Sample records for density research reactor

  1. Assessment of Nuclear Fuels using Radiographic Thickness Measurement Method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Muhammad Abir; Fahima Islam; Hyoung Koo Lee

    2014-11-01

    The Convert branch of the National Nuclear Security Administration (NNSA) Global Threat Reduction Initiative (GTRI) focuses on the development of high uranium density fuels for research and test reactors for nonproliferation. This fuel is aimed to convert low density high enriched uranium (HEU) based fuel to high density low enriched uranium (LEU) based fuel for high performance research reactors (HPRR). There are five U.S. reactors that fall under the HPRR category, including: the Massachusetts Institute of Technology Reactor (MITR), the National Bureau of Standards Reactor (NBSR), the Missouri University Research Reactor (UMRR), the Advanced Test Reactor (ATR), and the Highmore » Flux Isotope Reactor (HFIR). U-Mo alloy fuel phase in the form of either monolithic or dispersion foil type fuels, such as ATR Full-size In center flux trap Position (AFIP) and Reduced Enrichment for Research and Test Reactor (RERTR), are being designed for this purpose. The fabrication process1 of RERTR is susceptible to introducing a variety of fuel defects. A dependable quality control method is required during fabrication of RERTR miniplates to maintain the allowable design tolerances, therefore evaluating and analytically verifying the fabricated miniplates for maintaining quality standards as well as safety. The purpose of this work is to analyze the thickness of the fabricated RERTR-12 miniplates using non-destructive technique to meet the fuel plate specification for RERTR fuel to be used in the ATR.« less

  2. Delayed Neutrons Effect on Power Reactor with Variation of Fluid Fuel Velocity at MSR Fuji-12

    NASA Astrophysics Data System (ADS)

    Kuncoro Aji, Indarta; Pramuditya, Syeilendra; Novitrian; Irwanto, Dwi; Waris, Abdul

    2017-01-01

    As the nuclear reactor operate with liquid fuel, controlling velocity of the fuel flow on the Molten salt reactor very influence on the neutron kinetics in that reactor system. The effect of the pace fuel changes to the populations number of neutrons and power density on vertical direction (1 dimension) from the first until fifth year reactor operating had been analyzed on this research. This research had been conducted on MSR Fuji-12 with a two meters core high, and LiF-BeF2-ThF4-233UF4 as fuel composition respectively 71.78%-16%-11.86%-0.36%. Data of reactivity, neutron flux, and the macroscopic fission cross section obtained from ouput of SRAC (neutronic calculation code has been developed by JAEA, with JENDL-4.0 as data library on the SRAC calculation) was being used for the calculation process of this research. The calculation process of this research had been performed numerically by SOR (successive over relaxation) and finite difference methode, as well as using C programing language. From the calculation, regarding to the value of power density resulting from delayed neutrons, concluded that 20 m/s is the optimum fuel flow velocity in all the years reactor had operated. Where the increases number of power are inversely proportional with the fuel flow speed.

  3. Research Program of a Super Fast Reactor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Oka, Yoshiaki; Ishiwatari, Yuki; Liu, Jie

    2006-07-01

    Research program of a supercritical-pressure light water cooled fast reactor (Super Fast Reactor) is funded by MEXT (Ministry of Education, Culture, Sports, Science and Technology) in December 2005 as one of the research programs of Japanese NERI (Nuclear Energy Research Initiative). It consists of three programs. (1) development of Super Fast Reactor concept; (2) thermal-hydraulic experiments; (3) material developments. The purpose of the concept development is to pursue the advantage of high power density of fast reactor over thermal reactors to achieve economic competitiveness of fast reactor for its deployment without waiting for exhausting uranium resources. Design goal is notmore » breeding, but maximizing reactor power by using plutonium from spent LWR fuel. MOX will be the fuel of the Super Fast Reactor. Thermal-hydraulic experiments will be conducted with HCFC22 (Hydro chlorofluorocarbons) heat transfer loop of Kyushu University and supercritical water loop at JAEA. Heat transfer data including effect of grid spacers will be taken. The critical flow and condensation of supercritical fluid will be studied. The materials research includes the development and testing of austenitic stainless steel cladding from the experience of PNC1520 for LMFBR. Material for thermal insulation will be tested. SCWR (Supercritical-Water Cooled Reactor) of GIF (Generation-4 International Forum) includes both thermal and fast reactors. The research of the Super Fast Reactor will enhance SCWR research and the data base. The research period will be until March 2010. (authors)« less

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stillman, J. A.; Feldman, E. E.; Jaluvka, D.

    This report contains the results of reactor accident analyses for the University of Missouri Research Reactor (MURR). The calculations were performed as part of the conversion from the use of highly-enriched uranium (HEU) fuel to the use of low-enriched uranium (LEU) fuel. The analyses were performed by staff members in the Research and Test Reactor Department at the Argonne National Laboratory (ANL) and the MURR Facility. MURR LEU conversion is part of an overall effort to develop and qualify high-density fuel within the U.S. High Performance Research Reactor Conversion (USHPRR) program conducted by the U.S. Department of Energy National Nuclearmore » Security Administration’s Office of Material Management and Minimization (M 3).« less

  5. Irradiation Tests Supporting LEU Conversion of Very High Power Research Reactors in the US

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Woolstenhulme, N. E.; Cole, J. I.; Glagolenko, I.

    The US fuel development team is developing a high density uranium-molybdenum alloy monolithic fuel to enable conversion of five high-power research reactors. Previous irradiation tests have demonstrated promising behavior for this fuel design. A series of future irradiation tests will enable selection of final fuel fabrication process and provide data to qualify the fuel at moderately-high power conditions for use in three of these five reactors. The remaining two reactors, namely the Advanced Test Reactor and High Flux Isotope Reactor, require additional irradiation tests to develop and demonstrate the fuel’s performance with even higher power conditions, complex design features, andmore » other unique conditions. This paper reviews the program’s current irradiation testing plans for these moderately-high irradiation conditions and presents conceptual testing strategies to illustrate how subsequent irradiation tests will build upon this initial data package to enable conversion of these two very-high power research reactors.« less

  6. Development of a carbon formation reactor for carbon dioxide reduction

    NASA Technical Reports Server (NTRS)

    Noyes, G.

    1985-01-01

    Applied research, engineering development, and performance evaluation were conducted on a process for formation of dense carbon by pyrolysis of methane. Experimental research showed that dense (0.7 to 1.6 g/cc bulk density and 1.6 to 2.2 g/cc solid density) carbon can be produced by methane pyrolysis in quartzwool-packed quartz tubes at temperatrues of 1100 to 1300 C. This result supports the condensation theory of pyrolytic carbon formation from gaseous hydrocarbons. A full-scale Breadboard Carbon Formation Reactor (CFR) was designed, fabricated, and tested at 1100 to 1200 C with 380 to 2280 sccm input flows of methane. Single-pass conversion of methane to carbon ranged from 60 to 100 percent, with 89 percent average conversion. Performance was projected for an Advanced Carbon Reactor Subsystem (ACRS) which indicated that the ACRS is a viable option for management of metabolic carbon on long-duration space missions.

  7. Progress of the RERTR program in 2001.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Travelli, A.

    2002-03-07

    This paper describes the 2001 progress achieved by the Reduced Enrichment for Research and Test Reactors (RERTR) Program in collaboration with its many international partners. Postirradiation examinations of microplates have continued to reveal excellent irradiation behavior of U-Mo dispersion fuels in a variety of compositions and irradiating conditions. Irradiation of two new batches of miniplates of greater sizes was completed in the ATR to investigate the swelling behavior of these fuels under prototypic conditions. These materials hold the promise of achieving the program goal of developing LEU research reactor fuels with uranium densities in the 8-9 g/cm{sup 3} range. Qualificationmore » of the U-Mo dispersion fuels has been delayed by a patent issue involving KAERI. Test fuel elements with uranium density of 6 g/cm{sup 3} are being fabricated by BWXT and are expected to begin undergoing irradiation in the HFR-Petten reactor around March 2003, with a goal of qualifying this fuel by mid-2005. U-Mo fuel with uranium density of 8-9 g/cm{sup 3} is expected to be qualified by mid-2007. Final irradiation tests of LEU {sup 99}Mo targets in the RAS-GAS reactor at BATAN, in Indonesia, had to be postponed because of the 9/11 attacks, but the results collected to date indicate that these targets will soon be ready for commercial production. Excellent cooperation is also in progress with the CNEA in Argentina, MDSN/AECL in Canada, and ANSTO in Australia. Irradiation testing of five WWR-M2 tube-type fuel assemblies fabricated by the NZChK and containing LEU UO{sub 2} dispersion fuel was successfully completed within the Russian RERTR program. A new LEU U-Mo pin-type fuel that could be used to convert most Russian-designed research reactors has been developed by VNIINM and is ready for testing. Four additional shipments containing 822 spent fuel assemblies from foreign research reactors were accepted by the U.S. by September 30, 2001. Altogether, 4,562 spent fuel assemblies from foreign research reactors had been received by that date by the U.S. under the FRR SNF acceptance policy. The RERTR program is aggressively pursuing qualification of high-density LEU U-Mo dispersion fuels, with the dual goal of enabling further conversions and of developing a substitute for LEU silicide fuels that can be more easily disposed of after expiration of the U.S. FRR SNF Acceptance Program. As in the past, the success of the RERTR program will depend on the international friendship and cooperation that has always been its trademark.« less

  8. A neutronics feasibility study for the LEU conversion of Poland's Maria research reactor.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bretscher, M. M.

    1998-10-14

    The MARIA reactor is a high-flux multipurpose research reactor which is water-cooled and moderated with both beryllium and water. Standard HEU (80% {sup 235}U)fuel assemblies consist of six concentric fuel tubes of a U-Al alloy clad in aluminum. Although the inventory of HEU (80%) fuel is nearly exhausted, a supply of highly-loaded 36%-enriched fuel assemblies is available at the reactor site. Neutronic equilibrium studies have been made to determine the relative performance of fuels with enrichments of 80%, 36% and 19.7%. These studies indicate that LEU (19.7%) densities of about 2.5 gU/cm{sup 3} and 3.8 gU/cm{sup 3} are required tomore » match the performance of the MARIA reactor with 80%-enriched and with 36%-enriched fuels, respectively.« less

  9. 76 FR 70331 - List of Approved Spent Fuel Storage Casks: MAGNASTOR ® System, Revision 2

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-11-14

    ... various boron-10 areal densities for use with Pressurized Water Reactor and Boiling Water Reactor baskets... add various boron-10 areal densities for use with Pressurized Water Reactor and Boiling Water Reactor....1.1 to add various boron-10 areal densities for use with Pressurized Water Reactor and Boiling Water...

  10. Assessment of quasi-linear effect of RF power spectrum for enabling lower hybrid current drive in reactor plasmas

    NASA Astrophysics Data System (ADS)

    Cesario, Roberto; Cardinali, Alessandro; Castaldo, Carmine; Amicucci, Luca; Ceccuzzi, Silvio; Galli, Alessandro; Napoli, Francesco; Panaccione, Luigi; Santini, Franco; Schettini, Giuseppe; Tuccillo, Angelo Antonio

    2017-10-01

    The main research on the energy from thermonuclear fusion uses deuterium plasmas magnetically trapped in toroidal devices. To suppress the turbulent eddies that impair thermal insulation and pressure tight of the plasma, current drive (CD) is necessary, but tools envisaged so far are unable accomplishing this task while efficiently and flexibly matching the natural current profiles self-generated at large radii of the plasma column [1-5]. The lower hybrid current drive (LHCD) [6] can satisfy this important need of a reactor [1], but the LHCD system has been unexpectedly mothballed on JET. The problematic extrapolation of the LHCD tool at reactor graded high values of, respectively, density and temperatures of plasma has been now solved. The high density problem is solved by the FTU (Frascati Tokamak Upgrade) method [7], and solution of the high temperature one is presented here. Model results based on quasi-linear (QL) theory evidence the capability, w.r.t linear theory, of suitable operating parameters of reducing the wave damping in hot reactor plasmas. Namely, using higher RF power densities [8], or a narrower antenna power spectrum in refractive index [9,10], the obstacle for LHCD represented by too high temperature of reactor plasmas should be overcome. The former method cannot be used for routinely, safe antenna operations, Thus, only the latter key is really exploitable in a reactor. The proposed solutions are ultimately necessary for viability of an economic reactor.

  11. Observed Changes in As-Fabricated U-10Mo Monolithic Fuel Microstructures After Irradiation in the Advanced Test Reactor

    NASA Astrophysics Data System (ADS)

    Keiser, Dennis; Jue, Jan-Fong; Miller, Brandon; Gan, Jian; Robinson, Adam; Madden, James

    2017-12-01

    A low-enriched uranium U-10Mo monolithic nuclear fuel is being developed by the Material Management and Minimization Program, earlier known as the Reduced Enrichment for Research and Test Reactors Program, for utilization in research and test reactors around the world that currently use high-enriched uranium fuels. As part of this program, reactor experiments are being performed in the Advanced Test Reactor. It must be demonstrated that this fuel type exhibits mechanical integrity, geometric stability, and predictable behavior to high powers and high fission densities in order for it to be a viable fuel for qualification. This paper provides an overview of the microstructures observed at different regions of interest in fuel plates before and after irradiation for fuel samples that have been tested. These fuel plates were fabricated using laboratory-scale fabrication methods. Observations regarding how microstructural changes during irradiation may impact fuel performance are discussed.

  12. Neutronic performance of high-density LEU fuels in water-moderated and water-reflected research reactors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bretscher, M.M.; Matos, J.E.

    At the Reduced Enrichment for Research and Test Reactors (RERTR) meeting in September 1994, Durand reported that the maximum uranium loading attainable with U{sub 3}Si{sub 2} fuel is about 6.0 g U/cm{sup 3}. The French Commissariat a l`Energie Atomique (CEA) plan to perform irradiation tests with 5 plates at this loading. Compagnie pour L`Etude et La Realisation de Combustibles Atomiques (CERCA) has also fabricated a few uranium nitride (UN) plates with a uranium density in the fuel meat of 7.0 g/cm{sup 3} and found that UN is compatible with the aluminum matrix at temperatures below 500 C. High density dispersionmore » fuels proposed for development include U-Zr(4 wt%)-Nb(2 wt%), U-Mo(5 wt%), and U-Mo(9 wt%). The purpose of this note is to examine the relative neutronic behavior of these high density fuels in a typical light water-reflected and water-moderated MTR-type research reactor. The results show that a dispersion of the U-Zr-Nb alloy has the most favorable neutronic properties and offers the potential for uranium densities greater than 8.0 g/cm{sup 3}. On the other hand, UN is the least reactive fuel because of the relatively large {sup 14}N(n,p) cross section. For a fixed value of k{sub eff}, the required {sup 235}U loading per fuel element is least for the U-Zr-Nb fuel and steadily increases for the U-Mo(5%), U-Mo(9%), and UN fuels. Because of volume fraction limitations, the UO{sub 2} dispersions are only useful for uranium densities below 5.0 g/cm{sup 3}. In this density range, however, UO{sub 2} is more reactive than U{sub 3}Si{sub 2}.« less

  13. Equalization of energy density in boiling water reactors (as exemplified by WB-50). Development and testing of WB -50 computational model on the basis of MCU-RR code

    NASA Astrophysics Data System (ADS)

    Chertkov, Yu B.; Disyuk, V. V.; Pimenov, E. Yu; Aksenova, N. V.

    2017-01-01

    Within the framework of research in possibility and prospects of power density equalization in boiling water reactors (as exemplified by WB-50) a work was undertaken to improve prior computational model of the WB-50 reactor implemented in MCU-RR software. Analysis of prior works showed that critical state calculations have deviation of calculated reactivity exceeding ±0.3 % (ΔKef/Kef) for minimum concentrations of boric acid in the reactor water and reaching 2 % for maximum concentration values. Axial coefficient of nonuniform burnup distribution reaches high values in the WB-50 reactor. Thus, the computational model needed refinement to take into account burnup inhomogeneity along the fuel assembly height. At this stage, computational results with mean square deviation of less than 0.7 % (ΔKef/Kef) and dispersion of design values of ±1 % (ΔK/K) shall be deemed acceptable. Further lowering of these parameters apparently requires root cause analysis of such large values and paying more attention to experimental measurement techniques.

  14. U-Mo Monolithic Fuel for Nuclear Research and Test Reactors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Prabhakaran, Ramprashad

    The metallic fuel selected to replace the current HEU fuels in the research and test reactors is the LEU-10 weight % Mo alloy in the form of a thin sheet or foil encapsulated in AA6061 aluminum alloy with a zirconium interlayer. In order to effectively lead this pursuit, new developments in processing and fabrication of the fuel elements have been initiated, along with a better understanding of material behavior before and after irradiation as a result of these new developments. This editorial note gives an introduction about research and test reactors, need for HEU to LEU conversion, fuel requirements, highmore » uranium density monolithic fuel development and an overview of the four articles published in the December 2017 issue of JOM under a special topic titled “U-Mo Monolithic Fuel for Nuclear Research and Test Reactors”.« less

  15. Current drive at plasma densities required for thermonuclear reactors.

    PubMed

    Cesario, R; Amicucci, L; Cardinali, A; Castaldo, C; Marinucci, M; Panaccione, L; Santini, F; Tudisco, O; Apicella, M L; Calabrò, G; Cianfarani, C; Frigione, D; Galli, A; Mazzitelli, G; Mazzotta, C; Pericoli, V; Schettini, G; Tuccillo, A A

    2010-08-10

    Progress in thermonuclear fusion energy research based on deuterium plasmas magnetically confined in toroidal tokamak devices requires the development of efficient current drive methods. Previous experiments have shown that plasma current can be driven effectively by externally launched radio frequency power coupled to lower hybrid plasma waves. However, at the high plasma densities required for fusion power plants, the coupled radio frequency power does not penetrate into the plasma core, possibly because of strong wave interactions with the plasma edge. Here we show experiments performed on FTU (Frascati Tokamak Upgrade) based on theoretical predictions that nonlinear interactions diminish when the peripheral plasma electron temperature is high, allowing significant wave penetration at high density. The results show that the coupled radio frequency power can penetrate into high-density plasmas due to weaker plasma edge effects, thus extending the effective range of lower hybrid current drive towards the domain relevant for fusion reactors.

  16. NEUTRON DENSITY CONTROL IN A NEUTRONIC REACTOR

    DOEpatents

    Young, G.J.

    1959-06-30

    The method and means for controlling the neutron density in a nuclear reactor is described. It describes the method and means for flattening the neutron density distribution curve across the reactor by spacing the absorbing control members to varying depths in the central region closer to the center than to the periphery of the active portion of the reactor to provide a smaller neutron reproduction ratio in the region wherein the members are inserted, than in the remainder of the reactor thereby increasing the over-all potential power output.

  17. Analysis of irradiated U-7wt%Mo dispersion fuel microstructures using automated image processing

    DOE PAGES

    Collette, R.; King, J.; Buesch, C.; ...

    2016-04-01

    The High Performance Research Reactor Fuel Development (HPPRFD) program is responsible for developing low enriched uranium (LEU) fuel substitutes for high performance reactors fueled with highly enriched uranium (HEU) that have not yet been converted to LEU. The uranium-molybdenum (U-Mo) fuel system was selected for this effort. In this study, fission gas pore segmentation was performed on U-7wt%Mo dispersion fuel samples at three separate fission densities using an automated image processing interface developed in MATLAB. Pore size distributions were attained that showed both expected and unexpected fission gas behavior. In general, it proved challenging to identify any dominant trends whenmore » comparing fission bubble data across samples from different fuel plates due to varying compositions and fabrication techniques. Here, the results exhibited fair agreement with the fission density vs. porosity correlation developed by the Russian reactor conversion program.« less

  18. Analysis of irradiated U-7wt%Mo dispersion fuel microstructures using automated image processing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Collette, R.; King, J.; Buesch, C.

    The High Performance Research Reactor Fuel Development (HPPRFD) program is responsible for developing low enriched uranium (LEU) fuel substitutes for high performance reactors fueled with highly enriched uranium (HEU) that have not yet been converted to LEU. The uranium-molybdenum (U-Mo) fuel system was selected for this effort. In this study, fission gas pore segmentation was performed on U-7wt%Mo dispersion fuel samples at three separate fission densities using an automated image processing interface developed in MATLAB. Pore size distributions were attained that showed both expected and unexpected fission gas behavior. In general, it proved challenging to identify any dominant trends whenmore » comparing fission bubble data across samples from different fuel plates due to varying compositions and fabrication techniques. Here, the results exhibited fair agreement with the fission density vs. porosity correlation developed by the Russian reactor conversion program.« less

  19. Update on reactors and reactor instruments in Asia

    NASA Astrophysics Data System (ADS)

    Rao, K. R.

    1991-10-01

    The 1980s have seen the commissioning of several medium flux (∼10 14 neutrons/cm 2s) research reactors in Asia. The reactors are based on indigenous design and development in India and China. At Dhruva reactor (India), a variety of neutron spectrometers have been established that have provided useful data related to the structure of high- Tc materials, phonon density of states, magnetic moment distributions and micellar aggregation during the last couple of years. Polarised neutron analysis, neutron interferometry and neutron spin echo methods are some of the new techniques under development. The spectrometers and associated automaton, detectors and neutron guides have all been indigenously developed. This paper summarises the developments and on-going activities in Bangladesh, China, India, Indonesia, Korea, Malaysia, the Philippines and Thailand.

  20. Internally Heated Screw Pyrolysis Reactor (IHSPR) heat transfer performance study

    NASA Astrophysics Data System (ADS)

    Teo, S. H.; Gan, H. L.; Alias, A.; Gan, L. M.

    2018-04-01

    1.5 billion end-of-life tyres (ELT) were discarded globally each year and pyrolysis is considered the best solution to convert the ELT into valuable high energy-density products. Among all pyrolysis technologies, screw reactor is favourable. However, conventional screw reactor risks plugging issue due to its lacklustre heat transfer performance. An internally heated screw pyrolysis reactor (IHSPR) was developed by local renewable energy industry, which serves as the research subject for heat transfer performance study of this particular paper. Zero-load heating test (ZLHT) was first carried out to obtain the operational parameters of the reactor, followed by the one dimensional steady-state heat transfer analysis carried out using SolidWorks Flow Simulation 2016. Experiments with feed rate manipulations and pyrolysis products analyses were conducted last to conclude the study.

  1. The Effect of COD Concentration Containing Leaves Litter, Canteen and Composite Waste to the Performance of Solid Phase Microbial Fuel Cell (SMFC)

    NASA Astrophysics Data System (ADS)

    Samudro, Ganjar; Syafrudin; Nugraha, Winardi Dwi; Sutrisno, Endro; Priyambada, Ika Bagus; Muthi'ah, Hilma; Sinaga, Glory Natalia; Hakiem, Rahmat Tubagus

    2018-02-01

    This research is conducted to analyze and determine the optimum of COD concentration containing leaves litter, canteen and composite waste to power density and COD removal efficiency as the indicator of SMFC performance. COD as the one of organic matter parameters perform as substrate, nutrient and dominating the whole process of SMFC. Leaves litter and canteen based food waste were obtained from TPST UNDIP in Semarang and treated in SMFC reactor. Its reactor was designed 2 liter volume and equipped by homemade graphene electrodes that were utilized at the surface of organic waste as cathode and in a half of reactor height as anode. COD concentration was initially characterized and became variations of initial COD concentration. Waste volume was maintained 2/3 of volume of reactor. Bacteria sources as the important process factor in SMFC were obtained from river sediment which contain bacteroides and exoelectrogenic bacteria. Temperature and pH were not maintained while power density and COD concentration were periodically observed and measured during 44 days. The results showed that power density up to 4 mW/m2 and COD removal efficiency performance up to 70% were reached by leaves litter, canteen and composite waste at days 11 up to days 44 days. Leaves litter contain 16,567 mg COD/l providing higher COD removal efficiency reached approximately 87.67%, more stable power density reached approximately 4.71 mW/m2, and faster optimum time in the third day than canteen based food waste and composite waste. High COD removal efficiency has not yet resulted in high power density.

  2. Design Study of Modular Nuclear Power Plant with Small Long Life Gas Cooled Fast Reactors Utilizing MOX Fuel

    NASA Astrophysics Data System (ADS)

    Ilham, Muhammad; Su'ud, Zaki

    2017-01-01

    Growing energy needed due to increasing of the world’s population encourages development of technology and science of nuclear power plant in its safety and security. In this research, it will be explained about design study of modular fast reactor with helium gas cooling (GCFR) small long life reactor, which can be operated over 20 years. It had been conducted about neutronic design GCFR with Mixed Oxide (UO2-PuO2) fuel in range of 100-200 MWth NPPs of power and 50-60% of fuel fraction variation with cylindrical pin cell and cylindrical balance of reactor core geometry. Calculation method used SRAC-CITATION code. The obtained results are the effective multiplication factor and density value of core reactor power (with geometry optimalization) to obtain optimum design core reactor power, whereas the obtained of optimum core reactor power is 200 MWth with 55% of fuel fraction and 9-13% of percentages.

  3. Irradiation performance of U-Mo monolithic fuel

    DOE PAGES

    Meyer, M. K.; Gan, J.; Jue, J. F.; ...

    2014-04-01

    High-performance research reactors require fuel that operates at high specific power to high fission density, but at relatively low temperatures. Research reactor fuels are designed for efficient heat rejection, and are composed of assemblies of thin-plates clad in aluminum alloy. The development of low-enriched fuels to replace high-enriched fuels for these reactors requires a substantially increased uranium density in the fuel to offset the decrease in enrichment. Very few fuel phases have been identified that have the required combination of very-high uranium density and stable fuel behavior at high burnup. U-Mo alloys represent the best known tradeoff in these properties.more » Testing of aluminum matrix U-Mo aluminum matrix dispersion fuel revealed a pattern of breakaway swelling behavior at intermediate burnup, related to the formation of a molybdenum stabilized high aluminum intermetallic phase that forms during irradiation. In the case of monolithic fuel, this issue was addressed by eliminating, as much as possible, the interfacial area between U-Mo and aluminum. Based on scoping irradiation test data, a fuel plate system composed of solid U-10Mo fuel meat, a zirconium diffusion barrier, and Al6061 cladding was selected for development. Developmental testing of this fuel system indicates that it meets core criteria for fuel qualification, including stable and predictable swelling behavior, mechanical integrity to high burnup, and geometric stability. In addition, the fuel exhibits robust behavior during power-cooling mismatch events under irradiation at high power.« less

  4. IRRADIATION PERFORMANCE OF U-Mo MONOLITHIC FUEL

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    M.K. Meyer; J. Gan; J.-F. Jue

    2014-04-01

    High-performance research reactors require fuel that operates at high specific power to high fission density, but at relatively low temperatures. Research reactor fuels are designed for efficient heat rejection, and are composed of assemblies of thin-plates clad in aluminum alloy. The development of low-enriched fuels to replace high-enriched fuels for these reactors requires a substantially increased uranium density in the fuel to offset the decrease in enrichment. Very few fuel phases have been identified that have the required combination of very-high uranium density and stable fuel behavior at high burnup. UMo alloys represent the best known tradeoff in these properties.more » Testing of aluminum matrix U-Mo aluminum matrix dispersion fuel revealed a pattern of breakaway swelling behavior at intermediate burnup, related to the formation of a molybdenum stabilized high aluminum intermetallic phase that forms during irradiation. In the case of monolithic fuel, this issue was addressed by eliminating, as much as possible, the interfacial area between U-Mo and aluminum. Based on scoping irradiation test data, a fuel plate system composed of solid U-10Mo fuel meat, a zirconium diffusion barrier, and Al6061 cladding was selected for development. Developmental testing of this fuel system indicates that it meets core criteria for fuel qualification, including stable and predictable swelling behavior, mechanical integrity to high burnup, and geometric stability. In addition, the fuel exhibits robust behavior during power-cooling mismatch events under irradiation at high power.« less

  5. A study of increasing radical density and etch rate using remote plasma generator system

    NASA Astrophysics Data System (ADS)

    Lee, Jaewon; Kim, Kyunghyun; Cho, Sung-Won; Chung, Chin-Wook

    2013-09-01

    To improve radical density without changing electron temperature, remote plasma generator (RPG) is applied. Multistep dissociation of the polyatomic molecule was performed using RPG system. RPG is installed to inductively coupled type processing reactor; electrons, positive ions, radicals and polyatomic molecule generated in RPG and they diffused to processing reactor. The processing reactor dissociates the polyatomic molecules with inductively coupled power. The polyatomic molecules are dissociated by the processing reactor that is operated by inductively coupled power. Therefore, the multistep dissociation system generates more radicals than single-step system. The RPG was composed with two cylinder type inductively coupled plasma (ICP) using 400 kHz RF power and nitrogen gas. The processing reactor composed with two turn antenna with 13.56 MHz RF power. Plasma density, electron temperature and radical density were measured with electrical probe and optical methods.

  6. Status and progress of the RERTR program in the year 2003.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Travelli, A.; Nuclear Engineering Division

    2003-01-01

    One of the most important events affecting the RERTR program during the past year was the decision by the U.S. Department of Energy to request the U.S. Congress to significantly increase RERTR program funding. This decision was prompted, at least in part, by the terrible events of September 11, 2001, and by a high-level U.S./Russian Joint Expert Group recommendation to immediately accelerate RERTR program activities in both countries, with the goal of converting all the world's research reactors to low-enriched fuel at the earliest possible time, and including both Soviet-designed and United States-designed research reactors. The U.S. Congress is expectedmore » to approve this request very soon, and the RERTR program has prepared itself well for the intense activities that the 'Accelerated RERTR Program' will require. Promising results have been obtained in the development of a fabrication process for monolithic LEU U-Mo fuel. Most existing and future research reactors could be converted to LEU with this fuel, which has a uranium density between 15.4 and 16.4 g/cm{sup 3} and yielded promising irradiation results in 2002. The most promising method hinges on producing the monolithic meat by cold-rolling a thin ingot produced by casting. The aluminum clad and the meat are bonded by friction stir welding and the cladding surface is finished by a light cold roll. This method can be applied to the production of miniplates and appears to be extendable to the production of full-size plates, possibly with intermediate anneals. Other methods planned for investigation include high temperature bonding and hot isostatic pressing. The progress achieved within the Russian RERTR program, both for the traditional tube-type elements and for the new 'universal' LEU U-Mo pin-type elements, promises to enable soon the conversion of many Russian-designed research and test reactors. Irradiation testing of both fuel types with LEU U-Mo dispersion fuels has begun. Detailed studies are in progress to define the feasibility of converting each Russian-designed research and test reactor to either fuel type. The plan for the Accelerated RERTR Program is structured to achieve LEU conversion of all HEU research reactors supplied by the United States and Russia during the next nine years. This effort will address, in addition to the fuel development and qualification, the analyses and performance/economic/safety evaluations needed to implement the conversions. In combination with this over-arching goal, the RERTR program plans to achieve at the earliest possible date qualification of LEU U-Mo dispersion fuels with uranium densities of 6 g/cm{sup 3} and 7 g/cm{sup 3}. Reactors currently using or planning to use LEU silicide fuel will rely on this fuel after termination of the FRRSNFA program, because it is acceptable to COGEMA for reprocessing. Qualification of LEU U-Mo dispersion fuels has suffered some unavoidable delays but, to accelerate it as much as possible, the RERTR program, the French CEA, and the Australian ANSTO have agreed to jointly pursue a two-element qualification test of LEU U-Mo dispersion fuel with uranium density of 7.0 g/cm{sup 3} to be performed in the Osiris reactor during 2004. The RERTR program also intends to eliminate all obstacles to the utilization of LEU in targets for isotope production, so that this important function can be performed without the need for weapons-grade materials. All of us, working together as we have for many years, can ensure that all these goals will be achieved. By promoting the efficiency and safety of research reactors while eliminating the traffic in weapons-grade uranium, we can prevent the possibility that some of this material might fall in the wrong hands. Few causes can be more deserving of our joint efforts.« less

  7. Convective cooling in a pool-type research reactor

    NASA Astrophysics Data System (ADS)

    Sipaun, Susan; Usman, Shoaib

    2016-01-01

    A reactor produces heat arising from fission reactions in the nuclear core. In the Missouri University of Science and Technology research reactor (MSTR), this heat is removed by natural convection where the coolant/moderator is demineralised water. Heat energy is transferred from the core into the coolant, and the heated water eventually evaporates from the open pool surface. A secondary cooling system was installed to actively remove excess heat arising from prolonged reactor operations. The nuclear core consists of uranium silicide aluminium dispersion fuel (U3Si2Al) in the form of rectangular plates. Gaps between the plates allow coolant to pass through and carry away heat. A study was carried out to map out heat flow as well as to predict the system's performance via STAR-CCM+ simulation. The core was approximated as porous media with porosity of 0.7027. The reactor is rated 200kW and total heat density is approximately 1.07+E7 Wm-3. An MSTR model consisting of 20% of MSTR's nuclear core in a third of the reactor pool was developed. At 35% pump capacity, the simulation results for the MSTR model showed that water is drawn out of the pool at a rate 1.28 kg s-1 from the 4" pipe, and predicted pool surface temperature not exceeding 30°C.

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Trianti, Nuri, E-mail: nuri.trianti@gmail.com; Nurjanah,; Su’ud, Zaki

    Thermalhydraulic of reactor core is the thermal study on fluids within the core reactor, i.e. analysis of the thermal energy transfer process produced by fission reaction from fuel to the reactor coolant. This study include of coolant temperature and reactor power density distribution. The purposes of this analysis in the design of nuclear power plant are to calculate the coolant temperature distribution and the chimney height so natural circulation could be occurred. This study was used boiling water reactor (BWR) with cylinder type reactor core. Several reactor core properties such as linear power density, mass flow rate, coolant density andmore » inlet temperature has been took into account to obtain distribution of coolant density, flow rate and pressure drop. The results of calculation are as follows. Thermal hydraulic calculations provide the uniform pressure drop of 1.1 bar for each channels. The optimum mass flow rate to obtain the uniform pressure drop is 217g/s. Furthermore, from the calculation it could be known that outlet temperature is 288°C which is the saturated fluid’s temperature within the system. The optimum chimney height for natural circulation within the system is 14.88 m.« less

  9. Microstructure of the irradiated U 3Si 2/Al silicide dispersion fuel

    NASA Astrophysics Data System (ADS)

    Gan, J.; Keiser, D. D.; Miller, B. D.; Jue, J.-F.; Robinson, A. B.; Madden, J. W.; Medvedev, P. G.; Wachs, D. M.

    2011-12-01

    The silicide dispersion fuel of U 3Si 2/Al is recognized as the best performance fuel for many nuclear research and test reactors with up to 4.8 gU/cm 3 fuel loading. An irradiated U 3Si 2/Al dispersion fuel ( 235U ˜ 75%) from the high-flux side of a fuel plate (U0R040) from the Reduced Enrichment for Research and Test Reactors (RERTR)-8 test was characterized using transmission electron microscopy (TEM). The fuel was irradiated in the Advanced Test Reactor (ATR) for 105 days. The average irradiation temperature and fission density of the U 3Si 2 fuel particles for the TEM sample are estimated to be approximately 110 °C and 5.4 × 10 27 f/m 3. The characterization was performed using a 200-kV TEM. The U/Si ratio for the fuel particle and (Si + Al)/U for the fuel-matrix-interaction layer are approximately 1.1 and 4-10, respectively. The estimated average diameter, number density and volume fraction for small bubbles (<1 μm) in the fuel particle are ˜94 nm, 1.05 × 10 20 m -3 and ˜11%, respectively. The results and their implication on the performance of the U 3Si 2/Al silicide dispersion fuel are discussed.

  10. Interior of the Plum Brook Reactor Facility

    NASA Image and Video Library

    1961-02-21

    A view inside the 55-foot high containment vessel of the National Aeronautics and Space Administration (NASA) Plum Brook Reactor Facility in Sandusky, Ohio. The 60-megawatt test reactor went critical for the first time in 1961 and began its full-power research operations in 1963. From 1961 to 1973, this reactor performed some of the nation’s most advanced nuclear research. The reactor was designed to determine the behavior of metals and other materials after long durations of irradiation. The materials would be used to construct a nuclear-powered rocket. The reactor core, where the chain reaction occurred, sat at the bottom of the tubular pressure vessel, seen here at the center of the shielding pool. The core contained fuel rods with uranium isotopes. A cooling system was needed to reduce the heat levels during the reaction. A neutron-impervious reflector was also employed to send many of the neutrons back to the core. The Plum Brook Reactor Facility was constructed from high-density concrete and steel to prevent the excess neutrons from escaping the facility, but the water in the pool shielded most of the radiation. The water, found in three of the four quadrants served as a reflector, moderator, and coolant. In this photograph, the three 20-ton protective shrapnel shields and hatch have been removed from the top of the pressure tank revealing the reactor tank. An overhead crane could be manipulated to reach any section of this room. It was used to remove the shrapnel shields and transfer equipment.

  11. DENSITY CONTROL IN A REACTOR

    DOEpatents

    Marshall, J. Jr.

    1961-10-24

    A reactor is described in which natural-uranium bodies are located in parallel channels which extend through the graphite mass in a regular lattice. The graphite mass has additional channels that are out of the lattice and contain no uranium. These additional channels decrease in number per unit volume of graphite from the center of the reactor to the exterior and have the effect of reducing the density of the graphite more at the center than at the exterior, thereby spreading neutron activity throughout the reactor. (AEC)

  12. Studies of PuF sub 6 and transplutonic materials' critical properties for space high power nuclear pumped lasers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gu, A.G.; Miller, M.S.

    1991-01-01

    All space missions require a reliable, compact source of energy. This paper describes preliminary neutronics studies of pocket'' reactor concepts employing PuF{sub 6} and transplutonic materials as fuels for space high power/energy Nuclear Pumped Lasers (NPLs). Previous research has studied NPL reactor concepts with thin fuel layers, aerosol fuels and gaseous UF{sub 6}. The total reactor volumes for compact reactors with these types of fuels typically range from 3 m{sup 3} to 50 m{sup 3}. By employing PuF{sub 6} and transplutonic fuels at the same low densities, a calculated value for Keff of 1.2 has been achieved for conditions ofmore » 900 K and 5 atm, with total reactor volumes of 1.5 m{sup 3} for PuF{sub 6}, 0.51 m{sup 3} for Am-242m, 0.58 m{sup 3} for Cm-245 and 0.63 m{sup 3} for Cf-249.« less

  13. Convective cooling in a pool-type research reactor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sipaun, Susan, E-mail: susan@nm.gov.my; Usman, Shoaib, E-mail: usmans@mst.edu

    2016-01-22

    A reactor produces heat arising from fission reactions in the nuclear core. In the Missouri University of Science and Technology research reactor (MSTR), this heat is removed by natural convection where the coolant/moderator is demineralised water. Heat energy is transferred from the core into the coolant, and the heated water eventually evaporates from the open pool surface. A secondary cooling system was installed to actively remove excess heat arising from prolonged reactor operations. The nuclear core consists of uranium silicide aluminium dispersion fuel (U{sub 3}Si{sub 2}Al) in the form of rectangular plates. Gaps between the plates allow coolant to passmore » through and carry away heat. A study was carried out to map out heat flow as well as to predict the system’s performance via STAR-CCM+ simulation. The core was approximated as porous media with porosity of 0.7027. The reactor is rated 200kW and total heat density is approximately 1.07+E7 Wm{sup −3}. An MSTR model consisting of 20% of MSTR’s nuclear core in a third of the reactor pool was developed. At 35% pump capacity, the simulation results for the MSTR model showed that water is drawn out of the pool at a rate 1.28 kg s{sup −1} from the 4” pipe, and predicted pool surface temperature not exceeding 30°C.« less

  14. Repetition rates in heavy ion beam driven fusion reactors

    NASA Astrophysics Data System (ADS)

    Peterson, Robert R.

    1986-01-01

    The limits on the cavity gas density required for beam propagation and condensation times for material vaporized by target explosions can determine the maximum repetition rate of Heavy Ion Beam (HIB) driven fusion reactors. If the ions are ballistically focused onto the target, the cavity gas must have a density below roughly 10-4 torr (3×1012 cm-3) at the time of propagation; other propagation schemes may allow densities as high as 1 torr or more. In some reactor designs, several kilograms of material may be vaporized off of the target chamber walls by the target generated x-rays, raising the average density in the cavity to 100 tor or more. A one-dimensional combined radiation hydrodynamics and vaporization and condensation computer code has been used to simulate the behavior of the vaporized material in the target chambers of HIB fusion reactors.

  15. REACTOR

    DOEpatents

    Roman, W.G.

    1961-06-27

    A pressurized water reactor in which automatic control is achieved by varying the average density of the liquid moderator-cooiant is patented. Density is controlled by the temperature and power level of the reactor ftself. This control can be effected by the use of either plate, pellet, or tubular fuel elements. The fuel elements are disposed between upper and lower coolant plenum chambers and are designed to permit unrestricted coolant flow. The control chamber has an inlet opening communicating with the lower coolant plenum chamber and a restricted vapor vent communicating with the upper coolant plenum chamber. Thus, a variation in temperature of the fuel elements will cause a variation in the average moderator density in the chamber which directly affects the power level of the reactor.

  16. Comparative Study on Various Geometrical Core Design of 300 MWth Gas Cooled Fast Reactor with UN-PuN Fuel Longlife without Refuelling

    NASA Astrophysics Data System (ADS)

    Dewi Syarifah, Ratna; Su'ud, Zaki; Basar, Khairul; Irwanto, Dwi

    2017-07-01

    Nuclear power has progressive improvement in the operating performance of exiting reactors and ensuring economic competitiveness of nuclear electricity around the world. The GFR use gas coolant and fast neutron spectrum. This research use helium coolant which has low neutron moderation, chemical inert and single phase. Comparative study on various geometrical core design for modular GFR with UN-PuN fuel long life without refuelling has been done. The calculation use SRAC2006 code both PIJ calculation and CITATION calculation. The data libraries use JENDL 4.0. The variation of fuel fraction is 40% until 65%. In this research, we varied the geometry of core reactor to find the optimum geometry design. The variation of the geometry design is balance cylinder; it means that the diameter active core (D) same with height active core (H). Second, pancake cylinder (D>H) and third, tall cylinder (D

  17. A Comparative Study of Welded ODS Cladding materials for AFCI/GNEP Applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Indrajit Charit; Megan Frary; Darryl Butt

    2011-03-31

    This research project involved working on the pressure resistance welding of oxide dispersion strengthened (ODS) alloys which will have a large role to play in advanced nuclear reactors. The project also demonstrated the research collaboration between four universities and one nation laboratory (Idaho National Laboratory) with participation from an industry for developing for ODS alloys. These alloys contain a high number density of very fine oxide particles that can impart high temperature strength and radiation damage resistance suitable for in-core applications in advanced reactors. The conventional fusion welding techniques tend to produce porosity-laden microstructure in the weld region and leadmore » to the agglomeration and non-uniform distribution of the neededoxide particles. That is why two solid state welding methods - pressure resistance welding (PRW) and friction stir welding (FSW) - were chosen to be evaluated in this project. The proposal is expected to support the development of Advanced Burner Reactors (ABR) under the GNEP program (now incorporated in Fuel Cycle R&D program). The outcomes of the concluded research include training of graduate and undergraduate students and get them interested in nuclear related research.« less

  18. The RERTR Program : a status report.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Travelli, A.

    1998-10-19

    This paper describes the progress achieved by the Reduced Enrichment for Research and Test Reactors (RERTR) Program in collaboration with its many international partners since its inception in 1978. A brief summary of the results that the program had attained by the end of 1997 is followed by a detailed review of the major events, findings, and activities that took place in 1998. The past year was characterized by exceptionally important accomplishments and events for the RERTR program. Four additional shipments of spent fuel from foreign research reactors were accepted by the U.S. Altogether, 2,231 spent fuel assemblies from foreignmore » research reactors have been received by the U.S. under the acceptance policy. Fuel development activities began to yield solid results. Irradiations of the first two batches of microplates were completed. Preliminary postirradiation examinations of these microplates indicate excellent irradiation behavior of some of the fuel materials that were tested. These materials hold the promise of achieving the pro am goal of developing LEU research reactor fuels with uranium density in the 8-9 g /cm{sup 3} range. Progress was made in the Russian RERTR program, which aims to develop and demonstrate the technical means needed to convert Russian-supplied research reactors to LEU fuels. Feasibility studies for converting to LEU fuel four Russian-designed research reactors (IR-8 in Russia, Budapest research reactor in Hungary, MARIA in Poland, and WWR-SM in Uzbekistan) were completed. A new program activity began to study the feasibility of converting three Russian plutonium production reactors to the use of low-enriched U0{sub 2}-Al dispersion fuel, so that they can continue to produce heat and electricity without producing significant amounts of plutonium. The study of an alternative LEU core for the FRM-II design has been extended to address, with favorable results, the transient performance of the core under hypothetical accident conditions. A major milestone was accomplished in the development of a process to produce molybdenum-99 from fission targets utilizing LEU instead of HEU. Targets containing LEU metal foils were irradiated in the RAS-GAS reactor at BATAN, Indonesia, and molybdenum-99 was successfully extracted through the ensuing process. These are exciting times for the program and for all those involved in it, and last year's successes augur well for the future. However, as in the past, the success of the RERTR program will depend on the international friendship and cooperation that have always been its trademark.« less

  19. Fuel development for gas-cooled fast reactors

    NASA Astrophysics Data System (ADS)

    Meyer, M. K.; Fielding, R.; Gan, J.

    2007-09-01

    The Generation IV Gas-cooled Fast Reactor (GFR) concept is proposed to combine the advantages of high-temperature gas-cooled reactors (such as efficient direct conversion with a gas turbine and the potential for application of high-temperature process heat), with the sustainability advantages that are possible with a fast-spectrum reactor. The latter include the ability to fission all transuranics and the potential for breeding. The GFR is part of a consistent set of gas-cooled reactors that includes a medium-term Pebble Bed Modular Reactor (PBMR)-like concept, or concepts based on the Gas Turbine Modular Helium Reactor (GT-MHR), and specialized concepts such as the Very High-Temperature Reactor (VHTR), as well as actinide burning concepts [A Technology Roadmap for Generation IV Nuclear Energy Systems, US DOE Nuclear Energy Research Advisory Committee and the Generation IV International Forum, December 2002]. To achieve the necessary high power density and the ability to retain fission gas at high temperature, the primary fuel concept proposed for testing in the United States is dispersion coated fuel particles in a ceramic matrix. Alternative fuel concepts considered in the US and internationally include coated particle beds, ceramic clad fuel pins, and novel ceramic 'honeycomb' structures. Both mixed carbide and mixed nitride-based solid solutions are considered as fuel phases.

  20. Absolute determination of power density in the VVER-1000 mock-up on the LR-0 research reactor.

    PubMed

    Košt'ál, Michal; Švadlenková, Marie; Milčák, Ján

    2013-08-01

    The work presents a detailed comparison of calculated and experimentally determined net peak areas of selected fission products gamma lines. The fission products were induced during a 2.5 h irradiation on the power level of 9.5 W in selected fuel pins of the VVER-1000 Mock-Up. The calculations were done with deterministic and stochastic (Monte Carlo) methods. The effects of different nuclear data libraries used for calculations are discussed as well. The Net Peak Area (NPA) may be used for the determination of fission density across the mock-up. This fission density is practically identical to power density. Copyright © 2013 Elsevier Ltd. All rights reserved.

  1. Application of nuclear pumped laser to an optical self-powered neutron detector

    NASA Astrophysics Data System (ADS)

    Yamanaka, N.; Takahashi, H.; Iguchi, T.; Nakazawa, M.; Kakuta, T.; Yamagishi, H.; Katagiri, M.

    1996-05-01

    A Nuclear Pumped Laser (NPL) using 3He/Ne/Ar gas mixture is investigated for a purpose of applying to an optical self-powered neutron detector. Reactor experiments and simulations on lasing mechanism have been made to estimate the best gas pressure and mixture ratios on the threshold input power density (or thermal neutron flux) in 3He/Ne/Ar mixture. Calculational results show that the best mixture pressure is 3He/Ne/Ar=2280/60/100 Torr and thermal neutron flux threshold 5×1012 n/cm2 sec, while the reactor experiments made in the research reactor ``YAYOI'' of the University of Tokyo and ``JRR-4'' of JAERI also demonstrate that excitational efficiency is maximized in a similar gas mixture predicted by the calculation.

  2. Rate Theory Modeling and Simulations of Silicide Fuel at LWR Conditions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miao, Yinbin; Ye, Bei; Mei, Zhigang

    Uranium silicide (U 3Si 2) fuel has higher thermal conductivity and higher uranium density, making it a promising candidate for the accident-tolerant fuel (ATF) used in light water reactors (LWRs). However, previous studies on the fuel performance of U 3Si 2, including both experimental and computational approaches, have been focusing on the irradiation conditions in research reactors, which usually involve low operation temperatures and high fuel burnups. Thus, it is important to examine the fuel performance of U 3Si 2 at typical LWR conditions so as to evaluate the feasibility of replacing conventional uranium dioxide fuel with this silicide fuelmore » material. As in-reactor irradiation experiments involve significant time and financial cost, it is appropriate to utilize modeling tools to estimate the behavior of U 3Si 2 in LWRs based on all those available research reactor experimental references and state-of-the-art density functional theory (DFT) calculation capabilities at the early development stage. Hence, in this report, a comprehensive investigation of the fission gas swelling behavior of U 3Si 2 at LWR conditions is introduced. The modeling efforts mentioned in this report was based on the rate theory (RT) model of fission gas bubble evolution that has been successfully applied for a variety of fuel materials at devious reactor conditions. Both existing experimental data and DFT-calculated results were used for the optimization of the parameters adopted by the RT model. Meanwhile, the fuel-cladding interaction was captured by the coupling of the RT model with simplified mechanical correlations. Therefore, the swelling behavior of U 3Si 2 fuel and its consequent interaction with cladding in LWRs was predicted by the rate theory modeling, providing valuable information for the development of U 3Si 2 fuel as an accident-tolerant alternative for uranium dioxide.« less

  3. Thorium Fuel Utilization Analysis on Small Long Life Reactor for Different Coolant Types

    NASA Astrophysics Data System (ADS)

    Permana, Sidik

    2017-07-01

    A small power reactor and long operation which can be deployed for less population and remote area has been proposed by the IAEA as a small and medium reactor (SMR) program. Beside uranium utilization, it can be used also thorium fuel resources for SMR as a part of optimalization of nuclear fuel as a “partner” fuel with uranium fuel. A small long-life reactor based on thorium fuel cycle for several reactor coolant types and several power output has been evaluated in the present study for 10 years period of reactor operation. Several key parameters are used to evaluate its effect to the reactor performances such as reactor criticality, excess reactivity, reactor burnup achievement and power density profile. Water-cooled types give higher criticality than liquid metal coolants. Liquid metal coolant for fast reactor system gives less criticality especially at beginning of cycle (BOC), which shows liquid metal coolant system obtains almost stable criticality condition. Liquid metal coolants are relatively less excess reactivity to maintain longer reactor operation than water coolants. In addition, liquid metal coolant gives higher achievable burnup than water coolant types as well as higher power density for liquid metal coolants.

  4. Power flattening on modified CANDLE small long life gas-cooled fast reactor

    NASA Astrophysics Data System (ADS)

    Monado, Fiber; Su'ud, Zaki; Waris, Abdul; Basar, Khairul; Ariani, Menik; Sekimoto, Hiroshi

    2014-09-01

    Gas-cooled Fast Reactor (GFR) is one of the candidates of next generation Nuclear Power Plants (NPPs) that expected to be operated commercially after 2030. In this research conceptual design study of long life 350 MWt GFR with natural uranium metallic fuel as fuel cycle input has been performed. Modified CANDLE burn-up strategy with first and second regions located near the last region (type B) has been applied. This reactor can be operated for 10 years without refuelling and fuel shuffling. Power peaking reduction is conducted by arranging the core radial direction into three regions with respectively uses fuel volume fraction 62.5%, 64% and 67.5%. The average power density in the modified core is about 82 Watt/cc and the power peaking factor decreased from 4.03 to 3.43.

  5. Evaluation of power density on the bioethanol production using mesoscale oscillatory baffled reactor and stirred tank reactor

    NASA Astrophysics Data System (ADS)

    Yussof, H. W.; Bahri, S. S.; Mazlan, N. A.

    2018-03-01

    A recent development in oscillatory baffled reactor technology is down-scaling the reactor, so that it can be used for production of small-scale bioproduct. In the present study, a mesoscale oscillatory baffled reactor (MOBR) with central baffle system was developed. The reactor performance of the MOBR was compared with conventional stirred tank reactor (STR) to evaluate the performance of bioethanol fermentation using Saccharomyces cerevisiae. Evaluation was made at similar power density of 24.21, 57.38, 112.35 and 193.67 Wm-3 by varying frequency (f), amplitude (xo) and agitation speed (rpm). It was found that the MOBR improved the mixing intensity resulted in lower glucose concentration (0.988 gL-1) and higher bioethanol concentration (38.98 gL-1) after 12 hours fermentation at power density of 193.67 Wm-3. Based on the results, the bioethanol yield obtained using MOBR was 39% higher than the maximum achieved in STR. Bioethanol production using MOBR proved to be feasible as it is not only able to compete with conventional STR but also offers advantages of straight-forward scale-up, whereas it is complicated and difficult in STR. Overall, MOBR offers great prospective over the conventional STR.

  6. Status of the US RERTR Program

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Travelli, A.

