methods for identifying and targeting prevention resources to young MSM, especially young MSM of color. We piloted a methodology for using the geolocation features of social and sexual networking applications as a novel approach to calculating the local population density of sex-seeking MSM and to use self-reported age and race from profile postings to highlight areas with a high density of minority and young minority MSM in Atlanta, Georgia. We collected data from a geographically systematic sample of points in Atlanta. We used a sexual network mobile phone app and collected application profile data, including age, race, and distance from each point, for either the 50 closest users or for all users within a 2-mile radius of sampled points. From these data, we developed estimates of the spatial density of application users in the entire city, stratified by race. We then compared the ratios and differences between the spatial densities of black and white users and developed an indicator of areas with the highest density of users of each race. We collected data from 2666 profiles at 79 sampled points covering 883 square miles; overlapping circles of data included the entire 132.4 square miles in Atlanta. Of the 2666 men whose profiles were observed, 1563 (58.63%) were white, 810 (30.38%) were black, 146 (5.48%) were another race, and 147 (5.51%) did not report a race in their profile. The mean age was 31.5 years, with 591 (22.17%) between the ages of 18-25, and 496 (18.60%) between the ages of 26-30. The mean spatial density of observed profiles was 33 per square mile, but the distribution of profiles observed across the 79 sampled points was highly skewed (median 17, range 1-208). Ratio, difference, and distribution outlier measures all provided similar information, highlighting areas with higher densities of minority and young minority MSM. Using a limited number of sampled points, we developed a geospatial density map of MSM using a social-networking sex-seeking app. This approach provides a simple method to describe the density of specific MSM subpopulations (users of a particular app) for future HIV behavioral surveillance and allow targeting of prevention resources such as HIV testing to populations and areas of highest need.
Analysis of Total Electron Content and Electron Density Profile during Different Geomagnetic Storms
NASA Astrophysics Data System (ADS)
Chapagain, N. P.; Rana, B.; Adhikari, B.
2017-12-01
Total Electron content (TEC) and electron density are the key parameters in the mitigation of ionospheric effects on radio communication system. Detail study of the TEC and electron density variations has been carried out during geomagnetic storms, with longitude and latitude, for four different locations: (13˚N -17˚N, 88˚E -98˚E), (30˚N-50˚N, 120˚W -95˚W), (29˚S-26˚S, 167˚W-163˚W,) and (60˚S-45˚S, 120˚W-105˚W) using the Gravity Recovery and Climate Experiment (GRACE) satellite observations. In order to find the geomagnetic activity, the solar wind parameters such as north-south component of inter planetary magnetic field (Bz), plasma drift velocity (Vsw), flow pressure (nPa), AE, Dst and Kp indices were obtained from Operating Mission as Nodes on the Internet (OMNI) web system. The data for geomagnetic indices have been correlated with the TEC and electron density for four different events of geomagnetic storms on 6 April 2008, 27 March 2008, 4 September 2008, and 11 October 2008. The result illustrates that the observed TEC and electron density profile significantly vary with longitudes and latitudes. This study illustrates that the values of TEC and the vertical electron density profile are influenced by the solar wind parameters associated with solar activities. The peak values of electron density and TEC increase as the geomagnetic storms become stronger. Similarly, the electron density profile varies with altitudes, which peaks around the altitude range of about 250- 350 km, depending on the strength of geomagnetic storms. The results clearly show that the peak electron density shifted to higher altitude (from about 250 km to 350 km) as the geomagnetic disturbances becomes stronger.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Baushev, A. N., E-mail: baushev@gmail.com; Institut für Physik und Astronomie, Universität Potsdam, D-14476 Potsdam-Golm
2014-05-01
While N-body simulations testify to a cuspy profile of the central region of dark matter halos, observations favor a shallow, cored density profile of the central region of at least some spiral galaxies and dwarf spheroidals. We show that a central profile, very close to the observed one, inevitably forms in the center of dark matter halos if we make a supposition about a moderate energy relaxation of the system during the halo formation. If we assume the energy exchange between dark matter particles during the halo collapse is not too intensive, the profile is universal: it depends almost notmore » at all on the properties of the initial perturbation and is very akin, but not identical, to the Einasto profile with a small Einasto index n ∼ 0.5. We estimate the size of the 'central core' of the distribution, i.e., the extent of the very central region with a respectively gentle profile, and show that the cusp formation is unlikely, even if the dark matter is cold. The obtained profile is in good agreement with observational data for at least some types of galaxies but clearly disagrees with N-body simulations.« less
Searching for the missing baryons in clusters
Rasheed, Bilhuda; Bahcall, Neta; Bode, Paul
2011-01-01
Observations of clusters of galaxies suggest that they contain fewer baryons (gas plus stars) than the cosmic baryon fraction. This “missing baryon” puzzle is especially surprising for the most massive clusters, which are expected to be representative of the cosmic matter content of the universe (baryons and dark matter). Here we show that the baryons may not actually be missing from clusters, but rather are extended to larger radii than typically observed. The baryon deficiency is typically observed in the central regions of clusters (∼0.5 the virial radius). However, the observed gas-density profile is significantly shallower than the mass-density profile, implying that the gas is more extended than the mass and that the gas fraction increases with radius. We use the observed density profiles of gas and mass in clusters to extrapolate the measured baryon fraction as a function of radius and as a function of cluster mass. We find that the baryon fraction reaches the cosmic value near the virial radius for all groups and clusters above . This suggests that the baryons are not missing, they are simply located in cluster outskirts. Heating processes (such as shock-heating of the intracluster gas, supernovae, and Active Galactic Nuclei feedback) likely contribute to this expanded distribution. Upcoming observations should be able to detect these baryons. PMID:21321229
Radial Surface Density Profiles of Gas and Dust in the Debris Disk Around 49 Ceti
NASA Technical Reports Server (NTRS)
Hughes, A. Meredith; Lieman-Sifry, Jesse; Flaherty, Kevin M.; Daley, Cail M.; Roberge, Aki; Kospal, Agnes; Moor, Attila; Kamp, Inga; Wilner, David J.; Andrews, Sean M.;
2017-01-01
We present approximately 0".4 resolution images of CO(3-2) and associated continuum emission from the gas-bearing debris disk around the nearby A star 49 Ceti, observed with the Atacama Large Millimeter/Submillimeter Array (ALMA). We analyze the ALMA visibilities in tandem with the broadband spectral energy distribution to measure the radial surface density profiles of dust and gas emission from the system. The dust surface density decreases with radius between approximately 100 and 310 au, with a marginally significant enhancement of surface density at a radius of approximately 110 au. The SED requires an inner disk of small grains in addition to the outer disk of larger grains resolved by ALMA. The gas disk exhibits a surface density profile that increases with radius, contrary to most previous spatially resolved observations of circumstellar gas disks. While approximately 80% of the CO flux is well described by an axisymmetric power-law disk in Keplerian rotation about the central star, residuals at approximately 20% of the peak flux exhibit a departure from axisymmetry suggestive of spiral arms or a warp in the gas disk. The radial extent of the gas disk (approx. 220 au) is smaller than that of the dust disk (approx. 300 au), consistent with recent observations of other gasbearing debris disks. While there are so far only three broad debris disks with well characterized radial dust profiles at millimeter wavelengths, 49 Ceti's disk shows a markedly different structure from two radially resolved gas-poor debris disks, implying that the physical processes generating and sculpting the gas and dust are fundamentally different.
NASA Astrophysics Data System (ADS)
Takenaga, H.; Ide, S.; Sakamoto, Y.; Fujita, T.; JT-60 Team
2008-07-01
Effects of low central fuelling on density and ion temperature profiles have been investigated using negative ion based neutral beam injection and electron cyclotron heating (ECH) in reversed shear plasmas on JT-60U. Strong internal transport barrier (ITB) was maintained in density and ion temperature profiles, when central fuelling was decreased by switching positive ion based neutral beam injection to ECH after the strong ITB formation. Similar density and ion temperature ITBs were formed for the low and high central fuelling cases during the plasma current ramp-up phase. Strong correlation between the density gradient and the ion temperature gradient was observed, indicating that particle transport and ion thermal transport are strongly coupled or the density gradient assists the ion temperature ITB formation through suppression of drift wave instabilities such as ion temperature gradient mode. These results support that the density and ion temperature ITBs can be formed under reactor relevant conditions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, Taewoong; Seong, Tae-Yeon; School of Materials Science and Engineering, Korea University, Seoul 136-713
Efficiency droop is a phenomenon in which the efficiency of a light-emitting diode (LED) decreases with the increase in current density. To analyze efficiency droop, direct experimental observations on the energy conversion occurring inside the LED is required. Here, we present the measured voltage profiles on the cross section of an operating LED and analyze them with the cross-sectional temperature profiles obtained in a previous study under the same operation conditions. The measured voltage profiles suggest that with increases in the injection current density, electron depletion shifts from the multi-quantum well through an electron blocking layer to the p-GaN region.more » This is because electron leakage increases with increases in current density.« less
NASA Astrophysics Data System (ADS)
Moodie, A. J.; Nittrouer, J. A.; Ma, H.; Lamb, M. P.; Carlson, B.; Kineke, G. C.; Parker, G.
2017-12-01
High concentrations of suspended sediment in channelized fluid flow produces density stratification that can alter the turbulent flow structure, thus limiting fluid momentum redistribution and affecting sediment transport capacity. A low channel-bed slope and large flow depth are hypothesized to be additional important factors contributing to density stratification. However, there are limited observations of density stratification in large rivers, especially those that carry significant fluxes of mud, and so the conditions leading to the development of density stratification are poorly constrained. The Yellow River, China, is a fine-grained and low-sloping river that maintains some of the highest suspended sediment concentrations in large rivers worldwide, making it an ideal natural laboratory for studying density stratification and its impact on sediment transport. Suspended sediment samples from the lower Yellow River, collected over a range of discharge conditions, produced sediment concentration profiles that are used in conjunction with velocity profiles to determine the threshold shear velocity for density stratification effects to develop. Comparing measured and predicted concentration and velocity profiles demonstrates that, there is no significant density stratification for base flow conditions; however, above a shear velocity value of 0.05 m/s, there is a progressive offset between the measured and predicted profiles, indicating that density stratification is increasingly important with higher shear stress values. The analyses further indicate that sediment entrainment from the bed and sediment diffusivity within the water column are significantly impacted by density stratification, suggesting that shear stress and sediment transport rates are inhibited by the development of density stratification. Near-bed concentration measurements are used to assess a stress-to-entrainment relationship, accounting for density stratification. These measurements are being used to refine relations for sediment entrainment and sediment flux in sandy and muddy, lowland rivers and deltas.
Changes in divertor conditions in response to changing core density with RMPs
Briesemeister, Alexis R.; Ahn, Joon -Wook; Canik, John M.; ...
2017-06-07
The effects of changes in core density on divertor electron temperature, density and heat flux when resonant magnetic perturbations (RMPs) are applied are presented, notably a reduction in RMP induced secondary radial peaks in the electron temperature profile at the target plate is observed when the core density is increased, which is consistent with modeling. RMPs is used here to indicated non-axisymmetric magnetic field perturbations, created using in-vessel control coils, which have components which has at least one but typically many resonances with the rotational transform of the plasma. RMPs are found to alter inter-ELM heat flux to the divertormore » by modifying the core plasma density. It is shown that applying RMPs reduces the core density and increases the inter-ELM heat flux to both the inner and outer targets. Using gas puffing to return the core density to the pre-RMP levels more than eliminates the increase in inter-ELM heat flux, but a broadening of the heat flux to the outer target remains. These measurements were made at a single toroidal location, but the peak in the heat flux profile was found near the outer strike point where simulations indicate little toroidal variation should exist and tangentially viewing diagnostics showed no evidence of strong asymmetries. In experiments where divertor Thomson scattering measurements were available it is shown that, local secondary peaks in the divertor electron temperature profile near the target plate are reduced as the core density is increased, while peaks in the divertor electron density profile near the target are increased. Furthermore, these trends observed in the divertor electron temperature and density are qualitatively reproduced by scanning the upstream density in EMC3-Eirene modeling. Measurements are presented showing that higher densities are needed to induce detachment of the outer strike point in a case where an increase in electron temperature, likely due to a change in MHD activity, is seen after RMPs are applied.« less
Changes in divertor conditions in response to changing core density with RMPs
DOE Office of Scientific and Technical Information (OSTI.GOV)
Briesemeister, Alexis R.; Ahn, Joon -Wook; Canik, John M.
The effects of changes in core density on divertor electron temperature, density and heat flux when resonant magnetic perturbations (RMPs) are applied are presented, notably a reduction in RMP induced secondary radial peaks in the electron temperature profile at the target plate is observed when the core density is increased, which is consistent with modeling. RMPs is used here to indicated non-axisymmetric magnetic field perturbations, created using in-vessel control coils, which have components which has at least one but typically many resonances with the rotational transform of the plasma. RMPs are found to alter inter-ELM heat flux to the divertormore » by modifying the core plasma density. It is shown that applying RMPs reduces the core density and increases the inter-ELM heat flux to both the inner and outer targets. Using gas puffing to return the core density to the pre-RMP levels more than eliminates the increase in inter-ELM heat flux, but a broadening of the heat flux to the outer target remains. These measurements were made at a single toroidal location, but the peak in the heat flux profile was found near the outer strike point where simulations indicate little toroidal variation should exist and tangentially viewing diagnostics showed no evidence of strong asymmetries. In experiments where divertor Thomson scattering measurements were available it is shown that, local secondary peaks in the divertor electron temperature profile near the target plate are reduced as the core density is increased, while peaks in the divertor electron density profile near the target are increased. Furthermore, these trends observed in the divertor electron temperature and density are qualitatively reproduced by scanning the upstream density in EMC3-Eirene modeling. Measurements are presented showing that higher densities are needed to induce detachment of the outer strike point in a case where an increase in electron temperature, likely due to a change in MHD activity, is seen after RMPs are applied.« less
Microstructural characterisation of proton irradiated niobium using X-ray diffraction technique
NASA Astrophysics Data System (ADS)
Dutta, Argha; Gayathri, N.; Neogy, S.; Mukherjee, P.
2018-04-01
The microstructural parameters in pure Nb, irradiated with 5 MeV proton beam have been evaluated as a function of dose using X-ray diffraction line profile analysis. In order to assess the microstructural changes in the homogeneous region and in the peak damage region of the damage energy deposition profile, X-ray diffraction patterns have been collected using two different geometries (Bragg-Brentano and parallel beam geometries). Different X-ray line profile analysis like Williamson-Hall (W-H) analysis, modified W-H analysis, double-Voigt analysis, modified Rietveld technique and convolutional multiple whole profile fitting have been employed to extract the microstructural parameters like coherent domain size, microstrain within the domain, dislocation density and arrangement of dislocations. The coherent domain size decreases drastically along with increase in microstrain and dislocation density in the first dose for both the geometries. With increasing dose, a decreasing trend in microstrain associated with decrease in dislocation density is observed for both the geometries. This is attributed to the formation of defect clusters due to irradiation which with increasing dose collapse to dislocation loops to minimise the strain in the matrix. This is corroborated with the observation of black dots and loops in the TEM images. No significant difference is observed in the trend of microstructural parameters between the homogeneous and peak damage region of the damage profile.
NASA Astrophysics Data System (ADS)
Mukai, K.; Nagaoka, K.; Takahashi, H.; Yokoyama, M.; Murakami, S.; Nakano, H.; Ida, K.; Yoshinuma, M.; Seki, R.; Kamio, S.; Fujiwara, Y.; Oishi, T.; Goto, M.; Morita, S.; Morisaki, T.; Osakabe, M.; LHD Experiment Group1, the
2018-07-01
The behavior of carbon impurities in deuterium plasmas and its impact on thermal confinement were investigated in comparison with hydrogen plasmas in the Large Helical Device (LHD). Deuterium plasma experiments have been started in the LHD and high-ion-temperature plasmas with central ion temperature (T i) of 10 keV were successfully obtained. The thermal confinement improvement could be sustained for a longer time compared with hydrogen plasmas. An isotope effect was observed in the time evolution of the carbon density profiles. A transiently peaked profile was observed in the deuterium plasmas due to the smaller carbon convection velocity and diffusivity in the deuterium plasmas compared with the hydrogen plasmas. The peaked carbon density profile was strongly correlated to the ion thermal confinement improvement. The peaking of the carbon density profile will be one of the clues to clarify the unexplained mechanisms for the formations of ion internal transport barrier and impurity hole on LHD. These results could also lead to a better understanding of the isotope effect in the thermal confinement in torus plasma.
Comparison of COSMIC RO Data with European Digisondes and GPS TEC measurements
NASA Astrophysics Data System (ADS)
Zakharenkova, Irina; Krypiak-Gregorczyk, Anna; Shagimuratov, Irk; Krankowski, Andrzej; Lagovsky, Anatoly
FormoSat-3/COSMIC now provides unprecedented global coverage of GPS occultations mea-surements, each of which yields the ionosphere electron density information with high vertical resolution. However systematic validation work is still needed before using the powerful RO technique for sounding the ionosphere on a routine basis. In the given study electron density profiles retrieved from the Formosat-3/COSMIC RO measurements were compared with differ-ent kinds of ground-based observations. We used the ionospheric data recorded by European digisondes of DIAS network (Rome, Ebro, Arenosillo, Athens, Chilton, Pruhonice and Julius-ruh) for temporal interval of 2007-2009 and compare these ground measured data with the GPS COSMIC RO ionospheric profiles. It was revealed that in general the form of COSMIC profile in the bottom side is in a good agreement with ionosonde profiles, the heights of the peak density value are also good comparable. Special attention was focused to the question of the topside part of electron density profile. Practically for all analyzed cases there are observed the understated values of electron density in the topside part of the ionosonde profiles in compare with RO profiles. As the topside ionosonde profile is obtained by fitting a model to the peak electron density value, the COSMIC radio occultation measurements can make an important contribution to the investigation of the topside part of the ionosphere. In order to assess the ac-curacy of the COSMIC ionospheric electron density retrievals, coincidences of ionosonde data with COSMIC NmF2 values have been examined. NmF2 was calculated from the observed critical plasma frequency foF2 of the F2 layer. Values of foF2 have been scaled manually from ionograms for all considered time-location cases to avoid the evident risks related with using of the autoscaled data. The created scatter plots show a high degree of correlation between two independent estimates of NmF2. Also it was analyzed the variation of NmF2 for the considered seasons depending on day-time and night-time conditions. Also it was analyzed the total elec-tron content values calculated for the nearest ground-based GPS stations located in European region. To compare GPS TEC with RO and ionosondes' data these profiles were integrated. In general bottom parts of COSMIC and ionosondes' data are in a rather good agreement while the topside can be varied greatly that is the evidence of difference in the topside parts of these profiles. GPS TEC values are greater than COSMIC and ionosondes' data as TEC contains IEC and PEC. This procedure can be useful to estimate the impact of PEC into TEC. Results of the given comparisons can be important to validate the reliability of the COSMIC iono-spheric observations using the RO technique. We acknowledge the Taiwan's National Space Organization (NSPO) and the University Corporation for Atmospheric Research (UCAR) for providing the COSMIC Data. We are grateful to European Digital Upper Atmosphere Server (DIAS) for providing the ionosondes' products and to International GNSS Service (IGS) for GPS Data.
The H i-to-H{sub 2} Transition in a Turbulent Medium
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bialy, Shmuel; Sternberg, Amiel; Burkhart, Blakesley, E-mail: shmuelbi@mail.tau.ac.il
2017-07-10
We study the effect of density fluctuations induced by turbulence on the H i/H{sub 2} structure in photodissociation regions (PDRs) both analytically and numerically. We perform magnetohydrodynamic numerical simulations for both subsonic and supersonic turbulent gas and chemical H i/H{sub 2} balance calculations. We derive atomic-to-molecular density profiles and the H i column density probability density function (PDF) assuming chemical equilibrium. We find that, while the H i/H{sub 2} density profiles are strongly perturbed in turbulent gas, the mean H i column density is well approximated by the uniform-density analytic formula of Sternberg et al. The PDF width depends onmore » (a) the radiation intensity–to–mean density ratio, (b) the sonic Mach number, and (c) the turbulence decorrelation scale, or driving scale. We derive an analytic model for the H i PDF and demonstrate how our model, combined with 21 cm observations, can be used to constrain the Mach number and driving scale of turbulent gas. As an example, we apply our model to observations of H i in the Perseus molecular cloud. We show that a narrow observed H i PDF may imply small-scale decorrelation, pointing to the potential importance of subcloud-scale turbulence driving.« less
NASA Technical Reports Server (NTRS)
Vanzandt, T. E.; Smith, S. A.; Tsuda, T.; Sato, T.; Fritts, D. C.
1990-01-01
Results are presented from a six-day campaign to observe velocity fluctuations in the lower atmosphere using the MU radar (Fukao et al., 1985) in Shigaraki, Japan in March, 1986. Consideration is given to the azimuthal anisotropy, the frequency spectra, the vertical profiles of energy density, and the momentum flux of the motion field. It is found that all of the observed azimuthal variations are probably caused by a gravity wave field whose parameters vary with time. The results show significant differences between the mean zonal and meridional frequency spectra and different profiles of mean energy density with height for different frequency bands and for zonal and meridional components.
A Solution to ``Too Big to Fail''
NASA Astrophysics Data System (ADS)
Kohler, Susanna
2016-10-01
Its a tricky business to reconcile simulations of our galaxys formation with our current observations of the Milky Way and its satellites. In a recent study, scientists have addressed one discrepancy between simulations and observations: the so-called to big to fail problem.From Missing Satellites to Too Big to FailThe favored model of the universe is the lambda-cold-dark-matter (CDM) cosmological model. This model does a great job of correctly predicting the large-scale structure of the universe, but there are still a few problems with it on smaller scales.Hubble image of UGC 5497, a dwarf galaxy associated with Messier 81. In the missing satellite problem, simulations of galaxy formation predict that there should be more such satellite galaxies than we observe. [ESA/NASA]The first is the missing satellites problem: CDM cosmology predicts that galaxies like the Milky Way should have significantly more satellite galaxies than we observe. A proposed solution to this problem is the argument that there may exist many more satellites than weve observed, but these dwarf galaxies have had their stars stripped from them during tidal interactions which prevents us from being able to see them.This solution creates a new problem, though: the too big to fail problem. This problem states that many of the satellites predicted by CDM cosmology are simply so massive that theres no way they couldnt have visible stars. Another way of looking at it: the observed satellites of the Milky Way are not massive enough to be consistent with predictions from CDM.Artists illustration of a supernova, a type of stellar feedback that can modify the dark-matter distribution of a satellite galaxy. [NASA/CXC/M. Weiss]Density Profiles and Tidal StirringLed by Mihai Tomozeiu (University of Zurich), a team of scientists has published a study in which they propose a solution to the too big to fail problem. By running detailed cosmological zoom simulations of our galaxys formation, Tomozeiu and collaborators modeled the dark matter and the stellar content of the galaxy, tracking the formation and evolution of dark-matter subhalos.Based on the results of their simulations, the team argues that the too big to fail problem can be resolved by combining two effects:Stellar feedback in a satellite galaxy can modify its dark-matter distribution, lowering the dark-matter density in the galaxys center and creating a shallower density profile. Satellites with such shallow density profiles evolve differently than those typically modeled, which have a high concentration of dark matter in their centers.After these satellites fall into the Milky Ways potential, tidal effects such as shocks and stripping modify the mass distribution of both the dark matter and the baryons even further.Each curve represents a simulated satellites circular velocity (which corresponds to its total mass) at z=0. Left: results using typical dark-matter density profiles. Right: results using the shallower profiles expected when stellar feedback is included. Results from the shallower profiles are consistent with observed Milky-Way satellites(black crosses). [Adapted from Tomozeiu et al. 2016]A Match to ObservationsTomozeiu and collaborators found that when they used traditional density profiles to model the satellites, the satellites at z=0 in the simulation were much larger than those we observe around the Milky Way consistent with the too big to fail problem.When the team used shallower density profiles and took into account tidal effects, however, the simulations produced a distribution of satellites at z=0 that is consistent with what we observe.This study provides a tidy potential solution to the too big to fail problem, further strengthening the support for CDM cosmology.CitationMihai Tomozeiu et al 2016 ApJ 827 L15. doi:10.3847/2041-8205/827/1/L15
Are ultracompact minihalos really ultracompact?
NASA Astrophysics Data System (ADS)
Delos, M. Sten; Erickcek, Adrienne L.; Bailey, Avery P.; Alvarez, Marcelo A.
2018-02-01
Ultracompact minihalos (UCMHs) have emerged as a valuable probe of the primordial power spectrum of density fluctuations at small scales. UCMHs are expected to form at early times in regions with δ ρ /ρ ≳10-3 , and they are theorized to possess an extremely compact ρ ∝r-9 /4 radial density profile, which enhances their observable signatures. Nonobservation of UCMHs can thus constrain the primordial power spectrum. Using N -body simulations to study the collapse of extreme density peaks at z ≃1000 , we show that UCMHs forming under realistic conditions do not develop the ρ ∝r-9 /4 profile and instead develop either ρ ∝r-3 /2 or ρ ∝r-1 inner density profiles depending on the shape of the power spectrum. We also demonstrate via idealized simulations that self-similarity—the absence of a scale length—is necessary to produce a halo with the ρ ∝r-9 /4 profile, and we argue that this implies such halos cannot form from a Gaussian primordial density field. Prior constraints derived from UCMH nonobservation must be reworked in light of this discovery. Although the shallower density profile reduces UCMH visibility, our findings reduce their signal by as little as O (10-2) while allowing later-forming halos to be considered, which suggests that new constraints could be significantly stronger.
Peaks in Phase Space Density: A Survey of the Van Allen Probes Era
NASA Astrophysics Data System (ADS)
Boyd, A. J.; Turner, D. L.; Reeves, G. D.; Spence, H. E.
2017-12-01
One of the challenges of radiation belt studies is the differentiation between acceleration mechanisms, particularly local acceleration and radial diffusion. This is often done through careful examination of phase space density profiles in terms of adiabatic coordinates. In particular, local acceleration processes produce growing peaks in phase space density. Many previous studies have shown clear observations of these features for individual events. However, it remains unclear how often and where these growing peaks are observed over a long time period. With the availability of several years of high quality observations from multiple spacecraft, we now have an opportunity to quantify phase space density profiles not only for multiple events, but also across a wide range of energies. In this study, we examine phase space density from more than four years of data from the Van Allen Probes and THEMIS to determine the statistical properties of the observed peaks in phase space density. First, we determine how often growing peaks are observed. Second, we examine where the peaks are located in terms of the adiabatic invariants mu, K and L* and how these locations relate to geomagnetic indices, solar wind conditions and the plasmapause location. Third, we explore how these peaks evolve in time. Together, these results will reveal the relative importance of different acceleration processes and how these affect the various electron populations within the radiation belt.
A study of the Ionospheric electron density profile with FORMOSAT-3/COSMIC observation data
NASA Astrophysics Data System (ADS)
Chou, Min-Yang; Tsai, Ho-Fang; Lin, Chi-Yen; Lee, I.-Te; Lin, Charles; Liu, Jann-Yenq
2015-04-01
The GPS Occultation Experiment payload onboard FORMOSAT-3/COSMIC microsatellite constellation is capable of scanning the ionospheric structure by the radio occultation (RO) technique to retrieve precise electron density profiles since 2006. Due to the success of FORMOSAT-3/COSMIC, the follow-on mission, FORMOSAT-7/COSMIC-2, is to launch 12 microsatellites in 2016 and 2018, respectively, with the Global Navigation Satellite Systems (GNSS) RO instrument onboard for tracking GPS, Galileo and/or GLONASS satellite signals and to provide more than 8,000 RO soundings per day globally. An overview of the validation of the FORMOSAT-3/COSMIC ionospheric profiling is given by means of the traditional Abel transform through bending angle and total electron content (TEC), while the ionospheric data assimilation is also applied, based on the Gauss-Markov Kalman filter with the International Reference Ionosphere model (IRI-2007) and global ionosphere map (GIM) as background model, to assimilate TEC observations from FORMOSAT-3/COSMIC. The results shows comparison of electron density profiles from Abel inversion and data assimilation. Furthermore, an observing system simulation experiment is also applied to determine the impact of FORMOSAT-7/COSMIC-2 on ionospheric weather monitoring, which reveals an opportunity on advanced study of small spatial and temporal variations in the ionosphere.
NASA Astrophysics Data System (ADS)
Overly, Thomas B.; Hawley, Robert L.; Helm, Veit; Morris, Elizabeth M.; Chaudhary, Rohan N.
2016-08-01
We report annual snow accumulation rates from 1959 to 2004 along a 250 km segment of the Expéditions Glaciologiques Internationales au Groenland (EGIG) line across central Greenland using Airborne SAR/Interferometric Radar Altimeter System (ASIRAS) radar layers and high resolution neutron-probe (NP) density profiles. ASIRAS-NP-derived accumulation rates are not statistically different (95 % confidence interval) from in situ EGIG accumulation measurements from 1985 to 2004. ASIRAS-NP-derived accumulation increases by 20 % below 3000 m elevation, and increases by 13 % above 3000 m elevation for the period 1995 to 2004 compared to 1985 to 1994. Three Regional Climate Models (PolarMM5, RACMO2.3, MAR) underestimate snow accumulation below 3000 m by 16-20 % compared to ASIRAS-NP from 1985 to 2004. We test radar-derived accumulation rates sensitivity to density using modeled density profiles in place of NP densities. ASIRAS radar layers combined with Herron and Langway (1980) model density profiles (ASIRAS-HL) produce accumulation rates within 3.5 % of ASIRAS-NP estimates in the dry snow region. We suggest using Herron and Langway (1980) density profiles to calibrate radar layers detected in dry snow regions of ice sheets lacking detailed in situ density measurements, such as those observed by the Operation IceBridge campaign.
Fujiwara, Y; Hirano, Y; Kiyama, S; Nakamiya, A; Koguchi, H; Sakakita, H
2014-02-01
The self-focusing phenomenon has been observed in a high current density and low energy ion beam. In order to study the mechanism of this phenomenon, a special designed double probe to measure the electron density and temperature is installed into the chamber where the high current density ion beam is injected. Electron density profile is successfully measured without the influence of the ion beam components. Estimated electron temperature and density are ∼0.9 eV and ∼8 × 10(8) cm(-3) at the center of ion beam cross section, respectively. It was found that a large amount of electrons are spontaneously accumulated in the ion beam line in the case of self-forcing state.
Evaluation of Inversion Methods Applied to Ionospheric ro Observations
NASA Astrophysics Data System (ADS)
Rios Caceres, Arq. Estela Alejandra; Rios, Victor Hugo; Guyot, Elia
The new technique of radio-occultation can be used to study the Earth's ionosphere. The retrieval processes of ionospheric profiling from radio occultation observations usually assume spherical symmetry of electron density distribution at the locality of occultation and use the Abel integral transform to invert the measured total electron content (TEC) values. This pa-per presents a set of ionospheric profiles obtained from SAC-C satellite with the Abel inversion technique. The effects of the ionosphere on the GPS signal during occultation, such as bending and scintillation, are examined. Electron density profiles are obtained using the Abel inversion technique. Ionospheric radio occultations are validated using vertical profiles of electron con-centration from inverted ionograms , obtained from ionosonde sounding in the vicinity of the occultation. Results indicate that the Abel transform works well in the mid-latitudes during the daytime, but is less accurate during the night-time.
Kramer, Michael R; Waller, Lance A; Flanders, W Dana; Sullivan, Patrick S
2014-01-01
Background In the United States, human immunodeficiency virus/acquired immunodeficiency syndrome (HIV/AIDS) continues to have a heavy impact on men who have sex with men (MSM). Among MSM, black men under the age of 30 are at the most risk for being diagnosed with HIV. The US National HIV/AIDS strategy recommends intensifying efforts in communities that are most heavily impacted; to do so requires new methods for identifying and targeting prevention resources to young MSM, especially young MSM of color. Objective We piloted a methodology for using the geolocation features of social and sexual networking applications as a novel approach to calculating the local population density of sex-seeking MSM and to use self-reported age and race from profile postings to highlight areas with a high density of minority and young minority MSM in Atlanta, Georgia. Methods We collected data from a geographically systematic sample of points in Atlanta. We used a sexual network mobile phone app and collected application profile data, including age, race, and distance from each point, for either the 50 closest users or for all users within a 2-mile radius of sampled points. From these data, we developed estimates of the spatial density of application users in the entire city, stratified by race. We then compared the ratios and differences between the spatial densities of black and white users and developed an indicator of areas with the highest density of users of each race. Results We collected data from 2666 profiles at 79 sampled points covering 883 square miles; overlapping circles of data included the entire 132.4 square miles in Atlanta. Of the 2666 men whose profiles were observed, 1563 (58.63%) were white, 810 (30.38%) were black, 146 (5.48%) were another race, and 147 (5.51%) did not report a race in their profile. The mean age was 31.5 years, with 591 (22.17%) between the ages of 18-25, and 496 (18.60%) between the ages of 26-30. The mean spatial density of observed profiles was 33 per square mile, but the distribution of profiles observed across the 79 sampled points was highly skewed (median 17, range 1-208). Ratio, difference, and distribution outlier measures all provided similar information, highlighting areas with higher densities of minority and young minority MSM. Conclusions Using a limited number of sampled points, we developed a geospatial density map of MSM using a social-networking sex-seeking app. This approach provides a simple method to describe the density of specific MSM subpopulations (users of a particular app) for future HIV behavioral surveillance and allow targeting of prevention resources such as HIV testing to populations and areas of highest need. PMID:25406722
NASA Astrophysics Data System (ADS)
Mikhailov, Andrei V.; Belehaki, Anna; Perrone, Loredanna; Zolesi, Bruno; Tsagouri, Ioanna
2014-04-01
This paper investigates possible use of middle latitude daytime COSMIC and CHAMP ionospheric radio occultation (IRO) electron density profiles (EDPs) to retrieve thermospheric parameters, based on the Mikhailov et al. (2012) method. The aim of this investigation is to assess the applicability of this type of observations for the routine implementation of the method. According to the results extracted from the analysis presented here, about half of COSMIC IRO EDP observed under solar minimum (2007-2008) conditions gave neutral gas density with an inaccuracy close to the declared absolute inaccuracy ±(10-15)% of CHAMP observations, with the results being better than the empirical models JB-2008 and MSISE-00 provide. For the other half of IRO EDP, either the solution provided by the method had to be rejected due to insufficient accuracy or no solution could be obtained. For these cases, the parameters foF2 and hmF2 extracted from the corresponding IRO profiles have been found to be inconsistent with the classic mid-latitude daytime F2-layer formalism that the method relies on, and they are incompatible with the general trend provided by the IRI model. For solar maximum conditions (2002) the method was tested with IRO EDP from CHAMP and it is indicated that its performance is quite stable in the sense that a solution could be obtained for all the cases analyzed here. However available CHAMP EDP are confined by ~ 400 km in altitude and this might be the reason for the 20% bias of the retrieved densities toward larger values in respect to the observed densities. IRO observations up to 600 km under solar maximum are required to confirm the exact performance of the method.
Radial Surface Density Profiles of Gas and Dust in the Debris Disk around 49 Ceti
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hughes, A. Meredith; Lieman-Sifry, Jesse; Flaherty, Kevin M.
We present ∼0.″4 resolution images of CO(3–2) and associated continuum emission from the gas-bearing debris disk around the nearby A star 49 Ceti, observed with the Atacama Large Millimeter/Submillimeter Array (ALMA). We analyze the ALMA visibilities in tandem with the broadband spectral energy distribution to measure the radial surface density profiles of dust and gas emission from the system. The dust surface density decreases with radius between ∼100 and 310 au, with a marginally significant enhancement of surface density at a radius of ∼110 au. The SED requires an inner disk of small grains in addition to the outer diskmore » of larger grains resolved by ALMA. The gas disk exhibits a surface density profile that increases with radius, contrary to most previous spatially resolved observations of circumstellar gas disks. While ∼80% of the CO flux is well described by an axisymmetric power-law disk in Keplerian rotation about the central star, residuals at ∼20% of the peak flux exhibit a departure from axisymmetry suggestive of spiral arms or a warp in the gas disk. The radial extent of the gas disk (∼220 au) is smaller than that of the dust disk (∼300 au), consistent with recent observations of other gas-bearing debris disks. While there are so far only three broad debris disks with well characterized radial dust profiles at millimeter wavelengths, 49 Ceti’s disk shows a markedly different structure from two radially resolved gas-poor debris disks, implying that the physical processes generating and sculpting the gas and dust are fundamentally different.« less
Understanding of impurity poloidal distribution in the edge pedestal by modelling
NASA Astrophysics Data System (ADS)
Rozhansky, V.; Kaveeva, E.; Molchanov, P.; Veselova, I.; Voskoboynikov, S.; Coster, D.; Fable, E.; Puetterich, T.; Viezzer, E.; Kukushkin, A. S.; Kirk, A.; the ASDEX Upgrade Team
2015-07-01
Simulation of an H-mode ASDEX Upgrade shot with boron impurity was done with the B2SOLPS5.2 transport code. Simulation results were compared with the unique experimental data available for the chosen shot: radial density, electron and ion temperature profiles in the equatorial midplanes, radial electric field profile, radial profiles of the parallel velocity of impurities at the low-field side (LFS) and high-field side (HFS), radial density profiles of impurity ions at LHS and HFS. Simulation results reproduce all available experimental data simultaneously. In particular strong poloidal HFS-LFS asymmetry of B5+ ions was predicted in accordance with the experiment. The simulated HFS B5+ density inside the edge transport barrier is twice larger than that at LFS. This is consistent with the experimental observations where even larger impurity density asymmetry was observed. A similar effect was predicted in the simulation done for the MAST H-mode. Here the HFS density of He2+ is predicted to be 4 times larger than that at LHS. Such a large predicted asymmetry is connected with a larger ratio of HFS and LFS magnetic fields which is typical for spherical tokamaks. The HFS/LFS asymmetry was not measured in the experiment, however modelling qualitatively reproduces the observed change of sign of He+parallel velocity to the counter-current direction at LFS. The understanding of the asymmetry is based on neoclassical effects in plasma with strong gradients. It is demonstrated that simulation results obtained with account of sources of ionization, realistic geometry and turbulent transport are consistent with the simplified analytical approach. Difference from the standard neoclassical theory is emphasized.
Gămănuţ, Răzvan; Kennedy, Henry; Toroczkai, Zoltán; Ercsey-Ravasz, Mária; Van Essen, David C; Knoblauch, Kenneth; Burkhalter, Andreas
2018-02-07
The inter-areal wiring pattern of the mouse cerebral cortex was analyzed in relation to a refined parcellation of cortical areas. Twenty-seven retrograde tracer injections were made in 19 areas of a 47-area parcellation of the mouse neocortex. Flat mounts of the cortex and multiple histological markers enabled detailed counts of labeled neurons in individual areas. The observed log-normal distribution of connection weights to each cortical area spans 5 orders of magnitude and reveals a distinct connectivity profile for each area, analogous to that observed in macaques. The cortical network has a density of 97%, considerably higher than the 66% density reported in macaques. A weighted graph analysis reveals a similar global efficiency but weaker spatial clustering compared with that reported in macaques. The consistency, precision of the connectivity profile, density, and weighted graph analysis of the present data differ significantly from those obtained in earlier studies in the mouse. Copyright © 2017 Elsevier Inc. All rights reserved.
Dynamical evolution of dense star clusters in galactic nuclei
NASA Astrophysics Data System (ADS)
Haas, Jaroslav; Šubr, Ladislav
2014-05-01
By means of direct numerical N-body modeling, we investigate the orbital evolution of an initially thin, central mass dominated stellar disk. We include the perturbative gravitational influence of an extended spherically symmetric star cluster and the mutual gravitational interaction of the stars within the disk. Our results show that the two-body relaxation of the disk leads to significant changes of its radial density profile. In particular, the disk naturally evolves, for a variety of initial configurations, a similar broken power-law surface density profile. Hence, it appears that the single power-law surface density profile ∝R -2 suggested by various authors to describe the young stellar disk observed in the Sgr A* region does not match theoretical expectations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Habibi, M.; Ghamari, F.
2012-11-15
The authors have investigated the non-stationary self-focusing of Gaussian laser pulse in cold quantum plasma. In case of high dense plasma, the nonlinearity in the dielectric constant is mainly due to relativistic high intense interactions and quantum effects. In this paper, we have introduced a ramp density profile for plasma and presented graphically the behavior of spot size oscillations of pulse at rear and front portions of the pulse. It is observed that the ramp density profile and quantum effects play a vital role in stronger and better focusing at the rear of the pulse than at the front inmore » cold quantum plasmas.« less
NASA Technical Reports Server (NTRS)
Dempsey, Robert C.; Neff, James E.; Thorpe, Marjorie J.; Linsky, Jeffrey L.; Brown, Alexander; Cutispoto, Giuseppe; Rodono, Marcello
1996-01-01
Goddard High Resolution Spectrograph (GHRS) observations of the RS CVn-type binary V711 Tau (Kl IV+G5 IV) were obtained at several phases over two consecutive stellar orbital cycles in order to study ultraviolet emission-line profile and flux variability. Spectra cover the Mg II h and k lines, C IV doublet, and Si IV region, as well as the density-sensitive lines of C III] (1909 A) and Si III] (1892 A). IUE spectra, Extreme Ultra Violet (EUV) data, and Ultraviolet, Blue, Visual (UBV) photometry were obtained contemporaneously with the GHRS data. Variable extended wings were detected in the Mg II lines. We discuss the Mg II line profile variability using various Gaussian emission profile models. No rotational modulation of the line profiles was observed, but there were several large flares. These flares produced enhanced emission in the extended line wings, radial velocity shifts, and asymmetries in some line profiles. Nearly continuous flaring for more than 24 hr, as indicated in the IUE data, represents the most energetic and long-lived chromospheric and transition region flare ever observed with a total energy much greater than 5 x 10(exp 35) ergs. The C III] to Si III] line ratio is used to estimate the plasma density during the flares.
NASA Astrophysics Data System (ADS)
Hauchecorne, A.; Blanot, L.; Wing, R., Jr.; Keckhut, P.; Khaykin, S. M.
2017-12-01
The scattering of sunlight by the Earth atmosphere above the top of the stratospheric layer, about 30-35 km altitude, is only due to Rayleigh scattering by atmospheric molecules. Its intensity is then directly proportional to the atmospheric density. It is then possible to retrieve a temperature profile in absolute value using the hydrostatic equation and the perfect gas law, assuming that the temperature is known from a climatological model at the top of the density profile. This technique is applied to Rayleigh lidar observations since more than 35 years (Hauchecorne and Chanin, 1980). The GOMOS star occultation spectrometer observed the sunlight scattering at limb during daytime to remove it from the star spectrum. In the frame of the ESA funded MesosphEO project, GOMOS Rayleigh scattering profiles in the spectral range 400-460 nm have been used to retrieve temperature profiles from 35 to 85 km with a 2-km vertical resolution. A dataset of more than 310 thousands profiles from 2002 to 2012 is available for climatology and atmospheric dynamics studies. The validation of this dataset using NDACC Rayleigh lidars and MLS-AURA and SABER-TIMED will be presented. Preliminary results on the variability of the upper stratosphere and the mesosphere will be shown. We propose to apply this technique in the future to ALTIUS observations. The Rayleigh scattering technique can be applied to any sounder observing the day-time limb on the near-UV and visible spectrum.
NASA Astrophysics Data System (ADS)
Peirani, Sébastien; Dubois, Yohan; Volonteri, Marta; Devriendt, Julien; Bundy, Kevin; Silk, Joe; Pichon, Christophe; Kaviraj, Sugata; Gavazzi, Raphaël; Habouzit, Mélanie
2017-12-01
Using a suite of three large cosmological hydrodynamical simulations, HORIZON-AGN, HORIZON–NOAGN (no AGN feedback) and HORIZON-DM (no baryons), we investigate how a typical sub-grid model for AGN feedback affects the evolution of the inner density profiles of massive dark matter haloes and galaxies. Based on direct object-to-object comparisons, we find that the integrated inner mass and density slope differences between objects formed in these three simulations (hereafter, HAGN, HnoAGN and HDM) significantly evolve with time. More specifically, at high redshift (z ∼ 5), the mean central density profiles of HAGN and HnoAGN dark matter haloes tend to be much steeper than their HDM counterparts owing to the rapidly growing baryonic component and ensuing adiabatic contraction. By z ∼ 1.5, these mean halo density profiles in HAGN have flattened, pummelled by powerful AGN activity ('quasar mode'): the integrated inner mass difference gaps with HnoAGN haloes have widened, and those with HDM haloes have narrowed. Fast forward 9.5 billion years, down to z = 0, and the trend reverses: HAGN halo mean density profiles drift back to a more cusped shape as AGN feedback efficiency dwindles ('radio mode'), and the gaps in integrated central mass difference with HnoAGN and HDM close and broaden, respectively. On the galaxy side, the story differs noticeably. Averaged stellar profile central densities and inner slopes are monotonically reduced by AGN activity as a function of cosmic time, resulting in better agreement with local observations.
The flat density profiles of massive, and relaxed galaxy clusters
DOE Office of Scientific and Technical Information (OSTI.GOV)
Popolo, A. Del, E-mail: adelpopolo@oact.inaf.it
2014-07-01
The present paper is an extension and continuation of Del Popolo (2012a) which studied the role of baryon physics on clusters of galaxies formation. In the present paper, we studied by means of the SIM introduced in Del Popolo (2009), the total and DM density profiles, and the correlations among different quantities, observed by Newman et al. (2012a,b), in seven massive and relaxed clusters, namely MS2137, A963, A383, A611, A2537, A2667, A2390. As already found in Del Popolo 2012a, the density profiles depend on baryonic fraction, angular momentum, and the angular momentum transferred from baryons to DM through dynamical friction.more » Similarly to Newman et al. (2012a,b), the total density profile, in the radius range 0.003–0.03r{sub 200}, has a mean total density profile in agreement with dissipationless simulations. The slope of the DM profiles of all clusters is flatter than -1. The slope, α, has a maximum value (including errors) of α = −0.88 in the case of A2390, and minimum value α = −0.14 for A2537. The baryonic component dominates the mass distribution at radii < 5–10 kpc, while the outer distribution is dark matter dominated. We found an anti-correlation among the slope α, the effective radius, R{sub e}, and the BCG mass, and a correlation among the core radius r{sub core}, and R{sub e}. Moreover, the mass in 100 kpc (mainly dark matter) is correlated with the mass inside 5 kpc (mainly baryons). The behavior of the total mass density profile, the DM density profile, and the quoted correlations can be understood in a double phase scenario. In the first dissipative phase the proto-BCG forms, and in the second dissipationless phase, dynamical friction between baryonic clumps (collapsing to the center) and the DM halo flattens the inner slope of the density profile. In simple terms, the large scatter in the inner slope from cluster to cluster, and the anti-correlation among the slope, α and R{sub e} is due to the fact that in order to have a total mass density profile which is NFW-like, clusters having more massive BCGs at their centers must contain less DM in their center. Consequently the inner profile has a flatter slope.« less
NASA Astrophysics Data System (ADS)
Kalita, Bitap Raj; Bhuyan, Pradip Kumar
2017-07-01
The vertical electron density profiles over Dibrugarh (27.5°N, 95°E, 43° dip) a low mid latitude station normally located at the northern edge of the EIA for the period of July 2010 till October 2015 are constructed from the measured bottom side profiles and ionosonde-GPS TEC assisted Topside Sounder Model (TSM) topside profiles. The bottom side density profiles are obtained by using POLAN on the manually scaled ionograms. The topside is constructed by the modified ionosonde assisted TSM model (TaP-TSM assisted by POLAN) which is integrated with POLAN for the first time. The reconstructed vertical profile is compared with the IRI predicted density profile and the electron density profile obtained from the COSMIC/FORMOSAT radio occultation measurements over Dibrugarh. The bottom side density profiles are fitted to the IRI bottom side function to obtain best-fit bottom side thickness parameter B0 and shape parameter B1. The temporal and solar activity variation of the B-parameters over Dibrugarh are investigated and compared to those predicted by IRI-2012 model with ABT-2009 option. The bottom side thickness parameter B0 predicted by the IRI model is found to be similar to the B0 measured over Dibrugarh in the night time and the forenoon hours. Differences are observed in the early morning and the afternoon period. The IRI doesn't reproduce the morning collapse of B0 and overestimates the B0 over Dibrugarh in the afternoon period, particularly in summer and equinox. The IRI model predictions are closest to the measured B0 in the winter of low solar activity. The B0 over Dibrugarh is found to increase by about 15% with solar activity during the period of study encompassing almost the first half of solar cycle 24 but solar activity effect was not observed in the B1 parameter. The topside profile obtained from TaP profiler is thicker than the IRI topside in equinox from afternoon to sunrise period but is similar to the IRI in summer daytime. The differences in the bottom side may be attributed to the non-inclusion of ground measurements from 90°E to 100°E longitude in the ABT-2009 model while differences in the topside could be due the non-uniform longitudinal distribution of topside sounder profiles data and the stronger fountain effect in this longitude.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chae, Kyu-Hyun; Kravtsov, Andrey V.; Frieman, Joshua A.
With SDSS galaxy data and halo data from up-to-date N-body simulations we construct a semi-empirical catalog (SEC) of early-type systems by making a self-consistent bivariate statistical match of stellar mass (M_star) and velocity dispersion (sigma) with halo virial mass (M_vir). We then assign stellar mass profile and velocity dispersion profile parameters to each system in the SEC using their observed correlations with M_star and sigma. Simultaneously, we solve for dark matter density profile of each halo using the spherical Jeans equation. The resulting dark matter density profiles deviate in general from the dissipationless profile of NFW or Einasto and theirmore » mean inner density slope and concentration vary systematically with M_vir. Statistical tests of the distribution of profiles at fixed M_vir rule out the null hypothesis that it follows the distribution predicted by N-body simulations for M_vir ~< 10^{13.5-14.5} M_solar. These dark matter profiles imply that dark matter density is, on average, enhanced significantly in the inner region of halos with M_vir ~< 10^{13.5-14.5} M_solar supporting halo contraction. The main characteristics of halo contraction are: (1) the mean dark matter density within the effective radius has increased by a factor varying systematically up to ~ 3-4 at M_vir = 10^{12} M_solar, and (2) the inner density slope has a mean of ~ 1.3 with rho(r) ~ r^{-alpha} and a halo-to-halo rms scatter of rms(alpha) ~ 0.4-0.5 for 10^{12} M_solar ~< M_vir ~< 10^{13-14} M_solar steeper than the NFW profile (alpha=1). Based on our results we predict that halos of nearby elliptical and lenticular galaxies can, in principle, be promising targets for gamma-ray emission from dark matter annihilation.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, P. F.; Han, J. L.; Wang, C., E-mail: pfwang@nao.cas.cn, E-mail: hjl@nao.cas.cn, E-mail: wangchen@nao.cas.cn
Beam radii for cone-dominant pulsars follow a power-law relation with frequency, thetav = ({nu}/{nu}{sub 0}) {sup k} + thetav{sub 0}, which has not been well explained in previous works. We study this frequency dependence of beam radius (FDB) for cone-dominant pulsars by using the curvature radiation mechanism. Considering various density and energy distributions of particles in the pulsar open field-line region, we numerically simulate the emission intensity distribution across emission height and rotation phase, get integrated profiles at different frequencies, and obtain the FDB curves. For the density model of a conal-like distribution, the simulated profiles always shrink to onemore » component at high frequencies. In the density model with two separated density patches, the profiles generally have two distinct components, and the power-law indices k are found to be in the range from -0.1 to -2.5, consistent with observational results. Energy distributions of streaming particles have significant influence on the frequency-dependence behavior. Radial energy decay of particles is desired to get proper thetav{sub 0} in models. We conclude that by using the curvature radiation mechanism, the observed FDB for the cone-dominant pulsars can only be explained by the emission model of particles in two density patches with a Gaussian energy distribution and a radial energy loss.« less
Observation of Transonic Ionization Fronts in Low-Density Foam Targets
NASA Astrophysics Data System (ADS)
Hoarty, D.; Barringer, L.; Vickers, C.; Willi, O.; Nazarov, W.
1999-04-01
Transonic ionization fronts have been observed in low-density chlorinated foam targets using time-resolved K-shell absorption spectroscopy. The front was driven by an intense pulse of soft x rays produced by high-power laser irradiation of a thin foil. The density and temperature profiles inferred from the radiographs provided detailed measurement of the conditions at a number of times. The experimental data were compared to radiation hydrodynamics simulations and reasonable agreement was obtained.
Spectra of High-Ionization Seyfert 1 Galaxies: Implications for the Narrow-Line Region
NASA Technical Reports Server (NTRS)
Moore, David; Cohen, Ross D.; Marcy, Geoffrey W.
1996-01-01
We present line profiles and profile parameters for the Narrow-Line Regions (NLRs) of six Seyfert 1 galaxies with high-ionization lines: MCG 8-11-11, Mrk 79, Mrk 704, Mrk 841, NGC 4151, and NGC 5548. The sample was chosen primarily with the goal of obtaining high-quality [Fe VII] lambda6087 and, when possible, [Fe X] lambda6374 profiles to determine if these lines are more likely formed in a physically distinct 'coronal line region' or are formed throughout the NLR along with lines of lower critical density (n(sub cr)) and/or Ionization Potential (IP). We discuss correlations of velocity shift and width with n(sub cr) and IP. In some objects, lines of high IP and/or n(sub cr) are systematically broader than those of low IP/n(sub cr). Of particular interest, however, are objects that show no correlations of line width with either IP or n(sub cr). In these objects, lines of high and low IP/n(sub cr), are remarkably similar, which is difficult to reconcile with the classical picture of the NLR, in which lines of high and low IP/n(sub cr) are formed in physically distinct regions. We argue for similar spatial extents for the flux in lines with similar profiles. Here, as well as in a modeling-oriented companion paper, we develop further an idea suggested by Moore & Cohen that objects that do and do not show line width correlations with IP/n(sub cr) can both be explained in terms of a single NLR model with only a small difference in the cloud column density distinguishing the two types of object. Overall, our objects do not show correlations between the Full Width at Half-Maximum (FWHM) and IP and/or n(sub cr). The width must be defined by a parameter that is sensitive to extended profile wings in order for the correlations to result. We present models in which FWHM correlations with IP and/or n(sub cr) result only after simulating the lower spectral resolution used in previous observational studies. The models that simulate the higher spectral resolution of our observational study produce line width correlations only if the width is defined by a parameter that is more sensitive to extended profile wings than is the FWHM. Our sample of six objects is in effect augmented by incorporating the larger sample (16 objects) of Veilleux into some of our discussion. This paper focuses on new interpretations of NLR emission-line spectra and line profiles that stem directly from the observations. Paper 2 focuses on modeling and complements this paper by illustrating explicitly the effects that spatial variations in electron density, ionization parameter, and column density have on model profiles. By comparing model profiles with the observed profiles presented here, as well as with those presented by Veilleux, Paper 2 yields insight into how the electron density, ionization parameter, and column density likely vary throughout the NLR.
Quiet-Sun Connection between the C IV Resonance Lines and the Photospheric Magnetic Field
NASA Astrophysics Data System (ADS)
Brynildsen, Nils; Kjeldseth-Moe, Olav; Maltby, Per
1996-05-01
The quiet-Sun relation between the C iv resonance line parameters and the photospheric magnetic field is studied with a spatial resolution of 1" x 1". The material is ordered into groups according to the magnitude of the magnetic flux density, |B|, and conditional probabilities are calculated. We find that red shifted profiles with either high intensity, large Doppler shift, or large line broadening occupy an increasing fraction of the area when |B| increases. These results are contrasted by blueshifted profiles which indicate a slight decrease with increasing magnetic flux density. The similarity in the results obtained with magneto grams taken several hours before and after the UV data led us to suggest that the tendency for red shifted profiles to outnumber blueshifted profiles in quiet regions originates in the super-granular network. Suggestions regarding the origin of the redshift phenomenon are briefly confronted with the observations. It appears difficult to explain the observations with models based on continuous gas flows. However, a model containing Alfvén wave pulses traveling from the corona toward the transition region promises to be compatible with the observations.
NASA Astrophysics Data System (ADS)
Bellstedt, Sabine; Forbes, Duncan A.; Romanowsky, Aaron J.; Remus, Rhea-Silvia; Stevens, Adam R. H.; Brodie, Jean P.; Poci, Adriano; McDermid, Richard; Alabi, Adebusola; Chevalier, Leonie; Adams, Caitlin; Ferré-Mateu, Anna; Wasserman, Asher; Pandya, Viraj
2018-06-01
We apply the Jeans Anisotropic Multi-Gaussian Expansion dynamical modelling method to SAGES Legacy Unifying Globulars and GalaxieS (SLUGGS) survey data of early-type galaxies in the stellar mass range 1010 < M*/M⊙ < 1011.6 that cover a large radial range of 0.1-4.0 effective radii. We combine SLUGGS and ATLAS3D data sets to model the total-mass profiles of a sample of 21 fast-rotator galaxies, utilizing a hyperparameter method to combine the two independent data sets. The total-mass density profile slope values derived for these galaxies are consistent with those measured in the inner regions of galaxies by other studies. Furthermore, the total-mass density slopes (γtot) appear to be universal over this broad stellar mass range, with an average value of γtot = -2.24 ± 0.05 , i.e. slightly steeper than isothermal. We compare our results to model galaxies from the Magneticum and EAGLE cosmological hydrodynamic simulations, in order to probe the mechanisms that are responsible for varying total-mass density profile slopes. The simulated-galaxy slopes are shallower than the observed values by ˜0.3-0.5, indicating that the physical processes shaping the mass distributions of galaxies in cosmological simulations are still incomplete. For galaxies with M* > 1010.7 M⊙ in the Magneticum simulations, we identify a significant anticorrelation between total-mass density profile slopes and the fraction of stellar mass formed ex situ (i.e. accreted), whereas this anticorrelation is weaker for lower stellar masses, implying that the measured total-mass density slopes for low-mass galaxies are less likely to be determined by merger activity.
NASA Technical Reports Server (NTRS)
Eldering, Annmarie; Kahn, Brian H.; Mills, Franklin P.; Irion, Fredrick W.; Steele, Helen M.; Gunson, Michael R.
2004-01-01
The high-resolution infrared absorption spectra of the Atmospheric Trace Molecule Spectroscopy (ATMOS) experiment are utilized to derive vertical profiles of sulfate aerosol volume density and extinction coefficient. Following the eruption of Mt. Pinatubo in June 1991, the ATMOS spectra obtained on three Space Shuttle missions (1992, 1993, and 1994) provide a unique opportunity to study the global stratospheric sulfate aerosol layer shortly after a major volcanic eruption and periodically during the decay phase. Synthetic sulfate aerosol spectra are fit to the observed spectra, and a global fitting inversion routine is used to derive vertical profiles of sulfate aerosol volume density. Vertical profiles of sulfate aerosol volume density for the three missions over portions of the globe are presented, with the peak in aerosol volume density occurring from as low as 10 km (polar latitudes) to as high as 20 km (subtropical latitudes). Derived aerosol volume density is as high as 2-3.5 (mu)m(exp 3) per cubic centimeter +/-10% in 1992, decreasing to 0.2-0.5 (mu)m(exp 3) per cubic centimeter +/-20% in 1994, in agreement with other experiments. Vertical extinction profiles derived from ATMOS are compared with profiles from Improved Stratospheric And Mesospheric Sounder (ISAMS) and Cryogenic Limb Array Etalon Spectrometer (CLAES) that coincide in space and time and show good general agreement. The uncertainty of the ATMOS vertical profiles is similar to CLAES and consistently smaller than ISAMS at similar altitudes.
Interplanetary fast shock diagnosis with the radio receiver on Ulysses
NASA Technical Reports Server (NTRS)
Hoang, S.; Pantellini, F.; Harvey, C. C.; Lacombe, C.; Mangeney, A.; Meuer-Vernet, N.; Perche, C.; Steinberg, J.-L.; Lengyel-Frey, D.; Macdowall, R. J.
1992-01-01
The radio receiver on Ulysses records the quasi-thermal noise which allows a determination of the density and temperature of the cold (core) electrons of the solar wind. Seven interplanetary fast forward or reverse shocks are identified from the density and temperature profiles, together with the magnetic field profile from the Magnetometer experiment. Upstream of the three strongest shocks, bursts of nonthermal waves are observed at the electron plasma frequency f(peu). The more perpendicular the shock, the longer the time interval during which these upstream bursts are observed. For one of the strongest shocks we also observe two kinds of upstream electromagnetic radiation: radiation at 2 f(peu), and radiation at the downstream electron plasma frequency, which propagates into the less dense upstream regions.
NASA Astrophysics Data System (ADS)
Yadav, Sonu; Ghosh, Soumen; Bose, Sayak; Barada, Kshitish K.; Pal, Rabindranath; Chattopadhyay, Prabal K.
2018-04-01
Experimentally, the density profile in the magnetic nozzle of a helicon antenna based plasma device is seen to be modified from being centrally peaked to that of hollow nature as the external magnetic field is increased. It occurs above a characteristic field value when the ions become magnetized in the expansion chamber. The density profile in the source chamber behind the nozzle, however, remains peaked on-axis irrespective of the magnetic field. The electron temperature there is observed to be hollow and this nature is carried to the expansion chamber along the field line. In the electron energy distribution near the off axis peak location, a high energy tail exists. Rotation of these tail electrons in the azimuthal direction due to the gradient-B drift in the expansion chamber leads to an additional off-axis ionization and forms the hollow density profile. It seems that if the ions are not magnetized, then the off-axially produced additional plasma is not confined and the density profile retains the on-axis peak nature. The present experiment successfully demonstrates how the knowledge of the ion magnetization together with tail electrons significantly contributes to the design of an efficient helicon plasma based thruster.
Mars-GRAM Applications for Mars Science Laboratory Mission Site Selection Processes
NASA Technical Reports Server (NTRS)
Justh, Hilary; Justus, C. G.
2007-01-01
An overview is presented of the Mars-Global Reference Atmospheric Model (Mars-GRAM 2005) and its new features. One important new feature is the "auxiliary profile" option, whereby a simple input file is used to replace mean atmospheric values from Mars-GRAM's conventional (General Circulation Model) climatology. An auxiliary profile can be generated from any source of data or alternate model output. Results are presented using auxiliary profiles produced from mesoscale model output (Southwest Research Institute's Mars Regional Atmospheric Modeling System (MRAMS) model and Oregon State University's Mars mesoscale model (MMM5) model) for three candidate Mars Science Laboratory (MSL) landing sites (Terby Crater, Melas Chasma, and Gale Crater). A global Thermal Emission Spectrometer (TES) database has also been generated for purposes of making 'Mars-GRAM auxiliary profiles. This data base contains averages and standard deviations of temperature, density, and thermal wind components, averaged over 5-by-5 degree latitude bins and 15 degree L(sub S) bins, for each of three Mars years of TES nadir data. Comparisons show reasonably good consistency between Mars-GRAM with low dust optical depth and both TES observed and mesoscale model simulated density at the three study sites. Mean winds differ by a more significant degree. Comparisons of mesoscale and TES standard deviations' with conventional Mars-GRAM values, show that Mars-GRAM density perturbations are somewhat conservative (larger than observed variability), while mesoscale-modeled wind variations are larger than Mars-GRAM model estimates. Input parameters rpscale (for density perturbations) and rwscale (for wind perturbations) can be used to "recalibrate" Mars-GRAM perturbation magnitudes to better replicate observed or mesoscale model variability.
Application of Sub-Bottom Profiler to Study Riverbed Structure and Sediment Density
NASA Astrophysics Data System (ADS)
Rui, Wang; Changzheng, Li; Xiaofei, Yan
2018-03-01
In this pater, we present a study on the riverbed structure and sediment density in-situ test by using sub-bottom profiler. Compared with traditional direct observation methods, the sub-bottom profiler method based on sonar technology is non-contact, low-disturbance and high-efficient. We finish the investigation of several sections in Sanmenxia and Xiaolangdi reservoirs, which located on the main channel of lower reaches of Yellow River. Collected data show a detailed layered structure of the riverbed sediment which believed caused by sedimentary processes in different periods. Further more, we analyse the reflection coefficient of water-sediment interface and inverse the sediment density data from the raw wave record. The inversion method is based on the effective density fluid model and Kozeny-Carman formula. The comparison of the inversion results and sample tests shows that the in-situ test is reliable and useable.
Harmonic plasma waves excitation and structure evolution of intense ion beams in background plasmas
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hu, Zhang-Hu, E-mail: zhanghu@dlut.edu.cn; Wang, You-Nian
2016-08-15
The long-term dynamic evolutions of intense ion beams in plasmas have been investigated with two-dimensional electromagnetic particle simulations, taking into account the effect of the two-stream instability between beam ions and plasma electrons. Depending on the initial beam radial density profile and velocity distribution, ring structures may be formed in the beam edge regions. At the later stage of beam-plasma interactions, the ion beams are strongly modulated by the two-stream instability and multiple density spikes are formed in the longitudinal direction. The formation of these density spikes is shown to result from the excitation of harmonic plasma waves when themore » instability gets saturated. Comparisons between the beam cases with initial flat-top and Gaussian radial density profiles are made, and a higher instability growth rate is observed for the flat-top profile case.« less
Probing a dusty magnetized plasma with self-excited dust-density waves
NASA Astrophysics Data System (ADS)
Tadsen, Benjamin; Greiner, Franko; Piel, Alexander
2018-03-01
A cloud of nanodust particles is created in a reactive argon-acetylene plasma. It is then transformed into a dusty magnetized argon plasma. Plasma parameters are obtained with the dust-density wave diagnostic introduced by Tadsen et al. [Phys. Plasmas 22, 113701 (2015), 10.1063/1.4934927]. A change from an open to a cylindrically enclosed nanodust cloud, which was observed earlier, can now be explained by a stronger electric confinement if a vertical magnetic field is present. Using two-dimensional extinction measurements and the inverse Abel transform to determine the dust density, a redistribution of the dust with increasing magnetic induction is found. The dust-density profile changes from being peaked around the central void to being peaked at an outer torus ring resulting in a hollow profile. As the plasma parameters cannot explain this behavior, we propose a rotation of the nanodust cloud in the magnetized plasma as the origin of the modified profile.
Radial dependence of the dark matter distribution in M33
NASA Astrophysics Data System (ADS)
López Fune, E.; Salucci, P.; Corbelli, E.
2017-06-01
The stellar and gaseous mass distributions, as well as the extended rotation curve, in the nearby galaxy M33 are used to derive the radial distribution of dark matter density in the halo and to test cosmological models of galaxy formation and evolution. Two methods are examined to constrain the dark mass density profiles. The first method deals directly with fitting the rotation curve data in the range of galactocentric distances 0.24 ≤ r ≤ 22.72 kpc. Using the results of collisionless Λ cold dark matter numerical simulations, we confirm that the Navarro-Frenkel-White (NFW) dark matter profile provides a better fit to the rotation curve data than the cored Burkert profile (BRK) profile. The second method relies on the local equation of centrifugal equilibrium and on the rotation curve slope. In the aforementioned range of distances, we fit the observed velocity profile, using a function that has a rational dependence on the radius, and we derive the slope of the rotation curve. Then, we infer the effective matter densities. In the radial range 9.53 ≤ r ≤ 22.72 kpc, the uncertainties induced by the luminous matter (stars and gas) become negligible, because the dark matter density dominates, and we can determine locally the radial distribution of dark matter. With this second method, we tested the NFW and BRK dark matter profiles and we can confirm that both profiles are compatible with the data, even though in this case the cored BRK density profile provides a more reasonable value for the baryonic-to-dark matter ratio.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mirmovich, E.G.; Shapiro, B.S.
1975-01-01
Simultaneous satellite measurements of electron density N/sub s/ and temperature (T/sub e/)/sub s/ at a height h/sub s/ above an observatory and ground-based observations are used to compute the total vertical electron density profiles N(h) and estimate the temperature of the ionospheric plasma. Four close time intervals after sunset were selected for analysis.
Impact of Te and ne on edge current density profiles in ELM mitigated regimes on ASDEX Upgrade
NASA Astrophysics Data System (ADS)
Dunne, M. G.; Rathgeber, S.; Burckhart, A.; Fischer, R.; Giannone, L.; McCarthy, P. J.; Schneider, P. A.; Wolfrum, E.; the ASDEX Upgrade Team
2015-01-01
ELM resolved edge current density profiles are reconstructed using the CLISTE equilibrium code. As input, highly spatially and temporally resolved edge electron temperature and density profiles are used in addition to data from the extensive set of external poloidal field measurements available at ASDEX Upgrade, flux loop difference measurements, and current measurements in the scrape-off layer. Both the local and flux surface averaged current density profiles are analysed for several ELM mitigation regimes. The focus throughout is on the impact of altered temperature and density profiles on the current density. In particular, many ELM mitigation regimes rely on operation at high density. Two reference plasmas with type-I ELMs are analysed, one with a deuterium gas puff and one without, in order to provide a reference for the behaviour in type-II ELMy regimes and high density ELM mitigation with external magnetic perturbations at ASDEX Upgrade. For type-II ELMs it is found that while a similar pedestal top pressure is sustained at the higher density, the temperature gradient decreases in the pedestal. This results in lower local and flux surface averaged current densities in these phases, which reduces the drive for the peeling mode. No significant differences between the current density measured in the type-I phase and ELM mitigated phase is seen when external perturbations are applied, though the pedestal top density was increased. Finally, ELMs during the nitrogen seeded phase of a high performance discharge are analysed and compared to ELMs in the reference phase. An increased pedestal pressure gradient, which is the source of confinement improvement in impurity seeded discharges, causes a local current density increase. However, the increased Zeff in the pedestal acts to reduce the flux surface averaged current density. This dichotomy, which is not observed in other mitigation regimes, could act to stabilize both the ballooning mode and the peeling mode at the same time.
Rocket observations of the ionosphere during the eclipse of 26 February 1979
NASA Technical Reports Server (NTRS)
Mcinerney, M. K.; Smith, L. G.
1984-01-01
Electron density profiles and energetic particle fluxes were determined from two rockets launched, respectively, at the beginning and end of totality during the solar eclipse of 26 February 1979. These, and one other rocket at the same time of day on 24 February 1979, were launched from near Red Lake, Ontario. The electron density profile from 24 February shows the electron density to be normal above 110 km, to rocket apogee. Below 110 km, the electron density is enhanced, by an order of magnitude in the D region, compared with data from Wallops Island at the same solar zenith angle (63 deg). The enhancement is qualitatively explained by the large flux of field aligned energetic particles observed on the same rocket. During totality (on 26 February) the electron density above 110 km to rocket apogee is reduced by a factor of about three. Below 110 km, the electron density is much greater than observed during previous eclipses. The particle flux measured on the 26 February was an order of magnitude less than that on the 24 February but showed greater variability, particularly at the higher energies (100 keV). A feature of the particle flux is that, for the two rockets that were separated horizontally by 38 km while above the absorbing region, the variations are uncorrelated.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kaur, Manjit, E-mail: manjit@ipr.res.in; Bose, Sayak; Chattopadhyay, P. K.
2015-09-15
Observation of two well-separated dust vortices in an unmagnetized parallel plate DC glow discharge plasma is reported in this paper. A non-monotonic radial density profile, achieved by an especially designed cathode structure using a concentric metallic disk and ring of different radii, is observed to produce double dust tori between cathode and anode. PIV analysis of the still images of the double tori shows oppositely rotating dust structures between the central disk and the ring. Langmuir probe measurements of background plasma shows a non-uniform plasma density profile between the disk and the ring. Location and sense of rotation of themore » dust vortices coincides with the location and direction of the radial gradient in the ion drag force caused by the radial density gradient. The experimentally observed dust vorticity matches well with the calculated one using hydrodynamic formulations with shear in ion drag dominating over the dust charge gradient. These results corroborate that a radial gradient in the ion drag force directed towards cathode is the principal cause of dust rotation.« less
NASA Technical Reports Server (NTRS)
Benson, Robert F.; Fainberg, Joseph; Osherovich, Vladimir A.; Truhlik, Vladimir; Wang, Yongli; Bilitza, Dieter; Fung, Shing F.
2015-01-01
Large magnetic-storm induced changes have been detected in high-latitude topside vertical electron-density profiles Ne(h). The investigation was based on the large database of topside Ne(h) profiles and digital topside ionograms from the International Satellites for Ionospheric Studies (ISIS) program available from the NASA Space Physics Data Facility (SPDF) at http://spdf.gsfc.nasa.gov/isis/isis-status.html. This large database enabled Ne(h) profiles to be obtained when an ISIS satellite passed through nearly the same region of space before, during, and after a major magnetic storm. A major goal was to relate the magnetic-storm induced high-latitude Ne(h) profile changes to solar-wind parameters. Thus an additional data constraint was to consider only storms where solar-wind data were available from the NASA/SPDF OMNIWeb database. Ten large magnetic storms (with Dst less than -100 nT) were identified that satisfied both the Ne(h) profile and the solar-wind data constraints. During five of these storms topside ionospheric Ne(h) profiles were available in the high-latitude northern hemisphere and during the other five storms similar ionospheric data were available in the southern hemisphere. Large Ne(h) changes were observed during each one of these storms. Our concentration in this paper is on the northern hemisphere. The data coverage was best for the northern-hemisphere winter. Here Ne(h) profile enhancements were always observed when the magnetic local time (MLT) was between 00 and 03 and Ne(h) profile depletions were always observed between 08 and 10 MLT. The observed Ne(h) deviations were compared with solar-wind parameters, with appropriate time shifts, for four storms.
Observation of improved and degraded confinement with driven flow on the LAPD
NASA Astrophysics Data System (ADS)
Schaffner, David
2012-10-01
External continuous control over azimuthal flow and flow shear has been achieved in a linear plasma device for the first time allowing for a careful study of the effect of flow shear on pressure-gradient-driven turbulence and transport in the edge of the Large Plasma Device (LAPD). The flow is controlled using biasable iris-like limiters situated axially between the cathode source and main plasma chamber. LAPD rotates spontaneously in the ion diamagnetic direction (IDD); positive limiter bias first reduces, then minimizes (producing a near-zero shear state), and finally reverses the flow into the electron diamagnetic direction (EDD). Degradation of particle confinement is observed in the minimum shearing state and reduction in turbulent particle flux is observed with increasing shearing in both flow directions. Near-complete suppression of turbulent particle flux is observed for shearing rates comparable to the turbulent autocorrelation rate measured in the minimum shear state. Turbulent flux suppression is dominated by amplitude reduction in low-frequency (>10kHz) density fluctuations and a reduction in the radial correlation length. An increase in fluctuations for the highest shearing states is observed with the emergence of a coherent mode which does not lead to net particle transport. Magnetic field is varied in order to explore whether and how field effects transport modification. Calculations of transport equations are used to predict density profiles given source and temperature profiles and can show the level of transport predicted to be necessary in order to produce the experimental density profiles observed. Finally, the variations of density fluctuations and radial correlation length are fit well with power-laws and compare favorably to simple models of shear suppression of transport.
