Change-in-ratio density estimator for feral pigs is less biased than closed mark-recapture estimates
Hanson, L.B.; Grand, J.B.; Mitchell, M.S.; Jolley, D.B.; Sparklin, B.D.; Ditchkoff, S.S.
2008-01-01
Closed-population capture-mark-recapture (CMR) methods can produce biased density estimates for species with low or heterogeneous detection probabilities. In an attempt to address such biases, we developed a density-estimation method based on the change in ratio (CIR) of survival between two populations where survival, calculated using an open-population CMR model, is known to differ. We used our method to estimate density for a feral pig (Sus scrofa) population on Fort Benning, Georgia, USA. To assess its validity, we compared it to an estimate of the minimum density of pigs known to be alive and two estimates based on closed-population CMR models. Comparison of the density estimates revealed that the CIR estimator produced a density estimate with low precision that was reasonable with respect to minimum known density. By contrast, density point estimates using the closed-population CMR models were less than the minimum known density, consistent with biases created by low and heterogeneous capture probabilities for species like feral pigs that may occur in low density or are difficult to capture. Our CIR density estimator may be useful for tracking broad-scale, long-term changes in species, such as large cats, for which closed CMR models are unlikely to work. ?? CSIRO 2008.
A New Monte Carlo Method for Estimating Marginal Likelihoods.
Wang, Yu-Bo; Chen, Ming-Hui; Kuo, Lynn; Lewis, Paul O
2018-06-01
Evaluating the marginal likelihood in Bayesian analysis is essential for model selection. Estimators based on a single Markov chain Monte Carlo sample from the posterior distribution include the harmonic mean estimator and the inflated density ratio estimator. We propose a new class of Monte Carlo estimators based on this single Markov chain Monte Carlo sample. This class can be thought of as a generalization of the harmonic mean and inflated density ratio estimators using a partition weighted kernel (likelihood times prior). We show that our estimator is consistent and has better theoretical properties than the harmonic mean and inflated density ratio estimators. In addition, we provide guidelines on choosing optimal weights. Simulation studies were conducted to examine the empirical performance of the proposed estimator. We further demonstrate the desirable features of the proposed estimator with two real data sets: one is from a prostate cancer study using an ordinal probit regression model with latent variables; the other is for the power prior construction from two Eastern Cooperative Oncology Group phase III clinical trials using the cure rate survival model with similar objectives.
Impact of density information on Rayleigh surface wave inversion results
NASA Astrophysics Data System (ADS)
Ivanov, Julian; Tsoflias, Georgios; Miller, Richard D.; Peterie, Shelby; Morton, Sarah; Xia, Jianghai
2016-12-01
We assessed the impact of density on the estimation of inverted shear-wave velocity (Vs) using the multi-channel analysis of surface waves (MASW) method. We considered the forward modeling theory, evaluated model sensitivity, and tested the effect of density information on the inversion of seismic data acquired in the Arctic. Theoretical review, numerical modeling and inversion of modeled and real data indicated that the density ratios between layers, not the actual density values, impact the determination of surface-wave phase velocities. Application on real data compared surface-wave inversion results using: a) constant density, the most common approach in practice, b) indirect density estimates derived from refraction compressional-wave velocity observations, and c) from direct density measurements in a borehole. The use of indirect density estimates reduced the final shear-wave velocity (Vs) results typically by 6-7% and the use of densities from a borehole reduced the final Vs estimates by 10-11% compared to those from assumed constant density. In addition to the improved absolute Vs accuracy, the resulting overall Vs changes were unevenly distributed laterally when viewed on a 2-D section leading to an overall Vs model structure that was more representative of the subsurface environment. It was observed that the use of constant density instead of increasing density with depth not only can lead to Vs overestimation but it can also create inaccurate model structures, such as a low-velocity layer. Thus, optimal Vs estimations can be best achieved using field estimates of subsurface density ratios.
DS — Software for analyzing data collected using double sampling
Bart, Jonathan; Hartley, Dana
2011-01-01
DS analyzes count data to estimate density or relative density and population size when appropriate. The software is available at http://iwcbm.dev4.fsr.com/IWCBM/default.asp?PageID=126. The software was designed to analyze data collected using double sampling, but it also can be used to analyze index data. DS is not currently configured to apply distance methods or methods based on capture-recapture theory. Double sampling for the purpose of this report means surveying a sample of locations with a rapid method of unknown accuracy and surveying a subset of these locations using a more intensive method assumed to yield unbiased estimates. "Detection ratios" are calculated as the ratio of results from rapid surveys on intensive plots to the number actually present as determined from the intensive surveys. The detection ratios are used to adjust results from the rapid surveys. The formula for density is (results from rapid survey)/(estimated detection ratio from intensive surveys). Population sizes are estimated as (density)(area). Double sampling is well-established in the survey sampling literature—see Cochran (1977) for the basic theory, Smith (1995) for applications of double sampling in waterfowl surveys, Bart and Earnst (2002, 2005) for discussions of its use in wildlife studies, and Bart and others (in press) for a detailed account of how the method was used to survey shorebirds across the arctic region of North America. Indices are surveys that do not involve complete counts of well-defined plots or recording information to estimate detection rates (Thompson and others, 1998). In most cases, such data should not be used to estimate density or population size but, under some circumstances, may be used to compare two densities or estimate how density changes through time or across space (Williams and others, 2005). The Breeding Bird Survey (Sauer and others, 2008) provides a good example of an index survey. Surveyors record all birds detected but do not record any information, such as distance or whether each bird is recorded in subperiods, that could be used to estimate detection rates. Nonetheless, the data are widely used to estimate temporal trends and spatial patterns in abundance (Sauer and others, 2008). DS produces estimates of density (or relative density for indices) by species and stratum. Strata are usually defined using region and habitat but other variables may be used, and the entire study area may be classified as a single stratum. Population size in each stratum and for the entire study area also is estimated for each species. For indices, the estimated totals generally are only useful if (a) plots are surveyed so that densities can be calculated and extrapolated to the entire study area and (b) if the detection rates are close to 1.0. All estimates are accompanied by standard errors (SE) and coefficients of variation (CV, that is, SE/estimate).
Dunham, J.B.; Cade, B.S.; Terrell, J.W.
2002-01-01
We used regression quantiles to model potentially limiting relationships between the standing crop of cutthroat trout Oncorhynchus clarki and measures of stream channel morphology. Regression quantile models indicated that variation in fish density was inversely related to the width:depth ratio of streams but not to stream width or depth alone. The spatial and temporal stability of model predictions were examined across years and streams, respectively. Variation in fish density with width:depth ratio (10th-90th regression quantiles) modeled for streams sampled in 1993-1997 predicted the variation observed in 1998-1999, indicating similar habitat relationships across years. Both linear and nonlinear models described the limiting relationships well, the latter performing slightly better. Although estimated relationships were transferable in time, results were strongly dependent on the influence of spatial variation in fish density among streams. Density changes with width:depth ratio in a single stream were responsible for the significant (P < 0.10) negative slopes estimated for the higher quantiles (>80th). This suggests that stream-scale factors other than width:depth ratio play a more direct role in determining population density. Much of the variation in densities of cutthroat trout among streams was attributed to the occurrence of nonnative brook trout Salvelinus fontinalis (a possible competitor) or connectivity to migratory habitats. Regression quantiles can be useful for estimating the effects of limiting factors when ecological responses are highly variable, but our results indicate that spatiotemporal variability in the data should be explicitly considered. In this study, data from individual streams and stream-specific characteristics (e.g., the occurrence of nonnative species and habitat connectivity) strongly affected our interpretation of the relationship between width:depth ratio and fish density.
NASA Astrophysics Data System (ADS)
Shi, Lei; Guo, Lianghui; Ma, Yawei; Li, Yonghua; Wang, Weilai
2018-05-01
The technique of teleseismic receiver function H-κ stacking is popular for estimating the crustal thickness and Vp/Vs ratio. However, it has large uncertainty or ambiguity when the Moho multiples in receiver function are not easy to be identified. We present an improved technique to estimate the crustal thickness and Vp/Vs ratio by joint constraints of receiver function and gravity data. The complete Bouguer gravity anomalies, composed of the anomalies due to the relief of the Moho interface and the heterogeneous density distribution within the crust, are associated with the crustal thickness, density and Vp/Vs ratio. According to their relationship formulae presented by Lowry and Pérez-Gussinyé, we invert the complete Bouguer gravity anomalies by using a common algorithm of likelihood estimation to obtain the crustal thickness and Vp/Vs ratio, and then utilize them to constrain the receiver function H-κ stacking result. We verified the improved technique on three synthetic crustal models and evaluated the influence of selected parameters, the results of which demonstrated that the novel technique could reduce the ambiguity and enhance the accuracy of estimation. Real data test at two given stations in the NE margin of Tibetan Plateau illustrated that the improved technique provided reliable estimations of crustal thickness and Vp/Vs ratio.
Gao, Nuo; Zhu, S A; He, Bin
2005-06-07
We have developed a new algorithm for magnetic resonance electrical impedance tomography (MREIT), which uses only one component of the magnetic flux density to reconstruct the electrical conductivity distribution within the body. The radial basis function (RBF) network and simplex method are used in the present approach to estimate the conductivity distribution by minimizing the errors between the 'measured' and model-predicted magnetic flux densities. Computer simulations were conducted in a realistic-geometry head model to test the feasibility of the proposed approach. Single-variable and three-variable simulations were performed to estimate the brain-skull conductivity ratio and the conductivity values of the brain, skull and scalp layers. When SNR = 15 for magnetic flux density measurements with the target skull-to-brain conductivity ratio being 1/15, the relative error (RE) between the target and estimated conductivity was 0.0737 +/- 0.0746 in the single-variable simulations. In the three-variable simulations, the RE was 0.1676 +/- 0.0317. Effects of electrode position uncertainty were also assessed by computer simulations. The present promising results suggest the feasibility of estimating important conductivity values within the head from noninvasive magnetic flux density measurements.
NASA Astrophysics Data System (ADS)
Espinho, S.; Hofmann, S.; Palomares, J. M.; Nijdam, S.
2017-10-01
The aim of this work is to study the properties of Ar-O2 microwave driven surfatron plasmas as a function of the Ar/O2 ratio in the gas mixture. The key parameters are the plasma electron density and electron temperature, which are estimated with Thomson scattering (TS) for O2 contents up to 50% of the total gas flow. A sharp drop in the electron density from {10}20 {{{m}}}-3 to approximately {10}18 {{{m}}}-3 is estimated as the O2 content in the gas mixture is increased up to 15%. For percentages of O2 lower than 10%, the electron temperature is estimated to be about 2-3 times higher than in the case of a pure argon discharge in the same conditions ({T}{{e}}≈ 1 eV) and gradually decreases as the O2 percentage is raised to 50%. However, for O2 percentages above 30%, the scattering spectra become Raman dominated, resulting in large uncertainties in the estimated electron densities and temperatures. The influence of photo-detached electrons from negative ions caused by the typical TS laser fluences is also likely to contribute to the uncertainty in the measured electron densities for high O2 percentages. Moreover, the detection limit of the system is reached for percentages of O2 higher than 25%. Additionally, both the electron density and temperature of microwave discharges with large Ar/O2 ratios are more sensitive to gas pressure variations.
Emission measures derived from far ultraviolet spectra of T Tauri stars
NASA Astrophysics Data System (ADS)
Cram, L. E.; Giampapa, M. S.; Imhoff, C. L.
1980-06-01
Spectroscopic diagnostics based on UV emission line observations have been developed to study the solar chromosphere, transition region, and corona. The atmospheric properties that can be inferred from observations of total line intensities include the temperature, by identifying the ionic species present; the temperature distribution of the emission measure, from the absolute intensities; and the electron density of the source, from line intensity ratios sensitive to the electron density. In the present paper, the temperature distribution of the emission measure is estimated from observations of far UV emission line fluxes of the T Tauri stars, RW Aurigae and RU Lupi, made on the IUE. A crude estimate of the electron density of one star is obtained, using density-sensitive line ratios.
Bernard R. Parresol; Charles E. Thomas
1996-01-01
In the wood utilization industry, both stem profile and biomass are important quantities. The two have traditionally been estimated separately. The introduction of a density-integral method allows for coincident estimation of stem profile and biomass, based on the calculus of mass theory, and provides an alternative to weight-ratio methodology. In the initial...
Weghorst, Jennifer A
2007-04-01
The main objective of this study was to estimate the population density and demographic structure of spider monkeys living in wet forest in the vicinity of Sirena Biological Station, Corcovado National Park, Costa Rica. Results of a 14-month line-transect survey showed that spider monkeys of Sirena have one of the highest population densities ever recorded for this genus. Density estimates varied, however, depending on the method chosen to estimate transect width. Data from behavioral monitoring were available to compare density estimates derived from the survey, providing a check of the survey's accuracy. A combination of factors has most probably contributed to the high density of Ateles, including habitat protection within a national park and high diversity of trees of the fig family, Moraceae. Although natural densities of spider monkeys at Sirena are substantially higher than those recorded at most other sites and in previous studies at this site, mean subgroup size and age ratios were similar to those determined in previous studies. Sex ratios were similar to those of other sites with high productivity. Although high densities of preferred fruit trees in the wet, productive forests of Sirena may support a dense population of spider monkeys, other demographic traits recorded at Sirena fall well within the range of values recorded elsewhere for the species.
Estimated areal extent of colonies of black-tailed prairie dogs in the northern Great Plains
Sidle, John G.; Johnson, Douglas H.; Euliss, Betty R.
2001-01-01
During 1997–1998, we undertook an aerial survey, with an aerial line-intercept technique, to estimate the extent of colonies of black-tailed prairie dogs (Cynomys ludovicianus) in the northern Great Plains states of Nebraska, North Dakota, South Dakota, and Wyoming. We stratified the survey based on knowledge of colony locations, computed 2 types of estimates for each stratum, and combined ratio estimates for high-density strata with average density estimates for low-density strata. Estimates of colony areas for black-tailed prairie dogs were derived from the average percentages of lines intercepting prairie dog colonies and ratio estimators. We selected the best estimator based on the correlation between length of transect line and length of intercepted colonies. Active colonies of black-tailed prairie dogs occupied 2,377.8 km2 ± 186.4 SE, whereas inactive colonies occupied 560.4 ± 89.2 km2. These data represent the 1st quantitative assessment of black-tailed prairie dog colonies in the northern Great Plains. The survey dispels popular notions that millions of hectares of colonies of black-tailed prairie dogs exist in the northern Great Plains and can form the basis for future survey efforts.
A possible YORP effect on C and S Main Belt Asteroids
NASA Astrophysics Data System (ADS)
Carbognani, A.
2011-01-01
A rotating frequency analysis in a previous paper, showed that two samples of C and S-type asteroids belonging to the Main Belt, but not to any families, present two different values for the transition diameter to a Maxwellian distribution of the rotation frequency, respectively 48 and 33 km. In this paper, after a more detailed statistical analysis, aiming to verify that the result is physically relevant, we found a better estimate for the transition diameter, respectively D C = 44 ± 2 km and D S = 30 ± 1 km. The ratio between these estimated transition diameters, D C/ D S = 1.5 ± 0.1, can be supported with the help of the YORP (Yarkovsky-O'Keefe-Radzievskii-Paddack) effect, although other physical causes cannot be completely ruled out. In this paper we have derived a simple scaling law for YORP which, taking into account the different average heliocentric distance, the bulk density, the albedo and the asteroid "asymmetry surface factor", has enabled us to reasonably justify the ratio between the diameters transition of C-type and S-type asteroids. The same scaling law can be used to estimate a new ratio between the bulk densities of S and C asteroids samples (giving ρ S/ ρ C ≈ 2.9 ± 0.3), and can explain why the asteroids near the transition diameter have about the same absolute magnitude. For C-type asteroids, using the found density ratio and other estimates of S-type density, it is also possible to estimate an average bulk density equal to 0.9 ± 0.1 g cm -3, a value compatible with icy composition. The suggested explanation for the difference of the transition diameters is a plausible hypothesis, consistent with the data, but it needs to be studied more in depth with further observations.
Nearest neighbor density ratio estimation for large-scale applications in astronomy
NASA Astrophysics Data System (ADS)
Kremer, J.; Gieseke, F.; Steenstrup Pedersen, K.; Igel, C.
2015-09-01
In astronomical applications of machine learning, the distribution of objects used for building a model is often different from the distribution of the objects the model is later applied to. This is known as sample selection bias, which is a major challenge for statistical inference as one can no longer assume that the labeled training data are representative. To address this issue, one can re-weight the labeled training patterns to match the distribution of unlabeled data that are available already in the training phase. There are many examples in practice where this strategy yielded good results, but estimating the weights reliably from a finite sample is challenging. We consider an efficient nearest neighbor density ratio estimator that can exploit large samples to increase the accuracy of the weight estimates. To solve the problem of choosing the right neighborhood size, we propose to use cross-validation on a model selection criterion that is unbiased under covariate shift. The resulting algorithm is our method of choice for density ratio estimation when the feature space dimensionality is small and sample sizes are large. The approach is simple and, because of the model selection, robust. We empirically find that it is on a par with established kernel-based methods on relatively small regression benchmark datasets. However, when applied to large-scale photometric redshift estimation, our approach outperforms the state-of-the-art.
Capture-recapture of white-tailed deer using DNA from fecal pellet-groups
Goode, Matthew J; Beaver, Jared T; Muller, Lisa I; Clark, Joseph D.; van Manen, Frank T.; Harper, Craig T; Basinger, P Seth
2014-01-01
Traditional methods for estimating white-tailed deer population size and density are affected by behavioral biases, poor detection in densely forested areas, and invalid techniques for estimating effective trapping area. We evaluated a noninvasive method of capture—recapture for white-tailed deer (Odocoileus virginianus) density estimation using DNA extracted from fecal pellets as an individual marker and for gender determination, coupled with a spatial detection function to estimate density (spatially explicit capture—recapture, SECR). We collected pellet groups from 11 to 22 January 2010 at randomly selected sites within a 1-km2 area located on Arnold Air Force Base in Coffee and Franklin counties, Tennessee. We searched 703 10-m radius plots and collected 352 pellet-group samples from 197 plots over five two-day sampling intervals. Using only the freshest pellets we recorded 140 captures of 33 different animals (15M:18F). Male and female densities were 1.9 (SE = 0.8) and 3.8 (SE = 1.3) deer km-2, or a total density of 5.8 deer km-2 (14.9 deer mile-2). Population size was 20.8 (SE = 7.6) over a 360-ha area, and sex ratio was 1.0 M: 2.0 F (SE = 0.71). We found DNA sampling from pellet groups improved deer abundance, density and sex ratio estimates in contiguous landscapes which could be used to track responses to harvest or other management actions.
Combining Ratio Estimation for Low Density Parity Check (LDPC) Coding
NASA Technical Reports Server (NTRS)
Mahmoud, Saad; Hi, Jianjun
2012-01-01
The Low Density Parity Check (LDPC) Code decoding algorithm make use of a scaled receive signal derived from maximizing the log-likelihood ratio of the received signal. The scaling factor (often called the combining ratio) in an AWGN channel is a ratio between signal amplitude and noise variance. Accurately estimating this ratio has shown as much as 0.6 dB decoding performance gain. This presentation briefly describes three methods for estimating the combining ratio: a Pilot-Guided estimation method, a Blind estimation method, and a Simulation-Based Look-Up table. The Pilot Guided Estimation method has shown that the maximum likelihood estimates of signal amplitude is the mean inner product of the received sequence and the known sequence, the attached synchronization marker (ASM) , and signal variance is the difference of the mean of the squared received sequence and the square of the signal amplitude. This method has the advantage of simplicity at the expense of latency since several frames worth of ASMs. The Blind estimation method s maximum likelihood estimator is the average of the product of the received signal with the hyperbolic tangent of the product combining ratio and the received signal. The root of this equation can be determined by an iterative binary search between 0 and 1 after normalizing the received sequence. This method has the benefit of requiring one frame of data to estimate the combining ratio which is good for faster changing channels compared to the previous method, however it is computationally expensive. The final method uses a look-up table based on prior simulated results to determine signal amplitude and noise variance. In this method the received mean signal strength is controlled to a constant soft decision value. The magnitude of the deviation is averaged over a predetermined number of samples. This value is referenced in a look up table to determine the combining ratio that prior simulation associated with the average magnitude of the deviation. This method is more complicated than the Pilot-Guided Method due to the gain control circuitry, but does not have the real-time computation complexity of the Blind Estimation method. Each of these methods can be used to provide an accurate estimation of the combining ratio, and the final selection of the estimation method depends on other design constraints.
Rasmussen, Patrick P.; Ziegler, Andrew C.
2003-01-01
The sanitary quality of water and its use as a public-water supply and for recreational activities, such as swimming, wading, boating, and fishing, can be evaluated on the basis of fecal coliform and Escherichia coli (E. coli) bacteria densities. This report describes the overall sanitary quality of surface water in selected Kansas streams, the relation between fecal coliform and E. coli, the relation between turbidity and bacteria densities, and how continuous bacteria estimates can be used to evaluate the water-quality conditions in selected Kansas streams. Samples for fecal coliform and E. coli were collected at 28 surface-water sites in Kansas. Of the 318 samples collected, 18 percent exceeded the current Kansas Department of Health and Environment (KDHE) secondary contact recreational, single-sample criterion for fecal coliform (2,000 colonies per 100 milliliters of water). Of the 219 samples collected during the recreation months (April 1 through October 31), 21 percent exceeded the current (2003) KDHE single-sample fecal coliform criterion for secondary contact rec-reation (2,000 colonies per 100 milliliters of water) and 36 percent exceeded the U.S. Environmental Protection Agency (USEPA) recommended single-sample primary contact recreational criterion for E. coli (576 colonies per 100 milliliters of water). Comparisons of fecal coliform and E. coli criteria indicated that more than one-half of the streams sampled could exceed USEPA recommended E. coli criteria more frequently than the current KDHE fecal coliform criteria. In addition, the ratios of E. coli to fecal coliform (EC/FC) were smallest for sites with slightly saline water (specific conductance greater than 1,000 microsiemens per centimeter at 25 degrees Celsius), indicating that E. coli may not be a good indicator of sanitary quality for those streams. Enterococci bacteria may provide a more accurate assessment of the potential for swimming-related illnesses in these streams. Ratios of EC/FC and linear regression models were developed for estimating E. coli densities on the basis of measured fecal coliform densities for six individual and six groups of surface-water sites. Regression models developed for the six individual surface-water sites and six groups of sites explain at least 89 percent of the variability in E. coli densities. The EC/FC ratios and regression models are site specific and make it possible to convert historic fecal coliform bacteria data to estimated E. coli densities for the selected sites. The EC/FC ratios can be used to estimate E. coli for any range of historical fecal coliform densities, and in some cases with less error than the regression models. The basin- and statewide regression models explained at least 93 percent of the variance and best represent the sites where a majority of the data used to develop the models were collected (Kansas and Little Arkansas Basins). Comparison of the current (2003) KDHE geometric-mean primary contact criterion for fecal coliform bacteria of 200 col/100 mL to the 2002 USEPA recommended geometric-mean criterion of 126 col/100 mL for E. coli results in an EC/FC ratio of 0.63. The geometric-mean EC/FC ratio for all sites except Rattlesnake Creek (site 21) is 0.77, indicating that considerably more than 63 percent of the fecal coliform is E. coli. This potentially could lead to more exceedances of the recommended E. coli criterion, where the water now meets the current (2003) 200-col/100 mL fecal coliform criterion. In this report, turbidity was found to be a reliable estimator of bacteria densities. Regression models are provided for estimating fecal coliform and E. coli bacteria densities using continuous turbidity measurements. Prediction intervals also are provided to show the uncertainty associated with using the regression models. Eighty percent of all measured sample densities and individual turbidity-based estimates from the regression models were in agreement as exceedi
Dolphin biosonar target detection in noise: wrap up of a past experiment.
Au, Whitlow W L
2014-07-01
The target detection capability of bottlenose dolphins in the presence of artificial masking noise was first studied by Au and Penner [J. Acoust. Soc. Am. 70, 687-693 (1981)] in which the dolphins' target detection threshold was determined as a function of the ratio of the echo energy flux density and the estimated received noise spectral density. Such a metric was commonly used in human psychoacoustics despite the fact that the echo energy flux density is not compatible with noise spectral density which is averaged intensity per Hz. Since the earlier detection in noise studies, two important parameters, the dolphin integration time applicable to broadband clicks and the dolphin's auditory filter shape, were determined. The inclusion of these two parameters allows for the estimation of the received energy flux density of the masking noise so that the dolphin target detection can now be determined as a function of the ratio of the received energy of the echo over the received noise energy. Using an integration time of 264 μs and an auditory bandwidth of 16.7 kHz, the ratio of the echo energy to noise energy at the target detection threshold is approximately 1 dB.
Empirical methods in the evaluation of estimators
Gerald S. Walton; C.J. DeMars; C.J. DeMars
1973-01-01
The authors discuss the problem of selecting estimators of density and survival by making use of data on a forest-defoliating larva, the spruce budworm. Varlous estimators are compared. The results show that, among the estimators considered, ratio-type estimators are superior in terms of bias and variance. The methods used in making comparisons, particularly simulation...
Modal density function and number of propagating modes in ducts
NASA Technical Reports Server (NTRS)
Rice, E. J.
1976-01-01
The question of the number of propagating modes within a small range of mode cut off ratio was raised. The population density of modes were shown to be greatest near cut off and least for the well propagating modes. It was shown that modes of nearly the same cut off ratio behave nearly the same in a sound absorbing duct as well as in the way they propagate to the far. Handling all of the propagating modes individually, they can be grouped into several cut off ratio ranges. It is important to know the modal density function to estimate acoustic power distribution.
NASA Astrophysics Data System (ADS)
Khaidir Noor, Muhammad
2018-03-01
Reserve estimation is one of important work in evaluating a mining project. It is estimation of the quality and quantity of the presence of minerals have economic value. Reserve calculation method plays an important role in determining the efficiency in commercial exploration of a deposit. This study was intended to calculate ore reserves contained in the study area especially Pit Block 3A. Nickel ore reserve was estimated by using detailed exploration data, processing by using Surpac 6.2 by Inverse Distance Weight: Squared Power estimation method. Ore estimation result obtained from 30 drilling data was 76453.5 ton of Saprolite with density of 1.5 ton/m3 and COG (Cut Off Grade) Ni ≥ 1.6 %, while overburden data was 112,570.8 tons with waste rock density of 1.2 ton/m3 . Striping Ratio (SR) was 1.47 : 1 smaller than Stripping Ratio ( SR ) were set of 1.60 : 1.
Demidenko, Eugene
2017-09-01
The exact density distribution of the nonlinear least squares estimator in the one-parameter regression model is derived in closed form and expressed through the cumulative distribution function of the standard normal variable. Several proposals to generalize this result are discussed. The exact density is extended to the estimating equation (EE) approach and the nonlinear regression with an arbitrary number of linear parameters and one intrinsically nonlinear parameter. For a very special nonlinear regression model, the derived density coincides with the distribution of the ratio of two normally distributed random variables previously obtained by Fieller (1932), unlike other approximations previously suggested by other authors. Approximations to the density of the EE estimators are discussed in the multivariate case. Numerical complications associated with the nonlinear least squares are illustrated, such as nonexistence and/or multiple solutions, as major factors contributing to poor density approximation. The nonlinear Markov-Gauss theorem is formulated based on the near exact EE density approximation.
Cetacean population density estimation from single fixed sensors using passive acoustics.
Küsel, Elizabeth T; Mellinger, David K; Thomas, Len; Marques, Tiago A; Moretti, David; Ward, Jessica
2011-06-01
Passive acoustic methods are increasingly being used to estimate animal population density. Most density estimation methods are based on estimates of the probability of detecting calls as functions of distance. Typically these are obtained using receivers capable of localizing calls or from studies of tagged animals. However, both approaches are expensive to implement. The approach described here uses a MonteCarlo model to estimate the probability of detecting calls from single sensors. The passive sonar equation is used to predict signal-to-noise ratios (SNRs) of received clicks, which are then combined with a detector characterization that predicts probability of detection as a function of SNR. Input distributions for source level, beam pattern, and whale depth are obtained from the literature. Acoustic propagation modeling is used to estimate transmission loss. Other inputs for density estimation are call rate, obtained from the literature, and false positive rate, obtained from manual analysis of a data sample. The method is applied to estimate density of Blainville's beaked whales over a 6-day period around a single hydrophone located in the Tongue of the Ocean, Bahamas. Results are consistent with those from previous analyses, which use additional tag data. © 2011 Acoustical Society of America
Double sampling to estimate density and population trends in birds
Bart, Jonathan; Earnst, Susan L.
2002-01-01
We present a method for estimating density of nesting birds based on double sampling. The approach involves surveying a large sample of plots using a rapid method such as uncorrected point counts, variable circular plot counts, or the recently suggested double-observer method. A subsample of those plots is also surveyed using intensive methods to determine actual density. The ratio of the mean count on those plots (using the rapid method) to the mean actual density (as determined by the intensive searches) is used to adjust results from the rapid method. The approach works well when results from the rapid method are highly correlated with actual density. We illustrate the method with three years of shorebird surveys from the tundra in northern Alaska. In the rapid method, surveyors covered ~10 ha h-1 and surveyed each plot a single time. The intensive surveys involved three thorough searches, required ~3 h ha-1, and took 20% of the study effort. Surveyors using the rapid method detected an average of 79% of birds present. That detection ratio was used to convert the index obtained in the rapid method into an essentially unbiased estimate of density. Trends estimated from several years of data would also be essentially unbiased. Other advantages of double sampling are that (1) the rapid method can be changed as new methods become available, (2) domains can be compared even if detection rates differ, (3) total population size can be estimated, and (4) valuable ancillary information (e.g. nest success) can be obtained on intensive plots with little additional effort. We suggest that double sampling be used to test the assumption that rapid methods, such as variable circular plot and double-observer methods, yield density estimates that are essentially unbiased. The feasibility of implementing double sampling in a range of habitats needs to be evaluated.
NASA Astrophysics Data System (ADS)
Jiménez-Donaire, M. J.; Bigiel, F.; Leroy, A. K.; Cormier, D.; Gallagher, M.; Usero, A.; Bolatto, A.; Colombo, D.; García-Burillo, S.; Hughes, A.; Kramer, C.; Krumholz, M. R.; Meier, D. S.; Murphy, E.; Pety, J.; Rosolowsky, E.; Schinnerer, E.; Schruba, A.; Tomičić, N.; Zschaechner, L.
2017-04-01
High critical density molecular lines like HCN (1-0) or HCO+ (1-0) represent our best tool to study currently star-forming, dense molecular gas at extragalactic distances. The optical depth of these lines is a key ingredient to estimate the effective density required to excite emission. However, constraints on this quantity are even scarcer in the literature than measurements of the high-density tracers themselves. Here, we combine new observations of HCN, HCO+ and HNC (1-0) and their optically thin isotopologues H13CN, H13CO+ and HN13C (1-0) to measure isotopologue line ratios. We use IRAM 30-m observations from the large programme EMPIRE and new Atacama Large Millimetre/submillimetre Array observations, which together target six nearby star-forming galaxies. Using spectral stacking techniques, we calculate or place strong upper limits on the HCN/H13CN, HCO+/H13CO+ and HNC/HN13C line ratios in the inner parts of these galaxies. Under simple assumptions, we use these to estimate the optical depths of HCN (1-0) and HCO+ (1-0) to be τ ˜ 2-11 in the active, inner regions of our targets. The critical densities are consequently lowered to values between 5 and 20 × 105 cm-3, 1 and 3 × 105 cm-3 and 9 × 104 cm-3 for HCN, HCO+ and HNC, respectively. We study the impact of having different beam-filling factors, η, on these estimates and find that the effective critical densities decrease by a factor of η _{12}/η _{13} τ_{12}. A comparison to existing work in NGC 5194 and NGC 253 shows the HCN/H13CN and HCO+/H13CO+ ratios in agreement with our measurements within the uncertainties. The same is true for studies in other environments such as the Galactic Centre or nuclear regions of active galactic nucleus dominated nearby galaxies.
Lefkimmiatis, Stamatios; Maragos, Petros; Papandreou, George
2009-08-01
We present an improved statistical model for analyzing Poisson processes, with applications to photon-limited imaging. We build on previous work, adopting a multiscale representation of the Poisson process in which the ratios of the underlying Poisson intensities (rates) in adjacent scales are modeled as mixtures of conjugate parametric distributions. Our main contributions include: 1) a rigorous and robust regularized expectation-maximization (EM) algorithm for maximum-likelihood estimation of the rate-ratio density parameters directly from the noisy observed Poisson data (counts); 2) extension of the method to work under a multiscale hidden Markov tree model (HMT) which couples the mixture label assignments in consecutive scales, thus modeling interscale coefficient dependencies in the vicinity of image edges; 3) exploration of a 2-D recursive quad-tree image representation, involving Dirichlet-mixture rate-ratio densities, instead of the conventional separable binary-tree image representation involving beta-mixture rate-ratio densities; and 4) a novel multiscale image representation, which we term Poisson-Haar decomposition, that better models the image edge structure, thus yielding improved performance. Experimental results on standard images with artificially simulated Poisson noise and on real photon-limited images demonstrate the effectiveness of the proposed techniques.
NASA Astrophysics Data System (ADS)
Epstein, R.; Rosenberg, M. J.; Solodov, A. A.; Myatt, J. F.; Regan, S. P.; Seka, W.; Hohenberger, M.; Barrios, M. A.; Moody, J. D.
2015-11-01
The Mn/Co isoelectronic emission-line ratio from a microdot source in planar CH foil targets was measured to infer the electron temperature (Te) in the ablating plasma during two-plasmon-decay experiments at the National Ignition Facility (NIF). We examine the systematic uncertainty in the Te estimate based on the temperature and density sensitivities of the line ratio in conjunction with plausible density constraints, and its contribution to the total Te estimate uncertainty. The potential advantages of alternative microdot elements (e.g., Ti/Cr and Sc/V) are considered. The microdot mass was selected to provide ample line strength while minimizing the effect of self-absorption on the line emission, which is of particular concern, given the narrow linewidths of mid- Z emitters at subcritical electron densities. Atomic line-formation theory and detailed atomic-radiative simulations show that the straight forward interpretation of the isoelectronic ratio solely in terms of its temperature independence remains valid with lines of moderate optical thickness (up to ~ 10) at line center. This material is based upon work supported by the Department of Energy National Nuclear Security Administration under Award Number DE-NA0001944.
Lee, Jongseok; Jang, Sungok; Son, Heejeong
2016-01-01
Despite the importance of accurate assessment for low-density lipoprotein cholesterol (LDL-C), the Friedewald formula has primarily been used as a cost-effective method to estimate LDL-C when triglycerides are less than 400 mg/dL. In a recent study, an alternative to the formula was proposed to improve estimation of LDL-C. We evaluated the performance of the novel method versus the Friedewald formula using a sample of 5,642 Korean adults with LDL-C measured by an enzymatic homogeneous assay (LDL-CD). Friedewald LDL-C (LDL-CF) was estimated using a fixed factor of 5 for the ratio of triglycerides to very-low-density lipoprotein cholesterol (TG:VLDL-C ratio). However, the novel LDL-C (LDL-CN) estimates were calculated using the N-strata-specific median TG:VLDL-C ratios, LDL-C5 and LDL-C25 from respective ratios derived from our data set, and LDL-C180 from the 180-cell table reported by the original study. Compared with LDL-CF, each LDL-CN estimate exhibited a significantly higher overall concordance in the NCEP-ATP III guideline classification with LDL-CD (p< 0.001 for each comparison). Overall concordance was 78.2% for LDL-CF, 81.6% for LDL-C5, 82.3% for LDL-C25, and 82.0% for LDL-C180. Compared to LDL-C5, LDL-C25 significantly but slightly improved overall concordance (p = 0.008). LDL-C25 and LDL-C180 provided almost the same overall concordance; however, LDL-C180 achieved superior improvement in classifying LDL-C < 70 mg/dL compared to the other estimates. In subjects with triglycerides of 200 to 399 mg/dL, each LDL-CN estimate showed a significantly higher concordance than that of LDL-CF (p< 0.001 for each comparison). The novel method offers a significant improvement in LDL-C estimation when compared with the Friedewald formula. However, it requires further modification and validation considering the racial differences as well as the specific character of the applied measuring method. PMID:26824910
NASA Astrophysics Data System (ADS)
Gregory Lough, R.; Mountain, David G.
A set of vertically stratified MOCNESS tows made on the southern flank of Georges Bank in spring 1981 and 1983 was analyzed to examine the relationship between larval cod and haddock feeding success and turbulent dissipation in a stratified water column. Observed feeding ratios (mean no. prey larval gut -1) for three size classes of larvae were compared with estimated ingestion rates using the Rothschild and Osborn ( Journal of Plankton Research, 10, 1988, 465-474) predator-prey encounter rate model. Simulation of contact rates requires parameter estimates of larval fish and their prey cruising speeds, density of prey, and turbulent velocity of the water column. Turbulent dissipation was estimated from a formulation by James ( Estuarine and Coastal Marine Science, 5, 1977, 339-353) incorporating both a wind a tidal component. Larval ingestion rates were based on swallowing probabilities derived from calm-water laboratory observations. Model-predicted turbulence profiles generally showed that dissipation rates were low to moderate (10 -11-10 -7 W kg -1). Turbulence was minimal at or below the pycnocline (≈ 25 m) with higher values(1-2 orders of magnitude) near the surface due to wind mixing and at depth due to shear in the tidal current near bottom. In a stratified water column during the day, first-feeding larvae (5-6 mm) were located mostly within or above the pycnocline coincident with their copepod prey (nauplii and copepodites). The 7-8 mm larvae were most abundant within the pycnocline, whereas the 9-10 mm larvae were found within and below the pycnocline. Feeding ratios were relatively low in early morning following darkness when the wind speed was low, but increased by a factor of 2-13 by noon and evening when the wind speed doubled. Comparison of depth-specific feeding ratios with estimated ingestion rates, derived from turbulence-affected contact rates, generally were reasonable after allowing for an average gut evacuation time (4 h), and in many cases the observed and estimated values had similar profiles. However, differences in vertical profiles may be attributed to differential digestion time, pursuit behavior affected by high turbulence, vertical migration of the larger larvae, an optimum light level for feeding, smaller-scale prey patchiness, and the gross estimates of turbulence. Response-surface estimation of averaged feeding ratios as a function of averaged prey density (0-50 m) with a minimum water-column turbulence value predicted that 5-6 mm larvae have a maximum feeding response at the highest prey densities (> 30 prey 1 -1) and lower turbulence estimates (<10 -10 W kg -1). The 7-8 mm and 9-10 mm larvae also have a maximum feeding response at high prey densities and low turbulence, but it extends to lower prey densities (> 10 prey 1 -1) as turbulence increases to intermidiate levels, clearly showing an interaction effect. In general, maximum feeding ratios occur at low to intermediate levels of turbulence where average prey density is greater than 10-20 prey 1 -1.
Estimating Evapotranspiration Of Orange Orchards Using Surface Renewal And Remote Sensing Techniques
NASA Astrophysics Data System (ADS)
Consoli, S.; Russo, A.; Snyder, R.
2006-08-01
Surface renewal (SR) analysis was utilized to calculate sensible heat flux density from high frequency temperature measurements above orange orchard canopies during 2005 in eastern Sicily (Italy). The H values were employed to estimate latent heat flux density (LE) using measured net radiation (Rn) and soil heat flux density (G) in the energy balance (EB) equation. Crop coefficients were determined by calculating the ratio Kc=ETa/ETo, with reference ETo derived from the daily Penman-Monteith equation. The estimated daily Kc values showed an average of about 0.75 for canopy covers having about 70% ground shading and 80% of PAR light interception. Remote sensing estimates of Kc and ET fluxes were compared with those measured by SR-EB. IKONOS satellite estimates of Kc and NDVI were linearly correlated for the orchard stands.
Developing a bubble number-density paleoclimatic indicator for glacier ice
Spencer, M.K.; Alley, R.B.; Fitzpatrick, J.J.
2006-01-01
Past accumulation rate can be estimated from the measured number-density of bubbles in an ice core and the reconstructed paleotemperature, using a new technique. Density increase and grain growth in polar firn are both controlled by temperature and accumulation rate, and the integrated effects are recorded in the number-density of bubbles as the firn changes to ice. An empirical model of these processes, optimized to fit published data on recently formed bubbles, reconstructs accumulation rates using recent temperatures with an uncertainty of 41% (P < 0.05). For modern sites considered here, no statistically significant trend exists between mean annual temperature and the ratio of bubble number-density to grain number-density at the time of pore close-off; optimum modeled accumulation-rate estimates require an eventual ???2.02 ?? 0.08 (P < 0.05) bubbles per close-off grain. Bubble number-density in the GRIP (Greenland) ice core is qualitatively consistent with independent estimates for a combined temperature decrease and accumulation-rate increase there during the last 5 kyr.
Duell, L. F. W.
1988-01-01
In Owens Valley, evapotranspiration (ET) is one of the largest components of outflow in the hydrologic budget and the least understood. ET estimates for December 1983 through October 1985 were made for seven representative locations selected on the basis of geohydrology and the characteristics of phreatophytic alkaline scrub and meadow communities. The Bowen-ratio, eddy-correlation, and Penman-combination methods were used to estimate ET. The results of the analyses appear satisfactory when compared to other estimates of ET. Results by the eddy-correlation method are for a direct and a residual latent-heat flux that is based on sensible-heat flux and energy budget measurements. Penman-combination potential ET estimates were determined to be unusable because they overestimated actual ET. Modification in the psychrometer constant of this method to account for differences between heat-diffusion resistance and vapor-diffusion resistance permitted actual ET to be estimated. The methods may be used for studies in similar semiarid and arid rangeland areas in the Western United States. Meteorological data for three field sites are included in the appendix. Simple linear regression analysis indicates that ET estimates are correlated to air temperature, vapor-density deficit, and net radiation. Estimates of annual ET range from 300 mm at a low-density scrub site to 1,100 mm at a high-density meadow site. The monthly percentage of annual ET was determined to be similar for all sites studied. (Author 's abstract)
The Effects of Sex-Ratio and Density on Locomotor Activity in the House Fly, Musca domestica
Bahrndorff, Simon; Kjærsgaard, Anders; Pertoldi, Cino; Loeschcke, Volker; Schou, Toke M.; Skovgård, Henrik; Hald, Birthe
2012-01-01
Although locomotor activity is involved in almost all behavioral traits, there is a lack of knowledge on what factors affect it. This study examined the effects of sex—ratio and density on the circadian rhythm of locomotor activity of adult Musca domestica L. (Diptera: Muscidae) using an infra—red light system. Sex—ratio significantly affected locomotor activity, increasing with the percentage of males in the vials. In accordance with other studies, males were more active than females, but the circadian rhythm of the two sexes was not constant over time and changed during the light period. There was also an effect of density on locomotor activity, where males at intermediate densities showed higher activity. Further, the predictability of the locomotor activity, estimated as the degree of autocorrelation of the activity data, increased with the number of males present in the vials both with and without the presence of females. Overall, this study demonstrates that locomotor activity in M. domestica is affected by sex—ratio and density. Furthermore, the predictability of locomotor activity is affected by both sex—ratio, density, and circadian rhythm. These results add to our understanding of the behavioral interactions between houseflies and highlight the importance of these factors when designing behavioral experiments using M. domestica.
NASA Astrophysics Data System (ADS)
Fujimura, Nobuyuki; Ohta, Akio; Ikeda, Mitsuhisa; Makihara, Katsunori; Miyazaki, Seiichi
2018-04-01
The electrical dipole moment at an ultrathin high-k (HfO2, Al2O3, TiO2, Y2O3, and SrO)/SiO2 interface and its correlation with the oxygen density ratio at the interface have been directly evaluated by X-ray photoelectron spectroscopy (XPS) under monochromatized Al Kα radiation. The electrical dipole moment at the high-k/SiO2 interface has been measured from the change in the cut-off energy of secondary photoelectrons. Moreover, the oxygen density ratio at the interface between high-k and SiO2 has been estimated from cation core-line signals, such as Hf 4f, Al 2p, Y 3d, Ti 2p, Sr 3d, and Si 2p. We have experimentally clarified the relationship between the measured electrical dipole moment and the oxygen density ratio at the high-k/SiO2 interface.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Erpenbeck, J.J.
1992-02-15
The transport coefficients of shear viscosity, thermal conductivity, thermal diffusion, and mutual diffusion are estimated for a binary, equimolar mixture of hard spheres having a diameter ratio of 0.4 and a mass ratio of 0.03 at volumes of 5{ital V}{sub 0}, 10{ital V}{sub 0}, and 20{ital V}{sub 0} (where {ital V}{sub 0}=1/2 {radical}2 {ital N} {ital tsum}{sub {ital a}} x{sub {ital a}}{sigma}{sub {ital a}}{sup 3}, {ital x}{sub {ital a}} are mole fractions, {sigma}{sub {ital a}} are diameters, and {ital N} is the number of particles) through Monte Carlo, molecular-dynamics calculations using the Green-Kubo formulas. Calculations are reported for as fewmore » as 108 and as many as 4000 particles, but not for each value of the volume. Both finite-system and long-time-tail corrections are applied to obtain estimates of the transport coefficients in the thermodynamic limit; corrections of both types are found to be small. The results are compared with the predictions of the revised Enskog theory and the linear density corrections to that theory are reported. The mean free time is also computed as a function of density and the linear and quadratic corrections to the Boltzmann theory are estimated. The mean free time is also compared with the expression from the Mansoori-Carnahan-Starling-Leland equation of state.« less
NASA Technical Reports Server (NTRS)
Moran, M. Susan; Jackson, Ray D.; Raymond, Lee H.; Gay, Lloyd W.; Slater, Philip N.
1989-01-01
Surface energy balance components were evaluated by combining satellite-based spectral data with on-site measurements of solar irradiance, air temperature, wind speed, and vapor pressure. Maps of latent heat flux density and net radiant flux density were produced using Landsat TM data for three dates. The TM-based estimates differed from Bowen-ratio and aircraft-based estimates by less than 12 percent over mature fields of cotton, wheat, and alfalfa.
NASA Astrophysics Data System (ADS)
Helge Østerås, Bjørn; Skaane, Per; Gullien, Randi; Catrine Trægde Martinsen, Anne
2018-02-01
The main purpose was to compare average glandular dose (AGD) for same-compression digital mammography (DM) and digital breast tomosynthesis (DBT) acquisitions in a population based screening program, with and without breast density stratification, as determined by automatically calculated breast density (Quantra™). Secondary, to compare AGD estimates based on measured breast density, air kerma and half value layer (HVL) to DICOM metadata based estimates. AGD was estimated for 3819 women participating in the screening trial. All received craniocaudal and mediolateral oblique views of each breasts with paired DM and DBT acquisitions. Exposure parameters were extracted from DICOM metadata. Air kerma and HVL were measured for all beam qualities used to acquire the mammograms. Volumetric breast density was estimated using Quantra™. AGD was estimated using the Dance model. AGD reported directly from the DICOM metadata was also assessed. Mean AGD was 1.74 and 2.10 mGy for DM and DBT, respectively. Mean DBT/DM AGD ratio was 1.24. For fatty breasts: mean AGD was 1.74 and 2.27 mGy for DM and DBT, respectively. For dense breasts: mean AGD was 1.73 and 1.79 mGy, for DM and DBT, respectively. For breasts of similar thickness, dense breasts had higher AGD for DM and similar AGD for DBT. The DBT/DM dose ratio was substantially lower for dense compared to fatty breasts (1.08 versus 1.33). The average c-factor was 1.16. Using previously published polynomials to estimate glandularity from thickness underestimated the c-factor by 5.9% on average. Mean AGD error between estimates based on measurements (air kerma and HVL) versus DICOM header data was 3.8%, but for one mammography unit as high as 7.9%. Mean error of using the AGD value reported in the DICOM header was 10.7 and 13.3%, respectively. Thus, measurement of breast density, radiation dose and beam quality can substantially affect AGD estimates.
Østerås, Bjørn Helge; Skaane, Per; Gullien, Randi; Martinsen, Anne Catrine Trægde
2018-01-25
The main purpose was to compare average glandular dose (AGD) for same-compression digital mammography (DM) and digital breast tomosynthesis (DBT) acquisitions in a population based screening program, with and without breast density stratification, as determined by automatically calculated breast density (Quantra ™ ). Secondary, to compare AGD estimates based on measured breast density, air kerma and half value layer (HVL) to DICOM metadata based estimates. AGD was estimated for 3819 women participating in the screening trial. All received craniocaudal and mediolateral oblique views of each breasts with paired DM and DBT acquisitions. Exposure parameters were extracted from DICOM metadata. Air kerma and HVL were measured for all beam qualities used to acquire the mammograms. Volumetric breast density was estimated using Quantra ™ . AGD was estimated using the Dance model. AGD reported directly from the DICOM metadata was also assessed. Mean AGD was 1.74 and 2.10 mGy for DM and DBT, respectively. Mean DBT/DM AGD ratio was 1.24. For fatty breasts: mean AGD was 1.74 and 2.27 mGy for DM and DBT, respectively. For dense breasts: mean AGD was 1.73 and 1.79 mGy, for DM and DBT, respectively. For breasts of similar thickness, dense breasts had higher AGD for DM and similar AGD for DBT. The DBT/DM dose ratio was substantially lower for dense compared to fatty breasts (1.08 versus 1.33). The average c-factor was 1.16. Using previously published polynomials to estimate glandularity from thickness underestimated the c-factor by 5.9% on average. Mean AGD error between estimates based on measurements (air kerma and HVL) versus DICOM header data was 3.8%, but for one mammography unit as high as 7.9%. Mean error of using the AGD value reported in the DICOM header was 10.7 and 13.3%, respectively. Thus, measurement of breast density, radiation dose and beam quality can substantially affect AGD estimates.
Cost and performance model for redox flow batteries
NASA Astrophysics Data System (ADS)
Viswanathan, Vilayanur; Crawford, Alasdair; Stephenson, David; Kim, Soowhan; Wang, Wei; Li, Bin; Coffey, Greg; Thomsen, Ed; Graff, Gordon; Balducci, Patrick; Kintner-Meyer, Michael; Sprenkle, Vincent
2014-02-01
A cost model is developed for all vanadium and iron-vanadium redox flow batteries. Electrochemical performance modeling is done to estimate stack performance at various power densities as a function of state of charge and operating conditions. This is supplemented with a shunt current model and a pumping loss model to estimate actual system efficiency. The operating parameters such as power density, flow rates and design parameters such as electrode aspect ratio and flow frame channel dimensions are adjusted to maximize efficiency and minimize capital costs. Detailed cost estimates are obtained from various vendors to calculate cost estimates for present, near-term and optimistic scenarios. The most cost-effective chemistries with optimum operating conditions for power or energy intensive applications are determined, providing a roadmap for battery management systems development for redox flow batteries. The main drivers for cost reduction for various chemistries are identified as a function of the energy to power ratio of the storage system. Levelized cost analysis further guide suitability of various chemistries for different applications.
Moran, M.S.; Jackson, R. D.; Raymond, L.H.; Gay, L.W.; Slater, P.N.
1989-01-01
Surface energy balance components were evaluated by combining satellite-based spectral data with on-site measurements of solar irradiance, air temperature, wind speed, and vapor pressure. Maps of latent heat flux density (??E) and net radiant flux density (Rn) were produced using Landsat Thematic Mapper (TM) data for three dates: 23 July 1985, 5 April 1986, and 24 June 1986. On each date, a Bowen-ratio apparatus, located in a vegetated field, was used to measure ??E and Rn at a point within the field. Estimates of ??E and Rn were also obtained using radiometers aboard an aircraft flown at 150 m above ground level. The TM-based estimates differed from the Bowen-ratio and aircraft-based estimates by less than 12 % over mature fields of cotton, wheat, and alfalfa, where ??E and Rn ranged from 400 to 700 Wm-2. ?? 1989.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kelly, Brandon C.; Shen, Yue
We employ a flexible Bayesian technique to estimate the black hole (BH) mass and Eddington ratio functions for Type 1 (i.e., broad line) quasars from a uniformly selected data set of {approx}58, 000 quasars from the Sloan Digital Sky Survey (SDSS) DR7. We find that the SDSS becomes significantly incomplete at M {sub BH} {approx}< 3 Multiplication-Sign 10{sup 8} M {sub Sun} or L/L {sub Edd} {approx}< 0.07, and that the number densities of Type 1 quasars continue to increase down to these limits. Both the mass and Eddington ratio functions show evidence of downsizing, with the most massive andmore » highest Eddington ratio BHs experiencing Type 1 quasar phases first, although the Eddington ratio number densities are flat at z < 2. We estimate the maximum Eddington ratio of Type 1 quasars in the observable universe to be L/L {sub Edd} {approx} 3. Consistent with our results in Shen and Kelly, we do not find statistical evidence for a so-called sub-Eddington boundary in the mass-luminosity plane of broad-line quasars, and demonstrate that such an apparent boundary in the observed distribution can be caused by selection effect and errors in virial BH mass estimates. Based on the typical Eddington ratio in a given mass bin, we estimate growth times for the BHs in Type 1 quasars and find that they are comparable to or longer than the age of the universe, implying an earlier phase of accelerated (i.e., with higher Eddington ratios) and possibly obscured growth. The large masses probed by our sample imply that most of our BHs reside in what are locally early-type galaxies, and we interpret our results within the context of models of self-regulated BH growth.« less
NASA Astrophysics Data System (ADS)
Jumadi, Nur Anida; Beng, Gan Kok; Ali, Mohd Alauddin Mohd; Zahedi, Edmond; Morsin, Marlia
2017-09-01
The implementation of surface-based Monte Carlo simulation technique for oxygen saturation (SaO2) calibration curve estimation is demonstrated in this paper. Generally, the calibration curve is estimated either from the empirical study using animals as the subject of experiment or is derived from mathematical equations. However, the determination of calibration curve using animal is time consuming and requires expertise to conduct the experiment. Alternatively, an optical simulation technique has been used widely in the biomedical optics field due to its capability to exhibit the real tissue behavior. The mathematical relationship between optical density (OD) and optical density ratios (ODR) associated with SaO2 during systole and diastole is used as the basis of obtaining the theoretical calibration curve. The optical properties correspond to systolic and diastolic behaviors were applied to the tissue model to mimic the optical properties of the tissues. Based on the absorbed ray flux at detectors, the OD and ODR were successfully calculated. The simulation results of optical density ratio occurred at every 20 % interval of SaO2 is presented with maximum error of 2.17 % when comparing it with previous numerical simulation technique (MC model). The findings reveal the potential of the proposed method to be used for extended calibration curve study using other wavelength pair.
Toward accurate and precise estimates of lion density.
Elliot, Nicholas B; Gopalaswamy, Arjun M
2017-08-01
Reliable estimates of animal density are fundamental to understanding ecological processes and population dynamics. Furthermore, their accuracy is vital to conservation because wildlife authorities rely on estimates to make decisions. However, it is notoriously difficult to accurately estimate density for wide-ranging carnivores that occur at low densities. In recent years, significant progress has been made in density estimation of Asian carnivores, but the methods have not been widely adapted to African carnivores, such as lions (Panthera leo). Although abundance indices for lions may produce poor inferences, they continue to be used to estimate density and inform management and policy. We used sighting data from a 3-month survey and adapted a Bayesian spatially explicit capture-recapture (SECR) model to estimate spatial lion density in the Maasai Mara National Reserve and surrounding conservancies in Kenya. Our unstructured spatial capture-recapture sampling design incorporated search effort to explicitly estimate detection probability and density on a fine spatial scale, making our approach robust in the context of varying detection probabilities. Overall posterior mean lion density was estimated to be 17.08 (posterior SD 1.310) lions >1 year old/100 km 2 , and the sex ratio was estimated at 2.2 females to 1 male. Our modeling framework and narrow posterior SD demonstrate that SECR methods can produce statistically rigorous and precise estimates of population parameters, and we argue that they should be favored over less reliable abundance indices. Furthermore, our approach is flexible enough to incorporate different data types, which enables robust population estimates over relatively short survey periods in a variety of systems. Trend analyses are essential to guide conservation decisions but are frequently based on surveys of differing reliability. We therefore call for a unified framework to assess lion numbers in key populations to improve management and policy decisions. © 2016 Society for Conservation Biology.
NASA Astrophysics Data System (ADS)
Freeman, P. E.; Izbicki, R.; Lee, A. B.
2017-07-01
Photometric redshift estimation is an indispensable tool of precision cosmology. One problem that plagues the use of this tool in the era of large-scale sky surveys is that the bright galaxies that are selected for spectroscopic observation do not have properties that match those of (far more numerous) dimmer galaxies; thus, ill-designed empirical methods that produce accurate and precise redshift estimates for the former generally will not produce good estimates for the latter. In this paper, we provide a principled framework for generating conditional density estimates (I.e. photometric redshift PDFs) that takes into account selection bias and the covariate shift that this bias induces. We base our approach on the assumption that the probability that astronomers label a galaxy (I.e. determine its spectroscopic redshift) depends only on its measured (photometric and perhaps other) properties x and not on its true redshift. With this assumption, we can explicitly write down risk functions that allow us to both tune and compare methods for estimating importance weights (I.e. the ratio of densities of unlabelled and labelled galaxies for different values of x) and conditional densities. We also provide a method for combining multiple conditional density estimates for the same galaxy into a single estimate with better properties. We apply our risk functions to an analysis of ≈106 galaxies, mostly observed by Sloan Digital Sky Survey, and demonstrate through multiple diagnostic tests that our method achieves good conditional density estimates for the unlabelled galaxies.
Effective size of density-dependent two-sex populations: the effect of mating systems.
Myhre, A M; Engen, S; SAEther, B-E
2017-08-01
Density dependence in vital rates is a key feature affecting temporal fluctuations of natural populations. This has important implications for the rate of random genetic drift. Mating systems also greatly affect effective population sizes, but knowledge of how mating system and density regulation interact to affect random genetic drift is poor. Using theoretical models and simulations, we compare N e in short-lived, density-dependent animal populations with different mating systems. We study the impact of a fluctuating, density-dependent sex ratio and consider both a stable and a fluctuating environment. We find a negative relationship between annual N e /N and adult population size N due to density dependence, suggesting that loss of genetic variation is reduced at small densities. The magnitude of this decrease was affected by mating system and life history. A male-biased, density-dependent sex ratio reduces the rate of genetic drift compared to an equal, density-independent sex ratio, but a stochastic change towards male bias reduces the N e /N ratio. Environmental stochasticity amplifies temporal fluctuations in population size and is thus vital to consider in estimation of effective population sizes over longer time periods. Our results on the reduced loss of genetic variation at small densities, particularly in polygamous populations, indicate that density regulation may facilitate adaptive evolution at small population sizes. © 2017 European Society For Evolutionary Biology. Journal of Evolutionary Biology © 2017 European Society For Evolutionary Biology.
NASA Astrophysics Data System (ADS)
Mazidi, Hesam; Nehorai, Arye; Lew, Matthew D.
2018-02-01
In single-molecule (SM) super-resolution microscopy, the complexity of a biological structure, high molecular density, and a low signal-to-background ratio (SBR) may lead to imaging artifacts without a robust localization algorithm. Moreover, engineered point spread functions (PSFs) for 3D imaging pose difficulties due to their intricate features. We develop a Robust Statistical Estimation algorithm, called RoSE, that enables joint estimation of the 3D location and photon counts of SMs accurately and precisely using various PSFs under conditions of high molecular density and low SBR.
On the Measurement of Elemental Abundance Ratios in Inner Galaxy H II Regions
NASA Technical Reports Server (NTRS)
Simpson, Janet P.; Rubin, Robert H.; Colgan, Sean W. J.; Erickson, Edwin F.; Haas, Michael R.
2004-01-01
Although abundance gradients in the Milky Way Galaxy certainly exist, details remain uncertain, particularly in the inner Galaxy, where stars and H II regions in the Galactic plane are obscured optically. In this paper we revisit two previously studied, inner Galaxy H II regions: G333.6-0.2 and W43. We observed three new positions in G333.6-0.2 with the Kuiper Airborne Observatory and reobserved the central position with the Infrared Space Observatory's Long Wavelength Spectrometer in far-infrared lines of S++, N++, N+, and O++. We also added the N+ lines at 122 and 205 microns to the suite of lines measured in W43 by Simpson et al.. The measured electron densities range from approx. 40 to over 4000 per cu cm in a single HII region, indicating that abundance analyses must consider density variations, since the critical densities of the observed lines range from 40 to 9000 per cu cm. We propose a method to handle density variations and make new estimates of the S/H and N/H abundance ratios. We find that our sulfur abundance estimates for G333.6-0.2 and W43 agree with the S/H abundance ratios expected for the gradient previously reported by Simpson et al., with the S/H values revised to be smaller owing to changes in collisional excitation cross sections. The estimated N/H, S/H, and N/S ratios are the most reliable because of their small corrections for unseen ionization states (< or approx. 10%). The estimated N/S ratios for the two sources are smaller than what would be calculated from the N/H and S/H ratios in our previous paper. If all low excitation H II regions had similar changes to their N/S ratios as a result of adding measurements of N+ to previous measurements of N++, there would be no or only a very small gradient in N/S. This is interesting because nitrogen is considered to be a secondary element and sulfur is a primary element in galactic chemical evolution calculations. We compute models of the two H II regions to estimate corrections for the other unseen ionization states. We find, with large uncertainties, that oxygen does not, have a high abundance, with the result that the N/O ratio is as high (approx. 0.35) as previously reported. The reasons for the uncertainty in the ionization corrections for oxygen are both the non-uniqueness of the H II region models and the sensitivity of these models to different input atomic data and stellar atmosphere models. We discuss these predictions and conclude that only a few of the latest models adequately reproduce H II region observations, including the well-known, relatively-large observed Ne++/O++ ratios in low- and moderate-excitation H II regions.
Maximizing the value of pressure data in saline aquifer characterization
NASA Astrophysics Data System (ADS)
Yoon, Seonkyoo; Williams, John R.; Juanes, Ruben; Kang, Peter K.
2017-11-01
The injection and storage of freshwater in saline aquifers for the purpose of managed aquifer recharge is an important technology that can help ensure sustainable water resources. As a result of the density difference between the injected freshwater and ambient saline groundwater, the pressure field is coupled to the spatial salinity distribution, and therefore experiences transient changes. The effect of variable density can be quantified by the mixed convection ratio, which is a ratio between the strength of two convection processes: free convection due to the density differences and forced convection due to hydraulic gradients. We combine a density-dependent flow and transport simulator with an ensemble Kalman filter (EnKF) to analyze the effects of freshwater injection rates on the value-of-information of transient pressure data for saline aquifer characterization. The EnKF is applied to sequentially estimate heterogeneous aquifer permeability fields using real-time pressure data. The performance of the permeability estimation is analyzed in terms of the accuracy and the uncertainty of the estimated permeability fields as well as the predictability of breakthrough curve arrival times in a realistic push-pull setting. This study demonstrates that injecting fluids at a rate that balances the two characteristic convections can maximize the value of pressure data for saline aquifer characterization.
Do fossil plants signal palaeoatmospheric carbon dioxide concentration in the geological past?
McElwain, J. C.
1998-01-01
Fossil, subfossil, and herbarium leaves have been shown to provide a morphological signal of the atmospheric carbon dioxide environment in which they developed by means of their stomatal density and index. An inverse relationship between stomatal density/index and atmospheric carbon dioxide concentration has been documented for all the studies to date concerning fossil and subfossil material. Furthermore, this relationship has been demonstrated experimentally by growing plants under elevated and reducedcarbon dioxide concentrations. To date, the mechanism that controls the stomatal density response to atmospheric carbon dioxide concentration remains unknown. However, stomatal parameters of fossil plants have been successfully used as a proxy indicator of palaeo-carbon dioxide levels. This paper presents new estimates of palaeo-atmospheric carbon dioxide concentrations for the Middle Eocene (Lutetian), based on the stomatal ratios of fossil Lauraceae species from Bournemouth in England. Estimates of atmospheric carbon dioxide concentrations derived from stomatal data from plants of the Early Devonian, Late Carboniferous, Early Permian and Middle Jurassic ages are reviewed in the light of new data. Semi-quantitative palaeo-carbon dioxide estimates based on the stomatal ratio (a ratio of the stomatal index of a fossil plant to that of a selected nearest living equivalent) have in the past relied on the use of a Carboniferous standard. The application of a new standard based on the present-day carbon dioxide level is reported here for comparison. The resultant ranges of palaeo-carbon dioxide estimates made from standardized fossil stomatal ratio data are in good agreement with both carbon isotopic data from terrestrial and marine sources and long-term carbon cycle modelling estimates for all the time periods studied. These data indicate elevated atmospheric carbon dioxide concentrations during the Early Devonian, Middle Jurassic and Middle Eocene, and reduced concentrations during the Late Carboniferous and Early Permian. Such data are important in demonstrating the long-term responses of plants to changing carbon dioxide concentrations and in contributing to the database needed for general circulation model climatic analogues.
Duell, Lowell F. W.
1990-01-01
In Owens Valley, evapotranspiration (ET) is one of the largest components of outflow in the hydrologic budget and the least understood. ET estimates for December 1983 through October 1985 were made for seven representative locations selected on the basis of geohydrology and the characteristics of phreatophytic alkaline scrub and meadow communities. The Bowen-ratio, eddy-correlation, and Penman-combination methods were used to estimate ET. The results of the analyses appear satisfactory when compared with other estimates of ET. Results by the eddy-correlation method are for a direct and a residual latent-heat flux that is based on sensible-heat flux and energy-budget measurements. Penman-combination potential-ET estimates were determined to be unusable because they overestimated actual ET. Modification of the psychrometer constant of this method to account for differences between heat-diffusion resistance and vapor-diffusion resistance permitted actual ET to be estimated. The methods described in this report may be used for studies in similar semiarid and arid rangeland areas in the Western United States. Meteorological data for three field sites are included in the appendix of this report. Simple linear regression analysis indicates that ET estimates are correlated to air temperature, vapor-density deficit, and net radiation. Estimates of annual ET range from 301 millimeters at a low-density scrub site to 1,137 millimeters at a high-density meadow site. The monthly percentage of annual ET was determined to be similar for all sites studied.
Inventory-based estimates of forest biomass carbon stocks in China: A comparison of three methods
Zhaodi Guo; Jingyun Fang; Yude Pan; Richard Birdsey
2010-01-01
Several studies have reported different estimates for forest biomass carbon (C) stocks in China. The discrepancy among these estimates may be largely attributed to the methods used. In this study, we used three methods [mean biomass density method (MBM), mean ratio method (MRM), and continuous biomass expansion factor (BEF) method (abbreviated as CBM)] applied to...
The insight into the dark side - I. The pitfalls of the dark halo parameters estimation
NASA Astrophysics Data System (ADS)
Saburova, Anna S.; Kasparova, Anastasia V.; Katkov, Ivan Yu.
2016-12-01
We examined the reliability of estimates of pseudo-isothermal, Burkert and NFW dark halo parameters for the methods based on the mass-modelling of the rotation curves. To do it, we constructed the χ2 maps for the grid of the dark matter halo parameters for a sample of 14 disc galaxies with high-quality rotation curves from THINGS. We considered two variants of models in which: (a) the mass-to-light ratios of disc and bulge were taken as free parameters, (b) the mass-to-light ratios were fixed in a narrow range according to the models of stellar populations. To reproduce the possible observational features of the real galaxies, we made tests showing that the parameters of the three halo types change critically in the cases of a lack of kinematic data in the central or peripheral areas and for different spatial resolutions. We showed that due to the degeneracy between the central densities and the radial scales of the dark haloes there are considerable uncertainties of their concentrations estimates. Due to this reason, it is also impossible to draw any firm conclusion about universality of the dark halo column density based on mass-modelling of even a high-quality rotation curve. The problem is not solved by fixing the density of baryonic matter. In contrast, the estimates of dark halo mass within optical radius are much more reliable. We demonstrated that one can evaluate successfully the halo mass using the pure best-fitting method without any restrictions on the mass-to-light ratios.
Mercury's lithospheric thickness and crustal density, as inferred from MESSENGER observations
NASA Astrophysics Data System (ADS)
James, P. B.; Mazarico, E.; Genova, A.; Smith, D. E.; Neumann, G. A.; Solomon, S. C.
2015-12-01
The gravity field and topography of Mercury measured by the MESSENGER spacecraft have provided insights into the thickness of the planet's elastic lithosphere, Te. We localized the HgM006 free-air gravity anomaly and gtmes_125v03 shape datasets to search for theoretical elastic thickness solutions that best fit a variety of localized coherence spectra between Bouguer gravity anomaly and topography. We adopted a crustal density of ρcrust =2700 kg m-3 for the Bouguer gravity correction, but density uncertainty did not markedly affect the elastic thickness estimates. A best-fit solution in the northern smooth plains (NSP) gives an elastic thickness of Te =30-60 km at the time of formation of topography for a range of ratios of top to bottom loading from 1 to 5. For a mechanical lithosphere with a thickness of ~2Te and a temperature of 1600 °C at the base, this solution is consistent with a geothermal gradient of 9-18 K km-1. A similar coherence analysis exterior to the NSP produces an elastic thickness estimate of Te =20-50 km, albeit with a poorer fit. Coherence in the northern hemisphere as a whole does not approach zero at any wavelength, because of the presence of variations in crustal thickness that are unassociated with elastic loading. The ratios and correlations of gravity and topography at intermediate wavelengths (harmonic degree l between 30 and 50) also constrain regional crustal densities. We localized gravity and topography with a moving Slepian taper and calculated regionally averaged crustal densities with the approximation ρcrust=Zl/(2πG), where Zl is the localized admittance and G is the gravitational constant. The only regional density estimates greater than 2000 kg m-3 for l=30 correspond to the NSP. Density estimates outside of the NSP were unreasonably low, even for highly porous crust. We attribute these low densities to the confounding effects of crustal thickness variations and Kaula filtering of the gravity dataset at the highest harmonic degrees, both of which tend to introduce a downward bias to crustal density estimation. An alternative analysis—which corrected for crustal thickness variability and was restricted to regions with gravity/topography coherence greater than 0.6—yielded an aggregate crustal density of ρcrust=2602 ± 470 kg m-3 for Mercury's high northern latitudes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kelly, Brandon C.; Hernquist, Lars; Siemiginowska, Aneta
2010-08-20
We present an estimate of the black hole mass function of broad-line quasars (BLQSOs) that self-consistently corrects for incompleteness and the statistical uncertainty in the mass estimates, based on a sample of 9886 quasars at 1 < z < 4.5 drawn from the Sloan Digital Sky Survey (SDSS). We find evidence for 'cosmic downsizing' of black holes in BLQSOs, where the peak in their number density shifts to higher redshift with increasing black hole mass. The cosmic mass density for black holes seen as BLQSOs peaks at z {approx} 2. We estimate the completeness of the SDSS as a functionmore » of the black hole mass and Eddington ratio, and find that at z > 1 it is highly incomplete at M {sub BH} {approx}< 10{sup 9} M {sub sun} and L/L{sub Edd} {approx}< 0.5. We estimate a lower limit on the lifetime of a single BLQSO phase to be t {sub BL} > 150 {+-} 15 Myr for black holes at z = 1 with a mass of M {sub BH} = 10{sup 9} M{sub sun}, and we constrain the maximum mass of a black hole in a BLQSO to be {approx}3 x 10{sup 10} M{sub sun}. Our estimated distribution of BLQSO Eddington ratios peaks at L/L {sub Edd} {approx} 0.05 and has a dispersion of {approx}0.4 dex, implying that most BLQSOs are not radiating at or near the Eddington limit; however, the location of the peak is subject to considerable uncertainty. The steep increase in number density of BLQSOs toward lower Eddington ratios is expected if the BLQSO accretion rate monotonically decays with time. Furthermore, our estimated lifetime and Eddington ratio distributions imply that the majority of the most massive black holes spend a significant amount of time growing in an earlier obscured phase, a conclusion which is independent of the unknown obscured fraction. These results are consistent with models for self-regulated black hole growth, at least for massive systems at z > 1, where the BLQSO phase occurs at the end of a fueling event when black hole feedback unbinds the accreting gas, halting the accretion flow.« less
Digital photography for urban street tree crown conditions
Neil A. Clark; Sang-Mook Lee; William A. Bechtold; Gregory A. Reams
2006-01-01
Crown variables such as height, diameter, live crown ratio, dieback, transparency, and density are all collected as part of the overall crown assessment (USDA 2004). Transparency and density are related to the amount of foliage and thus the photosynthetic potential of the tree. These measurements are both currently based on visual estimates and have been shown to be...
Ku, Bon Ki; Evans, Douglas E.
2015-01-01
For nanoparticles with nonspherical morphologies, e.g., open agglomerates or fibrous particles, it is expected that the actual density of agglomerates may be significantly different from the bulk material density. It is further expected that using the material density may upset the relationship between surface area and mass when a method for estimating aerosol surface area from number and mass concentrations (referred to as “Maynard’s estimation method”) is used. Therefore, it is necessary to quantitatively investigate how much the Maynard’s estimation method depends on particle morphology and density. In this study, aerosol surface area estimated from number and mass concentration measurements was evaluated and compared with values from two reference methods: a method proposed by Lall and Friedlander for agglomerates and a mobility based method for compact nonspherical particles using well-defined polydisperse aerosols with known particle densities. Polydisperse silver aerosol particles were generated by an aerosol generation facility. Generated aerosols had a range of morphologies, count median diameters (CMD) between 25 and 50 nm, and geometric standard deviations (GSD) between 1.5 and 1.8. The surface area estimates from number and mass concentration measurements correlated well with the two reference values when gravimetric mass was used. The aerosol surface area estimates from the Maynard’s estimation method were comparable to the reference method for all particle morphologies within the surface area ratios of 3.31 and 0.19 for assumed GSDs 1.5 and 1.8, respectively, when the bulk material density of silver was used. The difference between the Maynard’s estimation method and surface area measured by the reference method for fractal-like agglomerates decreased from 79% to 23% when the measured effective particle density was used, while the difference for nearly spherical particles decreased from 30% to 24%. The results indicate that the use of particle density of agglomerates improves the accuracy of the Maynard’s estimation method and that an effective density should be taken into account, when known, when estimating aerosol surface area of nonspherical aerosol such as open agglomerates and fibrous particles. PMID:26526560
Ku, Bon Ki; Evans, Douglas E
2012-04-01
For nanoparticles with nonspherical morphologies, e.g., open agglomerates or fibrous particles, it is expected that the actual density of agglomerates may be significantly different from the bulk material density. It is further expected that using the material density may upset the relationship between surface area and mass when a method for estimating aerosol surface area from number and mass concentrations (referred to as "Maynard's estimation method") is used. Therefore, it is necessary to quantitatively investigate how much the Maynard's estimation method depends on particle morphology and density. In this study, aerosol surface area estimated from number and mass concentration measurements was evaluated and compared with values from two reference methods: a method proposed by Lall and Friedlander for agglomerates and a mobility based method for compact nonspherical particles using well-defined polydisperse aerosols with known particle densities. Polydisperse silver aerosol particles were generated by an aerosol generation facility. Generated aerosols had a range of morphologies, count median diameters (CMD) between 25 and 50 nm, and geometric standard deviations (GSD) between 1.5 and 1.8. The surface area estimates from number and mass concentration measurements correlated well with the two reference values when gravimetric mass was used. The aerosol surface area estimates from the Maynard's estimation method were comparable to the reference method for all particle morphologies within the surface area ratios of 3.31 and 0.19 for assumed GSDs 1.5 and 1.8, respectively, when the bulk material density of silver was used. The difference between the Maynard's estimation method and surface area measured by the reference method for fractal-like agglomerates decreased from 79% to 23% when the measured effective particle density was used, while the difference for nearly spherical particles decreased from 30% to 24%. The results indicate that the use of particle density of agglomerates improves the accuracy of the Maynard's estimation method and that an effective density should be taken into account, when known, when estimating aerosol surface area of nonspherical aerosol such as open agglomerates and fibrous particles.
2009-05-01
estimate to a geometric mean in the process (Finney 1941, Smith 1993). The ratio estimator was used to correct for this back-transformation bias...2007) Killer whales preying on a blue whale calf on the Costa Rica Dome: genetics, morphometrics , vocalizations and composition of the group. Journal
Using Ice and Dust Lines to Constrain the Surface Densities of Protoplanetary Disks
NASA Astrophysics Data System (ADS)
Powell, Diana; Murray-Clay, Ruth; Schlichting, Hilke
2018-04-01
The surface density of protoplanetary disks is a fundamental parameter that still remains largely unconstrained due to uncertainties in the dust-to-gas ratio and CO abundance. In this talk I will present a novel method for determining the surface density of protoplanetary disks through consideration of disk “dust lines,” which indicate the observed disk radial scale at different observational wavelengths. I will provide an initial proof of concept of our model through an application to the disk TW Hya where we are able to estimate the disk dust-to-gas ratio, CO abundance, and accretion rate in addition to the total disk surface density. We find that our derived surface density profile and dust-to-gas ratio are consistent with the lower limits found through measurements of HD gas. We further apply our model to a large parameter space of theoretical disks and find three observational diagnostics that may be used to test its validity. Using this method we derive disks that may be much more massive than previously thought, often approaching the limit of gravitational stability.
Remote estimation of crown size and tree density in snowy areas
NASA Astrophysics Data System (ADS)
Kishi, R.; Ito, A.; Kamada, K.; Fukita, T.; Lahrita, L.; Kawase, Y.; Murahashi, K.; Kawamata, H.; Naruse, N.; Takahashi, Y.
2017-12-01
Precise estimation of tree density in the forest leads us to understand the amount of carbon dioxide fixed by plants. Aerial photographs have been used to measure the number of trees. Campaign using aircraft, however, is expensive ( $50,000/1 campaign flight) and the research area is limited in drone. In addition, previous studies estimating the density of trees from aerial photographs have been performed in the summer, so there was a gap of 15% in the estimation due to the overlapping of the leaves. Here, we have proposed a method to accurately estimate the number of forest trees from the satellite images of snow-covered deciduous forest area, using the ratio of branches to snow. The advantages of our method are as follows; 1) snow area could be excluded easily due to the high reflectance, 2) tree branches are small overlapping compared to leaves. Although our method can use only in the snowfall region, the area covered with snow in the world becomes more than 12,800,000 km2. Our proposition should play an important role in discussing global warming. As a test area, we have chosen the forest near Mt. Amano in Iwate prefecture in Japan. First, we made a new index of (Band1-Band5)/(Band1+Band5), which will be suitable to distinguish between the snow and the tree trunk using the corresponding spectral reflection data. Next, the index values of changing the ratio in 1% increments were listed. From the satellite image analysis at 4 points, the ratio of snow to tree trunk showed the following values, I:61%, II:65%, III:66% and IV:65%. To confirm the estimation, we used the aerial photograph from Google earth; the rate was I:42.05%, II:48.89%, III:50.64%, IV:49.05%, respectively. There is a correlation between the numerical values of both, but there are differences. We will discuss in detail at this point, focusing on the effect of shadows.
Doss, Hani; Tan, Aixin
2017-01-01
In the classical biased sampling problem, we have k densities π1(·), …, πk(·), each known up to a normalizing constant, i.e. for l = 1, …, k, πl(·) = νl(·)/ml, where νl(·) is a known function and ml is an unknown constant. For each l, we have an iid sample from πl,·and the problem is to estimate the ratios ml/ms for all l and all s. This problem arises frequently in several situations in both frequentist and Bayesian inference. An estimate of the ratios was developed and studied by Vardi and his co-workers over two decades ago, and there has been much subsequent work on this problem from many different perspectives. In spite of this, there are no rigorous results in the literature on how to estimate the standard error of the estimate. We present a class of estimates of the ratios of normalizing constants that are appropriate for the case where the samples from the πl’s are not necessarily iid sequences, but are Markov chains. We also develop an approach based on regenerative simulation for obtaining standard errors for the estimates of ratios of normalizing constants. These standard error estimates are valid for both the iid case and the Markov chain case. PMID:28706463
Doss, Hani; Tan, Aixin
2014-09-01
In the classical biased sampling problem, we have k densities π 1 (·), …, π k (·), each known up to a normalizing constant, i.e. for l = 1, …, k , π l (·) = ν l (·)/ m l , where ν l (·) is a known function and m l is an unknown constant. For each l , we have an iid sample from π l , · and the problem is to estimate the ratios m l /m s for all l and all s . This problem arises frequently in several situations in both frequentist and Bayesian inference. An estimate of the ratios was developed and studied by Vardi and his co-workers over two decades ago, and there has been much subsequent work on this problem from many different perspectives. In spite of this, there are no rigorous results in the literature on how to estimate the standard error of the estimate. We present a class of estimates of the ratios of normalizing constants that are appropriate for the case where the samples from the π l 's are not necessarily iid sequences, but are Markov chains. We also develop an approach based on regenerative simulation for obtaining standard errors for the estimates of ratios of normalizing constants. These standard error estimates are valid for both the iid case and the Markov chain case.
Atmospheric densities derived from CHAMP/STAR accelerometer observations
NASA Astrophysics Data System (ADS)
Bruinsma, S.; Tamagnan, D.; Biancale, R.
2004-03-01
The satellite CHAMP carries the accelerometer STAR in its payload and thanks to the GPS and SLR tracking systems accurate orbit positions can be computed. Total atmospheric density values can be retrieved from the STAR measurements, with an absolute uncertainty of 10-15%, under the condition that an accurate radiative force model, satellite macro-model, and STAR instrumental calibration parameters are applied, and that the upper-atmosphere winds are less than 150 m/ s. The STAR calibration parameters (i.e. a bias and a scale factor) of the tangential acceleration were accurately determined using an iterative method, which required the estimation of the gravity field coefficients in several iterations, the first result of which was the EIGEN-1S (Geophys. Res. Lett. 29 (14) (2002) 10.1029) gravity field solution. The procedure to derive atmospheric density values is as follows: (1) a reduced-dynamic CHAMP orbit is computed, the positions of which are used as pseudo-observations, for reference purposes; (2) a dynamic CHAMP orbit is fitted to the pseudo-observations using calibrated STAR measurements, which are saved in a data file containing all necessary information to derive density values; (3) the data file is used to compute density values at each orbit integration step, for which accurate terrestrial coordinates are available. This procedure was applied to 415 days of data over a total period of 21 months, yielding 1.2 million useful observations. The model predictions of DTM-2000 (EGS XXV General Assembly, Nice, France), DTM-94 (J. Geod. 72 (1998) 161) and MSIS-86 (J. Geophys. Res. 92 (1987) 4649) were evaluated by analysing the density ratios (i.e. "observed" to "computed" ratio) globally, and as functions of solar activity, geographical position and season. The global mean of the density ratios showed that the models underestimate density by 10-20%, with an rms of 16-20%. The binning as a function of local time revealed that the diurnal and semi-diurnal components are too strong in the DTM models, while all three models model the latitudinal gradient inaccurately. Using DTM-2000 as a priori, certain model coefficients were re-estimated using the STAR-derived densities, yielding the DTM-STAR test model. The mean and rms of the global density ratios of this preliminary model are 1.00 and 15%, respectively, while the tidal and latitudinal modelling errors become small. This test model is only representative of high solar activity conditions, while the seasonal effect is probably not estimated accurately due to correlation with the solar activity effect. At least one more year of data is required to separate the seasonal effect from the solar activity effect, and data taken under low solar activity conditions must also be assimilated to construct a model representative under all circumstances.
Evolution of Kelvin-Helmholtz instability at Venus in the presence of the parallel magnetic field
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lu, H. Y.; Key Laboratory of Planetary Sciences, Chinese Academy of Sciences, Nanjing 210008; Cao, J. B.
2015-06-15
Two-dimensional MHD simulations were performed to study the evolution of the Kelvin-Helmholtz (KH) instability at the Venusian ionopause in response to the strong flow shear in presence of the in-plane magnetic field parallel to the flow direction. The physical behavior of the KH instability as well as the triggering and occurrence conditions for highly rolled-up vortices are characterized through several physical parameters, including Alfvén Mach number on the upper side of the layer, the density ratio, and the ratio of parallel magnetic fields between two sides of the layer. Using these parameters, the simulations show that both the high densitymore » ratio and the parallel magnetic field component across the boundary layer play a role of stabilizing the instability. In the high density ratio case, the amount of total magnetic energy in the final quasi-steady status is much more than that in the initial status, which is clearly different from the case with low density ratio. We particularly investigate the nonlinear development of the case that has a high density ratio and uniform magnetic field. Before the instability saturation, a single magnetic island is formed and evolves into two quasi-steady islands in the non-linear phase. A quasi-steady pattern eventually forms and is embedded within a uniform magnetic field and a broadened boundary layer. The estimation of loss rates of ions from Venus indicates that the stabilizing effect of the parallel magnetic field component on the KH instability becomes strong in the case of high density ratio.« less
Maximum current density and beam brightness achievable by laser-driven electron sources
NASA Astrophysics Data System (ADS)
Filippetto, D.; Musumeci, P.; Zolotorev, M.; Stupakov, G.