    1995-02-01

    The progress of the Reduced Enrichment Research and Test Reactor (RERTR) Program is described. The major events, findings, and activities of 1994 are reviewed after a brief summary of the results which the RERTR Program had achieved by the end of 1993 in collaboration with its many international partners. The RERTR Program has moved aggressively to support President Clinton`s nonproliferation policy and his goal {open_quotes}to minimize the use of highly-enriched uranium in civil nuclear programs{close_quotes}. An Environmental Assessment which addresses the urgent-relief acceptance of 409 spent fuel elements was completed, and the first shipment of spent fuel elements is scheduledmore » for this month. An Environmental Impact Statement addressing the acceptance of spent research reactor fuel containing enriched uranium of U.S. origin is scheduled for completion by the end of June 1995. The U.S. administration has decided to resume development of high-density LEU research reactor fuels. DOE funding and guidance are expected to begin soon. A preliminary plan for the resumption of fuel development has been prepared and is ready for implementation. The scope and main technical activities of a plan to develop and demonstrate within the next five years the technical means needed to convert Russian-supplied research reactors to LEU fuels was agreed upon by the RERTR Program and four Russian institutes lead by RDIPE. Both Secretary O`Leary and Minister Michailov have expressed strong support for this initiative. Joint studies have made significant progress, especially in assessing the technical and economic feasibility of using reduced enrichment fuels in the SAFARI-I reactor in South Africa and in the Advanced Neutron Source reactor under design at ORNL. Significant progress was achieved on several aspects of producing {sup 99}Mo from fission targets utilizing LEU instead of HEU to the achievement of the common goal.« less

  7. Spectrum and density of neutron flux in the irradiation beam line no. 3 of the IBR-2 reactor

    NASA Astrophysics Data System (ADS)

    Shabalin, E. P.; Verkhoglyadov, A. E.; Bulavin, M. V.; Rogov, A. D.; Kulagin, E. N.; Kulikov, S. A.

    2015-03-01

    Methodology and results of measuring the differential density of the neutron flux in irradiation beam line no. 3 of the IBR-2 reactor using neutron activation analysis (NAA) are presented in the paper. The results are compared to the calculation performed on the basis of the 3D MCNP model. The data that are obtained are required to determine the integrated radiation dose of the studied samples at various distances from the reactor.

  8. Processing of U-2.5Zr-7.5Nb and U-3Zr-9Nb alloys by sintering process

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dos Santos, A. M. M.; Ferraz, W. B.; Lameiras, F. S.

    2012-07-01

    To minimize the risk of nuclear proliferation, there is worldwide interest in reducing fuel enrichment of research and test reactors. To achieve this objective while still guaranteeing criticality and cycle length requirements, there is need of developing high density uranium metallic fuels. Alloying elements such as Zr, Nb and Mo are added to uranium to improve fuel performance in reactors. In this context, the Centro de Desenvolvimento da Tecnologia Nuclear (CDTN) is developing the U-2.5Zr-7.5Nb and U-3Zr-9Nb (weight %) alloys by the innovative process of sintering that utilizes raw materials in the form of powders. The powders were pressed atmore » 400 MPa and then sintered under a vacuum of about 1x10{sup -4} Torr at temperatures ranging from 1050 deg. to 1500 deg.C. The densities of the alloys were measured geometrically and by hydrostatic method and the phases identified by X ray diffraction (XRD). The microstructures of the pellets were observed by scanning electron microscopy (SEM) and the alloying elements were analyzed by energy dispersive X-ray spectroscopy (EDS). The results obtained showed the fuel density to slightly increase with the sintering temperature. The highest density achieved was approximately 80% of theoretical density. It was observed in the pellets a superficial oxide layer formed during the sintering process. (authors)« less

  9. Estimate of radiation release from MIT reactor with un-finned LEU core during Maximum Hypothetical Accident

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sun, Kaichao; Hu, Lin-wen; Newton, Thomas

    2017-05-01

    The Massachusetts Institute of Technology Reactor (MITR-II) is a research reactor in Cambridge, Massachusetts designed primarily for experiments using neutron beam and in-core irradiation facilities. At 6 MW, it delivers neutron flux and energy spectrum comparable to light water reactor (LWR) power reactors in a compact core using highly enriched uranium (HEU) fuel. In the framework of nonproliferation policy, the international community aims to minimize the use of HEU in civilian facilities. Within this context, research and test reactors have started a program to convert HEU fuel to low enriched uranium (LEU) fuel. A new type of LEU fuel basedmore » on a high density alloy of uranium and molybdenum (U-10Mo) is expected to allow the conversion of U.S. domestic high performance reactors like MITR. The current study focuses on the impacts of MITR Maximum Hypothetical Accident (MHA), which is also the Design Basis Accident (DBA), with LEU fuel. The MHA for the MITR is postulated to be a coolant flow blockage in the fuel element that contains the hottest fuel plate. It is assumed that the entire active portion of five fuel plates melts. The analysis shows that, within a 2-h period and by considering all the possible radiation sources and dose pathways, the overall off-site dose is 302.1 mrem (1 rem ¼ 0.01 Sv) Total Effective Dose Equivalent (TEDE) at 8 m exclusion area boundary (EAB) and a higher dose of 392.8 mrem TEDE is found at 21 m EAB. In all cases the dose remains below the 500 mrem total TEDE limit goal based on NUREG-1537 guidelines.« less

  10. Low-enriched uranium high-density target project. Compendium report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vandegrift, George; Brown, M. Alex; Jerden, James L.

    2016-09-01

    At present, most 99Mo is produced in research, test, or isotope production reactors by irradiation of highly enriched uranium targets. To achieve the denser form of uranium needed for switching from high to low enriched uranium (LEU), targets in the form of a metal foil (~125-150 µm thick) are being developed. The LEU High Density Target Project successfully demonstrated several iterations of an LEU-fission-based Mo-99 technology that has the potential to provide the world’s supply of Mo-99, should major producers choose to utilize the technology. Over 50 annular high density targets have been successfully tested, and the assembly and disassemblymore » of targets have been improved and optimized. Two target front-end processes (acidic and electrochemical) have been scaled up and demonstrated to allow for the high-density target technology to mate up to the existing producer technology for target processing. In the event that a new target processing line is started, the chemical processing of the targets is greatly simplified. Extensive modeling and safety analysis has been conducted, and the target has been qualified to be inserted into the High Flux Isotope Reactor, which is considered above and beyond the requirements for the typical use of this target due to high fluence and irradiation duration.« less

  11. MOUND LABORATORY PROGRESS REPORT FOR DECEMBER 1960

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    Activities are reported in a program to investigate formulations and procedures which may lead to superior plastics and adhesives. In other work, processes for separating and purifying radioelements are being developed and supply sources are being evaluated. Research was initiated to determine the density, viscosity, thermal capacity, and thermal conductivity of Pu and Pu alloys for use in fast breeder reactors. (J.R.D.)

  12. Pebble Fuel Handling and Reactivity Control for Salt-Cooled High Temperature Reactors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peterson, Per; Greenspan, Ehud

    2015-02-09

    This report documents the work completed on the X-PREX facility under NEUP Project 11- 3172. This project seeks to demonstrate the viability of pebble fuel handling and reactivity control for fluoride salt-cooled high-temperature reactors (FHRs). The research results also improve the understanding of pebble motion in helium-cooled reactors, as well as the general, fundamental understanding of low-velocity granular flows. Successful use of pebble fuels in with salt coolants would bring major benefits for high-temperature reactor technology. Pebble fuels enable on-line refueling and operation with low excess reactivity, and thus simpler reactivity control and improved fuel utilization. If fixed fuel designsmore » are used, the power density of salt- cooled reactors is limited to 10 MW/m 3 to obtain adequate duration between refueling, but pebble fuels allow power densities in the range of 20 to 30 MW/m 3. This can be compared to the typical modular helium reactor power density of 5 MW/m3. Pebble fuels also permit radial zoning in annular cores and use of thorium or graphite pebble blankets to reduce neutron fluences to outer radial reflectors and increase total power production. Combined with high power conversion efficiency, compact low-pressure primary and containment systems, and unique safety characteristics including very large thermal margins (>500°C) to fuel damage during transients and accidents, salt-cooled pebble fuel cores offer the potential to meet the major goals of the Advanced Reactor Concepts Development program to provide electricity at lower cost than light water reactors with improved safety and system performance.This report presents the facility description, experimental results, and supporting simulation methods of the new X-Ray Pebble Recirculation Experiment (X-PREX), which is now operational and being used to collect data on the behavior of slow dense granular flows relevant to pebble bed reactor core designs. The X-PREX facility uses novel digital x-ray tomography methods to track both the translational and rotational motion of spherical pebbles, which provides unique experimental results that can be used to validate discrete element method (DEM) simulations of pebble motion. The validation effort supported by the X-PREX facility provides a means to build confidence in analysis of pebble bed configuration and residence time distributions that impact the neutronics, thermal hydraulics, and safety analysis of pebble bed reactor cores. Experimental and DEM simulation results are reported for silo drainage, a classical problem in the granular flow literature, at several hopper angles. These studies include conventional converging and novel diverging geometries that provide additional flexibility in the design of pebble bed reactor cores. Excellent agreement is found between the X-PREX experimental and DEM simulation results. This report also includes results for additional studies relevant to the design and analysis of pebble bed reactor cores including the study of forces on shut down blades inserted directly into a packed bed and pebble flow in a cylindrical hopper that is representative of a small test reactor.« less

  13. Current status of the development of high density LEU fuel for Russian research reactors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vatulin, A.; Dobrikova, I.; Suprun, V.

    2008-07-15

    One of the main directions of the Russian RERTR program is to develop U-Mo fuel and fuel elements/FA with this fuel. The development is carried out both for existing reactors, and for new advanced designs of reactors. Many organizations in Russia, i.e. 'TVEL', RDIPE, RIAR, IRM, NPCC participate in the work. Two fuels are under development: dispersion and monolithic U-Mo fuel, as well two types of FA to use the dispersion U-Mo fuel: with tubular type fuel elements and with pin type fuel elements. The first stage of works was successfully completed. This stage included out-pile, in-pile and post irradiationmore » examinations of U-Mo dispersion fuel in experimental tubular and pin fuel elements under parameters similar to operation conditions of Russian design pool-type research reactors. The results received both in Russia and abroad enabled to go on to the next stage of development which includes irradiation tests both of full-scale IRT pin-type and tube-type fuel assemblies with U-Mo dispersion fuel and of mini-fuel elements with modified U-Mo dispersion fuel and monolithic fuel. The paper gives a generalized review of the results of U-Mo fuel development accomplished by now. (author)« less

  14. Reactor coolant pump flywheel

    DOEpatents

    Finegan, John Raymond; Kreke, Francis Joseph; Casamassa, John Joseph

    2013-11-26

    A flywheel for a pump, and in particular a flywheel having a number of high density segments for use in a nuclear reactor coolant pump. The flywheel includes an inner member and an outer member. A number of high density segments are provided between the inner and outer members. The high density segments may be formed from a tungsten based alloy. A preselected gap is provided between each of the number of high density segments. The gap accommodates thermal expansion of each of the number of segments and resists the hoop stress effect/keystoning of the segments.

  15. DESIGN CHARACTERISTICS OF THE IDAHO NATIONAL LABORATORY HIGH-TEMPERATURE GAS-COOLED TEST REACTOR

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sterbentz, James; Bayless, Paul; Strydom, Gerhard

    2016-11-01

    Uncertainty and sensitivity analysis is an indispensable element of any substantial attempt in reactor simulation validation. The quantification of uncertainties in nuclear engineering has grown more important and the IAEA Coordinated Research Program (CRP) on High-Temperature Gas Cooled Reactor (HTGR) initiated in 2012 aims to investigate the various uncertainty quantification methodologies for this type of reactors. The first phase of the CRP is dedicated to the estimation of cell and lattice model uncertainties due to the neutron cross sections co-variances. Phase II is oriented towards the investigation of propagated uncertainties from the lattice to the coupled neutronics/thermal hydraulics core calculations.more » Nominal results for the prismatic single block (Ex.I-2a) and super cell models (Ex.I-2c) have been obtained using the SCALE 6.1.3 two-dimensional lattice code NEWT coupled to the TRITON sequence for cross section generation. In this work, the TRITON/NEWT-flux-weighted cross sections obtained for Ex.I-2a and various models of Ex.I-2c is utilized to perform a sensitivity analysis of the MHTGR-350 core power densities and eigenvalues. The core solutions are obtained with the INL coupled code PHISICS/RELAP5-3D, utilizing a fixed-temperature feedback for Ex. II-1a.. It is observed that the core power density does not vary significantly in shape, but the magnitude of these variations increases as the moderator-to-fuel ratio increases in the super cell lattice models.« less

  16. Characteristics of aerobic granules grown on glucose and acetate in sequential aerobic sludge blanket reactors.

    PubMed

    Tay, J H; Liu, Q S; Liu, Y

    2002-08-01

    Aerobic granules were cultivated in two column-type sequential aerobic sludge blanket reactors fed with glucose and acetate, respectively. The characteristics of aerobic granules were investigated. Results indicated that the glucose- and acetate-fed granules have comparable characteristics in terms of settling velocity, size, shape, biomass density, hydrophobicity, physical strength, microbial activity and storage stability. Substrate component does not seem to be a key factor on the formation of aerobic granules. However, microbial diversity of the granules is closely associated with the carbon sources supplied to the reactors. Compared with the conventional activated sludge flocs, aerobic granules exhibit excellent physical characteristics that would be essential for industrial application. This research provides a complete set of characteristics data of aerobic granules grown on glucose and acetate, which would be useful for further development of aerobic granules-based compact bioreactor for handling high strength organic wastewater.

  17. REACTOR MONITORING

    DOEpatents

    Bugbee, S.J.; Hanson, V.F.; Babcock, D.F.

    1959-02-01

    A neutron density inonitoring means for reactors is described. According to this invention a tunnel is provided beneath and spaced from the active portion of the reactor and extends beyond the opposite faces of the activc portion. Neutron beam holes are provided between the active portion and the tunnel and open into the tunnel near the middle thereof. A carriage operates back and forth in the tunnel and is adapted to convey a neutron detector, such as an ion chamber, and position it beneath one of the neutron beam holes. This arrangement affords convenient access of neutron density measuring instruments to a location wherein direct measurement of neutron density within the piles can be made and at the same time affords ample protection to operating personnel.

  18. Impact of Gas Heating in Inductively Coupled Plasmas

    NASA Technical Reports Server (NTRS)

    Hash, D. B.; Bose, D.; Rao, M. V. V. S.; Cruden, B. A.; Meyyappan, M.; Sharma, S. P.; Biegel, Bryan (Technical Monitor)

    2001-01-01

    Recently it has been recognized that the neutral gas in inductively coupled plasma reactors heats up significantly during processing. The resulting gas density variations across the reactor affect reaction rates, radical densities, plasma characteristics, and uniformity within the reactor. A self-consistent model that couples the plasma generation and transport to the gas flow and heating has been developed and used to study CF4 discharges. A Langmuir probe has been used to measure radial profiles of electron density and temperature. The model predictions agree well with the experimental results. As a result of these comparisons along with the poorer performance of the model without the gas-plasma coupling, the importance of gas heating in plasma processing has been verified.

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Oktamuliani, Sri, E-mail: srioktamuliani@ymail.com; Su’ud, Zaki, E-mail: szaki@fi.itb.ac.id

    A preliminary study designs SPINNOR (Small Power Reactor, Indonesia, No On-Site Refueling) liquid metal Pb-Bi cooled fast reactors, fuel (U, Pu)N, 150 MWth have been performed. Neutronic calculation uses SRAC which is designed cylindrical core 2D (R-Z) 90 × 135 cm, on the core fuel composed of heterogeneous with percentage difference of PuN 10, 12, 13% and the result of calculation is effective neutron multiplication 1.0488. Power density distribution of the output SRAC is generated for thermal hydraulic calculation using Delphi based on Pascal language that have been developed. The research designed a reactor that is capable of natural circulation atmore » inlet temperature 300 °C with variation of total mass flow rate. Total mass flow rate affect pressure drop and temperature outlet of the reactor core. The greater the total mass flow rate, the smaller the outlet temperature, but increase the pressure drop so that the chimney needed more higher to achieve natural circulation or condition of the system does not require a pump. Optimization of the total mass flow rate produces optimal reactor design on the total mass flow rate of 5000 kg/s with outlet temperature 524,843 °C but require a chimney of 6,69 meters.« less

  20. Determination of the neutral oxygen atom density in a plasma reactor loaded with metal samples

    NASA Astrophysics Data System (ADS)

    Mozetic, Miran; Cvelbar, Uros

    2009-08-01

    The density of neutral oxygen atoms was determined during processing of metal samples in a plasma reactor. The reactor was a Pyrex tube with an inner diameter of 11 cm and a length of 30 cm. Plasma was created by an inductively coupled radiofrequency generator operating at a frequency of 27.12 MHz and output power up to 500 W. The O density was measured at the edge of the glass tube with a copper fiber optics catalytic probe. The O atom density in the empty tube depended on pressure and was between 4 and 7 × 1021 m-3. The maximum O density was at a pressure of about 150 Pa, while the dissociation fraction of O2 molecules was maximal at the lowest pressure and decreased with increasing pressure. At about 300 Pa it dropped below 10%. The measurements were repeated in the chamber loaded with different metallic samples. In these cases, the density of oxygen atoms was lower than that in the empty chamber. The results were explained by a drain of O atoms caused by heterogeneous recombination on the samples.

  1. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wieser, Patti; Hopkins, David

    The DOE Princeton Plasma Physics Laboratory (PPPL) collaborates to develop fusion as a safe, clean and abundant energy source for the future. This video discusses PPPL's research and development on plasma, the fourth state of matter. In this simulation of plasma turbulence inside PPPL's National Spherical Torus Experiment, the colorful strings represent higher and lower electron density in turbulent plasma as it circles around a donut-shaped fusion reactor; red and orange are higher density. This image is among those featured in the slide show, "Plasmas are Hot and Fusion is Cool," a production of PPPL and the Princeton University Broadcastmore » Center.« less

  2. Recent upgrades and new scientific infrastructure of MARIA research reactor, Otwock-Swierk, Poland

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    The MARIA reactor is open-pool type, water and beryllium moderated. It has two independent primary cooling systems: fuel and pool cooling system. Each fuel assembly is cooled down separately in pressurized channels with individual performances characterization. The fuel assemblies consist of five layers of bent plates or six concentric tubes. Currently it is one of the most powerful research reactors in Europe with operation availability at least up to 2030. Its nominal thermal power is 30 MW. It is characterized by high neutron flux density: up to 3x10{sup 14} n cm{sup -2} s{sup -1} in case of thermal neutrons, andmore » up to 2x10{sup 13} n cm{sup -2} s{sup -1} in case of fast neutrons. The reactor is operated for ca. 4000 h per year. The reactor facility is equipped with fully equipped three hot cells with shielding up to 10{sup 15} Bq. Adjacent to the reactor facility, the radio-pharmaceutics plant (POLATOM) and Material Research Laboratory are located. They are equipped with a number of hot cells with instrumentation. The transport system of radioactive materials from reactor facility to Material Research Laboratory is available. During 2014 the MARIA reactor has been operated with three different types of fuel the same time: previous 36% enriched fuel, and two types of new LEU fuels. In the meantime, molybdenum irradiation programme has been developed. Maria is a multifunctional research tool, with a notable application in production of radioisotopes, radio-pharmaceutics manufacturing (ca. 600 TBq/y), {sup 99}Mo for medical scintigraphy (ca. 6000 TBq/y), neutron transmutation doping of silicon single crystals, wide scientific research based on neutron beams utilization. From the beginning MARIA reactor was intended for loop and fuel testing research activities. Currently it is used mostly as material testing and irradiation facility and for that reason it has wide experimental capabilities. There are eight horizontal irradiation channels from among whom six of them are equipped with instrumentation for condensed matter physics research: - H3 - spectrometer and diffractometer with double monochromator; - H4 - small angle scattering spectrometer; - H5 - polarized neutrons spectrometer; - H6, H7 - two 3-axial crystal neutron spectrometers; - H8 - neutron radiography stand. For two horizontal channels are ongoing exploitation programs: - H2 - station with epithermal neutron beam produced in uranium converter is being developed. Intelligent converter will be installed on the periphery of reactor core. The intensity of the beam will be at the level 2x10{sup 9} n cm{sup -2}s{sup -1} what makes the beam unique in the Europe. - H1 - special pneumatic horizontal mail is being developed for irradiation material samples in the vicinity of the core i.e. in the distal part of the H1 channel. The number of neutron irradiation facilities in MARIA reactor is increasing every year. Numerous of thermal neutron irradiation channels including fast hydraulic rabbit system and large size channels for fast neutron irradiation are used routinely. Recently new in-pile facility with ITER-like neutron energy spectrum for 14 MeV neutron irradiation has been constructed. Taking into account its performance and ability of almost incessant operation the facility appears as one of the most powerful 14 MeV neutron sources. The facility shall be used for material research connected with thermonuclear devices (ITER) and 4. generation nuclear reactors. The system of independent fuels channels used in MARIA reactor appear to be very flexible and very convenient to be used as irradiation channels for uranium targets for {sup 99}Mo production. Currently, MARIA reactor supplies ca. 18% world production of {sup 99}Mo. The MARIA reactor research activities are still extended. The current scientific projects are connected e.g. with silicon neutron transmutation doping, in-pile gamma heating measurements, French calculation codes implementation (TRIPOLI4, APOLLO2). The horizontal neutron beams utilization is also developed. The MARIA reactor, due to its primary application connected with loop and fuel testing, is very convenient for testing the nuclear instrumentation, control and measurement systems.« less

  3. Program of Fundamental-Interaction Research for the Ultracold-Neutron Source at the the WWR-M Reactor

    NASA Astrophysics Data System (ADS)

    Serebrov, A. P.

    2018-03-01

    The use of ultracold neutrons opens unique possibilities for studying fundamental interactions in particles physics. Searches for the neutron electric dipole moment are aimed at testing models of CP violation. A precise measurement of the neutron lifetime is of paramount importance for cosmology and astrophysics. Considerable advances in these realms can be made with the aid of a new ultracold-neutron (UCN) supersource presently under construction at Petersburg Nuclear Physics Institute. With this source, it would be possible to obtain an UCN density approximately 100 times as high as that at currently the best UCN source at the high-flux reactor of the Institute Laue-Langevin (ILL, Grenoble, France). To date, the design and basic elements of the source have been prepared, tests of a full-scale source model have been performed, and the research program has been developed. It is planned to improve accuracy in measuring the neutron electric dipole moment by one order of magnitude to a level of 10-27 to 10-28 e cm. This is of crucial importance for particle physics. The accuracy in measuring the neutron lifetime can also be improved by one order of magnitude. Finally, experiments that would seek neutron-antineutron oscillations by employing ultracold neutrons will become possible upon reaching an UCN density of 103 to 104 cm-3. The current status of the source and the proposed research program are discussed.

  4. Passive Acoustic Leak Detection for Sodium Cooled Fast Reactors Using Hidden Markov Models

    NASA Astrophysics Data System (ADS)

    Marklund, A. Riber; Kishore, S.; Prakash, V.; Rajan, K. K.; Michel, F.

    2016-06-01

    Acoustic leak detection for steam generators of sodium fast reactors have been an active research topic since the early 1970s and several methods have been tested over the years. Inspired by its success in the field of automatic speech recognition, we here apply hidden Markov models (HMM) in combination with Gaussian mixture models (GMM) to the problem. To achieve this, we propose a new feature calculation scheme, based on the temporal evolution of the power spectral density (PSD) of the signal. Using acoustic signals recorded during steam/water injection experiments done at the Indira Gandhi Centre for Atomic Research (IGCAR), the proposed method is tested. We perform parametric studies on the HMM+GMM model size and demonstrate that the proposed method a) performs well without a priori knowledge of injection noise, b) can incorporate several noise models and c) has an output distribution that simplifies false alarm rate control.

  5. Correlation of a Bipolar-Transistor-Based Neutron Displacement Damage Sensor Methodology with Proton Irradiations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tonigan, Andrew M.; Arutt, Charles N.; Parma, Edward J.

    For this research, a bipolar-transistor-based sensor technique has been used to compare silicon displacement damage from known and unknown neutron energy spectra generated in nuclear reactor and high-energy-density physics environments. The technique has been shown to yield 1-MeV(Si) equivalent neutron fluence measurements comparable to traditional neutron activation dosimetry. This study significantly extends previous results by evaluating three types of bipolar devices utilized as displacement damage sensors at a nuclear research reactor and at a Pelletron particle accelerator. Ionizing dose effects are compensated for via comparisons with 10-keV x-ray and/or cobalt-60 gamma ray irradiations. Non-ionizing energy loss calculations adequately approximate themore » correlations between particle-device responses and provide evidence for the use of one particle type to screen the sensitivity of the other.« less

  6. Single chamber microbial fuel cell with Ni-Co cathode

    NASA Astrophysics Data System (ADS)

    Włodarczyk, Barbara; Włodarczyk, Paweł P.; Kalinichenko, Antonina

    2017-10-01

    The possibility of wastewater treatment and the parallel energy production using the Ni-Co alloy as cathode catalyst for single chamber microbial fuel cells is presented in this research. The research included a preparation of catalyst and comparison of COD, NH4+ and NO3- reduction in the reactor without aeration, with aeration and with using a single chamber microbial fuel cell with Ni-Co cathode. The reduction time for COD with the use of microbial fuel cell with the Ni-Co catalyst is similar to the reduction time with aeration. The current density (2.4 A·m-2) and amount of energy (0.48 Wh) obtained in MFC is low, but the obtained amount of energy allows elimination of the energy needed for reactor aeration. It has been shown that the Ni-Co can be used as cathode catalyst in single chamber microbial fuel cells.

  7. Correlation of a Bipolar-Transistor-Based Neutron Displacement Damage Sensor Methodology with Proton Irradiations

    DOE PAGES

    Tonigan, Andrew M.; Arutt, Charles N.; Parma, Edward J.; ...

    2017-11-16

    For this research, a bipolar-transistor-based sensor technique has been used to compare silicon displacement damage from known and unknown neutron energy spectra generated in nuclear reactor and high-energy-density physics environments. The technique has been shown to yield 1-MeV(Si) equivalent neutron fluence measurements comparable to traditional neutron activation dosimetry. This study significantly extends previous results by evaluating three types of bipolar devices utilized as displacement damage sensors at a nuclear research reactor and at a Pelletron particle accelerator. Ionizing dose effects are compensated for via comparisons with 10-keV x-ray and/or cobalt-60 gamma ray irradiations. Non-ionizing energy loss calculations adequately approximate themore » correlations between particle-device responses and provide evidence for the use of one particle type to screen the sensitivity of the other.« less

  8. In-service Inspection Ultrasonic Testing of Reactor Pressure Vessel Welds for Assessing Flaw Density and Size Distribution per 10 CFR 50.61a, Alternate Fracture Toughness Requirements

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sullivan, Edmund J.; Anderson, Michael T.; Norris, Wallace

    2012-09-17

    Pressurized thermal shock (PTS) events are system transients in a pressurized water reactor (PWR) in which there is a rapid operating temperature cool-down that results in cold vessel temperatures with or without repressurization of the vessel. The rapid cooling of the inside surface of the reactor pressure vessel (RPV) causes thermal stresses that can combine with stresses caused by high pressure. The aggregate effect of these stresses is an increase in the potential for fracture if a pre-existing flaw is present in a material susceptible to brittle failure. The ferritic, low alloy steel of the reactor vessel beltline adjacent tomore » the core, where neutron radiation gradually embrittles the material over the lifetime of the plant, can be susceptible to brittle fracture. The PTS rule, described in the Code of Federal Regulations, Title 10, Section 50.61 (§50.61), “Fracture Toughness Requirements for Protection against Pressurized Thermal Shock Events,” adopted on July 23, 1985, establishes screening criteria to ensure that the potential for a reactor vessel to fail due to a PTS event is deemed to be acceptably low. The U.S. Nuclear Regulatory Commission (NRC) completed a research program that concluded that the risk of through-wall cracking due to a PTS event is much lower than previously estimated. The NRC subsequently developed a rule, §50.61a, published on January 4, 2010, entitled “Alternate Fracture Toughness Requirements for Protection Against Pressurized Thermal Shock Events” (75 FR 13). Use of the new rule by licensees is optional. The §50.61a rule differs from §50.61 in that it requires licensees who choose to follow this alternate method to analyze the results from periodic volumetric examinations required by the ASME Code, Section XI, Rules for Inservice Inspection (ISI) of Nuclear Power Plants. These analyses are intended to determine if the actual flaw density and size distribution in the licensee’s reactor vessel beltline welds are bounded by the flaw density and size distribution values used in the PTS technical basis. Under a contract with the NRC, Pacific Northwest National Laboratory (PNNL) has been working on a program to assess the ability of current inservice inspection (ISI)-ultrasonic testing (UT) techniques, as qualified through ASME Code, Appendix VIII, Supplements 4 and 6, to detect small fabrication or inservice-induced flaws located in RPV welds and adjacent base materials. As part of this effort, the investigators have pursued an evaluation, based on the available information, of the capability of UT to provide flaw density/distribution inputs for making RPV weld assessments in accordance with §50.61a. This paper presents the results of an evaluation of data from the 1993 Browns Ferry Nuclear Plant, Unit 3, Spirit of Appendix VIII reactor vessel examination, a comparison of the flaw density/distribution from this data with the distribution in §50.61a, possible reasons for differences, and plans and recommendations for further work in this area.« less

  9. Estimation of transient heat flux density during the heat supply of a catalytic wall steam methane reformer

    NASA Astrophysics Data System (ADS)

    Settar, Abdelhakim; Abboudi, Saïd; Madani, Brahim; Nebbali, Rachid

    2018-02-01

    Due to the endothermic nature of the steam methane reforming reaction, the process is often limited by the heat transfer behavior in the reactors. Poor thermal behavior sometimes leads to slow reaction kinetics, which is characterized by the presence of cold spots in the catalytic zones. Within this framework, the present work consists on a numerical investigation, in conjunction with an experimental one, on the one-dimensional heat transfer phenomenon during the heat supply of a catalytic-wall reactor, which is designed for hydrogen production. The studied reactor is inserted in an electric furnace where the heat requirement of the endothermic reaction is supplied by electric heating system. During the heat supply, an unknown heat flux density, received by the reactive flow, is estimated using inverse methods. In the basis of the catalytic-wall reactor model, an experimental setup is engineered in situ to measure the temperature distribution. Then after, the measurements are injected in the numerical heat flux estimation procedure, which is based on the Function Specification Method (FSM). The measured and estimated temperatures are confronted and the heat flux density which crosses the reactor wall is determined.

  10. MEANS FOR CONTROLLING A NUCLEAR REACTOR

    DOEpatents

    Wilson, V.C.; Overbeck, W.P.; Slotin, L.; Froman, D.K.

    1957-12-17

    This patent relates to nuclear reactors of the type using a solid neutron absorbing material as a means for controlling the reproduction ratio of the system and thereby the power output. Elongated rods of neutron absorbing material, such as boron steel for example, are adapted to be inserted and removed from the core of tae reactor by electronic motors and suitable drive means. The motors and drive means are controlled by means responsive to the neutron density, such as ionization chambers. The control system is designed to be responsive also to the rate of change in neutron density to automatically maintain the total power output at a substantially constant predetermined value. A safety rod means responsive to neutron density is also provided for keeping the power output below a predetermined maximum value at all times.

  11. METHOD AND APPARATUS FOR EARTH PENETRATION

    DOEpatents

    Adams, W.M.

    1963-12-24

    A nuclear reactor apparatus for penetrating into the earth's crust is described. The apparatus comprises a cylindrical nuclear core operating at a temperature that is higher than the melting temperature of rock. A high-density ballast member is coupled to the nuclear core such that the overall density of the core-ballast assembly is greater than the density of molten rock. The nuclear core is thermally insulated so that its heat output is constrained to flow axially, with radial heat flow being minimized. In operation, the apparatus is placed in contact with the earth's crust at the point desired to be penetrated. The heat output of the reactor melts the underlying rock, and the apparatus sinks through the resulting magma. The fuel loading of the reactor core determines the ultimate depth of crust penetration. (AEC)

  12. CFD Analyses of Air-Ingress Accident for VHTRs

    NASA Astrophysics Data System (ADS)

    Ham, Tae Kyu

    The Very High Temperature Reactor (VHTR) is one of six proposed Generation-IV concepts for the next generation of nuclear powered plants. The VHTR is advantageous because it is able to operate at very high temperatures, thus producing highly efficient electrical generation and hydrogen production. A critical safety event of the VHTR is a loss-of-coolant accident. This accident is initiated, in its worst-case scenario, by a double-ended guillotine break of the cross vessel that connects the reactor vessel and the power conversion unit. Following the depressurization process, the air (i.e., the air and helium mixture) in the reactor cavity could enter the reactor core causing an air-ingress event. In the event of air-ingress into the reactor core, the high-temperature in-core graphite structures will chemically react with the air and could lose their structural integrity. We designed a 1/8th scaled-down test facility to develop an experimental database for studying the mechanisms involved in the air-ingress phenomenon. The current research focuses on the analysis of the air-ingress phenomenon using the computational fluid dynamics (CFD) tool ANSYS FLUENT for better understanding of the air-ingress phenomenon. The anticipated key steps in the air-ingress scenario for guillotine break of VHTR cross vessel are: 1) depressurization; 2) density-driven stratified flow; 3) local hot plenum natural circulation; 4) diffusion into the reactor core; and 5) global natural circulation. However, the OSU air-ingress test facility covers the time from depressurization to local hot plenum natural circulation. Prior to beginning the CFD simulations for the OSU air-ingress test facility, benchmark studies for the mechanisms which are related to the air-ingress accident, were performed to decide the appropriate physical models for the accident analysis. In addition, preliminary experiments were performed with a simplified 1/30th scaled down acrylic set-up to understand the air-ingress mechanism and to utilize the CFD simulation in the analysis of the phenomenon. Previous air-ingress studies simulated the depressurization process using simple assumptions or 1-D system code results. However, recent studies found flow oscillations near the end of the depressurization which could influence the next stage of the air-ingress accident. Therefore, CFD simulations were performed to examine the air-ingress mechanisms from the depressurization through the establishment of local natural circulation initiate. In addition to the double-guillotine break scenario, there are other scenarios that can lead to an air-ingress event such as a partial break were in the cross vessel with various break locations, orientations, and shapes. These additional situations were also investigated. The simulation results for the OSU test facility showed that the discharged helium coolant from a reactor vessel during the depressurization process will be mixed with the air in the containment. This process makes the density of the gas mixture in the containment lower and the density-driven air-ingress flow slower because the density-driven flow is established by the density difference of the gas species between the reactor vessel and the containment. In addition, for the simulations with various initial and boundary conditions, the simulation results showed that the total accumulated air in the containment collapsed within 10% standard deviation by: 1. multiplying the density ratio and viscosity ratio of the gas species between the containment and the reactor vessel and 2. multiplying the ratio of the air mole fraction and gas temperature to the reference value. By replacing the gas mixture in the reactor cavity with a gas heavier than the air, the air-ingress speed slowed down. Based on the understanding of the air-ingress phenomena for the GT-MHR air-ingress scenario, several mitigation measures of air-ingress accident are proposed. The CFD results are utilized to plan experimental strategy and apparatus installation to obtain the best results when conducting an experiment. The validation of the generated CFD solutions will be performed with the OSU air-ingress experimental results. (Abstract shortened by UMI.).

  13. Biodrying process: A sustainable technology for treatment of municipal solid waste with high moisture content.

    PubMed

    Tom, Asha P; Pawels, Renu; Haridas, Ajit

    2016-03-01

    Municipal solid waste with high moisture content is the major hindrance in the field of waste to energy conversion technologies and here comes the importance of biodrying process. Biodrying is a convective evaporation process, which utilizes the biological heat developed from the aerobic reactions of organic components. The numerous end use possibilities of the output are making the biodrying process versatile, which is possible by achieving the required moisture reduction, volume reduction and bulk density enhancement through the effective utilization of biological heat. In the present case study the detailed research and development of an innovative biodrying reactor has been carried out for the treatment of mixed municipal solid waste with high moisture content. A pilot scale biodrying reactor of capacity 565 cm(3) was designed and set up in the laboratory. The reactor dimensions consisted of an acrylic chamber of 60 cm diameter and 200 cm height, and it was enveloped by an insulation chamber. The insulation chamber was provided to minimise the heat losses through the side walls of the reactor. It simulates the actual condition in scaling up of the reactor, since in bigger scale reactors the heat losses through side walls will be negligible while comparing the volume to surface area ratio. The mixed municipal solid waste with initial moisture content of 61.25% was synthetically prepared in the laboratory and the reactor was fed with 109 kg of this substrate. Aerobic conditions were ensured inside the reactor chamber by providing the air at a constant rate of 40 litre per minute, and the direction of air flow was from the specially designed bottom air chamber to the reactor matrix top. The self heating inside reactor matrix was assumed in the range of 50-60°C during the design stage. Innovative biodrying reactor was found to be efficiently working with the temperature inside the reactor matrix rising to a peak value of 59°C by the fourth day of experiment (the peak observed at a height of 60 cm from the air supply). The process analyses results were promising with a reduction of 56.5% of volume, and an increase of 52% of bulk density of the substrate at the end of 33 days of biodrying. Also the weight of mixed MSW substrate has been reduced by 33.94% in 20 days of reaction and the average moisture reduction of the matrix was 20.81% (reduced from the initial value of 61.25% to final value of 48.5%). The moisture reduction would have been higher, if the condensation of evaporated water at the reactor matrix has been avoided. The non-homogeneous moisture reduction along the height of the reactor is evident and this needs further innovation. The leachate production has been completely eliminated in the innovative biodrying reactor and that is a major achievement in the field of municipal solid waste management technology. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Spheromak reactor-design study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Les, J.M.

    1981-06-30

    A general overview of spheromak reactor characteristics, such as MHD stability, start up, and plasma geometry is presented. In addition, comparisons are made between spheromaks, tokamaks and field reversed mirrors. The computer code Sphero is also discussed. Sphero is a zero dimensional time independent transport code that uses particle confinement times and profile parameters as input since they are not known with certainty at the present time. More specifically, Sphero numerically solves a given set of transport equations whose solutions include such variables as fuel ion (deuterium and tritium) density, electron density, alpha particle density and ion, electron temperatures.

  15. Status and progress of the RERTR program in the year 2000.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Travelli, A.

    2000-09-28

    This paper describes the progress achieved by the Reduced Enrichment for Research and Test Reactors (RERTR) Program in collaboration with its many international partners during the year 2000 and discusses the main activities planned for the year 2001. The past year was characterized by important accomplishments and events for the RERTR program. Four additional shipments containing 503 spent fuel assemblies from foreign research reactors were accepted by the U.S. Altogether, 3,740 spent fuel assemblies from foreign research reactors have been received by the U.S. under the acceptance policy. Postirradiation examinations of three batches of microplates have continued to reveal excellentmore » irradiation behavior of U-MO dispersion fuels in a variety of compositions and irradiating conditions. h-radiation of two new batches of miniplates of greater sizes is in progress in the ATR to investigate me swelling behavior of these fuels under prototypic conditions. These materials hold the promise of achieving the program goal of developing LEU research reactor fuels with uranium densities in the 8-9 g /cm{sup 3} range. Qualification of the U-MO dispersion fuels is proceeding on schedule. Test fuel elements with 6 gU/cm{sup 3} are being fabricated by BWXT and are scheduled to begin undergoing irradiation in the HFR-Petten in the spring of 2001, with a goal of qualifying this fuel by the end of 2003. U-Mo with 8-9 gU/cm{sup 3} is planned to be qualified by the end of 2005. Joint LEU conversion feasibility studies were completed for HFR-Petten and for SAFARI-1. Significant improvements were made in the design of LEU metal-foil annular targets that would allow efficient production of fission {sup 99}Mo. Irradiations in the RAS-GAS reactor showed that these targets can formed from aluminum tubes, and that the yield and purity of their product from the acidic process were at least as good as those from the HEU Cintichem targets. Progress was made on irradiation testing of LEU UO{sub 2} dispersion fuel and on LEU conversion feasibility studies in the Russian RERTR program. Conversion of the BER-11reactor in Berlin, Germany, was completed and conversion of the La Reins reactor in Santiago, Chile, began. These are exciting times for the program. In the fuel development area, the RERTR program is aggressively pursuing qualification of high-density LEU U-Mo dispersion fuels, with the dual goal of enabling fi.uther conversions and of developing a substitute for LEU silicide fuels that can be more easily disposed of after expiration of the FRR SNF Acceptance Program. The {sup 99}Mo effort has reached the point where it appears feasible for all the {sup 99}Mo producers of the world to agree jointly to a common course of action leading to the elimination of HEU use in their processes. As in the past, the success of the RERTR program will depend on the international friendship and cooperation that has always been its trademark.« less

  16. 78 FR 26811 - Dow Chemical Company, Dow TRIGA Research Reactor; License Renewal for the Dow Chemical TRIGA...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-05-08

    ... Research Reactor; License Renewal for the Dow Chemical TRIGA Research Reactor; Supplemental Information and... 20, 2012 (77 FR 42771), ``License Renewal for the Dow Chemical TRIGA Research Reactor,'' to inform... Chemical Company which would authorize continued operation of the Dow TRIGA Research Reactor. The notice...

  17. Benchmark gas core critical experiment.

    NASA Technical Reports Server (NTRS)

    Kunze, J. F.; Lofthouse, J. H.; Cooper, C. G.; Hyland, R. E.

    1972-01-01

    A critical experiment with spherical symmetry has been conducted on the gas core nuclear reactor concept. The nonspherical perturbations in the experiment were evaluated experimentally and produce corrections to the observed eigenvalue of approximately 1% delta k. The reactor consisted of a low density, central uranium hexafluoride gaseous core, surrounded by an annulus of void or low density hydrocarbon, which in turn was surrounded with a 97-cm-thick heavy water reflector.

  18. Effect of particle pinch on the fusion performance and profile features of an international thermonuclear experimental reactor-like fusion reactor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Shijia, E-mail: wangsg@mail.ustc.edu.cn; Wang, Shaojie

    2015-04-15

    The evolution of the plasma temperature and density in an international thermonuclear experimental reactor (ITER)-like fusion device has been studied by numerically solving the energy transport equation coupled with the particle transport equation. The effect of particle pinch, which depends on the magnetic curvature and the safety factor, has been taken into account. The plasma is primarily heated by the alpha particles which are produced by the deuterium-tritium fusion reactions. A semi-empirical method, which adopts the ITERH-98P(y,2) scaling law, has been used to evaluate the transport coefficients. The fusion performances (the fusion energy gain factor, Q) similar to the ITERmore » inductive scenario and non-inductive scenario (with reversed magnetic shear) are obtained. It is shown that the particle pinch has significant effects on the fusion performance and profiles of a fusion reactor. When the volume-averaged density is fixed, particle pinch can lower the pedestal density by ∼30%, with the Q value and the central pressure almost unchanged. When the particle source or the pedestal density is fixed, the particle pinch can significantly enhance the Q value by  60%, with the central pressure also significantly raised.« less

  19. Monitoring system for a liquid-cooled nuclear fission reactor. [PWR

    DOEpatents

    DeVolpi, A.

    1984-07-20

    The invention provides improved means for detecting the water levels in various regions of a water-cooled nuclear power reactor, viz., in the downcomer, in the core, in the inlet and outlet plenums, at the head, and elsewhere; and also for detecting the density of the water in these regions. The invention utilizes a plurality of exterior gamma radiation detectors and a collimator technique operable to sense separate regions of the reactor vessel to give respectively, unique signals for these regions, whereby comparative analysis of these signals can be used to advise of the presence and density of cooling water in the vessel.

  20. Evaluation on the Feasibility of Using Ultrasonic Testing of Reactor Pressure Vessel Welds for Assessing Flaw Density/Distribution per 10 CFR 50.61a, Alternate Fracture Toughness Requirements for Protection Against Pressurized Thermal Shock

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sullivan, Edmund J.; Anderson, Michael T.

    2014-06-10

    This technical letter report provides the status of an assessment undertaken by PNNL at the request of the NRC to verify the capability of periodic ASME-required volumetric examinations of reactor vessels to characterize the density and distribution of flaws of interest for applying §50.61a on a plant-by-plant basis. The PTS rule, described in the Code of Federal Regulations, Title 10, Section 50.61 (§50.61), "Fracture Toughness Requirements for Protection against Pressurized Thermal Shock Events," establishes screening criteria to ensure that the potential for a reactor vessel to fail due to a PTS event is deemed to be acceptably low. Recently, themore » NRC completed a research program that concluded that the risk of through-wall cracking due to a PTS event is much lower than previously estimated. The NRC subsequently developed and promulgated an alternate PTS rule, §50.61a, that can be implemented by PWR licensees. The §50.61a rule differs from §50.61 in that it requires licensees who choose to follow this alternate method to analyze the results from periodic volumetric examinations required by the ASME Code, Section XI, Rules for Inservice Inspection (ISI) of Nuclear Power Plants.« less

  1. Neutron detection of the Triga Mark III reactor, using nuclear track methodology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Espinosa, G., E-mail: espinosa@fisica.unam.mx; Golzarri, J. I.; Raya-Arredondo, R.

    Nuclear Track Methodology (NTM), based on the neutron-proton interaction is one often employed alternative for neutron detection. In this paper we apply NTM to determine the Triga Mark III reactor operating power and neutron flux. The facility nuclear core, loaded with 85 Highly Enriched Uranium as fuel with control rods in a demineralized water pool, provide a neutron flux around 2 × 10{sup 12} n cm{sup −2} s{sup −1}, at the irradiation channel TO-2. The neutron field is measured at this channel, using Landauer{sup ®} PADC as neutron detection material, covered by 3 mm Plexiglas{sup ®} as converter. After exposure, plasticmore » detectors were chemically etched to make observable the formed latent tracks induced by proton recoils. The track density was determined by a custom made Digital Image Analysis System. The resulting average nuclear track density shows a direct proportionality response for reactor power in the range 0.1-7 kW. We indicate several advantages of the technique including the possibility to calibrate the neutron flux density measured at low reactor power.« less

  2. PLUTONIUM METALLIC FUELS FOR FAST REACTORS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    STAN, MARIUS; HECKER, SIEGFRIED S.

    2007-02-07

    Early interest in metallic plutonium fuels for fast reactors led to much research on plutonium alloy systems including binary solid solutions with the addition of aluminum, gallium, or zirconium and low-melting eutectic alloys with iron and nickel or cobalt. There was also interest in ternaries of these elements with plutonium and cerium. The solid solution and eutectic alloys have most unusual properties, including negative thermal expansion in some solid-solution alloys and the highest viscosity known for liquid metals in the Pu-Fe system. Although metallic fuels have many potential advantages over ceramic fuels, the early attempts were unsuccessful because these fuelsmore » suffered from high swelling rates during burn up and high smearing densities. The liquid metal fuels experienced excessive corrosion. Subsequent work on higher-melting U-PuZr metallic fuels was much more promising. In light of the recent rebirth of interest in fast reactors, we review some of the key properties of the early fuels and discuss the challenges presented by the ternary alloys.« less

  3. Irradiation behavior of U 6Mn-Al dispersion fuel elements

    NASA Astrophysics Data System (ADS)

    Meyer, M. K.; Wiencek, T. C.; Hayes, S. L.; Hofman, G. L.

    2000-02-01

    Irradiation testing of U 6Mn-Al dispersion fuel miniplates was conducted in the Oak Ridge Research Reactor (ORR). Post-irradiation examination showed that U 6Mn in an unrestrained plate configuration performs similarly to U 6Fe under irradiation, forming extensive and interlinked fission gas bubbles at a fission density of approximately 3×10 27 m-3. Fuel plate failure occurs by fission gas pressure driven `pillowing' on continued irradiation.

  4. Effect of Reactor Design on the Plasma Treatment of NOx

    DTIC Science & Technology

    1998-10-01

    control parameter is the input energy density. Consequently, different reactor designs should yield basically the same plasma chemistry if the experiments are performed under identical gas composition and temperature conditions.

  5. Electrochemical treatment of tannery effluent using a battery integrated DC-DC converter and solar PV power supply--an approach towards environment and energy management.

    PubMed

    Iyappan, K; Basha, C Ahmed; Saravanathamizhan, R; Vedaraman, N; Tahiyah Nou Shene, C A; Begum, S Nathira

    2014-01-01

    Electrochemical oxidation of tannery effluent was carried out in batch, batch recirculation and continuous reactor configurations under different conditions using a battery-integrated DC-DC converter and solar PV power supply. The effect of current density, electrolysis time and fluid flow rate on chemical oxygen demand (COD) removal and energy consumption has been evaluated. The results of batch reactor show that a COD reduction of 80.85% to 96.67% could be obtained. The results showed that after 7 h of operation at a current density of 2.5 A dm(-2) and flow rate of 100 L h(-1) in batch recirculation reactor, the removal of COD is 82.14% and the specific energy consumption was found to be 5.871 kWh (kg COD)(-1) for tannery effluent. In addition, the performance of single pass flow reactors (single and multiple reactors) system of various configurations are analyzed.

  6. WATER BOILER REACTOR

    DOEpatents

    King, L.D.P.

    1960-11-22

    As its name implies, this reactor utilizes an aqueous solution of a fissionable element salt, and is also conventional in that it contains a heat exchanger cooling coil immersed in the fuel. Its novelty lies in the utilization of a cylindrical reactor vessel to provide a critical region having a large and constant interface with a supernatant vapor region, and the use of a hollow sleeve coolant member suspended from the cover assembly in coaxial relation with the reactor vessel. Cool water is circulated inside this hollow coolant member, and a gap between its outer wall and the reactor vessel is used to carry off radiolytic gases for recombination in an external catalyst chamber. The central passage of the coolant member defines a reflux condenser passage into which the externally recombined gases are returned and condensed. The large and constant interface between fuel solution and vapor region prevents the formation of large bubbles and minimizes the amount of fuel salt carried off by water vapor, thus making possible higher flux densities, specific powers and power densities.

  7. Effects of imperfect mixing on low-density polyethylene reactor dynamics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Villa, C.M.; Dihora, J.O.; Ray, W.H.

    1998-07-01

    Earlier work considered the effect of feed conditions and controller configuration on the runaway behavior of LDPE autoclave reactors assuming a perfectly mixed reactor. This study provides additional insight on the dynamics of such reactors by using an imperfectly mixed reactor model and bifurcation analysis to show the changes in the stability region when there is imperfect macroscale mixing. The presence of imperfect mixing substantially increases the range of stable operation of the reactor and makes the process much easier to control than for a perfectly mixed reactor. The results of model analysis and simulations are used to identify somemore » of the conditions that lead to unstable reactor behavior and to suggest ways to avoid reactor runaway or reactor extinction during grade transitions and other process operation disturbances.« less

  8. Frontier of Fusion Research: Path to the Steady State Fusion Reactor by Large Helical Device

    NASA Astrophysics Data System (ADS)

    Motojima, Osamu

    2006-12-01

    The ITER, the International Thermonuclear Experimental Reactor, which will be built in Cadarache in France, has finally started this year, 2006. Since the thermal energy produced by fusion reactions divided by the external heating power, i.e., the Q value, will be larger than 10, this is a big step of the fusion research for half a century trying to tame the nuclear fusion for the 6.5 Billion people on the Earth. The source of the Sun's power is lasting steadily and safely for 8 Billion years. As a potentially safe environmentally friendly and economically competitive energy source, fusion should provide a sustainable future energy supply for all mankind for ten thousands of years. At the frontier of fusion research important milestones are recently marked on a long road toward a true prototype fusion reactor. In its own merits, research into harnessing turbulent burning plasmas and thereby controlling fusion reaction, is one of the grand challenges of complex systems science. After a brief overview of a status of world fusion projects, a focus is given on fusion research at the National Institute for Fusion Science (NIFS) in Japan, which is playing a role of the Inter University Institute, the coordinating Center of Excellence for academic fusion research and by the Large Helical Device (LHD), the world's largest superconducting heliotron device, as a National Users' facility. The current status of LHD project is presented focusing on the experimental program and the recent achievements in basic parameters and in steady state operations. Since, its start in a year 1998, a remarkable progress has presently resulted in the temperature of 140 Million degree, the highest density of 500 Thousand Billion/cc with the internal density barrier (IDB) and the highest steady average beta of 4.5% in helical plasma devices and the largest total input energy of 1.6 GJ, in all magnetic confinement fusion devices. Finally, a perspective is given of the ITER Broad Approach program as an integrated part of ITER and Development of Fusion Energy project Agreement. Moreover, the relationship with the NIFS' new parent organization the National Institutes of Natural Sciences and with foreign research institutions is briefly explained.

  9. REACTOR PHYSICS MODELING OF SPENT RESEARCH REACTOR FUEL FOR TECHNICAL NUCLEAR FORENSICS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nichols, T.; Beals, D.; Sternat, M.

    2011-07-18

    Technical nuclear forensics (TNF) refers to the collection, analysis and evaluation of pre- and post-detonation radiological or nuclear materials, devices, and/or debris. TNF is an integral component, complementing traditional forensics and investigative work, to help enable the attribution of discovered radiological or nuclear material. Research is needed to improve the capabilities of TNF. One research area of interest is determining the isotopic signatures of research reactors. Research reactors are a potential source of both radiological and nuclear material. Research reactors are often the least safeguarded type of reactor; they vary greatly in size, fuel type, enrichment, power, and burn-up. Manymore » research reactors are fueled with highly-enriched uranium (HEU), up to {approx}93% {sup 235}U, which could potentially be used as weapons material. All of them have significant amounts of radiological material with which a radioactive dispersal device (RDD) could be built. Therefore, the ability to attribute if material originated from or was produced in a specific research reactor is an important tool in providing for the security of the United States. Currently there are approximately 237 operating research reactors worldwide, another 12 are in temporary shutdown and 224 research reactors are reported as shut down. Little is currently known about the isotopic signatures of spent research reactor fuel. An effort is underway at Savannah River National Laboratory (SRNL) to analyze spent research reactor fuel to determine these signatures. Computer models, using reactor physics codes, are being compared to the measured analytes in the spent fuel. This allows for improving the reactor physics codes in modeling research reactors for the purpose of nuclear forensics. Currently the Oak Ridge Research reactor (ORR) is being modeled and fuel samples are being analyzed for comparison. Samples of an ORR spent fuel assembly were taken by SRNL for analytical and radiochemical analysis. The fuel assembly was modeled using MONTEBURNS(MCNP5/ ORIGEN2.2) and MCNPX/CINDER90. The results from the models have been compared to each other and to the measured data.« less

  10. Burn Control Mechanisms in Tokamaks

    NASA Astrophysics Data System (ADS)

    Hill, M. A.; Stacey, W. M.