Observation of instability-induced current redistribution in a spherical-torus plasma.
Menard, J E; Bell, R E; Gates, D A; Kaye, S M; LeBlanc, B P; Levinton, F M; Medley, S S; Sabbagh, S A; Stutman, D; Tritz, K; Yuh, H
2006-09-01
A motional Stark effect diagnostic has been utilized to reconstruct the parallel current density profile in a spherical-torus plasma for the first time. The measured current profile compares favorably with neoclassical theory when no large-scale magnetohydrodynamic instabilities are present in the plasma. However, a current profile anomaly is observed during saturated interchange-type instability activity. This apparent anomaly can be explained by redistribution of neutral beam injection current drive and represents the first observation of interchange-type instabilities causing such redistribution. The associated current profile modifications contribute to sustaining the central safety factor above unity for over five resistive diffusion times, and similar processes may contribute to improved operational scenarios proposed for ITER.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chae, Kyu-Hyun; Kravtsov, Andrey V.; Frieman, Joshua A.
With Sloan Digital Sky Survey galaxy data and halo data from up-to-date N-body simulations within the ΛCDM framework we construct a semi-empirical catalog (SEC) of early-type galaxy-halo systems by making a self-consistent bivariate statistical match of stellar mass (M{sub *}) and velocity dispersion (σ) with halo virial mass (M{sub vir}) as demonstrated here for the first time. We then assign stellar mass profile and velocity dispersion profile parameters to each system in the SEC using their observed correlations with M{sub *} and σ. Simultaneously, we solve for dark matter density profile of each halo using the spherical Jeans equation. Themore » resulting dark matter density profiles deviate in general from the dissipationless profile of Navarro-Frenk-White or Einasto and their mean inner density slope and concentration vary systematically with M{sub vir}. Statistical tests of the distribution of profiles at fixed M{sub vir} rule out the null hypothesis that it follows the distribution predicted by dissipationless N-body simulations for M{sub vir}∼<10{sup 13.5} {sup –} {sup 14.5} M{sub s}un. These dark matter profiles imply that dark matter density is, on average, enhanced significantly in the inner region of halos with M{sub vir}∼<10{sup 13.5} {sup –} {sup 14.5} M{sub s}un supporting halo contraction. The main characteristics of halo contraction are: (1) the mean dark matter density within the effective radius has increased by a factor varying systematically up to ≈ 3–4 at M{sub vir} = 10{sup 12} M{sub s}un, and (2) the inner density slope has a mean of (α) ≈ 1.3 with ρ{sub dm}(r)∝r{sup −α} and a halo-to-halo rms scatter of rms(α) ∼ 0.4–0.5 for 10{sup 12} M{sub s}un∼« less
The Thomson scattering system at Wendelstein 7-X
NASA Astrophysics Data System (ADS)
Pasch, E.; Beurskens, M. N. A.; Bozhenkov, S. A.; Fuchert, G.; Knauer, J.; Wolf, R. C.
2016-11-01
This paper describes the design of the Thomson scattering system at the Wendelstein 7-X stellarator. For the first operation campaign we installed a 10 spatial channel system to cover a radial half profile of the plasma cross section. The start-up system is based on one Nd:YAG laser with 10 Hz repetition frequency, one observation optics, five fiber bundles with one delay line each, and five interference filter polychromators with five spectral channels and silicon avalanche diodes as detectors. High dynamic range analog to digital converters with 14 bit, 1 GS/s are used to digitize the signals. The spectral calibration of the system was done using a pulsed super continuum laser together with a monochromator. For density calibration we used Raman scattering in nitrogen gas. Peaked temperature profiles and flat density profiles are observed in helium and hydrogen discharges.
NASA Astrophysics Data System (ADS)
Oh, Jaechul; Weaver, J. L.; Phillips, L.; Obenschain, S. P.; Schmitt, A. J.; Kehne, D. M.; Chan, L.-Y.; Serlin, V.
2011-10-01
Previous experiments with Nike KrF laser (λ = 248 nm , Δν ~ 1 THz) observed LPI signatures near quarter critical density (nc / 4) in CH plasmas, however, detailed measurement of the temperature (Te) and density (ne) profiles was missing. The current Nike LPI campaign will perform experimental determination of the plasma profiles. A side-on grid imaging refractometer (GIR) is the main diagnostic to resolve Te and ne in space taking 2D snapshots of probe laser (λ = 266 nm , Δt = 8 psec) beamlets (50 μm spacing) refracted by the plasma at laser peak time. Ray tracing of the beamlets through hydrodynamically simulated (FASTRAD3D) plasma profiles estimates the refractometer may access densities up to ~ 0 . 2nc . With the measured Te and ne profiles in the plasma corona, we will discuss analysis of light data radiated from the plasmas in spectral ranges relevant to two plasmon decay and convective Raman instabilities. Validity of the (Te ,ne) data will also be discussed for the thermal transport study. Work supported by DoE/NNSA and ONR and performed at NRL.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Krčo, Marko; Goldsmith, Paul F., E-mail: marko@astro.cornell.edu
2016-05-01
We present a geometry-independent method for determining the shapes of radial volume density profiles of astronomical objects whose geometries are unknown, based on a single column density map. Such profiles are often critical to understand the physics and chemistry of molecular cloud cores, in which star formation takes place. The method presented here does not assume any geometry for the object being studied, thus removing a significant source of bias. Instead, it exploits contour self-similarity in column density maps, which appears to be common in data for astronomical objects. Our method may be applied to many types of astronomical objectsmore » and observable quantities so long as they satisfy a limited set of conditions, which we describe in detail. We derive the method analytically, test it numerically, and illustrate its utility using 2MASS-derived dust extinction in molecular cloud cores. While not having made an extensive comparison of different density profiles, we find that the overall radial density distribution within molecular cloud cores is adequately described by an attenuated power law.« less
The density of dark matter in the Galactic bulge and implications for indirect detection
Hooper, Dan
2016-11-29
A recent study, making use of the number of horizontal branch stars observed in infrared photometric surveys and kinematic measurements of M-giant stars from the BRAVA survey, combined with N-body simulations of stellar populations, has presented a new determination of the dark matter mass within the bulge-bar region of the Milky Way. That study constrains the total mass within themore » $$\\pm 2.2 \\times \\pm 1.4 \\times \\pm 1.2$$ kpc volume of the bulge-bar region to be ($$1.84 \\pm 0.07) \\times 10^{10} \\, M_{\\odot}$$, of which 9-30% is made up of dark matter. Here, we use this result to constrain the the Milky Way's dark matter density profile, and discuss the implications for indirect dark matter searches. Furthermore uncertainties remain significant, these results favor dark matter distributions with a cusped density profile. For example, for a scale radius of 20 kpc and a local dark matter density of 0.4 GeV/cm$^3$, density profiles with an inner slope of 0.69 to 1.40 are favored, approximately centered around the standard NFW value. In contrast, profiles with large flat-density cores are disfavored by this information.« less
Ionosphere Profile Estimation Using Ionosonde & GPS Data in an Inverse Refraction Calculation
NASA Astrophysics Data System (ADS)
Psiaki, M. L.
2014-12-01
A method has been developed to assimilate ionosonde virtual heights and GPS slant TEC data to estimate the parameters of a local ionosphere model, including estimates of the topside and of latitude and longitude variations. This effort seeks to better assimilate a variety of remote sensing data in order to characterize local (and eventually regional and global) ionosphere electron density profiles. The core calculations involve a forward refractive ray-tracing solution and a nonlinear optimal estimation algorithm that inverts the forward model. The ray-tracing calculations solve a nonlinear two-point boundary value problem for the curved ionosonde or GPS ray path through a parameterized electron density profile. It implements a full 3D solution that can handle the case of a tilted ionosphere. These calculations use Hamiltonian equivalents of the Appleton-Hartree magneto-plasma refraction index model. The current ionosphere parameterization is a modified Booker profile. It has been augmented to include latitude and longitude dependencies. The forward ray-tracing solution yields a given signal's group delay and beat carrier phase observables. An auxiliary set of boundary value problem solutions determine the sensitivities of the ray paths and observables with respect to the parameters of the augmented Booker profile. The nonlinear estimation algorithm compares the measured ionosonde virtual-altitude observables and GPS slant-TEC observables to the corresponding values from the forward refraction model. It uses the parameter sensitivities of the model to iteratively improve its parameter estimates in a way the reduces the residual errors between the measurements and their modeled values. This method has been applied to data from HAARP in Gakona, AK and has produced good TEC and virtual height fits. It has been extended to characterize electron density perturbations caused by HAARP heating experiments through the use of GPS slant TEC data for an LOS through the heated zone. The next planned extension of the method is to estimate the parameters of a regional ionosphere profile. The input observables will be slant TEC from an array of GPS receivers and group delay and carrier phase observables from an array of high-frequency beacons. The beacon array will function as a sort of multi-static ionosonde.
Inversion method applied to the rotation curves of galaxies
NASA Astrophysics Data System (ADS)
Márquez-Caicedo, L. A.; Lora-Clavijo, F. D.; Sanabria-Gómez, J. D.
2017-07-01
We used simulated annealing, Montecarlo and genetic algorithm methods for matching both numerical data of density and velocity profiles in some low surface brigthness galaxies with theoretical models of Boehmer-Harko, Navarro-Frenk-White and Pseudo Isothermal Profiles for galaxies with dark matter halos. We found that Navarro-Frenk-White model does not fit at all in contrast with the other two models which fit very well. Inversion methods have been widely used in various branches of science including astrophysics (Charbonneau 1995, ApJS, 101, 309). In this work we have used three different parametric inversion methods (MonteCarlo, Genetic Algorithm and Simmulated Annealing) in order to determine the best fit of the observed data of the density and velocity profiles of a set of low surface brigthness galaxies (De Block et al. 2001, ApJ, 122, 2396) with three models of galaxies containing dark mattter. The parameters adjusted by the inversion methods were the central density and a characteristic distance in the Boehmer-Harko BH (Boehmer & Harko 2007, JCAP, 6, 25), Navarro-Frenk-White NFW (Navarro et al. 2007, ApJ, 490, 493) and Pseudo Isothermal Profile PI (Robles & Matos 2012, MNRAS, 422, 282). The results obtained showed that the BH and PI Profile dark matter galaxies fit very well for both the density and the velocity profiles, in contrast the NFW model did not make good adjustments to the profiles in any analized galaxy.
Ultrafast decay of hot phonons in an AlGaN/AlN/AlGaN/GaN camelback channel
NASA Astrophysics Data System (ADS)
Leach, J. H.; Wu, M.; Morkoç, H.; Liberis, J.; Šermukšnis, E.; Ramonas, M.; Matulionis, A.
2011-11-01
A bottleneck for heat dissipation from the channel of a GaN-based heterostructure field-effect transistor is treated in terms of the lifetime of nonequilibrium (hot) longitudinal optical phonons, which are responsible for additional scattering of electrons in the voltage-biased quasi-two-dimensional channel. The hot-phonon lifetime is measured for an Al0.33Ga0.67N/AlN/Al0.1Ga0.9N/GaN heterostructure where the mobile electrons are spread in a composite Al0.1Ga0.9N/GaN channel and form a camelback electron density profile at high electric fields. In accordance with plasmon-assisted hot-phonon decay, the parameter of importance for the lifetime is not the total charge in the channel (the electron sheet density) but rather the electron density profile. This is demonstrated by comparing two structures with equal sheet densities (1 × 1013 cm-2), but with different density profiles. The camelback channel profile exhibits a shorter hot-phonon lifetime of ˜270 fs as compared with ˜500 fs reported for a standard Al0.33Ga0.67N/AlN/GaN channel at low supplied power levels. When supplied power is sufficient to heat the electrons > 600 K, ultrafast decay of hot phonons is observed in the case of the composite channel structure. In this case, the electron density profile spreads to form a camelback profile, and hot-phonon lifetime reduces to ˜50 fs.
PHOTOIONIZATION MODELS OF THE INNER GASEOUS DISK OF THE HERBIG BE STAR BD+65 1637
DOE Office of Scientific and Technical Information (OSTI.GOV)
Patel, P.; Sigut, T. A. A.; Landstreet, J. D., E-mail: ppatel54@uwo.ca
2016-01-20
We attempt to constrain the physical properties of the inner, gaseous disk of the Herbig Be star BD+65 1637 using non-LTE, circumstellar disk codes and observed spectra (3700–10500 Å) from the ESPaDOnS instrument on the Canada–France–Hawaii Telescope. The photoionizing radiation of the central star is assumed to be the sole source of input energy for the disk. We model optical and near-infrared emission lines that are thought to form in this region using standard techniques that have been successful in modeling the spectra of classical Be stars. By comparing synthetic line profiles of hydrogen, helium, iron, and calcium with themore » observed line profiles, we try to constrain the geometry, density structure, and kinematics of the gaseous disk. Reasonable matches have been found for all line profiles individually; however, no disk density model based on a single power law for the equatorial density was able to simultaneously fit all of the observed emission lines. Among the emission lines, the metal lines, especially the Ca ii IR triplet, seem to require higher disk densities than the other lines. Excluding the Ca ii lines, a model in which the equatorial disk density falls as 10{sup −10} (R{sub *}/R){sup 3} g cm{sup −3} seen at an inclination of 45° for a 50 R{sub *} disk provides reasonable matches to the overall line shapes and strengths. The Ca ii lines seem to require a shallower drop-off as 10{sup −10} (R{sub *}/R){sup 2} g cm{sup −3} to match their strength. More complex disk density models are likely required to refine the match to the BD+65 1637 spectrum.« less
Photoionization Models of the Inner Gaseous Disk of the Herbig Be Star BD+65 1637
NASA Astrophysics Data System (ADS)
Patel, P.; Sigut, T. A. A.; Landstreet, J. D.
2016-01-01
We attempt to constrain the physical properties of the inner, gaseous disk of the Herbig Be star BD+65 1637 using non-LTE, circumstellar disk codes and observed spectra (3700-10500 Å) from the ESPaDOnS instrument on the Canada-France-Hawaii Telescope. The photoionizing radiation of the central star is assumed to be the sole source of input energy for the disk. We model optical and near-infrared emission lines that are thought to form in this region using standard techniques that have been successful in modeling the spectra of classical Be stars. By comparing synthetic line profiles of hydrogen, helium, iron, and calcium with the observed line profiles, we try to constrain the geometry, density structure, and kinematics of the gaseous disk. Reasonable matches have been found for all line profiles individually; however, no disk density model based on a single power law for the equatorial density was able to simultaneously fit all of the observed emission lines. Among the emission lines, the metal lines, especially the Ca II IR triplet, seem to require higher disk densities than the other lines. Excluding the Ca II lines, a model in which the equatorial disk density falls as 10-10 (R*/R)3 g cm-3 seen at an inclination of 45° for a 50 R* disk provides reasonable matches to the overall line shapes and strengths. The Ca II lines seem to require a shallower drop-off as 10-10 (R*/R)2 g cm-3 to match their strength. More complex disk density models are likely required to refine the match to the BD+65 1637 spectrum.
On the probability distribution function of the mass surface density of molecular clouds. I
NASA Astrophysics Data System (ADS)
Fischera, Jörg
2014-05-01
The probability distribution function (PDF) of the mass surface density is an essential characteristic of the structure of molecular clouds or the interstellar medium in general. Observations of the PDF of molecular clouds indicate a composition of a broad distribution around the maximum and a decreasing tail at high mass surface densities. The first component is attributed to the random distribution of gas which is modeled using a log-normal function while the second component is attributed to condensed structures modeled using a simple power-law. The aim of this paper is to provide an analytical model of the PDF of condensed structures which can be used by observers to extract information about the condensations. The condensed structures are considered to be either spheres or cylinders with a truncated radial density profile at cloud radius rcl. The assumed profile is of the form ρ(r) = ρc/ (1 + (r/r0)2)n/ 2 for arbitrary power n where ρc and r0 are the central density and the inner radius, respectively. An implicit function is obtained which either truncates (sphere) or has a pole (cylinder) at maximal mass surface density. The PDF of spherical condensations and the asymptotic PDF of cylinders in the limit of infinite overdensity ρc/ρ(rcl) flattens for steeper density profiles and has a power law asymptote at low and high mass surface densities and a well defined maximum. The power index of the asymptote Σ- γ of the logarithmic PDF (ΣP(Σ)) in the limit of high mass surface densities is given by γ = (n + 1)/(n - 1) - 1 (spheres) or by γ = n/ (n - 1) - 1 (cylinders in the limit of infinite overdensity). Appendices are available in electronic form at http://www.aanda.org
Russell, David A.; D'Ippolito, Daniel A.; Myra, James R.; ...
2015-09-01
The effect of lithium (Li) wall coatings on scrape-off-layer (SOL) turbulence in the National Spherical Torus Experiment (NSTX) is modeled with the Lodestar SOLT (“SOL Turbulence”) code. Specifically, the implications for the SOL heat flux width of experimentally observed, Li-induced changes in the pedestal profiles are considered. The SOLT code used in the modeling has been expanded recently to include ion temperature evolution and ion diamagnetic drift effects. This work focuses on two NSTX discharges occurring pre- and with-Li deposition. The simulation density and temperature profiles are constrained, inside the last closed flux surface only, to match those measured inmore » the two experiments, and the resulting drift-interchange-driven turbulence is explored. The effect of Li enters the simulation only through the pedestal profile constraint: Li modifies the experimental density and temperature profiles in the pedestal, and these profiles affect the simulated SOL turbulence. The power entering the SOL measured in the experiments is matched in the simulations by adjusting “free” dissipation parameters (e.g., diffusion coefficients) that are not measured directly in the experiments. With power-matching, (a) the heat flux SOL width is smaller, as observed experimentally by infra-red thermography, and (b) the simulated density fluctuation amplitudes are reduced with Li, as inferred for the experiments as well from reflectometry analysis. The instabilities and saturation mechanisms that underlie the SOLT model equilibria are also discussed.« less
Cored density profiles in the DARKexp model
NASA Astrophysics Data System (ADS)
Destri, Claudio
2018-05-01
The DARKexp model represents a novel and promising attempt to solve a long standing problem of statistical mechanics, that of explaining from first principles the quasi-stationary states at the end of the collisionless gravitational collapse. The model, which yields good fits to observation and simulation data on several scales, was originally conceived to provide a theoretical basis for the 1/r cusp of the Navarro-Frenk-White profile. In this note we show that it also allows for cored density profiles that, when viewed in three dimensions, in the r→0 limit have the conical shape characteristic of the Burkert profile. It remains to be established whether both cusps and cores, or only one of the two types, are allowed beyond the asymptotic analysis of this work.
NASA Astrophysics Data System (ADS)
Reimberg, Paulo; Bernardeau, Francis
2018-01-01
We present a formalism based on the large deviation principle (LDP) applied to cosmological density fields, and more specifically to the arbitrary functional of density profiles, and we apply it to the derivation of the cumulant generating function and one-point probability distribution function (PDF) of the aperture mass (Map ), a common observable for cosmic shear observations. We show that the LDP can indeed be used in practice for a much larger family of observables than previously envisioned, such as those built from continuous and nonlinear functionals of density profiles. Taking advantage of this formalism, we can extend previous results, which were based on crude definitions of the aperture mass, with top-hat windows and the use of the reduced shear approximation (replacing the reduced shear with the shear itself). We were precisely able to quantify how this latter approximation affects the Map statistical properties. In particular, we derive the corrective term for the skewness of the Map and reconstruct its one-point PDF.
Modeling a simple coronal streamer during whole sun month
NASA Technical Reports Server (NTRS)
Gibson, S. E.; Bagenal, F.; Biesecker, D.; Guhathakurta, M.; Hoeksema, J. T.; Thompson, B. J.
1997-01-01
The solar minimum streamer structure observed during the whole sun month was modeled. The Van de Hulst inversion was used in order to determine the coronal electron density profiles and scale-height temperature profiles. The axisymmetric magnetostatic model of Gibson, Bagenal and Low was also used. The density, temperature, and magnetic field distribution were quantified using both coronal white light data and photospheric magnetic field data from the Wilcox Solar Observatory. The densities and temperatures obtained by the Van de Hulst and magnetostatic models are compared to the magnetic field predicted by the magnetostatic model to a potential field extrapolated from the photosphere.
Venus mesospheric sulfur dioxide measurement retrieved from SOIR on board Venus Express
NASA Astrophysics Data System (ADS)
Mahieux, A.; Vandaele, A. C.; Robert, S.; Wilquet, V.; Drummond, R.; Chamberlain, S.; Belyaev, D.; Bertaux, J. L.
2015-08-01
SOIR on board Venus Express sounds the Venus upper atmosphere using the solar occultation technique. It detects the signature from many Venus atmosphere species, including those of SO2 and CO2. SO2 has a weak absorption structure at 4 μm, from which number density profiles are regularly inferred. SO2 volume mixing ratios (VMR) are calculated from the total number density that are also derived from the SOIR measurements. This work is an update of the previous work by Belyaev et al. (2012), considering the SO2 profiles on a broader altitude range, from 65 to 85 km. Positive detection VMR profiles are presented. In 68% of the occultation spectral datasets, SO2 is detected. The SO2 VMR profiles show a large variability up to two orders of magnitude, on a short term time scales. We present mean VMR profiles for various bins of latitudes, and study the latitudinal variations; the mean latitude variations are much smaller than the short term temporal variations. A permanent minimum showing a weak latitudinal structure is observed. Long term temporal trends are also considered and discussed. The trend observed by Marcq et al. (2013) is not observed in this dataset. Our results are compared to literature data and generally show a good agreement.
On the Use of Topside RO-Derived Electron Density for Model Validation
NASA Astrophysics Data System (ADS)
Shaikh, M. M.; Nava, B.; Haralambous, H.
2018-05-01
In this work, the standard Abel inversion has been exploited as a powerful observation tool, which may be helpful to model the topside of the ionosphere and therefore to validate ionospheric models. A thorough investigation on the behavior of radio occultation (RO)-derived topside electron density (Ne(h))-profiles has therefore been performed with the main purpose to understand whether it is possible to predict the accuracy of a single RO-retrieved topside by comparing the peak density and height of the retrieved profile to the true values. As a first step, a simulation study based on the use of the NeQuick2 model has been performed to show that when the RO-derived electron density peak and height match the true peak values, the full topside Ne(h)-profile may be considered accurate. In order to validate this hypothesis with experimental data, electron density profiles obtained from four different incoherent scatter radars have therefore been considered together with co-located RO-derived Ne(h)-profiles. The evidence presented in this paper show that in all cases examined, if the incoherent scatter radar and the corresponding co-located RO profile have matching peak parameter values, their topsides are in very good agreement. The simulation results presented in this work also highlighted the importance of considering the occultation plane azimuth while inverting RO data to obtain Ne(h)-profile. In particular, they have indicated that there is a preferred range of azimuths of the occultation plane (80°-100°) for which the difference between the "true" and the RO-retrieved Ne(h)-profile in the topside is generally minimal.
NASA Astrophysics Data System (ADS)
Dnestrovskij, Yu. N.; Vershkov, V. A.; Danilov, A. V.; Dnestrovskij, A. Yu.; Zenin, V. N.; Lysenko, S. E.; Melnikov, A. V.; Shelukhin, D. A.; Subbotin, G. F.; Cherkasov, S. V.
2018-01-01
In ohmically heated (OH) plasma with low recycling, an improved particle confinement (IPC) mode is established during gas puffing. However, after gas puffing is switched off, this mode is retained only for about 100 ms, after which an abrupt phase transition into the low particle confinement (LPC) mode occurs in the entire plasma cross section. During such a transition, energy transport due to heat conduction does not change. The phase transition in OH plasma is similar to the effect of density pump-out from the plasma core, which occurs after electron cyclotron heating (ECH) is switched on. Analysis of the measured plasma pressure profiles in the T-10 tokamak shows that, after gas puffing in the OH mode is switched off, the plasma pressure profile in the IPC stage becomes more peaked and, after the peakedness exceeds a certain critical value, the IPC-LPC transition occurs. Similar processes are also observed during ECH. If the pressure profile is insufficiently peaked during ECH, then the density pump-out effect comes into play only after the critical peakedness of the pressure profile is reached. In the plasma core, the density and pressure profiles are close to the corresponding canonical profiles. This allows one to derive an expression for the particle flux within the canonical profile model and formulate a criterion for the IPC-LPC transition. The time evolution of the plasma density profile during phase transitions was simulated for a number of T-10 shots with ECH and high recycling. The particle transport coefficients in the IPC and LPC phases, as well as the dependences of these coefficients on the ECH power, are determined.
NASA Technical Reports Server (NTRS)
Bougher, S. W.; Engel, S.; Hinson, D. P.; Murphy, J. R.
2004-01-01
Martian electron density profiles provided by the Mars Global Surveyor (MGS) Radio Science (RS) experiment over the 95-200 km altitude range indicate what the height of the electron peak and the longitudinal structure of the peak height are sensitive indicators of the physical state of the Mars lower and upper atmospheres. The present analysis is carried out on five sets of occultation profiles, all at high solar zenith angles (SZA). Variations spanning 2 Martian years are investigated near aphelion conditions at high northern latitudes (64.7 - 77.6 N) making use of four of these data sets. A mean ionospheric peak height of 133.5 - 135 km is obtained near SZA = 78 - 82 deg.; a corresponding mean peak density of 7.3 - 8.5 x l0(exp 4)/ qu cm is also measured during solar moderate conditions at Mars. Strong wave number 2 - 3 oscillations in peak heights are consistently observed as a function of longitude over the 2 Martian years. These observed ionospheric features are remarkably similar during aphelion conditions 1 Martian year apart. This year-to-year repeatability in the thermosphere-ionosphere structure is consistent with that observed in multiyear aphelion temperature data of the Mars lower atmosphere. Coupled Mars general circulation model (MGCM) and Mars thermospheric general circulation model (MTGCM) codes are run for Mars aphelion conditions, yielding mean and longitude variable ionospheric peak heights that reasonably match RS observations. A tidal decomposition of MTGCM thermospheric densities shows that observed ionospheric wave number 3 features are linked to a non-migrating tidal mode with semidiurnal period (sigma = 2) and zonal wave number 1 (s = -1) characteristics. The height of this photochemically determined ionospheric peak should be monitored regularly.
Purely Dry Mergers do not Explain the Observed Evolution of Massive Early-type Galaxies since z ~ 1
NASA Astrophysics Data System (ADS)
Sonnenfeld, Alessandro; Nipoti, Carlo; Treu, Tommaso
2014-05-01
Several studies have suggested that the observed size evolution of massive early-type galaxies (ETGs) can be explained as a combination of dry mergers and progenitor bias, at least since z ~ 1. In this paper we carry out a new test of the dry-merger scenario based on recent lensing measurements of the evolution of the mass density profile of ETGs. We construct a theoretical model for the joint evolution of the size and mass density profile slope γ' driven by dry mergers occurring at rates given by cosmological simulations. Such dry-merger model predicts a strong decrease of γ' with cosmic time, inconsistent with the almost constant γ' inferred from observations in the redshift range 0 < z < 1. We then show with a simple toy model that a modest amount of cold gas in the mergers—consistent with the upper limits on recent star formation in ETGs—is sufficient to reconcile the model with measurements of γ'. By fitting for the amount of gas accreted during mergers, we find that models with dissipation are consistent with observations of the evolution in both size and density slope, if ~4% of the total final stellar mass arises from the gas accreted since z ~ 1. Purely dry merger models are ruled out at >99% CL. We thus suggest a scenario where the outer regions of massive ETGs grow by accretion of stars and dark matter, while small amounts of dissipation and nuclear star formation conspire to keep the mass density profile constant and approximately isothermal.
The Transport of Density Fluctuations Throughout the Heliosphere
NASA Technical Reports Server (NTRS)
Zank, G. P.; Jetha, N.; Hu, Q.; Hunana, P.
2012-01-01
The solar wind is recognized as a turbulent magnetofluid, for which the properties of the turbulent velocity and magnetic field fluctuations are often described by the equations of incompressible magnetohydrodynamics (MHD). However, low-frequency density turbulence is also ubiquitous. On the basis of a nearly incompressible formulation of MHD in the expanding inhomogeneous solar wind, we derive the transport equation for the variance of the density fluctuations (Rho(exp 2)). The transport equation shows that density fluctuations behave as a passive scalar in the supersonic solar wind. In the absence of sources of density turbulence, such as within 1AU, the variance (Rho(exp 2)) approximates r(exp -4). In the outer heliosphere beyond 1 AU, the shear between fast and slow streams, the propagation of shocks, and the creation of interstellar pickup ions all act as sources of density turbulence. The model density fluctuation variance evolves with heliocentric distance within approximately 300 AU as (Rho(exp 2)) approximates r(exp -3.3) after which it flattens and then slowly increases. This is precisely the radial profile for the density fluctuation variance observed by Voyager 2. Using a different analysis technique, we confirm the radial profile for Rho(exp 2) of Bellamy, Cairns, & Smith using Voyager 2 data. We conclude that a passive scalar description for density fluctuations in the supersonic solar wind can explain the density fluctuation variance observed in both the inner and the outer heliosphere.
The Relationship between Ionospheric Slab Thickness and the Peak Density Height, hmF2
NASA Astrophysics Data System (ADS)
Meehan, J.; Sojka, J. J.
2017-12-01
The electron density profile is one of the most critical elements in the ionospheric modeling-related applications today. Ionosphere parameters, hmF2, the height of the peak density layer, and slab thickness, the ratio of the total electron content, TEC, to the peak density value, NmF2, are generally obtained from any global sounding observation network and are easily incorporated into models, theoretical or empirical, as numerical representations. Slab thickness is a convenient one-parameter summary of the electron density profile and can relate a variety of elements of interest that effect the overall electron profile shape, such as the neutral and ionospheric temperatures and gradients, the ionospheric composition, and dynamics. Using ISR data from the 2002 Millstone Hill ISR data campaign, we found, for the first time, slab thickness to be correlated to hmF2. For this, we introduce a new ionospheric index, k, which ultimately relates electron density parameters and can be a very useful tool for describing the topside ionosphere shape. Our study is an initial one location, one season, 30-day study, and future work is needed to verify the robustness of our claim. Generally, the ionospheric profile shape, requires knowledge of several ionospheric parameters: electron, ion and neutral temperatures, ion composition, electric fields, and neutral winds, and is dependent upon seasons, local time, location, and the level of solar and geomagnetic activity; however, with this new index, only readily-available, ionospheric density information is needed. Such information, as used in this study, is obtained from a bottomside electron density profile provided by an ionosonde, and TEC data provided by a local, collocated GPS receiver.
All Recent Mars Landers Have Landed Downrange - Are Mars Atmosphere Models Mis-Predicting Density?
NASA Technical Reports Server (NTRS)
Desai, Prasun N.
2008-01-01
All recent Mars landers (Mars Pathfinder, the two Mars Exploration Rovers Spirit and Opportunity, and the Mars Phoenix Lander) have landed further downrange than their pre-entry predictions. Mars Pathfinder landed 27 km downrange of its prediction [1], Spirit and Opportunity landed 13.4 km and 14.9 km, respectively, downrange from their predictions [2], and Phoenix landed 21 km downrange from its prediction [3]. Reconstruction of their entries revealed a lower density profile than the best a priori atmospheric model predictions. Do these results suggest that there is a systemic issue in present Mars atmosphere models that predict a higher density than observed on landing day? Spirit Landing: The landing location for Spirit was 13.4 km downrange of the prediction as shown in Fig. 1. The navigation errors upon Mars arrival were very small [2]. As such, the entry interface conditions were not responsible for this downrange landing. Consequently, experiencing a lower density during the entry was the underlying cause. The reconstructed density profile that Spirit experienced is shown in Fig. 2, which is plotted as a fraction of the pre-entry baseline prediction that was used for all the entry, descent, and landing (EDL) design analyses. The reconstructed density is observed to be less dense throughout the descent reaching a maximum reduction of 15% at 21 km. This lower density corresponded to approximately a 1- low profile relative to the dispersions predicted. Nearly all the deceleration during the entry occurs within 10- 50 km. As such, prediction of density within this altitude band is most critical for entry flight dynamics analyses and design (e.g., aerodynamic and aerothermodynamic predictions, landing location, etc.).
X-ray and SZ constraints on the properties of hot CGM
NASA Astrophysics Data System (ADS)
Singh, Priyanka; Majumdar, Subhabrata; Nath, Biman B.; Silk, Joseph
2018-05-01
We use observations of stacked X-ray luminosity and Sunyaev-Zel'dovich (SZ) signal from a cosmological sample of ˜80, 000 and 104,000 massive galaxies, respectively, with 1012.6 ≲ M500 ≲ 1013M⊙ and mean redshift, z¯ ˜ 0.1 - 0.14 to constrain the hot Circumgalactic Medium (CGM) density and temperature. The X-ray luminosities constrain the density and hot CGM mass, while the SZ signal helps in breaking the density-temperature degeneracy. We consider a simple power-law density distribution (ne∝r-3β) as well as a hydrostatic hot halo model, with the gas assumed to be isothermal in both cases. The datasets are best described by the mean hot CGM profile ∝r-1.2, which is shallower than an NFW profile. For halo virial mass ˜1012 - 1013M⊙, the hot CGM contains ˜ 20 - 30% of galactic baryonic mass for the power-law model and 4 - 11% for the hydrostatic halo model, within the virial radii. For the power-law model, the hot CGM profile broadly agrees with observations of the Milky Way. The mean hot CGM mass is comparable to or larger than the mass contained in other phases of the CGM for L* galaxies.
NASA Astrophysics Data System (ADS)
Chun, Sang-Hyun; Kim, Jae-Woo; Sohn, Sangmo T.; Park, Jang-Hyun; Han, Wonyong; Kim, Ho-Il; Lee, Young-Wook; Lee, Myung Gyoon; Lee, Sang-Gak; Sohn, Young-Jong
2010-02-01
Wide-field deep g'r'i' images obtained with the Megacam of the Canada-France-Hawaii Telescope are used to investigate the spatial configuration of stars around five metal-poor globular clusters M15, M30, M53, NGC 5053, and NGC 5466, in a field-of-view ~3°. Applying a mask filtering algorithm to the color-magnitude diagrams of the observed stars, we sorted cluster's member star candidates that are used to examine the characteristics of the spatial stellar distribution surrounding the target clusters. The smoothed surface density maps and the overlaid isodensity contours indicate that all of the five metal-poor globular clusters exhibit strong evidence of extratidal overdensity features over their tidal radii, in the form of extended tidal tails around the clusters. The orientations of the observed extratidal features show signatures of tidal tails tracing the clusters' orbits, inferred from their proper motions, and effects of dynamical interactions with the Galaxy. Our findings include detections of a tidal bridge-like feature and an envelope structure around the pair of globular clusters M53 and NGC 5053. The observed radial surface density profiles of target clusters have a deviation from theoretical King models, for which the profiles show a break at 0.5-0.7rt , extending the overdensity features out to 1.5-2rt . Both radial surface density profiles for different angular sections and azimuthal number density profiles confirm the overdensity features of tidal tails around the five metal-poor globular clusters. Our results add further observational evidence that the observed metal-poor halo globular clusters originate from an accreted satellite system, indicative of the merging scenario of the formation of the Galactic halo. Based on observations carried out at the Canada-France-Hawaii Telescope, operated by the National Research Council of Canada, the Centre National de la Recherche Scientifique de France, and the University of Hawaii. This is part of the Searching for the Galactic Halo project using the CFHT, organized by the Korea Astronomy and Space Science Institute.
Validation of COSMIC radio occultation electron density profiles by incoherent scatter radar data
NASA Astrophysics Data System (ADS)
Cherniak, Iurii; Zakharenkova, Irina
The COSMIC/FORMOSAT-3 is a joint US/Taiwan radio occultation mission consisting of six identical micro-satellites. Each microsatellite has a GPS Occultation Experiment payload to operate the ionospheric RO measurements. FS3/COSMIC data can make a positive impact on global ionosphere study providing essential information about height electron density distribu-tion. For correct using of the RO electron density profiles for geophysical analysis, modeling and other applications it is necessary to make validation of these data with electron density distributions obtained by another measurement techniques such as proven ground based facili-ties -ionosondes and IS radars. In fact as the ionosondes provide no direct information on the profile above the maximum electron density and the topside ionosonde profile is obtained by fitting a model to the peak electron density value, the COSMIC RO measurements can make an important contribution to the investigation of the topside part of the ionosphere. IS radars provide information about the whole electron density profile, so we can estimate the agreement of topside parts between two independent measurements. To validate the reliability of COS-MIC data we have used the ionospheric electron density profiles derived from IS radar located near Kharkiv, Ukraine (geographic coordinates: 49.6N, 36.3E, geomagnetic coordinates: 45.7N, 117.8E). The Kharkiv radar is a sole incoherent scatter facility on the middle latitudes of Eu-ropean region. The radar operates with 100-m zenith parabolic antenna at 158 MHz with peak transmitted power 2.0 MW. The Kharkiv IS radar is able to determine the heights-temporal distribution of ionosphere parameters in height range of 70-1500 km. At the ionosphere in-vestigation by incoherent scatter method there are directly measured the power spectrum (or autocorrelation function) of scattered signal. With using of rather complex procedure of the received signal processing it is possible to estimate the majority of the ionospheric parameters -density and kinetic temperature of electron and main ions, the plasma drift velocity and others. The comparison of RO reveals that usually COSMIC RO profiles are in a rather good agreement with ISR profiles both in the F2 layer peak electron density (NmF2) and the form of profiles. The coincidence of profiles is better in the cases when projection of the ray path of tangent points is closer to the ISR location. It is necessary to note that retrieved electron density profiles should not be interpreted as actual vertical profiles. The geographical location of the ray path tangent points at the top and at the bottom of a profile may differ by several hundred kilometers. So the spatial smearing of data takes place and RO technique represents an image of vertical and horizontal ionospheric structure. That is why the comparison with ground-based data has rather relative character. We derived quantitative parameters to char-acterize the differences of the compared profiles: the peak height difference, the relative peak density difference. Most of the compared profiles agree within error limits, depending on the accuracy of the occultation-and the radar-derived profiles. In general COSMIC RO profiles are in a good agreement with incoherent radar profiles both in the F2 layer peak electron density (NmF2) and the form of the profiles. The coincidence of COSMIC and incoherent radar pro-files is better in the cases when projection of the ray path tangent points is closer to the radar location. COSMIC measurements can be efficiently used to study the topside part of the iono-spheric electron density. To validate the reliability of the COSMIC ionospheric observations it must be done the big work on the analysis and statistical generalization of the huge data array (today the total number of ionospheric occultation is more than 2.300.000), but this technique is a very promising one to retrieve accurate profiles of the ionospheric electron density with ground-based measurements on a global scale. We acknowledge the Taiwan's National Space Organization (NSPO) and the University Corporation for Atmospheric Research (UCAR) for providing the COSMIC Data.
Earth-mass haloes and the emergence of NFW density profiles
NASA Astrophysics Data System (ADS)
Angulo, Raul E.; Hahn, Oliver; Ludlow, Aaron D.; Bonoli, Silvia
2017-11-01
We simulate neutralino dark matter (χDM) haloes from their initial collapse, at ˜ earth mass, up to a few percent solar. Our results confirm that the density profiles of the first haloes are described by a ˜r-1.5 power law. As haloes grow in mass, their density profiles evolve significantly. In the central regions, they become shallower and reach on average ˜r-1, the asymptotic form of an NFW profile. Using non-cosmological controlled simulations, we observe that temporal variations in the gravitational potential caused by major mergers lead to a shallowing of the inner profile. This transformation is more significant for shallower initial profiles and for a higher number of merging systems. Depending on the merger details, the resulting profiles can be shallower or steeper than NFW in their inner regions. Interestingly, mergers have a much weaker effect when the profile is given by a broken power law with an inner slope of -1 (such as NFW or Hernquist profiles). This offers an explanation for the emergence of NFW-like profiles: after their initial collapse, r-1.5 χDM haloes suffer copious major mergers, which progressively shallows the profile. Once an NFW-like profile is established, subsequent merging does not change the profile anymore. This suggests that halo profiles are not universal but rather a combination of (1) the physics of the formation of the microhaloes and (2) their early merger history - both set by the properties of the dark matter particle - as well as (3) the resilience of NFW-like profiles to perturbations.
A Comprehensive Assessment of Radio Occultation Ionospheric Measurements at Mid-Latitudes
NASA Astrophysics Data System (ADS)
Keele, C.; Brum, C. G. M.; Rodrigues, F. S.; Aponte, N.; Sulzer, M. P.
2015-12-01
The GPS radio occultation (RO) has become a widely used technique for global measurements of the ionospheric electron density (Ne). To advance our understanding of the accuracy of the RO profiles at mid latitudes, we performed a comprehensive comparison of RO measurements made by the Constellation Observing System for Meteorology, Ionosphere, and Climate (COSMIC) satellites and observations of Ne profiles made by the Arecibo Observatory incoherent scatter radar (ISR). COSMIC is formed by six satellites in circular, 800 km altitude low-Earth orbit (LEO) at 72° inclination. The satellites orbit in their own plane, approximately 24° apart in ascending node. The satellites are equipped with dual-frequency GPS receivers capable of making measurements of the total electron content (TEC) along the signal path and, therefore, RO observations. The Arecibo ISR, located at(18.35°N, 66.75°W; ˜28.25°N dip latitude), operates at a frequency of 430 MHz with a maximum bandwidth of about 1 MHz. The large collecting area provided by the 300 m dish antenna combined with high peak power transmitters (2.0-2.5 MW) allows the radar to make accurate Ne measurements throughout the entire ionospheric F-region and topside heights. We analyzed 74 and 89 days of line feed and Gregorian data, respectively, collected between 2006 and 2014. There were 638 RO profiles measured within 10° of latitude and 20° of longitude from Arecibo Observatory and within ±10 minutes of the radar measurements. Preliminary analyses of the observations show patterns in the relationship between densities measured by the Arecibo ISR and densities estimated from the COSMIC ROs. We will present and discuss the behavior of the patterns. We will also present results of a numerical model representing the patterns and discuss the possibility of using this model to improve RO estimates of density profiles.
Determination of precipitation profiles from airborne passive microwave radiometric measurements
NASA Technical Reports Server (NTRS)
Kummerow, Christian; Hakkarinen, Ida M.; Pierce, Harold F.; Weinman, James A.
1991-01-01
This study presents the first quantitative retrievals of vertical profiles of precipitation derived from multispectral passive microwave radiometry. Measurements of microwave brightness temperature (Tb) obtained by a NASA high-altitude research aircraft are related to profiles of rainfall rate through a multichannel piecewise-linear statistical regression procedure. Statistics for Tb are obtained from a set of cloud radiative models representing a wide variety of convective, stratiform, and anvil structures. The retrieval scheme itself determines which cloud model best fits the observed meteorological conditions. Retrieved rainfall rate profiles are converted to equivalent radar reflectivity for comparison with observed reflectivities from a ground-based research radar. Results for two case studies, a stratiform rain situation and an intense convective thunderstorm, show that the radiometrically derived profiles capture the major features of the observed vertical structure of hydrometer density.
Preliminary measurements of mesospheric OH X 2Pi by ISO on Atlas 1
NASA Technical Reports Server (NTRS)
Morgan, M. F.; Torr, D. G.; Torr, M. R.
1993-01-01
The Imaging Spectrometric Observatory (ISO) carried by the Atlas 1 mission conducted observations of the resonance fluorescence of the OH radical, on whose bases a density profile has been determined at 70-80 km altitude. OH observations were conducted during most of the dayside phases during the mission, covering much of the Northern Hemisphere to 57 deg N latitude. Attention is given to results from an observation at 39 deg N, where OH densities rapidly decreased above 80 km.
Brace, L H; Theis, R F; Krehbiel, J P; Nagy, A F; Donahue, T M; McElroy, M B; Pedersen, A
1979-02-23
Altitude profiles of electron temperature and density in the ionosphere of Venus have been obtained by the Pioneer Venus orbiter electron temperatutre probe. Elevated temperatutres observed at times of low solar wind flux exhibit height profiles that are consistent with a model in which less than 5 percent of the solar wind energy is deposited at the ionopause and is conducted downward through an unmagnetized ionosphere to the region below 200 kilomneters where electron cooling to the neutral atmosphere proceeds rapidly. When solar wind fluxes are higher, the electron temperatures and densities are highly structured and the ionopause moves to lower altitudes. The ionopause height in the late afternoon sector observed thus far varies so widely from day to (day that any height variation with solar zenith angle is not apparent in the observations. In the neighborhood of the ionopause, measuremnents of plasma temperatures and densities and magnetic field strength indicate that an induced magnetic barrier plays an important role in the pressure transfer between the solar wind and the ionosphere. The bow, shock is marked by a distinct increase in electron current collected by the instrument, a featutre that provides a convenient identification of the bow shock location.
Bishop, N J; Zuniga, K E; Lucht, A L
2018-01-01
Our first objective was to estimate empirically-derived subgroups (latent profiles) of observed carbohydrate, protein, and fat intake density in a nationally representative sample of older U.S. adults. Our second objective was to determine whether membership in these groups was associated with levels of, and short term change in, physical mobility limitations. Measures of macronutrient density were taken from the 2013 Health Care and Nutrition Study, an off-year supplement to the Health and Retirement Study, which provided indicators of physical mobility limitations and sociodemographic and health-related covariates. 3,914 community-dwelling adults age 65 years and older. Percent of daily calories from carbohydrate, protein, and fat were calculated based on responses to a modified Harvard food frequency questionnaire. Latent profile analysis was used to describe unobserved heterogeneity in measures of carbohydrate, protein, and fat density. Mobility limitation counts were based on responses to 11 items indicating physical limitations. Poisson regression models with autoregressive controls were used to identify associations between macronutrient density profile membership and mobility limitations. Sociodemographic and health-related covariates were included in all Poisson regression models. Four latent subgroups of macronutrient density were identified: "High Carbohydrate", "Moderate with Fat", "Moderate", and "Low Carbohydrate/High Fat". Older adults with the lowest percentage of daily calories coming from carbohydrate and the greatest percentage coming from fat ("Low Carbohydrate/High Fat") were found to have greater reported mobility limitations in 2014 than those identified as having moderate macronutrient density, and more rapid two-year increases in mobility limitations than those identified as "Moderate with Fat" or "Moderate". Older adults identified as having the lowest carbohydrate and highest fat energy density were more likely to report a greater number of mobility limitations and experience greater increases in these limitations than those identified as having moderate macronutrient density. These results suggest that the interrelation of macronutrients must be considered by those seeking to reduce functional limitations among older adults through dietary interventions.
Investigating the ability of solar coronal shocks to accelerate solar energetic particles
NASA Astrophysics Data System (ADS)
Kwon, R. Y.; Vourlidas, A.
2017-12-01
We estimate the density compression ratio of shocks associated with coronal mass ejections (CMEs) and investigate whether they can accelerate solar energetic particles (SEPs). Using remote-sensing, multi-viewpoint coronagraphic observations, we have developed a method to extract the sheath electron density profiles along the shock normal and estimate the density compression ratio. Our method uses the ellipsoid model to derive the 3D geometry of the sheaths, including the line-of-sight (LOS) depth. The sheath density profiles along the shock normal are modeled with double-Gaussian functions, and the modeled densities are integrated along the LOSs to be compared with the observed brightness in STEREO COR2-Ahead. The upstream densities are derived from either the pB-inversion of the brightness in a pre-event image or an empirical model. We analyze two fast halo CMEs observed on 2011 March 7 and 2014 February 25 that are associated with SEP events detected by multiple spacecraft located over a broad range of heliolongitudes. We find that the density compression peaks around the CME nose and decreases at larger position angles. Interestingly, we find that the supercritical region extends over a large area of the shock and lasts longer (several tens of minutes) than past reports. This finding implies that CME shocks may be capable of accelerating energetic particles in the corona over extended spatial and temporal scales and may, therefore, be responsible for the wide longitudinal distribution of these particles in the inner heliosphere.
Core transport properties in JT-60U and JET identity plasmas
NASA Astrophysics Data System (ADS)
Litaudon, X.; Sakamoto, Y.; de Vries, P. C.; Salmi, A.; Tala, T.; Angioni, C.; Benkadda, S.; Beurskens, M. N. A.; Bourdelle, C.; Brix, M.; Crombé, K.; Fujita, T.; Futatani, S.; Garbet, X.; Giroud, C.; Hawkes, N. C.; Hayashi, N.; Hoang, G. T.; Hogeweij, G. M. D.; Matsunaga, G.; Nakano, T.; Oyama, N.; Parail, V.; Shinohara, K.; Suzuki, T.; Takechi, M.; Takenaga, H.; Takizuka, T.; Urano, H.; Voitsekhovitch, I.; Yoshida, M.; ITPA Transport Group; JT-60 Team; EFDA contributors, JET
2011-07-01
The paper compares the transport properties of a set of dimensionless identity experiments performed between JET and JT-60U in the advanced tokamak regime with internal transport barrier, ITB. These International Tokamak Physics Activity, ITPA, joint experiments were carried out with the same plasma shape, toroidal magnetic field ripple and dimensionless profiles as close as possible during the ITB triggering phase in terms of safety factor, normalized Larmor radius, normalized collision frequency, thermal beta, ratio of ion to electron temperatures. Similarities in the ITB triggering mechanisms and sustainment were observed when a good match was achieved of the most relevant normalized profiles except the toroidal Mach number. Similar thermal ion transport levels in the two devices have been measured in either monotonic or non-monotonic q-profiles. In contrast, differences between JET and JT-60U were observed on the electron thermal and particle confinement in reversed magnetic shear configurations. It was found that the larger shear reversal in the very centre (inside normalized radius of 0.2) of JT-60U plasmas allowed the sustainment of stronger electron density ITBs compared with JET. As a consequence of peaked density profile, the core bootstrap current density is more than five times higher in JT-60U compared with JET. Thanks to the bootstrap effect and the slightly broader neutral beam deposition, reversed magnetic shear configurations are self-sustained in JT-60U scenarios. Analyses of similarities and differences between the two devices address key questions on the validity of the usual assumptions made in ITER steady scenario modelling, e.g. a flat density profile in the core with thermal transport barrier? Such assumptions have consequences on the prediction of fusion performance, bootstrap current and on the sustainment of the scenario.
NASA Technical Reports Server (NTRS)
Benson, Robert F.; Fainberg, Joseph; Osherovich, Vladimir A.; Truhlik, Vladimir; Wang, Yongli; Bilitza, Dieter; Fung, Shing F.
2016-01-01
Large magnetic-storm-induced changes were detected in high-latitude topside vertical electron density profiles Ne(h) in a database of profiles and digital topside ionograms, from the International Satellites for Ionospheric Studies (ISIS) program, that enabled Ne(h) profiles to be obtained in nearly the same region of space before, during, and after a major magnetic storm (Dst -100nT). Storms where Ne(h) profiles were available in the high-latitude Northern Hemisphere had better coverage of solar wind parameters than storms with available Ne(h) profiles in the high-latitude Southern Hemisphere. Large Ne(h) changes were observed during all storms, with enhancements and depletions sometimes near a factor of 10 and 0.1, respectively, but with substantial differences in the responses in the two hemispheres. Large spatial andor temporal Ne(h) changes were often observed during Dst minimum and during the storm recovery phase. The storm-induced Ne(h) changes were the most pronounced and consistent in the Northern Hemisphere in that large enhancements were observed during winter nighttime and large depletions during winter and spring daytime. The limited available cases suggested that these Northern Hemisphere enhancements increased with increases of the time-shifted solar wind velocity v, magnetic field B, and with more negative values of the B components except for the highest common altitude (1100km) of the profiles. There was also some evidence suggesting that the Northern Hemisphere depletions were related to changes in the solar wind parameters. Southern Hemisphere storm-induced enhancements and depletions were typically considerably less with depletions observed during summer nighttime conditions and enhancements during summer daytime and fall nighttime conditions.
NASA Astrophysics Data System (ADS)
Benson, Robert F.; Fainberg, Joseph; Osherovich, Vladimir A.; Truhlik, Vladimir; Wang, Yongli; Bilitza, Dieter; Fung, Shing F.
2016-05-01
Large magnetic-storm-induced changes were detected in high-latitude topside vertical electron density profiles Ne(h) in a database of profiles and digital topside ionograms, from the International Satellites for Ionospheric Studies (ISIS) program, that enabled Ne(h) profiles to be obtained in nearly the same region of space before, during, and after a major magnetic storm (Dst < -100 nT). Storms where Ne(h) profiles were available in the high-latitude Northern Hemisphere had better coverage of solar wind parameters than storms with available Ne(h) profiles in the high-latitude Southern Hemisphere. Large Ne(h) changes were observed during all storms, with enhancements and depletions sometimes near a factor of 10 and 0.1, respectively, but with substantial differences in the responses in the two hemispheres. Large spatial and/or temporal Ne(h) changes were often observed during Dst minimum and during the storm recovery phase. The storm-induced Ne(h) changes were the most pronounced and consistent in the Northern Hemisphere in that large enhancements were observed during winter nighttime and large depletions during winter and spring daytime. The limited available cases suggested that these Northern Hemisphere enhancements increased with increases of the time-shifted solar wind velocity v, magnetic field B, and with more negative values of the B components except for the highest common altitude (1100 km) of the profiles. There was also some evidence suggesting that the Northern Hemisphere depletions were related to changes in the solar wind parameters. Southern Hemisphere storm-induced enhancements and depletions were typically considerably less with depletions observed during summer nighttime conditions and enhancements during summer daytime and fall nighttime conditions.
Structure of the plasmapause from ISEE 1 low-energy ion and plasma wave observations
NASA Technical Reports Server (NTRS)
Nagai, T.; Horwitz, J. L.; Anderson, R. R.; Chappell, C. R.
1985-01-01
Low-energy ion pitch angle distributions are compared with plasma density profiles in the near-earth magnetosphere using ISEE 1 observations. The classical plasmapause determined by the sharp density gradient is not always observed in the dayside region, whereas there almost always exists the ion pitch angle distribution transition from cold, isotropic to warm, bidirectional, field-aligned distributions. In the nightside region the plasmapause density gradient is typically found, and it normally coincides with the ion pitch angle distribution transition. The sunward motion of the plasma is found in the outer part of the 'plasmaspheric' plasma in the dusk bulge region.
Jelenkovic, Aline; Bogl, Leonie H; Rose, Richard J; Kangas, Antti J; Soininen, Pasi; Ala-Korpela, Mika; Kaprio, Jaakko; Silventoinen, Karri
2013-01-01
Little is known about the relationship between growth and lipoprotein profile. We aimed to analyze common genetic and environmental factors in the association of height from late childhood to adulthood and pubertal timing with serum lipid and lipoprotein subclass profile. A longitudinal cohort of Finnish twin pairs (FinnTwin12) was analyzed using self-reported height at 11-12, 14, 17 years and measured stature at adult age (21-24 years). Data were available for 719 individual twins including 298 complete pairs. Serum lipids and lipoprotein subclasses were measured by proton nuclear magnetic resonance spectroscopy. Multivariate variance component models for twin data were fitted. Cholesky decomposition was used to partition the phenotypic covariation among traits into additive genetic and unique environmental correlations. In men, the strongest associations for both adult height and puberty were observed with total cholesterol, low-density lipoprotein cholesterol, intermediate-density lipoprotein cholesterol, and low-density lipoprotein particle subclasses (max. r = -0.19). In women, the magnitude of the correlations was weaker (max. r = -0.13). Few associations were detected between height during adolescence and adult lipid profile. Early onset of puberty was related to an adverse lipid profile, but delayed pubertal development in girls was associated with an unfavorable profile, as well. All associations were mediated mainly by additive genetic factors, but unique environmental effects cannot be disregarded. Early puberty and shorter adult height relate to higher concentrations of atherogenic lipids and lipoprotein particles in early adulthood. Common genetic effects behind these phenotypes substantially contribute to the observed associations. Copyright © 2013 Wiley Periodicals, Inc.
2015-01-01
Abstract The basic properties of the near‐Earth current sheet from 8 RE to 12 RE were determined based on Time History of Events and Macroscale Interactions during Substorms (THEMIS) observations from 2007 to 2013. Ampere's law was used to estimate the current density when the locations of two spacecraft were suitable for the calculation. A total of 3838 current density observations were obtained to study the vertical profile. For typical solar wind conditions, the current density near (off) the central plane of the current sheet ranged from 1 to 2 nA/m2 (1 to 8 nA/m2). All the high current densities appeared off the central plane of the current sheet, indicating the formation of a bifurcated current sheet structure when the current density increased above 2 nA/m2. The median profile also showed a bifurcated structure, in which the half thickness was about 3 RE. The distance between the peak of the current density and the central plane of the current sheet was 0.5 to 1 RE. High current densities above 4 nA/m2 were observed in some cases that occurred preferentially during substorms, but they also occurred in quiet times. In contrast to the commonly accepted picture, these high current densities can form without a high solar wind dynamic pressure. In addition, these high current densities can appear in two magnetic configurations: tail‐like and dipolar structures. At least two mechanisms, magnetic flux depletion and new current system formation during the expansion phase, other than plasma sheet compression are responsible for the formation of the bifurcated current sheets. PMID:27722039
An observational study of the nightside ionospheres of Mars and Venus with radio occultation methods
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, M.H.G.; Luhmann, J.G.; Kliore, A.J.
1990-10-01
An analysis of Mars and Venus nightside electron density profiles obtained with radio occultation methods shows how the nightside ionospheres of both planets vary with solar zenith angle. From previous studies it is known that the dayside peak electron densities at Mars and Venus show a basic similarity in that they both exhibit Chapman layer-like behavior. In contrast, the peak altitudes at mars behave like an ideal Chapman layer on the dayside, whereas the altitude of the peak at Venus is fairly constant up to the terminator. The effect of major dust storms can also be seen in the peakmore » altitudes at Mars. All Venus nightside electron density profiles show a distinct main peak for both solar minimum and maximum, whereas many profiles from the nightside of Mars do not show any peak at all. This suggests that the electron density in the Mars nightside ionosphere is frequently too low to be detected by radio occultation. On the Pioneer Venus orbiter, disappearing ionospheres were observed near solar maximum in the in-situ data when the solar wind dynamic pressure was exceptionally high. This condition occurs because the high solar wind dynamic pressure decreases the altitude of the ionopause near the terminator below {approximately}250 km, thus reducing the normal nightward transport of dayside ionospheric plasma. On the basis of the Venus observations, one might predict that if a positive correlation of nightside peak density with dynamic pressure was found, it could mean that transport from the dayside is the only significant source for the nightside ionosphere of Mars. The lack of a correlation would imply that the precipitation source at Mars is quite variable.« less
NASA Technical Reports Server (NTRS)
Justh, Hilary L.; Justus, Carl G.
2008-01-01
The Mars Global Reference Atmospheric Model (Mars-GRAM 2005) is an engineering level atmospheric model widely used for diverse mission applications. An overview is presented of Mars-GRAM 2005 and its new features. One new feature of Mars-GRAM 2005 is the 'auxiliary profile' option. In this option, an input file of temperature and density versus altitude is used to replace mean atmospheric values from Mars-GRAM's conventional (General Circulation Model) climatology. An auxiliary profile can be generated from any source of data or alternate model output. Auxiliary profiles for this study were produced from mesoscale model output (Southwest Research Institute's Mars Regional Atmospheric Modeling System (MRAMS) model and Oregon State University's Mars mesoscale model (MMM5)model) and a global Thermal Emission Spectrometer(TES) database. The global TES database has been specifically generated for purposes of making Mars-GRAM auxiliary profiles. This data base contains averages and standard deviations of temperature, density, and thermal wind components,averaged over 5-by-5 degree latitude-longitude bins and 15 degree L(s) bins, for each of three Mars years of TES nadir data. Results are presented using auxiliary profiles produced from the mesoscale model output and TES observed data for candidate Mars Science Laboratory (MSL) landing sites. Input parameters rpscale (for density perturbations) and rwscale (for wind perturbations) can be used to "recalibrate" Mars-GRAM perturbation magnitudes to better replicate observed or mesoscale model variability.
NASA Astrophysics Data System (ADS)
Kim, Ho Jun; Lee, Hae June
2018-03-01
The effect of neutral transport on the deposition rate profiles of thin films formed by plasma-enhanced chemical vapor deposition (PECVD) is investigated to improve the uniformity of amorphous hydrogenated silicon films. The PECVD reactor with a cylindrical showerhead is numerically simulated with a variation of the gas velocity and temperature in the capacitively coupled plasma with an intermediate-pressure SiH4/He gas mixture. The modulation of the gas velocity distribution results in a noticeable change in the density distributions of neutral molecules such as SiH4, SiH3, H, SiH2, and Si2H6, especially in the vicinity of the electrode edge. With the locally accelerated gas flow, the concomitant increase in Si2H6 density near the electrode edge induces increases in both the electron density and the deposition rate profile near the electrode edge. In addition, it is observed that changing the surface temperature distribution by changing the sidewall temperature can also effectively modulate the plasma density distributions. The simulated deposition rate profile matches the experimental data well, even under non-isothermal wall boundary conditions.
On the observability of coupled dark energy with cosmic voids
NASA Astrophysics Data System (ADS)
Sutter, P. M.; Carlesi, Edoardo; Wandelt, Benjamin D.; Knebe, Alexander
2015-01-01
Taking N-body simulations with volumes and particle densities tuned to match the sloan digital sky survey DR7 spectroscopic main sample, we assess the ability of current void catalogues to distinguish a model of coupled dark matter-dark energy from Λ cold dark matter cosmology using properties of cosmic voids. Identifying voids with the VIDE toolkit, we find no statistically significant differences in the ellipticities, but find that coupling produces a population of significantly larger voids, possibly explaining the recent result of Tavasoli et al. In addition, we use the universal density profile of Hamaus et al. to quantify the relationship between coupling and density profile shape, finding that the coupling produces broader, shallower, undercompensated profiles for large voids by thinning the walls between adjacent medium-scale voids. We find that these differences are potentially measurable with existing void catalogues once effects from survey geometries and peculiar velocities are taken into account.
NASA Astrophysics Data System (ADS)
Tellmann, S.; Paetzold, M.; Häusler, B.; Hinson, D. P.; Peter, K.; Tyler, G. L.
2017-12-01
Atmospheric waves play a crucial role in the Martian atmosphere. They are responsible for the redistribution of momentum, energy and dust and for the coupling of the different atmospheric regions on Mars. Almost all kinds of waves have been observed in the lower atmosphere (e.g. stationary and transient waves, baroclinic waves as well as migrating and non-migrating thermal tides, gravity waves, etc...). Atmospheric waves are also known to exist in the middle atmosphere of Mars ( 70-120 km, e.g. by the SPICAM instrument on Mars Express). In the thermosphere, thermal tides have been observed e.g. by radio occultation or accelerometer measurements on MGS. Recently, the NGIMS instrument on MAVEN reported gravity waves in the thermosphere of Mars. Radio Science profiles from the Mars Express Radio Science experiment MaRS on Mars Express can analyse the temperature, pressure and neutral number density profiles in the lower atmosphere (from a few hundred metres above the surface up to 40-50 km) and electron density profiles in the ionosphere of Mars. Wavelike structures have been detected below the main ionospheric layers (M1 & M2) and in the topside of the ionosphere. The two coherent frequencies of the MaRS experiment allow to discriminate between plasma density fluctuations in the ionosphere and Doppler related frequency shifts caused by spacecraft movement. A careful analysis of the observed electron density fluctuations in combination with sensitivity studies of the radio occultation technique will be used to classify the observed fluctuations. The MaRS experiment is funded by DLR under grant 50QM1401.
NASA Astrophysics Data System (ADS)
Tellmann, Silvia Anna; Paetzold, Martin; Häusler, Bernd; Hinson, David P.; Peter, Kerstin; Tyler, G. Leonard
2017-10-01
Atmospheric waves play a crucial role for the dynamics in the Martian atmosphere. They are responsible for the redistribution of momentum, energy and dust and the coupling of the different atmospheric regions on Mars.Almost all kinds of waves have been observed in the lower atmosphere (e.g. stationary and transient waves, baroclinic waves as well as migrating and non-migrating thermal tides, and gravity waves). Atmospheric waves are also known to exist in the middle atmosphere of Mars (~70-120 km, e.g. by the SPICAM instrument on Mars Express). In the thermosphere, thermal tides have been observed e.g. by radio occultation or accelerometer measurements on MGS. Recently, the NGIMS instrument on MAVEN reported gravity waves in the thermosphere of Mars.Radio Science profiles from the Mars Express Radio Science experiment MaRS on Mars Express can analyse the temperature, pressure and neutral number density profiles in the lower atmosphere (from a few hundred metres above the surface up to ~ 40-50 km) and electron density profiles in the ionosphere of Mars.Wavelike structures have been detected below the main ionospheric layers (M1 & M2) and in the topside of the ionosphere. The two coherent frequencies of the MaRS experiment allow to discriminate between plasma density fluctuations in the ionosphere and Doppler related frequency shifts caused by spacecraft movement.A careful analysis of the observed electron density fluctuations in combination with sensitivity studies of the radio occultation technique will be used to classify the observed fluctuations.The MaRS experiment is funded by DLR under grant 50QM1401.
Confinement effects on liquid oxygen flows in carbon nanotubes: A MD simulation study
NASA Astrophysics Data System (ADS)
Suga, Kazuhiko; Moritani, Rintaro; Mori, Yuki; Kaneda, Masayuki
2017-11-01
Molecular dynamics simulations are performed to investigate the liquid flow mechanism of diatomic molecules in armchair carbon nanotubes (CNTs). Oxygen molecules are considered as the fluid inside armchair (n,n) (n=6-20) CNTs at a temperature of 133[K] and a bulk density of 1680[kg /m3] for the liquid state. The velocity profiles and slip lengths are discussed considering the radial distributions of the fluid density by the finite difference-based velocity fitting method. It is shown that as the diameter of the CNT increases, the slip length and the flow rate enhancement generally become smaller while irregular tendencies (discontinuity points) are observed in the distribution profiles. Between the (7,7) and (8,8) CNTs, a steep drop can be seen in the profiles. Between the (9,9) and (11,11) CNTs, and between the (12,12) and (14,14) CNTs transitional profiles are observed. It is confirmed that those phenomena are caused by an instability of the fluid molecule cluster due to the discontinuous confinement of the CNTs. Professor.
NASA Astrophysics Data System (ADS)
Patsourakos, S.; Klimchuk, J. A.; Young, P. R.
2014-02-01
Recent solar spectroscopic observations have shown that coronal spectral lines can exhibit asymmetric profiles, with enhanced emissions at their blue wings. These asymmetries correspond to rapidly upflowing plasmas at speeds exceeding ≈50 km s-1. Here, we perform a study of the density of the rapidly upflowing material and compare it with that of the line core that corresponds to the bulk of the plasma. For this task, we use spectroscopic observations of several active regions taken by the Extreme Ultraviolet Imaging Spectrometer of the Hinode mission. The density sensitive ratio of the Fe XIV lines at 264.78 and 274.20 Å is used to determine wing and core densities. We compute the ratio of the blue wing density to the core density and find that most values are of order unity. This is consistent with the predictions for coronal nanoflares if most of the observed coronal mass is supplied by chromospheric evaporation driven by the nanoflares. However, much larger blue wing-to-core density ratios are predicted if most of the coronal mass is supplied by heated material ejected with type II spicules. Our measurements do not rule out a spicule origin for the blue wing emission, but they argue against spicules being a primary source of the hot plasma in the corona. We note that only about 40% of the pixels where line blends could be safely ignored have blue wing asymmetries in both Fe XIV lines. Anticipated sub-arcsecond spatial resolution spectroscopic observations in future missions could shed more light on the origin of blue, red, and mixed asymmetries.
NASA Technical Reports Server (NTRS)
Patsourakos, S.; Klimchuk, J. A.; Young, P. R.
2014-01-01
Recent solar spectroscopic observations have shown that coronal spectral lines can exhibit asymmetric profiles, with enhanced emissions at their blue wings. These asymmetries correspond to rapidly upflowing plasmas at speeds exceeding approximately equal to 50 km per sec. Here, we perform a study of the density of the rapidly upflowing material and compare it with that of the line core that corresponds to the bulk of the plasma. For this task, we use spectroscopic observations of several active regions taken by the Extreme Ultraviolet Imaging Spectrometer of the Hinode mission. The density sensitive ratio of the Fe(sub XIV) lines at 264.78 and 274.20 Angstroms is used to determine wing and core densities.We compute the ratio of the blue wing density to the core density and find that most values are of order unity. This is consistent with the predictions for coronal nanoflares if most of the observed coronal mass is supplied by chromospheric evaporation driven by the nanoflares. However, much larger blue wing-to-core density ratios are predicted if most of the coronal mass is supplied by heated material ejected with type II spicules. Our measurements do not rule out a spicule origin for the blue wing emission, but they argue against spicules being a primary source of the hot plasma in the corona. We note that only about 40% of the pixels where line blends could be safely ignored have blue wing asymmetries in both Fe(sub XIV) lines. Anticipated sub-arcsecond spatial resolution spectroscopic observations in future missions could shed more light on the origin of blue, red, and mixed asymmetries.
Analysis of Co-spatial UV-optical HST/STIS Spectra of Planetary Nebula NGC 3242
NASA Astrophysics Data System (ADS)
Miller, Timothy R.; Henry, Richard B. C.; Balick, Bruce; Kwitter, Karen B.; Dufour, Reginald J.; Shaw, Richard A.; Corradi, Romano L. M.
2016-10-01
This project sought to consider two important aspects of the planetary nebula NGC 3242 using new long-slit HST/STIS spectra. First, we investigated whether this object is chemically homogeneous by spatially dividing the slit into different regions and calculating the abundances of each region. The major result is that the elements of He, C, O, and Ne are chemically homogeneous within uncertainties across the regions probed, implying that the stellar outflow was well-mixed. Second, we constrained the stellar properties using photoionization models computed by CLOUDY and tested the effects of three different density profiles on these parameters. The three profiles tested were a constant density profile, a Gaussian density profile, and a Gaussian with a power-law density profile. The temperature and luminosity were not affected significantly by the choice of density structure. The values for the stellar temperature and luminosity from our best-fit model are {89.7}-4.7+7.3 kK and log(L/L ⊙) = {3.36}-0.22+0.28, respectively. Comparing to evolutionary models on an HR diagram, this corresponds to an initial and final mass of {0.95}-0.09+0.35{M}⊙ and {0.56}-0.01+0.01{M}⊙ , respectively. Based on observations with the NASA/ESA Hubble Space Telescope obtained at the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Incorporated, under NASA contract NAS5-26555.
Observations of Rotation Reversal and Fluctuation Hysteresis in Alcator C-Mod L-Mode Plasmas
NASA Astrophysics Data System (ADS)
Cao, N. M.; Rice, J. E.; White, A. E.; Baek, S. G.; Creely, A. J.; Ennever, P. C.; Hubbard, A. E.; Hughes, J. W.; Irby, J.; Rodriguez-Fernandez, P.; Chilenski, M. A.; Diamond, P. H.; Reinke, M. L.; Alcator C-Mod Team
2017-10-01
Intrinsic core toroidal rotation in Alcator C-Mod L-mode plasmas has been observed to spontaneously reverse direction when the minimum value of the normalized collisionality ν*, crosses around 0.4. In Ohmic plasmas, the rotation is co-current in the low density linear Ohmic confinement (LOC) regime and counter-current in the higher density saturated Ohmic confinement (SOC) regime. The reversal manifests a hysteresis loop in ν*, where the critical collisionalities for the forward and reverse transitions differ by 10-15%. Temperature and density profiles of the two rotation states are observed to be indistinguishable to within experimental error estimated with Gaussian process regression. However, qualitative differences between the two rotation states are observed in fluctuation spectra, including the broadening of reflectometry spectra and, under certain conditions, the appearance of high-k features in phase contrast imaging (PCI) spectra (kθρs up to 1). These results suggest that the turbulent state can decouple from local profiles, and that turbulent self-regulation may play a role in the LOC/SOC transition. This work is supported by the US DOE under Grant DE-FC02-99ER54512 (C-Mod).
Radio outbursts in extragalactic sources
NASA Astrophysics Data System (ADS)
Kinzel, Wayne Morris
Three aspects of the flux density variability of extragalactic radio sources were examined: millimeter wavelength short timescale variability, the spectral evolution of outbursts, and whether the outbursts are periodically spaced. Observations of extragalactic radio sources were conducted using the Five College Radio Astronomy Observatory between January and June 1985 at 88.2 GHz and during June and July 1985 at 40.0 GHz. Many of the sources exhibited significant flux density variations during the observing span. In addition, the most rapid variations observed were comparable with those reported in previous works. Two sources, 0355+50 and OJ287, both exhibited outbursts whose rise and fall timescales were less than a month. An anomalous flux density dropout was observed in 3C446 and was interpreted as an occultation event. Data at five frequencies between 2.7 and 89.6 GHz from the Dent-Balonek monitoring program were used to investigate the spectral evolution of eight outbursts. Outburst profile fitting was used to deconvolve the individual outbursts from one another at each frequency. The fit profiles were used to generate multiple epoch spectra to investigate the evolution of the outbursts. A phase residual minimization method was used to examine four sources for periodic behavior.
Correlations Between Anthropometry and Lipid Profile in Women With PCOS.
Kiranmayee, Donthu; Kavya, Kothapalli; Himabindu, Yalamanchali; Sriharibabu, Manne; Madhuri, Gadi Leela Jaya; Venu, Swargam
2017-01-01
Polycystic ovary syndrome (PCOS) is the most common endocrinopathy in reproductive age women and is associated with both reproductive and metabolic abnormalities. Recent studies have demonstrated an early onset of abnormal cardiovascular risk profile in women with PCOS. Abnormal lipid profile patterns are common in women with PCOS, and these abnormalities are not uniform in all populations. Anthropometry is a simple and commonly used research tool for assessing metabolic risk in women with PCOS. Therefore, this study examined the correlations between anthropometric parameters and lipid profile in women with PCOS. The objectives of the study were (1) To study the anthropometric profile of women with PCOS, (2) To examine the lipid profile pattern of these women with PCOS and (3) To see whether there exists any correlation between these anthropometric parameters and lipid profile. This observational cross-sectional study examined anthropometry and lipid profile in 86 married women with PCOS in the age group of 18-35 years and correlated them by using Pearson's correlation coefficient. More than 80% of the women with PCOS demonstrated abnormal anthropometric parameters, and in more than 70% women, lipid abnormalities such as low levels of high-density lipoprotein (HDL) cholesterol and high levels of triglycerides and low-density lipoprotein cholesterol were observed. Significant positive correlations were seen between body mass index (BMI) and triglycerides ( P ≤ 0.001) and waist circumference (WC) and triglycerides ( P ≤ 0.029). Negative correlations were observed between BMI and HDL cholesterol ( P ≤ 0.013). This study revealed that BMI and WC are the most important anthropometric parameters correlated to dyslipidemia in the south Indian women with PCOS.