2014-02-01
This paper discusses the extension to different electron beam aspect ratio of the Child-Langmuir law for the maximum achievable current density in electron guns. Using a simple model, we derive quantitative formulas in good agreement with simulation codes. The new scaling laws for the peak current density of temporally long and transversely narrow initial beam distributions can be used to estimate the maximum beam brightness and suggest new paths for injector optimization.
Lee, Hyunyeol; Jeong, Woo Chul; Kim, Hyung Joong; Woo, Eung Je; Park, Jaeseok
2016-05-01
To develop a novel, current-controlled alternating steady-state free precession (SSFP)-based conductivity imaging method and corresponding MR signal models to estimate current-induced magnetic flux density (Bz ) and conductivity distribution. In the proposed method, an SSFP pulse sequence, which is in sync with alternating current pulses, produces dual oscillating steady states while yielding nonlinear relation between signal phase and Bz . A ratiometric signal model between the states was analytically derived using the Bloch equation, wherein Bz was estimated by solving a nonlinear inverse problem for conductivity estimation. A theoretical analysis on the signal-to-noise ratio of Bz was given. Numerical and experimental studies were performed using SSFP-FID and SSFP-ECHO with current pulses positioned either before or after signal encoding to investigate the feasibility of the proposed method in conductivity estimation. Given all SSFP variants herein, SSFP-FID with alternating current pulses applied before signal encoding exhibits the highest Bz signal-to-noise ratio and conductivity contrast. Additionally, compared with conventional conductivity imaging, the proposed method benefits from rapid SSFP acquisition without apparent loss of conductivity contrast. We successfully demonstrated the feasibility of the proposed method in estimating current-induced Bz and conductivity distribution. It can be a promising, rapid imaging strategy for quantitative conductivity imaging. © 2015 Wiley Periodicals, Inc.
Mass-loss rates, ionization fractions, shock velocities, and magnetic fields of stellar jets
NASA Technical Reports Server (NTRS)
Hartigan, Patrick; Morse, Jon A.; Raymond, John
1994-01-01
In this paper we calculate emission-line ratios from a series of planar radiative shock models that cover a wide range of shock velocities, preshock densities, and magnetic fields. The models cover the initial conditions relevant to stellar jets, and we show how to estimate the ionization fractions and shock velocities in jets directly from observations of the strong emission lines in these flows. The ionization fractions in the HH 34, HH 47, and HH 111 jets are approximately 2%, considerably smaller than previous estimates, and the shock velocities are approximately 30 km/s. For each jet the ionization fractions were found from five different line ratios, and the estimates agree to within a factor of approximately 2. The scatter in the estimates of the shock velocities is also small (+/- 4 km/s). The low ionization fractions of stellar jets imply that the observed electron densities are much lower than the total densities, so the mass-loss rates in these flows are correspondingly higher (approximately greater than 2 x 10(exp -7) solar mass/yr). The mass-loss rates in jets are a significant fraction (1%-10%) of the disk accretion rates onto young stellar objects that drive the outflows. The momentum and energy supplied by the visible portion of a typical stellar jet are sufficient to drive a weak molecular outflow. Magnetic fields in stellar jets are difficult to measure because the line ratios from a radiative shock with a magnetic field resemble those of a lower velocity shock without a field. The observed line fluxes can in principle indicate the strength of the field if the geometry of the shocks in the jet is well known.
Investigating the ability of solar coronal shocks to accelerate solar energetic particles
NASA Astrophysics Data System (ADS)
Kwon, R. Y.; Vourlidas, A.
2017-12-01
We estimate the density compression ratio of shocks associated with coronal mass ejections (CMEs) and investigate whether they can accelerate solar energetic particles (SEPs). Using remote-sensing, multi-viewpoint coronagraphic observations, we have developed a method to extract the sheath electron density profiles along the shock normal and estimate the density compression ratio. Our method uses the ellipsoid model to derive the 3D geometry of the sheaths, including the line-of-sight (LOS) depth. The sheath density profiles along the shock normal are modeled with double-Gaussian functions, and the modeled densities are integrated along the LOSs to be compared with the observed brightness in STEREO COR2-Ahead. The upstream densities are derived from either the pB-inversion of the brightness in a pre-event image or an empirical model. We analyze two fast halo CMEs observed on 2011 March 7 and 2014 February 25 that are associated with SEP events detected by multiple spacecraft located over a broad range of heliolongitudes. We find that the density compression peaks around the CME nose and decreases at larger position angles. Interestingly, we find that the supercritical region extends over a large area of the shock and lasts longer (several tens of minutes) than past reports. This finding implies that CME shocks may be capable of accelerating energetic particles in the corona over extended spatial and temporal scales and may, therefore, be responsible for the wide longitudinal distribution of these particles in the inner heliosphere.
NASA Astrophysics Data System (ADS)
Hu, Y.; Vaughan, M.; McClain, C.; Behrenfeld, M.; Maring, H.; Anderson, D.; Sun-Mack, S.; Flittner, D.; Huang, J.; Wielicki, B.; Minnis, P.; Weimer, C.; Trepte, C.; Kuehn, R.
2007-03-01
This study presents an empirical relation that links layer integrated depolarization ratios, the extinction coefficients, and effective radii of water clouds, based on Monte Carlo simulations of CALIPSO lidar observations. Combined with cloud effective radius retrieved from MODIS, cloud liquid water content and effective number density of water clouds are estimated from CALIPSO lidar depolarization measurements in this study. Global statistics of the cloud liquid water content and effective number density are presented.
Geographic distribution of physicians in Portugal.
Isabel, Correia; Paula, Veiga
2010-08-01
The main goals of this paper are to (1) analyse the inequality in geographic distribution of physicians and its evolution, (2) estimate the determinants of physician density, and (3) assess the importance of competitive and agglomerative forces in location decisions. The analysis of the geographic distribution of physicians is based on the ratio of general practitioners (GPs) and specialists to 1,000 inhabitants. The inequality is measured using Gini indices, coefficients of variation, and physician-to-population ratios. The econometric models were estimated by ordinary least squares. The data used refer to 1996 and 2007. The impact of the growing number of physicians, and therefore potential increased competition, on geographic distribution during the period studied was small. Nonetheless, there is evidence of competitive forces acting on the dynamics of doctor localisation. Geographic disparities in physician density are still high, and appear to be due mainly to geographic income inequality.
Rangeland biomass estimation demonstration. [Texas Experimenta Ranch
NASA Technical Reports Server (NTRS)
Newton, R. W. (Principal Investigator); Boyd, W. E.; Clark, B. V.
1982-01-01
Because of their sensitivity to chlorophyll density, green leaf density, and leaf water density, two hand-held radiometers which have sensor bands coinciding with thematic mapper bands 3, 4, and 5 were used to calibrate green biomass to LANDSAT spectral ratios as a step towards using portable radiometers to speed up ground data acquisition. Two field reflectance panels monitored incoming radiation concurrently with sampling. Software routines were developed and used to extract data from uncorrected tapes of MSS data provided in NASA LANDSAT universal format. A LANDSAT biomass calibration curve estimated the range biomass over a four scene area and displayed this information spatially as a product in a format of use to ranchers. The regional biomass contour map is discussed.
Abbasi, Fahim; Reaven, Gerald M
2011-12-01
The objective was to compare relationships between insulin-mediated glucose uptake and surrogate estimates of insulin action, particularly those using fasting triglyceride (TG) and high-density lipoprotein cholesterol (HDL-C) concentrations. Insulin-mediated glucose uptake was quantified by determining the steady-state plasma glucose (SSPG) concentration during the insulin suppression test in 455 nondiabetic subjects. Fasting TG, HDL-C, glucose, and insulin concentrations were measured; and calculations were made of the following: (1) plasma concentration ratio of TG/HDL-C, (2) TG × fasting glucose (TyG index), (3) homeostasis model assessment of insulin resistance, and (4) insulin area under the curve (insulin-AUC) during a glucose tolerance test. Insulin-AUC correlated most closely with SSPG (r ∼ 0.75, P < .001), with lesser but comparable correlations between SSPG and TG/HDL-C ratio, TyG index, homeostasis model assessment of insulin resistance, and fasting TG and insulin (r ∼ 0.60, P < .001). Calculations of TG/HDL-C ratio and TyG index correlated with SSPG concentration to a similar degree, and the relationships were comparable to estimates using fasting insulin. The strongest relationship was between SSPG and insulin-AUC. Copyright © 2011 Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Erpenbeck, J.J.
1993-07-01
The equation of state and the transport coefficients of shear viscosity, thermal conductivity, thermal diffusion, and mutal diffusion are estimated for a binary, equimolar mixture of hard spheres having a diameter ratio of 0.4 and a mass ratio of 0.03 at volumes in the range 1.7[ital V][sub 0] to 3[ital V][sub 0] ([ital V][sub 0]=1/2 [radical]2 N[ital tsum][sub [ital a]x[ital a
NASA Astrophysics Data System (ADS)
Yoon, S.; Williams, J. R.; Juanes, R.; Kang, P. K.
2017-12-01
Managed aquifer recharge (MAR) is becoming an important solution for ensuring sustainable water resources and mitigating saline water intrusion in coastal aquifers. Accurate estimates of hydrogeological parameters in subsurface flow and solute transport models are critical for making predictions and managing aquifer systems. In the presence of a density difference between the injected freshwater and ambient saline groundwater, the pressure field is coupled to the spatial distribution of salinity distribution, and therefore experiences transient changes. The variable-density effects can be quantified by a mixed convection ratio between two characteristic types of convection: free convection due to density contrast, and forced convection due to a hydraulic gradient. We analyze the variable-density effects on the value-of-information of pressure and concentration data for saline aquifer characterization. An ensemble Kalman filter is used to estimate permeability fields by assimilating the data, and the performance of the estimation is analyzed in terms of the accuracy and the uncertainty of estimated permeability fields and the predictability of arrival times of breakthrough curves in a realistic push-pull setting. This study demonstrates that: 1. Injecting fluids with the velocity that balances the two characteristic convections maximizes the value of data for saline aquifer characterization; 2. The variable-density effects on the value of data for the inverse estimation decrease as the permeability heterogeneity increases; 3. The advantage of joint inversion of pressure and concentration data decreases as the coupling effects between flow and transport increase.
Basáñez, María-Gloria; Razali, Karina; Renz, Alfons; Kelly, David
2007-03-01
The proportion of vector blood meals taken on humans (the human blood index, h) appears as a squared term in classical expressions of the basic reproduction ratio (R(0)) for vector-borne infections. Consequently, R(0) varies non-linearly with h. Estimates of h, however, constitute mere snapshots of a parameter that is predicted, from evolutionary theory, to vary with vector and host abundance. We test this prediction using a population dynamics model of river blindness assuming that, before initiation of vector control or chemotherapy, recorded measures of vector density and human infection accurately represent endemic equilibrium. We obtain values of h that satisfy the condition that the effective reproduction ratio (R(e)) must equal 1 at equilibrium. Values of h thus obtained decrease with vector density, decrease with the vector:human ratio and make R(0) respond non-linearly rather than increase linearly with vector density. We conclude that if vectors are less able to obtain human blood meals as their density increases, antivectorial measures may not lead to proportional reductions in R(0) until very low vector levels are achieved. Density dependence in the contact rate of infectious diseases transmitted by insects may be an important non-linear process with implications for their epidemiology and control.
Hang, Gui-Yun; Yu, Wen-Li; Wang, Tao; Wang, Jin-Tao; Li, Zhen
2017-11-30
In this article, different CL-20/FOX-7 cocrystal models were established by the substitution method based on the molar ratios of CL-20:FOX-7. The structures and comprehensive properties, including mechanical properties, stabilities, and energy density, of different cocrystal models were obtained and compared with each other. The main aim was to estimate the influence of molar ratios on properties of cocrystal explosives. The molecular dynamics (MD) simulation results show that the cocrystal model with molar ratio 1:1 has the best mechanical properties and highest binding energy, so the CL-20/FOX-7 cocrystal model is more likely to form in 1:1 M ratio. The detonation parameters show that the cocrystal explosive exhibited preferable energy density and excellent detonation performance. In a word, the 1:1 cocrystal model has the best comprehensive properties, is very promising, and worth more theoretical investigations and experimental tests. This paper gives some original theories to better understand the cocrystal mechanism and provides some helpful guidance and useful instructions to help design CL-20 cocrystal explosives.
Efremov, V V; Parenskiĭ, V A
2004-04-01
Using Parensky's approach for estimating the number of breeding pairs, we determined effective subpopulation size Ne in early-run sockeye salmon Oncorhynchus nerka from Azabach'e Lake (Kamchatka) in 1977 through 1981. On average (over years and populations), biased sex ratio decreased Ne by 7% as compared to the number of fish on the spawning sites (Ni). High density reduced the Ne/Ni ratio by 62-66% because some fish were excluded from spawning. Dominance polygyny as compared to monogamy and random union of gametes could reduce Ne by about 17%.
Tracing the Magnetic Field of IRDC G028.23-00.19 Using NIR Polarimetry
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hoq, Sadia; Clemens, D. P.; Cashman, Lauren R.
2017-02-20
The importance of the magnetic ( B ) field in the formation of infrared dark clouds (IRDCs) and massive stars is an ongoing topic of investigation. We studied the plane-of-sky B field for one IRDC, G028.23-00.19, to understand the interaction between the field and the cloud. We used near-IR background starlight polarimetry to probe the B field and performed several observational tests to assess the field importance. The polarimetric data, taken with the Mimir instrument, consisted of H -band and K -band observations, totaling 17,160 stellar measurements. We traced the plane-of-sky B -field morphology with respect to the sky-projected cloudmore » elongation. We also found the relationship between the estimated B -field strength and gas volume density, and we computed estimates of the normalized mass-to-magnetic flux ratio. The B -field orientation with respect to the cloud did not show a preferred alignment, but it did exhibit a large-scale pattern. The plane-of-sky B -field strengths ranged from 10 to 165 μ G, and the B -field strength dependence on density followed a power law with an index consistent with 2/3. The mass-to-magnetic flux ratio also increased as a function of density. The relative orientations and relationship between the B field and density imply that the B field was not dynamically important in the formation of the IRDC. The increase in mass-to-flux ratio as a function of density, though, indicates a dynamically important B field. Therefore, it is unclear whether the B field influenced the formation of G28.23. However, it is likely that the presence of the IRDC changed the local B -field morphology.« less
1996-09-01
Generalized Likelihood Ratio (GLR) and voting techniques. The third class consisted of multiple hypothesis filter detectors, specifically the MMAE. The...vector version, versus a tensor if we use the matrix version of the power spectral density estimate. Using this notation, we will derive an...as MATLAB , have an intrinsic sample covariance computation available, which makes this method quite easy to implement. In practice, the mean for the
Symmetry Energy and Its Components in Finite Nuclei
NASA Astrophysics Data System (ADS)
Antonov, A. N.; Gaidarov, M. K.; Kadrev, D. N.; Sarriguren, P.; Moya de Guerra, E.
2018-05-01
We derive the volume and surface components of the nuclear symmetry energy (NSE) and their ratio within the coherent density fluctuation model. The estimations use the results of the model for the NSE in finite nuclei based on the Brueckner and Skyrme energy-density functionals for nuclear matter. The obtained values of the volume and surface contributions to the NSE and their ratio for the Ni, Sn, and Pb isotopic chains are compared with estimations of other approaches which have used available experimental data on binding energies, neutron-skin thicknesses, and excitation energies to isobaric analog states (IAS). Apart from the density dependence investigated in our previous works, we study also the temperature dependence of the symmetry energy in finite nuclei in the framework of the local density approximation combining it with the self-consistent Skyrme-HFB method using the cylindrical transformed deformed harmonic-oscillator basis. The results for the thermal evolution of the NSE in the interval T = 0–4 MeV show that its values decrease with temperature. The investigations of the T-dependence of the neutron and proton root-mean-square radii and the corresponding neutron skin thickness point out that the effect of temperature leads mainly to a substantial increase of the neutron radii and skins, especially in nuclei which are more rich of neutrons.
An Enhanced Non-Coherent Pre-Filter Design for Tracking Error Estimation in GNSS Receivers.
Luo, Zhibin; Ding, Jicheng; Zhao, Lin; Wu, Mouyan
2017-11-18
Tracking error estimation is of great importance in global navigation satellite system (GNSS) receivers. Any inaccurate estimation for tracking error will decrease the signal tracking ability of signal tracking loops and the accuracies of position fixing, velocity determination, and timing. Tracking error estimation can be done by traditional discriminator, or Kalman filter-based pre-filter. The pre-filter can be divided into two categories: coherent and non-coherent. This paper focuses on the performance improvements of non-coherent pre-filter. Firstly, the signal characteristics of coherent and non-coherent integration-which are the basis of tracking error estimation-are analyzed in detail. After that, the probability distribution of estimation noise of four-quadrant arctangent (ATAN2) discriminator is derived according to the mathematical model of coherent integration. Secondly, the statistical property of observation noise of non-coherent pre-filter is studied through Monte Carlo simulation to set the observation noise variance matrix correctly. Thirdly, a simple fault detection and exclusion (FDE) structure is introduced to the non-coherent pre-filter design, and thus its effective working range for carrier phase error estimation extends from (-0.25 cycle, 0.25 cycle) to (-0.5 cycle, 0.5 cycle). Finally, the estimation accuracies of discriminator, coherent pre-filter, and the enhanced non-coherent pre-filter are evaluated comprehensively through the carefully designed experiment scenario. The pre-filter outperforms traditional discriminator in estimation accuracy. In a highly dynamic scenario, the enhanced non-coherent pre-filter provides accuracy improvements of 41.6%, 46.4%, and 50.36% for carrier phase error, carrier frequency error, and code phase error estimation, respectively, when compared with coherent pre-filter. The enhanced non-coherent pre-filter outperforms the coherent pre-filter in code phase error estimation when carrier-to-noise density ratio is less than 28.8 dB-Hz, in carrier frequency error estimation when carrier-to-noise density ratio is less than 20 dB-Hz, and in carrier phase error estimation when carrier-to-noise density belongs to (15, 23) dB-Hz ∪ (26, 50) dB-Hz.
C-5M Fuel Efficiency Through MFOQA Data Analysis
2015-03-26
deterioration of commercial high-bypass ratio turbofan engines. ( No. 801118).SAE Technical Paper. Mirtich, J. M. (2011). Cost index flying. (Unpublished...D. L. (2010). Constrained kalman filtering via density function truncation for turbofan engine health estimation. International Journal of Systems
Using Ice and Dust Lines to Constrain the Surface Densities of Protoplanetary Disks
NASA Astrophysics Data System (ADS)
Powell, Diana; Murray-Clay, Ruth; Schlichting, Hilke E.
2017-05-01
We present a novel method for determining the surface density of protoplanetary disks through consideration of disk “dust lines,” which indicate the observed disk radial scale at different observational wavelengths. This method relies on the assumption that the processes of particle growth and drift control the radial scale of the disk at late stages of disk evolution such that the lifetime of the disk is equal to both the drift timescale and growth timescale of the maximum particle size at a given dust line. We provide an initial proof of concept of our model through an application to the disk TW Hya and are able to estimate the disk dust-to-gas ratio, CO abundance, and accretion rate in addition to the total disk surface density. We find that our derived surface density profile and dust-to-gas ratio are consistent with the lower limits found through measurements of HD gas. The CO ice line also depends on surface density through grain adsorption rates and drift and we find that our theoretical CO ice line estimates have clear observational analogues. We further apply our model to a large parameter space of theoretical disks and find three observational diagnostics that may be used to test its validity. First, we predict that the dust lines of disks other than TW Hya will be consistent with the normalized CO surface density profile shape for those disks. Second, surface density profiles that we derive from disk ice lines should match those derived from disk dust lines. Finally, we predict that disk dust and ice lines will scale oppositely, as a function of surface density, across a large sample of disks.
An Enhanced Non-Coherent Pre-Filter Design for Tracking Error Estimation in GNSS Receivers
Luo, Zhibin; Ding, Jicheng; Zhao, Lin; Wu, Mouyan
2017-01-01
Tracking error estimation is of great importance in global navigation satellite system (GNSS) receivers. Any inaccurate estimation for tracking error will decrease the signal tracking ability of signal tracking loops and the accuracies of position fixing, velocity determination, and timing. Tracking error estimation can be done by traditional discriminator, or Kalman filter-based pre-filter. The pre-filter can be divided into two categories: coherent and non-coherent. This paper focuses on the performance improvements of non-coherent pre-filter. Firstly, the signal characteristics of coherent and non-coherent integration—which are the basis of tracking error estimation—are analyzed in detail. After that, the probability distribution of estimation noise of four-quadrant arctangent (ATAN2) discriminator is derived according to the mathematical model of coherent integration. Secondly, the statistical property of observation noise of non-coherent pre-filter is studied through Monte Carlo simulation to set the observation noise variance matrix correctly. Thirdly, a simple fault detection and exclusion (FDE) structure is introduced to the non-coherent pre-filter design, and thus its effective working range for carrier phase error estimation extends from (−0.25 cycle, 0.25 cycle) to (−0.5 cycle, 0.5 cycle). Finally, the estimation accuracies of discriminator, coherent pre-filter, and the enhanced non-coherent pre-filter are evaluated comprehensively through the carefully designed experiment scenario. The pre-filter outperforms traditional discriminator in estimation accuracy. In a highly dynamic scenario, the enhanced non-coherent pre-filter provides accuracy improvements of 41.6%, 46.4%, and 50.36% for carrier phase error, carrier frequency error, and code phase error estimation, respectively, when compared with coherent pre-filter. The enhanced non-coherent pre-filter outperforms the coherent pre-filter in code phase error estimation when carrier-to-noise density ratio is less than 28.8 dB-Hz, in carrier frequency error estimation when carrier-to-noise density ratio is less than 20 dB-Hz, and in carrier phase error estimation when carrier-to-noise density belongs to (15, 23) dB-Hz ∪ (26, 50) dB-Hz. PMID:29156581
ERIC Educational Resources Information Center
Rye, James A.
1999-01-01
Presents an activity that integrates mathematics and science and focuses on estimation, percent, proportionality, ratio, interconverting units, deriving algorithms mathematically, energy transformation, interactions of energy and matter, bioavailability, composition, density, inferring, and data gathering through scientific interpretation.…
Mapping tree density in forests of the southwestern USA using Landsat 8 data
Humagain, Kamal; Portillo-Quintero, Carlos; Cox, Robert D.; Cain, James W.
2017-01-01
The increase of tree density in forests of the American Southwest promotes extreme fire events, understory biodiversity losses, and degraded habitat conditions for many wildlife species. To ameliorate these changes, managers and scientists have begun planning treatments aimed at reducing fuels and increasing understory biodiversity. However, spatial variability in tree density across the landscape is not well-characterized, and if better known, could greatly influence planning efforts. We used reflectance values from individual Landsat 8 bands (bands 2, 3, 4, 5, 6, and 7) and calculated vegetation indices (difference vegetation index, simple ratios, and normalized vegetation indices) to estimate tree density in an area planned for treatment in the Jemez Mountains, New Mexico, characterized by multiple vegetation types and a complex topography. Because different vegetation types have different spectral signatures, we derived models with multiple predictor variables for each vegetation type, rather than using a single model for the entire project area, and compared the model-derived values to values collected from on-the-ground transects. Among conifer-dominated areas (73% of the project area), the best models (as determined by corrected Akaike Information Criteria (AICc)) included Landsat bands 2, 3, 4, and 7 along with simple ratios, normalized vegetation indices, and the difference vegetation index (R2 values for ponderosa: 0.47, piñon-juniper: 0.52, and spruce-fir: 0.66). On the other hand, in aspen-dominated areas (9% of the project area), the best model included individual bands 4 and 2, simple ratio, and normalized vegetation index (R2 value: 0.97). Most areas dominated by ponderosa, pinyon-juniper, or spruce-fir had more than 100 trees per hectare. About 54% of the study area has medium to high density of trees (100–1000 trees/hectare), and a small fraction (4.5%) of the area has very high density (>1000 trees/hectare). Our results provide a better understanding of tree density for identifying areas in need of treatment and planning for more effective treatment. Our analysis also provides an integrated method of estimating tree density across complex landscapes that could be useful for further restoration planning.
Estimating numbers of greater prairie-chickens using mark-resight techniques
Clifton, A.M.; Krementz, D.G.
2006-01-01
Current monitoring efforts for greater prairie-chicken (Tympanuchus cupido pinnatus) populations indicate that populations are declining across their range. Monitoring the population status of greater prairie-chickens is based on traditional lek surveys (TLS) that provide an index without considering detectability. Estimators, such as immigration-emigration joint maximum-likelihood estimator from a hypergeometric distribution (IEJHE), can account for detectability and provide reliable population estimates based on resightings. We evaluated the use of mark-resight methods using radiotelemetry to estimate population size and density of greater prairie-chickens on 2 sites at a tallgrass prairie in the Flint Hills of Kansas, USA. We used average distances traveled from lek of capture to estimate density. Population estimates and confidence intervals at the 2 sites were 54 (CI 50-59) on 52.9 km 2 and 87 (CI 82-94) on 73.6 km2. The TLS performed at the same sites resulted in population ranges of 7-34 and 36-63 and always produced a lower population index than the mark-resight population estimate with a larger range. Mark-resight simulations with varying male:female ratios of marks indicated that this ratio was important in designing a population study on prairie-chickens. Confidence intervals for estimates when no marks were placed on females at the 2 sites (CI 46-50, 76-84) did not overlap confidence intervals when 40% of marks were placed on females (CI 54-64, 91-109). Population estimates derived using this mark-resight technique were apparently more accurate than traditional methods and would be more effective in detecting changes in prairie-chicken populations. Our technique could improve prairie-chicken management by providing wildlife biologists and land managers with a tool to estimate the population size and trends of lekking bird species, such as greater prairie-chickens.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Slater, Paul B.
Paralleling our recent computationally intensive (quasi-Monte Carlo) work for the case N=4 (e-print quant-ph/0308037), we undertake the task for N=6 of computing to high numerical accuracy, the formulas of Sommers and Zyczkowski (e-print quant-ph/0304041) for the (N{sup 2}-1)-dimensional volume and (N{sup 2}-2)-dimensional hyperarea of the (separable and nonseparable) NxN density matrices, based on the Bures (minimal monotone) metric--and also their analogous formulas (e-print quant-ph/0302197) for the (nonmonotone) flat Hilbert-Schmidt metric. With the same seven 10{sup 9} well-distributed ('low-discrepancy') sample points, we estimate the unknown volumes and hyperareas based on five additional (monotone) metrics of interest, including the Kubo-Mori and Wigner-Yanase.more » Further, we estimate all of these seven volume and seven hyperarea (unknown) quantities when restricted to the separable density matrices. The ratios of separable volumes (hyperareas) to separable plus nonseparable volumes (hyperareas) yield estimates of the separability probabilities of generically rank-6 (rank-5) density matrices. The (rank-6) separability probabilities obtained based on the 35-dimensional volumes appear to be--independently of the metric (each of the seven inducing Haar measure) employed--twice as large as those (rank-5 ones) based on the 34-dimensional hyperareas. (An additional estimate--33.9982--of the ratio of the rank-6 Hilbert-Schmidt separability probability to the rank-4 one is quite clearly close to integral too.) The doubling relationship also appears to hold for the N=4 case for the Hilbert-Schmidt metric, but not the others. We fit simple exact formulas to our estimates of the Hilbert-Schmidt separable volumes and hyperareas in both the N=4 and N=6 cases.« less
Zhong, Yan; Chasen, Joel; Yamanaka, Ryan; Garcia, Raul; Kaye, Elizabeth Krall; Kaufman, Jay S; Cai, Jianwen; Wilcosky, Tim; Trope, Martin; Caplan, Daniel J
2008-01-01
We evaluated the association between radiographically-assessed extension and density of root canal fillings and post-operative apical radiolucencies (AR) using data from 288 participants in the Veterans Affairs Dental Longitudinal Study. Study subjects were not VA patients; all received their medical and dental care in the private sector. Generalized Estimating Equations were used to account for multiple teeth within subjects and to control for covariates of interest. Defective root filling density was associated with increased odds of post-operative AR among teeth with no pre-operative AR (Odds Ratio=3.0, 95%CI=1.3–7.1), though pre-operative AR was the strongest risk factor for post-operative AR (Odds Ratio=29.2, 95%CI=13.6–63.0 among teeth with ideal density). Compared to well-extended root fillings, neither over- nor under-extended root fillings separately were related to post-operative AR, but when those two categories were collapsed into one “poorly-extended” category, poor extension was related to post-operative AR (Odds Ratio=1.8, 95%CI=1.1–3.2). PMID:18570982
Gap state analysis in electric-field-induced band gap for bilayer graphene.
Kanayama, Kaoru; Nagashio, Kosuke
2015-10-29
The origin of the low current on/off ratio at room temperature in dual-gated bilayer graphene field-effect transistors is considered to be the variable range hopping in gap states. However, the quantitative estimation of gap states has not been conducted. Here, we report the systematic estimation of the energy gap by both quantum capacitance and transport measurements and the density of states for gap states by the conductance method. An energy gap of ~ 250 meV is obtained at the maximum displacement field of ~ 3.1 V/nm, where the current on/off ratio of ~ 3 × 10(3) is demonstrated at 20 K. The density of states for the gap states are in the range from the latter half of 10(12) to 10(13) eV(-1) cm(-2). Although the large amount of gap states at the interface of high-k oxide/bilayer graphene limits the current on/off ratio at present, our results suggest that the reduction of gap states below ~ 10(11) eV(-1) cm(-2) by continual improvement of the gate stack makes bilayer graphene a promising candidate for future nanoelectronic device applications.
de Verdal, Hugues; Narcy, Agnès; Bastianelli, Denis; Chapuis, Hervé; Même, Nathalie; Urvoix, Séverine; Le Bihan-Duval, Elisabeth; Mignon-Grasteau, Sandrine
2011-07-06
Feed costs represent about 70% of the costs of raising broilers. The main way to decrease these costs is to improve feed efficiency by modification of diet formulation, but one other possibility would be to use genetic selection. Understanding the genetic architecture of the gastro-intestinal tract (GIT) and the impact of the selection criterion on the GIT would be of particular interest. We therefore studied the genetic parameters of AMEn (Apparent metabolisable energy corrected for zero nitrogen balance), feed efficiency, and GIT traits in chickens.Genetic parameters were estimated for 630 broiler chickens of the eighth generation of a divergent selection experiment on AMEn. Birds were reared until 23 d of age and fed a wheat-based diet. The traits measured were body weight (BW), feed conversion ratio (FCR), AMEn, weights of crop, liver, gizzard and proventriculus, and weight, length and density of the duodenum, jejunum and ileum. The heritability estimates of BW, FCR and AMEn were moderate. The heritability estimates were higher for the GIT characteristics except for the weights of the proventriculus and liver. Gizzard weight was negatively correlated with density (weight to length ratio) of duodenum, jejunum and ileum. Proventriculus and gizzard weights were more strongly correlated with AMEn than with FCR, which was not the case for intestine weight and density. GIT traits were largely dependent on genetics and that selecting on AMEn or FCR would modify them. Phenotypic observations carried out in the divergent lines selected on AMEn were consistent with estimated genetic correlations between AMEn and GIT traits.
Use of geographic information systems in rabies vaccination campaigns.
Grisi-Filho, José Henrique de Hildebrand e; Amaku, Marcos; Dias, Ricardo Augusto; Montenegro Netto, Hildebrando; Paranhos, Noemia Tucunduva; Mendes, Maria Cristina Novo Campos; Ferreira Neto, José Soares; Ferreira, Fernando
2008-12-01
To develop a method to assist in the design and assessment of animal rabies control campaigns. A methodology was developed based on geographic information systems to estimate the animal (canine and feline) population and density per census tract and per subregion (known as "Subprefeituras") in the city of São Paulo (Southeastern Brazil) in 2002. The number of vaccination units in a given region was estimated to achieve a certain proportion of vaccination coverage. Census database was used for the human population, as well as estimates ratios of dog:inhabitant and cat:inhabitant. Estimated figures were 1,490,500 dogs and 226,954 cats in the city, i.e. an animal population density of 1138.14 owned animals per km(2). In the 2002 campaign, 926,462 were vaccinated, resulting in a vaccination coverage of 54%. The estimated number of vaccination units to be able to reach a 70%-vaccination coverage, by vaccinating 700 animals per unit on average, was 1,729. These estimates are presented as maps of animal density according to census tracts and "Subprefeituras". The methodology used in the study may be applied in a systematic way to the design and evaluation of rabies vaccination campaigns, enabling the identification of areas of critical vaccination coverage.
Method development estimating ambient mercury concentration from monitored mercury wet deposition
NASA Astrophysics Data System (ADS)
Chen, S. M.; Qiu, X.; Zhang, L.; Yang, F.; Blanchard, P.
2013-05-01
Speciated atmospheric mercury data have recently been monitored at multiple locations in North America; but the spatial coverage is far less than the long-established mercury wet deposition network. The present study describes a first attempt linking ambient concentration with wet deposition using Beta distribution fitting of a ratio estimate. The mean, median, mode, standard deviation, and skewness of the fitted Beta distribution parameters were generated using data collected in 2009 at 11 monitoring stations. Comparing the normalized histogram and the fitted density function, the empirical and fitted Beta distribution of the ratio shows a close fit. The estimated ambient mercury concentration was further partitioned into reactive gaseous mercury and particulate bound mercury using linear regression model developed by Amos et al. (2012). The method presented here can be used to roughly estimate mercury ambient concentration at locations and/or times where such measurement is not available but where wet deposition is monitored.
NASA Astrophysics Data System (ADS)
Codis, Sandrine; Bernardeau, Francis; Pichon, Christophe
2016-08-01
In order to quantify the error budget in the measured probability distribution functions of cell densities, the two-point statistics of cosmic densities in concentric spheres is investigated. Bias functions are introduced as the ratio of their two-point correlation function to the two-point correlation of the underlying dark matter distribution. They describe how cell densities are spatially correlated. They are computed here via the so-called large deviation principle in the quasi-linear regime. Their large-separation limit is presented and successfully compared to simulations for density and density slopes: this regime is shown to be rapidly reached allowing to get sub-percent precision for a wide range of densities and variances. The corresponding asymptotic limit provides an estimate of the cosmic variance of standard concentric cell statistics applied to finite surveys. More generally, no assumption on the separation is required for some specific moments of the two-point statistics, for instance when predicting the generating function of cumulants containing any powers of concentric densities in one location and one power of density at some arbitrary distance from the rest. This exact `one external leg' cumulant generating function is used in particular to probe the rate of convergence of the large-separation approximation.
Feature Augmentation via Nonparametrics and Selection (FANS) in High-Dimensional Classification.
Fan, Jianqing; Feng, Yang; Jiang, Jiancheng; Tong, Xin
We propose a high dimensional classification method that involves nonparametric feature augmentation. Knowing that marginal density ratios are the most powerful univariate classifiers, we use the ratio estimates to transform the original feature measurements. Subsequently, penalized logistic regression is invoked, taking as input the newly transformed or augmented features. This procedure trains models equipped with local complexity and global simplicity, thereby avoiding the curse of dimensionality while creating a flexible nonlinear decision boundary. The resulting method is called Feature Augmentation via Nonparametrics and Selection (FANS). We motivate FANS by generalizing the Naive Bayes model, writing the log ratio of joint densities as a linear combination of those of marginal densities. It is related to generalized additive models, but has better interpretability and computability. Risk bounds are developed for FANS. In numerical analysis, FANS is compared with competing methods, so as to provide a guideline on its best application domain. Real data analysis demonstrates that FANS performs very competitively on benchmark email spam and gene expression data sets. Moreover, FANS is implemented by an extremely fast algorithm through parallel computing.
Feature Augmentation via Nonparametrics and Selection (FANS) in High-Dimensional Classification
Feng, Yang; Jiang, Jiancheng; Tong, Xin
2015-01-01
We propose a high dimensional classification method that involves nonparametric feature augmentation. Knowing that marginal density ratios are the most powerful univariate classifiers, we use the ratio estimates to transform the original feature measurements. Subsequently, penalized logistic regression is invoked, taking as input the newly transformed or augmented features. This procedure trains models equipped with local complexity and global simplicity, thereby avoiding the curse of dimensionality while creating a flexible nonlinear decision boundary. The resulting method is called Feature Augmentation via Nonparametrics and Selection (FANS). We motivate FANS by generalizing the Naive Bayes model, writing the log ratio of joint densities as a linear combination of those of marginal densities. It is related to generalized additive models, but has better interpretability and computability. Risk bounds are developed for FANS. In numerical analysis, FANS is compared with competing methods, so as to provide a guideline on its best application domain. Real data analysis demonstrates that FANS performs very competitively on benchmark email spam and gene expression data sets. Moreover, FANS is implemented by an extremely fast algorithm through parallel computing. PMID:27185970
Quantifying selective alignment of ensemble nitrogen-vacancy centers in (111) diamond
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tahara, Kosuke; Ozawa, Hayato; Iwasaki, Takayuki
2015-11-09
Selective alignment of nitrogen-vacancy (NV) centers in diamond is an important technique towards its applications. Quantification of the alignment ratio is necessary to design the optimized diamond samples. However, this is not a straightforward problem for dense ensemble of the NV centers. We estimate the alignment ratio of ensemble NV centers along the [111] direction in (111) diamond by optically detected magnetic resonance measurements. Diamond films deposited by N{sub 2} doped chemical vapor deposition have NV center densities over 1 × 10{sup 15 }cm{sup −3} and alignment ratios over 75%. Although spin coherence time (T{sub 2}) is limited to a few μs bymore » electron spins of nitrogen impurities, the combination of the selective alignment and the high density can be a possible way to optimize NV-containing diamond samples for the sensing applications.« less
Ultraviolet observations of cool stars. VII - Local interstellar hydrogen and deuterium Lyman-alpha
NASA Technical Reports Server (NTRS)
Mcclintock, W.; Henry, R. C.; Linsky, J. L.; Moos, H. W.
1978-01-01
High-resolution Copernicus spectra of Epsilon Eri and Epsilon Ind containing interstellar hydrogen and deuterium L-alpha absorption lines are presented, reduced, and analyzed. Parameters of the interstellar hydrogen and deuterium toward these two stars are derived independently, without any assumptions concerning the D/H ratio. Copernicus spectra of Alpha Aur and Alpha Cen A are reanalyzed, and limits on the D/H number-density ratio consistent with the data for all four stars are considered. A comparison of the present estimates for the parameters of the local interstellar medium with those obtained by other techniques shows that there is no compelling evidence for significant variations in the hydrogen density and D/H ratio in the local interstellar medium. On this basis the hypothesis of an approaching local interstellar cloud proposed by Vidal-Madjar et al. (1978) is rejected
Model Parameterization and P-wave AVA Direct Inversion for Young's Impedance
NASA Astrophysics Data System (ADS)
Zong, Zhaoyun; Yin, Xingyao
2017-05-01
AVA inversion is an important tool for elastic parameters estimation to guide the lithology prediction and "sweet spot" identification of hydrocarbon reservoirs. The product of the Young's modulus and density (named as Young's impedance in this study) is known as an effective lithology and brittleness indicator of unconventional hydrocarbon reservoirs. Density is difficult to predict from seismic data, which renders the estimation of the Young's impedance inaccurate in conventional approaches. In this study, a pragmatic seismic AVA inversion approach with only P-wave pre-stack seismic data is proposed to estimate the Young's impedance to avoid the uncertainty brought by density. First, based on the linearized P-wave approximate reflectivity equation in terms of P-wave and S-wave moduli, the P-wave approximate reflectivity equation in terms of the Young's impedance is derived according to the relationship between P-wave modulus, S-wave modulus, Young's modulus and Poisson ratio. This equation is further compared to the exact Zoeppritz equation and the linearized P-wave approximate reflectivity equation in terms of P- and S-wave velocities and density, which illustrates that this equation is accurate enough to be used for AVA inversion when the incident angle is within the critical angle. Parameter sensitivity analysis illustrates that the high correlation between the Young's impedance and density render the estimation of the Young's impedance difficult. Therefore, a de-correlation scheme is used in the pragmatic AVA inversion with Bayesian inference to estimate Young's impedance only with pre-stack P-wave seismic data. Synthetic examples demonstrate that the proposed approach is able to predict the Young's impedance stably even with moderate noise and the field data examples verify the effectiveness of the proposed approach in Young's impedance estimation and "sweet spots" evaluation.
Polystyrene Foam EOS as a Function of Porosity and Fill Gas
NASA Astrophysics Data System (ADS)
Mulford, Roberta; Swift, Damian
2009-06-01
An accurate EOS for polystyrene foam is necessary for analysis of numerous experiments in shock compression, inertial confinement fusion, and astrophysics. Plastic to gas ratios vary between various samples of foam, according to the density and cell-size of the foam. A matrix of compositions has been investigated, allowing prediction of foam response as a function of the plastic-to-air ratio. The EOS code CHEETAH allows participation of the air in the decomposition reaction of the foam, Differences between air-filled, nitrogen-blown, and CO2-blown foams are investigated, to estimate the importance of allowing air to react with plastic products during decomposition. Results differ somewhat from the conventional EOS, which are generated from values for plastic extrapolated to low densities.
Eng, K.; Kiang, J.E.; Chen, Y.-Y.; Carlisle, D.M.; Granato, G.E.
2011-01-01
Low-flow characteristics can be estimated by multiple linear regressions or the index-streamgage approach. The latter transfers streamflow information from a hydrologically similar, continuously gaged basin ('index streamgage') to one with a very limited streamflow record, but often results in biased estimates. The application of the index-streamgage approach can be generalized into three steps: (1) selection of streamflow information of interest, (2) definition of hydrologic similarity and selection of index streamgage, and (3) application of an information-transfer approach. Here, we explore the effects of (1) the range of streamflow values, (2) the areal density of streamgages, and (3) index-streamgage selection criteria on the bias of three information-transfer approaches on estimates of the 7-day, 10-year minimum streamflow (Q7, 10). The three information-transfer approaches considered are maintenance of variance extension, base-flow correlation, and ratio of measured to concurrent gaged streamflow (Q-ratio invariance). Our results for 1120 streamgages throughout the United States suggest that only a small portion of the total bias in estimated streamflow values is explained by the areal density of the streamgages and the hydrologic similarity between the two basins. However, restricting the range of streamflow values used in the index-streamgage approach reduces the bias of estimated Q7, 10 values substantially. Importantly, estimated Q7, 10 values are heavily biased when the observed Q7, 10 values are near zero. Results of the analysis also showed that Q7, 10 estimates from two of the three index-streamgage approaches have lower root-mean-square error values than estimates derived from multiple regressions for the large regions considered in this study.
VOLATILE-RICH CIRCUMSTELLAR GAS IN THE UNUSUAL 49 CETI DEBRIS DISK
DOE Office of Scientific and Technical Information (OSTI.GOV)
Roberge, Aki; Grady, Carol A.; Welsh, Barry Y.
2014-11-20
We present Hubble Space Telescope Space Telescope Imaging Spectrograph far-UV spectra of the edge-on disk around 49 Ceti, one of the very few debris disks showing submillimeter CO emission. Many atomic absorption lines are present in the spectra, most of which arise from circumstellar gas lying along the line-of-sight to the central star. We determined the line-of-sight C I column density, estimated the total carbon column density, and set limits on the O I column density. Surprisingly, no line-of-sight CO absorption was seen. We discuss possible explanations for this non-detection, and present preliminary estimates of the carbon abundances in themore » line-of-sight gas. The C/Fe ratio is much greater than the solar value, suggesting that 49 Cet harbors a volatile-rich gas disk similar to that of β Pictoris.« less
Analytical minimization of synchronicity errors in stochastic identification
NASA Astrophysics Data System (ADS)
Bernal, D.
2018-01-01
An approach to minimize error due to synchronicity faults in stochastic system identification is presented. The scheme is based on shifting the time domain signals so the phases of the fundamental eigenvector estimated from the spectral density are zero. A threshold on the mean of the amplitude-weighted absolute value of these phases, above which signal shifting is deemed justified, is derived and found to be proportional to the first mode damping ratio. It is shown that synchronicity faults do not map precisely to phasor multiplications in subspace identification and that the accuracy of spectral density estimated eigenvectors, for inputs with arbitrary spectral density, decrease with increasing mode number. Selection of a corrective strategy based on signal alignment, instead of eigenvector adjustment using phasors, is shown to be the product of the foregoing observations. Simulations that include noise and non-classical damping suggest that the scheme can provide sufficient accuracy to be of practical value.
NASA Astrophysics Data System (ADS)
Meulstee, C.; Vanstokkom, H.
1985-01-01
The correlation between the biomass of sea grass and seaweed samples in a sidebranch of the Oosterschelde delta (Netherlands) and density ratios of this area on color infrared aerial photographs was investigated. As the Oosterschelde will become more divided from the North Sea after pier dam completion, an increase of macrophytes is expected. In an area where the weeds Ulva, Cheatomorpha, Entermorpha, Cladophora, Fucus vesuculosis, and the grasses Zostera noltii and Zostera marina are found, 53 biomass samples of a 0.054 sq m surface each were collected. The relation between covering degree and biomass was estimated. Using a transmission-densitometer adjusted to 3 to 1 mm, densities on 1:10,000 and 1:20,000 scale photographs were measured. A gage line was determined in a density-biomass diagram. The method is shown to be useful for an efficient, accurate biomass determination in the Oosterschelde.
NASA Astrophysics Data System (ADS)
Brewick, Patrick T.; Smyth, Andrew W.
2016-12-01
The authors have previously shown that many traditional approaches to operational modal analysis (OMA) struggle to properly identify the modal damping ratios for bridges under traffic loading due to the interference caused by the driving frequencies of the traffic loads. This paper presents a novel methodology for modal parameter estimation in OMA that overcomes the problems presented by driving frequencies and significantly improves the damping estimates. This methodology is based on finding the power spectral density (PSD) of a given modal coordinate, and then dividing the modal PSD into separate regions, left- and right-side spectra. The modal coordinates were found using a blind source separation (BSS) algorithm and a curve-fitting technique was developed that uses optimization to find the modal parameters that best fit each side spectra of the PSD. Specifically, a pattern-search optimization method was combined with a clustering analysis algorithm and together they were employed in a series of stages in order to improve the estimates of the modal damping ratios. This method was used to estimate the damping ratios from a simulated bridge model subjected to moving traffic loads. The results of this method were compared to other established OMA methods, such as Frequency Domain Decomposition (FDD) and BSS methods, and they were found to be more accurate and more reliable, even for modes that had their PSDs distorted or altered by driving frequencies.
Cost-Effectiveness of Rural Incentive Packages for Graduating Medical Students in Lao PDR
Keuffel, Eric; Jaskiewicz, Wanda; Theppanya, Khampasong; Tulenko, Kate
2017-01-01
Background: The dearth of health workers in rural settings in Lao People’s Democratic Republic (PDR) and other developing countries limits healthcare access and outcomes. In evaluating non-wage financial incentive packages as a potential policy option to attract health workers to rural settings, understanding the expected costs and effects of the various programs ex ante can assist policy-makers in selecting the optimal incentive package. Methods: We use discrete choice experiments (DCEs), costing analyses and recent empirical results linking health worker density and health outcomes to estimate the future location decisions of physicians and determine the cost-effectiveness of 15 voluntary incentives packages for new physicians in Lao PDR. Our data sources include a DCE survey completed by medical students (n = 329) in May 2011 and secondary cost, economic and health data. Mixed logit regressions provide the basis for estimating how each incentive package influences rural versus urban location choice over time. We estimate the expected rural density of physicians and the cost-effectiveness of 15 separate incentive packages from a societal perspective. In order to generate the cost-effectiveness ratios we relied on the rural uptake probabilities inferred from the DCEs, the costing data and prior World Health Organization (WHO) estimates that relate health outcomes to health worker density. Results: Relative to no program, the optimal voluntary incentive package would increase rural physician density by 15% by 2016 and 65% by 2041. After incorporating anticipated health effects, seven (three) of the 15 incentive packages have anticipated average cost-effectiveness ratio less than the WHO threshold (three times gross domestic product [GDP] per capita) over a 5-year (30 year) period. The optimal package’s incremental cost-effectiveness ratio is $1454/QALY (quality-adjusted life year) over 5 years and $2380/QALY over 30 years. Capital intensive components, such as housing or facility improvement, are not efficient. Conclusion: Conditional on using voluntary incentives, Lao PDR should emphasize non-capital intensive options such as advanced career promotion, transport subsidies and housing allowances to improve physician distribution and rural health outcomes in a cost-effective manner. Other countries considering voluntary incentive programs can implement health worker/trainee DCEs and costing surveys to determine which incentive bundles improve rural uptake most efficiently but should be aware of methodological caveats. PMID:28812834
Mortality through ontogeny of soft-bottom marine invertebrates with planktonic larvae
NASA Astrophysics Data System (ADS)
Pedersen, Troels Møller; Hansen, Jørgen L. S.; Josefson, Alf B.; Hansen, Benni W.
2008-09-01
The present survey covers one spawning season of marine benthic invertebrates in a large geographical area, the inner Danish waters, and includes a wide range of habitats with steep salinity and nutrient load gradients. The loss ratios of soft-bottom marine invertebrates from one development stage to the next is calculated based on average abundances of pelagic larvae, benthic post-larvae and adults of Bivalvia, Gastropoda, Polychaeta and Echinodermata, with planktonic development. This gives a rough estimate of the larval and post-larval mortality. Loss ratios between post-larvae stage and adult stage (post-larval mortality) varies from 3:1 to 7:1 (71.2-84.9%) and loss ratios between larvae and post-larvae (larval mortality) and between larvae and adult, ranging from 7:1 to 42:1 (85.2-97.6%) and from 45:1 to 210:1 (97.8-99.5%), respectively. The results show a remarkable unity in loss ratios (mortality) between the mollusc taxa (Bivalvia and Gastropoda) at the phylum/class level. This similarity in loss ratios among the mollusc taxa exhibiting the same developmental pathways suggests that the mortality is governed by the same biotic and abiotic factors. Larval mortality is estimated to range from 0.10 d - 1 to 0.32 d - 1 for Bivalvia and ranging from 0.09 d - 1 to 0.23 d - 1 for Polychaeta. The species loss ratios combined with specific knowledge of the reproduction cycles give estimated loss ratios (mortality) between the post-larvae and the adult stage of 25:1 and 14:1 for the bivalves Abra spp. and Mysella bidentata. For the polychaete Pygospio elegans the loss ratio (larval mortality) between the larvae and the post-larval stage is 154:1 and between the post-larvae and the adult stage 41:1. For Pholoe inornata the loss ratio between post-larvae and adults is 7:1. The present results confirm that the larval stage, metamorphosis and settlement are the critical phase in terms of mortality in the life cycle for Bivalvia. Assuming steady state based on actual measurements of pelagic larval densities an estimated input to the water column of pelagic bivalve larvae is ranging from 10,930 to 17,157 larvae m - 2 d - 1 and for Polychaeta between 2544 and 3994 larvae m - 2 d - 1 . These estimates seem to correspond to the reproductive capacity of the observed adult densities using life-table values from the literature. The potential settlement of post-larvae is 43 post-larvae m - 2 d - 1 for Bivalvia and 56 post-larvae m - 2 d - 1 for Polychaeta. The adult turnover time for Bivalvia is estimated to be 1.5 years and 2.1 years for Polychaeta. This exemplifies that species with short generation times may dominate in very dynamic transitional zones with a high frequency of catastrophic events like the frequent incidents of hypoxia in the inner Danish waters.
Deep convolutional neural network for mammographic density segmentation
NASA Astrophysics Data System (ADS)
Wei, Jun; Li, Songfeng; Chan, Heang-Ping; Helvie, Mark A.; Roubidoux, Marilyn A.; Lu, Yao; Zhou, Chuan; Hadjiiski, Lubomir; Samala, Ravi K.
2018-02-01
Breast density is one of the most significant factors for cancer risk. In this study, we proposed a supervised deep learning approach for automated estimation of percentage density (PD) on digital mammography (DM). The deep convolutional neural network (DCNN) was trained to estimate a probability map of breast density (PMD). PD was calculated as the ratio of the dense area to the breast area based on the probability of each pixel belonging to dense region or fatty region at a decision threshold of 0.5. The DCNN estimate was compared to a feature-based statistical learning approach, in which gray level, texture and morphological features were extracted from each ROI and the least absolute shrinkage and selection operator (LASSO) was used to select and combine the useful features to generate the PMD. The reference PD of each image was provided by two experienced MQSA radiologists. With IRB approval, we retrospectively collected 347 DMs from patient files at our institution. The 10-fold cross-validation results showed a strong correlation r=0.96 between the DCNN estimation and interactive segmentation by radiologists while that of the feature-based statistical learning approach vs radiologists' segmentation had a correlation r=0.78. The difference between the segmentation by DCNN and by radiologists was significantly smaller than that between the feature-based learning approach and radiologists (p < 0.0001) by two-tailed paired t-test. This study demonstrated that the DCNN approach has the potential to replace radiologists' interactive thresholding in PD estimation on DMs.
Abo-Elmagd, M; Sadek, A M
2014-12-01
Can and Bare method is a widely used passive method for measuring the equilibrium factor F through the determination of the track density ratio between bare (D) and filtered (Do) detectors. The dimensions of the used diffusion chamber are altering the deposition ratios of Po-isotopes on the chamber walls as well as the ratios of the existing alpha emitters in air. Then the measured filtered track density and therefore the resultant equilibrium factor is changed according to the diffusion chamber dimensions. For this reason, high uncertainty was expected in the measured F using different diffusion chambers. In the present work, F is derived as a function of both track density ratio (D/Do) and the dimensions of the used diffusion chambers (its volume to the total internal surface area; V/A). The accuracy of the derived formula was verified using the black-box modeling technique via the MATLAB System identification toolbox. The results show that the uncertainty of the calculated F by using the derived formula of F (D/Do, V/A) is only 5%. The obtained uncertainty ensures the quality of the derived function to calculate F using diffusion chambers with wide range of dimensions. Copyright © 2014 Elsevier Ltd. All rights reserved.
A family of triaxial modified Hubble mass models: Effects of the additional radial functions
NASA Astrophysics Data System (ADS)
Das, Mousumi; Thakur, Parijat; Ann, H. B.
2005-03-01
The projected properties of triaxial generalization of the modified Hubble mass models are studied. These models are constructed by adding the additional radial functions, each multiplied by a low-order spherical harmonic, to the models of [Chakraborty, D.K., Thakur, P., 2000. MNRAS 318, 1273]. The projected surface density of mass models can be calculated analytically which allows us to derive the analytic expressions of axial ratio and position angle of major axis of constant density elliptical contours at asymptotic radii. The models are more general than those studied earlier in the sense that the inclusions of additional terms in density distribution, allow one to produce varieties of the radial profile of axial ratio and position angle, in particular, their small scale variations at inner radii. Strong correlations are found to exist between the observed axial ratio evaluated at 0.25Re and at 4Re which occupy well-separated regions in the parameter space for different choices of the intrinsic axial ratios. These correlations can be exploited to predict the intrinsic shape of the mass model, independent of the viewing angles. Using Bayesian statistics, the result of a test case launched for an estimation of the shape of a model galaxy is found to be satisfactory.
Birds and insects as radar targets - A review
NASA Technical Reports Server (NTRS)
Vaughn, C. R.
1985-01-01
A review of radar cross-section measurements of birds and insects is presented. A brief discussion of some possible theoretical models is also given and comparisons made with the measurements. The comparisons suggest that most targets are, at present, better modeled by a prolate spheroid having a length-to-width ratio between 3 and 10 than by the often used equivalent weight water sphere. In addition, many targets observed with linear horizontal polarization have maximum cross sections much better estimated by a resonant half-wave dipole than by a water sphere. Also considered are birds and insects in the aggregate as a local radar 'clutter' source. Order-of-magnitude estimates are given for many reasonable target number densities. These estimates are then used to predict X-band volume reflectivities. Other topics that are of interest to the radar engineer are discussed, including the doppler bandwidth due to the internal motions of a single bird, the radar cross-section probability densities of single birds and insects, the variability of the functional form of the probability density functions, and the Fourier spectra of single birds and insects.
Adaptive channel estimation for soft decision decoding over non-Gaussian optical channel
NASA Astrophysics Data System (ADS)
Xiang, Jing-song; Miao, Tao-tao; Huang, Sheng; Liu, Huan-lin
2016-10-01
An adaptive priori likelihood ratio (LLR) estimation method is proposed over non-Gaussian channel in the intensity modulation/direct detection (IM/DD) optical communication systems. Using the nonparametric histogram and the weighted least square linear fitting in the tail regions, the LLR is estimated and used for the soft decision decoding of the low-density parity-check (LDPC) codes. This method can adapt well to the three main kinds of intensity modulation/direct detection (IM/DD) optical channel, i.e., the chi-square channel, the Webb-Gaussian channel and the additive white Gaussian noise (AWGN) channel. The performance penalty of channel estimation is neglected.
Estimating risk and rate levels, ratios and differences in case-control studies.
King, Gary; Zeng, Langche
2002-05-30
Classic (or 'cumulative') case-control sampling designs do not admit inferences about quantities of interest other than risk ratios, and then only by making the rare events assumption. Probabilities, risk differences and other quantities cannot be computed without knowledge of the population incidence fraction. Similarly, density (or 'risk set') case-control sampling designs do not allow inferences about quantities other than the rate ratio. Rates, rate differences, cumulative rates, risks, and other quantities cannot be estimated unless auxiliary information about the underlying cohort such as the number of controls in each full risk set is available. Most scholars who have considered the issue recommend reporting more than just risk and rate ratios, but auxiliary population information needed to do this is not usually available. We address this problem by developing methods that allow valid inferences about all relevant quantities of interest from either type of case-control study when completely ignorant of or only partially knowledgeable about relevant auxiliary population information.
(Fe II) emission from high-density regions in the Orion Nebula
NASA Technical Reports Server (NTRS)
Bautista, Manuel A.; Pradhan, Anil K.; Osterbrock, Donald E.
1994-01-01
Direct spectroscopic evidence of high-density regions in the Orion Nebula, N(sub e) approximately equals 10(exp 5)-10(exp 7)/cu cm, is obtained from the forbidden optical and near-IR (Fe II) emission lines, using new atomic data. Calculations for level populations and line ratios are carried out using 16, 35, and 142 level collisional-radiative models for Fe II. Estimates of Fe(+) abundances derived from the near-infrared and the optical line intensities are consistent with a high density of 10(exp 6)/cu cm in the (Fe II) emitting regions. Important consequences for abundance determinations in the nebula are pointed out.
A generalized system of models forecasting Central States tree growth.
Stephen R. Shifley
1987-01-01
Describes the development and testing of a system of individual tree-based growth projection models applicable to species in Indiana, Missouri, and Ohio. Annual tree basal area growth is estimated as a function of tree size, crown ratio, stand density, and site index. Models are compatible with the STEMS and TWIGS Projection System.
Density estimation in wildlife surveys
Bart, Jonathan; Droege, Sam; Geissler, Paul E.; Peterjohn, Bruce G.; Ralph, C. John
2004-01-01
Several authors have recently discussed the problems with using index methods to estimate trends in population size. Some have expressed the view that index methods should virtually never be used. Others have responded by defending index methods and questioning whether better alternatives exist. We suggest that index methods are often a cost-effective component of valid wildlife monitoring but that double-sampling or another procedure that corrects for bias or establishes bounds on bias is essential. The common assertion that index methods require constant detection rates for trend estimation is mathematically incorrect; the requirement is no long-term trend in detection "ratios" (index result/parameter of interest), a requirement that is probably approximately met by many well-designed index surveys. We urge that more attention be given to defining bird density rigorously and in ways useful to managers. Once this is done, 4 sources of bias in density estimates may be distinguished: coverage, closure, surplus birds, and detection rates. Distance, double-observer, and removal methods do not reduce bias due to coverage, closure, or surplus birds. These methods may yield unbiased estimates of the number of birds present at the time of the survey, but only if their required assumptions are met, which we doubt occurs very often in practice. Double-sampling, in contrast, produces unbiased density estimates if the plots are randomly selected and estimates on the intensive surveys are unbiased. More work is needed, however, to determine the feasibility of double-sampling in different populations and habitats. We believe the tension that has developed over appropriate survey methods can best be resolved through increased appreciation of the mathematical aspects of indices, especially the effects of bias, and through studies in which candidate methods are evaluated against known numbers determined through intensive surveys.
Yang, M; Zhu, X R; Park, PC; Titt, Uwe; Mohan, R; Virshup, G; Clayton, J; Dong, L
2012-01-01
The purpose of this study was to analyze factors affecting proton stopping-power-ratio (SPR) estimations and range uncertainties in proton therapy planning using the standard stoichiometric calibration. The SPR uncertainties were grouped into five categories according to their origins and then estimated based on previously published reports or measurements. For the first time, the impact of tissue composition variations on SPR estimation was assessed and the uncertainty estimates of each category were determined for low-density (lung), soft, and high-density (bone) tissues. A composite, 95th percentile water-equivalent-thickness uncertainty was calculated from multiple beam directions in 15 patients with various types of cancer undergoing proton therapy. The SPR uncertainties (1σ) were quite different (ranging from 1.6% to 5.0%) in different tissue groups, although the final combined uncertainty (95th percentile) for different treatment sites was fairly consistent at 3.0–3.4%, primarily because soft tissue is the dominant tissue type in human body. The dominant contributing factor for uncertainties in soft tissues was the degeneracy of Hounsfield Numbers in the presence of tissue composition variations. To reduce the overall uncertainties in SPR estimation, the use of dual-energy computed tomography is suggested. The values recommended in this study based on typical treatment sites and a small group of patients roughly agree with the commonly referenced value (3.5%) used for margin design. By using tissue-specific range uncertainties, one could estimate the beam-specific range margin by accounting for different types and amounts of tissues along a beam, which may allow for customization of range uncertainty for each beam direction. PMID:22678123
Nebular and auroral emission lines of [Cl iii] in the optical spectra of planetary nebulae
Keenan, Francis P.; Aller, Lawrence H.; Ramsbottom, Catherine A.; Bell, Kenneth L.; Crawford, Fergal L.; Hyung, Siek
2000-01-01
Electron impact excitation rates in Cl III, recently determined with the R-matrix code, are used to calculate electron temperature (Te) and density (Ne) emission line ratios involving both the nebular (5517.7, 5537.9 Å) and auroral (8433.9, 8480.9, 8500.0 Å) transitions. A comparison of these results with observational data for a sample of planetary nebulae, obtained with the Hamilton Echelle Spectrograph on the 3-m Shane Telescope, reveals that the R1 = I(5518 Å)/I(5538 Å) intensity ratio provides estimates of Ne in excellent agreement with the values derived from other line ratios in the echelle spectra. This agreement indicates that R1 is a reliable density diagnostic for planetary nebulae, and it also provides observational support for the accuracy of the atomic data adopted in the line ratio calculations. However the [Cl iii] 8433.9 Å line is found to be frequently blended with a weak telluric emission feature, although in those instances when the [Cl iii] intensity may be reliably measured, it provides accurate determinations of Te when ratioed against the sum of the 5518 and 5538 Å line fluxes. Similarly, the 8500.0 Å line, previously believed to be free of contamination by the Earth's atmosphere, is also shown to be generally blended with a weak telluric emission feature. The [Cl iii] transition at 8480.9 Å is found to be blended with the He i 8480.7 Å line, except in planetary nebulae that show a relatively weak He i spectrum, where it also provides reliable estimates of Te when ratioed against the nebular lines. Finally, the diagnostic potential of the near-UV [Cl iii] lines at 3344 and 3354 Å is briefly discussed. PMID:10759562
NASA Astrophysics Data System (ADS)
Roy, Victor; Pu, Shi
2015-12-01
We estimate the event-by-event (e-by-e) distribution of the ratio (σ ) of the magnetic and electric field energy density to the fluid energy density in the transverse plane of Au-Au collisions at √{sN N}=200 GeV. A Monte Carlo (MC) Glauber model is used to calculate σ in the transverse plane for impact parameter b =0 , 12 fm at time τi˜0.5 fm. The fluid energy density is obtained by using Gaussian smoothing with two different smoothing parameter σg=0.25 , 0.5 fm. For b =0 fm collisions σ is found to be ≪1 in the central region of the fireball and σ ≳1 at the periphery. For b =12 fm collisions σ ≳1 is observed for some events. The e-by-e correlation between σ and the fluid energy density (ɛ ) is studied. We did not find strong correlation between σ and ɛ at the center of the fireball, whereas they are mostly anticorrelated at the periphery of the fireball.
Spatial variability of the Arctic Ocean's double-diffusive staircase
NASA Astrophysics Data System (ADS)
Shibley, N. C.; Timmermans, M.-L.; Carpenter, J. R.; Toole, J. M.
2017-02-01
The Arctic Ocean thermohaline stratification frequently exhibits a staircase structure overlying the Atlantic Water Layer that can be attributed to the diffusive form of double-diffusive convection. The staircase consists of multiple layers of O(1) m in thickness separated by sharp interfaces, across which temperature and salinity change abruptly. Through a detailed analysis of Ice-Tethered Profiler measurements from 2004 to 2013, the double-diffusive staircase structure is characterized across the entire Arctic Ocean. We demonstrate how the large-scale Arctic Ocean circulation influences the small-scale staircase properties. These staircase properties (layer thicknesses and temperature and salinity jumps across interfaces) are examined in relation to a bulk vertical density ratio spanning the staircase stratification. We show that the Lomonosov Ridge serves as an approximate boundary between regions of low density ratio (approximately 3-4) on the Eurasian side and higher density ratio (approximately 6-7) on the Canadian side. We find that the Eurasian Basin staircase is characterized by fewer, thinner layers than that in the Canadian Basin, although the margins of all basins are characterized by relatively thin layers and the absence of a well-defined staircase. A double-diffusive 4/3 flux law parametrization is used to estimate vertical heat fluxes in the Canadian Basin to be O(0.1) W m-2. It is shown that the 4/3 flux law may not be an appropriate representation of heat fluxes through the Eurasian Basin staircase. Here molecular heat fluxes are estimated to be between O(0.01) and O(0.1) W m-2. However, many uncertainties remain about the exact nature of these fluxes.
NASA Technical Reports Server (NTRS)
Smith, J. M.; Nichols, L. D.
1977-01-01
The value of percent seed, oxygen to fuel ratio, combustion pressure, Mach number, and magnetic field strength which maximize either the electrical conductivity or power density at the entrance of an MHD power generator was obtained. The working fluid is the combustion product of H2 and O2 seeded with CsOH. The ideal theoretical segmented Faraday generator along with an empirical form found from correlating the data of many experimenters working with generators of different sizes, electrode configurations, and working fluids, are investigated. The conductivity and power densities optimize at a seed fraction of 3.5 mole percent and an oxygen to hydrogen weight ratio of 7.5. The optimum values of combustion pressure and Mach number depend on the operating magnetic field strength.
High-flux beam source of fast neutral helium.
Fahey, D W; Schearer, L D; Parks, W F
1978-04-01
A high-flux beam source of fast neutral helium has been constructed by extending the designs of previous authors. The source is a dc or pulsed electric discharge in an expanding gas nozzle. The beam produced has a flux on the order of 10(15) atoms/s sr and a mean velocity on the order of 10(7) cm/s. The composition of the beam has been determined by the use of particle detectors and by the observation of the excitation of certain target gases. An upper bound of 3.7 x 10(-5) has been estimated for the He(2(3)S(1))/He((1)S(0))beam density ratio and a value of 0.2 found for the He(+)/He(1(1)S(0)) beam density ratio.
A review of models and micrometeorological methods used to estimate wetland evapotranspiration
Drexler, J.Z.; Snyder, R.L.; Spano, D.; Paw, U.K.T.
2004-01-01
Within the past decade or so, the accuracy of evapotranspiration (ET) estimates has improved due to new and increasingly sophisticated methods. Yet despite a plethora of choices concerning methods, estimation of wetland ET remains insufficiently characterized due to the complexity of surface characteristics and the diversity of wetland types. In this review, we present models and micrometeorological methods that have been used to estimate wetland ET and discuss their suitability for particular wetland types. Hydrological, soil monitoring and lysimetric methods to determine ET are not discussed. Our review shows that, due to the variability and complexity of wetlands, there is no single approach that is the best for estimating wetland ET. Furthermore, there is no single foolproof method to obtain an accurate, independent measure of wetland ET. Because all of the methods reviewed, with the exception of eddy covariance and LIDAR, require measurements of net radiation (Rn) and soil heat flux (G), highly accurate measurements of these energy components are key to improving measurements of wetland ET. Many of the major methods used to determine ET can be applied successfully to wetlands of uniform vegetation and adequate fetch, however, certain caveats apply. For example, with accurate Rn and G data and small Bowen ratio (??) values, the Bowen ratio energy balance method can give accurate estimates of wetland ET. However, large errors in latent heat flux density can occur near sunrise and sunset when the Bowen ratio ?? ??? - 1??0. The eddy covariance method provides a direct measurement of latent heat flux density (??E) and sensible heat flux density (II), yet this method requires considerable expertise and expensive instrumentation to implement. A clear advantage of using the eddy covariance method is that ??E can be compared with Rn-G H, thereby allowing for an independent test of accuracy. The surface renewal method is inexpensive to replicate and, therefore, shows particular promise for characterizing variability in ET as a result of spatial heterogeneity. LIDAR is another method that has special utility in a heterogeneous wetland environment, because it provides an integrated value for ET from a surface. The main drawback of LIDAR is the high cost of equipment and the need for an independent ET measure to assess accuracy. If Rn and G are measured accurately, the Priestley-Taylor equation can be used successfully with site-specific calibration factors to estimate wetland ET. The 'crop' cover coefficient (Kc) method can provide accurate wetland ET estimates if calibrated for the environmental and climatic characteristics of a particular area. More complicated equations such as the Penman and Penman-Monteith equations also can be used to estimate wetland ET, but surface variability and lack of information on aerodynamic and surface resistances make use of such equations somewhat questionable. ?? 2004 John Wiley and Sons, Ltd.
REVERBERATION AND PHOTOIONIZATION ESTIMATES OF THE BROAD-LINE REGION RADIUS IN LOW-z QUASARS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Negrete, C. Alenka; Dultzin, Deborah; Marziani, Paola
2013-07-01
Black hole mass estimation in quasars, especially at high redshift, involves the use of single-epoch spectra with signal-to-noise ratio and resolution that permit accurate measurement of the width of a broad line assumed to be a reliable virial estimator. Coupled with an estimate of the radius of the broad-line region (BLR) this yields the black hole mass M{sub BH}. The radius of the BLR may be inferred from an extrapolation of the correlation between source luminosity and reverberation-derived r{sub BLR} measures (the so-called Kaspi relation involving about 60 low-z sources). We are exploring a different method for estimating r{sub BLR}more » directly from inferred physical conditions in the BLR of each source. We report here on a comparison of r{sub BLR} estimates that come from our method and from reverberation mapping. Our ''photoionization'' method employs diagnostic line intensity ratios in the rest-frame range 1400-2000 A (Al III {lambda}1860/Si III] {lambda}1892, C IV {lambda}1549/Al III {lambda}1860) that enable derivation of the product of density and ionization parameter with the BLR distance derived from the definition of the ionization parameter. We find good agreement between our estimates of the density, ionization parameter, and r{sub BLR} and those from reverberation mapping. We suggest empirical corrections to improve the agreement between individual photoionization-derived r{sub BLR} values and those obtained from reverberation mapping. The results in this paper can be exploited to estimate M{sub BH} for large samples of high-z quasars using an appropriate virial broadening estimator. We show that the width of the UV intermediate emission lines are consistent with the width of H{beta}, thereby providing a reliable virial broadening estimator that can be measured in large samples of high-z quasars.« less
The role of skin biopsy in differentiating small-fiber neuropathy from ganglionopathy.
Provitera, V; Gibbons, C H; Wendelschafer-Crabb, G; Donadio, V; Vitale, D F; Loavenbruck, A; Stancanelli, A; Caporaso, G; Liguori, R; Wang, N; Santoro, L; Kennedy, W R; Nolano, M
2018-06-01
We aimed to test the clinical utility of the leg:thigh intraepidermal nerve-fiber (IENF) density ratio as a parameter to discriminate between length-dependent small-fiber neuropathy (SFN) and small-fiber sensory ganglionopathy (SFSG) in subjects with signs and symptoms of small-fiber pathology. We retrospectively evaluated thigh and leg IENF density in 314 subjects with small-fiber pathology (173 with distal symmetrical length-dependent SFN and 141 with non-length-dependent SFSG). A group of 288 healthy subjects was included as a control group. The leg:thigh IENF density ratio was calculated for all subjects. We used receiver operating characteristic curve analyses to assess the ability of this parameter to discriminate between length-dependent SFN and SFSG, and the decision curve analysis to estimate its net clinical benefit. In patients with neuropathy, the mean IENF density was 14.8 ± 6.8/mm at the thigh (14.0 ± 6.9/mm in length-dependent SFN and 15.9 ± 6.7/mm in patients with SFSG) and 7.5 ± 4.5/mm at the distal leg (5.4 ± 3.2/mm in patients with length-dependent SFN and 10.1 ± 4.6/mm in patients with SFSG). The leg:thigh IENF density ratio was significantly (P < 0.01) lower in patients with length-dependent SFN (0.44 ± 0.23) compared with patients with SFSG (0.68 ± 0.28). The area under the curve of the receiver operating characteristic analysis to discriminate between patients with length-dependent SFN and SFSG was 0.79. The decision curve analysis demonstrated the clinical utility of this parameter. The leg:thigh IENF ratio represents a valuable tool in the differential diagnosis between SFSG and length-dependent SFN. © 2018 EAN.
Asset allocation using option-implied moments
NASA Astrophysics Data System (ADS)
Bahaludin, H.; Abdullah, M. H.; Tolos, S. M.
2017-09-01
This study uses an option-implied distribution as the input in asset allocation. The computation of risk-neutral densities (RND) are based on the Dow Jones Industrial Average (DJIA) index option and its constituents. Since the RNDs estimation does not incorporate risk premium, the conversion of RND into risk-world density (RWD) is required. The RWD is obtained through parametric calibration using the beta distributions. The mean, volatility, and covariance are then calculated to construct the portfolio. The performance of the portfolio is evaluated by using portfolio volatility and Sharpe ratio.
Coronal loop seismology using damping of standing kink oscillations by mode coupling
NASA Astrophysics Data System (ADS)
Pascoe, D. J.; Goddard, C. R.; Nisticò, G.; Anfinogentov, S.; Nakariakov, V. M.
2016-05-01
Context. Kink oscillations of solar coronal loops are frequently observed to be strongly damped. The damping can be explained by mode coupling on the condition that loops have a finite inhomogeneous layer between the higher density core and lower density background. The damping rate depends on the loop density contrast ratio and inhomogeneous layer width. Aims: The theoretical description for mode coupling of kink waves has been extended to include the initial Gaussian damping regime in addition to the exponential asymptotic state. Observation of these damping regimes would provide information about the structuring of the coronal loop and so provide a seismological tool. Methods: We consider three examples of standing kink oscillations observed by the Atmospheric Imaging Assembly (AIA) of the Solar Dynamics Observatory (SDO) for which the general damping profile (Gaussian and exponential regimes) can be fitted. Determining the Gaussian and exponential damping times allows us to perform seismological inversions for the loop density contrast ratio and the inhomogeneous layer width normalised to the loop radius. The layer width and loop minor radius are found separately by comparing the observed loop intensity profile with forward modelling based on our seismological results. Results: The seismological method which allows the density contrast ratio and inhomogeneous layer width to be simultaneously determined from the kink mode damping profile has been applied to observational data for the first time. This allows the internal and external Alfvén speeds to be calculated, and estimates for the magnetic field strength can be dramatically improved using the given plasma density. Conclusions: The kink mode damping rate can be used as a powerful diagnostic tool to determine the coronal loop density profile. This information can be used for further calculations such as the magnetic field strength or phase mixing rate.
Mass motions in the solar chromosphere and transition zone
NASA Technical Reports Server (NTRS)
Mein, P.; Simon, G.; Vial, J. C.; Shine, R. A.
1982-01-01
A comparison is made between H-alpha and C IV observations of Active Region 2717 on October 9, 1980. On the basis of this comparison, it is found that upward velocities are present above sunspots in the chromosphere-corona transition zone (20 km/s). The downward velocities are found to be well correlated in both lines. Doppler-shift ratios between C IV and H-alpha levels (approximately 10) are seen to be much smaller than expected from density ratio estimates. The comparison is seen as suggesting that flow lines are probably far from vertical in the transition zone. It is pointed out, however, that this depends on model densities that may not be correct. A simple method for comparing matter flows is presented. The best fit between H-alpha and C IV levels is obtained when C IV Doppler shifts are multiplied by the line intensity to the power 0.5 (approximately) in order to make allowance for density fluctuations.
Pérez-Irineo, Gabriela; Santos-Moreno, Antonio
2014-12-01
The ocelot Leopardus pardalis is of particular significance in terrestrial communities due to its ecological role within the group of small-sized felids and as a mesopredator. However, despite the reduction of ocelot habitat in Southeast Mexico, there are still very few ecological studies. This research aimed to contribute with some ecological aspects of the species in this region. For this, 29 camera trap stations were established in a rain forest in Los Chimalapas (an area of 22 km2) during a two years period (March 2011-June, 2013), in Oaxaca state, Southeast Mexico. Data allowed the estimation of the population density, activity pattern, sex ratio, residence time, and spatial distribution. Population density was calculated using Capture-Recapture Models for demographically open populations; besides, circular techniques were used to determine if nocturnal and diurnal activity varied significantly over the seasons, and Multiple Discriminant Analysis was used to determine which of the selected environmental variables best explained ocelot abundance in the region. A total of 103 ocelot records were obtained, with a total sampling effort of 8,529 trap-days. Density of 22-38 individuals/100 km2 was estimated. Ocelot population had a high proportion of transient individuals in the zone (55%), and the sex ratio was statistically equal to 1:1. Ocelot activity was more frequent at night (1:00-6:00h), but it also exhibited diurnal activity throughout the study period. Ocelot spatial distribution was positively affected by the proximity to the village as well as by the amount of prey. The ocelot population here appears to be stable, with a density similar to other regions in Central and South America, which could be attributed to the diversity of prey species and a low degree of disturbance in Los Chimalapas.
Residential traffic density and childhood leukemia risk.
Von Behren, Julie; Reynolds, Peggy; Gunier, Robert B; Rull, Rudolph P; Hertz, Andrew; Urayama, Kevin Y; Kronish, Daniel; Buffler, Patricia A
2008-09-01
Exposures to carcinogenic compounds from vehicle exhaust may increase childhood leukemia risk, and the timing of this exposure may be important. We examined the association between traffic density and childhood leukemia risk for three time periods: birth, time of diagnosis, and lifetime average, based on complete residential history in a case-control study. Cases were rapidly ascertained from participating hospitals in northern and central California between 1995 and 2002. Controls were selected from birth records, individually matched on age, sex, race, and Hispanic ethnicity. Traffic density was calculated by estimating total vehicle miles traveled per square mile within a 500-foot (152 meter) radius area around each address. We used conditional logistic regression analyses to account for matching factors and to adjust for household income. We included 310 cases of acute lymphocytic leukemias (ALL) and 396 controls in our analysis. The odds ratio for ALL and residential traffic density above the 75th percentile, compared with subjects with zero traffic density, was 1.17 [95% confidence interval (95% CI), 0.76-1.81] for residence at diagnosis and 1.11 (95% CI, 0.70-1.78) for the residence at birth. For average lifetime traffic density, the odds ratio was 1.24 (95% CI, 0.74-2.08) for the highest exposure category. Living in areas of high traffic density during any of the exposure time periods was not associated with increased risk of childhood ALL in this study.
NASA Astrophysics Data System (ADS)
Bai, Cheng-lin; Cheng, Zhi-hui
2016-09-01
In order to further improve the carrier synchronization estimation range and accuracy at low signal-to-noise ratio ( SNR), this paper proposes a code-aided carrier synchronization algorithm based on improved nonbinary low-density parity-check (NB-LDPC) codes to study the polarization-division-multiplexing coherent optical orthogonal frequency division multiplexing (PDM-CO-OFDM) system performance in the cases of quadrature phase shift keying (QPSK) and 16 quadrature amplitude modulation (16-QAM) modes. The simulation results indicate that this algorithm can enlarge frequency and phase offset estimation ranges and enhance accuracy of the system greatly, and the bit error rate ( BER) performance of the system is improved effectively compared with that of the system employing traditional NB-LDPC code-aided carrier synchronization algorithm.
Kayen, Robert E.; Barnhardt, Walter A.; Ashford, Scott; Rollins, Kyle
2000-01-01
A ground penetrating radar (GPR) experiment at the Treasure Island Test Site [TILT] was performed to non-destructively image the soil column for changes in density prior to, and following, a liquefaction event. The intervening liquefaction was achieved by controlled blasting. A geotechnical borehole radar technique was used to acquire high-resolution 2-D radar velocity data. This method of non-destructive site characterization uses radar trans-illumination surveys through the soil column and tomographic data manipulation techniques to construct radar velocity tomograms, from which averaged void ratios can be derived at 0.25 - 0.5m pixel footprints. Tomograms of void ratio were constructed through the relation between soil porosity and dielectric constant. Both pre- and post-blast tomograms were collected and indicate that liquefaction related densification occurred at the site. Volumetric strains estimated from the tomograms correlate well with the observed settlement at the site. The 2-D imagery of void ratio can serve as high-resolution data layers for numerical site response analysis.
IRT-LR-DIF with Estimation of the Focal-Group Density as an Empirical Histogram
ERIC Educational Resources Information Center
Woods, Carol M.
2008-01-01
Item response theory-likelihood ratio-differential item functioning (IRT-LR-DIF) is used to evaluate the degree to which items on a test or questionnaire have different measurement properties for one group of people versus another, irrespective of group-mean differences on the construct. Usually, the latent distribution is presumed normal for both…
Monitoring Saturn's Upper Atmosphere Density Variations Using Helium 584 Airglow
NASA Astrophysics Data System (ADS)
Parkinson, Chris
2017-10-01
The study of He 584 Å brightnesses is interesting as the EUV (Extreme UltraViolet) planetary airglow have the potential to yield useful information about mixing and other important parameters in its thermosphere. Resonance scattering of sunlight by He atoms is the principal source of the planetary emission of He 585 Å. The principal parameter involved in determining the He 584 Å albedo are the He volume mixing ratio, f_He, well below the homopause. Our main science objective is to estimate the helium mixing ratio in the lower atmosphere. Specifically, He emissions come from above the homopause where optical depth trau=1 in H2 and therefore the interpretation depends mainly on two parameters: He mixing ratio of the lower atmosphere and K_z. The occultations of Koskinen et al (2015) give K_z with an accuracy that has never been possible before and the combination of occultations and airglow therefore provide estimates of the mixing ratio in the lower atmosphere. We make these estimates at several locations that can be reasonably studied with both occultations and airglow and then average the results. Our results lead to a greatly improved estimate of the mixing ratio of He in the upper atmosphere and below. The second objective is to constrain the dynamics in the atmosphere by using the estimate of the He mixing ratio from the main objective. Once we have an estimate of the He mixing ratio in the lower atmosphere that agrees with both occultations and airglow, helium becomes an effective tracer species as any variations in the Cassini UVIS helium data are direct indicator of changes in K_z i.e., dynamics. Our third objective is to connect this work to our Cassini UVIS data He 584 Å airglow analyses as they both cover the time span of the observations and allow us to monitor changes in the airglow observations that may correlate with changes in the state of the atmosphere as revealed by the occultations Saturn's upper thermosphere. This work helps to determine the mixing ratio of He and constrain dynamics in the upper atmosphere, both of which are high level science objectives of the Cassini mission.
Estimating Allee dynamics before they can be observed: polar bears as a case study.
Molnár, Péter K; Lewis, Mark A; Derocher, Andrew E
2014-01-01
Allee effects are an important component in the population dynamics of numerous species. Accounting for these Allee effects in population viability analyses generally requires estimates of low-density population growth rates, but such data are unavailable for most species and particularly difficult to obtain for large mammals. Here, we present a mechanistic modeling framework that allows estimating the expected low-density growth rates under a mate-finding Allee effect before the Allee effect occurs or can be observed. The approach relies on representing the mechanisms causing the Allee effect in a process-based model, which can be parameterized and validated from data on the mechanisms rather than data on population growth. We illustrate the approach using polar bears (Ursus maritimus), and estimate their expected low-density growth by linking a mating dynamics model to a matrix projection model. The Allee threshold, defined as the population density below which growth becomes negative, is shown to depend on age-structure, sex ratio, and the life history parameters determining reproduction and survival. The Allee threshold is thus both density- and frequency-dependent. Sensitivity analyses of the Allee threshold show that different combinations of the parameters determining reproduction and survival can lead to differing Allee thresholds, even if these differing combinations imply the same stable-stage population growth rate. The approach further shows how mate-limitation can induce long transient dynamics, even in populations that eventually grow to carrying capacity. Applying the models to the overharvested low-density polar bear population of Viscount Melville Sound, Canada, shows that a mate-finding Allee effect is a plausible mechanism for slow recovery of this population. Our approach is generalizable to any mating system and life cycle, and could aid proactive management and conservation strategies, for example, by providing a priori estimates of minimum conservation targets for rare species or minimum eradication targets for pests and invasive species.