    2015-11-01

    Burn control and passive safety in accident scenarios will be an important design consideration in future tokamak reactors, in particular fusion-fission hybrid reactors, e.g. the Subcritical Advanced Burner Reactor. We are developing a burning plasma dynamics code to explore various aspects of burn control, with the intent to identify feedback mechanisms that would prevent power excursions. This code solves the coupled set of global density and temperature equations, using scaling relations from experimental fits. Predictions of densities and temperatures have been benchmarked against DIII-D data. We are examining several potential feedback mechanisms to limit power excursions: i) ion-orbit loss, ii) thermal instability density limits, iii) MHD instability limits, iv) the degradation of alpha-particle confinement, v) modifications to the radial current profile, vi) ``divertor choking'' and vii) Type 1 ELMs. Work supported by the US DOE under DE-FG02-00ER54538, DE-FC02-04ER54698.

  11. Genetically engineered Escherichia coli FBR5: Part I. Comparison of high cell density bioreactors for enhanced ethanol production from xylose

    USDA-ARS?s Scientific Manuscript database

    Five reactor systems (free cell batch, free cell continuous, entrapped cell immobilized, adsorbed cell packed bed, and cell recycle membrane reactors) were compared for ethanol production from xylose employing Escherichia coli FBR5. In the free cell batch and free cell continuous reactors (continuo...

  12. ETR, TRA642. ON GROUND FLOOR. WITH OUTER THERMAL RING IN ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    ETR, TRA-642. ON GROUND FLOOR. WITH OUTER THERMAL RING IN PLACE AND CONDUIT PRESERVED, HIGH-DENSITY CONCRETE IS PLACED BETWEEN THE THERMAL RING AND THE OUTER REACTOR FORM. INL NEGATIVE NO. 56-2400. Jack L. Anderson, Photographer, 6/10/1956 - Idaho National Engineering Laboratory, Test Reactor Area, Materials & Engineering Test Reactors, Scoville, Butte County, ID

  13. Nonlinear ultrasonic characterization of precipitation in 17-4PH stainless steel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Matlack, Kathryn; Bradley, Harrison A.; Thiele, Sebastian

    2015-04-01

    The extension of operational lifetime of most US nuclear reactors will cause reactor pressure vessel to be exposed to increased levels of neutron radiation damage. This research is part of a broader effort to develop a nondestructive evaluation technique to monitor radiation damage in reactor pressure vessel steels. The main contributor to radiation embrittlement in these steels is the formation of copper-rich precipitates. In this work, a precipitate hardenable martensitic alloy, 17-4PH stainless steel is exposed to thermal aging treatments, and used as a surrogate material to study the effects of copper precipitates on the measured acoustic nonlinearity parameter. Previousmore » work has demonstrated the effectiveness of these nonlinear ultrasonic (NLU) measurements in the characterization of radiation-induced microstructural changes in neutron irradiated reactor pressure vessel steels. NLU measurements using Rayleigh surface waves are performed on 17-4PH samples subjected to isothermal aging. NLU measurements are interpreted with hardness, thermo-electric power, TEM, and atom probe tomography measurements. The Rayleigh wave measurements showed a decrease in the acoustic nonlinearity parameter with increasing aging time, consistent with evidence of increasing number density of nucleated precipitates.« less

  14. USHPRR FUEL FABRICATION PILLAR: FABRICATION STATUS, PROCESS OPTIMIZATIONS, AND FUTURE PLANS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wight, Jared M.; Joshi, Vineet V.; Lavender, Curt A.

    The Fuel Fabrication (FF) Pillar, a project within the U.S. High Performance Research Reactor Conversion program of the National Nuclear Security Administration’s Office of Material Management and Minimization, is tasked with the scale-up and commercialization of high-density monolithic U-Mo fuel for the conversion of appropriate research reactors to use of low-enriched fuel. The FF Pillar has made significant steps to demonstrate and optimize the baseline co-rolling process using commercial-scale equipment at both the Y-12 National Security Complex (Y-12) and BWX Technologies (BWXT). These demonstrations include the fabrication of the next irradiation experiment, Mini-Plate 1 (MP-1), and casting optimizations at Y-12.more » The FF Pillar uses a detailed process flow diagram to identify potential gaps in processing knowledge or demonstration, which helps direct the strategic research agenda of the FF Pillar. This paper describes the significant progress made toward understanding the fuel characteristics, and models developed to make informed decisions, increase process yield, and decrease lifecycle waste and costs.« less

  15. Impact of electro-stimulation on denitrifying bacterial growth and analysis of bacterial growth kinetics using a modified Gompertz model in a bio-electrochemical denitrification reactor.

    PubMed

    Liu, Hengyuan; Chen, Nan; Feng, Chuanping; Tong, Shuang; Li, Rui

    2017-05-01

    This study aimed to investigate the effect of electro-stimulation on denitrifying bacterial growth in a bio-electrochemical reactor, and the growth were modeled using modified Gompertz model under different current densities at three C/Ns. It was found that the similar optimum current density of 250mA/m 2 was obtained at C/N=0.75, 1.00 and 1.25, correspondingly the maximum nitrate removal efficiencies were 98.0%, 99.2% and 99.9%. Moreover, ATP content and cell membrane permeability of denitrifying bacteria were significantly increased at optimum current density. Furthermore, modified Gompertz model fitted well with the microbial growth curves, and the highest maximum growth rates (µ max ) and shorter lag time were obtained at the optimum current density for all C/Ns. This study demonstrated that the modified Gompertz model could be used for describing microbial growth under different current densities and C/Ns in a bio-electrochemical denitrification reactor, and it provided an alternative for improving the performance of denitrification process. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Role of the lower hybrid spectrum in the current drive modeling for DEMO scenarios

    NASA Astrophysics Data System (ADS)

    Cardinali, A.; Castaldo, C.; Cesario, R.; Santini, F.; Amicucci, L.; Ceccuzzi, S.; Galli, A.; Mirizzi, F.; Napoli, F.; Panaccione, L.; Schettini, G.; Tuccillo, A. A.

    2017-07-01

    The active control of the radial current density profile is one of the major issues of thermonuclear fusion energy research based on magnetic confinement. The lower hybrid current drive could in principle be used as an efficient tool. However, previous understanding considered the electron temperature envisaged in a reactor at the plasma periphery too large to allow penetration of the coupled radio frequency (RF) power due to strong Landau damping. In this work, we present new numerical results based on quasilinear theory, showing that the injection of power spectra with different {n}// widths of the main lobe produce an RF-driven current density profile spanning most of the outer radial half of the plasma ({n}// is the refractive index in a parallel direction to the confinement magnetic field). Plasma kinetic profiles envisaged for the DEMO reactor are used as references. We demonstrate the robustness of the modeling results concerning the key role of the spectral width in determining the lower hybrid-driven current density profile. Scans of plasma parameters are extensively carried out with the aim of excluding the possibility that any artefact of the utilised numerical modeling would produce any novelty. We neglect here the parasitic effect of spectral broadening produced by linear scattering due to plasma density fluctuations, which mainly occurs for low magnetic field devices. This effect will be analyzed in other work that completes the report on the present breakthrough.

  17. The 14 MeV Neutron Irradiation Facility in MARIA Reactor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Prokopowicz, R.; Pytel, K.; Dorosz, M.

    2015-07-01

    The MARIA reactor with thermal neutron flux density up to 3x10{sup 14} cm{sup -2} s{sup -1} and a number of vertical channels is well suited to material testing by thermal neutron treatment. Beside of that some fast neutron irradiation facilities are operated in MARIA reactor as well. One of them is thermal to 14 MeV neutron converter launched in 2014. It is especially devoted to fusion devices material testing irradiation. The ITER and DEMO research thermonuclear facilities are to be run using the deuterium - tritium fusion reaction. Fast neutrons (of energy approximately 14 MeV) resulting from the reaction aremore » essential to carry away the released thermonuclear energy and to breed tritium. However, constructional materials of which thermonuclear reactors are to be built must be specially selected to survive intense fluxes of fast neutrons. Strong sources of 14 MeV neutrons are needed if research on resistance of candidate materials to such fluxes is to be carried out effectively. Nuclear reactor-based converter capable to convert thermal neutrons into 14 MeV fast neutrons may be used to that purpose. The converter based on two stage nuclear reaction on lithium-6 and deuterium compounds leading to 14 MeV neutron production. The reaction chain is begun by thermal neutron capture by lithium-6 nucleus resulted in triton release. The neutron and triton transport calculations have been therefore carried-out to estimate the thermal to 14 MeV neutron conversion efficiency and optimize converter construction. The usable irradiation space of ca. 60 cm{sup 3} has been obtained. The released energy have been calculated. Heat transport has been asses to ensure proper device cooling. A set of thermocouples has been installed in converter to monitor its temperature distribution on-line. Influence of converter on reactor operation has been studied. Safety analyses of steady states and transients have been done. Performed calculations and analyses allow designing the converter and formulate its operation limits and conditions. During first tested operation of the converter the 14 MeV neutron flux density was estimated to 10{sup 9} cm{sup -2} s{sup -1}, whereas fast fission neutrons inside converter achieved 10{sup 12} cm{sup -2} s{sup -1}, and thermal neutrons were reduced down to 109 cm-2 s-1. Taking into account the feasibility of almost incessant converter operation for a number of months, its arisen as one of the most powerful (in terms of fluence), currently available 14 MeV neutron source. Such a converter currently under operation in the MARIA reactor core will be presented. (authors)« less

  18. Fabrication and testing of U-7Mo monolithic plate fuel with Zircaloy cladding

    NASA Astrophysics Data System (ADS)

    Pasqualini, E. E.; Robinson, A. B.; Porter, D. L.; Wachs, D. M.; Finlay, M. R.

    2016-10-01

    Nuclear fuel designs are being developed to replace highly enriched fuel used in research and test reactors with fuels of low enrichment. In the most challenging cases, U-(7-10 wt%)Mo monolithic plate fuels are proposed. One of the considered designs includes aluminum-alloy cladding, which provides some challenges in fabrication and fuel/cladding interaction during service. Zircaloy cladding, specifically Zry-4, was investigated as an alternative cladding, and development of a fabrication method was performed by researchers with the Comisión Nacionalde Energia Atómica (CNEA) in Argentina, resulting in test fuel plates (Zry-4 clad U-7Mo) which were subsequently tested in the Advanced Test Reactor in Idaho. Because Zry-4 and U-(7-10)Mo have similar high-temperature mechanical properties, fabrication was simplified in that the fuel foil and cladding could be co-rolled and bonded. The challenge was to prevent a thermal-expansion mismatch, which could destroy the fuel/cladding bond before complete bonding was achieved; the solution was to prevent the composites from cooling significantly during or between roll passes. The final product performed very well in-reactor, showing good bonding, very little fuel/cladding interaction-either from fabrication or in-reactor testing-and little swelling, especially no detectable heterogeneous bubble formation at the fuel/cladding interface tested to a fission density of up to 2.7E+21 (average) fissions/cm3, 3.8E+21 (peak).

  19. Cracking behavior and microstructure of austenitic stainless steels and alloy 690 irradiated in BOR-60 reactor, phase I.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Y.; Chopra, O. K.; Soppet, W. K.

    2010-02-16

    Cracking behavior of stainless steels specimens irradiated in the BOR-60 at about 320 C is studied. The primary objective of this research is to improve the mechanistic understanding of irradiation-assisted stress corrosion cracking (IASCC) of core internal components under conditions relevant to pressurized water reactors. The current report covers several baseline tests in air, a comparison study in high-dissolved-oxygen environment, and TEM characterization of irradiation defect structure. Slow strain rate tensile (SSRT) tests were conducted in air and in high-dissolved-oxygen (DO) water with selected 5- and 10-dpa specimens. The results in high-DO water were compared with those from earlier testsmore » with identical materials irradiated in the Halden reactor to a similar dose. The SSRT tests produced similar results among different materials irradiated in the Halden and BOR-60 reactors. However, the post-irradiation strength for the BOR-60 specimens was consistently lower than that of the corresponding Halden specimens. The elongation of the BOR-60 specimens was also greater than that of their Halden specimens. Intergranular cracking in high-DO water was consistent for most of the tested materials in the Halden and BOR-60 irradiations. Nonetheless, the BOR-60 irradiation was somewhat less effective in stimulating IG fracture among the tested materials. Microstructural characterization was also carried out using transmission electron microscopy on selected BOR-60 specimens irradiated to {approx}25 dpa. No voids were observed in irradiated austenitic stainless steels and cast stainless steels, while a few voids were found in base and grain-boundary-engineered Alloy 690. All the irradiated microstructures were dominated by a high density of Frank loops, which varied in mean size and density for different alloys.« less

  20. Kinetic Parameter Measurements in the MINERVE Reactor

    NASA Astrophysics Data System (ADS)

    Perret, Grégory; Geslot, Benoit; Gruel, Adrien; Blaise, Patrick; Di-Salvo, Jacques; De Izarra, Grégoire; Jammes, Christian; Hursin, Mathieu; Pautz, Andréas

    2017-01-01

    In the framework of an international collaboration, teams of the PSI and CEA research institutes measure the critical decay constant (α0 = β/A), delayed neutron fraction (β) and generation time (A) of the Minerve reactor using the Feynman-α, Power Spectral Density and Rossi-α neutron noise measurement techniques. These measurements contribute to the experimental database of kinetic parameters used to improve nuclear data files and validate modern methods in Monte Carlo codes. Minerve is a zero-power pool reactor composed of a central experimental test lattice surrounded by a large aluminum buffer and four high-enriched driver regions. Measurements are performed in three slightly subcritical configurations (-2 cents to -30 cents) using two high-efficiency 235U fission chambers in the driver regions. Measurement of α0 and β obtained by the two institutes and with the different techniques are consistent for the configurations envisaged. Slight increases of the β values are observed with the subcriticality level. Best estimate values are obtained with the Cross-Power Spectral Density technique at -2 cents, and are worth: β = 716.9±9.0 pcm, α0 = 79.0±0.6 s-1 and A = 90.7±1.4 μs. The kinetic parameters are predicted with MCNP5-v1.6 and TRIPOLI4.9 and the JEFF-3.1/3.1.1 and ENDF/B-VII.1 nuclear data libraries. The predictions for β and α0 overestimate the experimental results by 3-5% and 10-12%, respectively; that for A underestimate the experimental result by 6-7%. The discrepancies are suspected to come from the driven system nature of Minerve and the location of the detectors in the driver regions, which prevent accounting for the full reactor.

  1. Eastern Europe Research Reactor Initiative nuclear education and training courses - Current activities and future challenges

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Snoj, L.; Sklenka, L.; Rataj, J.

    2012-07-01

    The Eastern Europe Research Reactor Initiative was established in January 2008 to enhance cooperation between the Research Reactors in Eastern Europe. It covers three areas of research reactor utilisation: irradiation of materials and fuel, radioisotope production, neutron beam experiments, education and training. In the field of education and training an EERRI training course was developed. The training programme has been elaborated with the purpose to assist IAEA Member States, which consider building a research reactor (RR) as a first step to develop nuclear competence and infrastructure in the Country. The major strength of the reactor is utilisation of three differentmore » research reactors and a lot of practical exercises. Due to high level of adaptability, the course can be tailored to specific needs of institutions with limited or no access to research reactors. (authors)« less

  2. Behavior of U 3Si 2 Fuel and FeCrAl Cladding under Normal Operating and Accident Reactor Conditions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gamble, Kyle Allan Lawrence; Hales, Jason Dean; Barani, Tommaso

    2016-09-01

    As part of the Department of Energy's Nuclear Energy Advanced Modeling and Simulation program, an Accident Tolerant Fuel High Impact Problem was initiated at the beginning of fiscal year 2015 to investigate the behavior of \\usi~fuel and iron-chromium-aluminum (FeCrAl) claddings under normal operating and accident reactor conditions. The High Impact Problem was created in response to the United States Department of Energy's renewed interest in accident tolerant materials after the events that occurred at the Fukushima Daiichi Nuclear Power Plant in 2011. The High Impact Problem is a multinational laboratory and university collaborative research effort between Idaho National Laboratory, Losmore » Alamos National Laboratory, Argonne National Laboratory, and the University of Tennessee, Knoxville. This report primarily focuses on the engineering scale research in fiscal year 2016 with brief summaries of the lower length scale developments in the areas of density functional theory, cluster dynamics, rate theory, and phase field being presented.« less

  3. Passive acoustic leak detection for sodium cooled fast reactors using hidden Markov models

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Riber Marklund, A.; Kishore, S.; Prakash, V.

    2015-07-01

    Acoustic leak detection for steam generators of sodium fast reactors have been an active research topic since the early 1970's and several methods have been tested over the years. Inspired by its success in the field of automatic speech recognition, we here apply hidden Markov models (HMM) in combination with Gaussian mixture models (GMM) to the problem. To achieve this, we propose a new feature calculation scheme, based on the temporal evolution of the power spectral density (PSD) of the signal. Using acoustic signals recorded during steam/water injection experiments done at the Indira Gandhi Centre for Atomic Research (IGCAR), themore » proposed method is tested. We perform parametric studies on the HMM+GMM model size and demonstrate that the proposed method a) performs well without a priori knowledge of injection noise, b) can incorporate several noise models and c) has an output distribution that simplifies false alarm rate control. (authors)« less

  4. Neutron diffraction measurement of residual stresses, dislocation density and texture in Zr-bonded U-10Mo “mini” fuel foils and plates

    DOE PAGES

    Brown, Donald William; Okuniewski, Maria A.; Sisneros, Thomas A.; ...

    2016-12-01

    Here, Al clad U-10Mo fuel plates are being considered for conversion of several research reactors from high-enriched to low-enriched U fuel. Neutron diffraction measurements of the textures, residual phase stresses, and dislocation densities in the individual phases of the mini-foils throughout several processing steps and following hot-isostatic pressing to the Al cladding, have been completed. Recovery and recrystallization of the bare U-10Mo fuel foil, as indicated by the dislocation density and texture, are observed depending on the state of the material prior to annealing and the duration and temperature of the annealing process. In general, the cladding procedure significantly reducesmore » the dislocation density, but the final state of the clad plate, both texture and dislocation density, depends strongly on the final processing step of the fuel foil. In contrast, the residual stress state of the final plate is dominated by the thermal expansion mismatch of the constituent materials.« less

  5. Neutron diffraction measurement of residual stresses, dislocation density and texture in Zr-bonded U-10Mo “mini” fuel foils and plates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brown, Donald William; Okuniewski, Maria A.; Sisneros, Thomas A.

    Here, Al clad U-10Mo fuel plates are being considered for conversion of several research reactors from high-enriched to low-enriched U fuel. Neutron diffraction measurements of the textures, residual phase stresses, and dislocation densities in the individual phases of the mini-foils throughout several processing steps and following hot-isostatic pressing to the Al cladding, have been completed. Recovery and recrystallization of the bare U-10Mo fuel foil, as indicated by the dislocation density and texture, are observed depending on the state of the material prior to annealing and the duration and temperature of the annealing process. In general, the cladding procedure significantly reducesmore » the dislocation density, but the final state of the clad plate, both texture and dislocation density, depends strongly on the final processing step of the fuel foil. In contrast, the residual stress state of the final plate is dominated by the thermal expansion mismatch of the constituent materials.« less

  6. Defluoridation of drinking water by electrocoagulation/electroflotation in a stirred tank reactor with a comparative performance to an external-loop airlift reactor.

    PubMed

    Essadki, A H; Gourich, B; Vial, Ch; Delmas, H; Bennajah, M

    2009-09-15

    Defluoridation using batch electrocoagulation/electroflotation (EC/EF) was carried out in two reactors for comparison purpose: a stirred tank reactor (STR) close to a conventional EC cell and an external-loop airlift reactor (ELAR) that was recently described as an innovative reactor for EC. The respective influences of current density, initial concentration and initial pH on the efficiency of defluoridation were investigated. The same trends were observed in both reactors, but the efficiency was higher in the STR at the beginning of the electrolysis, whereas similar values were usually achieved after 15min operation. The influence of the initial pH was explained using the analyses of sludge composition and residual soluble aluminum species in the effluents, and it was related to the prevailing mechanisms of defluoridation. Fluoride removal and sludge reduction were both favored by an initial pH around 4, but this value required an additional pre-treatment for pH adjustment. Finally, electric energy consumption was similar in both reactors when current density was lower than 12mA/cm(2), but mixing and complete flotation of the pollutants were achieved without additional mechanical power in the ELAR, using only the overall liquid recirculation induced by H(2) microbubbles generated by water electrolysis, which makes subsequent treatments easier to carry out.

  7. Effect of initiator concentration to low-density polyethylene production in a tubular reactor

    NASA Astrophysics Data System (ADS)

    Azmi, A.; Aziz, N.

    2016-11-01

    Low-density polyethylene (LDPE) is one of the most widely used polymers in the world, which is produced in high-capacity tubular and autoclave reactors. As the LDPE industry turn into more competitive and its market profit margins become tighter, manufacturers have to develop solutions to debottleneck the reactor output while abiding to the stringent product specification. A single polyolefin plant producing ten to forty grades of LDPE with various melt flow index (MFI), therefore understanding the reaction mechanism, the operating conditions as well as the dynamic behavior of tubular reactor is essential before any improvement can take place. In the present work, a steady state mathematical model representing a tubular reactor for the production of LDPE is simulated using MATLAB R2015a®. The model developed is a function of feed inlet, reactor jacket, single initiator injector and outlet stream. Analysis on the effect of initiator concentration (CI) shows sudden declining trend of initiator's concentration which indicates that all of the initiators are exhausted after polymerization reaction and no further reaction occur from this point onwards. Furthermore, the results demonstrate that the concentration of initiator gives significant impact on reactor temperature's profile and monomer conversion rate, since higher initiator concentration promotes greater polymerization rate, and therefore leads to higher monomer conversion throughput.

  8. Burn Control in Fusion Reactors via Isotopic Fuel Tailoring

    NASA Astrophysics Data System (ADS)

    Boyer, Mark D.; Schuster, Eugenio

    2011-10-01

    The control of plasma density and temperature are among the most fundamental problems in fusion reactors and will be critical to the success of burning plasma experiments like ITER. Economic and technological constraints may require future commercial reactors to operate with low temperature, high-density plasma, for which the burn condition may be unstable. An active control system will be essential for stabilizing such operating points. In this work, a volume-averaged transport model for the energy and the densities of deuterium and tritium fuel ions, as well as the alpha particles, is used to synthesize a nonlinear feedback controller for stabilizing the burn condition. The controller makes use of ITER's planned isotopic fueling capability and controls the densities of these ions separately. The ability to modulate the DT fuel mix is exploited in order to reduce the fusion power during thermal excursions without the need for impurity injection. By moving the isotopic mix in the plasma away from the optimal 50:50 mix, the reaction rate is slowed and the alpha-particle heating is reduced to desired levels. Supported by the NSF CAREER award program (ECCS-0645086).

  9. Calculated power distribution of a thermionic, beryllium oxide reflected, fast-spectrum reactor

    NASA Technical Reports Server (NTRS)

    Mayo, W.; Lantz, E.

    1973-01-01

    A procedure is developed and used to calculate the detailed power distribution in the fuel elements next to a beryllium oxide reflector of a fast-spectrum, thermionic reactor. The results of the calculations show that, although the average power density in these outer fuel elements is not far from the core average, the power density at the very edge of the fuel closest to the beryllium oxide is about 1.8 times the core avearge.

  10. Pulse-density modulation control of chemical oscillation far from equilibrium in a droplet open-reactor system

    PubMed Central

    Sugiura, Haruka; Ito, Manami; Okuaki, Tomoya; Mori, Yoshihito; Kitahata, Hiroyuki; Takinoue, Masahiro

    2016-01-01

    The design, construction and control of artificial self-organized systems modelled on dynamical behaviours of living systems are important issues in biologically inspired engineering. Such systems are usually based on complex reaction dynamics far from equilibrium; therefore, the control of non-equilibrium conditions is required. Here we report a droplet open-reactor system, based on droplet fusion and fission, that achieves dynamical control over chemical fluxes into/out of the reactor for chemical reactions far from equilibrium. We mathematically reveal that the control mechanism is formulated as pulse-density modulation control of the fusion–fission timing. We produce the droplet open-reactor system using microfluidic technologies and then perform external control and autonomous feedback control over autocatalytic chemical oscillation reactions far from equilibrium. We believe that this system will be valuable for the dynamical control over self-organized phenomena far from equilibrium in chemical and biomedical studies. PMID:26786848

  11. Pulse-density modulation control of chemical oscillation far from equilibrium in a droplet open-reactor system.

    PubMed

    Sugiura, Haruka; Ito, Manami; Okuaki, Tomoya; Mori, Yoshihito; Kitahata, Hiroyuki; Takinoue, Masahiro

    2016-01-20

    The design, construction and control of artificial self-organized systems modelled on dynamical behaviours of living systems are important issues in biologically inspired engineering. Such systems are usually based on complex reaction dynamics far from equilibrium; therefore, the control of non-equilibrium conditions is required. Here we report a droplet open-reactor system, based on droplet fusion and fission, that achieves dynamical control over chemical fluxes into/out of the reactor for chemical reactions far from equilibrium. We mathematically reveal that the control mechanism is formulated as pulse-density modulation control of the fusion-fission timing. We produce the droplet open-reactor system using microfluidic technologies and then perform external control and autonomous feedback control over autocatalytic chemical oscillation reactions far from equilibrium. We believe that this system will be valuable for the dynamical control over self-organized phenomena far from equilibrium in chemical and biomedical studies.

  12. Flow instability in particle-bed nuclear reactors

    NASA Technical Reports Server (NTRS)

    Kerrebrock, J. L.; Kalamas, J.

    1993-01-01

    A three-dimensional model of the stability of the particle-bed reactor is presented, in which the fluid has mobility in three dimensions. The model accurately represents the stability at low Re numbers as well as the effects of the cold and hot frits and of the heat conduction and radiation in the particle bed. The model can be easily extended to apply to the cylindrical geometry of particle-bed reactors. Exemplary calculations are carried out, showing that a particle bed without a cold frit would be subject to instability if operated at the high-temperature ratios used for nuclear rockets and at power densities below about 4 MW/l; since the desired power density for such a reactor is about 40 MW/l, the operation at design exit temperature but at reduced power could be hazardous. Calculations show however that it might be possible to remove the instability problem by appropriate combinations of cold and hot frits.

  13. A HISTORICAL PERSPECTIVE OF NUCLEAR THERMAL HYDRAULICS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    D’Auria, F; Rohatgi, Upendra S.

    The nuclear thermal-hydraulics discipline was developed following the needs for nuclear power plants (NPPs) and, to a more limited extent, research reactors (RR) design and safety. As in all other fields where analytical methods are involved, nuclear thermal-hydraulics took benefit of the development of computers. Thermodynamics, rather than fluid dynamics, is at the basis of the development of nuclear thermal-hydraulics together with the experiments in complex two-phase situations, namely, geometry, high thermal density, and pressure.

  14. Performance of low smeared density sodium-cooled fast reactor metal fuel

    NASA Astrophysics Data System (ADS)

    Porter, D. L.; Chichester, H. J. M.; Medvedev, P. G.; Hayes, S. L.; Teague, M. C.

    2015-10-01

    An experiment was performed in the Experimental Breeder Rector-II (EBR-II) in the 1990s to show that metallic fast reactor fuel could be used in reactors with a single, once-through core. To prove the long duration, high burnup, high neutron exposure capability an experiment where the fuel pin was designed with a very large fission gas plenum and very low fuel smeared density (SD). The experiment, X496, operated to only 8.3 at.% burnup because the EBR-II reactor was scheduled for shut-down at that time. Many of the examinations of the fuel pins only funded recently with the resurgence of reactor designs using very high-burnup fuel. The results showed that, despite the low smeared density of 59% the fuel swelled radially to contact the cladding, fission gas release appeared to be slightly higher than demonstrated in conventional 75%SD fuel tests and axial growth was about the same as 75% SD fuel. There were axial positions in some of the fuel pins which showed evidence of fuel restructuring and an absence of fission products with low melting points and gaseous precursors (Cs and Rb). A model to investigate whether these areas may have overheated due to a loss of bond sodium indicates that it is a possible explanation for the fuel restructuring and something to be considered for fuel performance modeling of low SD fuel.

  15. 78 FR 58575 - Review of Experiments for Research Reactors

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-09-24

    ... NUCLEAR REGULATORY COMMISSION [NRC-2013-0219] Review of Experiments for Research Reactors AGENCY... Commission (NRC) is withdrawing Regulatory Guide (RG) 2.4, ``Review of Experiments for Research Reactors... withdrawing RG 2.4, ``Review of Experiments for Research Reactors,'' (ADAMS Accession No. ML003740131) because...

  16. Nuclear Reactors. Revised.

    ERIC Educational Resources Information Center

    Hogerton, John F.

    This publication is one of a series of information booklets for the general public published by the United States Atomic Energy Commission. Among the topics discussed are: How Reactors Work; Reactor Design; Research, Teaching, and Materials Testing; Reactors (Research, Teaching and Materials); Production Reactors; Reactors for Electric Power…

  17. Analysis of Required Supporting Systems for the Supercritical CO(2) Power Conversion System

    DTIC Science & Technology

    2007-09-01

    been drawn to the viability of using S-C02 as a working fluid in modern reactor designs. Near the critical point, C02 has a rapid rise in density...viability of using S-CO2 as a working fluid in modern reactor designs. Near the critical point, CO2 has a rapid rise in density allowing a significant...32 Figure 2.2.3 Effect on Mass Transferred of Changing ICV Initial Temperature for emptying PCS ...................32 Figure 2.2.4 Effect

  18. Assessment of the 3He pressure inside the CABRI transient rods - Development of a surrogate model based on measurements and complementary CFD calculations

    NASA Astrophysics Data System (ADS)

    Clamens, Olivier; Lecerf, Johann; Hudelot, Jean-Pascal; Duc, Bertrand; Cadiou, Thierry; Blaise, Patrick; Biard, Bruno

    2018-01-01

    CABRI is an experimental pulse reactor, funded by the French Nuclear Safety and Radioprotection Institute (IRSN) and operated by CEA at the Cadarache research center. It is designed to study fuel behavior under RIA conditions. In order to produce the power transients, reactivity is injected by depressurization of a neutron absorber (3He) situated in transient rods inside the reactor core. The shapes of power transients depend on the total amount of reactivity injected and on the injection speed. The injected reactivity can be calculated by conversion of the 3He gas density into units of reactivity. So, it is of upmost importance to properly master gas density evolution in transient rods during a power transient. The 3He depressurization was studied by CFD calculations and completed with measurements using pressure transducers. The CFD calculations show that the density evolution is slower than the pressure drop. Surrogate models were built based on CFD calculations and validated against preliminary tests in the CABRI transient system. Studies also show that it is harder to predict the depressurization during the power transients because of neutron/3He capture reactions that induce a gas heating. This phenomenon can be studied by a multiphysics approach based on reaction rate calculation thanks to Monte Carlo code and study the resulting heating effect with the validated CFD simulation.

  19. Development of Nitride Coating Using Atomic Layer Deposition for Low-Enriched Uranium Fuel Powder

    NASA Astrophysics Data System (ADS)

    Bhattacharya, Sumit

    High-performance research reactors require fuel that operates at high specific power and can withstand high fission density, but at relatively low temperatures. The design of the research reactor fuels is done for efficient heat emission, and consists of assemblies of thin-plates cladding made from aluminum alloy. The low-enriched fuels (LEU) were developed for replacing high-enriched fuels (HEU) for these reactors necessitates a significantly increased uranium density in the fuel to counterbalance the decrease in enrichment. One of the most promising new fuel candidate is U-Mo alloy, in a U-Mo/Al dispersion fuel form, due to its high uranium loading as well as excellent irradiation resistance performance, is being developed extensively to convert from HEU fuel to LEU fuel for high-performance research reactors. However, the formation of an interaction layer (IL) between U-Mo particles and the Al matrix, and the associated pore formation, under high heat flux and high burnup conditions, degrade the irradiation performance of the U-Mo/Al dispersion fuel. From the recent tests results accumulated from the surface engineering of low enriched uranium fuel (SELENIUM) and MIR reactor displayed that a surface barrier coating like physical vapor deposited (PVD) zirconium nitride (ZrN) can significantly reduce the interaction layer. The barrier coating performed well at low burn up but above a fluence rate of 5x 1021 ions/cm2 the swelling reappeared due to formation interaction layer. With this result in mind the objective of this research was to develop an ultrathin ZrN coating over particulate uranium-molybdenum nuclear fuel using a modified savannah 200 atomic layer deposition (ALD) system. This is done in support of the US Department of Energy's (DOE) effort to slow down the interaction at fluence rate and reach higher burn up for high power research reactor. The low-pressure Savannah 200 ALD system is modified to be designed as a batch powder coating system using the metal organic chemical precursors tetrakis dimethylamido zirconium (TDMAZr) and ammonia( NH3) for succesful deposition of ZrN coating. Nitrogen (N2) gas carried the chemicals to a hot wall reactor maintained at a temperature range of 235 to 245 °C. The ALD system design evolved over the course of this research as the process variables were steadily improved. The conditions found deemed for attaining best coating were at a temperature of 245 °C, with pulse time of 0.8 seconds for TDMAZr and 0.1 seconds for NH3 along with 15 seconds of purge time in-between each cycle. The ALD system was successful in making 1-micrometer (um) ZrN with low levels of chemical impurities over U-Mo powder batches. The deposited coatings were characterized using scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), electron energy loss spectroscopy (EELS) and Transmission electron microscope (TEM). This document describes the establishment of the Savannah 200 ALD system, precursor surface reaction procedures and finally the nature of the coating achieved, including characterization of the coating at the different stages of deposition. It was found that an interlayer of alumina in between ZrN and the U-Mo surface was required to reduce the residual stress generated during the ALD procedure. The alumina not only removed the risk of cracking and spallation of the ZrN coating but also provided adequate strength for the barrier layer to withstand the fuel plate rolling conditions. The ZrN coating was nano crystalline in nature, with grain size varying from 5-10 nm, the deposited layer was found to be dense consisting of a layered structure. The coating could retain its crystallinity and maintain its phase when irradiated with 1 MeV single charged ion Kr to produce a damage of 10 displacement per atom (DPA) at intermediate voltage electron microscopy (IVEM).

  20. Pressure regulator

    DOEpatents

    Ebeling, Jr., Robert W.; Weaver, Robert B.

    1979-01-01

    The pressure within a pressurized flow reactor operated under harsh environmental conditions is controlled by establishing and maintaining a fluidized bed of uniformly sized granular material of selected density by passing the gas from the reactor upwardly therethrough at a rate sufficient to fluidize the bed and varying the height of the bed by adding granular material thereto or removing granular material therefrom to adjust the backpressure on the flow reactor.

  1. Characteristics and Dose Levels for Spent Reactor Fuels

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Coates, Cameron W

    2007-01-01

    Current guidance considers highly radioactive special nuclear materials to be those materials that, unshielded, emit a radiation dose [rate] measured at 1 m which exceeds 100 rem/h. Smaller, less massive fuel assemblies from research reactors can present a challenge from the point of view of self protection because of their size (lower dose, easier to handle) and the desirability of higher enrichments; however, a follow-on study to cross-compare dose trends of research reactors and power reactors was deemed useful to confirm/verify these trends. This paper summarizes the characteristics and dose levels of spent reactor fuels for both research reactors andmore » power reactors and extends previous studies aimed at quantifying expected dose rates from research reactor fuels worldwide.« less

  2. Baseline Concept Description of a Small Modular High Temperature Reactor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hans Gougar

    2014-05-01

    The objective of this report is to provide a description of generic small modular high temperature reactors (herein denoted as an smHTR), summarize their distinguishing attributes, and lay out the research and development (R&D) required for commercialization. The generic concepts rely heavily on the modular high temperature gas-cooled reactor designs developed in the 1980s which were never built but for which pre-licensing or certification activities were conducted. The concept matured more recently under the Next Generation Nuclear Plant (NGNP) project, specifically in the areas of fuel and material qualification, methods development, and licensing. As all vendor-specific designs proposed under NGNPmore » were all both ‘small’ or medium-sized and ‘modular’ by International Atomic Energy Agency (IAEA) and Department of Energy (DOE) standards, the technical attributes, challenges, and R&D needs identified, addressed, and documented under NGNP are valid and appropriate in the context of Small Modular Reactor (SMR) applications. Although the term High Temperature Reactor (HTR) is commonly used to denote graphite-moderated, thermal spectrum reactors with coolant temperatures in excess of 650oC at the core outlet, in this report the historical term High Temperature Gas-Cooled Reactor (HTGR) will be used to distinguish the gas-cooled technology described herein from its liquid salt-cooled cousin. Moreover, in this report it is to be understood that the outlet temperature of the helium in an HTGR has an upper limit of 950 degrees C which corresponds to the temperature to which certain alloys are currently being qualified under DOE’s ARC program. Although similar to the HTGR in just about every respect, the Very High Temperature Reactor (VHTR) may have an outlet temperature in excess of 950 degrees C and is therefore farther from commercialization because of the challenges posed to materials exposed to these temperatures. The VHTR is the focus of R&D under the Generation IV program and its specific R&D needs will be included in this report when appropriate for comparison. The distinguishing features of the HTGR are the refractory (TRISO) coated particle fuel, the low-power density, graphite-moderated core, and the high outlet temperature of the inert helium coolant. The low power density and fuel form effectively eliminate the possibility of core melt, even upon a complete loss of coolant pressure and flow. The graphite, which constitutes the bulk of the core volume and mass, provides a large thermal buffer that absorbs fission heat such that thermal transients occur over a timespan of hours or even days. As chemically-inert helium is already a gas, there is no coolant temperature or void feedback on the neutronics and no phase change or corrosion product that could degrade heat transfer. Furthermore, the particle coatings and interstitial graphite retain fission products such that the source terms at the plant boundary remain well below actionable levels under all anticipated nominal and off-normal operating conditions. These attributes enable the reactor to supply process heat to a collocated industrial plant with negligible risk of contamination and minimal dynamic coupling of the facilities (Figure 1). The exceptional retentive properties of coated particle fuel in a graphite matrix were first demonstrated in the DRAGON reactor, a European research facility that began operation in 1964.« less

  3. Baseline Concept Description of a Small Modular High Temperature Reactor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gougar, Hans D.

    2014-10-01

    The objective of this report is to provide a description of generic small modular high temperature reactors (herein denoted as an smHTR), summarize their distinguishing attributes, and lay out the research and development (R&D) required for commercialization. The generic concepts rely heavily on the modular high temperature gas-cooled reactor designs developed in the 1980s which were never built but for which pre-licensing or certification activities were conducted. The concept matured more recently under the Next Generation Nuclear Plant (NGNP) project, specifically in the areas of fuel and material qualification, methods development, and licensing. As all vendor-specific designs proposed under NGNPmore » were all both ‘small’ or medium-sized and ‘modular’ by International Atomic Energy Agency (IAEA) and Department of Energy (DOE) standards, the technical attributes, challenges, and R&D needs identified, addressed, and documented under NGNP are valid and appropriate in the context of Small Modular Reactor (SMR) applications. Although the term High Temperature Reactor (HTR) is commonly used to denote graphite-moderated, thermal spectrum reactors with coolant temperatures in excess of 650oC at the core outlet, in this report the historical term High Temperature Gas-Cooled Reactor (HTGR) will be used to distinguish the gas-cooled technology described herein from its liquid salt-cooled cousin. Moreover, in this report it is to be understood that the outlet temperature of the helium in an HTGR has an upper limit of 950 degrees C which corresponds to the temperature to which certain alloys are currently being qualified under DOE’s ARC program. Although similar to the HTGR in just about every respect, the Very High Temperature Reactor (VHTR) may have an outlet temperature in excess of 950 degrees C and is therefore farther from commercialization because of the challenges posed to materials exposed to these temperatures. The VHTR is the focus of R&D under the Generation IV program and its specific R&D needs will be included in this report when appropriate for comparison. The distinguishing features of the HTGR are the refractory (TRISO) coated particle fuel, the low-power density, graphite-moderated core, and the high outlet temperature of the inert helium coolant. The low power density and fuel form effectively eliminate the possibility of core melt, even upon a complete loss of coolant pressure and flow. The graphite, which constitutes the bulk of the core volume and mass, provides a large thermal buffer that absorbs fission heat such that thermal transients occur over a timespan of hours or even days. As chemically-inert helium is already a gas, there is no coolant temperature or void feedback on the neutronics and no phase change or corrosion product that could degrade heat transfer. Furthermore, the particle coatings and interstitial graphite retain fission products such that the source terms at the plant boundary remain well below actionable levels under all anticipated nominal and off-normal operating conditions. These attributes enable the reactor to supply process heat to a collocated industrial plant with negligible risk of contamination and minimal dynamic coupling of the facilities (Figure 1). The exceptional retentive properties of coated particle fuel in a graphite matrix were first demonstrated in the DRAGON reactor, a European research facility that began operation in 1964.« less

  4. Irradiated microstructure of U-10Mo monolithic fuel plate at very high fission density

    NASA Astrophysics Data System (ADS)

    Gan, J.; Miller, B. D.; Keiser, D. D.; Jue, J. F.; Madden, J. W.; Robinson, A. B.; Ozaltun, H.; Moore, G.; Meyer, M. K.

    2017-08-01

    Monolithic U-10Mo alloy fuel plates with Al-6061 cladding are being developed for use in research and test reactors as low enrichment fuel (<20% U-235 enrichment) as a result of its high uranium loading capacity compared to that of U-7Mo dispersion fuel. These fuel plates contain a Zr diffusion barrier between the U-10Mo fuel and Al-6061 cladding that suppresses the interaction between the U-Mo fuel foil and Al alloy cladding that is known to be problematic under irradiation. Different methods have been employed to fabricate monolithic fuel plates, including hot-rolling with no cold-rolling. L1P09T is a hot-rolled fuel plate irradiated to high fission density in the RERTR-9B experiment. This paper discusses the TEM characterization results for this U-10Mo/Zr/Al6061 monolithic fuel plate (∼59% U-235 enrichment) irradiated in Advanced Test Reactor at Idaho National Laboratory with an unprecedented high local fission density of 9.8E+21 fissions/cm3. The calculated fuel foil centerline temperature at the beginning of life and the end of life is 141 and 194 °C, respectively. TEM lamellas were prepared using focus ion beam lift-out technique. The estimated U-Mo fuel swelling, based on the fuel foil thickness change from SEM, is approximately 76%. Large bubbles (>1 μm) are distributed evenly in U-Mo and interlink of these bubbles is evident. The average size of subdivided grains at this fission density appears similar to that at 5.2E+21 fissions/cm3. The measured average Mo and Zr content in the fuel matrix is ∼30 at% and ∼7 at%, respectively, in general agreement with the calculated Mo and Zr from fission density.

  5. Development of Laser Based Plasma Diagnostics for Fusion Research on NSTX-U

    NASA Astrophysics Data System (ADS)

    Barchfeld, Robert Adam

    Worldwide demand for power, and in particular electricity, is growing. Increasing population, expanding dependence on electrical devices, as well as the development of emerging nations, has created significant challenges for the power production. Compounding the issue are concerns over pollution, natural resource supplies, and political obstacles in troubled parts of the world. Many believe that investment in renewable energy will solve the expected energy crisis; however, renewable energy has many shortfalls. Consequently, additional sources of energy should be explored to provide the best options for the future. Electricity from fusion power offers many advantages over competing technologies. It can potentially produce large amounts of clean energy, without the serious concerns of fission power plant safety and nuclear waste. Fuel supplies for fusion are plentiful. Fusion power plants can be operated as needed, without dependence on location, or local conditions. However, there are significant challenges before fusion can be realized. Many factors currently limit the effectiveness of fusion power, which prevents a commercial power plant from being feasible. Scientists in many countries have built, and operate, experimental fusion plants to study the fusion process. The leading examples are magnetic confinement reactors known as tokamaks. At present, reactor gain is near unity, where the fusion power output is nearly the same as the power required to operate the reactor. A tenfold increase in gain is what reactors such as ITER hope to achieve, where 50 MW will be used for plasma heating, magnetic fields, and so forth, with a power output of 500 MW. Before this can happen, further research is required. Loss of particle and energy confinement is a principal cause of low performance; therefore, increasing confinement time is key. There are many causes of thermal and particle transport that are being researched, and the prime tools for conducting this research are plasma diagnostics. Plasma diagnostics collect data from fusion reactors in a number of different ways. Among these are far infrared (FIR) laser based systems. By probing a fusion plasma with FIR lasers, many properties can be measured, such as density and density fluctuations. This dissertation discusses the theory and design of two laser based diagnostic instruments: 1) the Far Infrared Tangential Interferometer and Polarimeter (FIReTIP) systems, and 2) the High-ktheta Scattering System. Both of these systems have been designed and fabricated at UC Davis for use on the National Spherical Torus Experiment - Upgrade (NSTX-U), located at Princeton Plasma Physics Laboratory (PPPL). These systems will aid PPPL scientists in fusion research. The FIReTIP system uses 119 ?m methanol lasers to pass through the plasma core to measure a chord averaged plasma density through interferometry. It can also measure the toroidal magnetic field strength by the way of polarimetery. The High-ktheta Scattering System uses a 693 GHz formic acid laser to measure electron scale turbulence. Through collective Thomson scattering, as the probe beam passes through the plasma, collective electron motion will scatter power to a receiver with the angle determined by the turbulence wavenumber. This diagnostic will measure ktheta from 7 to 40 cm-1 with a 4-channel receiver array. The High-ktheta Scattering system was designed to facilitate research on electron temperature gradient (ETG) modes, which are believed to be a major contributor to anomalous transport on NSTX-U. The design and testing of these plasma diagnostics are described in detail. There are a broad range of components detailed including: optically pumped gas FIR lasers, overmoded low loss waveguide, launching and receiving optical designs, quasi-optical mixers, electronics, and monitoring and control systems. Additionally, details are provided for laser maintenance, alignment techniques, and the fundamentals of nano-CNC-machining.

  6. Sister Lab Program Prospective Partner Nuclear Profile: Indonesia

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bissani, M; Tyson, S

    2006-12-14

    Indonesia has participated in cooperative technical programs with the IAEA since 1957, and has cooperated with regional partners in all of the traditional areas where nuclear science is employed: in medicine, public health (such as insect control and eradication programs), agriculture (e.g. development of improved varieties of rice), and the gas and oil industries. Recently, Indonesia has contributed significantly to the Reduced Enrichment Research and Training Reactor (RERTR) Program by conducting experiments to confirm the feasibility of Mo-99 production using high-density low enriched uranium (LEU) fuel, a primary goal of the RERTR Program. Indonesia's first research reactor, the TRIGA Markmore » II at Bandung, began operation in 1964 at 250 kW and was subsequently upgraded in 1971 to 1 MW and further upgraded in 2000 to 2 MW. This reactor was joined by another TRIGA Mark II, the 100-kW Kartini-PPNY at Yogyakarta, in 1979, and by the 30-MW G.A. Siwabessy multipurpose reactor in Serpong, which achieved criticality in July 1983. A 10-MW radioisotope production reactor, to be called the RPI-10, also was proposed for construction at Serpong in the late 1990s, but the project apparently was not carried out. In the five decades since its nuclear research program began, Indonesia has trained a cadre of scientific and technical staff who not only operate and conduct research with the current facilities, but also represent the nucleus of a skilled labor pool to support development of a nuclear power program. Although Indonesia's previous on-again, off-again consideration of nuclear power has not gotten very far in the past, it now appears that Indonesia again is giving serious consideration to beginning a national nuclear energy program. In June 2006, Research and Technology Minister Kusmayanto Kadiman said that his ministry was currently putting the necessary procedures in place to speed up the project to acquire a nuclear power plant, indicating that, ''We will need around five years to complete the project. If we can start the study, go to tender, and sign the contract for the project this year, the power plant could be on stream by 2011''. While this ambitious schedule may be a bit unrealistic, it suggests new momentum to move forward on the project. The favored site for the proposed plant is the Muria Peninsula, located on Java's north central coast.« less

  7. Characterizations of the radioactive waste by the remotely-controlled collimated spectrometric system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stepanov, Vyacheslav E.; Potapov, Victor N.; Smirnov, Sergey V.

    Decontamination and decommissioning of the research reactors MR (Testing Reactor) and RFT (Reactor of Physics and Technology) has recently been initiated in the National Research Center (NRC) 'Kurchatov institute', Moscow. In the building, neighboring to the reactor, the storage of HLRW is located. The storage is made of monolithic concrete in which steel cells depth 4 m are located. In cells of storage the HLRW packed into cases are placed. These the radioactive waste are also subject to export on long storage in the specialized organization. For characterization of the radioactive waste in cases the remote-controlled collimated spectrometer system wasmore » used. The system consists of a spectrometric collimated gamma-ray detector, a color video camera and a control unit, mounted on a rotator, which are mounted on a tripod with the host computer. For determination of specific activity of radionuclides in cases, it is developed programs of calculation of coefficients of proportionality of specific activity to the corresponding speeds of the account in peaks of full absorption at single specific activity of radionuclides in cases. For determination of these coefficients the mathematical model of spectrometer system based on the Monte-Carlo method was used. Dependences of calibration coefficients for various radionuclides from distance between the detector and a case at various values of the radioactive waste density in cases are given. Measurements of specific activity in cases are taken and are discussed. By results of measurements decisions on the appeal of the radioactive waste being in cases are made. (authors)« less

  8. METHOD AND APPARATUS FOR CONTROLLING NEUTRON DENSITY

    DOEpatents

    Wigner, E.P.; Young, G.J.; Weinberg, A.M.

    1961-06-27

    A neutronic reactor comprising a moderator containing uniformly sized and spaced channels and uniformly dimensioned fuel elements is patented. The fuel elements have a fissionable core and an aluminum jacket. The cores and the jackets of the fuel elements in the central channels of the reactor are respectively thinner and thicker than the cores and jackets of the fuel elements in the remainder of the reactor, producing a flattened flux.

  9. Preliminary design and hazards report. Boiling Reactor Experiment V (BORAX V)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rice, R. E.

    1960-02-01

    The preliminary objectives of the proposed BORAX V program are to test nuclear superheating concepts and to advance the technology of boiling-water-reactor design by performing experiments which will improve the understanding of factors limiting the stability of boiling reactors at high power densities. The reactor vessel is a cylinder with ellipsoidal heads, made of carbon steel clad internally with stainless steel. Each of the three cores is 24 in. high and has an effective diameter of 39 in. This is a preliminary report. (W.D.M.)

  10. Reactivity Coefficient Calculation for AP1000 Reactor Using the NODAL3 Code

    NASA Astrophysics Data System (ADS)

    Pinem, Surian; Malem Sembiring, Tagor; Tukiran; Deswandri; Sunaryo, Geni Rina

    2018-02-01

    The reactivity coefficient is a very important parameter for inherent safety and stability of nuclear reactors operation. To provide the safety analysis of the reactor, the calculation of changes in reactivity caused by temperature is necessary because it is related to the reactor operation. In this paper, the temperature reactivity coefficients of fuel and moderator of the AP1000 core are calculated, as well as the moderator density and boron concentration. All of these coefficients are calculated at the hot full power condition (HFP). All neutron diffusion constant as a function of temperature, water density and boron concentration were generated by the SRAC2006 code. The core calculations for determination of the reactivity coefficient parameter are done by using NODAL3 code. The calculation results show that the fuel temperature, moderator temperature and boron reactivity coefficients are in the range between -2.613 pcm/°C to -4.657pcm/°C, -1.00518 pcm/°C to 1.00649 pcm/°C and -9.11361 pcm/ppm to -8.0751 pcm/ppm, respectively. For the water density reactivity coefficients, the positive reactivity occurs at the water temperature less than 190 °C. The calculation results show that the reactivity coefficients are accurate because the results have a very good agreement with the design value.

  11. Reactor Physics Assessment of Thick Silicon Carbide Clad PWR Fuels

    DTIC Science & Technology

    2013-06-01

    Densities ............................................................................................................ 21 2.3 Fuel Mass (Core Total...70 7.1 Geometry, Material Density, and Mass Summary for All Cores...21 Table 3: Fuel Rod Masses for Different Clads

  12. Biofilm reactors for industrial bioconversion processes: employing potential of enhanced reaction rates

    PubMed Central

    Qureshi, Nasib; Annous, Bassam A; Ezeji, Thaddeus C; Karcher, Patrick; Maddox, Ian S

    2005-01-01

    This article describes the use of biofilm reactors for the production of various chemicals by fermentation and wastewater treatment. Biofilm formation is a natural process where microbial cells attach to the support (adsorbent) or form flocs/aggregates (also called granules) without use of chemicals and form thick layers of cells known as "biofilms." As a result of biofilm formation, cell densities in the reactor increase and cell concentrations as high as 74 gL-1 can be achieved. The reactor configurations can be as simple as a batch reactor, continuous stirred tank reactor (CSTR), packed bed reactor (PBR), fluidized bed reactor (FBR), airlift reactor (ALR), upflow anaerobic sludge blanket (UASB) reactor, or any other suitable configuration. In UASB granular biofilm particles are used. This article demonstrates that reactor productivities in these reactors have been superior to any other reactor types. This article describes production of ethanol, butanol, lactic acid, acetic acid/vinegar, succinic acid, and fumaric acid in addition to wastewater treatment in the biofilm reactors. As the title suggests, biofilm reactors have high potential to be employed in biotechnology/bioconversion industry for viable economic reasons. In this article, various reactor types have been compared for the above bioconversion processes. PMID:16122390

  13. Synthesis of superior fast charging-discharging nano-LiFePO4/C from nano-FePO4 generated using a confined area impinging jet reactor approach.

    PubMed

    Liu, Xiao-min; Yan, Pen; Xie, Yin-Yin; Yang, Hui; Shen, Xiao-dong; Ma, Zi-Feng

    2013-06-14

    LiFePO4/C nanocomposites with excellent electrochemical performance is synthesized from nano-FePO4, generated by a novel method using a confined area impinging jet reactor (CIJR). When discharged at 80 C (13.6 Ag(-1)), the LiFePO4/C delivers a discharge capacity of 95 mA h g(-1), an energy density of 227 W h kg(-1) and a power density of 34 kW kg(-1).