Observations of an Intermediate Layer During the Coqui II Campaign
NASA Technical Reports Server (NTRS)
Bishop, R. L.; Earle, G. D.; Herrero, F. A.; Bateman, T. T.
2000-01-01
NASA sounding rocket 21.114, launched March 7, 1998, during the Coqui II campaign, provided neutral wind and plasma density measurements of a weak intermediate layer. The layer was centered near 140 km and had an approximate peak plasma density of 2200 cc. The measured winds were typically less than 40 m/s, in agreement with wind shear formation theory and coincident density observations. The data obtained during the flight allow us to explore the plasma density structure and wind field morphology of the intermediate layer. Coupled with simultaneous data from Arecibo Observatory, the upleg and downleg density profiles provide three spatially separated measurements that enable the first detailed investigation of the horizontal extent and variation of an intermediate layer.
The Baryonic and Dark Matter Distributions in Abell 401
NASA Astrophysics Data System (ADS)
Nevalainen, J.; Markevitch, M.; Forman, W.
1999-11-01
We combine spatially resolved ASCA temperature data with ROSAT imaging data to constrain the total mass distribution in the cluster A401, assuming that the cluster is in hydrostatic equilibrium, but without the assumption of gas isothermality. We obtain a total mass within the X-ray core (290 h-150 kpc) of 1.2+0.1-0.5×1014 h-150 Msolar at the 90% confidence level, 1.3 times larger than the isothermal estimate. The total mass within r500 (1.7 h-150 Mpc) is M500=0.9+0.3-0.2×1015 h-150 Msolar at 90% confidence, in agreement with the optical virial mass estimate, and 1.2 times smaller than the isothermal estimate. Our M500 value is 1.7 times smaller than that estimated using the mass-temperature scaling law predicted by simulations. The best-fit dark matter density profile scales as r-3.1 at large radii, which is consistent with the Navarro, Frenk & White (NFW) ``universal profile'' as well as the King profile of the galaxy density in A401. From the imaging data, the gas density profile is shallower than the dark matter profile, scaling as r-2.1 at large radii, leading to a monotonically increasing gas mass fraction with radius. Within r500 the gas mass fraction reaches a value of fgas=0.21+0.06-0.05 h-3/250 (90% confidence errors). Assuming that fgas (plus an estimate of the stellar mass) is the universal value of the baryon fraction, we estimate the 90% confidence upper limit of the cosmological matter density to be Ωm<0.31, in conflict with an Einstein-deSitter universe. Even though the NFW dark matter density profile is statistically consistent with the temperature data, its central temperature cusp would lead to convective instability at the center, because the gas density does not have a corresponding peak. One way to reconcile a cusp-shaped total mass profile with the observed gas density profile, regardless of the temperature data, is to introduce a significant nonthermal pressure in the center. Such a pressure must satisfy the hydrostatic equilibrium condition without inducing turbulence. Alternately, significant mass drop-out from the cooling flow would make the temperature less peaked and the NFW profile acceptable. However, the quality of data is not adequate to test this possibility.
Raman-Scattering Line Profiles of the Symbiotic Star AG Peg
NASA Astrophysics Data System (ADS)
Lee, Seong-Jae; Hyung, Siek
2017-06-01
The high dispersion Hα and Hβ line profiles of the Symbiotic star AG Peg consist of top double Gaussian and bottom components. We investigated the formation of the broad wings with Raman scattering mechanism. Adopting the same physical parameters from the photo-ionization study of Kim and Hyung (2008) for the white dwarf and the ionized gas shell, Monte Carlo simulations were carried out for a rotating accretion disk geometry of non-symmetrical latitude angles from -7° < θ < +7° to -16° < θ < +16°. The smaller latitude angle of the disk corresponds to the approaching side of the disk responsible for weak blue Gaussian profile, while the wider latitude angle corresponds to the other side of the disk responsible for the strong red Gaussian profile. We confirmed that the shell has the high gas density ˜ 109.85 cm-3 in the ionized zone of AG Peg derived in the previous photo-ionization model study. The simulation with various HI shell column densities (characterized by a thickness ΔD × gas number density nH) shows that the HI gas shell with a column density Hhi ≈ 3 - 5 × 1019 cm-2 fits the observed line profiles well. The estimated rotation speed of the accretion disk shell is in the range of 44 - 55 kms-1. We conclude that the kinematically incoherent structure involving the outflowing gas from the giant star caused an asymmetry of the disk and double Gaussian profiles found in AG Peg.
Jackson, P. Ryan; Garcia, Carlos M.; Oberg, Kevin A.; Johnson, Kevin K.; Garcia, Marcelo H.
2008-01-01
Bidirectional flows in a river system can occur under stratified flow conditions and in addition to creating significant errors in discharge estimates, the upstream propagating currents are capable of transporting contaminants and affecting water quality. Detailed field observations of bidirectional flows were made in the Chicago River in Chicago, Illinois in the winter of 2005-06. Using multiple acoustic Doppler current profilers simultaneously with a water-quality profiler, the formation of upstream propagating density currents within the Chicago River both as an underflow and an overflow was observed on three occasions. Density differences driving the flow primarily arise from salinity differences between intersecting branches of the Chicago River, whereas water temperature is secondary in the creation of these currents. Deicing salts appear to be the primary source of salinity in the North Branch of the Chicago River, entering the waterway through direct runoff and effluent from a wastewater-treatment plant in a large metropolitan area primarily served by combined sewers. Water-quality assessments of the Chicago River may underestimate (or overestimate) the impairment of the river because standard water-quality monitoring practices do not account for density-driven underflows (or overflows). Chloride concentrations near the riverbed can significantly exceed concentrations at the river surface during underflows indicating that full-depth parameter profiles are necessary for accurate water-quality assessments in urban environments where application of deicing salt is common.
Measurements of fast ion spatial dynamics during magnetic activity in the RFP
NASA Astrophysics Data System (ADS)
Goetz, J. A.; Anderson, J. K.; Bonofiglo, P.; Kim, J.; McConnell, R.; Magee, R. M.
2017-10-01
Fast ions in the RFP are only weakly affected by a stochastic magnetic field and behave nearly classically in concentration too low to excite Alfvenic activity. At high fast ion concentration sourced by H-NBI in 300kA RFP discharges, a substantial drop in core-localized high pitch fast ions is observed during bursts of coupled EPM and IAE (magnetic island-induced Alfven eigenmode) activity (100-200kHz) through neutral particle analysis. Sourcing instead fast deuterium with NBI, the DD fusion products can measure the dynamics of the fast ion density profile. Both a collimated neutron detector and a new 3MeV fusion proton detector loaned by TriAlpha Energy measure the fast ion density profile with 5cm spatial resolution and 100 μs temporal resolution. In D-NBI, the bursting EPM is excited at slightly lower frequency and the IAE activity is nearly absent, likely due to an isotope effect and loss of wave-particle interaction. In these cases, neutral particle analysis shows little change in the core-localized high pitch fast ion content, and the fusion product profile indicates little change in the fast ion density profile, leaving unexplained the mechanism removing EPM drive. We measure a substantial redistribution of the fast ion profile due to strong lower-frequency ( 30kHz) MHD activity that accompanies the current profile relaxation in the RFP. Profile flattening is strongest in low bulk density discharges, which often occur with a total increase in global neutron flux from acceleration of the beam ions. Work supported by US DoE.
NASA Astrophysics Data System (ADS)
Pascoe, D. J.; Anfinogentov, S. A.; Goddard, C. R.; Nakariakov, V. M.
2018-06-01
The shape of the damping profile of kink oscillations in coronal loops has recently allowed the transverse density profile of the loop to be estimated. This requires accurate measurement of the damping profile that can distinguish the Gaussian and exponential damping regimes, otherwise there are more unknowns than observables. Forward modeling of the transverse intensity profile may also be used to estimate the width of the inhomogeneous layer of a loop, providing an independent estimate of one of these unknowns. We analyze an oscillating loop for which the seismological determination of the transverse structure is inconclusive except when supplemented by additional spatial information from the transverse intensity profile. Our temporal analysis describes the motion of a coronal loop as a kink oscillation damped by resonant absorption, and our spatial analysis is based on forward modeling the transverse EUV intensity profile of the loop under the isothermal and optically thin approximations. We use Bayesian analysis and Markov chain Monte Carlo sampling to apply our spatial and temporal models both individually and simultaneously to our data and compare the results with numerical simulations. Combining the two methods allows both the inhomogeneous layer width and density contrast to be calculated, which is not possible for the same data when each method is applied individually. We demonstrate that the assumption of an exponential damping profile leads to a significantly larger error in the inferred density contrast ratio compared with a Gaussian damping profile.
NASA Astrophysics Data System (ADS)
Megan Gillies, D.; Knudsen, D.; Donovan, E.; Jackel, B.; Gillies, R.; Spanswick, E.
2017-08-01
We present a comprehensive survey of 630 nm (red-line) emission discrete auroral arcs using the newly deployed Redline Emission Geospace Observatory. In this study we discuss the need for observations of 630 nm aurora and issues with the large-altitude range of the red-line aurora. We compare field-aligned currents (FACs) measured by the Swarm constellation of satellites with the location of 10 red-line (630 nm) auroral arcs observed by all-sky imagers (ASIs) and find that a characteristic emission height of 200 km applied to the ASI maps gives optimal agreement between the two observations. We also compare the new FAC method against the traditional triangulation method using pairs of all-sky imagers (ASIs), and against electron density profiles obtained from the Resolute Bay Incoherent Scatter Radar-Canadian radar, both of which are consistent with a characteristic emission height of 200 km.
A sporadic third layer in the ionosphere of Mars.
Pätzold, M; Tellmann, S; Häusler, B; Hinson, D; Schaa, R; Tyler, G L
2005-11-04
The daytime martian ionosphere has been observed as a two-layer structure with electron densities that peak at altitudes between about 110 and 130 kilometers. The Mars Express Orbiter Radio Science Experiment on the European Mars Express spacecraft observed, in 10 out of 120 electron density profiles, a third ionospheric layer at altitude ranges of 65 to 110 kilometers, where electron densities, on average, peaked at 0.8 x 10(10) per cubic meter. Such a layer has been predicted to be permanent and continuous. Its origin has been attributed to ablation of meteors and charge exchange of magnesium and iron. Our observations imply that this layer is present sporadically and locally.
Refraction-enhanced backlit imaging of axially symmetric inertial confinement fusion plasmas.
Koch, Jeffrey A; Landen, Otto L; Suter, Laurence J; Masse, Laurent P; Clark, Daniel S; Ross, James S; Mackinnon, Andrew J; Meezan, Nathan B; Thomas, Cliff A; Ping, Yuan
2013-05-20
X-ray backlit radiographs of dense plasma shells can be significantly altered by refraction of x rays that would otherwise travel straight-ray paths, and this effect can be a powerful tool for diagnosing the spatial structure of the plasma being radiographed. We explore the conditions under which refraction effects may be observed, and we use analytical and numerical approaches to quantify these effects for one-dimensional radial opacity and density profiles characteristic of inertial-confinement fusion (ICF) implosions. We also show how analytical and numerical approaches allow approximate radial plasma opacity and density profiles to be inferred from point-projection refraction-enhanced radiography data. This imaging technique can provide unique data on electron density profiles in ICF plasmas that cannot be obtained using other techniques, and the uniform illumination provided by point-like x-ray backlighters eliminates a significant source of uncertainty in inferences of plasma opacity profiles from area-backlit pinhole imaging data when the backlight spatial profile cannot be independently characterized. The technique is particularly suited to in-flight radiography of imploding low-opacity shells surrounding hydrogen ice, because refraction is sensitive to the electron density of the hydrogen plasma even when it is invisible to absorption radiography. It may also provide an alternative approach to timing shockwaves created by the implosion drive, that are currently invisible to absorption radiography.
Radiated Power and Impurity Concentrations in the EXTRAP-T2R Reversed-Field Pinch
NASA Astrophysics Data System (ADS)
Corre, Y.; Rachlew, E.; Cecconello, M.; Gravestijn, R. M.; Hedqvist, A.; Pégourié, B.; Schunke, B.; Stancalie, V.
2005-01-01
A numerical and experimental study of the impurity concentration and radiation in the EXTRAP-T2R device is reported. The experimental setup consists of an 8-chord bolometer system providing the plasma radiated power and a vacuum-ultraviolet spectrometer providing information on the plasma impurity content. The plasma emissivity profile as measured by the bolometric system is peaked in the plasma centre. A one dimensional Onion Skin Collisional-Radiative model (OSCR) has been developed to compute the density and radiation distributions of the main impurities. The observed centrally peaked emissivity profile can be reproduced by OSCR simulations only if finite particle confinement time and charge-exchange processes between plasma impurities and neutral hydrogen are taken into account. The neutral hydrogen density profile is computed with a recycling code. Simulations show that recycling on metal first wall such as in EXTRAP-T2R (stainless steel vacuum vessel and molybdenum limiters) is compatible with a rather high neutral hydrogen density in the plasma centre. Assuming an impurity concentration of 10% for oxygen and 3% for carbon compared with the electron density, the OSCR calculation including lines and continuum emission reproduces about 60% of the total radiated power with a similarly centrally peaked emissivity profile. The centrally peaked emissivity profile is due to low ionisation stages and strongly radiating species in the plasma core, mainly O4+ (Be-like) and C3+ Li-like.
Larmo, Petra S; Kangas, Antti J; Soininen, Pasi; Lehtonen, Henna-Maria; Suomela, Jukka-Pekka; Yang, Baoru; Viikari, Jorma; Ala-Korpela, Mika; Kallio, Heikki P
2013-10-01
Berries are associated with health benefits. Little is known about the effect of baseline metabolome on the overall metabolic responses to berry intake. We studied the effects of berries on serum metabolome. Eighty overweight women completed this randomized crossover study. During the interventions of 30 d, subjects consumed dried sea buckthorn berries (SBs), sea buckthorn oil (SBo), sea buckthorn phenolics ethanol extract mixed with maltodextrin (SBe+MD) (1:1), or frozen bilberries. Metabolic profiles were quantified from serum samples by using (1)H nuclear magnetic resonance spectroscopy. All interventions induced a significant (P < 0.001-0.003) effect on the overall metabolic profiles. The effect was observed both in participants who had a metabolic profile that reflected higher cardiometabolic risk at baseline (group B: P = 0.001-0.008) and in participants who had a lower-risk profile (group A: P < 0.001-0.009). Although most of the changes in individual metabolites were not statistically significant after correction for multiplicity, clear trends were observed. SB-induced effects were mainly on serum triglycerides and very-low-density lipoprotein (VLDL) and its subclasses, which decreased in metabolic group B. SBo induced a decreasing trend in serum total, intermediate-density lipoprotein (IDL), and low-density lipoprotein (LDL) cholesterol and subfractions of IDL and LDL in group B. During the SBe+MD treatment, VLDL fractions and serum triglycerides increased. Bilberries caused beneficial changes in serum lipids and lipoproteins in group B, whereas the opposite was true in group A. Berry intake has overall metabolic effects, which depend on the cardiometabolic risk profile at baseline. This trial was registered at clinicaltrials.gov as NCT01860547.
Larmo, Petra S; Kangas, Antti J; Soininen, Pasi; Lehtonen, Henna-Maria; Suomela, Jukka-Pekka; Yang, Baoru; Viikari, Jorma; Ala-Korpela, Mika; Kallio, Heikki P
2013-01-01
Background: Berries are associated with health benefits. Little is known about the effect of baseline metabolome on the overall metabolic responses to berry intake. Objective: We studied the effects of berries on serum metabolome. Design: Eighty overweight women completed this randomized crossover study. During the interventions of 30 d, subjects consumed dried sea buckthorn berries (SBs), sea buckthorn oil (SBo), sea buckthorn phenolics ethanol extract mixed with maltodextrin (SBe+MD) (1:1), or frozen bilberries. Metabolic profiles were quantified from serum samples by using 1H nuclear magnetic resonance spectroscopy. Results: All interventions induced a significant (P < 0.001–0.003) effect on the overall metabolic profiles. The effect was observed both in participants who had a metabolic profile that reflected higher cardiometabolic risk at baseline (group B: P = 0.001–0.008) and in participants who had a lower-risk profile (group A: P < 0.001–0.009). Although most of the changes in individual metabolites were not statistically significant after correction for multiplicity, clear trends were observed. SB-induced effects were mainly on serum triglycerides and very-low-density lipoprotein (VLDL) and its subclasses, which decreased in metabolic group B. SBo induced a decreasing trend in serum total, intermediate-density lipoprotein (IDL), and low-density lipoprotein (LDL) cholesterol and subfractions of IDL and LDL in group B. During the SBe+MD treatment, VLDL fractions and serum triglycerides increased. Bilberries caused beneficial changes in serum lipids and lipoproteins in group B, whereas the opposite was true in group A. Conclusion: Berry intake has overall metabolic effects, which depend on the cardiometabolic risk profile at baseline. This trial was registered at clinicaltrials.gov as NCT01860547. PMID:23945716
NASA Astrophysics Data System (ADS)
Remus, Rhea-Silvia; Dolag, Klaus; Naab, Thorsten; Burkert, Andreas; Hirschmann, Michaela; Hoffmann, Tadziu L.; Johansson, Peter H.
2017-01-01
We present evidence from cosmological hydrodynamical simulations for a co-evolution of the slope of the total (dark and stellar) mass density profile, γtot, and the dark matter fraction within the half-mass radius, fDM, in early-type galaxies. The relation can be described as γtot = A fDM + B for all systems at all redshifts. The trend is set by the decreasing importance of gas dissipation towards lower redshifts and for more massive systems. Early-type galaxies are smaller, more concentrated, have lower fDM and steeper γtot at high redshifts and at lower masses for a given redshift; fDM and γtot are good indicators for growth by `dry' merging. The values for A and B change distinctively for different feedback models, and this relation can be used as a test for such models. A similar correlation exists between γtot and the stellar mass surface density Σ*. A model with weak stellar feedback and feedback from black holes is in best agreement with observations. All simulations, independent of the assumed feedback model, predict steeper γtot and lower fDM at higher redshifts. While the latter is in agreement with the observed trends, the former is in conflict with lensing observations, which indicate constant or decreasing γtot. This discrepancy is shown to be artificial: the observed trends can be reproduced from the simulations using observational methodology to calculate the total density slopes.
NASA Technical Reports Server (NTRS)
Scudder, J. D.; Aggson, T. L.; Mangeney, A.; Lacombe, C.; Harvey, C. C.
1986-01-01
Data collected by the ISEE dual-spacecraft mission (on November 7, 1977) on a slowly moving, supercritical, high-beta, quasi-perpendicular bow shock are presented, and the local geometry, spatial scales, and stationarity of this shock wave are assessed in a self-consistent Rankine-Hugoniot-constrained frame of reference. Included are spatial profiles of the ac and dc magnetic and electric fields, electron and proton fluid velocities, current densities, electron and proton number densities, temperatures, pressures, and partial densities of the reflected protons. The observed layer profile is shown to be nearly phase standing and one-dimensional in a Rankine-Hugoniot frame, empirically determined by the magnetofluid parameters outside the layer proper.
MAVEN Observations of Dayside Peak Electron Densities in the Ionosphere of Mars
NASA Astrophysics Data System (ADS)
Vogt, M. F.; Withers, P.; Andersson, L.; Mahaffy, P. R.; Benna, M.; Elrod, M. K.; Connerney, J. E. P.; Espley, J. R.; Eparvier, F. G.; Jakosky, B. M.
2016-12-01
The peak electron density in the dayside Martian ionosphere is a valuable diagnostic of the state of the ionosphere. Its dependence on factors like the solar zenith angle, ionizing solar irradiance, neutral scale height, and electron temperature has been well studied. The MAVEN spacecraft's September 2015 "deep dip" orbits, in which the orbital periapsis is lowered to 120 km, provided our first opportunity since Viking to sample in situ a complete dayside electron density profiles including the main peak, and the first observations with contemporaneous comprehensive measurements of the local plasma and magnetic field properties. We have analyzed the peak electron density measurements from the MAVEN deep dip orbits and will discuss their variability with various ionospheric properties, including the proximity to regions of large crustal magnetic fields, and external drivers. We will also present observations of the electron temperature and atmospheric neutral and ion composition at the altitude of the peak electron density.
Uncertainties in derived temperature-height profiles
NASA Technical Reports Server (NTRS)
Minzner, R. A.
1974-01-01
Nomographs were developed for relating uncertainty in temperature T to uncertainty in the observed height profiles of both pressure p and density rho. The relative uncertainty delta T/T is seen to depend not only upon the relative uncertainties delta P/P or delta rho/rho, and to a small extent upon the value of T or H, but primarily upon the sampling-height increment Delta h, the height increment between successive observations of p or delta. For a fixed value of delta p/p, the value of delta T/T varies inversely with Delta h. No limit exists in the fineness of usable height resolution of T which may be derived from densities, while a fine height resolution in pressure-height data leads to temperatures with unacceptably large uncertainties.
NASA Astrophysics Data System (ADS)
Cao, Shuo; Biesiada, Marek; Yao, Meng; Zhu, Zong-Hong
2016-09-01
We use 118 strong gravitational lenses observed by the SLACS, BOSS emission-line lens survey (BELLS), LSD and SL2S surveys to constrain the total mass profile and the profile of luminosity density of stars (light tracers) in elliptical galaxies up to redshift z ˜ 1. Assuming power-law density profiles for the total mass density, ρ = ρ0(r/r0)-α, and luminosity density, ν = ν0(r/r0)-δ, we investigate the power-law index and its first derivative with respect to the redshift. Using Monte Carlo simulations of the posterior likelihood taking the Planck's best-fitting cosmology as a prior, we find γ = 2.132 ± 0.055 with a mild trend ∂γ/∂zl = -0.067 ± 0.119 when α = δ = γ, suggesting that the total density profile of massive galaxies could have become slightly steeper over cosmic time. Furthermore, similar analyses performed on sub-samples defined by different lens redshifts and velocity dispersions indicate the need of treating low-, intermediate- and high-mass galaxies separately. Allowing δ to be a free parameter, we obtain α = 2.070 ± 0.031, ∂α/∂zl = -0.121 ± 0.078 and δ = 2.710 ± 0.143. The model in which mass traces light is rejected at >95 per cent confidence, and our analysis robustly indicates the presence of dark matter in the form of a mass component that is differently spatially extended than the light. In this case, intermediate-mass elliptical galaxies (200 km s-1 <σap ≤ 300 km s-1) show the best consistency with the singular isothermal sphere as an effective model of galactic lenses.
A Model for Negative Ion Chemistry in Titan’s Ionosphere
NASA Astrophysics Data System (ADS)
Mukundan, Vrinda; Bhardwaj, Anil
2018-04-01
We developed a one-dimensional photochemical model for the dayside ionosphere of Titan for calculating the density profiles of negative ions under steady-state photochemical equilibrium condition. We concentrated on the T40 flyby of the Cassini orbiter and used the in situ measurements from instruments on board Cassini as input to the model. Using the latest available reaction rate coefficients and dissociative electron attachment cross sections, the densities of 10 anions are calculated. Our study shows CN‑ as the dominant anion, followed by C3N‑, which agrees with the results of previous calculations. We suggest that H‑ could be an important anion in Titan’s ionosphere and is the second most abundant anion at altitudes greater than 1200 km. The main production channel of the major ion CN‑ is the reaction of H‑ with HCN. The H‑ also play a major role in the production of anions C2H‑, C6H‑, and OH‑. We present a comparison of the calculated ion density profiles with the relative density profiles derived using recently reported Cassini CAPS/ELS observations.
Experimental study of mixing mechanisms in stably stratified Taylor-Couette flow
NASA Astrophysics Data System (ADS)
Augier, Pierre; Caulfield, Colm-Cille; Dalziel, Stuart
2014-11-01
We consider experimentally the mechanisms of mixing in stably stratified Taylor-Couette (TC) flow in a TC apparatus for which both cylinders can rotate independently. In the case for which only the inner cylinder rotates, centrifugal instability rapidly splits an initially linear density profile into an array of thin nearly homogeneous layers. Shadowgraph, PIV and density profiles measured by a moving conductivity probe allow us to characterise this process and the resulting flow. In particular, we observe turbulent intrusions of mixed fluid propagating relatively slowly around the tank at the interfaces between the layers, leading to a time-dependent variation in the sharpness and turbulent activity at these interfaces, whose period scales with (but is much larger than) the rotation period. Interestingly, the turbulent intrusions are anti-correlated between adjacent interfaces leading to snake-skin-like patterns in the spatio-temporal diagrams of the density profiles. We also explore how the presence of a density stratification modifies end effects at the top and bottom of the cylinders, in both the presence and absence of primary centrifugal instability.
NASA Astrophysics Data System (ADS)
Stutz, Amelia M.
2018-02-01
We characterize the stellar and gas volume density, potential, and gravitational field profiles in the central ∼0.5 pc of the Orion Nebula Cluster (ONC), the nearest embedded star cluster (or rather, protocluster) hosting massive star formation available for detailed observational scrutiny. We find that the stellar volume density is well characterized by a Plummer profile ρstars(r) = 5755 M⊙ pc- 3 (1 + (r/a)2)- 5/2, where a = 0.36 pc. The gas density follows a cylindrical power law ρgas(R) = 25.9 M⊙ pc- 3 (R/pc)- 1.775. The stellar density profile dominates over the gas density profile inside r ∼ 1 pc. The gravitational field is gas-dominated at all radii, but the contribution to the total field by the stars is nearly equal to that of the gas at r ∼ a. This fact alone demonstrates that the protocluster cannot be considered a gas-free system or a virialized system dominated by its own gravity. The stellar protocluster core is dynamically young, with an age of ∼2-3 Myr, a 1D velocity dispersion of σobs = 2.6 km s-1, and a crossing time of ∼0.55 Myr. This time-scale is almost identical to the gas filament oscillation time-scale estimated recently by Stutz & Gould. This provides strong evidence that the protocluster structure is regulated by the gas filament. The protocluster structure may be set by tidal forces due to the oscillating filamentary gas potential. Such forces could naturally suppress low density stellar structures on scales ≳ a. The analysis presented here leads to a new suggestion that clusters form by an analogue of the 'slingshot mechanism' previously proposed for stars.
Current profile redistribution driven by neutral beam injection in a reversed-field pinch
NASA Astrophysics Data System (ADS)
Parke, E.; Anderson, J. K.; Brower, D. L.; Den Hartog, D. J.; Ding, W. X.; Johnson, C. A.; Lin, L.
2016-05-01
Neutral beam injection in reversed-field pinch (RFP) plasmas on the Madison Symmetric Torus [Dexter et al., Fusion Sci. Technol. 19, 131 (1991)] drives current redistribution with increased on-axis current density but negligible net current drive. Internal fluctuations correlated with tearing modes are observed on multiple diagnostics; the behavior of tearing mode correlated structures is consistent with flattening of the safety factor profile. The first application of a parametrized model for island flattening to temperature fluctuations in an RFP allows inferrence of rational surface locations for multiple tearing modes. The m = 1, n = 6 mode is observed to shift inward by 1.1 ± 0.6 cm with neutral beam injection. Tearing mode rational surface measurements provide a strong constraint for equilibrium reconstruction, with an estimated reduction of q0 by 5% and an increase in on-axis current density of 8% ± 5%. The inferred on-axis current drive is consistent with estimates of fast ion density using TRANSP [Goldston et al., J. Comput. Phys. 43, 61 (1981)].
Dwarf Galaxy Dark Matter Density Profiles Inferred from Stellar and Gas Kinematics
NASA Astrophysics Data System (ADS)
Adams, Joshua J.; Simon, Joshua D.; Fabricius, Maximilian H.; van den Bosch, Remco C. E.; Barentine, John C.; Bender, Ralf; Gebhardt, Karl; Hill, Gary J.; Murphy, Jeremy D.; Swaters, R. A.; Thomas, Jens; van de Ven, Glenn
2014-07-01
We present new constraints on the density profiles of dark matter (DM) halos in seven nearby dwarf galaxies from measurements of their integrated stellar light and gas kinematics. The gas kinematics of low-mass galaxies frequently suggest that they contain constant density DM cores, while N-body simulations instead predict a cuspy profile. We present a data set of high-resolution integral-field spectroscopy on seven galaxies and measure the stellar and gas kinematics simultaneously. Using Jeans modeling on our full sample, we examine whether gas kinematics in general produce shallower density profiles than are derived from the stars. Although two of the seven galaxies show some localized differences in their rotation curves between the two tracers, estimates of the central logarithmic slope of the DM density profile, γ, are generally robust. The mean and standard deviation of the logarithmic slope for the population are γ = 0.67 ± 0.10 when measured in the stars and γ = 0.58 ± 0.24 when measured in the gas. We also find that the halos are not under-concentrated at the radii of half their maximum velocities. Finally, we search for correlations of the DM density profile with stellar velocity anisotropy and other baryonic properties. Two popular mechanisms to explain cored DM halos are an exotic DM component or feedback models that strongly couple the energy of supernovae into repeatedly driving out gas and dynamically heating the DM halos. While such models do not yet have falsifiable predictions that we can measure, we investigate correlations that may eventually be used to test models. We do not find a secondary parameter that strongly correlates with the central DM density slope, but we do find some weak correlations. The central DM density slope weakly correlates with the abundance of α elements in the stellar population, anti-correlates with H I fraction, and anti-correlates with vertical orbital anisotropy. We expect, if anything, the opposite of these three trends for feedback models. Determining the importance of these correlations will require further model developments and larger observational samples. This paper includes data obtained at The McDonald Observatory of The University of Texas at Austin.
Dwarf galaxy dark matter density profiles inferred from stellar and gas kinematics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Adams, Joshua J.; Simon, Joshua D.; Fabricius, Maximilian H.
2014-07-01
We present new constraints on the density profiles of dark matter (DM) halos in seven nearby dwarf galaxies from measurements of their integrated stellar light and gas kinematics. The gas kinematics of low-mass galaxies frequently suggest that they contain constant density DM cores, while N-body simulations instead predict a cuspy profile. We present a data set of high-resolution integral-field spectroscopy on seven galaxies and measure the stellar and gas kinematics simultaneously. Using Jeans modeling on our full sample, we examine whether gas kinematics in general produce shallower density profiles than are derived from the stars. Although two of the sevenmore » galaxies show some localized differences in their rotation curves between the two tracers, estimates of the central logarithmic slope of the DM density profile, γ, are generally robust. The mean and standard deviation of the logarithmic slope for the population are γ = 0.67 ± 0.10 when measured in the stars and γ = 0.58 ± 0.24 when measured in the gas. We also find that the halos are not under-concentrated at the radii of half their maximum velocities. Finally, we search for correlations of the DM density profile with stellar velocity anisotropy and other baryonic properties. Two popular mechanisms to explain cored DM halos are an exotic DM component or feedback models that strongly couple the energy of supernovae into repeatedly driving out gas and dynamically heating the DM halos. While such models do not yet have falsifiable predictions that we can measure, we investigate correlations that may eventually be used to test models. We do not find a secondary parameter that strongly correlates with the central DM density slope, but we do find some weak correlations. The central DM density slope weakly correlates with the abundance of α elements in the stellar population, anti-correlates with H I fraction, and anti-correlates with vertical orbital anisotropy. We expect, if anything, the opposite of these three trends for feedback models. Determining the importance of these correlations will require further model developments and larger observational samples.« less
NASA Technical Reports Server (NTRS)
Justh, Hilary L.; Justus, Carl G.
2008-01-01
The Mars Global Reference Atmospheric Model (Mars-GRAM 2005) is an engineering-level atmospheric model widely used for diverse mission applications. An overview is presented of Mars-GRAM 2005 and its new features. The "auxiliary profile" option is one new feature of Mars-GRAM 2005. This option uses an input file of temperature and density versus altitude to replace the mean atmospheric values from Mars-GRAM's conventional (General Circulation Model) climatology. Any source of data or alternate model output can be used to generate an auxiliary profile. Auxiliary profiles for this study were produced from mesoscale model output (Southwest Research Institute's Mars Regional Atmospheric Modeling System (MRAMS) model and Oregon State University's Mars mesoscale model (MMM5) model) and a global Thermal Emission Spectrometer (TES) database. The global TES database has been specifically generated for purposes of making Mars-GRAM auxiliary profiles. This data base contains averages and standard deviations of temperature, density, and thermal wind components, averaged over 5-by-5 degree latitude-longitude bins and 15 degree Ls bins, for each of three Mars years of TES nadir data. The Mars Science Laboratory (MSL) sites are used as a sample of how Mars-GRAM' could be a valuable tool for planning of future Mars entry probe missions. Results are presented using auxiliary profiles produced from the mesoscale model output and TES observed data for candidate MSL landing sites. Input parameters rpscale (for density perturbations) and rwscale (for wind perturbations) can be used to "recalibrate" Mars-GRAM perturbation magnitudes to better replicate observed or mesoscale model variability.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vo, Truong Quoc; Kim, BoHung, E-mail: muratbarisik@iyte.edu.tr, E-mail: bohungk@ulsan.ac.kr; Barisik, Murat, E-mail: muratbarisik@iyte.edu.tr, E-mail: bohungk@ulsan.ac.kr
2016-05-21
This study focuses on the proper characterization of temperature profiles across grain boundaries (GBs) in order to calculate the correct interfacial thermal resistance (ITR) and reveal the influence of GB geometries onto thermal transport. The solid-solid interfaces resulting from the orientation difference between the (001), (011), and (111) copper surfaces were investigated. Temperature discontinuities were observed at the boundary of grains due to the phonon mismatch, phonon backscattering, and atomic forces between dissimilar structures at the GBs. We observed that the temperature decreases gradually in the GB area rather than a sharp drop at the interface. As a result, threemore » distinct temperature gradients developed at the GB which were different than the one observed in the bulk solid. This behavior extends a couple molecular diameters into both sides of the interface where we defined a thickness at GB based on the measured temperature profiles for characterization. Results showed dependence on the selection of the bin size used to average the temperature data from the molecular dynamics system. The bin size on the order of the crystal layer spacing was found to present an accurate temperature profile through the GB. We further calculated the GB thickness of various cases by using potential energy (PE) distributions which showed agreement with direct measurements from the temperature profile and validated the proper binning. The variation of grain crystal orientation developed different molecular densities which were characterized by the average atomic surface density (ASD) definition. Our results revealed that the ASD is the primary factor affecting the structural disorders and heat transfer at the solid-solid interfaces. Using a system in which the planes are highly close-packed can enhance the probability of interactions and the degree of overlap between vibrational density of states (VDOS) of atoms forming at interfaces, leading to a reduced ITR. Thus, an accurate understanding of thermal characteristics at the GB can be formulated by selecting a proper bin size.« less
NASA Astrophysics Data System (ADS)
Vo, Truong Quoc; Barisik, Murat; Kim, BoHung
2016-05-01
This study focuses on the proper characterization of temperature profiles across grain boundaries (GBs) in order to calculate the correct interfacial thermal resistance (ITR) and reveal the influence of GB geometries onto thermal transport. The solid-solid interfaces resulting from the orientation difference between the (001), (011), and (111) copper surfaces were investigated. Temperature discontinuities were observed at the boundary of grains due to the phonon mismatch, phonon backscattering, and atomic forces between dissimilar structures at the GBs. We observed that the temperature decreases gradually in the GB area rather than a sharp drop at the interface. As a result, three distinct temperature gradients developed at the GB which were different than the one observed in the bulk solid. This behavior extends a couple molecular diameters into both sides of the interface where we defined a thickness at GB based on the measured temperature profiles for characterization. Results showed dependence on the selection of the bin size used to average the temperature data from the molecular dynamics system. The bin size on the order of the crystal layer spacing was found to present an accurate temperature profile through the GB. We further calculated the GB thickness of various cases by using potential energy (PE) distributions which showed agreement with direct measurements from the temperature profile and validated the proper binning. The variation of grain crystal orientation developed different molecular densities which were characterized by the average atomic surface density (ASD) definition. Our results revealed that the ASD is the primary factor affecting the structural disorders and heat transfer at the solid-solid interfaces. Using a system in which the planes are highly close-packed can enhance the probability of interactions and the degree of overlap between vibrational density of states (VDOS) of atoms forming at interfaces, leading to a reduced ITR. Thus, an accurate understanding of thermal characteristics at the GB can be formulated by selecting a proper bin size.
NASA Astrophysics Data System (ADS)
Rakousky, Christoph; Reimer, Uwe; Wippermann, Klaus; Kuhri, Susanne; Carmo, Marcelo; Lueke, Wiebke; Stolten, Detlef
2017-02-01
Polymer electrolyte membrane (PEM) water electrolysis generates 'green' hydrogen when conducted with electricity from renewable - but fluctuating - sources like wind or solar photovoltaic. Unfortunately, the long-term stability of the electrolyzer performance is still not fully understood under these input power profiles. In this study, we contrast the degradation behavior of our PEM water electrolysis single cells that occurs under operation with constant and intermittent power and derive preferable operating states. For this purpose, five different current density profiles are used, of which two were constant and three dynamic. Cells operated at 1 A cm-2 show no degradation. However, degradation was observed for the remaining four profiles, all of which underwent periods of high current density (2 A cm-2). Hereby, constant operation at 2 A cm-2 led to the highest degradation rate (194 μV h-1). Degradation can be greatly reduced when the cells are operated with an intermittent profile. Current density switching has a positive effect on durability, as it causes reversible parts of degradation to recover and results in a substantially reduced degradation per mole of hydrogen produced. Two general degradation phenomena were identified, a decreased anode exchange current density and an increased contact resistance at the titanium porous transport layer (Ti-PTL).
Pressure Support in Galaxy Disks: Impact on Rotation Curves and Dark Matter Density Profiles
NASA Astrophysics Data System (ADS)
Dalcanton, Julianne J.; Stilp, Adrienne M.
2010-09-01
Rotation curves constrain a galaxy's underlying mass density profile, under the assumption that the observed rotation produces a centripetal force that exactly balances the inward force of gravity. However, most rotation curves are measured using emission lines from gas, which can experience additional forces due to pressure. In realistic galaxy disks, the gas pressure declines with radius, providing additional radial support to the disk. The measured tangential rotation speed will therefore tend to lag the true circular velocity of a test particle. The gas pressure is dominated by turbulence, and we evaluate its likely amplitude from recent estimates of the gas velocity dispersion and surface density. We show that where the amplitude of the rotation curve is comparable to the characteristic velocities of the interstellar turbulence, pressure support may lead to underestimates of the mass density of the underlying dark matter halo and the inner slope of its density profile. These effects may be significant for galaxies with rotation speeds lsim75 km s-1 but are unlikely to be significant in higher-mass galaxies. We find that pressure support can be sustained over long timescales, because any reduction in support due to the conversion of gas into stars is compensated for by an inward flow of gas. However, we point to many uncertainties in assessing the importance of pressure support in real or simulated galaxies. Thus, while pressure support may help to alleviate possible tensions between rotation curve observations and ΛCDM on kiloparsec scales, it should not be viewed as a definitive solution at this time.
THE EFFECTS OF ANGULAR MOMENTUM ON HALO PROFILES
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lentz, Erik W; Rosenberg, Leslie J; Quinn, Thomas R, E-mail: lentze@phys.washington.edu, E-mail: ljrosenberg@phys.washington.edu, E-mail: trq@astro.washington.edu
2016-05-10
The near universality of DM halo density profiles provided by N -body simulations proved to be robust against changes in total mass density, power spectrum, and some forms of initial velocity dispersion. Here we study the effects of coherently spinning up an isolated DM-only progenitor on halo structure. Halos with spins within several standard deviations of the simulated mean ( λ ≲ 0.20) produce profiles with negligible deviations from the universal form. Only when the spin becomes quite large ( λ ≳ 0.20) do departures become evident. The angular momentum distribution also exhibits a near universal form, which is alsomore » independent of halo spin up to λ ≲ 0.20. A correlation between these epidemic profiles and the presence of a strong bar in the virialized halo is also observed. These bar structures bear resemblance to the radial orbit instability in the rotationless limit.« less
Multi-frequency ICRF diagnostic of Tokamak plasmas
NASA Astrophysics Data System (ADS)
Lafonteese, David James
This thesis explores the diagnostic possibilities of a fast wave-based method for measuring the ion density and temperature profiles of tokamak plasmas. In these studies fast waves are coupled to the plasma at frequencies at the second harmonic of the ion gyrofrequency, at which wave energy is absorbed by the finite-temperature ions. As the ion gyrofrequency is dependent upon the local magnetic field, which varies as l/R in a tokamak, this power absorption is radially localized. The simultaneous launching of multiple frequencies, all resonating at different plasma positions, allows local measurements of the ion density and temperature. To investigate the profile applications of wave damping measurements in a simulated tokamak, an inhouse slab-model ICRF code is developed. A variety of analysis methods are presented, and ion density and temperature profiles are reconstructed for hydrogen plasmas for the Electric Tokamak (ET) and ITER parameter spaces. These methods achieve promising results in simulated plasmas featuring bulk ion heating, off-axis RF heating, and density ramps. The experimental results of similar studies on the Electric Tokamak, a high aspect ratio (R/a = 5), low toroidal field (2.2 kG) device are then presented. In these studies, six fast wave frequencies were coupled using a single-strap, low-field-side antenna to ET plasmas. The frequencies were variable, and could be tuned to resonate at different radii for different experiments. Four magnetic pickup loops were used to measure of the toroidal component of the wave magnetic field. The expected greater eigenmode damping of center-resonant frequencies versus edge-resonant frequencies is consistently observed. Comparison of measured aspects of fast wave behavior in ET is made with the slab code predictions, which validate the code simulations under weakly-damped conditions. A density profile is measured for an ET discharge through analysis of the fast wave measurements, and is compared to an electron density profile derived from Thomson scattering data. The methodology behind a similar measurement of the ion temperature profile is also presented.
NASA Technical Reports Server (NTRS)
Massman, William
1987-01-01
A semianalytical method for describing the mean wind profile and shear stress within plant canopies and for estimating the roughness length and the displacement height is presented. This method incorporates density and vertical structure of the canopy and includes simple parameterizations of the roughness sublayer and shelter factor. Some of the wind profiles examined are consistent with first-order closure techniques while others are consistent with second-order closure techniques. Some profiles show a shearless region near the base of the canopy; however, none displays a secondary maximum there. Comparing several different analytical expressions for the canopy wind profile against observations suggests that one particular type of profile (an Airy function which is associated with the triangular foliage surface area density distribution) is superior to the others. Because of the numerical simplicity of the methods outlined, it is suggested that they may be profitably used in large-scale models of plant-atmosphere exchanges.
Transport of light, trace impurities in Alcator C-Mod
NASA Astrophysics Data System (ADS)
Rowan, W. L.; Bespamyatnov, I. O.; Liao, K. T.; Horton, W.; Fu, X. R.; Hughes, J. W.
2012-10-01
Light impurity profiles for boron were measured in ITB, H-mode, L-mode, and I-mode discharges in Alcator C-Mod. Within this wide range of modes, the profiles varied from peaked to hollow to flat. Specifically, hollow profiles are often observed in H-mode, while ITBs produce strong peaking, and L-mode produces moderate peaking. I-mode discharges are characterized by flat impurity profiles. For the study reported here, the profiles were measured with charge exchange recombination spectroscopy. The dependences of Rv/D were sought on dimensionless quantities including ion density scale length, effective charge, collisionality, and temperature scale length. We find that neoclassical transport consistently underestimates the measured transport. The excess measured transport is assumed to be turbulent. The strongest dependence of Rv/D is with temperature scale length. In addition, the measured transport was compared with the prediction of an analytical theory of drift wave turbulence that identifies transport implications for drift waves driven by ion and impurity density gradients.
NASA Astrophysics Data System (ADS)
Nigussie, M.; Damtie, B.; Moldwin, M.; Yizengaw, E.; Tesema, F.; Tebabal, A.
2017-12-01
Theoretical simulations have shown that gravity wave (GW) seeded perturbations amplified by Rayleigh-Taylor Instability (RTI) results in ESF (equatorial spread F); however, there have been limited observational studies using simultaneous observations of GW and ionospheric parameters. In this paper, for the fist time, simultaneous atmospheric temperature perturbation profiles that are due to GWs obtained from Sounding of the Atmosphere using Broadband Emission Radiometry (SABER) on-board the TIMED satellite and equatorial in -situ ion density and vertical plasma drift velocity observations with and without ESF activity obtained from C/NOFS satellites are used to investigate the effect of GW on the generation of ESF. The horizontal and vertical wavelengths of ionospheric oscillations and GWs respectively have been estimated applying wavelet transforms. Cross wavelet analysis has also been applied between two closely observed profiles of temperature perturbations to estimate the horizontal wavelength of the GWs. Moreover, vertically propagating GWs that dissipate energy at the upper atmosphere have been investigated using spectral analysis compared with theoretical results. The analysis show that when the ion density shows strong post sunset irregularity between 20 and 24 LT, vertically upward drift velocities increase between 17 and 19 LT, but it becomes vertically downward when the ion density shows smooth variation. The horizontal wavelengths estimated from C/NOFS and SABER observations show excellent agreement when ion density observations show strong fluctuations; otherwise, they have poor agreement. It is also found that altitude profiles of potential energy of GW increases up to 90 km and then decreases significantly. It is found that the vertical wavelength of GW, corresponding to the dominant spectral power, ranges from about 7 km to 20 km regardless of the situation of the ionosphere; however, GWs with vertical wavelengths between 100 m to 1 km are found to be saturated between 90 and 110 km whether the ionosphere exhibits irregularity or not. The above results imply that ESF is due to the amplification of perturbations as a result of energy dissipation from GW with vertical wavelength 100 m to 1 km by the RTI that is mainly controlled by Pre-Reversal Enhancement of the zonal electric field.
AGN jet power, formation of X-ray cavities, and FR I/II dichotomy in galaxy clusters
NASA Astrophysics Data System (ADS)
Fujita, Yutaka; Kawakatu, Nozomu; Shlosman, Isaac
2016-04-01
We investigate the ability of jets in active galactic nuclei to break out of the ambient gas with sufficiently large advance velocities. Using observationally estimated jet power, we analyze 28 bright elliptical galaxies in nearby galaxy clusters. Because the gas density profiles in the innermost regions of galaxies have not been resolved so far, we consider two extreme cases for temperature and density profiles. We also follow two types of evolution for the jet cocoons: being driven by the pressure inside the cocoon [Fanaroff-Riley (FR) type I], and being driven by the jet momentum (FR type II). Our main result is that regardless of the assumed form of the density profiles, jets with observed powers of ≲1044 erg s-1 are not powerful enough to evolve as FR II sources. Instead, they evolve as FR I sources and appear to be decelerated below the buoyant velocities of the cocoons when jets were propagating through the central dense regions of the host galaxies. This explains why FR I sources are more frequent than FR II sources in clusters. Furthermore, we predict the sizes of X-ray cavities from the observed jet powers and compare them with the observed ones-they are consistent within a factor of two if the FR I type evolution is realized. Finally, we find that the jets with a power ≳1044 erg s-1 are less affected by the ambient medium, and some of them, but not all, could serve as precursors of the FR II sources.
Zhang, Yanzeng; Krasheninnikov, S. I.
2017-09-29
The modified Hasegawa-Mima equation retaining all nonlinearities is investigated from the point of view of the formation of blobs. The linear analysis shows that the amplitude of the drift wave packet propagating in the direction of decreasing background plasma density increases and eventually saturates due to nonlinear effects. Nonlinear modification of the time averaged plasma density profile results in the formation of large amplitude modes locked in the radial direction, but still propagating in the poloidal direction, which resembles the experimentally observed chain of blobs propagating in the poloidal direction. Such specific density profiles, causing the locking of drift waves,more » could form naturally at the edge of tokamak due to a neutral ionization source. Thus, locked modes can grow in situ due to plasma instabilities, e.g., caused by finite resistivity. Furthermore, the modulation instability (in the poloidal direction) of these locked modes can result in a blob-like burst of plasma density.« less
Gravitationally Focused Dark Matter around Compact Stars
NASA Astrophysics Data System (ADS)
Bromley, Benjamin C.
2011-12-01
If dark matter self-annihilates then it may produce an observable signal when its density is high. The details depend on the intrinsic properties of dark matter and how it clusters in space. For example, the density profile of some dark matter candidates may rise steeply enough toward the Galactic Center that self-annihilation may produce detectable γ-ray emission. Here, we discuss the possibility that an annihilation signal arises near a compact object (e.g., neutron star or black hole) even when the density of dark matter in the neighborhood of the object is uniform. Gravitational focusing produces a local enhancement of density with a profile that falls off approximately as the inverse square-root of distance from the compact star. While geometric dilution may overwhelm the annihilation signal from this local enhancement, magnetic fields tied to the compact object can increase the signal's contrast relative to the background.
Diverse stellar haloes in nearby Milky Way mass disc galaxies
NASA Astrophysics Data System (ADS)
Harmsen, Benjamin; Monachesi, Antonela; Bell, Eric F.; de Jong, Roelof S.; Bailin, Jeremy; Radburn-Smith, David J.; Holwerda, Benne W.
2017-04-01
We have examined the resolved stellar populations at large galactocentric distances along the minor axis (from 10 kpc up to between 40 and 75 kpc), with limited major axis coverage, of six nearby highly inclined Milky Way (MW) mass disc galaxies using Hubble Space Telescope data from the Galaxy haloes, Outer discs, Substructure, Thick discs, and Star clusters (GHOSTS) survey. We select red giant branch stars to derive stellar halo density profiles. The projected minor axis density profiles can be approximated by power laws with projected slopes of -2 to -3.7 and a diversity of stellar halo masses of 1-6 × 109 M⊙, or 2-14 per cent of the total galaxy stellar masses. The typical intrinsic scatter around a smooth power-law fit is 0.05-0.1 dex owing to substructure. By comparing the minor and major axis profiles, we infer projected axis ratios c/a at ˜25 kpc between 0.4and0.75. The GHOSTS stellar haloes are diverse, lying between the extremes charted out by the (rather atypical) haloes of the MW and M31. We find a strong correlation between the stellar halo metallicities and the stellar halo masses. We compare our results with cosmological models, finding good agreement between our observations and accretion-only models where the stellar haloes are formed by the disruption of dwarf satellites. In particular, the strong observed correlation between stellar halo metallicity and mass is naturally reproduced. Low-resolution hydrodynamical models have unrealistically high stellar halo masses. Current high-resolution hydrodynamical models appear to predict stellar halo masses somewhat higher than observed but with reasonable metallicities, metallicity gradients, and density profiles.
Measurements of Thermospheric O2 Density from GOLD
NASA Astrophysics Data System (ADS)
Lumpe, J. D.; Correira, J.; Evans, J. S.; Eastes, R.; McClintock, B.; Beland, S.
2016-12-01
The Global-scale Observations of the Limb and Disk (GOLD) instrument, scheduled for launch in 2017, will image the Earth's thermosphere and ionosphere in the far ultraviolet from geostationary orbit. GOLD will measure a number of critical geophysical parameters, including thermospheric temperature and composition, by continuously scanning the Earth's disk and limb 18 hours per day. GOLD will also routinely perform stellar occultation measurements using bright type O and B stars. These provide a direct measurement of the atmospheric slant path transmission profile in the O2 Schumann Runge continuum, which will be used to retrieve O2 density profiles between approximately 120 and 250 km altitude. In nominal operational mode GOLD will measure approximately 12 occultation events per day. These measurements will occur at latitudes ranging from 60S to 60N at two longitudes, corresponding to the east and west limbs as observed from GOLD's fixed orbit position. Depending on timing and availability each target star can be observed twice daily, in both rising and setting mode. Additionally, both daytime and nighttime occultations are possible, which allows for O2 retrievals over a wide range of local times. Results of detailed retrieval simulations show that the precision and accuracy of the retrieved O2 density will be 10-20% depending on star brightness. We present a summary of the expected spatial, temporal and local time sampling of the GOLD Level 2 O2 data products. This data set will shed light on the response of the O2 density profile to geomagnetic disturbances and solar UV variability, and help address the extent to which the O2 distribution is determined by simple diffusive equilibrium as opposed to chemistry, which can operate on much shorter timescales.
Zhu, Qing; Iversen, Colleen M.; Riley, William J.; ...
2016-12-23
Ongoing climate warming will likely perturb vertical distributions of nitrogen availability in tundra soils through enhancing nitrogen mineralization and releasing previously inaccessible nitrogen from frozen permafrost soil. But, arctic tundra responses to such changes are uncertain, because of a lack of vertically explicit nitrogen tracer experiments and untested hypotheses of root nitrogen uptake under the stress of microbial competition implemented in land models. We conducted a vertically explicit 15N tracer experiment for three dominant tundra species to quantify plant N uptake profiles. Then we applied a nutrient competition model (N-COM), which is being integrated into the ACME Land Model, tomore » explain the observations. Observations using an 15N tracer showed that plant N uptake profiles were not consistently related to root biomass density profiles, which challenges the prevailing hypothesis that root density always exerts first-order control on N uptake. By considering essential root traits (e.g., biomass distribution and nutrient uptake kinetics) with an appropriate plant-microbe nutrient competition framework, our model reasonably reproduced the observed patterns of plant N uptake. Additionally, we show that previously applied nutrient competition hypotheses in Earth System Land Models fail to explain the diverse plant N uptake profiles we observed. These results cast doubt on current climate-scale model predictions of arctic plant responses to elevated nitrogen supply under a changing climate and highlight the importance of considering essential root traits in large-scale land models. Finally, we provided suggestions and a short synthesis of data availability for future trait-based land model development.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhu, Qing; Iversen, Colleen M.; Riley, William J.
Ongoing climate warming will likely perturb vertical distributions of nitrogen availability in tundra soils through enhancing nitrogen mineralization and releasing previously inaccessible nitrogen from frozen permafrost soil. But, arctic tundra responses to such changes are uncertain, because of a lack of vertically explicit nitrogen tracer experiments and untested hypotheses of root nitrogen uptake under the stress of microbial competition implemented in land models. We conducted a vertically explicit 15N tracer experiment for three dominant tundra species to quantify plant N uptake profiles. Then we applied a nutrient competition model (N-COM), which is being integrated into the ACME Land Model, tomore » explain the observations. Observations using an 15N tracer showed that plant N uptake profiles were not consistently related to root biomass density profiles, which challenges the prevailing hypothesis that root density always exerts first-order control on N uptake. By considering essential root traits (e.g., biomass distribution and nutrient uptake kinetics) with an appropriate plant-microbe nutrient competition framework, our model reasonably reproduced the observed patterns of plant N uptake. Additionally, we show that previously applied nutrient competition hypotheses in Earth System Land Models fail to explain the diverse plant N uptake profiles we observed. These results cast doubt on current climate-scale model predictions of arctic plant responses to elevated nitrogen supply under a changing climate and highlight the importance of considering essential root traits in large-scale land models. Finally, we provided suggestions and a short synthesis of data availability for future trait-based land model development.« less
NASA Technical Reports Server (NTRS)
Krisher, T. P.; Anderson, J. D.; Morabito, D. D.; Asmar, S. W.; Borutzki, S. E.; Delitsky, M. L.; Densmore, A. C.; Eshe, P. M.; Lewis, G. D.; Maurer, M. J.
1991-01-01
Radio range measurements of total solar plasma delay obtained during the solar conjunction of the Voyager 2 spacecraft in December 1988, which occurred near solar maximum activity in the 11 yr cycle are reported. The radio range measurements were generated by the Deep Space Network at two wavelengths on the downlink from the spacecraft: 3.6 and 13 cm. A direct measurement of the integrated electron density along the ray path between the earth stations and the spacecraft was obtained by differencing the range at the two wavelengths. Coronal electron density profiles have been derived during ingress and egress of the ray path, which approached the sun to within 5 solar radii. At 10 solar radii, the derived density profiles yield 34079 + or - 611/cu cm on ingress and 49688 + or - 983/cu cm on egress. These density levels are significantly higher than observed near previous solar maxima.
Bottomside Ionospheric Electron Density Specification using Passive High Frequency Signals
NASA Astrophysics Data System (ADS)
Kaeppler, S. R.; Cosgrove, R. B.; Mackay, C.; Varney, R. H.; Kendall, E. A.; Nicolls, M. J.
2016-12-01
The vertical bottomside electron density profile is influenced by a variety of natural sources, most especially traveling ionospheric disturbances (TIDs). These disturbances cause plasma to be moved up or down along the local geomagnetic field and can strongly impact the propagation of high frequency radio waves. While the basic physics of these perturbations has been well studied, practical bottomside models are not well developed. We present initial results from an assimilative bottomside ionosphere model. This model uses empirical orthogonal functions based on the International Reference Ionosphere (IRI) to develop a vertical electron density profile, and features a builtin HF ray tracing function. This parameterized model is then perturbed to model electron density perturbations associated with TIDs or ionospheric gradients. Using the ray tracing feature, the model assimilates angle of arrival measurements from passive HF transmitters. We demonstrate the effectiveness of the model using angle of arrival data. Modeling results of bottomside electron density specification are compared against suitable ancillary observations to quantify accuracy of our model.
Cassini RSS occultation observations of density waves in Saturn's rings
NASA Astrophysics Data System (ADS)
McGhee, C. A.; French, R. G.; Marouf, E. A.; Rappaport, N. J.; Schinder, P. J.; Anabtawi, A.; Asmar, S.; Barbinis, E.; Fleischman, D.; Goltz, G.; Johnston, D.; Rochblatt, D.
2005-08-01
On May 3, 2005, the first of a series of eight nearly diametric occultations by Saturn's rings and atmosphere took place, observed by the Cassini Radio Science (RSS) team. Simultaneous high SNR measurements at the Deep Space Network (DSN) at S, X, and Ka bands (λ = 13, 3.6, and 0.9 cm) have provided a remarkably detailed look at the radial structure and particle scattering behavior of the rings. By virtue of the relatively large ring opening angle (B=-23.6o), the slant path optical depth of the rings was much lower than during the Voyager epoch (B=5.9o), making it possible to detect many density waves and other ring features in the Cassini RSS data that were lost in the noise in the Voyager RSS experiment. Ultimately, diffraction correction of the ring optical depth profiles will yield radial resolution as small as tens of meters for the highest SNR data. At Ka band, the Fresnel scale is only 1--1.5 km, and thus even without diffraction correction, the ring profiles show a stunning array of density waves. The A ring is replete with dozens of Pandora and Prometheus inner Lindblad resonance features, and the Janus 2:1 density wave in the B ring is revealed with exceptional clarity for the first time at radio wavelengths. Weaker waves are abundant as well, and multiple occultation chords sample a variety of wave phases. We estimate the surface mass density of the rings from linear density wave models of the weaker waves. For stronger waves, non-linear models are required, providing more accurate estimates of the wave dispersion relation, the ring surface mass density, and the angular momentum exchange between the rings and satellite. We thank the DSN staff for their superb support of these complex observations.
A survey with Copernicus of interstellar O VI absorption
NASA Technical Reports Server (NTRS)
Jenkins, E. B.; Meloy, D. A.
1974-01-01
The presence of broad, shallow absorptions caused by O VI ions were revealed from UV spectra observations recorded by the Copernicus satellite for thirty-two stars. A table lists survey data on the stars observed for which values of the O VI column densities or their upper limits are extracted. Interstellar rather than circumstellar origin is evident from observation of the lack of correspondence between radical velocities of the stars and those of the O VI profiles. The presence of a low-density high-temperature phase of interstellar gas produced by supernova explosions is suggested.
NASA Technical Reports Server (NTRS)
Stuedemann, W.; Wilken, B.; Kremser, G.; Gloeckler, G.; Ipavich, F. M.
1986-01-01
Ion composition measurements in the entire energy range of the ring current population, obtained with the Charge-, Energy-, Mass-spectrometer instrument on the Charge Composition Explorer in September 1984, are reported. From the energy spectra obtained for all major constituents during the main phase of a magnetic storm, the number densities, energy densities, and mean energies are calculated and displayed as radial profiles. The mean energies of He(2+) are found to be about twice that of H(+) and He(+) throughout this storm, and the time profiles for the mean energies of all major ions are seen to bunch together (when normalizing mean energies by the ionic charge), with the largest variations of the energy densities and mean energies occurring for O(+) ions.
Constraining brane tension using rotation curves of galaxies
NASA Astrophysics Data System (ADS)
García-Aspeitia, Miguel A.; Rodríguez-Meza, Mario A.
2018-04-01
We present in this work a study of brane theory phenomenology focusing on the brane tension parameter, which is the main observable of the theory. We show the modifications steaming from the presence of branes in the rotation curves of spiral galaxies for three well known dark matter density profiles: Pseudo isothermal, Navarro-Frenk-White and Burkert dark matter density profiles. We estimate the brane tension parameter using a sample of high resolution observed rotation curves of low surface brightness spiral galaxies and a synthetic rotation curve for the three density profiles. Also, the fittings using the brane theory model of the rotation curves are compared with standard Newtonian models. We found that Navarro-Frenk-White model prefers lower values of the brane tension parameter, on the average λ ∼ 0.73 × 10‑3eV4, therefore showing clear brane effects. Burkert case does prefer higher values of the tension parameter, on the average λ ∼ 0.93 eV4 ‑ 46 eV4, i.e., negligible brane effects. Whereas pseudo isothermal is an intermediate case. Due to the low densities found in the galactic medium it is almost impossible to find evidence of the presence of extra dimensions. In this context, we found that our results show weaker bounds to the brane tension values in comparison with other bounds found previously, as the lower value found for dwarf stars composed of a polytropic equation of state, λ ≈ 104 MeV4.
Models of Mars' atmosphere (1974)
NASA Technical Reports Server (NTRS)
1974-01-01
Atmospheric models for support of design and mission planning of space vehicles that are to orbit the planet Mars, enter its atmosphere, or land on the surface are presented. Quantitative data for the Martian atmosphere were obtained from Earth-base observations and from spacecraft that have orbited Mars or passed within several planetary radii. These data were used in conjunction with existing theories of planetary atmospheres to predict other characteristics of the Martian atmosphere. Earth-based observations provided information on the composition, temperature, and optical properties of Mars with rather coarse spatial resolution, whereas spacecraft measurements yielded data on composition, temperature, pressure, density, and atmospheric structure with moderately good spatial resolution. The models provide the temperature, pressure, and density profiles required to perform basic aerodynamic analyses. The profiles are supplemented by computed values of viscosity, specific heat, and speed of sound.
NASA Astrophysics Data System (ADS)
Strak, Pawel; Kempisty, Pawel; Sakowski, Konrad; Krukowski, Stanislaw
2014-09-01
Density functional theory studies were conducted to determine an influence of the carrier concentration on the optical and electronic properties of InN/GaN superlattice system. The oscillator strength values, energy gaps and the band profiles were obtained. The band profiles were found to be strongly affected for technically possible heavy n-type doping while for p-type doping the carrier influence, both screening and band shift, is negligible. Blue shift of the transition energy between conduction band minima and valence band maxima was observed for high concentrations of both type carriers.
The signal of weak gravitational lensing from galaxy groups and clusters
NASA Astrophysics Data System (ADS)
Markert, Sean
2017-02-01
The weak gravitational lensing of galaxy clusters is a valuable tool. The deflection of light around a lens is solely dependent on the underlying distribution of foreground mass, and independent of tracers of mass such as the mass to light ratio and kinematics. As a direct probe of mass, weak lensing serves as an independent calibration of mass-observable relationships. These massive clusters are objects of great interest to astronomers, as their abundance is dependent on the conditions of the early universe, and accurate counts of clusters serve as a test of cosmological model. Upcoming surveys, such as LSST and DES, promise to push the limit of observable weak lensing, detecting clusters and sources at higher redshift than has ever been detected before. This makes accurate counts of clusters of a given mass and redshift, and proper calibration of mass-observable relationships, vital to cosmological studies. We used M> 1013.5 h-1M ⊙ halos from the MultiDark Planck simulation at z 0.5 to study the behavior of the reduced shear in clusters. We generated 2D maps of convergence and shear the halos using the GLAMER lensing library. Using these maps, we simulated observations of randomly placed background sources, and generate azimuthal averages of the shear. This reduced shear profile, and the true reduced shear profile of the halo, is fit using analytical solutions for shear of the NFW, Einasto, and truncated NFW density profile. The masses of these density profiles are then compared to the total halo masses from the halo catalogs. We find that fits to the reduced shear for halos extending past ≈ 2 h-1Mpc are fits to the noise of large scale structure along the line of sight. This noise is largely in the 45° rotated component to the reduced tangential shear, and is a breakdown in the approximation of gtan ≈ gnot required for density profile fitting of clusters. If fits are constrained to a projected radii of < 2 h-1Mpc, we see massively improved fits insensitive to the amount of structure present along the line of sight.
Real-time feedback control of the plasma density profile on ASDEX Upgrade
NASA Astrophysics Data System (ADS)
Mlynek, A.; Reich, M.; Giannone, L.; Treutterer, W.; Behler, K.; Blank, H.; Buhler, A.; Cole, R.; Eixenberger, H.; Fischer, R.; Lohs, A.; Lüddecke, K.; Merkel, R.; Neu, G.; Ryter, F.; Zasche, D.; ASDEX Upgrade Team
2011-04-01
The spatial distribution of density in a fusion experiment is of significant importance as it enters in numerous analyses and contributes to the fusion performance. The reconstruction of the density profile is therefore commonly done in offline data analysis. In this paper, we present an algorithm which allows for density profile reconstruction from the data of the submillimetre interferometer and the magnetic equilibrium in real-time. We compare the obtained results to the profiles yielded by a numerically more complex offline algorithm. Furthermore, we present recent ASDEX Upgrade experiments in which we used the real-time density profile for active feedback control of the shape of the density profile.
Observation of Critical-Gradient Behavior in Alfvén-Eigenmode-Induced Fast-Ion Transport.
Collins, C S; Heidbrink, W W; Austin, M E; Kramer, G J; Pace, D C; Petty, C C; Stagner, L; Van Zeeland, M A; White, R B; Zhu, Y B
2016-03-04
Experiments in the DIII-D tokamak show that fast-ion transport suddenly becomes stiff above a critical threshold in the presence of many overlapping small-amplitude Alfvén eigenmodes (AEs). The threshold is phase-space dependent and occurs when particle orbits become stochastic due to resonances with AEs. Above threshold, equilibrium fast-ion density profiles are unchanged despite increased drive, and intermittent fast-ion losses are observed. Fast-ion Dα spectroscopy indicates radially localized transport of the copassing population at radii that correspond to the location of midcore AEs. The observation of stiff fast-ion transport suggests that reduced models can be used to effectively predict alpha profiles, beam ion profiles, and losses to aid in the design of optimized scenarios for future burning plasma devices.
International Space Station External Contamination Status
NASA Technical Reports Server (NTRS)
Mikatarian, Ron; Soares, Carlos
2000-01-01
PResentation slides examine external contamination requirements; International Space Station (ISS) external contamination sources; ISS external contamination sensitive surfaces; external contamination control; external contamination control for pre-launch verification; flight experiments and observations; the Space Shuttle Orbiter waste water dump, materials outgassing, active vacuum vents; example of molecular column density profile, modeling and analysis tools; sources of outgassing induced contamination analyzed to date, quiescent sources, observations on optical degradation due to induced external contamination in LEO; examples of typical contaminant and depth profiles; and status of the ISS system, material outgassing, thruster plumes, and optical degradation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Young, Anthony M.; Williams, Liliya L.R.; Hjorth, Jens, E-mail: amyoung@astro.umn.edu, E-mail: llrw@astro.umn.edu, E-mail: jens@dark-cosmology.dk
One usually thinks of a radial density profile as having a monotonically changing logarithmic slope, such as in NFW or Einasto profiles. However, in two different classes of commonly used systems, this is often not the case. These classes exhibit non-monotonic changes in their density profile slopes which we call oscillations for short. We analyze these two unrelated classes separately. Class 1 consists of systems that have density oscillations and that are defined through their distribution function f ( E ), or differential energy distribution N ( E ), such as isothermal spheres, King profiles, or DARKexp, a theoretically derivedmore » model for relaxed collisionless systems. Systems defined through f ( E ) or N ( E ) generally have density slope oscillations. Class 1 system oscillations can be found at small, intermediate, or large radii but we focus on a limited set of Class 1 systems that have oscillations in the central regions, usually at log( r / r {sub −2}) ∼< −2, where r {sub −2} is the largest radius where d log(ρ)/ d log( r ) = −2. We show that the shape of their N ( E ) can roughly predict the amplitude of oscillations. Class 2 systems which are a product of dynamical evolution, consist of observed and simulated galaxies and clusters, and pure dark matter halos. Oscillations in the density profile slope seem pervasive in the central regions of Class 2 systems. We argue that in these systems, slope oscillations are an indication that a system is not fully relaxed. We show that these oscillations can be reproduced by small modifications to N ( E ) of DARKexp. These affect a small fraction of systems' mass and are confined to log( r / r {sub −2}) ∼< 0. The size of these modifications serves as a potential diagnostic for quantifying how far a system is from being relaxed.« less
NASA Astrophysics Data System (ADS)
Hernández-Pajares, Manuel; Garcia-Fernández, Miquel; Rius, Antonio; Notarpietro, Riccardo; von Engeln, Axel; Olivares-Pulido, Germán.; Aragón-Àngel, Àngela; García-Rigo, Alberto
2017-08-01
The new radio-occultation (RO) instrument on board the future EUMETSAT Polar System-Second Generation (EPS-SG) satellites, flying at a height of 820 km, is primarily focusing on neutral atmospheric profiling. It will also provide an opportunity for RO ionospheric sounding, but only below impact heights of 500 km, in order to guarantee a full data gathering of the neutral part. This will leave a gap of 320 km, which impedes the application of the direct inversion techniques to retrieve the electron density profile. To overcome this challenge, we have looked for new ways (accurate and simple) of extrapolating the electron density (also applicable to other low-Earth orbiting, LEO, missions like CHAMP): a new Vary-Chap Extrapolation Technique (VCET). VCET is based on the scale height behavior, linearly dependent on the altitude above hmF2. This allows extrapolating the electron density profile for impact heights above its peak height (this is the case for EPS-SG), up to the satellite orbital height. VCET has been assessed with more than 3700 complete electron density profiles obtained in four representative scenarios of the Constellation Observing System for Meteorology, Ionosphere, and Climate (COSMIC) in the United States and the Formosa Satellite Mission 3 (FORMOSAT-3) in Taiwan, in solar maximum and minimum conditions, and geomagnetically disturbed conditions, by applying an updated Improved Abel Transform Inversion technique to dual-frequency GPS measurements. It is shown that VCET performs much better than other classical Chapman models, with 60% of occultations showing relative extrapolation errors below 20%, in contrast with conventional Chapman model extrapolation approaches with 10% or less of the profiles with relative error below 20%.
NASA Astrophysics Data System (ADS)
Zhang, Yongqian; Teng, Jiwen; Wang, Qianshen; Lü, Qingtian; Si, Xiang; Xu, Tao; Badal, José; Yan, Jiayong; Hao, Zhaobing
2017-10-01
In order to investigate the structure of the crust beneath the Middle Qinling Mountains (MQL) and neighboring areas in the North China Block and South China Block, a north-south gravity profile from Yuquan in the Sichuan Basin to Yulin in the Ordos Basin was conducted in 2011. The Bouguer gravity anomaly is determined from a high-quality gravity dataset collected between 31°N and 36°N of latitude, and varies between -200 and -110 mGal in the study region. Using accredited velocity density relationships, an initial crust-mantle density model is constructed for MQL and adjacent areas, which is later refined interactively to simulate the observed gravity anomaly. The present study reveals the features of the density and Bouguer gravity with respect to the tectonic units sampled by the profile. The lithosphere density model shows typical density values that depict a layered structure and allow differentiate the blocks that extend along the reference profile. The gravity field calculated by forward modeling from the final density distribution model correlates well with the measured gravity field within a standard deviation of 1.26 mGal. The density in the crystalline crust increases with depth from 2.65 g/cm3 up to the highest value of 2.95 g/cm3 near the bottom of the crust. The Conrad interface is identified as a density jump of about 0.05 g/cm3. The average density of the crust in MQL is clearly lower than the density in the formations on both sides. Starting from a combined Airy-Pratt isostatic compensation model, a partly compensated crust is found below MQL, suggesting future growth of the crust, unlike the Ordos and Sichuan basins that will remain stable. On the basis of the density and isostatic state of the crust and additional seismological research, such as the P-wave velocity model and Poisson's ratio, it is concluded that the lower crust delamination is a reasonable interpretation for the geophysical characteristics below the Qinling Orogen.
NASA Technical Reports Server (NTRS)
Klenzing, J. H.; Simoes, F.; Ivanov, S.; Heelis, R. A.; Bilitza, D.; Pfaff, R. F.; Rowland, D. E.
2011-01-01
During the recent solar minimum, solar activity reached the lowest levels observed during the space age. This extremely low solar activity has accompanied a number of unexpected observations in the Earth's ionosphere and thermosphere when compared to previous solar minima. Among these are the fact that the ionosphere is significantly contracted beyond expectations based on empirical models. Climatological altitude profiles of ion density and composition measurements near the magnetic dip equator are constructed from the C/NOFS satellite to characterize the shape of the top side ionosphere during the recent solar minimum and into the new solar cycle. The variation of the profiles with respect to local time, season, and solar activity are compared to the IRI-2007 model. Building on initial results reported by Heelis et al. [2009], here we describe the extent of the contracted ionosphere, which is found to persist throughout 2009. The shape of the ionosphere during 2010 is found to be consistent with observations from previous solar minima.
Topside Equatorial Ionospheric Density and Composition During and After Extreme Solar Minimum
NASA Technical Reports Server (NTRS)
Klenzing, J.; Simoes, F.; Ivanov, S.; Heelis, R. A.; Bilitza, D.; Pfaff, R.; Rowland, D.