Estimating Allee Dynamics before They Can Be Observed: Polar Bears as a Case Study
Molnár, Péter K.; Lewis, Mark A.; Derocher, Andrew E.
2014-01-01
Allee effects are an important component in the population dynamics of numerous species. Accounting for these Allee effects in population viability analyses generally requires estimates of low-density population growth rates, but such data are unavailable for most species and particularly difficult to obtain for large mammals. Here, we present a mechanistic modeling framework that allows estimating the expected low-density growth rates under a mate-finding Allee effect before the Allee effect occurs or can be observed. The approach relies on representing the mechanisms causing the Allee effect in a process-based model, which can be parameterized and validated from data on the mechanisms rather than data on population growth. We illustrate the approach using polar bears (Ursus maritimus), and estimate their expected low-density growth by linking a mating dynamics model to a matrix projection model. The Allee threshold, defined as the population density below which growth becomes negative, is shown to depend on age-structure, sex ratio, and the life history parameters determining reproduction and survival. The Allee threshold is thus both density- and frequency-dependent. Sensitivity analyses of the Allee threshold show that different combinations of the parameters determining reproduction and survival can lead to differing Allee thresholds, even if these differing combinations imply the same stable-stage population growth rate. The approach further shows how mate-limitation can induce long transient dynamics, even in populations that eventually grow to carrying capacity. Applying the models to the overharvested low-density polar bear population of Viscount Melville Sound, Canada, shows that a mate-finding Allee effect is a plausible mechanism for slow recovery of this population. Our approach is generalizable to any mating system and life cycle, and could aid proactive management and conservation strategies, for example, by providing a priori estimates of minimum conservation targets for rare species or minimum eradication targets for pests and invasive species. PMID:24427306
Optimal Background Estimators in Single-Molecule FRET Microscopy.
Preus, Søren; Hildebrandt, Lasse L; Birkedal, Victoria
2016-09-20
Single-molecule total internal reflection fluorescence (TIRF) microscopy constitutes an umbrella of powerful tools that facilitate direct observation of the biophysical properties, population heterogeneities, and interactions of single biomolecules without the need for ensemble synchronization. Due to the low signal/noise ratio in single-molecule TIRF microscopy experiments, it is important to determine the local background intensity, especially when the fluorescence intensity of the molecule is used quantitatively. Here we compare and evaluate the performance of different aperture-based background estimators used particularly in single-molecule Förster resonance energy transfer. We introduce the general concept of multiaperture signatures and use this technique to demonstrate how the choice of background can affect the measured fluorescence signal considerably. A new, to our knowledge, and simple background estimator is proposed, called the local statistical percentile (LSP). We show that the LSP background estimator performs as well as current background estimators at low molecular densities and significantly better in regions of high molecular densities. The LSP background estimator is thus suited for single-particle TIRF microscopy of dense biological samples in which the intensity itself is an observable of the technique. Copyright © 2016 Biophysical Society. Published by Elsevier Inc. All rights reserved.
Kasaragod, Deepa; Makita, Shuichi; Hong, Young-Joo; Yasuno, Yoshiaki
2017-01-01
This paper presents a noise-stochastic corrected maximum a posteriori estimator for birefringence imaging using Jones matrix optical coherence tomography. The estimator described in this paper is based on the relationship between probability distribution functions of the measured birefringence and the effective signal to noise ratio (ESNR) as well as the true birefringence and the true ESNR. The Monte Carlo method is used to numerically describe this relationship and adaptive 2D kernel density estimation provides the likelihood for a posteriori estimation of the true birefringence. Improved estimation is shown for the new estimator with stochastic model of ESNR in comparison to the old estimator, both based on the Jones matrix noise model. A comparison with the mean estimator is also done. Numerical simulation validates the superiority of the new estimator. The superior performance of the new estimator was also shown by in vivo measurement of optic nerve head. PMID:28270974
Direct Importance Estimation with Gaussian Mixture Models
NASA Astrophysics Data System (ADS)
Yamada, Makoto; Sugiyama, Masashi
The ratio of two probability densities is called the importance and its estimation has gathered a great deal of attention these days since the importance can be used for various data processing purposes. In this paper, we propose a new importance estimation method using Gaussian mixture models (GMMs). Our method is an extention of the Kullback-Leibler importance estimation procedure (KLIEP), an importance estimation method using linear or kernel models. An advantage of GMMs is that covariance matrices can also be learned through an expectation-maximization procedure, so the proposed method — which we call the Gaussian mixture KLIEP (GM-KLIEP) — is expected to work well when the true importance function has high correlation. Through experiments, we show the validity of the proposed approach.
Mammographic breast density in recent and longer-standing ethiopian immigrants to israel.
Sklair-Levy, Miri; Segev, Anat; Sella, Tamar; Calderon-Margalit, Ronit; Zippel, Douglas
2018-04-23
High breast density is associated with an increased risk of breast cancer development. Little is known concerning ethnic variations in breast density and its relevant contributing factors. We aimed to study breast density among Ethiopian immigrants to Israel in comparison with Israeli-born women and to determine any effect on breast density of the length of residency in the immigrant population. Mammographic breast density using the BI-RADS system was estimated and compared between 77 women of Ethiopian origin who live in Israel and 177 Israeli-born controls. Logistic regression analysis was performed to estimate the odds ratios (OR) for high density (BI-RADS score ≥ 3) vs low density (BI-RADS score < 3) cases, comparing the 2 origin groups. Ethiopian-born women had a crude OR of 0.15 (95% CI: 0.08-0.26) for high breast density compared with Israeli-born women. Adjustments for various cofounders did not affect the results. Time since immigration to Israel seemed to modify the relationship, with a stronger association for women who immigrated within 2 years prior to mammography (OR:0.07, 95% CI: 0.03-0.17) as opposed to women with a longer residency stay in Israel (OR:0.23, 95% CI:0.10-0.50). Adjustments of various confounders did not alter these findings. Breast density in Ethiopian immigrants to Israel is significantly lower than that of Israeli-born controls. Our study suggests a positive association between time since immigration and breast density. Future studies are required to define the possible effects of dietary change on mammographic density following immigration. © 2018 Wiley Periodicals, Inc.
An ab-initio investigation on SrLa intermetallic compound
NASA Astrophysics Data System (ADS)
Kumar, S. Ramesh; Jaiganesh, G.; Jayalakshmi, V.
2018-05-01
The electronic, elastic and thermodynamic property of CsCl-type SrLa are investigated through density functional theory. The energy-volume relation for this compound has been obtained. The band structure, density of states and charge density in (110) plane are also examined. The elastic constants (C11, C12 and C44) of SrLa is computed, then, using these elastic constants, the bulk moduli, shear moduli, Young's moduli and Poisson's ratio are also derived. The calculated results showed that CsCl-type SrLa is ductile at ambient conditions. The thermodynamic quantities such as free energy, entropy and heat capacity as a function of temperature are estimated and the results obtained are discussed.
Efficient star formation in the spiral arms of M51
NASA Technical Reports Server (NTRS)
Lord, Steven D.; Young, Judith S.
1990-01-01
The molecular, neutral, and ionized hydrogen distributions in the Sbc galaxy M51 (NGC 5194) are compared. To estimate H2 surface densities observations of the CO (J = 1 - 0) transition were made in 60 positions out to a radius of 155 arcsec. Extinction-corrected H-alpha intensities were used to compute the detailed massive star formation rates (MSFRs) in the disk. Estimates of the gas surface density, the MSFR, and the ratio of these quantities, MSFR/sigma(p), were then examined. The spiral arms were found to exhibit an excess gas density, measuring between 1.4 and 1.6 times the interarm values at 45 arcsec resolution. The total (arm and interarm) gas content and massive star formation rates in concentric annuli in the disk of M51 were computed. The two quantities fall off together with radius, yielding a relatively constant MSFR/sigma(p) with radius. This behavior is not explained by current models of star formation in galactic disks.
Hardrock Elastic Physical Properties: Birch's Seismic Parameter Revisited
NASA Astrophysics Data System (ADS)
Wu, M.; Milkereit, B.
2014-12-01
Identifying rock composition and properties is imperative in a variety of fields including geotechnical engineering, mining, and petroleum exploration, in order to accurately make any petrophysical calculations. Density is, in particular, an important parameter that allows us to differentiate between lithologies and estimate or calculate other petrophysical properties. It is well established that compressional and shear wave velocities of common crystalline rocks increase with increasing densities (i.e. the Birch and Nafe-Drake relationships). Conventional empirical relations do not take into account S-wave velocity. Physical properties of Fe-oxides and massive sulfides, however, differ significantly from the empirical velocity-density relationships. Currently, acquiring in-situ density data is challenging and problematic, and therefore, developing an approximation for density based on seismic wave velocity and elastic moduli would be beneficial. With the goal of finding other possible or better relationships between density and the elastic moduli, a database of density, P-wave velocity, S-wave velocity, bulk modulus, shear modulus, Young's modulus, and Poisson's ratio was compiled based on a multitude of lab samples. The database is comprised of isotropic, non-porous metamorphic rock. Multi-parameter cross plots of the various elastic parameters have been analyzed in order to find a suitable parameter combination that reduces high density outliers. As expected, the P-wave velocity to S-wave velocity ratios show no correlation with density. However, Birch's seismic parameter, along with the bulk modulus, shows promise in providing a link between observed compressional and shear wave velocities and rock densities, including massive sulfides and Fe-oxides.
Nebular and Stellar Dust Extinction Across the Disk of Emission-line Galaxies on Kiloparsec Scales
NASA Astrophysics Data System (ADS)
Hemmati, Shoubaneh; Mobasher, Bahram; Darvish, Behnam; Nayyeri, Hooshang; Sobral, David; Miller, Sarah
2015-11-01
We investigate the resolved kiloparsec-scale stellar and nebular dust distribution in eight star-forming galaxies at z ∼ 0.4 in the Great Observatories Origins Deep Survey fields. This is to get a better understanding of the effect of dust attenuation on measurements of physical properties and its variation with redshift. Constructing the observed spectral energy distributions (SEDs) per pixel, based on seven bands of photometric data from Hubble Space Telescope/Advanced Camera for Surveys and WFC3, we performed pixel-by-pixel SED fits to population synthesis models and estimated the small-scale distribution of stellar dust extinction. We use Hα/Hβ nebular emission line ratios from Keck/DEIMOS high-resolution spectra at each spatial resolution element to measure the amount of attenuation faced by ionized gas at different radii from the centers of galaxies. We find a good agreement between the integrated and median of resolved color excess measurements in our galaxies. The ratio of integrated nebular to stellar dust extinction is always greater than unity, but does not show any trend with stellar mass or star formation rate (SFR). We find that inclination plays an important role in the variation of the nebular to stellar excess ratio. The stellar color excess profiles are found to have higher values at the center compared to outer parts of the disk. However, for lower mass galaxies, a similar trend is not found for the nebular color excess. We find that the nebular color excess increases with stellar mass surface density. This explains the absence of radial trend in the nebular color excess in lower mass galaxies which lack a large radial variation of stellar mass surface density. Using standard conversions of SFR surface density to gas mass surface density, and the relation between dust mass surface density and color excess, we find no significant variation in the dust-to-gas ratio in regions with high gas mass surface densities over the scales probed in this study.
Secondary structure estimation and properties analysis of stretched Asian and Caucasian hair.
Zhou, A J; Liu, H L; Du, Z Q
2015-02-01
In this previous work, we investigated the secondary structure changes of stretched yak hairs by deconvolution, secondary derivation, and curve fitting and determined the number of bands and their positions in order to resolve the protein spectrum of Raman spectroscopy. The secondary structure estimation and properties analysis of stretched Asian and Caucasian hair were investigated by Fourier transform infrared spectroscopy, tensile curves, and measurement of density. The hairs were stretched, dried, and baked at ratios 20%, 40%, 60%, 80% and 100%. The analysis of the amide I band indicated that the transformation from α-helix to β-pleated structure occurred during the stretching process, which could be verified from the tensile analysis. The cysteine oxide in S-O vibration area exhibited that stretching led to the breakage of the disulfide bonds. When the stretching ratio of Caucasian hair was more than a certain ratio, the fiber macromolecular structure was destroyed because Caucasian hair had finer diameter and less medulla than Asian hair. The β turn was easier to retract compared with other conformations, resulted in the content increase. The density measurements revealed that the structure of Caucasian hair was indeed more destroyed than that of Asian hair. The cuticles characterization indicated the length of scales was stretched longer and the thickness became thinner. Caucasian hair tended to collapse to form small fragments at the early stage of stretching. With the increase in stretching ratio, the scales of Caucasian hair lifted up, then flaked off and the scale interval increased accordingly. Asian hair was more easily peeled off than Caucasian hair cuticles with the increase in stretching ratio. The secondary structure of Caucasian hair was destroyed more easily than that of Asian hair. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Improving Frozen Precipitation Density Estimation in Land Surface Modeling
NASA Astrophysics Data System (ADS)
Sparrow, K.; Fall, G. M.
2017-12-01
The Office of Water Prediction (OWP) produces high-value water supply and flood risk planning information through the use of operational land surface modeling. Improvements in diagnosing frozen precipitation density will benefit the NWS's meteorological and hydrological services by refining estimates of a significant and vital input into land surface models. A current common practice for handling the density of snow accumulation in a land surface model is to use a standard 10:1 snow-to-liquid-equivalent ratio (SLR). Our research findings suggest the possibility of a more skillful approach for assessing the spatial variability of precipitation density. We developed a 30-year SLR climatology for the coterminous US from version 3.22 of the Daily Global Historical Climatology Network - Daily (GHCN-D) dataset. Our methods followed the approach described by Baxter (2005) to estimate mean climatological SLR values at GHCN-D sites in the US, Canada, and Mexico for the years 1986-2015. In addition to the Baxter criteria, the following refinements were made: tests were performed to eliminate SLR outliers and frequent reports of SLR = 10, a linear SLR vs. elevation trend was fitted to station SLR mean values to remove the elevation trend from the data, and detrended SLR residuals were interpolated using ordinary kriging with a spherical semivariogram model. The elevation values of each station were based on the GMTED 2010 digital elevation model and the elevation trend in the data was established via linear least squares approximation. The ordinary kriging procedure was used to interpolate the data into gridded climatological SLR estimates for each calendar month at a 0.125 degree resolution. To assess the skill of this climatology, we compared estimates from our SLR climatology with observations from the GHCN-D dataset to consider the potential use of this climatology as a first guess of frozen precipitation density in an operational land surface model. The difference in model derived estimates and GHCN-D observations were assessed using time-series graphs of 2016-2017 winter season SLR observations and climatological estimates, as well as calculating RMSE and variance between estimated and observed values.
Breast cancer screening effect across breast density strata: A case-control study.
van der Waal, Daniëlle; Ripping, Theodora M; Verbeek, André L M; Broeders, Mireille J M
2017-01-01
Breast cancer screening is known to reduce breast cancer mortality. A high breast density may affect this reduction. We assessed the effect of screening on breast cancer mortality in women with dense and fatty breasts separately. Analyses were performed within the Nijmegen (Dutch) screening programme (1975-2008), which invites women (aged 50-74 years) biennially. Performance measures were determined. Furthermore, a case-control study was performed for women having dense and women having fatty breasts. Breast density was assessed visually with a dichotomized Wolfe scale. Breast density data were available for cases. The prevalence of dense breasts among controls was estimated with age-specific rates from the general population. Sensitivity analyses were performed on these estimates. Screening performance was better in the fatty than in the dense group (sensitivity 75.7% vs 57.8%). The mortality reduction appeared to be smaller for women with dense breasts, with an odds ratio (OR) of 0.87 (95% CI 0.52-1.45) in the dense and 0.59 (95% CI 0.44-0.79) in the fatty group. We can conclude that high density results in lower screening performance and appears to be associated with a smaller mortality reduction. Breast density is thus a likely candidate for risk-stratified screening. More research is needed on the association between density and screening harms. © 2016 UICC.
Cost-Effectiveness of Rural Incentive Packages for Graduating Medical Students in Lao PDR.
Keuffell, Eric; Jaskiewicz, Wanda; Theppanya, Khampasong; Tulenko, Kate
2016-10-29
The dearth of health workers in rural settings in Lao People's Democratic Republic (PDR) and other developing countries limits healthcare access and outcomes. In evaluating non-wage financial incentive packages as a potential policy option to attract health workers to rural settings, understanding the expected costs and effects of the various programs ex ante can assist policy-makers in selecting the optimal incentive package. We use discrete choice experiments (DCEs), costing analyses and recent empirical results linking health worker density and health outcomes to estimate the future location decisions of physicians and determine the cost-effectiveness of 15 voluntary incentives packages for new physicians in Lao PDR. Our data sources include a DCE survey completed by medical students (n = 329) in May 2011 and secondary cost, economic and health data. Mixed logit regressions provide the basis for estimating how each incentive package influences rural versus urban location choice over time. We estimate the expected rural density of physicians and the cost-effectiveness of 15 separate incentive packages from a societal perspective. In order to generate the cost-effectiveness ratios we relied on the rural uptake probabilities inferred from the DCEs, the costing data and prior World Health Organization (WHO) estimates that relate health outcomes to health worker density. Relative to no program, the optimal voluntary incentive package would increase rural physician density by 15% by 2016 and 65% by 2041. After incorporating anticipated health effects, seven (three) of the 15 incentive packages have anticipated average cost-effectiveness ratio less than the WHO threshold (three times gross domestic product [GDP] per capita) over a 5-year (30 year) period. The optimal package's incremental cost-effectiveness ratio is $1454/QALY (quality-adjusted life year) over 5 years and $2380/QALY over 30 years. Capital intensive components, such as housing or facility improvement, are not efficient. Conditional on using voluntary incentives, Lao PDR should emphasize non-capital intensive options such as advanced career promotion, transport subsidies and housing allowances to improve physician distribution and rural health outcomes in a cost-effective manner. Other countries considering voluntary incentive programs can implement health worker/trainee DCEs and costing surveys to determine which incentive bundles improve rural uptake most efficiently but should be aware of methodological caveats. © 2017 The Author(s); Published by Kerman University of Medical Sciences. This is an open-access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
A kinetic model for estimating net photosynthetic rates of cos lettuce leaves under pulsed light.
Jishi, Tomohiro; Matsuda, Ryo; Fujiwara, Kazuhiro
2015-04-01
Time-averaged net photosynthetic rate (P n) under pulsed light (PL) is known to be affected by the PL frequency and duty ratio, even though the time-averaged photosynthetic photon flux density (PPFD) is unchanged. This phenomenon can be explained by considering that photosynthetic intermediates (PIs) are pooled during light periods and then consumed by partial photosynthetic reactions during dark periods. In this study, we developed a kinetic model to estimate P n of cos lettuce (Lactuca sativa L. var. longifolia) leaves under PL based on the dynamics of the amount of pooled PIs. The model inputs are average PPFD, duty ratio, and frequency; the output is P n. The rates of both PI accumulation and consumption at a given moment are assumed to be dependent on the amount of pooled PIs at that point. Required model parameters and three explanatory variables (average PPFD, frequency, and duty ratio) were determined for the simulation using P n values under PL based on several combinations of the three variables. The model simulation for various PL levels with a wide range of time-averaged PPFDs, frequencies, and duty ratios further demonstrated that P n under PL with high frequencies and duty ratios was comparable to, but did not exceed, P n under continuous light, and also showed that P n under PL decreased as either frequency or duty ratio was decreased. The developed model can be used to estimate P n under various light environments where PPFD changes cyclically.
NASA Astrophysics Data System (ADS)
Watanabe, Ryoichi; Arakawa, Mototaka; Kanai, Hiroshi
2018-07-01
We proposed a new method for estimating the viscoelastic property of the local region of a sample. The viscoelastic parameters of the phantoms simulating the biological tissues were quantitatively estimated by analyzing the frequency characteristics of displacement generated by acoustic excitation. The samples were locally strained by irradiating them with the ultrasound simultaneously generated from two point-focusing transducers by applying the sum of two signals with slightly different frequencies of approximately 1 MHz. The surface of a phantom was excited in the frequency range of 20–2,000 Hz, and its displacement was measured. The frequency dependence of the acceleration provided by the acoustic radiation force was also measured. From these results, we determined the frequency characteristics of the transfer function from the stress to the strain and estimated the ratio of the elastic modulus to the viscosity modulus (K/η) by fitting the data to the Maxwell model. Moreover, the elastic modulus K was separately estimated from the measured sound velocity and density of the phantom, and the viscosity modulus η was evaluated by substituting the estimated elastic modulus into the obtained K/η ratio.
Hermans, Michel P; Amoussou-Guenou, K Daniel; Bouenizabila, Evariste; Sadikot, Shaukat S; Ahn, Sylvie A; Rousseau, Michel F
The role of high-density lipoprotein cholesterol (HDL-C) as modifiable risk factor for cardiovascular (CV) disease is increasingly debated, notwithstanding the finding that small-dense and dysfunctional HDL are associated with the metabolic syndrome and T2DM. In order to better clarify the epidemiological risk related to HDL of different size/density, without resorting to direct measures, it would seem appropriate to adjust HDL-C to the level of its main apolipoprotein (apoA-I), thereby providing an [HDL-C/apoA-I] ratio. The latter allows not only to estimate an average size for HDLs, but also to derive indices on particle number, cholesterol load, and density. So far, the potential usefulness of this ratio in diabetes is barely addressed. To this end, we sorted 488 male patients with T2DM according to [HDL-C/apoA-I] quartiles (Q), to determine how the ratio relates to cardiometabolic risk, β-cell function, glycaemic control, and micro- and macrovascular complications. Five lipid parameters were derived from the combined determination of HDL-C and apoA-I, namely HDL size; particle number; cholesterol load/particle; apoA-I/particle; and particle density. An unfavorable cardiometabolic profile characterized patients from QI and QII, in which HDLs were pro-atherogenic, denser and apoA-I-depleted. By contrast, QIII patients had an [HDL-C/apoA-I] ratio close to that of non-diabetic controls. QIV patients had better than average HDL size and composition, and in those patients whose [HDL-C/apoA-I] ratio was above normal, a more favorable phenotype was observed regarding lifestyle, anthropometry, metabolic comorbidities, insulin sensitivity, MetS score/severity, glycaemic control, and target-organ damage pregalence in small or large vessels. In conclusion, [HDL-C/apoA-I] and the resulting indices of HDL composition and functionality predict macrovascular risk and β-cell function decline, as well as overall microangiopathic risk, suggesting that this ratio could serve both in cardiometabolic assessment and as biomarker of vascular complications. Copyright © 2016 Diabetes India. Published by Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Peterson, Michael P.; Hunt, Paul; Weiß, Konrad
2018-05-01
"Air population" refers to the total number of people flying above the earth at any point in time. The total number of passengers can then be estimated by multiplying the number of seats for each aircraft by the current seat occupancy rate. Using this method, the estimated air population is determined by state for the airspace over the United States. In the interactive, real-time mapping system, maps are provided to show total air population, the density of air population (air population / area of state), and the ratio of air population to ground population.
Hammes, Jochen; Pietrzyk, Uwe; Schmidt, Matthias; Schicha, Harald; Eschner, Wolfgang
2011-12-01
The recommended target dose in radioiodine therapy of solitary hyperfunctioning thyroid nodules is 300-400Gy and therefore higher than in other radiotherapies. This is due to the fact that an unknown, yet significant portion of the activity is stored in extranodular areas but is neglected in the calculatory dosimetry. We investigate the feasibility of determining the ratio of nodular and extranodular activity concentrations (uptakes) from post-therapeutically acquired planar scintigrams with Monte Carlo simulations in GATE. The geometry of a gamma camera with a high energy collimator was emulated in GATE (Version 5). A geometrical thyroid-neck phantom (GP) and the ICRP reference voxel phantoms "Adult Female" (AF, 16ml thyroid) and "Adult Male" (AM, 19ml thyroid) were used as source regions. Nodules of 1ml and 3ml volume were placed in the phantoms. For each phantom and each nodule 200 scintigraphic acquisitions were simulated. Uptake ratios of nodule and rest of thyroid ranging from 1 to 20 could be created by summation. Quantitative image analysis was performed by investigating the number of simulated counts in regions of interest (ROIs). ROIs were created by perpendicular projection of the phantom onto the camera plane to avoid a user dependant bias. The ratio of count densities in ROIs over the nodule and over the contralateral lobe, which should be least affected by nodular activity, was taken to be the best available measure for the uptake ratios. However, the predefined uptake ratios are underestimated by these count density ratios: For an uptake ratio of 20 the count ratios range from 4.5 (AF, 1ml nodule) to 15.3 (AM, 3ml nodule). Furthermore, the contralateral ROI is more strongly affected by nodular activity than expected: For an uptake ratio of 20 between nodule and rest of thyroid up to 29% of total counts in the ROI over the contralateral lobe are caused by decays in the nodule (AF 3 ml). In the case of the 1ml nodules this effect is smaller: 9-11% (AF) respectively 7-8% (AM). For each phantom, the dependency of count density ratios upon uptake ratios can be modeled well by both linear and quadratic regression (quadratic: r(2)>0.99), yielding sets of parameters which in reverse allow the computation of uptake ratios (and thus dose) from count density ratios. A single regression model obtained by fitting the data of all simulations simultaneously did not provide satisfactory results except for GP, while underestimating the true uptake ratios in AF and overestimating them in AM. The scintigraphic count density ratios depend upon the uptake ratios between nodule and rest of thyroid, upon their volumes, and their respective position in a non-trivial way. Further investigations are required to derive a comprehensive rule to calculate the uptake or dose ratios based on post-therapeutic scintigraphy. Copyright © 2011. Published by Elsevier GmbH.
Favre-Averaged Turbulence Statistics in Variable Density Mixing of Buoyant Jets
NASA Astrophysics Data System (ADS)
Charonko, John; Prestridge, Kathy
2014-11-01
Variable density mixing of a heavy fluid jet with lower density ambient fluid in a subsonic wind tunnel was experimentally studied using Particle Image Velocimetry and Planar Laser Induced Fluorescence to simultaneously measure velocity and density. Flows involving the mixing of fluids with large density ratios are important in a range of physical problems including atmospheric and oceanic flows, industrial processes, and inertial confinement fusion. Here we focus on buoyant jets with coflow. Results from two different Atwood numbers, 0.1 (Boussinesq limit) and 0.6 (non-Boussinesq case), reveal that buoyancy is important for most of the turbulent quantities measured. Statistical characteristics of the mixing important for modeling these flows such as the PDFs of density and density gradients, turbulent kinetic energy, Favre averaged Reynolds stress, turbulent mass flux velocity, density-specific volume correlation, and density power spectra were also examined and compared with previous direct numerical simulations. Additionally, a method for directly estimating Reynolds-averaged velocity statistics on a per-pixel basis is extended to Favre-averages, yielding improved accuracy and spatial resolution as compared to traditional post-processing of velocity and density fields.
Estimation and simulation of multi-beam sonar noise.
Holmin, Arne Johannes; Korneliussen, Rolf J; Tjøstheim, Dag
2016-02-01
Methods for the estimation and modeling of noise present in multi-beam sonar data, including the magnitude, probability distribution, and spatial correlation of the noise, are developed. The methods consider individual acoustic samples and facilitate compensation of highly localized noise as well as subtraction of noise estimates averaged over time. The modeled noise is included in an existing multi-beam sonar simulation model [Holmin, Handegard, Korneliussen, and Tjøstheim, J. Acoust. Soc. Am. 132, 3720-3734 (2012)], resulting in an improved model that can be used to strengthen interpretation of data collected in situ at any signal to noise ratio. Two experiments, from the former study in which multi-beam sonar data of herring schools were simulated, are repeated with inclusion of noise. These experiments demonstrate (1) the potentially large effect of changes in fish orientation on the backscatter from a school, and (2) the estimation of behavioral characteristics such as the polarization and packing density of fish schools. The latter is achieved by comparing real data with simulated data for different polarizations and packing densities.
NASA Astrophysics Data System (ADS)
Sánchez-Sesma, Francisco J.; Piña, José; García-Jerez, Antonio; Luzón, Francisco; Perton, Mathieu
2014-05-01
The microtremor H/V spectral ratio (MHVSR) is widely used to assess the dominant frequency of soil sites. Measurements are relatively simple as only one station is needed. It has been recently proposed a theoretical basis linking ambient noise vibrations with diffuse field theory. In this theory the directional energy density computed as the average spectral density of motion at a point, is proportional to the imaginary part of Green function at the observation point. Appropriate normalization is crucial to make the experimental spectral ratios closer to the theoretical counterpart. According to this theory the square of H/V is twice the ratio ImG11 / ImG33, where ImG11 and ImG33 are the imaginary part of Green functions at the load point for horizontal and vertical components, respectively. In order to efficiently compute the imaginary part of Green's functions in a layered medium we start from an integral on the complex k plane and, using Harkrider's nomenclature, separate formulae for body-, Rayleigh-, and Love-wave components to the spectral densities are obtained. Then the poles allow for integration using the Cauchy residue theorem plus some contributions from branch integrals. It is possible to isolate pseudo reflections from ImG11 and thus constrain the inversion of soil profile. We assess ImG11 removing the influence of illumination spectrum using the H/V spectral ratio and an estimate of ImG33 (from an a priori model) by means of ImG11=0.5(H/V )2*ImG33. It has been found that ImG33 is less sensitive to details of stratigraphy. In fact, the Poisson ratio of the uppermost layer controls the slope in high frequency. With the obtained model ImG33 can be updated and the estimate of ImG11 will be improved. ACKNOWLEDGEMENTS. This research has been partially supported by DGAPA-UNAM under Project IN104712, by the MINECO research project CGL2010-16250, Spain, by the EU with FEDER, and the AXA Research Fund.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Behnke, A.R.; Taylor, W.L.
Whole-body density determinations are reported for a small group of athletes (weight lifters), and an analysis is presented of data derived from several investigations in which similar techniques were employed to measure total body water and the total exchangeable sodium, chloride (bromine space), and potassium in the body. The mean value for body density (1.080) obtained on the athletes was similar to that obtained previously on professional football players and much higher than the mean value usually obtained on young men (-- 1.060). In addition to the low body fat content characteristic of the athletes, the ratio of excha&eable K/submore » e/ to Cl/sub e/ was higher in these men than in men of average physique. In turn, the values for K/sub e/Cl/sub e/ were even lower in obese individuals and in patients. In healthy individuals, the sum (K/sub e/ + Cl/sub e/) is highly correlated (r = 0.99) with total body water, and this finding provides an independent estimate of lean body weight. In patients afflicted with certain types of chronic diseases, particularly those associated with the edematous state, the exchangeable Na/sub e/ to K/sub e/ ratio is strikingly higher than it is in healthy individuals. Estimates of the amount of transudate in edematous patients may be made from analyses of total body water andd total exchangeable Na/sub e/ and K/sub e/. Additional determinations, such as whole body density and red cell mass, are required to assess accurately the size of the lean body mass in these patients. Normal adult lean body size prior to illness may be estimated from skeletal measurements. (auth)« less
Rock spatial densities on the rims of the Tycho secondary craters in Mare Nectaris
NASA Astrophysics Data System (ADS)
Basilevsky, A. T.; Michael, G. G.; Kozlova, N. A.
2018-04-01
The aim of this work is to check whether the technique of estimation of age of small lunar craters based on spatial density of rock boulders on their rims described in Basilevsky et al. (2013, 2015b) and Li et al. (2017) for the craters < 1 km in diameter is applicable to the larger craters. The work presents the rock counts on the rims of four craters having diameters 1000, 1100, 1240 and 1400 m located in Mare Nectaris. These craters are secondaries of the primary crater Tycho, whose age was found to be 109 ± 4 Ma (Stoffler and Ryder, 2001) so this may be taken as the age of the four craters, too. Using the dependence of the rock spatial densities at the crater rims on the crater age for the case of mare craters (Li et al., 2017) our measured rock densities correspond to ages from ∼100 to 130 Ma. These estimates are reasonably close to the given age of the primary crater Tycho. This, in turn, suggests that this technique of crater age estimation is applicable to craters up to ∼1.5 km in diameter. For the four considered craters we also measured their depth/diameter ratios and the maximum angles of the crater inner slopes. For the considered craters it was found that with increasing crater diameter, the depth/diameter ratios and maximum angles of internal slopes increase, but the values of these parameters for specific craters may deviate significantly from the general trends. The deviations probably result from some dissimilarities in the primary crater geometries, that may be due to crater to crater differences in characteristics of impactors (e.g., in their bulk densities) and/or differences in the mechanical properties of the target. It may be possible to find secondaries of crater Tycho in the South pole area and, if so, they may be studied to check the specifics and rates of the rock boulder degradation in the lunar polar environment.
K. Novick; J. Walker; W.S. Chan; A. Schmidt; C. Sobek; J.M. Vose
2013-01-01
A new class of enclosed path gas analyzers suitable for eddy covariance applications combines the advantages of traditional closed-path systems (small density corrections, good performance in poor weather) and open-path systems (good spectral response, low power requirements), and permits estimates of instantaneous gas mixing ratio. Here, the extent to which these...
NASA Astrophysics Data System (ADS)
Pan, Wenyong; Innanen, Kristopher A.; Geng, Yu
2018-03-01
Seismic full-waveform inversion (FWI) methods hold strong potential to recover multiple subsurface elastic properties for hydrocarbon reservoir characterization. Simultaneously updating multiple physical parameters introduces the problem of interparameter tradeoff, arising from the covariance between different physical parameters, which increases nonlinearity and uncertainty of multiparameter FWI. The coupling effects of different physical parameters are significantly influenced by model parameterization and acquisition arrangement. An appropriate choice of model parameterization is critical to successful field data applications of multiparameter FWI. The objective of this paper is to examine the performance of various model parameterizations in isotropic-elastic FWI with walk-away vertical seismic profile (W-VSP) dataset for unconventional heavy oil reservoir characterization. Six model parameterizations are considered: velocity-density (α, β and ρ΄), modulus-density (κ, μ and ρ), Lamé-density (λ, μ΄ and ρ‴), impedance-density (IP, IS and ρ″), velocity-impedance-I (α΄, β΄ and I_P^'), and velocity-impedance-II (α″, β″ and I_S^'). We begin analyzing the interparameter tradeoff by making use of scattering radiation patterns, which is a common strategy for qualitative parameter resolution analysis. In this paper, we discuss the advantages and limitations of the scattering radiation patterns and recommend that interparameter tradeoffs be evaluated using interparameter contamination kernels, which provide quantitative, second-order measurements of the interparameter contaminations and can be constructed efficiently with an adjoint-state approach. Synthetic W-VSP isotropic-elastic FWI experiments in the time domain verify our conclusions about interparameter tradeoffs for various model parameterizations. Density profiles are most strongly influenced by the interparameter contaminations; depending on model parameterization, the inverted density profile can be over-estimated, under-estimated or spatially distorted. Among the six cases, only the velocity-density parameterization provides stable and informative density features not included in the starting model. Field data applications of multicomponent W-VSP isotropic-elastic FWI in the time domain were also carried out. The heavy oil reservoir target zone, characterized by low α-to-β ratios and low Poisson's ratios, can be identified clearly with the inverted isotropic-elastic parameters.
Pan, Wenyong; Innanen, Kristopher A.; Geng, Yu
2018-03-06
We report seismic full-waveform inversion (FWI) methods hold strong potential to recover multiple subsurface elastic properties for hydrocarbon reservoir characterization. Simultaneously updating multiple physical parameters introduces the problem of interparameter tradeoff, arising from the covariance between different physical parameters, which increases nonlinearity and uncertainty of multiparameter FWI. The coupling effects of different physical parameters are significantly influenced by model parameterization and acquisition arrangement. An appropriate choice of model parameterization is critical to successful field data applications of multiparameter FWI. The objective of this paper is to examine the performance of various model parameterizations in isotropic-elastic FWI with walk-away vertical seismicmore » profile (W-VSP) dataset for unconventional heavy oil reservoir characterization. Six model parameterizations are considered: velocity-density (α, β and ρ'), modulus-density (κ, μ and ρ), Lamé-density (λ, μ' and ρ'''), impedance-density (IP, IS and ρ''), velocity-impedance-I (α', β' and I' P), and velocity-impedance-II (α'', β'' and I'S). We begin analyzing the interparameter tradeoff by making use of scattering radiation patterns, which is a common strategy for qualitative parameter resolution analysis. In this paper, we discuss the advantages and limitations of the scattering radiation patterns and recommend that interparameter tradeoffs be evaluated using interparameter contamination kernels, which provide quantitative, second-order measurements of the interparameter contaminations and can be constructed efficiently with an adjoint-state approach. Synthetic W-VSP isotropic-elastic FWI experiments in the time domain verify our conclusions about interparameter tradeoffs for various model parameterizations. Density profiles are most strongly influenced by the interparameter contaminations; depending on model parameterization, the inverted density profile can be over-estimated, under-estimated or spatially distorted. Among the six cases, only the velocity-density parameterization provides stable and informative density features not included in the starting model. Field data applications of multicomponent W-VSP isotropic-elastic FWI in the time domain were also carried out. Finally, the heavy oil reservoir target zone, characterized by low α-to-β ratios and low Poisson’s ratios, can be identified clearly with the inverted isotropic-elastic parameters.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pan, Wenyong; Innanen, Kristopher A.; Geng, Yu
We report seismic full-waveform inversion (FWI) methods hold strong potential to recover multiple subsurface elastic properties for hydrocarbon reservoir characterization. Simultaneously updating multiple physical parameters introduces the problem of interparameter tradeoff, arising from the covariance between different physical parameters, which increases nonlinearity and uncertainty of multiparameter FWI. The coupling effects of different physical parameters are significantly influenced by model parameterization and acquisition arrangement. An appropriate choice of model parameterization is critical to successful field data applications of multiparameter FWI. The objective of this paper is to examine the performance of various model parameterizations in isotropic-elastic FWI with walk-away vertical seismicmore » profile (W-VSP) dataset for unconventional heavy oil reservoir characterization. Six model parameterizations are considered: velocity-density (α, β and ρ'), modulus-density (κ, μ and ρ), Lamé-density (λ, μ' and ρ'''), impedance-density (IP, IS and ρ''), velocity-impedance-I (α', β' and I' P), and velocity-impedance-II (α'', β'' and I'S). We begin analyzing the interparameter tradeoff by making use of scattering radiation patterns, which is a common strategy for qualitative parameter resolution analysis. In this paper, we discuss the advantages and limitations of the scattering radiation patterns and recommend that interparameter tradeoffs be evaluated using interparameter contamination kernels, which provide quantitative, second-order measurements of the interparameter contaminations and can be constructed efficiently with an adjoint-state approach. Synthetic W-VSP isotropic-elastic FWI experiments in the time domain verify our conclusions about interparameter tradeoffs for various model parameterizations. Density profiles are most strongly influenced by the interparameter contaminations; depending on model parameterization, the inverted density profile can be over-estimated, under-estimated or spatially distorted. Among the six cases, only the velocity-density parameterization provides stable and informative density features not included in the starting model. Field data applications of multicomponent W-VSP isotropic-elastic FWI in the time domain were also carried out. Finally, the heavy oil reservoir target zone, characterized by low α-to-β ratios and low Poisson’s ratios, can be identified clearly with the inverted isotropic-elastic parameters.« less
Miyatake, Hirokazu; Yoshizawa, Nobuaki; Suzuki, Gen
2018-05-11
The Fukushima Daiichi Nuclear Power Plant (FDNPP) accident resulted in a release of radionuclides into the environment. Since the accident, measurements of radiation in the environment such as air dose rate and deposition density of radionuclides have been performed by various organizations and universities. In particular, Japan Atomic Energy Agency (JAEA) has been performing observations of air dose rate using a car-borne survey system continuously over widespread areas. Based on the data measured by JAEA, we estimated effective dose from external exposure in the prefectures surrounding Fukushima. Since car-borne survey started a few months after the accident, the main contribution to measured data comes from 137Cs and 134Cs whose half-lives are relatively long. Using air dose rate of 137Cs and 134Cs and the ratio of deposition density of short-lived nuclides to that of 137Cs and 134Cs, we also estimated contributions to the effective dose from other short-lived nuclides.
Keller, Brad M; Chen, Jinbo; Daye, Dania; Conant, Emily F; Kontos, Despina
2015-08-25
Breast density, commonly quantified as the percentage of mammographically dense tissue area, is a strong breast cancer risk factor. We investigated associations between breast cancer and fully automated measures of breast density made by a new publicly available software tool, the Laboratory for Individualized Breast Radiodensity Assessment (LIBRA). Digital mammograms from 106 invasive breast cancer cases and 318 age-matched controls were retrospectively analyzed. Density estimates acquired by LIBRA were compared with commercially available software and standard Breast Imaging-Reporting and Data System (BI-RADS) density estimates. Associations between the different density measures and breast cancer were evaluated by using logistic regression after adjustment for Gail risk factors and body mass index (BMI). Area under the curve (AUC) of the receiver operating characteristic (ROC) was used to assess discriminatory capacity, and odds ratios (ORs) for each density measure are provided. All automated density measures had a significant association with breast cancer (OR = 1.47-2.23, AUC = 0.59-0.71, P < 0.01) which was strengthened after adjustment for Gail risk factors and BMI (OR = 1.96-2.64, AUC = 0.82-0.85, P < 0.001). In multivariable analysis, absolute dense area (OR = 1.84, P < 0.001) and absolute dense volume (OR = 1.67, P = 0.003) were jointly associated with breast cancer (AUC = 0.77, P < 0.01), having a larger discriminatory capacity than models considering the Gail risk factors alone (AUC = 0.64, P < 0.001) or the Gail risk factors plus standard area percent density (AUC = 0.68, P = 0.01). After BMI was further adjusted for, absolute dense area retained significance (OR = 2.18, P < 0.001) and volume percent density approached significance (OR = 1.47, P = 0.06). This combined area-volume density model also had a significantly (P < 0.001) improved discriminatory capacity (AUC = 0.86) relative to a model considering the Gail risk factors plus BMI (AUC = 0.80). Our study suggests that new automated density measures may ultimately augment the current standard breast cancer risk factors. In addition, the ability to fully automate density estimation with digital mammography, particularly through the use of publically available breast density estimation software, could accelerate the translation of density reporting in routine breast cancer screening and surveillance protocols and facilitate broader research into the use of breast density as a risk factor for breast cancer.
Shi, Pei-Jian; Xu, Qiang; Sandhu, Hardev S; Gielis, Johan; Ding, Yu-Long; Li, Hua-Rong; Dong, Xiao-Bo
2015-10-01
The relationship between spatial density and size of plants is an important topic in plant ecology. The self-thinning rule suggests a -3/2 power between average biomass and density or a -1/2 power between stand yield and density. However, the self-thinning rule based on total leaf area per plant and density of plants has been neglected presumably because of the lack of a method that can accurately estimate the total leaf area per plant. We aimed to find the relationship between spatial density of plants and total leaf area per plant. We also attempted to provide a novel model for accurately describing the leaf shape of bamboos. We proposed a simplified Gielis equation with only two parameters to describe the leaf shape of bamboos one model parameter represented the overall ratio of leaf width to leaf length. Using this method, we compared some leaf parameters (leaf shape, number of leaves per plant, ratio of total leaf weight to aboveground weight per plant, and total leaf area per plant) of four bamboo species of genus Indocalamus Nakai (I. pedalis (Keng) P.C. Keng, I. pumilus Q.H. Dai and C.F. Keng, I. barbatus McClure, and I. victorialis P.C. Keng). We also explored the possible correlation between spatial density and total leaf area per plant using log-linear regression. We found that the simplified Gielis equation fit the leaf shape of four bamboo species very well. Although all these four species belonged to the same genus, there were still significant differences in leaf shape. Significant differences also existed in leaf area per plant, ratio of leaf weight to aboveground weight per plant, and leaf length. In addition, we found that the total leaf area per plant decreased with increased spatial density. Therefore, we directly demonstrated the self-thinning rule to improve light interception.
Brandt, Kathleen R.; Scott, Christopher G.; Ma, Lin; Mahmoudzadeh, Amir P.; Jensen, Matthew R.; Whaley, Dana H.; Wu, Fang Fang; Malkov, Serghei; Hruska, Carrie B.; Norman, Aaron D.; Heine, John; Shepherd, John; Pankratz, V. Shane; Kerlikowske, Karla
2016-01-01
Purpose To compare the classification of breast density with two automated methods, Volpara (version 1.5.0; Matakina Technology, Wellington, New Zealand) and Quantra (version 2.0; Hologic, Bedford, Mass), with clinical Breast Imaging Reporting and Data System (BI-RADS) density classifications and to examine associations of these measures with breast cancer risk. Materials and Methods In this study, 1911 patients with breast cancer and 4170 control subjects matched for age, race, examination date, and mammography machine were evaluated. Participants underwent mammography at Mayo Clinic or one of four sites within the San Francisco Mammography Registry between 2006 and 2012 and provided informed consent or a waiver for research, in compliance with HIPAA regulations and institutional review board approval. Digital mammograms were retrieved a mean of 2.1 years (range, 6 months to 6 years) before cancer diagnosis, with the corresponding clinical BI-RADS density classifications, and Volpara and Quantra density estimates were generated. Agreement was assessed with weighted κ statistics among control subjects. Breast cancer associations were evaluated with conditional logistic regression, adjusted for age and body mass index. Odds ratios, C statistics, and 95% confidence intervals (CIs) were estimated. Results Agreement between clinical BI-RADS density classifications and Volpara and Quantra BI-RADS estimates was moderate, with κ values of 0.57 (95% CI: 0.55, 0.59) and 0.46 (95% CI: 0.44, 0.47), respectively. Differences of up to 14% in dense tissue classification were found, with Volpara classifying 51% of women as having dense breasts, Quantra classifying 37%, and clinical BI-RADS assessment used to classify 43%. Clinical and automated measures showed similar breast cancer associations; odds ratios for extremely dense breasts versus scattered fibroglandular densities were 1.8 (95% CI: 1.5, 2.2), 1.9 (95% CI: 1.5, 2.5), and 2.3 (95% CI: 1.9, 2.8) for Volpara, Quantra, and BI-RADS classifications, respectively. Clinical BI-RADS assessment showed better discrimination of case status (C = 0.60; 95% CI: 0.58, 0.61) than did Volpara (C = 0.58; 95% CI: 0.56, 0.59) and Quantra (C = 0.56; 95% CI: 0.54, 0.58) BI-RADS classifications. Conclusion Automated and clinical assessments of breast density are similarly associated with breast cancer risk but differ up to 14% in the classification of women with dense breasts. This could have substantial effects on clinical practice patterns. © RSNA, 2015 Online supplemental material is available for this article. PMID:26694052
Exploring the 13CO/C18O abundance ratio towards Galactic young stellar objects and HII regions
NASA Astrophysics Data System (ADS)
Areal, M. B.; Paron, S.; Celis Peña, M.; Ortega, M. E.
2018-05-01
Aims: Determining molecular abundance ratios is important not only for the study of Galactic chemistry, but also because they are useful to estimate physical parameters in a large variety of interstellar medium environments. One of the most important molecules for tracing the molecular gas in the interstellar medium is CO, and the 13CO/C18O abundance ratio is usually used to estimate molecular masses and densities of regions with moderate to high densities. Nowadays isotope ratios are in general indirectly derived from elemental abundances ratios. We present the first 13CO/C18O abundance ratio study performed from CO isotope observations towards a large sample of Galactic sources of different natures at different locations. Methods: To study the 13CO/C18O abundance ratio, we used 12CO J = 3 - 2 data obtained from the CO High-Resolution Survey, 13CO and C18O J = 3 - 2 data from the 13CO/C18O (J = 3 - 2) Heterodyne Inner Milky Way Plane Survey, and some complementary data extracted from the James Clerk Maxwell Telescope database. We analyzed a sample of 198 sources composed of young stellar objects (YSOs), and HII and diffuse HII regions as catalogued in the Red MSX Source Survey in 27.°5 ≤ l ≤ 46.°5 and |b|0.°5. Results: Most of the analyzed sources are located in the galactocentric distance range 4.0-6.5 kpc. We found that YSOs have, on average, lower 13CO/C18O abundance ratios than HII and diffuse HII regions. Taking into account that the gas associated with YSOs should be less affected by the radiation than in the case of the others sources, selective far-UV photodissociation of C18O is confirmed. The 13CO/C18O abundance ratios obtained in this work are systematically lower than those predicted from the known elemental abundance relations. These results will be useful in future studies of molecular gas related to YSOs and HII regions based on the observation of these isotopes.
Legland, David; Guillon, Fabienne; Kiêu, Kiên; Bouchet, Brigitte; Devaux, Marie-Françoise
2010-01-01
Background and Aims The cellular structure of fleshy fruits is of interest to study fruit shape, size, mechanical behaviour or sensory texture. The cellular structure is usually not observed in the whole fruit but, instead, in a sample of limited size and volume. It is therefore difficult to extend measurements to the whole fruit and/or to a specific genotype, or to describe the cellular structure heterogeneity within the fruit. Methods An integrated method is presented to describe the cellular structure of the whole fruit from partial three-dimensional (3D) observations, involving the following steps: (1) fruit sampling, (2) 3D image acquisition and processing and (3) measurement and estimation of relevant 3D morphological parameters. This method was applied to characterize DR12 mutant and wild-type tomatoes (Solanum lycopersicum). Key Results The cellular structure was described using the total volume of the pericarp, the surface area of the cell walls and the ratio of cell-wall surface area to pericarp volume, referred to as the cell-wall surface density. The heterogeneity of cellular structure within the fruit was investigated by estimating variations in the cell-wall surface density with distance to the epidermis. Conclusions The DR12 mutant presents a greater pericarp volume and an increase of cell-wall surface density under the epidermis. PMID:19952012
NASA Technical Reports Server (NTRS)
Guhathakurta, M.; Fisher, R. R.
1994-01-01
In this paper we utilize the latitiude distribution of the coronal temperature during the period 1984-1992 that was derived in a paper by Guhathakurta et al, 1993, utilizing ground-based intensity observations of the green (5303 A Fe XIV) and red (6374 A Fe X) coronal forbidden lines from the National Solar Observatory at Sacramento Peak, and establish it association with the global magnetic field and the density distributions in the corona. A determination of plasma temperature, T, was estimated from the intensity ratio Fe X/Fe XIV (where T is inversely proportional to the ratio), since both emission lines come from ionized states of Fe, and the ratio is only weakly dependent on density. We observe that there is a large-scale organization of the inferred coronal temperature distribution that is associated with the large-scale, weak magnetic field structures and bright coronal features; this organization tends to persist through most of the magnetic activity cycle. These high-temperature structures exhibit time-space characteristics which are similar to those of the polar crown filaments. This distribution differs in spatial and temporal characterization from the traditional picture of sunspot and active region evolution over the range of the sunspot cycle, which are manifestations of the small-scale, strong magnetic field regions.
A Basin-Wide Examination of the Arctic Ocean's Double-Diffusive Staircase
NASA Astrophysics Data System (ADS)
Shibley, N.; Timmermans, M. L.; Carpenter, J. R.; Toole, J. M.
2016-02-01
The Arctic Ocean thermohaline stratification frequently exhibits a staircase structure above the Atlantic Water Layer consisting of multiple mixed layers of order 1-m in height separated by sharp interfaces. This double-diffusive staircase structure is characterized across the entire Arctic Ocean through a detailed analysis of Ice-Tethered Profiler measurements acquired between 2004 and 2013. Staircase properties (mixed layer thicknesses and temperature-salinity jumps across interfaces) are examined in relation to a bulk vertical density ratio for 50-m spanning the staircase stratification. It is shown that the Lomonosov Ridge serves as an approximate boundary between regions of low density ratio (on the Eurasian side) and higher density ratio (on the Canadian side). We find that the diffusive staircase in the Eurasian Basin is characterized by fewer, thinner mixed layers than that in the Canadian Basin, although the margins of all basins are characterized by relatively thin staircase mixed layers. Using a double-diffusive 4/3 flux law parameterization, the distribution of vertical heat fluxes through the staircase is estimated across the Arctic; it is found that heat fluxes in the Eurasian Basin [O(1) W/m^2] are generally an order of magnitude larger than those in the Canadian Basin [O(0.1) W/m^2].
Cove, Michael V.; Gardner, Beth; Simons, Theodore R.; Kays, Roland; O'Connell, Allan F.
2017-01-01
Feral and free-ranging domestic cats (Felis catus) can have strong negative effects on small mammals and birds, particularly in island ecosystems. We deployed camera traps to study free-ranging cats in national wildlife refuges and state parks on Big Pine Key and Key Largo in the Florida Keys, USA, and used spatial capture–recapture models to estimate cat abundance, movement, and activities. We also used stable isotope analyses to examine the diet of cats captured on public lands. Top population models separated cats based on differences in movement and detection with three and two latent groups on Big Pine Key and Key Largo, respectively. We hypothesize that these latent groups represent feral, semi-feral, and indoor/outdoor house cats based on the estimated movement parameters of each group. Estimated cat densities and activity varied between the two islands, with relatively high densities (~4 cats/km2) exhibiting crepuscular diel patterns on Big Pine Key and lower densities (~1 cat/km2) exhibiting nocturnal diel patterns on Key Largo. These differences are most likely related to the higher proportion of house cats on Big Pine relative to Key Largo. Carbon and nitrogen isotope ratios from hair samples of free-ranging cats (n = 43) provided estimates of the proportion of wild and anthropogenic foods in cat diets. At the population level, cats on both islands consumed mostly anthropogenic foods (>80% of the diet), but eight individuals were effective predators of wildlife (>50% of the diet). We provide evidence that cat groups within a population move different distances, exhibit different activity patterns, and that individuals consume wildlife at different rates, which all have implications for managing this invasive predator.
A survey of the dog population in rural Bangladesh.
Hossain, Moazzem; Ahmed, Kamruddin; Marma, Aung Swi Prue; Hossain, Sohrab; Ali, Mohammad Azmat; Shamsuzzaman, Abul Khair Mohammad; Nishizono, Akira
2013-08-01
Globally, Bangladesh ranks third in the number of human deaths from rabies. Although dogs are the principal known transmitters of rabies and knowledge of dog populations is essential for effective national control and proper planning, dog control programs are scarce in Bangladesh. Our objective was to count dogs in a rural area to understand the dog population of the country. For this purpose we selected six unions of Raipura upazila in Narsingdi district. Dog counting was done by direct observation following accepted guidelines. We determined the mean density of the dog population in Bangladesh to be 14 dog/km(2) (95% CI 3.7, 24) and the human:dog ratio to be 120 (95% CI 55, 184). Our paper contribute to the literature which shows great variation in the human:dog ratio across regions of the developing world. The human:dog ratio depends on the area's human (as well as dog) population, whereas dog density per unit area indicates the true number of dogs. We propose that extrapolating from the human:dog ratios of other regions not be relied upon for estimating dog populations, unless the ratios can be supplemented by actual counts of dogs within the target area. Copyright © 2013 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Bártová, H.; Trojek, T.; Johnová, K.
2017-11-01
This article describes the method for the estimation of depth distribution of radionuclides in a material with gamma-ray spectrometry, and the identification of a layered structure of a material with X-ray fluorescence analysis. This method is based on the measurement of a ratio of two gamma or X-ray lines of a radionuclide or a chemical element, respectively. Its principle consists in different attenuation coefficient for these two lines in a measured material. The main aim of this investigation was to show how the detected ratio of these two lines depends on depth distribution of an analyte and mainly how this ratio depends on density and chemical composition of measured materials. Several different calculation arrangements were made and a lot of Monte Carlo simulation with the code MCNP - Monte Carlo N-Particle (Briesmeister, 2000) was performed to answer these questions. For X-ray spectrometry, the calculated Kα/Kβ diagrams were found to be almost independent upon matrix density and composition. Thanks to this phenomenon it would be possible to draw only one Kα/Kβ diagram for an element whose depth distribution is examined.
Racial Differences in Quantitative Measures of Area and Volumetric Breast Density
McCarthy, Anne Marie; Keller, Brad M.; Pantalone, Lauren M.; Hsieh, Meng-Kang; Synnestvedt, Marie; Conant, Emily F.; Armstrong, Katrina; Kontos, Despina
2016-01-01
Abstract Background: Increased breast density is a strong risk factor for breast cancer and also decreases the sensitivity of mammographic screening. The purpose of our study was to compare breast density for black and white women using quantitative measures. Methods: Breast density was assessed among 5282 black and 4216 white women screened using digital mammography. Breast Imaging-Reporting and Data System (BI-RADS) density was obtained from radiologists’ reports. Quantitative measures for dense area, area percent density (PD), dense volume, and volume percent density were estimated using validated, automated software. Breast density was categorized as dense or nondense based on BI-RADS categories or based on values above and below the median for quantitative measures. Logistic regression was used to estimate the odds of having dense breasts by race, adjusted for age, body mass index (BMI), age at menarche, menopause status, family history of breast or ovarian cancer, parity and age at first birth, and current hormone replacement therapy (HRT) use. All statistical tests were two-sided. Results: There was a statistically significant interaction of race and BMI on breast density. After accounting for age, BMI, and breast cancer risk factors, black women had statistically significantly greater odds of high breast density across all quantitative measures (eg, PD nonobese odds ratio [OR] = 1.18, 95% confidence interval [CI] = 1.02 to 1.37, P = .03, PD obese OR = 1.26, 95% CI = 1.04 to 1.53, P = .02). There was no statistically significant difference in BI-RADS density by race. Conclusions: After accounting for age, BMI, and other risk factors, black women had higher breast density than white women across all quantitative measures previously associated with breast cancer risk. These results may have implications for risk assessment and screening. PMID:27130893
The Three-dimensional Structure of the Small Magellanic Cloud
NASA Astrophysics Data System (ADS)
Subramanian, Smitha; Subramaniam, Annapurni
2012-01-01
The three-dimensional structure of the inner Small Magellanic Cloud (SMC) is investigated using the red clump (RC) stars and the RR Lyrae stars (RRLS), which represent the intermediate-age and the old stellar populations of a galaxy. The V- and I-band photometric data from the OGLE III catalog are used for our study. The mean dereddened I 0 magnitude of the RC stars and the RRLS are used to study the relative positions of the different regions in the SMC with respect to the mean SMC distance. This shows that the northeastern part of the SMC is closer to us. The line-of-sight depth (front to back distance) across the SMC is estimated using the dispersion in the I 0 magnitudes of both the RC stars and the RRLS and found to be large (~14 kpc) for both populations. The similarity in their depth distribution suggests that both of these populations occupy a similar volume of the SMC. The surface density distribution and the radial density profile of the RC stars suggest that they are more likely to be distributed in a nearly spheroidal system. The tidal radius estimated for the SMC system is ~7-12 kpc. An elongation along the NE-SW direction is seen in the surface density map of the RC stars. The surface density distribution of the RRLS in the SMC is nearly circular. Based on all of the above results the observed structure of the SMC, in which both the RC stars and RRLS are distributed, is approximated as a triaxial ellipsoid. The parameters of the ellipsoid are obtained using the inertia tensor analysis. We estimated the axes ratio, inclination of the longest axis with the line of sight (i), and the position angle (phi) of the longest axis of the ellipsoid on the sky from the analysis of the RRLS. The analysis of the RC stars with the assumption that they are extended up to a depth of 3.5 times the sigma (width of dereddened I 0 magnitude distribution, corrected for intrinsic spread and observational errors) was also found to give similar axes ratio and orientation angles. The above estimated parameters depend on the data coverage of the SMC. Using the RRLS with equal coverage in all three axes (data within 3° in X-, Y-, and Z-axes), we estimated an axes ratio of 1:1.33:1.61 with i = 2fdg6 and phi = 70fdg2. Our tidal radius estimates and the recent observational studies suggest that the full extent of the SMC in the XY plane is of the order of the front to back distance estimated along the line of sight. These results suggest that the structure of the SMC is spheroidal or slightly ellipsoidal. We propose that the SMC experienced a merger with another dwarf galaxy at ~4-5 Gyr ago, and the merger process was completed in another 2-3 Gyr. This resulted in a spheroidal distribution comprising stars older than 2 Gyr.
Muñoz, Eliana M; Ortega, Angela M; Bock, Brian C; Páez, Vivian P
2003-03-01
We studied the demography and nesting ecology of two populations of Iguana iguana that face heavy exploitation and habitat modification in the Momposina Depression, Colombia. Lineal transect data was analyzed using the Fourier model to provide estimates of social group densities, which was found to differ both within and among populations (1.05-6.0 groups/ha). Mean group size and overall iguana density estimates varied between populations as well (1.5-13.7 iguanas/ha). The density estimates were far lower than those reported from more protected areas in Panama and Venezuela. Iguana densities were consistently higher in sites located along rivers (2.5 iguanas/group) than in sites along the margin of marshes, probably due to vegetational differences (1.5 iguanas/group). There was no correlation between density estimates and estimates of relative abundance (number of iguanas seen/hour/person) due to differing detectabilities of iguana groups among sites. The adult sex ratio (1:2.5 males:females) agreed well with other reports in the literature based upon observation of adult social groups, and probably results from the polygynous mating system in this species rather than a real demographic skew. Nesting in this population occurs from the end of January through March and hatching occurs between April and May. We monitored 34 nests, which suffered little vertebrate predation, perhaps due to the lack of a complete vertebrate fauna in this densely inhabited area, but nests suffered from inundation, cattle trampling, and infestation by phorid fly larvae. Clutch sizes in these populations were lower than all other published reports except for the iguana population on the highly xeric island of Curaçao, implying that adult females in our area are unusually small. We argue that this is more likely the result of the exploitation of these populations rather than an adaptive response to environmentally extreme conditions.
A global algorithm for estimating Absolute Salinity
NASA Astrophysics Data System (ADS)
McDougall, T. J.; Jackett, D. R.; Millero, F. J.; Pawlowicz, R.; Barker, P. M.
2012-12-01
The International Thermodynamic Equation of Seawater - 2010 has defined the thermodynamic properties of seawater in terms of a new salinity variable, Absolute Salinity, which takes into account the spatial variation of the composition of seawater. Absolute Salinity more accurately reflects the effects of the dissolved material in seawater on the thermodynamic properties (particularly density) than does Practical Salinity. When a seawater sample has standard composition (i.e. the ratios of the constituents of sea salt are the same as those of surface water of the North Atlantic), Practical Salinity can be used to accurately evaluate the thermodynamic properties of seawater. When seawater is not of standard composition, Practical Salinity alone is not sufficient and the Absolute Salinity Anomaly needs to be estimated; this anomaly is as large as 0.025 g kg-1 in the northernmost North Pacific. Here we provide an algorithm for estimating Absolute Salinity Anomaly for any location (x, y, p) in the world ocean. To develop this algorithm, we used the Absolute Salinity Anomaly that is found by comparing the density calculated from Practical Salinity to the density measured in the laboratory. These estimates of Absolute Salinity Anomaly however are limited to the number of available observations (namely 811). In order to provide a practical method that can be used at any location in the world ocean, we take advantage of approximate relationships between Absolute Salinity Anomaly and silicate concentrations (which are available globally).
NASA Technical Reports Server (NTRS)
Aase, J. K.; Millard, J. P.; Siddoway, F. H. (Principal Investigator)
1982-01-01
Radiance measurements from handheld (Exotech 100-A) and air-borne (Daedalus DEI 1260) radiometers were related to wheat (Triticum aestivum L.) stand densities (simulated winter wheat winterkill) and to grain yield for a field located 11 km northwest of Sidney, Montana, on a Williams loam soil (fine-loamy, mixed Typic Argiborolls) where a semidwarf hard red spring wheat cultivar was needed to stand. Radiances were measured with the handheld radiometer on clear mornings throughout the growing season. Aircraft overflight measurements were made at the end of tillering and during the early stem extension period, and the mid-heading period. The IR/red ratio and normalized difference vegetation index were used in the analysis. The aircraft measurements corroborated the ground measurements inasmuch as wheat stand densities were detected and could be evaluated at an early enough growth stage to make management decision. The aircraft measurements also corroborated handheld measurements when related to yield prediction. The IR/red ratio, although there was some growth stage dependency, related well to yield when measured from just past tillering until about the watery-ripe stage.
Ghavami, Behnam; Raji, Mohsen; Pedram, Hossein
2011-08-26
Carbon nanotube field-effect transistors (CNFETs) show great promise as building blocks of future integrated circuits. However, synthesizing single-walled carbon nanotubes (CNTs) with accurate chirality and exact positioning control has been widely acknowledged as an exceedingly complex task. Indeed, density and chirality variations in CNT growth can compromise the reliability of CNFET-based circuits. In this paper, we present a novel statistical compact model to estimate the failure probability of CNFETs to provide some material and process guidelines for the design of CNFETs in gigascale integrated circuits. We use measured CNT spacing distributions within the framework of detailed failure analysis to demonstrate that both the CNT density and the ratio of metallic to semiconducting CNTs play dominant roles in defining the failure probability of CNFETs. Besides, it is argued that the large-scale integration of these devices within an integrated circuit will be feasible only if a specific range of CNT density with an acceptable ratio of semiconducting to metallic CNTs can be adjusted in a typical synthesis process.
NASA Technical Reports Server (NTRS)
Crannell, C. J.; Joyce, G.; Ramaty, R.; Werntz, C.
1976-01-01
The gamma-ray line produced at 0.51-MeV was studied and is shown to be the result of either of free annihilation of positrons with electrons or of the decay of positronium by 2-photon emission. Positron annihilation from the bound state of positronium may also proceed by 3-photon emission, resulting in a continuum with energies up to 0.51-MeV. Accurate calculations of the rates of free annihilation and positronium formation in a solar-flare plasma are presented. Estimates of the positronium-formulation rates by charge exchange and the rates of dissociation and quenching are also considered. The temperature and density dependence of the ratio of 3-photon to 2-photon emission was obtained. It is shown that when the ratio of free electrons to neutral atoms in the plasma is approximately unity or greater, the Doppler width of the 0.51-MeV line is a function of the temperature of the annihilation region. For the small ion densities characteristics of the photosphere, the width is predominantly a function of the density.
Stoddard, Steven T.; Barker, Christopher M.; Van Rie, Annelies; Messer, William B.; Meshnick, Steven R.; Morrison, Amy C.; Scott, Thomas W.
2017-01-01
Routine entomological monitoring data are used to quantify the abundance of Ae. aegypti. The public health utility of these indicators is based on the assumption that greater mosquito abundance increases the risk of human DENV transmission, and therefore reducing exposure to the vector decreases incidence of infection. Entomological survey data from two longitudinal cohort studies in Iquitos, Peru, linked with 8,153 paired serological samples taken approximately six months apart were analyzed. Indicators of Ae. aegypti density were calculated from cross-sectional and longitudinal entomological data collected over a 12-month period for larval, pupal and adult Ae. aegypti. Log binomial models were used to estimate risk ratios (RR) to measure the association between Ae. aegypti abundance and the six-month risk of DENV seroconversion. RRs estimated using cross-sectional entomological data were compared to RRs estimated using longitudinal data. Higher cross-sectional Ae. aegypti densities were not associated with an increased risk of DENV seroconversion. Use of longitudinal entomological data resulted in RRs ranging from 1.01 (95% CI: 1.01, 1.02) to 1.30 (95% CI: 1.17, 1.46) for adult stage density estimates and RRs ranging from 1.21 (95% CI: 1.07, 1.37) to 1.75 (95% CI: 1.23, 2.5) for categorical immature indices. Ae. aegypti densities calculated from longitudinal entomological data were associated with DENV seroconversion, whereas those measured cross-sectionally were not. Ae. aegypti indicators calculated from cross-sectional surveillance, as is common practice, have limited public health utility in detecting areas or populations at high risk of DENV infection. PMID:28333938
Janghorbani, Mohsen; Amini, Masoud
2016-09-01
In this study, we evaluate the association between triglyceride to high-density lipoprotein cholesterol (TG/HDL) ratio and total cholesterol (TC) to HDL (TC/HDL) ratio and the risks of type 2 diabetes (T2D) in an Iranian high-risk population. We analysed 7-year follow-up data (n = 1771) in non-diabetic first-degree relatives of consecutive patients with T2D 30-70 years old. The primary outcome was the diagnosis of T2D based on repeated oral glucose tolerance tests. We used Cox proportional hazard models to estimate hazard ratio for incident T2D across tertiles of TG/HDL and TC/HDL ratios and plotted a receiver operating characteristic (ROC) curve to assess discrimination. The highest tertile of TG/HDL and TC/HDL ratios compared with the lowest tertile was not associated with T2D in age- and gender-adjusted models (HR 0.99, 95% CI: 0.88, 1.11 for TG/HDL ratio and 1.10, 95% CI: 0.97, 1.23 for TC/HDL ratio). Further adjustment for waist circumference or body mass index, fasting plasma glucose, and low-density lipoprotein cholesterol did not appreciably alter the hazard ratio compared with the age- and gender-adjusted model. The area under the ROC curve for TG/HDL ratio was 57.7% (95% CI: 54.0, 61.5) and for TC/HDL ratio was 55.1% (95% CI: 51.2, 59.0). TG/HDL and TC/HDL ratios were not robust predictors of T2D in high-risk individuals in Iran. Copyright © 2015 John Wiley & Sons, Ltd. Copyright © 2015 John Wiley & Sons, Ltd.
Formalism for calculation of polymer-solvent-mediated potential
NASA Astrophysics Data System (ADS)
Zhou, Shiqi
2006-07-01
A simple theoretical approach is proposed for calculation of a solvent-mediated potential (SMP) between two colloid particles immersed in a polymer solvent bath in which the polymer is modeled as a chain with intramolecular degrees of freedom. The present recipe is only concerned with the estimation of the density profile of a polymer site around a single solute colloid particle instead of two solute colloid particles separated by a varying distance as done in existing calculational methods for polymer-SMP. Therefore the present recipe is far simpler for numerical implementation than the existing methods. The resultant predictions for the polymer-SMP and polymer solvent-mediated mean force (polymer-SMMF) are in very good agreement with available simulation data. With the present recipe, change tendencies of the contact value and second virial coefficiency of the SMP as a function of size ratio between the colloid particle and polymer site, the number of sites per chain, and the polymer concentration are investigated in detail. The metastable critical polymer concentration as a function of size ratio and the number of sites per chain is also reported for the first time. To yield the numerical solution of the present recipe at less than 1min on a personal computer, a rapid and accurate algorithm for the numerical solution of the classical density functional theory is proposed to supply rapid and accurate estimation of the density profile of the polymer site as an input into the present formalism.
Local Volume Hi Survey: the far-infrared radio correlation
NASA Astrophysics Data System (ADS)
Shao, Li; Koribalski, Bärbel S.; Wang, Jing; Ho, Luis C.; Staveley-Smith, Lister
2018-06-01
In this paper we measure the far-infrared (FIR) and radio flux densities of a sample of 82 local gas-rich galaxies, including 70 "dwarf" galaxies (M* < 109 M⊙), from the Local Volume HI Survey (LVHIS), which is close to volume limited. It is found that LVHIS galaxies hold a tight linear FIR-radio correlation (FRC) over four orders of magnitude (F_1.4GHz ∝ F_FIR^{1.00± 0.08}). However, for detected galaxies only, a trend of larger FIR-to-radio ratio with decreasing flux density is observed. We estimate the star formation rate by combining UV and mid-IR data using empirical calibration. It is confirmed that both FIR and radio emission are strongly connected with star formation but with significant non-linearity. Dwarf galaxies are found radiation deficient in both bands, when normalized by star formation rate. It urges a "conspiracy" to keep the FIR-to-radio ratio generally constant. By using partial correlation coefficient in Pearson definition, we identify the key galaxy properties associated with the FIR and radio deficiency. Some major factors, such as stellar mass surface density, will cancel out when taking the ratio between FIR and radio fluxes. The remaining factors, such as HI-to-stellar mass ratio and galaxy size, are expected to cancel each other due to the distribution of galaxies in the parameter space. Such cancellation is probably responsible for the "conspiracy" to keep the FRC alive.
Testing the gravitational instability hypothesis?
NASA Technical Reports Server (NTRS)
Babul, Arif; Weinberg, David H.; Dekel, Avishai; Ostriker, Jeremiah P.
1994-01-01
We challenge a widely accepted assumption of observational cosmology: that successful reconstruction of observed galaxy density fields from measured galaxy velocity fields (or vice versa), using the methods of gravitational instability theory, implies that the observed large-scale structures and large-scale flows were produced by the action of gravity. This assumption is false, in that there exist nongravitational theories that pass the reconstruction tests and gravitational theories with certain forms of biased galaxy formation that fail them. Gravitational instability theory predicts specific correlations between large-scale velocity and mass density fields, but the same correlations arise in any model where (a) structures in the galaxy distribution grow from homogeneous initial conditions in a way that satisfies the continuity equation, and (b) the present-day velocity field is irrotational and proportional to the time-averaged velocity field. We demonstrate these assertions using analytical arguments and N-body simulations. If large-scale structure is formed by gravitational instability, then the ratio of the galaxy density contrast to the divergence of the velocity field yields an estimate of the density parameter Omega (or, more generally, an estimate of beta identically equal to Omega(exp 0.6)/b, where b is an assumed constant of proportionality between galaxy and mass density fluctuations. In nongravitational scenarios, the values of Omega or beta estimated in this way may fail to represent the true cosmological values. However, even if nongravitational forces initiate and shape the growth of structure, gravitationally induced accelerations can dominate the velocity field at late times, long after the action of any nongravitational impulses. The estimated beta approaches the true value in such cases, and in our numerical simulations the estimated beta values are reasonably accurate for both gravitational and nongravitational models. Reconstruction tests that show correlations between galaxy density and velocity fields can rule out some physically interesting models of large-scale structure. In particular, successful reconstructions constrain the nature of any bias between the galaxy and mass distributions, since processes that modulate the efficiency of galaxy formation on large scales in a way that violates the continuity equation also produce a mismatch between the observed galaxy density and the density inferred from the peculiar velocity field. We obtain successful reconstructions for a gravitational model with peaks biasing, but we also show examples of gravitational and nongravitational models that fail reconstruction tests because of more complicated modulations of galaxy formation.
Iterative initial condition reconstruction
NASA Astrophysics Data System (ADS)
Schmittfull, Marcel; Baldauf, Tobias; Zaldarriaga, Matias
2017-07-01
Motivated by recent developments in perturbative calculations of the nonlinear evolution of large-scale structure, we present an iterative algorithm to reconstruct the initial conditions in a given volume starting from the dark matter distribution in real space. In our algorithm, objects are first moved back iteratively along estimated potential gradients, with a progressively reduced smoothing scale, until a nearly uniform catalog is obtained. The linear initial density is then estimated as the divergence of the cumulative displacement, with an optional second-order correction. This algorithm should undo nonlinear effects up to one-loop order, including the higher-order infrared resummation piece. We test the method using dark matter simulations in real space. At redshift z =0 , we find that after eight iterations the reconstructed density is more than 95% correlated with the initial density at k ≤0.35 h Mpc-1 . The reconstruction also reduces the power in the difference between reconstructed and initial fields by more than 2 orders of magnitude at k ≤0.2 h Mpc-1 , and it extends the range of scales where the full broadband shape of the power spectrum matches linear theory by a factor of 2-3. As a specific application, we consider measurements of the baryonic acoustic oscillation (BAO) scale that can be improved by reducing the degradation effects of large-scale flows. In our idealized dark matter simulations, the method improves the BAO signal-to-noise ratio by a factor of 2.7 at z =0 and by a factor of 2.5 at z =0.6 , improving standard BAO reconstruction by 70% at z =0 and 30% at z =0.6 , and matching the optimal BAO signal and signal-to-noise ratio of the linear density in the same volume. For BAO, the iterative nature of the reconstruction is the most important aspect.
Growth rates and variances of unexploited wolf populations in dynamic equilibria
Mech, L. David; Fieberg, John
2015-01-01
Several states have begun harvesting gray wolves (Canis lupus), and these states and various European countries are closely monitoring their wolf populations. To provide appropriate perspective for determining unusual or extreme fluctuations in their managed wolf populations, we analyzed natural, long-term, wolf-population-density trajectories totaling 130 years of data from 3 areas: Isle Royale National Park in Lake Superior, Michigan, USA; the east-central Superior National Forest in northeastern Minnesota, USA; and Denali National Park, Alaska, USA. Ratios between minimum and maximum annual sizes for 2 mainland populations (n = 28 and 46 yr) varied from 2.5–2.8, whereas for Isle Royale (n = 56 yr), the ratio was 6.3. The interquartile range (25th percentile, 75th percentile) for annual growth rates, Nt+1/Nt, was (0.88, 1.14), (0.92, 1.11), and (0.86, 1.12) for Denali, Superior National Forest, and Isle Royale respectively. We fit a density-independent model and a Ricker model to each time series, and in both cases we considered the potential for observation error. Mean growth rates from the density-independent model were close to 0 for all 3 populations, with 95% credible intervals including 0. We view the estimated model parameters, including those describing annual variability or process variance, as providing useful summaries of the trajectories of these populations. The estimates of these natural wolf population parameters can serve as benchmarks for comparison with those of recovering wolf populations. Because our study populations were all from circumscribed areas, fluctuations in them represent fluctuations in densities (i.e., changes in numbers are not confounded by changes in occupied area as would be the case with populations expanding their range, as are wolf populations in many states).
Determinants of the Egyptian labour migration.
Kandil, M; Metwally, M
1992-03-01
The objective is to summarize the pattern of Egyptian migration to Arab oil-producing countries (AOPC), to review some factors that are important determinants of labor movement based on theory, and to empirically model the migration rate to AOPC and to Saudi Arabia. Factors are differentiated as to their relative importance. Push factors are the low wages, high inflation rate, and high population density in Egypt; pull factors are higher wages. It is predicted that an increase in income from destination countries has a significant positive impact on the migration rate. An increase in population density stimulates migration. An increase in inflation acts to increase out-migration with a 2-year lag, which accommodates departure preparation. Egypt's experience with labor migration is described for the pre-oil boom, and the post-oil boom. Several estimates of labor migration are given. Government policy toward migration is positive. Theory postulates migration to be determined by differences in the availability of labor, labor rewards between destination and origin, and the cost of migration. In the empirical model, push factors are population density, the current inflation rate, and the ratio of income/capita in AOPC to Egypt. The results indicate that the ratio of income/capita had a strong pull impact and population density had a strong push impact. The inflation rate has a positive impact with a lag estimated at 2 years. Prior to the Camp David Accord, there was a significant decrease in the number of Egyptian migrants due to political tension. The findings support the classical theory of factor mobility. The consequences of migration on the Egyptian economy have been adverse. Future models should disaggregate data because chronic shortages exist in some parts of the labor market. Manpower needs assessment would be helpful for policy makers.
Ovchinnikov, M M; Podgornyĭ, G N
2004-03-01
The passing and optic-density parameters registered by a photometric device were estimated, on the basis of a simple modeled system, with respect to the ratio between the absorption band width and the heterogeneous radiation degree. The impacts of heterogeneous radiation on the validity of the Bueguer'-Lambert's-Baire's law were elucidated.
NASA Technical Reports Server (NTRS)
Jergas, M.; Breitenseher, M.; Gluer, C. C.; Yu, W.; Genant, H. K.
1995-01-01
To determine whether estimates of volumetric bone density from projectional scans of the lumbar spine have weaker associations with height and weight and stronger associations with prevalent vertebral fractures than standard projectional bone mineral density (BMD) and bone mineral content (BMC), we obtained posteroanterior (PA) dual X-ray absorptiometry (DXA), lateral supine DXA (Hologic QDR 2000), and quantitative computed tomography (QCT, GE 9800 scanner) in 260 postmenopausal women enrolled in two trials of treatment for osteoporosis. In 223 women, all vertebral levels, i.e., L2-L4 in the DXA scan and L1-L3 in the QCT scan, could be evaluated. Fifty-five women were diagnosed as having at least one mild fracture (age 67.9 +/- 6.5 years) and 168 women did not have any fractures (age 62.3 +/- 6.9 years). We derived three estimates of "volumetric bone density" from PA DXA (BMAD, BMAD*, and BMD*) and three from paired PA and lateral DXA (WA BMD, WA BMDHol, and eVBMD). While PA BMC and PA BMD were significantly correlated with height (r = 0.49 and r = 0.28) or weight (r = 0.38 and r = 0.37), QCT and the volumetric bone density estimates from paired PA and lateral scans were not (r = -0.083 to r = 0.050). BMAD, BMAD*, and BMD* correlated with weight but not height. The associations with vertebral fracture were stronger for QCT (odds ratio [QR] = 3.17; 95% confidence interval [CI] = 1.90-5.27), eVBMD (OR = 2.87; CI 1.80-4.57), WA BMDHol (OR = 2.86; CI 1.80-4.55) and WA-BMD (OR = 2.77; CI 1.75-4.39) than for BMAD*/BMD* (OR = 2.03; CI 1.32-3.12), BMAD (OR = 1.68; CI 1.14-2.48), lateral BMD (OR = 1.88; CI 1.28-2.77), standard PA BMD (OR = 1.47; CI 1.02-2.13) or PA BMC (OR = 1.22; CI 0.86-1.74). The areas under the receiver operating characteristic (ROC) curves for QCT and all estimates of volumetric BMD were significantly higher compared with standard PA BMD and PA BMC. We conclude that, like QCT, estimates of volumetric bone density from paired PA and lateral scans are unaffected by height and weight and are more strongly associated with vertebral fracture than standard PA BMD or BMC, or estimates of volumetric density that are solely based on PA DXA scans.
Jeffers, Abra M; Sieh, Weiva; Lipson, Jafi A; Rothstein, Joseph H; McGuire, Valerie; Whittemore, Alice S; Rubin, Daniel L
2017-02-01
Purpose To compare three metrics of breast density on full-field digital mammographic (FFDM) images as predictors of future breast cancer risk. Materials and Methods This institutional review board-approved study included 125 women with invasive breast cancer and 274 age- and race-matched control subjects who underwent screening FFDM during 2004-2013 and provided informed consent. The percentage of density and dense area were assessed semiautomatically with software (Cumulus 4.0; University of Toronto, Toronto, Canada), and volumetric percentage of density and dense volume were assessed automatically with software (Volpara; Volpara Solutions, Wellington, New Zealand). Clinical Breast Imaging Reporting and Data System (BI-RADS) classifications of breast density were extracted from mammography reports. Odds ratios and 95% confidence intervals (CIs) were estimated by using conditional logistic regression stratified according to age and race and adjusted for body mass index, parity, and menopausal status, and the area under the receiver operating characteristic curve (AUC) was computed. Results The adjusted odds ratios and 95% CIs for each standard deviation increment of the percentage of density, dense area, volumetric percentage of density, and dense volume were 1.61 (95% CI: 1.19, 2.19), 1.49 (95% CI: 1.15, 1.92), 1.54 (95% CI: 1.12, 2.10), and 1.41 (95% CI: 1.11, 1.80), respectively. Odds ratios for women with extremely dense breasts compared with those with scattered areas of fibroglandular density were 2.06 (95% CI: 0.85, 4.97) and 2.05 (95% CI: 0.90, 4.64) for BI-RADS and Volpara density classifications, respectively. Clinical BI-RADS was more accurate (AUC, 0.68; 95% CI: 0.63, 0.74) than Volpara (AUC, 0.64; 95% CI: 0.58, 0.70) and continuous measures of percentage of density (AUC, 0.66; 95% CI: 0.60, 0.72), dense area (AUC, 0.66; 95% CI: 0.60, 0.72), volumetric percentage of density (AUC, 0.64; 95% CI: 0.58, 0.70), and density volume (AUC, 0.65; 95% CI: 0.59, 0.71), although the AUC differences were not statistically significant. Conclusion Mammographic density on FFDM images was positively associated with breast cancer risk by using the computer assisted methods and BI-RADS. BI-RADS classification was as accurate as computer-assisted methods for discrimination of patients from control subjects. © RSNA, 2016.
Prediction of the compression ratio for municipal solid waste using decision tree.
Heshmati R, Ali Akbar; Mokhtari, Maryam; Shakiba Rad, Saeed
2014-01-01
The compression ratio of municipal solid waste (MSW) is an essential parameter for evaluation of waste settlement and landfill design. However, no appropriate model has been proposed to estimate the waste compression ratio so far. In this study, a decision tree method was utilized to predict the waste compression ratio (C'c). The tree was constructed using Quinlan's M5 algorithm. A reliable database retrieved from the literature was used to develop a practical model that relates C'c to waste composition and properties, including dry density, dry weight water content, and percentage of biodegradable organic waste using the decision tree method. The performance of the developed model was examined in terms of different statistical criteria, including correlation coefficient, root mean squared error, mean absolute error and mean bias error, recommended by researchers. The obtained results demonstrate that the suggested model is able to evaluate the compression ratio of MSW effectively.