  14. Strengthening IAEA Safeguards for Research Reactors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reid, Bruce D.; Anzelon, George A.; Budlong-Sylvester, Kory

    During their December 10-11, 2013, workshop in Grenoble France, which focused on the history and future of safeguarding research reactors, the United States, France and the United Kingdom (UK) agreed to conduct a joint study exploring ways to strengthen the IAEA’s safeguards approach for declared research reactors. This decision was prompted by concerns about: 1) historical cases of non-compliance involving misuse (including the use of non-nuclear materials for production of neutron generators for weapons) and diversion that were discovered, in many cases, long after the violations took place and as part of broader pattern of undeclared activities in half amore » dozen countries; 2) the fact that, under the Safeguards Criteria, the IAEA inspects some reactors (e.g., those with power levels under 25 MWt) less than once per year; 3) the long-standing precedent of States using heavy water research reactors (HWRR) to produce plutonium for weapons programs; 4) the use of HEU fuel in some research reactors; and 5) various technical characteristics common to some types of research reactors that could provide an opportunity for potential proliferators to misuse the facility or divert material with low probability of detection by the IAEA. In some research reactors it is difficult to detect diversion or undeclared irradiation. In addition, infrastructure associated with research reactors could pose a safeguards challenge. To strengthen the effectiveness of safeguards at the State level, this paper advocates that the IAEA consider ways to focus additional attention and broaden its safeguards toolbox for research reactors. This increase in focus on the research reactors could begin with the recognition that the research reactor (of any size) could be a common path element on a large number of technically plausible pathways that must be considered when performing acquisition pathway analysis (APA) for developing a State Level Approach (SLA) and Annual Implementation Plan (AIP). To broaden the IAEA safeguards toolbox, the study recommends that the Agency consider closing potential gaps in safeguards coverage by, among other things: 1) adapting its safeguards measures based on a case-by-case assessment; 2) using more frequent and expanded/enhanced mailbox declarations (ideally with remote transmission of the data to IAEA Headquarters in Vienna) coupled with short-notice or unannounced inspections; 3) putting more emphasis on the collection and analysis of environmental samples at hot cells and waste storage tanks; 4) taking Safeguards by Design into account for the construction of new research reactors and best practices for existing research reactors; 5) utilizing fully all legal authorities to enhance inspection access (including a strengthened and continuing DIV process); and 6) utilizing new approaches to improve auditing activities, verify reactor operating data history, and track/monitor the movement and storage of spent fuel.« less

  15. Evaluation of nuclear facility decommissioning projects. Summary report: North Carolina State University Research and Training Reactor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Link, B.W.; Miller, R.L.

    1983-08-01

    This document summarizes information from the decommissioning of the NCSUR-3 (R-3), a 10 KWt university research and training reactor. The decommissioning data were placed in a computerized information retrieval/manipulation system which permits future utilization of this information in pre-decommissioning activities with other university reactors of similar design. The information is presented both in some detail in its computer output form and also as a manually assembled summarization which highlights the more significant aspects of the decommissioning project. Decommissioning data from a generic study, NUREG/CR 1756, Technology, Safety and Costs of Decommissioning Nuclear Research and Test Reactors, and the decommissioning ofmore » the Ames Laboratory Research Reactor (ALRR), a 5 MWt research reactor, is also included for comparison.« less

  16. Supply of enriched uranium for research reactors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mueller, H.

    1997-08-01

    Since the RERTR-meeting In Newport/USA in 1990 the author delivered a series of papers in connection with the fuel cycle for research reactors dealing with its front-end. In these papers the author underlined the need for unified specifications for enriched uranium metal suitable for the production of fuel elements and made proposals with regard to the re-use of in Europe reprocessed highly enriched uranium. With regard to the fuel cycle of research reactors the research reactor community was since 1989 more concentrating on the problems of its back-end since the USA stopped the acceptance of spent research reactor fuel onmore » December 31, 1988. Now, since it is apparent that these back-end problem have been solved by AEA`s ability to reprocess and the preparedness of the USA to again accept physically spent research reactor fuel the author is focusing with this paper again on the front-end of the fuel cycle on the question whether there is at all a safe supply of low and high enriched uranium for research reactors in the future.« less

  17. Tungsten-microdiamond composites for plasma facing components

    NASA Astrophysics Data System (ADS)

    Livramento, V.; Nunes, D.; Correia, J. B.; Carvalho, P. A.; Mardolcar, U.; Mateus, R.; Hanada, K.; Shohoji, N.; Fernandes, H.; Silva, C.; Alves, E.

    2011-09-01

    Tungsten is considered as one of promising candidate materials for plasma facing component in nuclear fusion reactors due to its resistance to sputtering and high melting point. High thermal conductivity is also a prerequisite for plasma facing components under the unique service environment of fusion reactor characterised by the massive heat load, especially in the divertor area. The feasibility of mechanical alloying of nanodiamond and tungsten, and the consolidation of the composite powders with Spark Plasma Sintering (SPS) was previously demonstrated. In the present research we report on the use of microdiamond instead of nanodiamond in such composites. Microdiamond is more favourable than nanodiamond in view of phonon transport performance leading to better thermal conductivity. However, there is a trade off between densification and thermal conductivity as the SPS temperature increases tungsten carbide formation from microdiamond is accelerated inevitably while the consolidation density would rise.

  18. Research and development of an electrochemical biocide reactor

    NASA Technical Reports Server (NTRS)

    See, G. G.; Bodo, C. A.; Glennon, J. P.

    1975-01-01

    An alternate disinfecting process to chemical agents, heat, or radiation in an aqueous media has been studied. The process is called an electrochemical biocide and employs cyclic, low-level voltages at chemically inert electrodes to pass alternating current through water and, in the process, to destroy microorganisms. The paper describes experimental hardware, methodology, and results with a tracer microorganism (Escherichia coli). The results presented show the effects on microorganism kill of operating parameters, including current density (15 to 55 mA/sq cm (14 to 51 ASF)), waveform of applied electrical signal (square, triangular, sine), frequency of applied electrical signal (0.5 to 1.5 Hz), process water flow rate (100 to 600 cc/min (1.6 to 9.5 gph)), and reactor resident time (0 to 4 min). Comparisons are made between the disinfecting property of the electrochemical biocide and chlorine, bromine, and iodine.

  19. Rate theory scenarios study on fission gas behavior of U 3 Si 2 under LOCA conditions in LWRs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miao, Yinbin; Gamble, Kyle A.; Andersson, David

    Fission gas behavior of U3Si2 under various loss-of-coolant accident (LOCA) conditions in light water reactors (LWRs) was simulated using rate theory. A rate theory model for U3Si2 that covers both steady-state operation and power transients was developed for the GRASS-SST code based on existing research reactor/ion irradiation experimental data and theoretical predictions of density functional theory (DFT) calculations. The steady-state and LOCA condition parameters were either directly provided or inspired by BISON simulations. Due to the absence of in-pile experiment data for U3Si2's fuel performance under LWR conditions at this stage of accident tolerant fuel (ATF) development, a variety ofmore » LOCA scenarios were taken into consideration to comprehensively and conservatively evaluate the fission gas behavior of U3Si2 during a LOCA.« less

  20. A study of the Coriolis effect on the fluid flow profile in a centrifugal bioreactor.

    PubMed

    Detzel, Christopher J; Thorson, Michael R; Van Wie, Bernard J; Ivory, Cornelius F

    2009-01-01

    Increasing demand for tissues, proteins, and antibodies derived from cell culture is necessitating the development and implementation of high cell density bioreactors. A system for studying high density culture is the centrifugal bioreactor (CCBR), which retains cells by increasing settling velocities through system rotation, thereby eliminating diffusional limitations associated with mechanical cell retention devices. This article focuses on the fluid mechanics of the CCBR system by considering Coriolis effects. Such considerations for centrifugal bioprocessing have heretofore been ignored; therefore, a simpler analysis of an empty chamber will be performed. Comparisons are made between numerical simulations and bromophenol blue dye injection experiments. For the non-rotating bioreactor with an inlet velocity of 4.3 cm/s, both the numerical and experimental results show the formation of a teardrop shaped plume of dye following streamlines through the reactor. However, as the reactor is rotated, the simulation predicts the development of vortices and a flow profile dominated by Coriolis forces resulting in the majority of flow up the leading wall of the reactor as dye initially enters the chamber, results are confirmed by experimental observations. As the reactor continues to fill with dye, the simulation predicts dye movement up both walls while experimental observations show the reactor fills with dye from the exit to the inlet. Differences between the simulation and experimental observations can be explained by excessive diffusion required for simulation convergence, and a slight density difference between dyed and un-dyed solutions. Implications of the results on practical bioreactor use are also discussed. (c) 2009 American Institute of Chemical Engineers Biotechnol. Prog., 2009.

  1. A Study of the Coriolis Effect on the Fluid Flow Profile in a Centrifugal Bioreactor

    PubMed Central

    Detzel, Christopher J.; Thorson, Michael R.; Van Wie, Bernard J.; Ivory, Cornelius F.

    2011-01-01

    Increasing demand for tissues, proteins, and antibodies derived from cell culture is necessitating the development and implementation of high cell density bioreactors. A system for studying high density culture is the centrifugal bioreactor (CCBR) which retains cells by increasing settling velocities through system rotation, thereby eliminating diffusional limitations associated with mechanical cell retention devices. This paper focuses on the fluid mechanics of the CCBR system by considering Coriolis effects. Such considerations for centrifugal bioprocessing have heretofore been ignored; therefore a simpler analysis of an empty chamber will be performed. Comparisons are made between numerical simulations and bromophenol blue dye injection experiments. For the non-rotating bioreactor with an inlet velocity of 4.3 cm/s, both the numerical and experimental results show the formation of a teardrop shaped plume of dye following streamlines through the reactor. However, as the reactor is rotated the simulation predicts the development of vortices and a flow profile dominated by Coriolis forces resulting in the majority of flow up the leading wall of the reactor as dye initially enters the chamber, results confirmed by experimental observations. As the reactor continues to fill with dye, the simulation predicts dye movement up both walls while experimental observations show the reactor fills with dye from the exit to the inlet. Differences between the simulation and experimental observations can be explained by excessive diffusion required for simulation convergence, and a slight density difference between dyed and un-dyed solutions. Implications of the results on practical bioreactor use are also discussed. PMID:19455639

  2. Experiences in utilization of research reactors in Yugoslavia

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Copic, M.; Gabrovsek, Z.; Pop-Jordanov, J.

    1971-06-15

    The nuclear institutes in Yugoslavia possess three research reactors. Since 1958, two heavy-water reactors have been in operation at the 'Boris Kidric' Institute, a zero-power reactor RB and a 6. 5-MW reactor RA. At the Jozef Stefan Institute, a 250-kW TRIGA Mark II reactor has been operating since 1966. All reactors are equipped with the necessary experimental facilities. The main activities based on these reactors are: (1) fundamental research in solid-state and nuclear physics; (2) R and D activities related to nuclear power program; and (3) radioisotope production. In fundamental physics, inelastic neutron scattering and diffraction phenomena are studied bymore » means of the neutron beam tubes and applied to investigations of the structures of solids and liquids. Valuable results are also obtained in n - γ reaction studies. Experiments connected with the fuel -element development program, owing to the characteristics of the existing reactors, are limited to determination of the fuel element parameters, to studies on the purity of uranium, and to a small number of capsule irradiations. All three reactors are also used for the verification of different methods applied in the analysis of power reactors, particularly concerning neutron flux distributions, the optimization of reactor core configurations and the shielding effects. An appreciable irradiation space in the reactors is reserved for isotope production. Fruitful international co-operation has been established in all these activities, on the basis of either bilateral or multilateral arrangements. The paper gives a critical analysis of the utilization of research reactors in a developing country such as Yugoslavia. The investments in and the operational costs of research reactors are compared with the benefits obtained in different areas of reactor application. The impact on the general scientific, technological and educational level in the country is also considered. In particular, an attempt is made ro envisage the role of research reactors in the promotion of nuclear power programs in relation to the size of the program, the competence of domestic industries and the degree of independence where fuel supply is concerned. (author)« less

  3. Using thermal balance model to determine optimal reactor volume and insulation material needed in a laboratory-scale composting reactor.

    PubMed

    Wang, Yongjiang; Pang, Li; Liu, Xinyu; Wang, Yuansheng; Zhou, Kexun; Luo, Fei

    2016-04-01

    A comprehensive model of thermal balance and degradation kinetics was developed to determine the optimal reactor volume and insulation material. Biological heat production and five channels of heat loss were considered in the thermal balance model for a representative reactor. Degradation kinetics was developed to make the model applicable to different types of substrates. Simulation of the model showed that the internal energy accumulation of compost was the significant heat loss channel, following by heat loss through reactor wall, and latent heat of water evaporation. Lower proportion of heat loss occurred through the reactor wall when the reactor volume was larger. Insulating materials with low densities and low conductive coefficients were more desirable for building small reactor systems. Model developed could be used to determine the optimal reactor volume and insulation material needed before the fabrication of a lab-scale composting system. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Density of Gadolinium Nitrate Solutions for the High Flux Isotope Reactor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Taylor, Paul Allen; Lee, Denise L

    2009-05-01

    In late 1992, the High Flux Isotope Reactor (HFIR) was planning to switch the solution contained in the poison injection tank from cadmium nitrate to gadolinium nitrate. The poison injection system is an emergency system used to shut down the reactor by adding a neutron poison to the cooling water. This system must be able to supply a minimum of 69 pounds of gadolinium to the reactor coolant system in order to guarantee that the reactor would become subcritical. A graph of the density of gadolinium nitrate solutions over a concentration range of 5 to 30 wt% and a temperaturemore » range of 15 to 40{sup o}C was prepared. Routine density measurements of the solution in the poison injection tank are made by HFIR personnel, and an adaptation of the original graph is used to determine the gadolinium nitrate concentration. In late 2008, HFIR personnel decided that the heat tracing that was present on the piping for the poison injection system could be removed without any danger of freezing the solution; however, the gadolinium nitrate solution might get as cold as 5{sup o}C. This was outside the range of the current density-concentration correlation, so the range needed to be expanded. This report supplies a new density-concentration correlation that covers the extended temperature range. The correlation is given in new units, which greatly simplifies the calculation that is required to determine the pounds of gadolinium in the tank solution. The procedure for calculating the amount of gadolinium in the HFIR poison injection system is as follows: (1) Calculate the usable volume in the system; (2) Measure the density of the solution; (3) Calculate the gadolinium concentration using the following equation: Gd(lb/ft{sup 3}) = measured density (g/mL) x 34.681 - 34.785; (4) Calculate the amount of gadolinium in the system using the following equation: Amount of Gd(lb) = Gd concentration (lb/ft{sup 3}) x usable volume (ft{sup 3}). The equation in step 3 is exact for a temperature of 5{sup o}C, and overestimates the gadolinium concentration at all higher temperatures. This guarantees that the calculation is conservative, in that the actual concentration will be at least as high as that calculated. If an additional safety factor is desired, it is recommended that an administrative control limit be set that is higher than the required minimum amount of gadolinium.« less

  5. Space reactor fuel element testing in upgraded TREAT

    NASA Astrophysics Data System (ADS)

    Todosow, M.; Bezler, P.; Ludewig, H.; Kato, W. Y.

    The testing of candidate fuel elements at prototypic operating conditions with respect to temperature, power density, hydrogen coolant flow rate, etc.; a crucial component in the development and qualification of nuclear rocket engines based on the Particle Bed Reactor (PBR); NERVA-derivative; and other concepts are discussed. Such testing may be performed at existing reactors, or at new facilities. A scoping study has been performed to assess the feasibility of testing PBR based fuel elements at the TREAT reactor. Initial results suggest that full-scale PBR elements could be tested at an average energy deposition of approximately 60-80 MW-s/L in the current TREAT reactor. If the TREAT reactor was upgraded to include fuel elements with a higher temperature limit, average energy deposition of approximately 100 MW/L may be achievable.

  6. Space reactor fuel element testing in upgraded TREAT

    NASA Astrophysics Data System (ADS)

    Todosow, Michael; Bezler, Paul; Ludewig, Hans; Kato, Walter Y.

    1993-01-01

    The testing of candidate fuel elements at prototypic operating conditions with respect to temperature, power density, hydrogen coolant flow rate, etc., is a crucial component in the development and qualification of nuclear rocket engines based on the Particle Bed Reactor (PBR), NERVA-derivative, and other concepts. Such testing may be performed at existing reactors, or at new facilities. A scoping study has been performed to assess the feasibility of testing PBR based fuel elements at the TREAT reactor. Initial results suggests that full-scale PBR elements could be tested at an average energy deposition of ˜60-80 MW-s/L in the current TREAT reactor. If the TREAT reactor was upgraded to include fuel elements with a higher temperture limit, average energy deposition of ˜100 MW/L may be achievable.

  7. PREMOR: a point reactor exposure model computer code for survey analysis of power plant performance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vondy, D.R.

    1979-10-01

    The PREMOR computer code was written to exploit a simple, two-group point nuclear reactor power plant model for survey analysis. Up to thirteen actinides, fourteen fission products, and one lumped absorber nuclide density are followed over a reactor history. Successive feed batches are accounted for with provision for from one to twenty batches resident. The effect of exposure of each of the batches to the same neutron flux is determined.

  8. ADX: a high field, high power density, Advanced Divertor test eXperiment

    NASA Astrophysics Data System (ADS)

    Vieira, R.; Labombard, B.; Marmar, E.; Irby, J.; Shiraiwa, S.; Terry, J.; Wallace, G.; Whyte, D. G.; Wolfe, S.; Wukitch, S.; ADX Team

    2014-10-01

    The MIT PSFC and collaborators are proposing an advanced divertor experiment (ADX) - a tokamak specifically designed to address critical gaps in the world fusion research program on the pathway to FNSF/DEMO. This high field (6.5 tesla, 1.5 MA), high power density (P/S ~ 1.5 MW/m2) facility would utilize Alcator magnet technology to test innovative divertor concepts for next-step DT fusion devices (FNSF, DEMO) at reactor-level boundary plasma pressures and parallel heat flux densities while producing high performance core plasma conditions. The experimental platform would also test advanced lower hybrid current drive (LHCD) and ion-cyclotron range of frequency (ICRF) actuators and wave physics at the plasma densities and magnetic field strengths of a DEMO, with the unique ability to deploy launcher structures both on the low-magnetic-field side and the high-field side - a location where energetic plasma-material interactions can be controlled and wave physics is most favorable for efficient current drive, heating and flow drive. This innovative experiment would perform plasma science and technology R&D necessary to inform the conceptual development and accelerate the readiness-for-deployment of FNSF/DEMO - in a timely manner, on a cost-effective research platform. Supported by DE-FC02-99ER54512.

  9. Structural features of biomass in a hybrid MBBR reactor.

    PubMed

    Xiao, G Y; Ganczarczyk, J

    2006-03-01

    The structural features of biomass present in the hybrid MBBR (Moving Bed Biofilm Reactor) aeration tank were studied in two subsequent periods, which differed in hydraulic and substrate loads. The physical characteristics of attached-growth biomass, such as, biofilm thickness, density, porosity, inner and surface fractal dimensions, and those of suspended-growth biomass, such as, floc size distribution, density, porosity, inner and surface fractal dimensions, were investigated in each study period and then compared. The results indicated that biofilm always had a higher density, geometric porosity, and a larger boundary fractal dimension than flocs. Both types of biomass were found to exhibit at least two distinct Sierpinski fractal dimensions, indicating two major different pore space populations. With the increasing wastewater flow, both types of biomass were found to shift their structural properties to larger values, except porosity and surface roughness, which decreased. Floc density and biomass Sierpinski fractals were not affected much by the system loadings.

  10. High density operation for reactor-relevant power exhaust

    NASA Astrophysics Data System (ADS)

    Wischmeier, M.; ASDEX Upgrade Team; Jet Efda Contributors

    2015-08-01

    With increasing size of a tokamak device and associated fusion power gain an increasing power flux density towards the divertor needs to be handled. A solution for handling this power flux is crucial for a safe and economic operation. Using purely geometric arguments in an ITER-like divertor this power flux can be reduced by approximately a factor 100. Based on a conservative extrapolation of current technology for an integrated engineering approach to remove power deposited on plasma facing components a further reduction of the power flux density via volumetric processes in the plasma by up to a factor of 50 is required. Our current ability to interpret existing power exhaust scenarios using numerical transport codes is analyzed and an operational scenario as a potential solution for ITER like divertors under high density and highly radiating reactor-relevant conditions is presented. Alternative concepts for risk mitigation as well as strategies for moving forward are outlined.

  11. Microstructural evolution in fast-neutron-irradiated austenitic stainless steels

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stoller, R.E.

    1987-12-01

    The present work has focused on the specific problem of fast-neutron-induced radiation damage to austenitic stainless steels. These steels are used as structural materials in current fast fission reactors and are proposed for use in future fusion reactors. Two primary components of the radiation damage are atomic displacements (in units of displacements per atom, or dpa) and the generation of helium by nuclear transmutation reactions. The radiation environment can be characterized by the ratio of helium to displacement production, the so-called He/dpa ratio. Radiation damage is evidenced microscopically by a complex microstructural evolution and macroscopically by density changes and alteredmore » mechanical properties. The purpose of this work was to provide additional understanding about mechanisms that determine microstructural evolution in current fast reactor environments and to identify the sensitivity of this evolution to changes in the He/dpa ratio. This latter sensitivity is of interest because the He/dpa ratio in a fusion reactor first wall will be about 30 times that in fast reactor fuel cladding. The approach followed in the present work was to use a combination of theoretical and experimental analysis. The experimental component of the work primarily involved the examination by transmission electron microscopy of specimens of a model austenitic alloy that had been irradiated in the Oak Ridge Research Reactor. A major aspect of the theoretical work was the development of a comprehensive model of microstructural evolution. This included explicit models for the evolution of the major extended defects observed in neutron irradiated steels: cavities, Frank faulted loops and the dislocation network. 340 refs., 95 figs., 18 tabs.« less

  12. Physical properties of monolithic U8 wt.%-Mo

    NASA Astrophysics Data System (ADS)

    Hengstler, R. M.; Beck, L.; Breitkreutz, H.; Jarousse, C.; Jungwirth, R.; Petry, W.; Schmid, W.; Schneider, J.; Wieschalla, N.

    2010-07-01

    As a possible high density fuel for research reactors, monolithic U8 wt.%-Mo ("U8Mo") was examined with regard to its structural, thermal and electric properties. X-ray diffraction by the Bragg-Brentano method was used to reveal the tetragonal lattice structure of rolled U8Mo. The specific heat capacity of cast U8Mo was determined by differential scanning calorimetry, its thermal diffusivity was measured by the laser flash method and its mass density by Archimedes' principle. From these results, the thermal conductivity of U8Mo in the temperature range from 40 °C to 250 °C was calculated; in the measured temperature range, it is in good accordance with literature data for UMo with 8 and 9 wt.% Mo, is higher than for 10 wt.% Mo and lower than for 5 wt.% Mo. The electric conductivity of rolled and cast U8Mo was measured by a four-wire method and the electron based part of the thermal conductivity calculated by the Wiedemann-Frantz law. Rolled and cast U8Mo was irradiated at about 150 °C with 80 MeV 127I ions to receive the same iodine ion density in the damage peak region as the fission product density in the fuel of a typical high flux reactor after the targeted nuclear burn-up. XRD analysis of irradiated U8Mo showed a change of the lattice parameters as well as the creation of UO 2 in the superficial sample regions; however, a phase change by irradiation was not observed. The determination of the electron based part of the thermal conductivity of the irradiated samples failed due to high measurement errors which are caused by the low thickness of the damage region in the ion irradiated samples.

  13. Irradiated microstructure of U-10Mo monolithic fuel plate at very high fission density

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gan, J.; Miller, B. D.; Keiser, D. D.

    Monolithic U-10Mo alloy fuel plates with Al-6061 cladding are being developed for use in research and test reactors as low enrichment fuel (< 20% U-235 enrichment) as a result of its high uranium loading capacity compared to that of U-7Mo dispersion fuel. These fuel plates contain a Zr diffusion barrier between the U-10Mo fuel and Al-6061 cladding that suppresses the interaction between the U-Mo fuel foil and Al alloy cladding that is known to be problematic under irradiation. This paper discusses the TEM results of the U-10Mo/Zr/Al6061 monolithic fuel plate (Plate ID: L1P09T, ~ 59% U-235 enrichment) irradiated in Advancedmore » Test Reactor at Idaho National Laboratory as part of RERTR-9B irradiation campaign with an unprecedented high local fission density of 9.8E+21 fissions/cm3. The calculated fuel foil centerline temperature at the beginning of life and the end of life is 141 and 194 C, respectively. A total of 5 TEM lamellas were prepared using focus ion beam lift-out technique. The estimated U-Mo fuel swelling, based on the fuel foil thickness change from SEM, is approximately 76%. Large bubbles (> 1 µm) are distributed evenly in U-Mo and interlink of these bubbles is evident. The average size of subdivided grains at this fission density appears similar to that at 5.2E+21 fissions/cm3. The measured average Mo and Zr content in the fuel matrix is ~ 30 at% and ~ 7 at%, respectively, in general agreement with the calculated Mo and Zr from fission density.« less

  14. Annular core liquid-salt cooled reactor with multiple fuel and blanket zones

    DOEpatents

    Peterson, Per F.

    2013-05-14

    A liquid fluoride salt cooled, high temperature reactor having a reactor vessel with a pebble-bed reactor core. The reactor core comprises a pebble injection inlet located at a bottom end of the reactor core and a pebble defueling outlet located at a top end of the reactor core, an inner reflector, outer reflector, and an annular pebble-bed region disposed in between the inner reflector and outer reflector. The annular pebble-bed region comprises an annular channel configured for receiving pebble fuel at the pebble injection inlet, the pebble fuel comprising a combination of seed and blanket pebbles having a density lower than the coolant such that the pebbles have positive buoyancy and migrate upward in said annular pebble-bed region toward the defueling outlet. The annular pebble-bed region comprises alternating radial layers of seed pebbles and blanket pebbles.

  15. Nuclear breeder reactor fuel element with silicon carbide getter

    DOEpatents

    Christiansen, David W.; Karnesky, Richard A.

    1987-01-01

    An improved cesium getter 28 is provided in a breeder reactor fuel element or pin in the form of an extended surface area, low density element formed in one embodiment as a helically wound foil 30 located with silicon carbide, and located at the upper end of the fertile material upper blanket 20.

  16. 10 CFR 100.20 - Factors to be considered when evaluating sites.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... analysis or that may have an impact upon plant design (such as maximum probable wind speed and... for Stationary Power Reactor Site Applications on or After January 10, 1997 § 100.20 Factors to be... determining the acceptability of a site for a stationary power reactor: (a) Population density and use...

  17. 10 CFR 100.20 - Factors to be considered when evaluating sites.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... analysis or that may have an impact upon plant design (such as maximum probable wind speed and... for Stationary Power Reactor Site Applications on or After January 10, 1997 § 100.20 Factors to be... determining the acceptability of a site for a stationary power reactor: (a) Population density and use...

  18. PBF Reactor Building (PER620). Detail of arrangement of highdensity blocks ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    PBF Reactor Building (PER-620). Detail of arrangement of high-density blocks and other basement shielding. Date: February 1966. Ebasco Services 1205 PER/PBF 620-A-7. INEEL index no. 761-0620-00-205-123070 - Idaho National Engineering Laboratory, SPERT-I & Power Burst Facility Area, Scoville, Butte County, ID

  19. Correlations of catalytic combustor performance parameters

    NASA Technical Reports Server (NTRS)

    Bulzan, D. L.

    1978-01-01

    Correlations for combustion efficiency percentage drop and the minimum required adiabatic reaction temperature necessary to meet emissions goals of 13.6 g CO/kg fuel and 1.64 g HC/kg fuel are presented. Combustion efficiency was found to be a function of the cell density, cell circumference, reactor length, reference velocity, and adiabatic reaction temperature. The percentage pressure drop at an adiabatic reaction temperature of 1450 K was found to be proportional to the reference velocity to the 1.5 power and to the reactor length. It is inversely proportional to the pressure, cell hydraulic diameter, and fractional open area. The minimum required adiabatic reaction temperature was found to increase with reference velocity and decrease with cell circumference, cell density and reactor length. A catalyst factor was introduced into the correlations to account for differences between catalysts. Combustion efficiency, the percentage pressure drop, and the minimum required adiabatic reaction temperature were found to be a function of the catalyst factor. The data was from a 12 cm-diameter test rig with noble metal reactors using propane fuel at an inlet temperature of 800 K.

  20. 77 FR 16868 - Quality Verification for Plate-Type Uranium-Aluminum Fuel Elements for Use in Research and Test...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-03-22

    ... Fuel Elements for Use in Research and Test Reactors AGENCY: Nuclear Regulatory Commission. ACTION... Plate-Type Uranium-Aluminum Fuel Elements for Use in Research and Test Reactors.'' This guide describes... plate-type uranium-aluminum fuel elements used in research and test reactors (RTRs). DATES: Submit...

  1. Analysis of pellet cladding interaction and creep of U 3SIi2 fuel for use in light water reactors

    NASA Astrophysics Data System (ADS)

    Metzger, Kathryn E.

    Following the accident at the Fukushima plant, enhancing the accident tolerance of the light water reactor (LWR) fleet became a topic of serious discussion. Under the direction of congress, the DOE office of Nuclear Energy added accident tolerant fuel development as a primary component to the existing Advanced Fuels Program. The DOE defines accident tolerant fuels as fuels that "in comparison with the standard UO2- Zircaloy system currently used by the nuclear industry, can tolerate loss of active cooling in the reactor core for a considerably longer time period (depending on the LWR system and accident scenario) while maintaining or improving the fuel performance during normal operations, operational transients, as well as design-basis and beyond design-basis events." To be economically viable, proposed accident tolerant fuels and claddings should be backward compatible with LWR designs, provide significant operating cost improvements such as power uprates, increased fuel burnup, or increased cycle length. In terms of safety, an alternative fuel pellet must have resistance to water corrosion comparable to UO2, thermal conductivity equal to or larger than that of UO2, and a melting temperature that allows the material to remain solid under power reactor conditions. Among the candidates, U3Si2 has a number of advantageous thermophysical properties, including; high density, high thermal conductivity at room temperature, and a high melting temperature. These properties support its use as an accident tolerant fuel while its high uranium density is capable of supporting uprates to the LWR fleet. This research characterizes U3Si2 pellets and analyzes U3Si2 under light water reactor conditions using the fuel performance code BISON. While some thermophysical properties for U3Si2 have been found in the literature, the irradiation behavior is sparse and limited to experience with dispersion fuels. Accordingly, the creep behavior for U3Si2 has been unknown, making it difficult to predict fuel-cladding mechanical behavior. This information is essential for designing accident tolerant fuel systems where ceramic claddings, like silicon carbide (SiC) are proposed. This research provides a model for both the thermal and irradiation creep behavior for U3Si2. This body of research is comprised of both experimental and modeling components. Characterization of the fuel microstructure includes; optical microscopy with pore and grain size analysis, helium pycnometry for density determination, mercury intrusion porosimetry, compositional analysis in the form of XRD, second phase identification using EDX, electrical resistance measurement via four point probe, determination of hardness and toughness through Vickers indentation testing, and determination of elastic properties using the impulse excitation method. Post-sintering grain size data allowed for the determination of grain boundary activation energy and diffusion coefficients, which were used to develop creep models. This was extended to lattice and irradiation enhanced diffusion in order to develop a U3Si2 creep model over thermal and irradiation creep regimes. In addition to the creep model, thermal and swelling behavior models for U3Si2 were implemented into the BISON fuel performance code. A series of simulations evaluated the performance and behavior of U3Si2 under typical light water reactor conditions with advanced SiC ceramic cladding. Simulation results show that fuel creep relieves stress in the ceramic cladding and postpones the. moment of fuel-clad contact. However, the stress reduction to the cladding is minimal because the fuel creep rate is low while the swelling rate is high. Future work should include the investigation of monolithic U3Si2 irradiation swelling since the current model relies upon the swelling data of U3Si2 particles in a metallic dispersion fuel. Additionally, planned thermal creep testing at the University of South Carolina can provide confirmation of the U3Si2 creep model contained herein.

  2. Control system for a small fission reactor

    DOEpatents

    Burelbach, J.P.; Kann, W.J.; Saiveau, J.G.

    1985-02-08

    A system for controlling the reactivity of a small fission reactor includes an elongated, flexible hollow tube in the general form of a helical coiled spring axially positioned around and outside of the reactor vessel in an annular space between the reactor vessel and a surrounding cylindrical-shaped neutron reflector. A neutron absorbing material is provided within the hollow tube with the rate of the reaction controlled by the extension and compression of the hollow tube, e.g., extension of the tube increases reactivity while its compression reduces reactivity, in varying the amount of neutron absorbing material disposed between the reactor vessel and the neutron reflector. Conventional mechanical displacement means may be employed to control the coil density of the hollow tube as desired.

  3. The RERTR Program status and progress

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Travelli, A.

    1995-12-01

    The progress of the Reduced Enrichment Research and Test Reactor (RERTR) Program is described. The major events, findings, and activities of 1995 are reviewed after a brief summary of the results which the RERTR Program had achieved by the end of 1994. The revelation that Iraq was on the verge of developing a nuclear weapon at the time of the Gulf War, and that it was planning to do so by extracting HEU from the fuel of its research reactors, has given new impetus and urgency to the RERTR commitment of eliminating HEU use in research and test reactors worldwide.more » Development of advanced LEU research reactor fuels is scheduled to begin in October 1995. The Russian RERTR program, which aims to develop and demonstrate within the next five years the technical means needed to convert Russian-supplied research reactors to LEU fuels, is now in operation. A Statement of Intent was signed by high US and Chinese officials, endorsing cooperative activities between the RERTR program and Chinese laboratories involved in similar activities. Joint studies of LEU technical feasibility were completed for the SAFARI-I reactor in South Africa and for the ANS reactor in the US. A new study has been initiated for the FRM-II reactor in Germany. Significant progress was made on several aspects of producing {sup 99}Mo from fission targets utilizing LEU instead of HEU. A cooperation agreements is in place with the Indonesian BATAN. The first prototypical irradiation of an LEU metal-foil target for {sup 99}Mo production was accomplished in Indonesia. The TR-2 reactor, in Turkey, began conversion. SAPHIR, in Switzerland, was shut down. LEU fuel fabrication has begun for the conversion of two more US reactors. Twelve foreign reactors and nine domestic reactors have been fully converted. Approximately 60 % of the work required to eliminate the use of HEU in US-supplied research reactors has been accomplished.« less

  4. Treatment of oilfield wastewater in moving bed biofilm reactors using a novel suspended ceramic biocarrier.

    PubMed

    Dong, Zhiyong; Lu, Mang; Huang, Wenhui; Xu, Xiaochun

    2011-11-30

    In this study, a novel suspended ceramic carrier was prepared, which has high strength, optimum density (close to water), and high porosity. Two different carriers, unmodified and sepiolite-modified suspended ceramic carriers were used to feed two moving bed biofilm reactors (MBBRs) with a filling fraction of 50% to treat oilfield produced water. The hydraulic retention time (HRT) was varied from 36 to 10h. The results, during a monitoring period of 190 days, showed that removal efficiency of chemical oxygen demand was the highest in reactor 3 filled with the sepiolite-modified carriers, followed by reactor 2 filled with the unmodified carriers, with the lowest in reactor 1 (activated sludge reactor), at an HRT of 10h. Similar trends were found in the removal efficiencies of ammonia nitrogen and polycyclic aromatic hydrocarbons. Reactor 3 was more shock resistant than reactors 2 and 1. The results indicate that the suspended ceramic carrier is an excellent MBBR carrier. Copyright © 2011 Elsevier B.V. All rights reserved.

  5. Hydrodynamics of high solids anaerobic reactor: Characterization of solid segregation and liquid mixing pattern in a pilot plant VALORGA facility under different reactor geometry.

    PubMed

    Álvarez, C; Colón, J; Lópes, A C; Fernández-Polanco, M; Benbelkacem, H; Buffière, P

    2018-06-01

    One of the main problems of dry anaerobic digestion plants treating urban solid waste is the loss of useful volume by the sedimentation of solids (inerts) into the bottom of the digester, or by accumulation of floating materials in its upper part. This entails a periodic cost of emptying and cleaning the digesters, a decrease in biogas production and complications in maintenance. Usually the sedimentation is a consequence of the heterogeneity of waste that, in addition to organic matter, drags particles of high density that end up obstructing the digesters. To reduce this bottleneck, URBASER has designed a new configuration of VALORGA reactor. That is, the VALORGA central wall has been removed and an inclined bottom has been added. To test the sedimentability and the overall performance of both configurations (current and new design), hydrodynamic tests have been carried out in a pilot digester (digester of 95 m 3 capacity). To simulate the liquid phase and the solid phase of the reactor, lithium tracers and tags of different densities with RFID (radio frequency identification reader) have been used respectively. The results of the study showed an improvement in the performance of the new reactor design at pilot level. Copyright © 2018 Elsevier Ltd. All rights reserved.

  6. 75 FR 70042 - In the Matter of All Power Reactor Licensees and Research Reactor Licensees Who Transport Spent...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-11-16

    ... NUCLEAR REGULATORY COMMISSION [Docket Nos (Redacted), License Nos (Redacted), EA (Redacted); NRC- 2010-0351] In the Matter of All Power Reactor Licensees and Research Reactor Licensees Who Transport Spent Nuclear Fuel; Order Modifying License (Effective Immediately) I. The licensees identified in...

  7. 75 FR 79423 - In the Matter of All Power Reactor Licensees and Research Reactor Licensees Who Transport Spent...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-12-20

    ... NUCLEAR REGULATORY COMMISSION [Docket Nos. (Redacted), License Nos.: (Redacted), EA (Redacted); NRC- 2010-0351] In the Matter of All Power Reactor Licensees and Research Reactor Licensees Who Transport Spent Nuclear Fuel; Order Modifying License (Effective Immediately) I The licensees identified in...

  8. Space reactor fuel element testing in upgraded TREAT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Todosow, M.; Bezler, P.; Ludewig, H.

    1993-01-14

    The testing of candidate fuel elements at prototypic operating conditions with respect to temperature, power density, hydrogen coolant flow rate, etc., a crucial component in the development and qualification of nuclear rocket engines based on the Particle Bed Reactor (PBR), NERVA-derivative, and other concepts. Such testing may be performed at existing reactors, or at new facilities. A scoping study has been performed to assess the feasibility of testing PBR based fuel elements at the TREAT reactor. initial results suggest that full-scale PBR, elements could be tested at an average energy deposition of {approximately}60--80 MW-s/L in the current TREAT reactor. Ifmore » the TREAT reactor was upgraded to include fuel elements with a higher temperature limit, average energy deposition of {approximately}100 MW/L may be achievable.« less

  9. Space reactor fuel element testing in upgraded TREAT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Todosow, M.; Bezler, P.; Ludewig, H.

    1993-05-01

    The testing of candidate fuel elements at prototypic operating conditions with respect to temperature, power density, hydrogen coolant flow rate, etc., a crucial component in the development and qualification of nuclear rocket engines based on the Particle Bed Reactor (PBR), NERVA-derivative, and other concepts. Such testing may be performed at existing reactors, or at new facilities. A scoping study has been performed to assess the feasibility of testing PBR based fuel elements at the TREAT reactor. initial results suggest that full-scale PBR, elements could be tested at an average energy deposition of {approximately}60--80 MW-s/L in the current TREAT reactor. Ifmore » the TREAT reactor was upgraded to include fuel elements with a higher temperature limit, average energy deposition of {approximately}100 MW/L may be achievable.« less

  10. PEBBLE: a two-dimensional steady-state pebble bed reactor thermal hydraulics code

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vondy, D.R.

    1981-09-01

    This report documents the local implementation of the PEBBLE code to treat the two-dimensional steady-state pebble bed reactor thermal hydraulics problem. This code is implemented as a module of a computation system used for reactor core history calculations. Given power density data, the geometric description in (RZ), and basic heat removal conditions and thermal properties, the coolant properties, flow conditions, and temperature distributions in the pebble fuel elements are predicted. The calculation is oriented to the continuous fueling, steady state condition with consideration of the effect of the high energy neutron flux exposure and temperature history on the thermal conductivity.more » The coolant flow conditions are calculated for the same geometry as used in the neutronics calculation, power density and fluence data being used directly, and temperature results are made available for subsequent use.« less

  11. Experimental power density distribution benchmark in the TRIGA Mark II reactor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Snoj, L.; Stancar, Z.; Radulovic, V.

    2012-07-01

    In order to improve the power calibration process and to benchmark the existing computational model of the TRIGA Mark II reactor at the Josef Stefan Inst. (JSI), a bilateral project was started as part of the agreement between the French Commissariat a l'energie atomique et aux energies alternatives (CEA) and the Ministry of higher education, science and technology of Slovenia. One of the objectives of the project was to analyze and improve the power calibration process of the JSI TRIGA reactor (procedural improvement and uncertainty reduction) by using absolutely calibrated CEA fission chambers (FCs). This is one of the fewmore » available power density distribution benchmarks for testing not only the fission rate distribution but also the absolute values of the fission rates. Our preliminary calculations indicate that the total experimental uncertainty of the measured reaction rate is sufficiently low that the experiments could be considered as benchmark experiments. (authors)« less

  12. Low-pressure hydrogen plasmas explored using a global model

    NASA Astrophysics Data System (ADS)

    Samuell, Cameron M.; Corr, Cormac S.

    2016-02-01

    Low-pressure hydrogen plasmas have found applications in a variety of technology areas including fusion, neutral beam injection and material processing applications. To better understand these discharges, a global model is developed to predict the behaviour of electrons, ground-state atomic and molecular hydrogen, three positive ion species (H+, \\text{H}2+ , and \\text{H}3+ ), a single negative ion species (H-), and fourteen vibrationally excited states of molecular hydrogen ({{\\text{H}}2}≤ft(\\upsilon =1\\right. -14)). The model is validated by comparison with experimental results from a planar inductively coupled GEC reference cell and subsequently applied to the MAGPIE linear helicon reactor. The MAGPIE reactor is investigated for a range of pressures from 1 to 100 mTorr and powers up to 5 kW. With increasing power between 50 W and 5 kW at 10 mTorr the density of all charged species increases as well as the dissociative fraction while the electron temperature remains almost constant at around 3 eV. For gas pressures from 1-100 mTorr at an input power of 1 kW, the electron density remains almost constant, the electron temperature and dissociative fraction decreases, while \\text{H}3+ density increases in density and also dominates amongst ion species. Across these power and pressure scans, electronegativity remains approximately constant at around 2.5%. The power and pressure determines the dominant ion species in the plasma with \\text{H}3+ observed to dominate at high pressures and low powers whereas H+ tends to be dominant at low pressures and high powers. A sensitivity analysis is used to demonstrate how experimental parameters (power, pressure, reactor wall material, geometry etc) influence individual species’ density as well as the electron temperature. Physical reactor changes including the length, radius and wall recombination coefficient are found to have the largest influence on outputs obtained from the model.

  13. Comparison of the microstructure, deformation and crack initiation behavior of austenitic stainless steel irradiated in-reactor or with protons

    NASA Astrophysics Data System (ADS)

    Stephenson, Kale J.; Was, Gary S.

    2015-01-01

    The objective of this study was to compare the microstructures, microchemistry, hardening, susceptibility to IASCC initiation, and deformation behavior resulting from proton or reactor irradiation. Two commercial purity and six high purity austenitic stainless steels with various solute element additions were compared. Samples of each alloy were irradiated in the BOR-60 fast reactor at 320 °C to doses between approximately 4 and 12 dpa or by a 3.2 MeV proton beam at 360 °C to a dose of 5.5 dpa. Irradiated microstructures consisted mainly of dislocation loops, which were similar in size but lower in density after proton irradiation. Both irradiation types resulted in the formation of Ni-Si rich precipitates in a high purity alloy with added Si, but several other high purity neutron irradiated alloys showed precipitation that was not observed after proton irradiation, likely due to their higher irradiation dose. Low densities of small voids were observed in several high purity proton irradiated alloys, and even lower densities in neutron irradiated alloys, implying void nucleation was in process. Elemental segregation at grain boundaries was very similar after each irradiation type. Constant extension rate tensile experiments on the alloys in simulated light water reactor environments showed excellent agreement in terms of the relative amounts of intergranular cracking, and an analysis of localized deformation after straining showed a similar response of cracking to surface step height after both irradiation types. Overall, excellent agreement was observed after proton and reactor irradiation, providing additional evidence that proton irradiation is a useful tool for accelerated testing of irradiation effects in austenitic stainless steel.

  14. Steady state and LOCA analysis of Kartini reactor using RELAP5/SCDAP code: The role of passive system

    NASA Astrophysics Data System (ADS)

    Antariksawan, Anhar R.; Wahyono, Puradwi I.; Taxwim

    2018-02-01

    Safety is the priority for nuclear installations, including research reactors. On the other hand, many studies have been done to validate the applicability of nuclear power plant based best estimate computer codes to the research reactor. This study aims to assess the applicability of the RELAP5/SCDAP code to Kartini research reactor. The model development, steady state and transient due to LOCA calculations have been conducted by using RELAP5/SCDAP. The calculation results are compared with available measurements data from Kartini research reactor. The results show that the RELAP5/SCDAP model steady state calculation agrees quite well with the available measurement data. While, in the case of LOCA transient simulations, the model could result in reasonable physical phenomena during the transient showing the characteristics and performances of the reactor against the LOCA transient. The role of siphon breaker hole and natural circulation in the reactor tank as passive system was important to keep reactor in safe condition. It concludes that the RELAP/SCDAP could be use as one of the tool to analyse the thermal-hydraulic safety of Kartini reactor. However, further assessment to improve the model is still needed.

  15. Feedback controlled, reactor relevant, high-density, high-confinement scenarios at ASDEX Upgrade

    NASA Astrophysics Data System (ADS)

    Lang, P. T.; Blanken, T. C.; Dunne, M.; McDermott, R. M.; Wolfrum, E.; Bobkov, V.; Felici, F.; Fischer, R.; Janky, F.; Kallenbach, A.; Kardaun, O.; Kudlacek, O.; Mertens, V.; Mlynek, A.; Ploeckl, B.; Stober, J. K.; Treutterer, W.; Zohm, H.; ASDEX Upgrade Team

    2018-03-01

    One main programme topic at the ASDEX Upgrade all-metal-wall tokamak is development of a high-density regime with central densities at reactor grade level while retaining high-confinement properties. This required development of appropriate control techniques capable of coping with the pellet tool, a powerful means of fuelling but one which presented challenges to the control system for handling of related perturbations. Real-time density profile control was demonstrated, raising the core density well above the Greenwald density while retaining the edge density in order to avoid confinement losses. Recently, a new model-based approach was implemented that allows direct control of the central density. Investigations focussed first on the N-seeding scenario owing to its proven potential to yield confinement enhancements. Combining pellets and N seeding was found to improve the divertor buffering further and enhance the operational range accessible. For core densities up to about the Greenwald density, a clear improvement with respect to the non-seeding reference was achieved; however, at higher densities this benefit is reduced. This behaviour is attributed to recurrence of an outward shift of the edge density profile, resulting in a reduced peeling-ballooning stability. This is similar to the shift seen during strong gas puffing, which is required to prevent impurity influx in ASDEX Upgrade. First tests indicate that highly-shaped plasma configurations like the ITER base-line scenario, respond very well to pellet injection, showing efficient fuelling with no measurable impact on the edge density profile.

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    Digital instrumentation and controls system technique is being introduced in new constructed research reactor or life extension of older research reactor. Digital systems are easy to change and optimize but the validated process for them is required. Also, to reduce project risk or cost, we have to make it sure that configuration and control functions is right before the commissioning phase on research reactor. For this purpose, simulators have been widely used in developing control systems in automotive and aerospace industries. In these literatures, however, very few of these can be found regarding test on the control system of researchmore » reactor with simulator. Therefore, this paper proposes a simulation platform to verify the performance of RRS (Reactor Regulating System) for research reactor. This simulation platform consists of the reactor simulation model and the interface module. This simulation platform is applied to I and C upgrade project of TRIGA reactor, and many problems of RRS configuration were found and solved. And it proved that the dynamic performance testing based on simulator enables significant time saving and improves economics and quality for RRS in the system test phase. (authors)« less

  17. Comparison of bioreactors with different kinds of submerged packed beds for domestic wastewater treatment.

    PubMed

    Nacheva, P Mijaylova; Moeller Chávez, G; Bustos, C; Garzón Zúñiga, M A; Hornelas Orozco, Y

    2008-01-01

    The performance of aerobic submerged packed bed reactors was studied for the treatment of domestic wastewater using different kinds of packing materials with high specific areas (760-1,200 m(2)/m(3)). The tested materials were ceramic spheres, crushed tezontle, grains of high density polyethylene (HDPE), of low density polyethylene (LDPE) and of polypropylene (PP), cubes of polyurethane (PU) and polyethylene tape (SESSIL). The bioreactors were operated in continuous regime, applying organic loads in the range of 0.8-6.0 g COD.m(-2).d(-1). The obtained specific COD removal rates were very similar in all the reactors when they were operated at organic loads up to 2.0 g COD.m(-2).d(-1), after which differences in effectiveness appeared and the best results were determined in the reactors with SESSIL, LDPE and PU. Very low TSS, O&G and turbidity were obtained in all the effluents. The NH(3)-N and TN removals were dependent on the dissolved oxygen (DO) concentration and the removals at DO of 5 mg/l were 84-99% and 61-74% respectively. The best removals were determined in the reactors with PU, SESSIL and LDPE. The reactor with tezontle had also a good performance when operated with loads up to 1.0 g TN.m(-2).d(-1). The best phosphate removals (38-49%) were obtained in the reactors with PU, tezontle, ceramic sheres and SESSIL. (c) IWA Publishing 2008.

  18. PBF Reactor Building (PER620). Cubicle 10 area in basement. Highdensity ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    PBF Reactor Building (PER-620). Cubicle 10 area in basement. High-density shielding bricks will protect personnel from radiation coming from in-pile-tube coolant and blowdown tank. Photographer: John Capek. Date: January 26, 1970. INEEL negative no. 70-348 - Idaho National Engineering Laboratory, SPERT-I & Power Burst Facility Area, Scoville, Butte County, ID

  19. 75 FR 27368 - Aerotest Operations, Inc., Aerotest Radiography and Research Reactor; Notice of Consideration of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-05-14

    ...., Aerotest Radiography and Research Reactor; Notice of Consideration of Approval of Transfer and Conforming Amendment, Opportunity for a Hearing, and Order Imposing Procedures for Access to Sensitive Unclassified Non... Manager, Research and Test Reactors Licensing Branch, Division of Policy and Rulemaking, Office of Nuclear...

  20. Feasibility Study of Supercritical Light Water Cooled Reactors for Electric Power Production, Nuclear Energy Research Initiative Project 2001-001, Westinghouse Electric Co. Grant Number: DE-FG07-02SF22533, Final Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Philip E. MacDonald

    2005-01-01

    The supercritical water-cooled reactor (SCWR) is one of the six reactor technologies selected for research and development under the Generation IV program. SCWRs are promising advanced nuclear systems because of their high thermal efficiency (i.e., about 45% versus about 33% efficiency for current Light Water Reactors [LWRs]) and considerable plant simplification. SCWRs are basically LWRs operating at higher pressure and temperatures with a direct once-through cycle. Operation above the critical pressure eliminates coolant boiling, so the coolant remains single-phase throughout the system. Thus, the need for a pressurizer, steam generators, steam separators, and dryers is eliminated. The main mission ofmore » the SCWR is generation of low-cost electricity. It is built upon two proven technologies: LWRs, which are the most commonly deployed power generating reactors in the world, and supercritical fossil-fired boilers, a large number of which are also in use around the world. The reference SCWR design for the U.S. program is a direct cycle system operating at 25.0 MPa, with core inlet and outlet temperatures of 280 and 500 C, respectively. The coolant density decreases from about 760 kg/m3 at the core inlet to about 90 kg/m3 at the core outlet. The inlet flow splits with about 10% of the inlet flow going down the space between the core barrel and the reactor pressure vessel (the downcomer) and about 90% of the inlet flow going to the plenum at the top of the rector pressure vessel, to then flow down through the core in special water rods to the inlet plenum. Here it mixes with the feedwater from the downcomer and flows upward to remove the heat in the fuel channels. This strategy is employed to provide good moderation at the top of the core. The coolant is heated to about 500 C and delivered to the turbine. The purpose of this NERI project was to assess the reference U.S. Generation IV SCWR design and explore alternatives to determine feasibility. The project was organized into three tasks: Task 1. Fuel-cycle Neutronic Analysis and Reactor Core Design Task 2. Fuel Cladding and Structural Material Corrosion and Stress Corrosion Cracking Task 3. Plant Engineering and Reactor Safety Analysis. moderator rods. materials.« less

  1. A Potential NASA Research Reactor to Support NTR Development

    NASA Technical Reports Server (NTRS)

    Eades, Michael; Gerrish, Harold; Hardin, Leroy

    2013-01-01

    In support of efforts for research into the design and development of a man rated Nuclear Thermal Rocket (NTR) engine, the National Aeronautics and Space Administration (NASA), Marshall Space Flight Center (MSFC), is evaluating the potential for building a Nuclear Regulatory Commission (NRC) licensed research reactor. The proposed reactor would be licensed by NASA and operated jointly by NASA and university partners. The purpose of this reactor would be to perform further research into the technologies and systems needed for a successful NTR project and promote nuclear training and education.

  2. Training courses on neutron detection systems on the ISIS research reactor: on-site and through internet training

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lescop, B.; Badeau, G.; Ivanovic, S.