2011-01-01
During the recent solar minimum, solar activity reached the lowest levels observed during the space age. This extremely low solar activity has accompanied a number of unexpected observations in the Earth s ionosphere-thermosphere system when compared to previous solar minima. Among these are the fact that the ionosphere is significantly contracted beyond expectations based on empirical models. Altitude profiles of ion density and composition measurements near the magnetic dip equator are constructed from the Communication/Navigation Outage Forecast System (C/NOFS) satellite to characterize the shape of the topside ionosphere during the recent solar minimum and into the new solar cycle. The variation of the profiles with respect to local time, season, and solar activity are compared to the IRI-2007 model. Building on initial results reported by Heelis et al. (2009), here we describe the extent of the contracted ionosphere, which is found to persist throughout 2009. The shape of the ionosphere during 2010 is found to be consistent with observations from previous solar minima.
Gyrokinetic simulations of particle transport in pellet fuelled JET discharges
NASA Astrophysics Data System (ADS)
Tegnered, D.; Oberparleiter, M.; Nordman, H.; Strand, P.; Garzotti, L.; Lupelli, I.; Roach, C. M.; Romanelli, M.; Valovič, M.; Contributors, JET
2017-10-01
Pellet injection is a likely fuelling method of reactor grade plasmas. When the pellet ablates, it will transiently perturb the density and temperature profiles of the plasma. This will in turn change dimensionless parameters such as a/{L}n,a/{L}T and plasma β. The microstability properties of the plasma then changes which influences the transport of heat and particles. In this paper, gyrokinetic simulations of a JET L-mode pellet fuelled discharge are performed. The ion temperature gradient/trapped electron mode turbulence is compared at the time point when the effect from the pellet is the most pronounced with a hollow density profile and when the profiles have relaxed again. Linear and nonlinear simulations are performed using the gyrokinetic code GENE including electromagnetic effects and collisions in a realistic geometry in local mode. Furthermore, global nonlinear simulations are performed in order to assess any nonlocal effects. It is found that the positive density gradient has a stabilizing effect that is partly counteracted by the increased temperature gradient in the this region. The effective diffusion coefficients are reduced in the positive density region region compared to the intra pellet time point. No major effect on the turbulent transport due to nonlocal effects are observed.
Mean state densities, temperatures and winds during the MAC/SINE and MAC/EPSILON campaigns
NASA Technical Reports Server (NTRS)
Luebken, F.-J.; Von Zahn, U.; Manson, A.; Meek, C.; Hoppe, U.-P.; Schmidlin, F. J.
1990-01-01
Two field campaigns were conducted, primarily in northern Norway, in the summer and late autumn of 1987; these yielded a total of 41 in situ temperature profiles and 67 in situ wind profiles. Simultaneously, ground-based measurements were conducted of OH temperatures and sodium lidar temperatures for 85 and 104 hours, respectively. The summer campaign's mean temperature profile exhibited major deviations from the CIRA (1986) reference atmosphere; the differences between this model and the observations are less pronounced in the autumn. Both the summer and autumn mean wind profiles were in general agreement with the CIRA model.
Internal structure of shock waves in disparate mass mixtures
NASA Technical Reports Server (NTRS)
Chung, Chan-Hong; De Witt, Kenneth J.; Jeng, Duen-Ren; Penko, Paul F.
1992-01-01
The detailed flow structure of a normal shock wave for a gas mixture is investigated using the direct-simulation Monte Carlo method. A variable diameter hard-sphere (VDHS) model is employed to investigate the effect of different viscosity temperature exponents (VTE) for each species in a gas mixture. Special attention is paid to the irregular behavior in the density profiles which was previously observed in a helium-xenon experiment. It is shown that the VTE can have substantial effects in the prediction of the structure of shock waves. The variable hard-sphere model of Bird shows good agreement, but with some limitations, with the experimental data if a common VTE is chosen properly for each case. The VDHS model shows better agreement with the experimental data without adjusting the VTE. The irregular behavior of the light-gas component in shock waves of disparate mass mixtures is observed not only in the density profile, but also in the parallel temperature profile. The strength of the shock wave, the type of molecular interactions, and the mole fraction of heavy species have substantial effects on the existence and structure of the irregularities.
Mars Aerocapture and Validation of Mars-GRAM with TES Data
NASA Technical Reports Server (NTRS)
Justus, C. G.; Duvall, Aleta; Keller, Vernon W.
2005-01-01
Mars Global Reference Atmospheric Model (Mars-GRAM) is a widely-used engineering- level Mars atmospheric model. Applications include systems design, performance analysis, and operations planning for aerobraking, entry descent and landing, and aerocapture. Typical Mars aerocapture periapsis altitudes (for systems with rigid-aeroshell heat shields) are about 50 km. This altitude is above the 0-40 km height range covered by Mars Global Surveyor Thermal Emission Spectrometer (TES) nadir observations. Recently, TES limb sounding data have been made available, spanning more than two Mars years (more than 200,000 data profiles) with altitude coverage up to about 60 km, well within the height range of interest for aerocapture. Results are presented comparing Mars-GRAM atmospheric density with densities from TES nadir and limb sounding observations. A new Mars-GRAM feature is described which allows individual TES nadir or limb profiles to be extracted from the large TES databases, and to be used as an optional replacement for standard Mars-GRAM background (climatology) conditions. For Monte-Carlo applications such as aerocapture guidance and control studies, Mars-GRAM perturbations are available using these TES profile background conditions.
ASCA observation of NGC 4636: Dark matter and metallicity gradient
NASA Technical Reports Server (NTRS)
Mushotzky, R. F.; Loewenstein, M.; Awaki, H.; Makishima, K.; Matsushita, K.; Matsumoto, H.
1994-01-01
We present our analysis of ASCA PV phase observation of the elliptical galaxy NGC 4636. Solid state imaging spectrometer (SIS) spectra in six concentric annuli centered on NGC 4636 are used to derive temperature, metallicity, and column density profiles for the hot interstellar medium. Outside of the central 3 min the temperature is roughly constant at approximately 0.85 keV, while the metallicity decreases from greater than 0.36 solar at the center to less than 0.12 solar at R approximately 9 min. The implications of this gradient for elliptical galaxy formation and the enrichment of intracluster gas are discussed. We derive a detailed mass profile consistent with the stellar velocity dispersion and with ROSAT position sensitive proportional counter (PSPC) and ASCA SIS X-ray temperature profiles. We find that NGC 4636 becomes dark matter dominated at roughly the de Vaucouleurs radius, and, at r approximately 100 kpc, the ratio of dark to luminous matter density is approximately 80 and solar mass/solar luminosity approximately equal to 150. Evidence for the presence of a cooling flow is also discussed.
Analytic H I-to-H2 Photodissociation Transition Profiles
NASA Astrophysics Data System (ADS)
Bialy, Shmuel; Sternberg, Amiel
2016-05-01
We present a simple analytic procedure for generating atomic (H I) to molecular ({{{H}}}2) density profiles for optically thick hydrogen gas clouds illuminated by far-ultraviolet radiation fields. Our procedure is based on the analytic theory for the structure of one-dimensional H I/{{{H}}}2 photon-dominated regions, presented by Sternberg et al. Depth-dependent atomic and molecular density fractions may be computed for arbitrary gas density, far-ultraviolet field intensity, and the metallicity-dependent H2 formation rate coefficient, and dust absorption cross section in the Lyman-Werner photodissociation band. We use our procedure to generate a set of {{H}} {{I}}{-}{to}{-}{{{H}}}2 transition profiles for a wide range of conditions, from the weak- to strong-field limits, and from super-solar down to low metallicities. We show that if presented as functions of dust optical depth, the {{H}} {{I}} and {{{H}}}2 density profiles depend primarily on the Sternberg “α G parameter” (dimensionless) that determines the dust optical depth associated with the total photodissociated {{H}} {{I}} column. We derive a universal analytic formula for the {{H}} {{I}}{-}{to}{-}{{{H}}}2 transition points as a function of just α G. Our formula will be useful for interpreting emission-line observations of H I/{{{H}}}2 interfaces, for estimating star formation thresholds, and for sub-grid components in hydrodynamics simulations.
NASA Astrophysics Data System (ADS)
Mukundan, Vrinda; Bhardwaj, Anil
2018-01-01
A one dimensional photochemical model for the dayside ionosphere of Titan has been developed for calculating the density profiles of ions and electrons under steady state photochemical equilibrium condition. We concentrated on the T40 flyby of Cassini orbiter and used the in-situ measurements from instruments onboard Cassini as input to the model. An energy deposition model is employed for calculating the attenuated photon flux and photoelectron flux at different altitudes in Titan's ionosphere. We used the Analytical Yield Spectrum approach for calculating the photoelectron fluxes. Volume production rates of major primary ions, like, N2+, N+ , CH4+, CH3+, etc due to photon and photoelectron impact are calculated and used as input to the model. The modeled profiles are compared with the Cassini Ion Neutral Mass Spectrometer (INMS) and Langmuir Probe (LP) measurements. The calculated electron density is higher than the observation by a factor of 2 to 3 around the peak. We studied the impact of different model parameters, viz. photoelectron flux, ion production rates, electron temperature, dissociative recombination rate coefficients, neutral densities of minor species, and solar flux on the calculated electron density to understand the possible reasons for this discrepancy. Recent studies have shown that there is an overestimation in the modeled photoelectron flux and N2+ ion production rates which may contribute towards this disagreement. But decreasing the photoelectron flux (by a factor of 3) and N2+ ion production rate (by a factor of 2) decreases the electron density only by 10 to 20%. Reduction in the measured electron temperature by a factor of 5 provides a good agreement between the modeled and observed electron density. The change in HCN and NH3 densities affects the calculated densities of the major ions (HCNH+ , C2H5+, and CH5+); however the overall impact on electron density is not appreciable ( < 20%). Even though increasing the dissociative recombination rate coefficients of the ions C2H5+ and CH5+ by a factor of 10 reduces the difference between modeled and observed densities of the major ions, the modeled electron density is still higher than the observation by ∼ 60% at the peak. We suggest that there might be some unidentified chemical reactions that may account for the additional loss of plasma in Titan's ionosphere.
Mapping the Outer Edge of the Young Stellar Cluster in the Galactic Center
NASA Astrophysics Data System (ADS)
Støstad, M.; Do, T.; Murray, N.; Lu, J. R.; Yelda, S.; Ghez, A.
2015-08-01
We present new near-infrared spectroscopic observations of the outer edges of the young stellar cluster around the supermassive black hole at the Galactic center. The observations show a break in the surface density profile of young stars at ˜13″ (0.52 pc). These observations spectroscopically confirm previous suggestions of a break based on photometry. Using Gemini North's Near-Infrared Integral Field Spectrometer, we are able to detect and separate early- and late-type stars with a 75% completeness at {K}{{s}}=15.5. We sample a region with radii between 7″ and 23″ (0.28-0.92 pc) from Sgr A* and present new spectral classifications of 144 stars brighter than {K}{{s}}=15.5, where 140 stars are late-type (\\gt 1 Gyr) and only four stars are early-type (young, 4-6 Myr). A broken power-law fit of the early-type surface density matches well with our data and previously published values. The projected surface density of late-type stars is also measured and found to be consistent with previous results. We find that the observed early-type surface-density profile is inconsistent with the theory of young stars originating from a tightly bound infalling cluster, as no significant trail of young stars is found at radii above 13″. We also note that either a simple disk instability criterion or a cloud-cloud collision could explain the location of the outer edge, though we lack information to make conclusive remarks on either alternative. If this break in surface density represents an edge to the young stellar cluster, it would set an important scale for the most recent episode of star formation at the Galactic center.
Results of the IMO Video Meteor Network - April 2016
NASA Astrophysics Data System (ADS)
Molau, S.; Crivello, S.; Goncalves, R.; Saraiva, C.; Stomeo, E.; Kac, J.
2016-10-01
In 2016 April, a total of 78 video cameras of the IMO Video Meteor Network recorded more than 16 000 meteors in almost 7 700 hours of observing time. The flux density profile of the Lyrids 2016 is presented and compared to the average for the years 2011-2015. The flux density increased significantly as twilight set in on the morning of 2016 April 22. A similar increase was also seen in 2012. The population index of the Lyrids is also derived from observations around the shower maximum.
The First Results About Earthquake Study with FORMOSAT-3/COSMIC
NASA Astrophysics Data System (ADS)
Liu, J. Y.; Oyama, K.; Jhuang, H. K.; Istep, M.; Hsiao, C. C.; Wang, Y. H.
2007-12-01
To improve the global weather prediction and space weather monitoring, six microsatellites termed the Formosa Satellite 3 - Constellation Observing System for Meteorology, Ionosphere, and Climate (FORMOSAT-3/COSMIC) were launched into a circular low-Earth orbit (LEO) from Vandenberg Air Force Base, California, at 0140 UTC on 15 April 2006. Each microsatellite of the joint Taiwan-US satellite constellation mission has a GPS occultation experiment (GOX) payload to operate the atmospheric and ionospheric radio occultation, a tiny ionospheric photometer (TIP) to observe the nighttime ionospheric airglow OI 135.6 nm emission, and a tri-band beacon (TBB) to tomographically estimate fine structures of ionospheric electron density on the satellite-to-receiver plane. While the GOX daily observes about 2500 vertical electron density profiles up to the satellite altitude, the TIP provides accurate horizontal gradients of nighttime electron density. In this study, anomalies in the ionospheric electron density structure and dynamics concurrently observed by FORMOSAT-3/COSMIC and co-located ground- based GPS receivers before recent large earthquakes are presented and discussed.
NASA Astrophysics Data System (ADS)
Kowalczyk, Klaudia; Łokas, Ewa L.; Valluri, Monica
2018-05-01
In our previous work we confirmed the reliability of the spherically symmetric Schwarzschild orbit-superposition method to recover the mass and velocity anisotropy profiles of spherical dwarf galaxies. Here, we investigate the effect of its application to intrinsically non-spherical objects. For this purpose we use a model of a dwarf spheroidal galaxy formed in a numerical simulation of a major merger of two discy dwarfs. The shape of the stellar component of the merger remnant is axisymmetric and prolate which allows us to identify and measure the bias caused by observing the spheroidal galaxy along different directions, especially the longest and shortest principal axis. The modelling is based on mock data generated from the remnant that are observationally available for dwarfs: projected positions and line-of-sight velocities of the stars. In order to obtain a reliable tool while keeping the number of parameters low we parametrize the total mass distribution as a radius-dependent mass-to-light ratio with just two free parameters we aim to constrain. Our study shows that if the total density profile is known, the true, radially increasing anisotropy profile can be well recovered for the observations along the longest axis whereas the data along the shortest axis lead to the inference of an incorrect, isotropic model. On the other hand, if the density profile is derived from the method as well, the anisotropy is always underestimated but the total mass profile is well recovered for the data along the shortest axis whereas for the longest axis the mass content is overestimated.
NASA Astrophysics Data System (ADS)
Oh, Jaechul; Weaver, J. L.; Obenschain, S. P.; Schmitt, A. J.; Kehne, D. M.; Karasik, M.; Chan, L.-Y.; Serlin, V.; Phillips, L.
2012-10-01
ExperimentsfootnotetextJ. Oh, et al, GO5.4, APS DPP (2010).^,footnotetextJ. L. Weaver, et al, GO5.3, APS DPP (2010). using Nike KrF laser observed LPI signatures from CH plasmas at the laser intensities above ˜1x10^15 W/cm^2. Knowing spatial profiles of temperature (Te) and density (ne) in the underdense coronal region (0 < n < nc/4) of the plasma is essential to understanding the LPI observation. However, numerical simulation was the only way to access the profiles for the previous experiments. In the current Nike LPI experiment, a side-on grid imaging refractometer (GIR)footnotetextR. S. Craxton, et al, Phys. Fluids B 5, 4419 (1993). is being deployed for measuring the underdense plasma profiles. The GIR will resolve Te and ne in space taking a 2D snapshot of probe laser (λ= 263 nm, δt = 10 psec) beamlets (50μm spacing) refracted by the plasma at a selected time during the laser illumination. Time-resolved spectrometers with an absolute-intensity-calibrated photodiode array and a streak camera will simultaneously monitor light emission from the plasma in spectral ranges relevant to Raman (SRS) and two plasmon decay (TDP) instabilities. The experimental study of effects of the plasma profiles on the LPI initiation will be presented.
Investigation of low-latitude hydrogen emission in terms of a two-component interstellar gas model
NASA Technical Reports Server (NTRS)
Baker, P. L.; Burton, W. B.
1975-01-01
High-resolution 21-cm hydrogen line observations at low galactic latitude are analyzed to determine the large-scale distribution of galactic hydrogen. Distribution parameters are found by model fitting, optical depth effects are computed using a two-component gas model suggested by the observations, and calculations are made for a one-component uniform spin-temperature gas model to show the systematic departures between this model and data obtained by incorrect treatment of the optical depth effects. Synthetic 21-cm line profiles are computed from the two-component model, and the large-scale trends of the observed emission profiles are reproduced together with the magnitude of the small-scale emission irregularities. Values are determined for the thickness of the galactic hydrogen disk between half density points, the total observed neutral hydrogen mass of the galaxy, and the central number density of the intercloud hydrogen atoms. It is shown that typical hydrogen clouds must be between 1 and 13 pc in diameter and that optical thinness exists on large-scale despite the presence of optically thin gas.
New Observations of Molecular Nitrogen by the Imaging Ultraviolet Spectrograph on MAVEN
NASA Astrophysics Data System (ADS)
Stevens, Michael H.; Evans, J. S.; Schneider, Nicholas M.; Stewart, A. I. F.; Deighan, Justin; Jain, Sonal K.; Crismani, Matteo M. J.; Stiepen, Arnaud; Chaffin, Michael S.; McClintock, William E.; Holsclaw, Greg M.; Lefevre, Franck; Montmessin, Franck; Lo, Daniel Y.; Clarke, John T.; Bougher, Stephen W.; Jakosky, Bruce M.
2015-11-01
The Martian ultraviolet dayglow provides information on the basic state of the Martian upper atmosphere. The Imaging Ultraviolet Spectrograph (IUVS) on NASA’s Mars Atmosphere and Volatile Evolution (MAVEN) mission has observed Mars at mid and far-UV wavelengths since its arrival in September 2014. In this work, we describe a linear regression method used to extract components of UV spectra from IUVS limb observations and focus in particular on molecular nitrogen (N2) photoelectron excited emissions. We identify N2 Lyman-Birge-Hopfield (LBH) emissions for the first time at Mars and we also confirm the tentative identification of N2 Vegard-Kaplan (VK) emissions. We compare observed VK and LBH limb radiance profiles to model results between 90 and 210 km. Finally, we compare retrieved N2 density profiles to general circulation (GCM) model results. Contrary to earlier analyses using other satellite data that indicated N2 densities were a factor of three less than predictions, we find that N2 abundances exceed GCM results by about a factor of two at 130 km but are in agreement at 150 km.
Deciphering the embedded wave in Saturn's Maxwell ringlet
NASA Astrophysics Data System (ADS)
French, Richard G.; Nicholson, Philip D.; Hedman, Mathew M.; Hahn, Joseph M.; McGhee-French, Colleen A.; Colwell, Joshua E.; Marouf, Essam A.; Rappaport, Nicole J.
2016-11-01
The eccentric Maxwell ringlet in Saturn's C ring is home to a prominent wavelike structure that varies strongly and systematically with true anomaly, as revealed by nearly a decade of high-SNR Cassini occultation observations. Using a simple linear "accordion" model to compensate for the compression and expansion of the ringlet and the wave, we derive a mean optical depth profile for the ringlet and a set of rescaled, background-subtracted radial wave profiles. We use wavelet analysis to identify the wave as a 2-armed trailing spiral, consistent with a density wave driven by an m = 2 outer Lindblad resonance (OLR), with a pattern speed Ωp = 1769.17° d-1 and a corresponding resonance radius ares = 87530.0 km. Estimates of the surface mass density of the Maxwell ringlet range from a mean value of 11g cm-2 derived from the self-gravity model to 5 - 12gcm-2 , as inferred from the wave's phase profile and a theoretical dispersion relation. The corresponding opacity is about 0.12 cm2 g-1, comparable to several plateaus in the outer C ring (Hedman, M.N., Nicholson, P.D. [2014]. Mont. Not. Roy. Astron. Soc. 444, 1369-1388). A linear density wave model using the derived wave phase profile nicely matches the wave's amplitude, wavelength, and phase in most of our observations, confirming the accuracy of the pattern speed and demonstrating the wave's coherence over a period of 8 years. However, the linear model fails to reproduce the narrow, spike-like structures that are prominent in the observed optical depth profiles. Using a symplectic N-body streamline-based dynamical code (Hahn, J.M., Spitale, J.N. [2013]. Astrophys. J. 772, 122), we simulate analogs of the Maxwell ringlet, modeled as an eccentric ringlet with an embedded wave driven by a fictitious satellite with an OLR located within the ring. The simulations reproduce many of the features of the actual observations, including strongly asymmetric peaks and troughs in the inward-propagating density wave. We argue that the Maxwell ringlet wave is generated by a sectoral normal-mode oscillation inside Saturn with ℓ = m = 2 , similar to other planetary internal modes that have been inferred from density waves observed in Saturn's C ring (Hedman, M.N., Nicholson, P.D. [2013]. Astron. J. 146, 12; Hedman, M.N., Nicholson, P.D. [2014]. Mont. Not. Roy. Astron. Soc. 444, 1369-1388). Our identification of a third m = 2 mode associated with saturnian internal oscillations supports the suggestions of mode splitting by Fuller et al. (Fuller, J., Lai, D., Storch, N.I. [2014]. Icarus 231, 34-50) and Fuller (Fuller, J. [2014]. Icarus 242, 283-296). The fitted amplitude of the wave, if it is interpreted as driven by the ℓ = m = 2 f-mode, implies a radial amplitude at the 1 bar level of ∼ 50 cm, according to the models of Marley and Porco (Marley, M.S., Porco, C.C. [1993]. Icarus 106, 508).
Pedestal turbulence simulations using GENE
NASA Astrophysics Data System (ADS)
Liu, Xing; Kotschenreuther, M.; Hatch, D. R.; Zheng, L. J.; Mahajan, S.; Diallo, A.; Groebner, R. J.; Hubbard, A. E.; Hughes, J. W.; Maggi, C. F.; Saarelma, S.; JET Contributors
2017-10-01
We match frequencies, power balance, and other transport characteristics of several pedestals-two DIIID ELMy H-modes and a C-Mod I-mode, and attempt this for a C-Mod ELMy H-mode. Observed quasi-coherent fluctuations (QCFs) on the DIIID shots are identified as MTMs. The MTMs match frequency and power balance (with slight adjustment of temperature profile), and cause low transport in the density, ion heat and impurity channels- consistent with observed inter-ELM evolution of ion and electron temperature, electron and impurity density, or transport analysis of those channels. KBM can be ruled out as the dominant agent for heat transport. We find the Weakly Coherent Mode on C-Mod I-mode may be an electrostatic heavy particle/ITG mode. Analysis is ongoing for the C-Mod ELMy H-mode QCF. Pedestal density profiles in JET-ILW are consistent with ITG induced particle pinch. Work supported by US DOE under DE-FC02-04ER54698, DE-FG02-04ER54742 and DE-FC02-99ER54512 and by Eurofusion under Grant No. 633053.
Current profile redistribution driven by neutral beam injection in a reversed-field pinch
DOE Office of Scientific and Technical Information (OSTI.GOV)
Parke, E.; Department of Physics, University of Wisconsin-Madison 1150 University Ave., Madison, Wisconsin 53706; Anderson, J. K.
2016-05-15
Neutral beam injection in reversed-field pinch (RFP) plasmas on the Madison Symmetric Torus [Dexter et al., Fusion Sci. Technol. 19, 131 (1991)] drives current redistribution with increased on-axis current density but negligible net current drive. Internal fluctuations correlated with tearing modes are observed on multiple diagnostics; the behavior of tearing mode correlated structures is consistent with flattening of the safety factor profile. The first application of a parametrized model for island flattening to temperature fluctuations in an RFP allows inferrence of rational surface locations for multiple tearing modes. The m = 1, n = 6 mode is observed to shift inward by 1.1 ± 0.6 cm withmore » neutral beam injection. Tearing mode rational surface measurements provide a strong constraint for equilibrium reconstruction, with an estimated reduction of q{sub 0} by 5% and an increase in on-axis current density of 8% ± 5%. The inferred on-axis current drive is consistent with estimates of fast ion density using TRANSP [Goldston et al., J. Comput. Phys. 43, 61 (1981)].« less
Spin-Imbalanced Quasi-Two-Dimensional Fermi Gases
NASA Astrophysics Data System (ADS)
Ong, W.; Cheng, Chingyun; Arakelyan, I.; Thomas, J. E.
2015-03-01
We measure the density profiles for a Fermi gas of
NASA Technical Reports Server (NTRS)
Vedantam, Nanda Kishore
2003-01-01
The objective of this study was to investigate the effects of the mean flow profiles on the instability characteristics in the near-injector region of low-density gas jets injected into high-density ambient gas mediums. To achieve this, a linear temporal stability analysis and a spatio-temporal stability analysis of a low-density round gas jet injected vertically upwards into a high-density ambient gas were performed by assuming three different sets of mean velocity and density profiles. The flow was assumed to be isothermal and locally parallel. Viscous and diffusive effects were ignored. The mean flow parameters were represented as the sum of the mean value and a small normal-mode fluctuation. A second order differential equation governing the pressure disturbance amplitude was derived from the basic conservation equations. The first set of mean velocity and density profiles assumed were those used by Monkewitz and Sohn for investigating absolute instability in hot jets. The second set of velocity and density profiles assumed for this study were the ones used by Lawson. And the third set of mean profiles included a parabolic velocity profile and a hyperbolic tangent density profile. The effects of the inhomogeneous shear layer and the Froude number (signifying the effects of gravity) on the temporal and spatio-temporal results for each set of mean profiles were delineated. Additional information is included in the original extended abstract.
Topside ionosphere of Mars: Variability, transient layers, and the role of crustal magnetic fields
NASA Astrophysics Data System (ADS)
Gopika, P. G.; Venkateswara Rao, N.
2018-04-01
The topside ionosphere of Mars is known to show variability and transient topside layers. In this study, we analyzed the electron density profiles measured by the radio occultation technique aboard the Mars Global Surveyor spacecraft to study the topside ionosphere of Mars. The electron density profiles that we used in the present study span between 1998 and 2005. All the measurements are done from the northern high latitudes, except 220 profiles which were measured in the southern hemisphere, where strong crustal magnetic fields are present. We binned the observations into six measurement periods: 1998, 1999-north, 1999-south, 2000-2001, 2002-2003, and 2004-2005. We found that the topside ionosphere in the southern high latitudes is more variable than that from the northern hemisphere. This feature is clearly seen with fluctuations of wavelengths less than 20 km. Some of the electron density profiles show a transient topside layer with a local maximum in electron density between 160 km and 210 km. The topside layer is more prone to occur in the southern hemispheric crustal magnetic field regions than in the other regions. In addition, the peak density of the topside layer is greater in regions of strong crustal magnetic fields than in other regions. The variability of the topside ionosphere and the peak density of the topside layer, however, do not show one-to-one correlation with the strength of the crustal magnetic fields and magnetic field inclination. The results of the present study are discussed in the light of current understanding on the topside ionosphere, transient topside layers, and the role of crustal magnetic fields on plasma motions.
NASA Technical Reports Server (NTRS)
Nsumei, Patrick; Reinisch, Bodo W.; Huang, Xueqin; Bilitza, Dieter
2012-01-01
A new Vary-Chap function is introduced for the empirical modeling of the electron density N(h) profile in the topside ionosphere that uses a shape function S(h) in the generalized Chapman function. The Vary-Chap profile extends the bottomside profile that is specified by the IRI model or measured by the Global Ionospheric Radio Observatory (GIRO) to the altitude of the ISIS-2 satellite. Some 80,000 topside profiles, measured by the topside sounder on the ISIS-2 satellite were analyzed, and the shape function S(h) was calculated for each profile. A parameterized function S*(h), composed of two sub-functions S1(h) and S2(h), is fitted to the measured S(h) profile using three free parameters. At altitudes just above the F2 layer peak height hmF2, the shape function S1 controls S(h), and at greater altitudes S2 controls S(h). The height of the intersection of S1 and S2 is defined as the transition height h(sub T) indicating the transition from an O(+) to an H(+)-dominated profile shape. The observed transition heights range from approx.500 km to 800 km.
NASA Astrophysics Data System (ADS)
Li, Y. C.; Ding, B. J.; Li, M. H.; Wang, M.; Liu, L.; Wang, X. J.; Xu, H. D.; Shan, J. F.; Liu, F. K.
2018-02-01
On the experimental advanced superconducting tokamak (EAST), a series of striations, including a few strong emissivity striations and several low emissivity striations, were observed in front of the 4.6-GHz lower hybrid (LH) launcher with the visible video camera for the LH power discharge. These striations indicate that LH may create significant poloidal scrape-off layer (SOL) density profile asymmetries in front of the LH launcher. These poloidal asymmetric density behaviors are further confirmed with the edge density measured by two Langmuir probes installed at the top and bottom of the LH launcher. The measured density depends on LH power injection and magnetic field direction. A 2D diffusive convective model was used to study the mechanisms of the observed striations and poloidal asymmetric density. The simulation results qualitatively match with the measured density, indicating these poloidal asymmetric effects are ascribed to the LHW-induced E LH × B t drift.
Occultation Experiment: Results of the First Direct Measurement of Mars's Atmosphere and Ionosphere.
Kliore, A; Cain, D L; Levy, G S; Eshleman, V R; Fjeldbo, G; Drake, F D
1965-09-10
Changes in the frequency, phase, and amplitude of the Mariner IV radio signal, caused by passage through the atmosphere and ionosphere of Mars, were observed immediately before and after occultation by the planet. Preliminary analysis of these effects has yielded estimates of the refractivity and density of the atmosphere near the surface, the scale height in the atmosphere, and the electron density profile of the Martian ionosphere. The atmospheric density, temperature, and scale height are lower than previously predicted, as are the maximum density, temperature, scale height, and altitude of the ionosphere.
Classical confinement and outward convection of impurity ions in the MST RFP
NASA Astrophysics Data System (ADS)
Kumar, S. T. A.; Den Hartog, D. J.; Mirnov, V. V.; Caspary, K. J.; Magee, R. M.; Brower, D. L.; Chapman, B. E.; Craig, D.; Ding, W. X.; Eilerman, S.; Fiksel, G.; Lin, L.; Nornberg, M.; Parke, E.; Reusch, J. A.; Sarff, J. S.
2012-05-01
Impurity ion dynamics measured with simultaneously high spatial and temporal resolution reveal classical ion transport in the reversed-field pinch. The boron, carbon, oxygen, and aluminum impurity ion density profiles are obtained in the Madison Symmetric Torus [R. N. Dexter et al., Fusion Technol. 19, 131 (1991)] using a fast, active charge-exchange-recombination-spectroscopy diagnostic. Measurements are made during improved-confinement plasmas obtained using inductive control of tearing instability to mitigate stochastic transport. At the onset of the transition to improved confinement, the impurity ion density profile becomes hollow, with a slow decay in the core region concurrent with an increase in the outer region, implying an outward convection of impurities. Impurity transport from Coulomb collisions in the reversed-field pinch is classical for all collisionality regimes, and analysis shows that the observed hollow profile and outward convection can be explained by the classical temperature screening mechanism. The profile agrees well with classical expectations. Experiments performed with impurity pellet injection provide further evidence for classical impurity ion confinement.
Vertical temperature and density patterns in the Arctic mesosphere analyzed as gravity waves
NASA Technical Reports Server (NTRS)
Eberstein, I. J.; Theon, J. S.
1975-01-01
Rocket soundings conducted from high latitude sites in the Arctic mesosphere are described. Temperature and wind profiles and one density profile were observed independently to obtain the thermodynamic structure, the wind structure, and their interdependence in the mesosphere. Temperature profiles from all soundings were averaged, and a smooth curve (or series of smooth curves) drawn through the points. A hydrostatic atmosphere based on the average, measured temperature profile was computed, and deviations from the mean atmosphere were analyzed in terms of gravity wave theory. The vertical wavelengths of the deviations were 10-20 km, and the wave amplitudes slowly increased with height. The experimental data were matched by calculated gravity waves having a period of 15-20 minutes and a horizontal wavelength of 60-80 km. The wind measurements are consistent with the thermodynamic measurements. The results also suggest that gravity waves travel from East to West with a horizontal phase velocity of approximately 60 m sec-1.
Correlation of ion and beam current densities in Kaufman thrusters.
NASA Technical Reports Server (NTRS)
Wilbur, P. J.
1973-01-01
In the absence of direct impingement erosion, electrostatic thruster accelerator grid lifetime is defined by the charge exchange erosion that occurs at peak values of the ion beam current density. In order to maximize the thrust from an engine with a specified grid lifetime, the ion beam current density profile should therefore be as flat as possible. Knauer (1970) has suggested this can be achieved by establishing a radial plasma uniformity within the thruster discharge chamber; his tests with the radial field thruster provide an example of uniform plasma properties within the chamber and a flat ion beam profile occurring together. It is shown that, in particular, the ion density profile within the chamber determines the beam current density profile, and that a uniform ion density profile at the screen grid end of the discharge chamber should lead to a flat beam current density profile.
NASA Astrophysics Data System (ADS)
Guzzo, M. M.; Holanda, P. C.; Reggiani, N.
2003-08-01
The neutrino energy spectrum observed in KamLAND is compatible with the predictions based on the Large Mixing Angle realization of the MSW (Mikheyev-Smirnov-Wolfenstein) mechanism, which provides the best solution to the solar neutrino anomaly. From the agreement between solar neutrino data and KamLAND observations, we can obtain the best fit values of the mixing angle and square difference mass. When doing the fitting of the MSW predictions to the solar neutrino data, it is assumed the solar matter do not have any kind of perturbations, that is, it is assumed the the matter density monothonically decays from the center to the surface of the Sun. There are reasons to believe, nevertheless, that the solar matter density fluctuates around the equilibrium profile. In this work, we analysed the effect on the Large Mixing Angle parameters when the density matter randomically fluctuates around the equilibrium profile, solving the evolution equation in this case. We find that, in the presence of these density perturbations, the best fit values of the mixing angle and the square difference mass assume smaller values, compared with the values obtained for the standard Large Mixing Angle Solution without noise. Considering this effect of the random perturbations, the lowest island of allowed region for KamLAND spectral data in the parameter space must be considered and we call it very-low region.
Observations Of Planetary Nebula NGC 3242 Using STIS From HST19 GO 12600
NASA Astrophysics Data System (ADS)
Miller, Timothy R.; Dufour, Reginald J.; Henry, Richard B. C.; Kwitter, Karen B.; Shaw, Richard A.; Balick, Bruce; Corradi, Romano
2014-06-01
During HST Cycle 19, we obtained long-slit spectra using STIS of the planetary nebula NGC 3242 with higher spatial resolution than previously published. The full wavelength range is around 1100-10200Å, covering many nebular lines for determining numerous ionic abundances and electron densities and temperatures. In this work, we first analyze the low- and moderate-resolution UV emission lines of carbon, nitrogen and oxygen. In particular, the resolved lines of C_III] 1907 and C_III] 1909 have yielded a direct measurement of one of the dominant ionic species for carbon and a determination of the density occupied by doubly-ionized carbon and other similar ions. Next, the spatial emission profile of these lines reveals variations in the inferred density along the line of sight from about 2800-11500 cm-3, compared with a value ~3800 cm-3, when averaged over the entire slit. Similarly, the electron temperature is around 12000K for the entire slit and ranges from about 11400-14000K when the slit is divided into smaller sub-regions. Lastly, these sub-regions of the nebula have been modeled in detail with the photoionization code CLOUDY. This modeling will assess the density profile that produces the observed density variation, reproduce the temperature fluctuations, and constrain the central star temperature. We acknowledge the gracious support from HST and the University of Oklahoma.
A strategy to unveil transient sources of ultra-high-energy cosmic rays
NASA Astrophysics Data System (ADS)
Takami, Hajime
2013-06-01
Transient generation of ultra-high-energy cosmic rays (UHECRs) has been motivated from promising candidates of UHECR sources such as gamma-ray bursts, flares of active galactic nuclei, and newly born neutron stars and magnetars. Here we propose a strategy to unveil transient sources of UHECRs from UHECR experiments. We demonstrate that the rate of UHECR bursts and/or flares is related to the apparent number density of UHECR sources, which is the number density estimated on the assumption of steady sources, and the time-profile spread of the bursts produced by cosmic magnetic fields. The apparent number density strongly depends on UHECR energies under a given rate of the bursts, which becomes observational evidence of transient sources. It is saturated at the number density of host galaxies of UHECR sources. We also derive constraints on the UHECR burst rate and/or energy budget of UHECRs per source as a function of the apparent source number density by using models of cosmic magnetic fields. In order to obtain a precise constraint of the UHECR burst rate, high event statistics above ˜ 1020 eV for evaluating the apparent source number density at the highest energies and better knowledge on cosmic magnetic fields by future observations and/or simulations to better estimate the time-profile spread of UHECR bursts are required. The estimated rate allows us to constrain transient UHECR sources by being compared with the occurrence rates of known energetic transient phenomena.
NASA Astrophysics Data System (ADS)
Jacobson, Abram R.; Shao, Xuan-Min; Holzworth, Robert
2010-05-01
We are developing and testing a steep-incidence D region sounding method for inferring profile information, principally regarding electron density. The method uses lightning emissions (in the band 5-500 kHz) as the probe signal. The data are interpreted by comparison against a newly developed single-reflection model of the radio wave's encounter with the lower ionosphere. The ultimate application of the method will be to study transient, localized disturbances of the nocturnal D region, including those instigated by lightning itself. Prior to applying the method to study lightning-induced perturbations of the nighttime D region, we have performed a validation test against more stable and predictable daytime observations, where the profile of electron density is largely determined by direct solar X-ray illumination. This article reports on the validation test. Predictions from our recently developed full-wave ionospheric-reflection model are compared to statistical summaries of daytime lightning radiated waveforms, recorded by the Los Alamos Sferic Array. The comparison is used to retrieve best fit parameters for an exponential profile of electron density in the ionospheric D region. The optimum parameter values are compared to those found elsewhere using a narrowband beacon technique, which used totally different measurements, ranges, and modeling approaches from those of the work reported here.
Effects of Apple Consumption on Lipid Profile of Hyperlipidemic and Overweight Men
Vafa, Mohammad Reza; Haghighatjoo, Elham; Shidfar, Farzad; Afshari, Shirin; Gohari, Mahmood Reza; Ziaee, Amir
2011-01-01
Objectives: Fruits and vegetables may be beneficial on lipid profile of hyperlipidemic subjects. The present study was aimed to verify the effect of golden delicious apple on Lipid Profile in hyperlipidemic and overweight men. Methods: Forty six hyperlipidemic and overweight men were randomly divided into two groups. Intervention group received 300g golden delicious apple per day for 8 weeks. Control group had the regular dietary regimen for the same period of time. Blood samples were analyzed for serum triglycerides (TG), total cholesterol (TC), low density lipoprotein-cholesterol (LDL-C), high density lipoprotein-cholesterol (HDL-C), very low density lipoprotein-cholesterol (VLDL), apolipoprotein B (Apo B), lipoprotein a (Lp a) and LDL/HDL ratio at baseline and after intervention. Results: Total polyphenols and fibers were 485 mg/kg and 4.03 g/100g in fresh apple respectively. After 8 weeks, significant statistical differences were observed considering the TG and VLDL levels between two groups, but no significant differences were observed regarding TC, LDL-C, HDL-C, Apo (B), Lp (a) and LDL/HDL ratio. Conclusions: Consumption of Golden delicious apple may be increased serum TG and VLDL in hyperlipidemic and overweight men. We need more studies to assay the effect of apple consumption on serum TC, LDL-C, HDL-C, Apo (B), Lp (a) and LDL/HDL ratio. PMID:21603015
NASA Astrophysics Data System (ADS)
Gonzalez-Morales, Alma X.; Profumo, Stefano; Queiroz, Farinaldo S.
2014-11-01
Recent discoveries of optical signatures of black holes in dwarf galaxies indicates that low-mass galaxies can indeed host intermediate massive black holes. This motivates the assessment of the resulting effect on the host dark matter density profile, and the consequences for the constraints on the plane of the dark matter annihilation cross section versus mass, stemming from the nonobservation of gamma rays from local dwarf spheroidals with the Fermi Large Area Telescope. We compute the density profile using three different prescriptions for the black hole mass associated with a given spheroidal galaxy, and taking into account the cutoff to the density from dark matter pair-annihilation. We find that the limits on the dark matter annihilation rate from observations of individual dwarfs are enhanced by factors of a few up to 1 06 , depending on the specific galaxy, on the black hole mass prescription, and on the dark matter particle mass. We estimate limits from combined observations of a sample of 15 dwarfs, for a variety of assumptions on the dwarf black hole mass and on the dark matter density profile prior to adiabatic contraction. We find that if black holes are indeed present in local dwarf spheroidals, then, independent of assumptions, (i) the dark matter interpretation of the Galactic center gamma-ray excess would be conclusively ruled out, (ii) wino dark matter would be excluded up to masses of about 3 TeV, and (iii) vanilla thermal relic weakly interacting massive particles must be heavier than 100 GeV.
Initialization of a mesoscale model for April 10, 1979, using alternative data sources
NASA Technical Reports Server (NTRS)
Kalb, M. W.
1984-01-01
A 35 km grid limited area mesoscale model was initialized with high density SESAME radiosonde data and high density TIROS-N satellite temperature profiles for April 10, 1979. These data sources were used individually and with low level wind fields constructed from surface wind observations. The primary objective was to examine the use of satellite temperature data for initializing a mesoscale model by comparing the forecast results with similar experiments employing radiosonde data. The impact of observed low level winds on the model forecasts was also investigated with experiments varying the method of insertion. All forecasts were compared with each other and with mesoscale observations for precipitation, mass and wind structure. Several forecasts produced convective precipitation systems with characteristics satisfying criteria for a mesoscale convective complex. High density satellite temperature data and balanced winds can be used in a mesoscale model to produce forecasts which verify favorably with observations.
Axisymmetric Eigenmodes of Spheroidal Pure Electron Plasmas
NASA Astrophysics Data System (ADS)
Kawai, Yosuke; Saitoh, Haruhiko; Yoshida, Zensho; Kiwamoto, Yasuhito
2010-11-01
The axisymmetric electrostatic eigenmodes of spheroidal pure electron plasmas have been studied experimentally. It is confirmed that the observed spheroidal plasma attains a theoretically expected equilibrium density distribution, with the exception of a low-density halo distribution surrounding the plasma. When the eigenmode frequency observed for the plasma is compared with the frequency predicted by the dispersion relation derived under ideal conditions wherein the temperature is zero and the boundary is located at an infinite distance from the plasma, it is observed that the absolute value of the observed frequency is systematically higher than the theoretical prediction. Experimental examinations and numerical calculations indicate that the upward shift of the eigenmode frequency cannot be accounted for solely by the finite temperature effect, but is significantly affected by image charges induced on the conducting boundary and the resulting distortion of the density profile from the theoretical expectation.
NASA Astrophysics Data System (ADS)
Merlo, G.; Brunner, S.; Huang, Z.; Coda, S.; Görler, T.; Villard, L.; Bañón Navarro, A.; Dominski, J.; Fontana, M.; Jenko, F.; Porte, L.; Told, D.
2018-03-01
Axisymmetric (n = 0) density fluctuations measured in the TCV tokamak are observed to possess a frequency f 0 which is either varying (radially dispersive oscillations) or a constant over a large fraction of the plasma minor radius (radially global oscillations) as reported in a companion paper (Z Huang et al, this issue). Given that f 0 scales with the sound speed and given the poloidal structure of density fluctuations, these oscillations were interpreted as Geodesic Acoustic Modes, even though f 0 is in fact smaller than the local linear GAM frequency {f}{GAM}. In this work we employ the Eulerian gyrokinetic code GENE to simulate TCV relevant conditions and investigate the nature and properties of these oscillations, in particular their relation to the safety factor profile. Local and global simulations are carried out and a good qualitative agreement is observed between experiments and simulations. By varying also the plasma temperature and density profiles, we conclude that a variation of the edge safety factor alone is not sufficient to induce a transition from global to radially inhomogeneous oscillations, as was initially suggested by experimental results. This transition appears instead to be the combined result of variations in the different plasma profiles, collisionality and finite machine size effects. Simulations also show that radially global GAM-like oscillations can be observed in all fluxes and fluctuation fields, suggesting that they are the result of a complex nonlinear process involving also finite toroidal mode numbers and not just linear global GAM eigenmodes.
Baryon Budget of the Hot Circumgalactic Medium of Massive Spiral Galaxies
NASA Astrophysics Data System (ADS)
Li, Jiang-Tao; Bregman, Joel N.; Wang, Q. Daniel; Crain, Robert A.; Anderson, Michael E.
2018-03-01
The baryon content around local galaxies is observed to be much less than is needed in Big Bang nucleosynthesis. Simulations indicate that a significant fraction of these “missing baryons” may be stored in a hot tenuous circumgalactic medium (CGM) around massive galaxies extending to or even beyond the virial radius of their dark matter halos. Previous observations in X-ray and Sunyaev–Zel’dovich (SZ) signals claimed that ∼(1–50)% of the expected baryons are stored in a hot CGM within the virial radius. The large scatter is mainly caused by the very uncertain extrapolation of the hot gas density profile based on the detection in a small radial range (typically within 10%–20% of the virial radius). Here, we report stacking X-ray observations of six local isolated massive spiral galaxies from the CGM-MASS sample. We find that the mean density profile can be characterized by a single power law out to a galactocentric radius of ≈200 kpc (or ≈130 kpc above the 1σ background uncertainty), about half the virial radius of the dark matter halo. We can now estimate that the hot CGM within the virial radius accounts for (8 ± 4)% of the baryonic mass expected for the halos. Including the stars, the baryon fraction is (27 ± 16)%, or (39 ± 20)% by assuming a flattened density profile at r ≳ 130 kpc. We conclude that the hot baryons within the virial radius of massive galaxy halos are insufficient to explain the “missing baryons.”
Ritzmann, O.; Maercklin, N.; Inge, Faleide J.; Bungum, H.; Mooney, W.D.; Detweiler, S.T.
2007-01-01
BARENTS50, a new 3-D geophysical model of the crust in the Barents Sea Region has been developed by the University of Oslo, NORSAR and the U.S. Geological Survey. The target region comprises northern Norway and Finland, parts of the Kola Peninsula and the East European lowlands. Novaya Zemlya, the Kara Sea and Franz-Josef Land terminate the region to the east, while the Norwegian-Greenland Sea marks the western boundary. In total, 680 1-D seismic velocity profiles were compiled, mostly by sampling 2-D seismic velocity transects, from seismic refraction profiles. Seismic reflection data in the western Barents Sea were further used for density modelling and subsequent density-to-velocity conversion. Velocities from these profiles were binned into two sedimentary and three crystalline crustal layers. The first step of the compilation comprised the layer-wise interpolation of the velocities and thicknesses. Within the different geological provinces of the study region, linear relationships between the thickness of the sedimentary rocks and the thickness of the remaining crystalline crust are observed. We therefore, used the separately compiled (area-wide) sediment thickness data to adjust the total crystalline crustal thickness according to the total sedimentary thickness where no constraints from 1-D velocity profiles existed. The BARENTS50 model is based on an equidistant hexagonal grid with a node spacing of 50 km. The P-wave velocity model was used for gravity modelling to obtain 3-D density structure. A better fit to the observed gravity was achieved using a grid search algorithm which focussed on the density contrast of the sediment-basement interface. An improvement compared to older geophysical models is the high resolution of 50 km. Velocity transects through the 3-D model illustrate geological features of the European Arctic. The possible petrology of the crystalline basement in western and eastern Barents Sea is discussed on the basis of the observed seismic velocity structure. The BARENTS50 model is available at http://www.norsar.no/seismology/barents3d/. ?? 2007 The Authors Journal compilation ?? 2007 RAS.
Observing gas in Cosmic Web filaments to constrain simulations of cosmic structure formation
NASA Astrophysics Data System (ADS)
Wakker, Bart
2016-10-01
Cosmological simulations predict that dark matter and baryons condense into multi-Mpc filamentary structures, making up the Cosmic Web. This is outlined by dark matter halos, inside which 10% of baryons are concentrated to make stars in galaxies. The other 90% of the baryons remain gaseous, with about half located outside galaxy halos. They can be traced by Lyman alpha absorbers, whose HI column density is determined by a combination of gas density and the intensity of the extragalactic ionizing background (EGB). About 1000 HST orbits have been expended to map the 50% of baryons in galaxy halos. This contrasts with 37 orbits explicitly allocated to map the other 50% (our Cycle 18 program to observe 17 AGN projected onto a single filament at cz 3500 km/s). We propose a 68-orbit program to observe 40 AGN, creating a sample of 56 sightlines covering a second filament at cz 2500 km/s. Using this dataset we will do the following: (1) measure the intensity of the EGB to within about 50%; (2) confirm that the linewidth of Lya absorbers increases near the filament axis, suggesting increasing temperature or turbulence; (3) check our earlier finding that simulations predict a transverse density HI profile (which scales with the dark-matter profile) that is much broader than is indicated by the observations.
Probing the Circumstellar Disks of Be Stars with Contemporaneous Optical and IR Spectroscopy
NASA Astrophysics Data System (ADS)
Bjorkman, Karen S.; Hesselbach, E. N.; Wisniewski, J. P.; Bjorkman, J. E.
2006-12-01
Asymmetric double-peaked hydrogen emission line profiles in classical Be stars have been interpreted as evidence of one-armed density waves in the circumstellar disks. Contemporaneous optical and IR spectroscopy can aid in mapping the density structure of these one-armed waves as a function of radius. Furthermore, variability has been detected in these stars over both short (days to weeks) and longer (months) time-scales. We present preliminary results from contemporaneous Ritter Observatory (Hα) and IRTF SpeX (0.8-5.4 μm) spectroscopy of 16 classical Be stars observed in September 2005 and January 2006. The data illustrate a range of line profiles common in Be stars and show significant variability. These observations are the first of a larger project to utilize combined optical and IR data to investigate the physical details of these circumstellar disks. This research has been supported in part by a NASA GSRP fellowship to JPW, a NASA LTSA grant to KSB, and an NSF grant to JEB. We thank the NASA IRTF for observing time allocations and support. We thank the Ritter observing team, and especially Nancy Morrison, for crucial assistance with the supporting optical observations.
Multi-instrumental Study of Storm-induced Ionospheric Irregularities at Midlatitudes
NASA Astrophysics Data System (ADS)
Cherniak, I.; Zakharenkova, I.; Sokolovskiy, S. V.
2017-12-01
We present multi-instrumental analysis of the unusually intense plasma density irregularities occurred over European midlatitudes during geomagnetic storm of 22-23 June 2015. We combine GPS/GLONASS observations derived from the dense ground-based networks ( 1500 stations) with in situ plasma density onboard Swarm and DMSP satellites and COSMIC Radio Occultation (RO) ionospheric electron density profiles. During this geomagnetic storm, the strong ionospheric irregularities of auroral origin were registered over the Northern Europe sub-auroral and midlatitudes. Meanwhile, another kind of ionospheric irregularities of equatorial origin reached European midlatitudes from the south. The prompt penetration electric fields caused the occurrence of plasma bite-outs in the post-sunset sector over the Western Africa low latitudes and extension of the large-scale plasma bubbles toward Europe. Using GPS/GLONASS observations, the plasma bubble signatures were mapped in Europe. They were observed for more than 8 h (20-04 UT) and covered a broad area within 30o-40o N and 20o W-10o E. In this region, the steep plasma gradients, as large as 5-10 TECU/degree, and numerous embedded deep plasma depletions were developed on the background of high plasma density. For low latitude region, the bite-out signature was recognized in the form of the significantly modified shape of the COSMIC-derived ionospheric electron density profiles. These unique results were confirmed by the in situ density and upward-looking GPS data onboard the Swarm satellites at 500 km altitude, in situ density measured by DMSP and ground-based absolute TEC observations. It was found that close similarity between in situ Ne and Swarm-derived topside vertical TEC suggests that plasma density enhancements and depletions are developed in the topside ionosphere (>500 km). The intensity of plasma gradients at different altitudes was also estimated by COSMIC-based measurements of GPS signal intensity and phase fluctuations as well as by rate of TEC changes on COSMIC-GPS links. Occurrence of the plasma bubbles in Europe affected GNSS measurements over number of reference stations and led to performance degradation of SBAS EGNOS.
IUE observations of interstellar hydrogen and deuterium toward Alpha Centauri B
NASA Technical Reports Server (NTRS)
Landsman, W. B.; Murthy, J.; Henry, R. C.; Moos, H. W.; Linsky, J. L.
1986-01-01
A high dispersion profile is presented of the Lyman-alpha emission toward Alpha Cen B as recorded in two images taken with the IUE spacecraft. The spectra were examined with a three-parameter Gaussian or five-parameter solar-type profile to derive the intrinsic background stellar emission. Voight absorption profiles were calculated for the intervening H I and D I gas. A uniform, thermally broadened medium was assumed, with the calculations being based on the free stellar parameters of density, velocity dispersion and the bulk velocity of H I, and the density of D I. The use of a small aperture is shown to have been effective in eliminating geocoronal and interplanetary diffuse Ly-alpha contamination. The H I absorption profile toward Alpha Cen B is found to be equivalent to that toward Alpha Cen A, indicating that the H I profiles derived are essentially independent of stellar emission. Less success, however, was attained in obtaining any definitive D I profile, although an asymmetry in the blue and red wings of the Lyman-alpha emissions did show the presence of absorption by interstellar deuterium and allow setting a lower limit of 0.00001 for the D I/H I ratio.
Radial and Azimuthal Velocity Profiles in Gas-Puff Z-Pinches
NASA Astrophysics Data System (ADS)
Rocco, Sophia; Engelbrecht, Joseph; Banasek, Jacob; de Grouchy, Philip; Qi, Niansheng; Hammer, David
2016-10-01
The dynamics of neon, argon, and krypton (either singly or in combination) gas puff z-pinch plasmas are studied on Cornell's 1MA, 100-200ns rise-time COBRA pulsed power generator. The triple-nozzle gas puff valve, consisting of two annular gas puffs and a central jet, allows radial tailoring of the gas puff mass-density profile and the use of 1, 2 or 3 different gases at different pressures. Interferometry supplies information on sheath thickness and electron density, variously filtered PCDs and silicon diodes measure hard and soft x-ray production, and multi frame visible and extreme UV imaging systems allow tracking of the morphology of the plasma. A 527nm, 10J Thomson scattering diagnostic system is used to determine radial and azimuthal velocities. Implosion velocities of 170km/s (Kr) and 300km/s (Ne/Ar) are observed. We are investigating the correlations between instability growth, plasma density profile, velocity partitioning as a function of radius, and radiation production. Research supported by the NNSA Stewardship Sciences Academic Programs under DOE Cooperative Agreement No. DE-NA0001836.
Density and temperature structure over northern Europe
NASA Technical Reports Server (NTRS)
Philbrick, C. R.; Schmidlin, F. J.; Grossmann, K. U.; Lange, G.; Offermann, D.; Baker, K. D.; Krankowsky, D.; Von Zahn, U.
1985-01-01
During the Energy Budget Campaign, a number of profiles of the density and temperature were obtained to study the structure and variability of the atmosphere. The measurements were made using rocketborne instrumentation launched from Esrange, Sweden, and Andoya Rocket Range, Norway, during November and December 1980. The techniques included meteorological temperature sondes, passive falling sphere, accelerometer instrumented falling spheres, density gauges, mass spectrometers and infrared emission experiments. The instruments provided data covering the altitude range from 20 to 150 km. The measurements were made during periods which have been grouped into three categories by level of geomagnetic activity. Analysis has been made to compare the results and to examine the wave features and variations in the vertical profiles for scales ranging between hundreds of meters and tens of kilometers. Most of the features observed fit qualitatively within the range expected for internal gravity waves. However, the features in the profiles during one of the measurement periods are unusual and may be due to aurorally generated shock waves. The geomagnetic storm conditions caused temperature increases in the lower thermosphere which maximized in the 120-140 km region.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lau, Erwin T.; Nagai, Daisuke; Avestruz, Camille
2015-06-10
Galaxy clusters exhibit remarkable self-similar behavior which allows us to establish simple scaling relationships between observable quantities and cluster masses, making galaxy clusters useful cosmological probes. Recent X-ray observations suggested that self-similarity may be broken in the outskirts of galaxy clusters. In this work, we analyze a mass-limited sample of massive galaxy clusters from the Omega500 cosmological hydrodynamic simulation to investigate the self-similarity of the diffuse X-ray emitting intracluster medium (ICM) in the outskirts of galaxy clusters. We find that the self-similarity of the outer ICM profiles is better preserved if they are normalized with respect to the mean densitymore » of the universe, while the inner profiles are more self-similar when normalized using the critical density. However, the outer ICM profiles as well as the location of accretion shock around clusters are sensitive to their mass accretion rate, which causes the apparent breaking of self-similarity in cluster outskirts. We also find that the collisional gas does not follow the distribution of collisionless dark matter (DM) perfectly in the infall regions of galaxy clusters, leading to 10% departures in the gas-to-DM density ratio from the cosmic mean value. Our results have a number implications for interpreting observations of galaxy clusters in X-ray and through the Sunyaev–Zel’dovich effect, and their applications to cosmology.« less
NASA Astrophysics Data System (ADS)
Baushev, A. N.; del Valle, L.; Campusano, L. E.; Escala, A.; Muñoz, R. R.; Palma, G. A.
2017-05-01
Galaxy observations and N-body cosmological simulations produce conflicting dark matter halo density profiles for galaxy central regions. While simulations suggest a cuspy and universal density profile (UDP) of this region, the majority of observations favor variable profiles with a core in the center. In this paper, we investigate the convergency of standard N-body simulations, especially in the cusp region, following the approach proposed by [1]. We simulate the well known Hernquist model using the SPH code Gadget-3 and consider the full array of dynamical parameters of the particles. We find that, although the cuspy profile is stable, all integrals of motion characterizing individual particles suffer strong unphysical variations along the whole halo, revealing an effective interaction between the test bodies. This result casts doubts on the reliability of the velocity distribution function obtained in the simulations. Moreover, we find unphysical Fokker-Planck streams of particles in the cusp region. The same streams should appear in cosmological N-body simulations, being strong enough to change the shape of the cusp or even to create it. Our analysis, based on the Hernquist model and the standard SPH code, strongly suggests that the UDPs generally found by the cosmological N-body simulations may be a consequence of numerical effects. A much better understanding of the N-body simulation convergency is necessary before a `core-cusp problem' can properly be used to question the validity of the CDM model.
Finite Temperature Density Profile in SFDM
NASA Astrophysics Data System (ADS)
Robles, Victor H.; Matos, T.
Recent high-quality observations of low surface brightness (LSB) galaxies have shown that their dark matter (DM) halos prefer flat central density profiles. On the other hand the standard cold dark matter model simulations predict a more cuspy behavior. Feedback from star formation has been widely used to reconcile simulations with observations, this might be successful in field dwarf galaxies but its success in high mass LSB galaxies remains unclear. Additionally, including too much feedback in the simulations is a double-edged sword, in order to obtain a cored DM distribution from an initially cuspy one, feedback recipes require to remove a large quantity of baryons from the center of galaxies, however, other feedback recipes produce twice more satellite galaxies of a given luminosity and with much smaller mass to light ratios from those that are observed. Therefore, one DM profile that produces cores naturally and that does not require large amounts of feedback would be preferable. We find both requirements to be satisfied in the scalar field dark matter model. Here, we consider that the dark matter is an auto-interacting real scalar field in a thermal bath of temperature T with an initial Z 2 symmetric potential, as the universe expands the temperature drops so that the Z 2 symmetry is spontaneously broken and the field rolls down to a new minimum. We give an exact analytic solution to the Newtonian limit of this system and show both, that it satisfies the two desired requirements and that the rotation curve profile is not longer universal.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Baushev, A.N.; Valle, L. del; Campusano, L.E.
2017-05-01
Galaxy observations and N-body cosmological simulations produce conflicting dark matter halo density profiles for galaxy central regions. While simulations suggest a cuspy and universal density profile (UDP) of this region, the majority of observations favor variable profiles with a core in the center. In this paper, we investigate the convergency of standard N-body simulations, especially in the cusp region, following the approach proposed by [1]. We simulate the well known Hernquist model using the SPH code Gadget-3 and consider the full array of dynamical parameters of the particles. We find that, although the cuspy profile is stable, all integrals ofmore » motion characterizing individual particles suffer strong unphysical variations along the whole halo, revealing an effective interaction between the test bodies. This result casts doubts on the reliability of the velocity distribution function obtained in the simulations. Moreover, we find unphysical Fokker-Planck streams of particles in the cusp region. The same streams should appear in cosmological N-body simulations, being strong enough to change the shape of the cusp or even to create it. Our analysis, based on the Hernquist model and the standard SPH code, strongly suggests that the UDPs generally found by the cosmological N-body simulations may be a consequence of numerical effects. A much better understanding of the N-body simulation convergency is necessary before a 'core-cusp problem' can properly be used to question the validity of the CDM model.« less
Pressure profiles of plasmas confined in the field of a dipole magnet
NASA Astrophysics Data System (ADS)
Davis, Matthew Stiles
Understanding the maintenance and stability of plasma pressure confined by a strong magnetic field is a fundamental challenge in both laboratory and space plasma physics. Using magnetic and X-ray measurements on the Levitated Dipole Experiment (LDX), the equilibrium plasma pressure has been reconstructed, and variations of the plasma pressure for different plasma conditions have been examined. The relationship of these profiles to the magnetohydrodynamic (MHD) stability limit, and to the enhanced stability limit that results from a fraction of energetic trapped electrons, has been analyzed. In each case, the measured pressure profiles and the estimated fractional densities of energetic electrons were qualitatively consistent with expectations of plasma stability. LDX confines high temperature and high pressure plasma in the field of a superconducting dipole magnet. The strong dipole magnet can be either mechanically supported or magnetically levitated. When the dipole was mechanically supported, the plasma density profile was generally uniform while the plasma pressure was highly peaked. The uniform density was attributed to the thermal plasma being rapidly lost along the field to the mechanical supports. In contrast, the strongly peaked plasma pressure resulted from a fraction of energetic, mirror trapped electrons created by microwave heating at the electron cyclotron resonance (ECRH). These hot electrons are known to be gyrokinetically stabilized by the background plasma and can adopt pressure profiles steeper than the MHD limit. X-ray measurements indicated that this hot electron population could be described by an energy distribution in the range 50-100 keV. Combining information from the magnetic reconstruction of the pressure profile, multi-chord interferometer measurements of the electron density profile, and X-ray measurements of the hot electron energy distribution, the fraction of energetic electrons at the pressure peak was estimated to be ˜ 35% of the total electron population. When the dipole was magnetically levitated the plasma density increased substantially because particle losses to the mechanical supports were eliminated so particles could only be lost via slower cross-field transport processes. The pressure profile was observed to be broader during levitated operation than it was during supported operation, and the pressure appeared to be contained in both a thermal population and an energetic electron population. X-ray spectra indicated that the X-rays came from a similar hot electron population during levitated and supported operation; however, the hot electron fraction was an order of magnitude smaller during levitated operation (<3% of the total electron population). Pressure gradients for both supported and levitated plasmas were compared to the MHD limit. Levitated plasmas had pressure profiles that were (i) steeper than, (ii) shallower than, or (iii) near the MHD limit dependent on plasma conditions. However, those profiles that exceeded the MHD limit were observed to have larger fractions of energetic electrons. When the dipole magnet was supported, high pressure plasmas always had profiles that exceeded the MHD interchange stability limit, but the high pressure in these plasmas appeared to arise entirely from a population of energetic trapped electrons.
NASA Astrophysics Data System (ADS)
Theiler, C.; Diallo, A.; Fasoli, A.; Furno, I.; Labit, B.; Podestà, M.; Poli, F. M.; Ricci, P.
2008-04-01
Intermittent cross-field particle transport events (ITEs) are studied in the basic toroidal device TORPEX [TORoidal Plasma EXperiment, A. Fasoli et al., Phys. Plasmas 13, 055902 (2006)], with focus on the role of the density gradient. ITEs are due to the intermittent radial elongation of an interchange mode. The elongating positive wave crests can break apart and form blobs. This is not necessary, however, for plasma particles to be convected a considerable distance across the magnetic field lines. Conditionally sampled data reveal two different scenarios leading to ITEs. In the first case, the interchange mode grows radially from a slab-like density profile and leads to the ITE. A novel analysis technique reveals a monotonic dependence between the vertically averaged inverse radial density scale length and the probability for a subsequent ITE. In the second case, the mode is already observed before the start of the ITE. It does not elongate radially in a first stage, but at a later time. It is shown that this elongation is preceded by a steepening of the density profile as well.
Space and surface charge behavior analysis of charge-eliminated polymer films
DOE Office of Scientific and Technical Information (OSTI.GOV)
Oda, Tetsuji; Takashima, Kazunori; Ichiyama, Shinichiro
1995-12-31
Charge behavior of corona-charged or charge eliminated polymer films being dipped in the city water were studied. They were polytetrafluoroethylene (PTFE teflon{trademark}), polypropylene (PP), low density or high density polyethylene (LDPE or HDPE) thin films which are as grown (native) or plasma-processed. The plasma processing at low pressure was tested as antistatic processing. Charge elimination was done by being dipped in alcohol or city water. TSDC analysis and surface charge profile measurement were done for both charged and charge eliminated polymer films. Surface charge density of plasma processed polymer films just after corona charging is roughly the same as thatmore » of an original film. There is little difference between surface charge density profile of a native film and that of a plasma processed film. A large hetero current peak of TSDC was observed at room temperature for a processed film. It was found that the hetero peak disappears after charge elimination process. A pressure pulse wave method by using a pulse-driven piezoelectric PVDF polymer film as a piezoelectric actuator was newly developed to observe real space charge distribution. A little difference of internal space charge distribution between the plasma processed film and the native one after corona charging is found.« less
NASA Technical Reports Server (NTRS)
Cravens, T. E.; Gerard, J.-C.; Lecompte, M.; Stewart, A. I.; Rusch, D. W.
1985-01-01
The ultraviolet nitric oxide spectrometer (UVNO) experiment on the Atmosphere Explorer D (AE-D) satellite measured thermospheric nitric oxide during the winter of 1974-1975 using resonant fluorescence from the 1-0 gamma band of the molecule. Almost complete latitude coverage was obtained, but the observations were confined to morning local times close to 0900. The 1-0 gamma band intensity profiles measured by the instrument were inverted to provide vertical profiles of the NO number density between about 90 and 200 km. Typically, the measured NO concentrations reached a maximum between altitudes of 100 and 110 km, and more NO was observed at higher latitudes than at low latitudes, in agreement with previous observational studies. The shape of the NO profile was also found to be a function of latitude, with a plateau appearing in the profile near 130 km for low latitudes and mid-latitudes in the winter hemisphere.
Poloidal asymmetries in edge transport barriersa)
NASA Astrophysics Data System (ADS)
Churchill, R. M.; Theiler, C.; Lipschultz, B.; Hutchinson, I. H.; Reinke, M. L.; Whyte, D.; Hughes, J. W.; Catto, P.; Landreman, M.; Ernst, D.; Chang, C. S.; Hager, R.; Hubbard, A.; Ennever, P.; Walk, J. R.
2015-05-01
Measurements of impurities in Alcator C-Mod indicate that in the pedestal region, significant poloidal asymmetries can exist in the impurity density, ion temperature, and main ion density. In light of the observation that ion temperature and electrostatic potential are not constant on a flux surface [Theiler et al., Nucl. Fusion 54, 083017 (2014)], a technique based on total pressure conservation to align profiles measured at separate poloidal locations is presented and applied. Gyrokinetic neoclassical simulations with XGCa support the observed large poloidal variations in ion temperature and density, and that the total pressure is approximately constant on a flux surface. With the updated alignment technique, the observed in-out asymmetry in impurity density is reduced from previous publishing [Churchill et al., Nucl. Fusion 53, 122002 (2013)], but remains substantial ( n z , H / n z , L ˜ 6 ). Candidate asymmetry drivers are explored, showing that neither non-uniform impurity sources nor localized fluctuation-driven transport are able to explain satisfactorily the impurity density asymmetry. Since impurity density asymmetries are only present in plasmas with strong electron density gradients, and radial transport timescales become comparable to parallel transport timescales in the pedestal region, it is suggested that global transport effects relating to the strong electron density gradients in the pedestal are the main driver for the pedestal in-out impurity density asymmetry.
Stephanie Moore; Nathan J. Mantua; Jan A. Newton; Mitsuhiro Kawase; Mark J. Warner; Jonathan P. Kellogg
2008-01-01
Temporal and spatial patterns of variability in Puget Sound's oceanographic properties are determined using continuous vertical profile data from two long-term monitoring programs; monthly observations at 16 stations from 1993 to 2002, and biannual observations at 40 stations from 1998 to 2003. Climatological monthly means of temperature, salinity, and density...
The virialization density of peaks with general density profiles under spherical collapse
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rubin, Douglas; Loeb, Abraham, E-mail: dsrubin@physics.harvard.edu, E-mail: aloeb@cfa.harvard.edu
2013-12-01
We calculate the non-linear virialization density, Δ{sub c}, of halos under spherical collapse from peaks with an arbitrary initial and final density profile. This is in contrast to the standard calculation of Δ{sub c} which assumes top-hat profiles. Given our formalism, the non-linear halo density can be calculated once the shape of the initial peak's density profile and the shape of the virialized halo's profile are provided. We solve for Δ{sub c} for halos in an Einstein de-Sitter and a ΛCDM universe. As examples, we consider power-law initial profiles as well as spherically averaged peak profiles calculated from the statisticsmore » of a Gaussian random field. We find that, depending on the profiles used, Δ{sub c} is smaller by a factor of a few to as much as a factor of 10 as compared to the density given by the standard calculation ( ≈ 200). Using our results, we show that, for halo finding algorithms that identify halos through an over-density threshold, the halo mass function measured from cosmological simulations can be enhanced at all halo masses by a factor of a few. This difference could be important when using numerical simulations to assess the validity of analytic models of the halo mass function.« less
NASA Astrophysics Data System (ADS)
Gok, Gokhan; Mosna, Zbysek; Arikan, Feza; Arikan, Orhan; Erdem, Esra
2016-07-01
Ionospheric observation is essentially accomplished by specialized radar systems called ionosondes. The time delay between the transmitted and received signals versus frequency is measured by the ionosondes and the received signals are processed to generate ionogram plots, which show the time delay or reflection height of signals with respect to transmitted frequency. The critical frequencies of ionospheric layers and virtual heights, that provide useful information about ionospheric structurecan be extracted from ionograms . Ionograms also indicate the amount of variability or disturbances in the ionosphere. With special inversion algorithms and tomographical methods, electron density profiles can also be estimated from the ionograms. Although structural pictures of ionosphere in the vertical direction can be observed from ionosonde measurements, some errors may arise due to inaccuracies that arise from signal propagation, modeling, data processing and tomographic reconstruction algorithms. Recently IONOLAB group (www.ionolab.org) developed a new algorithm for effective and accurate extraction of ionospheric parameters and reconstruction of electron density profile from ionograms. The electron density reconstruction algorithm applies advanced optimization techniques to calculate parameters of any existing analytical function which defines electron density with respect to height using ionogram measurement data. The process of reconstructing electron density with respect to height is known as the ionogram scaling or true height analysis. IONOLAB-RAY algorithm is a tool to investigate the propagation path and parameters of HF wave in the ionosphere. The algorithm models the wave propagation using ray representation under geometrical optics approximation. In the algorithm , the structural ionospheric characteristics arerepresented as realistically as possible including anisotropicity, inhomogenity and time dependence in 3-D voxel structure. The algorithm is also used for various purposes including calculation of actual height and generation of ionograms. In this study, the performance of electron density reconstruction algorithm of IONOLAB group and standard electron density profile algorithms of ionosondes are compared with IONOLAB-RAY wave propagation simulation in near vertical incidence. The electron density reconstruction and parameter extraction algorithms of ionosondes are validated with the IONOLAB-RAY results both for quiet anddisturbed ionospheric states in Central Europe using ionosonde stations such as Pruhonice and Juliusruh . It is observed that IONOLAB ionosonde parameter extraction and electron density reconstruction algorithm performs significantly better compared to standard algorithms especially for disturbed ionospheric conditions. IONOLAB-RAY provides an efficient and reliable tool to investigate and validate ionosonde electron density reconstruction algorithms, especially in determination of reflection height (true height) of signals and critical parameters of ionosphere. This study is supported by TUBITAK 114E541, 115E915 and Joint TUBITAK 114E092 and AS CR 14/001 projects.
Gravitational circulation in a tidal strait
Smith, P.E.; Cheng, R.T.; Burau, J.R.; Simpson, M.R.; ,
1991-01-01
Eight months of continuous measurements of tidal current profiles with an acoustic Doppler current profiler (ADCP) were made in Carquinez Strait, California, during 1988 for the purpose of estimating long-term variations in vertical profiles of Eulerian residual currents. Salinity stratification near the ADCP deployment site also was analyzed. The strength of density-driven gravitational circulation and the amount of salinity stratification in the strait varied significantly over the spring-neap tidal cycle. Density currents and stratification were greater during neap tides when vertical mixing from the tide is at a minimum. Landward residual currents along the bottom were observed only during neap tides. Simulations made with a three-dimensional model to supplement the field measurements show a significant, tidally induced lateral variation in residual currents across the strait. The Stokes drift of 1-2 cm/s in the strait is small relative to the speed of gravitational currents.
Polycyclic aromatic hydrocarbon formation in carbon-rich stellar envelopes
NASA Technical Reports Server (NTRS)
Cherchneff, Isabelle; Barker, John R.; Tielens, Alexander G. G. M.
1992-01-01
A detailed chemical kinetic scheme is applied to stellar envelope profiles of gas density and temperature profiles in order to study the formation of PAH molecules in carbon-rich stellar outflows. Chemical concentration profiles are calculated for several envelope models by integrating the coupled continuity equations that include spherically expanding flows from an inner boundary at the shock formation radius. The influence of the 'inverse greenhouse' effect experienced by small PAHs is investigated and shown to increase the PAH yield by many orders of magnitude. It is shown that the route through propargyl radicals could be an important channel to produce benzene. PAH formation yields are found to be extremely sensitive to gas density and temperature and are much smaller than values inferred from the observed dust content of late-type carbon-rich stellar envelopes. It is therefore unlikely that aromatic molecules are generated in the stellar outflow itself.