The Eclogite-Garnetite transformation in the MORB + H 2O system
NASA Astrophysics Data System (ADS)
Okamoto, Kazuaki; Maruyama, Shigenori
2004-08-01
To decipher phase relations of oceanic crust in the coldest slab at the mantle transition zone, multi-anvil experiments were conducted in the MORB+H 2O system at pressures of 10-19 GPa, and temperatures of 700-1500 °C. Garnet and stishovite were recognized in all run charges. Above 15 GPa, garnet drastically increases NaSi (Na 2MSi 5O 12) component (M = Ca, Mg, Fe 2+), jadeite occurs instead of omphacite. Na-, K-hollandite containing 7 mol% NaAlSi 3O 8 and Ca-perovskite with 60 mol% CaTiO 3, were observed at P>17 GPa. With decomposition of omphacite and increase of modal ratio of garnet, there is a sharp increase of density at 440 km. The density increase due to appearance of Ca-perovskite at 570 km, is estimated approximately 100 km shallower than that of previous estimation.
Adiabatic electron thermal pressure fluctuations in tokamak plasmas.
Meier, M A; Bengtson, R D; Hallock, G A; Wootton, A J
2001-08-20
Electron thermal pressure fluctuations measured in the edge plasma of the Texas Experimental Tokamak Upgrade are a fundamental component of plasma turbulence on both sides of the velocity shear layer. The ratio of specific heats, estimated from fluctuations in electron temperature and electron number density measured simultaneously at the same electrode, indicates that observed fluctuations are adiabatic. The observations are made by means of a novel Langmuir probe technique, the time domain triple-probe method, which concurrently measures multiple plasma properties at each of two electrodes with the temporal and the spatial resolution required to estimate thermodynamic properties in a turbulent plasma.
von Konigslow, Kier; Park, Chul B; Thompson, Russell B
2018-06-06
A variant of the Sanchez-Lacombe equation of state is applied to several polymers, blowing agents, and saturated mixtures of interest to the polymer foaming industry. These are low-density polyethylene-carbon dioxide and polylactide-carbon dioxide saturated mixtures as well as polystyrene-carbon dioxide-dimethyl ether and polystyrene-carbon dioxide-nitrogen ternary saturated mixtures. Good agreement is achieved between theoretically predicted and experimentally determined solubilities, both for binary and ternary mixtures. Acceptable agreement with swelling ratios is found with no free parameters. Up-to-date pure component Sanchez-Lacombe characteristic parameters are provided for carbon dioxide, dimethyl ether, low-density polyethylene, nitrogen, polylactide, linear and branched polypropylene, and polystyrene. Pure fluid low-density polyethylene and nitrogen parameters exhibit more moderate success while still providing acceptable quantitative estimations. Mixture estimations are found to have more moderate success where pure components are not as well represented. The Sanchez-Lacombe equation of state is found to correctly predict the anomalous reversal of solubility temperature dependence for low critical point fluids through the observation of this behaviour in polystyrene nitrogen mixtures.
A Design Study of Onboard Navigation and Guidance During Aerocapture at Mars. M.S. Thesis
NASA Technical Reports Server (NTRS)
Fuhry, Douglas Paul
1988-01-01
The navigation and guidance of a high lift-to-drag ratio sample return vehicle during aerocapture at Mars are investigated. Emphasis is placed on integrated systems design, with guidance algorithm synthesis and analysis based on vehicle state and atmospheric density uncertainty estimates provided by the navigation system. The latter utilizes a Kalman filter for state vector estimation, with useful update information obtained through radar altimeter measurements and density altitude measurements based on IMU-measured drag acceleration. A three-phase guidance algorithm, featuring constant bank numeric predictor/corrector atmospheric capture and exit phases and an extended constant altitude cruise phase, is developed to provide controlled capture and depletion of orbital energy, orbital plane control, and exit apoapsis control. Integrated navigation and guidance systems performance are analyzed using a four degree-of-freedom computer simulation. The simulation environment includes an atmospheric density model with spatially correlated perturbations to provide realistic variations over the vehicle trajectory. Navigation filter initial conditions for the analysis are based on planetary approach optical navigation results. Results from a selection of test cases are presented to give insight into systems performance.
Importance of the National Petroleum Reserve-Alaska for aquatic birds
Bart, Jonathan; Platte, Robert M.; Andres, Brad; Brown, Stephen; Johnson, James A.; Larned, William
2013-01-01
We used data from aerial surveys (1992–2010) of >100,000 km2 and ground surveys (1998–2004) of >150 km2 to estimate the density and abundance of birds on the North Slope of Alaska (U.S.A.). In the ground surveys, we used double sampling to estimate detection ratios. We used the aerial survey data to compare densities of birds and Arctic fox (Vulpes lagopus), the major nest predator of birds, on the North Slope, in Prudhoe Bay, and in nearby areas. We partitioned the Prudhoe Bay oil field into 2 × 2 km plots and determined the relation between density of aquatic birds and density of roads, buildings, and other infrastructure in these plots. Abundance and density (birds per square kilometer) of 3 groups of aquatic birds—waterfowl, loons, and grebes; shorebirds; and gulls, terns, and jaegers—were highest in the National Petroleum Reserve–Alaska (NPRA) and lowest in the Arctic National Wildlife Refuge. Six other major wetlands occur in the Arctic regions of Canada and Russia, but the largest population of aquatic birds was in the NPRA. Aquatic birds were concentrated in the northern part of the NPRA. For example, an area that covered 18% of the NPRA included 53% of its aquatic birds. The aerial surveys showed that bird density was not lower and fox density was not higher in Prudhoe Bay than in surrounding areas. Density of infrastructure did not significantly affect bird density for any group of species. Our results establish that the NPRA is one of the most important areas for aquatic birds in the Arctic. Our results and those of others also indicate that oil production, as practiced in Prudhoe Bay, does not necessarily lead to substantial declines in bird density or productivity in or near the developed areas.
Nonlinear PP and PS joint inversion based on the exact Zoeppritz equations: a two-stage procedure
NASA Astrophysics Data System (ADS)
Zhi, Lixia; Chen, Shuangquan; Song, Baoshan; Li, Xiang-yang
2018-04-01
S-velocity and density are very important parameters in distinguishing lithology and estimating other petrophysical properties. A reliable estimate of S-velocity and density is very difficult to obtain, even from long-offset gather data. Joint inversion of PP and PS data provides a promising strategy for stabilizing and improving the results of inversion in estimating elastic parameters and density. For 2D or 3D inversion, the trace-by-trace strategy is still the most widely used method although it often suffers from a lack of clarity because of its high efficiency, which is due to parallel computing. This paper describes a two-stage inversion method for nonlinear PP and PS joint inversion based on the exact Zoeppritz equations. There are several advantages for our proposed methods as follows: (1) Thanks to the exact Zoeppritz equation, our joint inversion method is applicable for wide angle amplitude-versus-angle inversion; (2) The use of both P- and S-wave information can further enhance the stability and accuracy of parameter estimation, especially for the S-velocity and density; (3) The two-stage inversion procedure proposed in this paper can achieve a good compromise between efficiency and precision. On the one hand, the trace-by-trace strategy used in the first stage can be processed in parallel so that it has high computational efficiency. On the other hand, to deal with the indistinctness of and undesired disturbances to the inversion results obtained from the first stage, we apply the second stage—total variation (TV) regularization. By enforcing spatial and temporal constraints, the TV regularization stage deblurs the inversion results and leads to parameter estimation with greater precision. Notably, the computation consumption of the TV regularization stage can be ignored compared to the first stage because it is solved using the fast split Bregman iterations. Numerical examples using a well log and the Marmousi II model show that the proposed joint inversion is a reliable method capable of accurately estimating the density parameter as well as P-wave velocity and S-wave velocity, even when the seismic data is noisy with signal-to-noise ratio of 5.
Fleskes, Joseph P.; Halstead, Brian J.; Casazza, Michael L.; Coates, Peter S.; Kohl, Jeffrey D.; Skalos, Daniel A.
2012-01-01
Waste rice seed is an important food for wintering waterfowl and current estimates of its availability are needed to determine the carrying capacity of rice fields and guide habitat conservation. We used a line-intercept method to estimate mass-density of rice seed remaining after harvest during 2010 in the Sacramento Valley (SACV) of California and compared results with estimates from previous studies in the SACV and Mississippi Alluvial Valley (MAV). Posterior mean (95% credible interval) estimates of total waste rice seed mass-density for the SACV in 2010 were 388 (336–449) kg/ha in conventionally harvested fields and 245 (198–307) kg/ha in stripper-head harvested fields; the 2010 mass-density is nearly identical to the mid-1980s estimate for conventionally harvested fields but 36% lower than the mid-1990s estimate for stripped fields. About 18% of SACV fields were stripper-head harvested in 2010 vs. 9–15% in the mid-1990s and 0% in the mid-1980s; but due to a 50% increase in planted rice area, total mass of waste rice seed in SACV remaining after harvest in 2010 was 43% greater than in the mid-1980s. However, total mass of seed-eating waterfowl also increased 82%, and the ratio of waste rice seed to seed-eating waterfowl mass was 21% smaller in 2010 than in the mid-1980s. Mass-densities of waste rice remaining after harvest in SACV fields are within the range reported for MAV fields. However, because there is a lag between harvest and waterfowl use in the MAV but not in the SACV, seed loss is greater in the MAV and estimated waste seed mass-density available to wintering waterfowl in SACV fields is about 5–30 times recent MAV estimates. Waste rice seed remains an abundant food source for waterfowl wintering in the SACV, but increased use of stripper-head harvesters would reduce this food. To provide accurate data on carrying capacities of rice fields necessary for conservation planning, trends in planted rice area, harvest method, and postharvest field treatment should be tracked and impacts of postharvest field treatment and other farming practices on waste rice seed availability should be investigated.
Macular pigment optical density measured by heterochromatic modulation photometry.
Huchzermeyer, Cord; Schlomberg, Juliane; Welge-Lüssen, Ulrich; Berendschot, Tos T J M; Pokorny, Joel; Kremers, Jan
2014-01-01
To psychophysically determine macular pigment optical density (MPOD) employing the heterochromatic modulation photometry (HMP) paradigm by estimating 460 nm absorption at central and peripheral retinal locations. For the HMP measurements, two lights (B: 460 nm and R: 660 nm) were presented in a test field and were modulated in counterphase at medium or high frequencies. The contrasts of the two lights were varied in tandem to determine flicker detection thresholds. Detection thresholds were measured for different R:B modulation ratios. The modulation ratio with minimal sensitivity (maximal threshold) is the point of equiluminance. Measurements were performed in 25 normal subjects (11 male, 14 female; age: 30 ± 11 years, mean ± sd) using an eight channel LED stimulator with Maxwellian view optics. The results were compared with those from two published techniques - one based on heterochromatic flicker photometry (Macular Densitometer) and the other on fundus reflectometry (MPR). We were able to estimate MPOD with HMP using a modified theoretical model that was fitted to the HMP data. The resultant MPODHMP values correlated significantly with the MPODMPR values and with the MPODHFP values obtained at 0.25° and 0.5° retinal eccentricity. HMP is a flicker-based method with measurements taken at a constant mean chromaticity and luminance. The data can be well fit by a model that allows all data points to contribute to the photometric equality estimate. Therefore, we think that HMP may be a useful method for MPOD measurements, in basic and clinical vision experiments.
The ratio of effective building height to street width governs dispersion of local vehicle emissions
NASA Astrophysics Data System (ADS)
Schulte, Nico; Tan, Si; Venkatram, Akula
2015-07-01
Analysis of data collected in street canyons located in Hanover, Germany and Los Angeles, USA, suggests that street-level concentrations of vehicle-related pollutants can be estimated with a model that assumes that vertical turbulent transport of emissions dominates the governing processes. The dispersion model relates surface concentrations to traffic flow rate, the effective aspect ratio of the street, and roof level turbulence. The dispersion model indicates that magnification of concentrations relative to those in the absence of buildings is most sensitive to the aspect ratio of the street, which is the ratio of the effective height of the buildings on the street to the width of the street. This result can be useful in the design of transit oriented developments that increase building density to reduce emissions from transportation.
NASA Astrophysics Data System (ADS)
Choo, Hyunwook; Nam, Hongyeop; Lee, Woojin
2017-12-01
The composition of naturally cemented deposits is very complicated; thus, estimating the maximum shear modulus (Gmax, or shear modulus at very small strains) of cemented sands using the previous empirical formulas is very difficult. The purpose of this experimental investigation is to evaluate the effects of particle size and cement type on the Gmax and unconfined compressive strength (qucs) of cemented sands, with the ultimate goal of estimating Gmax of cemented sands using qucs. Two sands were artificially cemented using Portland cement or gypsum under varying cement contents (2%-9%) and relative densities (30%-80%). Unconfined compression tests and bender element tests were performed, and the results from previous studies of two cemented sands were incorporated in this study. The results of this study demonstrate that the effect of particle size on the qucs and Gmax of four cemented sands is insignificant, and the variation of qucs and Gmax can be captured by the ratio between volume of void and volume of cement. qucs and Gmax of sand cemented with Portland cement are greater than those of sand cemented with gypsum. However, the relationship between qucs and Gmax of the cemented sand is not affected by the void ratio, cement type and cement content, revealing that Gmax of the complex naturally cemented soils with unknown in-situ void ratio, cement type and cement content can be estimated using qucs.
An estimate of the bulk viscosity of the hadronic medium
NASA Astrophysics Data System (ADS)
Sarwar, Golam; Chatterjee, Sandeep; Alam, Jane
2017-05-01
The bulk viscosity (ζ) of the hadronic medium has been estimated within the ambit of the Hadron Resonance Gas (HRG) model including the Hagedorn density of states. The HRG thermodynamics within a grand canonical ensemble provides the mean hadron number as well as its fluctuation. The fluctuation in the chemical composition of the hadronic medium in the grand canonical ensemble can result in non-zero divergence of the hadronic fluid flow velocity, allowing us to estimate the ζ of the hadronic matter up to a relaxation time. We study the influence of the hadronic spectrum on ζ and find its correlation with the conformal symmetry breaking measure, ε -3P. We estimate ζ along the contours with constant, S/{N}B (total entropy/net baryon number) in the T-μ plane (temperature-baryonic chemical potential) for S/{N}B=30,45 and 300. We also assess the value of ζ on the chemical freeze-out curve for various centers of mass energy (\\sqrt{{s}{NN}}) and find that the bulk viscosity to entropy density ratio, \\zeta /s is larger in the energy range of the beam energy scan program of RHIC, low energy SPS run, AGS, NICA and FAIR, than LHC energies.
Emg Amplitude Estimators Based on Probability Distribution for Muscle-Computer Interface
NASA Astrophysics Data System (ADS)
Phinyomark, Angkoon; Quaine, Franck; Laurillau, Yann; Thongpanja, Sirinee; Limsakul, Chusak; Phukpattaranont, Pornchai
To develop an advanced muscle-computer interface (MCI) based on surface electromyography (EMG) signal, the amplitude estimations of muscle activities, i.e., root mean square (RMS) and mean absolute value (MAV) are widely used as a convenient and accurate input for a recognition system. Their classification performance is comparable to advanced and high computational time-scale methods, i.e., the wavelet transform. However, the signal-to-noise-ratio (SNR) performance of RMS and MAV depends on a probability density function (PDF) of EMG signals, i.e., Gaussian or Laplacian. The PDF of upper-limb motions associated with EMG signals is still not clear, especially for dynamic muscle contraction. In this paper, the EMG PDF is investigated based on surface EMG recorded during finger, hand, wrist and forearm motions. The results show that on average the experimental EMG PDF is closer to a Laplacian density, particularly for male subject and flexor muscle. For the amplitude estimation, MAV has a higher SNR, defined as the mean feature divided by its fluctuation, than RMS. Due to a same discrimination of RMS and MAV in feature space, MAV is recommended to be used as a suitable EMG amplitude estimator for EMG-based MCIs.
NEBULAR AND STELLAR DUST EXTINCTION ACROSS THE DISK OF EMISSION-LINE GALAXIES ON KILOPARSEC SCALES
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hemmati, Shoubaneh; Mobasher, Bahram; Darvish, Behnam
We investigate the resolved kiloparsec-scale stellar and nebular dust distribution in eight star-forming galaxies at z ∼ 0.4 in the Great Observatories Origins Deep Survey fields. This is to get a better understanding of the effect of dust attenuation on measurements of physical properties and its variation with redshift. Constructing the observed spectral energy distributions (SEDs) per pixel, based on seven bands of photometric data from Hubble Space Telescope/Advanced Camera for Surveys and WFC3, we performed pixel-by-pixel SED fits to population synthesis models and estimated the small-scale distribution of stellar dust extinction. We use Hα/Hβ nebular emission line ratios from Keck/DEIMOS high-resolutionmore » spectra at each spatial resolution element to measure the amount of attenuation faced by ionized gas at different radii from the centers of galaxies. We find a good agreement between the integrated and median of resolved color excess measurements in our galaxies. The ratio of integrated nebular to stellar dust extinction is always greater than unity, but does not show any trend with stellar mass or star formation rate (SFR). We find that inclination plays an important role in the variation of the nebular to stellar excess ratio. The stellar color excess profiles are found to have higher values at the center compared to outer parts of the disk. However, for lower mass galaxies, a similar trend is not found for the nebular color excess. We find that the nebular color excess increases with stellar mass surface density. This explains the absence of radial trend in the nebular color excess in lower mass galaxies which lack a large radial variation of stellar mass surface density. Using standard conversions of SFR surface density to gas mass surface density, and the relation between dust mass surface density and color excess, we find no significant variation in the dust-to-gas ratio in regions with high gas mass surface densities over the scales probed in this study.« less
Vector and Axial-Vector Current Correlators Within the Instanton Model of QCD Vacuum
NASA Astrophysics Data System (ADS)
Dorokhov, A. E.
2005-08-01
The pion electric polarizability, α {π ^ ± }E , the leading order hadronic contribution to the muon anomalous magnetic moment, aμ hvp(1) , and the ratio of the V - A and V + A correlators are found within the instanton model of QCD vacuum. The results are compared with phenomenological estimates of these quantities from the ALEPH and OPAL data on vector and axial-vector spectral densities.
Estimates of late middle Eocene pCO2 based on stomatal density of modern and fossil Nageia leaves
NASA Astrophysics Data System (ADS)
Liu, X. Y.; Gao, Q.; Han, M.; Jin, J. H.
2016-02-01
Atmospheric pCO2 concentrations have been estimated for intervals of the Eocene using various models and proxy information. Here we reconstruct late middle Eocene (42.0-38.5 Ma) pCO2 based on the fossil leaves of Nageia maomingensis Jin et Liu collected from the Maoming Basin, Guangdong Province, China. We first determine relationships between atmospheric pCO2 concentrations, stomatal density (SD) and stomatal index (SI) using "modern" leaves of N. motleyi (Parl.) De Laub, the nearest living species to the Eocene fossils. This work indicates that the SD inversely responds to pCO2, while SI has almost no relationship with pCO2. Eocene pCO2 concentrations can be reconstructed based on a regression approach and the stomatal ratio method by using the SD. The first approach gives a pCO2 of 351.9 ± 6.6 ppmv, whereas the one based on stomatal ratio gives a pCO2 of 537.5 ± 56.5 ppmv. Here, we explored the potential of N. maomingensis in pCO2 reconstruction and obtained different results according to different methods, providing a new insight for the reconstruction of paleoclimate and paleoenvironment in conifers.
Earle-Richardson, Giulia B.; Brower, Melissa A.; Jones, Amanda M.; May, John J.; Jenkins, Paul L.
2008-01-01
Purpose To compare occupational morbidity estimates for migrant and seasonal farmworkers obtained from survey methods versus chart review methods, and to estimate the proportion of morbidity treated at federally recognized migrant health centers (MHCs) in a highly agricultural region of New York. Methods Researchers simultaneously conducted: a) an occupational injury and illness survey among agricultural workers; b) MHC chart review; and c) hospital emergency room (ER) chart reviews. Results Of the 24 injuries reported by 550 survey subjects, 54.2% received treatment MHCs 16.7% at ERs, 16.7% at some other facility, and 12.5% were untreated. For injuries treated at MHCs or ERs, the incidence density based on survey methods was 29.3 injuries per 10,000 worker-weeks versus 27.4 by chart review. The standardized morbidity ratio (SMR) for this comparison was 1.07 (95% CI = 0.65 – 1.77). Conclusion Survey data indicate that 71% of agricultural injury and illness can be captured with MHC and ER chart review. MHC and ER incidence density estimates show strong correspondence between the two methods. A chart review-based surveillance system, in conjunction with a correction factor based on periodic worker surveys, would provide a cost-effective estimate of the occupational illness and injury rate in this population. PMID:18063238
A bias-corrected estimator in multiple imputation for missing data.
Tomita, Hiroaki; Fujisawa, Hironori; Henmi, Masayuki
2018-05-29
Multiple imputation (MI) is one of the most popular methods to deal with missing data, and its use has been rapidly increasing in medical studies. Although MI is rather appealing in practice since it is possible to use ordinary statistical methods for a complete data set once the missing values are fully imputed, the method of imputation is still problematic. If the missing values are imputed from some parametric model, the validity of imputation is not necessarily ensured, and the final estimate for a parameter of interest can be biased unless the parametric model is correctly specified. Nonparametric methods have been also proposed for MI, but it is not so straightforward as to produce imputation values from nonparametrically estimated distributions. In this paper, we propose a new method for MI to obtain a consistent (or asymptotically unbiased) final estimate even if the imputation model is misspecified. The key idea is to use an imputation model from which the imputation values are easily produced and to make a proper correction in the likelihood function after the imputation by using the density ratio between the imputation model and the true conditional density function for the missing variable as a weight. Although the conditional density must be nonparametrically estimated, it is not used for the imputation. The performance of our method is evaluated by both theory and simulation studies. A real data analysis is also conducted to illustrate our method by using the Duke Cardiac Catheterization Coronary Artery Disease Diagnostic Dataset. Copyright © 2018 John Wiley & Sons, Ltd.
NASA Astrophysics Data System (ADS)
Melbourne, J.; Soifer, B. T.; Desai, Vandana; Pope, Alexandra; Armus, Lee; Dey, Arjun; Bussmann, R. S.; Jannuzi, B. T.; Alberts, Stacey
2012-05-01
Dust-obscured galaxies (DOGs) are a subset of high-redshift (z ≈ 2) optically-faint ultra-luminous infrared galaxies (ULIRGs, e.g., L IR > 1012 L ⊙). We present new far-infrared photometry, at 250, 350, and 500 μm (observed-frame), from the Herschel Space Telescope for a large sample of 113 DOGs with spectroscopically measured redshifts. Approximately 60% of the sample are detected in the far-IR. The Herschel photometry allows the first robust determinations of the total infrared luminosities of a large sample of DOGs, confirming their high IR luminosities, which range from 1011.6 L ⊙
DOE Office of Scientific and Technical Information (OSTI.GOV)
Melbourne, J.; Soifer, B. T.; Desai, Vandana
Dust-obscured galaxies (DOGs) are a subset of high-redshift (z Almost-Equal-To 2) optically-faint ultra-luminous infrared galaxies (ULIRGs, e.g., L{sub IR} > 10{sup 12} L{sub Sun} ). We present new far-infrared photometry, at 250, 350, and 500 {mu}m (observed-frame), from the Herschel Space Telescope for a large sample of 113 DOGs with spectroscopically measured redshifts. Approximately 60% of the sample are detected in the far-IR. The Herschel photometry allows the first robust determinations of the total infrared luminosities of a large sample of DOGs, confirming their high IR luminosities, which range from 10{sup 11.6} L{sub Sun} 10{sup 13} L{sub Sun }. Themore » rest-frame near-IR (1-3 {mu}m) spectral energy distributions (SEDs) of the Herschel-detected DOGs are predictors of their SEDs at longer wavelengths. DOGs with 'power-law' SEDs in the rest-frame near-IR show observed-frame 250/24 {mu}m flux density ratios similar to the QSO-like local ULIRG, Mrk 231. DOGs with a stellar 'bump' in their rest-frame near-IR show observed-frame 250/24 {mu}m flux density ratios similar to local star-bursting ULIRGs like NGC 6240. None show 250/24 {mu}m flux density ratios similar to extreme local ULIRG, Arp 220; though three show 350/24 {mu}m flux density ratios similar to Arp 220. For the Herschel-detected DOGs, accurate estimates (within {approx}25%) of total IR luminosity can be predicted from their rest-frame mid-IR data alone (e.g., from Spitzer observed-frame 24 {mu}m luminosities). Herschel-detected DOGs tend to have a high ratio of infrared luminosity to rest-frame 8 {mu}m luminosity (the IR8 = L{sub IR}(8-1000 {mu}m)/{nu}L{sub {nu}}(8 {mu}m) parameter of Elbaz et al.). Instead of lying on the z = 1-2 'infrared main sequence' of star-forming galaxies (like typical LIRGs and ULIRGs at those epochs) the DOGs, especially large fractions of the bump sources, tend to lie in the starburst sequence. While, Herschel-detected DOGs are similar to scaled up versions of local ULIRGs in terms of 250/24 {mu}m flux density ratio, and IR8, they tend to have cooler far-IR dust temperatures (20-40 K for DOGs versus 40-50 K for local ULIRGs) as measured by the rest-frame 80/115 {mu}m flux density ratios (e.g., observed-frame 250/350 {mu}m ratios at z = 2). DOGs that are not detected by Herschel appear to have lower observed-frame 250/24 {mu}m ratios than the detected sample, either because of warmer dust temperatures, lower IR luminosities, or both.« less
Optimizing probability of detection point estimate demonstration
NASA Astrophysics Data System (ADS)
Koshti, Ajay M.
2017-04-01
The paper provides discussion on optimizing probability of detection (POD) demonstration experiments using point estimate method. The optimization is performed to provide acceptable value for probability of passing demonstration (PPD) and achieving acceptable value for probability of false (POF) calls while keeping the flaw sizes in the set as small as possible. POD Point estimate method is used by NASA for qualifying special NDE procedures. The point estimate method uses binomial distribution for probability density. Normally, a set of 29 flaws of same size within some tolerance are used in the demonstration. Traditionally largest flaw size in the set is considered to be a conservative estimate of the flaw size with minimum 90% probability and 95% confidence. The flaw size is denoted as α90/95PE. The paper investigates relationship between range of flaw sizes in relation to α90, i.e. 90% probability flaw size, to provide a desired PPD. The range of flaw sizes is expressed as a proportion of the standard deviation of the probability density distribution. Difference between median or average of the 29 flaws and α90 is also expressed as a proportion of standard deviation of the probability density distribution. In general, it is concluded that, if probability of detection increases with flaw size, average of 29 flaw sizes would always be larger than or equal to α90 and is an acceptable measure of α90/95PE. If NDE technique has sufficient sensitivity and signal-to-noise ratio, then the 29 flaw-set can be optimized to meet requirements of minimum required PPD, maximum allowable POF, requirements on flaw size tolerance about mean flaw size and flaw size detectability requirements. The paper provides procedure for optimizing flaw sizes in the point estimate demonstration flaw-set.
NASA Astrophysics Data System (ADS)
Machado, M. R.; Adhikari, S.; Dos Santos, J. M. C.; Arruda, J. R. F.
2018-03-01
Structural parameter estimation is affected not only by measurement noise but also by unknown uncertainties which are present in the system. Deterministic structural model updating methods minimise the difference between experimentally measured data and computational prediction. Sensitivity-based methods are very efficient in solving structural model updating problems. Material and geometrical parameters of the structure such as Poisson's ratio, Young's modulus, mass density, modal damping, etc. are usually considered deterministic and homogeneous. In this paper, the distributed and non-homogeneous characteristics of these parameters are considered in the model updating. The parameters are taken as spatially correlated random fields and are expanded in a spectral Karhunen-Loève (KL) decomposition. Using the KL expansion, the spectral dynamic stiffness matrix of the beam is expanded as a series in terms of discretized parameters, which can be estimated using sensitivity-based model updating techniques. Numerical and experimental tests involving a beam with distributed bending rigidity and mass density are used to verify the proposed method. This extension of standard model updating procedures can enhance the dynamic description of structural dynamic models.
NASA Astrophysics Data System (ADS)
Yamashita, M.; Yoshimura, M.
2018-04-01
Photosynthetic photon flux density (PPFD: µmol m-2 s-1) is indispensable for plant physiology processes in photosynthesis. However, PPFD is seldom measured, so that PPFD has been estimated by using solar radiation (SR: W m-2) measured in world wide. In method using SR, there are two steps: first to estimate photosynthetically active radiation (PAR: W m-2) by the fraction of PAR to SR (PF) and second: to convert PAR to PPFD using the ratio of quanta to energy (Q / E: µmol J-1). PF and Q/E usually have been used as the constant values, however, recent studies point out that PF and Q / E would not be constants under various sky conditions. In this study, we use the numeric data of sky-conditions factors such cloud cover, sun appearance/hiding and relative sky brightness derived from whole-sky image processing and examine the influences of sky-conditions factors on PF and Q / E of global and diffuse PAR. Furthermore, we discuss our results by comparing with the existing methods.
Fluorescent H2 Emission Lines from the Reflection Nebula NGC 7023 Observed with IGRINS
NASA Astrophysics Data System (ADS)
Le, Huynh Anh N.; Pak, Soojong; Kaplan, Kyle; Mace, Gregory; Lee, Sungho; Pavel, Michael; Jeong, Ueejeong; Oh, Heeyoung; Lee, Hye-In; Chun, Moo-Young; Yuk, In-Soo; Pyo, Tae-Soo; Hwang, Narae; Kim, Kang-Min; Park, Chan; Sok Oh, Jae; Yu, Young Sam; Park, Byeong-Gon; Minh, Young Chol; Jaffe, Daniel T.
2017-05-01
We have analyzed the temperature, velocity, and density of H2 gas in NGC 7023 with a high-resolution near-infrared spectrum of the northwestern filament of the reflection nebula. By observing NGC 7023 in the H and K bands at R ≃ 45,000 with the Immersion GRating INfrared Spectrograph, we detected 68 H2 emission lines within the 1″ × 15″ slit. The diagnostic ratio of 2-1 S(1)/1-0 S(1) is 0.41-0.56. In addition, the estimated ortho-to-para ratio (OPR) is 1.63-1.82, indicating that the H2 emission transitions in the observed region arise mostly from gas excited by UV fluorescence. Gradients in the temperature, velocity, and OPR within the observed area imply motion of the photodissociation region (PDR) relative to the molecular cloud. In addition, we derive the column density of H2 from the observed emission lines and compare these results with PDR models in the literature covering a range of densities and incident UV field intensities. The notable difference between PDR model predictions and the observed data, in high rotational J levels of ν = 1, is that the predicted formation temperature for newly formed H2 should be lower than that of the model predictions. To investigate the density distribution, we combine pixels in 1″ × 1″ areas and derive the density distribution at the 0.002 pc scale. The derived gradient of density suggests that NGC 7023 has a clumpy structure, including a high clump density of ˜105 cm-3 with a size smaller than ˜5 × 10-3 pc embedded in lower-density regions of 103-104 cm-3.
Estimating fat mass in heart failure patients.
Trippel, Tobias Daniel; Lenk, Julian; Gunga, Hanns-Christian; Doehner, Wolfram; von Haehling, Stephan; Loncar, Goran; Edelmann, Frank; Pieske, Burkert; Stahn, Alexander; Duengen, Hans-Dirk
2016-01-01
Body composition (BC) assessments in heart failure (HF) patients are mainly based on body weight, body mass index and waist-to-hip ratio. The present study compares BC assessments by basic anthropometry, dual energy X-ray absorptiometry (DXA), bioelectrical impedance spectroscopy (BIS), and air displacement plethysmography (ADP) for the estimation of fat (FM) and fat-free mass (FFM) in a HF population. In this single-centre, observational pilot study we enrolled 52 patients with HF (33 HF with reduced ejection fraction (HFrEF), 19 HF with preserved ejection fraction (HFpEF); mean age was 67.7 ±9.9 years, 41 male) and 20 healthy controls. DXA was used as a reference standard for the measurement of FM and FFM. In the HF population, linear regression for DXA-FM and waist-to-hip ratio ( r = -0.05, 95% CI: (-0.32)-0.23), body mass index ( r = 0.47, 95% CI: 0.23-0.669), and body density ( r = -0.87, 95% CI: (-0.93)-(-0.87)) was obtained. In HF, Lin's concordance correlation coefficient of DXA-FM (%) with ADP-FM (%) was 0.76 (95% CI: 0.64-0.85) and DXA-FFM [kg] with DXA-ADP [kg] was 0.93 (95% CI: 0.88-0.96). DXA-FM (%) for BIS-FM (%) was 0.69 (95% CI: 0.54-0.80) and 0.73 (95% CI: 0.60-0.82) for DXA-FFM [kg] and BIS-FFM [kg]. Body density is a useful surrogate for FM. ADP was found suitable for estimating FM (%) and FFM [kg] in HF patients. BIS showed acceptable results for the estimation of FM (%) in HFrEF and for FFM [kg] in HFpEF patients. We encourage selecting a suitable method for BC assessment according to the compartment of interest in the HF population.
Vega, Gloria Lena; Barlow, Carolyn E; Grundy, Scott M; Leonard, David; DeFina, Laura F
2014-02-01
High triglyceride (TG) and low high-density lipoprotein cholesterol (HDL-C) impart risk for heart disease. This study examines the relationships of TG/HDL-C ratio to mortality from all causes, coronary heart disease (CHD), or cardiovascular disease (CVD). Survival analysis was done in 39,447 men grouped by TG/HDL-C ratio cut point of 3.5 and for metabolic syndrome. National Death Index International Classification of Diseases (ICD-9 and ICD-10) codes were used for CVD and CHD deaths occurring from 1970 to 2008. Incidence of type 2 diabetes mellitus (DM) according to ratio was estimated in 22,215 men. Triglyceride/HDL-C ratio and cross-product of TG and fasting blood glucose (TyG index) were used in analysis. Men were followed up for 581,194 person-years. Triglyceride/HDL-C ratio predicted CHD, CVD, and all-cause mortality after adjustment for established risk factors and non-HDL-C. Mortality rates were higher in individuals with a high ratio than in those with a low ratio. Fifty-five percent of men had metabolic syndrome that was also predictive of CHD, CVD, and all-cause mortality. Annual incidence of DM was 2 times higher in men with high TG/HDL-C ratio than in those with a low ratio. Individuals with high TG/HDL-C ratio had a higher incidence of DM than those with a low ratio. The TyG index was not equally predictive of causes of mortality to TG/HDL-C, but both were equally predictive of diabetes incidence. Triglyceride/HDL-C ratio predicts CHD and CVD mortality as well as or better than do metabolic syndrome in men. Also, a high ratio predisposes to DM. The TyG index does not predict CHD, CVD, or all-cause mortality equally well, but like TG/HDL-C ratio, it predicts DM incidence.
Jishi, Tomohiro; Matsuda, Ryo; Fujiwara, Kazuhiro
2018-06-01
Square-wave pulsed light is characterized by three parameters, namely average photosynthetic photon flux density (PPFD), pulsed-light frequency, and duty ratio (the ratio of light-period duration to that of the light-dark cycle). In addition, the light-period PPFD is determined by the averaged PPFD and duty ratio. We investigated the effects of these parameters and their interactions on net photosynthetic rate (P n ) of cos lettuce leaves for every combination of parameters. Averaged PPFD values were 0-500 µmol m -2 s -1 . Frequency values were 0.1-1000 Hz. White LED arrays were used as the light source. Every parameter affected P n and interactions between parameters were observed for all combinations. The P n under pulsed light was lower than that measured under continuous light of the same averaged PPFD, and this difference was enhanced with decreasing frequency and increasing light-period PPFD. A mechanistic model was constructed to estimate the amount of stored photosynthetic intermediates over time under pulsed light. The results indicated that all effects of parameters and their interactions on P n were explainable by consideration of the dynamics of accumulation and consumption of photosynthetic intermediates.
NASA Astrophysics Data System (ADS)
Wang, Weilai; Wu, Jianping; Fang, Lihua; Lai, Guijuan; Cai, Yan
2017-03-01
The sedimentary and crustal thicknesses and Poisson's ratios of the NE Tibetan Plateau and its adjacent regions are estimated by the h- κ stacking and CCP image of receiver functions from the data of 1,317 stations. The horizontal resolution of the obtained results is as high as 0.5° × 0.5°, which can be used for further high resolution model construction in the region. The crustal thicknesses from Airy's equilibrium are smaller than our results in the Sichuan Basin, Qilian tectonic belt, northern Alxa block and Qaidam Basin, which is consistent with the high densities in the mantle lithosphere and may indicate that the high-density lithosphere drags crust down overall. High Poisson's ratios and low velocity zones are found in the mid- and lower crust beneath eastern Qilian tectonic belt and the boundary areas of the Ordos block, indicating that partial melting may exist in these regions. Low Poisson's ratios and low-velocity anomalies are observed in the crust in the NE Tibetan Plateau, implying that the mafic lower crust is thinning or missing and that the mid- and lower crust does not exhibit melting or partial melting in the NE Tibetan Plateau, and weak flow layers are not likely to exist in this region.
Anomalously strong observations of PKiKP/PcP amplitude ratios on a global scale
NASA Astrophysics Data System (ADS)
Waszek, Lauren; Deuss, Arwen
2015-07-01
The inner core boundary marks the phase transition between the solid inner core and the fluid outer core. As the site of inner core solidification, the boundary provides insight into the processes generating the seismic structures of the inner core. In particular, it may hold the key to understanding the previously observed hemispherical asymmetry in inner core seismic velocity, anisotropy, and attenuation. Here we use a large PKiKP-PcP amplitude ratio and travel time residual data set to investigate velocity and density contrast properties near the inner core boundary. Although hemispherical structure at the boundary has been proposed by previous inner core studies, we find no evidence for hemispheres in the amplitude ratios or travel time residuals. In addition, we find that the amplitude ratios are much larger than can be explained by variations in density contrast at the inner core boundary or core-mantle boundary. This indicates that PKiKP is primarily observed when it is anomalously large, due to focusing along its raypath. Using data in which PKiKP is not detected above the noise level, we calculate an upper estimate for the inner core boundary (ICB) density contrast of 1.2 kg m-3. The travel time residuals display large regional variations, which differ on long and short length scales. These regions may be explained by large-scale velocity variations in the F layer just above the inner core boundary, and/or small-scale topography of varying magnitude on the ICB, which also causes the large amplitudes. Such differences could arise from localized freezing and melting of the inner core.
Continental extension, magmatism and elevation; formal relations and rules of thumb
Lachenbruch, A.H.; Morgan, P.
1990-01-01
To investigate simplified relations between elevation and the extensional, magmatic and thermal processes that influence lithosphere buoyancy, we assume that the lithosphere floats on an asthenosphere of uniform density and has no flexural strength. A simple graph relating elevation to lithosphere density and thickness provides an overview of expectable conditions around the earth and a simple test for consistancy of continental and oceanic lithosphere models. The mass-balance relations yield simple general rules for estimating elevation changes caused by various tectonic, magmatic and thermal processes without referring to detailed models. The rules are general because they depend principally on buoyancy, which under our assumptions is specified by elevation, a known quantity; they do not generally require a knowledge of lithosphere thickness and density. The elevation of an extended terrain contains important information on its tectonic and magmatic history. In the Great Basin where Cenozoic extension is estimated to be 100%, the present high mean elevation ( ~ 1.75 km) probably requires substantial low-density magmatic contributions to the extending lithosphere. The elevation cannot be reasonably explained solely as the buoyant residue of a very high initial terrane, or of a lithosphere that was initially very thick and subsequently delaminated and heated. Even models with a high initial elevation typically call for 10 km or so of accumulated magmatic material of near-crustal density. To understand the evolution of the Great Basin, it is important to determine whether such intruded material is present; some could replenish the stretching crust by underplating and crustal intrusion and some might reside in the upper mantle. The elevation maintained or approached by an intruded extending lithosphere depends on the ratio B of how fast magma is supplied from the asthenosphere ( b km/Ma) to how fast the lithosphere spreads the magma out by extension (?? Ma-1). For a surface maintained 2 1 2km below sea level (e.g., an ocean ridge) B is about 5 km; for continental extension the ratio may be much greater. The frequent association of volcanism with continental extension, the high elevation (and buoyancy) of some appreciably extended terrains, and the oceanic spreading analog all suggest that magmatism may play an important role in continental extension. Better estimates of total extension and elevation change in extended regions can help to identify that role. ?? 1990.
Wen, Jia; Chen, Yiyin; Huang, Yun; Lu, Yao; Liu, Xing; Zhou, Honghao; Yuan, Hong
2017-01-01
Evidence indicates a role for dyslipidemia in the development of chronic kidney disease (CKD). However, the association of lipid abnormalities and their ratios with kidney disease using the new CKD Epidemiology Collaboration (CKD-EPI) equation is not well understood. This cross-sectional study included 48,054 adult subjects. CKD was defined as an estimated glomerular filtration rate <60 ml/min/1.73 m2 or dipstick-positive proteinuria. Logistic regression models were used to examine the relationship between lipid variables and CKD. The prevalence of CKD in this study was 3.7%. When the participants exhibited higher serum triglyceride (TG), a higher TG/high-density lipoprotein cholesterol (TG/HDL-c) ratio or a higher non-HDL-c/HDL-c ratio or HDL-c in a lower quartile, the prevalence of CKD tended to be higher. The multivariate adjusted odds ratios for CKD per 1 standard deviation increase in lipid level were 1.17 (1.10-1.23) for TG, 0.86 (0.79-0.93) for HDL-c, 1.21 (1.13-1.31) for the TG/HDL-c ratio, and 1.14 (1.06-1.22) for the non-HDL-c/HDL-c ratio. No significant association was detected between CKD and total cholesterol (TC), non-HDL-c or the low-density lipoprotein cholesterol/HDL-c (LDL-c/HDL-c) ratio. In this relatively healthy adult Chinese population, the CKD-EPI equation determined that the TG/HDL-c and non-HDL-c/HDL-c ratios as well as TG and HDL-c correlate with the prevalence of CKD. © 2017 The Author(s). Published by S. Karger AG, Basel.
Analysis of computed tomography density of liver before and after amiodarone administration.
Matsuda, Masazumi; Otaka, Aoi; Tozawa, Tomoki; Asano, Tomoyuki; Ishiyama, Koichi; Hashimoto, Manabu
2018-05-01
To evaluate CT density of liver changes between before and after amiodarone administration. Twenty-five patients underwent non-enhanced CT including the liver before and after amiodarone administration. We set regions of interest (ROIs) at liver S8, spleen, paraspinal muscle, and calculated average CT density in these ROIs, then compared CT density between liver and other organs. Statistical differences between CT density of liver and various ratios before and after administration were determined, along with correlations between cumulative dose of amiodarone and liver density after administration, density change of liver, and various ratios after administration. Liver density, liver-to-spleen ratio, and liver-to-paraspinal muscle ratio differed significantly between before and after amiodarone administration. No significant correlations were found between cumulative doses of amiodarone and any of liver density after administration, density change of liver, or various ratios after administration. CT density of liver after amiodarone administration was significantly higher than that before administration. No correlations were identified between cumulative dose of amiodarone and either liver density after administration or density change of liver. Amiodarone usage should be checked when radiologists identify high density of the liver on CT.
Neutralization of Plutonium and Enriched Uranium Solutions Containing Gadolinium as a Neutron Poison
DOE Office of Scientific and Technical Information (OSTI.GOV)
BRONIKOWSKI, MG.
2004-04-01
Materials currently being dissolved in the HB-Line Facility will result in an accumulated solution containing an estimated uranium:plutonium (U:Pu) ratio of 4.3:1 and an 235U enrichment estimated at 30 per cent The U:Pu ratio and the enrichment are outside the evaluated concentration range for disposition to high level waste (HLW) using gadolinium (Gd) as a neutron poison. To confirm that the solution generated during the current HB-Line dissolving campaign can be poisoned with Gd, neutralized and discarded to the Savannah River Site (SRS) high level waste (HLW) system without undue nuclear safety concerns the caustic precipitation of surrogate solutions wasmore » examined. Experiments were performed with a U/Pu/Gd solution representative of the HB-Line estimated concentration ratio and also a U/Gd solution. Depleted U was used in the experiments as the enrichment of the U will not affect the chemical behavior during neutralization, but will affect the amount of Gd added to the solution. Settling behavior of the neutralized solutions was found to be comparable to previous studies. The neutralized solutions mixed easily and had expected densities of typical neutralized waste. The neutralized solids were found to be homogeneous and less than 20 microns in size. Partially neutralized solids were more amorphous than the fully neutralized solids. Based on the results of these experiments, Gd was found to be a viable poison for neutralizing a U/Pu/Gd solution with a U:Pu mass ratio of 4.3:1 thus extending the U:Pu mass ratio from the previously investigated 0-3:1 to 4.3:1. However, further work is needed to allow higher U concentrations or U:Pu ratios greater than investigated in this work.« less
The baryon content of groups and clusters of galaxies
NASA Astrophysics Data System (ADS)
Roussel, H.; Sadat, R.; Blanchard, A.
2000-09-01
We have analyzed the properties of a sample of 33 groups and clusters of galaxies for which both optical and X-ray data were available in the literature. This sample was built to examine the baryon content and to check for trends over a decade in temperature down to 1 keV. We examine the relative contribution of galaxies and ICM to baryons in clusters through the gas-to-stellar mass ratio (Mgas/M*). We find that the typical stellar contribution to the baryonic mass is between 5 and 20%, at the virial radius. The ratio (Mgas/M*) is found to be roughly independent of temperature. Therefore, we do not confirm the trend of increasing gas-to-stellar mass ratio with increasing temperature as previously claimed. We also determine the absolute values and the distribution of the baryon fraction with the density contrast delta with respect to the critical density. Virial masses are estimated from two different mass estimators: one based on the isothermal hydrostatic equation (IHE), the other based on scaling law models (SLM), the calibration being taken from numerical simulations. Comparing the two methods, we find that SLM lead to less dispersed baryon fractions over all density contrasts and that the derived mean absolute values are significantly lower than IHE mean values: at delta =500, the baryon fractions (gas fractions) are 11.5-13.4% (10.3-12%) and ~ 20% (17%) respectively. We show that this is not due to the uncertainties on the outer slope beta of the gas density profile but is rather indicating that IHE masses are less reliable. Examining the shape of the baryon fraction profiles, we find that cluster baryon fractions estimated from SLM follow a scaling law. Moreover, we do not find any strong evidence of increasing baryon (gas) fraction with temperature: hotter clusters do not have a higher baryon fraction than colder ones, neither do we find the slope beta to increase with temperature. The absence of clear trends between fb and Mgas/M* with temperature is consistent with the similarity of baryon fraction profiles and suggests that non-gravitational processes such as galaxy feedback, necessary to explain the observed luminosity-temperature relationship, do not play a dominant rôle in heating the intra-cluster gas on the virial scale. Tables~1 to 6 are only available in electronic form at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via http://cdsweb.u-strasbg.fr/Abstract.html
Preston, Daniel L; Henderson, Jeremy S; Falke, Landon P; Segui, Leah M; Layden, Tamara J; Novak, Mark
2018-05-08
Describing the mechanisms that drive variation in species interaction strengths is central to understanding, predicting, and managing community dynamics. Multiple factors have been linked to trophic interaction strength variation, including species densities, species traits, and abiotic factors. Yet most empirical tests of the relative roles of multiple mechanisms that drive variation have been limited to simplified experiments that may diverge from the dynamics of natural food webs. Here, we used a field-based observational approach to quantify the roles of prey density, predator density, predator-prey body-mass ratios, prey identity, and abiotic factors in driving variation in feeding rates of reticulate sculpin (Cottus perplexus). We combined data on over 6,000 predator-prey observations with prey identification time functions to estimate 289 prey-specific feeding rates at nine stream sites in Oregon. Feeding rates on 57 prey types showed an approximately log-normal distribution, with few strong and many weak interactions. Model selection indicated that prey density, followed by prey identity, were the two most important predictors of prey-specific sculpin feeding rates. Feeding rates showed a positive relationship with prey taxon densities that was inconsistent with predator saturation predicted by current functional response models. Feeding rates also exhibited four orders-of-magnitude in variation across prey taxonomic orders, with the lowest feeding rates observed on prey with significant anti-predator defenses. Body-mass ratios were the third most important predictor variable, showing a hump-shaped relationship with the highest feeding rates at intermediate ratios. Sculpin density was negatively correlated with feeding rates, consistent with the presence of intraspecific predator interference. Our results highlight how multiple co-occurring drivers shape trophic interactions in nature and underscore ways in which simplified experiments or reliance on scaling laws alone may lead to biased inferences about the structure and dynamics of species-rich food webs. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.
Evaluating impacts using a BACI design, ratios, and a Bayesian approach with a focus on restoration.
Conner, Mary M; Saunders, W Carl; Bouwes, Nicolaas; Jordan, Chris
2015-10-01
Before-after-control-impact (BACI) designs are an effective method to evaluate natural and human-induced perturbations on ecological variables when treatment sites cannot be randomly chosen. While effect sizes of interest can be tested with frequentist methods, using Bayesian Markov chain Monte Carlo (MCMC) sampling methods, probabilities of effect sizes, such as a ≥20 % increase in density after restoration, can be directly estimated. Although BACI and Bayesian methods are used widely for assessing natural and human-induced impacts for field experiments, the application of hierarchal Bayesian modeling with MCMC sampling to BACI designs is less common. Here, we combine these approaches and extend the typical presentation of results with an easy to interpret ratio, which provides an answer to the main study question-"How much impact did a management action or natural perturbation have?" As an example of this approach, we evaluate the impact of a restoration project, which implemented beaver dam analogs, on survival and density of juvenile steelhead. Results indicated the probabilities of a ≥30 % increase were high for survival and density after the dams were installed, 0.88 and 0.99, respectively, while probabilities for a higher increase of ≥50 % were variable, 0.17 and 0.82, respectively. This approach demonstrates a useful extension of Bayesian methods that can easily be generalized to other study designs from simple (e.g., single factor ANOVA, paired t test) to more complicated block designs (e.g., crossover, split-plot). This approach is valuable for estimating the probabilities of restoration impacts or other management actions.
Gupta, Manoj; Gupta, T C
2017-10-01
The present study aims to accurately estimate inertial, physical, and dynamic parameters of human body vibratory model consistent with physical structure of the human body that also replicates its dynamic response. A 13 degree-of-freedom (DOF) lumped parameter model for standing person subjected to support excitation is established. Model parameters are determined from anthropometric measurements, uniform mass density, elastic modulus of individual body segments, and modal damping ratios. Elastic moduli of ellipsoidal body segments are initially estimated by comparing stiffness of spring elements, calculated from a detailed scheme, and values available in literature for same. These values are further optimized by minimizing difference between theoretically calculated platform-to-head transmissibility ratio (TR) and experimental measurements. Modal damping ratios are estimated from experimental transmissibility response using two dominant peaks in the frequency range of 0-25 Hz. From comparison between dynamic response determined form modal analysis and experimental results, a set of elastic moduli for different segments of human body and a novel scheme to determine modal damping ratios from TR plots, are established. Acceptable match between transmissibility values calculated from the vibratory model and experimental measurements for 50th percentile U.S. male, except at very low frequencies, establishes the human body model developed. Also, reasonable agreement obtained between theoretical response curve and experimental response envelop for average Indian male, affirms the technique used for constructing vibratory model of a standing person. Present work attempts to develop effective technique for constructing subject specific damped vibratory model based on its physical measurements.
Aberare, Ogbevire L; Okuonghae, Patrick; Mukoro, Nathaniel; Dirisu, John O; Osazuwa, Favour; Odigie, Elvis; Omoregie, Richard
2011-06-01
Deliberate and regular exposure to premium motor spirit fumes is common and could be a risk factor for liver disease in those who are occupationally exposed. A possible association between premium motor spirit fumes and plasma levels of triglyceride, total cholesterol, high density lipoprotein cholesterol and low density lipoprotein cholesterol using a rodent model could provide new insights in the pathology of diseases where cellular dysfunction is an established risk factor. The aim of this study was to evaluate the possible effect of premium motor spirit fumes on lipids and lipoproteins in workers occupationally exposed to premium motor spirit fumes using rodent model. Twenty-five Wister albino rats (of both sexes) were used for this study between the 4(th) of August and 7(th) of September, 2010. The rats were divided into five groups of five rats each. Group 1 rats were not exposed to premium motor spirit fumes (control group), group 2 rats were exposed for 1 hour daily, group 3 for 3 hours daily, group 4 for 5 hours daily and group 5 for 7 hours daily. The experiment lasted for a period of 4 weeks. Blood samples obtained from all the groups after 4 weeks of exposure were used for the estimation of plasma levels of triglyceride, total cholesterol, high density lipoprotein- cholesterol and low density lipoprotein- cholesterol. Results showed significant increase in means of plasma total cholesterol and low density lipoprotein levels (P<0.05). The mean triglyceride and total body weight were significantly lower (P<0.05) in the exposed group when compared with the unexposed. The plasma level of high density lipoprotein, the ratio of low density lipoprotein to high density lipoprotein and the ratio of total cholesterol to high density lipoprotein did not differ significantly in exposed subjects when compared with the control group. These results showed that frequent exposure to petrol fumes may be highly deleterious to the liver cells.
Using Muons to Image the Subsurface.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bonal, Nedra; Cashion, Avery Ted; Cieslewski, Grzegorz
Muons are subatomic particles that can penetrate the earth 's crust several kilometers and may be useful for subsurface characterization . The absorption rate of muons depends on the density of the materials through which they pass. Muons are more sensitive to density variation than other phenomena, including gravity, making them beneficial for subsurface investigation . Measurements of muon flux rate at differing directions provide density variations of the materials between the muon source (cosmic rays and neutrino interactions) and the detector, much like a CAT scan. Currently, muon tomography can resolve features to the sub-meter scale. This work consistsmore » of three parts to address the use of muons for subsurface characterization : 1) assess the use of muon scattering for estimating density differences of common rock types, 2 ) using muon flux to detect a void in rock, 3) measure muon direction by designing a new detector. Results from this project lay the groundwork for future directions in this field. Low-density objects can be detected by muons even when enclosed in high-density material like lead, and even small changes in density (e.g. changes due to fracturing of material) can be detected. Rock density has a linear relationship with muon scattering density per rock volume when this ratio is greater than 0.10 . Limitations on using muon scattering to assess density changes among common rock types have been identified. However, other analysis methods may show improved results for these relatively low density materials. Simulations show that muons can be used to image void space (e.g. tunnels) within rock but experimental results have been ambiguous. Improvements are suggested to improve imaging voids such as tunnels through rocks. Finally, a muon detector has been designed and tested to measure muon direction, which will improve signal-to-noise ratio and help address fundamental questions about the source of upgoing muons .« less
Tsuruya, Kazuhiko; Yoshida, Hisako; Nagata, Masaharu; Kitazono, Takanari; Iseki, Kunitoshi; Iseki, Chiho; Fujimoto, Shouichi; Konta, Tsuneo; Moriyama, Toshiki; Yamagata, Kunihiro; Narita, Ichiei; Kimura, Kenjiro; Kondo, Masahide; Asahi, Koichi; Kurahashi, Issei; Ohashi, Yasuo; Watanabe, Tsuyoshi
2015-12-01
The impact of the triglycerides to high-density lipoprotein cholesterol (TG:HDL-C) ratio on chronic kidney disease (CKD) is unclear. Longitudinal cohort study. 124,700 participants aged 39 to 74 years in the Japanese Specific Health Check and Guidance System, including 50,392 men, 74,308 women, 102,900 without CKD, and 21,800 with CKD. Quartiles of TG:HDL-C ratio. Changes in estimated glomerular filtration rate (eGFR) and urinary protein excretion during the 2-year study period. Incident CKD in participants without CKD, and progression of CKD in participants with CKD. In the entire study population, higher quartile of TG:HDL-C ratio at baseline was significantly associated with greater decline in eGFR and increase in urinary protein excretion during the 2-year study period, even after adjustment for confounding factors. A higher ratio was associated with higher risk of incident CKD in participants without CKD and higher risk of rapid decline in eGFR and increase in urinary protein excretion in participants with CKD. Higher TG:HDL-C ratio was more strongly associated with decline in eGFR (P for interaction = 0.002) and with incident CKD (P for interaction = 0.05) in participants with diabetes than without diabetes. Short observation period and single measurement of all variables. A higher TG:HDL-C ratio affects the decline in eGFR and incidence and progression of CKD in the Japanese population. Copyright © 2015 National Kidney Foundation, Inc. Published by Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Pagano, P.; Bemporad, A.; Mackay, D. H.
2015-10-01
Context. Understanding the 3D structure of coronal mass ejections (CMEs) is crucial for understanding the nature and origin of solar eruptions. However, owing to the optical thinness of the solar corona we can only observe the line of sight integrated emission. As a consequence the resulting projection effects hide the true 3D structure of CMEs. To derive information on the 3D structure of CMEs from white-light (total and polarized brightness) images, the polarization ratio technique is widely used. The soon-to-be-launched METIS coronagraph on board Solar Orbiter will use this technique to produce new polarimetric images. Aims: This work considers the application of the polarization ratio technique to synthetic CME observations from METIS. In particular we determine the accuracy at which the position of the centre of mass, direction and speed of propagation, and the column density of the CME can be determined along the line of sight. Methods: We perform a 3D MHD simulation of a flux rope ejection where a CME is produced. From the simulation we (i) synthesize the corresponding METIS white-light (total and polarized brightness) images and (ii) apply the polarization ratio technique to these synthesized images and compare the results with the known density distribution from the MHD simulation. In addition, we use recent results that consider how the position of a single blob of plasma is measured depending on its projected position in the plane of the sky. From this we can interpret the results of the polarization ratio technique and give an estimation of the error associated with derived parameters. Results: We find that the polarization ratio technique reproduces with high accuracy the position of the centre of mass along the line of sight. However, some errors are inherently associated with this determination. The polarization ratio technique also allows information to be derived on the real 3D direction of propagation of the CME. The determination of this is of fundamental importance for future space weather forecasting. In addition, we find that the column density derived from white-light images is accurate and we propose an improved technique where the combined use of the polarization ratio technique and white-light images minimizes the error in the estimation of column densities. Moreover, by applying the comparison to a set of snapshots of the simulation we can also assess the errors related to the trajectory and the expansion of the CME. Conclusions: Our method allows us to thoroughly test the performance of the polarization ratio technique and allows a determination of the errors associated with it, which means that it can be used to quantify the results from the analysis of the forthcoming METIS observations in white light (total and polarized brightness). Finally, we describe a satellite observing configuration relative to the Earth that can allow the technique to be efficiently used for space weather predictions. A movie attached to Fig. 15 is available in electronic form at http://www.aanda.org
NASA Astrophysics Data System (ADS)
Richardson, Jacob; Connor, Charles; Malservisi, Rocco; Bleacher, Jacob; Connor, Laura
2014-05-01
Clusters of tens to thousands of small volcanoes (diameters generally <30 km) are common features on the surface of Mars, Venus, and the Earth. These clusters may be described as distributed-style volcanism. Better characterizing the magmatic plumbing system of these clusters can constrain magma ascent processes as well as the regional magma production budget and heat flux beneath each cluster. Unfortunately, directly observing the plumbing systems of volcano clusters on Mars and Venus eludes our current geologic abilities. Because erosion exposes such systems at the Earth's surface, a better understanding of magmatic processes and migration can be achieved via field analysis. The terrestrial plumbing system of an eroded volcanic field may be a valuable planetary analog for Venus and Mars clusters. The magmatic plumbing system of a Pliocene-aged monogenetic volcanic field, emplaced at 0.8 km depth, is currently exposed as a sill and dike swarm in the San Rafael Desert of Central Utah, USA. The mafic bodies in this region intruded into Mesozoic sedimentary units and now make up the most erosion resistant units as sills, dikes, and plug-like conduits. Light Detection and Ranging (LiDAR) can identify volcanic units (sills, dikes, and conduits) at high resolution, both geomorphologically and with near infrared return intensity values. Two Terrestrial LiDAR Surveys and an Airborne LiDAR Survey have been carried out over the San Rafael volcanic swarm, producing a three dimensional point cloud over approximately 36 sq. km. From the point clouds of these surveys, 1-meter DEMs are produced and volcanic intrusions have been mapped. Here we present reconstructions of the volcanic instrusions of the San Rafael Swarm. We create this reconstruction by extrapolating mapped intrustions from the LiDAR surveys into a 3D space around the current surface. We compare the estimated intrusive volume to the estimated conduit density and estimates of extrusive volume at volcano clusters of similar density. The extrapolated reconstruction and conduit mapping provide a first-order estimate of the final intrustive/extrusive volume ratio for the now eroded volcanic field. Earth, Venus and Mars clusters are compared using Kernel Density Estimation (KDE) , which objectively compares cluster area, complexity, and vent density per sq. km. We show that Martian clusters are less dense than Venus clusters, which in turn are less dense than those on Earth. KDE and previous models of intrusive morphology for Mars and Venus are here used to calibrate the San Rafael plumbing system model to clusters on the two planets. The results from the calibrated Mars and Venus plumbing system models can be compared to previous estimates of magma budget and intrusive/extrusive ratios on Venus and Mars.
The case-control design in veterinary sciences: A survey.
Cullen, Jonah N; Sargeant, Jan M; Makielski, Kelly M; O'Connor, Annette M
2016-11-01
The case-control study design is deceptively simple. However, many design considerations influence the estimated effect measure. An investigation of case-control studies in the human health literature suggested that some of these considerations are not described in reports of case-control studies. Our hypothesis was that the majority of veterinary studies labeled as case-controls would be incident density designs, and many would not interpret the effect measure obtained from those studies as the rate ratio rather than the odds ratio. Reference databases were searched for author-designated case-control studies. A survey of 100 randomly selected studies was conducted to examine the different design options described and estimated effect measures. Of the 100 author-identified case-control studies, 83 assessed an exposure-outcome association and, of those, only 54 (65.1%) sampled the study population based on an outcome and would thus be considered case-control designs. Twelve studies were incidence density designs but none used this terminology. Of the studies that reported an odds ratio as the effect measure, none reported on additional considerations that would have enabled a more interpretable result. This survey indicated many case-control-labeled studies were not case-control designs and among case-control studies, key design aspects were not often described. The absence of information about study design elements and underlying assumptions in case-control studies limits the ability to establish the effect measured by the study and the evidentiary value of the study might be underestimated. Copyright © 2016 Elsevier B.V. All rights reserved.
Detection, Classification, and Density Estimation of Marine Mammals
2012-10-01
Energy and Environmental Readiness Division, Washington, D.C. DETECTION...was prepared for and funded by Chief of Naval Operations, Energy and Environmental Readiness Division, Washington DC. The report was prepared by...and classification, including improvements to the Energy Ratio Mapping Algorithm (ERMA) method for use on gliders and its extension to new
Coronal Seismology -- Achievements and Perspectives
NASA Astrophysics Data System (ADS)
Ruderman, Michael
Coronal seismology is a new and fast developing branch of the solar physics. The main idea of coronal seismology is the same as of any branches of seismology: to determine basic properties of a medium using properties of waves propagating in this medium. The waves and oscillations in the solar corona are routinely observed in the late space missions. In our brief review we concentrate only on one of the most spectacular type of oscillations observed in the solar corona - the transverse oscillations of coronal magnetic loops. These oscillations were first observed by TRACE on 14 July 1998. At present there are a few dozens of similar observations. Shortly after the first observation of the coronal loop transverse oscillations they were interpreted as kink oscillations of magnetic tubes with the ends frozen in the dense photospheric plasma. The frequency of the kink oscillation is proportional to the magnetic field magnitude and inversely proportional to the tube length times the square root of the plasma density. This fact was used to estimate the magnetic field magnitude in the coronal loops. In 2004 the first simultaneous observation of the fundamental mode and first overtone of the coronal loop transverse oscillation was reported. If we model a coronal loop as a homogeneous magnetic tube, then the ratio of the frequencies of the first overtone and the fundamental mode should be equal to 2. However, the ratio of the observed frequencies was smaller than 2. This is related to the density variation along the loop. If we assume that the corona is isothermal and prescribe the loop shape (usually it is assumed that it has the shape of half-circle), then, using the ratio of the two frequencies, we can determine the temperature of the coronal plasma. The first observation of transverse oscillations of the coronal loops showed that they were strongly damped. This phenomenon was confirmed by the subsequent observations. At present, the most reliable candidate for the explanation of the oscillation damping is resonant absorption. The damping due to resonant absorption is, broadly speaking, proportional to the inhomogeneity scale of the density in the loop in the transverse direction. This fact was used to estimate the density inhomogeneity scale from the observations. The first observation of the coronal loop transverse oscillations gave a strong boost to the theoretical study of this phenomenon. In the last ten years theorists sufficiently refined their models taking into account such loop properties as the density variation in the longitudinal and transverse directions, the twist of the magnetic field, the non-circular loop cross-section, the variation of the cross-section along the loop, and the loop curvature. Now, to obtain more accurate estimates of the coronal plasma parameters, we need the following from the observations: (i) Since the frequency of the loop oscillation depends on the plasma density, more accurate data on this quantity is required. (ii) Since the estimate of the coronal temperature strongly depends of the loop shape, an accurate three-dimensional picture of the loop is desirable. (iii) The fundamental frequency and first overtone of the loop oscillation are sufficiently affected by the variation of the loop cross-section. The observational data on this quantity is important for further progress of the coronal seismology.
Novel multireceiver communication systems configurations based on optimal estimation theory
NASA Technical Reports Server (NTRS)
Kumar, Rajendra
1992-01-01
A novel multireceiver configuration for carrier arraying and/or signal arraying is presented. The proposed configuration is obtained by formulating the carrier and/or signal arraying problem as an optimal estimation problem, and it consists of two stages. The first stage optimally estimates various phase processes received at different receivers with coupled phase-locked loops wherein the individual loops acquire and track their respective receivers' phase processes but are aided by each other in an optimal manner via LF error signals. The proposed configuration results in the minimization of the the effective radio loss at the combiner output, and thus maximization of energy per bit to noise power spectral density ratio is achieved. A novel adaptive algorithm for the estimator of the signal model parameters when these are not known a priori is also presented.
Polystyrene Foam Products Equation of State as a Function of Porosity and Fill Gas
NASA Astrophysics Data System (ADS)
Mulford, R. N.; Swift, D. C.
2009-12-01
An accurate EOS for polystyrene foam is necessary for analysis of numerous experiments in shock compression, inertial confinement fusion, and astrophysics. Plastic to gas ratios vary between various samples of foam, according to the density and cell-size of the foam. A matrix of compositions has been investigated, allowing prediction of foam response as a function of the plastic-to-air ratio. The EOS code CHEETAH allows participation of the air in the decomposition reaction of the foam. Differences between air-filled, Ar-blown, and CO2-blown foams are investigated, to estimate the importance of allowing air to react with products of polystyrene decomposition. O2-blown foams are included in some comparisons, to amplify any consequences of reaction with oxygen in air. He-blown foams are included in some comparisons, to provide an extremum of density. Product pressures are slightly higher for oxygen-containing fill gases than for non-oxygen-containing fill gases. Examination of product species indicates that CO2 decomposes at high temperatures.
NASA Astrophysics Data System (ADS)
Munoz Burgos, J. M.; Schmitz, O.; Unterberg, E. A.; Loch, S. D.; Balance, C. P.
2010-11-01
We developed a time dependent solution for the He I line ratio diagnostic. Stationary solution is applied for L-mode at TEXTOR. The radial range is typically limited to a region near the separatrix due to metastable effects, and the atomic data used. We overcome this problem by applying a time dependent solution and thus avoid unphysical results. We use a new R-Matrix with Pseudostates and Convergence Cross-Coupling electron impact excitation and ionization atomic data set into the Collisional Radiative Model (CRM). We include contributions from higher Rydberg states into the CRM by means of the projection matrix. By applying this solution (to the region near the wall) and the stationary solution (near the separatrix), we triple the radial range of the current diagnostic. We explore the possibility of extending this approach to H-mode plasmas in DIII-D by estimating line emission profiles from electron temperature and density Thomson scattering data.
NASA Astrophysics Data System (ADS)
Ike, Innocent S.; Sigalas, Iakovos; Iyuke, Sunny E.
2017-03-01
Theoretical expressions for performance parameters of different electrochemical capacitors (ECs) have been optimized by solving them using MATLAB scripts as well as via the MATLAB R2014a optimization toolbox. The performance of the different kinds of ECs under given conditions was compared using theoretical equations and simulations of various models based on the conditions of device components, using optimal values for the coefficient associated with the battery-kind material ( K BMopt) and the constant associated with the electrolyte material ( K Eopt), as well as our symmetric electric double-layer capacitor (EDLC) experimental data. Estimation of performance parameters was possible based on values for the mass ratio of electrodes, operating potential range ratio, and specific capacitance of electrolyte. The performance of asymmetric ECs with suitable electrode mass and operating potential range ratios using aqueous or organic electrolyte at appropriate operating potential range and specific capacitance was 2.2 and 5.56 times greater, respectively, than for the symmetric EDLC and asymmetric EC using the same aqueous electrolyte, respectively. This enhancement was accompanied by reduced cell mass and volume. Also, the storable and deliverable energies of the asymmetric EC with suitable electrode mass and operating potential range ratios using the proper organic electrolyte were 12.9 times greater than those of the symmetric EDLC using aqueous electrolyte, again with reduced cell mass and volume. The storable energy, energy density, and power density of the asymmetric EDLC with suitable electrode mass and operating potential range ratios using the proper organic electrolyte were 5.56 times higher than for a similar symmetric EDLC using aqueous electrolyte, with cell mass and volume reduced by a factor of 1.77. Also, the asymmetric EDLC with the same type of electrode and suitable electrode mass ratio, working potential range ratio, and proper organic electrolyte showed enhanced performance compared with the conventional symmetric EDLC using aqueous electrolyte, with reduced cell mass and volume. These results can obviously reduce the number of experiments required to determine the optimum manufacturing design for ECs and also demonstrate that use of an asymmetric electrode and organic electrolyte was very successful for improving the performance of the EC, with reduced cell mass and volume. These results can also act as guidelines for design, fabrication, and operation of electrochemical capacitors with outstanding storable energy, energy density, and power density.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Garriott, O K
1960-04-01
The results of observations of the radio transmissions from Sputnik III (1958 δ 2) in an 8-month period are presented. The measurements of integrated electron density are made in two ways, described in part 1. The measurements reveal the diurnal variation of the total ionospheric electron content; and the ratio of the total content to the content of the lower ionosphere below the height of maximum density in the F layer is obtained. An estimate of the average electron-density profile above the F-layer peak is made possible by the slow variation in the height of the satellite due to rotationmore » of the perigee position. The gross effects of large magnetic storms on the electron content and distribution are found.« less
Magnetic levitation in the analysis of foods and water.
Mirica, Katherine A; Phillips, Scott T; Mace, Charles R; Whitesides, George M
2010-06-09
This paper describes a method and a sensor that use magnetic levitation (MagLev) to characterize samples of food and water on the basis of measurements of density. The sensor comprises two permanent NdFeB magnets positioned on top of each other in a configuration with like poles facing and a container filled with a solution of paramagnetic ions. Measurements of density are obtained by suspending a diamagnetic object in the container filled with the paramagnetic fluid, placing the container between the magnets, and measuring the vertical position of the suspended object. MagLev was used to estimate the salinity of water, to compare a variety of vegetable oils on the basis of the ratio of polyunsaturated fat to monounsaturated fat, to compare the contents of fat in milk, cheese, and peanut butter, and to determine the density of grains.
Millimeter-wave Line Ratios and Sub-beam Volume Density Distributions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Leroy, Adam K.; Gallagher, Molly; Usero, Antonio
We explore the use of mm-wave emission line ratios to trace molecular gas density when observations integrate over a wide range of volume densities within a single telescope beam. For observations targeting external galaxies, this case is unavoidable. Using a framework similar to that of Krumholz and Thompson, we model emission for a set of common extragalactic lines from lognormal and power law density distributions. We consider the median density of gas that produces emission and the ability to predict density variations from observed line ratios. We emphasize line ratio variations because these do not require us to know themore » absolute abundance of our tracers. Patterns of line ratio variations have the potential to illuminate the high-end shape of the density distribution, and to capture changes in the dense gas fraction and median volume density. Our results with and without a high-density power law tail differ appreciably; we highlight better knowledge of the probability density function (PDF) shape as an important area. We also show the implications of sub-beam density distributions for isotopologue studies targeting dense gas tracers. Differential excitation often implies a significant correction to the naive case. We provide tabulated versions of many of our results, which can be used to interpret changes in mm-wave line ratios in terms of adjustments to the underlying density distributions.« less
A Hybrid Seismic Inversion Method for V P/V S Ratio and Its Application to Gas Identification
NASA Astrophysics Data System (ADS)
Guo, Qiang; Zhang, Hongbing; Han, Feilong; Xiao, Wei; Shang, Zuoping
2018-03-01
The ratio of compressional wave velocity to shear wave velocity (V P/V S ratio) has established itself as one of the most important parameters in identifying gas reservoirs. However, considering that seismic inversion process is highly non-linear and geological conditions encountered may be complex, a direct estimation of V P/V S ratio from pre-stack seismic data remains a challenging task. In this paper, we propose a hybrid seismic inversion method to estimate V P/V S ratio directly. In this method, post- and pre-stack inversions are combined in which the pre-stack inversion for V P/V S ratio is driven by the post-stack inversion results (i.e., V P and density). In particular, the V P/V S ratio is considered as a model parameter and is directly inverted from the pre-stack inversion based on the exact Zoeppritz equation. Moreover, anisotropic Markov random field is employed in order to regularise the inversion process as well as taking care of geological structures (boundaries) information. Aided by the proposed hybrid inversion strategy, the directional weighting coefficients incorporated in the anisotropic Markov random field neighbourhoods are quantitatively calculated by the anisotropic diffusion method. The synthetic test demonstrates the effectiveness of the proposed inversion method. In particular, given low quality of the pre-stack data and high heterogeneity of the target layers in the field data, the proposed inversion method reveals the detailed model of V P/V S ratio that can successfully identify the gas-bearing zones.
Some physical properties of ginkgo nuts and kernels
NASA Astrophysics Data System (ADS)
Ch'ng, P. E.; Abdullah, M. H. R. O.; Mathai, E. J.; Yunus, N. A.
2013-12-01
Some data of the physical properties of ginkgo nuts at a moisture content of 45.53% (±2.07) (wet basis) and of their kernels at 60.13% (± 2.00) (wet basis) are presented in this paper. It consists of the estimation of the mean length, width, thickness, the geometric mean diameter, sphericity, aspect ratio, unit mass, surface area, volume, true density, bulk density, and porosity measures. The coefficient of static friction for nuts and kernels was determined by using plywood, glass, rubber, and galvanized steel sheet. The data are essential in the field of food engineering especially dealing with design and development of machines, and equipment for processing and handling agriculture products.
Reliable enumeration of malaria parasites in thick blood films using digital image analysis.
Frean, John A
2009-09-23
Quantitation of malaria parasite density is an important component of laboratory diagnosis of malaria. Microscopy of Giemsa-stained thick blood films is the conventional method for parasite enumeration. Accurate and reproducible parasite counts are difficult to achieve, because of inherent technical limitations and human inconsistency. Inaccurate parasite density estimation may have adverse clinical and therapeutic implications for patients, and for endpoints of clinical trials of anti-malarial vaccines or drugs. Digital image analysis provides an opportunity to improve performance of parasite density quantitation. Accurate manual parasite counts were done on 497 images of a range of thick blood films with varying densities of malaria parasites, to establish a uniformly reliable standard against which to assess the digital technique. By utilizing descriptive statistical parameters of parasite size frequency distributions, particle counting algorithms of the digital image analysis programme were semi-automatically adapted to variations in parasite size, shape and staining characteristics, to produce optimum signal/noise ratios. A reliable counting process was developed that requires no operator decisions that might bias the outcome. Digital counts were highly correlated with manual counts for medium to high parasite densities, and slightly less well correlated with conventional counts. At low densities (fewer than 6 parasites per analysed image) signal/noise ratios were compromised and correlation between digital and manual counts was poor. Conventional counts were consistently lower than both digital and manual counts. Using open-access software and avoiding custom programming or any special operator intervention, accurate digital counts were obtained, particularly at high parasite densities that are difficult to count conventionally. The technique is potentially useful for laboratories that routinely perform malaria parasite enumeration. The requirements of a digital microscope camera, personal computer and good quality staining of slides are potentially reasonably easy to meet.
A new empirical model to estimate hourly diffuse photosynthetic photon flux density
NASA Astrophysics Data System (ADS)
Foyo-Moreno, I.; Alados, I.; Alados-Arboledas, L.
2018-05-01
Knowledge of the photosynthetic photon flux density (Qp) is critical in different applications dealing with climate change, plant physiology, biomass production, and natural illumination in greenhouses. This is particularly true regarding its diffuse component (Qpd), which can enhance canopy light-use efficiency and thereby boost carbon uptake. Therefore, diffuse photosynthetic photon flux density is a key driving factor of ecosystem-productivity models. In this work, we propose a model to estimate this component, using a previous model to calculate Qp and furthermore divide it into its components. We have used measurements in urban Granada (southern Spain), of global solar radiation (Rs) to study relationships between the ratio Qpd/Rs with different parameters accounting for solar position, water-vapour absorption and sky conditions. The model performance has been validated with experimental measurements from sites having varied climatic conditions. The model provides acceptable results, with the mean bias error and root mean square error varying between - 0.3 and - 8.8% and between 9.6 and 20.4%, respectively. Direct measurements of this flux are very scarce so that modelling simulations are needed, this is particularly true regarding its diffuse component. We propose a new parameterization to estimate this component using only measured data of solar global irradiance, which facilitates its use for the construction of long-term data series of PAR in regions where continuous measurements of PAR are not yet performed.
NASA Astrophysics Data System (ADS)
Sorba, Robert; Sawicki, Marcin
2018-05-01
We perform spatially resolved, pixel-by-pixel Spectral Energy Distribution (SED) fitting on galaxies up to z ˜ 2.5 in the Hubble eXtreme Deep Field (XDF). Comparing stellar mass estimates from spatially resolved and spatially unresolved photometry we find that unresolved masses can be systematically underestimated by factors of up to 5. The ratio of the unresolved to resolved mass measurement depends on the galaxy's specific star formation rate (sSFR): at low sSFRs the bias is small, but above sSFR ˜ 10-9.5 yr-1 the discrepancy increases rapidly such that galaxies with sSFRs ˜ 10-8 yr-1 have unresolved mass estimates of only one-half to one-fifth of the resolved value. This result indicates that stellar masses estimated from spatially unresolved data sets need to be systematically corrected, in some cases by large amounts, and we provide an analytic prescription for applying this correction. We show that correcting stellar mass measurements for this bias changes the normalization and slope of the star-forming main sequence and reduces its intrinsic width; most dramatically, correcting for the mass bias increases the stellar mass density of the Universe at high redshift and can resolve the long-standing discrepancy between the directly measured cosmic SFR density at z ≳ 1 and that inferred from stellar mass densities (`the missing mass problem').
Quantifying uncertainty in carbon and nutrient pools of coarse woody debris
NASA Astrophysics Data System (ADS)
See, C. R.; Campbell, J. L.; Fraver, S.; Domke, G. M.; Harmon, M. E.; Knoepp, J. D.; Woodall, C. W.
2016-12-01
Woody detritus constitutes a major pool of both carbon and nutrients in forested ecosystems. Estimating coarse wood stocks relies on many assumptions, even when full surveys are conducted. Researchers rarely report error in coarse wood pool estimates, despite the importance to ecosystem budgets and modelling efforts. To date, no study has attempted a comprehensive assessment of error rates and uncertainty inherent in the estimation of this pool. Here, we use Monte Carlo analysis to propagate the error associated with the major sources of uncertainty present in the calculation of coarse wood carbon and nutrient (i.e., N, P, K, Ca, Mg, Na) pools. We also evaluate individual sources of error to identify the importance of each source of uncertainty in our estimates. We quantify sampling error by comparing the three most common field methods used to survey coarse wood (two transect methods and a whole-plot survey). We quantify the measurement error associated with length and diameter measurement, and technician error in species identification and decay class using plots surveyed by multiple technicians. We use previously published values of model error for the four most common methods of volume estimation: Smalian's, conical frustum, conic paraboloid, and average-of-ends. We also use previously published values for error in the collapse ratio (cross-sectional height/width) of decayed logs that serves as a surrogate for the volume remaining. We consider sampling error in chemical concentration and density for all decay classes, using distributions from both published and unpublished studies. Analytical uncertainty is calculated using standard reference plant material from the National Institute of Standards. Our results suggest that technician error in decay classification can have a large effect on uncertainty, since many of the error distributions included in the calculation (e.g. density, chemical concentration, volume-model selection, collapse ratio) are decay-class specific.
Irmak, A.; Singh, Ramesh K.; Walter-Shea, Elizabeth; Verma, S.B.; Suyker, A.E.
2011-01-01
We evaluated the performance of four models for estimating soil heat flux density (G) in maize (Zea mays L.) and soybean (Glycine max L.) fields under different irrigation methods (center-pivot irrigated fields at Mead, Nebraska, and subsurface drip irrigated field at Clay Center, Nebraska) and rainfed conditions at Mead. The model estimates were compared against measurements made during growing seasons of 2003, 2004, and 2005 at Mead and during 2005, 2006, and 2007 at Clay Center. We observed a strong relationship between the G and net radiation (Rn) ratio (G/Rn) and the normalized difference vegetation index (NDVI). When a significant portion of the ground was bare soil, G/Rn ranged from 0.15 to 0.30 and decreased with increasing NDVI. In contrast to the NDVI progression, the G/Rn ratio decreased with crop growth and development. The G/Rn ratio for subsurface drip irrigated crops was smaller than for the center-pivot irrigated crops. The seasonal average G was 13.1%, 15.2%, 10.9%, and 12.8% of Rn for irrigated maize, rainfed maize, irrigated soybean, and rainfed soybean, respectively. Statistical analyses of the performance of the four models showed a wide range of variation in G estimation. The root mean square error (RMSE) of predictions ranged from 15 to 81.3 W m-2. Based on the wide range of RMSE, it is recommended that local calibration of the models should be carried out for remote estimation of soil heat flux.
Macular Pigment Optical Density Measured by Heterochromatic Modulation Photometry
Huchzermeyer, Cord; Schlomberg, Juliane; Welge-Lüssen, Ulrich; Berendschot, Tos T. J. M.; Pokorny, Joel; Kremers, Jan
2014-01-01
Purpose To psychophysically determine macular pigment optical density (MPOD) employing the heterochromatic modulation photometry (HMP) paradigm by estimating 460 nm absorption at central and peripheral retinal locations. Methods For the HMP measurements, two lights (B: 460 nm and R: 660 nm) were presented in a test field and were modulated in counterphase at medium or high frequencies. The contrasts of the two lights were varied in tandem to determine flicker detection thresholds. Detection thresholds were measured for different R:B modulation ratios. The modulation ratio with minimal sensitivity (maximal threshold) is the point of equiluminance. Measurements were performed in 25 normal subjects (11 male, 14 female; age: 30±11 years, mean ± sd) using an eight channel LED stimulator with Maxwellian view optics. The results were compared with those from two published techniques – one based on heterochromatic flicker photometry (Macular Densitometer) and the other on fundus reflectometry (MPR). Results We were able to estimate MPOD with HMP using a modified theoretical model that was fitted to the HMP data. The resultant MPODHMP values correlated significantly with the MPODMPR values and with the MPODHFP values obtained at 0.25° and 0.5° retinal eccentricity. Conclusions HMP is a flicker-based method with measurements taken at a constant mean chromaticity and luminance. The data can be well fit by a model that allows all data points to contribute to the photometric equality estimate. Therefore, we think that HMP may be a useful method for MPOD measurements, in basic and clinical vision experiments. PMID:25354049
Jensen, Elizabeth T; Hoffman, Kate; Shaheen, Nicholas J; Genta, Robert M; Dellon, Evan S
2014-05-01
Eosinophilic esophagitis (EoE) is an increasingly prevalent chronic disease arising from an allergy/immune-mediated process. Generally, the risk of atopic disease differs in rural and urban environments. The relationship between population density and EoE is unknown. Our aim was to assess the relationship between EoE and population density. We conducted a cross-sectional, case-control study of patients with esophageal biopsies in a US national pathology database between January 2009 and June 2012 to assess the relationship between population density and EoE. Using geographic information systems, the population density (individuals per square mile) was determined for each patient zip code. The odds of esophageal eosinophilia and EoE were estimated for each quintile of population density and adjusted for potential confounders. Sensitivity analyses were conducted with varying case definitions and to evaluate the potential for bias from endoscopy volume and patient factors. Of 292,621 unique patients in the source population, 89,754 had normal esophageal biopsies and 14,381 had esophageal eosinophilia with ≥15 eosinophils per high-power field. The odds of having esophageal eosinophilia increased with decreasing population density (P for trend <0.001). Compared with those in the highest quintile of population density, odds of having esophageal eosinophilia were significantly higher among those in the lowest quintile of population density (adjusted odds ratio (aOR) 1.27, 95% confidence interval (CI): 1.18, 1.36). A similar dose-response trend was observed across case definitions with increased odds of EoE in the lowest population density quintile (aOR 1.59, 95% CI: 1.45-1.76). Estimates were robust to sensitivity analyses. Population density is strongly and inversely associated with esophageal eosinophilia and EoE. This association is robust to varying case definitions and adjustment factors. Environmental exposures that are more prominent in rural areas may be relevant to the pathogenesis of EoE.