    Today, ISIS research reactor is an essential tool for Education and Training programs organized by the National Institute for Nuclear Science and Technology (INSTN) from CEA. In the field of nuclear instrumentation, the INSTN offers both, theoretical courses and training courses on the use of neutron detection systems taking advantage of the ISIS research reactor for the supply of a wide range of neutron fluxes. This paper describes the content of the training carried out on the use of neutron detectors and detection systems, on-site or remote. The ISIS reactor is a 700 kW open core pool type reactor. Themore » facility is very flexible since neutron detectors can be inserted into the core or its vicinity, and be used at different levels of power according to the needs of the course. Neutron fluxes, typically ranging from 1 to 10{sup 12} n/cm{sup 2}.s, can be obtained for the characterisation of the neutron detectors and detection systems. For the monitoring of the neutron density at low level of power, the Instrumentation and Control (I and C) system of the reactor is equipped with two detection systems, named BN1 and BN2. Each way contains a fission chamber, type CFUL01, connected to an electronic system type SIREX.The system works in pulse mode and exhibits two outputs: the counting rate and the doubling time. For the high level of power, the I and C is equipped with two detection systems HN1 and HN2.Each way contain a boron ionization chamber (type CC52) connected to an electronics system type SIREX. The system works in current mode and has two outputs: the current and the doubling time. For each mode, the trainees can observe and measure the signal at the different stages of the electronic system, with an oscilloscope. They can understand the role of each component of the detection system: detector, cable and each electronic block. The limitation of the detection modes and their operating range can be established from the measured signal. The trainees can also modify the settings of the electronic system, such as the high voltage and the discrimination level in order to obtain all the characteristic curves of the detectors. These curves are used to define the right setting of the electronic system and to discuss the expected degradation of the detector signal resulting from the detector damage under the integrated neutron and gamma fluxes. Moreover, in addition to the study of the neutron detection systems itself, the integration of the measurements made by these detection systems in the logic of the safety system of the nuclear reactor is also addressed. Providing the trainees with an extensive overview of each part of the neutron monitoring instrumentation apply to a nuclear reactor, hands-on measurements on the ISIS reactor play a major role in ensuring a practical and comprehensive understanding of the neutron detection system and their integration in the safety system of nuclear reactors. It also gives a solid background for the follow up and the development of the neutron detection systems. In addition to on-reactor training, Internet Reactor Laboratory capability has been implemented on the ISIS reactor in 2014. For the Internet Reactor Laboratory an extensive video conference system has been implemented on ISIS reactor. The system includes 4 cameras and the transmission of the video signal given by the supervision system of the reactor which records and processes the data of the reactor. According to the pedagogic needs during the training courses, the lecturer on the ISIS reactor chooses to broadcast the relevant information at each stage of the course. For example, graph showing the histogram of the counting and current as a function of the time, or the electrical signal observed on the oscilloscope, can be broadcasted trough internet. By interacting through the video conference, the remote classroom is able to ask for changes in the reactor power or settings of the detection systems. They can also ask for the broadcast of some particular information. At the guest institution, the information is displayed in two parts or screens, as shown in the Figure 3. Concerning the interaction with - and the feedback from - the remote classroom, the camera of the video system in the remote classroom is used to ensure the contact between the trainees and the lecturer and reactor operators. Thus, the Internet Reactor Laboratory is complementary to the on reactor training courses. It allows distant learning, reducing the overall cost of the course when this is necessary. It can efficiently be used for the development of the human resources needed by the nuclear industry and the nuclear programs in countries without research reactors.« less

  3. Effects of the foil flatness on the stress-strain characteristics of U10Mo alloy based monolithic mini-plates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hakan Ozaltun; Pavel Medvedev

    The effects of the foil flatness on stress-strain behavior of monolithic fuel mini-plates during fabrication and irradiation were studied. Monolithic plate-type fuels are a new fuel form being developed for research and test reactors to achieve higher uranium densities. This concept facilitates the use of low-enriched uranium fuel in the reactor. These fuel elements are comprised of a high density, low enrichment, U–Mo alloy based fuel foil encapsulated in a cladding material made of Aluminum. To evaluate the effects of the foil flatness on the stress-strain behavior of the plates during fabrication, irradiation and shutdown stages, a representative plate frommore » RERTR-12 experiments (Plate L1P756) was considered. Both fabrication and irradiation processes of the plate were simulated by using actual irradiation parameters. The simulations were repeated for various foil curvatures to observe the effects of the foil flatness on the peak stress and strain magnitudes of the fuel elements. Results of fabrication simulations revealed that the flatness of the foil does not have a considerable impact on the post fabrication stress-strain fields. Furthermore, the irradiation simulations indicated that any post-fabrication stresses in the foil would be relieved relatively fast in the reactor. While, the perfectly flat foil provided the slightly better mechanical performance, overall difference between the flat-foil case and curved-foil case was not significant. Even though the peak stresses are less affected, the foil curvature has several implications on the strain magnitudes in the cladding. It was observed that with an increasing foil curvature, there is a slight increase in the cladding strains.« less

  4. Regenerative Carbonate-Based Thermochemical Energy Storage System for Concentrating Solar Power

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gangwal, Santosh; Muto, Andrew

    Southern Research has developed a thermochemical energy storage (TCES) technology that utilizes the endothermic-exothermic reversible carbonation of calcium oxide (lime) to store thermal energy at high-temperatures, such as those achieved by next generation concentrating solar power (CSP) facilities. The major challenges addressed in the development of this system include refining a high capacity, yet durable sorbent material and designing a low thermal resistance low-cost heat exchanger reactor system to move heat between the sorbent and a heat transfer fluid under conditions relevant for CSP operation (e.g., energy density, reaction kinetics, heat flow). The proprietary stabilized sorbent was developed by Precisionmore » Combustion, Inc. (PCI). A factorial matrix of sorbent compositions covering the design space was tested using accelerated high throughput screening in a thermo-gravimetric analyzer. Several promising formulations were selected for more thorough evaluation and one formulation with high capacity (0.38 g CO 2/g sorbent) and durability (>99.7% capacity retention over 100 cycles) was chosen as a basis for further development of the energy storage reactor system. In parallel with this effort, a full range of currently available commercial and developmental heat exchange reactor systems and sorbent loading methods were examined through literature research and contacts with commercial vendors. Process models were developed to examine if a heat exchange reactor system and balance of plant can meet required TCES performance and cost targets, optimizing tradeoffs between thermal performance, exergetic efficiency, and cost. Reactor types evaluated included many forms, from microchannel reactor, to diffusion bonded heat exchanger, to shell and tube heat exchangers. The most viable design for application to a supercritical CO 2 power cycle operating at 200-300 bar pressure and >700°C was determined to be a combination of a diffusion bonded heat exchanger with a shell and tube reactor. A bench scale reactor system was then designed and constructed to test sorbent performance under more commercially relevant conditions. This system utilizes a tube-in tube reactor design containing approximately 250 grams sorbent and is able to operate under a wide range of temperature, pressure and flow conditions as needed to explore system performance under a variety of operating conditions. A variety of sorbent loading methods may be tested using the reactor design. Initial bench test results over 25 cycles showed very high sorbent stability (>99%) and sufficient capacity (>0.28 g CO 2/g sorbent) for an economical commercial-scale system. Initial technoeconomic evaluation of the proposed storage system show that the sorbent cost should not have a significant impact on overall system cost, and that the largest cost impacts come from the heat exchanger reactor and balance of plant equipment, including compressors and gas storage, due to the high temperatures for sCO 2 cycles. Current estimated system costs are $47/kWhth based on current material and equipment cost estimates.« less

  5. Design of an advanced bundle divertor for the Demonstration Tokamak Hybrid Reactor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, T.F.; Lee, A.Y.; Ruck, G.W.

    1979-01-25

    The conclusion of this work is that a bundle divertor, using an improved method of designing the magnetic field configuration, is feasible for the Demonstration Tokamak Hybrid Reactor (DTHR) investigated by Westinghouse. The most significant achievement of this design is the reduction in current density (1 kA/cm/sup 2/) in the divertor coils in comparison to the overall averaged current densities per tesla of field to be nulled for DITE (25 kA/cm/sup 2/) and for ISX-B/sup 2/ (11 kA/cm/sup 2/). Therefore, superconducting magnets can be built into the tight space available with a sound mechanical structure.

  6. Etching in Chlorine Discharges Using an Integrated Feature Evolution-Plasma Model

    NASA Technical Reports Server (NTRS)

    Hwang, Helen H.; Bose, Deepak; Govindan, T. R.; Meyyappan, M.; Biegel, Bryan (Technical Monitor)

    2001-01-01

    Etching of semiconductor materials is reliant on plasma properties. Quantities such as ion and neutral fluxes, both in magnitude and in direction, are often determined by reactor geometry (height, radius, position of the coils, etc.) In order to obtain accurate etching profiles, one must also model the plasma as a whole to obtain local fluxes and distributions. We have developed a set of three models that simulates C12 plasmas for etching of silicon, ion and neutral trajectories in the plasma, and feature profile evolution. We have found that the location of the peak in the ion densities in the reactor plays a major role in determining etching uniformity across the wafer. For a stove top coil inductively coupled plasma (ICP), the ion density is peaked at the top of the reactor. This leads to nearly uniform neutral and ion fluxes across the wafer. A side coil configuration causes the ion density to peak near the sidewalls. Ion fluxes are thus greater toward the wall's and decrease toward the center. In addition, the ions bombard the wafer at a slight angle. This angle is sufficient to cause slanted profiles, which is highly undesirable.

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    Progress is reported on fundamental research in: crystal physics, reactions at metal surfaces, spectroscopy of ionic media, structure of metals, theory of alloying, physical properties, sintering, deformation of crystalline solids, x ray diffraction, metallurgy of superconducting materials, and electron microscope studies. Long-randge applied research studies were conducted for: zirconium metallurgy, materials compatibility, solid reactions, fuel element development, mechanical properties, non-destructive testing, and high-temperature materials. Reactor development support work was carried out for: gas-cooled reactor program, molten-salt reactor, high-flux isotope reactor, space-power program, thorium-utilization program, advanced-test reactor, Army Package Power Reactor, Enrico Fermi fast-breeder reactor, and water desalination program. Other programmore » activities, for which research was conducted, included: thermonuclear project, transuraniunn program, and post-irradiation examination laboratory. Separate abstracts were prepared for 30 sections of the report. (B.O.G.)« less

  8. Integrated Decision-Making Tool to Develop Spent Fuel Strategies for Research Reactors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Beatty, Randy L; Harrison, Thomas J

    IAEA Member States operating or having previously operated a Research Reactor are responsible for the safe and sustainable management and disposal of associated radioactive waste, including research reactor spent nuclear fuel (RRSNF). This includes the safe disposal of RRSNF or the corresponding equivalent waste returned after spent fuel reprocessing. One key challenge to developing general recommendations lies in the diversity of spent fuel types, locations and national/regional circumstances rather than mass or volume alone. This is especially true given that RRSNF inventories are relatively small, and research reactors are rarely operated at a high power level or duration typical ofmore » commercial power plants. Presently, many countries lack an effective long-term policy for managing RRSNF. This paper presents results of the International Atomic Energy Agency (IAEA) Coordinated Research Project (CRP) #T33001 on Options and Technologies for Managing the Back End of the Research Reactor Nuclear Fuel Cycle which includes an Integrated Decision Making Tool called BRIDE (Back-end Research reactor Integrated Decision Evaluation). This is a multi-attribute decision-making tool that combines the Total Estimated Cost of each life-cycle scenario with Non-economic factors such as public acceptance, technical maturity etc and ranks optional back-end scenarios specific to member states situations in order to develop a specific member state strategic plan with a preferred or recommended option for managing spent fuel from Research Reactors.« less

  9. Infrastructure for thulium-170 isotope power systems for autonomous underwater vehicle fleets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Walter, C.E.

    1991-07-01

    The radioisotope thulium-170 is a safe and environmentally benign heat source for providing the high endurance and energy densities needed by advanced power systems for autonomous underwater vehicles (AUV). Thulium Isotope Power (TIP) systems have an endurance of {approximately}3000 h, and gravimetric and volumetric energy densities of 3 {times} 10{sup 4} Wh/kg and 3 {times} 10{sup 8} Wh/m{sup 3}, respectively. These energy densities are more than 200 times higher than those currently provided by Ag-Zn battery technology. In order to capitalize on these performance levels with about one hundred AUVs in continuous use, it will be necessary to establish anmore » infrastructure for isotope production and heat-source refurbishment. The infrastructure cost is not trivial, and studies are needed to determine its optimum configuration. The major component of the projected infrastructure is the nuclear reactor used to produce Tm- 170 by neutron absorption in Tm-169. The reactor design should ideally be optimized for TM-170 production. Using the byproduct waste'' heat beneficially would help defray the cost of isotope production. However, generating electric power with the reactor would compromise both the cost of electricity and the isotope production capacity. A coastal location for the reactor would be most convenient from end-use considerations, and the waste'' heat could be used to desalinate seawater in water-thirsty states. 13 refs., 6 figs., 2 tabs.« less

  10. Performance of low smeared density sodium-cooled fast reactor metal fuel

    DOE PAGES

    Porter, D. L.; H. J. M. Chichester; Medvedev, P. G.; ...

    2015-06-17

    An experiment was performed in the Experimental Breeder Rector-II (EBR-II) in the 1990s to show that metallic fast reactor fuel could be used in reactors with a single, once-through core. To prove the long duration, high burnup, high neutron exposure capability an experiment where the fuel pin was designed with a very large fission gas plenum and very low fuel smeared density (SD). The experiment, X496, operated to only 8.3 at. % burnup because the EBR-II reactor was scheduled for shut-down at that time. Many of the examinations of the fuel pins only funded recently with the resurgence of reactormore » designs using very high-burnup fuel. The results showed that, despite the low smeared density of 59% the fuel swelled radially to contact the cladding, fission gas release appeared to be slightly higher than demonstrated in conventional 75%SD fuel tests and axial growth was about the same as 75% SD fuel. There were axial positions in some of the fuel pins which showed evidence of fuel restructuring and an absence of fission products with low metaling points and gaseous precursors (Cs and Rb). Lastly, a model to investigate whether these areas may have overheated due to a loss of bond sodium indicates that it is a possible explanation for the fuel restructuring and something to be considered for fuel performance modeling of low SD fuel.« less

  11. Reactor application of an improved bundle divertor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, T.F.; Ruck, G.W.; Lee, A.Y.

    1978-11-01

    A Bundle Divertor was chosen as the impurity control and plasma exhaust system for the beam driven Demonstration Tokamak Hybrid Reactor - DTHR. In the context of a preconceptual design study of the reactor and associated facility a bundle divertor concept was developed and integrated into the reactor system. The overall system was found feasible and scalable for reactors with intermediate torodial field strengths on axis. The important design characteristics are: the overall average current density of the divertor coils is 0.73 kA for each tesla of toroidal field on axis; the divertor windings are made from super-conducting cables supportedmore » by steel structures and are designed to be maintainable; the particle collection assembly and auxiliary cryosorption vacuum pump are dual systems designed such that they can be reactivated alterntively to allow for continuous reactor operation; and the power requirement for energizing and operating the divertor is about 5 MW.« less

  12. Irradiation Microstructure of Austenitic Steels and Cast Steels Irradiated in the BOR-60 Reactor at 320°C

    NASA Astrophysics Data System (ADS)

    Yang, Yong; Chen, Yiren; Huang, Yina; Allen, Todd; Rao, Appajosula

    Reactor internal components are subjected to neutron irradiation in light water reactors, and with the aging of nuclear power plants around the world, irradiation-induced material degradations are of concern for reactor internals. Irradiation-induced defects resulting from displacement damage are critical for understanding degradation in structural materials. In the present work, microstructural changes due to irradiation in austenitic stainless steels and cast steels were characterized using transmission electron microscopy. The specimens were irradiated in the BOR-60 reactor, a fast breeder reactor, up to 40 dpa at 320°C. The dose rate was approximately 9.4x10-7 dpa/s. Void swelling and irradiation defects were analyzed for these specimens. A high density of faulted loops dominated the irradiated-altered microstructures. Along with previous TEM results, a dose dependence of the defect structure was established at 320°C.

  13. Absolute atomic hydrogen densities in a radio frequency discharge measured by two-photon laser induced fluorescence imaging

    NASA Astrophysics Data System (ADS)

    Chérigier, L.; Czarnetzki, U.; Luggenhölscher, D.; Schulz-von der Gathen, V.; Döbele, H. F.

    1999-01-01

    Absolute atomic hydrogen densities were measured in the gaseous electronics conference reference cell parallel plate reactor by Doppler-free two-photon absorption laser induced fluorescence spectroscopy (TALIF) at λ=205 nm. The capacitively coupled radio frequency discharge was operated at 13.56 MHz in pure hydrogen under various input power and pressure conditions. The Doppler-free excitation technique with an unfocused laser beam together with imaging the fluorescence radiation by an intensified charge coupled device camera allows instantaneous spatial resolution along the radial direction. Absolute density calibration is obtained with the aid of a flow tube reactor and titration with NO2. The influence of spatial intensity inhomogenities along the laser beam and subsequent fluorescence are corrected by TALIF in xenon. A full mapping of the absolute density distribution between the electrodes was obtained. The detection limit for atomic hydrogen amounts to about 2×1018 m-3. The dissociation degree is of the order of a few percent.

  14. A fundamental analysis of means of producing and storing energy

    NASA Astrophysics Data System (ADS)

    Briggs, Michael S.

    The goal of this dissertation is to examine some of the most promising non-fossil means for producing electricity and storing energy for transportation, to provide a thorough and (hopefully) unbiased assessment of which hold the most promise, and therefore warrant further research focus. Additionally, recommendations are made for potential means for improving proposed or existing technologies, in particular the technology of a new subcritical reactor design using an electronuclear driver and thermal transmutation of transuranic actinides. The high energy density of liquid hydrocarbon fuels is ideal for transportation applications, but our ability to sustainably produce such fuels (i.e. biofuels) is limited by the low photosynthetic efficiency achieved by plants. While some proposals are made herein to make the most of the potential of biofuels, their limitations ultimately will require the storage of electrical energy (in batteries, hydrogen, or mechanical energy storage) if we are to eliminate our dependence on petroleum for transportation. The outcome of this analysis is that lithium-ion batteries are best suited for such an application. This is based on a significantly better net efficiency with only moderately lower energy density compared to the best means of storing hydrogen, and no additional infrastructure requirements. The analysis also indicates the direction research should take to further improve lithium-ion batteries. Since the sustainability of electric vehicles depends on the means of producing electricity, a focus of this dissertation is assessing the potential to produce electricity with advanced nuclear fission and fusion reactors. While magnetic and inertial confinement fusion are interesting from the standpoint of the plasma and nuclear physics involved, the analysis presented here illustrates that the potential for commercial electricity production with either is slim, with several potential "deal breakers." Further, muon catalyzed fusion is shown to offer no practical means of producing net energy. Furthermore, fusion fuels other than Deuterium-Tritium (DT) have triple product requirements roughly two orders of magnitude greater for net energy production. The analysis of a "catalyzed deuterium" plasma presented herein shows it to be less promising than previous analyses have indicated. The flux of 14.1 MeV neutrons from a DT plasma presents a significant challenge that is likely to limit or prevent commercialization of DT fusion power. The primary alternative approach that may become viable is a so-called helium catalyzed DD cycle. However, there are two significant challenges (the need for active tritium removal and the large onsite tritium inventory) that must be addressed for this option to have significant potential. Greater focus therefore should be placed on advanced fission reactors, in particular thermal thorium reactors and driven subcritical reactors, such as of the general design proposed in this dissertation.

  15. Principles and Applications of Solid Polymer Electrolyte Reactors for Electrochemical Hydrodehalogenation of Organic Pollutants

    NASA Astrophysics Data System (ADS)

    Cheng, Hua; Scott, Keith

    The ability to re-cycle halogenated liquid wastes, based on electrochemical hydrodehalogenation (EHDH), will provide a significant economic advantage and will reduce the environmental burden in a number of processes. The use of a solid polymer electrolyte (SPE) reactor is very attractive for this purpose. Principles and features of electrochemical HDH technology and SPE EHDH reactors are described. The SPE reactor enables selective dehalogenation of halogenated organic compounds in both aqueous and non-aqueous media with high current efficiency and low energy consumption. The influence of operating conditions, including cathode material, current density, reactant concentration and temperature on the HDH process and its stability are examined.

  16. Thermal energy storage material thermophysical property measurement and heat transfer impact

    NASA Technical Reports Server (NTRS)

    Tye, R. P.; Bourne, J. G.; Destarlais, A. O.

    1976-01-01

    The thermophysical properties of salts having potential for thermal energy storage to provide peaking energy in conventional electric utility power plants were investigated. The power plants studied were the pressurized water reactor, boiling water reactor, supercritical steam reactor, and high temperature gas reactor. The salts considered were LiNO3, 63LiOH/37 LiCl eutectic, LiOH, and Na2B4O7. The thermal conductivity, specific heat (including latent heat of fusion), and density of each salt were measured for a temperature range of at least + or - 100 K of the measured melting point. Measurements were made with both reagent and commercial grades of each salt.

  17. 75 FR 11375 - Revision of Fee Schedules; Fee Recovery for FY 2010

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-10

    ... Spent Fuel Storage/Reactor Decommissioning..... 2.7 0.2 0.2 Test and Research Reactors 0.2 0.0 0.0 Fuel... categories of licenses. The FY 2009 fee is also shown for comparative purposes. Table V--Rebaselined Annual...) Spent Fuel Storage/Reactor 122,000 143,000 Decommissioning Test and Research Reactors (Non-power 87,600...

  18. Safety Issues at the DOE Test and Research Reactors. A Report to the U.S. Department of Energy.

    ERIC Educational Resources Information Center

    National Academy of Sciences - National Research Council, Washington, DC. Commission on Physical Sciences, Mathematics, and Resources.

    This report provides an assessment of safety issues at the Department of Energy (DOE) test and research reactors. Part A identifies six safety issues of the reactors. These issues include the safety design philosophy, the conduct of safety reviews, the performance of probabilistic risk assessments, the reliance on reactor operators, the fragmented…

  19. PBF Reactor Building (PER620). Cubicle 10. Camera facing southeast. Loop ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    PBF Reactor Building (PER-620). Cubicle 10. Camera facing southeast. Loop pressurizer on right. Other equipment includes loop strained, control valves, loop piping, pressurizer interchanger, and cleanup system cooler. High-density shielding brick walls. Photographer: Kirsh. Date: November 2, 1970. INEEL negative no. 70-4908 - Idaho National Engineering Laboratory, SPERT-I & Power Burst Facility Area, Scoville, Butte County, ID

  20. High-rate composting-vermicomposting of water hyacinth (Eichhornia crassipes, Mart. Solms).

    PubMed

    Gajalakshmi, S; Ramasamy, E V; Abbasi, S A

    2002-07-01

    In an attempt to develop a system with which the aquatic weed water hyacinth (Eichhornia crassipes, Mart. Solms) can be economically processed to generate vermicompost in large quantities, the weed was first composted by a 'high-rate' method and then subjected to vermicomposting in reactors operating at much larger densities of earthworm than recommended hitherto: 50, 62.5, 75, 87.5, 100, 112.5, 125, 137.5, and 150 adults of Eudrilus eugeniae Kinberg per litre of digester volume. The composting step was accomplished in 20 days and the composted weed was found to be vermicomposted three times as rapidly as uncomposted water hyacinth [Bioresource Technology 76 (2001) 177]. The studies substantiated the feasibility of high-rate composting-vermicomposting systems, as all reactors yielded consistent vermicast output during seven months of operation. There was no earthworm mortality during the first four months in spite of the high animal densities in the reactors. In the subsequent three months a total of 79 worms died out of 1650, representing less than 1.6% mortality per month. The results also indicated that an increase in the surface-to-volume ratio of the reactors might further improve their efficiency.

  1. Power Peaking Effect of OTTO Fuel Scheme Pebble Bed Reactor

    NASA Astrophysics Data System (ADS)

    Setiadipura, T.; Suwoto; Zuhair; Bakhri, S.; Sunaryo, G. R.

    2018-02-01

    Pebble Bed Reactor (PBR) type of Hight Temperature Gas-cooled Reactor (HTGR) is a very interesting nuclear reactor design to fulfill the growing electricity and heat demand with a superior passive safety features. Effort to introduce the PBR design to the market can be strengthen by simplifying its system with the Once-through-then-out (OTTO) cycle PBR in which the pebble fuel only pass the core once. Important challenge in the OTTO fuel scheme is the power peaking effect which limit the maximum nominal power or burnup of the design. Parametric survey is perform in this study to investigate the contribution of different design parameters to power peaking effect of OTTO cycle PBR. PEBBED code is utilized in this study to perform the equilibrium PBR core analysis for different design parameter and fuel scheme. The parameters include its core diameter, height-per-diameter (H/D), power density, and core nominal power. Results of this study show that diameter and H/D effectsare stronger compare to the power density and nominal core power. Results of this study might become an importance guidance for design optimization of OTTO fuel scheme PBR.

  2. Initial development and performance evaluation of a process for formation of dense carbon by pyrolysis of methane

    NASA Technical Reports Server (NTRS)

    Noyes, G. P.; Cusick, R. J.

    1985-01-01

    The three steps in pyrolytic carbon formation are: (1) gaseous hydrocarbon polymerization and aromatic formation; (2) gas-phase condensation and surface adsorption/impingement of polyaromatic hydrocarbon; and (3) final dehydration to carbon. The structure of the carbon in the various stages of formation is examined. The apparatuses and experimental procedures for the pyrolysis of methane in a 60 cm long quartz reactor tube at temperatures ranging from 1400-1600 K are described. The percentage of carbon converted and its density are calculated and tabularly presented. The results reveal that dense carbon formation is maximized and soot eliminated by this procedure. It is observed that conversion efficiency depends on the composition of the inlet gas and conversion increases with increasing temperature. Based on the experimental data a three-man carbon reactor subsystem (CRS) is developed; the functions of the Sabatier Methanation Reactor, two carbon formation reactors and fluid handling components of the CRS are analyzed. The CRS forms 16 kg of carbon at a rate of 0.8 kg/day for 20 days in a two percent volume density quartz wool packing at temperature of 1500-1600 K.

  3. Enhancing biodegradation and energy generation via roughened surface graphite electrode in microbial desalination cell.

    PubMed

    Ebrahimi, Atieh; Yousefi Kebria, Daryoush; Najafpour Darzi, Ghasem

    2017-09-01

    The microbial desalination cell (MDC) is known as a newly developed technology for water and wastewater treatment. In this study, desalination rate, organic matter removal and energy production in the reactors with and without desalination function were compared. Herein, a new design of plain graphite called roughened surface graphite (RSG) was used as the anode electrode in both microbial fuel cell (MFC) and MDC reactors for the first time. Among the three type of anode electrodes investigated in this study, RSG electrode produced the highest power density and salt removal rate of 10.81 W/m 3 and 77.6%, respectively. Such a power density was 2.33 times higher than the MFC reactor due to the junction potential effect. In addition, adding the desalination function to the MFC reactor enhanced columbic efficiency from 21.8 to 31.4%. These results provided a proof-of-concept that the use of MDC instead of MFC would improve wastewater treatment efficiency and power generation, with an added benefit of water desalination. Furthermore, RSG can successfully be employed in an MDC or MFC, enhancing the bio-electricity generation and salt removal.

  4. Current drive for stability of thermonuclear plasma reactor

    NASA Astrophysics Data System (ADS)

    Amicucci, L.; Cardinali, A.; Castaldo, C.; Cesario, R.; Galli, A.; Panaccione, L.; Paoletti, F.; Schettini, G.; Spigler, R.; Tuccillo, A.

    2016-01-01

    To produce in a thermonuclear fusion reactor based on the tokamak concept a sufficiently high fusion gain together stability necessary for operations represent a major challenge, which depends on the capability of driving non-inductive current in the hydrogen plasma. This request should be satisfied by radio-frequency (RF) power suitable for producing the lower hybrid current drive (LHCD) effect, recently demonstrated successfully occurring also at reactor-graded high plasma densities. An LHCD-based tool should be in principle capable of tailoring the plasma current density in the outer radial half of plasma column, where other methods are much less effective, in order to ensure operations in the presence of unpredictably changes of the plasma pressure profiles. In the presence of too high electron temperatures even at the periphery of the plasma column, as envisaged in DEMO reactor, the penetration of the coupled RF power into the plasma core was believed for long time problematic and, only recently, numerical modelling results based on standard plasma wave theory, have shown that this problem should be solved by using suitable parameter of the antenna power spectrum. We show here further information on the new understanding of the RF power deposition profile dependence on antenna parameters, which supports the conclusion that current can be actively driven over a broad layer of the outer radial half of plasma column, thus enabling current profile control necessary for the stability of a reactor.

  5. Performance analysis of a continuous serpentine flow reactor for electrochemical oxidation of synthetic and real textile wastewater: Energy consumption, mass transfer coefficient and economic analysis.

    PubMed

    Pillai, Indu M Sasidharan; Gupta, Ashok K

    2017-05-15

    A continuous flow electrochemical reactor was developed, and its application was tested for the treatment of textile wastewater. A parallel plate configuration with serpentine flow was chosen for the continuous flow reactor. Uniparameter optimization was carried out for electrochemical oxidation of synthetic and real textile wastewater (collected from the inlet of the effluent treatment plant). Chemical Oxygen Demand (COD) removal efficiency of 90% was achieved for synthetic textile wastewater (initial COD - 780 mg L -1 ) at a flow rate of 500 mL h -1 (retention time of 6 h) and a current density of 1.15 mA cm -2 and the energy consumption for the degradation was 9.2 kWh (kg COD) -1 . The complete degradation of real textile wastewater (initial COD of 368 mg L -1 ) was obtained at a current density of 1.15 mA cm -2 , NaCl concentration of 1 g L -1 and retention time of 6 h. Energy consumption and mass transfer coefficient of the reactions were calculated. The continuous flow reactor performed better than batch reactor with reference to energy consumption and economy. The overall treatment cost for complete COD removal of real textile wastewater was 5.83 USD m -3 . Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. 20 years of research on the Alcator C-Mod tokamaka)

    NASA Astrophysics Data System (ADS)

    Greenwald, M.; Bader, A.; Baek, S.; Bakhtiari, M.; Barnard, H.; Beck, W.; Bergerson, W.; Bespamyatnov, I.; Bonoli, P.; Brower, D.; Brunner, D.; Burke, W.; Candy, J.; Churchill, M.; Cziegler, I.; Diallo, A.; Dominguez, A.; Duval, B.; Edlund, E.; Ennever, P.; Ernst, D.; Faust, I.; Fiore, C.; Fredian, T.; Garcia, O.; Gao, C.; Goetz, J.; Golfinopoulos, T.; Granetz, R.; Grulke, O.; Hartwig, Z.; Horne, S.; Howard, N.; Hubbard, A.; Hughes, J.; Hutchinson, I.; Irby, J.; Izzo, V.; Kessel, C.; LaBombard, B.; Lau, C.; Li, C.; Lin, Y.; Lipschultz, B.; Loarte, A.; Marmar, E.; Mazurenko, A.; McCracken, G.; McDermott, R.; Meneghini, O.; Mikkelsen, D.; Mossessian, D.; Mumgaard, R.; Myra, J.; Nelson-Melby, E.; Ochoukov, R.; Olynyk, G.; Parker, R.; Pitcher, S.; Podpaly, Y.; Porkolab, M.; Reinke, M.; Rice, J.; Rowan, W.; Schmidt, A.; Scott, S.; Shiraiwa, S.; Sierchio, J.; Smick, N.; Snipes, J. A.; Snyder, P.; Sorbom, B.; Stillerman, J.; Sung, C.; Takase, Y.; Tang, V.; Terry, J.; Terry, D.; Theiler, C.; Tronchin-James, A.; Tsujii, N.; Vieira, R.; Walk, J.; Wallace, G.; White, A.; Whyte, D.; Wilson, J.; Wolfe, S.; Wright, G.; Wright, J.; Wukitch, S.; Zweben, S.

    2014-11-01

    The object of this review is to summarize the achievements of research on the Alcator C-Mod tokamak [Hutchinson et al., Phys. Plasmas 1, 1511 (1994) and Marmar, Fusion Sci. Technol. 51, 261 (2007)] and to place that research in the context of the quest for practical fusion energy. C-Mod is a compact, high-field tokamak, whose unique design and operating parameters have produced a wealth of new and important results since it began operation in 1993, contributing data that extends tests of critical physical models into new parameter ranges and into new regimes. Using only high-power radio frequency (RF) waves for heating and current drive with innovative launching structures, C-Mod operates routinely at reactor level power densities and achieves plasma pressures higher than any other toroidal confinement device. C-Mod spearheaded the development of the vertical-target divertor and has always operated with high-Z metal plasma facing components—approaches subsequently adopted for ITER. C-Mod has made ground-breaking discoveries in divertor physics and plasma-material interactions at reactor-like power and particle fluxes and elucidated the critical role of cross-field transport in divertor operation, edge flows and the tokamak density limit. C-Mod developed the I-mode and the Enhanced Dα H-mode regimes, which have high performance without large edge localized modes and with pedestal transport self-regulated by short-wavelength electromagnetic waves. C-Mod has carried out pioneering studies of intrinsic rotation and demonstrated that self-generated flow shear can be strong enough in some cases to significantly modify transport. C-Mod made the first quantitative link between the pedestal temperature and the H-mode's performance, showing that the observed self-similar temperature profiles were consistent with critical-gradient-length theories and followed up with quantitative tests of nonlinear gyrokinetic models. RF research highlights include direct experimental observation of ion cyclotron range of frequency (ICRF) mode-conversion, ICRF flow drive, demonstration of lower-hybrid current drive at ITER-like densities and fields and, using a set of novel diagnostics, extensive validation of advanced RF codes. Disruption studies on C-Mod provided the first observation of non-axisymmetric halo currents and non-axisymmetric radiation in mitigated disruptions. A summary of important achievements and discoveries are included.

  7. Ab initio modeling of point defects, self-diffusion, and incorporation of impurities in thorium

    NASA Astrophysics Data System (ADS)

    Daroca, D. Pérez

    2017-02-01

    Research on Generation-IV nuclear reactors has boosted the investigation of thorium as nuclear fuel. By means of first-principles calculations within the framework of density functional theory, structural properties and phonon dispersion curves of Th are obtained. These results agreed very well with previous ones. The stability and formation energies of vacancies, interstitial and divacancies are studied. It is found that vacancies are the energetically preferred defects. The incorporation energies of He, Xe, and Kr atoms in Th defects are analyzed. Self-diffusion, migration paths and activation energies are also calculated.

  8. Operation and postirradiation examination of ORR capsule OF-2: accelerated testing of HTGR fuel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tiegs, T.N.; Thoms, K.R.

    1979-03-01

    Irradiation capsule OF-2 was a test of High-Temperature Gas-Cooled Reactor fuel types under accelerated irradiation conditions in the Oak Ridge Research Reactor. The results showed good irradiation performance of Triso-coated weak-acid-resin fissile particles and Biso-coated fertile particles. These particles had been coated by a fritted gas distributor in the 0.13-m-diam furnace. Fast-neutron damage (E > 0.18 MeV) and matrix-particle interaction caused the outer pyrocarbon coating on the Triso-coated particles to fail. Such failure depended on the optical anisotropy, density, and open porosity of the outer pyrocarbon coating, as well as on the coke yield of the matrix. Irradiation of specimensmore » with values outside prescribed limits for these properties increased the failure rate of their outer pyrocarbon coating. Good irradiation performance was observed for weak-acid-resin particles with conversions in the range from 15 to 75% UC/sub 2/.« less

  9. Current status of U{sub 3}Si{sub 2} fuel element fabrication in Brazil

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Durazzo, M.; Carvalho, E.F. Urano de; Saliba-Silva, A.M.

    2008-07-15

    IPEN has been working for increasing radioisotope production in order to supply the expanding demand for radiopharmaceutical medicines requested by the Brazilian welfare. To reach this objective, the IEA-R1 research reactor power capacity was recently increased from 2 MW to 4 MW. Since 1988 IPEN has been manufacturing its own fuel element, initially based on U{sub 3}O{sub 8}-Al dispersion fuel plates with 2.3 gU/cm{sup 3}. To support the reactor power increase, higher uranium density in the fuel plate meat had to be achieved for better irradiation flux and also to minimize the irradiated fuel elements to be stored. Uranium silicidemore » was the chosen option and the fuel fabrication development started with the support of the IAEA BRA/4/047 Technical Cooperation Project. This paper describes the results of this program and the current status of silicide fuel fabrication and its qualification. (author)« less

  10. A Review on the Potential Use of Austenitic Stainless Steels in Nuclear Fusion Reactors

    NASA Astrophysics Data System (ADS)

    Şahin, Sümer; Übeyli, Mustafa

    2008-12-01

    Various engineering materials; austenitic stainless steels, ferritic/martensitic steels, vanadium alloys, refractory metals and composites have been suggested as candidate structural materials for nuclear fusion reactors. Among these structural materials, austenitic steels have an advantage of extensive technological database and lower cost compared to other non-ferrous candidates. Furthermore, they have also advantages of very good mechanical properties and fission operation experience. Moreover, modified austenitic stainless (Ni and Mo free) have relatively low residual radioactivity. Nevertheless, they can't withstand high neutron wall load which is required to get high power density in fusion reactors. On the other hand, a protective flowing liquid wall between plasma and solid first wall in these reactors can eliminate this restriction. This study presents an overview of austenitic stainless steels considered to be used in fusion reactors.

  11. 10 CFR 55.5 - Communications.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    .... Nuclear Regulatory Commission, Washington, DC 20555-0001. The guidance discusses, among other topics, the.... (b)(1) Except for test and research reactor facilities, the Director, Office of Nuclear Reactor... involving a test and research reactor facility licensed under 10 CFR part 50 and any related inquiry...

  12. 10 CFR 55.5 - Communications.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    .... Nuclear Regulatory Commission, Washington, DC 20555-0001. The guidance discusses, among other topics, the.... (b)(1) Except for test and research reactor facilities, the Director, Office of Nuclear Reactor... involving a test and research reactor facility licensed under 10 CFR part 50 and any related inquiry...

  13. IEA-R1 Nuclear Research Reactor: 58 Years of Operating Experience and Utilization for Research, Teaching and Radioisotopes Production

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cardenas, Jose Patricio Nahuel; Filho, Tufic Madi; Saxena, Rajendra

    IEA-R1 research reactor at the Instituto de Pesquisas Energeticas e Nucleares (Nuclear and Energy Research Institute) IPEN, Sao Paulo, Brazil is the largest power research reactor in Brazil, with a maximum power rating of 5 MWth. It is being used for basic and applied research in the nuclear and neutron related sciences, for the production of radioisotopes for medical and industrial applications, and for providing services of neutron activation analysis, real time neutron radiography, and neutron transmutation doping of silicon. IEA-R1 is a swimming pool reactor, with light water as the coolant and moderator, and graphite and beryllium as reflectors.more » The reactor was commissioned on September 16, 1957 and achieved its first criticality. It is currently operating at 4.5 MWth with a 60-hour cycle per week. In the early sixties, IPEN produced {sup 131}I, {sup 32}P, {sup 198}Au, {sup 24}Na, {sup 35}S, {sup 51}Cr and labeled compounds for medical use. During the past several years, a concerted effort has been made in order to upgrade the reactor power to 5 MWth through refurbishment and modernization programs. One of the reasons for this decision was to produce {sup 99}Mo at IPEN. The reactor cycle will be gradually increased to 120 hours per week continuous operation. It is anticipated that these programs will assure the safe and sustainable operation of the IEA-R1 reactor for several more years, to produce important primary radioisotopes {sup 99}Mo, {sup 125}I, {sup 131}I, {sup 153}Sm and {sup 192}Ir. Currently, all aspects of dealing with fuel element fabrication, fuel transportation, isotope processing, and spent fuel storage are handled by IPEN at the site. The reactor modernization program is slated for completion by 2015. This paper describes 58 years of operating experience and utilization of the IEA-R1 research reactor for research, teaching and radioisotopes production. (authors)« less

  14. ADX: a high field, high power density, advanced divertor and RF tokamak

    NASA Astrophysics Data System (ADS)

    LaBombard, B.; Marmar, E.; Irby, J.; Terry, J. L.; Vieira, R.; Wallace, G.; Whyte, D. G.; Wolfe, S.; Wukitch, S.; Baek, S.; Beck, W.; Bonoli, P.; Brunner, D.; Doody, J.; Ellis, R.; Ernst, D.; Fiore, C.; Freidberg, J. P.; Golfinopoulos, T.; Granetz, R.; Greenwald, M.; Hartwig, Z. S.; Hubbard, A.; Hughes, J. W.; Hutchinson, I. H.; Kessel, C.; Kotschenreuther, M.; Leccacorvi, R.; Lin, Y.; Lipschultz, B.; Mahajan, S.; Minervini, J.; Mumgaard, R.; Nygren, R.; Parker, R.; Poli, F.; Porkolab, M.; Reinke, M. L.; Rice, J.; Rognlien, T.; Rowan, W.; Shiraiwa, S.; Terry, D.; Theiler, C.; Titus, P.; Umansky, M.; Valanju, P.; Walk, J.; White, A.; Wilson, J. R.; Wright, G.; Zweben, S. J.

    2015-05-01

    The MIT Plasma Science and Fusion Center and collaborators are proposing a high-performance Advanced Divertor and RF tokamak eXperiment (ADX)—a tokamak specifically designed to address critical gaps in the world fusion research programme on the pathway to next-step devices: fusion nuclear science facility (FNSF), fusion pilot plant (FPP) and/or demonstration power plant (DEMO). This high-field (⩾6.5 T, 1.5 MA), high power density facility (P/S ˜ 1.5 MW m-2) will test innovative divertor ideas, including an ‘X-point target divertor’ concept, at the required performance parameters—reactor-level boundary plasma pressures, magnetic field strengths and parallel heat flux densities entering into the divertor region—while simultaneously producing high-performance core plasma conditions that are prototypical of a reactor: equilibrated and strongly coupled electrons and ions, regimes with low or no torque, and no fuelling from external heating and current drive systems. Equally important, the experimental platform will test innovative concepts for lower hybrid current drive and ion cyclotron range of frequency actuators with the unprecedented ability to deploy launch structures both on the low-magnetic-field side and the high-magnetic-field side—the latter being a location where energetic plasma-material interactions can be controlled and favourable RF wave physics leads to efficient current drive, current profile control, heating and flow drive. This triple combination—advanced divertors, advanced RF actuators, reactor-prototypical core plasma conditions—will enable ADX to explore enhanced core confinement physics, such as made possible by reversed central shear, using only the types of external drive systems that are considered viable for a fusion power plant. Such an integrated demonstration of high-performance core-divertor operation with steady-state sustainment would pave the way towards an attractive pilot plant, as envisioned in the ARC concept (affordable, robust, compact) (Sorbom et al 2015 Fusion Eng. Des. submitted (arXiv:1409.3540)) that makes use of high-temperature superconductor technology—a high-field (9.25 T) tokamak the size of the Joint European Torus that produces 270 MW of net electricity.

  15. Evaluation of nuclear-facility decommissioning projects. Summary report: Ames Laboratory Research Reactor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Link, B.W.; Miller, R.L.

    1983-07-01

    This document summarizes the available information concerning the decommissioning of the Ames Laboratory Research Reactor (ALRR), a five-megawatt heavy water moderated and cooled research reactor. The data were placed in a computerized information retrieval/manipulation system which permits its future utilization for purposes of comparative analysis. This information is presented both in detail in its computer output form and also as a manually assembled summarization which highlights the more important aspects of the decommissioning program. Some comparative information with reference to generic decommissioning data extracted from NUREG/CR 1756, Technology, Safety and Costs of Decommissioning Nuclear Research and Test Reactors, is included.

  16. Quantity and management of spent fuel from prototype and research reactors in Germany

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dorr, Sabine; Bollingerfehr, Wilhelm; Filbert, Wolfgang

    Within the scope of an R and D project (project identification number FKZ 02 S 8679) sponsored by BMBF (Federal Ministry of Education and Research), the current state of storage and management of fuel elements from prototype and research reactors was established, and an approach for their future storage/management was developed. The spent fuels from prototype and research reactors in Germany that require disposal were specified and were described in regard to their repository-relevant characteristics. As there are currently no casks licensed for disposal in Germany, descriptions of casks that were considered to be suitable were provided. Based on themore » information provided on the spent fuel from prototype and research reactors and the potential casks, a technical disposal concept was developed. In this context, concepts to integrate the spent fuel from prototype and research reactors into existing disposal concepts for spent fuel from German nuclear power plants and for waste from reprocessing were developed for salt and clay formations. (authors)« less

  17. Current and anticipated uses of thermal hydraulic codes at the Japan Atomic Energy Research Institute

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Akimoto, Hajime; Kukita; Ohnuki, Akira

    1997-07-01

    The Japan Atomic Energy Research Institute (JAERI) is conducting several research programs related to thermal-hydraulic and neutronic behavior of light water reactors (LWRs). These include LWR safety research projects, which are conducted in accordance with the Nuclear Safety Commission`s research plan, and reactor engineering projects for the development of innovative reactor designs or core/fuel designs. Thermal-hydraulic and neutronic codes are used for various purposes including experimental analysis, nuclear power plant (NPP) safety analysis, and design assessment.

  18. Characterization of high flux magnetized helium plasma in SCU-PSI linear device

    NASA Astrophysics Data System (ADS)

    Xiaochun, MA; Xiaogang, CAO; Lei, HAN; Zhiyan, ZHANG; Jianjun, WEI; Fujun, GOU

    2018-02-01

    A high-flux linear plasma device in Sichuan University plasma-surface interaction (SCU-PSI) based on a cascaded arc source has been established to simulate the interactions between helium and hydrogen plasma with the plasma-facing components in fusion reactors. In this paper, the helium plasma has been characterized by a double-pin Langmuir probe. The results show that the stable helium plasma beam with a diameter of 26 mm was constrained very well at a magnetic field strength of 0.3 T. The core density and ion flux of helium plasma have a strong dependence on the applied current, magnetic field strength and gas flow rate. It could reach an electron density of 1.2 × 1019 m-3 and helium ion flux of 3.2 × 1022 m-2 s-1, with a gas flow rate of 4 standard liter per minute, magnetic field strength of 0.2 T and input power of 11 kW. With the addition of -80 V applied to the target to increase the helium ion energy and the exposure time of 2 h, the flat top temperature reached about 530 °C. The different sizes of nanostructured fuzz on irradiated tungsten and molybdenum samples surfaces under the bombardment of helium ions were observed by scanning electron microscopy. These results measured in the SCU-PSI linear device provide a reference for International Thermonuclear Experimental Reactor related PSI research.

  19. ADX: A high Power Density, Advanced RF-Driven Divertor Test Tokamak for PMI studies

    NASA Astrophysics Data System (ADS)

    Whyte, Dennis; ADX Team

    2015-11-01

    The MIT PSFC and collaborators are proposing an advanced divertor experiment, ADX; a divertor test tokamak dedicated to address critical gaps in plasma-material interactions (PMI) science, and the world fusion research program, on the pathway to FNSF/DEMO. Basic ADX design features are motivated and discussed. In order to assess the widest range of advanced divertor concepts, a large fraction (>50%) of the toroidal field volume is purpose-built with innovative magnetic topology control and flexibility for assessing different surfaces, including liquids. ADX features high B-field (>6 Tesla) and high global power density (P/S ~ 1.5 MW/m2) in order to access the full range of parallel heat flux and divertor plasma pressures foreseen for reactors, while simultaneously assessing the effect of highly dissipative divertors on core plasma/pedestal. Various options for efficiently achieving high field are being assessed including the use of Alcator technology (cryogenic cooled copper) and high-temperature superconductors. The experimental platform would also explore advanced lower hybrid current drive and ion-cyclotron range of frequency actuators located at the high-field side; a location which is predicted to greatly reduce the PMI effects on the launcher while minimally perturbing the core plasma. The synergistic effects of high-field launchers with high total B on current and flow drive can thus be studied in reactor-relevant boundary plasmas.

  20. 10 CFR 55.5 - Communications.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    .... Nuclear Regulatory Commission, Washington, DC 20555-0001. The guidance discusses, among other topics, the.... (b)(1) Except for test and research reactor facilities, the Director, Office of Nuclear Reactor... this part involving a test and research reactor facility licensed under 10 CFR part 50 and any related...

  1. Multipurpose epithermal neutron beam on new research station at MARIA research reactor in Swierk-Poland

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gryzinski, M.A.; Maciak, M.

    MARIA reactor is an open-pool research reactor what gives the chance to install uranium fission converter on the periphery of the core. It could be installed far enough not to induce reactivity of the core but close enough to produce high flux of fast neutrons. Special design of the converter is now under construction. It is planned to set the research stand based on such uranium converter in the near future: in 2015 MARIA reactor infrastructure should be ready (preparation started in 2013), in 2016 the neutron beam starts and in 2017 opening the stand for material and biological researchmore » or for medical training concerning BNCT. Unused for many years, horizontal channel number H2 at MARIA research rector in Poland, is going to be prepared as a part of unique stand. The characteristics of the neutron beam will be significant advantage of the facility. High flux of neutrons at the level of 2x10{sup 9} cm{sup -2}s{sup -1} will be obtainable by uranium neutron converter located 90 cm far from the reactor core fuel elements (still inside reactor core basket between so called core reflectors). Due to reaction of core neutrons with converter U{sub 3}Si{sub 2} material it will produce high flux of fast neutrons. After conversion neutrons will be collimated and moderated in the channel by special set of filters and moderators. At the end of H2 channel i.e. at the entrance to the research room neutron energy will be in the epithermal energy range with neutron intensity at least at the level required for BNCT (2x10{sup 9} cm{sup -2}s{sup -1}). For other purposes density of the neutron flux could be smaller. The possibility to change type and amount of installed filters/moderators which enables getting different properties of the beam (neutron energy spectrum, neutron-gamma ratio and beam profile and shape) is taken into account. H2 channel is located in separate room which is adjacent to two other empty rooms under the preparation for research laboratories (200 m2). It is planned to create fully equipped complex facility possible to perform various experiments on the intensive neutron beam. Epithermal neutron beam enables development across the full spectrum of materials research for example shielding concrete tests or electronic devices construction improvement. Due to recent reports on the construction of the accelerator for the Boron Neutron Capture Therapy (BNCT) it has the opportunity to become useful and successful method in the fight against brain and other types of cancers not treated with well known medical methods. In Europe there is no such epithermal neutron source which could be used throughout the year for training and research for scientist working on BNCT what makes the stand unique in Europe. Also our research group which specializes in mixed radiation dosimetry around nuclear and medical facilities would be able to carry out research on new detectors and methods of measurements for radiological protection and in-beam (therapeutic) dosimetry. Another group of scientists from National Centre for Nuclear Research, where MARIA research reactor is located, is involved in research of gamma detector systems. There is an idea to develop Prompt-gamma Single Photon Emission Computed Tomography (Pg- SPECT). This method could be used as imaging system for compounds emitting gamma rays after nuclear reaction with thermal neutrons e.g. for boron concentration in BNCT. Inside the room, where H2 channel is located, there is another horizontal channel - H1 which is also unused. Simultaneously with the construction of the H2 stand it will be possible to create special pneumatic horizontal mail inside the H1 channel for irradiation material samples in the vicinity of the core i.e. in the distal part of the H1 channel. It might expand the scope of research at the planned neutron station. Secondly it is planned to equip both stands with moveable positioning system, video system and facilities to perform animal experiments (anaesthesia, vital signs control, imaging devices, positioning). These all above make constructed station unique in the world (uranium fission converter-based beam) and the only one of such intense neutron beam in the Europe. Moreover implementation of the station would allow the development of research on a number of issues for researchers from all over the Europe. One of very important advantages of the station is undisturbed exploitation of the reactor and other vertical and horizontal channels. MARIA reactor operates 6000 hours per year and that amount of time will be achievable for research on the neutron station. It have to be underlined that new neutron station will work parallel to all another ventures. (authors)« less

  2. The present situations and perspectives on utilization of research reactors in Thailand

    NASA Astrophysics Data System (ADS)

    Chongkum, Somporn

    2002-01-01

    The Thai Research Reactor 1/Modification 1, a TRIGA Mark III reactor, went critical on November 7, 1977. It has been playing a central role in the development of both Office of Atomic Energy for Peace (OAEP) and nuclear application in Thailand. It has a maximum power of 2 MW (thermal) at steady state and a pulsing capacity of 2000 MW. The highest thermal neutron flux at a central thimber is 1×10 13 n/cm 2/s, which is extensively utilized for radioisotope production, neutron activation analysis and neutron beam experiments, i.e. neutron scattering, prompt gamma analysis and neutron radiography. Following the nuclear technological development, the OAEP is in the process of establishing the Ongkharak Nuclear Research Center (ONRC). The center is being built in Nakhon Nayok province, 60 km northeast of Bangkok. The centerpiece of the ONRC is a multipurpose 10 MW TRIGA research reactor. Facilities are included for the production of radioisotopes for medicine, industry and agriculture, neutron transmutation doping of silicon, and neutron capture therapy. The neutron beam facilities will also be utilized for applied research and technology development as well as training in reactor operations, performance of experiments and reactor physics. This paper describes a recent program of utilization as well as a new research reactor for enlarging the perspectives of its utilization in the future.

  3. Experimental determination of neutron lifetimes through macroscopic neutron noise in the IPEN/MB-01 reactor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gonnelli, Eduardo; Diniz, Ricardo

    2013-05-06

    The neutron lifetimes of the core, reflector, and global were experimentally obtained through macroscopic neutron noise in the IPEN/MB-01 reactor for five levels of subcriticality. The theoretical Auto Power Spectral Densities were derived by point kinetic equations taking the reflector effect into account, and one of the approaches consider an additional group of delayed neutrons.

  4. TOPAZ-2 reactor distribution during descent in the atmosphere and at the impact with the Earth surface

    NASA Astrophysics Data System (ADS)

    Grinberg, Eduard I.; Nikolaev, Vadim S.; Sokolov, Nikolai A.; Doschatov, Vitaly V.; Usov, Veniamin A.; Gulidov, Aleksander I.

    1995-01-01

    The paper presents results of more accurate computational analysis of the TOPAZ-2 system reactor core aerodynamic disruption at an inadvertent reentry. Given are preliminary results on the pattern of disruption of the core partially burnt during its descent in the atmosphere at its impact on the surface of water and sandstone (medium density concrete).