Self-similar infall models for cold dark matter haloes
NASA Astrophysics Data System (ADS)
Le Delliou, Morgan Patrick
2002-04-01
How can we understand the mechanisms for relaxation and the constitution of the density profile in CDM halo formation? Can the old Self-Similar Infall Model (SSIM) be made to contain all the elements essential for this understanding? In this work, we have explored and improved the SSIM, showing it can at once explain large N-body simulations and indirect observations of real haloes alike. With the use of a carefully-crafted simple shell code, we have followed the accretion of secondary infalls in different settings, ranging from a model for mergers to a distribution of angular momentum for the shells, through the modeling of a central black hole. We did not assume self-similar accretion from initial conditions but allowed for it to develop and used coordinates that make it evident. We found self-similar accretion to appear very prominently in CDM halo formation as an intermediate stable (quasi-equilibrium) stage of Large Scale Structure formation. Dark Matter haloes density profiles are shown to be primarily influenced by non-radial motion. The merger paradigm reveals itself through the SSIM to be a secondary but non-trivial factor in those density profiles: it drives the halo profile towards a unique attractor, but the main factor for universality is still the self-similarity. The innermost density cusp flattening observed in some dwarf and Low Surface Brightness galaxies finds a natural and simple explanation in the SSIM embedding a central black hole. Relaxation in cold collisionless collapse is clarified by the SSIM. It is a continuous process involving only the newly-accreted particles for just a few dynamical times. All memory of initial energy is not lost so relaxation is only moderately violent. A sharp cut off, or population inversion, originates in initial conditions and is maintained through relaxation. It characterises moderately violent relaxation in the system's Distribution Function. Finally, the SSIM has shown this relaxation to arise from phase space instability once the halo has been stirred enough through phase mixing. Extensions of these explorations are possible and expected to refine our understanding of the formation of dark halo density profiles. A link should be sought, for instance, between the present results on relaxation and the entropy of the system.
NASA Technical Reports Server (NTRS)
Vedantam, NandaKishore; Parthasarathy, Ramkumar N.
2004-01-01
The effects of the mean velocity profiles on the instability characteristics in the near-injector region of axisymmetric low density gas jets injected vertically upwards into a high-density gas medium were investigated using linear inviscid stability analysis. The flow was assumed to be isothermal and locally parallel. Three velocity profiles, signifying different changes in the mean velocity in the shear layer, were used in the analysis. The effects of the inhomogeneous shear layer and the Froude number (signifying the effects of gravity) on the instability for each set of mean profiles were delineated. At a large Froude number (negligible gravity), a critical density ratio was found for the three profiles at which the jet became absolutely unstable. The critical density ratio for each velocity profile was increased as the Froude number was reduced. A critical Froude number was found for the three sets of profiles, below which the jet was absolutely unstable for all the density ratios less than unity, which demarcated the jet flow into the momentum-driven regime and the buoyancy-driven regime.
Kliore, A J; Woo, R; Armstrong, J W; Patel, I R; Croft, T A
1979-02-23
Fourteen profiles of electron density in the ionosphere of Venus were obtainecd by the dual-frequency radio occulation method with the Pioneer Venus orbiter between 5 and 30 December 1978. The solar zenith angles for these measurements were between about 85 degrees and 92 degrees , and the latitudes ranged from about 81 degrees to 88 degrees (ecliptic north). In addition to the expected decreasein peak electron density from about 1.5 x 10(3) to 0.5 x 10(3) per cubic centimeter with increasing solar zenith angle, a region of almost constant electron density above about 250 kilometers was observed. The ionopause height varies from about 300 to 700 kilometers and seems to be influenced by diurnal changes in solar wind conditions. The structures of the profiles are consistent with models in which O(2)(+) dominates near the ionization peak and is replaced by O(+) at higher altitudes.
Scaling of confinement and profiles in the EXTRAP T2 reversed-field pinch
NASA Astrophysics Data System (ADS)
Welander, A.
1999-01-01
In the EXTRAP T2 reversed-field pinch the diagnostic techniques for the measurement of electron density and temperature include; Thomson scattering which gives values at three radial positions in the core (r/a = 0, 0.28, 0.56), Langmuir probes which give values at the edge (r/a > 0.9) and interferometry which gives a line-averaged density. The empirical scaling of electron density and temperature including profile information with global plasma parameters has been studied. The density profile is subject to large variations, with an average parabolic shape when the density is low and flatter shapes when the density is increased. The change in the profile shape can be attributed to a shift in the penetration length of neutrals from the vicinity of the wall. The temperature scales roughly as I/n1/2 where I is the plasma current and n is the density. The temperature profile is always quite flat with lower variations and there is a tendency for a flatter profile at higher temperatures.
Hirano, Y; Kiyama, S; Fujiwara, Y; Koguchi, H; Sakakita, H
2015-11-01
A high current density (≈3 mA/cm(2)) hydrogen ion beam source operating in an extremely low-energy region (E(ib) ≈ 150-200 eV) has been realized by using a transition to a highly focused state, where the beam is extracted from the ion source chamber through three concave electrodes with nominal focal lengths of ≈350 mm. The transition occurs when the beam energy exceeds a threshold value between 145 and 170 eV. Low-level hysteresis is observed in the transition when E(ib) is being reduced. The radial profiles of the ion beam current density and the low temperature ion current density can be obtained separately using a Faraday cup with a grid in front. The measured profiles confirm that more than a half of the extracted beam ions reaches the target plate with a good focusing profile with a full width at half maximum of ≈3 cm. Estimation of the particle balances in beam ions, the slow ions, and the electrons indicates the possibility that the secondary electron emission from the target plate and electron impact ionization of hydrogen may play roles as particle sources in this extremely low-energy beam after the compensation of beam ion space charge.
Prusik, Krzysztof; Kortas, Jakub; Prusik, Katarzyna; Mieszkowski, Jan; Jaworska, Joanna; Skrobot, Wojciech; Lipinski, Marcin; Ziemann, Ewa; Antosiewicz, Jedrzej
2018-01-01
Different studies have demonstrated that regular exercise can induce changes in the lipid profile, but results remain inconclusive. Available data suggest that correction of vitamin D deficiency can improve the lipid profile. In this study, we have hypothesized that Nordic Walking training will improve lipid profile in elderly women supplemented with vitamin D. A total of 109 elderly women (68 ± 5.12 years old) took part in the study. First group [experimental group (EG): 35 women] underwent 12 weeks of Nordic Walking (NW) training combined with vitamin D supplementation (4,000 IU/day), second group [supplementation group (SG): 48 women] was only supplemented with vitamin D (4,000 IU/day), and third group [control group (CG): 31 women] was not subject to any interventions. Blood analysis of total cholesterol (TC), triglycerides (TG), high-density lipoprotein cholesterol (HDL-C), low-density lipoprotein cholesterol (LDL-C), and 25-OH-D 3 was performed at baseline and after the 12 weeks of NW training. Additionally, a battery of field tests specifically developed for older adults was used to assess the components of functional fitness. The same blood analysis was repeated for the EG 6 months after the main experiment. After 12 weeks of NW training and vitamin D supplementation, in the EG a decrease in TC, LDL-C, and TG was observed. In the SG, no changes in the lipid profile were observed, whereas in the CG an increase in the HDL-C level was noticed. Positive physical fitness changes were only observed in the EG. Our obtained data confirmed baseline assumption that regular exercise induces positive alternations in lipid profile in elderly women supported by supplementation of vitamin D.
H α and H β Raman scattering line profiles of the symbiotic star AG Pegasi
NASA Astrophysics Data System (ADS)
Lee, Seong-Jae; Hyung, Siek
2018-04-01
The H α and H β line profiles of the symbiotic star AG Pegasi, observed in 1998 September (phase ϕ = 10.24), display top narrow double Gaussian components and bottom broad components (FWHM = 200-400 km s-1). The photoionization model indicates that the ionized zone, responsible for the hydrogen Balmer and Lyman lines, is radiation-bounded, with a hydrogen gas number density of nH ˜ 109.85 cm-3 and a gas temperature of Te = 12 000-15 000 K. We have carried out Monte Carlo simulations to fit the Raman scattering broad wings, assuming that the hydrogen Ly β and Ly γ lines emitted within the radiation-bounded H II zone around a white dwarf have the same double Gaussian line profile shape as the hydrogen Balmer lines. The simulation shows that the scattering H I zones are attached to (or located just outside) the inner H II shells. The best fit to the observed broad H I line profiles indicates that the column density of the scattering neutral zone is NH ≃ 3-5 × 1019 cm-2. We have examined whether the geometrical structure responsible for the observed H α and H β line profiles is a bipolar conical shell structure, consisting of the radiation-bounded ionized zone and the outer material bounded neutral zone. The expanding bipolar structure might be two opposite regions of the common envelope or the outer shell of the Roche lobe around the hot white dwarf, formed through the mass inflows from the giant star and pushed out by the fast winds from the hot white dwarf.
Characterizing a December 2005 density current event in the Chicago River, Chicago, Illinois
Garcia, C.M.; Jackson, P.R.; Oberg, K.A.; Johnson, K.K.; Garcia, M.H.
2007-01-01
During the winter months, the Chicago River in Chicago, Illinois is subject to bi-directional flows, and density currents are thought to be responsible for these flow variations. This paper presents detailed field measurements using three acoustic Doppler current profiler instruments and simultaneous water-quality measurements made during December 2005. Observations indicate that the formation of density currents within the Chicago River and density differences are mostly due to salinity differences between the North Branch and the main stem of the Chicago River, whereas temperature difference does not appreciably affect the creation of density currents. Sources of higher water temperature, conductivity, and salinity values should be addressed in future studies. ?? 2007 ASCE.
Damping of Resonantly Forced Density Waves in Dense Planetary Rings
NASA Astrophysics Data System (ADS)
Lehmann, Marius; Schmidt, Jürgen; Salo, Heikki
2016-10-01
We address the stability of resonantly forced density waves in dense planetary rings.Already by Goldreich and Tremaine (1978) it has been argued that density waves might be unstable, depending on the relationship between the ring's viscosity and the surface mass density. In the recent paper (Schmidt et al. 2016) we have pointed out that when - within a fluid description of the ring dynamics - the criterion for viscous overstability is satisfied, forced spiral density waves become unstable as well. In this case, linear theory fails to describe the damping.We apply the multiple scale formalism to derive a weakly nonlinear damping relation from a hydrodynamical model.This relation describes the resonant excitation and nonlinear viscous damping of spiral density waves in a vertically integrated fluid disk with density dependent transport coefficients. The model consistently predicts linear instability of density waves in a ring region where the conditions for viscous overstability are met. In this case, sufficiently far away from the Lindblad resonance, the surface mass density perturbation is predicted to saturate to a constant value due to nonlinear viscous damping. In general the model wave damping lengths depend on a set of input parameters, such as the distance to the threshold for viscous overstability and the ground state surface mass density.Our new model compares reasonably well with the streamline model for nonlinear density waves of Borderies et al. 1986.Deviations become substantial in the highly nonlinear regime, corresponding to strong satellite forcing.Nevertheless, we generally observe good or at least qualitative agreement between the wave amplitude profiles of both models. The streamline approach is superior at matching the total wave profile of waves observed in Saturn's rings, while our new damping relation is a comparably handy tool to gain insight in the evolution of the wave amplitude with distance from resonance, and the different regimes of wave formation and the dependence on the parameters of the model.
Using Ice and Dust Lines to Constrain the Surface Densities of Protoplanetary Disks
NASA Astrophysics Data System (ADS)
Powell, Diana; Murray-Clay, Ruth; Schlichting, Hilke
2018-04-01
The surface density of protoplanetary disks is a fundamental parameter that still remains largely unconstrained due to uncertainties in the dust-to-gas ratio and CO abundance. In this talk I will present a novel method for determining the surface density of protoplanetary disks through consideration of disk “dust lines,” which indicate the observed disk radial scale at different observational wavelengths. I will provide an initial proof of concept of our model through an application to the disk TW Hya where we are able to estimate the disk dust-to-gas ratio, CO abundance, and accretion rate in addition to the total disk surface density. We find that our derived surface density profile and dust-to-gas ratio are consistent with the lower limits found through measurements of HD gas. We further apply our model to a large parameter space of theoretical disks and find three observational diagnostics that may be used to test its validity. Using this method we derive disks that may be much more massive than previously thought, often approaching the limit of gravitational stability.
Loodts, V; Trevelyan, P M J; Rongy, L; De Wit, A
2016-10-01
Various spatial density profiles can develop in partially miscible stratifications when a phase A dissolves with a finite solubility into a host phase containing a dissolved reactant B. We investigate theoretically the impact of an A+B→C reaction on such density profiles in the host phase and classify them in a parameter space spanned by the ratios of relative contributions to density and diffusion coefficients of the chemical species. While the density profile is either monotonically increasing or decreasing in the nonreactive case, reactions combined with differential diffusivity can create eight different types of density profiles featuring up to two extrema in density, at the reaction front or below it. We use this framework to predict various possible hydrodynamic instability scenarios inducing buoyancy-driven convection around such reaction fronts when they propagate parallel to the gravity field.
NASA Technical Reports Server (NTRS)
Olson, D. W.; Silk, J.
1979-01-01
This paper studies the density profile that forms around a spherically symmetric bound central core immersed in a homogeneous-background k = 0 or k = -1 Friedmann-Robertson-Walker cosmological model, with zero pressure. Although the density profile in the linearized regime is almost arbitrary, in the nonlinear regime certain universal features of the density profile are obtained that are independent of the details of the initial conditions. The formation of 'halos' ('holes') with densities greater than (less than) the average cosmological density is discussed. It is shown that in most regions 'halos' form, and universal values are obtained for the slope of the ln (density)-ln (radius) profile in those 'halos' at late times, independently of the shape of the initial density profile. Restrictions are derived on where it is possible for 'holes' to exist at late times and on how such 'holes' must have evolved.
Lunar ionosphere exploration method using auroral kilometric radiation
NASA Astrophysics Data System (ADS)
Goto, Yoshitaka; Fujimoto, Takamasa; Kasahara, Yoshiya; Kumamoto, Atsushi; Ono, Takayuki
2011-01-01
The evidence of a lunar ionosphere provided by radio occultation experiments performed by the Soviet spacecraft Luna 19 and 22 has been controversial for the past three decades because the observed large density is difficult to explain theoretically without magnetic shielding from the solar wind. The KAGUYA mission provided an opportunity to investigate the lunar ionosphere with another method. The natural plasma wave receiver (NPW) and waveform capture (WFC) instruments, which are subsystems of the lunar radar sounder (LRS) on board the lunar orbiter KAGUYA, frequently observe auroral kilometric radiation (AKR) propagating from the Earth. The dynamic spectra of the AKR sometimes exhibit a clear interference pattern that is caused by phase differences between direct waves and waves reflected on a lunar surface or a lunar ionosphere if it exists. It was hypothesized that the electron density profiles above the lunar surface could be evaluated by comparing the observed interference pattern with the theoretical interference patterns constructed from the profiles with ray tracing. This method provides a new approach to examining the lunar ionosphere that does not involve the conventional radio occultation technique.
Shock Initiation and Equation of State of Ammonium Nitrate
NASA Astrophysics Data System (ADS)
Robbins, David; Sheffield, Steve; Dattelbaum, Dana; Chellappa, Raja; Velisavljevic, Nenad
2013-06-01
Ammonium nitrate (AN) is a widely used fertilizer and mining explosive commonly found in ammonium nitrate-fuel oil. Neat AN is a non-ideal explosive with measured detonation velocities approaching 4 km/s. Previously, we reported a thermodynamically-complete equation of state for AN based on its maximum density, and showed that near-full density AN did not initiate when subjected to shock input conditions up to 22 GPa. In this work, we extend these initial results, by presenting new Hugoniot data for intermediate density neat AN obtained from gas gun-driven plate impact experiments. AN at densities from 1.8 to 1.5 g/cm3 were impacted into LiF windows using a two-stage light gas gun. Dual VISARs were used to measure the interfacial particle velocity wave profile as a function of time following impact. The new Hugoniot data, in addition to updates to thermodynamic parameters derived from structural analysis and vibrational spectroscopy measurements in high pressure diamond anvil cell experiments, are used to refine the unreacted EOS for AN. Furthermore, shock initiation of neat AN was observed as the initial porosity increased (density decreased). Insights into the relationship(s) between initial density and shock initiation sensitivity are also presented, from evidence of shock initiation in the particle velocity profiles obtained for the lower density AN samples.
TIDAL STIRRING OF SATELLITES WITH SHALLOW DENSITY PROFILES PREVENTS THEM FROM BEING TOO BIG TO FAIL
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tomozeiu, Mihai; Mayer, Lucio; Quinn, Thomas, E-mail: mihai@physik.uzh.ch
The “too big to fail” problem is revisited by studying the tidal evolution of populations of dwarf satellites with different density profiles. The high-resolution cosmological ΛCDM “ErisMod” set of simulations is used. These simulations can model both the stellar and dark matter components of the satellites, and their evolution under the action of the tides of a Milky Way (MW)-sized host halo at a force resolution better than 10 pc. The stronger tidal mass loss and re-shaping of the mass distribution induced in satellites with γ = 0.6 dark matter density distributions, as those resulting from the effect of feedbackmore » in hydrodynamical simulations of dwarf galaxy formation, are sufficient to bring the circular velocity profiles in agreement with the kinematics of MW’s dSphs. In contrast, in simulations in which the satellites retain cusps at z = 0 there are several “massive failures” with circular velocities in excess of the observational constraints. Various sources of deviations in the conventionally adopted relation between the circular velocity at the half-light radius and the one-dimensional line of sight velocity dispersions are found. Such deviations are caused by the response of circular velocity profiles to tidal effects, which also varies depending on the initially assumed inner density profile and by the complexity of the stellar kinematics, which include residual rotation and anisotropy. In addition, tidal effects naturally induce large deviations in the stellar mass–halo mass relation for halo masses below 10{sup 9} M {sub ⊙}, preventing any reliable application of the abundance matching technique to dwarf galaxy satellites.« less
Probing the initial conditions of star formation: the structure of the prestellar core L 1689B.
NASA Astrophysics Data System (ADS)
Andre, P.; Ward-Thompson, D.; Motte, F.
1996-10-01
In a recent JCMT submillimeter study, Ward-Thompson et al. (1994MNRAS.268..276W) obtained the first dust continuum maps of five low-mass dense cores among the sample of starless ammonia cores from Myers and colleagues. Here, we present the results of new 1.3mm continuum mapping observations for one of these cores, L 1689B, taken with the IRAM 30-m telescope equipped with the 7-channel and 19-channel MPIfR bolometer arrays. The new 1.3mm data, which were obtained in the `on-the-fly' scanning mode, have better angular resolution and sensitivity than the earlier 800 μm data, reaching an rms noise level of ~3mJy/13"beam. Our IRAM map resolves L 1689B as an east-west elongated core of deconvolved size 0.045pcx0.067pc (FWHM), central column density N_H_2__~1.5x10^22^cm^-2^, and mass M_FWHM_~0.6Msun_, in good agreement with our previous JCMT estimates. We confirm that the radial column density profile N(θ) of L 1689B is not consistent with a single power law with angular radius θ but flattens out near its centre. Comparison with synthetic model profiles simulating our `on-the-fly' observations indicates that N(θ_maj_) {prop.to}θ_maj_^-0.2^ for θ_maj_<=25" and N(θ_maj_) {prop.to}θ_maj_^-1^ for 25"<θ_maj_<=90", where θ_maj_ is measured along the major axis of the core. The observed mean profile is not consistent with a simple Gaussian source, being flatter than a Gaussian in its outer region. However, the profile measured along the minor axis of L 1689B is significantly steeper and apparently consistent with a Gaussian `edge' in the north-south direction. The mass, radius, and density of the relatively flat central region are estimated to be ~0.3Msun_, ~4000AU, and ~2x10^5^cm^-3^, respectively. The mass of L 1689B and its large (>30) density contrast with the surrounding molecular cloud indicate that it is not a transient structure but a self-gravitating pre-stellar core. The flat inner profile and other measured characteristics of L 1689B are roughly consistent with theoretical predictions for a magnetically-supported, flattened core either on the verge of collapse or in an early phase of dynamical contraction. In this case, the mean magnetic field in the central region should be <~80μG, which is high but not inconsistent with existing observational constraints. Alternatively, the observed core structure may also be explained by equilibrium models of primarily thermally supported, self-gravitating spheroids interacting with an external UV radiation field. The present study supports the conclusions of our previous JCMT survey and suggests that, in contrast with protostellar envelopes, most pre-stellar cores have flat inner density gradients which approach ρ(r) {prop.to}r^-2^ only beyond a few thousand AU. This implies that, in some cases at least, the initial conditions for protostellar collapse depart significantly from a singular isothermal sphere.
Midlatitude D region variations measured from broadband radio atmospherics
NASA Astrophysics Data System (ADS)
Han, Feng
The high power, broadband very low frequency (VLF, 3--30 kHz) and extremely low frequency (ELF, 3--3000 Hz) electromagnetic waves generated by lightning discharges and propagating in the Earth-ionosphere waveguide can be used to measure the average electron density profile of the lower ionosphere (D region) across the wave propagation path due to several reflections by the upper boundary (lower ionosphere) of the waveguide. This capability makes it possible to frequently and even continuously monitor the D region electron density profile variations over geographically large regions, which are measurements that are essentially impossible by other means. These guided waves, usually called atmospherics (or sferics for short), are recorded by our sensors located near Duke University. The purpose of this work is to develop and implement algorithms to derive the variations of D region electron density profile which is modeled by two parameters (one is height and another is sharpness), by comparing the recorded sferic spectra to a series of model simulated sferic spectra from using a finite difference time domain (FDTD) code. In order to understand the time scales, magnitudes and sources for the midlatitude nighttime D region variations, we analyzed the sferic data of July and August 2005, and extracted both the height and sharpness of the D region electron density profile. The heights show large temporal variations of several kilometers on some nights and the relatively stable behavior on others. Statistical calculations indicate that the hourly average heights during the two months range between 82.0 km and 87.2 km with a mean value of 84.9 km and a standard deviation of 1.1 km. We also observed spatial variations of height as large as 2.0 km over 5 degrees latitudes on some nights, and no spatial variation on others. In addition, the measured height variations exhibited close correlations with local lightning occurrence rate on some nights but no correlation with local lightning or displaced lightning on others. The nighttime profile sharpness during 2.5 hours in two different nights was calculated, and the results were compared to the equivalent sharpness derived from International Reference Ionosphere (IRI) models. Both the absolute values and variation trends in IRI models are different from those in broadband measurements. Based on sferic data similar to those for nighttime, we also measured the day-time D region electron density profile variations in July and August 2005 near Duke University. As expected, the solar radiation is the dominant but not the only determinant source for the daytime D region profile height temporal variations. The observed quiet time heights showed close correlations with solar zenith angle changes but unexpected spatial variations not linked to the solar zenith angle were also observed on some days, with 15% of days exhibiting regional differences larger than 0.5 km. During the solar flare, the induced height change was approximately proportional to the logarithm of the X-ray fluxes. During the rising and decaying phases of the solar flare, the height changes correlated more consistently with the short (wavelength 0.5--4 A), rather than the long (wavelength 1--8 A) X-ray flux changes. The daytime profile sharpness during morning, noontime and afternoon periods in three different days and for the solar zenith angle range 20 to 75 degrees was calculated. These broadband measured results were compared to narrowband VLF measurements, IRI models and Faraday rotation base IRI models (called FIRI). The estimated sharpness from all these sources was more consistent when the solar zenith angle was small than when it was large. By applying the nighttime and daytime measurement techniques, we also derived the D region variations during sunrise and sunset periods. The measurements showed that both the electron density profile height and sharpness decrease during the sunrise period while increase during the sunset period.
Density profile and fiber alignment in fiberboard from three southern hardwoods
George E. Woodson
1977-01-01
Density profile and fiber orientation were evaluated for their effects on selected mechanical properties of medium density fiberboard. Bending MOE and modulus of rigidity were predicted from density profiles established by x-ray radiography. Orthotropic ratios ranged from 1.19 to 2.32 for electrically aligned fiberboards from three southern hardwoods. Off-axis tensile...
NASA Technical Reports Server (NTRS)
Bougher, Stephen W.; Engel, S.; Hinson, D. P.; Murphy, J. R.
2003-01-01
Martian electron density profiles provided by the Mars Global Surveyor (MGS) Radio Science (RS) experiment over the 95-200 km altitude range indicate that the height of the electron peak and the longitudinal structure of the peak height are sensitive indicators of the physical state of the Mars lower atmosphere. The present analysis is carried out on five sets of occultation profiles, all at high solar zenith angles (SZA). Variations spanning 2-Martian years are investigated near aphelion conditions at high Northern latitudes (64.7-77.6N). A mean ionospheric peak height of 133.5-135 km was obtained for all aphelion profiles near SZA = 78-82; a corresponding mean peak density of 7.3-8.5 x 10(exp 4)/cu cm was also measured, reflecting solar moderate conditions. Strong wave 2-3 oscillations in peak heights were observed as a function of longitude over both Martian seasons. The Mars Thermospheric General Circulation Model (MTGCM) is exercised for Mars aphelion conditions. The measured interannual variations in the mean and longitude structure of the peak heights are small (consistent with MTGCM simulations), signifying the repeatability of the Mars atmosphere during aphelion conditions. A non-migrating (semi-diurnal period, wave#l eastward propagating) tidal mode is likely responsible for the wave#3 longitude features identified. The height of this photochemically driven peak can be observed to provide an ongoing monitor of the changing state of the Mars lower atmosphere. The magnitudes of these same peaks may reflect more than changing solar EUV fluxes when they are located in the vicinity of Mars crustal magnetic field centers.
CCS Observations of the Protostellar Envelope of B335
NASA Technical Reports Server (NTRS)
Velusamy, T.; Kuiper, T. B. H.; Langer, W. D.
1995-01-01
Knowledge of the density, velocity and chemical profiles around protostars is of fundamental importance for testing dynamical models of protostar evolution and understanding the nature of the material falling onto circumstellar disks. Presented are single dish and interferometric spectral line observations of CCS towards the core of B335, a classic example of a young, low mass stellar object.
León-Latre, Montserrat; Moreno-Franco, Belén; Andrés-Esteban, Eva M; Ledesma, Marta; Laclaustra, Martín; Alcalde, Víctor; Peñalvo, José L; Ordovás, José M; Casasnovas, José A
2014-06-01
To analyze the association between sitting time and biomarkers of insulin resistance and inflammation in a sample of healthy male workers. Cross-sectional study carried out in a sample of 929 volunteers belonging to the Aragon Workers' Health Study cohort. Sociodemographic, anthropometric, pharmacological and laboratory data were collected: lipids-total cholesterol, high-density lipoprotein cholesterol, low-density lipoprotein cholesterol, triglycerides, apolipoproteins A-1 and B-100, lipoprotein (a)-, insulin resistance-glucose, glycated hemoglobin, homeostasis model assessment of insulin resistance, insulin, and triglyceride/high-density lipoprotein cholesterol ratio-, and inflammatory profile-C-reactive protein and leukocytes. Information on sitting time and physical activity was assessed using a questionnaire. Sedentary behavior was analyzed in terms of prevalences and medians, according to tertiles, using a multivariate model (crude and adjusted linear regression) with biomarkers of inflammation and insulin resistance. The most sedentary individuals had higher body mass index, greater waist circumference, and higher systolic blood pressure, with a significant upward trend in each tertile. Likewise, they had a worse lipid profile with a higher C-reactive protein level, homeostasis model assessment of insulin resistance index, triglyceride/high-density lipoprotein cholesterol ratio, and insulin concentration. In the multivariate analysis, we observed a significant association between the latter parameters and sitting time in hours (log C-reactive protein [β = 0.07], log homeostasis model assessment of insulin resistance index [β = 0.05], triglyceride/high-density lipoprotein cholesterol ratio [β = 0.23], and insulin [β = 0.44]), which remained after adjustment for metabolic equivalents-h/week. Workers who spend more time sitting show a worse inflammatory and insulin resistance profile independently of the physical activity performed. Copyright © 2013 Sociedad Española de Cardiología. Published by Elsevier Espana. All rights reserved.
James, Shelley A; Clearwater, Michael J; Meinzer, Frederick C; Goldstein, Guillermo
2002-03-01
Robust thermal dissipation sensors of variable length (3 to 30 cm) were developed to overcome limitations to the measurement of radial profiles of sap flow in large-diameter tropical trees with deep sapwood. The effective measuring length of the custom-made sensors was reduced to 1 cm at the tip of a thermally nonconducting shaft, thereby minimizing the influence of nonuniform sap flux density profiles across the sapwood. Sap flow was measured at different depths and circumferential positions in the trunks of four trees at the Parque Natural Metropolitano canopy crane site, Panama City, Republic of Panama. Sap flow was detected to a depth of 24 cm in the trunks of a 1-m-diameter Anacardium excelsum (Bertero & Balb. ex Kunth) Skeels tree and a 0.65-m-diameter Ficus insipida Willd. tree, and to depths of 7 cm in a 0.34-m-diameter Cordia alliodora (Ruiz & Pav.) Cham. trunk, and 17 cm in a 0.47-m-diameter Schefflera morototoni (Aubl.) Maguire, Steyerm. & Frodin trunk. Sap flux density was maximal in the outermost 4 cm of sapwood and declined with increasing sapwood depth. Considerable variation in sap flux density profiles was observed both within and among the trees. In S. morototoni, radial variation in sap flux density was associated with radial variation in wood properties, particularly vessel lumen area and distribution. High variability in radial and circumferential sap flux density resulted in large errors when measurements of sap flow at a single depth, or a single radial profile, were used to estimate whole-plant water use. Diurnal water use ranged from 750 kg H2O day-1 for A. excelsum to 37 kg H2O day-1 for C. alliodora.
Kliore, A J; Patel, I R; Nagy, A F; Cravens, T E; Gombosi, T I
1979-07-06
Pioneer Venus orbiter dual-frequency radio occultation measurements have produced many electron density profiles of the nightside ionosphere of Venus. Thirty-six of these profiles, measured at solar zenith angles (chi) from 90.60 degrees to 163.5 degrees , are discussed here. In the "deep" nightside ionosphere (chi > 110 degrees ), the structure and magnitude of the ionization peak are highly variable; the mean peak electron density is 16,700 +/- 7,200 (standard deviation) per cubic centimeter. In contrast, the altitude of the peak remains fairly constant with a mean of 142.2 +/- 4.1 kilometers, virtually identical to the altitude of the main peak of the dayside terminator ionosphere. The variations in the peak ionization are not directly related to contemporal variations in the solar wind speed. It is shown that electron density distributions similar to those observed in both magnitude and structure can be produced by the precipitation on the nightside of Venus of electron fluxes of about 108 per square centimeter per second with energies less than 100 electron volts. This mechanism could very likely be responsible for the maintenance of the persistent nightside ionosphere of Venus, although transport processes may also be important.
Modification of turbulence and turbulent transport associated with a confinement transition in LAPD
NASA Astrophysics Data System (ADS)
Carter, Troy
2009-11-01
Azimuthal flow is driven in the edge of the Large Plasma Device (LAPD) through biasing a section of the vacuum vessel relative to the plasma source cathode. As the applied bias exceeds a threshold, a transition in radial particle confinement is observed, evidenced by a dramatic steepening in the density profile, similar to the L- to H-mode transition in toroidal confinement devices. The threshold behavior and dynamic behavior of radial transport is related to flow penetration and the degree of spatial overlap between the flow shear and density gradient profiles. An investigation of the changes in turbulence and turbulent particle transport associated with the confinement transition is presented. Two-dimensional cross-correlation measurements show that the spatial coherence of edge turbulence in LAPD changes significantly with biasing. The azimuthal correlation in the turbulence increases dramatically, while the radial correlation length is little altered. Turbulent amplitude is reduced at the transition, particularly in electric field fluctuations, but the dominant change observed is in the cross-phase between density and electric field fluctuations. The changes in cross-phase lead to a suppression and then apparent reversal of turbulent particle flux as the threshold is exceeded.
Bulgeless dwarf galaxies and dark matter cores from supernova-driven outflows.
Governato, F; Brook, C; Mayer, L; Brooks, A; Rhee, G; Wadsley, J; Jonsson, P; Willman, B; Stinson, G; Quinn, T; Madau, P
2010-01-14
For almost two decades the properties of 'dwarf' galaxies have challenged the cold dark matter (CDM) model of galaxy formation. Most observed dwarf galaxies consist of a rotating stellar disk embedded in a massive dark-matter halo with a near-constant-density core. Models based on the dominance of CDM, however, invariably form galaxies with dense spheroidal stellar bulges and steep central dark-matter profiles, because low-angular-momentum baryons and dark matter sink to the centres of galaxies through accretion and repeated mergers. Processes that decrease the central density of CDM halos have been identified, but have not yet reconciled theory with observations of present-day dwarfs. This failure is potentially catastrophic for the CDM model, possibly requiring a different dark-matter particle candidate. Here we report hydrodynamical simulations (in a framework assuming the presence of CDM and a cosmological constant) in which the inhomogeneous interstellar medium is resolved. Strong outflows from supernovae remove low-angular-momentum gas, which inhibits the formation of bulges and decreases the dark-matter density to less than half of what it would otherwise be within the central kiloparsec. The analogues of dwarf galaxies-bulgeless and with shallow central dark-matter profiles-arise naturally in these simulations.
The dark matter content of Local Group dwarf spheroidals
NASA Astrophysics Data System (ADS)
Collins, Michelle; PAndAS Team
2016-01-01
Dwarf spheroidal galaxies are the most dark matter dominated objects we have observed in the Universe. By measuring the dynamics of their stellar populations, we can hope to map out the shapes of their central density profiles, and compare these to expectations from simulations. In this poster, we will present the central kinematics of a range of dwarf galaxies around the Milky Way and Andromeda, taken as part of the PAndAS Keck II DEIMOS survey. We will highlight a number of unusual objects, which have either very high mass to light ratios - indicating they may be promising candidates for indirect detection experiments - or those with exceptionally low central densities, whose kinematic profiles suggest that these systems are out of dynamical equilibrium.
Gutt, C; Sant, T; Ksenzov, D; Capotondi, F; Pedersoli, E; Raimondi, L; Nikolov, I P; Kiskinova, M; Jaiswal, S; Jakob, G; Kläui, M; Zabel, H; Pietsch, U
2017-09-01
We report the results of resonant magnetic XUV reflectivity experiments performed at the XUV free-electron laser FERMI. Circularly polarized XUV light with the photon energy tuned to the Fe M 2,3 edge is used to measure resonant magnetic reflectivities and the corresponding Q -resolved asymmetry of a Permalloy/Ta/Permalloy trilayer film. The asymmetry exhibits ultrafast changes on 240 fs time scales upon pumping with ultrashort IR laser pulses. Depending on the value of the wavevector transfer Q z , we observe both decreasing and increasing values of the asymmetry parameter, which is attributed to ultrafast changes in the vertical spin and charge density profiles of the trilayer film.
Tracing the Metal-poor M31 Stellar Halo with Blue Horizontal Branch Stars
NASA Astrophysics Data System (ADS)
Williams, Benjamin F.; Dalcanton, Julianne J.; Bell, Eric F.; Gilbert, Karoline M.; Guhathakurta, Puragra; Dorman, Claire; Lauer, Tod R.; Seth, Anil C.; Kalirai, Jason S.; Rosenfield, Philip; Girardi, Leo
2015-03-01
We have analyzed new Hubble Space Telescope (HST)/Advanced Camera for Surveys and HST/WFC3 imaging in F475W and F814W of two previously unobserved fields along the M31 minor axis to confirm our previous constraints on the shape of M31's inner stellar halo. Both of these new data sets reach a depth of at least F814W <27 and clearly detect the blue horizontal branch (BHB) of the field as a distinct feature of the color-magnitude diagram. We measure the density of BHB stars and the ratio of BHB to red giant branch (RGB) stars in each field using techniques identical to our previous work. We find excellent agreement with our previous measurement of a power law for the 2D projected surface density with an index of 2.6-0.2+0.3 outside of 3 kpc, which flattens to α < 1.2 inside of 3 kpc. Our findings confirm our previous suggestion that the field BHB stars in M31 are part of the halo population. However, the total halo profile is now known to differ from this BHB profile, which suggests that we have isolated the metal-poor component. This component appears to have an unbroken power-law profile from 3-150 kpc but accounts for only about half of the total halo stellar mass. Discrepancies between the BHB density profile and other measurements of the inner halo are therefore likely due to the different profile of the metal-rich halo component, which is not only steeper than the profile of the metal-poor component, but also has a larger core radius. These profile differences also help to explain the large ratio of BHB/RGB stars in our observations.
NASA Technical Reports Server (NTRS)
Dobson, Chris C.; Hrbud, Ivana
2004-01-01
Electron density measurements have been made in steady-state plasmas in a spherical inertial electrostatic confinement (IEC) discharge using microwave interferometry. Plasma cores interior to two cathodes, having diameters of 15 and 23 cm, respectively, were probed over a transverse range of 10 cm with a spatial resolution of about 1.4 cm for buffer gas pressures from 0.2 to 6 Pa in argon and deuterium. The transverse profiles are generally flat, in some cases with eccentric symmetric minima, and give mean densities of from approx. = 0.4 to 7x 10(exp 10)/cu cm, the density generally increasing with the neutral gas pressure. Numerical solutions of the 1-D Poisson equation for EC plasmas are reviewed and energy distribution functions are identified which give flat transverse profiles. These functions are used with the plasma approximation to obtain solutions which also give densities consistent with the measurements, and a double potential well solution is obtained which has minima qualitatively similar to those observed. Explicit consideration is given to the compatibility of the solutions interior and exterior to the cathode, and to grid transparency. Deuterium fusion neutron emission rates were also measured and found to be isotropic, to within the measurement error, over two simultaneous directions. Anisotropy was observed in residual emissions during operation with non-fusing hydrogen-1. The deuterium rates are consistent with predictions from the model.
NASA Technical Reports Server (NTRS)
Lites, B. W.; Hansen, E. R.; Shine, R. A.
1980-01-01
The University of Colorado ultraviolet spectrometer aboard the Orbiting Solar Observatory 8(OSO 8) has measured self-reversed profiles of the resonance line of C IV lamda 1548.2 at the limb passage of an active region. The degree of the self-reversal together with the absolute intensity of the line profile determine the electron density in the active region at 10 to the 10th/cu cm at temperatures where the C IV line is formed. The nonthermal component of the broadening velocity is no more than 14km/s, and the physical thickness of an equivalent plane-parallel slab in hydrostatic equilibrium that would give rise to the observed line profiles is about 430 km.
Generation and Sustainment of Plasma Rotation by ICRF Heating
NASA Astrophysics Data System (ADS)
Perkins, F. W.
2000-10-01
When tokamak plasmas are heated by the fundamental minority ion-cyclotron process, they are observed to rotate toroidally, even though this heating process introduces negligable angular momentum. This work proposes and evaluates a physics mechanism which resolves this apparent conflict. The argument has two elements. First, it is assumed that angular momentum transport is governed by a diffusion equation with a v_tor = 0 boundary condition at the plasma surface and a torque-density source. When the source consists of separated regions of positive and negative torque density, a finite central rotation velocity results, even though the volume integrated torque density - the angular momentum input - vanishes. Secondly, ions energized by the ICRF process can generate separated regions of positive and negative torque density. Heating increases their banana widths which leads to radial energetic-particle transport that must be balanced by neutralizing radial currents and a j_rB_pR torque density in the bulk plasma. Additional, comparable torque density results from collisional transfer of mechanical angular momentum from energetic particles to the bulk plasma and particle loss through banana particles impacting the wall. Monte-Carlo calculations utilizing the ORBIT code evaluate all sources of torque density and rigorously assure that no net angular momentum is introduced. Two models of ICRF heating, diffusive and instantaneous, give similar results. When the resonance location is on the LFS, the calculated rotation has the magnitude, profile, and co-current sense of Alcator C-Mod observations. For HFS resonance locations, the model predicts counter-current rotation. Scans of rotational profiles vs. resonance location, initial energy, particle loss, pitch, and qm will be presented as will the location of the velocity shear layer its scaling to a reactor.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Merlo, Gabriele; Brunner, Stephan; Huang, Zhouji
Axisymmetric (n=0) density fluctuations measured in the TCV tokamak are observed to possess a frequency f0 which is either varying (radially dispersive oscillations) or a constant over a large fraction of the plasma minor radius (radially global oscillations) as reported in a companion paper [Z. Huang et al., this issue]. Given that f0 scales with the sound speed and given the poloidal structure of density fluctuations, these oscillations were interpreted as Geodesic Acoustic Modes, even though f0 is in fact smaller than the local linear GAM frequency fGAM . In this work we employ the Eulerian gyrokinetic code GENE tomore » simulate TCV relevant conditions and investigate the nature properties of these oscillations, in particular their relation to the safety factor profile. Local and global simulations are carried out and a good qualitative agreement is observed between experiments and simulations. By varying also the plasma temperature and density profiles, we conclude that a variation of the edge safety factor alone is not sufficient to induce a transition from global to radially inhomogeneous oscillations, as was initially suggested by experimental results. This transition appears instead to be the combined result of variations in the different plasma profiles, collisionality and finite machine size effects. In conclusion, simulations also show that radially global GAM-like oscillations can be observed in all fluxes and fluctuation fields, suggesting that they are the result of a complex nonlinear process involving also finite toroidal mode numbers and not just linear global GAM eigenmodes.« less
Merlo, Gabriele; Brunner, Stephan; Huang, Zhouji; ...
2017-12-19
Axisymmetric (n=0) density fluctuations measured in the TCV tokamak are observed to possess a frequency f0 which is either varying (radially dispersive oscillations) or a constant over a large fraction of the plasma minor radius (radially global oscillations) as reported in a companion paper [Z. Huang et al., this issue]. Given that f0 scales with the sound speed and given the poloidal structure of density fluctuations, these oscillations were interpreted as Geodesic Acoustic Modes, even though f0 is in fact smaller than the local linear GAM frequency fGAM . In this work we employ the Eulerian gyrokinetic code GENE tomore » simulate TCV relevant conditions and investigate the nature properties of these oscillations, in particular their relation to the safety factor profile. Local and global simulations are carried out and a good qualitative agreement is observed between experiments and simulations. By varying also the plasma temperature and density profiles, we conclude that a variation of the edge safety factor alone is not sufficient to induce a transition from global to radially inhomogeneous oscillations, as was initially suggested by experimental results. This transition appears instead to be the combined result of variations in the different plasma profiles, collisionality and finite machine size effects. In conclusion, simulations also show that radially global GAM-like oscillations can be observed in all fluxes and fluctuation fields, suggesting that they are the result of a complex nonlinear process involving also finite toroidal mode numbers and not just linear global GAM eigenmodes.« less
Trunk density profile estimates from dual X-ray absorptiometry.
Wicke, Jason; Dumas, Geneviève A; Costigan, Patrick A
2008-01-01
Accurate body segment parameters are necessary to estimate joint loads when using biomechanical models. Geometric methods can provide individualized data for these models but the accuracy of the geometric methods depends on accurate segment density estimates. The trunk, which is important in many biomechanical models, has the largest variability in density along its length. Therefore, the objectives of this study were to: (1) develop a new method for modeling trunk density profiles based on dual X-ray absorptiometry (DXA) and (2) develop a trunk density function for college-aged females and males that can be used in geometric methods. To this end, the density profiles of 25 females and 24 males were determined by combining the measurements from a photogrammetric method and DXA readings. A discrete Fourier transformation was then used to develop the density functions for each sex. The individual density and average density profiles compare well with the literature. There were distinct differences between the profiles of two of participants (one female and one male), and the average for their sex. It is believed that the variations in these two participants' density profiles were a result of the amount and distribution of fat they possessed. Further studies are needed to support this possibility. The new density functions eliminate the uniform density assumption associated with some geometric models thus providing more accurate trunk segment parameter estimates. In turn, more accurate moments and forces can be estimated for the kinetic analyses of certain human movements.
Nebular Phase Observations of the Type Ia Supernova 2014J in the Near Infrared
NASA Astrophysics Data System (ADS)
Diamond, Tiara
2018-01-01
Late-time spectra of SNe Ia show numerous strong emission features of iron and cobalt throughout the near infrared region. As the spectrum ages, the cobalt features fade as is expected from the decay of 56Co to 56Fe. The strong 1.6440 μm [Fe II] feature is sensitive to the central density of the white dwarf just prior to the runaway because of electron capture in the early stages of burning, hence the line profile width and evolution can be used to probe possible progenitor scenarios. The line profile is dependent on the extent of mixing during any deflagration burning in addition to asymmetries in the distribution of burning products or an off-center ignition. We present observations of SN 2014J from 300–500 days post-explosion. The data are consistent with spherical models of a MCh explosion with a deflagration-to-detonation transition, central density of 0.7×109 g/cm3, and limited mixing. An asymmetry in the line profile of the last spectrum could indicate an off-center ignition or burning products that are not centered on the kinetic center of the explosion. These and other late-time spectroscopic observations in the infrared of a significant sample of SNe Ia will provide insight into the natural variety of these objects, improving our understanding of the underlying physical processes and their usability in cosmology.
Interstellar absorption along the line of sight to Sigma Scorpii using Copernicus observations
NASA Technical Reports Server (NTRS)
Allen, M. M.; Snow, T. P.; Jenkins, E. B.
1990-01-01
From Copernicus observations of Sigma Sco, 57 individual lines of 11 elements plus the molecular species H2 and CO were identified. By using a profile-fitting technique, rather than curves of growth, it was possible to obtain column densities and Doppler b values for up to four separate components along this line of sight. Electron density in the major H I component was derived from the photoionization equilibrium of sulfur, obtaining, n(e) of about 0.3/cu cm. The neutral hydrogen density in the same component was also derived using fine-structure excitation of O I. An H II component is also present in which the electron density was n(e) about 20/cu cm. As a by-product of this analysis, previously undetermined oscillator strengths for two Mn II lines were obtained: for 1162.-017 A, f about 0.023 and for 1164.211 A, f about 0.0086.
Midplane neutral density profiles in the National Spherical Torus Experiment
Stotler, D. P.; Scotti, F.; Bell, R. E.; ...
2015-08-13
Atomic and molecular density data in the outer midplane of NSTX [Ono et al., Nucl. Fusion 40, 557 (2000)] are inferred from tangential camera data via a forward modeling procedure using the DEGAS 2 Monte Carlo neutral transport code. The observed Balmer-β light emission data from 17 shots during the 2010 NSTX campaign display no obvious trends with discharge parameters such as the divertor Balmer-α emission level or edge deuterium ion density. Simulations of 12 time slices in 7 of these discharges produce molecular densities near the vacuum vessel wall of 2–8 × 10 17 m –3 and atomic densitiesmore » ranging from 1 to 7 ×10 16 m –3; neither has a clear correlation with other parameters. Validation of the technique, begun in an earlier publication, is continued with an assessment of the sensitivity of the simulated camera image and neutral densities to uncertainties in the data input to the model. The simulated camera image is sensitive to the plasma profiles and virtually nothing else. The neutral densities at the vessel wall depend most strongly on the spatial distribution of the source; simulations with a localized neutral source yield densities within a factor of two of the baseline, uniform source, case. Furthermore, the uncertainties in the neutral densities associated with other model inputs and assumptions are ≤ 50%.« less
Emergence of a stellar cusp by a dark matter cusp in a low-mass compact ultrafaint dwarf galaxy
NASA Astrophysics Data System (ADS)
Inoue, Shigeki
2017-06-01
Recent observations have been discovering new ultrafaint dwarf galaxies as small as ˜20 pc in half-light radius and ˜3 km s-1 in line-of-sight velocity dispersion. In these galaxies, dynamical friction on a star against dark matter can be significant and alter their stellar density distribution. The effect can strongly depend on a central density profile of dark matter, I.e. cusp or core. In this study, I perform computations using a classical and a modern analytic formula and N-body simulations to study how dynamical friction changes a stellar density profile and how different it is between a cuspy and a cored dark matter halo. This study shows that, if a dark matter halo has a cusp, dynamical friction can cause shrivelling instability that results in emergence of a stellar cusp in the central region ≲2 pc. On the other hand, if it has a constant-density core, dynamical friction is significantly weaker and does not generate a stellar cusp even if the galaxy has the same line-of-sight velocity dispersion. In such a compact and low-mass galaxy, since the shrivelling instability by dynamical friction is inevitable if it has a dark matter cusp, absence of a stellar cusp implies that the galaxy has a dark matter core. I expect that this could be used to diagnose a dark matter density profile in these compact ultrafaint dwarf galaxies.
Probing the Martian Atmosphere with MAVEN/IUVS Stellar Occultations
NASA Astrophysics Data System (ADS)
Gröller, H.; Yelle, R. V.; Koskinen, T.; Montmessin, F.; Lacombe, G.; Schneider, N. M.; Deighan, J.; Stewart, I. F.; Jain, S.; Chaffin, M.; Crismani, M. M. J.; Stiepen, A.; Lefèvre, F.; McClintock, B.; Clarke, J. T.; Holsclaw, G.; Mahaffy, P. R.; Bougher, S. W.; Jakosky, B. M.
2015-12-01
We present the first results of FUV and MUV stellar occultations taken with the Imaging UltraViolet Spectrometer (IUVS) onboard MAVEN. The FUV and MUV channels of the IUVS together cover the spectral range from 115 to 330 nm. The first two campaigns were executed during March 24 and March 26, 2015, and during May 17 and May 18, 2015, respectively. So far 13 occultations could be used to retrieve CO2 and O2 number densities in the altitude range between 100 and 150 km from the first occultation campaign. From the second occultation campaign number densities for CO2, O3, and aerosols were obtained between 20 and 100 km altitude. Temperature profiles for the same altitude ranges were calculated by applying the constraint of hydrostatic equilibrium to the CO2 densities. With a cadence of 2.6 s, including a 2.0 s integration time, the altitude resolution of the density and temperature profiles is between 1.5 and 4.5 km, depending on the geometry of the particular occultation. The retrieved density profiles of CO2 and O2 agree with previous measurements obtained by the Mars Express SPICAM instrument and by Viking 1 and 2. The corresponding O2 mixing ratios range from 1 to 5 x 10-3, also in agreement with previous observations. The temperatures that we retrieved agree with the models in the Mars Climate Database (MCD) between 10-2 and 10-4 Pa. At lower pressures, however, the measured temperatures are on average 70 K to 100 K cooler than the temperatures predicted by the MCD. This is because the model temperatures increase steadily with altitude above the mesopause whereas the observed temperatures decrease at pressures less than 3.5 x 10-5 Pa, reaching a minimum near 7 x 10-6 Pa. The large differences between the MCD and our results indicate that global models of thermal structure around the mesopause need to be revised.
NASA Astrophysics Data System (ADS)
Bilous, A. V.; Kondratiev, V. I.; Kramer, M.; Keane, E. F.; Hessels, J. W. T.; Stappers, B. W.; Malofeev, V. M.; Sobey, C.; Breton, R. P.; Cooper, S.; Falcke, H.; Karastergiou, A.; Michilli, D.; Osłowski, S.; Sanidas, S.; ter Veen, S.; van Leeuwen, J.; Verbiest, J. P. W.; Weltevrede, P.; Zarka, P.; Grießmeier, J.-M.; Serylak, M.; Bell, M. E.; Broderick, J. W.; Eislöffel, J.; Markoff, S.; Rowlinson, A.
2016-06-01
We present first results from a LOFAR census of non-recycled pulsars. The census includes almost all such pulsars known (194 sources) at declinations Dec > 8° and Galactic latitudes |Gb| > 3°, regardless of their expected flux densities and scattering times. Each pulsar was observed for ≥20 min in the contiguous frequency range of 110-188 MHz. Full-Stokes data were recorded. We present the dispersion measures, flux densities, and calibrated total intensity profiles for the 158 pulsars detected in the sample. The median uncertainty in census dispersion measures (1.5 × 10-3 pc cm-3) is ten times smaller, on average, than in the ATNF pulsar catalogue. We combined census flux densities with those in the literature and fitted the resulting broadband spectra with single or broken power-law functions. For 48 census pulsars such fits are being published for the first time. Typically, thechoice between single and broken power-laws, as well as the location of the spectral break, were highly influenced by the spectral coverage of the available flux density measurements. In particular, the inclusion of measurements below 100 MHz appears essential for investigating the low-frequency turnover in the spectra for most of the census pulsars. For several pulsars, we compared the spectral indices from different works and found the typical spread of values to be within 0.5-1.5, suggesting a prevailing underestimation of spectral index errors in the literature. The census observations yielded some unexpected individual source results, as we describe in the paper. Lastly, we will provide this unique sample of wide-band, low-frequency pulse profiles via the European Pulsar Network Database. Tables B.1-B.4 are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/591/A134
Dynamical origin of non-thermal states in galactic filaments
NASA Astrophysics Data System (ADS)
Di Cintio, Pierfrancesco; Gupta, Shamik; Casetti, Lapo
2018-03-01
Observations strongly suggest that filaments in galactic molecular clouds are in a non-thermal state. As a simple model of a filament, we study a two-dimensional system of self-gravitating point particles by means of numerical simulations of the dynamics, with various methods: direct N-body integration of the equations of motion, particle-in-cell simulations, and a recently developed numerical scheme that includes multiparticle collisions in a particle-in-cell approach. Studying the collapse of Gaussian overdensities, we find that after the damping of virial oscillations the system settles in a non-thermal steady state whose radial density profile is similar to the observed ones, thus suggesting a dynamical origin of the non-thermal states observed in real filaments. Moreover, for sufficiently cold collapses, the density profiles are anticorrelated with the kinetic temperature, i.e. exhibit temperature inversion, again a feature that has been found in some observations of filaments. The same happens in the state reached after a strong perturbation of an initially isothermal cylinder. Finally, we discuss our results in the light of recent findings in other contexts (including non-astrophysical ones) and argue that the same kind of non-thermal states may be observed in any physical system with long-range interactions.
The effect of recombination and attachment on meteor radar diffusion coefficient profiles
NASA Astrophysics Data System (ADS)
Lee, C. S.; Younger, J. P.; Reid, I. M.; Kim, Y. H.; Kim, J.-H.
2013-04-01
Estimates of the ambipolar diffusion coefficient producedusing meteor radar echo decay times display an increasing trend below 80-85 km, which is inconsistent with a diffusion-only theory of the evolution of meteor trails. Data from the 33 MHz meteor radar at King Sejong Station, Antarctica, have been compared with observations from the Aura Earth Observing System Microwave Limb Sounder satellite instrument. It has been found that the height at which the diffusion coefficient gradient reverses follows the height of a constant neutral atmospheric density surface. Numerical simulations of meteor trail diffusion including dissociative recombination with atmospheric ions and three-body attachment of free electrons to neutral molecules indicate that three-body attachment is responsible for the distortion of meteor radar diffusion coefficient profiles at heights below 90 km, including the gradient reversal below 80-85 km. Further investigation has revealed that meteor trails with low initial electron line density produce decay times more consistent with a diffusion-only model of meteor trail evolution.
Capillary wave theory of adsorbed liquid films and the structure of the liquid-vapor interface
NASA Astrophysics Data System (ADS)
MacDowell, Luis G.
2017-08-01
In this paper we try to work out in detail the implications of a microscopic theory for capillary waves under the assumption that the density is given along lines normal to the interface. Within this approximation, which may be justified in terms of symmetry arguments, the Fisk-Widom scaling of the density profile holds for frozen realizations of the interface profile. Upon thermal averaging of capillary wave fluctuations, the resulting density profile yields results consistent with renormalization group calculations in the one-loop approximation. The thermal average over capillary waves may be expressed in terms of a modified convolution approximation where normals to the interface are Gaussian distributed. In the absence of an external field we show that the phenomenological density profile applied to the square-gradient free energy functional recovers the capillary wave Hamiltonian exactly. We extend the theory to the case of liquid films adsorbed on a substrate. For systems with short-range forces, we recover an effective interface Hamiltonian with a film height dependent surface tension that stems from the distortion of the liquid-vapor interface by the substrate, in agreement with the Fisher-Jin theory of short-range wetting. In the presence of long-range interactions, the surface tension picks up an explicit dependence on the external field and recovers the wave vector dependent logarithmic contribution observed by Napiorkowski and Dietrich. Using an error function for the intrinsic density profile, we obtain closed expressions for the surface tension and the interface width. We show the external field contribution to the surface tension may be given in terms of the film's disjoining pressure. From literature values of the Hamaker constant, it is found that the fluid-substrate forces may be able to double the surface tension for films in the nanometer range. The film height dependence of the surface tension described here is in full agreement with results of the capillary wave spectrum obtained recently in computer simulations, and the predicted translation mode of surface fluctuations reproduces to linear order in field strength an exact solution of the density correlation function for the Landau-Ginzburg-Wilson Hamiltonian in an external field.
Acoustic Rectification in Dispersive Media
NASA Technical Reports Server (NTRS)
Cantrell, John H.
2008-01-01
It is shown that the shapes of acoustic radiation-induced static strain and displacement pulses (rectified acoustic pulses) are defined locally by the energy density of the generating waveform. Dispersive properties are introduced analytically by assuming that the rectified pulses are functionally dependent on a phase factor that includes both dispersive and nonlinear terms. The dispersion causes an evolutionary change in the shape of the energy density profile that leads to the generation of solitons experimentally observed in fused silica.
Linear Temporal Stability Analysis of a Low-Density Round Gas Jet Injected into a High-Density Gas
NASA Technical Reports Server (NTRS)
Lawson, Anthony L.; Parthasarathy, Ramkumar N.
2002-01-01
It has been observed in previous experimental studies that round helium jets injected into air display a repetitive structure for a long distance, somewhat similar to the buoyancy-induced flickering observed in diffusion flames. In order to investigate the influence of gravity on the near-injector development of the flow, a linear temporal stability analysis of a round helium jet injected into air was performed. The flow was assumed to be isothermal and locally parallel; viscous and diffusive effects were ignored. The variables were represented as the sum of the mean value and a normal-mode small disturbance. An ordinary differential equation governing the amplitude of the pressure disturbance was derived. The velocity and density profiles in the shear layer, and the Froude number (signifying the effects of gravity) were the three important parameters in this equation. Together with the boundary conditions, an eigenvalue problem was formulated. Assuming that the velocity and density profiles in the shear layer to be represented by hyperbolic tangent functions, the eigenvalue problem was solved for various values of Froude number. The temporal growth rates and the phase velocity of the disturbances were obtained. The temporal growth rates of the disturbances increased as the Froude number was reduced (i.e. gravitational effects increased), indicating the destabilizing role played by gravity.
NASA Astrophysics Data System (ADS)
Daniell, R. E.; Strickland, D. J.; Decker, D. T.; Jasperse, J. R.; Carlson, H. C., Jr.
1985-04-01
The possible use of satellite ultraviolet measurements to deduce the ionospheric electron density profile (EDP) on a global basis is discussed. During 1984 comparisons were continued between the hybrid daytime ionospheric model and the experimental observations. These comparison studies indicate that: (1) the essential features of the EDP and certain UV emissions can be modelled; (2) the models are sufficiently sensitive to input parameters to yield poor agreement with observations when typical input values are used; (3) reasonable adjustments of the parameters can produce excellent agreement between theory and data for either EDP or airglow but not both; and (4) the qualitative understanding of the relationship between two input parameters (solar flux and neutral densities) and the model EDP and airglow features has been verified. The development of a hybrid dynamic model for the nighttime midlatitude ionosphere has been initiated. This model is similar to the daytime hybrid model, but uses the sunset EDP as an initial value and calculates the EDP as a function of time through the night. In addition, a semiempirical model has been developed, based on the assumption that the nighttime EDP is always well described by a modified Chapman function. This model has great simplicity and allows the EDP to be inferred in a straightforward manner from optical observations. Comparisons with data are difficult, however, because of the low intensity of the nightglow.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jiang, Zhang; Chen, Wei
Generalized skew-symmetric probability density functions are proposed to model asymmetric interfacial density distributions for the parameterization of any arbitrary density profiles in the `effective-density model'. The penetration of the densities into adjacent layers can be selectively controlled and parameterized. A continuous density profile is generated and discretized into many independent slices of very thin thickness with constant density values and sharp interfaces. The discretized profile can be used to calculate reflectivities via Parratt's recursive formula, or small-angle scattering via the concentric onion model that is also developed in this work.
Jiang, Zhang; Chen, Wei
2017-11-03
Generalized skew-symmetric probability density functions are proposed to model asymmetric interfacial density distributions for the parameterization of any arbitrary density profiles in the `effective-density model'. The penetration of the densities into adjacent layers can be selectively controlled and parameterized. A continuous density profile is generated and discretized into many independent slices of very thin thickness with constant density values and sharp interfaces. The discretized profile can be used to calculate reflectivities via Parratt's recursive formula, or small-angle scattering via the concentric onion model that is also developed in this work.
A Kinematical Detection of Two Embedded Jupiter-mass Planets in HD 163296
NASA Astrophysics Data System (ADS)
Teague, Richard; Bae, Jaehan; Bergin, Edwin A.; Birnstiel, Tilman; Foreman-Mackey, Daniel
2018-06-01
We present the first kinematical detection of embedded protoplanets within a protoplanetary disk. Using archival Atacama Large Millimetre Array (ALMA) observations of HD 163296, we demonstrate a new technique to measure the rotation curves of CO isotopologue emission to sub-percent precision relative to the Keplerian rotation. These rotation curves betray substantial deviations caused by local perturbations in the radial pressure gradient, likely driven by gaps carved in the gas surface density by Jupiter-mass planets. Comparison with hydrodynamic simulations shows excellent agreement with the gas rotation profile when the disk surface density is perturbed by two Jupiter-mass planets at 83 and 137 au. As the rotation of the gas is dependent upon the pressure of the total gas component, this method provides a unique probe of the gas surface density profile without incurring significant uncertainties due to gas-to-dust ratios or local chemical abundances that plague other methods. Future analyses combining both methods promise to provide the most accurate and robust measures of embedded planetary mass. Furthermore, this method provides a unique opportunity to explore wide-separation planets beyond the mm continuum edge and to trace the gas pressure profile essential in modeling grain evolution in disks.
Gravity wave and tidal structures between 60 and 140 km inferred from space shuttle reentry data
NASA Technical Reports Server (NTRS)
Fritts, David C.; Wang, Ding-Yi; Blanchard, Robert C.
1993-01-01
This study presents an analysis of density measurements made using high-resolution accelerometers aboard several space shuttles at altitudes from 60 to 140 km during reentry into the earth's atmosphere. The observed density fluctuations are interpreted in terms of gravity waves and tides and provide evidence of the importance of such motions well into the thermosphere. Height profiles of fractional density variance reveal that wave amplitudes increase at a rate consistent with observations at lower levels up to about 90 km. The rate of amplitude growth decreases at greater heights, however, and appears to cease above about 110 km. Wave amplitudes are nevertheless large at these heights and suggest that gravity waves may play an important role in forcing of the lower thermosphere.
The surface morphology of crystals melting under solutions of different densities
NASA Technical Reports Server (NTRS)
Fang, Dacheng; Hellawell, A.
1988-01-01
Examples of solids melting beneath liquids are described for cases where the bulk liquid volume is stabilized against convection by a positive vertical temperature gradient, either with, or without local density inversion at the melting interface. The examples include ice melting beneath brine or methanol solutions and tin or lead melting under molten Sn-20 wt pct Pb or Pb-20 wt pct Sn, respectively. Without density inversion the melting is slow, purely diffusion controlled and the interfaces are smooth; with convection assisted melting the rate increases by some two orders of magnitude and the interfaces develop a rough profile - in the case of ice both irregular and quasi-steady state features are observed. The observations are discussed in terms of prevailing temperature and concentration gradients.
Detection of an electron beam in a high density plasma via an electrostatic probe
NASA Astrophysics Data System (ADS)
Majeski, Stephen; Yoo, Jongsoo; Zweben, Stewart; Yamada, Masaaki; Ji, Hantao
2017-10-01
The perturbation in floating potential by an electron beam is detected by a 1D floating potential probe array to evaluate the use of an electron beam for magnetic field line mapping in the Magnetic Reconnection Experiment (MRX) plasma. The MRX plasma is relatively high density (1013 cm-3) and low temperature (5 eV). Beam electrons are emitted from a tungsten filament and are accelerated by a 200 V potential across the sheath. They stream along the magnetic field lines towards the probe array. The spatial electron beam density profile is assumed to be a Gaussian along the radial axis of MRX and the effective beam width is determined from the radial profile of the floating potential. The magnitude of the perturbation is in agreement with theoretical predictions and the location of the perturbation is also in agreement with field line mapping. In addition, no significant broadening of the electron beam is observed after propagation for tens of centimeters through the high density plasma. These results demonstrate that this method of field line mapping is, in principle, feasible in high density plasmas. This work is supported by the DOE Contract No. DE-AC0209CH11466.
SUMER observations detecting downward propagating waves in the solar transition region
NASA Technical Reports Server (NTRS)
Wikstol, O.; Judge, P. G.; Hansteen, V.; Wilhelm, K.; Schuehle, U.; Moran, T.
1997-01-01
The O IV density sensitive emission lines around 1400 A, using the solar ultraviolet measurement of emitted radiation (SUMER) instrument onboard the Solar and Heliospheric Observatory (SOHO), are reported on. The data for the quiet sun, obtained close to the disk center and the solar limb were acquired. A systematic correlation between a density sensitive emission line ratio and Doppler shift across the same emission profiles was obtained. The correlation is such that the density is higher in the downflowing than in the upflowing plasma. The results are in good agreement with the simulations of downward propagating waves.
Rocket observations of electron density in the nighttime E region using Faraday rotation
NASA Technical Reports Server (NTRS)
Smith, L. G.; Gilchrist, B. E.
1984-01-01
A rocket radio propagation experiment is described in which the electron density profile of the nighttime E region is obtained with an accuracy of 100 per cu cm. The factors limiting the accuracy of the experiment are found to be related to atmospheric and receiver noise and to the use of a magnetometer to determine the spin rate of the rocket. The Fourier analysis used for the frequency measurement may also contribute error under conditions of steep electron density gradients. The accuracy being achieved appears to be adequate for present applications of the experiment.
NASA Astrophysics Data System (ADS)
Schödel, R.; Gallego-Cano, E.; Dong, H.; Nogueras-Lara, F.; Gallego-Calvente, A. T.; Amaro-Seoane, P.; Baumgardt, H.
2018-01-01
Context. This is the second of three papers that search for the predicted stellar cusp around the Milky Way's central black hole, Sagittarius A*, with new data and methods. Aims: We aim to infer the distribution of the faintest stellar population currently accessible through observations around Sagittarius A*. Methods: We used adaptive optics assisted high angular resolution images obtained with the NACO instrument at the ESO VLT. Through optimised PSF fitting we removed the light from all detected stars above a given magnitude limit. Subsequently we analysed the remaining, diffuse light density. Systematic uncertainties were constrained by the use of data from different observing epochs and obtained with different filters. We show that it is necessary to correct for the diffuse emission from the mini-spiral, which would otherwise lead to a systematically biased light density profile. We used a Paschen α map obtained with the Hubble Space Telescope for this purpose. Results: The azimuthally averaged diffuse surface light density profile within a projected distance of R ≲ 0.5 pc from Sagittarius A* can be described consistently by a single power law with an exponent of Γ = 0.26 ± 0.02stat ± 0.05sys, similar to what has been found for the surface number density of faint stars in Paper I. Conclusions: The analysed diffuse light arises from sub-giant and main-sequence stars with Ks ≈ 19-22 with masses of 0.8-1.5 M⊙. These stars can be old enough to be dynamically relaxed. The observed power-law profile and its slope are consistent with the existence of a relaxed stellar cusp around the Milky Way's central black hole. We find that a Nuker law provides an adequate description of the nuclear cluster's intrinsic shape (assuming spherical symmetry). The 3D power-law slope near Sgr A* is γ = 1.13 ± 0.03model ± 0.05sys. The stellar density decreases more steeply beyond a break radius of about 3 pc, which corresponds roughly to the radius of influence of the massive black hole. At a distance of 0.01 pc from the black hole, we estimate a stellar mass density of 2.6 ± 0.3 × 107 M⊙ pc-3 and a total enclosed stellar mass of 180 ± 30 M⊙. These estimates assume a constant mass-to-light ratio and do not take stellar remnants into account. The fact that a flat projected surface density is observed for old giants at projected distances R ≲ 0.3 pc implies that some mechanism may have altered their appearance or distribution.
NASA Astrophysics Data System (ADS)
Michilli, D.; Hessels, J. W. T.; Donner, J. Y.; Grießmeier, J.-M.; Serylak, M.; Shaw, B.; Stappers, B. W.; Verbiest, J. P. W.; Deller, A. T.; Driessen, L. N.; Stinebring, D. R.; Bondonneau, L.; Geyer, M.; Hoeft, M.; Karastergiou, A.; Kramer, M.; Osłowski, S.; Pilia, M.; Sanidas, S.; Weltevrede, P.
2018-05-01
We have observed a complex and continuous change in the integrated pulse profile of PSR B2217+47, manifested as additional components trailing the main peak. These transient components are detected over 6 yr at 150 MHz using the LOw Frequency ARray (LOFAR), but they are not seen in contemporaneous Lovell observations at 1.5 GHz. We argue that propagation effects in the ionized interstellar medium (IISM) are the most likely cause. The putative structures in the IISM causing the profile variation are roughly half-way between the pulsar and the Earth and have transverse radii R ˜ 30 au. We consider different models for the structures. Under the assumption of spherical symmetry, their implied average electron density is \\overline{n}_e ˜ 100 cm-3. Since PSR B2217+47 is more than an order of magnitude brighter than the average pulsar population visible to LOFAR, similar profile variations would not have been identified in most pulsars, suggesting that subtle profile variations in low-frequency profiles might be more common than we have observed to date. Systematic studies of these variations at low frequencies can provide a new tool to investigate the proprieties of the IISM and the limits to the precision of pulsar timing.
NASA Astrophysics Data System (ADS)
Connor, H. K.; Carter, J. A.
2017-12-01
Soft X-rays can be emitted when highly charged solar wind ions and exospheric neutrals exchange electrons. Astrophysics missions, such as XMM-Newton and ROSAT X-ray telescopes, have found that such solar wind charge exchange happens at the Earth's exosphere. The Earth's magnetosphere can be imaged via soft X-rays in order to understand its interaction with solar wind. Consequently, two soft X-ray telescope missions (CuPID and SMILE) are scheduled to launch in 2019 and 2021. They will provide wide field-of-view soft X-ray images of the Earth's dayside magnetosphere. The imagers will track the location and movement of the cusps, magnetopause, and bow shock in response to solar wind variations. To support these missions, an understanding of exospheric neutral density profile is needed. The neutral density is one of the controlling factors of soft X-ray signals. Strong neutral density can help to obtain high-resolution and high-cadence of soft X-ray images. In this study, we estimate the exospheric neutral density at 10 RE subsolar point using XMM X-ray observations, Cluster plasma observations, and OpenGGCM global magnetosphere - ionosphere MHD model. XMM-Newton observes line-of-sight, narrow field-of-view, integrated soft X-ray emissions when it looks through the dayside magnetosphere. OpenGGCM reproduces soft X-ray signals seen by the XMM spacecraft, assuming exospheric neutral density as a function of the neutral density at the 10RE subsolar point and the radial distance. Cluster observations are used to confirm OpenGGCM plasma results. Finally, we deduce the neutral density at 10 RE subsolar point by adjusting the model results to the XMM-Newton soft X-ray observations.
Non-stationary self-focusing of intense laser beam in plasma using ramp density profile
DOE Office of Scientific and Technical Information (OSTI.GOV)
Habibi, M.; Ghamari, F.
2011-10-15
The non-stationary self-focusing of high intense laser beam in under-dense plasma with upward increasing density ramp is investigated. The obtained results show that slowly increasing plasma density ramp is very important in enhancing laser self-focusing. Also, the spot size oscillations of laser beam in front and rear of the pulse for two different density profiles are shown. We have selected density profiles that already were used by Sadighi-Bonabi et al.[Phys. Plasmas 16, 083105 (2009)]. Ramp density profile causes the laser beam to become more focused and penetrations deeps into the plasma by reduction of diffraction effects. Our computations show moremore » reliable results in comparison to the previous works.« less
THE DARK HALO-SPHEROID CONSPIRACY AND THE ORIGIN OF ELLIPTICAL GALAXIES
DOE Office of Scientific and Technical Information (OSTI.GOV)
Remus, Rhea-Silvia; Burkert, Andreas; Dolag, Klaus
2013-04-01
Dynamical modeling and strong-lensing data indicate that the total density profiles of early-type galaxies are close to isothermal, i.e., {rho}{sub tot}{proportional_to}r {sup {gamma}} with {gamma} Almost-Equal-To -2. To understand the origin of this universal slope we study a set of simulated spheroids formed in isolated binary mergers as well as the formation within the cosmological framework. The total stellar plus dark matter density profiles can always be described by a power law with an index of {gamma} Almost-Equal-To -2.1 with a tendency toward steeper slopes for more compact, lower-mass ellipticals. In the binary mergers the amount of gas involved inmore » the merger determines the precise steepness of the slope. This agrees with results from the cosmological simulations where ellipticals with steeper slopes have a higher fraction of stars formed in situ. Each gas-poor merger event evolves the slope toward {gamma} {approx} -2, once this slope is reached further merger events do not change it anymore. All our ellipticals have flat intrinsic combined stellar and dark matter velocity dispersion profiles. We conclude that flat velocity dispersion profiles and total density distributions with a slope of {gamma} {approx} -2 for the combined system of stars and dark matter act as a natural attractor. The variety of complex formation histories as present in cosmological simulations, including major as well as minor merger events, is essential to generate the full range of observed density slopes seen for present-day elliptical galaxies.« less
Density profiles in the Scrape-Off Layer interpreted through filament dynamics
NASA Astrophysics Data System (ADS)
Militello, Fulvio
2017-10-01
We developed a new theoretical framework to clarify the relation between radial Scrape-Off Layer density profiles and the fluctuations that generate them. The framework provides an interpretation of the experimental features of the profiles and of the turbulence statistics on the basis of simple properties of the filaments, such as their radial motion and their draining towards the divertor. L-mode and inter-ELM filaments are described as a Poisson process in which each event is independent and modelled with a wave function of amplitude and width statistically distributed according to experimental observations and evolving according to fluid equations. We will rigorously show that radially accelerating filaments, less efficient parallel exhaust and also a statistical distribution of their radial velocity can contribute to induce flatter profiles in the far SOL and therefore enhance plasma-wall interactions. A quite general result of our analysis is the resiliency of this non-exponential nature of the profiles and the increase of the relative fluctuation amplitude towards the wall, as experimentally observed. According to the framework, profile broadening at high fueling rates can be caused by interactions with neutrals (e.g. charge exchange) in the divertor or by a significant radial acceleration of the filaments. The framework assumptions were tested with 3D numerical simulations of seeded SOL filaments based on a two fluid model. In particular, filaments interact through the electrostatic field they generate only when they are in close proximity (separation comparable to their width in the drift plane), thus justifying our independence hypothesis. In addition, we will discuss how isolated filament motion responds to variations in the plasma conditions, and specifically divertor conditions. Finally, using the theoretical framework we will reproduce and interpret experimental results obtained on JET, MAST and HL-2A.