Nuemi, G; Astruc, K; Aho, S; Quantin, C
2013-10-01
The surveillance of methicillin-resistant Staphylococcus aureus (MRSA) is a national priority. The rate of MRSA infections is one of six indicators tracked by the Department of Health. Since 2002, the French institute for public health surveillance (InVS) has monitored MRSA infections to estimate incidence density. Today, the use of the French administrative database (PMSI) could facilitate this surveillance. The aim of this study was to compare MRSA incidence density computed at a national level using PMSI databases with the results from the InVS taken as the reference. PMSI databases for the years 2006 to 2009 were used. The reference results were those published by the InVS from 2006 to 2009. MRSA density defined as the number of MRSA infections recorded per year over 1000 hospital stays was computed. It was then compared with the MRSA incidence density measured by InVS. The time course of MRSA incidence in the PMSI records was modeled using a Poisson regression. The incidence density measured by the InVS was higher than the MRSA density computed using the PMSI, but this difference appeared to decrease over time. The PMSI density/InVS MRSA incidence density ratio was 0.8% in 2006 and about 9.2% in 2009. We observed inverted trends with a growing trend in MRSA density identified by the PMSI. Furthermore, the year of study was significantly associated with incidence density (P=0.01). Using PMSI data as an additional source of information in the hospital MRSA surveillance process makes it possible to detect and analyze patient repeats at the regional and national levels with linkage facilities. Estimation of incidence density for hospitals not participating to this surveillance system will be the next step. Copyright © 2013 Elsevier Masson SAS. All rights reserved.
Big data prediction of durations for online collective actions based on peak's timing
NASA Astrophysics Data System (ADS)
Nie, Shizhao; Wang, Zheng; Pujia, Wangmo; Nie, Yuan; Lu, Peng
2018-02-01
Peak Model states that each collective action has a life circle, which contains four periods of "prepare", "outbreak", "peak", and "vanish"; and the peak determines the max energy and the whole process. The peak model's re-simulation indicates that there seems to be a stable ratio between the peak's timing (TP) and the total span (T) or duration of collective actions, which needs further validations through empirical data of collective actions. Therefore, the daily big data of online collective actions is applied to validate the model; and the key is to check the ratio between peak's timing and the total span. The big data is obtained from online data recording & mining of websites. It is verified by the empirical big data that there is a stable ratio between TP and T; furthermore, it seems to be normally distributed. This rule holds for both the general cases and the sub-types of collective actions. Given the distribution of the ratio, estimated probability density function can be obtained, and therefore the span can be predicted via the peak's timing. Under the scenario of big data, the instant span (how long the collective action lasts or when it ends) will be monitored and predicted in real-time. With denser data (Big Data), the estimation of the ratio's distribution gets more robust, and the prediction of collective actions' spans or durations will be more accurate.
Realizing broad-bandwidth visible wavelength photodiode based on solution-processed ZnPc/PC71BM dyad
NASA Astrophysics Data System (ADS)
Zafar, Qayyum; Fatima, Noshin; Karimov, Khasan S.; Ahmed, Muhammad M.; Sulaiman, Khaulah
2017-02-01
Herein, we demonstrate a solution-processed visible wavelength organic photodiode (OPD) using donor/acceptor dyad of zinc phthalocyanine (ZnPc) and [6,6]-phenyl-C71-butyric-acid methyl ester (PC71BM), respectively. The synergic absorption profiles of both ZnPc and PC71BM moieties have been exploited to realize broader (350 and 800 nm) and consistent absorption spectrum of the photoactive film. The optimum loading ratio (by volume) of D/A dyad has been estimated to be 1:0.8, via quenching phenomenon in ZnPc photoluminescence spectrum. The performance of the OPD has been evaluated by detecting the photocurrent density with respect to varied illumination levels (0-150 mW/cm2) of impinging light at different reverse bias conditions. Under identical reverse bias mode, the photocurrent density has shown significant upsurge as the incident intensity of light is increased; ultimately leading to the significantly higher responsivity (162.4 μA/W) of the fabricated diode. The light to dark current density ratio (Jph/Jd) of the device at 3 V reverse bias has been calculated to be ∼20.12. The transient photocurrent density response of the fabricated OPD has also been characterized at -4 V operational bias under switch ON/OFF illumination. The measured response and recovery time for the fabricated OPD are ∼200 and 300 ms, respectively.
Tidal Disruption of Strengthless Rubble Piles: A Dimensional Analysis
NASA Technical Reports Server (NTRS)
Hahn, Joseph M.; Rettig, Terrence W.
1998-01-01
A relatively simple prescription for estimating the number of debris clumps (n) that form after a catastrophic tidal disruption event is presented. Following the breakup event, it is assumed that the individual debris particles follow keplerian orbits about the planet until the debris' gravitational contraction timescale (t(sub c)) becomes shorter than its orbital spreading timescale (t(sub s)). When the two timescales become comparable, self-gravity breaks up the debris train into n = L/D clumps, which is the debris length/diameter ratio at that instant. The clumps subsequently orbit the planet independent of each other. The predicted number of clumps n is in good agreement with more sophisticated N-body treatments of tidal breakup for parabolic encounters, and the dependence of n upon the progenitor's density as well as its orbit is also mapped out for hyperbolic encounters. These findings may be used to further constrain both the orbits and densities of the tidally disrupted bodies that struck Callisto and Ganymede. A cursory analysis shows that the Gomul and Gipul crater chains on Callisto, which have the greatest number of craters among the known chains, were formed by projectiles having comet-like densities estimated at rho(sub o) < 1 gm/cc.
Cant, Jonathan S.; Xu, Yaoda
2015-01-01
Behavioral research has demonstrated that observers can extract summary statistics from ensembles of multiple objects. We recently showed that a region of anterior-medial ventral visual cortex, overlapping largely with the scene-sensitive parahippocampal place area (PPA), participates in object-ensemble representation. Here we investigated the encoding of ensemble density in this brain region using fMRI-adaptation. In Experiment 1, we varied density by changing the spacing between objects and found no sensitivity in PPA to such density changes. Thus, density may not be encoded in PPA, possibly because object spacing is not perceived as an intrinsic ensemble property. In Experiment 2, we varied relative density by changing the ratio of 2 types of objects comprising an ensemble, and observed significant sensitivity in PPA to such ratio change. Although colorful ensembles were shown in Experiment 2, Experiment 3 demonstrated that sensitivity to object ratio change was not driven mainly by a change in the ratio of colors. Thus, while anterior-medial ventral visual cortex is insensitive to density (object spacing) changes, it does code relative density (object ratio) within an ensemble. Object-ensemble processing in this region may thus depend on high-level visual information, such as object ratio, rather than low-level information, such as spacing/spatial frequency. PMID:24964917
NASA Astrophysics Data System (ADS)
Mendolia, D.; D'Souza, R. J. C.; Evans, G. J.; Brook, J.
2013-10-01
Tropospheric NO2 vertical column densities have been retrieved and compared for the first time in Toronto, Canada, using three methods of differing spatial scales. Remotely sensed NO2 vertical column densities, retrieved from multi-axis differential optical absorption spectroscopy and satellite remote sensing, were evaluated by comparison with in situ vertical column densities estimated using a pair of chemiluminescence monitors situated 0.01 and 0.5 km a.g.l. (above ground level). The chemiluminescence measurements were corrected for the influence of NOz, which reduced the NO2 concentrations at 0.01 and 0.5 km by an average of 8 ± 1% and 12 ± 1%, respectively. The average absolute decrease in the chemiluminescence NO2 measurement as a result of this correction was less than 1 ppb. The monthly averaged ratio of the NO2 concentration at 0.5 to 0.01 km varied seasonally, and exhibited a negative linear dependence on the monthly average temperature, with Pearson's R = 0.83. During the coldest month, February, this ratio was 0.52 ± 0.04, while during the warmest month, July, this ratio was 0.34 ± 0.04, illustrating that NO2 is not well mixed within 0.5 km above ground level. Good correlation was observed between the remotely sensed and in situ NO2 vertical column densities (Pearson's R value ranging from 0.72 to 0.81), but the in situ vertical column densities were 52 to 58% greater than the remotely sensed columns. These results indicate that NO2 horizontal heterogeneity strongly impacted the magnitude of the remotely sensed columns. The in situ columns reflected an urban environment with major traffic sources, while the remotely sensed NO2 vertical column densities were representative of the region, which included spatial heterogeneity introduced by residential neighbourhoods and Lake Ontario. Despite the difference in absolute values, the reasonable correlation between the vertical column densities determined by three distinct methods increased confidence in the validity of the values provided by each measurement technique.
NASA Astrophysics Data System (ADS)
Miyatake, Hirokazu; Yoshizawa, Nobuaki; Hirakawa, Sachiko; Murakami, Kana; Takizawa, Mari; Kawai, Masaki; Sato, Osamu; Takagi, Shunji; Suzuki, Gen
2017-09-01
The Fukushima Daiichi Nuclear Power Plant accident caused a release of radionuclides. Radionuclides were deposited on the ground not only in Fukushima prefecture but also in nearby prefectures. Since the accident, measurement of radiation in environment such as air dose rate and deposition density of radionuclides has been performed by many organizations and universities. In particular, Japan Atomic Energy Agency (JAEA) has been performing observations of air dose rate using a car-borne survey system continuously and over wide areas. In our study, using the data measured by JAEA, we estimated effective dose from external exposure in the six prefectures adjacent to Fukushima prefecture. Since car-borne survey was started a few months later after the accident, measured air dose rate in this method is mainly contributed by 137Cs and 134Cs whose half-lives are relatively long. Therefore, based on air dose rate of 137Cs and 134Cs and the ratio of deposition density of short-half-life nuclides to that of 137Cs and 134Cs, we also estimated effective dose contributed from not only 137Cs and 134Cs but also other short-half-life nuclides. We compared the effective dose estimated by the method above with that of UNSCEAR and measured data using personal dosimeters in some areas.
Veerman, J Lennert; Zapata-Diomedi, Belen; Gunn, Lucy; McCormack, Gavin R; Cobiac, Linda J; Mantilla Herrera, Ana Maria; Giles-Corti, Billie; Shiell, Alan
2016-01-01
Background Studies consistently find that supportive neighbourhood built environments increase physical activity by encouraging walking and cycling. However, evidence on the cost-effectiveness of investing in built environment interventions as a means of promoting physical activity is lacking. In this study, we assess the cost-effectiveness of increasing sidewalk availability as one means of encouraging walking. Methods Using data from the RESIDE study in Perth, Australia, we modelled the cost impact and change in health-adjusted life years (HALYs) of installing additional sidewalks in established neighbourhoods. Estimates of the relationship between sidewalk availability and walking were taken from a previous study. Multistate life table models were used to estimate HALYs associated with changes in walking frequency and duration. Sensitivity analyses were used to explore the impact of variations in population density, discount rates, sidewalk costs and the inclusion of unrelated healthcare costs in added life years. Results Installing and maintaining an additional 10 km of sidewalk in an average neighbourhood with 19 000 adult residents was estimated to cost A$4.2 million over 30 years and gain 24 HALYs over the lifetime of an average neighbourhood adult resident population. The incremental cost-effectiveness ratio was A$176 000/HALY. However, sensitivity results indicated that increasing population densities improves cost-effectiveness. Conclusions In low-density cities such as in Australia, installing sidewalks in established neighbourhoods as a single intervention is unlikely to cost-effectively improve health. Sidewalks must be considered alongside other complementary elements of walkability, such as density, land use mix and street connectivity. Population density is particularly important because at higher densities, more residents are exposed and this improves the cost-effectiveness. Health gain is one of many benefits of enhancing neighbourhood walkability and future studies might consider a more comprehensive assessment of its social value (eg, social cohesion, safety and air quality). PMID:27650762
NASA Technical Reports Server (NTRS)
Mckenzie, R. L.; Gross, K. P.
1980-01-01
A laser induced fluorescence technique, suitable for measuring fluctuating temperatures in cold turbulent flows containing very low concentrations of nitric oxide is described. Temperatures below 300 K may be resolved with signal to noise ratios greater than 50 to 1 using high peak power, tunable dye lasers. The method relies on the two photon excitation of selected ro-vibronic transitions. The analysis includes the effects of fluorescence quenching and shows the technique to be effective at all densities below ambient. Signal to noise ratio estimates are based on a preliminary measurement of the two photon absorptivity for a selected rotational transition in the NO gamma (0,0) band.
Lift developed on unrestrained rectangular wings entering gusts at subsonic and supersonic speeds
NASA Technical Reports Server (NTRS)
Lomax, Harvard
1954-01-01
The object of this report is to provide an estimate, based on theoretical calculations, of the forces induced on a wing that is flying at a constant forward speed and suddenly enters a vertical gust. The calculations illustrate the effects of Mach number (from 0 to 2) and aspect ratio (2 to infinity), and solutions are given by means of which the response to gusts having arbitrary distributions of velocity can be calculated. The effects of pitching and wing bending are neglected and only wings of rectangular plan form are considered. Specific results are presented for sharp-edged and triangular gusts and various wing-air density ratios.
A new estimation of HD/2H2 at high redshift using the spectrum of the quasar J 2123-0050
NASA Astrophysics Data System (ADS)
Klimenko, V. V.; Balashev, S. A.; Ivanchik, A. V.; Varshalovich, D. A.
2015-12-01
We present a new analysis of the quasar spectrum J 2123-0050 obtained using VLT/UVES. The H2/HD absorption system at z = 2.059 was analysed. This system consists of two subsystems with zA = 2.05933 and zB = 2.05955. The HD lines have been detected only in subsystem A with the column density of log N = 13.87 ± 0.06. We have determined the column density of H2 in this subsystem, log N = 17.93 ± 0.01, which is about three times larger than estimation derived early from analyses of quasar spectrum obtained using KECK/HIRES [1]. The derived ratio HD/2H2 = (4.28 ± 0.60) × 10-5 is the largest in quasar spectra, nevertheless it coincides with the primordial deuterium abundance within 2σ error. Additionally, we have found some evidence in the partial covering effect for the H2 system.
Comparison of skeletal muscle mass to fat-free mass ratios among different ethnic groups.
Abe, T; Bemben, M G; Kondo, M; Kawakami, Y; Fukunaga, T
2012-01-01
Asians seem to have less skeletal muscle mass (SMM) than other ethnic groups, but it is not clear whether relative SMM, i.e., SMM / height square or SMM to fat-free mass (FFM) ratio, differs among different ethnic groups at the same level of body mass index (BMI). To compare the SMM to fat-free mass (FFM) ratio as well as anthropometric variables and body composition among 3 ethnic groups. Three hundred thirty-nine Japanese, 343 Brazilian, and 183 German men and women were recruited for this cross-sectional study. Muscle thickness (MTH) and subcutaneous fat thickness (FTH) were measured by ultrasound at nine sites on the anterior and posterior aspects of the body. FTH was used to estimate the body density, from which fat mass and fat-free mass (FFM) was calculated by using Brozek equation. Total SMM was estimated from ultrasound-derived prediction equations. Percentage body fat was similar among the ethnic groups in men, while Brazilians were higher than Japanese in women. In German men and women, absolute SMM and FFM were higher than in their Japanese and Brazilians counterparts. SMM index and SMM:FFM ratios were similar among the ethnic groups in women, excluding SMM:FFM ratio in Brazilian. In men, however, these relative values (SMM index and SMM:FFM ratio) were still higher in Germans. After adjusting for age and BMI, the SMM index and SMM:FFM ratios were lower in Brazilian men and women compared with the other two ethnic groups, while the SMM index and SMM:FFM ratios were similar in Japanese and German men and women, excluding SMM:FFM ratio in women. Our results suggest that relative SMM is not lower in Asian populations compared with European populations after adjusted by age and BMI.
Cha, Seongwon; Yu, Hyunjoo; Park, Ah Yeon; Song, Kwang Hoon
2014-03-12
Single-nucleotide polymorphisms (SNPs) around the apolipoprotein A5 gene (APOA5) have pleiotropic effects on the levels of triglyceride (TG) and high-density lipoprotein cholesterol (HDL-C). APOA5 SNPs have also been associated with metabolic syndrome (MS). Here, we constructed haplotypes with SNPs spanning APOA5 and ZNF259, which are approximately 1.3 kb apart, to perform association analyses with the risk for MS and the levels of TG and HDL-C in terms of a TG:HDL-C ratio. The effects of three constructed haplotypes (TAA, CGG, and CGA, in the order of rs662799, rs651821, and rs6589566) on the TG:HDL-C ratio and MS were estimated using multiple regression analyses in 2,949 Koreans and in each gender separately (1,082 men and 1,867 women). The haplotypes, CGG and CGA, were associated with the TG:HDL-C ratio and the risk of MS development in both genders. That is, the minor alleles of the rs662799 and rs651821 in APOA5, irrespective of which allele was present at rs6589566, had the marked effects. Interestingly, a C-G-A haplotype at these three SNPs had the most marked effects on the TG:HDL-C ratio and the risk of MS development in women. We have identified the novel APOA5-ZNF259 haplotype manifesting sex-dependent effects on elevation of the TG:HDL-C ratio as well as the increased risk for MS.
2014-01-01
Background Single-nucleotide polymorphisms (SNPs) around the apolipoprotein A5 gene (APOA5) have pleiotropic effects on the levels of triglyceride (TG) and high-density lipoprotein cholesterol (HDL-C). APOA5 SNPs have also been associated with metabolic syndrome (MS). Here, we constructed haplotypes with SNPs spanning APOA5 and ZNF259, which are approximately 1.3 kb apart, to perform association analyses with the risk for MS and the levels of TG and HDL-C in terms of a TG:HDL-C ratio. Methods The effects of three constructed haplotypes (TAA, CGG, and CGA, in the order of rs662799, rs651821, and rs6589566) on the TG:HDL-C ratio and MS were estimated using multiple regression analyses in 2,949 Koreans and in each gender separately (1,082 men and 1,867 women). Results The haplotypes, CGG and CGA, were associated with the TG:HDL-C ratio and the risk of MS development in both genders. That is, the minor alleles of the rs662799 and rs651821 in APOA5, irrespective of which allele was present at rs6589566, had the marked effects. Interestingly, a C–G–A haplotype at these three SNPs had the most marked effects on the TG:HDL-C ratio and the risk of MS development in women. Conclusions We have identified the novel APOA5-ZNF259 haplotype manifesting sex-dependent effects on elevation of the TG:HDL-C ratio as well as the increased risk for MS. PMID:24618354
2013-05-31
21 Figure 15. Example of a Possible Foreign Object Observed in a Small Number of Slides. This Object May Be a Hair, Thread, or Plant Material that...h)anthracene Fluoranthene Fluorene Indeno(1,2,3-cd)pyrene Naphthalene Phenanthrene Pyrene 16 Distribution A. Approved for public release...material during sampling. These were subject to particle analysis as described above in order to estimate the coverage ratio and particle density of
Shokuhfar, Ali; Arab, Behrouz
2013-09-01
Recently, great attention has been focused on using epoxy polymers in different fields such as aerospace, automotive, biotechnology, and electronics, owing to their superior properties. In this study, the classical molecular dynamics (MD) was used to simulate the cross linking of diglycidyl ether of bisphenol-A (DGEBA) with diethylenetriamine (DETA) curing agent, and to study the behavior of resulted epoxy polymer with different conversion rates. The constant-strain (static) approach was then applied to calculate the mechanical properties (Bulk, shear and Young's moduli, elastic stiffness constants, and Poisson's ratio) of the uncured and cross-linked systems. Estimated material properties were found to be in good agreement with experimental observations. Moreover, the dependency of mechanical properties on the cross linking density was investigated and revealed improvements in the mechanical properties with increasing the cross linking density. The radial distribution function (RDF) was also used to study the evolution of local structures of the simulated systems as a function of cross linking density.
Tice, Jeffrey A.; Cummings, Steven R.; Smith-Bindman, Rebecca; Ichikawa, Laura; Barlow, William E.; Kerlikowske, Karla
2009-01-01
Background Current models for assessing breast cancer risk are complex and do not include breast density, a strong risk factor for breast cancer that is routinely reported with mammography. Objective To develop and validate an easy-to-use breast cancer risk prediction model that includes breast density. Design Empirical model based on Surveillance, Epidemiology, and End Results incidence, and relative hazards from a prospective cohort. Setting Screening mammography sites participating in the Breast Cancer Surveillance Consortium. Patients 1 095 484 women undergoing mammography who had no previous diagnosis of breast cancer. Measurements Self-reported age, race or ethnicity, family history of breast cancer, and history of breast biopsy. Community radiologists rated breast density by using 4 Breast Imaging Reporting and Data System categories. Results During 5.3 years of follow-up, invasive breast cancer was diagnosed in 14 766 women. The breast density model was well calibrated overall (expected–observed ratio, 1.03 [95% CI, 0.99 to 1.06]) and in racial and ethnic subgroups. It had modest discriminatory accuracy (concordance index, 0.66 [CI, 0.65 to 0.67]). Women with low-density mammograms had 5-year risks less than 1.67% unless they had a family history of breast cancer and were older than age 65 years. Limitation The model has only modest ability to discriminate between women who will develop breast cancer and those who will not. Conclusion A breast cancer prediction model that incorporates routinely reported measures of breast density can estimate 5-year risk for invasive breast cancer. Its accuracy needs to be further evaluated in independent populations before it can be recommended for clinical use. PMID:18316752
Wald Sequential Probability Ratio Test for Space Object Conjunction Assessment
NASA Technical Reports Server (NTRS)
Carpenter, James R.; Markley, F Landis
2014-01-01
This paper shows how satellite owner/operators may use sequential estimates of collision probability, along with a prior assessment of the base risk of collision, in a compound hypothesis ratio test to inform decisions concerning collision risk mitigation maneuvers. The compound hypothesis test reduces to a simple probability ratio test, which appears to be a novel result. The test satisfies tolerances related to targeted false alarm and missed detection rates. This result is independent of the method one uses to compute the probability density that one integrates to compute collision probability. A well-established test case from the literature shows that this test yields acceptable results within the constraints of a typical operational conjunction assessment decision timeline. Another example illustrates the use of the test in a practical conjunction assessment scenario based on operations of the International Space Station.
Moran, M.S.; Kustas, William P.; Vidal, A.; Stannard, D.I.; Blanford, J.H.; Nichols, W.D.
1994-01-01
An interdisciplinary field experiment was conducted to study the water and energy balance of a semiarid rangeland watershed in southeast Arizona during the summer of 1990. Two subwatersheds, one grass dominated and the other shrub dominated, were selected for intensive study with ground-based remote sensing systems and hydrometeorological instrumentation. Surface energy balance was evaluated at both sites using direct and indirect measurements of the turbulent fluxes (eddy correlation, variance, and Bowen ratio methods) and using an aerodynamic approach based on remote measurements of surface reflectance and temperature and conventional meteorological information. Estimates of net radiant flux density (Rn), derived from measurements of air temperature, incoming solar radiation, and surface temperature and radiance compared well with values measured using a net radiometer (mean absolute difference (MAD) ≃ 50 W/m2 over a range from 115 to 670 W/m2). Soil heat flux density (G) was estimated using a relation between G/Rn and a spectral vegetation index computed from the red and near-infrared surface reflectance. These G estimates compared well with conventional measurements of G using buried soil heat flux plates (MAD ≃ 20 W/m2 over a range from −13 to 213 W/m2). In order to account for the effects of sparse vegetation, semiempirical adjustments to the single-layer bulk aerodynamic resistance approach were required for evaluation of sensible heat flux density (H). This yielded differences between measurements and remote estimates of H of approximately 33 W/m2 over a range from 13 to 303 W/m2. The resulting estimates of latent heat flux density, LE, were of the same magnitude and trend as measured values; however, a significant scatter was still observed: MAD ≃ 40 W/m2 over a range from 0 to 340 W/m2. Because LE was solved as a residual, there was a cumulative effect of errors associated with remote estimates of Rn, G, and H.
Importance of the national petroleum reserve-alaska for aquatic birds.
Bart, Jonathan; Platte, Robert M; Andres, Brad; Brown, Stephen; Johnson, James A; Larned, William
2013-12-01
We used data from aerial surveys (1992-2010) of >100,000 km(2) and ground surveys (1998-2004) of >150 km(2) to estimate the density and abundance of birds on the North Slope of Alaska (U.S.A.). In the ground surveys, we used double sampling to estimate detection ratios. We used the aerial survey data to compare densities of birds and Arctic fox (Vulpes lagopus), the major nest predator of birds, on the North Slope, in Prudhoe Bay, and in nearby areas. We partitioned the Prudhoe Bay oil field into 2 × 2 km plots and determined the relation between density of aquatic birds and density of roads, buildings, and other infrastructure in these plots. Abundance and density (birds per square kilometer) of 3 groups of aquatic birds-waterfowl, loons, and grebes; shorebirds; and gulls, terns, and jaegers-were highest in the National Petroleum Reserve-Alaska (NPRA) and lowest in the Arctic National Wildlife Refuge. Six other major wetlands occur in the Arctic regions of Canada and Russia, but the largest population of aquatic birds was in the NPRA. Aquatic birds were concentrated in the northern part of the NPRA. For example, an area that covered 18% of the NPRA included 53% of its aquatic birds. The aerial surveys showed that bird density was not lower and fox density was not higher in Prudhoe Bay than in surrounding areas. Density of infrastructure did not significantly affect bird density for any group of species. Our results establish that the NPRA is one of the most important areas for aquatic birds in the Arctic. Our results and those of others also indicate that oil production, as practiced in Prudhoe Bay, does not necessarily lead to substantial declines in bird density or productivity in or near the developed areas. Prioridades para la Conservación de Aves en el Norte de Alaska. Published 2013. This article is a U.S. Government work and is in the public domain in the USA.
NASA Astrophysics Data System (ADS)
Wei, Yan-Ju; Ren, Fu-De; Shi, Wen-Jing; Zhao, Qi
2016-10-01
A molecular dynamics method was employed to study the binding energies of the selected crystal planes of the 1,3,5,7-tetranitro-1,3,5,7-tetrazacyclooctane/1,1-diamino-2,2-dinitroethylene (HMX/FOX-7) cocrystal in different molecular molar ratios. Mechanical properties, densities, and detonation velocities of the cocrystals in different ratios were estimated. The intermolecular interactions and bond dissociation energies (BDEs) of the N-NO2 bond in the HMX:FOX-7 (1:1) complex were calculated using the B3LYP and MP2(full) methods at the 6-311++G (d,p) and 6-311++G(2df,2p) basis sets. Solvent effects on stability are discussed. The results indicate that HMX/FOX-7 cocrystals prefer cocrystalizing in a 1:1 molar ratio, which has good mechanical properties. The N-NO2 bond becomes strong upon the formation of a complex and the sensitivity of HMX might decrease in cocrystals. The sensitivity change of HMX/FOX-7 originates from not only the formation of intermolecular interaction but also the increment in the N-NO2 BDE. HMX/FOX-7 cocrystals exhibit good detonation performance and meet the requirements of high-density energetic materials. Solvents with low dielectric constants may be chosen to obtain stable HMX/FOX-7 cocrystals.
Urbina, Elaine M; Khoury, Philip R; McCoy, Connie E; Dolan, Lawrence M; Daniels, Stephen R; Kimball, Thomas R
2013-04-01
Lipid levels are linked to early atherosclerosis. Risk stratification may be improved by using triglyceride to high-density lipoprotein cholesterol ratio (TG/HDL-C), which relates to arterial stiffness in adults. We tested whether TG/HDL-C was an independent predictor of arterial stiffness in youth. Subjects 10 to 26 years old (mean 18.9 years, 39% male, 56% non-Caucasian, n = 893) had laboratory, anthropometric, blood pressure, and arterial stiffness data collected (brachial distensibility, augmentation index, carotid-femoral pulse-wave velocity). Subjects were stratified into tertiles of TG/HDL-C (low, n = 227; mid, n = 288; high, n = 379). There was a progressive rise in cardiovascular (CV) risk factors and arterial stiffness across TG/HDL-C ratio. The high TG/HDL-C ratio group had the stiffest vessels (all P < .03 by analysis of variance). TG/HDL-C as a continuous variable was an independent determinant of brachial distensibility in CV risk factor adjusted model and for carotid-femoral pulse-wave velocity in obese subjects, with trend for higher augmentation index. TG/HDL-C, an estimate of small, dense low-density lipoprotein cholesterol, is an independent determinant of arterial stiffness in adolescents and young adults, especially in obese youth. These data suggest that use of TG/HDL-C may be helpful in identifying young adults requiring aggressive intervention to prevent atherosclerotic CV diseases.
Khoury, Philip R.; McCoy, Connie E.; Dolan, Lawrence M.; Daniels, Stephen R.; Kimball, Thomas R.
2013-01-01
BACKGROUND AND OBJECTIVE: Lipid levels are linked to early atherosclerosis. Risk stratification may be improved by using triglyceride to high-density lipoprotein cholesterol ratio (TG/HDL-C), which relates to arterial stiffness in adults. We tested whether TG/HDL-C was an independent predictor of arterial stiffness in youth. METHODS: Subjects 10 to 26 years old (mean 18.9 years, 39% male, 56% non-Caucasian, n = 893) had laboratory, anthropometric, blood pressure, and arterial stiffness data collected (brachial distensibility, augmentation index, carotid-femoral pulse-wave velocity). Subjects were stratified into tertiles of TG/HDL-C (low, n = 227; mid, n = 288; high, n = 379). RESULTS: There was a progressive rise in cardiovascular (CV) risk factors and arterial stiffness across TG/HDL-C ratio. The high TG/HDL-C ratio group had the stiffest vessels (all P < .03 by analysis of variance). TG/HDL-C as a continuous variable was an independent determinant of brachial distensibility in CV risk factor adjusted model and for carotid-femoral pulse-wave velocity in obese subjects, with trend for higher augmentation index. CONCLUSIONS: TG/HDL-C, an estimate of small, dense low-density lipoprotein cholesterol, is an independent determinant of arterial stiffness in adolescents and young adults, especially in obese youth. These data suggest that use of TG/HDL-C may be helpful in identifying young adults requiring aggressive intervention to prevent atherosclerotic CV diseases. PMID:23460684
Estimation of density of mongooses with capture-recapture and distance sampling
Corn, J.L.; Conroy, M.J.
1998-01-01
We captured mongooses (Herpestes javanicus) in live traps arranged in trapping webs in Antigua, West Indies, and used capture-recapture and distance sampling to estimate density. Distance estimation and program DISTANCE were used to provide estimates of density from the trapping-web data. Mean density based on trapping webs was 9.5 mongooses/ha (range, 5.9-10.2/ha); estimates had coefficients of variation ranging from 29.82-31.58% (X?? = 30.46%). Mark-recapture models were used to estimate abundance, which was converted to density using estimates of effective trap area. Tests of model assumptions provided by CAPTURE indicated pronounced heterogeneity in capture probabilities and some indication of behavioral response and variation over time. Mean estimated density was 1.80 mongooses/ha (range, 1.37-2.15/ha) with estimated coefficients of variation of 4.68-11.92% (X?? = 7.46%). Estimates of density based on mark-recapture data depended heavily on assumptions about animal home ranges; variances of densities also may be underestimated, leading to unrealistically narrow confidence intervals. Estimates based on trap webs require fewer assumptions, and estimated variances may be a more realistic representation of sampling variation. Because trap webs are established easily and provide adequate data for estimation in a few sample occasions, the method should be efficient and reliable for estimating densities of mongooses.
The DiskMass Survey. II. Error Budget
NASA Astrophysics Data System (ADS)
Bershady, Matthew A.; Verheijen, Marc A. W.; Westfall, Kyle B.; Andersen, David R.; Swaters, Rob A.; Martinsson, Thomas
2010-06-01
We present a performance analysis of the DiskMass Survey. The survey uses collisionless tracers in the form of disk stars to measure the surface density of spiral disks, to provide an absolute calibration of the stellar mass-to-light ratio (Υ_{*}), and to yield robust estimates of the dark-matter halo density profile in the inner regions of galaxies. We find that a disk inclination range of 25°-35° is optimal for our measurements, consistent with our survey design to select nearly face-on galaxies. Uncertainties in disk scale heights are significant, but can be estimated from radial scale lengths to 25% now, and more precisely in the future. We detail the spectroscopic analysis used to derive line-of-sight velocity dispersions, precise at low surface-brightness, and accurate in the presence of composite stellar populations. Our methods take full advantage of large-grasp integral-field spectroscopy and an extensive library of observed stars. We show that the baryon-to-total mass fraction ({F}_bar) is not a well-defined observational quantity because it is coupled to the halo mass model. This remains true even when the disk mass is known and spatially extended rotation curves are available. In contrast, the fraction of the rotation speed supplied by the disk at 2.2 scale lengths (disk maximality) is a robust observational indicator of the baryonic disk contribution to the potential. We construct the error budget for the key quantities: dynamical disk mass surface density (Σdyn), disk stellar mass-to-light ratio (Υ^disk_{*}), and disk maximality ({F}_{*,max}^disk≡ V^disk_{*,max}/ V_c). Random and systematic errors in these quantities for individual galaxies will be ~25%, while survey precision for sample quartiles are reduced to 10%, largely devoid of systematic errors outside of distance uncertainties.
Hustedt, John; Doum, Dyna; Keo, Vanney; Ly, Sokha; Sam, BunLeng; Chan, Vibol; Alexander, Neal; Bradley, John; Prasetyo, Didot Budi; Rachmat, Agus; Muhammad, Shafique; Lopes, Sergio; Leang, Rithea; Hii, Jeffrey
2017-08-04
Evidence on the effectiveness of low-cost, sustainable, biological vector-control tools for the Aedes mosquitoes is limited. Therefore, the purpose of this trial is to estimate the impact of guppy fish (guppies), in combination with the use of the larvicide pyriproxyfen (Sumilarv® 2MR), and Communication for Behavioral Impact (COMBI) activities to reduce entomological indices in Cambodia. In this cluster randomized controlled, superiority trial, 30 clusters comprising one or more villages each (with approximately 170 households) will be allocated, in a 1:1:1 ratio, to receive either (1) three interventions (guppies, Sumilarv® 2MR, and COMBI activities), (2) two interventions (guppies and COMBI activities), or (3) control (standard vector control). Households will be invited to participate, and entomology surveys among 40 randomly selected households per cluster will be carried out quarterly. The primary outcome will be the population density of adult female Aedes mosquitoes (i.e., number per house) trapped using adult resting collections. Secondary outcome measures will include the House Index, Container Index, Breteau Index, Pupae Per House, Pupae Per Person, mosquito infection rate, guppy fish coverage, Sumilarv® 2MR coverage, and percentage of respondents with knowledge about Aedes mosquitoes causing dengue. In the primary analysis, adult female Aedes density and mosquito infection rates will be aggregated over follow-up time points to give a single rate per cluster. This will be analyzed by negative binomial regression, yielding density ratios. This trial is expected to provide robust estimates of the intervention effect. A rigorous evaluation of these vector-control interventions is vital to developing an evidence-based dengue control strategy and to help direct government resources. Current Controlled Trials, ID: ISRCTN85307778 . Registered on 25 October 2015.
Adaptive detection of noise signal according to Neumann-Pearson criterion
NASA Astrophysics Data System (ADS)
Padiryakov, Y. A.
1985-03-01
Optimum detection according to the Neumann-Pearson criterion is considered in the case of a random Gaussian noise signal, stationary during measurement, and a stationary random Gaussian background interference. Detection is based on two samples, their statistics characterized by estimates of their spectral densities, it being a priori known that sample A from the signal channel is either the sum of signal and interference or interference alone and sample B from the reference interference channel is an interference with the same spectral density as that of the interference in sample A for both hypotheses. The probability of correct detection is maximized on the average, first in the 2N-dimensional space of signal spectral density and interference spectral density readings, by fixing the probability of false alarm at each point so as to stabilize it at a constant level against variation of the interference spectral density. Deterministic decision rules are established. The algorithm is then reduced to equivalent detection in the N-dimensional space of the ratio of sample A readings to sample B readings.
Launch Vehicle Performance for Bipropellant Propulsion Using Atomic Propellants With Oxygen
NASA Technical Reports Server (NTRS)
Palaszewski, Bryan
2000-01-01
Atomic propellants for bipropellant launch vehicles using atomic boron, carbon, and hydrogen were analyzed. The gross liftoff weights (GLOW) and dry masses of the vehicles were estimated, and the 'best' design points for atomic propellants were identified. Engine performance was estimated for a wide range of oxidizer to fuel (O/F) ratios, atom loadings in the solid hydrogen particles, and amounts of helium carrier fluid. Rocket vehicle GLOW was minimized by operating at an O/F ratio of 1.0 to 3.0 for the atomic boron and carbon cases. For the atomic hydrogen cases, a minimum GLOW occurred when using the fuel as a monopropellant (O/F = 0.0). The atomic vehicle dry masses are also presented, and these data exhibit minimum values at the same or similar O/F ratios as those for the vehicle GLOW. A technology assessment of atomic propellants has shown that atomic boron and carbon rocket analyses are considered to be much more near term options than the atomic hydrogen rockets. The technology for storing atomic boron and carbon has shown significant progress, while atomic hydrogen is not able to be stored at the high densities needed for effective propulsion. The GLOW and dry mass data can be used to estimate the cost of future vehicles and their atomic propellant production facilities. The lower the propellant's mass, the lower the overall investment for the specially manufactured atomic propellants.
Land use, forest density, soil mapping, erosion, drainage, salinity limitations
NASA Technical Reports Server (NTRS)
Yassoglou, N. J. (Principal Investigator)
1973-01-01
The author has identified the following significant results. The results of analyses show that it is possible to obtain information of practical significance as follows: (1) A quick and accurate estimate of the proper use of the valuable land can be made on the basis of temporal and spectral characteristics of the land features. (2) A rather accurate delineation of the major forest formations in the test areas was achieved on the basis of spatial and spectral characteristics of the studied areas. The forest stands were separated into two density classes; dense forest, and broken forest. On the basis of ERTS-1 data and the existing ground truth information a rather accurate mapping of the major vegetational forms of the mountain ranges can be made. (3) Major soil formations are mapable from ERTS-1 data: recent alluvial soils; soil on quarternary deposits; severely eroded soil and lithosol; and wet soils. (4) An estimation of cost benefits cannot be made accurately at this stage of the investigation. However, a rough estimate of the ratio of the cost for obtaining the same amount information from ERTS-1 data and from conventional operations would be approximately 1:6 to 1:10, in favor of the ERTS-1.
Ellipsoids for anomaly detection in remote sensing imagery
NASA Astrophysics Data System (ADS)
Grosklos, Guenchik; Theiler, James
2015-05-01
For many target and anomaly detection algorithms, a key step is the estimation of a centroid (relatively easy) and a covariance matrix (somewhat harder) that characterize the background clutter. For a background that can be modeled as a multivariate Gaussian, the centroid and covariance lead to an explicit probability density function that can be used in likelihood ratio tests for optimal detection statistics. But ellipsoidal contours can characterize a much larger class of multivariate density function, and the ellipsoids that characterize the outer periphery of the distribution are most appropriate for detection in the low false alarm rate regime. Traditionally the sample mean and sample covariance are used to estimate ellipsoid location and shape, but these quantities are confounded both by large lever-arm outliers and non-Gaussian distributions within the ellipsoid of interest. This paper compares a variety of centroid and covariance estimation schemes with the aim of characterizing the periphery of the background distribution. In particular, we will consider a robust variant of the Khachiyan algorithm for minimum-volume enclosing ellipsoid. The performance of these different approaches is evaluated on multispectral and hyperspectral remote sensing imagery using coverage plots of ellipsoid volume versus false alarm rate.
Correlation between Na/K ratio and electron densities in blood samples of breast cancer patients.
Topdağı, Ömer; Toker, Ozan; Bakırdere, Sezgin; Bursalıoğlu, Ertuğrul Osman; Öz, Ersoy; Eyecioğlu, Önder; Demir, Mustafa; İçelli, Orhan
2018-05-31
The main purpose of this study was to investigate the relationship between the electron densities and Na/K ratio which has important role in breast cancer disease. Determinations of sodium and potassium concentrations in blood samples performed with inductive coupled plasma-atomic emission spectrometry. Electron density values of blood samples were determined via ZXCOM. Statistical analyses were performed for electron densities and Na/K ratio including Kolmogorov-Smirnov normality tests, Spearman's rank correlation test and Mann-Whitney U test. It was found that the electron densities significantly differ between control and breast cancer groups. In addition, statistically significant positive correlation was found between the electron density and Na/K ratios in breast cancer group.
Carbon X-ray absorption in the local ISM: fingerprints in X-ray Novae spectra
NASA Astrophysics Data System (ADS)
Gatuzz, Efraín; Ness, J.-U.; Gorczyca, T. W.; Hasoglu, M. F.; Kallman, Timothy R.; García, Javier A.
2018-06-01
We present a study of the C K-edge using high-resolution LETGS Chandra spectra of four novae during their super-soft-source (SSS) phase. We identified absorption lines due to C II Kα, C III Kα and C III Kβ resonances. We used these astronomical observations to perform a benchmarking of the atomic data, which involves wavelength shifts of the resonances and photoionization cross-sections. We used improved atomic data to estimate the C II and C III column densities. The absence of physical shifts for the absorption lines, the consistence of the column densities between multiple observations and the high temperature required for the SSS nova atmosphere modeling support our conclusion about an ISM origin of the respective absorption lines. Assuming a collisional ionization equilibrium plasma the maximum temperature derived from the ratio of C II/C III column densities of the absorbers correspond to Tmax < 3.05 × 104 K.
NASA Astrophysics Data System (ADS)
Huang, Xiao-Jie; Zhang, Li; Hu, Yu-Peng; Li, You-Rong
2018-06-01
In order to understand the effect of the Rayleigh number, the density inversion phenomenon and the aspect ratio on the flow patterns and the heat transfer characteristics of Rayleigh–Bénard convection of cold water in the neighborhood of the maximum density, a series of large eddy simulations are conducted by using the finite volume method. The Rayleigh number ranges between 106 and 109, the density inversion parameter and the aspect ratio are varied from 0 to 0.9 and from 0.4 to 2.5, respectively. The results indicate that the reversal of the large scale circulation (LSC) occurs with the increase of the Rayleigh number. When there exists a density inversion phenomenon, the key driver for the LSC is hot plumes. When the density inversion parameter is large enough, a stagnant region is found near the top of the container as the hot plumes cannot move to the top wall. The flow pattern structures depend mainly on the aspect ratio. When the aspect ratio is small, the rolls are vertically stacked and the flow keeps on switching among different flow states. For a moderate aspect ratio, different long-lived roll states coexist at a fixed aspect ratio. For a larger aspect ratio, the flow state is everlasting. The number of rolls increases with the increase of the aspect ratio. Furthermore, the aspect ratio has only slight influence on the time averaged Nusselt number for all density inversion parameters.
Sepehrband, Farshid; Clark, Kristi A.; Ullmann, Jeremy F.P.; Kurniawan, Nyoman D.; Leanage, Gayeshika; Reutens, David C.; Yang, Zhengyi
2015-01-01
We examined whether quantitative density measures of cerebral tissue consistent with histology can be obtained from diffusion magnetic resonance imaging (MRI). By incorporating prior knowledge of myelin and cell membrane densities, absolute tissue density values were estimated from relative intra-cellular and intra-neurite density values obtained from diffusion MRI. The NODDI (neurite orientation distribution and density imaging) technique, which can be applied clinically, was used. Myelin density estimates were compared with the results of electron and light microscopy in ex vivo mouse brain and with published density estimates in a healthy human brain. In ex vivo mouse brain, estimated myelin densities in different sub-regions of the mouse corpus callosum were almost identical to values obtained from electron microscopy (Diffusion MRI: 42±6%, 36±4% and 43±5%; electron microscopy: 41±10%, 36±8% and 44±12% in genu, body and splenium, respectively). In the human brain, good agreement was observed between estimated fiber density measurements and previously reported values based on electron microscopy. Estimated density values were unaffected by crossing fibers. PMID:26096639
On the Scaling Laws for Jet Noise in Subsonic and Supersonic Flow
NASA Technical Reports Server (NTRS)
Vu, Bruce; Kandula, Max
2003-01-01
The scaling laws for the simulation of noise from subsonic and ideally expanded supersonic jets are examined with regard to their applicability to deduce full scale conditions from small-scale model testing. Important parameters of scale model testing for the simulation of jet noise are identified, and the methods of estimating full-scale noise levels from simulated scale model data are addressed. The limitations of cold-jet data in estimating high-temperature supersonic jet noise levels are discussed. It is shown that the jet Mach number (jet exit velocity/sound speed at jet exit) is a more general and convenient parameter for noise scaling purposes than the ratio of jet exit velocity to ambient speed of sound. A similarity spectrum is also proposed, which accounts for jet Mach number, angle to the jet axis, and jet density ratio. The proposed spectrum reduces nearly to the well-known similarity spectra proposed by Tam for the large-scale and the fine-scale turbulence noise in the appropriate limit.
Re-examination of the relationship between marine virus and microbial cell abundances.
Wigington, Charles H; Sonderegger, Derek; Brussaard, Corina P D; Buchan, Alison; Finke, Jan F; Fuhrman, Jed A; Lennon, Jay T; Middelboe, Mathias; Suttle, Curtis A; Stock, Charles; Wilson, William H; Wommack, K Eric; Wilhelm, Steven W; Weitz, Joshua S
2016-01-25
Marine viruses are critical drivers of ocean biogeochemistry, and their abundances vary spatiotemporally in the global oceans, with upper estimates exceeding 10(8) per ml. Over many years, a consensus has emerged that virus abundances are typically tenfold higher than microbial cell abundances. However, the true explanatory power of a linear relationship and its robustness across diverse ocean environments is unclear. Here, we compile 5,671 microbial cell and virus abundance estimates from 25 distinct marine surveys and find substantial variation in the virus-to-microbial cell ratio, in which a 10:1 model has either limited or no explanatory power. Instead, virus abundances are better described as nonlinear, power-law functions of microbial cell abundances. The fitted scaling exponents are typically less than 1, implying that the virus-to-microbial cell ratio decreases with microbial cell density, rather than remaining fixed. The observed scaling also implies that viral effect sizes derived from 'representative' abundances require substantial refinement to be extrapolated to regional or global scales.
Sabet, Fatemeh Alsadat; Majdzadeh, Reza; Mostafazadeh Davani, Babak; Heidari, Kazem; Soltani, Akbar
2015-01-01
To propose an evidence based diagnostic algorithm using mass characteristics to determine malignancy in patients with adrenal incidentaloma by CTscan. A systematic review in Medline, Scopus, relevant reference books and desk searching was performed up to January 2016 with relevant reference checking. The summery estimates of sensitivity, specificity, positive and negative likelihood ratio of different characteristics were calculated in two groups of the articles investigating the cases without previous malignancy and the articles investigating the oncologic cases. Thirty six articles were included in this study. In the first group with no history of malignancy a positive and negative LR of 3.1 and 0.13 in 4 cm threshold and positive and negative LR of 2.85 and 0 in 10HU density were found. In the second group with history of malignancy positive and negative LR of 2.3 and 0.27 in 3 cm threshold and positive and negative LR of 3.6 and 0.08 in 20HU density were resulted. The results retrieved in this study considering the limitations show that adrenal incidentaloma with a size less than 4 cm or a mass larger than 4 cm with density less than 10HU in the first group can be managed with imaging follow up. For masses larger than 4 cm with density more than 10HU another diagnostic procedure should be performed. In the second group an adrenal mass larger than 3 cm or less than 3 cm with density more than 20HU should go under operation. But masses smaller than 3 cm with less than 20HU density can be followed by imaging.
NASA Astrophysics Data System (ADS)
Różańska, A.; Nikołajuk, M.; Czerny, B.; Dobrzycki, A.; Hryniewicz, K.; Bechtold, J.; Ebeling, H.
2014-04-01
We present the photoionisation modelling of the intrinsic absorber in the bright quasar HS 1603 + 3820. We constructed the broad-band spectral energy distribution using the optical/UV/X-ray observations from different instruments as inputs for the photoionisation calculations. The spectra from the Keck telescope show extremely high CIV to HI ratios, for the first absorber in system A, named A1. This value, together with high column density of CIV ion, place strong constraints on the photoionisation model. We used two photoionisation codes to derive the hydrogen number density at the cloud illuminated surface. By estimating bolometric luminosity of HS 1603 + 3820 using the typical formula for quasars, we calculated the distance to A1. We could find one photoionization solution, by assuming either a constant density cloud (which was modelled using CLOUDY), or a stratified cloud (which was modelled using TITAN), as well as the solar abundances. This model explained both the ionic column density of CIV and the high CIV to HI ratio. The location of A1 is 0.1 pc, and it is situated even closer to the nucleus than the possible location of the Broad Line Region in this object. The upper limit of the distance is sensitive to the adopted covering factor and the carbon abundance. Photoionisation modelling always prefers dense clouds with the number density n0 = 1010 - 1012 cm-3, which explains intrinsic absorption in HS 1603 + 3820. This number density is of the same order as that in the disk atmosphere at the implied distance of A1. Therefore, our results show that the disk wind that escapes from the outermost accretion disk atmosphere can build up dense absorber in quasars.
NASA Astrophysics Data System (ADS)
Abo, M.; Shibata, Y.; Nagasawa, C.
2017-12-01
We have developed a ground based direct detection three-wavelength 1.6 μm differential absorption lidar (DIAL) to achieve measurements of vertical CO2 concentration and temperature profiles in the atmosphere. As the spectra of absorption lines of any molecules are influenced basically by the temperature and pressure in the atmosphere, it is important to measure them simultaneously so that the better accuracy of the DIAL measurement is realized. Conventionally, we have obtained the vertical profile of absorption cross sections using the atmospheric temperature profile by the objective analysis and the atmospheric pressure profile calculated by the pressure height equation. Comparison of atmospheric pressure profiles calculated from this equation and those obtained from radiosonde observations at Tateno, Japan is consistent within 0.2 % below 3 km altitude. But the temperature dependency of the CO2 density is 0.25 %/°C near the surface. Moreover, the CO2 concentration is often evaluated by the mixing ratio. Because the air density is related by the ideal gas law, the mixing ratio is also related by the atmospheric temperature. Therefore, the temperature affects not only accuracy of CO2 concentration but the CO2 mixing ratio. In this paper, some experimental results of the simultaneous measurement of atmospheric temperature profiles and CO2 mixing ratio profiles are reported from 0.4 to 2.5 km altitude using the three-wavelength 1.6 μm DIAL system. Temperature profiles of CO2 DIAL measurement were sometimes different from those of objective analysis below 1.5 km altitude. These differences are considered to be due to regionality at the lidar site. The temperature difference of 5.0 °C corresponds to a CO2 mixing ratio difference of 8.0 ppm at 500 m altitude. This cannot be ignored in estimates of regional sources and sinks of CO2. This three-wavelength CO2 DIAL technique can estimate accurately temporal behavior of CO2 mixing ratio profiles in the lower atmosphere. This work was financially supported by the System Development Program for Advanced Measurement and Analysis of the Japan Science and Technology Agency.
Zhou, Meicen; Zhu, Lixin; Cui, Xiangli; Feng, Linbo; Zhao, Xuefeng; He, Shuli; Ping, Fan; Li, Wei; Li, Yuxiu
2016-06-07
Triglyceride/high-density lipoprotein-cholesterol (TG/HDL-C) ratio was a surrogate marker of IR; however, the relationship of TG/HDL-C with IR might vary by ethnicity. This study aims to investigate whether lipid ratios-TG/HDL-C, cholesterol/high-density lipoprotein-cholesterol (TC/HDL-C) ratio, low-density lipoprotein-cholesterol/high-density lipoprotein-cholesterol (LDL-C/HDL-C)) could be potential clinical markers of insulin resistance (IR) and β cell function and further to explore the optimal cut-offs in a Chinese population with different levels of glucose tolerance. Four hundred seventy-nine subjects without a history of diabetes underwent a 75 g 2 h Oral Glucose Tolerance Test (OGTT). New-onset diabetes (n = 101), pre-diabetes (n = 186), and normal glucose tolerance (n = 192) were screened. IR was defined by HOMA-IR > 2.69. Based on indices (HOMA-β, early-phase disposition index [DI30], (ΔIns30/ΔGlu30)/HOMA-IR and total-phase index [DI120]) that indicated different phases of insulin secretion, the subjects were divided into two groups, and the lower group was defined as having inadequate β cell compensation. Logistic regression models and accurate estimates of the areas under receiver operating characteristic curves (AUROC) were obtained. In all of the subjects, TG/HDL, TC/HDL-C, LDL-C/HDL-C, and TG were significantly associated with IR. The AUROCs of TG/HDL-C and TG were 0.71 (95 % CI: 0.66-0.75) and 0.71 (95 % CI: 0.65-0.75), respectively. The optimal cut-offs of TG/HDL-C and TG for IR diagnosis were 1.11 and 1.33 mmol/L, respectively. The AUROCs of TC/HDL-C and LDL-C/HDL-C were 0.66 and 0.65, respectively, but they were not acceptable for IR diagnosis. TG/HDL-C,LDL-C/HDL-C and TG were significantly associated with HOMA-β, but AUROCs were less than 0.50; therefore, the lipid ratios could not be predictors of basal β cell dysfunction. None of the lipid ratios was associated with early-phase insulin secretion. Only TG/HDL-C and TG were significantly correlated with total-phase insulin secretion, but they also were not acceptable predictors of total-phase insulin secretion (0.60 < AUROC < 0.70). In a Chinese population with different levels of glucose tolerance, TG/HDL-C and TG could be the predictors of IR. The lipid ratios could not be reliable makers of β cell function in the population.
Dynamics of newly established elk populations
Sargeant, G.A.; Oehler, M.W.
2007-01-01
The dynamics of newly established elk (Cervus elaphus) populations can provide insights about maximum sustainable rates of reproduction, survival, and increase. However, data used to estimate rates of increase typically have been limited to counts and rarely have included complementary estimates of vital rates. Complexities of population dynamics cannot be understood without considering population processes as well as population states. We estimated pregnancy rates, survival rates, age ratios, and sex ratios for reintroduced elk at Theodore Roosevelt National Park, North Dakota, USA; combined vital rates in a population projection model; and compared model projections with observed elk numbers and population ratios. Pregnancy rates in January (early in the second trimester of pregnancy) averaged 54.1% (SE = 5.4%) for subadults and 91.0% (SE = 1.7%) for adults, and 91.6% of pregnancies resulted in recruitment at 8 months. Annual survival rates of adult females averaged 0.96 (95% CI = 0.94-0.98) with hunting included and 0.99 (95% CI = 0.97-0.99) with hunting excluded from calculations. Our fitted model explained 99.8% of past variation in population estimates and represents a useful new tool for short-term management planning. Although we found no evidence of temporal variation in vital rates, variation in population composition caused substantial variation in projected rates of increase (??=1.20-1.36). Restoring documented hunter harvests and removals of elk by the National Park Service led to a potential rate of ?? = 1.26. Greater rates of increase substantiated elsewhere were within the expected range of chance variation, given our model and estimates of vital rates. Rates of increase realized by small elk populations are too variable to support inferences about habitat quality or density dependence.
Density Estimation for New Solid and Liquid Explosives
1977-02-17
The group additivity approach was shown to be applicable to density estimation. The densities of approximately 180 explosives and related compounds... of very diverse compositions were estimated, and almost all the estimates were quite reasonable. Of the 168 compounds for which direct comparisons...could be made (see Table 6), 36.9% of the estimated densities were within 1% of the measured densities, 33.3% were within 1-2%, 11.9% were within 2-3
NASA Technical Reports Server (NTRS)
Aase, J. K.; Siddoway, F. H.; Millard, J. P.
1984-01-01
An attempt has been made to relate hand-held radiometer measurements, and airborne multispectral scanner readings, with both different wheat stand densities and grain yield. Aircraft overflights were conducted during the tillering, stem extension and heading period stages of growth, while hand-held radiometer readings were taken throughout the growing season. The near-IR/red ratio was used in the analysis, which indicated that both the aircraft and the ground measurements made possible a differentiation and evaluation of wheat stand densities at an early enough growth stage to serve as the basis of management decisions. The aircraft data also corroborated the hand-held radiometer measurements with respect to yield prediction. Winterkill was readily evaluated.
NASA Technical Reports Server (NTRS)
Richardson, R. W.
1974-01-01
Spectroscopic measurements were carried out on the NASA Lewis Bumpy Torus experiment in which a steady state ion heating method based on the modified Penning discharge is applied in a bumpy torus confinement geometry. Electron temperatures in pure helium are measured from the ratio of spectral line intensities. Measured electron temperatures range from 10 to 100 eV. Relative electron densities are also measured over the range of operating conditions. Radial profiles of temperature and relative density are measured in the two basic modes of operation of the device called the low and high pressure modes. The electron temperatures are used to estimate particle confinement times based on a steady state particle balance.
X-ray microanalytical surveys of minor element concentrations in unsectioned biological samples
NASA Astrophysics Data System (ADS)
Schofield, R. M. S.; Lefevre, H. W.; Overley, J. C.; Macdonald, J. D.
1988-03-01
Approximate concentration maps of small unsectioned biological samples are made using the pixel by pixel ratio of PIXE images to areal density images. Areal density images are derived from scanning transmission ion microscopy (STIM) proton energy-loss images. Corrections for X-ray production cross section variations, X-ray attenuation, and depth averaging are approximated or ignored. Estimates of the magnitude of the resulting error are made. Approximate calcium concentrations within the head of a fruit fly are reported. Concentrations in the retinula cell region of the eye average about 1 mg/g dry weight. Concentrations of zinc in the mandible of several ant species average about 40 mg/g. Zinc concentrations in the stomachs of these ants are at least 1 mg/g.
Rianasari, Ina; de Jong, Michel P.; Huskens, Jurriaan; van der Wiel, Wilfred G.
2013-01-01
We demonstrate the application of the 1,3-dipolar cycloaddition (“click” reaction) to couple gold nanoparticles (Au NPs) functionalized with low densities of functional ligands. The ligand coverage on the citrate-stabilized Au NPs was adjusted by the ligand:Au surface atom ratio, while maintaining the colloidal stability of the Au NPs in aqueous solution. A procedure was developed to determine the driving forces governing the selectivity and reactivity of citrate-stabilized and ligand-functionalized Au NPs on patterned self-assembled monolayers. We observed selective and remarkably stable chemical bonding of the Au NPs to the complimentarily functionalized substrate areas, even when estimating that only 1–2 chemical bonds are formed between the particles and the substrate. PMID:23434666
von Bibra, Helene; Saha, Sarama; Hapfelmeier, Alexander; Müller, Gabriele; Schwarz, Peter E H
2017-07-01
Insulin resistance is the underlying mechanism for the metabolic syndrome and associated dyslipidaemia that theoretically implies a practical tool for identifying individuals at risk for cardiovascular disease and type-2-diabetes. Another screening tool is the hypertriglyceremic-waist phenotype (HTW). There is important impact of the ethnic background but a lack of studied European populations for the association of the triglyceride/high-density lipoprotein cholesterol (HDL-C) ratio and insulin resistance. This observational, retrospective study evaluated lipid ratios and the HTW for predicting the metabolic syndrome/insulin resistance in 1932 non-diabetic individuals from Germany in the fasting state and during a glucose tolerance test. The relations of triglyceride/HDL-C, total-cholesterol/HDL-C, and low-density lipoprotein cholesterol/HDL-C with 5 surrogate estimates of insulin resistance/sensitivity and metabolic syndrome were analysed by linear regression analysis and receiver operating characteristics (ROC) in participants with normal (n=1 333) or impaired fasting glucose (n=599), also for the impact of gender. Within the lipid ratios, triglyceride/HDL-C had the strongest associations with insulin resistance/sensitivity markers. In the prediction of metabolic syndrome, diagnostic accuracy was good for triglyceride/HDL-C (area under the ROC curve 0.817) with optimal cut-off points (in mg/dl units) of 2.8 for men (80% sensitivity, 71% specificity) and 1.9 for women (80% sensitivity, 75% specificity) and fair for HTW and HOMA-IR (area under the curve 0.773 and 0.761). These data suggest the triglyceride/HDL-C ratio as a physiologically relevant and practical index for predicting the concomitant presence of metabolic syndrome, insulin resistance and dyslipidaemia for therapeutic and preventive care in apparently healthy European populations. © Georg Thieme Verlag KG Stuttgart · New York.
Models for integrated pest control and their biological implications.
Tang, Sanyi; Cheke, Robert A
2008-09-01
Successful integrated pest management (IPM) control programmes depend on many factors which include host-parasitoid ratios, starting densities, timings of parasitoid releases, dosages and timings of insecticide applications and levels of host-feeding and parasitism. Mathematical models can help us to clarify and predict the effects of such factors on the stability of host-parasitoid systems, which we illustrate here by extending the classical continuous and discrete host-parasitoid models to include an IPM control programme. The results indicate that one of three control methods can maintain the host level below the economic threshold (ET) in relation to different ET levels, initial densities of host and parasitoid populations and host-parasitoid ratios. The effects of host intrinsic growth rate and parasitoid searching efficiency on host mean outbreak period can be calculated numerically from the models presented. The instantaneous pest killing rate of an insecticide application is also estimated from the models. The results imply that the modelling methods described can help in the design of appropriate control strategies and assist management decision-making. The results also indicate that a high initial density of parasitoids (such as in inundative releases) and high parasitoid inter-generational survival rates will lead to more frequent host outbreaks and, therefore, greater economic damage. The biological implications of this counter intuitive result are discussed.
Lee, Jisu; Jung, Moon Youn; Park, Hyung Ju
2017-04-01
We reported that quantitative detection of prostatic-specific antigen (PSA), which is the biomarker of prostate cancer, could be carried out by calculating the number density and the area ratio of gold nanoparticle probes on the surface of silicon oxide chips. When chips selectively activated with PSA were immersed in the gold nanoparticles conjugated with prostatic specific antigens-poly clonal antibodies (PSA-pAb), it was possible to observe changes in the number density and the area ratio of gold nanoparticles on the surface of the chips according to the concentration of PSA with scanning electron microscopy (SEM) images. As PSA concentration increased, the number density and the area ratio of gold nanoparticle probes on the surfaces of the chips increased accordingly. Conversely, with lower concentration, the number density and the area ratio of gold nanoparticle probes on the surfaces decreased at a certain ratio. We observed the correlations between PSA concentration and number density, area ratio of gold nanoparticle probes through the analysis of SEM images. In addition, it was confirmed that the sizes of the gold nanoparticles affected the detection limit of the number density and the area ratio of gold nanoparticle probes on the surface.
NASA Technical Reports Server (NTRS)
Hong, Byungsik; Buck, Warren W.; Maung, Khin M.
1989-01-01
Two kinds of number density distributions of the nucleus, harmonic well and Woods-Saxon models, are used with the t-matrix that is taken from the scattering experiments to find a simple optical potential. The parameterized two body inputs, which are kaon-nucleon total cross sections, elastic slope parameters, and the ratio of the real to imaginary part of the forward elastic scattering amplitude, are shown. The eikonal approximation was chosen as the solution method to estimate the total and absorptive cross sections for the kaon-nucleus scattering.
2013-03-01
with density, Young’s modulus, coefficient of thermal expansion , and Poisson’s ratio, of 3.2 cm 3 , 449 GPa, 4.0 × 10 –6 o C –1 , and 0.16...considers the effect of hydrostatic pressure (confinement) on the strength of ceramics and was implemented using a user subroutine in ABAQUS . The...Due to the high temperature of the encapsulation casting process and the large differential in coefficients of thermal expansion (CTE) between the MMC
Fröba, Andreas P; Kremer, Heiko; Leipertz, Alfred
2008-10-02
The density, refractive index, interfacial tension, and viscosity of ionic liquids (ILs) [EMIM][EtSO 4] (1-ethyl-3-methylimidazolium ethylsulfate), [EMIM][NTf 2] (1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide), [EMIM][N(CN) 2] (1-ethyl-3-methylimidazolium dicyanimide), and [OMA][NTf 2] (trioctylmethylammonium bis(trifluoromethylsulfonyl)imide) were studied in dependence on temperature at atmospheric pressure both by conventional techniques and by surface light scattering (SLS). A vibrating tube densimeter was used for the measurement of density at temperatures from (273.15 to 363.15) K and the results have an expanded uncertainty ( k = 2) of +/-0.02%. Using an Abbe refractometer, the refractive index was measured for temperatures between (283.15 and 313.15) K with an expanded uncertainty ( k = 2) of about +/-0.0005. The interfacial tension was obtained from the pendant drop technique at a temperature of 293.15 K with an expanded uncertainty ( k = 2) of +/-1%. For higher and lower temperatures, the interfacial tension was estimated by an adequate prediction scheme based on the datum at 293.15 K and the temperature dependence of density. For the ILs studied within this work, at a first order approximation, the quantity directly accessible by the SLS technique was the ratio of surface tension to dynamic viscosity. By combining the experimental results of the SLS technique with density and interfacial tension from conventional techniques, the dynamic viscosity could be obtained for temperatures between (273.15 and 333.15) K with an estimated expanded uncertainty ( k = 2) of less than +/-3%. The measured density, refractive index, and viscosity are represented by interpolating expressions with differences between the experimental and calculated values that are comparable with but always smaller than the expanded uncertainties ( k = 2). Besides a comparison with the literature, the influence of structural variations on the thermophysical properties of the ILs is discussed in detail. The viscosities mostly agree with values reported in the literature within the combined estimated expanded uncertainties ( k = 2) of the measurements while our density and interfacial tension data differ by more than +/-1% and +/-5%.
Fluorescent H{sub 2} Emission Lines from the Reflection Nebula NGC 7023 Observed with IGRINS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Le, Huynh Anh N.; Pak, Soojong; Lee, Hye-In
We have analyzed the temperature, velocity, and density of H{sub 2} gas in NGC 7023 with a high-resolution near-infrared spectrum of the northwestern filament of the reflection nebula. By observing NGC 7023 in the H and K bands at R ≃ 45,000 with the Immersion GRating INfrared Spectrograph, we detected 68 H{sub 2} emission lines within the 1″ × 15″ slit. The diagnostic ratio of 2-1 S(1)/1-0 S(1) is 0.41−0.56. In addition, the estimated ortho-to-para ratio (OPR) is 1.63−1.82, indicating that the H{sub 2} emission transitions in the observed region arise mostly from gas excited by UV fluorescence. Gradients inmore » the temperature, velocity, and OPR within the observed area imply motion of the photodissociation region (PDR) relative to the molecular cloud. In addition, we derive the column density of H{sub 2} from the observed emission lines and compare these results with PDR models in the literature covering a range of densities and incident UV field intensities. The notable difference between PDR model predictions and the observed data, in high rotational J levels of ν = 1, is that the predicted formation temperature for newly formed H{sub 2} should be lower than that of the model predictions. To investigate the density distribution, we combine pixels in 1″ × 1″ areas and derive the density distribution at the 0.002 pc scale. The derived gradient of density suggests that NGC 7023 has a clumpy structure, including a high clump density of ∼10{sup 5} cm{sup −3} with a size smaller than ∼5 × 10{sup −3} pc embedded in lower-density regions of 10{sup 3}–10{sup 4} cm{sup −3}.« less
Opit, George P; Perret, Jamis; Holt, Kiffnie; Nechols, James R; Margolies, David C; Williams, Kimberly A
2009-02-01
Efficacy, costs, and impact on crop salability of various biological and chemical control strategies for Tetranychus urticae Koch (Acari: Tetranychidae) were evaluated on mixed plantings of impatiens, Impatiens wallerana Hook.f (Ericales: Balsaminaceae), and ivy geranium, Pelargonium peltatum (1.) L'Hér. Ex Aiton (Geraniales: Geraniaceae), cultivars in commercial greenhouses. Chemical control consisting of the miticide bifenazate (Floramite) was compared with two biological control strategies using the predatory mite Phytoseiulus persimilis Athias-Henriot (Acari: Phytoseiidae). Treatments were 1) a single, early application of bifenazate; 2) a single, early release of predatory mites at a 1:4 predator:pest ratio based on leaf samples to estimate pest density; 3) a weekly release of predatory mites at numbers based on the area covered by the crop; and 4) an untreated control. T. urticae populations were monitored for 3 wk after the earliest treatment. When plants were ready for market, their salability was estimated. Bifenazate and density-based P. persimilis treatments effectively reduced T. urticae numbers starting 1 wk after plants had been treated, whereas the scheduled, area-based P. persimilis treatment had little or no effect. The percentage of flats that could be sold at the highest market wholesale price ranged from 15 to 33%, 44 to 86%, 84 to 95%, and 92 to 100%, in the control, weekly area-based P. persimilis, bifenazate, and single density-based P. persimilis treatments, respectively. We have shown that in commercial greenhouse production of herbaceous ornamental bedding plants, estimating pest density to determine the appropriate number of predators to release is as effective and offers nearly the same economic benefit as prophylactic use of pesticides.
Tice, Jeffrey A; Miglioretti, Diana L; Li, Chin-Shang; Vachon, Celine M; Gard, Charlotte C; Kerlikowske, Karla
2015-10-01
Women with proliferative breast lesions are candidates for primary prevention, but few risk models incorporate benign findings to assess breast cancer risk. We incorporated benign breast disease (BBD) diagnoses into the Breast Cancer Surveillance Consortium (BCSC) risk model, the only breast cancer risk assessment tool that uses breast density. We developed and validated a competing-risk model using 2000 to 2010 SEER data for breast cancer incidence and 2010 vital statistics to adjust for the competing risk of death. We used Cox proportional hazards regression to estimate the relative hazards for age, race/ethnicity, family history of breast cancer, history of breast biopsy, BBD diagnoses, and breast density in the BCSC. We included 1,135,977 women age 35 to 74 years undergoing mammography with no history of breast cancer; 17% of the women had a prior breast biopsy. During a mean follow-up of 6.9 years, 17,908 women were diagnosed with invasive breast cancer. The BCSC BBD model slightly overpredicted risk (expected-to-observed ratio, 1.04; 95% CI, 1.03 to 1.06) and had modest discriminatory accuracy (area under the receiver operator characteristic curve, 0.665). Among women with proliferative findings, adding BBD to the model increased the proportion of women with an estimated 5-year risk of 3% or higher from 9.3% to 27.8% (P<.001). The BCSC BBD model accurately estimates women's risk for breast cancer using breast density and BBD diagnoses. Greater numbers of high-risk women eligible for primary prevention after BBD diagnosis are identified using the BCSC BBD model. © 2015 by American Society of Clinical Oncology.
Tice, Jeffrey A.; Miglioretti, Diana L.; Li, Chin-Shang; Vachon, Celine M.; Gard, Charlotte C.; Kerlikowske, Karla
2015-01-01
Purpose Women with proliferative breast lesions are candidates for primary prevention, but few risk models incorporate benign findings to assess breast cancer risk. We incorporated benign breast disease (BBD) diagnoses into the Breast Cancer Surveillance Consortium (BCSC) risk model, the only breast cancer risk assessment tool that uses breast density. Methods We developed and validated a competing-risk model using 2000 to 2010 SEER data for breast cancer incidence and 2010 vital statistics to adjust for the competing risk of death. We used Cox proportional hazards regression to estimate the relative hazards for age, race/ethnicity, family history of breast cancer, history of breast biopsy, BBD diagnoses, and breast density in the BCSC. Results We included 1,135,977 women age 35 to 74 years undergoing mammography with no history of breast cancer; 17% of the women had a prior breast biopsy. During a mean follow-up of 6.9 years, 17,908 women were diagnosed with invasive breast cancer. The BCSC BBD model slightly overpredicted risk (expected-to-observed ratio, 1.04; 95% CI, 1.03 to 1.06) and had modest discriminatory accuracy (area under the receiver operator characteristic curve, 0.665). Among women with proliferative findings, adding BBD to the model increased the proportion of women with an estimated 5-year risk of 3% or higher from 9.3% to 27.8% (P < .001). Conclusion The BCSC BBD model accurately estimates women's risk for breast cancer using breast density and BBD diagnoses. Greater numbers of high-risk women eligible for primary prevention after BBD diagnosis are identified using the BCSC BBD model. PMID:26282663
Di Salvo, Francesca; Meneghini, Elisabetta; Vieira, Veronica; Baili, Paolo; Mariottini, Mauro; Baldini, Marco; Micheli, Andrea; Sant, Milena
2015-01-01
Introduction The study investigated the geographic variation of mortality risk for hematological malignancies (HMs) in order to identify potential high-risk areas near an Italian petrochemical refinery. Material and methods A population-based case-control study was conducted and residential histories for 171 cases and 338 sex- and age-matched controls were collected. Confounding factors were obtained from interviews with consenting relatives for 109 HM deaths and 267 controls. To produce risk mortality maps, two different approaches were applied. We mapped (1) adptive kernel density relative risk estimation (KDE) for case-control studies which estimates a spatial relative risk function using the ratio between cases and controls’ densities, and (2) estimated odds ratios for case-control study data using generalized additive models (GAMs) to smooth the effect of location, a proxy for exposure, while adjusting for confounding variables. Results No high-risk areas for HM mortality were identified among all subjects (men and women combined), by applying both approaches. Using the adaptive KDE approach, we found a significant increase in death risk only among women in a large area 2–6 km southeast of the refinery and the application of GAMs also identified a similarly-located significant high-risk area among women only (global p-value<0.025). Potential confounding risk factors we considered in the GAM did not alter the results. Conclusion Both approaches identified a high-risk area close to the refinery among women only. Those spatial methods are useful tools for public policy management to determine priority areas for intervention. Our findings suggest several directions for further research in order to identify other potential environmental exposures that may be assessed in forthcoming studies based on detailed exposure modeling. PMID:26073202
Papantonopoulos, Georgios; Takahashi, Keiso; Bountis, Tasos; Loos, Bruno G
2014-01-01
There is neither a single clinical, microbiological, histopathological or genetic test, nor combinations of them, to discriminate aggressive periodontitis (AgP) from chronic periodontitis (CP) patients. We aimed to estimate probability density functions of clinical and immunologic datasets derived from periodontitis patients and construct artificial neural networks (ANNs) to correctly classify patients into AgP or CP class. The fit of probability distributions on the datasets was tested by the Akaike information criterion (AIC). ANNs were trained by cross entropy (CE) values estimated between probabilities of showing certain levels of immunologic parameters and a reference mode probability proposed by kernel density estimation (KDE). The weight decay regularization parameter of the ANNs was determined by 10-fold cross-validation. Possible evidence for 2 clusters of patients on cross-sectional and longitudinal bone loss measurements were revealed by KDE. Two to 7 clusters were shown on datasets of CD4/CD8 ratio, CD3, monocyte, eosinophil, neutrophil and lymphocyte counts, IL-1, IL-2, IL-4, INF-γ and TNF-α level from monocytes, antibody levels against A. actinomycetemcomitans (A.a.) and P.gingivalis (P.g.). ANNs gave 90%-98% accuracy in classifying patients into either AgP or CP. The best overall prediction was given by an ANN with CE of monocyte, eosinophil, neutrophil counts and CD4/CD8 ratio as inputs. ANNs can be powerful in classifying periodontitis patients into AgP or CP, when fed by CE values based on KDE. Therefore ANNs can be employed for accurate diagnosis of AgP or CP by using relatively simple and conveniently obtained parameters, like leukocyte counts in peripheral blood. This will allow clinicians to better adapt specific treatment protocols for their AgP and CP patients.
NASA Astrophysics Data System (ADS)
Pascoe, D. J.; Anfinogentov, S. A.; Goddard, C. R.; Nakariakov, V. M.
2018-06-01
The shape of the damping profile of kink oscillations in coronal loops has recently allowed the transverse density profile of the loop to be estimated. This requires accurate measurement of the damping profile that can distinguish the Gaussian and exponential damping regimes, otherwise there are more unknowns than observables. Forward modeling of the transverse intensity profile may also be used to estimate the width of the inhomogeneous layer of a loop, providing an independent estimate of one of these unknowns. We analyze an oscillating loop for which the seismological determination of the transverse structure is inconclusive except when supplemented by additional spatial information from the transverse intensity profile. Our temporal analysis describes the motion of a coronal loop as a kink oscillation damped by resonant absorption, and our spatial analysis is based on forward modeling the transverse EUV intensity profile of the loop under the isothermal and optically thin approximations. We use Bayesian analysis and Markov chain Monte Carlo sampling to apply our spatial and temporal models both individually and simultaneously to our data and compare the results with numerical simulations. Combining the two methods allows both the inhomogeneous layer width and density contrast to be calculated, which is not possible for the same data when each method is applied individually. We demonstrate that the assumption of an exponential damping profile leads to a significantly larger error in the inferred density contrast ratio compared with a Gaussian damping profile.
Battaglia, Maurizio; Segall, P.; Roberts, C.
2003-01-01
We model the source of inflation of Long Valley caldera by combining geodetic and micro-gravity data. Uplift from GPS and leveling, two-color EDM measurements, and residual gravity change determinations are used to estimate the intrusion geometry, assuming a vertical prolate ellipsoidal source. The U.S. Geological Survey occupied the Long Valley gravity network six times from 1980 to 1985. We reoccupied this network twice, in the summer of 1998 (33 stations), and the summer of 1999 (37 stations). Before gravity data can be used to estimate the density of the intrusion, they must be corrected for the effect of vertical deformation (the free-air effect) and changes in the water table. We use geostatistical techniques to interpolate uplift and water table changes at the gravity stations. The inflation source (a vertical prolate ellipsoid) is located 5.9 km beneath the resurgent dome with an aspect ratio equal to 0.475, a volume change from 1982 to 1999 of 0.136 km3 and a density of around 1700 kg/m3. A bootstrap method was employed to estimate 95% confidence bounds for the parameters of the inflation model. We obtained a range of 0.105-0.187 km3 for the volume change, and 1180-2330 kg/m3 for the density. Our results do not support hydrothermal fluid intrusion as the primary cause of unrest, and confirm the intrusion of silicic magma beneath Long Valley caldera. Failure to account for the ellipsoidal nature of the source biases the estimated source depth by 2.9 km (a 33% increase), the volume change by 0.019 km3 (a 14% increase) and the density by about 1200 kg/m3 (a 40% increase). ?? 2003 Elsevier B.V. All rights reserved.
Cant, Jonathan S; Xu, Yaoda
2015-11-01
Behavioral research has demonstrated that observers can extract summary statistics from ensembles of multiple objects. We recently showed that a region of anterior-medial ventral visual cortex, overlapping largely with the scene-sensitive parahippocampal place area (PPA), participates in object-ensemble representation. Here we investigated the encoding of ensemble density in this brain region using fMRI-adaptation. In Experiment 1, we varied density by changing the spacing between objects and found no sensitivity in PPA to such density changes. Thus, density may not be encoded in PPA, possibly because object spacing is not perceived as an intrinsic ensemble property. In Experiment 2, we varied relative density by changing the ratio of 2 types of objects comprising an ensemble, and observed significant sensitivity in PPA to such ratio change. Although colorful ensembles were shown in Experiment 2, Experiment 3 demonstrated that sensitivity to object ratio change was not driven mainly by a change in the ratio of colors. Thus, while anterior-medial ventral visual cortex is insensitive to density (object spacing) changes, it does code relative density (object ratio) within an ensemble. Object-ensemble processing in this region may thus depend on high-level visual information, such as object ratio, rather than low-level information, such as spacing/spatial frequency. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
NASA Astrophysics Data System (ADS)
Korchagova, V. N.; Kraposhin, M. V.; Marchevsky, I. K.; Smirnova, E. V.
2017-11-01
A droplet impact on a deep pool can induce macro-scale or micro-scale effects like a crown splash, a high-speed jet, formation of secondary droplets or thin liquid films, etc. It depends on the diameter and velocity of the droplet, liquid properties, effects of external forces and other factors that a ratio of dimensionless criteria can account for. In the present research, we considered the droplet and the pool consist of the same viscous incompressible liquid. We took surface tension into account but neglected gravity forces. We used two open-source codes (OpenFOAM and Gerris) for our computations. We review the possibility of using these codes for simulation of processes in free-surface flows that may take place after a droplet impact on the pool. Both codes simulated several modes of droplet impact. We estimated the effect of liquid properties with respect to the Reynolds number and Weber number. Numerical simulation enabled us to find boundaries between different modes of droplet impact on a deep pool and to plot corresponding mode maps. The ratio of liquid density to that of the surrounding gas induces several changes in mode maps. Increasing this density ratio suppresses the crown splash.
Salazar, M R; Carbajal, H A; Espeche, W G; Aizpurúa, M; Leiva Sisnieguez, C E; March, C E; Balbín, E; Stavile, R N; Reaven, G M
2013-06-01
Metabolic syndrome (MetS) has been shown to predict both risk and CVD events. We have identified sex-specific values for the triglyceride/high-density lipoprotein cholesterol (TG/HDL-C) ratio associated with an unfavourable cardio-metabolic risk profile, but it is not known whether it also predicts CVD outcome. To quantify risk for CVD outcomes associated with a high TG/HDL-C ratio and to compare this risk with that predicted using MetS, a population longitudinal prospective observational study was performed in Rauch City, Buenos Aires, Argentina. In 2003 surveys were performed on a population random sample of 926 inhabitants. In 2012, 527 women and 269 men were surveyed again in search of new CVD events. The first CVD event was the primary endpoint. Relative risks for CVD events between individuals above and below the TG/HDL-C cut-points, and with or without MetS, were estimated using Cox proportional hazard. The first CVD event was the primary endpoint. Relative risks for CVD events between individuals above and below the TG/HDL-C cut-points, and with or without MetS, were estimated using Cox proportional hazard. The number of subjects deemed at 'high' CVD risk on the basis of an elevated TG/HDL-C ratio (30%) or having the MetS (35%) was relatively comparable. The unadjusted hazard risk was significantly increased when comparing 'high' versus 'low' risk groups no matter which criteria was used, although it was somewhat higher in those with the MetS (HR = 3.17, 95% CI:1.79-5.60 vs. 2.16, 95% CI:1.24-3.75). However, this difference essentially disappeared when adjusted for sex and age (HR = 2.09, 95% CI:1.18-3.72 vs. 2.01, 95% CI:1.14-3.50 for MetS and TG/HDL-C respectively). An elevated TG/HDL-C ratio appears to be just as effective as the MetS diagnosis in predicting the development of CVD. © 2013 The Association for the Publication of the Journal of Internal Medicine.
Breast density estimation from high spectral and spatial resolution MRI
Li, Hui; Weiss, William A.; Medved, Milica; Abe, Hiroyuki; Newstead, Gillian M.; Karczmar, Gregory S.; Giger, Maryellen L.
2016-01-01
Abstract. A three-dimensional breast density estimation method is presented for high spectral and spatial resolution (HiSS) MR imaging. Twenty-two patients were recruited (under an Institutional Review Board--approved Health Insurance Portability and Accountability Act-compliant protocol) for high-risk breast cancer screening. Each patient received standard-of-care clinical digital x-ray mammograms and MR scans, as well as HiSS scans. The algorithm for breast density estimation includes breast mask generating, breast skin removal, and breast percentage density calculation. The inter- and intra-user variabilities of the HiSS-based density estimation were determined using correlation analysis and limits of agreement. Correlation analysis was also performed between the HiSS-based density estimation and radiologists’ breast imaging-reporting and data system (BI-RADS) density ratings. A correlation coefficient of 0.91 (p<0.0001) was obtained between left and right breast density estimations. An interclass correlation coefficient of 0.99 (p<0.0001) indicated high reliability for the inter-user variability of the HiSS-based breast density estimations. A moderate correlation coefficient of 0.55 (p=0.0076) was observed between HiSS-based breast density estimations and radiologists’ BI-RADS. In summary, an objective density estimation method using HiSS spectral data from breast MRI was developed. The high reproducibility with low inter- and low intra-user variabilities shown in this preliminary study suggest that such a HiSS-based density metric may be potentially beneficial in programs requiring breast density such as in breast cancer risk assessment and monitoring effects of therapy. PMID:28042590
Gould, Matthew J.; Cain, James W.; Roemer, Gary W.; Gould, William R.