  5. Efficiency improvement of an antibody production process by increasing the inoculum density.

    PubMed

    Hecht, Volker; Duvar, Sevim; Ziehr, Holger; Burg, Josef; Jockwer, Alexander

    2014-01-01

    Increasing economic pressure is the main driving force to enhance the efficiency of existing processes. We developed a perfusion strategy for a seed train reactor to generate a higher inoculum density for a subsequent fed batch production culture. A higher inoculum density can reduce culture duration without compromising product titers. Hence, a better capacity utilization can be achieved. The perfusion strategy was planned to be implemented in an existing large scale antibody production process. Therefore, facility and process constraints had to be considered. This article describes the initial development steps. Using a proprietary medium and a Chinese hamster ovary cell line expressing an IgG antibody, four different cell retention devices were compared in regard to retention efficiency and reliability. Two devices were selected for further process refinement, a centrifuge and an inclined gravitational settler. A concentrated feed medium was developed to meet facility constraints regarding maximum accumulated perfundate volume. A 2-day batch phase followed by 5 days of perfusion resulted in cell densities of 1.6 × 10(10) cells L(-1) , a 3.5 fold increase compared to batch cultivations. Two reactor volumes of concentrated feed medium were needed to achieve this goal. Eleven cultivations were carried out in bench and 50 L reactors showing acceptable reproducibility and ease of scale up. In addition, it was shown that at least three perfusion phases can be combined within a repeated perfusion strategy. © 2014 American Institute of Chemical Engineers.

  6. GRAFEC: A New Spanish Program to Investigate Waste Management Options for Radioactive Graphite - 12399

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marquez, Eva; Pina, Gabriel; Rodriguez, Marina

    Spain has to manage about 3700 tons of irradiated graphite from the reactor Vandellos I as radioactive waste. 2700 tons are the stack of the reactor and are still in the reactor core waiting for retrieval. The rest of the quantities, 1000 tons, are the graphite sleeves which have been already retrieved from the reactor. During operation the graphite sleeves were stored in a silo and during the dismantling stage a retrieval process was carried out separating the wires from the graphite, which were crushed and introduced into 220 cubic containers of 6 m{sup 3} each and placed in interimmore » storage. The graphite is an intermediate level radioactive waste but it contains long lived radionuclides like {sup 14}C which disqualifies disposal at the low level waste repository of El Cabril. Therefore, a new project has been started in order to investigate two new options for the management of this waste type. The first one is based on a selective decontamination of {sup 14}C by thermal methods. This method is based on results obtained at the Research Centre Juelich (FZJ) in the Frame of the EC programs 'Raphael' and 'Carbowaste'. The process developed at FZJ is based on a preferential oxidation of {sup 14}C in comparison to the bulk {sup 12}C. Explanations for this effect are the inhomogeneous distribution and a weaker bounding of {sup 14}C which is not incorporated in the graphite lattice. However these investigations have only been performed with graphite from the high temperature reactor Arbeitsgemeinschaft Versuchsreaktor Juelich AVR which has been operated in a non-oxidising condition or research reactor graphite operated at room temperature. The reactor Vandellos I has been operated with CO{sub 2} as coolant and significant amounts of graphite have been already oxidised. The aim of the project is to validate whether a {sup 14}C decontamination can also been achieved with graphite from Vandellos I. A second possibility under investigation is the encapsulation of the graphite in a long term stable glass matrix. The principal applicability has been already proved by FNAG. Crushed graphite mixed with a suitable glass powder has been pressed at elevated temperature under vacuum. The vacuum is required to avoid gas enclosures in the obtained product. The obtained products, named IGM for 'Impermeable Graphite Matrix', have densities above 99% of theoretical density. The amount of glass has been chosen with respect to the pore volume of the former graphite parts. The method allows the production of encapsulated graphite without increasing the disposal volume. This paper will give a short overview of characterisation results of different irradiated graphite materials obtained at CIEMAT and in the Carbowaste project as well as the proposed methods and the actual status of the program including first results about leaching of non-radioactive IGM samples and hopefully first tendencies concerning the C-14 separation from graphite of Vandellos I by thermal treatment. Both processes, the thermal treatment as well as the IGM, have the potential to solve problems related to the management of irradiated graphite in Spain. However the methods have only been tested with different types of i-graphite and virgin graphite, respectively. Only investigations with real i-graphite from Spain will reveal whether the described methods are applicable to graphite from Vandellos I. However all partners are convinced that one of these new methods or a combination of them will lead to a feasible option to manage i-graphite in Spain on an industrial scale. (authors)« less

  7. Low-power lead-cooled fast reactor loaded with MOX-fuel

    NASA Astrophysics Data System (ADS)

    Sitdikov, E. R.; Terekhova, A. M.

    2017-01-01

    Fast reactor for the purpose of implementation of research, education of undergraduate and doctoral students in handling innovative fast reactors and training specialists for atomic research centers and nuclear power plants (BRUTs) was considered. Hard neutron spectrum achieved in the fast reactor with compact core and lead coolant. Possibility of prompt neutron runaway of the reactor is excluded due to the low reactivity margin which is less than the effective fraction of delayed neutrons. The possibility of using MOX fuel in the BRUTs reactor was examined. The effect of Keff growth connected with replacement of natural lead coolant to 208Pb coolant was evaluated. The calculations and reactor core model were performed using the Serpent Monte Carlo code.

  8. Microfluidic platform for studying the electrochemical reduction of carbon dioxide

    NASA Astrophysics Data System (ADS)

    Whipple, Devin Talmage

    Diminishing supplies of conventional energy sources and growing concern over greenhouse gas emissions present significant challenges to supplying the world's rapidly increasing demand for energy. The electrochemical reduction of carbon dioxide has the potential to address many of these issues by providing a means of storing electricity in chemical form. Storing electrical energy as chemicals is beneficial for leveling the output of clean, but intermittent renewable energy sources such as wind and solar. Electrical energy stored as chemicals can also be used as carbon neutral fuels for portable applications allowing petroleum derived fuels in the transportation sector to be replaced by more environmentally friendly energy sources. However, to be a viable technology, the electrochemical reduction of carbon dioxide needs to have both high current densities and energetic efficiencies (Chapter 1). Although many researchers have studied the electrochemical reduction of CO2 including parameters such as catalysts, electrolytes and temperature, further investigation is needed to improve the understanding of this process and optimize the performance (Chapter 2). This dissertation reports the development and validation of a microfluidic reactor for the electrochemical reduction of CO2 (Chapter 3). The design uses a flowing liquid electrolyte instead of the typical polymer electrolyte membrane. In addition to other benefits, this flowing electrolyte gives the reactor great flexibility, allowing independent analysis of each electrode and the testing of a wide variety of conditions. In this work, the microfluidic reactor has been used in the following areas: • Comparison of different metal catalysts for the reduction of CO2 to formic acid and carbon monoxide (Chapter 4). • Investigation of the effects of the electrolyte pH on the reduction of CO2 to formic acid and carbon monoxide (Chapter 5). • Study of amine based electrolytes for lowering the overpotentials for CO2 reduction and suppressing undesirable hydrogen evolution (Chapter 6). • Investigation of the effects of reaction temperature on the Faradaic efficiency and current density for CO2 reduction on several catalysts (Chapter 7). These studies demonstrate the utility of this flexible reactor design and provide increased understanding of the electrochemical reduction of CO2 and the critical parameters for optimization of this process.

  9. Preparation of dielectric coating of variable dielectric constant by plasma polymerization

    NASA Technical Reports Server (NTRS)

    Hudis, M.; Wydeven, T. (Inventor)

    1979-01-01

    A plasma polymerization process for the deposition of a dielectric polymer coating on a substrate comprising disposing of the substrate in a closed reactor between two temperature controlled electrodes connected to a power supply is presented. A vacuum is maintained within the closed reactor, causing a monomer gas or gas mixture of a monomer and diluent to flow into the reactor, generating a plasma between the electrodes. The vacuum varies and controls the dielectric constant of the polymer coating being deposited by regulating the gas total and partial pressure, the electric field strength and frequency, and the current density.

  10. Stabilization of burn conditions in a thermonuclear reactor using artificial neural networks

    NASA Astrophysics Data System (ADS)

    Vitela, Javier E.; Martinell, Julio J.

    1998-02-01

    In this work we develop an artificial neural network (ANN) for the feedback stabilization of a thermonuclear reactor at nearly ignited burn conditions. A volume-averaged zero-dimensional nonlinear model is used to represent the time evolution of the electron density, the relative density of alpha particles and the temperature of the plasma, where a particular scaling law for the energy confinement time previously used by other authors, was adopted. The control actions include the concurrent modulation of the D-T refuelling rate, the injection of a neutral He-4 beam and an auxiliary heating power modulation, which are constrained to take values within a maximum and minimum levels. For this purpose a feedforward multilayer artificial neural network with sigmoidal activation function is trained using a back-propagation through-time technique. Numerical examples are used to illustrate the behaviour of the resulting ANN-dynamical system configuration. It is concluded that the resulting ANN can successfully stabilize the nonlinear model of the thermonuclear reactor at nearly ignited conditions for temperature and density departures significantly far from their nominal operating values. The NN-dynamical system configuration is shown to be robust with respect to the thermalization time of the alpha particles for perturbations within the region used to train the NN.

  11. Multiparameter measurement utilizing poloidal polarimeter for burning plasma reactor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Imazawa, Ryota; Kawano, Yasunori; Itami, Kiyoshi

    2014-08-21

    The authors have made the basic and applied research on the polarimeter for plasma diagnostics. Recently, the authors have proposed an application of multiparameter measurement (magnetic field, B, electron density, n{sub e}, electron temperature, T{sub e}, and total plasma current, I{sub p}) utilizing polarimeter to future fusion reactors. In this proceedings, the brief review of the polarimeter, the principle of the multiparameter measurement and the progress of the research on the multiparameter measurement are explained. The measurement method that the authors have proposed is suitable for the reactor for the following reasons; multiparameters can be obtained from a small numbermore » of diagnostics, the proposed method does not depend on time-history, and far-infrared light utilized by the polarimeter is less sensitive to degradation of of optical components. Taking into account the measuring error, performance assessment of the proposed method was carried. Assuming that the error of Δθ and Δε were 0.1° and 0.6°, respectively, the error of reconstructed j{sub φ}, n{sub e} and T{sub e} were 12 %, 8.4 % and 31 %, respectively. This study has shown that the reconstruction error can be decreased by increasing the number of the wavelength of the probing laser and by increasing the number of the viewing chords. For example, By increasing the number of viewing chords to forty-five, the error of j{sub φ}, n{sub e} and T{sub e} were reduced to 4.4 %, 4.4 %, and 17 %, respectively.« less

  12. Impact investigation of reactor fuel operating parameters on reactivity for use in burnup credit applications

    NASA Astrophysics Data System (ADS)

    Sloma, Tanya Noel

    When representing the behavior of commercial spent nuclear fuel (SNF), credit is sought for the reduced reactivity associated with the net depletion of fissile isotopes and the creation of neutron-absorbing isotopes, a process that begins when a commercial nuclear reactor is first operated at power. Burnup credit accounts for the reduced reactivity potential of a fuel assembly and varies with the fuel burnup, cooling time, and the initial enrichment of fissile material in the fuel. With regard to long-term SNF disposal and transportation, tremendous benefits, such as increased capacity, flexibility of design and system operations, and reduced overall costs, provide an incentive to seek burnup credit for criticality safety evaluations. The Nuclear Regulatory Commission issued Interim Staff Guidance 8, Revision 2 in 2002, endorsing burnup credit of actinide composition changes only; credit due to actinides encompasses approximately 30% of exiting pressurized water reactor SNF inventory and could potentially be increased to 90% if fission product credit were accepted. However, one significant issue for utilizing full burnup credit, compensating for actinide and fission product composition changes, is establishing a set of depletion parameters that produce an adequately conservative representation of the fuel's isotopic inventory. Depletion parameters can have a significant effect on the isotopic inventory of the fuel, and thus the residual reactivity. This research seeks to quantify the reactivity impact on a system from dominant depletion parameters (i.e., fuel temperature, moderator density, burnable poison rod, burnable poison rod history, and soluble boron concentration). Bounding depletion parameters were developed by statistical evaluation of a database containing reactor operating histories. The database was generated from summary reports of commercial reactor criticality data. Through depletion calculations, utilizing the SCALE 6 code package, several light water reactor assembly designs and in-core locations are analyzed in establishing a combination of depletion parameters that conservatively represent the fuel's isotopic inventory as an initiative to take credit for fuel burnup in criticality safety evaluations for transportation and storage of SNF.

  13. 10 CFR 171.3 - Scope.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... holding an operating license for a power reactor, test reactor or research reactor issued under part 50 of... authorizes operation of a power reactor. The regulations in this part also apply to any person holding a...

  14. Modeling residence-time distribution in horizontal screw hydrolysis reactors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sievers, David A.; Stickel, Jonathan J.

    The dilute-acid thermochemical hydrolysis step used in the production of liquid fuels from lignocellulosic biomass requires precise residence-time control to achieve high monomeric sugar yields. Difficulty has been encountered reproducing residence times and yields when small batch reaction conditions are scaled up to larger pilot-scale horizontal auger-tube type continuous reactors. A commonly used naive model estimated residence times of 6.2-16.7 min, but measured mean times were actually 1.4-2.2 the estimates. Here, this study investigated how reactor residence-time distribution (RTD) is affected by reactor characteristics and operational conditions, and developed a method to accurately predict the RTD based on key parameters.more » Screw speed, reactor physical dimensions, throughput rate, and process material density were identified as major factors affecting both the mean and standard deviation of RTDs. The general shape of RTDs was consistent with a constant value determined for skewness. The Peclet number quantified reactor plug-flow performance, which ranged between 20 and 357.« less

  15. Current and future trends for biofilm reactors for fermentation processes.

    PubMed

    Ercan, Duygu; Demirci, Ali

    2015-03-01

    Biofilms in the environment can both cause detrimental and beneficial effects. However, their use in bioreactors provides many advantages including lesser tendencies to develop membrane fouling and lower required capital costs, their higher biomass density and operation stability, contribution to resistance of microorganisms, etc. Biofilm formation occurs naturally by the attachment of microbial cells to the support without use of any chemicals agent in biofilm reactors. Biofilm reactors have been studied and commercially used for waste water treatment and bench and pilot-scale production of value-added products in the past decades. It is important to understand the fundamentals of biofilm formation, physical and chemical properties of a biofilm matrix to run the biofilm reactor at optimum conditions. This review includes the principles of biofilm formation; properties of a biofilm matrix and their roles in the biofilm formation; factors that improve the biofilm formation, such as support materials; advantages and disadvantages of biofilm reactors; and industrial applications of biofilm reactors.

  16. Modeling residence-time distribution in horizontal screw hydrolysis reactors

    DOE PAGES

    Sievers, David A.; Stickel, Jonathan J.

    2017-10-12

    The dilute-acid thermochemical hydrolysis step used in the production of liquid fuels from lignocellulosic biomass requires precise residence-time control to achieve high monomeric sugar yields. Difficulty has been encountered reproducing residence times and yields when small batch reaction conditions are scaled up to larger pilot-scale horizontal auger-tube type continuous reactors. A commonly used naive model estimated residence times of 6.2-16.7 min, but measured mean times were actually 1.4-2.2 the estimates. Here, this study investigated how reactor residence-time distribution (RTD) is affected by reactor characteristics and operational conditions, and developed a method to accurately predict the RTD based on key parameters.more » Screw speed, reactor physical dimensions, throughput rate, and process material density were identified as major factors affecting both the mean and standard deviation of RTDs. The general shape of RTDs was consistent with a constant value determined for skewness. The Peclet number quantified reactor plug-flow performance, which ranged between 20 and 357.« less

  17. Buoyancy Driven Coolant Mixing Studies of Natural Circulation Flows at the ROCOM Test Facility Using ANSYS CFX

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hohne, Thomas; Kliem, Soren; Rohde, Ulrich

    2006-07-01

    Coolant mixing in the cold leg, downcomer and the lower plenum of pressurized water reactors is an important phenomenon mitigating the reactivity insertion into the core. Therefore, mixing of the de-borated slugs with the ambient coolant in the reactor pressure vessel was investigated at the four loop 1:5 scaled ROCOM mixing test facility. Thermal hydraulics analyses showed, that weakly borated condensate can accumulate in particular in the pump loop seal of those loops, which do not receive safety injection. After refilling of the primary circuit, natural circulation in the stagnant loops can re-establish simultaneously and the de-borated slugs are shiftedmore » towards the reactor pressure vessel (RPV). In the ROCOM experiments, the length of the flow ramp and the initial density difference between the slugs and the ambient coolant was varied. From the test matrix experiments with 0 resp. 2% density difference between the de-borated slugs and the ambient coolant were used to validate the CFD software ANSYS CFX. To model the effects of turbulence on the mean flow a higher order Reynolds stress turbulence model was employed and a mesh consisting of 6.4 million hybrid elements was utilized. Only the experiments and CFD calculations with modeled density differences show a stratification in the downcomer. Depending on the degree of density differences the less dense slugs flow around the core barrel at the top of the downcomer. At the opposite side the lower borated coolant is entrained by the colder safety injection water and transported to the core. The validation proves that ANSYS CFX is able to simulate appropriately the flow field and mixing effects of coolant with different densities. (authors)« less

  18. Developing the science and technology for the Material Plasma Exposure eXperiment

    NASA Astrophysics Data System (ADS)

    Rapp, J.; Biewer, T. M.; Bigelow, T. S.; Caneses, J. F.; Caughman, J. B. O.; Diem, S. J.; Goulding, R. H.; Isler, R. C.; Lumsdaine, A.; Beers, C. J.; Bjorholm, T.; Bradley, C.; Canik, J. M.; Donovan, D.; Duckworth, R. C.; Ellis, R. J.; Graves, V.; Giuliano, D.; Green, D. L.; Hillis, D. L.; Howard, R. H.; Kafle, N.; Katoh, Y.; Lasa, A.; Lessard, T.; Martin, E. H.; Meitner, S. J.; Luo, G.-N.; McGinnis, W. D.; Owen, L. W.; Ray, H. B.; Shaw, G. C.; Showers, M.; Varma, V.; the MPEX Team

    2017-11-01

    Linear plasma generators are cost effective facilities to simulate divertor plasma conditions of present and future fusion reactors. They are used to address important R&D gaps in the science of plasma material interactions and towards viable plasma facing components for fusion reactors. Next generation plasma generators have to be able to access the plasma conditions expected on the divertor targets in ITER and future devices. The steady-state linear plasma device MPEX will address this regime with electron temperatures of 1-10 eV and electron densities of 1021{\\text{}}-1020 m-3 . The resulting heat fluxes are about 10 MW m-2 . MPEX is designed to deliver those plasma conditions with a novel Radio Frequency plasma source able to produce high density plasmas and heat electron and ions separately with electron Bernstein wave (EBW) heating and ion cyclotron resonance heating with a total installed power of 800 kW. The linear device Proto-MPEX, forerunner of MPEX consisting of 12 water-cooled copper coils, has been operational since May 2014. Its helicon antenna (100 kW, 13.56 MHz) and EC heating systems (200 kW, 28 GHz) have been commissioned and 14 MW m-2 was delivered on target. Furthermore, electron temperatures of about 20 eV have been achieved in combined helicon and ECH heating schemes at low electron densities. Overdense heating with EBW was achieved at low heating powers. The operational space of the density production by the helicon antenna was pushed up to 1.1 × 1020 m-3 at high magnetic fields of 1.0 T at the target. The experimental results from Proto-MPEX will be used for code validation to enable predictions of the source and heating performance for MPEX. MPEX, in its last phase, will be capable to expose neutron-irradiated samples. In this concept, targets will be irradiated in ORNL’s High Flux Isotope Reactor and then subsequently exposed to fusion reactor relevant plasmas in MPEX.

  19. Plasma non-uniformity in a symmetric radiofrequency capacitively-coupled reactor with dielectric side-wall: a two dimensional particle-in-cell/Monte Carlo collision simulation

    NASA Astrophysics Data System (ADS)

    Liu, Yue; Booth, Jean-Paul; Chabert, Pascal

    2018-02-01

    A Cartesian-coordinate two-dimensional electrostatic particle-in-cell/Monte Carlo collision (PIC/MCC) plasma simulation code is presented, including a new treatment of charge balance at dielectric boundaries. It is used to simulate an Ar plasma in a symmetric radiofrequency capacitively-coupled parallel-plate reactor with a thick (3.5 cm) dielectric side-wall. The reactor size (12 cm electrode width, 2.5 cm electrode spacing) and frequency (15 MHz) are such that electromagnetic effects can be ignored. The dielectric side-wall effectively shields the plasma from the enhanced electric field at the powered-grounded electrode junction, which has previously been shown to produce locally enhanced plasma density (Dalvie et al 1993 Appl. Phys. Lett. 62 3207-9 Overzet and Hopkins 1993 Appl. Phys. Lett. 63 2484-6 Boeuf and Pitchford 1995 Phys. Rev. E 51 1376-90). Nevertheless, enhanced electron heating is observed in a region adjacent to the dielectric boundary, leading to maxima in ionization rate, plasma density and ion flux to the electrodes in this region, and not at the reactor centre as would otherwise be expected. The axially-integrated electron power deposition peaks closer to the dielectric edge than the electron density. The electron heating components are derived from the PIC/MCC simulations and show that this enhanced electron heating results from increased Ohmic heating in the axial direction as the electron density decreases towards the side-wall. We investigated the validity of different analytical formulas to estimate the Ohmic heating by comparing them to the PIC results. The widespread assumption that a time-averaged momentum transfer frequency, v m , can be used to estimate the momentum change can cause large errors, since it neglects both phase and amplitude information. Furthermore, the classical relationship between the total electron current and the electric field must be used with caution, particularly close to the dielectric edge where the (neglected) pressure gradient term becomes significant.

  20. Application of a rotating impeller anode in a bioelectrochemical anaerobic digestion reactor for methane production from high-strength food waste.

    PubMed

    Park, Jungyu; Lee, Beom; Shin, Wonbeom; Jo, Sangyeol; Jun, Hangbae

    2018-07-01

    In this study, a practical bioelectrochemical anaerobic digestion (BEAD) reactor equipped with a rotating STS304 impeller was tested to verify its methane production performance. Methane production in the BEAD reactor was possible without accumulation of volatile fatty acids (VFAs) and decreases in pH at high organic loading rates (OLRs) up to 6 kg-COD/m 3 ·d (COD: chemical oxygen demand). Methane production in a BEAD-O (open circuit) reactor was inhibited at OLRs above 4 kg-COD/m 3 ·d; however, the performance could be recovered bioelectrochemically by supplying voltage. The population density of hydrogenotrophic methanogens increased to 73.3% in the BEAD-C (closed circuit) reactor, even at high OLRs, through the removal of VFAs and conversion of hydrogen to methane. The energy efficiency in the BEAD-C reactor was 85.6%, indicating that the commercialization of BEAD reactors equipped with rotating STS304 impeller electrodes is possible. Copyright © 2018 Elsevier Ltd. All rights reserved.

  1. Full scale fluidized bed anaerobic reactor for domestic wastewater treatment: performance, sludge production and biofilm.

    PubMed

    Mendonça, N M; Niciura, C L; Gianotti, E P; Campos, J R

    2004-01-01

    This paper describes the performance, sludge production and biofilm characteristics of a full scale fluidized bed anaerobic reactor (32 m3) for domestic wastewater treatment. The reactor was operated with 10.5 m x h(-1) upflow velocity, 3.2 h hydraulic retention time, and recirculation ratio of 0.85 and it presented removal efficiencies of 71+/-8% of COD and 77+/-14% of TSS. During the apparent steady-state period, specific sludge production and sludge age in the reactor were (0.116+/-0.033) kgVSS. kgCOD(-1) and (12+/-5)d, respectively. Biofilm formed in the reactor presented two different patterns: one of them at the beginning of the colonization and the other of mature biofilm. These different colonization patterns are due to bed stratification in the reactor, caused by the difference in local-energy dissipation rates along the reactor's height, and density, shape, etc. of the bioparticles. The biofilm population is formed mainly of syntrophic consortia among sulfate reducing bacteria, methanogenic archaea such as Methanobacterium and Methanosaeta-like cells.

  2. 10 CFR 725.15 - Requirements for approval of applications.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... Secret Restricted Data in C-91, Nuclear Reactors for Rocket Propulsion, will be approved only if the... capable of making a contribution to research and development in the field of nuclear reactors for rocket... the field of nuclear reactors for rocket propulsion preparatory to the submission of a research and...

  3. 10 CFR 725.15 - Requirements for approval of applications.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... Secret Restricted Data in C-91, Nuclear Reactors for Rocket Propulsion, will be approved only if the... capable of making a contribution to research and development in the field of nuclear reactors for rocket... the field of nuclear reactors for rocket propulsion preparatory to the submission of a research and...

  4. 10 CFR 725.15 - Requirements for approval of applications.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... Secret Restricted Data in C-91, Nuclear Reactors for Rocket Propulsion, will be approved only if the... capable of making a contribution to research and development in the field of nuclear reactors for rocket... the field of nuclear reactors for rocket propulsion preparatory to the submission of a research and...

  5. Corrosion Evaluation of RERTR Uranium Molybdenum Fuel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    A K Wertsching

    2012-09-01

    As part of the National Nuclear Security Agency (NNSA) mandate to replace the use of highly enriched uranium (HEU) fuel for low enriched uranium (LEU) fuel, research into the development of LEU fuel for research reactors has been active since the late 1970’s. Originally referred to as the Reduced Enrichment for Research and Test Reactor (RERTR) program the new effort named Global Threat Reduction Initiative (GTRI) is nearing the goal of replacing the standard aluminum clad dispersion highly enriched uranium aluminide fuel with a new LEU fuel. The five domestic high performance research reactors undergoing this conversion are High Fluxmore » Isotope reactor (HFIR), Advanced Test Reactor (ATR), National Institute of Standards and Technology (NIST) Reactor, Missouri University Research Reactor (MURR) and the Massachusetts Institute of Technology Reactor II (MITR-II). The design of these reactors requires a higher neutron flux than other international research reactors, which to this point has posed unique challenges in the design and development of the new mandated LEU fuel. The new design utilizes a monolithic fuel configuration in order to obtain sufficient 235U within the LEU stoichoimetry to maintain the fission reaction within the domestic test reactors. The change from uranium aluminide dispersion fuel type to uranium molybdenum (UMo) monolithic configuration requires examination of possible corrosion issues associated with the new fuel meat. A focused analysis of the UMo fuel under potential corrosion conditions, within the ATR and under aqueous storage indicates a slow and predictable corrosion rate. Additional corrosion testing is recommended for the highest burn-up fuels to confirm observed corrosion rate trends. This corrosion analysis will focus only on the UMo fuel and will address corrosion of ancillary components such as cladding only in terms of how it affects the fuel. The calculations and corrosion scenarios are weighted with a conservative bias to provide additional confidence with the results. The actual corrosion rates of UMo fuel is very likely to be lower than assumed within this report which can be confirmed with additional testing.« less

  6. Monitoring system for a liquid-cooled nuclear fission reactor

    DOEpatents

    DeVolpi, Alexander

    1987-01-01

    A monitoring system for detecting changes in the liquid levels in various regions of a water-cooled nuclear power reactor, viz., in the downcomer, in the core, in the inlet and outlet plenums, at the head, and elsewhere; and also for detecting changes in the density of the liquid in these regions. A plurality of gamma radiation detectors are used, arranged vertically along the outside of the reactor vessel, and collimator means for each detector limits the gamma-radiation it receives as emitting from only isolated regions of the vessel. Excess neutrons produced by the fission reaction will be captured by the water coolant, by the steel reactor walls, or by the fuel or control structures in the vessel. Neutron capture by steel generates gamma radiation having an energy level of the order of 5-12 MeV, whereas neutron capture by water provides an energy level of approximately 2.2 MeV, and neutron capture by the fission fuel or its cladding provides an energy level of 1 MeV or less. The intensity of neutron capture thus changes significantly at any water-metal interface. Comparative analysis of adjacent gamma detectors senses changes from the normal condition with liquid coolant present to advise of changes in the presence and/or density of the coolant at these specific regions. The gamma detectors can also sense fission-product gas accumulation at the reactor head to advise of a failure of fuel-pin cladding.

  7. Rapid recovery of dilute copper from a simulated Cu-SDS solution with low-cost steel wool cathode reactor.

    PubMed

    Chang, Shih-Hsien; Wang, Kai-Sung; Hu, Pei-I; Lui, I-Chun

    2009-04-30

    Copper-surfactant wastewaters are often encountered in electroplating, printed circuit boards manufacturing, and metal finishing industries, as well as in retentates from micellar-enhanced ultrafiltration process. A low-cost three-dimensional steel wool cathode reactor was evaluated for electrolytic recovery of Cu ion from dilute copper solution (0.2mM) in the presence of sodium dodecyl sulfate (SDS), octylphenol poly (ethyleneglycol) 9.5 ether (TX), nonylphenol poly (oxyethylene) 9 ether (NP9) and polyoxyethylene (20) sorbitan monooleate (TW) and also mixed surfactants (anionic/nonionic). The reactor showed excellent copper recovery ability in comparison to a parallel-plate reactor. The reactor rapidly recovered copper with a reasonable current efficiency. 93% of copper was recovered at current density of 1 A m(-2) and pH 4 in the presence of 8.5mM SDS. Initial solution pH, cathodic current density, solution mixing condition, SDS concentration, and initial copper concentrations significantly influenced copper recovery. The copper recovery rate increased with an increase in aqueous SDS concentrations between 5 and 8.5mM. The influences of nonionic surfactants on Cu recovery from SDS-Cu solution depended not only on the type of surfactants used, but also on applied concentrations. From the copper recovery perspective, TX at 0.1mM or NP should be selected rather than TW, because they did not inhibit copper recovery from SDS-Cu solution.

  8. Ichthyoplankton entrainment study at the SRS Savannah River water intakes for Westinghouse Savannah River Company. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Paller, M.

    1992-03-26

    Cooling water for L and K Reactors and makeup water for Par Pond is pumped from the Savannah River at the 1G, 3G, and 5G pump houses. Ichthyoplankton (drifting fish larvae and eggs) from the river are entrained into the reactor cooling systems with the river water and passed through the reactor`s heat exchangers where temperatures may reach 70{degrees}C during full power operation. Ichthyoplankton mortality under such conditions is assumed to be 100 percent. The number of ichthyoplankton entrained into the cooling system depends on a variety of variables, including time of year, density and distribution of ichthyoplankton in themore » river, discharge levels in the river, and the volume of water withdrawn by the pumps. Entrainment at the 1 G pump house, which is immediately downstream from the confluence of Upper Three Runs Creek and the Savannah River, is also influenced by discharge rates and ichthyoplankton densities in Upper Three Runs Creek. Because of the anticipated restart of several SRS reactors and the growing concern surrounding striped bass and American shad stocks in the Savannah River, the Department of Energy requested that the Environmental Sciences Section (ESS) of the Savannah River Laboratory sample ichthyoplankton at the SRS Savannah River intakes. Dams & Moore, Inc., under a contract with Westinghouse Savannah River Company performed the sampling and data analysis for the ESS.« less

  9. Predictions of ion energy distributions and radical fluxes in radio frequency biased inductively coupled plasma etching reactors

    NASA Astrophysics Data System (ADS)

    Hoekstra, Robert J.; Kushner, Mark J.

    1996-03-01

    Inductively coupled plasma (ICP) reactors are being developed for low gas pressure (<10s mTorr) and high plasma density ([e]≳1011 cm-3) microelectronics fabrication. In these reactors, the plasma is generated by the inductively coupled electric field while an additional radio frequency (rf) bias is applied to the substrate. One of the goals of these systems is to independently control the magnitude of the ion flux by the inductively coupled power deposition, and the acceleration of ions into the substrate by the rf bias. In high plasma density reactors the width of the sheath above the wafer may be sufficiently thin that ions are able to traverse it in approximately 1 rf cycle, even at 13.56 MHz. As a consequence, the ion energy distribution (IED) may have a shape typically associated with lower frequency operation in conventional reactive ion etching tools. In this paper, we present results from a computer model for the IED incident on the wafer in ICP etching reactors. We find that in the parameter space of interest, the shape of the IED depends both on the amplitude of the rf bias and on the ICP power. The former quantity determines the average energy of the IED. The latter quantity controls the width of the sheath, the transit time of ions across the sheath and hence the width of the IED. In general, high ICP powers (thinner sheaths) produce wider IEDs.

  10. Nuclear Reactor Physics

    NASA Astrophysics Data System (ADS)

    Stacey, Weston M.

    2001-02-01

    An authoritative textbook and up-to-date professional's guide to basic and advanced principles and practices Nuclear reactors now account for a significant portion of the electrical power generated worldwide. At the same time, the past few decades have seen an ever-increasing number of industrial, medical, military, and research applications for nuclear reactors. Nuclear reactor physics is the core discipline of nuclear engineering, and as the first comprehensive textbook and reference on basic and advanced nuclear reactor physics to appear in a quarter century, this book fills a large gap in the professional literature. Nuclear Reactor Physics is a textbook for students new to the subject, for others who need a basic understanding of how nuclear reactors work, as well as for those who are, or wish to become, specialists in nuclear reactor physics and reactor physics computations. It is also a valuable resource for engineers responsible for the operation of nuclear reactors. Dr. Weston Stacey begins with clear presentations of the basic physical principles, nuclear data, and computational methodology needed to understand both the static and dynamic behaviors of nuclear reactors. This is followed by in-depth discussions of advanced concepts, including extensive treatment of neutron transport computational methods. As an aid to comprehension and quick mastery of computational skills, he provides numerous examples illustrating step-by-step procedures for performing the calculations described and chapter-end problems. Nuclear Reactor Physics is a useful textbook and working reference. It is an excellent self-teaching guide for research scientists, engineers, and technicians involved in industrial, research, and military applications of nuclear reactors, as well as government regulators who wish to increase their understanding of nuclear reactors.

  11. 40 CFR 52.375 - Certification of no sources.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... of High-density Polyethylene and Polypropylene Resins. (e) Synthetic organic chemical manufacturing industry (SOCMI) distillation. (f) Synthetic organic chemical manufacturing industry (SOCMI) reactor...

  12. Electrochemical treatment of pharmaceutical wastewater by combining anodic oxidation with ozonation.

    PubMed

    Menapace, Hannes M; Diaz, Nicolas; Weiss, Stefan

    2008-07-01

    Wastewater effluents from sewage treatment plants (STP) are important point sources for residues of pharmaceuticals and complexing agents in the aquatic environment. For this reason a research project, which started in December 2006, was established to eliminate pharmaceutical substances and complexing agents found in wastewater as micropollutants. For the treatment process a combination of anodic oxidation by boron-doped diamond (BDD) electrodes and ozonation is examined and presented. For the ozone production a non-conventional, separate reactor was used, in which ozone was generated by electrolysis with diamond electrodes For the determination of the achievable remediation rates four complexing agents (e.g., EDTA, NTA) and eight pharmaceutical substances (e.g., diazepam, carbamazepin) were analyzed in several test runs under different conditions (varied flux, varied current density for the diamond electrode and the ozone producing electrode of the ozone generator, different packing materials for the column in the ozone injection system). The flowrates of the treated water samples were varied from 3 L/h up to 26 L/h. For the anodic oxidation the influence of the current density was examined in the range between 22.7 and 45.5 mA/cm(2), for the ozone producing reactor two densities (1.8 a/cm(2) and 2.0 A/cm(2)) were tested. Matrix effects were investigated by test runs with samples from the effluent of an STP and synthetic waste water. Therefore the impact of the organic material in the samples could be determined by the comparison of the redox potential and the achievable elimination rates of the investigated substances. Comparing both technologies anodic oxidation seems to be superior to ozonation in each investigated area. With the used technology of anodic oxidation elimination rates up to 99% were reached for the investigated pharmaceutical substances at a current density of 45.5 mA/cm(2) and a maximum sample flux of 26 L/h.

  13. Nuclear Thermal Propulsion: Past, Present, and a Look Ahead

    NASA Technical Reports Server (NTRS)

    Borowski, Stanley K.

    2014-01-01

    NTR: High thrust high specific impulse (2 x LOXLH2 chemical) engine uses high power density fission reactor with enriched uranium fuel as thermal power source. Reactor heat is removed using H2 propellant which is then exhausted to produce thrust. Conventional chemical engine LH2 tanks, turbo pumps, regenerative nozzles and radiation-cooled shirt extensions used -- NTR is next evolutionary step in high performance liquid rocket engines.

  14. FUEL ELEMENT FOR NUCLEAR REACTORS

    DOEpatents

    Bassett, C.H.

    1961-05-16

    A fuel element particularly adapted for use in nuclear reactors of high power density is offered. It has fissionable fuel pellet segments mounted in a tubular housing and defining a central passage in the fuel element. A burnable poison element extends through the central passage, which is designed to contain more poison material at the median portion than at the end portions thereby providing a more uniform hurnup and longer reactivity life.

  15. Production of bio-oil from underutilized forest biomass using an auger reactor

    Treesearch

    H. Ravindran; S. Thangalzhy-Gopakumar; S. Adhikari; O. Fasina; M. Tu; B. Via; E. Carter; S. Taylor

    2015-01-01

    Conversion of underutilized forest biomass to bio-oil could be a niche market for energy production. In this work, bio-oil was produced from underutilized forest biomass at selected temperatures between 425–500°C using an auger reactor. Physical properties of bio-oil, such as pH, density, heating value, ash, and water, were analyzed and compared with an ASTM standard...

  16. Predicting Microbial Fuel Cell Biofilm Communities and Bioreactor Performance using Artificial Neural Networks.

    PubMed

    Lesnik, Keaton Larson; Liu, Hong

    2017-09-19

    The complex interactions that occur in mixed-species bioelectrochemical reactors, like microbial fuel cells (MFCs), make accurate predictions of performance outcomes under untested conditions difficult. While direct correlations between any individual waste stream characteristic or microbial community structure and reactor performance have not been able to be directly established, the increase in sequencing data and readily available computational power enables the development of alternate approaches. In the current study, 33 MFCs were evaluated under a range of conditions including eight separate substrates and three different wastewaters. Artificial Neural Networks (ANNs) were used to establish mathematical relationships between wastewater/solution characteristics, biofilm communities, and reactor performance. ANN models that incorporated biotic interactions predicted reactor performance outcomes more accurately than those that did not. The average percent error of power density predictions was 16.01 ± 4.35%, while the average percent error of Coulombic efficiency and COD removal rate predictions were 1.77 ± 0.57% and 4.07 ± 1.06%, respectively. Predictions of power density improved to within 5.76 ± 3.16% percent error through classifying taxonomic data at the family versus class level. Results suggest that the microbial communities and performance of bioelectrochemical systems can be accurately predicted using data-mining, machine-learning techniques.

  17. Minimizing or eliminating refueling of nuclear reactor

    DOEpatents

    Doncals, Richard A.; Paik, Nam-Chin; Andre, Sandra V.; Porter, Charles A.; Rathbun, Roy W.; Schwallie, Ambrose L.; Petras, Diane S.

    1989-01-01

    Demand for refueling of a liquid metal fast nuclear reactor having a life of 30 years is eliminated or reduced to intervals of at least 10 years by operating the reactor at a low linear-power density, typically 2.5 kw/ft of fuel rod, rather than 7.5 or 15 kw/ft, which is the prior art practice. So that power of the same magnitude as for prior art reactors is produced, the volume of the core is increased. In addition, the height of the core and it diameter are dimensioned so that the ratio of the height to the diameter approximates 1 to the extent practicable considering the requirement of control and that the pressure drop in the coolant shall not be excessive. The surface area of a cylinder of given volume is a minimum if the ratio of the height to the diameter is 1. By minimizing the surface area, the leakage of neutrons is reduced. By reducing the linear-power density, increasing core volume, reducing fissile enrichment and optimizing core geometry, internal-core breeding of fissionable fuel is substantially enhanced. As a result, core operational life, limited by control worth requirements and fuel burnup capability, is extended up to 30 years of continuous power operation.

  18. Summary of ORSphere critical and reactor physics measurements

    NASA Astrophysics Data System (ADS)

    Marshall, Margaret A.; Bess, John D.

    2017-09-01

    In the early 1970s Dr. John T. Mihalczo (team leader), J.J. Lynn, and J.R. Taylor performed experiments at the Oak Ridge Critical Experiments Facility (ORCEF) with highly enriched uranium (HEU) metal (called Oak Ridge Alloy or ORALLOY) to recreate GODIVA I results with greater accuracy than those performed at Los Alamos National Laboratory in the 1950s. The purpose of the Oak Ridge ORALLOY Sphere (ORSphere) experiments was to estimate the unreflected and unmoderated critical mass of an idealized sphere of uranium metal corrected to a density, purity, and enrichment such that it could be compared with the GODIVA I experiments. This critical configuration has been evaluated. Preliminary results were presented at ND2013. Since then, the evaluation was finalized and judged to be an acceptable benchmark experiment for the International Criticality Safety Benchmark Experiment Project (ICSBEP). Additionally, reactor physics measurements were performed to determine surface button worths, central void worth, delayed neutron fraction, prompt neutron decay constant, fission density and neutron importance. These measurements have been evaluated and found to be acceptable experiments and are discussed in full detail in the International Handbook of Evaluated Reactor Physics Benchmark Experiments. The purpose of this paper is to summarize all the evaluated critical and reactor physics measurements evaluations.

  19. Neutron scattering facilities at Chalk River

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Holden, T.M.; Powell, B.M.; Dolling, G.

    1995-12-31

    The Chalk River Laboratories of AECL Research provides neutron beams for research with the NRU reactor. The NRU reactor has eight reactor loops for engineering test experiments, 30 isotope irradiation sites and beam tubes, six of which feed the neutron scattering instruments. The peak thermal flux is 3 {times} 10{sup 14}n cm{sup {minus}2} s{sup {minus}1}. The neutron spectrometers are operated as national facilities for Canadian neutron scattering research. Since the research requirements for the Canadian nuclear industry are changing, and since the NRU reactor is unlikely to operate much beyond the year 2000, a new Irradiation Research Facility (IRF) ismore » being considered for start-up in the first decade of the next century. An outline is given of this proposed new neutron source.« less

  20. THE COOLING REQUIREMENTS AND PROCESS SYSTEMS OF THE SOUTH AFRICAN RESEARCH REACTOR, SAFARI 1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Colley, J.R.

    1962-12-01

    The SAFARI 1 research reactor is cooled and moderated by light water. There are three process systems, a primary water system which cools the reactor core and surroundings, a pool water system, and a secondary water system which removes the heat from the primary and pool systems. The cooling requirements for the reactor core and experimental facilities are outlined, and the cooling and purification functions of the three process systems are described. (auth)

  1. 77 FR 42771 - License Renewal for the Dow Chemical TRIGA Research Reactor

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-07-20

    ... Chemical Company in Midland, MI and is a part of the Analytical Sciences Laboratory. The reactor is housed...-Radiological Impacts The Dow TRIGA Research Reactor core is cooled by a light water primary system consisting... provided by the volume of primary coolant allows several hours of full-power operation without any...

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nygaard, E. T.; Williams, M. M. R.; Angelo, P. L.

    Babcock and Wilcox Technical Services Group (B and W) has identified aqueous homogeneous reactors (AHRs) as a technology well suited to produce the medical isotope molybdenum 99 (Mo-99). AHRs have never been specifically designed or built for this specialized purpose. However, AHRs have a proven history of being safe research reactors. In fact, in 1958, AHRs had 'a longer history of operation than any other type of research reactor using enriched fuel' and had 'experimentally demonstrated to be among the safest of all various type of research reactor now in use [1].' A 'Level 1' model representing B and W'smore » proposed Medical Isotope Production System (MIPS) reactor has been developed. The Level 1 model couples a series of differential equations representing neutronics, temperature, and voiding. Neutronics are represented by point reactor kinetics while temperature and voiding terms are axially varying (one-dimensional). While this model was developed specifically for the MIPS reactor, its applicability to the Japanese TRACY reactor was assessed. The results from the Level 1 model were in good agreement with TRACY experimental data and found to be conservative over most of the time domains considered. The Level 1 model was used to study the MIPS reactor. An analysis showed the Level 1 model agreed well with a more complex computational model of the MIPS reactor (a FETCH model). Finally, a significant reactivity insertion was simulated with the Level 1 model to study the MIPS reactor's time-dependent response. (authors)« less

  3. A new safety channel based on ¹⁷N detection in research reactors.

    PubMed

    Seyfi, Somayye; Gharib, Morteza

    2015-10-01

    Tehran research reactor (TRR) is a representative of pool type research reactors using light water, as coolant and moderator. This reactor is chosen as a prototype to demonstrate and prove the feasibility of (17)N detection as a new redundant channel for reactor power measurement. In TRR, similar to other pool type reactors, neutron detectors are immersed in the pool around the core as the main power measuring devices. In the present article, a different approach, using out of water neutron detector, is employed to measure reactor power. This new method is based on (17)O (n,p) (17)N reaction taking place inside the core and subsequent measurement of delayed neutrons emitted due to (17)N disintegration. Count and measurement of neutrons around outlet water pipe provides a reliable redundant safety channel to measure reactor power. Results compared with other established channels indicate a good agreement and shows a linear interdependency with true thermal power. Safety of reactor operation is improved with installation & use of this new power measuring channel. The new approach may equally serve well as a redundant channel in all other types of reactors having coolant comprised of oxygen in its molecular constituents. Contrary to existing channels, this one is totally out of water and thus is an advantage over current instrumentations. It is proposed to employ the same idea on other reactors (nuclear power plants too) to improve safety criteria. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. Background radiation measurements at high power research reactors

    NASA Astrophysics Data System (ADS)

    Ashenfelter, J.; Balantekin, B.; Baldenegro, C. X.; Band, H. R.; Barclay, G.; Bass, C. D.; Berish, D.; Bowden, N. S.; Bryan, C. D.; Cherwinka, J. J.; Chu, R.; Classen, T.; Davee, D.; Dean, D.; Deichert, G.; Dolinski, M. J.; Dolph, J.; Dwyer, D. A.; Fan, S.; Gaison, J. K.; Galindo-Uribarri, A.; Gilje, K.; Glenn, A.; Green, M.; Han, K.; Hans, S.; Heeger, K. M.; Heffron, B.; Jaffe, D. E.; Kettell, S.; Langford, T. J.; Littlejohn, B. R.; Martinez, D.; McKeown, R. D.; Morrell, S.; Mueller, P. E.; Mumm, H. P.; Napolitano, J.; Norcini, D.; Pushin, D.; Romero, E.; Rosero, R.; Saldana, L.; Seilhan, B. S.; Sharma, R.; Stemen, N. T.; Surukuchi, P. T.; Thompson, S. J.; Varner, R. L.; Wang, W.; Watson, S. M.; White, B.; White, C.; Wilhelmi, J.; Williams, C.; Wise, T.; Yao, H.; Yeh, M.; Yen, Y.-R.; Zhang, C.; Zhang, X.; Prospect Collaboration

    2016-01-01

    Research reactors host a wide range of activities that make use of the intense neutron fluxes generated at these facilities. Recent interest in performing measurements with relatively low event rates, e.g. reactor antineutrino detection, at these facilities necessitates a detailed understanding of background radiation fields. Both reactor-correlated and naturally occurring background sources are potentially important, even at levels well below those of importance for typical activities. Here we describe a comprehensive series of background assessments at three high-power research reactors, including γ-ray, neutron, and muon measurements. For each facility we describe the characteristics and identify the sources of the background fields encountered. The general understanding gained of background production mechanisms and their relationship to facility features will prove valuable for the planning of any sensitive measurement conducted therein.

  5. Research reactor decommissioning experience - concrete removal and disposal -

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Manning, Mark R.; Gardner, Frederick W.

    1990-07-01

    Removal and disposal of neutron activated concrete from biological shields is the most significant operational task associated with research reactor decommissioning. During the period of 1985 thru 1989 Chem-Nuclear Systems, Inc. was the prime contractor for complete dismantlement and decommissioning of the Northrop TRIGA Mark F, the Virginia Tech Argonaut, and the Michigan State University TRIGA Mark I Reactor Facilities. This paper discusses operational requirements, methods employed, and results of the concrete removal, packaging, transport and disposal operations for these (3) research reactor decommissioning projects. Methods employed for each are compared. Disposal of concrete above and below regulatory release limitsmore » for unrestricted use are discussed. This study concludes that activated reactor biological shield concrete can be safely removed and buried under current regulations.« less

  6. Prediction of the thermophysical properties of molten salt fast reactor fuel from first-principles

    NASA Astrophysics Data System (ADS)

    Gheribi, A. E.; Corradini, D.; Dewan, L.; Chartrand, P.; Simon, C.; Madden, P. A.; Salanne, M.

    2014-05-01

    Molten fluorides are known to show favourable thermophysical properties which make them good candidate coolants for nuclear fission reactors. Here we investigate the special case of mixtures of lithium fluoride and thorium fluoride, which act both as coolant and as fuel in the molten salt fast reactor concept. By using ab initio parameterised polarisable force fields, we show that it is possible to calculate the whole set of properties (density, thermal expansion, heat capacity, viscosity and thermal conductivity) which are necessary for assessing the heat transfer performance of the melt over the whole range of compositions and temperatures. We then deduce from our calculations several figures of merit which are important in helping the optimisation of the design of molten salt fast reactors.

  7. Reactor-Scale Cultivation of the Hyperthermophilic Methanarchaeon Methanococcus jannaschii to High Cell Densities

    PubMed Central

    Mukhopadhyay, Biswarup; Johnson, Eric F.; Wolfe, Ralph S.

    1999-01-01

    For the hyperthermophilic and barophilic methanarchaeon Methanococcus jannaschii, we have developed a medium and protocols for reactor-scale cultivation that improved the final cell yield per liter from ∼0.5 to ∼7.5 g of packed wet cells (∼1.8 g dry cell mass) under autotrophic growth conditions and to ∼8.5 g of packed wet cells (∼2 g dry cell mass) with yeast extract (2 g liter−1) and tryptone (2 g liter−1) as medium supplements. For growth in a sealed bottle it was necessary to add Se to the medium, and a level of 2 μM for added Se gave the highest final cell yield. In a reactor M. jannaschii grew without added Se in the medium; it is plausible that the cells received Se as a contaminant from the reactor vessel and the H2S supply. But, for the optimal performance of a reactor culture, an addition of Se to a final concentration of 50 to 100 μM was needed. Also, cell growth in a reactor culture was inhibited at much higher Se concentrations. These observations and the data from previous work with methanogen cell extracts (B. C. McBride and R. S. Wolfe, Biochemistry 10:4312–4317, 1971) suggested that from a continuously sparged reactor culture Se was lost in the exhaust gas as volatile selenides, and this loss raised the apparent required level of and tolerance for Se. In spite of having a proteinaceous cell wall, M. jannaschii withstood an impeller tip speed of 235.5 cms−1, which was optimal for achieving high cell density and also was the higher limit for the tolerated shear rate. The organism secreted one or more acidic compounds, which lowered pH in cultures without pH control; this secretion continued even after cessation of growth. PMID:10543823

  8. Assessment of Sensor Technologies for Advanced Reactors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Korsah, Kofi; Kisner, R. A.; Britton Jr., C. L.

    This paper provides an assessment of sensor technologies and a determination of measurement needs for advanced reactors (AdvRx). It is a summary of a study performed to provide the technical basis for identifying and prioritizing research targets within the instrumentation and control (I&C) Technology Area under the Department of Energy’s (DOE’s) Advanced Reactor Technology (ART) program. The study covered two broad reactor technology categories: High Temperature Reactors and Fast Reactors. The scope of “High temperature reactors” included Gen IV reactors whose coolant exit temperatures exceed ≈650 °C and are moderated (as opposed to fast reactors). To bound the scope formore » fast reactors, this report reviewed relevant operating experience from US-operated Sodium Fast Reactor (SFR) and relevant test experience from the Fast Flux Test Facility (FFTF). For high temperature reactors the study showed that in many cases instrumentation have performed reasonably well in research and demonstration reactors. However, even in cases where the technology is “mature” (such as thermocouples), HTGRs can benefit from improved technologies. Current HTGR instrumentation is generally based on decades-old technology and adapting newer technologies could provide significant advantages. For sodium fast reactors, the study found that several key research needs arise around (1) radiation-tolerant sensor design for in-vessel or in-core applications, where possible non-invasive sensing approaches for key parameters that minimize the need to deploy sensors in-vessel, (2) approaches to exfiltrating data from in-vessel sensors while minimizing penetrations, (3) calibration of sensors in-situ, and (4) optimizing sensor placements to maximize the information content while minimizing the number of sensors needed.« less

  9. An approach to model reactor core nodalization for deterministic safety analysis

    NASA Astrophysics Data System (ADS)

    Salim, Mohd Faiz; Samsudin, Mohd Rafie; Mamat @ Ibrahim, Mohd Rizal; Roslan, Ridha; Sadri, Abd Aziz; Farid, Mohd Fairus Abd

    2016-01-01

    Adopting good nodalization strategy is essential to produce an accurate and high quality input model for Deterministic Safety Analysis (DSA) using System Thermal-Hydraulic (SYS-TH) computer code. The purpose of such analysis is to demonstrate the compliance against regulatory requirements and to verify the behavior of the reactor during normal and accident conditions as it was originally designed. Numerous studies in the past have been devoted to the development of the nodalization strategy for small research reactor (e.g. 250kW) up to the bigger research reactor (e.g. 30MW). As such, this paper aims to discuss the state-of-arts thermal hydraulics channel to be employed in the nodalization for RTP-TRIGA Research Reactor specifically for the reactor core. At present, the required thermal-hydraulic parameters for reactor core, such as core geometrical data (length, coolant flow area, hydraulic diameters, and axial power profile) and material properties (including the UZrH1.6, stainless steel clad, graphite reflector) have been collected, analyzed and consolidated in the Reference Database of RTP using standardized methodology, mainly derived from the available technical documentations. Based on the available information in the database, assumptions made on the nodalization approach and calculations performed will be discussed and presented. The development and identification of the thermal hydraulics channel for the reactor core will be implemented during the SYS-TH calculation using RELAP5-3D® computer code. This activity presented in this paper is part of the development of overall nodalization description for RTP-TRIGA Research Reactor under the IAEA Norwegian Extra-Budgetary Programme (NOKEBP) mentoring project on Expertise Development through the Analysis of Reactor Thermal-Hydraulics for Malaysia, denoted as EARTH-M.