CME Plasma Dynamics Using In-situ and Remote-sensing Observations
NASA Astrophysics Data System (ADS)
Kocher, Manan; Lepri, Susan; Landi, Enrico
2017-04-01
The thermal and kinetic energy of Coronal Mass Ejections [CMEs] can be best reconstructed if the plasma density, temperature and dynamics of each of their components are known. During periods of quadrature, we use a combination of in-situ measurements from ACE/SWICS and remote sensing observations from SDO/AIA and STEREO/EUVI to present several case studies of geo-effective halo-CMEs. We carry out density diagnostics and Differential Emission Measure [DEM] profile calculations to reconstruct a 3D picture of the CME plasma for the selected cases in the low solar corona. We then discuss these results in the context of models of CME initiation and release.
Rayleigh-Taylor Gravity Waves and Quasiperiodic Oscillation Phenomenon in X-ray Binaries
NASA Technical Reports Server (NTRS)
Titarchuk, Lev
2002-01-01
Accretion onto compact objects in X-ray binaries (black hole, neutron star (NS), white dwarf) is characterized by non-uniform flow density profiles. Such an effect of heterogeneity in presence of gravitational forces and pressure gradients exhibits Rayleigh-Taylor gravity waves (RTGW). They should be seen as quasiperiodic wave oscillations (QPO) of the accretion flow in the transition (boundary) layer between the Keplerian disk and the central object. In this paper the author shows that the main QPO frequency, which is very close to the Keplerian frequency, is split into separate frequencies (hybrid and low branch) under the influence of the gravitational forces in the rotational frame of reference. The RTGWs must be present and the related QPOs should be detected in any system where the gravity, buoyancy and Coriolis force effects cannot be excluded (even in the Earth and solar environments). The observed low and high QPO frequencies are an intrinsic signature of the RTGW. The author elaborates the conditions for the density profile when the RTGW oscillations are stable. A comparison of the inferred QPO frequencies with QPO observations is presented. The author finds that hectohertz frequencies detected from NS binaries can be identified as the RTGW low branch frequencies. The author also predicts that an observer can see the double NS spin frequency during the NS long (super) burst events when the pressure gradients and buoyant forces are suppressed. The Coriolis force is the only force which acts in the rotational frame of reference and its presence causes perfect coherent pulsations with a frequency twice of the NS spin. The QPO observations of neutron binaries have established that the high QPO frequencies do not go beyond of the certain upper limit. The author explains this observational effect as a result of the density profile inversions. Also the author demonstrates that a particular problem of the gravity waves in the rotational frame of reference in the approximation of very small pressure gradients is reduced to the problem of the classical oscillator in the rotational frame of reference which was previously introduced and applied for the interpretation of kHZ QPO observation by Osherovich & Titarchuk.
Inferring giant planets from ALMA millimeter continuum and line observations in (transition) disks
NASA Astrophysics Data System (ADS)
Facchini, S.; Pinilla, P.; van Dishoeck, E. F.; de Juan Ovelar, M.
2018-05-01
Context. Radial gaps or cavities in the continuum emission in the IR-mm wavelength range are potential signatures of protoplanets embedded in their natal protoplanetary disk are. Hitherto, models have relied on the combination of mm continuum observations and near-infrared scattered light images to put constraints on the properties of embedded planets. Atacama Large Millimeter/submillimeter Array (ALMA) observations are now probing spatially resolved rotational line emission of CO and other chemical species. These observations can provide complementary information on the mechanism carving the gaps in dust and additional constraints on the purported planet mass. Aims: We investigate whether the combination of ALMA continuum and CO line observations can constrain the presence and mass of planets embedded in protoplanetary disks. Methods: We post-processed azimuthally averaged 2D hydrodynamical simulations of planet-disk models, in which the dust densities and grain size distributions are computed with a dust evolution code that considers radial drift, fragmentation, and growth. The simulations explored various planet masses (1 MJ ≤ Mp ≤ 15 MJ) and turbulent parameters (10-4 ≤ α ≤ 10-3). The outputs were then post-processed with the thermochemical code DALI, accounting for the radially and vertically varying dust properties. We obtained the gas and dust temperature structures, chemical abundances, and synthetic emission maps of both thermal continuum and CO rotational lines. This is the first study combining hydrodynamical simulations, dust evolution, full radiative transfer, and chemistry to predict gas emission of disks hosting massive planets. Results: All radial intensity profiles of 12CO, 13CO, and C18O show a gap at the planet location. The ratio between the location of the gap as seen in CO and the peak in the mm continuum at the pressure maximum outside the orbit of the planet shows a clear dependence on planet mass and is independent of disk viscosity for the parameters explored in this paper. Because of the low dust density in the gaps, the dust and gas components can become thermally decoupled and the gas becomes colder than the dust. The gaps seen in CO are due to a combination of gas temperature dropping at the location of the planet and of the underlying surface density profile. Both effects need to be taken into account and disentangled when inferring gas surface densities from observed CO intensity profiles; otherwise, the gas surface density drop at the planet location can easily be overestimated. CO line ratios across the gap are able to quantify the gas temperature drop in the gaps in observed systems. Finally, a CO cavity not observed in any of the models, only CO gaps, indicating that one single massive planet is not able to explain the CO cavities observed in transition disks, at least without additional physical or chemical mechanisms.
Bley, Michael; Duvail, Magali; Guilbaud, Philippe; Dufrêche, Jean-François
2017-10-19
Herein, a new theoretical method is presented for predicting osmotic equilibria and activities, where a bulk liquid and its corresponding vapor phase are simulated by means of molecular dynamics using explicit polarization. Calculated time-averaged number density profiles provide the amount of evaporated molecules present in the vapor phase and consequently the vapor-phase density. The activity of the solvent and the corresponding osmotic coefficient are determined by the vapor density at different solute concentrations with respect to the reference vapor density of the pure solvent. With the extended Debye-Hückel equation for the activity coefficient along with the corresponding Gibbs-Duhem relation, the activity coefficients of the solutes are calculated by fitting the osmotic coefficients. A simple model based on the combination of Poisson processes and Maxwell-Boltzmann velocity distributions is introduced to interpret statistical phenomena observed during the simulations, which are related to evaporation and recondensation. This method is applied to aqueous dysprosium nitrate [Dy(NO 3 ) 3 ] solutions at different concentrations. The obtained densities of the liquid bulk and the osmotic and activity coefficients are in good agreement with the experimental results for concentrated and saturated solutions. Density profiles of the liquid-vapor interface at different concentrations provide detailed insight into the spatial distributions of all compounds.
Gyrokinetic modeling of impurity peaking in JET H-mode plasmas
NASA Astrophysics Data System (ADS)
Manas, P.; Camenen, Y.; Benkadda, S.; Weisen, H.; Angioni, C.; Casson, F. J.; Giroud, C.; Gelfusa, M.; Maslov, M.
2017-06-01
Quantitative comparisons are presented between gyrokinetic simulations and experimental values of the carbon impurity peaking factor in a database of JET H-modes during the carbon wall era. These plasmas feature strong NBI heating and hence high values of toroidal rotation and corresponding gradient. Furthermore, the carbon profiles present particularly interesting shapes for fusion devices, i.e., hollow in the core and peaked near the edge. Dependencies of the experimental carbon peaking factor ( R / L nC ) on plasma parameters are investigated via multilinear regressions. A marked correlation between R / L nC and the normalised toroidal rotation gradient is observed in the core, which suggests an important role of the rotation in establishing hollow carbon profiles. The carbon peaking factor is then computed with the gyrokinetic code GKW, using a quasi-linear approach, supported by a few non-linear simulations. The comparison of the quasi-linear predictions to the experimental values at mid-radius reveals two main regimes. At low normalised collisionality, ν * , and T e / T i < 1 , the gyrokinetic simulations quantitatively recover experimental carbon density profiles, provided that rotodiffusion is taken into account. In contrast, at higher ν * and T e / T i > 1 , the very hollow experimental carbon density profiles are never predicted by the simulations and the carbon density peaking is systematically over estimated. This points to a possible missing ingredient in this regime.
A more accurate profile of Achyrocline satureioides hypocholesterolemic activity.
Espiña, Débora Corrêa; Carvalho, Fabiano Barbosa; Zanini, Daniela; Schlemmer, Josiane Bizzi; Coracini, Juliane Dors; Rubin, Maribel Antonello; Morsch, Vera Maria; Schetinger, Maria Rosa Chitolina; Leal, Daniela Bitencourt Rosa; Baiotto, Cléia Rosani; Jaques, Jeandre Augusto dos Santos
2012-06-01
The aim of this study was to investigate the effect of the aqueous extract (AE) of Achyrocline satureioides on serum lipid profile, liver oxidative profile and Na(+),K(+)-ATPase activity of rats submitted to a hyperlipidic diet. The animals were divided into four groups: control (C), AE 10% (A(10)), hyperlipidic (H) and hyperlipidic/AE 10% (HA(10)). In serum, we measured the levels of total cholesterol (TC), high-density lipoprotein, very-low-density lipoprotein, low-density lipoprotein (LDL) and triglyceride (TG). In liver homogenates, we measured the thiobarbituric acid reactive substances, the carbonyl proteins, the non-protein thiols (NPSHs) and the activity of superoxide dismutase, catalase (CAT) and Na(+),K(+)-ATPase. We observed a significant increase in the TC and LDL levels in the H group. A. satureioides prevented these effects, decreased the TG levels in the HA(10) group and increased the NPSH levels in the A(10) and HA(10) groups. The H group showed an increase in the carbonyl protein level and a decrease in CAT and Na(+),K(+)-ATPase activities. With the use of this model, results show that increased levels of lipids are related to a redox imbalance in the liver, which is also related to the inhibition of Na(+),K(+)-ATPase activity, and that chronic administration of the AE of A. satureioides is capable of changing this profile. Copyright © 2012 John Wiley & Sons, Ltd.
State-dependent alterations of lipid profiles in patients with bipolar disorder.
Huang, Yu-Jui; Tsai, Shang-Ying; Chung, Kuo-Hsuan; Chen, Pao-Huan; Huang, Shou-Hung; Kuo, Chian-Jue
2018-07-01
Objective Serum lipid levels may be associated with the affective severity of bipolar disorder, but data on lipid profiles in Asian patients with bipolar disorder and the lipid alterations in different states of opposite polarities are scant. We investigated the lipid profiles of patients in the acute affective, partial, and full remission state in bipolar mania and depression. Methods The physically healthy patients aged between 18 and 45 years with bipolar I disorder, as well as age-matched healthy normal controls were enrolled. We compared the fasting blood levels of glucose, cholesterol, triglyceride, low-density lipoprotein, and high-density lipoprotein of manic or depressed patients in the acute phase and subsequent partial and full remission with those of their normal controls. Results A total of 32 bipolar manic patients (12 women and 20 men), 32 bipolar depressed participants (18 women and 14 men), and 64 healthy control participants took part in this study. The mean cholesterol level in acute mania was significantly lower than that in acute depression (p < 0.025). The lowest rate of dyslipidemia (hypertriglyceridemia or low high-density lipoprotein cholesterol) was observed in acute bipolar mania. Conclusion Circulating lipid profiles may be easily affected by affective states. The acute manic state may be accompanied by state-dependent lower cholesterol and triglyceride levels relative to that in other mood states.
NASA Astrophysics Data System (ADS)
Li, Guang-Xing
2018-03-01
Astrophysical systems, such as clumps that form star clusters share a density profile that is close to ρ ˜ r-2. We prove analytically this density profile is the result of the scale-free nature of the gravitational collapse. Therefore, it should emerge in many different situations as long as gravity is dominating the evolution for a period that is comparable or longer than the free-fall time, and this does not necessarily imply an isothermal model, as many have previously believed. To describe the collapse process, we construct a model called the turbulence-regulated gravitational collapse model, where turbulence is sustained by accretion and dissipates in roughly a crossing time. We demonstrate that a ρ ˜ r-2 profile emerges due to the scale-free nature the system. In this particular case, the rate of gravitational collapse is regulated by the rate at which turbulence dissipates the kinetic energy such that the infall speed can be 20-50% of the free-fall speed(which also depends on the interpretation of the crossing time based on simulations of driven turbulence). These predictions are consistent with existing observations, which suggests that these clumps are in the stage of turbulence-regulated gravitational collapse. Our analysis provides a unified description of gravitational collapse in different environments.
Variation in sensitivity, absorption and density of the central rod distribution with eccentricity.
Tornow, R P; Stilling, R
1998-01-01
To assess the human rod photopigment distribution and sensitivity with high spatial resolution within the central +/-15 degrees and to compare the results of pigment absorption, sensitivity and rod density distribution (number of rods per square degree). Rod photopigment density distribution was measured with imaging densitometry using a modified Rodenstock scanning laser ophthalmoscope. Dark-adapted sensitivity profiles were measured with green stimuli (17' arc diameter, 1 degrees spacing) using a T ubingen manual perimeter. Sensitivity profiles were plotted on a linear scale and rod photopigment optical density distribution profiles were converted to absorption profiles of the rod photopigment layer. Both the absorption profile of the rod photopigment and the linear sensitivity profile for green stimuli show a minimum at the foveal center and increase steeply with eccentricity. The variation with eccentricity corresponds to the rod density distribution. Rod photopigment absorption profiles, retinal sensitivity profiles, and the rod density distribution are linearly related within the central +/-15 degrees. This is in agreement with theoretical considerations. Both methods, imaging retinal densitometry using a scanning laser ophthalmoscope and dark-adapted perimetry with small green stimuli, are useful for assessing the central rod distribution and sensitivity. However, at present, both methods have limitations. Suggestions for improving the reliability of both methods are given.
Non-Axisymmetric Line Driven Disc Winds II - Full Velocity Gradient
NASA Astrophysics Data System (ADS)
Dyda, Sergei; Proga, Daniel
2018-05-01
We study non-axisymetric features of 3D line driven winds in the Sobolev approximation, where the optical depth is calculated using the full velocity gradient. We find that non-axisymmetric density features, so called clumps, form primarily at the base of the wind on super-Sobolev length scales. The density of clumps differs by a factor of ˜3 from the azimuthal average, the magnitude of their velocity dispersion is comparable to the flow velocity and they produce ˜20% variations in the column density. Clumps may be observable because differences in density produce enhancements in emission and absorption profiles or through their velocity dispersion which enhances line broadening.
Study of density distribution in a near-critical simple fluid (19-IML-1)
NASA Technical Reports Server (NTRS)
Michels, Teun
1992-01-01
This experiment uses visual observation, interferometry, and light scattering techniques to observe and analyze the density distribution in SF6 above and below the critical temperature. Below the critical temperature, the fluid system is split up into two coexisting phases, liquid and vapor. The spatial separation of these phases on earth, liquid below and vapor above, is not an intrinsic property of the fluid system; it is merely an effect of the action of the gravity field. At a fixed temperature, the density of each of the coexisting phases is in principle fixed. However, near T sub c where the fluid is strongly compressible, gravity induced hydrostatic forces will result in a gradual decrease in density with increasing height in the sample container. This hydrostatic density profile is even more pronounced in the one phase fluid at temperatures slightly above T sub c. The experiment is set up to study the intrinsic density distributions and equilibration rates of a critical sample in a small container. Interferometry will be used to determine local density and thickness of surface and interface layers. The light scattering data will reveal the size of the density fluctuations on a microscopic scale.
NASA Technical Reports Server (NTRS)
Shelton, J. D.; Gardner, C. S.
1981-01-01
The density response of atmospheric layers to gravity waves is developed in two forms, an exact solution and a perturbation series solution. The degree of nonlinearity in the layer density response is described by the series solution whereas the exact solution gives insight into the nature of the responses. Density perturbation in an atmospheric layer are shown to be substantially greater than the atmospheric density perturbation associated with the propagation of a gravity wave. Because of the density gradients present in atmospheric layers, interesting effects were observed such as a phase reversal in the linear layer response which occurs near the layer peak. Once the layer response is understood, the sodium layer can be used as a tracer of atmospheric wave motions. A two dimensional digital signal processing technique was developed. Both spatial and temporal filtering are utilized to enhance the resolution by decreasing shot noise by more han 10 dB. Many of the features associated with a layer density response to gravity waves were observed in high resolution density profiles of the mesospheric sodium layer. These include nonlinearities as well as the phase reversal in the linear layer response.
Electric currents in the subsolar region of the Venus lower ionosphere
NASA Technical Reports Server (NTRS)
Cole, K. D.; Hoegy, W. R.
1994-01-01
The ion and electron momentum equations, along with Ampere's law, are solved for the ion and electron drift velocities and the electric field in the subsolar Venus ionosphere, assuming a partially ionized gas and a single ion species having the ion mean mass. All collision terms among the ions, electrons and neutral particles are retained in the equations. A general expression for the evolution of the magnetic field is derived and compared with earlier expressions. Subsolar region data in the altitude range 150-300 km from the Pioneer Venus Orbiter are used to calculate altitude profiles of the components of the current due to the electric field, gradients of pressure, and gravity. Altitude profiles of the ion and electron velocities as well as the electric field, electrodynamic heating, and the energy density are determined. Only orbits having a complete set of measured plasma temperatures and densities, neutral densities, and magnetic field were considered for analysis; the results are shown only for orbit 202. The vertical velocity at altitudes above 220 km is upgoing for orbit 202. This result is consistent with observations of molecular ions at high altitudes and of plasma flow to the nightside, both of which require upward velocity of ions from the dayside ionosphere. Above about 230 km the momentum equations are extremely sensitive to the altitude profiles of density, temperature, and magnetic field.
Alteration of lipid profile in subclinical hypothyroidism: a meta-analysis.
Liu, Xiao-Li; He, Shan; Zhang, Shao-Fang; Wang, Jun; Sun, Xiu-Fa; Gong, Chun-Mei; Zheng, Shi-Jie; Zhou, Ji-Chang; Xu, Jian
2014-08-14
Previous studies yielded controversial results about the alteration of lipid profiles in patients with subclinical hypothyroidism. We performed a meta-analysis to investigate the association between subclinical hypothyroidism and lipid profiles. We searched PubMed, Cochrane Library, and China National Knowledge Infrastructure articles published January 1990 through January 2014. Dissertation databases (PQDT and CDMD) were searched for additional unpublished articles. We included articles reporting the relationship between subclinical hypothyroidism and at least 1 parameter of lipid profiles, and calculated the overall weighted mean difference (WMD) with a random effects model. Meta-regression was used to explore the source of heterogeneity among studies, and the Egger test, Begg test, and the trim and fill method were used to assess potential publication bias. Sixteen observational studies were included in our analysis. Meta-analysis suggested that the serum total cholesterol (TC), low-density lipoprotein cholesterol (LDL-C), and total triglyceride levels were significantly increased in patients with subclinical hypothyroidism compared with euthyroidism individuals; the WMD were 12.17 mg/dl, 7.01 mg/dl, and 13.19 mg/dl, respectively (P<0.001 for all). No significant difference was observed for serum high-density lipoprotein cholesterol (HDL-C). Match strategy was the main source of heterogeneity among studies in TC and LDL-C analysis. Potential publication bias was found in TC and LDL-C analysis by the Egger test or Begg test and was not confirmed by the trim and fill method. Subclinical hypothyroidism may correlate with altered lipid profile. Previous studies had limitations in the control of potential confounding factors and further studies should consider those factors.
The importance of bulk density determination in gravity data processing for structure interpretation
NASA Astrophysics Data System (ADS)
Wildan, D.; Akbar, A. M.; Novranza, K. M. S.; Sobirin, R.; Permadi, A. N.; Supriyanto
2017-07-01
Gravity method use rock density variation for determining subsurface lithology and geological structure. In the "green area" where measurement of rock density has not been done, an attemp to find density is usually performed by calculating using Parasnis method, or by using using the average of rock density in the earth's crust (2,67 gr/cm3) or by using theoritical value of dominant rock density in the survey area (2,90 gr/cm3). Those three values of densities are applied to gravity data analysis in the hilly "X" area. And we have compared all together in order to observed which value has represented the structure better. The result showed that the higher value of rock density, the more obvious structure in the Bouguer anomaly profile. It is due to the contrast of maximum and minimum value of Bouguer anomaly that will affect the exageration in distance vs Bouguer anomaly graphic.
Surface structure in simple liquid metals: An orbital-free first-principles study
NASA Astrophysics Data System (ADS)
González, D. J.; González, L. E.; Stott, M. J.
2006-07-01
Molecular dynamics simulations of the liquid-vapor interfaces in simple sp-bonded liquid metals have been performed using first-principles methods. Results are presented for liquid Li, Na, K, Rb, Cs, Mg, Ba, Al, Tl, and Si at thermodynamic conditions near their respective triple points, for samples of 2000 particles in a slab geometry. The longitudinal ionic density profiles exhibit a pronounced stratification extending several atomic diameters into the bulk, which is a feature already experimentally observed in liquid K, Ga, In, Sn, and Hg. The wavelength of the ionic oscillations shows a good scaling with the radii of the associated Wigner-Seitz spheres. The structural rearrangements at the interface are analyzed in terms of the transverse pair correlation function, the coordination number, and the bond-angle distribution between nearest neighbors. The valence electronic density profile also shows (weaker) oscillations whose phase, with respect to those of the ionic profile, changes from opposite phase in the alkalis to almost in-phase for Si.
The cosmological dependence of cluster density profiles
NASA Technical Reports Server (NTRS)
Crone, Mary M.; Evrard, August E.; Richstone, Douglas O.
1994-01-01
We use N-body simulations to study the shape of mean cluster density and velocity profiles in the nonlinear regime formed via gravitational instability. The dependence of the final structure on both cosmology and initial density field is examined, using a grid of cosmologies and scale-free initial power spectra P(k) varies as k(exp n). Einstein-de Sitter, open (Omega(sub 0) = 0.2 and 0.1) and flat, low density (Omega(sub 0) = 0.2 lambda(sub 0) = 0.8) models are examined, with initial spectral indices n = -2, -1 and 0. For each model, we stack clusters in an appropriately scaled manner to define an average density profile in the nonlinear regime. The profiles are well fit by a power law rho(r) varies as r(exp -alpha) for radii whereat the local density contrast is between 100 and 3000. This covers 99% of the cluster volume. We find a clear trend toward steeper slopes (larger alphas) with both increasing n and decreasing Omega(sub 0). The Omega(sub 0) dependence is partially masked by the n dependence; there is degeneracy in the values of alpha between the Einstein-de Sitter and flat, low-density cosmologies. However, the profile slopes in the open models are consistently higher than the Omega = 1 values for the range of n examined. Cluster density profiles are thus potentially useful cosmological diagnostics. We find no evidence for a constant density core in any of the models, although the density profiles do tend to flatten at small radii. Much of the flattening is due to the force softening required by the simulations. An attempt is made to recover the unsoftened profiles assuming angular momentum invariance. The recovered profiles in Einstein-de Sitter cosmologies are consistent with a pure power law up to the highest density contrasts (10(exp 6)) accessible with our resolution. The low-density models show significant deviation from a power law above density contrasts approximately 10(exp 5). We interpret this curvature as reflecting the non-scale-invariant nature of the background cosmology in these models. These results are at the limit of our resolution and so should be tested in the future using simulations with larger numbers of particles. Such simulations will also provide insight on the broader problem of understanding, in a statistical sense, the full phase space structure of collapsed, cosmological halos.
NASA Astrophysics Data System (ADS)
Katz, Harley; Lelli, Federico; McGaugh, Stacy S.; Di Cintio, Arianna; Brook, Chris B.; Schombert, James M.
2017-04-01
Cosmological N-body simulations predict dark matter (DM) haloes with steep central cusps (e.g. NFW). This contradicts observations of gas kinematics in low-mass galaxies that imply the existence of shallow DM cores. Baryonic processes such as adiabatic contraction and gas outflows can, in principle, alter the initial DM density profile, yet their relative contributions to the halo transformation remain uncertain. Recent high-resolution, cosmological hydrodynamic simulations by Di Cintio et al. (DC14) predict that inner density profiles depend systematically on the ratio of stellar-to-DM mass (M*/Mhalo). Using a Markov Chain Monte Carlo approach, we test the NFW and the M*/Mhalo-dependent DC14 halo models against a sample of 147 galaxy rotation curves from the new Spitzer Photometry and Accurate Rotation Curves data set. These galaxies all have extended H I rotation curves from radio interferometry as well as accurate stellar-mass-density profiles from near-infrared photometry. The DC14 halo profile provides markedly better fits to the data compared to the NFW profile. Unlike NFW, the DC14 halo parameters found in our rotation-curve fits naturally fall within two standard deviations of the mass-concentration relation predicted by Λ cold dark matter (ΛCDM) and the stellar mass-halo mass relation inferred from abundance matching with few outliers. Halo profiles modified by baryonic processes are therefore more consistent with expectations from ΛCDM cosmology and provide better fits to galaxy rotation curves across a wide range of galaxy properties than do halo models that neglect baryonic physics. Our results offer a solution to the decade long cusp-core discrepancy.
Busignies, Virginie; Leclerc, Bernard; Porion, Patrice; Evesque, Pierre; Couarraze, Guy; Tchoreloff, Pierre
2006-08-01
Direct compaction is a complex process that results in a density distribution inside the tablets which is often heterogeneous. Therefore, the density variations may affect the compact properties. A quantitative analysis of this phenomenon is still lacking. Recently, X-ray microtomography has been successfully used in pharmaceutical development to study qualitatively the impact of tablet shape and break-line in the density of pharmaceutical tablets. In this study, we evaluate the density profile in microcrystalline cellulose (Vivapur 12) compacts obtained at different mean porosity (ranging from 7.7% to 33.5%) using X-ray tomography technique. First, the validity of the Beer-Lambert law is studied. Then, density calibration is performed and density maps of cylindrical tablets are obtained and visualized using a process with colour-scale calibration plot which is explained. As expected, important heterogeneity in density is observed and quantified. The higher densities in peripheral region were particularly investigated and appraised in regard to the lower densities observed in the middle of the tablet. The results also underlined that in the case of pharmaceutical tablets, it is important to differentiate the mechanical properties representative of the total volume tablet and the mechanical properties that only characterize the tablet surface like the Brinell hardness measurements.
Core Radial Electric Field and Transport in Wendelstein 7-X Plasmas
NASA Astrophysics Data System (ADS)
Pablant, Novimir
2016-10-01
Results from the investigation of core transport and the role of the radial electric field profile (Er) in the first operational phase of the Wendelstein 7-X (W7-X) stellarator are presented. In stellarator plasmas, the details of the Er profile are expected to have a strong effect on both the particle and heat fluxes. Neoclassical particle fluxes are not intrinsically ambipolar, which leads to the formation of a radial electric field that enforces ambipolarity. The radial electric field is closely related to the perpendicular plasma flow (u⊥) through the force balance equation. This allows the radial electric field to be inferred from measurements of the perpendicular flow velocity from the x-ray imaging crystal spectrometer (XICS) and correlation reflectometry diagnostics. Large changes in the perpendicular rotation, on the order of Δu⊥ 5km /s (ΔEr 12kV / m), have been observed within a set of experiments where the heating power was stepped down from 2 MW to 0.6 MW . These experiments are examined in detail to explore the relationship between, heating power, response of the temperature and density profiles and the response of the radial electric field. Estimations of the core transport are based on power balance and utilize electron temperature (Te) profiles from the ECE and Thomson scattering, electron density profiles (ne) from interferometry and Thomson scattering, ion temperature (Ti) profiles from XICS, along with measurements of the total stored energy and radiated power. Also described are a set core impurity confinement experiments and results. Impurity confinement has been investigated through the injection of trace amount of argon impurity gas at the plasma edge in conjunction with measurements of the density of various ionization states of argon from the XICS and High Efficiency eXtreme-UV Overview Spectrometer (HEXOS) diagnostics. Finally the inferred Er and heat flux profiles are compared to initial neoclassical calculations using measured plasma profiles. On behalf of the W7-X Team.
Density fingering in spatially modulated Hele-Shaw cells
DOE Office of Scientific and Technical Information (OSTI.GOV)
Toth, Tamara; Horvath, Dezso; Toth, Agota
Density fingering of the chlorite-tetrathionate reaction has been studied experimentally in a periodically heterogeneous Hele-Shaw cell where the heterogeneity is introduced in the form of spatial modulation of gap width along the front. Depending on the spatial wavelength, gap width, and chemical composition, three types of cellular structures have been observed. The initial evolution is characterized by dispersion curves, while the long time behavior is described by the change in the autocorrelation function of the front profile and in the mixing length of the patterns.
Remote measurements of upper atmospheric density and temperature
NASA Technical Reports Server (NTRS)
Yee, Jeng-Hwa
1995-01-01
A suborbital experiment was designed to study the photochemistry of the mesosphere by observing simultaneously the airglow emissions with in-situ minor species number density profiles. The experiment was very successful and some preliminary results have already been reported in various scientific meetings. Two scientific papers are currently in the process of final preparation for submission for publication. In this final project report, we will first give a background description of the experiment and follow by the summaries of the scientific papers currently being prepared.
NASA Astrophysics Data System (ADS)
Langowski, M. P.; von Savigny, C.; Burrows, J. P.; Rozanov, V. V.; Dunker, T.; Hoppe, U.-P.; Sinnhuber, M.; Aikin, A. C.
2015-07-01
An algorithm has been developed for the retrieval of sodium atom (Na) number density on a latitude and altitude grid from SCIAMACHY limb measurements of the Na resonance fluorescence. The results are obtained between 50 and 150 km altitude and the resulting global seasonal variations of Na are analysed. The retrieval approach is adapted from that used for the retrieval of magnesium atom (Mg) and magnesium ion (Mg+) number density profiles recently reported by Langowski et al. (2014). Monthly mean values of Na are presented as a function of altitude and latitude. This data set was retrieved from the 4 years of spectroscopic limb data of the SCIAMACHY mesosphere and lower thermosphere (MLT) measurement mode. The Na layer has a nearly constant altitude of 90-93 km for all latitudes and seasons, and has a full width at half maximum of 5-15 km. Small but substantial seasonal variations in Na are identified for latitudes less than 40°, where the maximum Na number densities are 3000-4000 atoms cm-3. At mid to high latitudes a clear seasonal variation with a winter maximum of up to 6000 atoms cm-3 is observed. The high latitudes, which are only measured in the Summer Hemisphere, have lower number densities with peak densities being approximately 1000 Na atoms cm-3. The full width at half maximum of the peak varies strongly at high latitudes and is 5 km near the polar summer mesopause, while it exceeds 10 km at lower latitudes. In summer the Na atom concentration at high latitudes and at altitudes below 88 km is significantly smaller than that at mid latitudes. The results are compared with other observations and models and there is overall a good agreement with these.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Müller, S. H.; Conway, G. D.; Birkenmeier, G.
A reciprocating Langmuir probe was used to directly measure the behavior of turbulence and flows in the X-point region during transitions between low-(L) and high-confinement (H) mode in ASDEX Upgrade. The probe traverses the divertor horizontally in 140 ms, typically 2–5 cm below the X-point. Toroidal Mach number, density, floating potential (ϕ{sub f}), and electron temperature (T{sub e}) are measured. In the regime accessible to the probe (P{sub inj}<1.5 MW, line-integrated core density <4×10{sup 19} m{sup −2}), the L-H transition features an intermediate phase (I-phase), characterized by limit-cycle oscillations at 0.5–3 kHz [Conway et al., Phys. Rev. Lett. 106, 065001 (2011)]. The probe measurements revealmore » that this pulsing affects both the density and the toroidal Mach number. It is present in both the low-(LFS) and high-field sides (HFS) of the scrape-off layer, while high-amplitude broadband turbulence usually dominates the private-flux region. Profile comparisons between L-mode and I-phase show lower density in pulsing regions and small shifts in T{sub e}, directed oppositely on LFS and HFS, which are compensated by shifts in ϕ{sub f} to yield a surprisingly unchanged plasma potential profile. Directly observed L-I-phase transitions reveal that the onset of the pulsing is preceded by a fast 50% density drop in the HFS X-point region. Back transitions to L-mode occur essentially symmetrically, with the pulsing stopping first, followed by a fast recovery to L-mode density levels in the divertor.« less
Density effects on the electronic contribution to hydrogen Lyman alpha Stark profiles
NASA Astrophysics Data System (ADS)
Motapon, O.
1998-01-01
The quantum unified theory of Stark broadening (Tran Minh et al. 1975, Feautrier et al. 1976) is used to study the density effects on the electronic contribution to the hydrogen Lyman alpha lineshape. The contribution of the first angular momenta to the total profile is obtained by an extrapolation method, and the results agree with other approaches. The comparison made with Vidal et al. (1973) shows a good agreement; and the electronic profile is found to be linear in density for | Delta lambda right | greater than 8 Angstroms for densities below 10(17) cm(-3) , while the density dependence becomes more complex for | Delta lambda right | less than 8 Angstroms. The wing profiles are calculated at various temperatures scaling from 2500 to 40000K and a polynomial fit of these profiles is given.
Modeling the behavior of ionosphere above Millstone Hill during the September 21-27, 1998 storm
NASA Astrophysics Data System (ADS)
Lei, Jiuhou; Liu, Libo; Wan, Weixing; Zhang, Shun-Rong
2004-08-01
A theoretical ionospheric model is employed to investigate the ionospheric behavior as observed by the incoherent-scatter radar (ISR) at Millstone Hill during the September 21-27, 1998 storm. The observed NmF2 presented a significant negative phase on September 25, and a G condition (hmF2<200km) was also observed. The model results based on the standard input parameters (climatological model values) are in good agreement with the observed electron densities under quiet conditions, but there are large discrepancies during disturbed periods. The exospheric temperature Tex, neutral winds, atomic oxygen density [O] and molecular nitrogen density [N2], and solar flux are inferred from the ISR ion temperature profiles and from the electron density profiles. Our calculated results show that the maximum Tex is higher than 1700K, and an averaged decrease in [O] is a factor of 2.2 and an increase in [N2] at 300km is about 1.8 times for the disturbed day, September 25, relative to the quiet day level. Therefore, the large change of [N2]/[O] ratio gives a good explanation for the negative phase at Millstone Hill during this storm. Furthermore, at the disturbed nighttime the observations show a strong NmF2 decrease, accompanied by a significant hmF2 increase after the sudden storm commencement (SSC). Simulations are carried out based on the inferred Tex. It is found that the uplift of F2 layer during the period from sunset to post-midnight is mainly associated with the large equatorward winds, and a second rise in hmF2 after midnight results from the depleted Ne in the bottom-side of F2 layer due to the increased recombination, while the ``midnight collapse'' of hmF2 is attributed to the large-scale traveling atmospheric disturbances.
Empirical mass-loss rates for 25 O and early B stars, derived from Copernicus observations
NASA Technical Reports Server (NTRS)
Gathier, R.; Lamers, H. J. G. L. M.; Snow, T. P.
1981-01-01
Ultraviolet line profiles are fitted with theoretical line profiles in the cases of 25 stars covering a spectral type range from O4 to B1, including all luminosity classes. Ion column densities are compared for the determination of wind ionization, and it is found that the O VI/N V ratio is dependent on the mean density of the wind and not on effective temperature value, while the Si IV/N V ratio is temperature-dependent. The column densities are used to derive a mass-loss rate parameter that is empirically correlated against the mass-loss rate by means of standard stars with well-determined rates from IR or radio data. The empirical mass-loss rates obtained are compared with those derived by others and found to vary by as much as a factor of 10, which is shown to be due to uncertainties or errors in the ionization fractions of models used for wind ionization balance prediction.
Pluto's Solar Occultation from New Horizons
NASA Astrophysics Data System (ADS)
Young, Leslie; Kammer, Joshua; Steffl, Andrew J.; Gladstone, Randy; Summers, Michael; Strobel, Darrell F.; Hinson, David P.; Stern, S. Alan; Weaver, Harold A.; Olkin, Catherine; Ennico, Kimberly; McComas, Dave; New Horizons Atmospheres Science Theme Team
2017-10-01
The Alice instrument on NASA’s New Horizons spacecraft observed an ultraviolet solar occultation by Pluto's atmosphere on 2015 July 14. We derived line-of-sight abundances and local number densities for the major species (N2 and CH4) and minor hydrocarbons (C2H2, C2H4, C2H6), and line-of-sight optical depth and extinction coefficients for the haze. Our major conclusions are that (1) we confirmed temperatures in Pluto’s upper atmosphere that were colder than expected before the New Horizons flyby, with upper atmospheric temperatures near 65-68 K, and subsequently lower escape rates, (2) the lower atmosphere was very stable, placing the homopause within 12 km of the surface, (3) the abundance profiles of the “C2Hx hydrocarbons” had non-exponential density profiles that compare favorably with models for hydrocarbon production near 300-400 km and haze condensation near 200 km, and (4) haze had an extinction coefficient approximately proportional to N2 density.This work was supported by NASA’s New Horizons project.
NASA Astrophysics Data System (ADS)
Stankov, S. M.; Warnant, R.; Stegen, K.
2009-04-01
The purpose of the LIEDR (Local Ionospheric Electron Density Reconstruction) system is to acquire and process data from simultaneous ground-based GNSS TEC and digital ionosonde measurements, and subsequently to deduce the vertical electron density distribution in the local ionosphere. LIEDR is primarily designed to operate in real time for service applications, and, if sufficient data from solar and geomagnetic observations are available, to provide short-term forecast as well. For research applications and further development of the system, a post-processing mode of operation is also envisaged. In essence, the reconstruction procedure consists in the following. The high-precision ionosonde measurements are used for directly obtaining the bottom part of the electron density profile. The ionospheric profiler for the lower side (i.e. below the density peak height, hmF2) is based on the Epstein layer functions using the known values of the critical frequencies, foF2 and foE, and the propagation factor, M3000F2. The corresponding bottom-side part of the total electron content is calculated from this profile and is then subtracted from the GPS TEC value in order to obtain the unknown portion of the TEC in the upper side (i.e. above the hmF2). Ionosonde data, together with the simultaneously-measured TEC and empirically obtained O+/H+ ion transition level values, are all required for the determination of the topside electron density scale height. The topside electron density is considered as a sum of the constituent oxygen and hydrogen ion densities with unknown vertical scale heights. The latter are calculated by solving a system of transcendental equations that arise from the incorporation of a suitable ionospheric profiler (Chapman, Epstein, or Exponential) into formulae describing ionospheric conditions (plasma quasi-neutrality, ion transition level). Once the topside scale heights are determined, the construction of the vertical electron density distribution in the entire altitude range is a straightforward process. As a by-product of the described procedure, the value of the ionospheric slab thickness can be easily computed. To be able to provide forecast, additional information about the current solar and geomagnetic activity is needed. For the purpose, observations available in real time -- at the Royal Institute of Meteorology (RMI), the Royal Observatory of Belgium (ROB), and the US National Oceanic and Atmospheric Administration (NOAA) -- are used. Recently, a new hybrid model for estimating and predicting the local magnetic index K has been developed. This hybrid model has the advantage of using both, ground-based (geomagnetic field components) and space-based (solar wind parameters) measurements, which results in more reliable estimates of the level of geomagnetic activity - current and future. The described reconstruction procedure has been tested on actual measurements at the RMI Dourbes Geophysics Centre (coordinates: 50.1N, 4.6E) where a GPS receiver is collocated with a digital ionosonde (code: DB049, type: Lowell DGS 256). Currently, the nominal time resolution between two consecutive reconstructions is set to 15 minutes with a forecast horizon for each reconstruction of up to 60 minutes. Several applications are envisaged. For example, the ionospheric propagation delays can be estimated and corrected much easier if the electron density profile is available at a nearby location on a real-time basis. Also, both the input data and the reconstruction results can be used for validation purposes in ionospheric models, maps, and services. Recent studies suggest that such ionospheric monitoring systems can help research/services related to aircraft navigation, e.g. for development of the ‘ionospheric threat' methodology.
Einasto profiles and the dark matter power spectrum
NASA Astrophysics Data System (ADS)
Ludlow, Aaron D.; Angulo, Raúl E.
2017-02-01
We study the mass accretion histories (MAHs) and density profiles of dark matter haloes using N-body simulations of self-similar gravitational clustering from scale-free power spectra, P(k) ∝ kn. We pay particular attention to the density profile curvature, which we characterize using the shape parameter, α, of an Einasto profile. In agreement with previous findings, our results suggest that, despite vast differences in their MAHs, the density profiles of virialized haloes are remarkably alike. Nonetheless, clear departures from self-similarity are evident: For a given spectral index, α increases slightly but systematically with `peak height', ν ≡ δsc/σ(M, z), regardless of mass or redshift. More importantly, however, the `α-ν' relation depends on n: The steeper the initial power spectrum, the more gradual the curvature of both the mean MAHs and mean density profiles. These results are consistent with previous findings connecting the shapes of halo mass profiles and MAHs, and imply that dark matter haloes are not structurally self-similar but, through the merger history, retain a memory of the linear density field from which they form.
Earliest phases of star formation (EPoS). Dust temperature distributions in isolated starless cores
NASA Astrophysics Data System (ADS)
Lippok, N.; Launhardt, R.; Henning, Th.; Balog, Z.; Beuther, H.; Kainulainen, J.; Krause, O.; Linz, H.; Nielbock, M.; Ragan, S. E.; Robitaille, T. P.; Sadavoy, S. I.; Schmiedeke, A.
2016-07-01
Context. Stars form by the gravitational collapse of cold and dense molecular cloud cores. Constraining the temperature and density structure of such cores is fundamental for understanding the initial conditions of star formation. We use Herschel observations of the thermal far-infrared (FIR) dust emission from nearby and isolated molecular cloud cores and combine them with ground-based submillimeter continuum data to derive observational constraints on their temperature and density structure. Aims: The aim of this study is to verify the validity of a ray-tracing inversion technique developed to derive the dust temperature and density structure of nearby and isolated starless cores directly from the dust emission maps and to test if the resulting temperature and density profiles are consistent with physical models. Methods: We have developed a ray-tracing inversion technique that can be used to derive the temperature and density structure of starless cores directly from the observed dust emission maps without the need to make assumptions about the physical conditions. Using this ray-tracing inversion technique, we derive the dust temperature and density structure of six isolated starless molecular cloud cores from dust emission maps in the wavelengths range 100 μm-1.2 mm. We then employ self-consistent radiative transfer modeling to the density profiles derived with the ray-tracing inversion method. In this model, the interstellar radiation field (ISRF) is the only heating source. The local strength of the ISRF as well as the total extinction provided by the outer envelope are treated as semi-free parameters which we scale within defined limits. The best-fit values of both parameters are derived by comparing the self-consistently calculated temperature profiles with those derived by the ray-tracing method. Results: We confirm earlier results and show that all starless cores are significantly colder inside than outside, with central core temperatures in the range 7.5-11.9 K and envelope temperatures that are 2.4 - 9.6 K higher. The core temperatures show a strong negative correlation with peak column density which suggests that the thermal structure of the cores is dominated by external heating from the ISRF and shielding by dusty envelopes. We find that temperature profiles derived with the ray-tracing inversion method can be well-reproduced with self-consistent radiative transfer models if the cores have geometry that is not too complex and good data coverage with spatially resolved maps at five or more wavelengths in range between 100 μm and 1.2 mm. We also confirm results from earlier studies that found that the usually adopted canonical value of the total strength of the ISRF in the solar neighbourhood is incompatible with the most widely used dust opacity models for dense cores. However, with the data available for this study, we cannot uniquely resolve the degeneracy between dust opacity law and strength of the ISRF. Final T maps (FITS format) are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/cgi-bin/qcat?J/A+A/592/A61
Neural network evaluation of reflectometry density profiles for control purposes
NASA Astrophysics Data System (ADS)
Santos, J.; Nunes, F.; Manso, M.; Nunes, I.
1999-01-01
Broadband reflectometry is a diagnostic that is able to measure the density profile with high spatial and temporal resolutions, therefore it can be used to improve the performance of advanced tokamak operation modes and to supplement or correct the magnetics for plasma position control. To perform these tasks real-time processing is needed. Here we present a method that uses a neural network to make a fast evaluation of radial positions for selected density layers. Typical ASDEX Upgrade density profiles were used to generate the simulated network training and test sets. It is shown that the method has the potential to meet the tight timing requirements of control applications with the required accuracy. The network is also able to provide an accurate estimation of the position of density layers below the first density layer which is probed by an O-mode reflectometer, provided that it is trained with a realistic density profile model.
The mass discrepancy acceleration relation in a ΛCDM context
NASA Astrophysics Data System (ADS)
Di Cintio, Arianna; Lelli, Federico
2016-02-01
The mass discrepancy acceleration relation (MDAR) describes the coupling between baryons and dark matter (DM) in galaxies: the ratio of total-to-baryonic mass at a given radius anticorrelates with the acceleration due to baryons. The MDAR has been seen as a challenge to the Λ cold dark matter (ΛCDM) galaxy formation model, while it can be explained by Modified Newtonian Dynamics. In this Letter, we show that the MDAR arises in a ΛCDM cosmology once observed galaxy scaling relations are taken into account. We build semi-empirical models based on ΛCDM haloes, with and without the inclusion of baryonic effects, coupled to empirically motivated structural relations. Our models can reproduce the MDAR: specifically, a mass-dependent density profile for DM haloes can fully account for the observed MDAR shape, while a universal profile shows a discrepancy with the MDAR of dwarf galaxies with M⋆ < 109.5 M⊙, a further indication suggesting the existence of DM cores. Additionally, we reproduce slope and normalization of the baryonic Tully-Fisher relation (BTFR) with 0.17 dex scatter. These results imply that in ΛCDM (I) the MDAR is driven by structural scaling relations of galaxies and DM density profile shapes, and (II) the baryonic fractions determined by the BTFR are consistent with those inferred from abundance-matching studies.
Foster, Tobias
2011-09-01
A novel analytical and continuous density distribution function with a widely variable shape is reported and used to derive an analytical scattering form factor that allows us to universally describe the scattering from particles with the radial density profile of homogeneous spheres, shells, or core-shell particles. Composed by the sum of two Fermi-Dirac distribution functions, the shape of the density profile can be altered continuously from step-like via Gaussian-like or parabolic to asymptotically hyperbolic by varying a single "shape parameter", d. Using this density profile, the scattering form factor can be calculated numerically. An analytical form factor can be derived using an approximate expression for the original Fermi-Dirac distribution function. This approximation is accurate for sufficiently small rescaled shape parameters, d/R (R being the particle radius), up to values of d/R ≈ 0.1, and thus captures step-like, Gaussian-like, and parabolic as well as asymptotically hyperbolic profile shapes. It is expected that this form factor is particularly useful in a model-dependent analysis of small-angle scattering data since the applied continuous and analytical function for the particle density profile can be compared directly with the density profile extracted from the data by model-free approaches like the generalized inverse Fourier transform method. © 2011 American Chemical Society
Gas Cavities inside Dust Cavities in Disks Inferred from ALMA Observations
NASA Astrophysics Data System (ADS)
van der Marel, Nienke; van Dishoeck, Ewine F.; Bruderer, Simon; Pinilla, Paola; van Kempen, Tim; Perez, Laura; Isella, Andrea
2016-01-01
Protoplanetary disks with cavities in their dust distribution, also named transitional disks, are expected to be in the middle of active evolution and possibly planet formation. In recent years, millimeter-dust rings observed by ALMA have been suggested to have their origin in dust traps, caused by pressure bumps. One of the ways to generate these is by the presence of planets, which lower the gas density along their orbit and create pressure bumps at the edge. We present spatially resolved ALMA Cycle 0 and Cycle 1 observations of CO and CO isotopologues of several famous transitional disks. Gas is found to be present inside the dust cavities, but at a reduced level compared with the gas surface density profile of the outer disk. The dust and gas emission are quantified using the physical-chemical modeling code DALI. In the majority of these disks we find clear evidence for a drop in gas density of at least a factor of 10 inside the cavity, whereas the dust density drops by at least a factor 1000. The CO isotopologue observations reveal that the gas cavities are significantly smaller than the dust cavities. These gas structures suggest clearing by one or more planetary-mass companions.
NASA Astrophysics Data System (ADS)
Du, Huarong; Jhang, Hogun; Hahm, T. S.; Dong, J. Q.; Wang, Z. X.
2017-12-01
We perform a numerical study of linear stability of the ion temperature gradient (ITG) mode and the trapped electron mode (TEM) in tokamak plasmas with inverted density profiles. A local gyrokinetic integral equation is applied for this study. From comprehensive parametric scans, we obtain stability diagrams for ITG modes and TEMs in terms of density and temperature gradient scale lengths. The results show that, for the inverted density profile, there exists a normalized threshold temperature gradient above which the ITG mode and the TEM are either separately or simultaneously unstable. The instability threshold of the TEM for the inverted density profile is substantially different from that for normal and flat density profiles. In addition, deviations are found on the ITG threshold from an early analytic theory in sheared slab geometry with the adiabatic electron response [T. S. Hahm and W. M. Tang, Phys. Fluids B 1, 1185 (1989)]. A possible implication of this work on particle transport in pellet fueled tokamak plasmas is discussed.
Tuning the density profile of surface-grafted hyaluronan and the effect of counter-ions.
Berts, Ida; Fragneto, Giovanna; Hilborn, Jöns; Rennie, Adrian R
2013-07-01
The present paper investigates the structure and composition of grafted sodium hyaluronan at a solid-liquid interface using neutron reflection. The solvated polymer at the surface could be described with a density profile that decays exponentially towards the bulk solution. The density profile of the polymer varied depending on the deposition protocol. A single-stage deposition resulted in denser polymer layers, while layers created with a two-stage deposition process were more diffuse and had an overall lower density. Despite the diffuse density profile, two-stage deposition leads to a higher surface excess. Addition of calcium ions causes a strong collapse of the sodium hyaluronan chains, increasing the polymer density near the surface. This effect is more pronounced on the sample prepared by two-stage deposition due to the initial less dense profile. This study provides an understanding at a molecular level of how surface functionalization alters the structure and how surface layers respond to changes in calcium ions in the solvent.
Rotational temperatures of Venus upper atmosphere as measured by SOIR on board Venus Express
NASA Astrophysics Data System (ADS)
Mahieux, A.; Vandaele, A. C.; Robert, S.; Wilquet, V.; Drummond, R.; López Valverde, M. A.; López Puertas, M.; Funke, B.; Bertaux, J. L.
2015-08-01
SOIR is a powerful infrared spectrometer flying on board the Venus Express spacecraft since mid-2006. It sounds the Venus atmosphere above the cloud layer using the solar occultation technique. In the recorded spectra, absorption structures from many species are observed, among them carbon dioxide, the main constituent of the Venus atmosphere. Previously, temperature vertical profiles were derived from the carbon dioxide density retrieved from the SOIR spectra by assuming hydrostatic equilibrium. These profiles show a permanent cold layer at 125 km with temperatures of ~100 K, surrounded by two warmer layers at 90 and 140 km, reaching temperatures of ~200 K and 250-300 K, respectively. In this work, temperature profiles are derived from the SOIR spectra using another technique based on the ro-vibrational structure of carbon dioxide observed in the spectra. The error budget is extensively investigated. Temperature profiles obtained by both techniques are comparable within their respective uncertainties and they confirm the vertical structure previously determined from SOIR spectra.
Longitudinal Ionospheric Variability Observed by LITES on the ISS
NASA Astrophysics Data System (ADS)
Stephan, A. W.; Finn, S. C.; Cook, T.; Geddes, G.; Chakrabarti, S.; Budzien, S. A.
2017-12-01
The Limb-Imaging Ionospheric and Thermospheric Extreme-Ultraviolet Spectrograph (LITES) is an imaging spectrograph designed to measure altitude profiles (150-350 km) of extreme- and far-ultraviolet airglow emissions that originate from photochemical processes in the ionosphere and thermosphere. During the daytime, LITES observes the bright O+ 83.4 nm emission from which the ionospheric profile can be inferred. At night, recombination emissions at 91.1 and 135.6 nm provide a direct measure of the electron content along the line of sight. LITES was launched and installed on the International Space Station (ISS) in late February 2017 where it has been operating along with the highly complementary GPS Radio Occultation and Ultraviolet Photometry - Colocated (GROUP-C) experiment. We will present some of the first observations from LITES in April 2017 that show longitudinal patterns in ionospheric density and the daily variability in those patterns. LITES vertical imaging from a vantage point near 410 km enables a particularly unique perspective on the altitude of the ionospheric peak density at night that can complement and inform other ground- and space-based measurements, and track the longitude-altitude variability that is reflective of changes in equatorial electrodynamics.
The JCMT Gould Belt Survey: properties of star-forming filaments in Orion A North
NASA Astrophysics Data System (ADS)
Salji, C. J.; Richer, J. S.; Buckle, J. V.; di Francesco, J.; Hatchell, J.; Hogerheijde, M.; Johnstone, D.; Kirk, H.; Ward-Thompson, D.; JCMT GBS Consortium
2015-05-01
We develop and apply a Hessian-based filament detection algorithm to submillimetre continuum observations of Orion A North. The resultant filament radial density profiles are fitted with beam-convolved line-of-sight Plummer-profiles using Markov chain Monte Carlo techniques. The posterior distribution of the radial decay parameter demonstrates that the majority of filaments exhibit p = 1.5-3, with a mode at p = 2.2, suggesting deviation from the Ostriker p = 4 isothermal, equilibrium, self-gravitating cylinder. The spatial distribution of young stellar objects relative to the high column density filaments is investigated, yielding a lower limit on the star-forming age of the integral-shaped filament ˜1.4 Myr. Additionally, inferred lifetimes of filaments are examined which suggest long-term filament accretion, varying rates of star formation, or both. Theoretical filament stability measures are determined with the aid of HARP C18O J = 3-2 observations and indicate that the majority of filaments are gravitationally subcritical, despite the presence of young protostars. The results from this investigation are consistent with the one-dimensional accretion flow filament model recently observed in numerical simulations.
STELLAR ENCOUNTER RATE IN GALACTIC GLOBULAR CLUSTERS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bahramian, Arash; Heinke, Craig O.; Sivakoff, Gregory R.
2013-04-01
The high stellar densities in the cores of globular clusters cause significant stellar interactions. These stellar interactions can produce close binary mass-transferring systems involving compact objects and their progeny, such as X-ray binaries and radio millisecond pulsars. Comparing the numbers of these systems and interaction rates in different clusters drives our understanding of how cluster parameters affect the production of close binaries. In this paper we estimate stellar encounter rates ({Gamma}) for 124 Galactic globular clusters based on observational data as opposed to the methods previously employed, which assumed 'King-model' profiles for all clusters. By deprojecting cluster surface brightness profilesmore » to estimate luminosity density profiles, we treat 'King-model' and 'core-collapsed' clusters in the same way. In addition, we use Monte Carlo simulations to investigate the effects of uncertainties in various observational parameters (distance, reddening, surface brightness) on {Gamma}, producing the first catalog of globular cluster stellar encounter rates with estimated errors. Comparing our results with published observations of likely products of stellar interactions (numbers of X-ray binaries, numbers of radio millisecond pulsars, and {gamma}-ray luminosity) we find both clear correlations and some differences with published results.« less
The Outer Profile of the Draco Dwarf Spheroidal Galaxy: Measuring the Mass-Loss Rate
NASA Astrophysics Data System (ADS)
Armandroff, Taft; Pryor, Carlton; Olszewski, Edward
1999-02-01
The existence and properties of dark matter in dwarf galaxies have fundamental implications for cosmology and galaxy formation. We are engaged in a long-term effort to observe and model the structure, kinematics, and mass-to-light ratios of the Draco and UMi dwarf spheroidal (dSph) galaxies. Here we propose to extend our work with a search for outlying members and tidal tails of the Draco dSph galaxy, motivated by observational, theoretical, and technical advances. Recent sophisticated modeling of tidal interactions with the Galactic potential clarifies the interpretation of tidal tails and shows how to calculate the rate at which stars have been lost from a dSph or globular from the density profile of the tidal debris. Also, the radius of the transition between bound and unbound stars yields the outer boundary and total mass of the dark matter halos in the dSphs. While central mass densities and central mass-to-light ratios are generally available for dSphs, determination of their total masses (like those of any galaxy) has remained elusive. We will map a 24 square degree area along the major axis of Draco, plus six square degrees of background. Use of a 3-filter technique will result in an unprecedentedly clean census of distant Draco stars and, thus, a major-axis density profile to a radius of ~6°. Our long-term goal is to investigate the kinematics of the outer members and tidal-tail stars in order to compare in detail with the models.
White-Light and Radioastronomical Remote-Sensing of Coronal Mass Ejections
NASA Astrophysics Data System (ADS)
Kooi, Jason E.; Spangler, Steven R.
2017-01-01
Coronal mass ejections (CMEs) are large-scale eruptions of plasma from the Sun that play an important role in space weather. Faraday rotation (FR) is the rotation of the plane of polarization that results when a linearly polarized signal passes through a magnetized plasma (such as a CME) and is proportional to the path integral through the plasma of the electron density and the line-of-sight component of the magnetic field. FR observations of a source near the Sun can provide information on the plasma structure of a CME shortly after launch; however, separating the contribution of the plasma density from the line-of-sight magnetic field is challenging.We report on simultaneous white-light and radio observations made of three CMEs in August 2012. We made radio observations using the Very Large Array (VLA) at 1 - 2 GHz frequencies of a "constellation" of radio sources through the solar corona at heliocentric distances that ranged from 6 - 15 solar radii: two sources (0842+1835 and 0900+1832) were occulted by a single CME and one source (0843+1547) was occulted by two CMEs. In addition to our radioastronomical observations, which represent one of the first active hunts for CME Faraday rotation since Bird et al. (1985) and the first active hunt using the VLA, we obtained white-light coronagraph images from the LASCO/C3 instrument to determine the Thomson scattering brightness (BT), providing a means to independently estimate the plasma density and determine its contribution to the observed Faraday rotation.A constant density force-free flux rope embedded in the background corona was used to model the effects of the CMEs on BT and FR and infer the plasma densities (6 - 22 x 103 cm-3) and axial magnetic field strengths (2 - 12 mG) for the three CMEs. A single flux rope model successfully reproduces the observed BT and FR profiles for 0842+1835 and 0900+1832; however 0843+1547 was occulted by two CMEs. Using the multiple viewpoints provided by LASCO/C3 and STEREO-A/COR2, we model observations of 0843+1547 using two flux ropes embedded in the background corona and demonstrate the model's ability to successfully reproduce both BT and FR profiles.
On the synthesis of resonance lines in dynamical models of structured hot-star winds
NASA Technical Reports Server (NTRS)
Puls, J.; Owocki, S. P.; Fullerton, A. W.
1993-01-01
We examine basic issues involved in synthesizing resonance-line profiles from 1-D, dynamical models of highly structured hot-star winds. Although these models exhibit extensive variations in density as well as velocity, the density scale length is still typically much greater than the Sobolev length. The line transfer is thus treated using a Sobolev approach, as generalized by Rybicki & Hummer (1978) to take proper account of the multiple Sobolev resonances arising from the nonmonotonic velocity field. The resulting reduced-lambda-matrix equation describing nonlocal coupling of the source function is solved by iteration, and line profiles are then derived from formal solution integration using this source function. Two more approximate methods that instead use either a stationary or a structured, local source function yield qualitatively similar line-profiles, but are found to violate photon conservation by 10% or more. The full results suggest that such models may indeed be able to reproduce naturally some of the qualitative properties long noted in observed UV line profiles, such as discrete absorption components in unsaturated lines, or the blue-edge variability in saturated lines. However, these particular models do not yet produce the black absorption troughs commonly observed in saturated lines, and it seems that this and other important discrepancies (e.g., in acceleration time scale of absorption components) may require development of more complete models that include rotation and other 2-D and/or 3-D effects.
Fluctuations at the blue edge of saturated wind lines in IUE spectra of O-type stars
NASA Technical Reports Server (NTRS)
Owocki, Stanley P.; Fullerton, Alex
1993-01-01
We examine basic issues involved in synthesizing resonance-line profiles from 1-D, dynamical models of highly structured hot-star winds. Although these models exhibit extensive variations in density as well as velocity, the density scale length is still typically much greater than the Sobolev length. The line transfer is thus treated using a Sobolev approach, as generalized by Rybicki & Hummer (1978) to take proper account of the multiple Sobolev resonances arising from the nonmonotonic velocity field. The resulting reduced-Lambda-matrix equation describing nonlocal coupling of the source function is solved by iteration, and line profiles and then derived from formal solution integration using this source function. The more appropriate methods that instead use either a stationary or a structured, local source function yield qualitatively similar line-profiles, but are found to violate photon conservation by 10 percent or more. The full results suggest that such models may indeed be able to reproduce naturally some of the qualitative properties long noted in observed UV line profiles, such as discrete absorption components in unsaturated lines, or the blue-edge variability in saturated lines. However, these particular models do not yet produce the black absorption troughs commonly observed in saturated lines, and it seems that this and other important discrepancies (e.g., in acceleration time scale of absorption components) may require development of more complete models that include rotation and other 2-D and/or 3-D effects.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Garriott, O K
1960-04-01
The results of observations of the radio transmissions from Sputnik III (1958 δ 2) in an 8-month period are presented. The measurements of integrated electron density are made in two ways, described in part 1. The measurements reveal the diurnal variation of the total ionospheric electron content; and the ratio of the total content to the content of the lower ionosphere below the height of maximum density in the F layer is obtained. An estimate of the average electron-density profile above the F-layer peak is made possible by the slow variation in the height of the satellite due to rotationmore » of the perigee position. The gross effects of large magnetic storms on the electron content and distribution are found.« less
Evidence for Particle Inward Transport, Theoretical prediction and Importance for Reacting Plasmas
NASA Astrophysics Data System (ADS)
Sharky, N.; Coppi, B.; Mazzotta, C.
2017-10-01
The fact that particle transport cannot be described by a diffusion equation but by one that would include an inflow term, involving transport in the direction of the density gradient, was evidenced by experiments on magnetically confined plasmas in which the central plasma density was observed to increase as a result of gas injection at the edge of the plasma column. The validity of the proposed equation has been repeatedly confirmed over the years and limitations for the occurrence of particle inflow in a variety of experimental conditions have been uncovered. The direct experimental observation of the inward propagating particle cloud leading to a profile peaking is described and the effects of different degrees of density peaking in fusion burning plasmas are analyzed. Sponsored in part by the U.S. DoE.
Miskovicova, Ivica; Hell, Natalie; Hanke, Manfred; ...
2016-05-25
Accretion onto the black hole in the system HDE 226868/Cygnus X-1 is powered by the strong line-driven stellar wind of the O-type donor star. We study the X-ray properties of the stellar wind in the hard state of Cyg X-1, as determined using data from the Chandra High Energy Transmission Gratings. Large density and temperature inhomogeneities are present in the wind, with a fraction of the wind consisting of clumps of matter with higher density and lower temperature embedded in a photoionized gas. Absorption dips observed in the light curve are believed to be caused by these clumps. This workmore » concentrates on the non-dip spectra as a function of orbital phase. The spectra show lines of H-like and He-like ions of S, Si, Na, Mg, Al, and highly ionized Fe (Fe xvii–Fe xxiv). We measure velocity shifts, column densities, and thermal broadening of the line series. The excellent quality of these five observations allows us to investigate the orbital phase-dependence of these parameters. We show that the absorber is located close to the black hole. Doppler shifted lines point at a complex wind structure in this region, while emission lines seen in some observations are from a denser medium than the absorber. Here, the observed line profiles are phase-dependent. Their shapes vary from pure, symmetric absorption at the superior conjunction to P Cygni profiles at the inferior conjunction of the black hole.« less
Stationary self-focusing of intense laser beam in cold quantum plasma using ramp density profile
DOE Office of Scientific and Technical Information (OSTI.GOV)
Habibi, M.; Ghamari, F.
2012-10-15
By using a transient density profile, we have demonstrated stationary self-focusing of an electromagnetic Gaussian beam in cold quantum plasma. The paper is devoted to the prospects of using upward increasing ramp density profile of an inhomogeneous nonlinear medium with quantum effects in self-focusing mechanism of high intense laser beam. We have found that the upward ramp density profile in addition to quantum effects causes much higher oscillation and better focusing of laser beam in cold quantum plasma in comparison to that in the classical relativistic case. Our computational results reveal the importance and influence of formation of electron densitymore » profiles in enhancing laser self-focusing.« less
NASA Astrophysics Data System (ADS)
Douglas, Ewan Streets
This work explores remote sensing of planetary atmospheres and their circumstellar surroundings. The terrestrial ionosphere is a highly variable space plasma embedded in the thermosphere. Generated by solar radiation and predominantly composed of oxygen ions at high altitudes, the ionosphere is dynamically and chemically coupled to the neutral atmosphere. Variations in ionospheric plasma density impact radio astronomy and communications. Inverting observations of 83.4 nm photons resonantly scattered by singly ionized oxygen holds promise for remotely sensing the ionospheric plasma density. This hypothesis was tested by comparing 83.4 nm limb profiles recorded by the Remote Atmospheric and Ionospheric Detection System aboard the International Space Station to a forward model driven by coincident plasma densities measured independently via ground-based incoherent scatter radar. A comparison study of two separate radar overflights with different limb profile morphologies found agreement between the forward model and measured limb profiles. A new implementation of Chapman parameter retrieval via Markov chain Monte Carlo techniques quantifies the precision of the plasma densities inferred from 83.4 nm emission profiles. This first study demonstrates the utility of 83.4 nm emission for ionospheric remote sensing. Future visible and ultraviolet spectroscopy will characterize the composition of exoplanet atmospheres; therefore, the second study advances technologies for the direct imaging and spectroscopy of exoplanets. Such spectroscopy requires the development of new technologies to separate relatively dim exoplanet light from parent star light. High-contrast observations at short wavelengths require spaceborne telescopes to circumvent atmospheric aberrations. The Planet Imaging Concept Testbed Using a Rocket Experiment (PICTURE) team designed a suborbital sounding rocket payload to demonstrate visible light high-contrast imaging with a visible nulling coronagraph. Laboratory operations of the PICTURE coronagraph achieved the high-contrast imaging sensitivity necessary to test for the predicted warm circumstellar belt around Epsilon Eridani. Interferometric wavefront measurements of calibration target Beta Orionis recorded during the second test flight in November 2015 demonstrate the first active wavefront sensing with a piezoelectric mirror stage and activation of a micromachine deformable mirror in space. These two studies advance our "close-to-home'' knowledge of atmospheres and move exoplanetary studies closer to detailed measurements of atmospheres outside our solar system.
Densities and abundances of hot cometary ions in the coma of P/Halley
NASA Technical Reports Server (NTRS)
Neugebauer, M.; Goldstein, R.; Goldstein, B. E.; Fuselier, S. A.; Balsiger, H.; Ip, W.-H.
1991-01-01
On its flight by P/Halley, the Giotto spacecraft carried a High Energy Range Spectrometer (HERS) for measuring the properties of cometary ions picked up by the solar wind in the nearly collisionless regions of the coma. Preliminary estimates of the ion densities observed by HERS were reevaluated and extended; density profiles along the Giotto trajectory are presented for 13 values of ion mass/charge. Comparison with the physical-chemical model of the interaction of sunlight and the solar wind with the comet by other researchers reveals that, with the exception of protons and H2(+), all ion densities were at least an order of magnitude higher than predicted. The high ion densities cannot be explained on the basis of compression of the plasma, but require additional or stronger ionization mechanisms. Ratios of the densities of different ion species reveal an overabundance of carbonaceous material and an underabundance of H2(+) compared to the predictions of the Schmidt. While the densities of solar wind ions (H(+) and He(++)) changed sharply across a magnetic discontinuity located 1.35(10)(exp 5) km from the comet, this feature, which has been called both the 'cometopause' and the 'magnetic pileup boundary' was barely distinguishable in the density profiles of hot cometary ions. This result is consistent with the interpretation that the magnetic pileup boundary detected by Giotto was caused by a discontinuity in the solar wind and is not an intrinsic feature of the interaction of the solar wind with an active comet.
Rodríguez-Carrio, Javier; Alperi-López, Mercedes; López, Patricia; López-Mejías, Raquel; Alonso-Castro, Sara; Abal, Francisco; Ballina-García, Francisco J; González-Gay, Miguel Á; Suárez, Ana
The interactions between inflammation and lipid profile in rheumatoid arthritis (RA) are poorly understood. The lipid profile study in RA has been biased toward lipoprotein levels, whereas those of triglycerides (TGs) and lipoprotein functionality have been underestimated. Since recent findings suggest a role for TG and TG-rich lipoproteins (TRL) on inflammation, we aimed to evaluate a combined lipid profile characterized by high TG and low high-density lipoprotein cholesterol levels (TG high HDL low ) in RA. Lipid profiles were analyzed in 113 RA patients, 113 healthy controls, and 27 dyslipemic subjects. Levels of inflammatory mediators, paraoxonase-1 (PON1) activity, and total antioxidant capacity were quantified in serum. PON1-rs662 status was evaluated by real-time polymerase chain reaction. The TG high HDL low profile was detected in 29/113 RA patients. Although no differences in prevalence compared with healthy controls or dyslipemic subjects were observed, this profile was associated with increased tumor necrosis factor α (P = .004), monocyte chemotactic protein (P = .004), interferon-gamma-inducible protein-10 (P = .018), and leptin (P < .001) serum levels in RA, where decreased PON1 activity and total antioxidant capacity were found. TG high HDL low prevalence was lower among anti-TNFα-treated patients (P = .004). When RA patients were stratified by PON1-rs662 status, these associations remained in the low-activity genotype (QQ). Finally, a poor clinical response on TNFα blockade was related to an increasing prevalence of the TG high HDL low profile over treatment (P = .021) and higher TRL levels at baseline (P = .042). The TG high HDL low profile is associated with systemic inflammation, decreased PON1 activity, and poor clinical outcome on TNFα blockade in RA, suggesting a role of TRL and HDL dysfunction as the missing link between inflammation and lipid profile. Copyright © 2017 National Lipid Association. Published by Elsevier Inc. All rights reserved.
Physics based model of D-region variability related to VLF propagation effects
NASA Astrophysics Data System (ADS)
Chakravarty, S. C.
2012-07-01
D-region (~60-85 km) electron density profiles measured using large number of sounding rocket experiments carried out from two Indian low latitude stations show large variations with solar zenith angle, season and solar activity. Similarly the ground based multi frequency radio wave absorption technique has provided continuous data on the morphology of the hourly electron density variations. However suitable models of the D-region electron density profile variations both during quiet and disturbed solar conditions over the Indian region are lacking. The renewed interest in the study of the VLF/LF propagation anomalies taking place through perturbations in the D-region electron densities due to various geophysical phenomena requires the availability of a baseline D-region model over low latitudes. The purpose of this paper is to critically review the physical processes of D-region production and loss of free electrons, dynamical coupling due to variety of vertically propagating atmospheric waves, sudden changes brought about by the solar energetic events like CMEs and different categories of X-ray flares. Low latitude region is not likely to be affected by the PMSE or PCA type of events but the changes due to lightning induced mesospheric red sprites and LEPs need to be considered. Based on this analysis, a preliminary low latitude D-region electron density profile model development is proposed. Sample results would illustrate key requirements from such a model in terms of its effectiveness to simulate the low latitude observations of VLF/LF amplitude and phase variations using waveguide propagation models like LWPC.
TEC data ingestion into IRI and NeQuick over the antarctic region
NASA Astrophysics Data System (ADS)
Nava, Bruno; Pezzopane, Michael; Radicella, Sandro M.; Scotto, Carlo; Pietrella, Marco; Migoya Orue, Yenca; Alazo Cuartas, Katy; Kashcheyev, Anton
2016-07-01
In the present work a comparative analysis to evaluate the IRI and NeQuick 2 models capabilities in reproducing the ionospheric behaviour over the Antarctic Region has been performed. A technique to adapt the two models to GNSS-derived vertical Total Electron Content (TEC) has been therefore implemented to retrieve the 3-D ionosphere electron density at specific locations where ionosonde data were available. In particular, the electron density profiles used in this study have been provided in the framework of the AUSPICIO (AUtomatic Scaling of Polar Ionograms and Cooperative Ionospheric Observations) project applying the Adaptive Ionospheric Profiler (AIP) to ionograms recorded at eight selected mid, high-latitude and polar ionosondes. The relevant GNSS-derived vertical TEC values have been obtained from the Global Ionosphere Maps (GIM) produced by the Center for Orbit Determination in Europe (CODE). The effectiveness of the IRI and NeQuick 2 in reconstructing the ionosphere electron density at the given locations and epochs has been primarily assessed in terms of statistical comparison between experimental and model-retrieved peak parameters values (foF2 and hmF2). The analysis results indicate that in general the models are equivalent in their ability to reproduce the critical frequency of the F2 layer and they also tend to overestimate the height of the peak electron density, especially during high solar activity periods. Nevertheless this tendency is more noticeable in NeQuick 2 than in IRI. For completeness, the statistics indicating the models bottomside reconstruction capabilities, computed as height integrated electron density profile mismodeling, will also be discussed.
Head-on collision of multistate ultralight BEC dark matter configurations
NASA Astrophysics Data System (ADS)
Guzmán, F. S.; Avilez, Ana A.
2018-06-01
Density profiles of ultralight Bose-condensate dark matter inferred from numerical simulations of structure formation, ruled by the Gross-Pitaevskii-Poisson (GPP) system of equations, have a core-tail structure. Multistate equilibrium configurations of the GPP system, on the other hand, have a similar core-tail density profile. We now submit these multistate configurations to highly dynamical scenarios and show their potential as providers of appropriate density profiles of structures. We present the simulation of head-on collisions between two equilibrium configurations of the GPP system of equations, including the collision of ground state with multistate configurations. We study the regimes of solitonic and merger behavior and show generic properties of the dynamics of the system, including the relaxation process and attractor density profiles. We show that the merger of multistate configurations has the potential to produce core-tail density profiles, with the core dominated by the ground state and the halo dominated by an additional state.
First results of the SOL reflectometer on Alcator C-Mod.