2016-01-01
During the 2004–2005 to 2015–2016 hunting seasons, the New Mexico Department of Game and Fish (NMDGF) estimated black bear abundance (Ursus americanus) across the state by coupling density estimates with the distribution of primary habitat generated by Costello et al. (2001). These estimates have been used to set harvest limits. For example, a density of 17 bears/100 km2 for the Sangre de Cristo and Sacramento Mountains and 13.2 bears/100 km2 for the Sandia Mountains were used to set harvest levels. The advancement and widespread acceptance of non-invasive sampling and mark-recapture methods, prompted the NMDGF to collaborate with the New Mexico Cooperative Fish and Wildlife Research Unit and New Mexico State University to update their density estimates for black bear populations in select mountain ranges across the state.We established 5 study areas in 3 mountain ranges: the northern (NSC; sampled in 2012) and southern Sangre de Cristo Mountains (SSC; sampled in 2013), the Sandia Mountains (Sandias; sampled in 2014), and the northern (NSacs) and southern Sacramento Mountains (SSacs; both sampled in 2014). We collected hair samples from black bears using two concurrent non-invasive sampling methods, hair traps and bear rubs. We used a gender marker and a suite of microsatellite loci to determine the individual identification of hair samples that were suitable for genetic analysis. We used these data to generate mark-recapture encounter histories for each bear and estimated density in a spatially explicit capture-recapture framework (SECR). We constructed a suite of SECR candidate models using sex, elevation, land cover type, and time to model heterogeneity in detection probability and the spatial scale over which detection probability declines. We used Akaike’s Information Criterion corrected for small sample size (AICc) to rank and select the most supported model from which we estimated density.We set 554 hair traps, 117 bear rubs and collected 4,083 hair samples. We identified 725 (367 M, 358 F) individuals; the sex ratio for each study area was approximately equal. Our density estimates varied within and among mountain ranges with an estimated density of 21.86 bears/100 km2 (95% CI: 17.83 – 26.80) for the NSC, 19.74 bears/100 km2 (95% CI: 13.77 – 28.30) in the SSC, 25.75 bears/100 km2 (95% CI: 13.22 – 50.14) in the Sandias, 21.86 bears/100 km2 (95% CI: 17.83 – 26.80) in the NSacs, and 16.55 bears/100 km2 (95% CI: 11.64 – 23.53) in the SSacs. Overall detection probability for hair traps and bear rubs, combined, was low across all study areas and ranged from 0.00001 to 0.02. We speculate that detection probabilities were affected by failure of some hair samples to produce a complete genotype due to UV degradation of DNA, and our inability to set and check some sampling devices due to wildfires in the SSC. Ultraviolet radiation levels are particularly high in New Mexico compared to other states where NGS methods have been used because New Mexico receives substantial amounts of sunshine, is relatively high in elevation (1,200 m – 4,000 m), and is at a lower latitude. Despite these sampling difficulties, we were able to produce density estimates for New Mexico black bear populations with levels of precision comparable to estimated black bear densities made elsewhere in the U.S.Our ability to generate reliable black bear density estimates for 3 New Mexico mountain ranges is attributable to our use of a statistically robust study design and analytical method. There are multiple factors that need to be considered when developing future SECR-based density estimation projects. First, the spatial extent of the population of interest and the smallest average home range size must be determined; these will dictate size of the trapping array and spacing necessary between hair traps. The number of technicians needed and access to the study areas will also influence configuration of the trapping array. We believe shorter sampling occasions could be implemented to reduce degradation of DNA due to UV radiation; this might help increase amplification rates and thereby increase both the number of unique individuals identified and the number of recaptures, improving the precision of the density estimates. A pilot study may be useful to determine the length of time hair samples can remain in the field prior to collection. In addition, researchers may consider setting hair traps and bear rubs in more shaded areas (e.g., north facing slopes) to help reduce exposure to UV radiation. To reduce the sampling interval it will be necessary to either hire more field personnel or decrease the number of hair traps per sampling session. Both of these will enhance detection of long-range movement events by individual bears, increase initial capture and recapture rates, and improve precision of the parameter estimates. We recognize that all studies are constrained by limited resources, however, increasing field personnel would also allow a larger study area to be sampled or enable higher trap density.In conclusion, we estimated the density of black bears in 5 study areas within 3 mountains ranges of New Mexico. Our estimates will aid the NMDGF in setting sustainable harvest limits. Along with estimates of density, information on additional demographic rates (e.g., survival rates and reproduction) and the potential effects that climate change and future land use may have on the demography of black bears may also help inform management of black bears in New Mexico, and may be considered as future areas for research.
Feng, Tom; Howard, Lauren E; Vidal, Adriana C; Moreira, Daniel M; Castro-Santamaria, Ramiro; Andriole, Gerald L; Freedland, Stephen J
2017-02-01
To determine if cholesterol is a risk factor for the development of lower urinary tract symptoms in asymptomatic men. A post-hoc analysis of the Reduction by Dutasteride of Prostate Cancer Events (REDUCE) study was carried out in 2323 men with baseline International Prostate Symptom Score <8 and not taking benign prostatic hyperplasia or cholesterol medications. Cox proportion models were used to test the association between cholesterol, high-density lipoprotein, low-density lipoprotein and the cholesterol : high-density lipoprotein ratio with incident lower urinary tract symptoms, defined as first report of medical treatment, surgery or two reports of an International Prostate Symptom Score >14. A total of 253 men (10.9%) developed incident lower urinary tract symptoms. On crude analysis, higher high-density lipoprotein was associated with a decreased lower urinary tract symptoms risk (hazard ratio 0.89, P = 0.024), whereas total cholesterol and low-density lipoprotein showed no association. After multivariable adjustment, the association between high-density lipoprotein and incident lower urinary tract symptoms remained significant (hazard ratio 0.89, P = 0.044), whereas no association was observed for low-density lipoprotein (P = 0.611). There was a trend for higher cholesterol to be linked with higher lower urinary tract symptoms risk, though this was not statistically significant (hazard ratio 1.04, P = 0.054). A higher cholesterol : high-density lipoprotein ratio was associated with increased lower urinary tract symptoms risk on crude (hazard ratio 1.11, P = 0.016) and adjusted models (hazard ratio 1.12, P = 0.012). Among asymptomatic men participating in the REDUCE study, higher cholesterol was associated with increased incident lower urinary tract symptoms risk, though the association was not significant. A higher cholesterol : high-density lipoprotein ratio was associated with increased incident lower urinary tract symptoms, whereas higher high-density lipoprotein was protective. These findings suggest dyslipidemia might play a role in lower urinary tract symptoms progression. © 2016 The Japanese Urological Association.
NASA Astrophysics Data System (ADS)
Taasti, Vicki T.; Michalak, Gregory J.; Hansen, David C.; Deisher, Amanda J.; Kruse, Jon J.; Krauss, Bernhard; Muren, Ludvig P.; Petersen, Jørgen B. B.; McCollough, Cynthia H.
2018-01-01
Dual energy CT (DECT) has been shown, in theoretical and phantom studies, to improve the stopping power ratio (SPR) determination used for proton treatment planning compared to the use of single energy CT (SECT). However, it has not been shown that this also extends to organic tissues. The purpose of this study was therefore to investigate the accuracy of SPR estimation for fresh pork and beef tissue samples used as surrogates of human tissues. The reference SPRs for fourteen tissue samples, which included fat, muscle and femur bone, were measured using proton pencil beams. The tissue samples were subsequently CT scanned using four different scanners with different dual energy acquisition modes, giving in total six DECT-based SPR estimations for each sample. The SPR was estimated using a proprietary algorithm (syngo.via DE Rho/Z Maps, Siemens Healthcare, Forchheim, Germany) for extracting the electron density and the effective atomic number. SECT images were also acquired and SECT-based SPR estimations were performed using a clinical Hounsfield look-up table. The mean and standard deviation of the SPR over large volume-of-interests were calculated. For the six different DECT acquisition methods, the root-mean-square errors (RMSEs) for the SPR estimates over all tissue samples were between 0.9% and 1.5%. For the SECT-based SPR estimation the RMSE was 2.8%. For one DECT acquisition method, a positive bias was seen in the SPR estimates, having a mean error of 1.3%. The largest errors were found in the very dense cortical bone from a beef femur. This study confirms the advantages of DECT-based SPR estimation although good results were also obtained using SECT for most tissues.
Yin, Songcheng; Huang, Jinyu; Li, Zhan; Zhang, Junyan; Luo, Jiazi; Lu, Chunyang; Xu, Hao; Xu, Huimian
2017-01-01
Comprehensive studies have investigated the prognostic and clinicopathological value of tumor-associated macrophages (TAMs) in gastric cancer patients, yet results remain controversial. Therefore, we performed a meta-analysis to clarify this issue. PubMed, Embase, and the Cochrane Library databases were searched to identify eligible studies. We extracted hazard ratios (HRs) and odds ratios (ORs) with their corresponding 95% confidence intervals (95% CIs) to estimate the effect sizes. In addition, subgroup analysis and sensitivity analysis were also conducted. A total of 19 studies involving 2242 patients were included. High generalised TAMs density was significantly associated with poor overall survival (OS) (HR 1.49, 95% CI 1.15-1.95). Subgroup analysis revealed that CD68+ TAMs had no significant effect on OS (HR 1.38, 95% CI 1.00-1.91). High M1 TAMs density was correlated with better OS (HR 0.45, 95% CI 0.32-0.65). By contrast, high density of M2 TAMs was correlated with a poor prognosis for OS (HR 1.48, 95% CI 1.25-1.75). Furthermore, high M2 TAMs density was correlated with larger tumor size, diffuse Lauren type, poor histologic differentiation, deeper tumor invasion, lymph node metastasis, and advanced TNM stage. Overall, this meta-analysis reveal that although CD68+ TAMs infiltration has the neutral prognostic effects on OS, the M1/M2 polarization of TAMs are predicative factor of prognosis in gastric cancer patients.
Sezai, Akira; Soma, Masayoshi; Nakata, Kin-ichi; Osaka, Shunji; Ishii, Yusuke; Yaoita, Hiroko; Hata, Hiroaki; Shiono, Motomi
2015-10-01
The NU-FLASH trial demonstrated that febuxostat was more effective for hyperuricemia than allopurinol. This time, we compared these medications in patients with chronic kidney disease (CKD) from the NU-FLASH trial. In the NU-FLASH trial, 141 cardiac surgery patients with hyperuricemia were randomized to a febuxostat group or an allopurinol group. This study analyzed 109 patients with an estimated glomerular filtration rate (eGFR) ≤60 mL/min/1.73 m(2), and also analyzed 87 patients with stage 3 CKD. The primary endpoint was the serum uric acid level. Secondary endpoints included serum creatinine, urinary albumin, cystatin-C, oxidized low-density lipoprotein, eicosapentaenoic acid/arachidonic acid ratio, total cholesterol, triglycerides, low-density lipoprotein, high-density lipoprotein, and high-sensitivity C-reactive protein. Among patients with an eGFR≤60 mL/min/1.73 m(2), uric acid levels were significantly lower in the febuxostat group than the allopurinol group from 1 month of treatment onward. The serum creatinine, urinary albumin, cystatin-C, oxidized low-density lipoprotein, eicosapentaenoic acid/arachidonic acid ratio, and high-sensitivity C-reactive protein were also significantly lower in the febuxostat group. Similar results were obtained in the patients with stage 3 CKD. In cardiac surgery patients with renal dysfunction, febuxostat reduced uric acid earlier than allopurinol, had a stronger renoprotective effect than allopurinol, and also had superior antioxidant and anti-inflammatory effects. Copyright © 2015. Published by Elsevier Ltd.
The abundance of CO in diffuse interstellar clouds - An ultraviolet survey
NASA Technical Reports Server (NTRS)
Federman, S. R.; Glassgold, A. E.; Jenkins, E. B.; Shaya, E. J.
1980-01-01
CO was detected in 17 directions and its upper limits were estimated in 21 directions by a UV survey carried out with the Copernicus satellite in the C-X 1088 A and E-X 1076 A lines toward 48 bright stars. The CO column densities range from 10 to the 12th to 10 to the 17th/sq cm and correlate with C I and H2. The tendency of the C I/CO ratio to be about 10 follows the ratio of particular atomic and molecular cross-sections and the physical parameters of interstellar clouds. Finally, the connection between UV observations in diffuse clouds and radio observations of (C-13)O in dark clouds is discussed.
NASA Technical Reports Server (NTRS)
Gillespie, A. R.; Criss, R. E.
1983-01-01
Reflectance ratios from laboratory spectra and airborne multispectral images are found to be strongly correlated with delta O-18 values of granite rocks in the Idaho batholith. The correlation is largely a result of interactions between hot water and rock, which lowered the delta O-18 values of the rocks and produced secondary hydrous material. Maps of the ratio of reflectivities at 2.3 and 1.6 microns should delineate fossil hydrothermal systems and provide estimates of alteration intensity. However, hydrous minerals produced during deuteric alteration or weathering cannot be unambiguously distinguished in remotely sensed images from the products of propylitic alteration without the use of narrow-band scanners. The reflectivity at 1.6 micron is strongly correlated with rock density and may be useful in distinguishing rock types in granitic terranes.
NASA Astrophysics Data System (ADS)
Li, Yufeng; Wang, Shuai; Su, Xilin; Tang, Weihan; Li, Qiang; Guo, Maofeng; Zhang, Ye; Zhang, Minyan; Yun, Feng; Hou, Xun
2017-11-01
Ag coated microgroove with extreme large aspect-ratio of 500:1 was fabricated on p-GaN capping layer to investigate the coupling behavior between quantum wells and surface plasmon in highly spatial resolution. Significant photoluminescence enhancement was observed when the distance between Ag film and QWs was reduced from 220 nm to about 20 nm. A maximum enhancement ratio of 18-fold was achieved at the groove bottom where the surface plasmonic coupling was considered the strongest. Such enhancement ratio was found highly affected by the excitation power density. It also shows high correlation to the internal quantum efficiency as a function of coupling effect and a maximum Purcell Factor of 1.75 was estimated at maximum coupling effect, which matches number calculated independently from the time-resolved photoluminescence measurement. With such Purcell Factor, the efficiency was greatly enhanced and the droop was significantly suppressed.
Display characterization by eye: contrast ratio and discrimination throughout the grayscale
NASA Astrophysics Data System (ADS)
Gille, Jennifer; Arend, Larry; Larimer, James O.
2004-06-01
We have measured the ability of observers to estimate the contrast ratio (maximum white luminance / minimum black or gray) of various displays and to assess luminous discrimination over the tonescale of the display. This was done using only the computer itself and easily-distributed devices such as neutral density filters. The ultimate goal of this work is to see how much of the characterization of a display can be performed by the ordinary user in situ, in a manner that takes advantage of the unique abilities of the human visual system and measures visually important aspects of the display. We discuss the relationship among contrast ratio, tone scale, display transfer function and room lighting. These results may contribute to the development of applications that allow optimization of displays for the situated viewer / display system without instrumentation and without indirect inferences from laboratory to workplace.
Common genetic variation and novel loci associated with volumetric mammographic density.
Brand, Judith S; Humphreys, Keith; Li, Jingmei; Karlsson, Robert; Hall, Per; Czene, Kamila
2018-04-17
Mammographic density (MD) is a strong and heritable intermediate phenotype of breast cancer, but much of its genetic variation remains unexplained. We conducted a genetic association study of volumetric MD in a Swedish mammography screening cohort (n = 9498) to identify novel MD loci. Associations with volumetric MD phenotypes (percent dense volume, absolute dense volume, and absolute nondense volume) were estimated using linear regression adjusting for age, body mass index, menopausal status, and six principal components. We also estimated the proportion of MD variance explained by additive contributions from single-nucleotide polymorphisms (SNP-based heritability [h 2 SNP ]) in 4948 participants of the cohort. In total, three novel MD loci were identified (at P < 5 × 10 - 8 ): one for percent dense volume (HABP2) and two for the absolute dense volume (INHBB, LINC01483). INHBB is an established locus for ER-negative breast cancer, and HABP2 and LINC01483 represent putative new breast cancer susceptibility loci, because both loci were associated with breast cancer in available meta-analysis data including 122,977 breast cancer cases and 105,974 control subjects (P < 0.05). h 2 SNP (SE) estimates for percent dense, absolute dense, and nondense volume were 0.29 (0.07), 0.31 (0.07), and 0.25 (0.07), respectively. Corresponding ratios of h 2 SNP to previously observed narrow-sense h 2 estimates in the same cohort were 0.46, 0.72, and 0.41, respectively. These findings provide new insights into the genetic basis of MD and biological mechanisms linking MD to breast cancer risk. Apart from identifying three novel loci, we demonstrate that at least 25% of the MD variance is explained by common genetic variation with h 2 SNP /h 2 ratios varying between dense and nondense MD components.
Are Emissions of Restricted Halocarbons in the USA and Canada Still Globally Significant?
NASA Astrophysics Data System (ADS)
Hurst, D. F.; Romashkin, P. A.; Hall, B. D.; Elkins, J. W.; Lin, J. C.; Gerbig, C.; Daube, B. C.; Wofsy, S. C.
2004-12-01
The global manufacture of halocarbons regulated by the Montreal Protocol has dropped substantially in response to the January 1, 1996, production phase-out deadline (1994 for halons) for developed (Article 5) countries like the United States and Canada. Contemporary emissions of these ozone-depleting substances (ODS) emanate from ongoing production in developing countries and releases of banked halocarbons world-wide. ODS emissions in developing nations can be appraised from reported production figures, but not so for developed nations where recent manufacture is negligible. Emissions in the United States and Canada are increasingly difficult to estimate because of limited information about bank sizes and release rates in the post-production era. In addition, regional- or national-scale emission estimates should no longer be derived wholly from localized measurements because of the potentially patchy spatial distributions of modern emissions. We estimate ODS emissions in the USA and Canada from >1000 simultaneous, in situ measurements each of CO and six restricted halocarbons (CFC-11, CFC-12, CFC-113, methyl chloroform, carbon tetrachloride, and halon-1211) in and above the planetary boundary layer during the 2003 CO2 Budget and Regional Airborne - North America (COBRA-NA 2003) study. The data obtained during 87 flight hours are geographically extensive (>30,000 km) including two 11,000 km flight circuits across both countries. More than 50 pollution "events" with statistically significant ODS:CO emission ratios were sampled, and for each event we have determined a flux footprint using the Stochastic Time-Inverted Lagrangian Transport (STILT) model. The model also calculates footprint-weighted average population densities and CO fluxes which we convert to footprint-weighted average ODS fluxes using the measured ODS:CO emission ratios. Statistically robust relationships between footprint-averaged ODS fluxes and population densities for several ODS indicate that population-based extrapolations of these relationships to national levels are warranted. Emission estimates for the USA and Canada in 2003 will be presented and compared to the magnitudes of global emissions.
Polystyrene foam products equation of state as a function of porosity and fill gas
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mulford, Roberta N; Swift, Damian C
2009-01-01
An accurate EOS for polystyrene foam is necessary for analysis of numerous experiments in shock compression, inertial confinement fusion, and astrophysics. Plastic to gas ratios vary between various samples of foam, according to the density and cell-size of the foam. A matrix of compositions has been investigated, allowing prediction of foam response as a function of the plastic-to-air ratio. The EOS code CHEETAH allows participation of the air in the decomposition reaction of the foam. Differences between air-filled, Ar-blown, and CO{sub 2}-blown foams are investigated, to estimate the importance of allowing air to react with products of polystyrene decomposition. O{submore » 2}-blown foams are included in some comparisons, to amplify any consequences of reaction with oxygen in air. He-blown foams are included in some comparisons, to provide an extremum of density. Product pressures are slightly higher for oxygen-containing fill gases than for non-oxygen-containing fill gases. Examination of product species indicates that CO{sub 2} decomposes at high temperatures.« less
High-frequency electrostatic waves in the magnetosphere.
NASA Technical Reports Server (NTRS)
Young, T. S. T.
1973-01-01
High-frequency electrostatic microinstabilities in magnetospheric plasmas are considered in detail. Rather special plasma parameters are found to be required to match the theoretical wave spectrum with satellite observations in the magnetosphere. In particular, it is necessary to have a cold and a warm species of electrons such that (1) the warm component has an anomalous velocity distribution function that is nonmonotonic in the perpendicular component of velocity and is the source of free energy driving the instabilities, (2) the density ratio of the cold component to the hot component is greater than about 0.01, and (3) the temperature ratio of the two components for cases of high particle density is no less than 0.1. These requirements and the corresponding instability criteria are satisfied only in the trapping region; this is also the region in which the waves are most frequently observed. The range of unstable wavelengths and an estimate of the diffusion coefficient are also obtained. The wave are found to induce strong diffusion in velocity space for low-energy electrons during periods of moderate wave amplitude.
NASA Technical Reports Server (NTRS)
Browell, Edward V.; Ismail, Syed; Grossmann, Benoist E.
1991-01-01
Recently measured properties of water vapor (H2O) absorption lines have been used in calculations to evalute the temperature sensitivity of differential absorption lidar (Dial) H2O measurements. This paper estimates the temperature sensitivity of H2O lines in the 717-733-nm region for both H2O mixing ratio and number density measurements, and discusses the influence of the H2O line ground state energies E-double-prime, the H2O absorption linewidths, the linewidth temperature dependence parameter, and the atmospheric temperature and pressure variations with altitude and location on the temperature sensitivity calculations. Line parameters and temperature sensitivity calculations for 67 H2O lines in the 720-nm band are given which can be directly used in field experiments. Water vapor lines with E-double-prime values in the 100-300/cm range were found to be optimum for Dial measurements of H2O number densities, while E-double-prime values in the 250-500/cm range were found to be optimum for H2O mixing ratio measurements.
MAVEN/IUVS Apoapse Observations of the Martian FUV Dayglow
NASA Astrophysics Data System (ADS)
Correira, J.; Evans, J. S.; Stevens, M. H.; Schneider, N. M.; Stewart, I. F.; Deighan, J.; Jain, S.; Chaffin, M.; Crismani, M. M. J.; McClintock, B.; Holsclaw, G.; Lefèvre, F.; Lo, D.; Stiepen, A.; Clarke, J. T.; Mahaffy, P. R.; Bougher, S. W.; Bell, J. M.; Jakosky, B. M.
2015-12-01
We present FUV data (115 - 190 nm) from MAVEN/IUVS apoapse mode observations for the Oct 2014 through Feb 2015 time period. During apoapse mode the highly elliptical orbit of MAVEN allows for up to four apoapse disk images by IUVS per day. Maps of FUV feature intensities and intensity ratios as well as derived CO/CO2 and O/CO2 column density ratios will be shown. Column density ratios are derived from lookup tables created using the Atmospheric Ultraviolet Radiance Integrated Code [Strickland et al., 1999] in conjunction with observed intensity ratios. Column density ratios provide a measure of composition changes in the Martian atmosphere. Due to MAVEN's orbital geometry the observations from this time period focus on the southern hemisphere. The broad view provided by apoapse observations allows for the investigation of spatial and temporal variations (both long term and local time) of the atmospheric composition (via the column density ratios). IUVS FUV intensities and derived column density ratios will also be compared with model results from Mars Global Ionosphere/Thermosphere Model (MGITM) and the Mars Climate Database (MCD).
Li, Yong-Xiang; Chen, Shu-Sen; Ren, Fu-de
2015-09-01
Molecular dynamics (MD) methods were employed to study the binding energies and mechanical properties of selected crystal planes of 1,3,5,7-tetranitro-1,3,5,7-tetrazacyclooctane (HMX)/nitroguanidine (NQ) cocrystals at different molecular molar ratios. The densities and detonation velocities of the cocrystals at different molar ratios were estimated. The intermolecular interaction and bond dissociation energy (BDE) of the N-NO2 bond in the HMX:NQ (1:1) complex were calculated using the B3LYP, MP2(full) and M06-2X methods with the 6-311++G(d,p) and 6-311++G(2df,2p) basis sets. The results indicated that the HMX/NQ cocrystal prefers cocrystalizing in a 1:1 molar ratio, and the cocrystallization is dominated by the (0 2 0) and (1 0 0) facets. The K, G, and E values of the ratio of 1:1 are smaller than those of the other ratios, and the 1:1 cocrystal has the best ductility. The N-NO2 bond becomes stronger upon the formation of the intermolecular H-bonding interaction and the sensitivity of HMX decreases in the cocrystal. This sensitivity change in the HMX/NQ cocrystal originates not only from the formation of the intermolecular interaction but also from the increment of the BDE of N-NO2 bond in comparison with isolated HMX. The HMX/NQ (1:1) cocrystal exhibits good detonation performance. Reduced density gradient (RDG) reveals the nature of cocrystallization. Analysis of the surface electrostatic potential further confirmed that the sensitivity decreases in complex (or cocrystal) in comparison with that in isolated HMX.
Jeong, So-Yeon; Cho, Kyung-Suk; Kim, Tae Gwan
2014-12-01
Methanotrophs are a biological resource as they degrade the greenhouse gas methane and various organic contaminants. Several non-methanotrophic bacteria have shown potential to stimulate growth of methanotrophs when co-cultured, and however, the ecology is largely unknown. Effects of Sphingopyxis sp. NM1 on methanotrophic activity and growth of Methylocystis sp. M6 were investigated in this study. M6 and NM1 were mixed at mixing ratios of 9:1, 1:1, and 1:9 (v/v), using cell suspensions of 7.5 × 10 11 cells L -1 . Methane oxidation of M6 was monitored, and M6 population was estimated using fluorescence in situ hybridization (FISH). Real-time PCR was applied to quantify rRNA and expression of transcripts for three enzymes involved in the methane oxidation pathway. NM1 had a positive effect on M6 growth at a 1:9 ratio ( p < 0.05), while no significant effects were observed at 9:1 and 1:1 ratios. NM1 enhanced the methane oxidation 1.34-fold at the 1:9 ratio. NM1 increased the population density and relative rRNA level of M6 by 2.4-fold and 5.4-fold at the 1:9 ratio, indicating that NM1 stimulated the population growth of M6. NM1 increased the relative transcriptional expression of all mRNA targets only at the 1:9 ratio. These results demonstrated that NM1 enhanced the methanotrophic activity and growth of M6, which was dependent on the proportion of NM1 present in the culture. This stimulation can be used as management and enhancement strategies for methanotrophic biotechnological processes.
Dusty Gas Accretion onto Massive Black Holes and Infrared Diagnosis of the Eddington Ratio
NASA Astrophysics Data System (ADS)
Yajima, Hidenobu; Ricotti, Massimo; Park, KwangHo; Sugimura, Kazuyuki
2017-09-01
Evidence for dust around supermassive black holes (SMBHs) in the early universe is strongly suggested by recent observations. However, the accretion mechanism of SMBHs in dusty gas is not well understood yet. We investigate the growth of intermediate-mass black holes (IMBHs) of ˜ {10}4{--}{10}6 {M}⊙ in dusty clouds by using one-dimensional radiative-hydrodynamics simulations. We find that the accretion of dusty gas onto IMBHs proceeds gently with small fluctuations of the accretion rate, whereas that of pristine gas causes more violent periodic bursts. At dust-to-gas mass ratios similar to the solar neighborhood, the time-averaged luminosity becomes smaller than that for primordial gas by one order of magnitude and the time-averaged Eddington ratio ranges from ˜ {10}-4 to ˜ {10}-2 in clouds with initial gas densities of {n}{{H}}=10{--}1000 {{cm}}-3. Our calculations show that the effect of dust opacity alone is secondary compared to the radiation pressure on dust in regulating the BH growth. We also derive spectral energy distributions at IR bands by calculating dust thermal emission and show that the flux ratio between λ ≲ 20 μ {{m}} and ≳ 100 μ {{m}} is closely related to the Eddington ratio. Thermal emission from hot dust near the BH dominates only during the phase of high accretion, producing higher flux density at ≲ 20 μ {{m}}. Therefore, we suggest that a combination of mid-IR observations by the James Webb Space Telescope and far-IR observations by ALMA or Spitzer can be used to estimate the Eddington ratio of massive BHs. We also extend our simple modeling to SMBHs of {10}8{--}{10}9 {M}⊙ and show that ALMA can detect SMBHs of ˜ {10}9 {M}⊙ at z≳ 5.
Dependence of the dayside magnetopause reconnection rate on local conditions
NASA Astrophysics Data System (ADS)
Wang, Shan; Kistler, Lynn M.; Mouikis, Christopher G.; Petrinec, Steven M.
2015-08-01
We estimate the reconnection rates for eight dayside magnetopause reconnection events observed by the Cluster spacecraft and compare them with the predictions of the Cassak-Shay Formula (Rcs) Cassak and Shay (2007). The measured reconnection rate is determined by calculating the product of the inflow velocity and magnetic field in the magnetosheath inflow region. The predicted reconnection rate is calculated using the plasma parameters on both sides of the current layer, including the contributions of magnetosheath H+, magnetospheric hot H+ and O+, and magnetospheric cold ions. The measured reconnection rates show clear correlations with Rcs with an aspect ratio of 0.07. The O+ and cold ions can contribute up to ~30% of the mass density, which may reduce the reconnection rate for individual events. However, the variation of the reconnection rate is dominated by the variation of the magnetosheath parameters. In addition, we calculated the predicted reconnection rate using only magnetosheath parameters (Rsh). The correlation of the measured rate with Rsh was better than the correlation with Rcs, with an aspect ratio of 0.09. This might indicate deviations from the Cassak-Shay theory caused by the asymmetric reconnection structure and kinetic effects of different inflow populations. A better aspect ratio is expected to be between the ones determined using Rcs and Rsh. The aspect ratio does not show a clear dependence on the O+ concentration, likely because the O+ contribution is too small in these events. The aspect ratio also does not show a clear correlation with density asymmetry or guide field.
Resistive switching near electrode interfaces: Estimations by a current model
NASA Astrophysics Data System (ADS)
Schroeder, Herbert; Zurhelle, Alexander; Stemmer, Stefanie; Marchewka, Astrid; Waser, Rainer
2013-02-01
The growing resistive switching database is accompanied by many detailed mechanisms which often are pure hypotheses. Some of these suggested models can be verified by checking their predictions with the benchmarks of future memory cells. The valence change memory model assumes that the different resistances in ON and OFF states are made by changing the defect density profiles in a sheet near one working electrode during switching. The resulting different READ current densities in ON and OFF states were calculated by using an appropriate simulation model with variation of several important defect and material parameters of the metal/insulator (oxide)/metal thin film stack such as defect density and its profile change in density and thickness, height of the interface barrier, dielectric permittivity, applied voltage. The results were compared to the benchmarks and some memory windows of the varied parameters can be defined: The required ON state READ current density of 105 A/cm2 can only be achieved for barriers smaller than 0.7 eV and defect densities larger than 3 × 1020 cm-3. The required current ratio between ON and OFF states of at least 10 requests defect density reduction of approximately an order of magnitude in a sheet of several nanometers near the working electrode.
Ant-inspired density estimation via random walks.
Musco, Cameron; Su, Hsin-Hao; Lynch, Nancy A
2017-10-03
Many ant species use distributed population density estimation in applications ranging from quorum sensing, to task allocation, to appraisal of enemy colony strength. It has been shown that ants estimate local population density by tracking encounter rates: The higher the density, the more often the ants bump into each other. We study distributed density estimation from a theoretical perspective. We prove that a group of anonymous agents randomly walking on a grid are able to estimate their density within a small multiplicative error in few steps by measuring their rates of encounter with other agents. Despite dependencies inherent in the fact that nearby agents may collide repeatedly (and, worse, cannot recognize when this happens), our bound nearly matches what would be required to estimate density by independently sampling grid locations. From a biological perspective, our work helps shed light on how ants and other social insects can obtain relatively accurate density estimates via encounter rates. From a technical perspective, our analysis provides tools for understanding complex dependencies in the collision probabilities of multiple random walks. We bound the strength of these dependencies using local mixing properties of the underlying graph. Our results extend beyond the grid to more general graphs, and we discuss applications to size estimation for social networks, density estimation for robot swarms, and random walk-based sampling for sensor networks.
Simulating the dust content of galaxies: successes and failures
NASA Astrophysics Data System (ADS)
McKinnon, Ryan; Torrey, Paul; Vogelsberger, Mark; Hayward, Christopher C.; Marinacci, Federico
2017-06-01
We present full-volume cosmological simulations, using the moving-mesh code arepo to study the coevolution of dust and galaxies. We extend the dust model in arepo to include thermal sputtering of grains and investigate the evolution of the dust mass function, the cosmic distribution of dust beyond the interstellar medium and the dependence of dust-to-stellar mass ratio on galactic properties. The simulated dust mass function is well described by a Schechter fit and lies closest to observations at z = 0. The radial scaling of projected dust surface density out to distances of 10 Mpc around galaxies with magnitudes 17 < I < 21 is similar to that seen in Sloan Digital Sky Survey data, albeit with a lower normalization. At z = 0, the predicted dust density of Ωdust ≈ 1.3 × 10-6 lies in the range of Ωdust values seen in low-redshift observations. We find that the dust-to-stellar mass ratio anticorrelates with stellar mass for galaxies living along the star formation main sequence. Moreover, we estimate the 850 μm number density functions for simulated galaxies and analyse the relation between dust-to-stellar flux and mass ratios at z = 0. At high redshift, our model fails to produce enough dust-rich galaxies, and this tension is not alleviated by adopting a top-heavy initial mass function. We do not capture a decline in Ωdust from z = 2 to 0, which suggests that dust production mechanisms more strongly dependent on star formation may help to produce the observed number of dusty galaxies near the peak of cosmic star formation.
APPROXIMATION AND ESTIMATION OF s-CONCAVE DENSITIES VIA RÉNYI DIVERGENCES.
Han, Qiyang; Wellner, Jon A
2016-01-01
In this paper, we study the approximation and estimation of s -concave densities via Rényi divergence. We first show that the approximation of a probability measure Q by an s -concave density exists and is unique via the procedure of minimizing a divergence functional proposed by [ Ann. Statist. 38 (2010) 2998-3027] if and only if Q admits full-dimensional support and a first moment. We also show continuity of the divergence functional in Q : if Q n → Q in the Wasserstein metric, then the projected densities converge in weighted L 1 metrics and uniformly on closed subsets of the continuity set of the limit. Moreover, directional derivatives of the projected densities also enjoy local uniform convergence. This contains both on-the-model and off-the-model situations, and entails strong consistency of the divergence estimator of an s -concave density under mild conditions. One interesting and important feature for the Rényi divergence estimator of an s -concave density is that the estimator is intrinsically related with the estimation of log-concave densities via maximum likelihood methods. In fact, we show that for d = 1 at least, the Rényi divergence estimators for s -concave densities converge to the maximum likelihood estimator of a log-concave density as s ↗ 0. The Rényi divergence estimator shares similar characterizations as the MLE for log-concave distributions, which allows us to develop pointwise asymptotic distribution theory assuming that the underlying density is s -concave.
APPROXIMATION AND ESTIMATION OF s-CONCAVE DENSITIES VIA RÉNYI DIVERGENCES
Han, Qiyang; Wellner, Jon A.
2017-01-01
In this paper, we study the approximation and estimation of s-concave densities via Rényi divergence. We first show that the approximation of a probability measure Q by an s-concave density exists and is unique via the procedure of minimizing a divergence functional proposed by [Ann. Statist. 38 (2010) 2998–3027] if and only if Q admits full-dimensional support and a first moment. We also show continuity of the divergence functional in Q: if Qn → Q in the Wasserstein metric, then the projected densities converge in weighted L1 metrics and uniformly on closed subsets of the continuity set of the limit. Moreover, directional derivatives of the projected densities also enjoy local uniform convergence. This contains both on-the-model and off-the-model situations, and entails strong consistency of the divergence estimator of an s-concave density under mild conditions. One interesting and important feature for the Rényi divergence estimator of an s-concave density is that the estimator is intrinsically related with the estimation of log-concave densities via maximum likelihood methods. In fact, we show that for d = 1 at least, the Rényi divergence estimators for s-concave densities converge to the maximum likelihood estimator of a log-concave density as s ↗ 0. The Rényi divergence estimator shares similar characterizations as the MLE for log-concave distributions, which allows us to develop pointwise asymptotic distribution theory assuming that the underlying density is s-concave. PMID:28966410
A study of the physics and chemistry of TMC-1
NASA Technical Reports Server (NTRS)
Pratap, P.; Dickens, J. E.; Snell, R. L.; Miralles, M. P.; Bergin, E. A.; Irvine, W. M.; Schloerb, F. P.
1997-01-01
We present a comprehensive study of the physical and chemical conditions along the TMC-1 ridge. Temperatures were estimated from observations of CH3CCH, NH3, and CO. Densities were obtained from a multitransition study of HC3N. The values of the density and temperature allow column densities for 13 molecular species to be estimated from statistical equilibrium calculations, using observations of rarer isotopomers where possible, to minimize opacity effects. The most striking abundance variations relative to HCO+ along the ridge were seen for HC3N, CH3CCH, and SO, while smaller variations were seen in CS, C2H, and HCN. On the other hand, the NH3, HNC, and N2H+ abundances relative to HCO+ were determined to be constant, indicating that the so-called NH3 peak in TMC-1 is probably a peak in the ammonia column density rather than a relative abundance peak. In contrast, the well-studied cyanopolyyne peak is most likely due to an enhancement in the abundance of long-chain carbon species. Comparisons of the derived abundances to the results of time-dependent chemical models show good overall agreement for chemical timescales around 10(5) yr. We find that the observed abundance gradients can be explained either by a small variation in the chemical timescale from 1.2 x 10(5) to 1.8 x 10(5) yr or by a factor of 2 change in the density along the ridge. Alternatively, a variation in the C/O ratio from 0.4 to 0.5 along the ridge produces an abundance gradient similar to that observed.
NASA Astrophysics Data System (ADS)
Yu, Zhaosheng; Lin, Zhaowu; Shao, Xueming; Wang, Lian-Ping
2017-09-01
A parallel direct-forcing fictitious domain method is employed to perform fully resolved numerical simulations of turbulent channel flow laden with finite-size particles. The effects of the particle-fluid density ratio on the turbulence modulation in the channel flow are investigated at the friction Reynolds number of 180, the particle volume fraction of 0.84 % , and the particle-fluid density ratio ranging from 1 to 104.2. The results show that the variation of the flow drag with the particle-fluid density ratio is not monotonic, with a larger flow drag for the density ratio of 10.42, compared to those of unity and 104.2. A significant drag reduction by the particles is observed for large particle-fluid density ratios during the transient stage, but not at the statistically stationary stage. The intensity of particle velocity fluctuations generally decreases with increasing particle inertia, except that the particle streamwise root-mean-square velocity and streamwise-transverse velocity correlation in the near-wall region are largest at the density ratio of the order of 10. The averaged momentum equations are derived with the spatial averaging theorem and are used to analyze the mechanisms for the effects of the particles on the flow drag. The results indicate that the drag-reduction effect due to the decrease in the fluid Reynolds shear stress is counteracted by the drag-enhancement effect due to the increase in the total particle stress or the interphase drag force for the large particle-inertia case. The sum of the total Reynolds stress and particle inner stress contributions to the flow drag is largest at the density ratio of the order of 10, which is the reason for the largest flow drag at this density ratio. The interphase drag force obtained from the averaged momentum equation (the balance theory) is significantly smaller than (but agrees qualitatively with) that from the empirical drag formula based on the phase-averaged slip velocity for large density ratios. For the neutrally buoyant case, the balance theory predicts a positive interphase force on the particles arising from the negative gradient of the particle inner stress, which cannot be predicted by the drag formula based on the phase-averaged slip velocity. In addition, our results show that both particle collision and particle-turbulence interaction play roles in the formation of the inhomogeneous distribution of the particles at the density ratio of the order of 10.
Yu, Zhaosheng; Lin, Zhaowu; Shao, Xueming; Wang, Lian-Ping
2017-09-01
A parallel direct-forcing fictitious domain method is employed to perform fully resolved numerical simulations of turbulent channel flow laden with finite-size particles. The effects of the particle-fluid density ratio on the turbulence modulation in the channel flow are investigated at the friction Reynolds number of 180, the particle volume fraction of 0.84%, and the particle-fluid density ratio ranging from 1 to 104.2. The results show that the variation of the flow drag with the particle-fluid density ratio is not monotonic, with a larger flow drag for the density ratio of 10.42, compared to those of unity and 104.2. A significant drag reduction by the particles is observed for large particle-fluid density ratios during the transient stage, but not at the statistically stationary stage. The intensity of particle velocity fluctuations generally decreases with increasing particle inertia, except that the particle streamwise root-mean-square velocity and streamwise-transverse velocity correlation in the near-wall region are largest at the density ratio of the order of 10. The averaged momentum equations are derived with the spatial averaging theorem and are used to analyze the mechanisms for the effects of the particles on the flow drag. The results indicate that the drag-reduction effect due to the decrease in the fluid Reynolds shear stress is counteracted by the drag-enhancement effect due to the increase in the total particle stress or the interphase drag force for the large particle-inertia case. The sum of the total Reynolds stress and particle inner stress contributions to the flow drag is largest at the density ratio of the order of 10, which is the reason for the largest flow drag at this density ratio. The interphase drag force obtained from the averaged momentum equation (the balance theory) is significantly smaller than (but agrees qualitatively with) that from the empirical drag formula based on the phase-averaged slip velocity for large density ratios. For the neutrally buoyant case, the balance theory predicts a positive interphase force on the particles arising from the negative gradient of the particle inner stress, which cannot be predicted by the drag formula based on the phase-averaged slip velocity. In addition, our results show that both particle collision and particle-turbulence interaction play roles in the formation of the inhomogeneous distribution of the particles at the density ratio of the order of 10.
Yang, Yu-Jiao; Wang, Shuai; Zhang, Biao; Shen, Hong-Bin
2018-06-25
As a relatively new technology to solve the three-dimensional (3D) structure of a protein or protein complex, single-particle reconstruction (SPR) of cryogenic electron microscopy (cryo-EM) images shows much superiority and is in a rapidly developing stage. Resolution measurement in SPR, which evaluates the quality of a reconstructed 3D density map, plays a critical role in promoting methodology development of SPR and structural biology. Because there is no benchmark map in the generation of a new structure, how to realize the resolution estimation of a new map is still an open problem. Existing approaches try to generate a hypothetical benchmark map by reconstructing two 3D models from two halves of the original 2D images for cross-reference, which may result in a premature estimation with a half-data model. In this paper, we report a new self-reference-based resolution estimation protocol, called SRes, that requires only a single reconstructed 3D map. The core idea of SRes is to perform a multiscale spectral analysis (MSSA) on the map through multiple size-variable masks segmenting the map. The MSSA-derived multiscale spectral signal-to-noise ratios (mSSNRs) reveal that their corresponding estimated resolutions will show a cliff jump phenomenon, indicating a significant change in the SSNR properties. The critical point on the cliff borderline is demonstrated to be the right estimator for the resolution of the map.
Developing population models with data from marked individuals
Hae Yeong Ryu,; Kevin T. Shoemaker,; Eva Kneip,; Anna Pidgeon,; Patricia Heglund,; Brooke Bateman,; Thogmartin, Wayne E.; Reşit Akçakaya,
2016-01-01
Population viability analysis (PVA) is a powerful tool for biodiversity assessments, but its use has been limited because of the requirements for fully specified population models such as demographic structure, density-dependence, environmental stochasticity, and specification of uncertainties. Developing a fully specified population model from commonly available data sources – notably, mark–recapture studies – remains complicated due to lack of practical methods for estimating fecundity, true survival (as opposed to apparent survival), natural temporal variability in both survival and fecundity, density-dependence in the demographic parameters, and uncertainty in model parameters. We present a general method that estimates all the key parameters required to specify a stochastic, matrix-based population model, constructed using a long-term mark–recapture dataset. Unlike standard mark–recapture analyses, our approach provides estimates of true survival rates and fecundities, their respective natural temporal variabilities, and density-dependence functions, making it possible to construct a population model for long-term projection of population dynamics. Furthermore, our method includes a formal quantification of parameter uncertainty for global (multivariate) sensitivity analysis. We apply this approach to 9 bird species and demonstrate the feasibility of using data from the Monitoring Avian Productivity and Survivorship (MAPS) program. Bias-correction factors for raw estimates of survival and fecundity derived from mark–recapture data (apparent survival and juvenile:adult ratio, respectively) were non-negligible, and corrected parameters were generally more biologically reasonable than their uncorrected counterparts. Our method allows the development of fully specified stochastic population models using a single, widely available data source, substantially reducing the barriers that have until now limited the widespread application of PVA. This method is expected to greatly enhance our understanding of the processes underlying population dynamics and our ability to analyze viability and project trends for species of conservation concern.
NASA Astrophysics Data System (ADS)
Grein, M.; Roth-Nebelsick, A.; Konrad, W.
2006-12-01
A mechanistic model (Konrad &Roth-Nebelsick a, in prep.) was applied for the reconstruction of atmospheric carbon dioxide using stomatal densities and photosynthesis parameters of extant and fossil Fagaceae. The model is based on an approach which couples diffusion and the biochemical process of photosynthesis. Atmospheric CO2 is calculated on the basis of stomatal diffusion and photosynthesis parameters of the considered taxa. The considered species include the castanoid Castanea sativa, two quercoids Quercus petraea and Quercus rhenana and an intermediate species Eotrigonobalanus furcinervis. In the case of Quercus petraea literature data were used. Stomatal data of Eotrigonobalanus furcinervis, Quercus rhenana and Castanea sativa were determined by the authors. Data of the extant Castanea sativa were collected by applying a peeling method and by counting of stomatal densities on the digitalized images of the peels. Additionally, isotope data of leaf samples of Castanea sativa were determined to estimate the ratio of intercellular to ambient carbon dioxide. The CO2 values calculated by the model (on the basis of stomatal data and measured or estimated biochemical parameters) are in good agreement with literature data, with the exception of the Late Eocene. The results thus demonstrate that the applied approach is principally suitable for reconstructing palaeoatmospheric CO2.
Keiter, David A.; Davis, Amy J.; Rhodes, Olin E.; ...
2017-08-25
Knowledge of population density is necessary for effective management and conservation of wildlife, yet rarely are estimators compared in their robustness to effects of ecological and observational processes, which can greatly influence accuracy and precision of density estimates. For this study, we simulate biological and observational processes using empirical data to assess effects of animal scale of movement, true population density, and probability of detection on common density estimators. We also apply common data collection and analytical techniques in the field and evaluate their ability to estimate density of a globally widespread species. We find that animal scale of movementmore » had the greatest impact on accuracy of estimators, although all estimators suffered reduced performance when detection probability was low, and we provide recommendations as to when each field and analytical technique is most appropriately employed. The large influence of scale of movement on estimator accuracy emphasizes the importance of effective post-hoc calculation of area sampled or use of methods that implicitly account for spatial variation. In particular, scale of movement impacted estimators substantially, such that area covered and spacing of detectors (e.g. cameras, traps, etc.) must reflect movement characteristics of the focal species to reduce bias in estimates of movement and thus density.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Keiter, David A.; Davis, Amy J.; Rhodes, Olin E.
Knowledge of population density is necessary for effective management and conservation of wildlife, yet rarely are estimators compared in their robustness to effects of ecological and observational processes, which can greatly influence accuracy and precision of density estimates. For this study, we simulate biological and observational processes using empirical data to assess effects of animal scale of movement, true population density, and probability of detection on common density estimators. We also apply common data collection and analytical techniques in the field and evaluate their ability to estimate density of a globally widespread species. We find that animal scale of movementmore » had the greatest impact on accuracy of estimators, although all estimators suffered reduced performance when detection probability was low, and we provide recommendations as to when each field and analytical technique is most appropriately employed. The large influence of scale of movement on estimator accuracy emphasizes the importance of effective post-hoc calculation of area sampled or use of methods that implicitly account for spatial variation. In particular, scale of movement impacted estimators substantially, such that area covered and spacing of detectors (e.g. cameras, traps, etc.) must reflect movement characteristics of the focal species to reduce bias in estimates of movement and thus density.« less
Characterization of forced response of density stratified reacting wake
NASA Astrophysics Data System (ADS)
Pawar, Samadhan A.; Sujith, Raman I.; Emerson, Benjamin; Lieuwen, Tim
2018-02-01
The hydrodynamic stability of a reacting wake depends primarily on the density ratio [i.e., ratio of unburnt gas density (ρu) to burnt gas density (ρb)] of the flow across the wake. The variation of the density ratio from high to low value, keeping ρ u / ρ b > 1 , transitions dynamical characteristics of the reacting wake from a linearly globally stable (or convectively unstable) to a globally unstable mode. In this paper, we propose a framework to analyze the effect of harmonic forcing on the deterministic and synchronization characteristics of reacting wakes. Using the recurrence quantification analysis of the forced wake response, we show that the deterministic behaviour of the reacting wake increases as the amplitude of forcing is increased. Furthermore, for different density ratios, we found that the synchronization of the top and bottom branches of the wake with the forcing signal is dependent on whether the mean frequency of the natural oscillations of the wake (fn) is lesser or greater than the frequency of external forcing (ff). We notice that the response of both branches (top and bottom) of the reacting wake to the external forcing is asymmetric and symmetric for the low and high density ratios, respectively. Furthermore, we characterize the phase-locking behaviour between the top and bottom branches of the wake for different values of density ratios. We observe that an increase in the density ratio results in a gradual decrease in the relative phase angle between the top and bottom branches of the wake, which leads to a change in the vortex shedding pattern from a sinuous (anti-phase) to a varicose (in-phase) mode of the oscillations.
On estimation of time-dependent attributable fraction from population-based case-control studies.
Zhao, Wei; Chen, Ying Qing; Hsu, Li
2017-09-01
Population attributable fraction (PAF) is widely used to quantify the disease burden associated with a modifiable exposure in a population. It has been extended to a time-varying measure that provides additional information on when and how the exposure's impact varies over time for cohort studies. However, there is no estimation procedure for PAF using data that are collected from population-based case-control studies, which, because of time and cost efficiency, are commonly used for studying genetic and environmental risk factors of disease incidences. In this article, we show that time-varying PAF is identifiable from a case-control study and develop a novel estimator of PAF. Our estimator combines odds ratio estimates from logistic regression models and density estimates of the risk factor distribution conditional on failure times in cases from a kernel smoother. The proposed estimator is shown to be consistent and asymptotically normal with asymptotic variance that can be estimated empirically from the data. Simulation studies demonstrate that the proposed estimator performs well in finite sample sizes. Finally, the method is illustrated by a population-based case-control study of colorectal cancer. © 2017, The International Biometric Society.
2015-09-30
1 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. Large Scale Density Estimation of Blue and Fin Whales ...Utilizing Sparse Array Data to Develop and Implement a New Method for Estimating Blue and Fin Whale Density Len Thomas & Danielle Harris Centre...to develop and implement a new method for estimating blue and fin whale density that is effective over large spatial scales and is designed to cope
NASA Astrophysics Data System (ADS)
Li, Zhijun; Feng, Maria Q.; Luo, Longxi; Feng, Dongming; Xu, Xiuli
2018-01-01
Uncertainty of modal parameters estimation appear in structural health monitoring (SHM) practice of civil engineering to quite some significant extent due to environmental influences and modeling errors. Reasonable methodologies are needed for processing the uncertainty. Bayesian inference can provide a promising and feasible identification solution for the purpose of SHM. However, there are relatively few researches on the application of Bayesian spectral method in the modal identification using SHM data sets. To extract modal parameters from large data sets collected by SHM system, the Bayesian spectral density algorithm was applied to address the uncertainty of mode extraction from output-only response of a long-span suspension bridge. The posterior most possible values of modal parameters and their uncertainties were estimated through Bayesian inference. A long-term variation and statistical analysis was performed using the sensor data sets collected from the SHM system of the suspension bridge over a one-year period. The t location-scale distribution was shown to be a better candidate function for frequencies of lower modes. On the other hand, the burr distribution provided the best fitting to the higher modes which are sensitive to the temperature. In addition, wind-induced variation of modal parameters was also investigated. It was observed that both the damping ratios and modal forces increased during the period of typhoon excitations. Meanwhile, the modal damping ratios exhibit significant correlation with the spectral intensities of the corresponding modal forces.
Charged aerodynamics of a Low Earth Orbit cylinder
NASA Astrophysics Data System (ADS)
Capon, C. J.; Brown, M.; Boyce, R. R.
2016-11-01
This work investigates the charged aerodynamic interaction of a Low Earth Orbiting (LEO) cylinder with the ionosphere. The ratio of charge to neutral drag force on a 2D LEO cylinder with diffusely reflecting cool walls is derived analytically and compared against self-consistent electrostatic Particle-in-Cell (PIC) simulations. Analytical calculations predict that neglecting charged drag in an O+ dominated LEO plasma with a neutral to ion number density ratio of 102 will cause a 10% over-prediction of O density based on body accelerations when body potential (ɸB) is ≤ -390 V. Above 900 km altitude in LEO, where H+ becomes the dominant ion species, analytical predictions suggest charge drag becomes equivalent to neutral drag for ɸB ≤ -0.75 V. Comparing analytical predictions against PIC simulations in the range of 0 < - ɸB < 50 V found that analytical charged drag was under-estimated for all body potentials; the degree of under-estimation increasing with ɸB. Based on the -50 V PIC simulations, our in-house 6 degree of freedom orbital propagator saw a reduction in the semi-major axis of a 10 kg satellite at 700 km of 6.9 m/day and 0.98 m/day at 900 km compared that caused purely by neutral drag - 0.67 m/day and 0.056 m/day respectively. Hence, this work provides initial evidence that charged aerodynamics may become significant compared to neutral aerodynamics for high voltage LEO bodies.
Effect of aging on the microstructure, hardness and chemical composition of dentin.
Montoya, C; Arango-Santander, S; Peláez-Vargas, A; Arola, D; Ossa, E A
2015-12-01
Understanding the effects of biological aging on human tissues has been a topic of extensive research. With the increase in healthy seniors and quality of life that topic is becoming increasingly important. In this investigation the effects of aging on the microstructure, chemical composition and hardness of human coronal dentin was studied from a comparison of teeth within "young" and "old" age groups. The microstructure of dentin within three regions (i.e., inner, middle and outer) was analyzed using electron and optical microscopy. The mineral-to-collagen ratio in these three regions was estimated using Raman spectroscopy and the hardness was evaluated using microindentation. Results showed that there were significant differences in tubule density, tubule diameter and peritubular cuff diameter with depth. Although there was no difference in tubule density and diameter of the tubules between the age groups, there was a significant difference in the occlusion ratio. A significant increase in hardness between young and old patients was found for middle and outer dentin. An increase in mineral-to-collagen ratio from inner to outer dentin was also found for both groups. In old patients, an increase in mineral content was found in outer coronal dentin as a consequence of tubule occlusion. An increase in occlusion ratio, hardness, and mineral content was found in the dentin of adult patients with age. This increase is most evident in the outer coronal dentin. Copyright © 2015 Elsevier Ltd. All rights reserved.
Liu, Xin; Tang, Jie; Fei, Xiang; Li, Qiu-Yang
2015-11-01
We aimed to value the usefulness of free to total prostate-specific antigen and Prostate-specific antigen (PSA) density for prostate cancer in the patients with PSA levels of 4.0 ng/ml or less. A total of 343 subjects with PSA levels of 4.0 ng/ml or less were biopsied. All patients were divided into four groups according to the PSA levels: 0 to 1.0 ng/ml, 1.1 to 2.0 ng/ml, 2.1 to 3.0 ng/ml, and 3.1 to 4.0 ng/ml. The reliability of cancer detection in relation to the f/t PSA ratio and PSAD were estimated. Overall, 65 people were diagnosed with prostate cancer. The detection rate was 16.28%、17.17%, 21.82%, 25.00% in subjects with PSA levels of 0 to 1.0 ng/ml, 1.1 to 2.0 ng/ml, 2.1 to 3.0 ng/ml, and 3.1 to 4.0 ng/ml, respectively. The f/t PSA ratio was significantly lower in patients with prostate cancer and PSA levels of 2.1 to 4.0 ng/ml (P<0.05). The PSAD had no statistical significance between the two groups. Routine prostate biopsy should be undertaken if the f/t PSA ratio less than 15% with /without abnormal DRE/TRUS findings.
Hubble Space Telescope Observations of Variations in Ganymede's Oxygen Atmosphere and Aurora
NASA Astrophysics Data System (ADS)
Molyneux, P. M.; Nichols, J. D.; Bannister, N. P.; Bunce, E. J.; Clarke, J. T.; Cowley, S. W. H.; Gérard, J.-C.; Grodent, D.; Milan, S. E.; Paty, C.
2018-05-01
We present high-sensitivity Hubble Space Telescope (HST) Cosmic Origins Spectrograph and HST Space Telescope Imaging Spectrograph measurements of atmospheric OI 130.4-nm and OI] 135.6-nm emissions at Ganymede, which exhibit significant spatial and temporal variability. These observations represent the first observations of Ganymede using HST Cosmic Origins Spectrograph and of both the leading and trailing hemispheres within a single HST campaign, minimizing the potential influence of long-term changes in the Jovian plasma sheet or in Ganymede's atmosphere on the comparison of the two hemispheres. The mean disk-averaged OI] 135.6-nm/OI 130.4-nm observed intensity ratio was 2.72 ± 0.57 on the leading hemisphere and 1.42 ± 0.16 on the trailing hemisphere. The observed leading hemisphere ratios are consistent with an O2 atmosphere, but we show that an atomic oxygen component of 10% is required to produce the observed trailing hemisphere ratios. The excess 130.4-nm emission on the trailing hemisphere relative to that expected for an O2 atmosphere was 11 R. The O column density required to produce this excess is determined based on previous estimates of the electron density and temperature at Ganymede and exceeds the limit for an optically thin atmosphere. The implication that the O atmosphere is optically thick may be investigated in future by observing Ganymede as it moves into eclipse or by determining the ratio of the individual components within the 130.4-nm triplet.
Topics in Bayesian Hierarchical Modeling and its Monte Carlo Computations
NASA Astrophysics Data System (ADS)
Tak, Hyung Suk
The first chapter addresses a Beta-Binomial-Logit model that is a Beta-Binomial conjugate hierarchical model with covariate information incorporated via a logistic regression. Various researchers in the literature have unknowingly used improper posterior distributions or have given incorrect statements about posterior propriety because checking posterior propriety can be challenging due to the complicated functional form of a Beta-Binomial-Logit model. We derive data-dependent necessary and sufficient conditions for posterior propriety within a class of hyper-prior distributions that encompass those used in previous studies. Frequency coverage properties of several hyper-prior distributions are also investigated to see when and whether Bayesian interval estimates of random effects meet their nominal confidence levels. The second chapter deals with a time delay estimation problem in astrophysics. When the gravitational field of an intervening galaxy between a quasar and the Earth is strong enough to split light into two or more images, the time delay is defined as the difference between their travel times. The time delay can be used to constrain cosmological parameters and can be inferred from the time series of brightness data of each image. To estimate the time delay, we construct a Gaussian hierarchical model based on a state-space representation for irregularly observed time series generated by a latent continuous-time Ornstein-Uhlenbeck process. Our Bayesian approach jointly infers model parameters via a Gibbs sampler. We also introduce a profile likelihood of the time delay as an approximation of its marginal posterior distribution. The last chapter specifies a repelling-attracting Metropolis algorithm, a new Markov chain Monte Carlo method to explore multi-modal distributions in a simple and fast manner. This algorithm is essentially a Metropolis-Hastings algorithm with a proposal that consists of a downhill move in density that aims to make local modes repelling, followed by an uphill move in density that aims to make local modes attracting. The downhill move is achieved via a reciprocal Metropolis ratio so that the algorithm prefers downward movement. The uphill move does the opposite using the standard Metropolis ratio which prefers upward movement. This down-up movement in density increases the probability of a proposed move to a different mode.
Demonstration of line transect methodologies to estimate urban gray squirrel density
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hein, E.W.
1997-11-01
Because studies estimating density of gray squirrels (Sciurus carolinensis) have been labor intensive and costly, I demonstrate the use of line transect surveys to estimate gray squirrel density and determine the costs of conducting surveys to achieve precise estimates. Density estimates are based on four transacts that were surveyed five times from 30 June to 9 July 1994. Using the program DISTANCE, I estimated there were 4.7 (95% Cl = 1.86-11.92) gray squirrels/ha on the Clemson University campus. Eleven additional surveys would have decreased the percent coefficient of variation from 30% to 20% and would have cost approximately $114. Estimatingmore » urban gray squirrel density using line transect surveys is cost effective and can provide unbiased estimates of density, provided that none of the assumptions of distance sampling theory are violated.« less
Electron-density-sensitive Line Ratios of Fe XIII– XVI from Laboratory Sources Compared to CHIANTI
NASA Astrophysics Data System (ADS)
Weller, M. E.; Beiersdorfer, P.; Soukhanovskii, V. A.; Scotti, F.; LeBlanc, B. P.
2018-02-01
We present electron-density-sensitive line ratios for Fe XIII– XVI measured in the spectral wavelength range of 200–440 Å and an electron density range of (1–4) × 1013 cm‑3. The results provide a test at the high-density limit of density-sensitive line ratios useful for astrophysical studies. The measurements were performed on the National Spherical Torus Experiment-Upgrade, where electron densities were measured independently by the laser Thomson scattering diagnostic. Spectra were collected with a flat-field grazing-incidence spectrometer, which provided a spectral resolution of up to 0.3 Å, i.e., high resolution across the broad wavelength range. The response of the instrument was relatively calibrated using spectroscopic techniques in order to improve accuracy. The line ratios are compared to other laboratory sources and the latest version of CHIANTI (8.0.2), and an agreement within 30% is found.
Spatially explicit modeling of lesser prairie-chicken lek density in Texas
Timmer, Jennifer M.; Butler, M.J.; Ballard, Warren; Boal, Clint W.; Whitlaw, Heather A.
2014-01-01
As with many other grassland birds, lesser prairie-chickens (Tympanuchus pallidicinctus) have experienced population declines in the Southern Great Plains. Currently they are proposed for federal protection under the Endangered Species Act. In addition to a history of land-uses that have resulted in habitat loss, lesser prairie-chickens now face a new potential disturbance from energy development. We estimated lek density in the occupied lesser prairie-chicken range of Texas, USA, and modeled anthropogenic and vegetative landscape features associated with lek density. We used an aerial line-transect survey method to count lesser prairie-chicken leks in spring 2010 and 2011 and surveyed 208 randomly selected 51.84-km(2) blocks. We divided each survey block into 12.96-km(2) quadrats and summarized landscape variables within each quadrat. We then used hierarchical distance-sampling models to examine the relationship between lek density and anthropogenic and vegetative landscape features and predict how lek density may change in response to changes on the landscape, such as an increase in energy development. Our best models indicated lek density was related to percent grassland, region (i.e., the northeast or southwest region of the Texas Panhandle), total percentage of grassland and shrubland, paved road density, and active oil and gas well density. Predicted lek density peaked at 0.39leks/12.96km(2) (SE=0.09) and 2.05leks/12.96km(2) (SE=0.56) in the northeast and southwest region of the Texas Panhandle, respectively, which corresponds to approximately 88% and 44% grassland in the northeast and southwest region. Lek density increased with an increase in total percentage of grassland and shrubland and was greatest in areas with lower densities of paved roads and lower densities of active oil and gas wells. We used the 2 most competitive models to predict lek abundance and estimated 236 leks (CV=0.138, 95% CI=177-306leks) for our sampling area. Our results suggest that managing landscapes to maintain a greater percentage of grassland and shrubland on the landscape with a greater ratio of grasses to shrubs in the northeast Panhandle should promote greater lek density. Furthermore, increases in paved road and active oil and gas well densities may reduce lek density. This information will be useful for future conservation planning efforts for land protection, policy decisions, and decision analyses.
Effects of LiDAR point density and landscape context on estimates of urban forest biomass
NASA Astrophysics Data System (ADS)
Singh, Kunwar K.; Chen, Gang; McCarter, James B.; Meentemeyer, Ross K.
2015-03-01
Light Detection and Ranging (LiDAR) data is being increasingly used as an effective alternative to conventional optical remote sensing to accurately estimate aboveground forest biomass ranging from individual tree to stand levels. Recent advancements in LiDAR technology have resulted in higher point densities and improved data accuracies accompanied by challenges for procuring and processing voluminous LiDAR data for large-area assessments. Reducing point density lowers data acquisition costs and overcomes computational challenges for large-area forest assessments. However, how does lower point density impact the accuracy of biomass estimation in forests containing a great level of anthropogenic disturbance? We evaluate the effects of LiDAR point density on the biomass estimation of remnant forests in the rapidly urbanizing region of Charlotte, North Carolina, USA. We used multiple linear regression to establish a statistical relationship between field-measured biomass and predictor variables derived from LiDAR data with varying densities. We compared the estimation accuracies between a general Urban Forest type and three Forest Type models (evergreen, deciduous, and mixed) and quantified the degree to which landscape context influenced biomass estimation. The explained biomass variance of the Urban Forest model, using adjusted R2, was consistent across the reduced point densities, with the highest difference of 11.5% between the 100% and 1% point densities. The combined estimates of Forest Type biomass models outperformed the Urban Forest models at the representative point densities (100% and 40%). The Urban Forest biomass model with development density of 125 m radius produced the highest adjusted R2 (0.83 and 0.82 at 100% and 40% LiDAR point densities, respectively) and the lowest RMSE values, highlighting a distance impact of development on biomass estimation. Our evaluation suggests that reducing LiDAR point density is a viable solution to regional-scale forest assessment without compromising the accuracy of biomass estimates, and these estimates can be further improved using development density.
Ant-inspired density estimation via random walks
Musco, Cameron; Su, Hsin-Hao
2017-01-01
Many ant species use distributed population density estimation in applications ranging from quorum sensing, to task allocation, to appraisal of enemy colony strength. It has been shown that ants estimate local population density by tracking encounter rates: The higher the density, the more often the ants bump into each other. We study distributed density estimation from a theoretical perspective. We prove that a group of anonymous agents randomly walking on a grid are able to estimate their density within a small multiplicative error in few steps by measuring their rates of encounter with other agents. Despite dependencies inherent in the fact that nearby agents may collide repeatedly (and, worse, cannot recognize when this happens), our bound nearly matches what would be required to estimate density by independently sampling grid locations. From a biological perspective, our work helps shed light on how ants and other social insects can obtain relatively accurate density estimates via encounter rates. From a technical perspective, our analysis provides tools for understanding complex dependencies in the collision probabilities of multiple random walks. We bound the strength of these dependencies using local mixing properties of the underlying graph. Our results extend beyond the grid to more general graphs, and we discuss applications to size estimation for social networks, density estimation for robot swarms, and random walk-based sampling for sensor networks. PMID:28928146
A Novel Passive Tracking Scheme Exploiting Geometric and Intercept Theorems
Zhou, Biao; Sun, Chao; Ahn, Deockhyeon; Kim, Youngok
2018-01-01
Passive tracking aims to track targets without assistant devices, that is, device-free targets. Passive tracking based on Radio Frequency (RF) Tomography in wireless sensor networks has recently been addressed as an emerging field. The passive tracking scheme using geometric theorems (GTs) is one of the most popular RF Tomography schemes, because the GT-based method can effectively mitigate the demand for a high density of wireless nodes. In the GT-based tracking scheme, the tracking scenario is considered as a two-dimensional geometric topology and then geometric theorems are applied to estimate crossing points (CPs) of the device-free target on line-of-sight links (LOSLs), which reveal the target’s trajectory information in a discrete form. In this paper, we review existing GT-based tracking schemes, and then propose a novel passive tracking scheme by exploiting the Intercept Theorem (IT). To create an IT-based CP estimation scheme available in the noisy non-parallel LOSL situation, we develop the equal-ratio traverse (ERT) method. Finally, we analyze properties of three GT-based tracking algorithms and the performance of these schemes is evaluated experimentally under various trajectories, node densities, and noisy topologies. Analysis of experimental results shows that tracking schemes exploiting geometric theorems can achieve remarkable positioning accuracy even under rather a low density of wireless nodes. Moreover, the proposed IT scheme can provide generally finer tracking accuracy under even lower node density and noisier topologies, in comparison to other schemes. PMID:29562621
NASA Astrophysics Data System (ADS)
Saksena, Rajat; Christensen, Kenneth T.; Pearlstein, Arne J.
2014-11-01
Use of laser diagnostics in liquid-liquid flows is limited by refractive index mismatch. This can be avoided using a surrogate pair of immiscible index-matched liquids, with density and viscosity ratios matching those of the original liquid pair. We demonstrate that a wide range of density and viscosity ratios is accessible using aqueous solutions of 1,2-propanediol and CsBr (for which index, density, and viscosity are available), and solutions of light and heavy silicone oils and 1-bromooctane (for which we measured the same properties at 119 compositions). For each liquid phase, polynomials in the composition variables were fitted to index and density and to the logarithm of kinematic viscosity, and the fits were used to determine accessible density and viscosity ratios for each matchable index. Index-matched solution pairs can be prepared with density and viscosity ratios equal to those for water-liquid CO2 at 0oC over a range of pressure, and for water-crude oil and water-trichloroethylene, each over a range of temperature. For representative index-matched solutions, equilibration changes index, density, and viscosity only slightly, and chemical analysis show that no component of either solution has significant interphase solubility. Partially supported by Intl. Inst. for Carbon-Neutral Energy Research.
Mapping an index of the myelin g-ratio in infants using magnetic resonance imaging
Dean, Douglas C.; O'Muircheartaigh, Jonathan; Dirks, Holly; Travers, Brittany G.; Adluru, Nagesh; Alexander, Andrew L.; Deoni, Sean C.L.
2016-01-01
Optimal myelination of neuronal axons is essential for effective brain and cognitive function. The ratio of the axon diameter to the outer fiber diameter, known as the g-ratio, is a reliable measure to assess axonal myelination and is an important index reflecting the efficiency and maximal conduction velocity of white matter pathways. Although advanced neuroimaging techniques including multicomponent relaxometry (MCR) and diffusion tensor imaging afford insight into the microstructural characteristics of brain tissue, by themselves they do not allow direct analysis of the myelin g-ratio. Here, we show that by combining myelin content information (obtained with mcDESPOT MCR) with neurite density information (obtained through NODDI diffusion imaging) an index of the myelin g-ratio may be estimated. Using this framework, we present the first quantitative study of myelin g-ratio index changes across childhood, examining 18 typically developing children 3 months to 7.5 years of age. We report a spatio-temporal pattern of maturation that is consistent with histological and developmental MRI studies, as well as theoretical studies of the myelin g-ratio. This work represents the first ever in vivo visualization of the evolution of white matter g-ratio indices throughout early childhood. PMID:26908314
Density-ratio effects on buoyancy-driven variable-density turbulent mixing
NASA Astrophysics Data System (ADS)
Aslangil, Denis; Livescu, Daniel; Banerjee, Arindam
2017-11-01
Density-ratio effects on the turbulent mixing of two incompressible, miscible fluids with different densities subject to constant acceleration are studied by means of high-resolution Direct Numerical Simulations. In a triply periodic domain, turbulence is generated by stirring in response to the differential buoyancy forces within the flow. Later, as the fluids become molecularly mixed, dissipation starts to overcome turbulence generation by bouyancy. Thus, the flow evolution includes both turbulence growth and decay, and it displays features present in the core region of the mixing layer of the Rayleigh-Taylor as well as Richtmyer-Meshkov instabilities. We extend the previous studies by investigating a broad range of density-ratio, from 1-14.4:1, corresponding to Atwood numbers of 0.05-0.87. Here, we focus on the Atwood number dependence of mixing-efficiency, that is defined based on the energy-conversion ratios from potential energy to total and turbulent kinetic energies, the decay characteristics of buoyancy-assisted variable-density homogeneous turbulence, and the effects of high density-ratios on the turbulence structure and mixing process. Authors acknowledge financial support from DOE-SSAA (DE-NA0003195) and NSF CAREER (#1453056) awards.
NASA Astrophysics Data System (ADS)
Corby, J. F.; McGuire, B. A.; Herbst, E.; Remijan, A. J.
2018-02-01
The 1-50 GHz PRebiotic Interstellar MOlecular Survey (PRIMOS) contains 50 molecular absorption lines observed in clouds located in the line-of-sight to Sgr B2(N). The line-of-sight material is associated with diffuse and translucent clouds located in the Galactic center, bar, and spiral arms in the disk. We measured the column densities and estimate abundances, relative to H2, of 11 molecules and additional isotopologues observed in this material. We used absorption by optically thin transitions of c-C3H2 to estimate the molecular hydrogen columns, and argue that this method is preferable to more commonly used methods. We discuss the kinematic structure and abundance patterns of small molecules including the sulfur-bearing species CS, SO, CCS, H2CS, and HCS+; oxygen-bearing molecules OH, SiO, and H2CO; and simple hydrocarbon molecules c-C3H2, l-C3H, and l-C3H+. Finally, we discuss the implications of the observed chemistry for the structure of the gas and dust in the ISM. Highlighted results include the following. First, whereas gas in the disk has a molecular hydrogen fraction of 0.65, clouds on the outer edge of the Galactic bar and in or near the Galactic center have molecular fractions of 0.85 and >0.9, respectively. Second, we observe trends in isotope ratios with Galactocentric distance; while carbon and silicon show enhancement of the rare isotopes at low Galactocentric distances, sulfur exhibits no trend with Galactocentric distance. We also determine that the ratio of c-C3H2/c-H13CCCH provides a good estimate of the 12C/13C ratio, whereas H2CO/H213CO exhibits fractionation. Third, we report the presence of l-C3H+ in diffuse clouds for the first time. Finally, we suggest that CS has an enhanced abundance within higher density clumps of material in the disk, and therefore may be diagnostic of cloud conditions. If this holds, the diffuse clouds in the Galactic disk contain multiple embedded hyperdensities in a clumpy structure, and the density profile is not a simple function of AV. The reduced spectra (FITS files) are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/610/A10
Radar characteristics of Viking 1 landing sites
Tyler, G.L.; Campbell, D.B.; Downs, G.S.; Green, R.R.; Moore, H.J.
1976-01-01
Radar observations of Mars at centimeter wavelengths in May, June, and July 1976 provided estimates of surface roughness and reflectivity in three potential landing areas for Viking 1. Surface roughness is characterized by the distribution of surface landing slopes or tilts on lateral scales of the order of 1 to 10 meters; measurements of surface reflectivity are indicators of bulk surface density in the uppermost few centimeters. By these measures, the Viking 1 landing site at 47.5??W, 22.4??N is rougher than the martian average, although it may be near the martian average for elevations accessible to Viking, and is estimated to be near the Mars average in reflectivity. The AINW site at the center of Chryse Planitia, 43.5??W, 23.4??N, may be an area of anomalous radar characteristics, indicative of extreme, small-scale roughness, very low surface density, or a combination of these two characteristics. Low signal-to-noise ratio observations of the original Chryse site at 34??W, 19.5??N indicate that that area is at least twice as rough as the Mars average.
NASA Astrophysics Data System (ADS)
Song, Xia; Hoffman, Forrest M.; Iversen, Colleen M.; Yin, Yunhe; Kumar, Jitendra; Ma, Chun; Xu, Xiaofeng
2017-09-01
Earth system models (ESMs) have been widely used for projecting global vegetation carbon dynamics, yet how well ESMs performed for simulating vegetation carbon density remains untested. We compiled observational data of vegetation carbon density from literature and existing data sets to evaluate nine ESMs at site, biome, latitude, and global scales. Three variables—root (including fine and coarse roots), total vegetation carbon density, and the root:total vegetation carbon ratios (R/T ratios), were chosen for ESM evaluation. ESM models performed well in simulating the spatial distribution of carbon densities in root (
Nonparametric estimation of plant density by the distance method
Patil, S.A.; Burnham, K.P.; Kovner, J.L.
1979-01-01
A relation between the plant density and the probability density function of the nearest neighbor distance (squared) from a random point is established under fairly broad conditions. Based upon this relationship, a nonparametric estimator for the plant density is developed and presented in terms of order statistics. Consistency and asymptotic normality of the estimator are discussed. An interval estimator for the density is obtained. The modifications of this estimator and its variance are given when the distribution is truncated. Simulation results are presented for regular, random and aggregated populations to illustrate the nonparametric estimator and its variance. A numerical example from field data is given. Merits and deficiencies of the estimator are discussed with regard to its robustness and variance.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Song, Xia; Hoffman, Forrest M.; Iversen, Colleen M.
Earth system models (ESMs) have been widely used for projecting global vegetation carbon dynamics, yet how well ESMs performed for simulating vegetation carbon density remains untested. Here we have compiled observational data of vegetation carbon density from literature and existing data sets to evaluate nine ESMs at site, biome, latitude, and global scales. Three variables—root (including fine and coarse roots), total vegetation carbon density, and the root:total vegetation carbon ratios (R/T ratios), were chosen for ESM evaluation. ESM models performed well in simulating the spatial distribution of carbon densities in root (r = 0.71) and total vegetation (r = 0.62).more » However, ESM models had significant biases in simulating absolute carbon densities in root and total vegetation biomass across the majority of land ecosystems, especially in tropical and arctic ecosystems. Particularly, ESMs significantly overestimated carbon density in root (183%) and total vegetation biomass (167%) in climate zones of 10°S–10°N. Substantial discrepancies between modeled and observed R/T ratios were found: the R/T ratios from ESMs were relatively constant, approximately 0.2 across all ecosystems, along latitudinal gradients, and in tropic, temperate, and arctic climatic zones, which was significantly different from the observed large variations in the R/T ratios (0.1–0.8). There were substantial inconsistencies between ESM-derived carbon density in root and total vegetation biomass and the R/T ratio at multiple scales, indicating urgent needs for model improvements on carbon allocation algorithms and more intensive field campaigns targeting carbon density in all key vegetation components.« less
Song, Xia; Hoffman, Forrest M.; Iversen, Colleen M.; ...
2017-09-09
Earth system models (ESMs) have been widely used for projecting global vegetation carbon dynamics, yet how well ESMs performed for simulating vegetation carbon density remains untested. Here we have compiled observational data of vegetation carbon density from literature and existing data sets to evaluate nine ESMs at site, biome, latitude, and global scales. Three variables—root (including fine and coarse roots), total vegetation carbon density, and the root:total vegetation carbon ratios (R/T ratios), were chosen for ESM evaluation. ESM models performed well in simulating the spatial distribution of carbon densities in root (r = 0.71) and total vegetation (r = 0.62).more » However, ESM models had significant biases in simulating absolute carbon densities in root and total vegetation biomass across the majority of land ecosystems, especially in tropical and arctic ecosystems. Particularly, ESMs significantly overestimated carbon density in root (183%) and total vegetation biomass (167%) in climate zones of 10°S–10°N. Substantial discrepancies between modeled and observed R/T ratios were found: the R/T ratios from ESMs were relatively constant, approximately 0.2 across all ecosystems, along latitudinal gradients, and in tropic, temperate, and arctic climatic zones, which was significantly different from the observed large variations in the R/T ratios (0.1–0.8). There were substantial inconsistencies between ESM-derived carbon density in root and total vegetation biomass and the R/T ratio at multiple scales, indicating urgent needs for model improvements on carbon allocation algorithms and more intensive field campaigns targeting carbon density in all key vegetation components.« less
Hill, Jason M.; Diefenbach, Duane R.
2014-01-01
Organisms can be affected by processes in the surrounding landscape outside the boundary of habitat areas and by local vegetation characteristics. There is substantial interest in understanding how these processes affect populations of grassland birds, which have experienced substantial population declines. Much of our knowledge regarding patterns of occupancy and density stem from prairie systems, whereas relatively little is known regarding how occurrence and abundance of grassland birds vary in reclaimed surface mine grasslands. Using distance sampling and single-season occupancy models, we investigated how the occupancy probability of Grasshopper (Ammodramus savannarum) and Henslow's Sparrows (A. henslowii) on 61 surface mine grasslands (1591 ha) in Pennsylvania changed from 2002 through 2011 in response to landscape, grassland, and local vegetation characteristics . A subset (n = 23; 784 ha) of those grasslands were surveyed in 2002, and we estimated changes in sparrow density and vegetation across 10 years. Grasshopper and Henslow's Sparrow populations declined 72% and 49%, respectively from 2002 to 2011, whereas overall woody vegetation density increased 2.6 fold. Henslow's Sparrows avoided grasslands with perimeter–area ratios ≥0.141 km/ha and woody shrub densities ≥0.04 shrubs/m2. Both species occupied grasslands ≤13 ha, but occupancy probability declined with increasing grassland perimeter–area ratio and woody shrub density. Grassland size, proximity to nearest neighboring grassland ( = 0.2 km), and surrounding landscape composition at 0.5, 1.5, and 3.0 km were not parsimonious predictors of occupancy probability for either species. Our results suggest that reclaimed surface mine grasslands, without management intervention, are ephemeral habitats for Grasshopper and Henslow's Sparrows. Given the forecasted decline in surface coal production for Pennsylvania, it is likely that both species will continue to decline in our study region for the foreseeable future.
Veerman, J Lennert; Zapata-Diomedi, Belen; Gunn, Lucy; McCormack, Gavin R; Cobiac, Linda J; Mantilla Herrera, Ana Maria; Giles-Corti, Billie; Shiell, Alan
2016-09-20
Studies consistently find that supportive neighbourhood built environments increase physical activity by encouraging walking and cycling. However, evidence on the cost-effectiveness of investing in built environment interventions as a means of promoting physical activity is lacking. In this study, we assess the cost-effectiveness of increasing sidewalk availability as one means of encouraging walking. Using data from the RESIDE study in Perth, Australia, we modelled the cost impact and change in health-adjusted life years (HALYs) of installing additional sidewalks in established neighbourhoods. Estimates of the relationship between sidewalk availability and walking were taken from a previous study. Multistate life table models were used to estimate HALYs associated with changes in walking frequency and duration. Sensitivity analyses were used to explore the impact of variations in population density, discount rates, sidewalk costs and the inclusion of unrelated healthcare costs in added life years. Installing and maintaining an additional 10 km of sidewalk in an average neighbourhood with 19 000 adult residents was estimated to cost A$4.2 million over 30 years and gain 24 HALYs over the lifetime of an average neighbourhood adult resident population. The incremental cost-effectiveness ratio was A$176 000/HALY. However, sensitivity results indicated that increasing population densities improves cost-effectiveness. In low-density cities such as in Australia, installing sidewalks in established neighbourhoods as a single intervention is unlikely to cost-effectively improve health. Sidewalks must be considered alongside other complementary elements of walkability, such as density, land use mix and street connectivity. Population density is particularly important because at higher densities, more residents are exposed and this improves the cost-effectiveness. Health gain is one of many benefits of enhancing neighbourhood walkability and future studies might consider a more comprehensive assessment of its social value (eg, social cohesion, safety and air quality). Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/
Habitat selection and spawning success of walleye in a tributary to Owasco Lake, New York
Chalupnicki, Marc A.; Johnson, James H.; McKenna, James E.; Dittman, Dawn E.
2010-01-01
Walleyes Sander vitreus are stocked into Owasco Lake, New York, to provide a sport fishery, but the population must be sustained by annual hatchery supplementation despite the presence of appropriate habitat. Therefore, we evaluated walleye spawning success in Dutch Hollow Brook, a tributary of Owasco Lake, to determine whether early survival limited recruitment. Spawning success during spring 2006 and 2007 was evaluated by estimating egg densities from samples collected in the lower 725 m of the stream. Environmental variables were also recorded to characterize the selected spawning habitat. Drift nets were set downstream of the spawning section to assess egg survival and larval drift. We estimated that 162,596 larvae hatched in 2006. For 2007, we estimated that 360,026 eggs were deposited, with a hatch of 127,500 larvae and hatching success of 35.4%. Egg density was significantly correlated to percent cover, substrate type, and depth : velocity ratio. Two sections had significantly higher egg deposition than other areas. Adult spawning walleyes selected shallow, slow habitats with some cover and gravel substrate in the accessible reaches of Dutch Hollow Brook. Our results show that walleyes found suitable spawning habitat in Dutch Hollow Brook and that egg and larval development does not appear to limit natural reproduction.
NASA Astrophysics Data System (ADS)
Laesecke, Arno; Muzny, Chris D.
2017-12-01
A wide-ranging formulation for the viscosity of methane in the limit of zero density is presented. Using ab initio calculated data of Hellmann et al. (J Chem Phys 129, 064302, 2008) from 80 K to 1500 K, the functional form was developed by guided symbolic regression with the constraints of correct extrapolation to T → 0 and in the high-temperature limit. The formulation was adjusted to the recalibrated experimental data of May et al. (Int J Thermophys 28, 1085-1110, 2007) so that these are represented within their estimated expanded uncertainty of 0.053 % (k = 2) in their temperature range from 210.756 K to 391.551 K. Based on comparisons with original data and recalibrated viscosity ratio measurements, the expanded uncertainty of the new correlation is estimated outside this temperature range to be 0.2 % to 700 K, 0.5 % to 1100 K, 1 % to 1500 K, and physically correct at higher temperatures. At temperatures below 210 K, the new correlation agrees with recalibrated experimental data within 0.3 % down to 150 K. Hellmann et al. estimated the expanded uncertainty of their calculated data at 1 % to 80 K. The new formulation extrapolates without a singularity to T→ 0.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kost, S; Yu, N; Lin, S
2016-06-15
Purpose: To compare mean lung dose (MLD) estimates from 99mTc macroaggregated albumin (MAA) SPECT/CT using two published methodologies for patients treated with {sup 90}Y radioembolization for liver cancer. Methods: MLD was estimated retrospectively using two methodologies for 40 patients from SPECT/CT images of 99mTc-MAA administered prior to radioembolization. In these two methods, lung shunt fractions (LSFs) were calculated as the ratio of scanned lung activity to the activity in the entire scan volume or to the sum of activity in the lung and liver respectively. Misregistration of liver activity into the lungs during SPECT acquisition was overcome by excluding lungmore » counts within either 2 or 1.5 cm of the diaphragm apex respectively. Patient lung density was assumed to be 0.3 g/cm{sup 3} or derived from CT densitovolumetry respectively. Results from both approaches were compared to MLD determined by planar scintigraphy (PS). The effect of patient size on the difference between MLD from PS and SPECT/CT was also investigated. Results: Lung density from CT densitovolumetry is not different from the reference density (p = 0.68). The second method resulted in lung dose of an average 1.5 times larger lung dose compared to the first method; however the difference between the means of the two estimates was not significant (p = 0.07). Lung dose from both methods were statistically different from those estimated from 2D PS (p < 0.001). There was no correlation between patient size and the difference between MLD from PS and both SPECT/CT methods (r < 0.22, p > 0.17). Conclusion: There is no statistically significant difference between MLD estimated from the two techniques. Both methods are statistically different from conventional PS, with PS overestimating dose by a factor of three or larger. The difference between lung doses estimated from 2D planar or 3D SPECT/CT is not dependent on patient size.« less
Precision Orbit Derived Atmospheric Density: Development and Performance
NASA Astrophysics Data System (ADS)
McLaughlin, C.; Hiatt, A.; Lechtenberg, T.; Fattig, E.; Mehta, P.