  10. An approach to model reactor core nodalization for deterministic safety analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Salim, Mohd Faiz, E-mail: mohdfaizs@tnb.com.my; Samsudin, Mohd Rafie, E-mail: rafies@tnb.com.my; Mamat Ibrahim, Mohd Rizal, E-mail: m-rizal@nuclearmalaysia.gov.my

    Adopting good nodalization strategy is essential to produce an accurate and high quality input model for Deterministic Safety Analysis (DSA) using System Thermal-Hydraulic (SYS-TH) computer code. The purpose of such analysis is to demonstrate the compliance against regulatory requirements and to verify the behavior of the reactor during normal and accident conditions as it was originally designed. Numerous studies in the past have been devoted to the development of the nodalization strategy for small research reactor (e.g. 250kW) up to the bigger research reactor (e.g. 30MW). As such, this paper aims to discuss the state-of-arts thermal hydraulics channel to bemore » employed in the nodalization for RTP-TRIGA Research Reactor specifically for the reactor core. At present, the required thermal-hydraulic parameters for reactor core, such as core geometrical data (length, coolant flow area, hydraulic diameters, and axial power profile) and material properties (including the UZrH{sub 1.6}, stainless steel clad, graphite reflector) have been collected, analyzed and consolidated in the Reference Database of RTP using standardized methodology, mainly derived from the available technical documentations. Based on the available information in the database, assumptions made on the nodalization approach and calculations performed will be discussed and presented. The development and identification of the thermal hydraulics channel for the reactor core will be implemented during the SYS-TH calculation using RELAP5-3D{sup ®} computer code. This activity presented in this paper is part of the development of overall nodalization description for RTP-TRIGA Research Reactor under the IAEA Norwegian Extra-Budgetary Programme (NOKEBP) mentoring project on Expertise Development through the Analysis of Reactor Thermal-Hydraulics for Malaysia, denoted as EARTH-M.« less

  11. Decommissioning of the Dragon High Temperature Reactor (HTR) Located at the Former United Kingdom Atomic Energy Authority (UKAEA) Research Site at Winfrith - 13180

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smith, Anthony A.

    2013-07-01

    The Dragon Reactor was constructed at the United Kingdom Atomic Energy Research Establishment at Winfrith in Dorset through the late 1950's and into the early 1960's. It was a High Temperature Gas Cooled Reactor (HTR) with helium gas coolant and graphite moderation. It operated as a fuel testing and demonstration reactor at up to 20 MW (Thermal) from 1964 until 1975, when international funding for this project was terminated. The fuel was removed from the core in 1976 and the reactor was put into Safestore. To meet the UK's Nuclear Decommissioning Authority (NDA) objective to 'drive hazard reduction' [1] itmore » is necessary to decommission and remediate all the Research Sites Restoration Ltd (RSRL) facilities. This includes the Dragon Reactor where the activated core, pressure vessel and control rods and the contaminated primary circuit (including a {sup 90}Sr source) still remain. It is essential to remove these hazards at the appropriate time and return the area occupied by the reactor to a safe condition. (author)« less

  12. World Energy Data System (WENDS). Volume XI. Nuclear fission program summaries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1979-06-01

    Brief management and technical summaries of nuclear fission power programs are presented for nineteen countries. The programs include the following: fuel supply, resource recovery, enrichment, fuel fabrication, light water reactors, heavy water reactors, gas cooled reactors, breeder reactors, research and test reactors, spent fuel processing, waste management, and safety and environment. (JWR)

  13. Renewing Liquid Fueled Molten Salt Reactor Research and Development

    NASA Astrophysics Data System (ADS)

    Towell, Rusty; NEXT Lab Team

    2016-09-01

    Globally there is a desperate need for affordable, safe, and clean energy on demand. More than anything else, this would raise the living conditions of those in poverty around the world. An advanced reactor that utilizes liquid fuel and molten salts is capable of meeting these needs. Although, this technology was demonstrated in the Molten Salt Reactor Experiment (MSRE) at ORNL in the 60's, little progress has been made since the program was cancelled over 40 years ago. A new research effort has been initiated to advance the technical readiness level of key reactor components. This presentation will explain the motivation and initial steps for this new research initiative.

  14. 2007 international meeting on Reduced Enrichment for Research and Test Reactors (RERTR). Abstracts and available papers presented at the meeting

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    2008-07-15

    The Meeting papers discuss research and test reactor fuel performance, manufacturing and testing. Some of the main topics are: conversion from HEU to LEU in different reactors and corresponding problems and activities; flux performance and core lifetime analysis with HEU and LEU fuels; physics and safety characteristics; measurement of gamma field parameters in core with LEU fuel; nondestructive analysis of RERTR fuel; thermal hydraulic analysis; fuel interactions; transient analyses and thermal hydraulics for HEU and LEU cores; microstructure research reactor fuels; post irradiation analysis and performance; computer codes and other related problems.

  15. Electrochemical oxidation of bio-refractory dye in a simulated textile industry effluent using DSA electrodes in a filter-press type FM01-LC reactor.

    PubMed

    Rodríguez, Francisca A; Mateo, María N; Aceves, Juan M; Rivero, Eligio P; González, Ignacio

    2013-01-01

    This work presents a study on degradation of indigo carmine dye in a filter-press type FM01-LC reactor using Sb2O5-doped Ti/IrO2-SnO2 dimensionally stable anode (DSA) electrodes. Micro- and macroelectrolysis studies were carried out using solutions of 0.8 mM indigo carmine in 0.05 M NaCl, which resemble blue denim laundry industrial wastewater. Microelectrolysis results show the behaviour of DSA electrodes in comparison with the behaviour of boron-doped diamond (BDD) electrodes. In general, dye degradation reactions are carried out indirectly through active chlorine generated on DSA, whereas in the case of BDD electrodes more oxidizing species are formed, mainly OH radicals, on the electrode surface. The well-characterized geometry, flow pattern and mass transport of the FM01-LC reactor used in macroelectrolysis experiments allowed the evaluation of the effect of hydrodynamic conditions on the chlorine-mediated degradation rate. Four values of Reynolds number (Re) (93, 371, 464 and 557) at four current densities (50, 100, 150 and 200 A/m2) were tested. The results show that the degradation rate is independent of Re at low current density (50 A/m2) but becomes dependent on the Re at high current density (200 A/m2). This behaviour shows the central role of mass transport and the reactor parameters and design. The low energy consumption (2.02 and 9.04 kWh/m3 for complete discolouration and chemical oxygen demand elimination at 50 A/m2, respectively) and the low cost of DSA electrodes compared to BDD make DSA electrodes promising for practical application in treating industrial textile effluents. In the present study, chlorinated organic compounds were not detected.

  16. Accelerator based fusion reactor

    NASA Astrophysics Data System (ADS)

    Liu, Keh-Fei; Chao, Alexander Wu

    2017-08-01

    A feasibility study of fusion reactors based on accelerators is carried out. We consider a novel scheme where a beam from the accelerator hits the target plasma on the resonance of the fusion reaction and establish characteristic criteria for a workable reactor. We consider the reactions d+t\\to n+α,d+{{}3}{{H}\\text{e}}\\to p+α , and p+{{}11}B\\to 3α in this study. The critical temperature of the plasma is determined from overcoming the stopping power of the beam with the fusion energy gain. The needed plasma lifetime is determined from the width of the resonance, the beam velocity and the plasma density. We estimate the critical beam flux by balancing the energy of fusion production against the plasma thermo-energy and the loss due to stopping power for the case of an inert plasma. The product of critical flux and plasma lifetime is independent of plasma density and has a weak dependence on temperature. Even though the critical temperatures for these reactions are lower than those for the thermonuclear reactors, the critical flux is in the range of {{10}22}-{{10}24}~\\text{c}{{\\text{m}}-2}~{{\\text{s}}-1} for the plasma density {ρt}={{10}15}~\\text{c}{{\\text{m}}-3} in the case of an inert plasma. Several approaches to control the growth of the two-stream instability are discussed. We have also considered several scenarios for practical implementation which will require further studies. Finally, we consider the case where the injected beam at the resonance energy maintains the plasma temperature and prolongs its lifetime to reach a steady state. The equations for power balance and particle number conservation are given for this case.

  17. Nuclear Security: Action May Be Needed to Reassess the Security of NRC-Licensed Research Reactors. Report to the Ranking Member, Subcommittee on National Security and Foreign Affairs, Committee on Oversight and Government Reform, House of Representatives. GAO-08-403

    ERIC Educational Resources Information Center

    Aloise, Gene

    2008-01-01

    There are 37 research reactors in the United States, mostly located on college campuses. Of these, 33 reactors are licensed and regulated by the Nuclear Regulatory Commission (NRC). Four are operated by the Department of Energy (DOE) and are located at three national laboratories. Although less powerful than commercial nuclear power reactors,…

  18. Some methods for achieving more efficient performance of fuel assemblies

    NASA Astrophysics Data System (ADS)

    Boltenko, E. A.

    2014-07-01

    More efficient operation of reactor plant fuel assemblies can be achieved through the use of new technical solutions aimed at obtaining more uniform distribution of coolant over the fuel assembly section, more intense heat removal on convex heat-transfer surfaces, and higher values of departure from nucleate boiling ratio (DNBR). Technical solutions using which it is possible to obtain more intense heat removal on convex heat-transfer surfaces and higher DNBR values in reactor plant fuel assemblies are considered. An alternative heat removal arrangement is described using which it is possible to obtain a significantly higher power density in a reactor plant and essentially lower maximal fuel rod temperature.

  19. Direct nn-Scattering Measurement With the Pulsed Reactor YAGUAR.

    PubMed

    Mitchell, G E; Furman, W I; Lychagin, E V; Muzichka, A Yu; Nekhaev, G V; Strelkov, A V; Sharapov, E I; Shvetsov, V N; Chernuhin, Yu I; Levakov, B G; Litvin, V I; Lyzhin, A E; Magda, E P; Crawford, B E; Stephenson, S L; Howell, C R; Tornow, W

    2005-01-01

    Although crucial for resolving the issue of charge symmetry in the nuclear force, direct measurement of nn-scattering by colliding free neutrons has never been performed. At present the Russian pulsed reactor YAGUAR is the best neutron source for performing such a measurement. It has a through channel where the neutron moderator is installed. The neutrons are counted by a neutron detector located 12 m from the reactor. In preliminary experiments an instantaneous value of 1.1 × 10(18)/cm(2)s was obtained for the thermal neutron flux density. The experiment will be performed by the DIANNA Collaboration as International Science & Technology Center (ISTC) project No. 2286.

  20. Direct nn-Scattering Measurement With the Pulsed Reactor YAGUAR

    PubMed Central

    Mitchell, G. E.; Furman, W. I.; Lychagin, E. V.; Muzichka, A. Yu.; Nekhaev, G. V.; Strelkov, A. V.; Sharapov, E. I.; Shvetsov, V. N.; Chernuhin, Yu. I.; Levakov, B. G.; Litvin, V. I.; Lyzhin, A. E.; Magda, E. P.; Crawford, B. E.; Stephenson, S. L.; Howell, C. R.; Tornow, W

    2005-01-01

    Although crucial for resolving the issue of charge symmetry in the nuclear force, direct measurement of nn-scattering by colliding free neutrons has never been performed. At present the Russian pulsed reactor YAGUAR is the best neutron source for performing such a measurement. It has a through channel where the neutron moderator is installed. The neutrons are counted by a neutron detector located 12 m from the reactor. In preliminary experiments an instantaneous value of 1.1 × 1018/cm2s was obtained for the thermal neutron flux density. The experiment will be performed by the DIANNA Collaboration as International Science & Technology Center (ISTC) project No. 2286. PMID:27308126

  1. 75 FR 34219 - Revision of Fee Schedules; Fee Recovery for FY 2010

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-06-16

    ....8 $6.3 $7.5 Spent Fuel Storage/Reactor Decommissioning..... -- -- 2.7 0.2 0.2 Test and Research... 2009 fee is also shown for comparative purposes. Table V--Rebaselined Annual Fees FY2009 Annual FY 2010... Decommissioning Test and Research Reactors (Non-power 87,600 81,700 Reactors) High Enriched Uranium Fuel Facility...

  2. Diagnosing ion-beam targets, data acquisition, reactor conditions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mendel, Jr., C. W.

    1982-01-01

    The final lecture will discuss diagnostics of the target. These are very difficult because of the short times, small spatial extent, and extreme values of temperature and pressure. Diagnostics for temperature, density profile, and neutron production will be discussed. A few minutes will be devoted to data acquisition needs. The lecture will end with a discussion of current areas where improvements are needed and future diagnostics that will be required for reactor conditions.

  3. The Need for Cyber-Informed Engineering Expertise for Nuclear Research Reactors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anderson, Robert Stephen

    Engineering disciplines may not currently understand or fully embrace cyber security aspects as they apply towards analysis, design, operation, and maintenance of nuclear research reactors. Research reactors include a wide range of diverse co-located facilities and designs necessary to meet specific operational research objectives. Because of the nature of research reactors (reduced thermal energy and fission product inventory), hazards and risks may not have received the same scrutiny as normally associated with power reactors. Similarly, security may not have been emphasized either. However, the lack of sound cybersecurity defenses may lead to both safety and security impacts. Risk management methodologiesmore » may not contain the foundational assumptions required to address the intelligent adversary’s capabilities in malevolent cyber attacks. Although most research reactors are old and may not have the same digital footprint as newer facilities, any digital instrument and control function must be considered as a potential attack platform that can lead to sabotage or theft of nuclear material, especially for some research reactors that store highly enriched uranium. This paper will provide a discussion about the need for cyber-informed engineering practices that include the entire engineering lifecycle. Cyber-informed engineering as referenced in this paper is the inclusion of cybersecurity aspects into the engineering process. A discussion will consider several attributes of this process evaluating the long-term goal of developing additional cyber safety basis analysis and trust principles. With a culture of free information sharing exchanges, and potentially a lack of security expertise, new risk analysis and design methodologies need to be developed to address this rapidly evolving (cyber) threatscape.« less

  4. On the Analysis of Clustering in an Irradiated Low Alloy Reactor Pressure Vessel Steel Weld.

    PubMed

    Lindgren, Kristina; Stiller, Krystyna; Efsing, Pål; Thuvander, Mattias

    2017-04-01

    Radiation induced clustering affects the mechanical properties, that is the ductile to brittle transition temperature (DBTT), of reactor pressure vessel (RPV) steel of nuclear power plants. The combination of low Cu and high Ni used in some RPV welds is known to further enhance the DBTT shift during long time operation. In this study, RPV weld samples containing 0.04 at% Cu and 1.6 at% Ni were irradiated to 2.0 and 6.4×1023 n/m2 in the Halden test reactor. Atom probe tomography (APT) was applied to study clustering of Ni, Mn, Si, and Cu. As the clusters are in the nanometer-range, APT is a very suitable technique for this type of study. From APT analyses information about size distribution, number density, and composition of the clusters can be obtained. However, the quantification of these attributes is not trivial. The maximum separation method (MSM) has been used to characterize the clusters and a detailed study about the influence of the choice of MSM cluster parameters, primarily on the cluster number density, has been undertaken.

  5. Background radiation measurements at high power research reactors

    DOE PAGES

    Ashenfelter, J.; Yeh, M.; Balantekin, B.; ...

    2015-10-23

    Research reactors host a wide range of activities that make use of the intense neutron fluxes generated at these facilities. Recent interest in performing measurements with relatively low event rates, e.g. reactor antineutrino detection, at these facilities necessitates a detailed understanding of background radiation fields. Both reactor-correlated and naturally occurring background sources are potentially important, even at levels well below those of importance for typical activities. Here we describe a comprehensive series of background assessments at three high-power research reactors, including γ-ray, neutron, and muon measurements. For each facility we describe the characteristics and identify the sources of the backgroundmore » fields encountered. Furthermore, the general understanding gained of background production mechanisms and their relationship to facility features will prove valuable for the planning of any sensitive measurement conducted therein.« less

  6. The kinetics, current efficiency, and power consumption of electrochemical dye decolorization by BD-NCD film electrode

    NASA Astrophysics Data System (ADS)

    Nurhayati, Ervin; Juang, Yaju; Huang, Chihpin

    2017-06-01

    Diamond film electrode has been known as a material with very wide potential window for water electrolysis which leads to its applicability in numerous electrochemical processes. Its capability to produce hydroxyl radicals, a very strong oxidants, prompts its popular application in wastewater treatment. Batch and batch recirculation reactor were applied to perform bulk electrolysis experiments to investigate the kinetics of dye decolorization under different operation conditions, such as pH, active species, and current density. Furthermore, COD degradation data from batch recirculation reactor operation was used as the basis for the calculation of current efficiency and power consumption in the decolorization process. The kinetics of decolorization process using boron-doped nanocrystalline diamond (BD-NCD) film electrode revealed that acidic condition is favored for the dye degradation, and the presence of chloride ion in the solution was found to be more advantageous than sulfate active species, as evidenced by the higher reaction rate constants. Applying different current density of 10, 20 and 30 mA cm-2, it was found that the higher the current density the faster the decolorization rate. General current efficiency achieved after nearly total decolorization and 80% COD removal in batch recirculation reactor was around 74%, with specific power consumption of 4.4 kWh m-3 (in terms of volume of solution treated) or 145 kWh kg-1(in terms of kg COD treated).

  7. Experimental study of radiation dose rate at different strategic points of the BAEC TRIGA Research Reactor.

    PubMed

    Ajijul Hoq, M; Malek Soner, M A; Salam, M A; Haque, M M; Khanom, Salma; Fahad, S M

    2017-12-01

    The 3MW TRIGA Mark-II Research Reactor of Bangladesh Atomic Energy Commission (BAEC) has been under operation for about thirty years since its commissioning at 1986. In accordance with the demand of fundamental nuclear research works, the reactor has to operate at different power levels by utilizing a number of experimental facilities. Regarding the enquiry for safety of reactor operating personnel and radiation workers, it is necessary to know the radiation level at different strategic points of the reactor where they are often worked. In the present study, neutron, beta and gamma radiation dose rate at different strategic points of the reactor facility with reactor power level of 2.4MW was measured to estimate the rising level of radiation due to its operational activities. From the obtained results high radiation dose is observed at the measurement position of the piercing beam port which is caused by neutron leakage and accordingly, dose rate at the stated position with different reactor power levels was measured. This study also deals with the gamma dose rate measurements at a fixed position of the reactor pool top surface for different reactor power levels under both Natural Convection Cooling Mode (NCCM) and Forced Convection Cooling Mode (FCCM). Results show that, radiation dose rate is higher for NCCM in compared with FCCM and increasing with the increase of reactor power. Thus, concerning the radiological safety issues for working personnel and the general public, the radiation dose level monitoring and the experimental analysis performed within this paper is so much effective and the result of this work can be utilized for base line data and code verification of the nuclear reactor. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Validation of large-scale, monochromatic UV disinfection systems for drinking water using dyed microspheres.

    PubMed

    Blatchley, E R; Shen, C; Scheible, O K; Robinson, J P; Ragheb, K; Bergstrom, D E; Rokjer, D

    2008-02-01

    Dyed microspheres have been developed as a new method for validation of ultraviolet (UV) reactor systems. When properly applied, dyed microspheres allow measurement of the UV dose distribution delivered by a photochemical reactor for a given operating condition. Prior to this research, dyed microspheres had only been applied to a bench-scale UV reactor. The goal of this research was to extend the application of dyed microspheres to large-scale reactors. Dyed microsphere tests were conducted on two prototype large-scale UV reactors at the UV Validation and Research Center of New York (UV Center) in Johnstown, NY. All microsphere tests were conducted under conditions that had been used previously in biodosimetry experiments involving two challenge bacteriophage: MS2 and Qbeta. Numerical simulations based on computational fluid dynamics and irradiance field modeling were also performed for the same set of operating conditions used in the microspheres assays. Microsphere tests on the first reactor illustrated difficulties in sample collection and discrimination of microspheres against ambient particles. Changes in sample collection and work-up were implemented in tests conducted on the second reactor that allowed for improvements in microsphere capture and discrimination against the background. Under these conditions, estimates of the UV dose distribution from the microspheres assay were consistent with numerical simulations and the results of biodosimetry, using both challenge organisms. The combined application of dyed microspheres, biodosimetry, and numerical simulation offers the potential to provide a more in-depth description of reactor performance than any of these methods individually, or in combination. This approach also has the potential to substantially reduce uncertainties in reactor validation, thereby leading to better understanding of reactor performance, improvements in reactor design, and decreases in reactor capital and operating costs.

  9. Measurement of neutron spectra in the experimental reactor LR-0

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Prenosil, Vaclav; Mravec, Filip; Veskrna, Martin

    2015-07-01

    The measurement of fast neutron fluxes is important in many areas of nuclear technology. It affects the stability of the reactor structural components, performance of fuel, and also the fuel manner. The experiments performed at the LR-0 reactor were in the past focused on the measurement of neutron field far from the core, in reactor pressure vessel simulator or in biological shielding simulator. In the present the measurement in closer regions to core became more important, especially measurements in structural components like reactor baffle. This importance increases with both reactor power increase and also long term operation. Other important taskmore » is an increasing need for the measurement close to the fuel. The spectra near the fuel are aimed due to the planned measurements with the FLIBE salt, in FHR / MSR research, where one of the task is the measurement of the neutron spectra in it. In both types of experiments there is strong demand for high working count rate. The high count rate is caused mainly by high gamma background and by high fluxes. The fluxes in core or in its vicinity are relatively high to ensure safe reactor operation. This request is met in the digital spectroscopic apparatus. All experiments were realized in the LR-0 reactor. It is an extremely flexible light water zero-power research reactor, operated by the Research Center Rez (Czech Republic). (authors)« less

  10. Researcher Poses with a Nuclear Rocket Model

    NASA Image and Video Library

    1961-11-21

    A researcher at the NASA Lewis Research Center with slide ruler poses with models of the earth and a nuclear-propelled rocket. The Nuclear Engine for Rocket Vehicle Applications (NERVA) was a joint NASA and Atomic Energy Commission (AEC) endeavor to develop a nuclear-powered rocket for both long-range missions to Mars and as a possible upper-stage for the Apollo Program. The early portion of the program consisted of basic reactor and fuel system research. This was followed by a series of Kiwi reactors built to test nuclear rocket principles in a non-flying nuclear engine. The next phase, NERVA, would create an entire flyable engine. The AEC was responsible for designing the nuclear reactor and overall engine. NASA Lewis was responsible for developing the liquid-hydrogen fuel system. The nuclear rocket model in this photograph includes a reactor at the far right with a hydrogen propellant tank and large radiator below. The payload or crew would be at the far left, distanced from the reactor.

  11. Emulation of reactor irradiation damage using ion beams

    DOE PAGES

    Was, G. S.; Jiao, Z.; Getto, E.; ...

    2014-06-14

    The continued operation of existing light water nuclear reactors and the development of advanced nuclear reactor depend heavily on understanding how damage by radiation to levels degrades materials that serve as the structural components in reactor cores. The first high dose ion irradiation experiments on a ferritic-martensitic steel showing that ion irradiation closely emulates the full radiation damage microstructure created in-reactor are described. Ferritic-martensitic alloy HT9 (heat 84425) in the form of a hexagonal fuel bundle duct (ACO-3) accumulated 155 dpa at an average temperature of 443°C in the Fast Flux Test Facility (FFTF). Using invariance theory as a guide,more » irradiation of the same heat was conducted using self-ions (Fe++) at 5 MeV at a temperature of 460°C and to a dose of 188 displacements per atom. The void swelling was nearly identical between the two irradiation and the size and density of precipitates and loops following ion irradiation are within a factor of two of those for neutron irradiation. The level of agreement across all of the principal microstructure changes between ion and reactor irradiation establishes the capability of tailoring ion irradiation to emulate the reactor-irradiated microstructure.« less

  12. Control system for a small fission reactor

    DOEpatents

    Burelbach, James P.; Kann, William J.; Saiveau, James G.

    1986-01-01

    A system for controlling the reactivity of a small fission reactor includes an elongated, flexible hollow tube in the general form of a helical coiled spring axially positioned around and outside of the reactor vessel in an annular space between the reactor vessel and a surrounding cylindrical-shaped neutron reflector. A neutron absorbing material is provided within the hollow tube with the rate of the reaction controlled by the extension and compression of the hollow tube, e.g., extension of the tube increases reactivity while its compression reduces reactivity, in varying the amount of neutron absorbing material disposed between the reactor vessel and the neutron reflector. Conventional mechanical displacement means may be employed to control the coil density of the hollow tube as desired. In another embodiment, a plurality of flexible hollow tubes each containing a neutron absorber are positioned adjacent to one another in spaced relation around the periphery of the reactor vessel and inside the outer neutron reflector with reactivity controlled by the extension and compression of all or some of the coiled hollow tubes. Yet another embodiment of the invention envisions the neutron reflector in the form of an expandable coil spring positioned in an annular space between the reactor vessel and an outer neutron absorbing structure for controlling the neutron flux reflected back into the reactor vessel.

  13. A novel plant protection strategy for transient reactors

    NASA Astrophysics Data System (ADS)

    Bhattacharyya, Samit K.; Lipinski, Walter C.; Hanan, Nelson A.

    A novel plant protection system designed for use in the TREAT Upgrade (TU) reactor is described. The TU reactor is designed for controlled transient operation in the testing of reactor fuel behavior under simulated reactor accident conditions. Safe operation of the reactor is of paramount importance and the Plant Protection System (PPS) had to be designed to exacting requirements. Researchers believe that the strategy developed for the TU has potential application to the multimegawatt space reactors and represents the state of the art in terrestrial transient reactor protection systems.

  14. Monte Carlo Analysis of the Battery-Type High Temperature Gas Cooled Reactor

    NASA Astrophysics Data System (ADS)

    Grodzki, Marcin; Darnowski, Piotr; Niewiński, Grzegorz

    2017-12-01

    The paper presents a neutronic analysis of the battery-type 20 MWth high-temperature gas cooled reactor. The developed reactor model is based on the publicly available data being an `early design' variant of the U-battery. The investigated core is a battery type small modular reactor, graphite moderated, uranium fueled, prismatic, helium cooled high-temperature gas cooled reactor with graphite reflector. The two core alternative designs were investigated. The first has a central reflector and 30×4 prismatic fuel blocks and the second has no central reflector and 37×4 blocks. The SERPENT Monte Carlo reactor physics computer code, with ENDF and JEFF nuclear data libraries, was applied. Several nuclear design static criticality calculations were performed and compared with available reference results. The analysis covered the single assembly models and full core simulations for two geometry models: homogenous and heterogenous (explicit). A sensitivity analysis of the reflector graphite density was performed. An acceptable agreement between calculations and reference design was obtained. All calculations were performed for the fresh core state.

  15. Study of carbon dioxide gas treatment based on equations of kinetics in plasma discharge reactor

    NASA Astrophysics Data System (ADS)

    Abedi-Varaki, Mehdi

    2017-08-01

    Carbon dioxide (CO2) as the primary greenhouse gas, is the main pollutant that is warming earth. CO2 is widely emitted through the cars, planes, power plants and other human activities that involve the burning of fossil fuels (coal, natural gas and oil). Thus, there is a need to develop some method to reduce CO2 emission. To this end, this study investigates the behavior of CO2 in dielectric barrier discharge (DBD) plasma reactor. The behavior of different species and their reaction rates are studied using a zero-dimensional model based on equations of kinetics inside plasma reactor. The results show that the plasma reactor has an effective reduction on the CO2 density inside the reactor. As a result of reduction in the temporal variations of reaction rate, the speed of chemical reactions for CO2 decreases and very low concentration of CO2 molecules inside the plasma reactor is generated. The obtained results are compared with the existing experimental and simulation findings in the literature.

  16. The Effect of Stochastic Perturbation of Fuel Distribution on the Criticality of a One Speed Reactor and the Development of Multi-Material Multinomial Line Statistics

    NASA Technical Reports Server (NTRS)

    Jahshan, S. N.; Singleterry, R. C.

    2001-01-01

    The effect of random fuel redistribution on the eigenvalue of a one-speed reactor is investigated. An ensemble of such reactors that are identical to a homogeneous reference critical reactor except for the fissile isotope density distribution is constructed such that it meets a set of well-posed redistribution requirements. The average eigenvalue, , is evaluated when the total fissile loading per ensemble element, or realization, is conserved. The perturbation is proven to increase the reactor criticality on average when it is uniformly distributed. The various causes of the change in reactivity, and their relative effects are identified and ranked. From this, a path towards identifying the causes. and relative effects of reactivity fluctuations for the energy dependent problem is pointed to. The perturbation method of using multinomial distributions for representing the perturbed reactor is developed. This method has some advantages that can be of use in other stochastic problems. Finally, some of the features of this perturbation problem are related to other techniques that have been used for addressing similar problems.

  17. Standardized reactors for the study of medical biofilms: a review of the principles and latest modifications.

    PubMed

    Gomes, Inês B; Meireles, Ana; Gonçalves, Ana L; Goeres, Darla M; Sjollema, Jelmer; Simões, Lúcia C; Simões, Manuel

    2018-08-01

    Biofilms can cause severe problems to human health due to the high tolerance to antimicrobials; consequently, biofilm science and technology constitutes an important research field. Growing a relevant biofilm in the laboratory provides insights into the basic understanding of the biofilm life cycle including responses to antibiotic therapies. Therefore, the selection of an appropriate biofilm reactor is a critical decision, necessary to obtain reproducible and reliable in vitro results. A reactor should be chosen based upon the study goals and a balance between the pros and cons associated with its use and operational conditions that are as similar as possible to the clinical setting. However, standardization in biofilm studies is rare. This review will focus on the four reactors (Calgary biofilm device, Center for Disease Control biofilm reactor, drip flow biofilm reactor, and rotating disk reactor) approved by a standard setting organization (ASTM International) for biofilm experiments and how researchers have modified these standardized reactors and associated protocols to improve the study and understanding of medical biofilms.

  18. Microstructural Characterization of a Mg Matrix U-Mo Dispersion Fuel Plate Irradiated in the Advanced Test Reactor to High Fission Density: SEM Results

    NASA Astrophysics Data System (ADS)

    Keiser, Dennis D.; Jue, Jan-Fong; Miller, Brandon D.; Gan, Jian; Robinson, Adam B.; Medvedev, Pavel G.; Madden, James W.; Moore, Glenn A.

    2016-06-01

    Low-enriched (U-235 <20 pct) U-Mo dispersion fuel is being developed for use in research and test reactors. In most cases, fuel plates with Al or Al-Si alloy matrices have been tested in the Advanced Test Reactor to support this development. In addition, fuel plates with Mg as the matrix have also been tested. The benefit of using Mg as the matrix is that it potentially will not chemically interact with the U-Mo fuel particles during fabrication or irradiation, whereas with Al and Al-Si alloys such interactions will occur. Fuel plate R9R010 is a Mg matrix fuel plate that was aggressively irradiated in ATR. This fuel plate was irradiated as part of the RERTR-8 experiment at high temperature, high fission rate, and high power, up to high fission density. This paper describes the results of the scanning electron microscopy (SEM) analysis of an irradiated fuel plate using polished samples and those produced with a focused ion beam. A follow-up paper will discuss the results of transmission electron microscopy (TEM) analysis. Using SEM, it was observed that even at very aggressive irradiation conditions, negligible chemical interaction occurred between the irradiated U-7Mo fuel particles and Mg matrix; no interconnection of fission gas bubbles from fuel particle to fuel particle was observed; the interconnected fission gas bubbles that were observed in the irradiated U-7Mo particles resulted in some transport of solid fission products to the U-7Mo/Mg interface; the presence of microstructural pathways in some U-9.1 Mo particles that could allow for transport of fission gases did not result in the apparent presence of large porosity at the U-7Mo/Mg interface; and, the Mg-Al interaction layers that were present at the Mg matrix/Al 6061 cladding interface exhibited good radiation stability, i.e. no large pores.

  19. Particle-in-cell simulations of bounded plasma discharges applied to low pressure high density sources and positive columns

    NASA Astrophysics Data System (ADS)

    Kawamura, Emi

    Particle-in-cell (PIC) simulations of bounded plasma discharges are attractive because the fields and the particle motion can be obtained self-consistently from first principles. Thus, we can accurately model a wide range of nonlocal and kinetic behavior. The only disadvantage is that PIC may be computationally expensive compared to other methods. Fluid codes, for example, may run faster but make assumptions about the bulk plasma velocity distributions and ignore kinetic effects. In Chapter 1, we demonstrate methods of accelerating PIC simulations of bounded plasma discharges. We find that a combination of physical and numerical methods makes run-times for PIC codes much more competitive with other types of codes. In processing plasmas, the ion energy distributions (IEDs) arriving at the wafer target are crucial in determining ion anisotropy and etch rates. The current trend for plasma reactors is towards lower gas pressure and higher plasma density. In Chapter 2, we review and analyze IEDs arriving at the target of low pressure high density rf plasma reactors. In these reactors, the sheath is typically collisionless. We then perform PIC simulations of collisionless rf sheaths and find that the key parameter governing the shape of the TED at the wafer is the ratio of the ion transit time across the sheath over the rf period. Positive columns are the source of illumination in fluorescent mercury-argon lamps. The efficiency of light production increases with decreasing gas pressure and decreasing discharge radius. Most current lamp software is based on the local concept even though low pressure lighting discharges tend to be nonlocal. In Chapter 3, we demonstrate a 1d3v radial PIC model to conduct nonlocal kinetic simulations of low pressure, small radius positive columns. When compared to other available codes, we find that our PIC code makes the least approximations and assumptions and is accurate and stable over a wider parameter range. We analyze the PIC simulation results in detail and find that the radial electron heat flow, which is neglected in local models, plays a major role in maintaining the global power balance. In Chapter 2, we focused on the sheaths of low pressure high density plasma reactors. In Chapter 4, we extend our study to the bulk and presheaths. Typical industrial plasma reactors often use gases with complex chemistries which tend to generate discharges containing negative ions. For high density electronegative plasmas with low gas pressure, we expect Coulomb collisions between positive and negative ions to dominate over collisions between ions and neutrals. We incorporate a Coulomb collision model into our PIC code to study the effect of this ion-ion Coulomb scattering. We find that the Coulomb collisions between the positive and negative ions significantly modify the negative ion flux, density and kinetic energy profiles.

  20. AGC 2 Irradiated Material Properties Analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rohrbaugh, David Thomas

    2017-05-01

    The Advanced Reactor Technologies Graphite Research and Development Program is conducting an extensive graphite irradiation experiment to provide data for licensing of a high temperature reactor (HTR) design. In past applications, graphite has been used effectively as a structural and moderator material in both research and commercial high temperature gas cooled reactor designs. , Nuclear graphite H 451, used previously in the United States for nuclear reactor graphite components, is no longer available. New nuclear graphite grades have been developed and are considered suitable candidates for new HTR reactor designs. To support the design and licensing of HTR core componentsmore » within a commercial reactor, a complete properties database must be developed for these current grades of graphite. Quantitative data on in service material performance are required for the physical, mechanical, and thermal properties of each graphite grade, with a specific emphasis on data accounting for the life limiting effects of irradiation creep on key physical properties of the HTR candidate graphite grades. Further details on the research and development activities and associated rationale required to qualify nuclear grade graphite for use within the HTR are documented in the graphite technology research and development plan.« less

  1. AGC 2 Irradiation Creep Strain Data Analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Windes, William E.; Rohrbaugh, David T.; Swank, W. David

    2016-08-01

    The Advanced Reactor Technologies Graphite Research and Development Program is conducting an extensive graphite irradiation experiment to provide data for licensing of a high temperature reactor (HTR) design. In past applications, graphite has been used effectively as a structural and moderator material in both research and commercial high temperature gas cooled reactor designs. Nuclear graphite H-451, used previously in the United States for nuclear reactor graphite components, is no longer available. New nuclear graphite grades have been developed and are considered suitable candidates for new HTR reactor designs. To support the design and licensing of HTR core components within amore » commercial reactor, a complete properties database must be developed for these current grades of graphite. Quantitative data on in service material performance are required for the physical, mechanical, and thermal properties of each graphite grade, with a specific emphasis on data accounting for the life limiting effects of irradiation creep on key physical properties of the HTR candidate graphite grades. Further details on the research and development activities and associated rationale required to qualify nuclear grade graphite for use within the HTR are documented in the graphite technology research and development plan.« less

  2. Development of advanced strain diagnostic techniques for reactor environments.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fleming, Darryn D.; Holschuh, Thomas Vernon,; Miller, Timothy J.

    2013-02-01

    The following research is operated as a Laboratory Directed Research and Development (LDRD) initiative at Sandia National Laboratories. The long-term goals of the program include sophisticated diagnostics of advanced fuels testing for nuclear reactors for the Department of Energy (DOE) Gen IV program, with the future capability to provide real-time measurement of strain in fuel rod cladding during operation in situ at any research or power reactor in the United States. By quantifying the stress and strain in fuel rods, it is possible to significantly improve fuel rod design, and consequently, to improve the performance and lifetime of the cladding.more » During the past year of this program, two sets of experiments were performed: small-scale tests to ensure reliability of the gages, and reactor pulse experiments involving the most viable samples in the Annulated Core Research Reactor (ACRR), located onsite at Sandia. Strain measurement techniques that can provide useful data in the extreme environment of a nuclear reactor core are needed to characterize nuclear fuel rods. This report documents the progression of solutions to this issue that were explored for feasibility in FY12 at Sandia National Laboratories, Albuquerque, NM.« less

  3. Effects of irradiation on the microstructure of U-7Mo dispersion fuel with Al-2Si matrix

    NASA Astrophysics Data System (ADS)

    Keiser, Dennis D.; Jue, Jan-Fong; Robinson, Adam B.; Medvedev, Pavel; Gan, Jian; Miller, Brandon D.; Wachs, Daniel M.; Moore, Glenn A.; Clark, Curtis R.; Meyer, Mitchell K.; Ross Finlay, M.

    2012-06-01

    The Reduced Enrichment for Research and Test Reactor (RERTR) program is developing low-enriched uranium U-Mo dispersion fuels for application in research and test reactors around the world. As part of this development, fuel plates have been irradiated in the Advanced Test Reactor and then characterized using optical metallography (OM) and scanning electron microscopy (SEM) to determine the as-irradiated microstructure. To demonstrate the irradiation performance of U-7Mo dispersion fuel plates with 2 wt.% Si added to the matrix, fuel plates were tested to moderate burnups at intermediate fission rates as part of the RERTR-6 experiment. Further testing was performed to higher fission rates as part of the RERTR-7A experiment, and very aggressive testing (high temperature, high fission density, and high fission rate) was performed in the RERTR-9A, RERTR-9B, and AFIP-1 experiments. As-irradiated microstructures were compared to those observed after fabrication to determine the effects of irradiation on the microstructure. Based on comparison of the microstructural characterization results for each irradiated sample, some general conclusions can be drawn about how the microstructure evolves during irradiation: there is growth during irradiation of the fuel/matrix interaction (FMI) layer created during fabrication; Si diffuses from the FMI layer to deeper depths in the U-7Mo particles as the irradiation conditions are made more aggressive; lowering of the Si content in the FMI layer results in an increase in the size of the fission gas bubbles; as the FMI layer grows during irradiation, more Si diffuses from the matrix to the FMI layer/matrix interface; and interlinking of fission gas bubbles in the fuel plate microstructure that may indicate breakaway swelling is not observed.

  4. FLOW TESTING AND ANALYSIS OF THE FSP-1 EXPERIMENT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hawkes, Grant L.; Jones, Warren F.; Marcum, Wade

    The U.S. High Performance Research Reactor Conversions fuel development team is focused on developing and qualifying the uranium-molybdenum (U-Mo) alloy monolithic fuel to support conversion of domestic research reactors to low enriched uranium. Several previous irradiations have demonstrated the favorable behavior of the monolithic fuel. The Full Scale Plate 1 (FSP-1) fuel plate experiment will be irradiated in the northeast (NE) flux trap of the Advanced Test Reactor (ATR). This fueled experiment contains six aluminum-clad fuel plates consisting of monolithic U-Mo fuel meat. Flow testing experimentation and hydraulic analysis have been performed on the FSP-1 experiment to be irradiated inmore » the ATR at the Idaho National Laboratory (INL). A flow test experiment mockup of the FSP-1 experiment was completed at Oregon State University. Results of several flow test experiments are compared with analyses. This paper reports and shows hydraulic analyses are nearly identical to the flow test results. A water velocity of 14.0 meters per second is targeted between the fuel plates. Comparisons between FSP-1 measurements and this target will be discussed. This flow rate dominates the flow characteristics of the experiment and model. Separate branch flows have minimal effect on the overall experiment. A square flow orifice was placed to control the flowrate through the experiment. Four different orifices were tested. A flow versus delta P curve for each orifice is reported herein. Fuel plates with depleted uranium in the fuel meat zone were used in one of the flow tests. This test was performed to evaluate flow test vibration with actual fuel meat densities and reported herein. Fuel plate deformation tests were also performed and reported.« less

  5. Fabrication and testing of U–7Mo monolithic plate fuel with Zircaloy cladding

    DOE PAGES

    Pasqualini, E. E.; Robinson, A. B.; Porter, D. L.; ...

    2016-07-15

    The Materials Management and Minimization program is developing fuel designs to replace highly enriched fuel with fuels of low enrichment. In the most challenging cases, U–(7–10wt%)Mo monolithic plate fuel are proposed. The chosen design includes aluminum-alloy cladding, which provides some challenges in fabrication and fuel/cladding interaction in service. We investigated zircaloy cladding, specifically Zry–4as an alternative cladding, and development of a fabrication method was performed by researchers with the Comisión Nacionalde Energia Atómica (CNEA) in Argentina, resulting in test fuel plates (Zry–4 clad U–7Mo) which were subsequently tested in the Advanced Test Reactor in Idaho. Because Zry–4 and U–(7–10)Mo havemore » similar high-temperature mechanical properties, fabrication was simplified in that the fuel foil and cladding could be co-rolled and bonded. The challenge was to prevent a thermal-expansion mismatch which could destroy the fuel/cladding bond before complete bonding was achieved; the solution was to prevent the composites from cooling significantly between roll passes. Our final product performed very well in-reactor, showing good bonding, very little fuel/cladding interaction, either from fabrication or in-reactor testing, and little swelling, especially no detectable heterogeneous bubble formation at the fuel/cladding interface tested to a fission density of up to 2.54E+21« less

  6. The future for electrocoagulation as a localised water treatment technology.

    PubMed

    Holt, Peter K; Barton, Geoffrey W; Mitchell, Cynthia A

    2005-04-01

    Electrocoagulation is an electrochemical method of treating polluted water whereby sacrificial anodes corrode to release active coagulant precursors (usually aluminium or iron cations) into solution. Accompanying electrolytic reactions evolve gas (usually as hydrogen bubbles) at the cathode. Electrocoagulation has a long history as a water treatment technology having been employed to remove a wide range of pollutants. However electrocoagulation has never become accepted as a 'mainstream' water treatment technology. The lack of a systematic approach to electrocoagulation reactor design/operation and the issue of electrode reliability (particularly passivation of the electrodes over time) have limited its implementation. However recent technical improvements combined with a growing need for small-scale decentralised water treatment facilities have led to a re-evaluation of electrocoagulation. Starting with a review of electrocoagulation reactor design/operation, this article examines and identifies a conceptual framework for electrocoagulation that focuses on the interactions between electrochemistry, coagulation and flotation. In addition detailed experimental data are provided from a batch reactor system removing suspended solids together with a mathematical analysis based on the 'white water' model for the dissolved air flotation process. Current density is identified as the key operational parameter influencing which pollutant removal mechanism dominates. The conclusion is drawn that electrocoagulation has a future as a decentralised water treatment technology. A conceptual framework is presented for future research directed towards a more mechanistic understanding of the process.

  7. Fabrication and testing of U–7Mo monolithic plate fuel with Zircaloy cladding

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pasqualini, E. E.; Robinson, A. B.; Porter, D. L.

    The Materials Management and Minimization program is developing fuel designs to replace highly enriched fuel with fuels of low enrichment. In the most challenging cases, U–(7–10wt%)Mo monolithic plate fuel are proposed. The chosen design includes aluminum-alloy cladding, which provides some challenges in fabrication and fuel/cladding interaction in service. We investigated zircaloy cladding, specifically Zry–4as an alternative cladding, and development of a fabrication method was performed by researchers with the Comisión Nacionalde Energia Atómica (CNEA) in Argentina, resulting in test fuel plates (Zry–4 clad U–7Mo) which were subsequently tested in the Advanced Test Reactor in Idaho. Because Zry–4 and U–(7–10)Mo havemore » similar high-temperature mechanical properties, fabrication was simplified in that the fuel foil and cladding could be co-rolled and bonded. The challenge was to prevent a thermal-expansion mismatch which could destroy the fuel/cladding bond before complete bonding was achieved; the solution was to prevent the composites from cooling significantly between roll passes. Our final product performed very well in-reactor, showing good bonding, very little fuel/cladding interaction, either from fabrication or in-reactor testing, and little swelling, especially no detectable heterogeneous bubble formation at the fuel/cladding interface tested to a fission density of up to 2.54E+21« less

  8. Oxidative coupling of methane using inorganic membrane reactor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ma, Y.H.; Moser, W.R.; Dixon, A.G.

    1995-12-31

    The goal of this research is to improve the oxidative coupling of methane in a catalytic inorganic membrane reactor. A specific target is to achieve conversion of methane to C{sub 2} hydrocarbons at very high selectivity and relatively higher yields than in fixed bed reactors by controlling the oxygen supply through the membrane. A membrane reactor has the advantage of precisely controlling the rate of delivery of oxygen to the catalyst. This facility permits balancing the rate of oxidation and reduction of the catalyst. In addition, membrane reactors minimize the concentration of gas phase oxygen thus reducing non selective gasmore » phase reactions, which are believed to be a main route for formation of CO{sub x} products. Such gas phase reactions are a cause for decreased selectivity in oxidative coupling of methane in conventional flow reactors. Membrane reactors could also produce higher product yields by providing better distribution of the reactant gases over the catalyst than the conventional plug flow reactors. Modeling work which aimed at predicting the observed experimental trends in porous membrane reactors was also undertaken in this research program.« less

  9. Pre-conceptual Development and characterization of an extruded graphite composite fuel for the TREAT Reactor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Luther, Erik; Rooyen, Isabella van; Leckie, Rafael

    2015-03-01

    In an effort to explore fuel systems that are more robust under accident scenarios, the DOE-NE has identified the need to resume transient testing. The Transient Reactor Test (TREAT) facility has been identified as the preferred option for the resumption of transient testing of nuclear fuel in the United States. In parallel, NNSA’s Global Threat Reduction Initiative (GTRI) Convert program is exploring the needs to replace the existing highly enriched uranium (HEU) core with low enriched uranium (LEU) core. In order to construct a new LEU core, materials and fabrication processes similar to those used in the initial core fabricationmore » must be identified, developed and characterized. In this research, graphite matrix fuel blocks were extruded and materials properties of were measured. Initially the extrusion process followed the historic route; however, the project was expanded to explore methods to increase the graphite content of the fuel blocks and explore modern resins. Materials properties relevant to fuel performance including density, heat capacity and thermal diffusivity were measured. The relationship between process defects and materials properties will be discussed.« less

  10. Developing DIII-D To Prepare For ITER And The Path To Fusion Energy

    NASA Astrophysics Data System (ADS)

    Buttery, Richard; Hill, David; Solomon, Wayne; Guo, Houyang; DIII-D Team

    2017-10-01

    DIII-D pursues the advancement of fusion energy through scientific understanding and discovery of solutions. Research targets two key goals. First, to prepare for ITER we must resolve how to use its flexible control tools to rapidly reach Q =10, and develop the scientific basis to interpret results from ITER for fusion projection. Second, we must determine how to sustain a high performance fusion core in steady state conditions, with minimal actuators and a plasma exhaust solution. DIII-D will target these missions with: (i) increased electron heating and balanced torque neutral beams to simulate burning plasma conditions (ii) new 3D coil arrays to resolve control of transients (iii) off axis current drive to study physics in steady state regimes (iv) divertors configurations to promote detachment with low upstream density (v) a reactor relevant wall to qualify materials and resolve physics in reactor-like conditions. With new diagnostics and leading edge simulation, this will position the US for success in ITER and a unique knowledge to accelerate the approach to fusion energy. Supported by the US DOE under DE-FC02-04ER54698.

  11. ORNL Named as Part of IAES Research Reactor Hub

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    The International Atomic Energy Agency (IAEA) has named ORNL and Idaho National Laboratory part of an International Centre based on Research Reactors. The designation makes the United States one of only three countries identified for unique capabilities and excellence in nuclear research.

  12. Predictive Modeling in Plasma Reactor and Process Design

    NASA Technical Reports Server (NTRS)

    Hash, D. B.; Bose, D.; Govindan, T. R.; Meyyappan, M.; Arnold, James O. (Technical Monitor)

    1997-01-01

    Research continues toward the improvement and increased understanding of high-density plasma tools. Such reactor systems are lauded for their independent control of ion flux and energy enabling high etch rates with low ion damage and for their improved ion velocity anisotropy resulting from thin collisionless sheaths and low neutral pressures. Still, with the transition to 300 mm processing, achieving etch uniformity and high etch rates concurrently may be a formidable task for such large diameter wafers for which computational modeling can play an important role in successful reactor and process design. The inductively coupled plasma (ICP) reactor is the focus of the present investigation. The present work attempts to understand the fundamental physical phenomena of such systems through computational modeling. Simulations will be presented using both computational fluid dynamics (CFD) techniques and the direct simulation Monte Carlo (DSMC) method for argon and chlorine discharges. ICP reactors generally operate at pressures on the order of 1 to 10 mTorr. At such low pressures, rarefaction can be significant to the degree that the constitutive relations used in typical CFD techniques become invalid and a particle simulation must be employed. This work will assess the extent to which CFD can be applied and evaluate the degree to which accuracy is lost in prediction of the phenomenon of interest; i.e., etch rate. If the CFD approach is found reasonably accurate and bench-marked with DSMC and experimental results, it has the potential to serve as a design tool due to the rapid time relative to DSMC. The continuum CFD simulation solves the governing equations for plasma flow using a finite difference technique with an implicit Gauss-Seidel Line Relaxation method for time marching toward a converged solution. The equation set consists of mass conservation for each species, separate energy equations for the electrons and heavy species, and momentum equations for the gas. The sheath is modeled by imposing the Bohm velocity to the ions near the walls. The DSMC method simulates each constituent of the gas as a separate species which would be analogous in CFD to employing separate species mass, momentum, and energy equations. All particles including electrons are moved and allowed to collide with one another with the stipulation that the electrons remain tied to the ions consistent with the concept of ambipolar diffusion. The velocities of the electrons are allowed to be modified during collisions and are not confined to a Maxwellian distribution. These benefits come at a price in terms of computational time and memory. The DSMC and CFD are made as consistent as possible by using similar chemistry and power deposition models. Although the comparison of CFD and DSMC is interesting, the main goal of this work is the increased understanding of high-density plasma flowfields that can then direct improvements in both techniques. This work is unique in the level of the physical models employed in both the DSMC and CFD for high-density plasma reactor applications. For example, the electrons are simulated in the present DSMC work which has not been done before for low temperature plasma processing problems. In the CFD approach, for the first time, the charged particle transport (discharge physics) has been self-consistently coupled to the gas flow and heat transfer.

  13. Co-cultivation of Lactobacillus zeae and Veillonella cricetifor the production of propionic acid

    PubMed Central

    2013-01-01

    In this work a defined co-culture of the lactic acid bacterium Lactobacillus zeae and the propionate producer Veillonella criceti has been studied in continuous stirred tank reactor (CSTR) and in a dialysis membrane reactor. It is the first time that this reactor type is used for a defined co-culture fermentation. This reactor allows high mixing rates and working with high cell densities, making it ideal for co-culture investigations. In CSTR experiments the co-culture showed over a broad concentration range an almost linear correlation in consumption and production rates to the supply with complex nutrients. In CSTR and dialysis cultures a strong growth stimulation of L. zeae by V. criceti was shown. In dialysis cultures very high propionate production rates (0.61 g L-1h-1) with final titers up to 28 g L-1 have been realized. This reactor allows an individual, intracellular investigation of the co-culture partners by omic-technologies to provide a better understanding of microbial communities. PMID:23705662

  14. Recycled and virgin plastic carriers in hybrid reactors for wastewater treatment.

    PubMed

    Paul, Etienne; Wolff, Delmira Beatriz; Ochoa, Juan Carlos; da Costa, Rejane Helena Ribeiro

    2007-07-01

    The reduction of organic and nitrogen pollution of wastewater was investigated in two hybrid reactors and compared with the reduction obtained by using a conventional activated sludge reactor (ASR) run as a control. Both HR-1 and HR-2 were activated sludge systems where a low-density carrier, P1 (polyethylene) for HR-1 and P2 (recycled plastics) for HR-2, was added. Firstly, the three reactors were operated at 10 days Suspended Solid Retention Time (SRT(SS)), leading to a complete nitrification. Secondly, the SRT(SS) for each reactor was lowered to 3 days. Nitrification was lost for the ASR but remained complete for HR's. Respirometric techniques were used to measure fixed or suspended biomass activities for heterotrophic and autotrophic biomass. More than 90% of the autotrophic activity was found on the supports whatever the SRT(SS) used. The results may underline the role of the carrier geometry or surface characteristics on the autotrophic/heterotrophic microorganism distribution.

  15. Long-term cathode performance and the microbial communities that develop in microbial fuel cells fed different fermentation endproducts.