Lau, C; Hanson, G; Lin, Y; Wilgen, J; Wukitch, S; Labombard, B; Wallace, G
2012-10-01
A swept-frequency X-mode reflectometer has been built on Alcator C-Mod to measure the scrape-off layer (SOL) density profiles adjacent to the lower hybrid launcher. The reflectometer system operates between 100 and 146 GHz at sweep rates from 10 μs to 1 ms and covers a density range of ∼10(16)-10(20) m(-3) at B(0) = 5-5.4 T. This paper discusses the analysis of reflectometer density profiles and presents first experimental results of SOL density profile modifications due to the application of lower hybrid range-of-frequencies power to L-mode discharges. Comparison between density profiles measured by the X-mode reflectometer and scanning Langmuir probes is also shown.
MIZUTANI, Hisashi; SAKO, Toshinori; OKUDA, Hiroko; ARAI, Nobuaki; KURIYAMA, Koji; MORI, Akihiro; YOSHIMURA, Itaru; KOYAMA, Hidekazu
2016-01-01
Density gradient ultracentrifugation (DGUC) and gel electrophoresis are conventionally used to obtain lipoprotein profiles of animals. We recently applied high-performance liquid chromatography with a gel permeation column (GP-HPLC) and an on-line dual enzymatic system to dogs for lipoprotein profile analysis. We compared the GP-HPLC with DGUC as a method to obtain a feline lipoprotein profile. The lipoprotein profiles showed large and small peaks, which corresponded to high-density lipoprotein (HDL) and low-density lipoprotein (LDL), respectively, whereas very low-density lipoprotein (VLDL) and chylomicron (CM) were only marginally detected. This profile was very similar to that of dogs reported previously. Healthy cats also had a small amount of cholesterol-rich particles distinct from the normal LDL or HDL profile. There was no difference in lipoprotein profiles between the sexes, but males had a significantly larger LDL particle size (P=0.015). This study shows the feasibility of GP-HPLC for obtaining accurate lipoprotein profiles with small sample volumes and provides valuable reference data for healthy cats that should facilitate diagnoses. PMID:27170431
FUSE spectra of Lyman series emissions from the interplanetary medium
NASA Astrophysics Data System (ADS)
Clarke, John
Neutral atoms from the local ISM flow into the solar system producing diffuse emissions through resonant scattering of solar emissions. This wind contains the velocity distribution of the local ISM, plus modifications by solar gravity and radiation pressure near the Sun. In addition, the H atom motions are modified by charge exchange collisions with fast protons in the heliospheric interface region, while He atoms are little affected by charge exchange. Recent observations of the He and H flows in the solar system suggest that the He velocity of 26 km s-1 is that of the local ISM cloud, while the lower H velocity of 18-21 km s-1 and greatly increased velocity dispersion in the flow direction are due to an interface modification of the H flow. Remote observations of the H flow thereby provide a method to remotely study the heliospheric interface. The H flow has been studied from H Lyα line profiles at high spectral resolution observed by Copernicus, IUE, and HST, using the Earth orbital motion to Doppler shift the ISM from the geocoronal emission. One serious ambiguity in the interpretation of these data results from the optically thick Lyα emission, leading to uncertainties in derived values of the H density. Using FUSE to observe the brightness and line profile of the optically thin H Lyβ line, close in time to SOHO observations of the Lyα emission, we can determine accurately the optical depth and density n(H) along lines of sight upwind, downwind, and cross-flow. Comparing n(H) with the heliospheric helium density, and with the interstellar cloud HI/HeI ratio measured recently by the EUVE, will give the fraction of H atoms removed by charge exchange at the entrance to the heliosphere, and then the Local Cloud (or ambient ISM) electron density which governs the size of the heliosphere. We request FUSE sky aperture spectra in the two narrow science apertures obtained during other pointed observations, through cooperation in scheduling pointed observations in the correct look directions at the proper times of year.
Retrieval of CHOCHO from MAX-DOAS measurements in the Beijing area
NASA Astrophysics Data System (ADS)
Hendrick, Francois; Lerot, Christophe; Stavrakou, Trissevgeni; De Smedt, Isabelle; Fayt, Caroline; Gielen, Clio; Hermans, Christian; Müller, Jean-Francois; Pinardi, Gaia; Van Roozendael, Michel
2015-04-01
Glyoxal (CHOCHO) is one of the most important carbonyl compounds in the atmosphere. It is produced mainly by the oxidation of biogenic and anthropogenic non-methane volatile organic compounds (NMVOCs) which participate to the formation of tropospheric ozone and secondary organic aerosols. CHOCHO is also directly released by biomass burning and fossil fuel combustion. Measuring this species is therefore of major importance for air quality monitoring, especially given the scarcity of available CHOCHO observational data sets. In this presentation, CHOCHO vertical profiles and corresponding column densities are retrieved from MAX-DOAS measurements in the Beijing city center and at the suburban site of Xianghe located at 60km East of Beijing. The periods covered by the observations are June 2008-April 2009 in Beijing and March 2010-December 2014 in Xianghe. We first investigate the capability of the MAX-DOAS technique to measure this species in such highly-polluted environment. Then the diurnal and seasonal cycles of CHOCHO near-surface concentrations and vertical column densities as well as the corresponding CHOCHO/HCHO ratios are examined on a long-term basis at both locations. The CHOCHO/HCHO ratios are derived from MAX-DOAS HCHO vertical profiles retrieved in parallel to the CHOCHO profiles. These diurnal and seasonal cycles are further assessed using simulations from the 3D-CTM IMAGES and observations from the OMI and GOME-2 satellite nadir instruments. The impact of these results on our knowledge about the CHOCHO budget is discussed.
Extended Dust Emission from Nearby Evolved Stars
NASA Astrophysics Data System (ADS)
Dharmawardena, Thavisha E.; Kemper, Francisca; Scicluna, Peter; Wouterloot, Jan G. A.; Trejo, Alfonso; Srinivasan, Sundar; Cami, Jan; Zijlstra, Albert; Marshall, Jonathan P.
2018-06-01
We present JCMT SCUBA-2 450{μ m} and 850{μ m} observations of 14 Asymptotic Giant Branch (AGB) stars (9 O-rich, 4 C-rich and 1 S-type) and one Red Supergiant (RSG) in the Solar Neighbourhood. We combine these observations with Herschel/PACS observations at 70{μ m} and 160{μ m} and obtain azimuthally-averaged surface-brightness profiles and their PSF subtracted residuals. The extent of the SCUBA-2 850 {μ m} emission ranges from 0.01 to 0.16 pc with an average of ˜40% of the total flux being emitted from the extended component. By fitting a modified black-body to the four-point SED at each point along the radial profile we derive the temperature (T), spectral index of dust emissivity (β) and dust column density (Σ) as a function of radius. For all the sources, the density profile deviates significantly from what is expected for a constant mass-loss rate, showing that all the sources have undergone variations in mass-loss during this evolutionary phase. In combination with results from CO line emission, we determined the dust-to-gas mass ratio for all the sources in our sample. We find that, when sources are grouped according to their chemistry, the resulting average dust-to-gas ratios are consistent with the respective canonical values. However we see a range of values with significant scatter which indicate the importance of including spatial information when deriving these numbers.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xue, Haizhou; Zhang, Yanwen; Zhu, Zihua
Single crystalline 6H-SiC samples were irradiated at 150 K using 2MeV Pt ions. Local volume swelling is determined by electron energy loss spectroscopy (EELS), a nearly sigmoidal dependence with irradiation dose is observed. The disorder profiles and ion distribution are determined by Rutherford backscattering spectrometry (RBS), transmission electron microscopy and secondary ion mass spectrum. Since the volume swelling reaches 12% over the damage region under high ion fluence, lattice expansion is considered and corrected during the data analysis of RBS spectra to obtain depth profiles. Projectile and damage profiles are estimated by SRIM (Stopping and Range of Ions in Matter).more » Comparing with the measured profiles, SRIM code significantly overestimates the electronic stopping power for the slow heavy Pt ions, and large derivations are observed in the predicted ion distribution and the damage profiles. Utilizing the reciprocity method that is based on the invariance of the inelastic excitation in ion atom collisions against interchange of projectile and target, much lower electronic stopping is deduced. A simple approach based on reducing the density of SiC target in SRIM simulation is proposed to compensate the overestimated SRIM electronic stopping power values. Better damage profile and ion range are predicted.« less
Turbulence suppression at water density interfaces: observations under moderate wind forcing.
NASA Astrophysics Data System (ADS)
Marcello Falcieri, Francesco; Kanth, Lakshmi H.; Benetazzo, Alvise; Bergamasco, Andrea; Bonaldo, Davide; Barbariol, Francesco; Malačič, Vlado; Sclavo, Mauro; Carniel, Sandro
2016-04-01
Water column stratification has a strong influence on the behaviour of turbulence kinetic energy (TKE) dissipation rates. Density gradient interfaces, due to thermohaline characteristics and to suspended sediment concentration, can act as a barrier and significantly damp TKE. Between January 30th - February 4th 2014 (CARPET2014 oceanographic campaign on R/V URANIA) we collected the very first turbulence data in the Gulf of Trieste (a small bay located in the North-eartern part of the Adriatic Sea). Observation consisted of 38 CTD casts and 478 microstructure profiles (145 ensembles) collected with a free-falling probe (MSS90L). Among those 48 were grouped in three sets of yoyo casts, each lasting for about 12 consecutive hours. The meteorological conditions during the campaign were of moderate wind (average wind speed 10 m s-1) and heat flux (net negative heat flux ranging from 150 to 400 W m-2). The water column characteristics in the Gulf during the campaign evolved from well-mixed to stratified conditions with waters intruding from the Adriatic Sea at the bottom. Two types of water intrusions were found during yoyo casts: one coming from the Adriatic Sea northern coast (i.e. warmer, saltier and more turbid) and one coming from the open sea in front of the Po Delta (i.e. cooler, fresher and less turbid). Our observations show that under moderate wind forcing, the GOT was not completely mixed due to the interfaces created by the bottom waters intruding from the open sea. The comparison of microstructure profiles collected during well mixed and stratified conditions permitted us to highlight the effect of different stratification on TKE dissipation rates. While during well mixed condition TKE profiles are governed just by their forcing, the two intrusions showed different impacts on TKE dissipation rate profiles. The coastal one, with high turbidity, acted as a barrier to surface driven turbulence dumping it of almost two order of magnitude, while the one coming from the open sea, with low sediment concentrations and a smaller vertical density gradient, was not able to suppress downward penetration of turbulence from the surface.
NASA Technical Reports Server (NTRS)
Langowski, M.; vonSavigny, C.; Burrows, J. P.; Feng, W.; Plane, J. M. C.; Marsh, D. R.; Janches, Diego; Sinnhuber, M.; Aikin, A. C.
2014-01-01
Mg and Mg+ concentration fields in the upper mesosphere/lower thermosphere (UMLT) region are retrieved from SCIAMACHY/Envisat limb measurements of Mg and Mg+ dayglow emissions using a 2-D tomographic retrieval approach. The time series of monthly means of Mg and Mg+ for number density as well as vertical column density in different latitudinal regions are shown. Data from the limb mesosphere-thermosphere mode of SCIAMACHY/Envisat are used, which covers the 50 km to 150 km altitude region with a vertical sampling of 3.3 km and a highest latitude of 82 deg. The high latitudes are not covered in the winter months, because there is no dayglow emission during polar night. The measurements were performed every 14 days from mid-2008 until April 2012. Mg profiles show a peak at around 90 km altitude with a density between 750 cm(exp-3) and 2000 cm(exp-3). Mg does not show strong seasonal variation at mid-latitudes. The Mg+ peak occurs 5-15 km above the neutral Mg peak at 95-105 km. Furthermore, the ions show a significant seasonal cycle with a summer maximum in both hemispheres at mid- and high-latitudes. The strongest seasonal variations of the ions are observed at mid-latitudes between 20-40 deg and densities at the peak altitude range from 500 cm(exp-3) to 6000 cm(exp-3). The peak altitude of the ions shows a latitudinal dependence with a maximum at mid-latitudes that is up to 10 km higher than the peak altitude at the equator. The SCIAMACHY measurements are compared to other measurements and WACCM model results. In contrast to the SCIAMACHY results, the WACCM results show a strong seasonal variability for Mg with a winter maximum, which is not observable by SCIAMACHY, and globally higher peak densities. Although the peak densities do not agree the vertical column densities agree, since SCIAMACHY results show a wider vertical profile. The agreement of SCIAMACHY and WACCM results is much better for Mg+, showing the same seasonality and similar peak densities. However, there are the following minor differences: there is no latitudinal dependence of the peak altitude for WACCM and the density maximum, passing the equatorial region during equinox conditions, is not reduced as for SCIAMACHY.
NASA Astrophysics Data System (ADS)
Xing, Chengzhi; Liu, Cheng; Wang, Shanshan; Chan, Ka Lok; Gao, Yang; Huang, Xin; Su, Wenjing; Zhang, Chengxin; Dong, Yunsheng; Fan, Guangqiang; Zhang, Tianshu; Chen, Zhenyi; Hu, Qihou; Su, Hang; Xie, Zhouqing; Liu, Jianguo
2017-12-01
Ground-based multi-axis differential optical absorption spectroscopy (MAX-DOAS) and lidar measurements were performed in Shanghai, China, during May 2016 to investigate the vertical distribution of summertime atmospheric pollutants. In this study, vertical profiles of aerosol extinction coefficient, nitrogen dioxide (NO2) and formaldehyde (HCHO) concentrations were retrieved from MAX-DOAS measurements using the Heidelberg Profile (HEIPRO) algorithm, while vertical distribution of ozone (O3) was obtained from an ozone lidar. Sensitivity study of the MAX-DOAS aerosol profile retrieval shows that the a priori aerosol profile shape has significant influences on the aerosol profile retrieval. Aerosol profiles retrieved from MAX-DOAS measurements with Gaussian a priori profile demonstrate the best agreements with simultaneous lidar measurements and vehicle-based tethered-balloon observations among all a priori aerosol profiles. Tropospheric NO2 vertical column densities (VCDs) measured with MAX-DOAS show a good agreement with OMI satellite observations with a Pearson correlation coefficient (R) of 0.95. In addition, measurements of the O3 vertical distribution indicate that the ozone productions do not only occur at surface level but also at higher altitudes (about 1.1 km). Planetary boundary layer (PBL) height and horizontal and vertical wind field information were integrated to discuss the ozone formation at upper altitudes. The results reveal that enhanced ozone concentrations at ground level and upper altitudes are not directly related to horizontal and vertical transportation. Similar patterns of O3 and HCHO vertical distributions were observed during this campaign, which implies that the ozone productions near the surface and at higher altitudes are mainly influenced by the abundance of volatile organic compounds (VOCs) in the lower troposphere.
THE CENTRAL SLOPE OF DARK MATTER CORES IN DWARF GALAXIES: SIMULATIONS VERSUS THINGS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Oh, Se-Heon; De Blok, W. J. G.; Brook, Chris
2011-07-15
We make a direct comparison of the derived dark matter (DM) distributions between hydrodynamical simulations of dwarf galaxies assuming a {Lambda}CDM cosmology and the observed dwarf galaxies sample from the THINGS survey in terms of (1) the rotation curve shape and (2) the logarithmic inner density slope {alpha} of mass density profiles. The simulations, which include the effect of baryonic feedback processes, such as gas cooling, star formation, cosmic UV background heating, and most importantly, physically motivated gas outflows driven by supernovae, form bulgeless galaxies with DM cores. We show that the stellar and baryonic mass is similar to thatmore » inferred from photometric and kinematic methods for galaxies of similar circular velocity. Analyzing the simulations in exactly the same way as the observational sample allows us to address directly the so-called cusp/core problem in the {Lambda}CDM model. We show that the rotation curves of the simulated dwarf galaxies rise less steeply than cold dark matter rotation curves and are consistent with those of the THINGS dwarf galaxies. The mean value of the logarithmic inner density slopes {alpha} of the simulated galaxies' DM density profiles is {approx}-0.4 {+-} 0.1, which shows good agreement with {alpha} = -0.29 {+-} 0.07 of the THINGS dwarf galaxies. The effect of non-circular motions is not significant enough to affect the results. This confirms that the baryonic feedback processes included in the simulations are efficiently able to make the initial cusps with {alpha} {approx}-1.0 to -1.5 predicted by DM-only simulations shallower and induce DM halos with a central mass distribution similar to that observed in nearby dwarf galaxies.« less
A new method to quantify the effects of baryons on the matter power spectrum
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schneider, Aurel; Teyssier, Romain, E-mail: aurel@physik.uzh.ch, E-mail: teyssier@physik.uzh.ch
2015-12-01
Future large-scale galaxy surveys have the potential to become leading probes for cosmology provided the influence of baryons on the total mass distribution is understood well enough. As hydrodynamical simulations strongly depend on details in the feedback implementations, no unique and robust predictions for baryonic effects currently exist. In this paper we propose a baryonic correction model that modifies the density field of dark-matter-only N-body simulations to mimic the effects of baryons from any underlying adopted feedback recipe. The model assumes haloes to consist of 4 components: 1- hot gas in hydrostatical equilibrium, 2- ejected gas from feedback processes, 3-more » central galaxy stars, and 4- adiabatically relaxed dark matter, which all modify the initial dark-matter-only density profiles. These altered profiles allow to define a displacement field for particles in N-body simulations and to modify the total density field accordingly. The main advantage of the baryonic correction model is to connect the total matter density field to the observable distribution of gas and stars in haloes, making it possible to parametrise baryonic effects on the matter power spectrum. We show that the most crucial quantities are the mass fraction of ejected gas and its corresponding ejection radius. The former controls how strongly baryons suppress the power spectrum, while the latter provides a measure of the scale where baryonic effects become important. A comparison with X-ray and Sunyaev-Zel'dovich cluster observations suggests that baryons suppress wave modes above k∼0.5 h/Mpc with a maximum suppression of 10-25 percent around k∼ 2 h/Mpc. More detailed observations of the gas in the outskirts of groups and clusters are required to decrease the large uncertainties of these numbers.« less
2004-07-01
The ability of a magnetically-filtered Faraday probe (MFFP) to obtain the ion current density profile of a Hall thruster is investigated. The MFFP is...MFFP, boxed Faraday probe (BFP), and nude Faraday probe are used to measure the ion current density profile of a 5 kW Hall thruster operated over the
Plasma phenomena observed in the MAP/WINE campaign
NASA Technical Reports Server (NTRS)
Friedrich, M.
1989-01-01
The wealth of plasma data gathered in the MAP/WINE campaign allows insight into the generation of electron densities on a large, and the nature of the ions on a small scale. The associated measurements of winds and charged particles help to understand the morphology of the midlatitude ionization which turns out to correlate poorly with geomagnetic activity, but at least slightly with the prevailing winds. A somewhat clearer connection seems to exist between stratospheric warmings and radio wave absorption minima. On the local scale the interpretation of the rocket measurements of positive ions was helped by simultaneous observations of temperatures and atomic oxygen. The relevance of the description winter anomaly for high latitude electron density profiles are examined.
Atmosphere and ionosphere of venus from the mariner v s-band radio occultation measurement.
Kliore, A; Levy, G S; Cain, D L; Fjeldbo, G; Rasool, S I
1967-12-29
Measurements of the frequency, phase, and amplitude of the S-band radio signal of Mariner V as it passed behind Venus were used to obtain the effects of refraction in its atmosphere and ionosphere. Profiles of refractivity, temperature, pressure, and density in the neutral atmosphere, as well as electron density in the daytime ionosphere, are presented. A constant scale height was observed above the tropopause, and the temperature increased with an approximately linear lapse rate below the tropopause to the level at which signal was lost, presumably because heavy defocusing attenuation occurred as critical refraction was approached. An ionosphere having at least two maxima was observed at only 85 kilometers above the tropopause.
Würtz, Peter; Suomela, Emmi; Lehtovirta, Miia; Kangas, Antti J.; Jula, Antti; Mikkilä, Vera; Viikari, Jorma S.A.; Juonala, Markus; Rönnemaa, Tapani; Hutri‐Kähönen, Nina; Kähönen, Mika; Lehtimäki, Terho; Soininen, Pasi; Ala‐Korpela, Mika; Raitakari, Olli T.
2016-01-01
Nonalcoholic fatty liver is associated with obesity‐related metabolic disturbances, but little is known about the metabolic perturbations preceding fatty liver disease. We performed comprehensive metabolic profiling to assess how circulating metabolites, such as lipoprotein lipids, fatty acids, amino acids, and glycolysis‐related metabolites, reflect the presence of and future risk for fatty liver in young adults. Sixty‐eight lipids and metabolites were quantified by nuclear magnetic resonance metabolomics in the population‐based Young Finns Study from serum collected in 2001 (n = 1,575), 2007 (n = 1,509), and 2011 (n = 2,002). Fatty liver was diagnosed by ultrasound in 2011 when participants were aged 34‐49 years (19% prevalence). Cross‐sectional associations as well as 4‐year and 10‐year risks for fatty liver were assessed by logistic regression. Metabolites across multiple pathways were strongly associated with the presence of fatty liver (P < 0.0007 for 60 measures in age‐adjusted and sex‐adjusted cross‐sectional analyses). The strongest direct associations were observed for extremely large very‐low‐density lipoprotein triglycerides (odds ratio [OR] = 4.86 per 1 standard deviation, 95% confidence interval 3.48‐6.78), other very‐low‐density lipoprotein measures, and branched‐chain amino acids (e.g., leucine OR = 2.94, 2.51‐3.44). Strong inverse associations were observed for high‐density lipoprotein measures, e.g., high‐density lipoprotein size (OR = 0.36, 0.30‐0.42) and several fatty acids including omega‐6 (OR = 0.37, 0.32‐0.42). The metabolic associations were attenuated but remained significant after adjusting for waist, physical activity, alcohol consumption, and smoking (P < 0.0007). Similar aberrations in the metabolic profile were observed already 10 years before fatty liver diagnosis. Conclusion: Circulating lipids, fatty acids, and amino acids reflect fatty liver independently of routine metabolic risk factors; these metabolic aberrations appear to precede the development of fatty liver in young adults. (Hepatology 2017;65:491‐500). PMID:27775848
Suppression of turbulent particle flux during biased rotation in LAPD
NASA Astrophysics Data System (ADS)
Carter, T. A.
2005-10-01
The edge plasma in LAPD is rotated through the application of a bias voltage (typically 100V-200V) between the plasma source cathode and the vacuum vessel wall. Without bias, cross-field turbulent particle transport causes the density profile to extend well past the cathode edge, with a fairly gentle gradient (Ln˜10 cm). As the bias voltage is applied and increased past a threshold value, the measured density profile steepens dramatically (Ln˜2 cm) at a radius near the peak of the flow shear. Turbulent transport flux measurements in this region show that the flux is reduced and then suppressed completely as the threshold is approached. As the bias voltage is increased further, the measured turbulent transport flux reverses direction. The amplitude of the density and azimuthal electric field fluctuations is observed to decrease during biased rotation, the product of the amplitudes decreasing by a factor of 5. However the dominant change appears in the cross-phase, which is altered dramatically, leading to the observed suppression and reversal of the turbulent flux. Detailed two-dimensional turbulent correlation measurements have been performed using the high repetition rate (1 Hz) and high reproducibility of LAPD plasmas. In unbiased plasmas, the correlation is localized to around 5 cm radially and a slightly smaller distance azimuthally (ρs˜0.5-1 cm). During biased rotation, a dramatic increase in the azimuthal correlation is observed, however there is little change in the radial correlation length.
Chen, Yanyan; Wu, Xiafang; Wu, Ruirui; Sun, Xiance; Yang, Boyi; Wang, Yi; Xu, Yuanyuan
2016-01-01
Changes in profile of lipids and adipokines have been reported in patients with thyroid dysfunction. But the evidence is controversial. The present study aimed to explore the relationships between thyroid function and the profile of lipids and adipokines. A cross-sectional study was conducted in 197 newly diagnosed hypothyroid patients, 230 newly diagnosed hyperthyroid patients and 355 control subjects. Hypothyroid patients presented with significantly higher serum levels of total cholesterol, triglycerides, low-density lipoprotein cholesterol (LDLC), fasting insulin, resistin and leptin than control (p < 0.05). Hyperthyroid patients presented with significantly lower serum levels of high-density lipoprotein cholesterol, LDLC and leptin, as well as higher levels of fasting insulin, resistin, adiponectin and homeostasis model insulin resistance index (HOMA-IR) than control (p < 0.05). Nonlinear regression and multivariable linear regression models all showed significant associations of resistin or adiponectin with free thyroxine and association of leptin with thyroid-stimulating hormone (p < 0.001). Furthermore, significant correlation between resistin and HOMA-IR was observed in the patients (p < 0.001). Thus, thyroid dysfunction affects the profile of lipids and adipokines. Resistin may serve as a link between thyroid dysfunction and insulin resistance. PMID:27193069
Effective ion charge (Zeff) measurements and impurity behavior in KSTAR
NASA Astrophysics Data System (ADS)
Sarwar, S.; Na, H. K.; Park, J. M.
2018-04-01
A visible bremsstrahlung detector array diagnostic system has been developed on the Korea Superconducting Tokamak Advanced Research (KSTAR) to view the whole minor radius in a narrow region of the continuum free of spectral lines. The interference filters coupled with photomultiplier tubes have been employed to determine the effective charge Zeff by using visible bremsstrahlung data during neutral beam injection in the KSTAR plasma. The Zeff profiles are typically flat for L-mode plasmas and evolve to hollow profiles during the H mode in the KSTAR. A comparison of the visible bremsstrahlung emission based on the calculated Zeff profiles is consistent with measured values of Zeff from a visible spectrometer in the core plasma. The electron temperature is measured by X-ray imaging crystal spectrometry, and electron density needed for the analysis is taken by the assumption of parabolic profiles of these parameters. The line of sight averaged local bremsstrahlung emissivity is determined with low uncertainty, and the radial emissivity is obtained by using the Abel inversion technique. In addition, a dependence of effective charge Zeff on the line-averaged electron density is evaluated, and Zeff is also determined to observe the effect of boronization.
NASA Astrophysics Data System (ADS)
Flock, M.; Ruge, J. P.; Dzyurkevich, N.; Henning, Th.; Klahr, H.; Wolf, S.
2015-02-01
Aims: Recent observations by the Atacama Large Millimeter/submillimeter Array (ALMA) of disks around young stars revealed distinct asymmetries in the dust continuum emission. In this work we wish to study axisymmetric and non-axisymmetric structures that are generated by the magneto-rotational instability in the outer regions of protoplanetary disks. We combine the results of state-of-the-art numerical simulations with post-processing radiative transfer (RT) to generate synthetic maps and predictions for ALMA. Methods: We performed non-ideal global 3D magneto-hydrodynamic (MHD) stratified simulations of the dead-zone outer edge using the FARGO MHD code PLUTO. The stellar and disk parameters were taken from a parameterized disk model applied for fitting high-angular resolution multi-wavelength observations of various circumstellar disks. We considered a stellar mass of M∗ = 0.5 M⊙ and a total disk mass of about 0.085 M∗. The 2D initial temperature and density profiles were calculated consistently from a given surface density profile and Monte Carlo radiative transfer. The 2D Ohmic resistivity profile was calculated using a dust chemistry model. We considered two values for the dust-to-gas mass ratio, 10-2 and 10-4, which resulted in two different levels of magnetic coupling. The initial magnetic field was a vertical net flux field. The radiative transfer simulations were performed with the Monte Carlo-based 3D continuum RT code MC3D. The resulting dust reemission provided the basis for the simulation of observations with ALMA. Results: All models quickly turned into a turbulent state. The fiducial model with a dust-to-gas mass ratio of 10-2 developed a large gap followed by a jump in surface density located at the dead-zone outer edge. The jump in density and pressure was strong enough to stop the radial drift of particles at this location. In addition, we observed the generation of vortices by the Rossby wave instability at the jump location close to 60 AU. The vortices were steadily generated and destroyed at a cycle of 40 local orbits. The RT results and simulated ALMA observations predict that it is feasible to observe these large-scale structures that appear in magnetized disks without planets. Neither the turbulent fluctuations in the disk nor specific times of the model can be distinguished on the basis of high-angular resolution submillimeter observations alone. The same applies to the distinction between gaps at the dead-zone edges and planetary gaps, to the distinction between turbulent and simple unperturbed disks, and to the asymmetry created by the vortex.
Determination of atomic sodium in coal combustion using laser-induced fluorescence
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sweeny, P.G.; Abrahamson, H.B.; Radonovich, L.J.
1987-01-01
A laser-induced fluorescence spectrometer (LIFS) was assembled and sodium atom densities produced from the aspiration of solutions and direct introduction of a lignite into a flame were determined from fluorescence measurements. The average flame volume observed was 0.4mm/sup 3/. This small volume allowed the measurement of sodium concentrations as a function of vertical and horizontal flame position. Temperature profiles of the flames employed were also obtained and compared with the sodium atom densities. The sodium atom densities calculated from the fluorescence measurements (N/sub tt/) are compared with the sodium atom densities calculated from thermodynamic considerations (N/sub tt/) and sodium concentrationsmore » derived from aspiration/introduction rates (N/sub ta/).« less
What Sets the Line Profiles in Tidal Disruption Events?
NASA Astrophysics Data System (ADS)
Roth, Nathaniel; Kasen, Daniel
2018-03-01
We investigate line formation in gas that is outflowing and optically thick to electron scattering, as may be expected following the tidal disruption of a star by a supermassive black hole. Using radiative transfer calculations, we show that the optical line profiles produced by expanding TDE outflows most likely are primarily emission features, rather than the P-Cygni profiles seen in most supernova spectra. This is a result of the high line excitation temperatures in the highly irradiated TDE gas. The outflow kinematics cause the emission peak to be blueshifted and have an asymmetric red wing. Such features have been observed in some TDE spectra, and we propose that these may be signatures of outflows. We also show that non-coherent scattering of hot electrons can broaden the emission lines by ∼10,000 km s‑1, such that the line width in some TDEs may be set by the electron scattering optical depth rather than the gas kinematics. The scattering-broadened line profiles produce distinct, wing-shaped profiles that are similar to those observed in some TDE spectra. The narrowing of the emission lines over time in these observed events may be related to a drop in density rather than a drop in line-of-sight velocity.
Initial performance of the radio occultation experiment in the Venus orbiter mission Akatsuki
NASA Astrophysics Data System (ADS)
Imamura, Takeshi; Ando, Hiroki; Tellmann, Silvia; Pätzold, Martin; Häusler, Bernd; Yamazaki, Atsushi; Sato, Takao M.; Noguchi, Katsuyuki; Futaana, Yoshifumi; Oschlisniok, Janusz; Limaye, Sanjay; Choudhary, R. K.; Murata, Yasuhiro; Takeuchi, Hiroshi; Hirose, Chikako; Ichikawa, Tsutomu; Toda, Tomoaki; Tomiki, Atsushi; Abe, Takumi; Yamamoto, Zen-ichi; Noda, Hirotomo; Iwata, Takahiro; Murakami, Shin-ya; Satoh, Takehiko; Fukuhara, Tetsuya; Ogohara, Kazunori; Sugiyama, Ko-ichiro; Kashimura, Hiroki; Ohtsuki, Shoko; Takagi, Seiko; Yamamoto, Yukio; Hirata, Naru; Hashimoto, George L.; Yamada, Manabu; Suzuki, Makoto; Ishii, Nobuaki; Hayashiyama, Tomoko; Lee, Yeon Joo; Nakamura, Masato
2017-10-01
After the arrival of Akatsuki spacecraft of Japan Aerospace Exploration Agency at Venus in December 2015, the radio occultation experiment, termed RS (Radio Science), obtained 19 vertical profiles of the Venusian atmosphere by April 2017. An onboard ultra-stable oscillator is used to generate stable X-band downlink signals needed for the experiment. The quantities to be retrieved are the atmospheric pressure, the temperature, the sulfuric acid vapor mixing ratio, and the electron density. Temperature profiles were successfully obtained down to 38 km altitude and show distinct atmospheric structures depending on the altitude. The overall structure is close to the previous observations, suggesting a remarkable stability of the thermal structure. Local time-dependent features are seen within and above the clouds, which is located around 48-70 km altitude. The H2SO4 vapor density roughly follows the saturation curve at cloud heights, suggesting equilibrium with cloud particles. The ionospheric electron density profiles are also successfully retrieved, showing distinct local time dependence. Akatsuki RS mainly probes the low and middle latitude regions thanks to the near-equatorial orbit in contrast to the previous radio occultation experiments using polar orbiters. Studies based on combined analyses of RS and optical imaging data are ongoing.[Figure not available: see fulltext.
A Rocket Investigation of Mesospheric Eddy Diffusion Effects on Airglow and Oxygen Chemistry
NASA Technical Reports Server (NTRS)
Ulwick, James C.
2001-01-01
A Terrier Orion rocket was launched at 0750 Z on 02/25/98 about seven minutes after the Clemson University chemical release rocket. Measurements made of the electron density by a dc probe calibrated by a capacitance probe showed several layers of electron density on a rocket ascent in the altitude range from 90 to 110 km. Rocket descent results showed several but not all of the ascent structure. From power spectral analysis of the measured electron densities, turbulent parameters are derived Measurements were made on rocket ascent and descent by an infrared radiometer of the OH Meinel (3-1) band and O2 singlet delta emissions. Profiles of the emissions are presented and discussed on both rocket ascent and descent an enhancement of the OH emission monitored by the OH radiometer was observed above 90 km. The glow was not defected by the O2 radiometer and was significantly reduced on rocket descent. Using these data and a mechanistic analysis, a profile proportional to atomic oxygen is obtained. This profile is compared to one from the ATOX probe on the rocket. A one-dimensional (1-D) photochemical model that solves the time-dependent continuity equations is used with the rocket data to investigate the odd-oxygen concentration in the near equatorial mesosphere.
NASA Astrophysics Data System (ADS)
Marshall, R. A.; Inan, U. S.; Glukhov, V. S.
2010-04-01
A 3-D finite difference time domain model is used to simulate the lightning electromagnetic pulse (EMP) and its interaction with the lower ionosphere. Results agree with the frequently observed, doughnut-shaped optical signature of elves but show that the structure exhibits asymmetry due to the presence of Earth's ambient magnetic field. Furthermore, in-cloud (horizontal) lightning channels produce observable optical emissions without the doughnut shape and, in fact, produce a much stronger optical output for the same channel current. Electron density perturbations associated with elves are also calculated, with contributions from attachment and ionization. Results presented as a function of parameters such as magnetic field direction, dipole current orientation, altitude and amplitude, and ambient ionospheric density profile demonstrate the highly nonlinear nature of the EMP-ionosphere interaction. Ionospheric effects of a sequence of in-cloud discharges are calculated, simulating a burst of in-cloud lightning activity and resulting in large density changes in the overlying ionosphere.
Interstellar absorption along the line of sight to Sigma Scorpii using Copernicus observations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Allen, M.M.; Snow, T.P.; Jenkins, E.B.
1990-05-01
From Copernicus observations of Sigma Sco, 57 individual lines of 11 elements plus the molecular species H2 and CO were identified. By using a profile-fitting technique, rather than curves of growth, it was possible to obtain column densities and Doppler b values for up to four separate components along this line of sight. Electron density in the major H I component was derived from the photoionization equilibrium of sulfur, obtaining, n(e) of about 0.3/cu cm. The neutral hydrogen density in the same component was also derived using fine-structure excitation of O I. An H II component is also present inmore » which the electron density was n(e) about 20/cu cm. As a by-product of this analysis, previously undetermined oscillator strengths for two Mn II lines were obtained: for 1162.-017 A, f about 0.023 and for 1164.211 A, f about 0.0086. 58 refs.« less
NASA Astrophysics Data System (ADS)
Li, Bo; Guo, Ming-Zhe; Yu, Hui; Chen, Shao-Xia
2018-03-01
Impulsively generated sausage wave trains in coronal structures are important for interpreting a substantial number of observations of quasi-periodic signals with quasi-periods of order seconds. We have previously shown that the Morlet spectra of these wave trains in coronal tubes depend crucially on the dispersive properties of trapped sausage waves, the existence of cutoff axial wavenumbers, and the monotonicity of the dependence of the axial group speed on the axial wavenumber in particular. This study examines the difference a slab geometry may introduce, for which purpose we conduct a comprehensive eigenmode analysis, both analytically and numerically, on trapped sausage modes in coronal slabs with a considerable number of density profiles. For the profile descriptions examined, coronal slabs can trap sausage waves with longer axial wavelengths, and the group speed approaches the internal Alfvén speed more rapidly at large wavenumbers in the cylindrical case. However, common to both geometries, cutoff wavenumbers exist only when the density profile falls sufficiently rapidly at distances far from coronal structures. Likewise, the monotonicity of the group speed curves depends critically on the profile steepness right at the structure axis. Furthermore, the Morlet spectra of the wave trains are shaped by the group speed curves for coronal slabs and tubes alike. Consequently, we conclude that these spectra have the potential for inferring the subresolution density structuring inside coronal structures, although their detection requires an instrumental cadence of better than ∼1 s.
Influence of the first wall material on the particle fuelling in ASDEX Upgrade
NASA Astrophysics Data System (ADS)
Lunt, T.; Reimold, F.; Wolfrum, E.; Carralero, D.; Feng, Y.; Schmid, K.; the ASDEX Upgrade Team
2017-05-01
In the period from 2002 to 2007 the material of the plasma facing components (PFCs) of ASDEX Upgrade (AUG) was changed from carbon (C) to tungsten (W). Comparing the measured density profiles of low-density L-mode discharges with little or no gas puff before and after this modification, a significantly higher pedestal-top density was found for W PFCs together with a steeper gradient and a lower pedestal temperature. This change can be explained by larger particle- and energy reflection coefficients for D on W compared to D on C, as shown by EMC3-EIRENE simulations of AUG discharges in similar conditions on a computational grid extending to the main chamber first wall. In the simulations, a change of the wall material at fixed separatrix density indeed shows that for W PFCs more neutrals cross the separatrix, resulting in a steeper density gradient. Analysis of the source resolved and poloidally resolved neutral flux densities across the separatrix show a dominant contribution of the divertor targets to the fuelling profile in the simulation of the low density case. Increasing the density decreases the electron temperature at the target and therefore the potential drop in the electrostatic sheath as well as the energy of the ions impinging on the surface. Neutrals with ∼eV energies, able to reach the separatrix, are then only produced via molecular dissociation processes in the plasma volume independently of the PFC material. Also the contribution of the main chamber PFCs to the fuelling is observed to increase at higher densities.
Tungsten Transport in the Core of JET H-mode Plasmas, Experiments and Modelling
NASA Astrophysics Data System (ADS)
Angioni, Clemente
2014-10-01
The physics of heavy impurity transport in tokamak plasmas plays an essential role towards the achievement of practical fusion energy. Reliable predictions of the behavior of these impurities require the development of realistic theoretical models and a complete understanding of present experiments, against which models can be validated. Recent experimental campaigns at JET with the ITER-like wall, with a W divertor, provide an extremely interesting and relevant opportunity to perform this combined experimental and theoretical research. Theoretical models of both neoclassical and turbulent transport must consistently include the impact of any poloidal asymmetry of the W density to enable quantitative predictions of the 2D W density distribution over the poloidal cross section. The agreement between theoretical predictions and experimentally reconstructed 2D W densities allows the identification of the main mechanisms which govern W transport in the core of JET H-mode plasmas. Neoclassical transport is largely enhanced by centrifugal effects and the neoclassical convection dominates, leading to central accumulation in the presence of central peaking of the density profiles and insufficiently peaked ion temperature profiles. The strength of the neoclassical temperature screening is affected by poloidal asymmetries. Only around mid-radius, turbulent diffusion offsets neoclassical transport. Consistently with observations in other devices, ion cyclotron resonance heating in the plasma center can flatten the electron density profile and peak the ion temperature profile and provide a means to reverse the neoclassical convection. MHD activity may hamper or speed up the accumulation process depending on mode number and plasma conditions. Finally, the relationship of JET results to a parallel modelling activity of the W behavior in the core of ASDEX Upgrade plasmas is presented. This project has received funding from the European Union's Horizon 2020 research and innovation programme under Grant Agreement Number 633053. The views and opinions expressed herein do not necessarily reflect those of the European Commission.
The Mass of Saturn's B ring from hidden density waves
NASA Astrophysics Data System (ADS)
Hedman, M. M.; Nicholson, P. D.
2015-12-01
The B ring is Saturn's brightest and most opaque ring, but many of its fundamental parameters, including its total mass, are not well constrained. Elsewhere in the rings, the best mass density estimates come from spiral waves driven by mean-motion resonances with Saturn's various moons, but such waves have been hard to find in the B ring. We have developed a new wavelet-based technique, for combining data from multiple stellar occultations that allows us to isolate the density wave signals from other ring structures. This method has been applied to 5 density waves using 17 occultations of the star gamma Crucis observed by the Visual and Infrared Mapping Spectrometer (VIMS) onboard the Cassini spacecraft. Two of these waves (generated by the Janus 2:1 and Mimas 5:2 Inner Lindblad Resonances) are visible in individual occultation profiles, but the other three wave signatures ( associated with the Janus 3:2, Enceladus 3:1 and Pandora 3:2 Inner Lindblad Resonances ) are not visible in individual profiles and can only be detected in the combined dataset. Estimates of the ring's surface mass density derived from these five waves fall between 40 and 140 g/cm^2. Surprisingly, these mass density estimates show no obvious correlation with the ring's optical depth. Furthermore, these data indicate that the total mass of the B ring is probably between one-third and two-thirds the mass of Saturn's moon Mimas.
Effect of density gradients in confined supersonic shear layers, part 1
NASA Astrophysics Data System (ADS)
Peroomian, Oshin; Kelly, R. E.
1994-11-01
The effect of density gradients on the supersonic wall modes (acoustic modes) of a 2-D confined compressible shear layer were investigated using linear analysis. Due to the inadequacies of the hyperbolic tangent profile, the boundary layer basic profiles were used. First a test case was taken with the same parameters as in Tam and Hu's analysis with convective Mach number M(sub c) = 1.836 and density ratio of 1.398. Three generalized inflection points were found giving rise to three modes. The first two show similar properties to the Class A and B modes, and the third is an 'inner mode' which will be called a Class C mode. As the density ratio is increased, the smallest of the three neutral phase speeds tends towards the speed of the lower velocity stream, and the other two eventually coalesce and then disappear. These two effects lead to a linear resonance between the Class B modes which increases the cutoff frequency and growth rate of the lowest mode. In fact, growth rates of 2-4 times the test case were found as the density ratio was increased to 7. A similar trend is observed for the Class A modes when the density ratio is decreased from the test case, but the growth rate is not changed by much from the test case.
NASA Astrophysics Data System (ADS)
Gérard, Jean-Claude; Bougher, Stephen; Montmessin, Franck; Bertaux, Jean-Loup; Stiepen, A.
The thermal structure of the Mars upper atmosphere is the result of the thermal balance between heating by EUV solar radiation, infrared heating and cooling, conduction and dynamic influences such as gravity waves, planetary waves, and tides. It has been derived from observations performed from different spacecraft. These include in situ measurements of orbital drag whose strength depends on the local gas density. Atmospheric temperatures were determined from the altitude variation of the density measured in situ by the Viking landers and orbital drag measurements. Another method is based on remote sensing measurements of ultraviolet airglow limb profiles obtained over 40 years ago with spectrometers during the Mariner 6 and 7 flybys and from the Mariner 9 orbiter. Comparisons with model calculations indicate that they both reflect the CO_2 scale height from which atmospheric temperatures have been deduced. Upper atmospheric temperatures varying over the wide range 270-445 K, with a mean value of 325 K were deduced from the topside scale height of the airglow vertical profile. We present an analysis of limb profiles of the CO Cameron (a(3) Pi-X(1) Sigma(+) ) and CO_2(+) doublet (B(2) Sigma_u(+) - X(2) PiΠ_g) airglows observed with the SPICAM instrument on board Mars Express. We show that the temperature in the Mars thermosphere is very variable with a mean value of 270 K, but values ranging between 150 and 400 K have been observed. These values are compared to earlier determinations and model predictions. No clear dependence on solar zenith angle, latitude or season is apparent. Similarly, exospheric variations with F10.7 in the SPICAM airglow dataset are small over the solar minimum to moderate conditions sampled by Mars Express since 2005. We conclude that an unidentified process is the cause of the large observed temperature variability, which dominates the other sources of temperature variations.
Alteration of Lipid Profile in Subclinical Hypothyroidism: A Meta-Analysis
Liu, Xiao-Li; He, Shan; Zhang, Shao-Fang; Wang, Jun; Sun, Xiu-Fa; Gong, Chun-Mei; Zheng, Shi-Jie; Zhou, Ji-Chang; Xu, Jian
2014-01-01
Background Previous studies yielded controversial results about the alteration of lipid profiles in patients with subclinical hypothyroidism. We performed a meta-analysis to investigate the association between subclinical hypothyroidism and lipid profiles. Material/Methods We searched PubMed, Cochrane Library, and China National Knowledge Infrastructure articles published January 1990 through January 2014. Dissertation databases (PQDT and CDMD) were searched for additional unpublished articles. We included articles reporting the relationship between subclinical hypothyroidism and at least 1 parameter of lipid profiles, and calculated the overall weighted mean difference (WMD) with a random effects model. Meta-regression was used to explore the source of heterogeneity among studies, and the Egger test, Begg test, and the trim and fill method were used to assess potential publication bias. Results Sixteen observational studies were included in our analysis. Meta-analysis suggested that the serum total cholesterol (TC), low-density lipoprotein cholesterol (LDL-C), and total triglyceride levels were significantly increased in patients with subclinical hypothyroidism compared with euthyroidism individuals; the WMD were 12.17 mg/dl, 7.01 mg/dl, and 13.19 mg/dl, respectively (P<0.001 for all). No significant difference was observed for serum high-density lipoprotein cholesterol (HDL-C). Match strategy was the main source of heterogeneity among studies in TC and LDL-C analysis. Potential publication bias was found in TC and LDL-C analysis by the Egger test or Begg test and was not confirmed by the trim and fill method. Conclusions Subclinical hypothyroidism may correlate with altered lipid profile. Previous studies had limitations in the control of potential confounding factors and further studies should consider those factors. PMID:25124461
Star Count Density Profiles and Structural Parameters of 26 Galactic Globular Clusters
NASA Astrophysics Data System (ADS)
Miocchi, P.; Lanzoni, B.; Ferraro, F. R.; Dalessandro, E.; Vesperini, E.; Pasquato, M.; Beccari, G.; Pallanca, C.; Sanna, N.
2013-09-01
We used an appropriate combination of high-resolution Hubble Space Telescope observations and wide-field, ground-based data to derive the radial stellar density profiles of 26 Galactic globular clusters from resolved star counts (which can be all freely downloaded on-line). With respect to surface brightness (SB) profiles (which can be biased by the presence of sparse, bright stars), star counts are considered to be the most robust and reliable tool to derive cluster structural parameters. For each system, a detailed comparison with both King and Wilson models has been performed and the most relevant best-fit parameters have been obtained. This collection of data represents the largest homogeneous catalog collected so far of star count profiles and structural parameters derived therefrom. The analysis of the data of our catalog has shown that (1) the presence of the central cusps previously detected in the SB profiles of NGC 1851, M13, and M62 is not confirmed; (2) the majority of clusters in our sample are fit equally well by the King and the Wilson models; (3) we confirm the known relationship between cluster size (as measured by the effective radius) and galactocentric distance; (4) the ratio between the core and the effective radii shows a bimodal distribution, with a peak at ~0.3 for about 80% of the clusters and a secondary peak at ~0.6 for the remaining 20%. Interestingly, the main peak turns out to be in agreement with that expected from simulations of cluster dynamical evolution and the ratio between these two radii correlates well with an empirical dynamical-age indicator recently defined from the observed shape of blue straggler star radial distribution, thus suggesting that no exotic mechanisms of energy generation are needed in the cores of the analyzed clusters.
NASA Technical Reports Server (NTRS)
Chang, A. T. C.; Shiue, J. C.
1979-01-01
Truck mounted microwave instrumentation was used to study the microwave emission characteristics of the Colorado Rocky Mountain snowpack in the vicinity of Fraser, Colorado during the winter of 1978. The spectral signatures of 5.0, 10.7, 18, and 37 GHz radiometers with dual polarization were used to measure the snowpack density and temperature profiles, rain profile, and free water content. These data were compared with calculated results based on microscopic scattering models for dry, surface melting, and very wet snowpacks.
Spectral line profiles for a planetary corona
NASA Technical Reports Server (NTRS)
Chamberlain, J. W.
1976-01-01
The Lyman and Balmer emissions of a planetary corona depend on the exospheric temperature, the integrated column density of solar-illuminated hydrogen, and the region of phase space occupied by particles. Measurements of the intensity alone are incapable of defining the exosphere unambiguously. Line profiles with high spectral resolution can show whether a nonthermal component of the escaping hydrogen is present and can indicate at what altitude orbits of hydrogen atoms are depleted. It is necessary, however, to plan the observations carefully if they are to be fitted usefully to a model.
NASA Astrophysics Data System (ADS)
Penoyre, Zephyr; Haiman, Zoltán
2018-01-01
In symmetric gravitating systems experiencing rapid mass-loss, particle orbits change almost instantaneously, which can lead to the development of a sharply contoured density profile, including singular caustics for collisionless systems. This framework can be used to model a variety of dynamical systems, such as accretion discs following a massive black hole merger and dwarf galaxies following violent early star formation feedback. Particle interactions in the high-density peaks seem a promising source of observable signatures of these mass-loss events (i.e. a possible EM counterpart for black hole mergers or strong gamma-ray emission from dark matter annihilation around young galaxies), because the interaction rate depends on the square of the density. We study post-mass-loss density profiles, both analytic and numerical, in idealized cases and present arguments and methods to extend to any general system. An analytic derivation is presented for particles on Keplerian orbits responding to a drop in the central mass. We argue that this case, with initially circular orbits, gives the most sharply contoured profile possible. We find that despite the presence of a set of singular caustics, the total particle interaction rate is reduced compared to the unperturbed system; this is a result of the overall expansion of the system dominating over the steep caustics. Finally, we argue that this result holds more generally, and the loss of central mass decreases the particle interaction rate in any physical system.
Tracking Filament Evolution in the Low Solar Corona Using Remote Sensing and In Situ Observations
NASA Astrophysics Data System (ADS)
Kocher, Manan; Landi, Enrico; Lepri, Susan. T.
2018-06-01
In the present work, we analyze a filament eruption associated with an interplanetary coronal mass ejection that arrived at L1 on 2011 August 5. In multiwavelength Solar Dynamic Observatory/Advanced Imaging Assembly (AIA) images, three plasma parcels within the filament were tracked at high cadence along the solar corona. A novel absorption diagnostic technique was applied to the filament material traveling along the three chosen trajectories to compute the column density and temperature evolution in time. Kinematics of the filamentary material were estimated using STEREO/Extreme Ultraviolet Imager and STEREO/COR1 observations. The Michigan Ionization Code used inputs of these density, temperature, and speed profiles for the computation of ionization profiles of the filament plasma. Based on these measurements, we conclude that the core plasma was in near ionization equilibrium, and the ionization states were still evolving at the altitudes where they were visible in absorption in AIA images. Additionally, we report that the filament plasma was heterogeneous, and the filamentary material was continuously heated as it expanded in the low solar corona.
Spectroscopic Observations of a Solar Flare and the Associated Coronal Mass Ejection
NASA Astrophysics Data System (ADS)
Murray, S.; Tian, H.; McKillop, S.
2013-12-01
We used data from the EUV Imaging Spectrometer (EIS) on board Hinode to examine a coronal mass ejection and a preceding flare observed on 21 November 2012 between 15:00 and 17:00 UT. Images from the Atmospheric Imaging Assembly on the Solar Dynamics Observatory were used to align the data from EIS with specific events occurring. We analyzed spectra of a few emission lines at three locations on the flare site and one location in the erupting prominence. On the flare site, we found line profiles showing typical characteristics of chromospheric evaporation: downflows at cooler lines and upflows at hotter lines. At one particular location on the flare site, we clearly identified dominant downflows on the order of 100 km/s in lines through Fe VIII to Fe XVI. To the best of our knowledge, this is the first time that such strong high-speed downflows have been spectroscopically observed in the impulsive phase of solar flares. The profile of the Fe VIII 184.54 line reveals two peaks and we were able to use the double Gaussian fit to separate the rapid downflows of dense material from the nearly stationary coronal background emission. For the erupting prominence, we were able to analyze multiple lines, cooler and warmer, of interest using this double Gaussian fit to separate the background emission from the emission of the ejected material. Our results show that the LOS velocities of the ejected material are about 100 km/s in the lower corona. Additionally, in each region of interest, we used the ratio of the density-sensitive line pair FeXII 195/186 to determine the electron density. Our results clearly show that the coronal densities were greatly enhanced during the flare. The density of the ejected material is also much larger than the typical coronal density. This research was supported by the NSF grant for the Solar Physics REU Program at the Smithsonian Astrophysical Observatory (AGS-1263241).
Surface currents associated with external kink modes in tokamak plasmas during a major disruption
NASA Astrophysics Data System (ADS)
Ng, C. S.; Bhattacharjee, A.
2017-10-01
The surface current on the plasma-vacuum interface during a disruption event involving kink instability can play an important role in driving current into the vacuum vessel. However, there have been disagreements over the nature or even the sign of the surface current in recent theoretical calculations based on idealized step-function background plasma profiles. We revisit such calculations by replacing step-function profiles with more realistic profiles characterized by a strong but finite gradient along the radial direction. It is shown that the resulting surface current is no longer a delta-function current density, but a finite and smooth current density profile with an internal structure, concentrated within the region with a strong plasma pressure gradient. Moreover, this current density profile has peaks of both signs, unlike the delta-function case with a sign opposite to, or the same as the plasma current. We show analytically and numerically that such current density can be separated into two parts, with one of them, called the convective current density, describing the transport of the background plasma density by the displacement, and the other part that remains, called the residual current density. It is argued that consideration of both types of current density is important and can resolve past controversies.
NASA Technical Reports Server (NTRS)
Judge, P. G.; Cuntz, M.
1993-01-01
We compare ab initio calculations of semiforbidden C II line profiles near 2325 A with recently published observations of the inactive red giant Alpha Tau (K5 III) obtained using the GHRS on board the Hubble Space Telescope. Our one-dimensional, time-dependent calculations assume that the chromosphere is heated by stochastic acoustic shocks generated by photospheric convection. We calculate various models using results from traditional (mixing length) convection zone calculations as input to hydrodynamical models. The semiforbidden C II line profiles and ratios provide sensitive diagnostics of chromospheric velocity fields, electron densities, and temperatures. We identify major differences between observed and computed line profiles which are related to basic gas dynamics and which are probably not due to technical modeling restrictions. If the GHRS observations are representative of chromospheric conditions at all epochs, then one (or more) of our model assumptions must be incorrect. Several possibilities are examined. We predict time variability of semiforbidden C II lines for comparison with observations. Based upon data from the IUE archives, we argue that photospheric motions associated with supergranulation or global pulsation modes are unimportant in heating the chromosphere of Alpha Tau.
NASA Astrophysics Data System (ADS)
Snowden, D.; Yelle, R. V.; Cui, J.; Wahlund, J.-E.; Edberg, N. J. T.; Ågren, K.
2013-09-01
We derive vertical temperature profiles from Ion Neutral Mass Spectrometer (INMS) N2 density measurements from 32 Cassini passes. We find that the average temperature of Titan’s thermosphere varies significantly from pass-to-pass between 112 and 175 K. The temperatures from individual temperature profiles also varies considerably, with many passes exhibiting wave-like temperature perturbations and large temperature gradients. Wave-like temperature perturbations have wavelengths between 150 and 420 km and amplitudes between 3% and 22% and vertical wave power spectra of the INMS data and HASI data have a slope between -2 and -3, which is consistent with vertically propagating atmospheric waves. The lack of a strong correlation between temperature and latitude, longitude, solar zenith angle, or local solar time indicates that the thermal structure of Titan’s thermosphere is not primarily determined by the absorption of solar EUV flux. At N2 densities greater than 108 cm-3, Titan’s thermosphere is colder when Titan is observed in Saturn’s magnetospheric lobes compared to Saturn’s plasma sheet as proposed by Westlake et al. (Westlake, J.H. et al. [2011]. J. Geophys. Res. 116, A03318. http://dx.doi.org/10.1029/2010JA016251). This apparent correlation suggests that magnetospheric particle precipitation causes the temperature variability in Titan’s thermosphere; however, at densities smaller than 108 cm-3 the lobe passes are hotter than the plasma sheet passes and we find no correlation between the temperature of Titan’s thermosphere and ionospheric signatures of enhanced particle precipitation, which suggests that the correlation is not indicative of a physical connection. The temperature of Titan’s thermosphere also may have decreased by ∼10 K around mid-2007. Finally, we classify the vertical temperature profiles to show which passes are hot and cold and which passes have the largest temperature variations. In a companion paper (Part II), we estimate the strength of energy sources and sinks in Titan’s thermosphere.
NASA Astrophysics Data System (ADS)
Boyce, Edward R.
This thesis describes the Extragalactic Lens VLBI Imaging Survey (ELVIS), a search for central images in gravitational lenses. We present the first four ELVIS targets, for which we have radio VLBI observations with resolutions of a few milli-arcseconds and sensitivities of 15 - 38mJy. For PMN J1838-3427, CLASS B0739+366 and CLASS B0445+123 we have not detected any central images, but have set stringent upper limits on their flux densities. For CLASS B2319+051 we have made a tentative detection of a third radio source, which may be either a central image or radio emission from the lens galaxy. Using the upper limits on the central image flux densities, we gain new information about the matter distributions in the lens galaxies of these systems. We fit a broken power law model for the matter profile, and constrain the allowed break radii and inner index of this model. To demagnify the central images to the observed level the matter profiles must be slightly shallower than or steeper than isothermal, which is consistent with previous studies of early type galaxy profiles. The presence of a super-massive black hole weakens the constraints somewhat, but the profiles are still close to isothermal. Relative to previous work, we reduce the maximum sizes of shallow cores by factors of 2 to 3, and raise the indices of r 0( r -g central cusps by g = 0.05 - 0.35. If we take the source in B2319+051 to be a central image, then we select a narrow band of allowed break radii and inner indices, finding that a constant density core has size 150--380 pc, and a pure power law has index g = 1.5 - 1.67. Our constraints still allow sufficiently shallow profiles that some super-massive black holes may form central image pairs rather than eliminating the central image, and these image pairs may be detected with future instruments. (Copies available exclusively from MIT Libraries, Rm. 14-0551, Cambridge, MA 02139-4307. Ph. 617-253-5668; Fax 617-253-1690.)
NASA Astrophysics Data System (ADS)
Ellingboe, Bert; Sirse, Nishant; Moloney, Rachel; McCarthy, John
2015-09-01
Bounded whistler wave, called ``helicon wave,'' is known to produce high-density plasmas and has been exploited as a high density plasma source for many applications, including electric propulsion for spacecraft. In a helicon plasma source, an antenna wrapped around the magnetized plasma column launches a low frequency wave, ωce/2 >ωhelicon >ωce/100, in the plasma which is responsible for maintaining high density plasma. Several antenna designs have been proposed in order to match efficiently the wave modes. In our experiment, helicon wave mode is observed using an m = 0 antenna. A floating B dot probe, compensated to the capacitively coupled E field, is employed to measure axial-wave-field-profiles (z, r, and θ components) in the plasma at multiple radial positions as a function of rf power and pressure. The Bθ component of the rf-field is observed to be unaffected as the wave propagates in the axial direction. Power coupling between the antenna and the plasma column is identified and agrees with the E, H, and wave coupling regimes previously seen in M =1 antenna systems. That is, the Bz component of the rf-field is observed at low plasma density as the Bz component from the antenna penetrates the plasma. The Bz component becomes very small at medium density due to shielding at the centre of the plasma column; however, with increasing density, a sudden ``jump'' occurs in the Bz component above which a standing wave under the antenna with a propagating wave away from the antenna are observed.
A high power, high density helicon discharge for the plasma wakefield accelerator experiment AWAKE
NASA Astrophysics Data System (ADS)
Buttenschön, B.; Fahrenkamp, N.; Grulke, O.
2018-07-01
A plasma cell prototype for the plasma wakefield accelerator experiment AWAKE based on a helicon discharge is presented. In the 1 m long prototype module a multiple antenna helicon discharge with an rf power density of 100 MW m‑3 is established. Based on the helicon dispersion relation, a linear scaling of plasma density with magnetic field is observed for rf frequencies above the lower hybrid frequency, ω LH ≤ 0.8ω rf. Density profiles are highest on the device axis and show shallow radial gradients, thus providing a relatively constant plasma density in the center over a radial range of Δr ≈ 10 mm with less than 10% variation. Peak plasma densities up to 7 × 1020 m‑3 are transiently achieved with a reproducibility that is sufficient for AWAKE. The results are in good agreement with power balance calculations.
NASA Technical Reports Server (NTRS)
Ofek, E.O; Fox, D.; Cenko, B.; Sullivan, M.; Gnat, O.; Frail A.; Horesh, A.; Corsi, A; Quimby, R. M.; Gehrels, N.;
2012-01-01
The optical light curve of some supernovae (SNe) may be powered by the outward diffusion of the energy deposited by the explosion shock (so-called shock breakout) in optically thick (tau approx > 30) circumstellar matter (CSM). Recently, it was shown that the radiation-mediated and -dominated shock in an optically thick wind must transform into 8. collisionless shock and can produce hard X-rays. The X-rays are expected to peak at late times, relative to maximum visible light. Here we report on a search, using Swift-XRT and Chandra, for X-ray emission from 28 SNe that belong to classes whose progenitors are suspected to be embedded in dense CSM. Our sample includes 19 type-IIn SNe, one type-Ibn SN and eiht hydrogen-poor super-luminous SNe (SLSN-I; SN 2005ap like). Two SNe (SN 2006jc and SN 2010jl) have X-ray properties that are roughly consistent with the expectation for X-rays from a collisionless shock in optically thick CSl\\l. Therefore, we suggest that their optical light curves are powered by shock breakout in CSM. We show that two other events (SN 2010al and SN 2011ht) were too X-ray bright during the SN maximum optical light to be explained by the shock breakout model. We conclude that the light curves of some, but not all, type-IIn/Ibn SNe are powered by shock breakout in CSM. For the rest of the SNe in our sample, including all the SLSN-I events, our X-ray limits are not deep enough and were typically obtained at too early times (i.e., near the SN maximum light) to conclude about their nature. Late time X-ray observations are required in order to further test if these SNe are indeed embedded in dense CSM. We review the conditions required for a shock breakOut in a wind profile. We argue that the time scale, relative to maximum light, for the SN to peak in X-rays is a probe of the column density and the density profile above the shock region. The optical light curves of SNe, for which the X-ray emission peaks at late times, are likely powered by the diffusion of shock energy from a dense CSM. We note that if the CSM density profile falls faster than a constant-rate wind density profile, then X-rays may escape at earlier times than estimated for the wind profile case. Furthermore, if the CSM have a region in which the density profile is very steep, relative to a steady wind density profile, or the CSM is neutral, then the radio free-free absorption may be low enough, and radio emission may be detected.
Numerical investigation of split flows by gravity currents into two-layered stratified water bodies
NASA Astrophysics Data System (ADS)
Cortés, A.; Wells, M. G.; Fringer, O. B.; Arthur, R. S.; Rueda, F. J.
2015-07-01
The behavior of a two-dimensional (2-D) gravity current impinging upon a density step in a two-layered stratified basin is analyzed using a high-resolution Reynolds-Averaged Navier-Stokes model. The gravity current splits at the density step, and the portion of the buoyancy flux becoming an interflow is largely controlled by the vertical distribution of velocity and density within the gravity current and the magnitude of the density step between the two ambient layers. This is in agreement with recent laboratory observations. The strongest changes in the ambient density profiles occur as a result of the impingement of supercritical currents with strong density contrasts, for which a large portion of the gravity current detaches from the bottom and becomes an interflow. We characterize the current partition process in the simulated experiments using the densimetric Froude number of the current (Fr) across the density step (upstream and downstream). When underflows are formed, more supercritical currents are observed downstream of the density step compared to upstream (Fru < Frd), and thus, stronger mixing of the current with the ambient water downstream. However, when split flows and interflows are formed, smaller Fr values are identified after the current crosses the density step (Fru > Frd), which indicates lower mixing between the current and ambient water after the impingement due to the significant stripping of interfacial material at the density step.
Effects of pressing schedule on formation of vertical density profile for MDF panels
Zhiyong Cai; James H. Muehl; Jerrold E. Winandy
2006-01-01
A fundamental understanding of mat consolidation during hot pressing will help to optimize the medium-density fiberboard (MDF) manufacturing process by increasing productivity, improving product quality, and enhancing durability. Effects of panel density, fiber moisture content (MC), and pressing schedule on formation of vertical density profile (VDP) during hot...
NASA Astrophysics Data System (ADS)
Brunini, Claudio; Azpilicueta, Francisco; Nava, Bruno
2013-09-01
Well credited and widely used ionospheric models, such as the International Reference Ionosphere or NeQuick, describe the variation of the electron density with height by means of a piecewise profile tied to the F2-peak parameters: the electron density,, and the height, . Accurate values of these parameters are crucial for retrieving reliable electron density estimations from those models. When direct measurements of these parameters are not available, the models compute the parameters using the so-called ITU-R database, which was established in the early 1960s. This paper presents a technique aimed at routinely updating the ITU-R database using radio occultation electron density profiles derived from GPS measurements gathered from low Earth orbit satellites. Before being used, these radio occultation profiles are validated by fitting to them an electron density model. A re-weighted Least Squares algorithm is used for down-weighting unreliable measurements (occasionally, entire profiles) and to retrieve and values—together with their error estimates—from the profiles. These values are used to monthly update the database, which consists of two sets of ITU-R-like coefficients that could easily be implemented in the IRI or NeQuick models. The technique was tested with radio occultation electron density profiles that are delivered to the community by the COSMIC/FORMOSAT-3 mission team. Tests were performed for solstices and equinoxes seasons in high and low-solar activity conditions. The global mean error of the resulting maps—estimated by the Least Squares technique—is between and elec/m for the F2-peak electron density (which is equivalent to 7 % of the value of the estimated parameter) and from 2.0 to 5.6 km for the height (2 %).
NASA Astrophysics Data System (ADS)
Wang, Xiang; Zhou, Chen
2018-05-01
Incoherent scatter radar (ISR) is the most powerful ground-based measurement facility to study the ionosphere. The plasma lines are not routinely detected by the incoherent scatter radar due to the low intensity, which falls below the measured spectral noise level of the incoherent scatter radar. The plasma lines are occasionally enhanced by suprathermal electrons through the Landau damping process and detectable to the incoherent scatter radar. In this study, by using the European Incoherent Scatter Association (EISCAT) UHF incoherent scatter radar, the experiment observation presents that the enhanced plasma lines were observed. These plasma lines were considered as manifest of the suprathermal electrons generated by the high-frequency heating wave during the ionospheric modification. The electron density profile is also obtained from the enhanced plasma lines. This study can be a promising technique for obtaining the accurate electron density during ionospheric modification experiment.
Study of Super- and Subsonic Ionization Fronts in Low-Density, Soft X-Ray-Irradiated Foam Targets
NASA Astrophysics Data System (ADS)
Willi, O.; Barringer, L.; Vickers, C.; Hoarty, D.
2000-04-01
The transition from super- to subsonic propagation of an ionization front has been studied in X-ray irradiated, low-density foam targets using soft X-ray imaging and point projection absorption spectroscopy. The foams were doped with chlorine and irradiated with an intense pulse of soft X-ray radiation with a temperature up to 120 eV produced by laser heating a burnthrough converter foil. The cylindrical foam targets were radiographed side-on allowing the change in the chlorine ionization and hence the front to be observed. From the absolute target transmission the density profile was obtained. Comparison of experimental absorption spectra with simulated ones allowed the temperature of the heated material to be inferred for the first time without reliance on detailed hydrodynamic simulations to interpret the data. The experimental observations were compared to radiation hydrodynamic simulations.
NASA Astrophysics Data System (ADS)
Duan, Y.; Durand, M. T.; Jezek, K. C.; Yardim, C.; Bringer, A.; Aksoy, M.; Johnson, J. T.
2017-12-01
The ultra-wideband software-defined microwave radiometer (UWBRAD) is designed to provide ice sheet internal temperature product via measuring low frequency microwave emission. Twelve channels ranging from 0.5 to 2.0 GHz are covered by the instrument. A Greenland air-borne demonstration was demonstrated in September 2016, provided first demonstration of Ultra-wideband radiometer observations of geophysical scenes, including ice sheets. Another flight is planned for September 2017 for acquiring measurements in central ice sheet. A Bayesian framework is designed to retrieve the ice sheet internal temperature from simulated UWBRAD brightness temperature (Tb) measurements over Greenland flight path with limited prior information of the ground. A 1-D heat-flow model, the Robin Model, was used to model the ice sheet internal temperature profile with ground information. Synthetic UWBRAD Tb observations was generated via the partially coherent radiation transfer model, which utilizes the Robin model temperature profile and an exponential fit of ice density from Borehole measurement as input, and corrupted with noise. The effective surface temperature, geothermal heat flux, the variance of upper layer ice density, and the variance of fine scale density variation at deeper ice sheet were treated as unknown variables within the retrieval framework. Each parameter is defined with its possible range and set to be uniformly distributed. The Markov Chain Monte Carlo (MCMC) approach is applied to make the unknown parameters randomly walk in the parameter space. We investigate whether the variables can be improved over priors using the MCMC approach and contribute to the temperature retrieval theoretically. UWBRAD measurements near camp century from 2016 was also treated with the MCMC to examine the framework with scattering effect. The fine scale density fluctuation is an important parameter. It is the most sensitive yet highly unknown parameter in the estimation framework. Including the fine scale density fluctuation greatly improved the retrieval results. The ice sheet vertical temperature profile, especially the 10m temperature, can be well retrieved via the MCMC process. Future retrieval work will apply the Bayesian approach to UWBRAD airborne measurements.
First detection of hydrogen in the β Pictoris gas disk
NASA Astrophysics Data System (ADS)
Wilson, P. A.; Lecavelier des Etangs, A.; Vidal-Madjar, A.; Bourrier, V.; Hébrard, G.; Kiefer, F.; Beust, H.; Ferlet, R.; Lagrange, A.-M.
2017-03-01
The young and nearby star β Pictoris (β Pic) is surrounded by a debris disk composed of dust and gas known to host a myriad evaporating exocomets, planetesimals and at least one planet. At an edge-on inclination, as seen from Earth, this system is ideal for debris disk studies providing an excellent opportunity to use absorption spectroscopy to study the planet forming environment. Using the Cosmic Origins Spectrograph (COS) instrument on the Hubble Space Telescope (HST) we observe the most abundant element in the disk, hydrogen, through the H I Lyman α (Ly-α) line. We present a new technique to decrease the contamination of the Ly-α line by geocoronal airglow in COS spectra. This Airglow Virtual Motion (AVM) technique allows us to shift the Ly-α line of the astrophysical target away from the contaminating airglow emission revealing more of the astrophysical line profile. This new AVM technique, together with subtraction of an airglow emission map, allows us to analyse the shape of the β Pic Ly-α emission line profile and from it, calculate the column density of neutral hydrogen surrounding β Pic. The column density of hydrogen in the β Pic stable gas disk at the stellar radial velocity is measured to be log (NH/ 1 cm2) ≪ 18.5. The Ly-α emission line profile is found to be asymmetric and we propose that this is caused by H I falling in towards the star with a bulk radial velocity of 41 ± 6 km s-1 relative to β Pic and a column density of log (NH/ 1 cm2) = 18.6 ± 0.1. The high column density of hydrogen relative to the hydrogen content of CI chondrite meteorites indicates that the bulk of the hydrogen gas does not come from the dust in the disk. This column density reveals a hydrogen abundance much lower than solar, which excludes the possibility that the detected hydrogen could be a remnant of the protoplanetary disk or gas expelled by the star. We hypothesise that the hydrogen gas observed falling towards the star arises from the dissociation of water originating from evaporating exocomets.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aguiam, D. E., E-mail: daguiam@ipfn.tecnico.ulisboa.pt; Silva, A.; Carvalho, P. J.
A new multichannel frequency modulated continuous-wave reflectometry diagnostic has been successfully installed and commissioned on ASDEX Upgrade to measure the plasma edge electron density profile evolution in front of the Ion Cyclotron Range of Frequencies (ICRF) antenna. The design of the new three-strap ICRF antenna integrates ten pairs (sending and receiving) of microwave reflectometry antennas. The multichannel reflectometer can use three of these to measure the edge electron density profiles up to 2 × 10{sup 19} m{sup −3}, at different poloidal locations, allowing the direct study of the local plasma layers in front of the ICRF antenna. ICRF power coupling,more » operational effects, and poloidal variations of the plasma density profile can be consistently studied for the first time. In this work the diagnostic hardware architecture is described and the obtained density profile measurements were used to track outer radial plasma position and plasma shape.« less
NASA Astrophysics Data System (ADS)
Labombard, Brian
2013-10-01
A ``Mirror Langmuir Probe'' (MLP) diagnostic has been used to interrogate edge plasma profiles and turbulence in Alcator C-Mod with unprecedented detail, yielding fundamental insights on the Quasi-Coherent Mode (QCM) - a mode that regulates plasma density and impurities in EDA H-modes without ELMs. The MLP employs a fast-switching, self-adapting bias scheme, recording density, electron temperature and plasma potential simultaneously at high bandwidth (~1 MHz) on each of four separate electrodes on a scanning probe. Temporal dynamics are followed in detail; wavenumber-frequency spectra and phase relationships are readily deduced. Poloidal field fluctuations are recorded separately with a two-coil, scanning probe. Results from ohmic L-mode and H-mode plasmas are reported, including key observations of the QCM: The QCM lives in a region of positive radial electric field, with a mode width (~3 mm) that spans open and closed field line regions. Remarkably large amplitude (~30%), sinusoidal bursts in density, electron temperature and plasma potential fluctuations are observed that are in phase; potential lags density by at most 10 degrees. Propagation velocity of the mode corresponds to the sum of local E × B and electron diamagnetic drift velocities - quantities that are deduced directly from time-averaged profiles. Poloidal magnetic field fluctuations project to parallel current densities of ~5 amps/cm2 in the mode layer, with significant parallel electromagnetic induction. Electron force balance is examined, unambiguously identifying the mode type. It is found that fluctuations in parallel electron pressure gradient are roughly balanced by the sum of electrostatic and electromotive forces. Thus the primary mode structure of the QCM is that of a drift-Alfven wave. Work supported by US DoE award DE-FC02-99ER54512.