2012-09-01
Precision orbit ephemerides (POE) are used to estimate atmospheric density along the orbits of CHAMP (Challenging Minisatellite Payload) and GRACE (Gravity Recovery and Climate Experiment). The densities are calibrated against accelerometer derived densities and considering ballistic coefficient estimation results. The 14-hour density solutions are stitched together using a linear weighted blending technique to obtain continuous solutions over the entire mission life of CHAMP and through 2011 for GRACE. POE derived densities outperform the High Accuracy Satellite Drag Model (HASDM), Jacchia 71 model, and NRLMSISE-2000 model densities when comparing cross correlation and RMS with accelerometer derived densities. Drag is the largest error source for estimating and predicting orbits for low Earth orbit satellites. This is one of the major areas that should be addressed to improve overall space surveillance capabilities; in particular, catalog maintenance. Generally, density is the largest error source in satellite drag calculations and current empirical density models such as Jacchia 71 and NRLMSISE-2000 have significant errors. Dynamic calibration of the atmosphere (DCA) has provided measurable improvements to the empirical density models and accelerometer derived densities of extremely high precision are available for a few satellites. However, DCA generally relies on observations of limited accuracy and accelerometer derived densities are extremely limited in terms of measurement coverage at any given time. The goal of this research is to provide an additional data source using satellites that have precision orbits available using Global Positioning System measurements and/or satellite laser ranging. These measurements strike a balance between the global coverage provided by DCA and the precise measurements of accelerometers. The temporal resolution of the POE derived density estimates is around 20-30 minutes, which is significantly worse than that of accelerometer derived density estimates. However, major variations in density are observed in the POE derived densities. These POE derived densities in combination with other data sources can be assimilated into physics based general circulation models of the thermosphere and ionosphere with the possibility of providing improved density forecasts for satellite drag analysis. POE derived density estimates were initially developed using CHAMP and GRACE data so comparisons could be made with accelerometer derived density estimates. This paper presents the results of the most extensive calibration of POE derived densities compared to accelerometer derived densities and provides the reasoning for selecting certain parameters in the estimation process. The factors taken into account for these selections are the cross correlation and RMS performance compared to the accelerometer derived densities and the output of the ballistic coefficient estimation that occurs simultaneously with the density estimation. This paper also presents the complete data set of CHAMP and GRACE results and shows that the POE derived densities match the accelerometer densities better than empirical models or DCA. This paves the way to expand the POE derived densities to include other satellites with quality GPS and/or satellite laser ranging observations.
The estimation of material and patch parameters in a PDE-based circular plate model
NASA Technical Reports Server (NTRS)
Banks, H. T.; Smith, Ralph C.; Brown, D. E.; Metcalf, Vern L.; Silcox, R. J.
1995-01-01
The estimation of material and patch parameters for a system involving a circular plate, to which piezoceramic patches are bonded, is considered. A partial differential equation (PDE) model for the thin circular plate is used with the passive and active contributions form the patches included in the internal and external bending moments. This model contains piecewise constant parameters describing the density, flexural rigidity, Poisson ratio, and Kelvin-Voigt damping for the system as well as patch constants and a coefficient for viscous air damping. Examples demonstrating the estimation of these parameters with experimental acceleration data and a variety of inputs to the experimental plate are presented. By using a physically-derived PDE model to describe the system, parameter sets consistent across experiments are obtained, even when phenomena such as damping due to electric circuits affect the system dynamics.
Anorexia Reduces GFAP+ Cell Density in the Rat Hippocampus.
Reyes-Haro, Daniel; Labrada-Moncada, Francisco Emmanuel; Varman, Durairaj Ragu; Krüger, Janina; Morales, Teresa; Miledi, Ricardo; Martínez-Torres, Ataúlfo
2016-01-01
Anorexia nervosa is an eating disorder observed primarily in young women. The neurobiology of the disorder is unknown but recently magnetic resonance imaging showed a volume reduction of the hippocampus in anorexic patients. Dehydration-induced anorexia (DIA) is a murine model that mimics core features of this disorder, including severe weight loss due to voluntary reduction in food intake. The energy supply to the brain is mediated by astrocytes, but whether their density is compromised by anorexia is unknown. Thus, the aim of this study was to estimate GFAP+ cell density in the main regions of the hippocampus (CA1, CA2, CA3, and dentate gyrus) in the DIA model. Our results showed that GFAP+ cell density was significantly reduced (~20%) in all regions of the hippocampus, except in CA1. Interestingly, DIA significantly reduced the GFAP+ cells/nuclei ratio in CA2 (-23%) and dentate gyrus (-48%). The reduction of GFAP+ cell density was in agreement with a lower expression of GFAP protein. Additionally, anorexia increased the expression of the intermediate filaments vimentin and nestin. Accordingly, anorexia increased the number of reactive astrocytes in CA2 and dentate gyrus more than twofold. We conclude that anorexia reduces the hippocampal GFAP+ cell density and increases vimentin and nestin expression.
Anorexia Reduces GFAP+ Cell Density in the Rat Hippocampus
Labrada-Moncada, Francisco Emmanuel; Varman, Durairaj Ragu; Krüger, Janina; Morales, Teresa; Miledi, Ricardo; Martínez-Torres, Ataúlfo
2016-01-01
Anorexia nervosa is an eating disorder observed primarily in young women. The neurobiology of the disorder is unknown but recently magnetic resonance imaging showed a volume reduction of the hippocampus in anorexic patients. Dehydration-induced anorexia (DIA) is a murine model that mimics core features of this disorder, including severe weight loss due to voluntary reduction in food intake. The energy supply to the brain is mediated by astrocytes, but whether their density is compromised by anorexia is unknown. Thus, the aim of this study was to estimate GFAP+ cell density in the main regions of the hippocampus (CA1, CA2, CA3, and dentate gyrus) in the DIA model. Our results showed that GFAP+ cell density was significantly reduced (~20%) in all regions of the hippocampus, except in CA1. Interestingly, DIA significantly reduced the GFAP+ cells/nuclei ratio in CA2 (−23%) and dentate gyrus (−48%). The reduction of GFAP+ cell density was in agreement with a lower expression of GFAP protein. Additionally, anorexia increased the expression of the intermediate filaments vimentin and nestin. Accordingly, anorexia increased the number of reactive astrocytes in CA2 and dentate gyrus more than twofold. We conclude that anorexia reduces the hippocampal GFAP+ cell density and increases vimentin and nestin expression. PMID:27579183
Robust location and spread measures for nonparametric probability density function estimation.
López-Rubio, Ezequiel
2009-10-01
Robustness against outliers is a desirable property of any unsupervised learning scheme. In particular, probability density estimators benefit from incorporating this feature. A possible strategy to achieve this goal is to substitute the sample mean and the sample covariance matrix by more robust location and spread estimators. Here we use the L1-median to develop a nonparametric probability density function (PDF) estimator. We prove its most relevant properties, and we show its performance in density estimation and classification applications.
Strange fireball as an explanation of the muon excess in Auger data
NASA Astrophysics Data System (ADS)
Anchordoqui, Luis A.; Goldberg, Haim; Weiler, Thomas J.
2017-03-01
We argue that ultrahigh-energy cosmic-ray collisions in Earth's atmosphere can probe the strange quark density of the nucleon. These collisions have center-of-mass energies ≳1 04.6A GeV , where A ≥14 is the nuclear baryon number. We hypothesize the formation of a deconfined thermal fireball which undergoes a sudden hadronization. At production the fireball has a very high matter density and consists of gluons and two flavors of light quarks (u , d ). Because the fireball is formed in the baryon-rich projectile fragmentation region, the high baryochemical potential damps the production of u u ¯ and d d ¯ pairs, resulting in gluon fragmentation mainly into s s ¯. The strange quarks then become much more abundant and upon hadronization the relative density of strange hadrons is significantly enhanced over that resulting from a hadron gas. Assuming the momentum distribution functions can be approximated by Fermi-Dirac and Bose-Einstein statistics, we estimate a kaon-to-pion ratio of about 3 and expect a similar (total) baryon-to-pion ratio. We show that, if this were the case, the excess of strange hadrons would suppress the fraction of energy which is transferred to decaying π0's by about 20%, yielding an ˜40 % enhancement of the muon content in atmospheric cascades, in agreement with recent data reported by the Pierre Auger Collaboration.
Top-down constraints of regional emissions for KORUS-AQ 2016 field campaign
NASA Astrophysics Data System (ADS)
Bae, M.; Yoo, C.; Kim, H. C.; Kim, B. U.; Kim, S.
2017-12-01
Accurate estimations of emission rates form local and international sources are essential in regional air quality simulations, especially in assessing the relative contributions from international emission sources. While bottom-up constructions of emission inventories provide detailed information on specific emission types, they are limited to cover regions with rapid change of anthropogenic emissions (e.g. China) or regions without enough socioeconomic information (e.g. North Korea). We utilized space-borne monitoring of major pollutant precursors to construct a realistic emission inputs for chemistry transport models during the KORUS-AQ 2016 field campaign. Base simulation was conducted using WRF, SMOKE, and CMAQ modeling frame using CREATE 2015 (Asian countries) and CAPSS 2013 (South Korea) emissions inventories. NOx, SO2 and VOC model emissions are adjusted using the column density comparisons ratios (between modeled and observed NO2, SO2 and HCHO column densities) and emission-to-density conversion ratio (from model). Brute force perturbation method was used to separate contributions from North Korea, China and South Korea for flight pathways during the field campaign. Backward-Tracking Model Analyzer (BMA), based on NOAA HYSPLIT trajectory and dispersion model, are also utilized to track histories of chemical processes and emission source apportionment. CMAQ simulations were conducted over East Asia (27-km) and over South and North Korea (9-km) during KORUS-AQ campaign (1st May to 10th June 2016).
NASA Astrophysics Data System (ADS)
Gurfinkel, Yu. I.; Suchkova, O. V.; Sasonko, M. L.; Priezzhev, A. V.
2016-04-01
This study is aimed to define the extent of digital capillaroscopy possibilities for the quantification and estimation of microvascular abnormalities in type 2 diabetes mellitus (T2DM). A total of 196 adult persons were enrolled in the study including the group of compensated T2DM (n = 52), decompensated diabetics (n = 68), and healthy volunteers (n = 76) with normal blood glucose and without signs of cardiovascular pathology. All participants of the study were examined with the digital optical capillaroscope ("AET", Russia). This instrument is equipped with an image-processing program allowing for quantifying the diameters of the arterial and venous segments of the capillaries and their ratio (coefficient of remodeling), perivascular zone size, capillary blood velocity, and the degree of arterial loops narrowing and the density of the capillary network. Also we estimated the relative amount of coil-shaped capillaries. The study revealed significant difference in the capillary density and the remodeling coefficient in comparison of T2DM patients with non-diabetic individuals. Significant changes are found in the decompensated T2DM group compared to the compensated group of diabetic patients. Furthermore, the number of coil-shaped capillaries differed greatly in T2DM patients as compared to the healthy subjects. The study did not reveal any statistically significant differences in the capillary density between the patients with compensated and decompensated T2DM. The digital optical capillaroscope equipped with the advanced image-processing algorithm opens up new possibilities for obtaining clinically important information on microvascular abnormalities in patients suffering from diabetes mellitus.
Broekhuis, Femke; Gopalaswamy, Arjun M.
2016-01-01
Many ecological theories and species conservation programmes rely on accurate estimates of population density. Accurate density estimation, especially for species facing rapid declines, requires the application of rigorous field and analytical methods. However, obtaining accurate density estimates of carnivores can be challenging as carnivores naturally exist at relatively low densities and are often elusive and wide-ranging. In this study, we employ an unstructured spatial sampling field design along with a Bayesian sex-specific spatially explicit capture-recapture (SECR) analysis, to provide the first rigorous population density estimates of cheetahs (Acinonyx jubatus) in the Maasai Mara, Kenya. We estimate adult cheetah density to be between 1.28 ± 0.315 and 1.34 ± 0.337 individuals/100km2 across four candidate models specified in our analysis. Our spatially explicit approach revealed ‘hotspots’ of cheetah density, highlighting that cheetah are distributed heterogeneously across the landscape. The SECR models incorporated a movement range parameter which indicated that male cheetah moved four times as much as females, possibly because female movement was restricted by their reproductive status and/or the spatial distribution of prey. We show that SECR can be used for spatially unstructured data to successfully characterise the spatial distribution of a low density species and also estimate population density when sample size is small. Our sampling and modelling framework will help determine spatial and temporal variation in cheetah densities, providing a foundation for their conservation and management. Based on our results we encourage other researchers to adopt a similar approach in estimating densities of individually recognisable species. PMID:27135614
Broekhuis, Femke; Gopalaswamy, Arjun M
2016-01-01
Many ecological theories and species conservation programmes rely on accurate estimates of population density. Accurate density estimation, especially for species facing rapid declines, requires the application of rigorous field and analytical methods. However, obtaining accurate density estimates of carnivores can be challenging as carnivores naturally exist at relatively low densities and are often elusive and wide-ranging. In this study, we employ an unstructured spatial sampling field design along with a Bayesian sex-specific spatially explicit capture-recapture (SECR) analysis, to provide the first rigorous population density estimates of cheetahs (Acinonyx jubatus) in the Maasai Mara, Kenya. We estimate adult cheetah density to be between 1.28 ± 0.315 and 1.34 ± 0.337 individuals/100km2 across four candidate models specified in our analysis. Our spatially explicit approach revealed 'hotspots' of cheetah density, highlighting that cheetah are distributed heterogeneously across the landscape. The SECR models incorporated a movement range parameter which indicated that male cheetah moved four times as much as females, possibly because female movement was restricted by their reproductive status and/or the spatial distribution of prey. We show that SECR can be used for spatially unstructured data to successfully characterise the spatial distribution of a low density species and also estimate population density when sample size is small. Our sampling and modelling framework will help determine spatial and temporal variation in cheetah densities, providing a foundation for their conservation and management. Based on our results we encourage other researchers to adopt a similar approach in estimating densities of individually recognisable species.
NASA Astrophysics Data System (ADS)
Trofymow, J. A.; Coops, N.; Hayhurst, D.
2012-12-01
Following forest harvest, residues left on site and roadsides are often disposed of to reduce fire risk and free planting space. In coastal British Columbia burn piles are the main method of disposal, particularly for accumulations from log processing. Quantification of residue wood in piles is required for: smoke emission estimates, C budget calculations, billable waste assessment, harvest efficiency monitoring, and determination of bioenergy potentials. A second-growth Douglas-fir dominated (DF1949) site on eastern Vancouver Island and subject of C flux and budget studies since 1998, was clearcut in winter 2011, residues piled in spring and burned in fall. Prior to harvest, the site was divided into 4 blocks to account for harvest plans and ecosite conditions. Total harvested wood volume was scaled for each block. Residue pile wood volume was determined by a standard Waste and Residue Survey (WRS) using field estimates of pile base area and plot density (wood volume / 0.005 ha plot) on 2 piles per block, by a smoke emissions geometric method with pile volumes estimated as ellipsoidal paraboloids and packing ratios (wood volume / pile volume) for 2 piles per block, as well as by five other GIS methods using pile volumes and areas from LiDAR and orthophotography flown August 2011, a LiDAR derived digital elevation model (DEM) from 2008, and total scaled wood volumes of 8 sample piles disassembled November 2011. A weak but significant negative relationship was found between pile packing ratio and pile volume. Block level avoidable+unavoidable residue pile wood volumes from the WRS method (20.0 m3 ha-1 SE 2.8) were 30%-50% of the geometric (69.0 m3 ha-1 SE 18.0) or five GIS/LiDAR (48.0 to 65.7 m3 ha-1 ) methods. Block volumes using the 2008 LiDAR DEM (unshifted 48.0 m3 ha-1 SE 3.9, shifted 53.6 m3 ha-1 SE 4.2) to account for pre-existing humps or hollows beneath piles were not different from those using the 2011 LiDAR DEM (50.3 m3 ha-1 SE 4.0). The block volume ratio (total residue pile / harvest scale, wood volumes x 100) for the WRS method (3.3% SE 0.45) was lower than for LiDAR 2011 method (8.1% SE 0.31). Using wood densities from in situ samples and LiDAR 2011 method wood volumes, total residue pile wood biomass in the blocks was 21.5 t dry mass ha-1 (SE 1.9). Post-burn charred residues were ~1.5 t dry mass ha-1 resulting in C emission estimates of 10 t C ha-1 (SE 0.91), assuming 50% C, and equivalent to 2 - 3 years of pre-harvest stand C uptake (NEP 4.8 t C ha-1 y-1 SE 0.58). Results suggest the WRS method may underestimate residue pile wood volumes, while the geometric method may overestimate depending on packing ratio used. While remote sensing methods reduce uncertainty in estimating volumes or areas of all piles in a block, quantification of packing ratios remains a significant source of uncertainty in determining block level residue pile wood volumes. Additional studies are needed for other forest and harvest types to determine the wider applicability of these findings.
Optical spectrophotometry of Wolf-Rayet galaxies
NASA Technical Reports Server (NTRS)
Vacca, William D.; Conti, Peter S.
1992-01-01
We have obtained long-slit optical spectra of 10 Wolf-Rayet galaxies and four other starburst galaxies. Using the nebular emission lines we have determined the electron temperatures, electron densities, extinctions, oxygen abundances, mass of ionized hydrogen, and numbers of ionizing photons due to hot stars in these galaxies. The various forbidden line ratios clearly indicate a stellar origin for the emission-line spectrum. From the flux of the broad He II 4686 A emission feature we have estimated the number of Wolf-Rayet stars present. We have accounted for the contribution of these stars to the total ionizing flux and have calculated the ratio of the number of these stars to the number of O stars. Wolf-Rayet galaxies are among the youngest examples of the starburst phenomenon, which we observed at a propitious moment.
Effect of Mass Flow on Stack Eductor Performance.
1984-06-01
absolute viscosity, lbf-sec/ft2 - density, Ibm/ft 3 "function of" ENGLISH LETTER SYMBOLS 2 A - area, in , ft B - atmospheric pressure, in Hg c - sonic... absolute temperature ratio T* - tertiary flow to primary flow absolute temperature t ratio - secondary -o primary mass flow rate ratio W* - tertiary to...secondary to primary absolute Tp temperature ratio TiL tertiary to primary absolute -TE temperature ratio secondary to primary flow density ratio
Weiqi Leng; John F. Hunt; Mehdi Tajvidi
2017-01-01
Wet-formed particleboard bonded with cellulose nanofibrils (CNF) was prepared in this work. The effects of density, CNF addition ratio, pressing method, and particle size on the bending strength were evaluated. The results showed that density had the most important effect on the modulus of elasticity (MOE), while the CNF addition ratio had the most important effect on...
Large Scale Density Estimation of Blue and Fin Whales (LSD)
2015-09-30
1 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. Large Scale Density Estimation of Blue and Fin Whales ...sensors, or both. The goal of this research is to develop and implement a new method for estimating blue and fin whale density that is effective over...develop and implement a density estimation methodology for quantifying blue and fin whale abundance from passive acoustic data recorded on sparse
Estimating Small-Body Gravity Field from Shape Model and Navigation Data
NASA Technical Reports Server (NTRS)
Park, Ryan S.; Werner, Robert A.; Bhaskaran, Shyam
2008-01-01
This paper presents a method to model the external gravity field and to estimate the internal density variation of a small-body. We first discuss the modeling problem, where we assume the polyhedral shape and internal density distribution are given, and model the body interior using finite elements definitions, such as cubes and spheres. The gravitational attractions computed from these approaches are compared with the true uniform-density polyhedral attraction and the level of accuracies are presented. We then discuss the inverse problem where we assume the body shape, radiometric measurements, and a priori density constraints are given, and estimate the internal density variation by estimating the density of each finite element. The result shows that the accuracy of the estimated density variation can be significantly improved depending on the orbit altitude, finite-element resolution, and measurement accuracy.
Use of spatial capture–recapture to estimate density of Andean bears in northern Ecuador
Molina, Santiago; Fuller, Angela K.; Morin, Dana J.; Royle, J. Andrew
2017-01-01
The Andean bear (Tremarctos ornatus) is the only extant species of bear in South America and is considered threatened across its range and endangered in Ecuador. Habitat loss and fragmentation is considered a critical threat to the species, and there is a lack of knowledge regarding its distribution and abundance. The species is thought to occur at low densities, making field studies designed to estimate abundance or density challenging. We conducted a pilot camera-trap study to estimate Andean bear density in a recently identified population of Andean bears northwest of Quito, Ecuador, during 2012. We compared 12 candidate spatial capture–recapture models including covariates on encounter probability and density and estimated a density of 7.45 bears/100 km2 within the region. In addition, we estimated that approximately 40 bears used a recently named Andean bear corridor established by the Secretary of Environment, and we produced a density map for this area. Use of a rub-post with vanilla scent attractant allowed us to capture numerous photographs for each event, improving our ability to identify individual bears by unique facial markings. This study provides the first empirically derived density estimate for Andean bears in Ecuador and should provide direction for future landscape-scale studies interested in conservation initiatives requiring spatially explicit estimates of density.
Kroeger, Kevin D.; Swarzenski, Peter W.; Greenwood, Wm. Jason; Reich, Christopher
2007-01-01
To separately quantify the roles of fresh and saline submarine groundwater discharge (SGD), relative to that of rivers, in transporting nutrients to Tampa Bay, Florida, we used three approaches (Darcy's Law calculations, a watershed water budget, and a 222Rn mass-balance) to estimate rate of SGD from the Pinellas peninsula. Groundwater samples were collected in 69 locations in the coastal aquifer to examine biogeochemical conditions, nutrient concentrations and stoichiometry, and salinity structure. Salinity structure was also examined using stationary electrical resistivity measurements. The coastal aquifer along the Pinellas peninsula was chemically reducing in all locations sampled, and that condition influences nitrogen (N) form and mobility of N and PO43−. Concentrations of NH4+, PO43− and ratio of dissolved inorganic N (DIN) to PO43− were all related to measured oxidation/reduction potential (pε) of the groundwater. Ratio of DIN: PO43− was below Redfield ratio in both fresh and saline groundwater. Nitrogen occurred almost exclusively in reduced forms, NH4+ and dissolved organic nitrogen (DON), suggesting that anthropogenic N is exported from the watershed in those forms. In comparison to other SGD studies, rate of PO43− flux in the seepage zone (μM m− 2 d− 1) in Tampa Bay was higher than previous estimates, likely due to 1) high watershed population density, 2) chemically reducing conditions, and 3) high ion concentrations in fresh groundwater. Estimates of freshwater groundwater flux indicate that the ratio of groundwater discharge to stream flow is ∼ 20 to 50%, and that the magnitudes of both the total dissolved nitrogen and PO43− loads due to fresh SGD are ∼ 40 to 100% of loads carried by streams. Estimates of SGD based on radon inventories in near-shore waters were 2 to 5 times greater than the estimates of freshwater groundwater discharge, suggesting that brackish and saline SGD is also an important process in Tampa Bay and results in flux of regenerated N and P from sediment to surface water.
Lamot, D M; Sapkota, D; Wijtten, P J A; van den Anker, I; Heetkamp, M J W; Kemp, B; van den Brand, H
2017-07-01
This study aimed to determine effects of diet density on growth performance, energy balance, and nitrogen (N) balance characteristics of broiler chickens during the first wk of life. Effects of diet density were studied using a dose-response design consisting of 5 dietary fat levels (3.5, 7.0, 10.5, 14.0, and 17.5%). The relative difference in dietary energy level was used to increase amino acid levels, mineral levels, and the premix inclusion level at the same ratio. Chickens were housed in open-circuit climate respiration chambers from d 0 to 7 after hatch. Body weight was measured on d 0 and 7, whereas feed intake was determined daily. For calculation of energy balances, O2 and CO2 exchange were measured continuously and all excreta from d 0 to 7 was collected and analyzed at d 7. Average daily gain (ADG) and average daily feed intake (ADFI) decreased linearly (P = 0.047 and P < 0.001, respectively), whereas gain to feed ratio increased (P < 0.001) with increasing diet density. Gross energy (GE) intake and metabolizable energy (ME) intake were not affected by diet density, but the ratio between ME and GE intake decreased linearly with increasing diet density (P = 0.006). Fat, N, and GE efficiencies (expressed as gain per unit of nutrient intake), heat production, and respiratory exchange ratio (CO2 to O2 ratio) decreased linearly (P < 0.001) as diet density increased. Energy retention, N intake, and N retention were not affected by diet density. We conclude that a higher diet density in the first wk of life of broiler chickens did not affect protein and fat retention, whereas the ME to GE ratio decreased linearly with increased diet density. This suggests that diet density appears to affect digestibility rather than utilization of nutrients. © 2017 Poultry Science Association Inc.
Mangano, Kelsey M; Walsh, Stephen J; Insogna, Karl L; Kenny, Anne M; Kerstetter, Jane E
2011-05-01
Adequate lifelong calcium intake is essential in optimizing bone health. Recent National Health and Nutrition Examination Survey data were used to quantify variation in calcium intake across adult age groups and to relate age-associated changes in calcium intake with energy intake. Additional goals were to assess differences in dietary calcium intake between supplemental calcium users and nonusers and to evaluate associations between age and calcium density in the diet. This cross-sectional analysis determined calcium and energy intake for National Health and Nutrition Examination Survey respondents during 2003-2006. Diet was assessed with 24-hour recall and supplement use via questionnaire. Trends in median intakes for dietary calcium, total calcium, and energy across age categories were assessed using survey analysis methods. Nutrient density was represented using calcium to energy intake ratios. The analyses included data from 9,475 adults. When compared to the 19- to 30-year age group, median dietary calcium intake was lower in the ≥81-year age group by 23% in men (P<0.001) and by 14% in women (P=0.003). These reductions coincided with 35% and 28% decreases, respectively, in median energy intake (P<0.001 for each sex). In contrast, the frequency of calcium supplement use increased (P<0.001) with age in both men and women. Yet, among female supplement users, the decline in median dietary calcium intake was greater than in nonusers (P=0.02). Calcium density in the diet significantly increased relative to age in men and women (P<0.001 for each sex); however, dietary and total calcium to energy ratios were insufficient to meet target ratios inferred by adequate intake standards after age 50 years. Although supplemental calcium use and calcium density were highest in older age groups, they were not sufficient in meeting recommended levels. New approaches to increasing the frequency and level of calcium supplement use to enhance calcium density in diets may be necessary to reduce osteoporosis risk among older Americans. Copyright © 2011 American Dietetic Association. Published by Elsevier Inc. All rights reserved.
Thermoluminescence solid-state nanodosimetry—the peak 5A/5 dosemeter
Fuks, E.; Horowitz, Y. S.; Horowitz, A.; Oster, L.; Marino, S.; Rainer, M.; Rosenfeld, A.; Datz, H.
2011-01-01
The shape of composite peak 5 in the glow curve of LiF:Mg,Ti (TLD-100) following 90Sr/90Y beta irradiation, previously demonstrated to be dependent on the cooling rate used in the 400°C pre-irradiation anneal, is shown to be dependent on ionisation density in both naturally cooled and slow-cooled samples. Following heavy-charged particle high-ionisation density (HID) irradiation, the temperature of composite peak 5 decreases by ∼5°C and the peak becomes broader. This behaviour is attributed to an increase in the relative intensity of peak 5a (a low-temperature satellite of peak 5). The relative intensity of peak 5a is estimated using a computerised glow curve deconvolution code based on first-order kinetics. The analysis uses kinetic parameters for peaks 4 and 5 determined from ancillary measurements resulting in nearly ‘single-glow peak’ curves for both the peaks. In the slow-cooled samples, owing to the increased relative intensity of peak 5a compared with the naturally cooled samples, the precision of the measurement of the 5a/5 intensity ratio is found to be ∼15 % (1 SD) compared with ∼25 % for the naturally cooled samples. The ratio of peak 5a/5 in the slow-cooled samples is found to increase systematically and gradually through a variety of radiation fields from a minimum value of 0.13±0.02 for 90Sr/90Y low-ionisation density irradiations to a maximum value of ∼0.8 for 20 MeV Cu and I ion HID irradiations. Irradiation by low-energy electrons of energy 0.1–1.5 keV results in values between 1.27 and 0.95, respectively. The increasing values of the ratio of peak 5a/5 with increasing ionisation density demonstrate the viability of the concept of the peak 5a/5 nanodosemeter and its potential in the measurement of average ionisation density in a ‘nanoscopic’ mass containing the trapping centre/luminescent centre spatially correlated molecule giving rise to composite peak 5. PMID:21149323
Dog ownership, abundance and potential for bat-borne rabies spillover in Chile.
Astorga, F; Escobar, L E; Poo-Muñoz, D A; Medina-Vogel, G
2015-03-01
Rabies is a viral infectious disease that affects all mammals, including humans. Factors associated with the incidence of rabies include the presence and density of susceptible hosts and potential reservoirs. Currently, Chile is declared free of canine-related rabies, but there is an overpopulation of dogs within the country and an emergence of rabies in bats. Our objectives are to determine potential areas for bat-borne rabies spillover into dog populations expressed as a risk map, and to explore some key features of dog ownership, abundance, and management in Chile. For the risk map, our variables included a dog density surface (dog/km(2)) and a distribution model of bat-borne rabies presence. From literature review, we obtained dog data from 112 municipalities, which represent 33% of the total municipalities (339). At country level, based on previous studies the median human per dog ratio was 4.8, with 64% of houses containing at least one dog, and a median of 0.9 dog per house. We estimate a national median of 5.3 dog/km(2), and a median of 3680 dogs by municipality, from which we estimate a total population of 3.5×10(6) owned dogs. The antirabies vaccination presented a median of 21% of dogs by municipality, and 29% are unrestricted to some degree. Human per dog ratio have a significant (but weak) negative association with human density. Unrestricted dogs have a negative association with human density and income, and a positive association with the number of dogs per house. Considering dog density by municipality, and areas of potential bat-borne rabies occurrence, we found that 163 (∼48%) of Chilean municipalities are at risk of rabies spillover from bats to dogs. Risk areas are concentrated in urban settlements, including Santiago, Chile's capital. To validate the risk map, we included cases of rabies in dogs from the last 27 years; all fell within high-risk areas of our map, confirming the assertive risk prediction. Our results suggest that the use of dog population parameters may be informative to determine risk areas for bat-rabies spillover events. In addition, we confirm that dog abundance is a neglected and emerging public health concern in Chile, particularly within urban areas, which deserves prompt intervention. Copyright © 2015. Published by Elsevier B.V.
Lafuma, Antoine; Colin, Xavier; Solesse, Anne
2008-05-01
We estimated the cost-effectiveness of atorvastatin in the primary prevention of cardiovascular events in patients with type 2 diabetes using data from the Collaborative AtoRvastatin Diabetes Study (CARDS). A total of 2838 patients aged 40-75 years with type 2 diabetes and no documented history of cardiovascular disease and without elevated low-density-lipoprotein cholesterol were recruited in the UK and in Ireland. Patients were randomly allocated to atorvastatin 10mg daily (n=1428) or placebo (n=1410) and were followed up for a median of 3.9 years. Direct treatment costs and effectiveness were analysed to provide estimates of cost per event avoided and cost per life-year gained over the trial period and over a patient's lifetime. The incremental cost-effectiveness ratio over the trial period was estimated to be Euro 3862 per clinical event avoided. Over the patient's lifetime, the incremental cost per life-year gained was Euro 2506 when considering cardiovascular deaths, and Euro 1418 per year when considering all-cause death. Primary prevention of cardiovascular disease with atorvastatin is cost-effective in patients with type 2 diabetes, with the incremental cost-effectiveness ratio for this intervention falling within the current acceptance threshold.
Outcomes of Grazing Impacts between Sub-Neptunes in Kepler Multis
NASA Astrophysics Data System (ADS)
Hwang, Jason; Chatterjee, Sourav; Lombardi, James, Jr.; Steffen, Jason H.; Rasio, Frederic
2018-01-01
Studies of high-multiplicity, tightly packed planetary systems suggest that dynamical instabilities are common and affect both the orbits and planet structures, where the compact orbits and typically low densities make physical collisions likely outcomes. Since the structure of many of these planets is such that the mass is dominated by a rocky core, but the volume is dominated by a tenuous gas envelope, the sticky-sphere approximation, used in dynamical integrators, may be a poor model for these collisions. We perform five sets of collision calculations, including detailed hydrodynamics, sampling mass ratios, and core mass fractions typical in Kepler Multis. In our primary set of calculations, we use Kepler-36 as a nominal remnant system, as the two planets have a small dynamical separation and an extreme density ratio. We use an N-body code, Mercury 6.2, to integrate initially unstable systems and study the resultant collisions in detail. We use these collisions, focusing on grazing collisions, in combination with realistic planet models created using gas profiles from Modules for Experiments in Stellar Astrophysics and core profiles using equations of state from Seager et al. to perform hydrodynamic calculations, finding scatterings, mergers, and even a potential planet–planet binary. We dynamically integrate the remnant systems, examine the stability, and estimate the final densities, finding that the remnant densities are sensitive to the core masses, and collisions result in generally more stable systems. We provide prescriptions for predicting the outcomes and modeling the changes in mass and orbits following collisions for general use in dynamical integrators.
FE-XIII Infrared / FE-XIV Green Line Ratio Diagnostics (P55)
NASA Astrophysics Data System (ADS)
Srivastava, A. K.; et al.
2006-11-01
aks.astro.itbhu@gmail.com We consider the first 27-level atomic model of Fe XIII (5.9 < log Te < 6.4 K) to estimate its ground level populations, taking account of electron as well as proton collisional excitations and de-excitations, radiative cascades, radiative excitations and de-excitations. Radiative cascade is important but the effect of dilution factor is negligible at higher electron densities. The 3 P1-3P0 and 3P2-3P1 transitions in the ground configuration 3s2 3p2 of Fe XIII result in two forbidden coronal emission lines in the infrared region, namely 10747 Å and 10798 Å., while the 5303 Å green line is formed in the 3s2 3p 2 2 ground configuration of Fe XIV as a result of P3 / 2 - P1 / 2 magnetic dipole transition. The line-widths of appropriate pair of forbidden coronal emission lines observed simultaneously can be useful diagnostic tool to deduce temperature and non-thermal velocity in the large scale coronal structures using intensity ratios of the lines as the temperature signature, instead of assuming ion temperature to be equal to the electron temperature. Since the line intensity ratios IG5303/IIR10747 and IG5303/IIR10798 have very week density dependence, they are ideal monitors of temperature mapping in the solar corona.
Significantly Enhanced Energy Storage Density by Modulating the Aspect Ratio of BaTiO3 Nanofibers
Zhang, Dou; Zhou, Xuefan; Roscow, James; Zhou, Kechao; Wang, Lu; Luo, Hang; Bowen, Chris R.
2017-01-01
There is a growing need for high energy density capacitors in modern electric power supplies. The creation of nanocomposite systems based on one-dimensional nanofibers has shown great potential in achieving a high energy density since they can optimize the energy density by exploiting both the high permittivity of ceramic fillers and the high breakdown strength of the polymer matrix. In this paper, BaTiO3 nanofibers (NFs) with different aspect ratio were synthesized by a two-step hydrothermal method and the permittivity and energy storage of the P(VDF-HFP) nanocomposites were investigated. It is found that as the BaTiO3 NF aspect ratio and volume fraction increased the permittivity and maximum electric displacement of the nanocomposites increased, while the breakdown strength decreased. The nanocomposites with the highest aspect ratio BaTiO3 NFs exhibited the highest energy storage density at the same electric field. However, the nanocomposites with the lowest aspect ratio BaTiO3 NFs achieved the maximal energy storage density of 15.48 J/cm3 due to its higher breakdown strength. This contribution provides a potential route to prepare and tailor the properties of high energy density capacitor nanocomposites. PMID:28332636
Significantly Enhanced Energy Storage Density by Modulating the Aspect Ratio of BaTiO3 Nanofibers
NASA Astrophysics Data System (ADS)
Zhang, Dou; Zhou, Xuefan; Roscow, James; Zhou, Kechao; Wang, Lu; Luo, Hang; Bowen, Chris R.
2017-03-01
There is a growing need for high energy density capacitors in modern electric power supplies. The creation of nanocomposite systems based on one-dimensional nanofibers has shown great potential in achieving a high energy density since they can optimize the energy density by exploiting both the high permittivity of ceramic fillers and the high breakdown strength of the polymer matrix. In this paper, BaTiO3 nanofibers (NFs) with different aspect ratio were synthesized by a two-step hydrothermal method and the permittivity and energy storage of the P(VDF-HFP) nanocomposites were investigated. It is found that as the BaTiO3 NF aspect ratio and volume fraction increased the permittivity and maximum electric displacement of the nanocomposites increased, while the breakdown strength decreased. The nanocomposites with the highest aspect ratio BaTiO3 NFs exhibited the highest energy storage density at the same electric field. However, the nanocomposites with the lowest aspect ratio BaTiO3 NFs achieved the maximal energy storage density of 15.48 J/cm3 due to its higher breakdown strength. This contribution provides a potential route to prepare and tailor the properties of high energy density capacitor nanocomposites.
Significantly Enhanced Energy Storage Density by Modulating the Aspect Ratio of BaTiO3 Nanofibers.
Zhang, Dou; Zhou, Xuefan; Roscow, James; Zhou, Kechao; Wang, Lu; Luo, Hang; Bowen, Chris R
2017-03-23
There is a growing need for high energy density capacitors in modern electric power supplies. The creation of nanocomposite systems based on one-dimensional nanofibers has shown great potential in achieving a high energy density since they can optimize the energy density by exploiting both the high permittivity of ceramic fillers and the high breakdown strength of the polymer matrix. In this paper, BaTiO 3 nanofibers (NFs) with different aspect ratio were synthesized by a two-step hydrothermal method and the permittivity and energy storage of the P(VDF-HFP) nanocomposites were investigated. It is found that as the BaTiO 3 NF aspect ratio and volume fraction increased the permittivity and maximum electric displacement of the nanocomposites increased, while the breakdown strength decreased. The nanocomposites with the highest aspect ratio BaTiO 3 NFs exhibited the highest energy storage density at the same electric field. However, the nanocomposites with the lowest aspect ratio BaTiO 3 NFs achieved the maximal energy storage density of 15.48 J/cm 3 due to its higher breakdown strength. This contribution provides a potential route to prepare and tailor the properties of high energy density capacitor nanocomposites.
Carbon in the outer solar system
NASA Technical Reports Server (NTRS)
Simonelli, D. P.; Pollack, J. B.; Mckay, C. P.
1990-01-01
The satellites of Uranus, with densities between 1.3 and 1.7 g cm(-3) (from Voyager 2 observations) and the Pluto-Charon system, with a mean density of just above 1.8 g cm(-3) (from terrestrial observations of mutual eclipse events), are too dense to have a significant amount of methane ice in their interiors. However, the observed densities do not preclude contributions from such organic materials as the acid-insoluble residue in carbonaceous chondrites and laboratory-produced tholins, which have densities on the order of approximately 1.5 g cm(-3). These and other considerations have led researchers to investigate the carbon mass budget in the outer solar system, with an emphasis on understanding the contribution of organic materials. Modeling of the interiors of Pluto and Charon (being carried out by R. Reynolds and A. Summers of NASA/Ames), assuming rock and water ice as the only constituents, suggests a silicate mass fraction for this system on the order of 0.65 to 0.70. The present work includes the most recent estimates of the C/H enhancements and high z/low z ratios of the giant planets (Pollack and Bodenheimer, 1987), and involves a more careful estimation of the high z/low z mass ratio expected from solar abundances than was used in Pollack et al. (1986), including the influence of the fraction of C in CO on the amount of condensed water ice. These calculations indicate that for a particular fraction of C in CO and a given fraction of C-bearing planetesimals that dissolve in the envelope (most likely in the range 0.50 to 0.75), (1) Jupiter and Saturn require a larger fraction of C in condensed materials than Uranus and Neptune, but (2) the Jupiter and Saturn results are much less strongly constrained by the error bars on the observed C/H enhancements and high z/low z ratios than is the case for Uranus and Neptune. The clearest result is that in the region of the solar nebula near Uranus and Neptune, the minority of carbon that is not in gaseous CO (1) must include a nonzero amount of condensed material, but (2) is most likely not condensed material alone, i.e., there must be a third carbon-bearing component besides condensed material and gaseous CO. Given the implied dearth of methane ice, the condensed carbon is likely dominated by organic material, and the third component present in addition to CO and organics is assumed to be CH4 gas.
NASA Astrophysics Data System (ADS)
Giorli, Giacomo; Drazen, Jeffrey C.; Neuheimer, Anna B.; Copeland, Adrienne; Au, Whitlow W. L.
2018-01-01
Pelagic animals that form deep sea scattering layers (DSLs) represent an important link in the food web between zooplankton and top predators. While estimating the composition, density and location of the DSL is important to understand mesopelagic ecosystem dynamics and to predict top predators' distribution, DSL composition and density are often estimated from trawls which may be biased in terms of extrusion, avoidance, and gear-associated biases. Instead, location and biomass of DSLs can be estimated from active acoustic techniques, though estimates are often in aggregate without regard to size or taxon specific information. For the first time in the open ocean, we used a DIDSON sonar to characterize the fauna in DSLs. Estimates of the numerical density and length of animals at different depths and locations along the Kona coast of the Island of Hawaii were determined. Data were collected below and inside the DSLs with the sonar mounted on a profiler. A total of 7068 animals were counted and sized. We estimated numerical densities ranging from 1 to 7 animals/m3 and individuals as long as 3 m were detected. These numerical densities were orders of magnitude higher than those estimated from trawls and average sizes of animals were much larger as well. A mixed model was used to characterize numerical density and length of animals as a function of deep sea layer sampled, location, time of day, and day of the year. Numerical density and length of animals varied by month, with numerical density also a function of depth. The DIDSON proved to be a good tool for open-ocean/deep-sea estimation of the numerical density and size of marine animals, especially larger ones. Further work is needed to understand how this methodology relates to estimates of volume backscatters obtained with standard echosounding techniques, density measures obtained with other sampling methodologies, and to precisely evaluate sampling biases.
Electron-density-sensitive Line Ratios of Fe xiii– xvi from Laboratory Sources Compared to CHIANTI
Weller, M. E.; Beiersdorfer, P.; Soukhanovskii, V. A.; ...
2018-02-15
We present electron-density-sensitive line ratios for Fe xiii– xvi measured in the spectral wavelength range of 200–440 Å and an electron density range of (1-4) × 10 13 cm -3. The results provide a test at the high-density limit of density-sensitive line ratios useful for astrophysical studies. The measurements were performed on the National Spherical Torus Experiment-Upgrade, where electron densities were measured independently by the laser Thomson scattering diagnostic. Spectra were collected with a flat-field grazing-incidence spectrometer, which provided a spectral resolution of up to 0.3 Å, i.e., high resolution across the broad wavelength range. The response of the instrumentmore » was relatively calibrated using spectroscopic techniques in order to improve accuracy. Lastly, the line ratios are compared to other laboratory sources and the latest version of CHIANTI (8.0.2), and an agreement within 30% is found.« less
Electron-density-sensitive Line Ratios of Fe xiii– xvi from Laboratory Sources Compared to CHIANTI
DOE Office of Scientific and Technical Information (OSTI.GOV)
Weller, M. E.; Beiersdorfer, P.; Soukhanovskii, V. A.
We present electron-density-sensitive line ratios for Fe xiii– xvi measured in the spectral wavelength range of 200–440 Å and an electron density range of (1-4) × 10 13 cm -3. The results provide a test at the high-density limit of density-sensitive line ratios useful for astrophysical studies. The measurements were performed on the National Spherical Torus Experiment-Upgrade, where electron densities were measured independently by the laser Thomson scattering diagnostic. Spectra were collected with a flat-field grazing-incidence spectrometer, which provided a spectral resolution of up to 0.3 Å, i.e., high resolution across the broad wavelength range. The response of the instrumentmore » was relatively calibrated using spectroscopic techniques in order to improve accuracy. Lastly, the line ratios are compared to other laboratory sources and the latest version of CHIANTI (8.0.2), and an agreement within 30% is found.« less
Kim, Jin Sug; Kim, Weon; Woo, Jong Shin; Lee, Tae Won; Ihm, Chun Gyoo; Kim, Yang Gyoon; Moon, Joo Young; Lee, Sang Ho; Jeong, Myung Ho; Jeong, Kyung Hwan
2016-01-01
A high serum triglyceride to high-density lipoprotein cholesterol (TG/HDL-C) ratio has been reported as an independent predictor for cardiovascular events in the general population. However, the prognostic value of this ratio in patients with renal dysfunction is unclear. We examined the association of the TG/HDL-C ratio with major adverse cardiovascular events (MACEs) according to renal function in patients with acute myocardial infarction (AMI). This study was based on the Korea Acute Myocardial Infarction Registry database. Of 13,897 patients who were diagnosed with AMI, the study population included the 7,016 patients with available TG/HDL-C ratio data. Patients were stratified into three groups according to their estimated glomerular filtration rate (eGFR), and the TG/HDL-C ratio was categorized into tertiles. We investigated 12-month MACEs, which included cardiac death, myocardial infarction, and repeated percutaneous coronary intervention or coronary artery bypass grafting. During the 12-month follow up period, 593 patients experienced MACEs. There was a significant association between the TG/HDL-C ratio and MACEs (p<0.001) in the entire study cohort. Having a TG/HDL-C ratio value in the highest tertile of TG/HDL-C ratio was an independent factor associated with increased risk of MACEs (hazard ratio [HR], 1.56; 95% confidence interval [CI], 1.26-1.93; p<0.001). Then we performed subgroup analyses according to renal function. In patients with normal renal function (eGFR ≥ 90 ml/min/1.73m2) and mild renal dysfunction (eGFR ≥ 60 to < 90ml/min/1.73m2), a higher TG/HDL-C ratio was significantly associated with increased risk of MACEs (HR, 1.64; 95% CI, 1.04-2.60; p = 0.035; and HR, 1.56; 95% CI, 1.14-2.12; p = 0.005, respectively). However, in patients with moderate renal dysfunction (eGFR < 60 ml/min/1.73m2), TG/HDL-C ratio lost its predictive value on the risk of MACEs (HR, 1.23; 95% CI, 0.82-1.83; p = 0.317). In patients with AMI, TG/HDL-C ratio is a useful independent predictor of 12-month MACEs. However, this ratio does not have predictive power in patients with moderate renal dysfunction.
Constraining the Galactic structure parameters with the XSTPS-GAC and SDSS photometric surveys
NASA Astrophysics Data System (ADS)
Chen, B.-Q.; Liu, X.-W.; Yuan, H.-B.; Robin, A. C.; Huang, Y.; Xiang, M.-S.; Wang, C.; Ren, J.-J.; Tian, Z.-J.; Zhang, H.-W.
2017-01-01
Photometric data from the Xuyi Schmidt Telescope Photometric Survey of the Galactic Anticentre (XSTPS-GAC) and the Sloan Digital Sky Survey (SDSS) are used to derive the global structure parameters of the smooth components of the Milky Way. The data, which cover nearly 11 000 deg2 sky area and the full range of Galactic latitude, allow us to construct a globally representative Galactic model. The number density distribution of Galactic halo stars is fitted with an oblate spheroid that decays by power law. The best fitting yields an axis ratio and a power-law index κ = 0.65 and p = 2.79, respectively. The r-band differential star counts of three dwarf samples are then fitted with a Galactic model. The best-fitting model yielded by a Markov Chain Monte Carlo analysis has thin and thick disc scale heights and lengths of H1 = 322 pc and L1 = 2343 pc, H2 = 794 pc and L2 = 3638 pc, a local thick-to-thin disc density ratio of f2 = 11 per cent, and a local density ratio of the oblate halo to the thin disc of fh = 0.16 per cent. The measured star count distribution, which is in good agreement with the above model for most of the sky area, shows a number of statistically significant large-scale overdensities, including some of the previously known substructures, such as the Virgo overdensity and the so-called `north near structure', and a new feature between 150° < l < 240° and -1° < b < -5°, at an estimated distance between 1.0 and 1.5 kpc. The Galactic North-South asymmetry in the anticentre is even stronger than previously thought.
Li, Xin; Deng, You-Ping; Yang, Miao; Wu, Yu-Wen; Sun, Su-Xin; Sun, Jia-Zhong
2016-03-01
To investigate the relationship between triglyceride to high-density lipoprotein cholesterol (TG/HDL-C) ratio and carotid intima-medial thickness (CIMT) in Chinese youth and adolescents with newly diagnosed type 2 diabetes mellitus (T2DM). Ninety-eight subjects aged 10-24 yr with newly-diagnosed T2DM had general inflammation, anthropometric, laboratory and CIMT data collected, and were divided into three groups based on TG/HDL-C tertiles. There were no significant differences in gender, age, fasting plasma glucose (FPG), hemoglobin A1c (HbA1c), and carotid arterial diameter (CAD) among the groups based on TG/HDL-C tertiles. Across TG/HDL-C tertiles, there was a significant progressive increase in body mass index (BMI), systolic blood pressure (SBP), diastolic blood pressure (DBP), homeostasis model assessment-estimated insulin resistance (HOMA-IR), TG, total cholesterol (TC), low-density lipoprotein-cholesterol (LDL-C) and CIMT (all P < 0.01 or P < 0.05), while HDL-C was decreased significantly across the groups (P < 0.01). In general linear regression model, TG/HDL-C was an independent determinant of CIMT even after adjusting for BMI, SBP, DBP, TG, TC, LDL-C, HDL-C, HbA1c and HOMA-IR. TG/HDL-C ratio, the marker of small dense LDL particles, is an independent determinant of CIMT in Chinese youth and adolescents with newly diagnosed T2DM, and may be a simple and helpful tool in predicting the increased CIMT in such patients. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
An analysis of OH excited state absorption lines in DR 21 and K3-50
NASA Astrophysics Data System (ADS)
Jones, K. N.; Doel, R. C.; Field, D.; Gray, M. D.; Walker, R. N. F.
1992-10-01
We present an analysis of the OH absorption line zones observed toward the compact H II regions DR 21 and K3-50. Using as parameters the kinetic and dust temperatures, the H2 number density and the ratio of OH-H2 number densities to the velocity gradient, the model quantitatively reproduces the absorption line data for the six main line transitions in 2 Pi3/2 J = 5/2, 7/2, and 9/2. Observed upper limits for the absorption or emission in the satellite lines of 2 Pi3/2 J = 5/2 are crucial in constraining the range of derived parameters. Physical conditions derived for DR 21 show that the kinetic temperature centers around 140 K, the H2 number density around 10 exp 7/cu cm, and that the OH column density in the excited state absorption zone lies between 1 x 10 exp 15/sq cm and 2 x 10 exp 15/sq cm. Including contributions from a J = 3/2 absorption zone, the total OH column density is more than a factor of 2 lower than estimates based upon LTE (Walmsley et al., 1986). The OH absorption zone in K3-50 tends toward higher density and displays a larger column density, while the kinetic temperature is similar. For both sources, the dust temperature is found to be significantly lower than the kinetic temperature.
Meggiorini, M L; Cipolla, V; Borgoni, G; Nofroni, I; Pala, A; de Felice, C
2012-01-01
The purpose of this study was to examine the possible effects of IGF-1, IGFBP-3 and IGF-1/IGFBP-3 molar ratio on mammographic density and assess whether this relationship was similar in subgroups of pre- and postmenopausal women. A group of 341 Italian women of childbearing age or naturally postmenopausal who had performed mammographic examination at the section of radiology of our department a maximum three months prior to recruitment were enrolled. A blood sample was drawn for determination of IGF-1, IGFBP-3 levels and IGF-1/IGFBP-3 molar ratio was calculated. On the basis of recent mammograms the women were divided into two groups: dense breast (DB) and non-dense breast (NDB). To assess the association between mammographic density and IGF-1, IGFBP-3 and Molar ratio Student's t-test was employed before and after stratified by menopausal status. The analysis of the relationship between mammographic density and plasma levels of IGF-1, IGFBP-3 and IGF-1/IGFBP-3 molar ratio showed that IGF-1 levels and molar ratio varied in the two groups resulting in higher mean values in the DB group whereas IGFBP-3 showed similar values in both groups (DB and NDB). After stratification of the study population by menopausal status, no association was found. Our study provides strong evidence of a crude association between breast density, and plasma levels of IGF-1 and molar ratio. IGF-1 and molar ratio might increase mammographic density and thus the risk of developing breast cancer.
1984-02-01
propellants. This type of propellant produces an erosive exhaust gas,/ whlch is the best condition for evaluating the ablative coating formula - tions. Other...RFCOMMFNDATrIONS 93 i. I Finail Formula lions 93 -..-.... ,.-...... ., ..... .’-.’.....,. .,.,. .. I ... .% " , 4.2 Cost Analysis of Toscanite 95 4.3...ing Pedestal 15 7 Density Plot, Sand, NCO/OH Ratio 1.0 18 P, Density Plot, Glass feads, NCO/OH Ratio 1.0 18 9 Density Plot, Sand, NCO/OH Ratio 0.9 19 10
The dark matter distribution of M87 and NGC 1399
NASA Technical Reports Server (NTRS)
Tsai, John C.
1993-01-01
Recent X-ray observations of clusters of galaxies indicate that, outside the innermost about 100 kpc region, the ratio of dark matter density to baryonic matter density declines with radius. We show that this result is consistent with a cold dark matter simulation, suggesting the presence of dissipationless dark matter in the observed clusters. This is contrary to previous suggestions that dissipational baryonic dark matter is required to explain the decline in the density ratio. The simulation further shows that, in the inner 100 kpc region, the density ratio should rise with radius. We confirm this property in M87 and NGC 1399, which are close enough to allow the determination of the density ratio in the required inner region. X-ray mappings of the dark matter distribution in clusters of galaxies are therefore consistent with the presence of dissipationless dark matter.
Temporal variation in bird counts within a Hawaiian rainforest
Simon, John C.; Pratt, T.K.; Berlin, Kim E.; Kowalsky, James R.; Fancy, S.G.; Hatfield, J.S.
2002-01-01
We studied monthly and annual variation in density estimates of nine forest bird species along an elevational gradient in an east Maui rainforest. We conducted monthly variable circular-plot counts for 36 consecutive months along transects running downhill from timberline. Density estimates were compared by month, year, and station for all resident bird species with sizeable populations, including four native nectarivores, two native insectivores, a non-native insectivore, and two non-native generalists. We compared densities among three elevational strata and between breeding and nonbreeding seasons. All species showed significant differences in density estimates among months and years. Three native nectarivores had higher density estimates within their breeding season (December-May) and showed decreases during periods of low nectar production following the breeding season. All insectivore and generalist species except one had higher density estimates within their March-August breeding season. Density estimates also varied with elevation for all species, and for four species a seasonal shift in population was indicated. Our data show that the best time to conduct counts for native forest birds on Maui is January-February, when birds are breeding or preparing to breed, counts are typically high, variability in density estimates is low, and the likelihood for fair weather is best. Temporal variations in density estimates documented in our study site emphasize the need for consistent, well-researched survey regimens and for caution when drawing conclusions from, or basing management decisions on, survey data.
Models and analysis for multivariate failure time data
NASA Astrophysics Data System (ADS)
Shih, Joanna Huang
The goal of this research is to develop and investigate models and analytic methods for multivariate failure time data. We compare models in terms of direct modeling of the margins, flexibility of dependency structure, local vs. global measures of association, and ease of implementation. In particular, we study copula models, and models produced by right neutral cumulative hazard functions and right neutral hazard functions. We examine the changes of association over time for families of bivariate distributions induced from these models by displaying their density contour plots, conditional density plots, correlation curves of Doksum et al, and local cross ratios of Oakes. We know that bivariate distributions with same margins might exhibit quite different dependency structures. In addition to modeling, we study estimation procedures. For copula models, we investigate three estimation procedures. the first procedure is full maximum likelihood. The second procedure is two-stage maximum likelihood. At stage 1, we estimate the parameters in the margins by maximizing the marginal likelihood. At stage 2, we estimate the dependency structure by fixing the margins at the estimated ones. The third procedure is two-stage partially parametric maximum likelihood. It is similar to the second procedure, but we estimate the margins by the Kaplan-Meier estimate. We derive asymptotic properties for these three estimation procedures and compare their efficiency by Monte-Carlo simulations and direct computations. For models produced by right neutral cumulative hazards and right neutral hazards, we derive the likelihood and investigate the properties of the maximum likelihood estimates. Finally, we develop goodness of fit tests for the dependency structure in the copula models. We derive a test statistic and its asymptotic properties based on the test of homogeneity of Zelterman and Chen (1988), and a graphical diagnostic procedure based on the empirical Bayes approach. We study the performance of these two methods using actual and computer generated data.
NASA Astrophysics Data System (ADS)
Kadam, Guru Prakash; Mishra, Hiranmaya
2015-09-01
We estimate dissipative properties, viz., shear and bulk viscosities of hadronic matter using relativistic Boltzmann equation in relaxation time approximation within the framework of excluded-volume hadron resonance gas (EHRG) model. We find that at zero baryon chemical potential the shear viscosity to entropy ratio (η /s ) decreases with temperature while at finite baryon chemical potential this ratio shows the same behavior as a function of temperature but reaches close to the Kovtun-Son-Starinets (KSS) bound. Further along the chemical freezeout curve, ratio η /s is almost constant apart from small initial monotonic rise. This observation may have some relevance to the experimental finding that the differential elliptic flow of charged hadrons does not change considerably at lower center-of-mass energy. We further find that bulk viscosity to entropy density (ζ /s ) decreases with temperature while this ratio has higher value at finite baryon chemical potential at higher temperature. Along the freezeout curve ζ /s decreases monotonically at lower center-of-mass energy and then saturates.
Curtis L. VanderSchaaf; Harold E. Burkhart
2010-01-01
Maximum size-density relationships (MSDR) provide natural resource managers useful information about the relationship between tree density and average tree size. Obtaining a valid estimate of how maximum tree density changes as average tree size changes is necessary to accurately describe these relationships. This paper examines three methods to estimate the slope of...
Spatial pattern corrections and sample sizes for forest density estimates of historical tree surveys
Brice B. Hanberry; Shawn Fraver; Hong S. He; Jian Yang; Dan C. Dey; Brian J. Palik
2011-01-01
The U.S. General Land Office land surveys document trees present during European settlement. However, use of these surveys for calculating historical forest density and other derived metrics is limited by uncertainty about the performance of plotless density estimators under a range of conditions. Therefore, we tested two plotless density estimators, developed by...
NASA Astrophysics Data System (ADS)
Gupta, N.; Momjian, E.; Srianand, R.; Petitjean, P.; Noterdaeme, P.; Gyanchandani, D.; Sharma, R.; Kulkarni, S.
2018-06-01
We present the first detection of OH absorption in diffuse gas at z > 0, along with another eight stringent limits on OH column densities for cold atomic gas in galaxies at 0 < z < 0.4. The absorbing gas detected toward Q0248+430 (z q = 1.313) originates from a tidal tail emanating from a highly star-forming galaxy G0248+430 (z g = 0.0519) at an impact parameter of 15 kpc. The measured column density is N(OH) = (6.3 ± 0.8) × 1013 ≤ft(\\tfrac{{T}ex}}{3.5}\\right)≤ft(\\tfrac{1.0}{{f}cOH}}\\right) cm‑2, where {f}cOH} and T ex are the covering factor and the excitation temperature of the absorbing gas, respectively. In our Galaxy, the column densities of OH in diffuse clouds are of the order of N(OH) ∼ 1013–14 cm‑2. From the incidence (number per unit redshift; n 21) of H I 21 cm absorbers at 0.5 < z < 1 and assuming no redshift evolution, we estimate the incidence of OH absorbers (with log N(OH) > 13.6) to be n OH = {0.008}-0.008+0.018 at z ∼ 0.1. Based on this we expect to detect {10}-10+20 such OH absorbers from the MeerKAT Absorption Line Survey (MALS). Using H I 21 cm and OH 1667 MHz absorption lines detected toward Q0248+430, we estimate (ΔF/F) = (5.2 ± 4.5) × 10‑6, where F\\equiv {g}p{({α }2/μ )}1.57, α is the fine structure constant, μ is the electron–proton mass ratio, and g p is the proton gyromagnetic ratio. This corresponds to Δα/α(z = 0.0519) = (1.7 ± 1.4) × 10‑6, which is among the stringent constraints on the fractional variation of α.
Evaluation of line transect sampling based on remotely sensed data from underwater video
Bergstedt, R.A.; Anderson, D.R.
1990-01-01
We used underwater video in conjunction with the line transect method and a Fourier series estimator to make 13 independent estimates of the density of known populations of bricks lying on the bottom in shallows of Lake Huron. The pooled estimate of density (95.5 bricks per hectare) was close to the true density (89.8 per hectare), and there was no evidence of bias. Confidence intervals for the individual estimates included the true density 85% of the time instead of the nominal 95%. Our results suggest that reliable estimates of the density of objects on a lake bed can be obtained by the use of remote sensing and line transect sampling theory.
The 5-10 keV AGN luminosity function at 0.01 < z < 4.0
NASA Astrophysics Data System (ADS)
Fotopoulou, S.; Buchner, J.; Georgantopoulos, I.; Hasinger, G.; Salvato, M.; Georgakakis, A.; Cappelluti, N.; Ranalli, P.; Hsu, L. T.; Brusa, M.; Comastri, A.; Miyaji, T.; Nandra, K.; Aird, J.; Paltani, S.
2016-03-01
The active galactic nuclei (AGN) X-ray luminosity function traces actively accreting supermassive black holes and is essential for the study of the properties of the AGN population, black hole evolution, and galaxy-black hole coevolution. Up to now, the AGN luminosity function has been estimated several times in soft (0.5-2 keV) and hard X-rays (2-10 keV). AGN selection in these energy ranges often suffers from identification and redshift incompleteness and, at the same time, photoelectric absorption can obscure a significant amount of the X-ray radiation. We estimate the evolution of the luminosity function in the 5-10 keV band, where we effectively avoid the absorbed part of the spectrum, rendering absorption corrections unnecessary up to NH ~ 1023 cm-2. Our dataset is a compilation of six wide, and deep fields: MAXI, HBSS, XMM-COSMOS, Lockman Hole, XMM-CDFS, AEGIS-XD, Chandra-COSMOS, and Chandra-CDFS. This extensive sample of ~1110 AGN (0.01 < z < 4.0, 41 < log Lx < 46) is 98% redshift complete with 68% spectroscopic redshifts. For sources lacking a spectroscopic redshift estimation we use the probability distribution function of photometric redshift estimation specifically tuned for AGN, and a flat probability distribution function for sources with no redshift information. We use Bayesian analysis to select the best parametric model from simple pure luminosity and pure density evolution to more complicated luminosity and density evolution and luminosity-dependent density evolution (LDDE). We estimate the model parameters that describe best our dataset separately for each survey and for the combined sample. We show that, according to Bayesian model selection, the preferred model for our dataset is the LDDE. Our estimation of the AGN luminosity function does not require any assumption on the AGN absorption and is in good agreement with previous works in the 2-10 keV energy band based on X-ray hardness ratios to model the absorption in AGN up to redshift three. Our sample does not show evidence of a rapid decline of the AGN luminosity function up to redshift four.
NASA Astrophysics Data System (ADS)
Ulrich, Martina; Klemp, Marisa; Darvin, Maxim E.; König, Karsten; Lademann, Jürgen; Meinke, Martina C.
2013-06-01
The standard diagnostic procedure for basal cell carcinoma (BCC) is invasive tissue biopsy with time-consuming histological examination. To reduce the number of biopsies, noninvasive optical methods have been developed providing high-resolution skin examination. We present direct comparison of a reflectance confocal microscope (RLSM) and a multiphoton tomograph (MPT) for BCC diagnosis. Both systems are applied to nine patients prior to surgery, and the results are analyzed, including histological results. Both systems prove suitable for detecting typical characteristics of BCC in various stages. The RLSM allows large horizontal overview images to be obtained, enabling the investigator to find the regions of interest quickly, e.g., BCC nests. Elongated cells and palisading structures are easily recognized using both methods. Due to the higher resolution, changes in nucleus diameter or cytoplasm could be visualized with the MPT. Therefore, the nucleus diameter, nucleus/cytoplasm ratio, and cell density are estimated for normal and BCC cells using the MPT. The nucleus of elongated BCC cells is significantly longer than other measured normal skin cells, whereas the cell density and nucleus/cytoplasm ratio of BCC cannot be significantly distinguished from granular cells.
NASA Astrophysics Data System (ADS)
Cadillon, Jérémy; Saksena, Rajat; Pearlstein, Arne J.
2016-12-01
By replacing the "heavy" silicone oil used in the oil phase of Saksena, Christensen, and Pearlstein ["Surrogate immiscible liquid pairs with refractive indexes matchable over a wide range of density and viscosity ratios," Phys. Fluids 27, 087103 (2015)] by one with a twentyfold higher viscosity, and replacing the "light" silicone oil in that work by one with a viscosity fivefold lower and a density about 10% lower, we have greatly extended the range of viscosity ratio accessible by index-matching the adjustable-composition oil phase to an adjustable-composition 1,2-propanediol + CsBr + H2O aqueous phase and have also extended the range of accessible density ratios. The new system of index-matchable surrogate immiscible liquids is capable of achieving the density and viscosity ratios for liquid/liquid systems consisting of water with the entire range of light or medium crude oils over the temperature range from 40 °F (4.44 °C) to 200 °F (93.3 °C) and can access the density and viscosity ratios for water with some heavy crude oils over part of the same temperature range. It also provides a room-temperature, atmospheric-pressure surrogate for the liquid CO2 + H2O system at 0 °C over almost all of the pressure range of interest in sub-seabed CO2 sequestration.
The Improved Estimation of Ratio of Two Population Proportions
ERIC Educational Resources Information Center
Solanki, Ramkrishna S.; Singh, Housila P.
2016-01-01
In this article, first we obtained the correct mean square error expression of Gupta and Shabbir's linear weighted estimator of the ratio of two population proportions. Later we suggested the general class of ratio estimators of two population proportions. The usual ratio estimator, Wynn-type estimator, Singh, Singh, and Kaur difference-type…
Li, Songfeng; Wei, Jun; Chan, Heang-Ping; Helvie, Mark A; Roubidoux, Marilyn A; Lu, Yao; Zhou, Chuan; Hadjiiski, Lubomir M; Samala, Ravi K
2018-01-09
Breast density is one of the most significant factors that is associated with cancer risk. In this study, our purpose was to develop a supervised deep learning approach for automated estimation of percentage density (PD) on digital mammograms (DMs). The input 'for processing' DMs was first log-transformed, enhanced by a multi-resolution preprocessing scheme, and subsampled to a pixel size of 800 µm × 800 µm from 100 µm × 100 µm. A deep convolutional neural network (DCNN) was trained to estimate a probability map of breast density (PMD) by using a domain adaptation resampling method. The PD was estimated as the ratio of the dense area to the breast area based on the PMD. The DCNN approach was compared to a feature-based statistical learning approach. Gray level, texture and morphological features were extracted and a least absolute shrinkage and selection operator was used to combine the features into a feature-based PMD. With approval of the Institutional Review Board, we retrospectively collected a training set of 478 DMs and an independent test set of 183 DMs from patient files in our institution. Two experienced mammography quality standards act radiologists interactively segmented PD as the reference standard. Ten-fold cross-validation was used for model selection and evaluation with the training set. With cross-validation, DCNN obtained a Dice's coefficient (DC) of 0.79 ± 0.13 and Pearson's correlation (r) of 0.97, whereas feature-based learning obtained DC = 0.72 ± 0.18 and r = 0.85. For the independent test set, DCNN achieved DC = 0.76 ± 0.09 and r = 0.94, while feature-based learning achieved DC = 0.62 ± 0.21 and r = 0.75. Our DCNN approach was significantly better and more robust than the feature-based learning approach for automated PD estimation on DMs, demonstrating its potential use for automated density reporting as well as for model-based risk prediction.
NASA Astrophysics Data System (ADS)
Tran, Duong Duy
The statistics of broadband acoustic signal transmissions in a random continental shelf waveguide are characterized for the fully saturated regime. The probability distribution of broadband signal energies after saturated multi-path propagation is derived using coherence theory. The frequency components obtained from Fourier decomposition of a broadband signal are each assumed to be fully saturated, where the energy spectral density obeys the exponential distribution with 5.6 dB standard deviation and unity scintillation index. When the signal bandwidth and measurement time are respectively larger than the correlation bandwidth and correlation time of its energy spectral density components, the broadband signal energy obtained by integrating the energy spectral density across the signal bandwidth then follows the Gamma distribution with standard deviation smaller than 5.6 dB and scintillation index less than unity. The theory is verified with broadband transmissions in the Gulf of Maine shallow water waveguide in the 300-1200 Hz frequency range. The standard deviations of received broadband signal energies range from 2.7 to 4.6 dB for effective bandwidths up to 42 Hz, while the standard deviations of individual energy spectral density components are roughly 5.6 dB. The energy spectral density correlation bandwidths of the received broadband signals are found to be larger for signals with higher center frequency. Sperm whales in the New England continental shelf and slope were passively localized, in both range and bearing using a single low-frequency (< 2500 Hz), densely sampled, towed horizontal coherent hydrophone array system. Whale bearings were estimated using time-domain beamforming that provided high coherent array gain in sperm whale click signal-to-noise ratio. Whale ranges from the receiver array center were estimated using the moving array triangulation technique from a sequence of whale bearing measurements. The dive profile was estimated for a sperm whale in the shallow waters of the Gulf of Maine with 160 m water-column depth, located close to the array's near-field where depth estimation was feasible by employing time difference of arrival of the direct and multiply reflected click signals received on the array. The dependence of broadband energy on bandwidth and measurement time was verified employing recorded sperm whale clicks in the Gulf of Maine.
NASA Astrophysics Data System (ADS)
Li, Songfeng; Wei, Jun; Chan, Heang-Ping; Helvie, Mark A.; Roubidoux, Marilyn A.; Lu, Yao; Zhou, Chuan; Hadjiiski, Lubomir M.; Samala, Ravi K.
2018-01-01
Breast density is one of the most significant factors that is associated with cancer risk. In this study, our purpose was to develop a supervised deep learning approach for automated estimation of percentage density (PD) on digital mammograms (DMs). The input ‘for processing’ DMs was first log-transformed, enhanced by a multi-resolution preprocessing scheme, and subsampled to a pixel size of 800 µm × 800 µm from 100 µm × 100 µm. A deep convolutional neural network (DCNN) was trained to estimate a probability map of breast density (PMD) by using a domain adaptation resampling method. The PD was estimated as the ratio of the dense area to the breast area based on the PMD. The DCNN approach was compared to a feature-based statistical learning approach. Gray level, texture and morphological features were extracted and a least absolute shrinkage and selection operator was used to combine the features into a feature-based PMD. With approval of the Institutional Review Board, we retrospectively collected a training set of 478 DMs and an independent test set of 183 DMs from patient files in our institution. Two experienced mammography quality standards act radiologists interactively segmented PD as the reference standard. Ten-fold cross-validation was used for model selection and evaluation with the training set. With cross-validation, DCNN obtained a Dice’s coefficient (DC) of 0.79 ± 0.13 and Pearson’s correlation (r) of 0.97, whereas feature-based learning obtained DC = 0.72 ± 0.18 and r = 0.85. For the independent test set, DCNN achieved DC = 0.76 ± 0.09 and r = 0.94, while feature-based learning achieved DC = 0.62 ± 0.21 and r = 0.75. Our DCNN approach was significantly better and more robust than the feature-based learning approach for automated PD estimation on DMs, demonstrating its potential use for automated density reporting as well as for model-based risk prediction.
THE LOCAL [C ii] 158 μ m EMISSION LINE LUMINOSITY FUNCTION
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hemmati, Shoubaneh; Yan, Lin; Capak, Peter
We present, for the first time, the local [C ii] 158 μ m emission line luminosity function measured using a sample of more than 500 galaxies from the Revised Bright Galaxy Sample. [C ii] luminosities are measured from the Herschel PACS observations of the Luminous Infrared Galaxies (LIRGs) in the Great Observatories All-sky LIRG Survey and estimated for the rest of the sample based on the far-infrared (far-IR) luminosity and color. The sample covers 91.3% of the sky and is complete at S{sub 60μm} > 5.24 Jy. We calculate the completeness as a function of [C ii] line luminosity and distance, basedmore » on the far-IR color and flux densities. The [C ii] luminosity function is constrained in the range ∼10{sup 7–9} L{sub ⊙} from both the 1/ V{sub max} and a maximum likelihood methods. The shape of our derived [C ii] emission line luminosity function agrees well with the IR luminosity function. For the CO(1-0) and [C ii] luminosity functions to agree, we propose a varying ratio of [C ii]/CO(1-0) as a function of CO luminosity, with larger ratios for fainter CO luminosities. Limited [C ii] high-redshift observations as well as estimates based on the IR and UV luminosity functions are suggestive of an evolution in the [C ii] luminosity function similar to the evolution trend of the cosmic star formation rate density. Deep surveys using the Atacama Large Millimeter Array with full capability will be able to confirm this prediction.« less
Wicke, Jason; Dumas, Genevieve A
2010-02-01
The geometric method combines a volume and a density function to estimate body segment parameters and has the best opportunity for developing the most accurate models. In the trunk, there are many different tissues that greatly differ in density (e.g., bone versus lung). Thus, the density function for the trunk must be particularly sensitive to capture this diversity, such that accurate inertial estimates are possible. Three different models were used to test this hypothesis by estimating trunk inertial parameters of 25 female and 24 male college-aged participants. The outcome of this study indicates that the inertial estimates for the upper and lower trunk are most sensitive to the volume function and not very sensitive to the density function. Although it appears that the uniform density function has a greater influence on inertial estimates in the lower trunk region than in the upper trunk region, this is likely due to the (overestimated) density value used. When geometric models are used to estimate body segment parameters, care must be taken in choosing a model that can accurately estimate segment volumes. Researchers wanting to develop accurate geometric models should focus on the volume function, especially in unique populations (e.g., pregnant or obese individuals).
NASA Astrophysics Data System (ADS)
Saksena, Rajat; Christensen, Kenneth T.; Pearlstein, Arne J.
2015-08-01
In liquid-liquid flows, use of optical diagnostics is limited by interphase refractive index mismatch, which leads to optical distortion and complicates data interpretation, and sometimes also by opacity. Both problems can be eliminated using a surrogate pair of immiscible index-matched transparent liquids, whose density and viscosity ratios match corresponding ratios for the original liquid pair. We show that a wide range of density and viscosity ratios is accessible using aqueous solutions of 1,2-propanediol and CsBr (for which index, density, and viscosity are available), and solutions of light and heavy silicone oils and 1-bromooctane (for which we measured the same properties at 119 compositions). For each liquid phase, polynomials in the composition variables, least-squares fitted to index and density and to the logarithm of kinematic viscosity, were used to determine accessible density and viscosity ratios for each matchable index. Index-matched solution pairs can be prepared with density and viscosity ratios equal to those for water-liquid CO2 at 0 °C over a range of pressure (allowing water-liquid CO2 behavior at inconveniently high pressure to be simulated by 1-bar experiments), and for water-crude oil and water-trichloroethylene (avoiding opacity and toxicity problems, respectively), each over a range of temperature. For representative index-matched solutions, equilibration changes index, density, and viscosity only slightly, and mass spectrometry and elemental analysis show that no component of either phase has significant interphase solubility. Finally, procedures are described for iteratively reducing the residual index mismatch in surrogate solution pairs prepared on the basis of approximate polynomial fits to experimental data, and for systematically dealing with nonzero interphase solubility.
Stopbands in the existence domains of acoustic solitons
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nsengiyumva, F., E-mail: franco.nseng@gmail.com; Hellberg, M. A., E-mail: hellberg@ukzn.ac.za; Mace, R. L., E-mail: macer@ukzn.ac.za
2014-10-15
A fully nonlinear Sagdeev pseudopotential approach is used to study the existence domain of fast mode ion-acoustic solitons in a three-species plasma composed of cold and warm adiabatic positive ion species and Boltzmann electrons. It is shown that for appropriate values of the cold-to-warm ion charge-to-mass ratio, μ, and the effective warm ion-to-electron temperature ratio, τ, there is a range in cold to warm ion charge density ratio, f, over which a stopband in soliton speed exists. Solitons do not propagate in the stopband, although they can occur for both higher and lower speeds. The stopbands are associated with amore » limiting curve of the existence domain that is double-valued in speed for a range of values of f. Analytical estimates of the upper and lower limits of τ and μ that support stopbands are found. It is suggested that, inter alia, the analysis should be applicable to the solar wind plasma.« less
Costa, Tarso de M M; Soares-Gomes, Abilio
2015-12-30
Fiddler crabs Uca rapax were analyzed in three mangrove areas located in both a lagoon and estuarine system in order to study the influence of eutrophication on their population dynamics and production. Populations at the three sites showed a biased sex ratio. Densities were similar at the three sites, but biomass was higher at the lagoon system. Despite biomass being higher at the most eutrophic site, this site exhibited the lowest production. Regarding age structure, the population inhabiting the less eutrophic site mainly comprised younger crabs. The lower production and smaller P/B ratio found in the more eutrophic site were most likely consequences of a high mortality rate and an aged population. Our study evidences the high plasticity of the fiddler crab U. rapax, and confirms secondary production and P/B ratio estimates as useful tools to assess the effects of environmental change. Copyright © 2015 Elsevier Ltd. All rights reserved.
Densities and abundances of hot cometary ions in the coma of P/Halley
NASA Technical Reports Server (NTRS)
Neugebauer, M.; Goldstein, R.; Goldstein, B. E.; Fuselier, S. A.; Balsiger, H.; Ip, W.-H.
1991-01-01
On its flight by P/Halley, the Giotto spacecraft carried a High Energy Range Spectrometer (HERS) for measuring the properties of cometary ions picked up by the solar wind in the nearly collisionless regions of the coma. Preliminary estimates of the ion densities observed by HERS were reevaluated and extended; density profiles along the Giotto trajectory are presented for 13 values of ion mass/charge. Comparison with the physical-chemical model of the interaction of sunlight and the solar wind with the comet by other researchers reveals that, with the exception of protons and H2(+), all ion densities were at least an order of magnitude higher than predicted. The high ion densities cannot be explained on the basis of compression of the plasma, but require additional or stronger ionization mechanisms. Ratios of the densities of different ion species reveal an overabundance of carbonaceous material and an underabundance of H2(+) compared to the predictions of the Schmidt. While the densities of solar wind ions (H(+) and He(++)) changed sharply across a magnetic discontinuity located 1.35(10)(exp 5) km from the comet, this feature, which has been called both the 'cometopause' and the 'magnetic pileup boundary' was barely distinguishable in the density profiles of hot cometary ions. This result is consistent with the interpretation that the magnetic pileup boundary detected by Giotto was caused by a discontinuity in the solar wind and is not an intrinsic feature of the interaction of the solar wind with an active comet.
Wu, Jianwei; Chen, Shengyun; Liu, Liping; Gao, Xiang; Zhou, Yong; Wang, Chunxue; Zhang, Qian; Wang, Anxin; Hussain, Mohammed; Sun, Baoying; Wu, Shouling; Zhao, Xingquan
2013-06-01
To compare the predictive value of serum low-density lipoprotein (LDL) cholesterol and non-high-density lipoprotein (non-HDL) cholesterol levels for ischemic stroke in the Chinese population. We performed a four-year cohort study of 95 778 men and women, aged 18-98 years, selected from the Kailuan study (2006-2007). Baseline LDL cholesterol levels were estimated using direct test method. Total cholesterol levels were estimated using endpoint test method. The predictive values of LDL cholesterol and non-HDL cholesterol for ischemic stroke were compared. During the follow-up period, there were 1153 incident cases of ischemic stroke. The hazard ratio (HR) for ischemic stroke in the top quintile of LDL cholesterol was the highest among five quintiles (HR: 1·25; 95% confidence interval (CI), 1·01-1·53). The HR in the top quintile of non-HDL cholesterol for ischemic stroke was also the highest among five quintiles (HR: 1·53; 95% CI, 1·24-1·88). Analysis of trends showed a significant positive relationship between ischemic stroke incidence and serum LDL cholesterol level, and non-HDL cholesterol level, respectively (both P < 0·05). The area under the curve of LDL cholesterol and non-HDL cholesterol for ischemic stroke was 0·51 and 0·56, respectively (P < 0·05 for the difference). Serum Non-HDL cholesterol level is a stronger predictor for the risk of ischemic stroke than serum LDL cholesterol level in the Chinese population.
NASA Technical Reports Server (NTRS)
Garber, Donald P.
1993-01-01
A probability density function for the variability of ensemble averaged spectral estimates from helicopter acoustic signals in Gaussian background noise was evaluated. Numerical methods for calculating the density function and for determining confidence limits were explored. Density functions were predicted for both synthesized and experimental data and compared with observed spectral estimate variability.
Chen, Rongda; Wang, Ze
2013-01-01
Recovery rate is essential to the estimation of the portfolio's loss and economic capital. Neglecting the randomness of the distribution of recovery rate may underestimate the risk. The study introduces two kinds of models of distribution, Beta distribution estimation and kernel density distribution estimation, to simulate the distribution of recovery rates of corporate loans and bonds. As is known, models based on Beta distribution are common in daily usage, such as CreditMetrics by J.P. Morgan, Portfolio Manager by KMV and Losscalc by Moody's. However, it has a fatal defect that it can't fit the bimodal or multimodal distributions such as recovery rates of corporate loans and bonds as Moody's new data show. In order to overcome this flaw, the kernel density estimation is introduced and we compare the simulation results by histogram, Beta distribution estimation and kernel density estimation to reach the conclusion that the Gaussian kernel density distribution really better imitates the distribution of the bimodal or multimodal data samples of corporate loans and bonds. Finally, a Chi-square test of the Gaussian kernel density estimation proves that it can fit the curve of recovery rates of loans and bonds. So using the kernel density distribution to precisely delineate the bimodal recovery rates of bonds is optimal in credit risk management.
Chen, Rongda; Wang, Ze
2013-01-01
Recovery rate is essential to the estimation of the portfolio’s loss and economic capital. Neglecting the randomness of the distribution of recovery rate may underestimate the risk. The study introduces two kinds of models of distribution, Beta distribution estimation and kernel density distribution estimation, to simulate the distribution of recovery rates of corporate loans and bonds. As is known, models based on Beta distribution are common in daily usage, such as CreditMetrics by J.P. Morgan, Portfolio Manager by KMV and Losscalc by Moody’s. However, it has a fatal defect that it can’t fit the bimodal or multimodal distributions such as recovery rates of corporate loans and bonds as Moody’s new data show. In order to overcome this flaw, the kernel density estimation is introduced and we compare the simulation results by histogram, Beta distribution estimation and kernel density estimation to reach the conclusion that the Gaussian kernel density distribution really better imitates the distribution of the bimodal or multimodal data samples of corporate loans and bonds. Finally, a Chi-square test of the Gaussian kernel density estimation proves that it can fit the curve of recovery rates of loans and bonds. So using the kernel density distribution to precisely delineate the bimodal recovery rates of bonds is optimal in credit risk management. PMID:23874558
NASA Astrophysics Data System (ADS)
Chong, Jihyo; Kim, Young J.; Baek, Jongho; Lee, Hanlim
2016-10-01
Major anthropogenic sources of sulphur dioxide in the troposphere include point sources such as power plants and combustion-derived industrial sources. Spatially resolved remote sensing of atmospheric trace gases is desirable for better estimation and validation of emission from those sources. It has been reported that Imaging Differential Optical Absorption Spectroscopy (I-DOAS) technique can provide the spatially resolved two-dimensional distribution measurement of atmospheric trace gases. This study presents the results of I-DOAS observations of SO2 from a large power plant. The stack plume from the Taean coal-fired power plant was remotely sensed with an I-DOAS instrument. The slant column density (SCD) of SO2 was derived by data analysis of the absorption spectra of the scattered sunlight measured by an I-DOAS over the power plant stacks. Two-dimensional distribution of SO2 SCD was obtained over the viewing window of the I-DOAS instrument. The measured SCDs were converted to mixing ratios in order to estimate the rate of SO2 emission from each stack. The maximum mixing ratio of SO2 was measured to be 28.1 ppm with a SCD value of 4.15×1017 molecules/cm2. Based on the exit velocity of the plume from the stack, the emission rate of SO2 was estimated to be 22.54 g/s. Remote sensing of SO2 with an I-DOAS instrument can be very useful for independent estimation and validation of the emission rates from major point sources as well as area sources.