Stelinski, L L; Miller, J R; Rogers, M E
2008-08-01
The citrus leafminer, Phyllocnistis citrella Stainton (Lepidoptera: Gracillariidae), is a worldwide pest of citrus. A season-long investigation was conducted that evaluated mating disruption for this pest. Effective disruption of the male P. citrella orientation to pheromone traps (98%) and reduced flush infestation by larvae was achieved for 221 d with two deployments of a 3:1 blend of (Z,Z,E)-7,11,13-hexadecatrienal/(Z,Z)-7,11-hexadecadienal at a remarkably low rate of 1.5 g active ingredient (AI)/ha per deployment. To gain insight into the mechanism that mediates the disruption of P. citrella, male moth catch was quantified in replicated plots of citrus treated with varying densities of pheromone dispensers. The densities of septum dispensers compared were: 0 (0/ha, 0.0 g AI/ha), 0.2 (one every fifth tree or 35/ha, 0.05 g AI/ha), 1 (215/ha, 0.29 g AI/ha), and 5 per tree (1,100/ha, 1.5 g AI/ha). Profile analysis by previously published mathematical methods matched predictions of noncompetitive mating disruption. Behavioral observations of male P. citrella in the field revealed that males did not approach mating disruption dispensers in any of the dispenser density treatments. The current report presents the first set of profile analyses combined with direct behavioral observations consistent with previously published theoretical predictions for a noncompetitive mechanism of mating disruption. The results suggest that disruption of P. citrella should be effective even at high population densities given the density-independent nature of disruption for this species and the remarkably low rate of pheromone per hectare required for efficacy.
Yoshida, Kengo; Nakashima, Eiji; Kyoizumi, Seishi; Hakoda, Masayuki; Hayashi, Tomonori; Hida, Ayumi; Ohishi, Waka; Kusunoki, Yoichiro
2016-09-01
Immune system impairments reflected by the composition and function of circulating lymphocytes are still observed in atomic bomb survivors, and metabolic abnormalities including altered blood triglyceride and cholesterol levels have also been detected in such survivors. Based on closely related features of immune and metabolic profiles of individuals, we investigated the hypothesis that long-term effects of radiation exposure on lymphocyte subsets might be modified by metabolic profiles in 3,113 atomic bomb survivors who participated in health examinations at the Radiation Effect Research Foundation, Hiroshima and Nagasaki, in 2000-2002. The lymphocyte subsets analyzed involved T-, B- and NK-cell subsets, and their percentages in the lymphocyte fraction were assessed using flow cytometry. Health examinations included metabolic indicators, body mass index, serum levels of total cholesterol, high-density lipoprotein cholesterol, C-reactive protein and hemoglobin A1c, as well as diabetes and fatty liver diagnoses. Standard regression analyses indicated that several metabolic indicators of obesity/related disease, particularly high-density lipoprotein cholesterol levels, were positively associated with type-1 helper T- and B-cell percentages but were inversely associated with naïve CD4 T and NK cells. A regression analysis adjusted for high-density lipoprotein cholesterol revealed a radiation dose relationship with increasing NK-cell percentage. Additionally, an interaction effect was suggested between radiation dose and C-reactive protein on B-cell percentage with a negative coefficient of the interaction term. Collectively, these findings suggest that radiation exposure and subsequent metabolic profile changes, potentially in relationship to obesity-related inflammation, lead to such long-term alterations in lymphocyte subset composition. Because this study is based on cross-sectional and exploratory analyses, the implications regarding radiation exposure, metabolic profiles and circulating lymphocytes warrant future longitudinal and molecular mechanistic studies.
Effect of Control Blade History, and Axial Coolant Density and Burnup Profiles on BWR Burnup Credit
DOE Office of Scientific and Technical Information (OSTI.GOV)
Marshall, William BJ J
2016-01-01
A technical basis for peak reactivity boiling water reactor (BWR) burnup credit (BUC) methods was recently generated, and the technical basis for extended BWR BUC is now being developed. In this paper, a number of effects related to extended BWR BUC are analyzed, including three major operational effects in BWRs: the coolant density axial distribution, the use of control blades during operation, and the axial burnup profile. Specifically, uniform axial moderator density profiles are analyzed and compared to previous results and an additional temporal fidelity study combing moderator density profiles for three different fuel assemblies is presented. Realistic control blademore » histories and cask criticality results are compared to previously generated constructed control blade histories. Finally, a preliminary study of the axial burnup profile is provided.« less
Kinetic simulations of the stability of a plasma confined by the magnetic field of a current rod
NASA Astrophysics Data System (ADS)
Tonge, J.; Leboeuf, J. N.; Huang, C.; Dawson, J. M.
2003-09-01
The kinetic stability of a plasma in the magnetic field of a current rod is investigated for various temperature and density profiles using three-dimensional particle-in-cell simulations. Such a plasma obeys similar physics to a plasma in a dipole magnetic field, while it is easier to perform computer simulations, and do theoretical analysis, of a plasma in the field of a current rod. Simple energy principle calculations and simulations with a variety of temperature and density profiles show that the plasma is stable to interchange for pressure profiles proportional to r-10/3. As predicted by theory the simulations also show that the density profile will be stationary as long as density is proportional to r-2 even though the temperature profile may not be stable.
Better Than Counting: Density Profiles from Force Sampling
NASA Astrophysics Data System (ADS)
de las Heras, Daniel; Schmidt, Matthias
2018-05-01
Calculating one-body density profiles in equilibrium via particle-based simulation methods involves counting of events of particle occurrences at (histogram-resolved) space points. Here, we investigate an alternative method based on a histogram of the local force density. Via an exact sum rule, the density profile is obtained with a simple spatial integration. The method circumvents the inherent ideal gas fluctuations. We have tested the method in Monte Carlo, Brownian dynamics, and molecular dynamics simulations. The results carry a statistical uncertainty smaller than that of the standard counting method, reducing therefore the computation time.
NASA Astrophysics Data System (ADS)
Sorini, Daniele; Oñorbe, José; Hennawi, Joseph F.; Lukić, Zarija
2018-06-01
Galaxy formation depends critically on the physical state of gas in the circumgalactic medium (CGM) and its interface with the intergalactic medium (IGM), determined by the complex interplay between inflow from the IGM and outflows from supernovae and/or AGN feedback. The average Lyα absorption profile around galactic halos represents a powerful tool to probe their gaseous environments. We compare predictions from Illustris and Nyx hydrodynamical simulations with the observed absorption around foreground quasars, damped Lyα systems, and Lyman-break galaxies. We show how large-scale BOSS and small-scale quasar pair measurements can be combined to precisely constrain the absorption profile over three decades in transverse distance 20 {kpc}≲ b≲ 20 {Mpc}. Far from galaxies, ≳ 2 {Mpc}, the simulations converge to the same profile and provide a reasonable match to the observations. This asymptotic agreement arises because the ΛCDM model successfully describes the ambient IGM and represents a critical advantage of studying the mean absorption profile. However, significant differences between the simulations, and between simulations and observations, are present on scales 20 {kpc}≲ b≲ 2 {Mpc}, illustrating the challenges of accurately modeling and resolving galaxy formation physics. It is noteworthy that these differences are observed as far out as ∼ 2 {Mpc}, indicating that the “sphere of influence” of galaxies could extend to approximately ∼7 times the halo virial radius. Current observations are very precise on these scales and can thus strongly discriminate between different galaxy formation models. We demonstrate that the Lyα absorption profile is primarily sensitive to the underlying temperature–density relationship of diffuse gas around galaxies, and argue that it thus provides a fundamental test of galaxy formation models.
NASA Technical Reports Server (NTRS)
Henley, D. B.; Corcoran, M. F.; Pittard, J. M.; Stevens, I. R.; Hamaguchi, K.; Gull, T. R.
2008-01-01
We report on variations in important X-ray emission lines in a series of Chandra grating spectra of the supermassive colliding wind binary star eta Car, including key phases around the X-ray minimum/periastron passage in 2003.5. The X-rays arise from the collision of the slow, dense wind of eta Car with the fast, low-density wind of an otherwise hidden companion star. The X-ray emission lines provide the only direct measure of the flow dynamics of the companion's wind along the wind-wind collision zone. We concentrate here on the silicon and sulfur lines, which are the strongest and best resolved lines in the X-ray spectra. Most of the line profiles can be adequately fit with symmetric Gaussians with little significant skewness. Both the silicon and sulfur lines show significant velocity shifts and correlated increases in line widths through the observations. The R = forbidden-to-intercombination ratio from the Si XIII and S XV triplets is near or above the low-density limit in all observations, suggesting that the line-forming region is > 1.6 stellar radii from the companion star, and that the emitting plasma may be in a non-equilibrium state. We show that simple geometrical models cannot simultaneously fit both the observed centroid variations and changes in line width as a function of phase. We show that the observed profiles can be fitted with synthetic profiles with a reasonable model of the emissivity along the wind-wind collision boundary. We use this analysis to help constrain the line formation region as a function of orbital phase, and the orbital geometry. Subject headings: X-rays: stars -stars: early-type-stars: individual (q Car)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lynch, Ryan S.; Archibald, Robert F.; Kaspi, Victoria M.
We present results from eight months of Green Bank Telescope 8.7 GHz observations and nearly 18 months of Swift X-ray telescope observations of the radio magnetar SGR J1745–2900. We tracked the radio and X-ray flux density, polarization properties, profile evolution, rotation, and single-pulse behavior. We identified two main periods of activity. The first is characterized by approximately 5.5 months of relatively stable evolution in radio flux density, rotation, and profile shape, while in the second these properties varied substantially. Specifically, a third profile component emerged and the radio flux also became more variable. The single pulse properties also changed, mostmore » notably with a larger fraction of pulses with pulse widths ∼5–20 ms in the erratic state. Bright single pulses are well described by a log-normal energy distribution at low energies, but with an excess at high energies. The 2–10 keV flux decayed steadily since the initial X-ray outburst, while the radio flux remained stable to within ∼20% during the stable state. A joint pulsar timing analysis of the radio and X-ray data shows a level of timing noise unprecedented in a radio magnetar, though during the time covered by the radio data alone the timing noise was at a level similar to that observed in other radio magnetars. While SGR J1745–2900 is similar to other radio magnetars in many regards, it differs by having experienced a period of relative stability in the radio that now appears to have ended, while the X-ray properties evolved independently.« less
A Close Relationship between Lyα and Mg II in Green Pea Galaxies
NASA Astrophysics Data System (ADS)
Henry, Alaina; Berg, Danielle A.; Scarlata, Claudia; Verhamme, Anne; Erb, Dawn
2018-03-01
The Mg II λλ2796, 2803 doublet is often used to measure interstellar medium absorption in galaxies, thereby serving as a diagnostic for feedback and outflows. However, the interpretation of Mg II remains confusing, due to resonant trapping and re-emission of the photons, analogous to Lyα. Therefore, in this paper, we present new MMT Blue Channel Spectrograph observations of Mg II for a sample of 10 Green Pea galaxies at z ∼ 0.2–0.3, where Lyα was previously observed with the Cosmic Origins Spectrograph on the Hubble Space Telescope. With strong, (mostly) double-peaked Lyα profiles, these galaxies allow us to observe Mg II in the limit of low H I column density. We find strong Mg II emission and little-to-no absorption. We use photoionization models to show that nebular Mg II from H II regions is non-negligible, and the ratios of Mg II λλ2796, 2803/[O III] λ5007 versus [O III] λ5007/[O II] λ3727 form a tight sequence. Using this relation, we predict intrinsic Mg II flux, and show that Mg II escape fractions range from 0 to 0.9. We find that the Mg II escape fraction correlates tightly with the Lyα escape fraction, and the Mg II line profiles show evidence for broader and more redshifted emission when the escape fractions are low. These trends are expected if the escape fractions and velocity profiles of Lyα and Mg II are shaped by resonant scattering in the same low column density gas. As a consequence of a close relation with Lyα, Mg II may serve as a useful diagnostic in the epoch of reionization, where Lyα and Lyman continuum photons are not easily observed.
NASA Astrophysics Data System (ADS)
Contopoulos, I.; Kazanas, D.; Fukumura, K.
2017-11-01
Observations of X-ray absorption lines in magnetically driven disc winds around black hole binaries and active galactic nuclei yield a universal radial density profile ρ ∝ r-1.2 in the wind. This is in disagreement with the standard Blandford and Payne profile ρBP ∝ r-1.5 expected when the magnetic field is neither advected nor diffusing through the accretion disc. In order to account for this discrepancy, we establish a new paradigm for magnetically driven astrophysical winds according to which the large-scale ordered magnetic field that threads the disc is continuously generated by the Cosmic Battery around the inner edge of the disc and continuously diffuses outward. We obtain self-similar solutions of such magnetically advected winds (MAW) and discuss their observational ramifications.
LETTER: Test of Te profile invariance by sensitivity studies
NASA Astrophysics Data System (ADS)
Becker, G.
1992-06-01
The response of the electron temperature profile shape to variations of the electron heating and density profiles is investigated in different confinement regimes. It is shown that the changes in rTe = -Te/(dTe/dr) exceed the measurement error if the shape of the electron heat diffusivity χe(r) is kept fixed. The observed constancy of rTe(r) in the outer half of the plasma is incompatible with such a fixed χe(r) shape, i.e., a Te profile constraining mechanism must be present. Local transport laws of the form χe varies as rTe-α with α gtrsim 4 and χe propto (dTe/dr)α with α >= 2 yield the experimental stiffness of the Te(r) shape but conflict with empirical χe scalings. These results support the model of a self-organizing and adjusting χe(r) causing Te profile invariance
Magnetized Disk Winds in NGC 3783
NASA Technical Reports Server (NTRS)
Fukumura, Keigo; Kazanas, Demosthenes; Shrader, Chris; Behar, Ehud; Tombesi, Francesco; Contopoulos, Ioannis
2018-01-01
We analyze a 900 kilosecond stacked Chandra/HETG (High-Energy Transmission Grating) spectrum of NGC 3783 in the context of magnetically driven accretion-disk wind models in an effort to provide tight constraints on the global conditions of the underlying absorbers. Motivated by the earlier measurements of its absorption measure distribution (AMD) indicating X-ray-absorbing ionic columns that decrease slowly with decreasing ionization parameter, we employ 2-dimension (2-D) magnetohydrodynamic (MHD) disk wind models to describe the global outflow. We compute its photoionization structure along with the wind kinematic properties, allowing us to further calculate in a self-consistent fashion the shapes of the major X-ray absorption lines. With the wind radial density profile determined by the AMD, the profiles of the ensemble of the observed absorption features are determined by the two global parameters of the MHD wind; i.e., disk inclination theta (sub obs) and wind density normalization n (sub o). Considering the most significant absorption features in the approximately 1.8-20 angstrom range, we show that the MHD wind is best described by n(r) approximately equal to 6.9 times 10 (sup 11) (r/r (sub o)) (sup - 1.15) cubic centimeters and theta (sub obs). We argue that winds launched by X-ray heating or radiation pressure, or even MHD winds but with steeper radial density profiles, are strongly disfavored by data. Considering the properties of Fe K-band absorption features (i.e., Fe XXV and Fe XXVI), while typically prominent in the active galactic nucleus X-ray spectra, they appear to be weak in NGC 3783. For the specific parameters of our model obtained by fitting the AMD and the rest of the absorption features, these features are found to be weak, in agreement with observations.
Magnetized Disk Winds in NGC 3783
NASA Astrophysics Data System (ADS)
Fukumura, Keigo; Kazanas, Demosthenes; Shrader, Chris; Behar, Ehud; Tombesi, Francesco; Contopoulos, Ioannis
2018-01-01
We analyze a 900 ks stacked Chandra/HETG spectrum of NGC 3783 in the context of magnetically driven accretion-disk wind models in an effort to provide tight constraints on the global conditions of the underlying absorbers. Motivated by the earlier measurements of its absorption measure distribution (AMD) indicating X-ray-absorbing ionic columns that decrease slowly with decreasing ionization parameter, we employ 2D magnetohydrodynamic (MHD) disk wind models to describe the global outflow. We compute its photoionization structure along with the wind kinematic properties, allowing us to further calculate in a self-consistent fashion the shapes of the major X-ray absorption lines. With the wind radial density profile determined by the AMD, the profiles of the ensemble of the observed absorption features are determined by the two global parameters of the MHD wind; i.e., disk inclination {θ }{obs} and wind density normalization n o . Considering the most significant absorption features in the ∼1.8–20 Å range, we show that the MHD wind is best described by n{(r)∼ 6.9× {10}11(r/{r}o)}-1.15 cm‑3 and {θ }{obs}=44^\\circ . We argue that winds launched by X-ray heating or radiation pressure, or even MHD winds but with steeper radial density profiles, are strongly disfavored by data. Considering the properties of Fe K-band absorption features (i.e., Fe XXV and Fe XXVI), while typically prominent in the active galactic nucleus X-ray spectra, they appear to be weak in NGC 3783. For the specific parameters of our model obtained by fitting the AMD and the rest of the absorption features, these features are found to be weak, in agreement with observations.
Uncertainties in Climatological Seawater Density Calculations
NASA Astrophysics Data System (ADS)
Dai, Hao; Zhang, Xining
2018-03-01
In most applications, with seawater conductivity, temperature, and pressure data measured in situ by various observation instruments e.g., Conductivity-Temperature-Depth instruments (CTD), the density which has strong ties to ocean dynamics and so on is computed according to equations of state for seawater. This paper, based on density computational formulae in the Thermodynamic Equation of Seawater 2010 (TEOS-10), follows the Guide of the expression of Uncertainty in Measurement (GUM) and assesses the main sources of uncertainties. By virtue of climatological decades-average temperature/Practical Salinity/pressure data sets in the global ocean provided by the National Oceanic and Atmospheric Administration (NOAA), correlation coefficients between uncertainty sources are determined and the combined standard uncertainties uc>(ρ>) in seawater density calculations are evaluated. For grid points in the world ocean with 0.25° resolution, the standard deviations of uc>(ρ>) in vertical profiles cover the magnitude order of 10-4 kg m-3. The uc>(ρ>) means in vertical profiles of the Baltic Sea are about 0.028kg m-3 due to the larger scatter of Absolute Salinity anomaly. The distribution of the uc>(ρ>) means in vertical profiles of the world ocean except for the Baltic Sea, which covers the range of >(0.004,0.01>) kg m-3, is related to the correlation coefficient r>(SA,p>) between Absolute Salinity SA and pressure p. The results in the paper are based on sensors' measuring uncertainties of high accuracy CTD. Larger uncertainties in density calculations may arise if connected with lower sensors' specifications. This work may provide valuable uncertainty information required for reliability considerations of ocean circulation and global climate models.
Tsunami Speed Variations in Density-stratified Compressible Global Oceans
NASA Astrophysics Data System (ADS)
Watada, S.
2013-12-01
Recent tsunami observations in the deep ocean have accumulated unequivocal evidence that tsunami traveltime delays compared with the linear long-wave tsunami simulations occur during tsunami propagation in the deep ocean. The delay is up to 2% of the tsunami traveltime. Watada et al. [2013] investigated the cause of the delay using the normal mode theory of tsunamis and attributed the delay to the compressibility of seawater, the elasticity of the solid earth, and the gravitational potential change associated with mass motion during the passage of tsunamis. Tsunami speed variations in the deep ocean caused by seawater density stratification is investigated using a newly developed propagator matrix method that is applicable to seawater with depth-variable sound speeds and density gradients. For a 4-km deep ocean, the total tsunami speed reduction is 0.45% compared with incompressible homogeneous seawater; two thirds of the reduction is due to elastic energy stored in the water and one third is due to water density stratification mainly by hydrostatic compression. Tsunami speeds are computed for global ocean density and sound speed profiles and characteristic structures are discussed. Tsunami speed reductions are proportional to ocean depth with small variations, except for in warm Mediterranean seas. The impacts of seawater compressibility and the elasticity effect of the solid earth on tsunami traveltime should be included for precise modeling of trans-oceanic tsunamis. Data locations where a vertical ocean profile deeper than 2500 m is available in World Ocean Atlas 2009. The dark gray area indicates the Pacific Ocean defined in WOA09. a) Tsunami speed variations. Red, gray and black bars represent global, Pacific, and Mediterranean Sea, respectively. b) Regression lines of the tsunami velocity reduction for all oceans. c)Vertical ocean profiles at grid points indicated by the stars in Figure 1.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang Lan; Liu Chao; Zhao Gang
To constrain the Galactic gravitational potential near the Sun ({approx}1.5 kpc), we derive and model the spatial and velocity distributions for a sample of 9000 K-dwarfs with spectra from SDSS/SEGUE, which yield radial velocities and abundances ([Fe/H] and [{alpha}/Fe]). We first derive the spatial density distribution for three abundance-selected sub-populations of stars accounting for the survey's selection function. The vertical profiles of these sub-populations are simple exponentials and their vertical dispersion profile is nearly isothermal. To model these data, we apply the 'vertical' Jeans equation, which relates the observable tracer number density and vertical velocity dispersion to the gravitational potentialmore » or vertical force. We explore a number of functional forms for the vertical force law, fit the dispersion and density profiles of all abundance-selected sub-populations simultaneously in the same potential, and explore all parameter co-variances using a Markov Chain Monte Carlo technique. Our fits constrain a disk mass scale height {approx}< 300 pc and the total surface mass density to be 67 {+-} 6 M{sub Sun} pc{sup -2} at |z| = 1.0 kpc of which the contribution from all stars is 42 {+-} 5 M{sub Sun} pc{sup -2} (assuming a contribution from cold gas of 13 M{sub Sun} pc{sup -2}). We find significant constraints on the local dark matter density of 0.0065 {+-} 0.0023 M{sub Sun} pc{sup -3} (0.25 {+-} 0.09 GeV cm{sup -3}). Together with recent experiments this firms up the best estimate of 0.0075 {+-} 0.0021 M{sub Sun} pc{sup -3} (0.28 {+-} 0.08 GeV cm{sup -3}), consistent with global fits of approximately round dark matter halos to kinematic data in the outskirts of the Galaxy.« less
Epigenetic Alterations in Density Selected Human Spermatozoa for Assisted Reproduction.
Yu, Bolan; Zhou, Hua; Liu, Min; Zheng, Ting; Jiang, Lu; Zhao, Mei; Xu, Xiaoxie; Huang, Zhaofeng
2015-01-01
Epidemiological evidence indicates that assisted reproductive technologies (ART) may be associated with several epigenetic diseases such as Beckwith-Wiedemann syndrome (BWS) or Silver-Russell syndrome (SRS). Selection of sperm by density-gradients in ART has improved DNA integrity and sperm quality; however, epigenetic alterations associated with this approach are largely unknown. In the present study, we investigated DNA methylation and histone retention profiles in raw sperm and selected sperm derived from the same individual and separated by using density-gradients. Results from a study group consisting of 93 males demonstrated that both global DNA methylation and histone retention levels decreased in density selected sperm. Compared to unselected raw sperm, histone transition rates decreased by an average of 27.2% in selected sperm, and the global methylation rate was 3.8% in unselected sperm and 3.3% in the selected sperm. DNA methylation and histone retention location profiling analyses suggested that these alterations displayed specific location patterns in the human genome. Changes in the pattern of hypomethylation largely occurred in transcriptional factor gene families such as HOX, FOX, and GATA. Histone retention increased in 67 genes, whereas it was significantly clustered in neural development-related gene families, particularly the olfactory sensor gene family. Although a causative relationship could not be established, the results of the present study suggest the possibility that sperm with good density also possess unique epigenetic profiles, particularly for genes involved in neural and olfactory development. As increasing evidence demonstrates that epigenetics plays a key role in embryonic development and offspring growth characteristics, the specific epigenetic alterations we observed in selected sperm may influence the transcriptional process and neural development in embryos.
Epigenetic Alterations in Density Selected Human Spermatozoa for Assisted Reproduction
Yu, Bolan; Zhou, Hua; Liu, Min; Zheng, Ting; Jiang, Lu; Zhao, Mei; Xu, Xiaoxie; Huang, Zhaofeng
2015-01-01
Epidemiological evidence indicates that assisted reproductive technologies (ART) may be associated with several epigenetic diseases such as Beckwith-Wiedemann syndrome (BWS) or Silver-Russell syndrome (SRS). Selection of sperm by density-gradients in ART has improved DNA integrity and sperm quality; however, epigenetic alterations associated with this approach are largely unknown. In the present study, we investigated DNA methylation and histone retention profiles in raw sperm and selected sperm derived from the same individual and separated by using density-gradients. Results from a study group consisting of 93 males demonstrated that both global DNA methylation and histone retention levels decreased in density selected sperm. Compared to unselected raw sperm, histone transition rates decreased by an average of 27.2% in selected sperm, and the global methylation rate was 3.8% in unselected sperm and 3.3% in the selected sperm. DNA methylation and histone retention location profiling analyses suggested that these alterations displayed specific location patterns in the human genome. Changes in the pattern of hypomethylation largely occurred in transcriptional factor gene families such as HOX, FOX, and GATA. Histone retention increased in 67 genes, whereas it was significantly clustered in neural development-related gene families, particularly the olfactory sensor gene family. Although a causative relationship could not be established, the results of the present study suggest the possibility that sperm with good density also possess unique epigenetic profiles, particularly for genes involved in neural and olfactory development. As increasing evidence demonstrates that epigenetics plays a key role in embryonic development and offspring growth characteristics, the specific epigenetic alterations we observed in selected sperm may influence the transcriptional process and neural development in embryos. PMID:26709917
Crustal structure of the Dabie orogenic belt (eastern China) inferred from gravity and magnetic data
NASA Astrophysics Data System (ADS)
Yang, Yu-shan; Li, Yuan-yuan
2018-01-01
In order to better characterize the crustal structure of the Dabie orogen and its tectonic history, we present a crustal structure along a 500 km long profile across the Dabie orogenic belt using various data processing and interpretation of the gravity and magnetic data. Source depth estimations from the spectral analysis by continuous wavelet transform (CWT) provide better constraints for constructing the initial density model. The calculated gravity effects from the initial model show great discrepancy with the observed data, especially at the center of the profile. More practical factors are then incorporated into the gravity modeling. First, we add a high density body right beneath the high pressure metamorphic (HPM) and ultrahigh pressure metamorphic (UHPM) belt considering the exposed HPM and UHPM rocks in the mid of our profile. Then, the anomalous bodies A, B, and C inferred from the CWT-based spectral analysis results are fixed in the model geometry. In the final crustal density structure, two anomalous bodies B and C with high density and low magnetization could possibly be attributed to metasomatised mantle materials by SiO2-rich melt derived from the foundering subducted mafic lower crust. Under the extensional environment in the early Cretaceous, the upwelling metasomatised mantle was partially melted to produce the parental magma of the post-collisional mafic-ultramafic intrusive rocks. As for the low density body A with strong magnetization located in the lower crust right beneath the HP and UHP metamorphic belt, it is more likely to be composed of serpentinized mantle peridotite (SMP). This serpentinized mantle peridotite body (SMPB) represents the emplacement of mantle-derived peridotites in the crust, accompanying the exhumation of the UHP metamorphic rocks.
Samani, Nasrin Babadaei; Jokar, Azam; Soveid, Mahmood; Heydari, Mojtaba; Mosavat, Seyed Hamdollah
2016-10-01
Considering traditional use of Tribulus terrestris in diabetes and proven antihyperglycemic and antihyperlipidemic effects of T terrestris in animal studies, we aimed to evaluate the efficacy of the hydroalcoholic extract of T terrestris on the serum glucose and lipid profile of women with non-insulin-dependent diabetes mellitus. Ninety-eight women with diabetes mellitus type 2 were randomly allocated to receive the T terrestris (1000 mg/d) or placebo for 3 months. The patients were evaluated in terms of the fasting blood glucose, 2-hour postprandial glucose, glycosylated hemoglobin, and lipid profile. Tribulus terrestris showed a significant blood glucose-lowering effect in diabetic women compared to placebo (P < .05). Also, the total cholesterol and low-density lipoprotein of T terrestris group was significantly reduced compared with placebo, while no significant effect was observed in the triglyceride and high-density lipoprotein levels. The study showed preliminary promising hypoglycemic effect of T terrestris in women with diabetes mellitus type 2. © The Author(s) 2016.
Azevedo, Marisa F; Camsari, Cagri; Sá, Carla M; Lima, Cristovao F; Fernandes-Ferreira, Manuel; Pereira-Wilson, Cristina
2010-06-01
In the present study, two phytochemicals - ursolic acid (UA) and luteolin-7-glucoside (L7G) - were assessed in vivo in healthy rats regarding effects on plasma glucose and lipid profile (total cholesterol, HDL and LDL), as well as liver glycogen content, in view of their importance in the aetiology of diabetes and associated complications. Both UA and L7G significantly decreased plasma glucose concentration. UA also significantly increased liver glycogen levels accompanied by phosphorylation of glycogen synthase kinase-3 (GSK3). The increase in glycogen deposition induced by UA (mediated by GSK3) could have contributed to the lower plasma glucose levels observed. Both compounds significantly lowered total plasma cholesterol and low-density lipoprotein levels, and, in addition, UA increased plasma high-density lipoprotein levels. Our results show that UA particularly may be useful in preventable strategies for people at risk of developing diabetes and associated cardiovascular complications by improving plasma glucose levels and lipid profile, as well as by promoting liver glycogen deposition.
The Role of Plasma Rotation in C-Mod Internal Transport Barriers
NASA Astrophysics Data System (ADS)
Fiore, C. L.; Ernst, D. R.; Rice, J. E.; Podpaly, Y.; Reinke, M. L.; Greenwald, M. J.; Hughes, J. W.; Ma, Y.; Bespamyatnov, I. O.; Rowan, W. L.
2010-11-01
ITBs in Alcator C-Mod featuring highly peaked density and pressure profiles are induced by injecting ICRF power with the second harmonic of the resonant frequency for minority hydrogen off-axis at the plasma half radius. These ITBs are formed in the absence of particle or momentum injection, and with monotonic q profiles with qmin < 1. In C-Mod a strong co-current toroidal rotation, peaked on axis, develops after the transition to H-mode. If an ITB forms, this rotation decreases in the center of the plasma and forms a well, and often reverses direction in the core. This indicates that there is a strong EXB shearing rate in the region where the foot in the ITB density profile is observed. Preliminary gyrokinetic analyses indicate that this shearing rate is comparable to the ion temperature gradient mode (ITG) growth rate at this location and may be responsible for stabilizing the turbulence. Gyrokinetic analyses of recent experimental data obtained from a complete scan of the ICRF resonance position across the entire C-Mod plasma will be presented.
Confined trapped alpha behaviour in TFTR deuterium-tritium plasmas
NASA Astrophysics Data System (ADS)
Medley, S. S.; Budny, R. V.; Duong, H. H.; Fisher, R. K.; Petrov, M. P.; Gorelenkov, N. N.; Redi, M. H.; Roquemore, A. L.; White, R. B.
1998-09-01
Confined trapped alpha energy spectra and differential radial density profiles in TFTR D-T plasmas were obtained with the pellet charge exchange (PCX) diagnostic, which measures high energy (Eα = 0.5-3.5 MeV) trapped alphas (v||/v = -0.048) at a single time slice (Δt approx 1 ms) with a spatial resolution of Δr approx 5 cm. Tritons produced in D-D plasmas and RF driven ion tails (H, 3He or T) were also observed and energetic tritium ion tail measurements are discussed. PCX alpha and triton energy spectra extending up to their birth energies were measured in the core of MHD quiescent discharges where the expected classical slowing down and pitch angle scattering effects are not complicated by stochastic ripple diffusion and sawtooth activity. Both the shape of the measured alpha and triton energy distributions and their density ratios are in good agreement with TRANSP predictions, indicating that the PCX measurements are consistent with classical thermalization of the fusion generated alphas and tritons. From calculations, these results set an upper limit on possible anomalous radial diffusion for trapped alphas of Dα <= 0.01 m2·s-1. Outside the core, where the trapped alphas are influenced by stochastic ripple diffusion effects, the PCX measurements are consistent with the functional dependence of the Goldston-White-Boozer stochastic ripple threshold on the alpha energy and the q profile. In the presence of strong sawtooth activity, the PCX diagnostic observes significant redistribution of the alpha signal radial profile wherein alphas are depleted in the core and redistributed to well outside the q = 1 radius, but apparently not beyond the energy dependent stochastic ripple loss boundary. The helical electric field produced during the sawtooth crash plays an essential role in modelling the sawtooth redistribution data. In sawtooth free discharge scenarios with reversed shear operation, the PCX diagnostic also observes radial profiles of the alpha signal that are significantly broader than those for supershots. ORBIT modelling of reversed shear and monotonic shear discharges is in agreement with the q dependent alpha profiles observed. Redistribution of trapped alpha particles in the presence of core localized toroidal Alfvén eigenmode (TAE) activity was observed and modelling of the PCX measurements based on a synergism involving the α-TAE resonance and the effect of stochastic ripple diffusion is in progress.
THE ENTIRE VIRIAL RADIUS OF THE FOSSIL CLUSTER RX J1159+5531. I. GAS PROPERTIES
DOE Office of Scientific and Technical Information (OSTI.GOV)
Su, Yuanyuan; Buote, David; Gastaldello, Fabio
2015-06-01
Previous analysis of the fossil-group/cluster RX J1159+5531 with X-ray observations from a central Chandra pointing and an offset-north Suzaku pointing indicate a radial intracluster medium (ICM) entropy profile at the virial radius (R{sub vir}) consistent with predictions from gravity-only cosmological simulations, in contrast to other cool-core clusters. To examine the generality of these results, we present three new Suzaku observations that, in conjunction with the north pointing, provide complete azimuthal coverage out to R{sub vir}. With two new Chandra ACIS-I observations overlapping the north Suzaku pointing, we have resolved ≳50% of the cosmic X-ray background there. We present radial profilesmore » of the ICM density, temperature, entropy, and pressure obtained for each of the four directions. We measure only modest azimuthal scatter in the ICM properties at R{sub 200} between the Suzaku pointings: 7.6% in temperature and 8.6% in density, while the systematic errors can be significant. The temperature scatter, in particular, is lower than that studied at R{sub 200} for a small number of other clusters observed with Suzaku. These azimuthal measurements verify that RX J1159+5531 is a regular, highly relaxed system. The well-behaved entropy profiles we have measured for RX J1159+5531 disfavor the weakening of the accretion shock as an explanation of the entropy flattening found in other cool-core clusters but is consistent with other explanations such as gas clumping, electron-ion non-equilibrium, non-thermal pressure support, and cosmic-ray acceleration. Finally, we mention that the large-scale galaxy density distribution of RX J1159+5531 seems to have little impact on its gas properties near R{sub vir}.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Soltanmoradi, Elmira; Shokri, Babak, E-mail: b-shokri@sbu.ac.ir; Laser and Plasma Research Institute, Shahid Beheshti University, G. C., Evin, Tehran 19839-63113
Gigahertz electromagnetic wave scattering from an inhomogeneous collisional plasma layer with bell-like and Epstein electron density distributions is studied by the Green's function volume integral equation method to find the reflectance, transmittance, and absorbance coefficients of this inhomogeneous plasma. Also, the effects of the frequency of the electromagnetic wave, plasma parameters, such as collision frequency, electron density, and plasma thickness, and the effects of the profile of the electron density on the electromagnetic wave scattering from this plasma slab are investigated. According to the results, when the electron density, collision frequency, and plasma thickness are increased, collisional absorbance is enhanced,more » and as a result, the absorbance bandwidth of plasma is broadened. Moreover, this broadening is more evident for plasma with bell-like electron density profile. Also, the bandwidth of the frequency and the range of pressure in which plasma behaves as a good reflector are determined in this article. According to the results, the bandwidth of the frequency is decreased for thicker plasma with bell-like profile, while it does not vary for a different plasma thickness with Epstein profile. Moreover, the range of the pressure is decreased for bell-like profile in comparison with Epstein profile. Furthermore, due to the sharp inhomogeneity of the Epstein profile, the coefficients of plasma that are uniform for plasma with bell-like profile are changed for plasma with Epstein profile, and some perturbations are seen.« less
Structure and dynamics of water inside hydrophobic and hydrophilic nanotubes
NASA Astrophysics Data System (ADS)
Köhler, Mateus Henrique; Bordin, José Rafael; da Silva, Leandro B.; Barbosa, Marcia C.
2018-01-01
We have used Molecular Dynamics simulations to investigate the structure and dynamics of TIP4P/2005 water confined inside nanotubes. The nanotubes have distinct sizes and were built with hydrophilic or hydrophobic sites, and we compare the water behavior inside each nanotube. Our results shows that the structure and dynamics are strongly influenced by polarity inside narrow nanotubes, where water layers were observed, and the influence is negligible for wider nanotubes, where the water has a bulk-like density profile. As well, we show that water at low density can have a smaller diffusion inside nanotubes than water at higher densities. This result is a consequence of water diffusion anomaly.
Bayés, Àlex; Collins, Mark O.; Croning, Mike D. R.; van de Lagemaat, Louie N.; Choudhary, Jyoti S.; Grant, Seth G. N.
2012-01-01
Direct comparison of protein components from human and mouse excitatory synapses is important for determining the suitability of mice as models of human brain disease and to understand the evolution of the mammalian brain. The postsynaptic density is a highly complex set of proteins organized into molecular networks that play a central role in behavior and disease. We report the first direct comparison of the proteome of triplicate isolates of mouse and human cortical postsynaptic densities. The mouse postsynaptic density comprised 1556 proteins and the human one 1461. A large compositional overlap was observed; more than 70% of human postsynaptic density proteins were also observed in the mouse postsynaptic density. Quantitative analysis of postsynaptic density components in both species indicates a broadly similar profile of abundance but also shows that there is higher abundance variation between species than within species. Well known components of this synaptic structure are generally more abundant in the mouse postsynaptic density. Significant inter-species abundance differences exist in some families of key postsynaptic density proteins including glutamatergic neurotransmitter receptors and adaptor proteins. Furthermore, we have identified a closely interacting set of molecules enriched in the human postsynaptic density that could be involved in dendrite and spine structural plasticity. Understanding synapse proteome diversity within and between species will be important to further our understanding of brain complexity and disease. PMID:23071613
The Distribution and Annihilation of Dark Matter Around Black Holes
NASA Technical Reports Server (NTRS)
Schnittman, Jeremy D.
2015-01-01
We use a Monte Carlo code to calculate the geodesic orbits of test particles around Kerr black holes, generating a distribution function of both bound and unbound populations of dark matter (DM) particles. From this distribution function, we calculate annihilation rates and observable gamma-ray spectra for a few simple DM models. The features of these spectra are sensitive to the black hole spin, observer inclination, and detailed properties of the DM annihilation cross-section and density profile. Confirming earlier analytic work, we find that for rapidly spinning black holes, the collisional Penrose process can reach efficiencies exceeding 600%, leading to a high-energy tail in the annihilation spectrum. The high particle density and large proper volume of the region immediately surrounding the horizon ensures that the observed flux from these extreme events is non-negligible.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kawakami, S.; Ohno, N.; Shibata, Y.
2013-11-15
According to an early work [Y. Shibata et al., Nucl. Fusion 50, 025015 (2010)] on the behavior of the plasma current decay in the JT-60U disruptive discharges caused by the radiative collapse with a massive neon-gas-puff, the increase of the internal inductance mainly determined the current decay time of plasma current during the initial phase of current quench. To investigate what determines the increase of the internal inductance, we focus attention on the relationship between the electron temperature (or the resistivity) profile and the time evolution of the current density profile and carry out numerical calculations. As a result, wemore » find the reason of the increase of the internal inductance: The current density profile at the start of the current quench is broader than an expected current density profile in the steady state, which is determined by the temperature (or resistivity) profile. The current density profile evolves into peaked one and the internal inductance is increasing.« less
NASA Astrophysics Data System (ADS)
Antonangeli, Daniele; Siebert, Julien; Badro, James; Farber, Daniel L.; Fiquet, Guillaume; Morard, Guillaume; Ryerson, Frederick J.
2010-06-01
We performed room-temperature sound velocity and density measurements on a polycrystalline alloy, Fe0.89Ni0.04Si0.07, in the hexagonal close-packed (hcp) phase up to 108 GPa. Over the investigated pressure range the aggregate compressional sound velocity is ∼ 9% higher than in pure iron at the same density. The measured aggregate compressional (VP) and shear (VS) sound velocities, extrapolated to core densities and corrected for anharmonic temperature effects, are compared with seismic profiles. Our results provide constraints on the silicon abundance in the core, suggesting a model that simultaneously matches the primary seismic observables, density, P-wave and S-wave velocities, for an inner core containing 4 to 5 wt.% of Ni and 1 to 2 wt.% of Si.
NASA Astrophysics Data System (ADS)
Voronkov, V. V.; Falster, R.; Kim, TaeHyeong; Park, SoonSung; Torack, T.
2013-07-01
Silicon wafers, coated with a silicon nitride layer and subjected to high temperature Rapid Thermal Annealing (RTA) in Ar, show—upon a subsequent two-step precipitation anneal cycle (such as 800 °C + 1000 °C)—peculiar depth profiles of oxygen precipitate densities. Some profiles are sharply peaked near the wafer surface, sometimes with a zero bulk density. Other profiles are uniform in depth. The maximum density is always the same. These profiles are well reproduced by simulations assuming that precipitation starts from a uniformly distributed small oxide plates originated from RTA step and composed of oxygen atoms and vacancies ("VO2 plates"). During the first step of the precipitation anneal, an oxide layer propagates around this core plate by a process of oxygen attachment, meaning that an oxygen-only ring-shaped plate emerges around the original plate. These rings, depending on their size, then either dissolve or grow during the second part of the anneal leading to a rich variety of density profiles.
Modeling Line Emission from Structures Seen at High Resolution in the Nebulae m1 and M16
NASA Astrophysics Data System (ADS)
Sankrit, Ravi
1998-12-01
Narrow band images of the Crab Nebula supernova remnant and of the Eagle Nebula H II region taken with the Hubble Space Telescope (HST) show the ionization structure of the emitting gas in unprecedented detail because of the high spatial resolution. The physics of the emission processes-shock excited emission and photoionized emission-is well understood. Sophisticated numerical codes are used to model the ionization structure and emission observed in these images. It is found that the thin skin of material around the Crab synchrotron nebula visible in (O III) λ5007 emission is best explained as the cooling region behind a shock driven by the synchrotron nebula into a surrounding remnant of freely expanding ejecta. Shock models, with parameters derived from independently known properties of the Crab, explain the observed spectrum of the skin while photoionization models fail to explain the observed strength of high ionization lines such as C IV λ1549. This result is clear evidence that the synchrotron nebula is interacting with an extended remnant of ejecta, which in turn has significant implications for the structure and evolution of the Crab. At HST resolution, it is seen that low ionization emission, from lines such as (O I) λ6300, is concentrated in sharp structures while high ionization emission (from (O III) λ5007) is much more diffuse. Individual filaments are found to lie along a sequence of ionization structure ranging from features in which all lines are concentrated in the same compact volume through features with low ionization cores surrounded by high ionization envelopes. Photoionization models of cylindrically symmetrical filaments with varying 'core-halo' density profiles can match the observed variation in the filament structure in the Crab. A photoionization model of a uniform low density medium matches the extended diffuse component which dominates the high ionization emission. It is found that detailed knowledge of the filament structures present in an aperture is needed to correctly interpret ground-based spectra of the Crab. The images also show that many filament cores coincide with dust extinction features, which suggest that the dust to gas mass ratio may be up to an order of magnitude higher than is typical in the interstellar medium. Nebula show the interface between the ionized gas and the molecular cloud in tangency against the background of the ionized cavity which constitutes the H II region. A photoionization model using a density profile for the photoevaporative flow that is expected at such an interface is successful at explaining the observed emission profiles of Hα λ6563, (S II) λλ6716,6731, and (O III) λ5007. The ionizing flux is well constrained by the Hα emission and the sulphur abundance is constrained by the peak of the (S II) emission. A grid of models using the same density profiles shows how various emission properties depend on the ionizing continuum shape, ionizing flux and elemental abundances.
Impacts of fragmented accretion streams onto classical T Tauri stars: UV and X-ray emission lines
NASA Astrophysics Data System (ADS)
Colombo, S.; Orlando, S.; Peres, G.; Argiroffi, C.; Reale, F.
2016-10-01
Context. The accretion process in classical T Tauri stars (CTTSs) can be studied through the analysis of some UV and X-ray emission lines which trace hot gas flows and act as diagnostics of the post-shock downfalling plasma. In the UV-band, where higher spectral resolution is available, these lines are characterized by rather complex profiles whose origin is still not clear. Aims: We investigate the origin of UV and X-ray emission at impact regions of density structured (fragmented) accretion streams. We study if and how the stream fragmentation and the resulting structure of the post-shock region determine the observed profiles of UV and X-ray emission lines. Methods: We modeled the impact of an accretion stream consisting of a series of dense blobs onto the chromosphere of a CTTS through two-dimensional (2D) magnetohydrodynamic (MHD) simulations. We explored different levels of stream fragmentation and accretion rates. From the model results, we synthesize C IV (1550 Å) and O VIII (18.97 Å) line profiles. Results: The impacts of accreting blobs onto the stellar chromosphere produce reverse shocks propagating through the blobs and shocked upflows. These upflows, in turn, hit and shock the subsequent downfalling fragments. As a result, several plasma components differing for the downfalling velocity, density, and temperature are present altoghether. The profiles of C IV doublet are characterized by two main components: one narrow and redshifted to speed ≈ 50 km s-1 and the other broader and consisting of subcomponents with redshift to speed in the range 200-400 km s-1. The profiles of O VIII lines appear more symmetric than C IV and are redshifted to speed ≈ 150 km s-1. Conclusions: Our model predicts profiles of C IV line remarkably similar to those observed and explains their origin in a natural way as due to stream fragmentation. Movies are available at http://www.aanda.org
Quantized vortices in the ideal bose gas: a physical realization of random polynomials.
Castin, Yvan; Hadzibabic, Zoran; Stock, Sabine; Dalibard, Jean; Stringari, Sandro
2006-02-03
We propose a physical system allowing one to experimentally observe the distribution of the complex zeros of a random polynomial. We consider a degenerate, rotating, quasi-ideal atomic Bose gas prepared in the lowest Landau level. Thermal fluctuations provide the randomness of the bosonic field and of the locations of the vortex cores. These vortices can be mapped to zeros of random polynomials, and observed in the density profile of the gas.
Can Thermal Nonequilibrium Explain Coronal Loops?
NASA Technical Reports Server (NTRS)
Klimchuk, James A.; Karpen, Judy T.; Antiochos, Spiro K.
2010-01-01
Any successful model of coronal loops must explain a number of observed properties. For warm (approx. 1 MK) loops, these include: 1. excess density, 2. flat temperature profile, 3. super-hydrostatic scale height, 4. unstructured intensity profile, and 5. 1000-5000 s lifetime. We examine whether thermal nonequilibrium can reproduce the observations by performing hydrodynamic simulations based on steady coronal heating that decreases exponentially with height. We consider both monolithic and multi-stranded loops. The simulations successfully reproduce certain aspects of the observations, including the excess density, but each of them fails in at least one critical way. -Xonolithic models have far too much intensity structure, while multi-strand models are either too structured or too long-lived. Storms of nanoflares remain the only viable explanation for warm loops that has been proposed so far. Our results appear to rule out the widespread existence of heating that is both highly concentrated low in the corona and steady or quasi-steady (slowly varying or impulsive with a rapid cadence). Active regions would have a very different appearance if the dominant heating mechanism had these properties. Thermal nonequilibrium may nonetheless play an important role in prominences and catastrophic cooling e(veen.gts..,coronal rain) that occupy a small fraction of the coronal volume. However, apparent inconsistencies between the models and observations of cooling events have yet to be understood.
Relation of morphology of electrodeposited zinc to ion concentration profile
NASA Technical Reports Server (NTRS)
May, C. E.; Kautz, H. E.; Sabo, B. B.
1977-01-01
The morphology of electrodeposited zinc was studied with special attention to the ion concentration profile. The initial concentrations were 9M hydroxide ion and 1.21M zincate. Current densities were 6.4 to 64 mA/sq cm. Experiments were run with a horizontal cathode which was observed in situ using a microscope. The morphology of the zinc deposit was found to be a function of time as well as current density; roughly, the log of the transition time from mossy to large crystalline type deposit is inversely proportional to current density. Probe electrodes indicated that the electrolyte in the cathode chamber was mixed by self inducted convection. However, relatively large concentration gradients of the involved species existed across the boundary layer of the cathode. Analysis of the data suggests that the morphology converts from mossy to large crystalline when the hydroxide activity on the cathode surface exceeds about 12 M. Other experiments show that the pulse discharge technique had no effect on the morphology in the system where the bulk concentration of the electrolyte was kept homogeneous via self induced convection.
Thermodynamic Theory of Spherically Trapped Coulomb Clusters
NASA Astrophysics Data System (ADS)
Wrighton, Jeffrey; Dufty, James; Bonitz, Michael; K"{A}Hlert, Hanno
2009-11-01
The radial density profile of a finite number of identical charged particles confined in a harmonic trap is computed over a wide ranges of temperatures (Coulomb coupling) and particle numbers. At low temperatures these systems form a Coulomb crystal with spherical shell structure which has been observed in ultracold trapped ions and in dusty plasmas. The shell structure is readily reproduced in simulations. However, analytical theories which used a mean field approachfootnotetext[1]C. Henning et al., Phys. Rev. E 74, 056403 (2006) or a local density approximationfootnotetext[2]C. Henning et al., Phys. Rev. E 76, 036404 (2007) have, so far, only been able to reproduce the average density profile. Here we present an approach to Coulomb correlations based on the hypernetted chain approximation with additional bridge diagrams. It is demonstrated that this model reproduces the correct shell structure within a few percent and provides the basis for a thermodynamic theory of Coulomb clusters in the strongly coupled fluid state.footnotetext[3]J. Wrighton, J.W. Dufty, H. K"ahlert and M. Bonitz, J. Phys. A 42, 214052 (2009) and Phys. Rev. E (2009) (to be submitted)
Radio Sounding of the Martian and Venusian Ionospheres
NASA Astrophysics Data System (ADS)
Paetzold, M.; Haeusler, B.; Bird, M. K.; Peter, K.; Tellmann, S.; Tyler, G. L.; Withers, P.
2011-12-01
The Mars Express Radio Science Experiment MaRS and the radio science experiment Vera on Venus Express sound the ionospheres of Mars and Venus, respectively, at two frequencies in the microwave band and cover altitudes from the base of the ionosphere at 80 km (100 km at Venus) to the ionopause at altitudes between 300 km and 600 km. In general, both ionospheres consists of a lower layer M1 (V1 at Venus) at about 110 km (115 km), and the main layer M2 (V2) at about 135 km (145 km) altitude, both formed mainly by solar radiation at X-ray and EUV, respectively. The specific derivation and interpretation of the vertical electron density profiles at two radio frequencies from radio sounding is demonstrated in detail. Cases of quiet and disturbed ionospheric electron density profiles and cases of potential misinterpretations are presented. The behavior of the peak densities and peak altitudes of both ionospheres as a function of solar zenith angle and phase of the solar cycle as seen with Mars Express and Venus Express will be compared with past observations, models and conclusions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dinara, Syed Mukulika, E-mail: smdinara.iit@gmail.com; Jana, Sanjay Kr.; Mukhopadhyay, Partha
2015-08-28
The hydrostatic strain, stress and dislocation densities were comparatively analyzed before and after passivation of amorphous silicon nitride (a-Si{sub 3}N{sub 4}) layer on Al{sub 0.3}Ga{sub 0.7}N/GaN heterostructure by nondestructive high resolution x-ray diffraction (HRXRD) technique. The crystalline quality, in-plane and out-of plane strain were evaluated from triple-axis (TA) (ω-2θ) diffraction profile across the (002) reflection plane and double-axis (DA) (ω-2θ) glancing incidence (GI) diffraction profile across (105) reflection plane. The hydrostatic strain and stress of Al{sub 0.3}Ga{sub 0.7}N barrier layer were increased significantly after passivation and both are tensile in nature. The dislocation density of GaN was also analyzed andmore » no significant change was observed after passivation of the heterostructure. The crystalline quality was not degraded after passivation on the heterostructure confirmed by the full-width-half-maximum (FWHM) analysis.« less
Atmospheric constituent density profiles from full disk solar occultation experiments
NASA Technical Reports Server (NTRS)
Lumpe, J. D.; Chang, C. S.; Strickland, D. J.
1991-01-01
Mathematical methods are described which permit the derivation of the number of density profiles of atmospheric constituents from solar occultation measurements. The algorithm is first applied to measurements corresponding to an arbitrary solar-intensity distribution to calculate the normalized absorption profile. The application of Fourier transform to the integral equation yields a precise expression for the corresponding number density, and the solution is employed with the data given in the form of Laguerre polynomials. The algorithm is employed to calculate the results for the case of uniform distribution of solar intensity, and the results demonstrate the convergence properties of the method. The algorithm can be used to effectively model representative model-density profiles with constant and altitude-dependent scale heights.
Electronic properties of Laves phase ZrFe{sub 2} using Compton spectroscopy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bhatt, Samir, E-mail: sameerbhatto11@gmail.com; Kumar, Kishor; Ahuja, B. L.
First-ever experimental Compton profile of Laves phase ZrFe{sub 2}, using indigenous 20 Ci {sup 137}Cs Compton spectrometer, is presented. To analyze the experimental electron momentum density, we have deduced the theoretical Compton profiles using density functional theory (DFT) and hybridization of DFT and Hartree-Fock scheme within linear combination of atomic orbitals (LCAO) method. The energy bands and density of states are also calculated using LCAO prescription. The theoretical profile based on local density approximation gives a better agreement with the experimental profile than other reported schemes. The present investigations validate the inclusion of correlation potential of Perdew-Zunger in predicting themore » electronic properties of ZrFe{sub 2}.« less
Resolving galaxy cluster gas properties at z ˜ 1 with XMM-Newton and Chandra
NASA Astrophysics Data System (ADS)
Bartalucci, I.; Arnaud, M.; Pratt, G. W.; Démoclès, J.; van der Burg, R. F. J.; Mazzotta, P.
2017-02-01
Massive, high-redshift, galaxy clusters are useful laboratories to test cosmological models and to probe structure formation and evolution, but observations are challenging due to cosmological dimming and angular distance effects. Here we present a pilot X-ray study of the five most massive (M500 > 5 × 1014M⊙), distant (z 1), clusters detected via the Sunyaev-Zel'Dovich effect. We optimally combine XMM-Newton and Chandra X-ray observations by leveraging the throughput of XMM-Newton to obtain spatially-resolved spectroscopy, and the spatial resolution of Chandra to probe the bright inner parts and to detect embedded point sources. Capitalising on the excellent agreement in flux-related measurements, we present a new method to derive the density profiles, which are constrained in the centre by Chandra and in the outskirts by XMM-Newton. We show that the Chandra-XMM-Newton combination is fundamental for morphological analysis at these redshifts, the Chandra resolution being required to remove point source contamination, and the XMM-Newton sensitivity allowing higher significance detection of faint substructures. Measuring the morphology using images from both instruments, we found that the sample is dominated by dynamically disturbed objects. We use the combined Chandra-XMM-Newton density profiles and spatially-resolved temperature profiles to investigate thermodynamic quantities including entropy and pressure. From comparison of the scaled profiles with the local REXCESS sample, we find no significant departure from standard self-similar evolution, within the dispersion, at any radius, except for the entropy beyond 0.7 R500. The baryon mass fraction tends towards the cosmic value, with a weaker dependence on mass than that observed in the local Universe. We make a comparison with the predictions from numerical simulations. The present pilot study demonstrates the utility and feasibility of spatially-resolved analysis of individual objects at high-redshift through the combination of XMM-Newton and Chandra observations. Observations of a larger sample will allow a fuller statistical analysis to be undertaken, in particular of the intrinsic scatter in the structural and scaling properties of the cluster population.
A Numerical Fit of Analytical to Simulated Density Profiles in Dark Matter Haloes
NASA Astrophysics Data System (ADS)
Caimmi, R.; Marmo, C.; Valentinuzzi, T.
2005-06-01
Analytical and geometrical properties of generalized power-law (GPL) density profiles are investigated in detail. In particular, a one-to-one correspondence is found between mathematical parameters (a scaling radius, r_0, a scaling density, rho_0, and three exponents, alpha, beta, gamma), and geometrical parameters (the coordinates of the intersection of the asymptotes, x_C, y_C, and three vertical intercepts, b, b_beta, b_gamma, related to the curve and the asymptotes, respectively): (r_0,rho_0,alpha,beta,gamma) <--> (x_C,y_C,b,b_beta,b_gamma). Then GPL density profiles are compared with simulated dark haloes (SDH) density profiles, and nonlinear least-absolute values and least-squares fits involving the above mentioned five parameters (RFSM5 method) are prescribed. More specifically, the sum of absolute values or squares of absolute logarithmic residuals, R_i= log rhoSDH(r_i)-log rhoGPL(r_i), is evaluated on 10^5 points making a 5- dimension hypergrid, through a few iterations. The size is progressively reduced around a fiducial minimum, and superpositions on nodes of earlier hypergrids are avoided. An application is made to a sample of 17 SDHs on the scale of cluster of galaxies, within a flat LambdaCDM cosmological model (Rasia et al. 2004). In dealing with the mean SDH density profile, a virial radius, rvir, averaged over the whole sample, is assigned, which allows the calculation of the remaining parameters. Using a RFSM5 method provides a better fit with respect to other methods. The geometrical parameters, averaged over the whole sample of best fitting GPL density profiles, yield (alpha,beta,gamma) approx(0.6,3.1,1.0), to be compared with (alpha,beta,gamma)=(1,3,1), i.e. the NFW density profile (Navarro et al. 1995, 1996, 1997), (alpha,beta,gamma)=(1.5,3,1.5) (Moore et al. 1998, 1999), (alpha,beta,gamma)=(1,2.5,1) (Rasia et al. 2004); and, in addition, gamma approx 1.5 (Hiotelis 2003), deduced from the application of a RFSM5 method, but using a different definition of scaled radius, or concentration; and gamma approx 1.2-1.3 deduced from more recent high-resolution simulations (Diemand et al. 2004, Reed et al. 2005). No evident correlation is found between SDH dynamical state (relaxed or merging) and asymptotic inner slope of the fitting logarithmic density profile or (for SDH comparable virial masses) scaled radius. Mean values and standard deviations of some parameters are calculated, and in particular the decimal logarithm of the scaled radius, xivir, reads < log xivir >=0.74 and sigma_s log xivir=0.15-0.17, consistent with previous results related to NFW density profiles. It provides additional support to the idea, that NFW density profiles may be considered as a convenient way to parametrize SDH density profiles, without implying that it necessarily produces the best possible fit (Bullock et al. 2001). A certain degree of degeneracy is found in fitting GPL to SDH density profiles. If it is intrinsic to the RFSM5 method or it could be reduced by the next generation of high-resolution simulations, still remains an open question.
Reduced sickle erythrocyte dehydration in vivo by endothelin-1 receptor antagonists.
Rivera, Alicia
2007-09-01
Elevated plasma levels of cytokines such as endothelin-1 (ET-1) have been shown to be associated with sickle cell disease (SCD). However, the role of ET-1 in the pathophysiology of SCD is not entirely clear. I now show that treatment of SAD mice, a transgenic mouse model of SCD, with BQ-788 (0.33 mg.kg(-1).day(-1) intraperitoneally for 14 days), an ET-1 receptor B (ET(B)) antagonist, induced a significant decrease in Gardos channel activity (1.7 +/- 0.1 to 1.0 +/- 0.4 mmol.10(13) cell(-1).h(-1), n = 3, P = 0.019) and reduced the erythrocyte density profile by decreasing the mean density (D(50); n = 4, P = 0.012). These effects were not observed in mice treated with BQ-123, an ET-1 receptor A (ET(A)) antagonist. A mixture of both antagonists induced a similar change in density profile as with BQ-788 alone that was associated with an increase in mean cellular volume and a decrease in corpuscular hemoglobin concentration mean. I also observed in vitro effects of ET-1 on human sickle erythrocyte dehydration that was blocked by BQ-788 and a mixture of ET(B)/ET(A) antagonists but not by ET(A) antagonist alone. These results show that erythrocyte hydration status in vivo is mediated via activation of the ET(B) receptor, leading to Gardos channel modulation in SCD.
Intermediate-line Emission in AGNs: The Effect of Prescription of the Gas Density
NASA Astrophysics Data System (ADS)
Adhikari, T. P.; Hryniewicz, K.; Różańska, A.; Czerny, B.; Ferland, G. J.
2018-03-01
The requirement of an intermediate-line component in the recently observed spectra of several active galactic nuclei (AGNs) points to the possible existence of a physically separate region between the broad-line region (BLR) and narrow-line region (NLR). In this paper we explore the emission from the intermediate-line region (ILR) by using photoionization simulations of the gas clouds distributed radially from the center of the AGN. The gas clouds span distances typical for the BLR, ILR, and NLR, and the appearance of dust at the sublimation radius is fully taken into account in our model. The structure of a single cloud is calculated under the assumption of constant pressure. We show that the slope of the power-law radial profile of the cloud density does not affect the existence of the ILR in major types of AGNs. We found that the low-ionization iron line, Fe II, appears to be highly sensitive to the presence of dust and therefore becomes a potential tracer of dust content in line-emitting regions. We show that the use of a disk-like cloud density profile computed for the upper part of the atmosphere of the accretion disk reproduces the observed properties of the line emissivities. In particular, the distance of the Hβ line inferred from our model agrees with that obtained from reverberation mapping studies in the Sy1 galaxy NGC 5548.
Modeling X-ray Absorbers in AGNs with MHD-Driven Accretion-Disk Winds
NASA Astrophysics Data System (ADS)
Fukumura, Keigo; Kazanas, D.; Shrader, C. R.; Tombesi, F.; Contopoulos, J.; Behar, E.
2013-04-01
We have proposed a systematic view of the observed X-ray absorbers, namely warm absorbers (WAs) in soft X-ray and highly-ionized ultra-fast outflows (UFOs), in the context of magnetically-driven accretion-disk wind models. While potentially complicated by variability and thermal instability in these energetic outflows, in this simplistic model we have calculated 2D kinematic field as well as density and ionization structure of the wind with density profile of 1/r corresponding to a constant column distribution per decade of ionization parameter. In particular we show semi-analytically that the inner layer of the disk-wind manifests itself as the strongly-ionized fast outflows while the outer layer is identified as the moderately-ionized absorbers. The computed characteristics of these two apparently distinct absorbers are consistent with X-ray data (i.e. a factor of ~100 difference in column and ionization parameters as well as low wind velocity vs. near-relativistic flow). With the predicted contour curves for these wind parameters one can constrain allowed regions for the presence of WAs and UFOs.The model further implies that the UFO's gas pressure is comparable to that of the observed radio jet in 3C111 suggesting that the magnetized disk-wind with density profile of 1/r is a viable agent to help sustain such a self-collimated jet at small radii.
The extended stellar substructures of four metal-poor globular clusters in the galactic bulge
NASA Astrophysics Data System (ADS)
Chun, Sang-Hyun; Sohn, Young-Jong
2015-08-01
We investigated stellar spatial density distribution around four metal-poor globular clusters (NGC 6266, NGC 6626, NGC 6642 and NGC 6723) in order to find extended stellar substructures. Wide-field deep J, H, and K imaging data were taken using the WFCAM near-infrared array on United Kingdom Infrared Telescope (UKIRT). The contamination of field stars around clusters was minimised by applying a statistical weighted filtering algorithm for the stars on the color-magnitude diagram. In two-dimensional isodensity contour map, we find that all four of the globular clusters shows tidal stripping stellar features in the form of tidal tails (NGC 6266 and NGC 6723) or small density lobes/chunk (NGC 6642 and NGC 6723). The stellar substructures extend toward the Galactic centre or anticancer, and the proper motion direction of the clusters. The radial density profiles of the clusters also depart from theoretical King and Wilson models and show overdensity feature with a break in a slope of profile at the outer region of clusters. The observed results indicate that four globular clusters in the Galactic bulge have experienced strong tidal force or bulge/disk shock effect of the Galaxy. These observational results provide us further constraints to understand the evolution of clusters in the Galactic bulge region as well as the formation of the Galaxy.
Feeding the fire: tracing the mass-loading of 107 K galactic outflows with O VI absorption
NASA Astrophysics Data System (ADS)
Chisholm, J.; Bordoloi, R.; Rigby, J. R.; Bayliss, M.
2018-02-01
Galactic outflows regulate the amount of gas galaxies convert into stars. However, it is difficult to measure the mass outflows remove because they span a large range of temperatures and phases. Here, we study the rest-frame ultraviolet spectrum of a lensed galaxy at z ˜ 2.9 with prominent interstellar absorption lines from O I, tracing neutral gas, up to O VI, tracing transitional phase gas. The O VI profile mimics weak low-ionization profiles at low velocities, and strong saturated profiles at high velocities. These trends indicate that O VI gas is co-spatial with the low-ionization gas. Further, at velocities blueward of -200 km s-1 the column density of the low-ionization outflow rapidly drops while the O VI column density rises, suggesting that O VI is created as the low-ionization gas is destroyed. Photoionization models do not reproduce the observed O VI, but adequately match the low-ionization gas, indicating that the phases have different formation mechanisms. Photoionized outflows are more massive than O VI outflows for most of the observed velocities, although the O VI mass outflow rate exceeds the photoionized outflow at velocities above the galaxy's escape velocity. Therefore, most gas capable of escaping the galaxy is in a hot outflow phase. We suggest that the O VI absorption is a temporary by-product of conduction transferring mass from the photoionized phase to an unobserved hot wind, and discuss how this mass-loading impacts the observed circum-galactic medium.
NASA Astrophysics Data System (ADS)
Shprits, Y.; Aseev, N.; Drozdov, A.; Kellerman, A. C.; Usanova, M.
2017-12-01
Recent observations and modeling provided significant improvements in our understanding of the energization mechanisms for the electrons in the radiation belts. However, loss processes remain poorly understood. In this study we present analysis of the evolution of electron radial profiles of fluxes, pitch angle and energy distributions. Our modeling and observational results show that different loss mechanisms are operational at different energies. Global simulations at all energies, radial distances, and pitch angels are compared to Van Allen Probes observations of electron fluxes. VERB 3D model including various waves is capable of reproducing the dynamics of pitch angle distributions and energy spectra, demonstrating which loss mechanisms dominate at different energies. Analysis of the profiles of phase space density provides additional confirmation for our conclusions and presents a novel technique that identifies the region of intense local loss due to EMIC wave scattering. This technique allows us to identify the minimum energy affected by the EMIC loss and the location of the location of the EMIC-induced loss. Further comparison with theoretical estimates confirms that 1-2 MeV electrons cannot be effectively scattered by EMIC waves and most pronounced effect of EMIC waves is seen above 4MeV.
Magnetic Fluctuation-Driven Intrinsic Flow in a Toroidal Plasma
NASA Astrophysics Data System (ADS)
Brower, D. L.; Ding, W. X.; Lin, L.; Almagri, A. F.; den Hartog, D. J.; Sarff, J. S.
2012-10-01
Magnetic fluctuations have been long observed in various magnetic confinement configurations. These perturbations may arise naturally from plasma instabilities such as tearing modes and energetic particle driven modes, but they can also be externally imposed by error fields or external magnetic coils. It is commonly observed that large MHD modes lead to plasma locking (no rotation) due to torque produced by eddy currents on the wall, and it is predicted that stochastic field induces flow damping where the radial electric field is reduced. Flow generation is of great importance to fusion plasma research, especially low-torque devices like ITER, as it can act to improve performance. Here we describe new measurements in the MST reversed field pinch (RFP) showing that the coherent interaction of magnetic and particle density fluctuations can produce a turbulent fluctuation-induced kinetic force, which acts to drive intrinsic plasma rotation. Key observations include; (1) the average kinetic force resulting from density fluctuations, ˜ 0.5 N/m^3, is comparable to the intrinsic flow acceleration, and (2) between sawtooth crashes, the spatial distribution of the kinetic force is directed to create a sheared parallel flow profile that is consistent with the measured flow profile in direction and amplitude, suggesting the kinetic force is responsible for intrinsic plasma rotation.
Instability of a shear layer between multicomponent fluids at supercritical pressure
NASA Astrophysics Data System (ADS)
Fu, Qing-fei; Zhang, Yun-xiao; Mo, Chao-jie; Yang, Li-jun
2018-04-01
The temporal instability of a thin shear layer lying between streams of two components of fluids has been studied. The effects of density profile of the layer on the instability behavior were mainly considered. The detailed density profile was obtained through Linear Gradient Theory. The eigenvalue problem was calculated, and the temporal instability curves were obtained for the thermodynamic parameters, e.g. pressure and temperature. The results show that, increase of pressure leads to the increase of the maximum growth rate. However, increasing pressure has opposite effects on the disturbances with small and large wave length. The increase of temperature causes the decrease of disturbance growth rate. The instability behavior of the shear layers was determined mainly by the interval between the inflections of the velocity and density profiles, and the maximum density gradient. The total effects, determined by coupling density stratification, and interval between the inflections of the velocity and density profiles, were quite distinct for different ranges of temperature and pressure.
Observation of chain stretching in Langmuir diblock copolymer monolayers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Factor, B.J.; Lee, L.; Kent, M.S.
1993-10-01
We report observations of chain stretching in diblock copolymer monolayers on the surface of a selective solvent. Using neutron reflectivity, we have studied the concentration profile of the submerged block over a large range of surface density [sigma] (chains per area) for two different molecular weights. The observed increase in the layer thickness is weaker than the [sigma][sup 1/3] prediction of mean-field and scaling theories for the limiting behavior, but is in agreement with recent numerical self-consistent-field calculations by Whitmore and Noolandi [Macromolecules 23, 3321 (1990)].
NASA Technical Reports Server (NTRS)
Rottger, J.
1983-01-01
Mesospheric echoes are strongly influenced by the electron density profile of the ionospheric D region. These echoes therefore are only observed during daylight hours or high energy particle precipitation. The turbulence occurs in layers, which often confines the radar echoes to rather thin regions of several 100 m vertical extent, although layers as thick as several kilometers are also observed. Evaluable echoes are not observed through the entire altitude region of the mesosphere for the given power aperture product. The echoes indicate temporal variation.
Radial evolution of the solar wind from IMP 8 to Voyager 2
NASA Technical Reports Server (NTRS)
Richardson, John D.; Paularena, Karolen I.; Lazarus, Alan J.; Belcher, John W.
1995-01-01
Voyager 2 and Interplanetary Monitoring Platform (IMP) 8 data from 1977 through 1994 are presented and compared. Radial velocity and temperature structures remain intact over the distance from 1 to 43 AU, but density structures do not. Temperature and velocity changes are correlated and nearly in phase at 1 AU, but in the outer heliosphere temperature changes lead velocity changes by tens of days. Solar cycle variations are detected by both spacecraft, with minima in flux density and dynamic pressure near solar maxima. Differences between Voyager 2 and IMP 8 observations near the solar minimum in 1986-1987 are attributed to latitudinal gradients in solar wind properties. Solar rotation variations are often present even at 40 AU. The Voyager 2 temperature profile is best fit with a R(exp -0.49 +/- 0.01) decrease, much less steep than an adiabatic profile.
Measurements of laser-hole boring into overdense plasmas using x-ray laser refractometry (invited)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kodama, R.; Takahashi, K.; Tanaka, K.A.
We developed a 19.6 nm laser x-ray laser grid-image refractometer (XRL-GIR) to diagnose laser-hole boring into overdense plasmas. The XRL-GIR was optimized to measure two-dimensional electron density perturbation on a scale of a few tens of {mu}m in underdense plasmas. Electron density profiles of laser-produced plasmas were obtained for 10{sup 20}{endash}10{sup 22}thinspcm{sup {minus}3} with the XRL-GIR and for 10{sup 19}{endash}10{sup 20}thinspcm{sup {minus}3} from an ultraviolet interferometer, the profiles of which were compared with those from hydrodynamic simulation. By using this XRL-GIR, we directly observed laser channeling into overdense plasmas accompanied by a bow shock wave showing a Mach cone ascribedmore » to supersonic propagation of the channel front. {copyright} {ital 1999 American Institute of Physics.}« less
On the linearity of tracer bias around voids
NASA Astrophysics Data System (ADS)
Pollina, Giorgia; Hamaus, Nico; Dolag, Klaus; Weller, Jochen; Baldi, Marco; Moscardini, Lauro
2017-07-01
The large-scale structure of the Universe can be observed only via luminous tracers of the dark matter. However, the clustering statistics of tracers are biased and depend on various properties, such as their host-halo mass and assembly history. On very large scales, this tracer bias results in a constant offset in the clustering amplitude, known as linear bias. Towards smaller non-linear scales, this is no longer the case and tracer bias becomes a complicated function of scale and time. We focus on tracer bias centred on cosmic voids, I.e. depressions of the density field that spatially dominate the Universe. We consider three types of tracers: galaxies, galaxy clusters and active galactic nuclei, extracted from the hydrodynamical simulation Magneticum Pathfinder. In contrast to common clustering statistics that focus on auto-correlations of tracers, we find that void-tracer cross-correlations are successfully described by a linear bias relation. The tracer-density profile of voids can thus be related to their matter-density profile by a single number. We show that it coincides with the linear tracer bias extracted from the large-scale auto-correlation function and expectations from theory, if sufficiently large voids are considered. For smaller voids we observe a shift towards higher values. This has important consequences on cosmological parameter inference, as the problem of unknown tracer bias is alleviated up to a constant number. The smallest scales in existing data sets become accessible to simpler models, providing numerous modes of the density field that have been disregarded so far, but may help to further reduce statistical errors in constraining cosmology.
RECOZ data reduction and analysis: Programs and procedures
NASA Technical Reports Server (NTRS)
Reed, E. I.
1984-01-01
The RECOZ data reduction programs transform data from the RECOZ photometer to ozone number density and overburden as a function of altitude. Required auxiliary data are the altitude profile versus time and for appropriate corrections to the ozone cross sections and scattering effects, air pressure and temperature profiles. Air temperature and density profiles may also be used to transform the ozone density versus geometric altitude to other units, such as to ozone partial pressure or mixing ratio versus pressure altitude. There are seven programs used to accomplish this: RADAR, LISTRAD, RAW OZONE, EDIT OZONE, MERGE, SMOOTH, and PROFILE.