Evaluation of trapping-web designs
Lukacs, P.M.; Anderson, D.R.; Burnham, K.P.
2005-01-01
The trapping web is a method for estimating the density and abundance of animal populations. A Monte Carlo simulation study is performed to explore performance of the trapping web for estimating animal density under a variety of web designs and animal behaviours. The trapping performs well when animals have home ranges, even if the home ranges are large relative to trap spacing. Webs should contain at least 90 traps. Trapping should continue for 5-7 occasions. Movement rates have little impact on density estimates when animals are confined to home ranges. Estimation is poor when animals do not have home ranges and movement rates are rapid. The trapping web is useful for estimating the density of animals that are hard to detect and occur at potentially low densities. ?? CSIRO 2005.
An Efficient Acoustic Density Estimation Method with Human Detectors Applied to Gibbons in Cambodia.
Kidney, Darren; Rawson, Benjamin M; Borchers, David L; Stevenson, Ben C; Marques, Tiago A; Thomas, Len
2016-01-01
Some animal species are hard to see but easy to hear. Standard visual methods for estimating population density for such species are often ineffective or inefficient, but methods based on passive acoustics show more promise. We develop spatially explicit capture-recapture (SECR) methods for territorial vocalising species, in which humans act as an acoustic detector array. We use SECR and estimated bearing data from a single-occasion acoustic survey of a gibbon population in northeastern Cambodia to estimate the density of calling groups. The properties of the estimator are assessed using a simulation study, in which a variety of survey designs are also investigated. We then present a new form of the SECR likelihood for multi-occasion data which accounts for the stochastic availability of animals. In the context of gibbon surveys this allows model-based estimation of the proportion of groups that produce territorial vocalisations on a given day, thereby enabling the density of groups, instead of the density of calling groups, to be estimated. We illustrate the performance of this new estimator by simulation. We show that it is possible to estimate density reliably from human acoustic detections of visually cryptic species using SECR methods. For gibbon surveys we also show that incorporating observers' estimates of bearings to detected groups substantially improves estimator performance. Using the new form of the SECR likelihood we demonstrate that estimates of availability, in addition to population density and detection function parameters, can be obtained from multi-occasion data, and that the detection function parameters are not confounded with the availability parameter. This acoustic SECR method provides a means of obtaining reliable density estimates for territorial vocalising species. It is also efficient in terms of data requirements since since it only requires routine survey data. We anticipate that the low-tech field requirements will make this method an attractive option in many situations where populations can be surveyed acoustically by humans.
Quispe, Renato; Manalac, Raoul J; Faridi, Kamil F; Blaha, Michael J; Toth, Peter P; Kulkarni, Krishnaji R; Nasir, Khurram; Virani, Salim S; Banach, Maciej; Blumenthal, Roger S; Martin, Seth S; Jones, Steven R
2015-09-01
High levels of the triglycerides to high-density lipoprotein cholesterol (TG/HDL-C) ratio are associated with obesity, metabolic syndrome, and insulin resistance. We evaluated variability in the remaining lipid profile, especially remnant lipoprotein particle cholesterol (RLP-C) and its components (very low-density lipoprotein cholesterol subfraction 3 and intermediate-density lipoprotein cholesterol), with variability in the TG/HDL-C ratio in a very large study cohort representative of the general U.S. We examined data from 1,350,908 US individuals who were clinically referred for lipoprotein cholesterol ultracentrifugation (Atherotech, Birmingham, AL) from 2009 to 2011. Demographic information other than age and sex was not available. Changes to the remaining lipid profile across percentiles of the TG/HDL-C ratio were quantified, as well as by three TG/HDL-C cut-off points previously proposed in the literature: 2.5 (male) and 2 (female), 3.75 (male) and 3 (female), and 3.5 (male and female). The mean age of our study population was 58.7 years, and 48% were men. The median TG/HDL-C ratio was 2.2. Across increasing TG/HDL-C ratios, we found steadily increasing levels of RLP-C, non-HDL-C and LDL density. Among the lipid parameters studied, RLP-C and LDL density had the highest relative increase when comparing individuals with elevated TG/HDL-C levels to those with lower TG/HDL-C levels using established cut-off points. Approximately 47% of TG/HDL-C ratio variance was attributable to RLP-C. In the present analysis, a higher TG/HDL-C ratio was associated with an increasingly atherogenic lipid phenotype, characterized by higher RLP-C along with higher non-HDL-C and LDL density. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
Tomlinson, S.A.
1996-01-01
This report compares evapotranspiration estimated with the Bowen-ratio and eddy-correlation methods with evapotranspiration measured by weighing lysimeters for two sparse-canopy sites in eastern Washington. The sites are located in a grassland area (grass lysimeter site) and a sagbrush- covered area (sage lysimeter site) on the Arid Lands Ecology Reserve in Benton County, Washington. Lysimeter data were collected at the sites from August 1990 to November 1994. Bowen-ratio data were collected for varying periods from May 1993 to November 1994. Additional Bowen-ratio data without interchanging air- temperature and vapor-pressure sensors to remove sensor bias (fixed-sensor system) were collected from October 1993 to June 1994. Eddy-correlation data were collected at the grass lysimeter site from March to April 1994, and at the sage lysimeter site from April to May 1994. The comparisons of evapotranspiration determined by the various methods differed considerably, depending on the periods of record being compared and the sites being analyzed. The year 1993 was very wet, with about 50 percent more precipitation than average; 1994 was a very dry year, with only about half the average precipitation. The study showed that on an annual basis, at least in 1994, Bowen-ratio evapotranspiration closely matched lysimeter evapotranspiration. In 1993, Bowen-ratio and lysimeter evapotranspiration comparisons were variable. Evapotranspiration estimated with the Bowen-ratio method averaged 5 percent more than evapotranspiration measured by lysimeters at the grass lysimeter site from October 1993 to November 1994, and 3 percent less than lysimeters at the sage lysimeter site from November 1993 to October 1994. From March 24 to April 5, 1994, at the grass lysimeter site, the Bowen-ratio method estimated 11 percent less, the Bowen-ratio method utilizing the fixed sensor system about 7 percent more, and the eddy-correlation method about 28 percent less evapotranspiration than the lysimeters measured. From May 7 to June 18, 1993, however, the Bowen-ratio method estimated only 54 percent of the evapotranspiration measured by lysimeters at the grass lysimeter site. This large difference possibly may be attributed to Bowen-ratio instrument variability or error, to the density of grasses in the lysimeters being greater than in the surrounding area, or to heating effects on the lysimeters. From September 1 to October 31, 1993, the Bowen-ratio method estimated more than 450 percent more evapotranspiration than was measured by lysimeters at the sage lysimeter site. This difference may have been due to conditions in the lysimeters at the sage lysimeter site that were unrepresentative of natural conditions. The Bowen-ratio instruments measured evapotrans- piration over sagebrush plants outside the lysimeters, which were blooming very heavily, possibly using supplemental ground water or spring water from nearby upslope areas. The sagebrush plants contained by the lysimeters showed very little evapotranspiration, possibly because they were root-bound and had already used all available water. Also, plants in the lysimeters would not have been able to access any supplemental water available to plants outside the confines of the lysimeters. Earlier in 1993, from June 17 to July 12, the Bowen-ratio method estimated only 1 percent less evapotranspiration than determined for the lysimeters at the sage lysimeter site. On the basis of lysimeter measurements from August 1990 to November 1994, cumulative evapotrans- piration ranged from about 97 to 103 percent of the annual precipitation each year. The evapotranspiration measurements made at the grass and sage lysimeter sites, which were based on weight changes in the lysimeters, showed that storage changes became nearly zero each year some time between August and November as average surface soil moisture decreased to about 2 percent and evapotranspiration rates decreased to less than 0.1 millimeter per day.
Greco, Nancy M; Sánchez, Norma E; Liljesthröm, Gerardo G
2005-01-01
Neoseiulus californicus (McGregor) is a promising agent for successful Tetranychus urticae Koch control through conservation techniques, in strawberry crops in La Plata (Buenos Aires, Argentina). In prey-predator interaction, initial relative densities have an important effect on system dynamics. The economic threshold level (ETL) used for this pest in the present study was 50 active mites per leaflet. In our laboratory experiments, initial T. urticae to N. californicus ratio had a significant effect on the population abundance of T. urticae at a 7-day period. When pest/predator ratio was 5/1 (at initial pest densities from 5 to 15 females/leaflet) the final number of active T. urticae/leaflet was significantly lower than the ETL, while at 20 females/leaflet this number did not differ from the ETL. At 7.5/1 ratio, the final number of active T. urticae/leaflet, at initial pest densities from 5 to 15 females/leaflet, reached the ETL without surpassing it. At 10/1 and 15/1 ratios, pest densities exceeded the ETL only at 15 initial T. urticae/leaflet. Most greenhouse and field observations were consistent with the predictions of a graphical model based on experimental results. This predator was very effective in limiting pest densities at a 7-day period and within the range of pest-predator ratios and absolute densities used in this study. Conservation of N. californicus promoting favorable pest/predator ratios may result in early control of T. urticae.
Analysis of Ion Composition Estimation Accuracy for Incoherent Scatter Radars
NASA Astrophysics Data System (ADS)
Martínez Ledesma, M.; Diaz, M. A.
2017-12-01
The Incoherent Scatter Radar (ISR) is one of the most powerful sounding methods developed to estimate the Ionosphere. This radar system determines the plasma parameters by sending powerful electromagnetic pulses to the Ionosphere and analyzing the received backscatter. This analysis provides information about parameters such as electron and ion temperatures, electron densities, ion composition, and ion drift velocities. Nevertheless in some cases the ISR analysis has ambiguities in the determination of the plasma characteristics. It is of particular relevance the ion composition and temperature ambiguity obtained between the F1 and the lower F2 layers. In this case very similar signals are obtained with different mixtures of molecular ions (NO2+ and O2+) and atomic oxygen ions (O+), and consequently it is not possible to completely discriminate between them. The most common solution to solve this problem is the use of empirical or theoretical models of the ionosphere in the fitting of ambiguous data. More recent works take use of parameters estimated from the Plasma Line band of the radar to reduce the number of parameters to determine. In this work we propose to determine the error estimation of the ion composition ambiguity when using Plasma Line electron density measurements. The sensibility of the ion composition estimation has been also calculated depending on the accuracy of the ionospheric model, showing that the correct estimation is highly dependent on the capacity of the model to approximate the real values. Monte Carlo simulations of data fitting at different signal to noise (SNR) ratios have been done to obtain valid and invalid estimation probability curves. This analysis provides a method to determine the probability of erroneous estimation for different signal fluctuations. Also it can be used as an empirical method to compare the efficiency of the different algorithms and methods on when solving the ion composition ambiguity.
Benson, Emily R.; Wipfli, Mark S.; Clapcott, Joanne E.; Hughes, Nicholas F.
2013-01-01
Relationships between environmental variables, ecosystem metabolism, and benthos are not well understood in sub-arctic ecosystems. The goal of this study was to investigate environmental drivers of river ecosystem metabolism and macroinvertebrate density in a sub-arctic river. We estimated primary production and respiration rates, sampled benthic macroinvertebrates, and monitored light intensity, discharge rate, and nutrient concentrations in the Chena River, interior Alaska, over two summers. We employed Random Forests models to identify predictor variables for metabolism rates and benthic macroinvertebrate density and biomass, and calculated Spearman correlations between in-stream nutrient levels and metabolism rates. Models indicated that discharge and length of time between high water events were the most important factors measured for predicting metabolism rates. Discharge was the most important variable for predicting benthic macroinvertebrate density and biomass. Primary production rate peaked at intermediate discharge, respiration rate was lowest at the greatest time since last high water event, and benthic macroinvertebrate density was lowest at high discharge rates. The ratio of dissolved inorganic nitrogen to soluble reactive phosphorus ranged from 27:1 to 172:1. We found that discharge plays a key role in regulating stream ecosystem metabolism, but that low phosphorous levels also likely limit primary production in this sub-arctic stream.
Fingering instabilities and pattern formation in a two-component dipolar Bose-Einstein condensate
NASA Astrophysics Data System (ADS)
Xi, Kui-Tian; Byrnes, Tim; Saito, Hiroki
2018-02-01
We study fingering instabilities and pattern formation at the interface of an oppositely polarized two-component Bose-Einstein condensate with strong dipole-dipole interactions in three dimensions. It is shown that the rotational symmetry is spontaneously broken by fingering instability when the dipole-dipole interactions are strengthened. Frog-shaped and mushroom-shaped patterns emerge during the dynamics due to the dipolar interactions. We also demonstrate the spontaneous density modulation and domain growth of a two-component dipolar BEC in the dynamics. Bogoliubov analyses in the two-dimensional approximation are performed, and the characteristic lengths of the domains are estimated analytically. Patterns resembling those in magnetic classical fluids are modulated when the number ratio of atoms, the trap ratio of the external potential, or tilted polarization with respect to the z direction is varied.
Density estimates of monarch butterflies overwintering in central Mexico
Diffendorfer, Jay E.; López-Hoffman, Laura; Oberhauser, Karen; Pleasants, John; Semmens, Brice X.; Semmens, Darius; Taylor, Orley R.; Wiederholt, Ruscena
2017-01-01
Given the rapid population decline and recent petition for listing of the monarch butterfly (Danaus plexippus L.) under the Endangered Species Act, an accurate estimate of the Eastern, migratory population size is needed. Because of difficulty in counting individual monarchs, the number of hectares occupied by monarchs in the overwintering area is commonly used as a proxy for population size, which is then multiplied by the density of individuals per hectare to estimate population size. There is, however, considerable variation in published estimates of overwintering density, ranging from 6.9–60.9 million ha−1. We develop a probability distribution for overwinter density of monarch butterflies from six published density estimates. The mean density among the mixture of the six published estimates was ∼27.9 million butterflies ha−1 (95% CI [2.4–80.7] million ha−1); the mixture distribution is approximately log-normal, and as such is better represented by the median (21.1 million butterflies ha−1). Based upon assumptions regarding the number of milkweed needed to support monarchs, the amount of milkweed (Asclepias spp.) lost (0.86 billion stems) in the northern US plus the amount of milkweed remaining (1.34 billion stems), we estimate >1.8 billion stems is needed to return monarchs to an average population size of 6 ha. Considerable uncertainty exists in this required amount of milkweed because of the considerable uncertainty occurring in overwinter density estimates. Nevertheless, the estimate is on the same order as other published estimates. The studies included in our synthesis differ substantially by year, location, method, and measures of precision. A better understanding of the factors influencing overwintering density across space and time would be valuable for increasing the precision of conservation recommendations. PMID:28462031
Density estimates of monarch butterflies overwintering in central Mexico
Thogmartin, Wayne E.; Diffendorfer, James E.; Lopez-Hoffman, Laura; Oberhauser, Karen; Pleasants, John M.; Semmens, Brice X.; Semmens, Darius J.; Taylor, Orley R.; Wiederholt, Ruscena
2017-01-01
Given the rapid population decline and recent petition for listing of the monarch butterfly (Danaus plexippus L.) under the Endangered Species Act, an accurate estimate of the Eastern, migratory population size is needed. Because of difficulty in counting individual monarchs, the number of hectares occupied by monarchs in the overwintering area is commonly used as a proxy for population size, which is then multiplied by the density of individuals per hectare to estimate population size. There is, however, considerable variation in published estimates of overwintering density, ranging from 6.9–60.9 million ha−1. We develop a probability distribution for overwinter density of monarch butterflies from six published density estimates. The mean density among the mixture of the six published estimates was ∼27.9 million butterflies ha−1 (95% CI [2.4–80.7] million ha−1); the mixture distribution is approximately log-normal, and as such is better represented by the median (21.1 million butterflies ha−1). Based upon assumptions regarding the number of milkweed needed to support monarchs, the amount of milkweed (Asclepias spp.) lost (0.86 billion stems) in the northern US plus the amount of milkweed remaining (1.34 billion stems), we estimate >1.8 billion stems is needed to return monarchs to an average population size of 6 ha. Considerable uncertainty exists in this required amount of milkweed because of the considerable uncertainty occurring in overwinter density estimates. Nevertheless, the estimate is on the same order as other published estimates. The studies included in our synthesis differ substantially by year, location, method, and measures of precision. A better understanding of the factors influencing overwintering density across space and time would be valuable for increasing the precision of conservation recommendations.
Thomas B. Lynch; Jean Nkouka; Michael M. Huebschmann; James M. Guldin
2003-01-01
A logistic equation is the basis for a model that predicts the probability of obtaining regeneration at specified densities. The density of regeneration (trees/ha) for which an estimate of probability is desired can be specified by means of independent variables in the model. When estimating parameters, the dependent variable is set to 1 if the regeneration density (...
Insulin-like growth factor-I (IGF-1), IGF-binding protein-3 (IGFBP-3) and mammographic features.
Izzo, L; Meggiorini, M L; Nofroni, I; Pala, A; De Felice, C; Meloni, P; Simari, T; Izzo, S; Pugliese, F; Impara, L; Merlini, G; Di Cello, P; Cipolla, V; Forcione, A R; Paliotta, A; Domenici, L; Bolognese, A
2012-05-01
The IGF system has recently been shown to play an important role in the regulation of breast tumor cell proliferation. However, also breast density is currently considered as the strongest breast cancer risk factor. It is not yet clear whether these factors are interrelated and if and how they are influenced by menopausal status. The purpose of this study was to examine the possible effects of IGF-1 and IGFBP-3 and IGF-1/IGFBP-3 molar ratio on mammographic density stratified by menopausal status. A group of 341 Italian women were interviewed to collect the following data: family history of breast cancer, reproductive and menstrual factors, breast biopsies, previous administration of hormonal contraceptive therapy, hormone replacement therapy (HRT) in menopause and lifestyle information. A blood sample was drawn for determination of IGF-1, IGFBP-3 levels. IGF-1/ IGFBP-3 molar ratio was then calculated. On the basis of recent mammograms the women were divided into two groups: dense breast (DB) and non-dense breast (NDB). Student's t-test was employed to assess the association between breast density and plasma level of IGF-1, IGFBP-3 and molar ratio. To assess if this relationship was similar in subgroups of pre- and postmenopausal women, the study population was stratified by menopausal status and Student's t-test was performed. Finally, multivariate analysis was employed to evaluate if there were confounding factors that might influence the relationship between growth factors and breast density. The analysis of the relationship between mammographic density and plasma level of IGF-1, IGFBP-3 and IGF-1/ IGFBP-3 molar ratio showed that IGF-1 levels and molar ratio varied in the two groups resulting in higher mean values in the DB group (IGF-1: 109.6 versus 96.6 ng/ml; p= 0.001 and molar ratio 29.4 versus 25.5 ng/ml; p= 0.001) whereas IGFBP-3 showed similar values in both groups (DB and NDB). Analysis of plasma level of IGF-1, IGFBP-3 and IGF-1/IGFBP-3 molar ratio compared to breast density after stratification of the study population by menopausal status (premenopausal and postmenopausal) showed that there was no association between the plasma of growth factors and breast density, neither in premenopausal nor in postmenopausal patients. Multivariate analysis showed that only nulliparity, premenopausal status and body mass index (BMI) are determinants of breast density. Our study provides a strong evidence of a crude association between breast density and plasma levels of IGF-1 and molar ratio. On the basis of our results, it is reasonable to assume that the role of IGF-1 and molar ratio in the pathogenesis of breast cancer might be mediated through mammographic density. IGF-1 and molar ratio might thus increase the risk of cancer by increasing mammographic density.
Plasmaspheric H+, He+, O+, He++, and O++ Densities and Temperatures
NASA Technical Reports Server (NTRS)
Gallagher, D. L.; Craven, P. D.; Comfort H.
2013-01-01
Thermal plasmaspheric densities and temperatures for five ion species have recently become available, even though these quantities were derived some time ago from the Retarding Ion Mass Spectrometer onboard the Dynamics Explorer 1 satellite over the years 1981-1984. The quantitative properties will be presented. Densities are found to have one behavior with lessor statistical variation below about L=2 and another with much greater variability above that Lshell. Temperatures also have a behavior difference between low and higher L-values. The density ratio He++/H+ is the best behaved with values of about 0.2% that slightly increase with increasing L. Unlike the He+/H+ density ratio that on average decreases with increasing Lvalue, the O+/H+ and O++/H+ density ratios have decreasing values below about L=2 and increasing average ratios at higher L-values. Hydrogen ion temperatures range from about 0.2 eV to several 10s of eV for a few measurements, although the bulk of the observations are of temperatures below 3 eV, again increasing with L-value. The temperature ratios of He+/H+ are tightly ordered around 1.0 except for the middle plasmasphere between L=3.5 and 4.5 where He+ temperatures can be significantly higher. The temperatures of He++, O+, and O++ are consistently higher than H+.
Plasmaspheric H+, He+, He++, O+, and O++ Densities and Temperatures
NASA Technical Reports Server (NTRS)
Gallagher, G. L.; Craven, P. D.; Comfort, R. H.
2013-01-01
Thermal plasmaspheric densities and temperatures for five ion species have recently become available, even though these quantities were derived some time ago from the Retarding Ion Mass Spectrometer onboard the Dynamics Explorer 1 satellite over the years 1981-1984. The quantitative properties will be presented. Densities are found to have one behavior with lessor statistical variation below about L=2 and another with much greater variability above that Lshell. Temperatures also have a behavior difference between low and higher L-values. The density ratio He++/H+ is the best behaved with values of about 0.2% that slightly increase with increasing L. Unlike the He+/H+ density ratio that on average decreases with increasing Lvalue, the O+/H+ and O++/H+ density ratios have decreasing values below about L=2 and increasing average ratios at higher L-values. Hydrogen ion temperatures range from about 0.2 eV to several 10s of eV for a few measurements, although the bulk of the observations are of temperatures below 3 eV, again increasing with L-value. The temperature ratios of He+/H+ are tightly ordered around 1.0 except for the middle plasmasphere between L=3.5 and 4.5 where He+ temperatures can be significantly higher. The temperatures of He++, O+, and O++ are consistently higher than H+.
Small-mammal density estimation: A field comparison of grid-based vs. web-based density estimators
Parmenter, R.R.; Yates, Terry L.; Anderson, D.R.; Burnham, K.P.; Dunnum, J.L.; Franklin, A.B.; Friggens, M.T.; Lubow, B.C.; Miller, M.; Olson, G.S.; Parmenter, Cheryl A.; Pollard, J.; Rexstad, E.; Shenk, T.M.; Stanley, T.R.; White, Gary C.
2003-01-01
Statistical models for estimating absolute densities of field populations of animals have been widely used over the last century in both scientific studies and wildlife management programs. To date, two general classes of density estimation models have been developed: models that use data sets from capture–recapture or removal sampling techniques (often derived from trapping grids) from which separate estimates of population size (NÌ‚) and effective sampling area (AÌ‚) are used to calculate density (DÌ‚ = NÌ‚/AÌ‚); and models applicable to sampling regimes using distance-sampling theory (typically transect lines or trapping webs) to estimate detection functions and densities directly from the distance data. However, few studies have evaluated these respective models for accuracy, precision, and bias on known field populations, and no studies have been conducted that compare the two approaches under controlled field conditions. In this study, we evaluated both classes of density estimators on known densities of enclosed rodent populations. Test data sets (n = 11) were developed using nine rodent species from capture–recapture live-trapping on both trapping grids and trapping webs in four replicate 4.2-ha enclosures on the Sevilleta National Wildlife Refuge in central New Mexico, USA. Additional “saturation” trapping efforts resulted in an enumeration of the rodent populations in each enclosure, allowing the computation of true densities. Density estimates (DÌ‚) were calculated using program CAPTURE for the grid data sets and program DISTANCE for the web data sets, and these results were compared to the known true densities (D) to evaluate each model's relative mean square error, accuracy, precision, and bias. In addition, we evaluated a variety of approaches to each data set's analysis by having a group of independent expert analysts calculate their best density estimates without a priori knowledge of the true densities; this “blind” test allowed us to evaluate the influence of expertise and experience in calculating density estimates in comparison to simply using default values in programs CAPTURE and DISTANCE. While the rodent sample sizes were considerably smaller than the recommended minimum for good model results, we found that several models performed well empirically, including the web-based uniform and half-normal models in program DISTANCE, and the grid-based models Mb and Mbh in program CAPTURE (with AÌ‚ adjusted by species-specific full mean maximum distance moved (MMDM) values). These models produced accurate DÌ‚ values (with 95% confidence intervals that included the true D values) and exhibited acceptable bias but poor precision. However, in linear regression analyses comparing each model's DÌ‚ values to the true D values over the range of observed test densities, only the web-based uniform model exhibited a regression slope near 1.0; all other models showed substantial slope deviations, indicating biased estimates at higher or lower density values. In addition, the grid-based DÌ‚ analyses using full MMDM values for WÌ‚ area adjustments required a number of theoretical assumptions of uncertain validity, and we therefore viewed their empirical successes with caution. Finally, density estimates from the independent analysts were highly variable, but estimates from web-based approaches had smaller mean square errors and better achieved confidence-interval coverage of D than did grid-based approaches. Our results support the contention that web-based approaches for density estimation of small-mammal populations are both theoretically and empirically superior to grid-based approaches, even when sample size is far less than often recommended. In view of the increasing need for standardized environmental measures for comparisons among ecosystems and through time, analytical models based on distance sampling appear to offer accurate density estimation approaches for research studies involving small-mammal abundances.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zeng, L., E-mail: zeng@fusion.gat.com; Doyle, E. J.; Rhodes, T. L.
2016-11-15
A new model-based technique for fast estimation of the pedestal electron density gradient has been developed. The technique uses ordinary mode polarization profile reflectometer time delay data and does not require direct profile inversion. Because of its simple data processing, the technique can be readily implemented via a Field-Programmable Gate Array, so as to provide a real-time density gradient estimate, suitable for use in plasma control systems such as envisioned for ITER, and possibly for DIII-D and Experimental Advanced Superconducting Tokamak. The method is based on a simple edge plasma model with a linear pedestal density gradient and low scrape-off-layermore » density. By measuring reflectometer time delays for three adjacent frequencies, the pedestal density gradient can be estimated analytically via the new approach. Using existing DIII-D profile reflectometer data, the estimated density gradients obtained from the new technique are found to be in good agreement with the actual density gradients for a number of dynamic DIII-D plasma conditions.« less
Planck intermediate results. LII. Planet flux densities
NASA Astrophysics Data System (ADS)
Planck Collaboration; Akrami, Y.; Ashdown, M.; Aumont, J.; Baccigalupi, C.; Ballardini, M.; Banday, A. J.; Barreiro, R. B.; Bartolo, N.; Basak, S.; Benabed, K.; Bernard, J.-P.; Bersanelli, M.; Bielewicz, P.; Bonavera, L.; Bond, J. R.; Borrill, J.; Bouchet, F. R.; Boulanger, F.; Bucher, M.; Burigana, C.; Butler, R. C.; Calabrese, E.; Cardoso, J.-F.; Carron, J.; Chiang, H. C.; Colombo, L. P. L.; Comis, B.; Couchot, F.; Coulais, A.; Crill, B. P.; Curto, A.; Cuttaia, F.; de Bernardis, P.; de Rosa, A.; de Zotti, G.; Delabrouille, J.; Di Valentino, E.; Dickinson, C.; Diego, J. M.; Doré, O.; Ducout, A.; Dupac, X.; Elsner, F.; Enßlin, T. A.; Eriksen, H. K.; Falgarone, E.; Fantaye, Y.; Finelli, F.; Frailis, M.; Fraisse, A. A.; Franceschi, E.; Frolov, A.; Galeotta, S.; Galli, S.; Ganga, K.; Génova-Santos, R. T.; Gerbino, M.; González-Nuevo, J.; Górski, K. M.; Gruppuso, A.; Gudmundsson, J. E.; Hansen, F. K.; Helou, G.; Henrot-Versillé, S.; Herranz, D.; Hivon, E.; Jaffe, A. H.; Jones, W. C.; Keihänen, E.; Keskitalo, R.; Kiiveri, K.; Kim, J.; Kisner, T. S.; Krachmalnicoff, N.; Kunz, M.; Kurki-Suonio, H.; Lagache, G.; Lamarre, J.-M.; Lasenby, A.; Lattanzi, M.; Lawrence, C. R.; Le Jeune, M.; Lellouch, E.; Levrier, F.; Liguori, M.; Lilje, P. B.; Lindholm, V.; López-Caniego, M.; Ma, Y.-Z.; Macías-Pérez, J. F.; Maggio, G.; Maino, D.; Mandolesi, N.; Maris, M.; Martin, P. G.; Martínez-González, E.; Matarrese, S.; Mauri, N.; McEwen, J. D.; Melchiorri, A.; Mennella, A.; Migliaccio, M.; Miville-Deschênes, M.-A.; Molinari, D.; Moneti, A.; Montier, L.; Moreno, R.; Morgante, G.; Natoli, P.; Oxborrow, C. A.; Paoletti, D.; Partridge, B.; Patanchon, G.; Patrizii, L.; Perdereau, O.; Piacentini, F.; Plaszczynski, S.; Polenta, G.; Rachen, J. P.; Racine, B.; Reinecke, M.; Remazeilles, M.; Renzi, A.; Rocha, G.; Romelli, E.; Rosset, C.; Roudier, G.; Rubiño-Martín, J. A.; Ruiz-Granados, B.; Salvati, L.; Sandri, M.; Savelainen, M.; Scott, D.; Sirri, G.; Spencer, L. D.; Suur-Uski, A.-S.; Tauber, J. A.; Tavagnacco, D.; Tenti, M.; Toffolatti, L.; Tomasi, M.; Tristram, M.; Trombetti, T.; Valiviita, J.; Van Tent, F.; Vielva, P.; Villa, F.; Wehus, I. K.; Zacchei, A.
2017-11-01
Measurements of flux density are described for five planets, Mars, Jupiter, Saturn, Uranus, and Neptune, across the six Planck High Frequency Instrument frequency bands (100-857 GHz) and these are then compared with models and existing data. In our analysis, we have also included estimates of the brightness of Jupiter and Saturn at the three frequencies of the Planck Low Frequency Instrument (30, 44, and 70 GHz). The results provide constraints on the intrinsic brightness and the brightness time-variability of these planets. The majority of the planet flux density estimates are limited by systematic errors, but still yield better than 1% measurements in many cases. Applying data from Planck HFI, the Wilkinson Microwave Anisotropy Probe (WMAP), and the Atacama Cosmology Telescope (ACT) to a model that incorporates contributions from Saturn's rings to the planet's total flux density suggests a best fit value for the spectral index of Saturn's ring system of βring = 2.30 ± 0.03 over the 30-1000 GHz frequency range. Estimates of the polarization amplitude of the planets have also been made in the four bands that have polarization-sensitive detectors (100-353 GHz); this analysis provides a 95% confidence level upper limit on Mars's polarization of 1.8, 1.7, 1.2, and 1.7% at 100, 143, 217, and 353 GHz, respectively. The average ratio between the Planck-HFI measurements and the adopted model predictions for all five planets (excluding Jupiter observations for 353 GHz) is 1.004, 1.002, 1.021, and 1.033 for 100, 143, 217, and 353 GHz, respectively. Model predictions for planet thermodynamic temperatures are therefore consistent with the absolute calibration of Planck-HFI detectors at about the three-percent level. We compare our measurements with published results from recent cosmic microwave background experiments. In particular, we observe that the flux densities measured by Planck HFI and WMAP agree to within 2%. These results allow experiments operating in the mm-wavelength range to cross-calibrate against Planck and improve models of radiative transport used in planetary science.
Stochastic sediment property inversion in Shallow Water 06.
Michalopoulou, Zoi-Heleni
2017-11-01
Received time-series at a short distance from the source allow the identification of distinct paths; four of these are direct, surface and bottom reflections, and sediment reflection. In this work, a Gibbs sampling method is used for the estimation of the arrival times of these paths and the corresponding probability density functions. The arrival times for the first three paths are then employed along with linearization for the estimation of source range and depth, water column depth, and sound speed in the water. Propagating densities of arrival times through the linearized inverse problem, densities are also obtained for the above parameters, providing maximum a posteriori estimates. These estimates are employed to calculate densities and point estimates of sediment sound speed and thickness using a non-linear, grid-based model. Density computation is an important aspect of this work, because those densities express the uncertainty in the inversion for sediment properties.
Mehner, Thomas; Lischke, Betty; Scharnweber, Kristin; Attermeyer, Katrin; Brothers, Soren; Gaedke, Ursula; Hilt, Sabine; Brucet, Sandra
2018-06-01
The density of organisms declines with size, because larger organisms need more energy than smaller ones and energetic losses occur when larger organisms feed on smaller ones. A potential expression of density-size distributions are Normalized Biomass Size Spectra (NBSS), which plot the logarithm of biomass independent of taxonomy within bins of logarithmic organismal size, divided by the bin width. Theoretically, the NBSS slope of multi-trophic communities is exactly -1.0 if the trophic transfer efficiency (TTE, ratio of production rates between adjacent trophic levels) is 10% and the predator-prey mass ratio (PPMR) is fixed at 10 4 . Here we provide evidence from four multi-trophic lake food webs that empirically estimated TTEs correspond to empirically estimated slopes of the respective community NBSS. Each of the NBSS considered pelagic and benthic organisms spanning size ranges from bacteria to fish, all sampled over three seasons in 1 yr. The four NBSS slopes were significantly steeper than -1.0 (range -1.14 to -1.19, with 95% CIs excluding -1). The corresponding average TTEs were substantially lower than 10% in each of the four food webs (range 1.0% to 3.6%, mean 1.85%). The overall slope merging all biomass-size data pairs from the four systems (-1.17) was almost identical to the slope predicted from the arithmetic mean TTE of the four food webs (-1.18) assuming a constant PPMR of 10 4 . Accordingly, our empirical data confirm the theoretically predicted quantitative relationship between TTE and the slope of the biomass-size distribution. Furthermore, we show that benthic and pelagic organisms can be merged into a community NBSS, but future studies have yet to explore potential differences in habitat-specific TTEs and PPMRs. We suggest that community NBSS may provide valuable information on the structure of food webs and their energetic pathways, and can result in improved accuracy of TTE-estimates. © 2018 by the Ecological Society of America.
NASA Astrophysics Data System (ADS)
Ruf, B.; Erdnuess, B.; Weinmann, M.
2017-08-01
With the emergence of small consumer Unmanned Aerial Vehicles (UAVs), the importance and interest of image-based depth estimation and model generation from aerial images has greatly increased in the photogrammetric society. In our work, we focus on algorithms that allow an online image-based dense depth estimation from video sequences, which enables the direct and live structural analysis of the depicted scene. Therefore, we use a multi-view plane-sweep algorithm with a semi-global matching (SGM) optimization which is parallelized for general purpose computation on a GPU (GPGPU), reaching sufficient performance to keep up with the key-frames of input sequences. One important aspect to reach good performance is the way to sample the scene space, creating plane hypotheses. A small step size between consecutive planes, which is needed to reconstruct details in the near vicinity of the camera may lead to ambiguities in distant regions, due to the perspective projection of the camera. Furthermore, an equidistant sampling with a small step size produces a large number of plane hypotheses, leading to high computational effort. To overcome these problems, we present a novel methodology to directly determine the sampling points of plane-sweep algorithms in image space. The use of the perspective invariant cross-ratio allows us to derive the location of the sampling planes directly from the image data. With this, we efficiently sample the scene space, achieving higher sampling density in areas which are close to the camera and a lower density in distant regions. We evaluate our approach on a synthetic benchmark dataset for quantitative evaluation and on a real-image dataset consisting of aerial imagery. The experiments reveal that an inverse sampling achieves equal and better results than a linear sampling, with less sampling points and thus less runtime. Our algorithm allows an online computation of depth maps for subsequences of five frames, provided that the relative poses between all frames are given.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nobuta, K.; Akiyama, M.; Ueda, Y.
2012-12-20
In order to investigate the growth of supermassive black holes (SMBHs), we construct the black hole mass function (BHMF) and Eddington ratio distribution function (ERDF) of X-ray-selected broad-line active galactic nuclei (AGNs) at z {approx} 1.4 in the Subaru XMM-Newton Deep Survey (SXDS) field. A significant part of the accretion growth of SMBHs is thought to take place in this redshift range. Black hole masses of X-ray-selected broad-line AGNs are estimated using the width of the broad Mg II line and 3000 A monochromatic luminosity. We supplement the Mg II FWHM values with the H{alpha} FWHM obtained from our NIRmore » spectroscopic survey. Using the black hole masses of broad-line AGNs at redshifts between 1.18 and 1.68, the binned broad-line AGN BHMFs and ERDFs are calculated using the V{sub max} method. To properly account for selection effects that impact the binned estimates, we derive the corrected broad-line AGN BHMFs and ERDFs by applying the maximum likelihood method, assuming that the ERDF is constant regardless of the black hole mass. We do not correct for the non-negligible uncertainties in virial BH mass estimates. If we compare the corrected broad-line AGN BHMF with that in the local universe, then the corrected BHMF at z = 1.4 has a higher number density above 10{sup 8} M{sub Sun} but a lower number density below that mass range. The evolution may be indicative of a downsizing trend of accretion activity among the SMBH population. The evolution of broad-line AGN ERDFs from z = 1.4 to 0 indicates that the fraction of broad-line AGNs with accretion rates close to the Eddington limit is higher at higher redshifts.« less
Investigation of estimators of probability density functions
NASA Technical Reports Server (NTRS)
Speed, F. M.
1972-01-01
Four research projects are summarized which include: (1) the generation of random numbers on the IBM 360/44, (2) statistical tests used to check out random number generators, (3) Specht density estimators, and (4) use of estimators of probability density functions in analyzing large amounts of data.
A novel multireceiver communications system configuration based on optimal estimation theory
NASA Technical Reports Server (NTRS)
Kumar, R.
1990-01-01
A multireceiver configuration for the purpose of carrier arraying and/or signal arraying is presented. Such a problem arises for example, in the NASA Deep Space Network where the same data-modulated signal from a spacecraft is received by a number of geographically separated antennas and the data detection must be efficiently performed on the basis of the various received signals. The proposed configuration is arrived at by formulating the carrier and/or signal arraying problem as an optimal estimation problem. Two specific solutions are proposed. The first solution is to simultaneously and optimally estimate the various phase processes received at different receivers with coupled phase locked loops (PLLs) wherein the individual PLLs acquire and track their respective receivers' phase processes, but are aided by each other in an optimal manner. However, when the phase processes are relatively weakly correlated, and for the case of relatively high values of symbol energy-to-noise spectral density ratio, a novel configuration for combining the data modulated, loop-output signals is proposed. The scheme can be extended to the case of low symbol energy-to-noise case by performing the combining/detection process over a multisymbol period. Such a configuration results in the minimization of the effective radio loss at the combiner output, and thus a maximization of energy per bit to noise-power spectral density ration is achieved.
Maternal and child mortality indicators across 187 countries of the world: converging or diverging.
Goli, Srinivas; Arokiasamy, Perianayagam
2014-01-01
This study reassessed the progress achieved since 1990 in maternal and child mortality indicators to test whether the progress is converging or diverging across countries worldwide. The convergence process is examined using standard parametric and non-parametric econometric models of convergence. The results of absolute convergence estimates reveal that progress in maternal and child mortality indicators is diverging for the entire period of 1990-2010 [maternal mortality ratio (MMR) - β = .00033, p < .574; neonatal mortality rate (NNMR) - β = .04367, p < .000; post-neonatal mortality rate (PNMR) - β = .02677, p < .000; under-five mortality rate (U5MR) - β = .00828, p < .000)]. In the recent period, such divergence is replaced with convergence for MMR but diverged for all the child mortality indicators. The results of Kernel density estimate reveal considerable reduction in divergence of MMR for the recent period; however, the Kernel density distribution plots show more than one 'peak' which indicates the emergence of convergence clubs based on their mortality levels. For child mortality indicators, the Kernel estimates suggest that divergence is in progress across the countries worldwide but tended to converge for countries with low mortality levels. A mere progress in global averages of maternal and child mortality indicators among a global cross-section of countries does not warranty convergence unless there is a considerable reduction in variance, skewness and range of change.
Tao, Yun; Chen, Sining; Hartl, Daniel L; Laurie, Cathy C
2003-01-01
The genetic basis of hybrid incompatibility in crosses between Drosophila mauritiana and D. simulans was investigated to gain insight into the evolutionary mechanisms of speciation. In this study, segments of the D. mauritiana third chromosome were introgressed into a D. simulans genetic background and tested as homozygotes for viability, male fertility, and female fertility. The entire third chromosome was covered with partially overlapping segments. Many segments were male sterile, while none were female sterile or lethal, confirming previous reports of the rapid evolution of hybrid male sterility (HMS). A statistical model was developed to quantify the HMS accumulation. In comparison with previous work on the X chromosome, we estimate that the X has approximately 2.5 times the density of HMS factors as the autosomes. We also estimate that the whole genome contains approximately 15 HMS "equivalents"-i.e., 15 times the minimum number of incompatibility factors necessary to cause complete sterility. Although some caveats for the quantitative estimate of a 2.5-fold density difference are described, this study supports the notion that the X chromosome plays a special role in the evolution of reproductive isolation. Possible mechanisms of a "large X" effect include selective fixation of new mutations that are recessive or partially recessive and the evolution of sex-ratio distortion systems. PMID:12930747
Tao, Yun; Chen, Sining; Hartl, Daniel L; Laurie, Cathy C
2003-08-01
The genetic basis of hybrid incompatibility in crosses between Drosophila mauritiana and D. simulans was investigated to gain insight into the evolutionary mechanisms of speciation. In this study, segments of the D. mauritiana third chromosome were introgressed into a D. simulans genetic background and tested as homozygotes for viability, male fertility, and female fertility. The entire third chromosome was covered with partially overlapping segments. Many segments were male sterile, while none were female sterile or lethal, confirming previous reports of the rapid evolution of hybrid male sterility (HMS). A statistical model was developed to quantify the HMS accumulation. In comparison with previous work on the X chromosome, we estimate that the X has approximately 2.5 times the density of HMS factors as the autosomes. We also estimate that the whole genome contains approximately 15 HMS "equivalents"-i.e., 15 times the minimum number of incompatibility factors necessary to cause complete sterility. Although some caveats for the quantitative estimate of a 2.5-fold density difference are described, this study supports the notion that the X chromosome plays a special role in the evolution of reproductive isolation. Possible mechanisms of a "large X" effect include selective fixation of new mutations that are recessive or partially recessive and the evolution of sex-ratio distortion systems.
Effects of smoking and alcohol consumption on lipid profile in male adults in northwest rural China.
Li, X X; Zhao, Y; Huang, L X; Xu, H X; Liu, X Y; Yang, J J; Zhang, P J; Zhang, Y H
2018-04-01
To determine the individual and combined influences of smoking and alcohol consumption on lipid profile in male adults in northwest rural China. Cross-sectional study. In total, 4614 subjects were enrolled in the cross-sectional study, performed between 2008 and 2012. The present study examined males aged ≥18 years from northwest rural China (n = 707). Data on current smoking and drinking status were collected. Logistic regression was used to estimate the individual and combined influences of smoking and alcohol consumption on lipid profile. Age, ethnic group, educational background, smoking (or alcohol consumption), waist circumference, body mass index, blood pressure and fasting blood glucose were adjusted as confounders. Total cholesterol (TC)/high-density lipoprotein cholesterol (HDL-C) ratio, triglycerides (TG)/HDL-C ratio, low-density lipoprotein cholesterol (LDL-C)/HDL-C ratio and visceral adiposity index (VAI) were significantly higher in smokers than in non-smokers, whereas HDL-C was lower in smokers. TG/HDL-C ratio, LDL-C/HDL-C ratio, TG, lipid accumulation product and VAI were significantly higher in drinkers than non-drinkers. After adjustment for confounders, significant relationships were observed between smoking status and any dyslipidemia, low HDL-C and high VAI (odds ratios [ORs]: 2.53 [95% confidence interval {CI}: 1.25-5.15], 6.13 [95% CI: 2.84-13.25] and 4.39 [95% CI: 2.02-9.54], respectively). The OR for any dyslipidaemia was 1.94 (95% CI: 1.09-3.48) for subjects who smoke and drank alcohol compared with subjects who did not smoke or drink alcohol. Abnormalities in lipid profile are correlated with smoking and alcohol consumption, which calls for intervention strategies to prevent dyslipidaemia and control risk factors for cardiovascular disease. Copyright © 2018 The Royal Society for Public Health. Published by Elsevier Ltd. All rights reserved.
Association between Lipid Ratios and Insulin Resistance in a Chinese Population
Zhang, Liying; Chen, Shanying; Deng, Aiwen; Liu, Xinyu; Liang, Yan; Shao, Xiaofei; Sun, Mingxia; Zou, Hequn
2015-01-01
Aim To explore the association of lipid ratios and triglyceride (TG) with insulin resistance (IR) in a Chinese population. We also provide the clinical utility of lipid ratios to identify men and women with IR. Methods This cross-sectional study included 614 men and 1055 women without diabetes. Insulin resistance was defined by homeostatic model assessment of IR > 2.69. Lipid ratios included the TG/ high density lipoprotein cholesterol (HDL-C), the total cholesterol (TC)/HDL-C and the low density lipoprotein cholesterol (LDL-C)/HDL –C. Logistic regression models and accurate estimates of the area under the receiver operating characteristic (AUROC) curves were obtained. Results In normal-weight men, none of lipid ratios nor TG was associated with IR. In overweight/obese men, normal-weight women and overweight/obese women, the TG/HDL-C, the TC/HDL-C and TG were significantly associated with IR, and the associations were independent of waist circumference. All of the AUROCs for the TG/HDL-C and TG were > 0.7. The AUROCs for TC/HDL-C ratio were 0.69–0.77. The optimal cut-offs for TG/HDL-C were 1.51 in men and 0.84 in women. The optimal cut-offs for TG were 1.78 mmol/L in men and 1.49 mmol/L in women, respectively. In men, the optimal cut-off for LDL-C/HDL-C is 3.80. In women, the optimal cut-off for LDL-C/HDL-C is 3.82. Conclusion The TG/HDL-C, the TC/HDL-C and TG are associated with IR in overweight/obese men, normal-weight and overweight/obese women. The LDL-C/HDL-C is only associated with IR in normal-weight women. The TG/HDL-C and TG might be used as surrogate markers for assessing IR. PMID:25635876
Fegyveresi, John M.; Alley, R.B.; Spencer, M.K.; Fitzpatrick, J.J.; Steig, E.J.; White, J.W.C.; McConnell, J.R.; Taylor, K.C.
2011-01-01
A surface cooling of ???1.7??C occurred over the ???two millennia prior to ???1700 CE at the West Antarctic ice sheet (WAIS) Divide site, based on trends in observed bubble number-density of samples from the WDC06A ice core, and on an independently constructed accumulation-rate history using annual-layer dating corrected for density variations and thinning from ice flow. Density increase and grain growth in polar firn are both controlled by temperature and accumulation rate, and the integrated effects are recorded in the number-density of bubbles as the firn changes to ice. Numberdensity is conserved in bubbly ice following pore close-off, allowing reconstruction of either paleotemperature or paleo-accumulation rate if the other is known. A quantitative late-Holocene paleoclimate reconstruction is presented for West Antarctica using data obtained from the WAIS Divide WDC06A ice core and a steady-state bubble number-density model. The resultant temperature history agrees closely with independent reconstructions based on stable-isotopic ratios of ice. The ???1.7??C cooling trend observed is consistent with a decrease in Antarctic summer duration from changing orbital obliquity, although it remains possible that elevation change at the site contributed part of the signal. Accumulation rate and temperature dropped together, broadly consistent with control by saturation vapor pressure.
Optimizing larval assessment to support sea lamprey control in the Great Lakes
Hansen, Michael J.; Adams, Jean V.; Cuddy, Douglas W.; Richards, Jessica M.; Fodale, Michael F.; Larson, Geraldine L.; Ollila, Dale J.; Slade, Jeffrey W.; Steeves, Todd B.; Young, Robert J.; Zerrenner, Adam
2003-01-01
Elements of the larval sea lamprey (Petromyzon marinus) assessment program that most strongly influence the chemical treatment program were analyzed, including selection of streams for larval surveys, allocation of sampling effort among stream reaches, allocation of sampling effort among habitat types, estimation of daily growth rates, and estimation of metamorphosis rates, to determine how uncertainty in each element influenced the stream selection program. First, the stream selection model based on current larval assessment sampling protocol significantly underestimated transforming sea lam-prey abundance, transforming sea lampreys killed, and marginal costs per sea lamprey killed, compared to a protocol that included more years of data (especially for large streams). Second, larval density in streams varied significantly with Type-I habitat area, but not with total area or reach length. Third, the ratio of larval density between Type-I and Type-II habitat varied significantly among streams, and that the optimal allocation of sampling effort varied with the proportion of habitat types and variability of larval density within each habitat. Fourth, mean length varied significantly among streams and years. Last, size at metamorphosis varied more among years than within or among regions and that metamorphosis varied significantly among streams within regions. Study results indicate that: (1) the stream selection model should be used to identify streams with potentially high residual populations of larval sea lampreys; (2) larval sampling in Type-II habitat should be initiated in all streams by increasing sampling in Type-II habitat to 50% of the sampling effort in Type-I habitat; and (3) methods should be investigated to reduce uncertainty in estimates of sea lamprey production, with emphasis on those that reduce the uncertainty associated with larval length at the end of the growing season and those used to predict metamorphosis.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Oohama, N.; Okamura, S.; Fukugita, M.
A bulge-disk decomposition is made for 737 spiral and lenticular galaxies drawn from a Sloan Digital Sky Survey galaxy sample for which morphological types are estimated. We carry out the bulge-disk decomposition using the growth curve fitting method. It is found that bulge properties, effective radius, effective surface brightness, and also absolute magnitude, change systematically with the morphological sequence; from early to late types, the size becomes somewhat larger, and surface brightness and luminosity fainter. In contrast, disks are nearly universal, their properties remaining similar among disk galaxies irrespective of detailed morphologies from S0 to Sc. While these tendencies weremore » often discussed in previous studies, the present study confirms them based on a large homogeneous magnitude-limited field galaxy sample with morphological types estimated. The systematic change of bulge-to-total luminosity ratio, B/T, along the morphological sequence is therefore not caused by disks but mostly by bulges. It is also shown that elliptical galaxies and bulges of spiral galaxies are unlikely to be in a single sequence. We infer the stellar mass density (in units of the critical mass density) to be OMEGA = 0.0021 for spheroids, i.e., elliptical galaxies plus bulges of spiral galaxies, and OMEGA = 0.00081 for disks.« less
Determination of PM mass emissions from an aircraft turbine engine using particle effective density
NASA Astrophysics Data System (ADS)
Durdina, L.; Brem, B. T.; Abegglen, M.; Lobo, P.; Rindlisbacher, T.; Thomson, K. A.; Smallwood, G. J.; Hagen, D. E.; Sierau, B.; Wang, J.
2014-12-01
Inventories of particulate matter (PM) emissions from civil aviation and air quality models need to be validated using up-to-date measurement data corrected for sampling artifacts. We compared the measured black carbon (BC) mass and the total PM mass determined from particle size distributions (PSD) and effective density for a commercial turbofan engine CFM56-7B26/3. The effective density was then used to calculate the PM mass losses in the sampling system. The effective density was determined using a differential mobility analyzer and a centrifugal particle mass analyzer, and increased from engine idle to take-off by up to 60%. The determined mass-mobility exponents ranged from 2.37 to 2.64. The mean effective density determined by weighting the effective density distributions by PM volume was within 10% of the unit density (1000 kg/m3) that is widely assumed in aircraft PM studies. We found ratios close to unity between the PM mass determined by the integrated PSD method and the real-time BC mass measurements. The integrated PSD method achieved higher precision at ultra-low PM concentrations at which current mass instruments reach their detection limit. The line loss model predicted ∼60% PM mass loss at engine idle, decreasing to ∼27% at high thrust. Replacing the effective density distributions with unit density lead to comparable estimates that were within 20% and 5% at engine idle and high thrust, respectively. These results could be used for the development of a robust method for sampling loss correction of the future PM emissions database from commercial aircraft engines.
Schmitt, Ana Carolina Basso; Cardoso, Maria Regina Alves; Lopes, Heno; Pereira, Wendry Maria Paixão; Pereira, Elaine Cristina; de Rezende, Debora Aparecida Paccola; Guarizi, Rubia Guibo; Dellu, Mayra Cecilia; Oliveira, Jéssica de Moura; Flauzino, Erika; Blümel, Juan E; Aldrighi, José Mendes
2013-04-01
The aims of this study were to estimate the prevalence of metabolic syndrome among women aged 35 to 65 years and to identify associated factors. This was a cross-sectional study. We randomly selected 581 women (aged 35-65 y) from among those enrolled in a family health program in the city of Pindamonhangaba, Brazil. Metabolic syndrome was identified in accordance with the definition of the National Cholesterol Education Program Adult Treatment Panel III. Health conditions and lifestyle habits were evaluated by a survey, and anthropometric measurements were obtained. The prevalence of metabolic syndrome was estimated, and Poisson regression was used to evaluate the associations between metabolic syndrome `and the factors investigated. The prevalence of metabolic syndrome was 42.2% (95% CI, 38.1-46.2). The most common metabolic syndrome component was abdominal obesity (60.6%), followed by low levels of high-density lipoprotein cholesterol (51.3%), high levels of triglycerides (41.4%), high blood pressure (31.7%), and diabetes (13.9%). The following factors were associated with metabolic syndrome: the 45- to 54-year age group (prevalence ratio, 1.54; 95% CI, 1.08-2.01), the 55- to 65-year age group (prevalence ratio, 3.51; 95% CI, 1.49-3.10), hyperuricemia (prevalence ratio, 2.95; 95% CI, 1.15-1.86), and sleep apnea risk (prevalence ratio, 2.41; 95% CI, 1.16-1.82). We found an inverse association between metabolic syndrome and having had more than 5 years of schooling (prevalence ratio, 0.65; 95% CI, 0.65-1.04). The prevalence of metabolic syndrome is high, and the associated clinical factors are hyperuricemia and risk of sleep apnea.
Cremer, N E; Cossen, C K; Hanson, C V; Shell, G R
1982-01-01
Several methods for evaluating and reporting enzyme immunoassay (EIA) determinations of antibody to herpes simplex virus derived from one dilution of single serum samples were studied. An EIA ratio method for serological evidence of current infection from paired serum samples was also evaluated. Optical density (OD) of the reaction at a 1:100 serum dilution and estimated titers obtained by reference of the OD of the serum dilution to a standard curve were compared to the corresponding plotted EIA titer obtained by titration to endpoint. Neither the OD per se nor the estimated titer was completely predictive of the plotted titer (correlation coefficient [r] of 0.824 and 0.817, respectively), and they provided only a semiquantitative measurement of antibody concentration. For an antibody status report, however, OD would be sufficient if related to the cutoff value as an EIA index (OD of sample divided by cutoff OD for positive specimens). The OD of the EIA reaction at a single dilution (1:5) of cerebrospinal fluid, on the other hand, correlated quite well with the titer obtained by titration (r = 0.950). For serological diagnosis of current infection, the OD ratio of convalescence-phase/acute-phase sera was determined at several dilutions. A ratio of greater than or equal to 1.54 was calculated as a reliable index for a significant rise in antibody concentration and compatible with current infection. By determining the convalescent-phase/acute-phase serum ratio at two dilutions, 1:100 and 1:1,000, the EIA ratio method appeared to be a sensitive as or more sensitive than, complement fixation in diagnosing current infection. PMID:6284791
NASA Astrophysics Data System (ADS)
Mantha, Kameswara; McIntosh, Daniel H.; Conselice, Christopher; Cook, Joshua S.; Croton, Darren J.; Dekel, Avishai; Ferguson, Henry C.; Hathi, Nimish; Kodra, Dritan; Koo, David C.; Lotz, Jennifer M.; Newman, Jeffrey A.; Popping, Gergo; Rafelski, Marc; Rodriguez-Gomez, Vicente; Simmons, Brooke D.; Somerville, Rachel; Straughn, Amber N.; Snyder, Gregory; Wuyts, Stijn; Yu, Lu; Cosmic Assembly Near-Infrared Deep Extragalactic Legacy Survey (CANDELS) Team
2018-01-01
Cosmological simulations predict that the rate of merging between similar-mass massive galaxies should increase towards early cosmic-time. We study the incidence of major (stellar mass ratio SMR<4) close-pairs among log(Mstellar/Msun) > 10.3 galaxies spanning 0
Percolation behavior of tritiated water into a soil packed bed
DOE Office of Scientific and Technical Information (OSTI.GOV)
Honda, T.; Katayama, K.; Uehara, K.
2015-03-15
A large amount of cooling water is used in a D-T fusion reactor. The cooling water will contain tritium with high concentration because tritium can permeate metal walls at high temperature easily. A development of tritium handling technology for confining tritiated water in the fusion facility is an important issue. In addition, it is also important to understand tritium behavior in environment assuming severe accidents. In this study, percolation experiments of tritiated water in soil packed bed were carried out and tritium behavior in soil was discussed. Six soil samples were collected in Hakozaki campus of Kyushu University. These particlemore » densities were of the same degree as that of general soils and moisture contents were related to BET surface area. For two soil samples used in the percolation experiment of tritiated water, saturated hydraulic conductivity agreed well with the estimating value by Creager. Tritium retention ratio in the soil packed bed was larger than water retention. This is considered to be due to an effect of tritium sorption on the surface of soil particles. The isotope exchange capacity estimated by assuming that H/T ratio of supplied tritiated water and H/T ratio of surface water of soil particle was equal was comparable to that on cement paste and mortar which were obtained by exposure of tritiated water vapor. (authors)« less
Numerical experiments on the PF1000 plasma focus device operated with nitrogen and oxygen gases
NASA Astrophysics Data System (ADS)
Akel, M.; Ismael, Sh.; Lee, S.; Saw, S. H.; Kunze, H. J.
2017-06-01
The indicative values of reduced Pease-Braginskii (P-B) currents are estimated for a nitrogen and oxygen plasma focus. The values of depletion times indicate that in N2 and O2 with estimated 3-4% of pinch energy radiating away over the duration of the pinch, we may expect some cooling effects leading to small reductions in radius ratio. In other gases with higher atomic number, the pinch duration is much more than the depletion time, so radiative contraction may be anticipated. The Lee model was employed to study the soft X-ray from PF1000 operated with nitrogen and oxygen. We found nitrogen soft X-ray yield in the water window region of 3.13 kJ, with the corresponding efficiency of 0.9% of the stored energy (E0), while for the oxygen it was found to be Ysxr = 4.9 kJ, with the efficiency of 1.4% E0. The very modest enhancement of compression (radius ratios around 0.1) in the pinches of these two gases gives rise to rather modest pinch energy densities (PEDs) under 109 Jm-3. This is in contrast to Kr or Xe where it had been shown that the radiative collapse leads to radius ratios of 0.007 and 0.003, respectively, with PEDs going to large values considerably exceeding 1012 Jm-3.
Characterization of a maximum-likelihood nonparametric density estimator of kernel type
NASA Technical Reports Server (NTRS)
Geman, S.; Mcclure, D. E.
1982-01-01
Kernel type density estimators calculated by the method of sieves. Proofs are presented for the characterization theorem: Let x(1), x(2),...x(n) be a random sample from a population with density f(0). Let sigma 0 and consider estimators f of f(0) defined by (1).
Comparing four methods to estimate usual intake distributions.
Souverein, O W; Dekkers, A L; Geelen, A; Haubrock, J; de Vries, J H; Ocké, M C; Harttig, U; Boeing, H; van 't Veer, P
2011-07-01
The aim of this paper was to compare methods to estimate usual intake distributions of nutrients and foods. As 'true' usual intake distributions are not known in practice, the comparison was carried out through a simulation study, as well as empirically, by application to data from the European Food Consumption Validation (EFCOVAL) Study in which two 24-h dietary recalls (24-HDRs) and food frequency data were collected. The methods being compared were the Iowa State University Method (ISU), National Cancer Institute Method (NCI), Multiple Source Method (MSM) and Statistical Program for Age-adjusted Dietary Assessment (SPADE). Simulation data were constructed with varying numbers of subjects (n), different values for the Box-Cox transformation parameter (λ(BC)) and different values for the ratio of the within- and between-person variance (r(var)). All data were analyzed with the four different methods and the estimated usual mean intake and selected percentiles were obtained. Moreover, the 2-day within-person mean was estimated as an additional 'method'. These five methods were compared in terms of the mean bias, which was calculated as the mean of the differences between the estimated value and the known true value. The application of data from the EFCOVAL Project included calculations of nutrients (that is, protein, potassium, protein density) and foods (that is, vegetables, fruit and fish). Overall, the mean bias of the ISU, NCI, MSM and SPADE Methods was small. However, for all methods, the mean bias and the variation of the bias increased with smaller sample size, higher variance ratios and with more pronounced departures from normality. Serious mean bias (especially in the 95th percentile) was seen using the NCI Method when r(var) = 9, λ(BC) = 0 and n = 1000. The ISU Method and MSM showed a somewhat higher s.d. of the bias compared with NCI and SPADE Methods, indicating a larger method uncertainty. Furthermore, whereas the ISU, NCI and SPADE Methods produced unimodal density functions by definition, MSM produced distributions with 'peaks', when sample size was small, because of the fact that the population's usual intake distribution was based on estimated individual usual intakes. The application to the EFCOVAL data showed that all estimates of the percentiles and mean were within 5% of each other for the three nutrients analyzed. For vegetables, fruit and fish, the differences were larger than that for nutrients, but overall the sample mean was estimated reasonably. The four methods that were compared seem to provide good estimates of the usual intake distribution of nutrients. Nevertheless, care needs to be taken when a nutrient has a high within-person variation or has a highly skewed distribution, and when the sample size is small. As the methods offer different features, practical reasons may exist to prefer one method over the other.
Khosrozadeh, Ali; Darabi, Mohammad Ali; Xing, Malcolm; Wang, Quan
2016-05-11
Polyaniline (PANI) is a promising pseudocapacitance electrode material. However, its structural instability leads to low cyclic stability and limited rate capability which hinders its practical applications. In view of the limitations, flexible PANI-based composite films are developed to improve the electrochemical performance of electrode materials. We report in the research a facile and cost-effective approach for fabrication of a high-performance supercapacitor (SC) with excellent cyclic stability and tunable energy and power densities. SC electrode containing a very high mass loading of active materials is a flexible film of PANI, tissue wiper-based cellulose, graphite-based exfoliated graphite (ExG), and silver nanoparticles with potential applications in wearable electronics. The optimum preparation weight ratios of silver nitrate/aniline and ExG/aniline used in the research are estimated to be 0.18 and 0.65 (or higher), respectively. Our results show that an ultrahigh capacitance of 3.84 F/cm(2) (240.10 F/g) at a discharge rate of 5 mA can be achieved. In addition, our study shows that the power density can be increased from 1531.3 to 3000 W/kg by selecting the weight ratio of ExG/aniline to be more than 0.65, with a sacrifice in the energy density. The obtained promising electrochemical properties are found to be mainly attributed to an effective combination of PANI, ExG, cushiony cellulose scaffold, and silver as well as the porosity of the composite.
NASA Technical Reports Server (NTRS)
Hong, Byungsik; Maung, Khin Maung; Wilson, John W.; Buck, Warren W.
1989-01-01
The derivations of the Lippmann-Schwinger equation and Watson multiple scattering are given. A simple optical potential is found to be the first term of that series. The number density distribution models of the nucleus, harmonic well, and Woods-Saxon are used without t-matrix taken from the scattering experiments. The parameterized two-body inputs, which are kaon-nucleon total cross sections, elastic slope parameters, and the ratio of the real to the imaginary part of the forward elastic scattering amplitude, are presented. The eikonal approximation was chosen as our solution method to estimate the total and absorptive cross sections for the kaon-nucleus scattering.
Spatial irregularities in Jupiter's upper ionosphere observed by Voyager radio occultations
NASA Technical Reports Server (NTRS)
Hinson, D. P.; Tyler, G. L.
1982-01-01
Radio scintillations (at 3.6 and 13 cm) produced by scattering from ionospheric irregularities during the Voyager occultations are interpreted using a weak-scattering theory. Least squares solutions for ionospheric parameters derived from the observed fluctuation spectra yield estimates of (1) the axial ratio, (2) angular orientation of the anisotropic irregularities, (3) the power law exponent of the spatial spectrum of irregularities, and (4) the magnitude of the spatial variations in electron density. It is shown that the measured angular orientation of the anisotropic irregularities indicates magnetic field direction and may provide a basis for refining Jovian magnetic field models.
A new LDPC decoding scheme for PDM-8QAM BICM coherent optical communication system
NASA Astrophysics Data System (ADS)
Liu, Yi; Zhang, Wen-bo; Xi, Li-xia; Tang, Xian-feng; Zhang, Xiao-guang
2015-11-01
A new log-likelihood ratio (LLR) message estimation method is proposed for polarization-division multiplexing eight quadrature amplitude modulation (PDM-8QAM) bit-interleaved coded modulation (BICM) optical communication system. The formulation of the posterior probability is theoretically analyzed, and the way to reduce the pre-decoding bit error rate ( BER) of the low density parity check (LDPC) decoder for PDM-8QAM constellations is presented. Simulation results show that it outperforms the traditional scheme, i.e., the new post-decoding BER is decreased down to 50% of that of the traditional post-decoding algorithm.
Numerical Schemes for Dynamically Orthogonal Equations of Stochastic Fluid and Ocean Flows
2011-11-03
stages of the simulation (see §5.1). Also, because the pdf is discrete, we calculate the mo- ments using the biased estimator CYiYj ≈ 1q ∑ r Yr,iYr,j...independent random variables. For problems that require large p (e.g. non-Gaussian) and large s (e.g. large ocean or fluid simulations ), the number of...Sc = ν̂/K̂ is the Schmidt number which is the ratio of kinematic viscosity ν̂ to molecular diffusivity K̂ for the density field, ĝ′ = ĝ (ρ̂max−ρ̂min
Analysis of radiometric signal in sedimentating suspension flow in open channel
NASA Astrophysics Data System (ADS)
Zych, Marcin; Hanus, Robert; Petryka, Leszek; Świsulski, Dariusz; Doktor, Marek; Mastej, Wojciech
2015-05-01
The article discusses issues related to the estimation of the sedimentating solid particles average flow velocity in an open channel using radiometric methods. Due to the composition of the compound, which formed water and diatomite, received data have a very weak signal to noise ratio. In the process analysis the known determining of the solid phase transportation time delay the classical cross-correlation function is the most reliable method. The use of advanced frequency analysis based on mutual spectral density function and wavelet transform of recorded signals allows a reduction of the noise contribution.
Size-Frequency Distribution of Small Lunar Craters: Widening with Degradation and Crater Lifetime
NASA Astrophysics Data System (ADS)
Ivanov, B. A.
2018-01-01
The review and new measurements are presented for depth/diameter ratio and slope angle evolution during small ( D < 1 km) lunar impact craters aging (degradation). Comparative analysis of available data on the areal cratering density and on the crater degradation state for selected craters, dated with returned Apollo samples, in the first approximation confirms Neukum's chronological model. The uncertainty of crater retention age due to crater degradational widening is estimated. The collected and analyzed data are discussed to be used in the future updating of mechanical models for lunar crater aging.
Large Scale Density Estimation of Blue and Fin Whales (LSD)
2014-09-30
172. McDonald, MA, Hildebrand, JA, and Mesnick, S (2009). Worldwide decline in tonal frequencies of blue whale songs . Endangered Species Research 9...1 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. Large Scale Density Estimation of Blue and Fin Whales ...estimating blue and fin whale density that is effective over large spatial scales and is designed to cope with spatial variation in animal density utilizing
Kimura, Satoko; Akamatsu, Tomonari; Li, Songhai; Dong, Shouyue; Dong, Lijun; Wang, Kexiong; Wang, Ding; Arai, Nobuaki
2010-09-01
A method is presented to estimate the density of finless porpoises using stationed passive acoustic monitoring. The number of click trains detected by stereo acoustic data loggers (A-tag) was converted to an estimate of the density of porpoises. First, an automated off-line filter was developed to detect a click train among noise, and the detection and false-alarm rates were calculated. Second, a density estimation model was proposed. The cue-production rate was measured by biologging experiments. The probability of detecting a cue and the area size were calculated from the source level, beam patterns, and a sound-propagation model. The effect of group size on the cue-detection rate was examined. Third, the proposed model was applied to estimate the density of finless porpoises at four locations from the Yangtze River to the inside of Poyang Lake. The estimated mean density of porpoises in a day decreased from the main stream to the lake. Long-term monitoring during 466 days from June 2007 to May 2009 showed variation in the density 0-4.79. However, the density was fewer than 1 porpoise/km(2) during 94% of the period. These results suggest a potential gap and seasonal migration of the population in the bottleneck of Poyang Lake.
Volume of tobacco advertising in African American markets: systematic review and meta-analysis.
Primack, Brian A; Bost, James E; Land, Stephanie R; Fine, Michael J
2007-01-01
African Americans currently bear the greatest burden of morbidity and mortality due to smoking, and exposure to pro-tobacco media messages predicts smoking. This study compared the concentration (proportion of media messages that are for tobacco) and density (pro-tobacco media messages per person) of pro-tobacco media messages between African American and Caucasian markets. We searched Medline (1966 to June 2006), PsychINFO (1974 to June 2006), and CINAHL (1982 to June 2006) for studies from peer-reviewed journals directly comparing the volume of pro-tobacco media messages in African American and Caucasian markets. From each study, we extracted the number of total media messages, the number of tobacco-related messages, and the number of residents living in each market area. We calculated the concentration and density of tobacco advertising in each market. Out of 131 studies identified, 11 met eligibility criteria, including seven comparing billboard/signage in African American and Caucasian markets and four comparing magazine advertising in African American and Caucasian markets. Meta-analysis estimated a pooled odds ratio of 1.7 (95% confidence interval [CI] 1.1, 2.6) for a given billboard being smoking-related in African American vs. Caucasian market areas (i.e., concentration). The pooled rate ratio of the density of smoking-related billboards was 2.6 (95% CI 1.5, 4.7) in African American vs. Caucasian market areas. Magazine data were insufficient for meta-analysis. Available data indicated that African Americans are exposed to a higher volume of pro-tobacco advertising in terms of both concentration and density. These findings have important implications for research, policy measures, and educational interventions involving racial disparities due to tobacco.
Howling, D. H.; Fitzgerald, P. J.
1959-01-01
The Schwarzschild-Villiger effect has been experimentally demonstrated with the optical system used in this laboratory. Using a photographic mosaic specimen as a model, it has been shown that the conclusions of Naora are substantiated and that the SV effect, in large or small magnitude, is always present in optical systems. The theoretical transmission error arising from the presence of the SV effect has been derived for various optical conditions of measurement. The results have been experimentally confirmed. The SV contribution of the substage optics of microspectrophotometers has also been considered. A simple method of evaluating a flare function f(A) is advanced which provides a measure of the SV error present in a system. It is demonstrated that measurements of specimens of optical density less than unity can be made with less than 1 per cent error, when using illuminating beam diameter/specimen diameter ratios of unity and uncoated optical surfaces. For denser specimens it is shown that care must be taken to reduce the illuminating beam/specimen diameter ratio to a value dictated by the magnitude of a flare function f(A), evaluated for a particular optical system, in order to avoid excessive transmission error. It is emphasized that observed densities (transmissions) are not necessarily true densities (transmissions) because of the possibility of SV error. The ambiguity associated with an estimation of stray-light error by means of an opaque object has also been demonstrated. The errors illustrated are not necessarily restricted to microspectrophotometry but may possibly be found in such fields as spectral analysis, the interpretation of x-ray diffraction patterns, the determination of ionizing particle tracks and particle densities in photographic emulsions, and in many other types of photometric analysis. PMID:14403512
NASA Astrophysics Data System (ADS)
Troitskaia, E.; Arkhangelskaja, I.; Arkhangelsky, A.; Gan, W.
2013-02-01
Basing on the data of AVS-F apparatus from SONG-D detector onboard CORONAS-F satellite, we have studied the extreme solar event of January 20, 2005 used the 2.223 MeV, 4.44 MeV and 6.13 MeV γ-lines temporal profiles. By the statistical modeling method we calculated the temporal profile of 2.223 MeV line too. Calculations have been performed in assumption of Bessel type of accelerated particles energy spectrum, different 3He content in the region of nuclear reactions and several density models of the solar atmosphere. Comparisons of the results of modeling with observational 2.223 MeV AVS-F/SONG-D data reveal the increasing of the ratio of 3He concentration to 1H one during the flare from 2× 10-5 at the rise phase of the gamma-ray flux up to 2× 10--4 at the decay one. During the same period the spectrum became harder and the density of solar atmosphere increased too. Averaged over full time of 2.223 MeV γ-emission concentration ratio of 3He/1H is equal to (1.40±0.15)×10--4, also the density model with enlarged density up to 2×1017 cm-3 in the lower chromosphere and through the whole photosphere is realized. Besides, we have estimated the spectral index αT that is close to 0.1 for accelerated protons in the range of 1-100 MeV. Using the AVS-F gamma-rays spectral data in the wide range up to 140 MeV, we have obtained the spectral index of s=2.5±0.1 in the case of power law spectrum for energies more than 300 MeV.
Luo, Shezhou; Chen, Jing M; Wang, Cheng; Xi, Xiaohuan; Zeng, Hongcheng; Peng, Dailiang; Li, Dong
2016-05-30
Vegetation leaf area index (LAI), height, and aboveground biomass are key biophysical parameters. Corn is an important and globally distributed crop, and reliable estimations of these parameters are essential for corn yield forecasting, health monitoring and ecosystem modeling. Light Detection and Ranging (LiDAR) is considered an effective technology for estimating vegetation biophysical parameters. However, the estimation accuracies of these parameters are affected by multiple factors. In this study, we first estimated corn LAI, height and biomass (R2 = 0.80, 0.874 and 0.838, respectively) using the original LiDAR data (7.32 points/m2), and the results showed that LiDAR data could accurately estimate these biophysical parameters. Second, comprehensive research was conducted on the effects of LiDAR point density, sampling size and height threshold on the estimation accuracy of LAI, height and biomass. Our findings indicated that LiDAR point density had an important effect on the estimation accuracy for vegetation biophysical parameters, however, high point density did not always produce highly accurate estimates, and reduced point density could deliver reasonable estimation results. Furthermore, the results showed that sampling size and height threshold were additional key factors that affect the estimation accuracy of biophysical parameters. Therefore, the optimal sampling size and the height threshold should be determined to improve the estimation accuracy of biophysical parameters. Our results also implied that a higher LiDAR point density, larger sampling size and height threshold were required to obtain accurate corn LAI estimation when compared with height and biomass estimations. In general, our results provide valuable guidance for LiDAR data acquisition and estimation of vegetation biophysical parameters using LiDAR data.
NASA Astrophysics Data System (ADS)
Krohn, Benedikt; Manera, Annalisa; Petrov, Victor
2018-04-01
Turbulent mixing in stratified environments represents a challenging task in experimental turbulence research, especially when large density gradients are desired. When optical measurement techniques like particle image velocimetry (PIV) are applied to stratified liquids, it is common practice to combine two aqueous solutions with different density but equal refractive index, to suppress particle image deflections. While refractive image matching (RIM) has been developed in the late 1970s, the achieved limit of 4% density ratio was not rivalled up to day. In the present work, we report a methodology, based on the behavior of excess properties and their change in a multicomponent system while mixing, that allows RIM for solutions with higher density differences. The methodology is then successfully demonstrated using a ternary combination of water, isopropanol and glycerol, for which RIM in presence of a density ratio of 8.6% has been achieved. Qualitative PIV results of a turbulent buoyant jet with 8.6% density ratio are shown.
Lycett-Brown, Daniel; Luo, Kai H
2016-11-01
A recently developed forcing scheme has allowed the pseudopotential multiphase lattice Boltzmann method to correctly reproduce coexistence curves, while expanding its range to lower surface tensions and arbitrarily high density ratios [Lycett-Brown and Luo, Phys. Rev. E 91, 023305 (2015)PLEEE81539-375510.1103/PhysRevE.91.023305]. Here, a third-order Chapman-Enskog analysis is used to extend this result from the single-relaxation-time collision operator, to a multiple-relaxation-time cascaded collision operator, whose additional relaxation rates allow a significant increase in stability. Numerical results confirm that the proposed scheme enables almost independent control of density ratio, surface tension, interface width, viscosity, and the additional relaxation rates of the cascaded collision operator. This allows simulation of large density ratio flows at simultaneously high Reynolds and Weber numbers, which is demonstrated through binary collisions of water droplets in air (with density ratio up to 1000, Reynolds number 6200 and Weber number 440). This model represents a significant improvement in multiphase flow simulation by the pseudopotential lattice Boltzmann method in which real-world parameters are finally achievable.
Weiss, Ram; Otvos, James D; Sinnreich, Ronit; Miserez, Andre R; Kark, Jeremy D
2011-01-01
To assess whether the fasting triglyceride-to-high-density lipoprotein (HDL)-cholesterol (TG/HDL) ratio in adolescence is predictive of a proatherogenic lipid profile in adulthood. A longitudinal follow-up of 770 Israeli adolescents 16 to 17 years of age who participated in the Jerusalem Lipid Research Clinic study and were reevaluated 13 years later. Lipoprotein particle size was assessed at the follow-up with proton nuclear magnetic resonance. The TG/HDL ratio measured in adolescence was strongly associated with low-density lipoprotein, very low-density lipoprotein (VLDL), and HDL mean particle size in young adulthood in both sexes, even after adjustment for baseline body mass index and body mass index change. The TG/HDL ratio measured in adolescence and subsequent weight gain independently predicted atherogenic small low-density lipoprotein and large VLDL particle concentrations (P < .001 in both sexes). Baseline TG/HDL and weight gain interacted to increase large VLDL concentration in men (P < .001). Adolescents with an elevated TG/HDL ratio are prone to express a proatherogenic lipid profile in adulthood. This profile is additionally worsened by weight gain. Copyright © 2011 Mosby, Inc. All rights reserved.
Axisymmetric annular curtain stability
NASA Astrophysics Data System (ADS)
Ahmed, Zahir U.; Khayat, Roger E.; Maissa, Philippe; Mathis, Christian
2012-06-01
A temporal stability analysis was carried out to investigate the stability of an axially moving viscous annular liquid jet subject to axisymmetric disturbances in surrounding co-flowing viscous gas media. We investigated in this study the effects of inertia, surface tension, the gas-to-liquid density ratio, the inner-to-outer radius ratio and the gas-to-liquid viscosity ratio on the stability of the jet. With an increase in inertia, the growth rate of the unstable disturbances is found to increase. The dominant (or most unstable) wavenumber decreases with increasing Reynolds number for larger values of the gas-to-liquid viscosity ratio. However, an opposite tendency for the most unstable wavenumber is predicted for small viscosity ratio in the same inertia range. The surrounding gas density, in the presence of viscosity, always reduces the growth rate, hence stabilizing the flow. There exists a critical value of the density ratio above which the flow becomes stable for very small viscosity ratio, whereas for large viscosity ratio, no stable flow appears in the same range of the density ratio. The curvature has a significant destabilizing effect on the thin annular jet, whereas for a relatively thick jet, the maximum growth rate decreases as the inner radius increases, irrespective of the surrounding gas viscosity. The degree of instability increases with Weber number for a relatively large viscosity ratio. In contrast, for small viscosity ratio, the growth rate exhibits a dramatic dependence on the surface tension. There is a small Weber number range, which depends on the viscosity ratio, where the flow is stable. The viscosity ratio always stabilizes the flow. However, the dominant wavenumber increases with increasing viscosity ratio. The range of unstable wavenumbers is affected only by the curvature effect.
Are camera surveys useful for assessing recruitment in white-tailed deer?
Chitwood, M. Colter; Lashley, Marcus A.; Kilgo, John C.; ...
2016-12-27
Camera surveys commonly are used by managers and hunters to estimate white-tailed deer Odocoileus virginianus density and demographic rates. Though studies have documented biases and inaccuracies in the camera survey methodology, camera traps remain popular due to ease of use, cost-effectiveness, and ability to survey large areas. Because recruitment is a key parameter in ungulate population dynamics, there is a growing need to test the effectiveness of camera surveys for assessing fawn recruitment. At Savannah River Site, South Carolina, we used six years of camera-based recruitment estimates (i.e. fawn:doe ratio) to predict concurrently collected annual radiotag-based survival estimates. The coefficientmore » of determination (R) was 0.445, indicating some support for the viability of cameras to reflect recruitment. Here, we added two years of data from Fort Bragg Military Installation, North Carolina, which improved R to 0.621 without accounting for site-specific variability. Also, we evaluated the correlation between year-to-year changes in recruitment and survival using the Savannah River Site data; R was 0.758, suggesting that camera-based recruitment could be useful as an indicator of the trend in survival. Because so few researchers concurrently estimate survival and camera-based recruitment, examining this relationship at larger spatial scales while controlling for numerous confounding variables remains difficult. We believe that future research should test the validity of our results from other areas with varying deer and camera densities, as site (e.g. presence of feral pigs Sus scrofa) and demographic (e.g. fawn age at time of camera survey) parameters may have a large influence on detectability. Until such biases are fully quantified, we urge researchers and managers to use caution when advocating the use of camera-based recruitment estimates.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chitwood, M. Colter; Lashley, Marcus A.; Kilgo, John C.
Camera surveys commonly are used by managers and hunters to estimate white-tailed deer Odocoileus virginianus density and demographic rates. Though studies have documented biases and inaccuracies in the camera survey methodology, camera traps remain popular due to ease of use, cost-effectiveness, and ability to survey large areas. Because recruitment is a key parameter in ungulate population dynamics, there is a growing need to test the effectiveness of camera surveys for assessing fawn recruitment. At Savannah River Site, South Carolina, we used six years of camera-based recruitment estimates (i.e. fawn:doe ratio) to predict concurrently collected annual radiotag-based survival estimates. The coefficientmore » of determination (R) was 0.445, indicating some support for the viability of cameras to reflect recruitment. Here, we added two years of data from Fort Bragg Military Installation, North Carolina, which improved R to 0.621 without accounting for site-specific variability. Also, we evaluated the correlation between year-to-year changes in recruitment and survival using the Savannah River Site data; R was 0.758, suggesting that camera-based recruitment could be useful as an indicator of the trend in survival. Because so few researchers concurrently estimate survival and camera-based recruitment, examining this relationship at larger spatial scales while controlling for numerous confounding variables remains difficult. We believe that future research should test the validity of our results from other areas with varying deer and camera densities, as site (e.g. presence of feral pigs Sus scrofa) and demographic (e.g. fawn age at time of camera survey) parameters may have a large influence on detectability. Until such biases are fully quantified, we urge researchers and managers to use caution when advocating the use of camera-based recruitment estimates.« less
Chen, Lin; Ray, Shonket; Keller, Brad M; Pertuz, Said; McDonald, Elizabeth S; Conant, Emily F; Kontos, Despina
2016-09-01
Purpose To investigate the impact of radiation dose on breast density estimation in digital mammography. Materials and Methods With institutional review board approval and Health Insurance Portability and Accountability Act compliance under waiver of consent, a cohort of women from the American College of Radiology Imaging Network Pennsylvania 4006 trial was retrospectively analyzed. All patients underwent breast screening with a combination of dose protocols, including standard full-field digital mammography, low-dose digital mammography, and digital breast tomosynthesis. A total of 5832 images from 486 women were analyzed with previously validated, fully automated software for quantitative estimation of density. Clinical Breast Imaging Reporting and Data System (BI-RADS) density assessment results were also available from the trial reports. The influence of image acquisition radiation dose on quantitative breast density estimation was investigated with analysis of variance and linear regression. Pairwise comparisons of density estimations at different dose levels were performed with Student t test. Agreement of estimation was evaluated with quartile-weighted Cohen kappa values and Bland-Altman limits of agreement. Results Radiation dose of image acquisition did not significantly affect quantitative density measurements (analysis of variance, P = .37 to P = .75), with percent density demonstrating a high overall correlation between protocols (r = 0.88-0.95; weighted κ = 0.83-0.90). However, differences in breast percent density (1.04% and 3.84%, P < .05) were observed within high BI-RADS density categories, although they were significantly correlated across the different acquisition dose levels (r = 0.76-0.92, P < .05). Conclusion Precision and reproducibility of automated breast density measurements with digital mammography are not substantially affected by variations in radiation dose; thus, the use of low-dose techniques for the purpose of density estimation may be feasible. (©) RSNA, 2016 Online supplemental material is available for this article.