    PubMed

    Kiely, Patrick D; Rader, Geoffrey; Regan, John M; Logan, Bruce E

    2011-01-01

    To better understand how cathode performance and substrates affected communities that evolved in these reactors over long periods of time, microbial fuel cells were operated for more than 1 year with individual endproducts of lignocellulose fermentation (acetic acid, formic acid, lactic acid, succinic acid, or ethanol). Large variations in reactor performance were primarily due to the specific substrates, with power densities ranging from 835 ± 21 to 62 ± 1mW/m(3). Cathodes performance degraded over time, as shown by an increase in power of up to 26% when the cathode biofilm was removed, and 118% using new cathodes. Communities that developed on the anodes included exoelectrogenic families, such as Rhodobacteraceae, Geobacteraceae, and Peptococcaceae, with the Deltaproteobacteria dominating most reactors. Pelobacter propionicus was the predominant member in reactors fed acetic acid, and it was abundant in several other MFCs. These results provide valuable insights into the effects of long-term MFC operation on reactor performance. Copyright © 2010 Elsevier Ltd. All rights reserved.

  16. Space rocket engine on the base of the reactor-pumped laser for the interplanetary flights and earth orbital applications

    NASA Astrophysics Data System (ADS)

    Gulevich, Andrey V.; Dyachenko, Peter P.; Kukharchuk, Oleg F.; Zrodnikov, Anatoly V.

    2000-01-01

    In this report the concept of vehicle-based reactor-laser engine for long time interplanetary and interorbital (LEO to GEO) flights is proposed. Reactor-pumped lasers offer the perspective way to create on the base of modern nuclear and lasers technologies the low mass and high energy density, repetitively pulsed vehicle-based laser of average power 100 kW. Nowadays the efficiency of nuclear-to-optical energy conversion reached the value of 2-3%. The demo model of reactor-pumped laser facility is under construction in Institute for Physics and Power Engineering (Obninsk, Russia). It enable us to hope that using high power laser on board of the vehicle could make the effective space laser engine possible. Such engine may provide the high specific impulse ~1000-2000 s with the thrust up to 10-100 n. Some calculation results of the characteristics of vehicle-based reactor-laser thermal engine concept are also presented. .

  17. CERAMIC FUEL ELEMENT MATERIAL FOR A NEUTRONIC REACTOR AND METHOD OF FABRICATING SAME

    DOEpatents

    Duckworth, W.H.

    1957-12-01

    This patent relates to ceramic composition, and to neutronic reactor fuel elements formed therefrom. These ceramic elements have high density and excellent strength characteristics and are formed by conventional ceramic casting and sintering at a temperature of about 2700 deg F in a nitrogen atmosphere. The composition consists of silicon carbide, silicon, uranium oxide and a very small percentage of molybdenum. Compositions containing molybdenum are markedly stronger than those lacking this ingredient.

  18. Summary of ORSphere Critical and Reactor Physics Measurements

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marshall, Margaret A.; Bess, John D.

    In the early 1970s Dr. John T. Mihalczo (team leader), J. J. Lynn, and J. R. Taylor performed experiments at the Oak Ridge Critical Experiments Facility (ORCEF) with highly enriched uranium (HEU) metal (called Oak Ridge Alloy or ORALLOY) to recreate GODIVA I results with greater accuracy than those performed at Los Alamos National Laboratory in the 1950s. The purpose of the Oak Ridge ORALLOY Sphere (ORSphere) experiments was to estimate the unreflected and unmoderated critical mass of an idealized sphere of uranium metal corrected to a density, purity, and enrichment such that it could be compared with the GODIVAmore » I experiments. This critical configuration has been evaluated. Preliminary results were presented at ND2013. Since then, the evaluation was finalized and judged to be an acceptable benchmark experiment for the International Criticality Safety Benchmark Experiment Project (ICSBEP). Additionally, reactor physics measurements were performed to determine surface button worths, central void worth, delayed neutron fraction, prompt neutron decay constant, fission density and neutron importance. These measurements have been evaluated and found to be acceptable experiments and are discussed in full detail in the International Handbook of Evaluated Reactor Physics Benchmark Experiments. The purpose of this paper is summary summarize all the critical and reactor physics measurements evaluations and, when possible, to compare them to GODIVA experiment results.« less

  19. Ab initio Investigation of Helium in Vanadium Oxide Nanoclusters

    NASA Astrophysics Data System (ADS)

    Danielson, Thomas; Tea, Eric; Hin, Celine

    Nanostructured ferritic alloys (NFAs) are strong candidate materials for the next generation of fission reactors and future fusion reactors. They are characterized by a large number density of oxide nanoclusters dispersed throughout a BCC iron matrix, where current oxide nanoclusters are primarily comprised of Y-Ti-O compounds. The oxide nanoclusters provide the alloy with high resistance to neutron irradiation, high yield strength and high creep strength at the elevated temperatures of a reactor environment. In addition, the oxide nanoclusters serve as trapping sites for transmutation product helium providing substantially increased resistance to catastrophic cracking and embrittlement. Although the mechanical properties and radiation resistance of the existing NFAs is promising, the problem of forming large scale reactor components continues to present a formidable challenge due to the high hardness and unpredictable fracture behavior of the alloys. An alternative alloy has been previously proposed and fabricated where vanadium is added in order to form vanadium oxide nanoclusters that serve as deflection sites for crack propagation. Although experiments have shown evidence that the fracture behavior of the alloys is improved, it is unknown whether or not the vanadium oxide nanoclusters are effective trapping sites for helium. We present results obtained using density functional theory investigating the thermodynamic stability of helium with the vanadium oxide matrix to make a comparison of trapping effectiveness to traditional Y-Ti-O compounds.

  20. Temperature, inocula and substrate: Contrasting electroactive consortia, diversity and performance in microbial fuel cells.

    PubMed

    Heidrich, E S; Dolfing, J; Wade, M J; Sloan, W T; Quince, C; Curtis, T P

    2018-02-01

    The factors that affect microbial community assembly and its effects on the performance of bioelectrochemical systems are poorly understood. Sixteen microbial fuel cell (MFC) reactors were set up to test the importance of inoculum, temperature and substrate: Arctic soil versus wastewater as inoculum; warm (26.5°C) versus cold (7.5°C) temperature; and acetate versus wastewater as substrate. Substrate was the dominant factor in determining performance and diversity: unexpectedly the simple electrogenic substrate delivered a higher diversity than a complex wastewater. Furthermore, in acetate fed reactors, diversity did not correlate with performance, yet in wastewater fed ones it did, with greater diversity sustaining higher power densities and coulombic efficiencies. Temperature had only a minor effect on power density, (Q 10 : 2 and 1.2 for acetate and wastewater respectively): this is surprising given the well-known temperature sensitivity of anaerobic bioreactors. Reactors were able to operate at low temperature with real wastewater without the need for specialised inocula; it is speculated that MFC biofilms may have a self-heating effect. Importantly, the warm acetate fed reactors in this study did not act as direct model for cold wastewater fed systems. Application of this technology will encompass use of real wastewater at ambient temperatures. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  1. Ichthyoplankton entrainment study at the SRS Savannah River water intakes for Westinghouse Savannah River Company

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Paller, M.

    1992-03-26

    Cooling water for L and K Reactors and makeup water for Par Pond is pumped from the Savannah River at the 1G, 3G, and 5G pump houses. Ichthyoplankton (drifting fish larvae and eggs) from the river are entrained into the reactor cooling systems with the river water and passed through the reactor's heat exchangers where temperatures may reach 70[degrees]C during full power operation. Ichthyoplankton mortality under such conditions is assumed to be 100 percent. The number of ichthyoplankton entrained into the cooling system depends on a variety of variables, including time of year, density and distribution of ichthyoplankton in themore » river, discharge levels in the river, and the volume of water withdrawn by the pumps. Entrainment at the 1 G pump house, which is immediately downstream from the confluence of Upper Three Runs Creek and the Savannah River, is also influenced by discharge rates and ichthyoplankton densities in Upper Three Runs Creek. Because of the anticipated restart of several SRS reactors and the growing concern surrounding striped bass and American shad stocks in the Savannah River, the Department of Energy requested that the Environmental Sciences Section (ESS) of the Savannah River Laboratory sample ichthyoplankton at the SRS Savannah River intakes. Dams Moore, Inc., under a contract with Westinghouse Savannah River Company performed the sampling and data analysis for the ESS.« less

  2. 78 FR 48501 - Agency Information Collection Activities: Proposed Collection; Comment Request

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-08

    ... storage installations, decommissioned power reactors, power reactors under construction, research and test reactors, agreement states, non-agreement states, as well as departments of health, medical centers, steel...

  3. Uranium silicide pellet fabrication by powder metallurgy for accident tolerant fuel evaluation and irradiation

    DOE PAGES

    Harp, Jason Michael; Lessing, Paul Alan; Hoggan, Rita Elaine

    2015-06-21

    In collaboration with industry, Idaho National Laboratory is investigating uranium silicide for use in future light water reactor fuels as a more accident resistant alternative to uranium oxide base fuels. Specifically this project was focused on producing uranium silicide (U 3Si 2) pellets by conventional powder metallurgy with a density greater than 94% of the theoretical density. This work has produced a process to consistently produce pellets with the desired density through careful optimization of the process. Milling of the U 3Si 2 has been optimized and high phase purity U 3Si 2 has been successfully produced. Results are presentedmore » from sintering studies and microstructural examinations that illustrate the need for a finely ground reproducible particle size distribution in the source powder. The optimized process was used to produce pellets for the Accident Tolerant Fuel-1 irradiation experiment. The average density of these pellets was 11.54 ±0.06 g/cm 3. Additional characterization of the pellets by scaning electron microscopy and X-ray diffraction has also been performed. As a result, pellets produced in this work have been encapsulated for irradiation, and irradiation in the Advanced Test Reactor is expected soon.« less

  4. Uniformity control of the deposition rate profile of a-Si:H film by gas velocity and temperature distributions in a capacitively coupled plasma reactor

    NASA Astrophysics Data System (ADS)

    Kim, Ho Jun; Lee, Hae June

    2018-03-01

    The effect of neutral transport on the deposition rate profiles of thin films formed by plasma-enhanced chemical vapor deposition (PECVD) is investigated to improve the uniformity of amorphous hydrogenated silicon films. The PECVD reactor with a cylindrical showerhead is numerically simulated with a variation of the gas velocity and temperature in the capacitively coupled plasma with an intermediate-pressure SiH4/He gas mixture. The modulation of the gas velocity distribution results in a noticeable change in the density distributions of neutral molecules such as SiH4, SiH3, H, SiH2, and Si2H6, especially in the vicinity of the electrode edge. With the locally accelerated gas flow, the concomitant increase in Si2H6 density near the electrode edge induces increases in both the electron density and the deposition rate profile near the electrode edge. In addition, it is observed that changing the surface temperature distribution by changing the sidewall temperature can also effectively modulate the plasma density distributions. The simulated deposition rate profile matches the experimental data well, even under non-isothermal wall boundary conditions.

  5. Uranium silicide pellet fabrication by powder metallurgy for accident tolerant fuel evaluation and irradiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Harp, Jason Michael; Lessing, Paul Alan; Hoggan, Rita Elaine

    In collaboration with industry, Idaho National Laboratory is investigating uranium silicide for use in future light water reactor fuels as a more accident resistant alternative to uranium oxide base fuels. Specifically this project was focused on producing uranium silicide (U 3Si 2) pellets by conventional powder metallurgy with a density greater than 94% of the theoretical density. This work has produced a process to consistently produce pellets with the desired density through careful optimization of the process. Milling of the U 3Si 2 has been optimized and high phase purity U 3Si 2 has been successfully produced. Results are presentedmore » from sintering studies and microstructural examinations that illustrate the need for a finely ground reproducible particle size distribution in the source powder. The optimized process was used to produce pellets for the Accident Tolerant Fuel-1 irradiation experiment. The average density of these pellets was 11.54 ±0.06 g/cm 3. Additional characterization of the pellets by scaning electron microscopy and X-ray diffraction has also been performed. As a result, pellets produced in this work have been encapsulated for irradiation, and irradiation in the Advanced Test Reactor is expected soon.« less

  6. NASA Reactor Facility Hazards Summary. Volume 1

    NASA Technical Reports Server (NTRS)

    1959-01-01

    The Lewis Research Center of the National Aeronautics and Space Administration proposes to build a nuclear research reactor which will be located in the Plum Brook Ordnance Works near Sandusky, Ohio. The purpose of this report is to inform the Advisory Committee on Reactor Safeguards of the U. S. Atomic Energy Commission in regard to the design Lq of the reactor facility, the characteristics of the site, and the hazards of operation at this location. The purpose of this research reactor is to make pumped loop studies of aircraft reactor fuel elements and other reactor components, radiation effects studies on aircraft reactor materials and equipment, shielding studies, and nuclear and solid state physics experiments. The reactor is light water cooled and moderated of the MTR-type with a primary beryllium reflector and a secondary water reflector. The core initially will be a 3 by 9 array of MTR-type fuel elements and is designed for operation up to a power of 60 megawatts. The reactor facility is described in general terms. This is followed by a discussion of the nuclear characteristics and performance of the reactor. Then details of the reactor control system are discussed. A summary of the site characteristics is then presented followed by a discussion of the larger type of experiments which may eventually be operated in this facility. The considerations for normal operation are concluded with a proposed method of handling fuel elements and radioactive wastes. The potential hazards involved with failures or malfunctions of this facility are considered in some detail. These are examined first from the standpoint of preventing them or minimizing their effects and second from the standpoint of what effect they might have on the reactor facility staff and the surrounding population. The most essential feature of the design for location at the proposed site is containment of the maximum credible accident.

  7. JPL in-house fluidized-bed reactor research

    NASA Technical Reports Server (NTRS)

    Rohatgi, N. K.

    1984-01-01

    Fluidized bed reactor research techniques for fabrication of quartz linears was reviewed. Silane pyrolysis was employed in this fabrication study. Metallic contaminant levels in the silicon particles were below levels detectable by emission spectroscopy.

  8. Conversion Preliminary Safety Analysis Report for the NIST Research Reactor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Diamond, D. J.; Baek, J. S.; Hanson, A. L.

    The NIST Center for Neutron Research (NCNR) is a reactor-laboratory complex providing the National Institute of Standards and Technology (NIST) and the nation with a world-class facility for the performance of neutron-based research. The heart of this facility is the NIST research reactor (aka NBSR); a heavy water moderated and cooled reactor operating at 20 MW. It is fueled with high-enriched uranium (HEU) fuel elements. A Global Threat Reduction Initiative (GTRI) program is underway to convert the reactor to low-enriched uranium (LEU) fuel. This program includes the qualification of the proposed fuel, uranium and molybdenum alloy foil clad in anmore » aluminum alloy, and the development of the fabrication techniques. This report is a preliminary version of the Safety Analysis Report (SAR) that would be submitted to the U.S. Nuclear Regulatory Commission (NRC) for approval prior to conversion. The report follows the recommended format and content from the NRC codified in NUREG-1537, “Guidelines for Preparing and Reviewing Applications for the Licensing of Non-power Reactors,” Chapter 18, “Highly Enriched to Low-Enriched Uranium Conversions.” The emphasis in any conversion SAR is to explain the differences between the LEU and HEU cores and to show the acceptability of the new design; there is no need to repeat information regarding the current reactor that will not change upon conversion. Hence, as seen in the report, the bulk of the SAR is devoted to Chapter 4, Reactor Description, and Chapter 13, Safety Analysis.« less

  9. Initial Comparison of Direct and Legacy Modeling Approaches for Radial Core Expansion Analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shemon, Emily R.

    2016-10-10

    Radial core expansion in sodium-cooled fast reactors provides an important reactivity feedback effect. As the reactor power increases due to normal start up conditions or accident scenarios, the core and surrounding materials heat up, causing both grid plate expansion and bowing of the assembly ducts. When the core restraint system is designed correctly, the resulting structural deformations introduce negative reactivity which decreases the reactor power. Historically, an indirect procedure has been used to estimate the reactivity feedback due to structural deformation which relies upon perturbation theory and coupling legacy physics codes with limited geometry capabilities. With advancements in modeling andmore » simulation, radial core expansion phenomena can now be modeled directly, providing an assessment of the accuracy of the reactivity feedback coefficients generated by indirect legacy methods. Recently a new capability was added to the PROTEUS-SN unstructured geometry neutron transport solver to analyze deformed meshes quickly and directly. By supplying the deformed mesh in addition to the base configuration input files, PROTEUS-SN automatically processes material adjustments including calculation of region densities to conserve mass, calculation of isotopic densities according to material models (for example, sodium density as a function of temperature), and subsequent re-homogenization of materials. To verify the new capability of directly simulating deformed meshes, PROTEUS-SN was used to compute reactivity feedback for a series of contrived yet representative deformed configurations for the Advanced Burner Test Reactor design. The indirect legacy procedure was also performed to generate reactivity feedback coefficients for the same deformed configurations. Interestingly, the legacy procedure consistently overestimated reactivity feedbacks by 35% compared to direct simulations by PROTEUS-SN. This overestimation indicates that the legacy procedures are in fact not conservative and could be overestimating reactivity feedback effects that are closely tied to reactor safety. We conclude that there is indeed value in performing direct simulation of deformed meshes despite the increased computational expense. PROTEUS-SN is already part of the SHARP multi-physics toolkit where both thermal hydraulics and structural mechanical feedback modeling can be applied but this is the first comparison of direct simulation to legacy techniques for radial core expansion.« less

  10. Developing the science and technology for the Material Plasma Exposure eXperiment

    DOE PAGES

    Rapp, J.; Biewer, T. M.; Bigelow, T. S.; ...

    2017-07-27

    Linear plasma generators are cost effective facilities to simulate divertor plasma conditions of present and future fusion reactors. They are used to address important R&D gaps in the science of plasma material interactions and towards viable plasma facing components for fusion reactors. Next generation plasma generators have to be able to access the plasma conditions expected on the divertor targets in ITER and future devices. The steady-state linear plasma device MPEX will address this regime with electron temperatures of 1–10 eV and electron densities ofmore » $$10^{21}{\\text{}}\\!-\\!10^{20}$$ $${\\rm m}^{-3}$$. The resulting heat fluxes are about 10 MW $${\\rm m}^{-2}$$ . MPEX is designed to deliver those plasma conditions with a novel Radio Frequency plasma source able to produce high density plasmas and heat electron and ions separately with electron Bernstein wave (EBW) heating and ion cyclotron resonance heating with a total installed power of 800 kW. The linear device Proto-MPEX, forerunner of MPEX consisting of 12 water-cooled copper coils, has been operational since May 2014. Its helicon antenna (100 kW, 13.56 MHz) and EC heating systems (200 kW, 28 GHz) have been commissioned and 14 MW $${\\rm m}^{-2}$$ was delivered on target. Furthermore, electron temperatures of about 20 eV have been achieved in combined helicon and ECH heating schemes at low electron densities. Overdense heating with EBW was achieved at low heating powers. The operational space of the density production by the helicon antenna was pushed up to $$1.1 \\times 10^{20}$$ $${\\rm m}^{-3}$$ at high magnetic fields of 1.0 T at the target. Finally, the experimental results from Proto-MPEX will be used for code validation to enable predictions of the source and heating performance for MPEX. MPEX, in its last phase, will be capable to expose neutron-irradiated samples. In this concept, targets will be irradiated in ORNL's High Flux Isotope Reactor and then subsequently exposed to fusion reactor relevant plasmas in MPEX.« less

  11. Developing the science and technology for the Material Plasma Exposure eXperiment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rapp, J.; Biewer, T. M.; Bigelow, T. S.

    Linear plasma generators are cost effective facilities to simulate divertor plasma conditions of present and future fusion reactors. They are used to address important R&D gaps in the science of plasma material interactions and towards viable plasma facing components for fusion reactors. Next generation plasma generators have to be able to access the plasma conditions expected on the divertor targets in ITER and future devices. The steady-state linear plasma device MPEX will address this regime with electron temperatures of 1–10 eV and electron densities ofmore » $$10^{21}{\\text{}}\\!-\\!10^{20}$$ $${\\rm m}^{-3}$$. The resulting heat fluxes are about 10 MW $${\\rm m}^{-2}$$ . MPEX is designed to deliver those plasma conditions with a novel Radio Frequency plasma source able to produce high density plasmas and heat electron and ions separately with electron Bernstein wave (EBW) heating and ion cyclotron resonance heating with a total installed power of 800 kW. The linear device Proto-MPEX, forerunner of MPEX consisting of 12 water-cooled copper coils, has been operational since May 2014. Its helicon antenna (100 kW, 13.56 MHz) and EC heating systems (200 kW, 28 GHz) have been commissioned and 14 MW $${\\rm m}^{-2}$$ was delivered on target. Furthermore, electron temperatures of about 20 eV have been achieved in combined helicon and ECH heating schemes at low electron densities. Overdense heating with EBW was achieved at low heating powers. The operational space of the density production by the helicon antenna was pushed up to $$1.1 \\times 10^{20}$$ $${\\rm m}^{-3}$$ at high magnetic fields of 1.0 T at the target. Finally, the experimental results from Proto-MPEX will be used for code validation to enable predictions of the source and heating performance for MPEX. MPEX, in its last phase, will be capable to expose neutron-irradiated samples. In this concept, targets will be irradiated in ORNL's High Flux Isotope Reactor and then subsequently exposed to fusion reactor relevant plasmas in MPEX.« less

  12. Gas-solid fluidized bed reactors: Scale-up, flow regimes identification and hydrodynamics

    NASA Astrophysics Data System (ADS)

    Zaid, Faraj Muftah

    This research studied the scale-up, flow regimes identification and hydrodynamics of fluidized beds using 6-inch and 18- inch diameter columns and different particles. One of the objectives was to advance the scale-up of gas-solid fluidized bed reactors by developing a new mechanistic methodology for hydrodynamic similarity based on matching the radial or diameter profile of gas phase holdup, since gas dynamics dictate the hydrodynamics of these reactors. This has been successfully achieved. However, the literature reported scale-up methodology based on matching selected dimensionless groups was examined and it was found that it was not easy to match the dimensionless groups and hence, there was some deviation in the hydrodynamics of the studied two different fluidized beds. A new technique based on gamma ray densitometry (GRD) was successfully developed and utilized to on-line monitor the implementation of scale-up, to identify the flow regime, and to measure the radial or diameter profiles of gas and solids holdups. CFD has been demonstrated as a valuable tool to enable the implementation of the newly developed scale-up methodology based on finding the conditions that provide similar or closer radial profile or cross sectional distribution of the gas holdup. As gas velocity increases, solids holdup in the center region of the column decreases in the fully developed region of both 6 inch and 18 inch diameter columns. Solids holdup increased with the increase in the particles size and density. Upflowing particles velocity increased with the gas velocity and became steeper at high superficial gas velocity at all axial heights where the center line velocity became higher than that in the wall region. Smaller particles size and lower density gave larger upflowing particles velocity. Minimum fluidization velocity and transition velocity from bubbly to churn turbulent flow regimes were found to be lower in 18 inch diameter column compared to those obtained in 6 inch diameter column. Also the absolute fluctuation of upflowing particles velocity multiplied by solids holdups vś 3ś as one of the terms for solids mass flux estimation was found to be larger in 18-inch diameter column than that in 6-inch diameter column using same particles size and density.

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hayes, S. L.; Harp, J. M.; Chichester, H. J. M.

    Research and development activities on metallic fuels in the US are focused on their potential use for actinide transmutation in future sodium fast reactors. As part of this application, there is a desire to demonstrate a multifold increase in burnup potential. A number of metallic fuel design innovations are under investigation with a view toward significantly increasing the burnup potential of metallic fuels, since higher discharge burnups equate to lower potential actinide losses during recycle. Promising innovations under investigation include: 1) lowering the fuel smeared density in order to accommodate the additional swelling expected as burnups increase, 2) utilizing anmore » annular fuel geometry for better geometrical stability at low smeared densities, as well as the potential to eliminate the need for a sodium bond, and 3) minor alloy additions to immobilize lanthanide fission products inside the metallic fuel matrix and prevent their transport to the cladding resulting in fuel-cladding chemical interaction. This paper presents results from these efforts to advance metallic fuel technology in support of high burnup and actinide transmutation objectives. Highlights include examples of fabrication of low smeared density annular metallic fuels, experiments to identify alloy additions effective in immobilizing lanthanide fission products, and early postirradiation examinations of annular metallic fuels having low smeared densities and palladium additions for fission product immobilization.« less

  14. A study of thermal hydraulic and kinetic phenomena in HYLIFE-2: An inertial confinement fusion reactor

    NASA Astrophysics Data System (ADS)

    Chen, Xiang Ming

    1993-01-01

    Researchers have studied the different aspects of commercial fusion energy for several decades. A variety of inertial confinement fusion (ICF) reactors have been proposed. Different from the magnetic confinement fusion concept, inertial confinement fusion does not need long-term confinement of the fusion fuel but achieves fusion reaction in a short microexplosion under a high density, high temperature condition. The HYLIFE-2 reactor design started in 1987 is based on the study of a previous concept called HYLIFE (High Yield Lithium Injection Fusion Energy). Similar to the old concept, the HYLIFE-2 design uses a vacuum chamber in which D-T fusion pellets are injected and ignited by high energy beams shot into the reactor through different ports. The reactor vessel is protected from explosion radiations by a liquid fall (blanket) that also breeds tritium through the (n, alpha) reaction of lithium and conveys the fusion energy to the power cycle. In addition to some geometric chances, the new design replaces liquid metal lithium with the molten salt Flibe (Li2BeF4) as the protective blanket material. The objective was to remove the possibility of fire hazard. The important thermal hydraulic issues in the design are (1) equation of state of Flibe; (2) liquid relaxation after isochoric (constant volume) heating; (3) ablation and gas dynamics; (4) interaction of the vapor and liquid; and (5) condensation of the vaporized material. The first four issues have to do with the internal relaxation after the fusion microexplosion in the chamber. Vaporized material, as well as liquid, may assert strong impulses on the chamber wall during the process of relaxing after absorbing the energy from the microexplosion. Item (5) is related to the rapid vacuum recovery between the ignitions. Some aspects of the first four issues are studied.

  15. Emissivity of Candidate Materials for VHTR Applicationbs: Role of Oxidation and Surface Modification Treatments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sridharan, Kumar; Allen, Todd; Anderson, Mark

    The Generation IV (GEN IV) Nuclear Energy Systems Initiative was instituted by the Department of Energy (DOE) with the goal of researching and developing technologies and materials necessary for various types of future reactors. These GEN IV reactors will employ advanced fuel cycles, passive safety systems, and other innovative systems, leading to significant differences between these future reactors and current water-cooled reactors. The leading candidate for the Next Generation Nuclear Plant (NGNP) to be built at Idaho National Lab (INL) in the United States is the Very High Temperature Reactor (VHTR). Due to the high operating temperatures of the VHTR,more » the Reactor Pressure Vessel (RPV) will partially rely on heat transfer by radiation for cooling. Heat expulsion by radiation will become all the more important during high temperature excursions during off-normal accident scenarios. Radiant power is dictated by emissivity, a material property. The NGNP Materials Research and Development Program Plan [1] has identified emissivity and the effects of high temperature oxide formation on emissivity as an area of research towards the development of the VHTR.« less

  16. RAZORBACK - A Research Reactor Transient Analysis Code Version 1.0 - Volume 3: Verification and Validation Report.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Talley, Darren G.

    2017-04-01

    This report describes the work and results of the verification and validation (V&V) of the version 1.0 release of the Razorback code. Razorback is a computer code designed to simulate the operation of a research reactor (such as the Annular Core Research Reactor (ACRR)) by a coupled numerical solution of the point reactor kinetics equations, the energy conservation equation for fuel element heat transfer, the equation of motion for fuel element thermal expansion, and the mass, momentum, and energy conservation equations for the water cooling of the fuel elements. This V&V effort was intended to confirm that the code showsmore » good agreement between simulation and actual ACRR operations.« less

  17. Research reactor loading pattern optimization using estimation of distribution algorithms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jiang, S.; Ziver, K.; AMCG Group, RM Consultants, Abingdon

    2006-07-01

    A new evolutionary search based approach for solving the nuclear reactor loading pattern optimization problems is presented based on the Estimation of Distribution Algorithms. The optimization technique developed is then applied to the maximization of the effective multiplication factor (K{sub eff}) of the Imperial College CONSORT research reactor (the last remaining civilian research reactor in the United Kingdom). A new elitism-guided searching strategy has been developed and applied to improve the local convergence together with some problem-dependent information based on the 'stand-alone K{sub eff} with fuel coupling calculations. A comparison study between the EDAs and a Genetic Algorithm with Heuristicmore » Tie Breaking Crossover operator has shown that the new algorithm is efficient and robust. (authors)« less

  18. Semi-simultaneous application of neutron and X-ray radiography in revealing the defects in an Al casting.

    PubMed

    Balaskó, M; Korösi, F; Szalay, Zs

    2004-10-01

    A semi-simultaneous application of neutron and X-ray radiography (NR, XR) respectively, was applied to an Al casting. The experiments were performed at the 10MW VVR-SM research reactor in Budapest (Hungary). The aim was to reveal, identify and parameterize the hidden defects in the Al casting. The joint application of NR and XR revealed hidden defects located in the Al casting. Image analysis of the NR and XR images unveiled a cone-like dimensionality of the defects. The spectral density analysis of the images showed a distinctly different character for the hidden defect region of Al casting in comparison with that of the defect-free one.

  19. Yale High Energy Physics Research: Precision Studies of Reactor Antineutrinos

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Heeger, Karsten M.

    2014-09-13

    This report presents experimental research at the intensity frontier of particle physics with particular focus on the study of reactor antineutrinos and the precision measurement of neutrino oscillations. The experimental neutrino physics group of Professor Heeger and Senior Scientist Band at Yale University has had leading responsibilities in the construction and operation of the Daya Bay Reactor Antineutrino Experiment and made critical contributions to the discovery of non-zeromore » $$\\theta_{13}$$. Heeger and Band led the Daya Bay detector management team and are now overseeing the operations of the antineutrino detectors. Postdoctoral researchers and students in this group have made leading contributions to the Daya Bay analysis including the prediction of the reactor antineutrino flux and spectrum, the analysis of the oscillation signal, and the precision determination of the target mass yielding unprecedented precision in the relative detector uncertainty. Heeger's group is now leading an R\\&D effort towards a short-baseline oscillation experiment, called PROSPECT, at a US research reactor and the development of antineutrino detectors with advanced background discrimination.« less

  20. A model to predict thermal conductivity of irradiated U–Mo dispersion fuel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Burkes, Douglas E.; Huber, Tanja K.; Casella, Andrew M.

    The Office of Materials Management and Minimization Reactor Conversion Program continues to develop existing and new research and test reactor fuels to achieve maximum attainable uranium loadings to support the conversion of a number of the world’s remaining high-enriched uranium fueled reactors to low-enriched uranium fuel. The program is focused on assisting with the development and qualification of a fuel design that consists of a uranium-molybdenum (U-Mo) alloy dispersed in an aluminum matrix as one option for reactor conversion. Thermal conductivity is an important consideration in determining the operational temperature of the fuel and can be influenced by interaction layermore » formation between the dispersed phase and matrix and upon the concentration of the dispersed phase within the matrix. This paper extends the use of a simple model developed previously to study the influence of interaction layer formation as well as the size and volume fraction of fuel particles dispersed in the matrix, Si additions to the matrix, and Mo concentration in the fuel particles on the effective thermal conductivity of the U-Mo/Al composite during irradiation. The model has been compared to experimental measurements recently conducted on U-Mo/Al dispersion fuels at two different fission densities with acceptable agreement. Observations of the modeled results indicate that formation of an interaction layer and subsequent consumption of the matrix reveals a rather significant effect on effective thermal conductivity. The modeled interaction layer formation and subsequent consumption of the high thermal conductivity matrix was sensitive to the average dispersed fuel particle size, suggesting this parameter as one of the most effective in minimizing thermal conductivity degradation of the composite, while the influence of Si additions to the matrix in the model was highly dependent upon irradiation conditions.« less

  1. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mulder, R. U.; Benneche, P. E.; Hosticka, B.

    The objective of the DOE supported Reactor Sharing Program is to increase the availability of university nuclear reactor facilities to non-reactor-owning educational institutions. The educational and research programs of these users institutions is enhanced by the use of the nuclear facilities.

  2. Utilization of the Philippine Research Reactor as a training facility for nuclear power plant operators

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Palabrica, R.J.

    1981-01-01

    The Philippines has a 1-MW swimming-pool reactor facility operated by the Philippine Atomic Energy Commission (PAEC). The reactor is light-water moderated and cooled, graphite reflected, and fueled with 90% enriched uranium. Since it became critical in 1963 it has been utilized for research, radioisotope production, and training. It was used initially in the training of PAEC personnel and other research institutions and universities. During the last few years, however, it has played a key role in training personnel for the Philippine Nuclear Power Project (PNPP).

  3. Roadmap for Nondestructive Evaluation of Reactor Pressure Vessel Research and Development by the Light Water Reactor Sustainability Program

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smith, Cyrus M; Nanstad, Randy K; Clayton, Dwight A

    2012-09-01

    The Department of Energy s (DOE) Light Water Reactor Sustainability (LWRS) Program is a five year effort which works to develop the fundamental scientific basis to understand, predict, and measure changes in materials and systems, structure, and components as they age in environments associated with continued long-term operations of existing commercial nuclear power reactors. This year, the Materials Aging and Degradation (MAaD) Pathway of this program has placed emphasis on emerging Non-Destructive Evaluation (NDE) methods which support these objectives. DOE funded Research and Development (R&D) on emerging NDE techniques to support commercial nuclear reactor sustainability is expected to begin nextmore » year. This summer, the MAaD Pathway invited subject matter experts to participate in a series of workshops which developed the basis for the research plan of these DOE R&D NDE activities. This document presents the results of one of these workshops which are the DOE LWRS NDE R&D Roadmap for Reactor Pressure Vessels (RPV). These workshops made a substantial effort to coordinate the DOE NDE R&D with that already underway or planned by the Electric Power Research Institute (EPRI) and the Nuclear Regulatory Commission (NRC) through their representation at these workshops.« less

  4. 78 FR 33132 - Quality Verification for Plate-Type Uranium-Aluminum Fuel Elements for Use in Research and Test...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-06-03

    ... Fuel Elements for Use in Research and Test Reactors AGENCY: Nuclear Regulatory Commission. ACTION... Research and Test Reactors.'' This guide describes a method that the staff of the NRC considers acceptable... assurance program for verifying the quality of plate-type uranium-aluminum fuel elements used in research...

  5. Characteristics of aerobic granules grown on glucose a sequential batch shaking reactor.

    PubMed

    Cai, Chun-guang; Zhu, Nan-wen; Liu, Jun-shen; Wang, Zhen-peng; Cai, Wei-min

    2004-01-01

    Aerobic heterotrophic granular sludge was cultivated in a sequencing batch shaking reactor (SBSR) in which a synthetic wastewater containing glucose as carbon source was fed. The characteristics of the aerobic granules were investigated. Compared with the conventional activated sludge flocs, the aerobic granules exhibit excellent physical characteristics in terms of settleability, size, shape, biomass density, and physical strength. Scanning electron micrographs revealed that in mature granules little filamentous bacteria could be found, rod-shaped and coccoid bacteria were the dominant microorganisms.

  6. Evaluation of Non-Oxide Fuel for Fission-based Nuclear Reactors on Spacecraft

    DTIC Science & Technology

    smaller and potentially lighter core, whichis a significant advantage. The results of this study indicate that use of both UC and UN may result in significant weight savings due tohigher uranium loading density....The goal of this project was to study the performance of atypical uranium-based fuels in a nuclear reactor capable of producing 1 megawattof thermal...UN), or uranium carbide (UC) and compared their performance to uranium oxide (UO2) which is thefuel form used in the vast majority of commercial

  7. Nuclear energy.

    PubMed

    Grandin, Karl; Jagers, Peter; Kullander, Sven

    2010-01-01

    Nuclear energy can play a role in carbon free production of electrical energy, thus making it interesting for tomorrow's energy mix. However, several issues have to be addressed. In fission technology, the design of so-called fourth generation reactors show great promise, in particular in addressing materials efficiency and safety issues. If successfully developed, such reactors may have an important and sustainable part in future energy production. Working fusion reactors may be even more materials efficient and environmental friendly, but also need more development and research. The roadmap for development of fourth generation fission and fusion reactors, therefore, asks for attention and research in these fields must be strengthened.

  8. Loss-of-Flow and Loss-of-Pressure Simulations of the BR2 Research Reactor with HEU and LEU Fuel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Licht, J.; Bergeron, A.; Dionne, B.

    2016-01-01

    Belgian Reactor 2 (BR2) is a research and test reactor located in Mol, Belgium and is primarily used for radioisotope production and materials testing. The Materials Management and Minimization (M3) Reactor Conversion Program of the National Nuclear Security Administration (NNSA) is supporting the conversion of the BR2 reactor from Highly Enriched Uranium (HEU) fuel to Low Enriched Uranium (LEU) fuel. The reactor core of BR2 is located inside a pressure vessel that contains 79 channels in a hyperboloid configuration. The core configuration is highly variable as each channel can contain a fuel assembly, a control or regulating rod, an experimentalmore » device, or a beryllium or aluminum plug. Because of this variability, a representative core configuration, based on current reactor use, has been defined for the fuel conversion analyses. The code RELAP5/Mod 3.3 was used to perform the transient thermal-hydraulic safety analyses of the BR2 reactor to support reactor conversion. The input model has been modernized relative to that historically used at BR2 taking into account the best modeling practices developed by Argonne National Laboratory (ANL) and BR2 engineers.« less

  9. Status Report on Scoping Reactor Physics and Sensitivity/Uncertainty Analysis of LR-0 Reactor Molten Salt Experiments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brown, Nicholas R.; Mueller, Donald E.; Patton, Bruce W.

    2016-08-31

    Experiments are being planned at Research Centre Rež (RC Rež) to use the FLiBe (2 7LiF-BeF 2) salt from the Molten Salt Reactor Experiment (MSRE) to perform reactor physics measurements in the LR-0 low power nuclear reactor. These experiments are intended to inform on neutron spectral effects and nuclear data uncertainties for advanced reactor systems utilizing FLiBe salt in a thermal neutron energy spectrum. Oak Ridge National Laboratory (ORNL) is performing sensitivity/uncertainty (S/U) analysis of these planned experiments as part of the ongoing collaboration between the United States and the Czech Republic on civilian nuclear energy research and development. Themore » objective of these analyses is to produce the sensitivity of neutron multiplication to cross section data on an energy-dependent basis for specific nuclides. This report provides a status update on the S/U analyses of critical experiments at the LR-0 Reactor relevant to fluoride salt-cooled high temperature reactor (FHR) and liquid-fueled molten salt reactor (MSR) concepts. The S/U analyses will be used to inform design of FLiBe-based experiments using the salt from MSRE.« less

  10. Preliminary safety analysis of Pb-Bi cooled 800 MWt modified CANDLE burn-up scheme based fast reactors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Su'ud, Zaki, E-mail: szaki@fi.itba.c.id; Sekimoto, H., E-mail: hsekimot@gmail.com

    2014-09-30

    Pb-Bi Cooled fast reactors with modified CANDLE burn-up scheme with 10 regions and 10 years cycle length has been investigated from neutronic aspects. In this study the safety aspect of such reactors have been investigated and discussed. Several condition of unprotected loss of flow (ULOF) and unprotected rod run-out transient over power (UTOP) have been simulated and the results show that the reactors excellent safety performance. At 80 seconds after unprotected loss of flow condition, the core flow rate drop to about 25% of its initial flow and slowly move toward its natural circulation level. The maximum fuel temperature canmore » be managed below 1000°C and the maximum cladding temperature can be managed below 700°C. The dominant reactivity feedback is radial core expansion and Doppler effect, followed by coolant density effect and fuel axial expansion effect.« less

  11. Opportunities for Materials Science and Biological Research at the OPAL Research Reactor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kennedy, S. J.

    Neutron scattering techniques have evolved over more than 1/2 century into a powerful set of tools for determination of atomic and molecular structures. Modern facilities offer the possibility to determine complex structures over length scales from {approx}0.1 nm to {approx}500 nm. They can also provide information on atomic and molecular dynamics, on magnetic interactions and on the location and behaviour of hydrogen in a variety of materials. The OPAL Research Reactor is a 20 megawatt pool type reactor using low enriched uranium fuel, and cooled by water. OPAL is a multipurpose neutron factory with modern facilities for neutron beam research,more » radioisotope production and irradiation services. The neutron beam facility has been designed to compete with the best beam facilities in the world. After six years in construction, the reactor and neutron beam facilities are now being commissioned, and we will commence scientific experiments later this year. The presentation will include an outline of the strengths of neutron scattering and a description of the OPAL research reactor, with particular emphasis on it's scientific infrastructure. It will also provide an overview of the opportunities for research in materials science and biology that will be possible at OPAL, and mechanisms for accessing the facilities. The discussion will emphasize how researchers from around the world can utilize these exciting new facilities.« less

  12. Measurement and Analysis of Structural Integrity of Reactor Core Support Structure in Pressurized Water Reactor (PWR) Plant

    NASA Astrophysics Data System (ADS)

    Ansari, Saleem A.; Haroon, Muhammad; Rashid, Atif; Kazmi, Zafar

    2017-02-01

    Extensive calculation and measurements of flow-induced vibrations (FIV) of reactor internals were made in a PWR plant to assess the structural integrity of reactor core support structure against coolant flow. The work was done to meet the requirements of the Fukushima Response Action Plan (FRAP) for enhancement of reactor safety, and the regulatory guide RG-1.20. For the core surveillance measurements the Reactor Internals Vibration Monitoring System (IVMS) has been developed based on detailed neutron noise analysis of the flux signals from the four ex-core neutron detectors. The natural frequencies, displacement and mode shapes of the reactor core barrel (CB) motion were determined with the help of IVMS. The random pressure fluctuations in reactor coolant flow due to turbulence force have been identified as the predominant cause of beam-mode deflection of CB. The dynamic FIV calculations were also made to supplement the core surveillance measurements. The calculational package employed the computational fluid dynamics, mode shape analysis, calculation of power spectral densities of flow & pressure fields and the structural response to random flow excitation forces. The dynamic loads and stiffness of the Hold-Down Spring that keeps the core structure in position against upward coolant thrust were also determined by noise measurements. Also, the boron concentration in primary coolant at any time of the core cycle has been determined with the IVMS.

  13. MYRRHA: A multipurpose nuclear research facility

    NASA Astrophysics Data System (ADS)

    Baeten, P.; Schyns, M.; Fernandez, Rafaël; De Bruyn, Didier; Van den Eynde, Gert

    2014-12-01

    MYRRHA (Multi-purpose hYbrid Research Reactor for High-tech Applications) is a multipurpose research facility currently being developed at SCK•CEN. MYRRHA is based on the ADS (Accelerator Driven System) concept where a proton accelerator, a spallation target and a subcritical reactor are coupled. MYRRHA will demonstrate the ADS full concept by coupling these three components at a reasonable power level to allow operation feedback. As a flexible irradiation facility, the MYRRHA research facility will be able to work in both critical as subcritical modes. In this way, MYRRHA will allow fuel developments for innovative reactor systems, material developments for GEN IV and fusion reactors, and radioisotope production for medical and industrial applications. MYRRHA will be cooled by lead-bismuth eutectic and will play an important role in the development of the Pb-alloys technology needed for the LFR (Lead Fast Reactor) GEN IV concept. MYRRHA will also contribute to the study of partitioning and transmutation of high-level waste. Transmutation of minor actinides (MA) can be completed in an efficient way in fast neutron spectrum facilities, so both critical reactors and subcritical ADS are potential candidates as dedicated transmutation systems. However critical reactors heavily loaded with fuel containing large amounts of MA pose reactivity control problems, and thus safety problems. A subcritical ADS operates in a flexible and safe manner, even with a core loading containing a high amount of MA leading to a high transmutation rate. In this paper, the most recent developments in the design of the MYRRHA facility are presented.

  14. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Craig, D.F.

    The division was formed in 1946 at the suggestion of Dr. Eugene P. Wigner to attack the problem of the distortion of graphite in the early reactors due to exposure to reactor neutrons, and the consequent radiation damage. It was called the Metallurgy Division and assembled the metallurgical and solid state physics activities of the time which were not directly related to nuclear weapons production. William A. Johnson, a Westinghouse employee, was named Division Director in 1946. In 1949 he was replaced by John H Frye Jr. when the Division consisted of 45 people. He was director during most ofmore » what is called the Reactor Project Years until 1973 and his retirement. During this period the Division evolved into three organizational areas: basic research, applied research in nuclear reactor materials, and reactor programs directly related to a specific reactor(s) being designed or built. The Division (Metals and Ceramics) consisted of 204 staff members in 1973 when James R. Weir, Jr., became Director. This was the period of the oil embargo, the formation of the Energy Research and Development Administration (ERDA) by combining the Atomic Energy Commission (AEC) with the Office of Coal Research, and subsequent formation of the Department of Energy (DOE). The diversification process continued when James O. Stiegler became Director in 1984, partially as a result of the pressure of legislation encouraging the national laboratories to work with U.S. industries on their problems. During that time the Division staff grew from 265 to 330. Douglas F. Craig became Director in 1992.« less

  15. Anaerobic treatment of winery wastewater in fixed bed reactors.

    PubMed

    Ganesh, Rangaraj; Rajinikanth, Rajagopal; Thanikal, Joseph V; Ramanujam, Ramamoorty Alwar; Torrijos, Michel

    2010-06-01

    The treatment of winery wastewater in three upflow anaerobic fixed-bed reactors (S9, S30 and S40) with low density floating supports of varying size and specific surface area was investigated. A maximum OLR of 42 g/l day with 80 +/- 0.5% removal efficiency was attained in S9, which had supports with the highest specific surface area. It was found that the efficiency of the reactors increased with decrease in size and increase in specific surface area of the support media. Total biomass accumulation in the reactors was also found to vary as a function of specific surface area and size of the support medium. The Stover-Kincannon kinetic model predicted satisfactorily the performance of the reactors. The maximum removal rate constant (U(max)) was 161.3, 99.0 and 77.5 g/l day and the saturation value constant (K(B)) was 162.0, 99.5 and 78.0 g/l day for S9, S30 and S40, respectively. Due to their higher biomass retention potential, the supports used in this study offer great promise as media in anaerobic fixed bed reactors. Anaerobic fixed-bed reactors with these supports can be applied as high-rate systems for the treatment of large volumes of wastewaters typically containing readily biodegradable organics, such as the winery wastewater.

  16. Virtual environments simulation in research reactor

    NASA Astrophysics Data System (ADS)

    Muhamad, Shalina Bt. Sheik; Bahrin, Muhammad Hannan Bin

    2017-01-01

    Virtual reality based simulations are interactive and engaging. It has the useful potential in improving safety training. Virtual reality technology can be used to train workers who are unfamiliar with the physical layout of an area. In this study, a simulation program based on the virtual environment at research reactor was developed. The platform used for virtual simulation is 3DVia software for which it's rendering capabilities, physics for movement and collision and interactive navigation features have been taken advantage of. A real research reactor was virtually modelled and simulated with the model of avatars adopted to simulate walking. Collision detection algorithms were developed for various parts of the 3D building and avatars to restrain the avatars to certain regions of the virtual environment. A user can control the avatar to move around inside the virtual environment. Thus, this work can assist in the training of personnel, as in evaluating the radiological safety of the research reactor facility.

  17. Optimize out-of-core thermionic energy conversion for nuclear electric propulsion

    NASA Technical Reports Server (NTRS)

    Morris, J. F.

    1977-01-01

    Current designs for out of core thermionic energy conversion (TEC) to power nuclear electric propulsion (NEP) were evaluated. Approaches to improve out of core TEC are emphasized and probabilities for success are indicated. TEC gains are available with higher emitter temperatures and greater power densities. Good potentialities for accommodating external high temperature, high power density TEC with heat pipe cooled reactors exist.

  18. Ceria-thoria pellet manufacturing in preparation for plutonia-thoria LWR fuel production

    NASA Astrophysics Data System (ADS)

    Drera, Saleem S.; Björk, Klara Insulander; Sobieska, Matylda

    2016-10-01

    Thorium dioxide (thoria) has potential to assist in niche roles as fuel for light water reactors (LWRs). One such application for thoria is its use as the fertile component to burn plutonium in a mixed oxide fuel (MOX). Thor Energy and an international consortium are currently irradiating plutonia-thoria (Th-MOX) fuel in an effort to produce data for its licensing basis. During fuel-manufacturing research and development (R&D), surrogate materials were utilized to highlight procedures and build experience. Cerium dioxide (ceria) provides a good surrogate platform to replicate the chemical nature of plutonium dioxide. The project's fuel manufacturing R&D focused on powder metallurgical techniques to ensure manufacturability with the current commercial MOX fuel production infrastructure. The following paper highlights basics of the ceria-thoria fuel production including powder milling, pellet pressing and pellet sintering. Green pellets and sintered pellets were manufactured with average densities of 67.0% and 95.5% that of theoretical density respectively.

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mulder, R.U.; Benneche, P.E.; Hosticka, B.

    The objective of the DOE supported Reactor Sharing Program is to increase the availability of university nuclear reactor facilities to non-reactor-owning educational institutions. The educational and research programs of these user institutions is enhanced by the use of the nuclear facilities. Several methods have been used by the UVA Reactor Facility to achieve this objective. First, many college and secondary school groups toured the Reactor Facility and viewed the UVAR reactor and associated experimental facilities. Second, advanced undergraduate and graduate classes from area colleges and universities visited the facility to perform experiments in nuclear engineering and physics which would notmore » be possible at the user institution. Third, irradiation and analysis services at the Facility have been made available for research by faculty and students from user institutions. Fourth, some institutions have received activated material from UVA from use at their institutions. These areas are discussed in this report.« less

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    The objective of the DOE supported Reactor Sharing Program is to increase the availability of university nuclear reactor facilities to non-reactor-owning educational institutions. The educational and research programs of these user institutions is enhanced by the use of the nuclear facilities. Several methods have been used by the UVA Reactor Facility to achieve this objective. First, many college and secondary school groups toured the Reactor Facility and viewed the UVAR reactor and associated experimental facilities. Second, advanced undergraduate and graduate classes from area colleges and universities visited the facility to perform experiments in nuclear engineering and physics which would notmore » be possible at the user institution. Third, irradiation and analysis services at the Facility have been made available for research by faculty and students from user institutions. Fourth, some institutions have received activated material from UVA for use at their institutions. These areas are discussed further in the report.« less

  1. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mulder, R.U.; Benneche, P.E.; Hosticka, B.

    The objective of the DOE supported Reactor Sharing Program is to increase the availability of university nuclear reactor facilities to non-reactor-owning educational institutions. The educational and research programs of these user institutions is enhanced by the use of the nuclear facilities. Several methods have been used by the UVA Reactor Facility to achieve this objective. First, many college and secondary school groups toured the Reactor Facility and viewed the UVAR reactor and associated experimental facilities. Second, advanced undergraduate and graduate classes from area colleges and universities visited the facility to perform experiments in nuclear engineering and physics which would notmore » be possible at the user institution. Third, irradiation and analysis services at the Facility have been made available for research by faculty and students from user institutions. Fourth, some institutions have received activated material from UVA for use at their institutions. These areas are discussed here.« less

  2. Performance and Mechanisms of Ultrafiltration Membrane Fouling Mitigation by Coupling Coagulation and Applied Electric Field in a Novel Electrocoagulation Membrane Reactor.

    PubMed

    Sun, Jingqiu; Hu, Chengzhi; Tong, Tiezheng; Zhao, Kai; Qu, Jiuhui; Liu, Huijuan; Elimelech, Menachem

    2017-08-01

    A novel electrocoagulation membrane reactor (ECMR) was developed, in which ultrafiltration (UF) membrane modules are placed between electrodes to improve effluent water quality and reduce membrane fouling. Experiments with feedwater containing clays (kaolinite) and natural organic matter (humic acid) revealed that the combined effect of coagulation and electric field mitigated membrane fouling in the ECMR, resulting in higher water flux than the conventional combination of electrocoagulation and UF in separate units (EC-UF). Higher current densities and weakly acidic pH in the EMCR favored faster generation of large flocs and effectively reduced membrane pore blocking. The hydraulic resistance of the formed cake layers on the membrane surface in ECMR was reduced due to an increase in cake layer porosity and polarity, induced by both coagulation and the applied electric field. The formation of a polarized cake layer was controlled by the applied current density and voltage, with cake layers formed under higher electric field strengths showing higher porosity and hydrophilicity. Compared to EC-UF, ECMR has a smaller footprint and could achieve significant energy savings due to improved fouling resistance and a more compact reactor design.

  3. Returning HEU Fuel from the Czech Republic to Russia

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Michael Tyacke; Dr. Igor Bolshinsky

    In December 1999, representatives from the United States, Russian Federation, and International Atomic Energy Agency began working on a program to return Russian supplied, highly enriched, uranium fuel stored at foreign research reactors to Russia. Now, under the Global Threat Reduction Initiative’s Russian Research Reactor Fuel Return Program, this effort has repatriated over 800 kg of highly enriched uranium to Russia from over 10 countries. In May 2004, the “Agreement Between the Government of the United States of America and the Government of the Russian Federation Concerning Cooperation for the Transfer of Russian Produced Research Reactor Nuclear Fuel to themore » Russian Federation” was signed. This agreement provides legal authority for the Russian Research Reactor Fuel Return Program and establishes parameters whereby eligible countries may return highly enriched uranium spent and fresh fuel assemblies and other fissile materials to Russia. On December 8, 2007, one of the largest shipments of highly enriched uranium spent nuclear fuel was successfully made from a Russian-designed nuclear research reactor in the Czech Republic to the Russian Federation. This accomplishment is the culmination of years of planning, negotiations, and hard work. The United States, Russian Federation, and the International Atomic Energy Agency have been working together. In February 2003, Russian Research Reactor Fuel Return Program representatives met with the Nuclear Research Institute in Rež, Czech Republic, and discussed the return of their highly enriched uranium spent nuclear fuel to the Russian Federation for reprocessing. Nearly 5 years later, the shipment was made. This article discusses the planning, preparations, coordination, and cooperation required to make this important international shipment.« less

  4. Operational performance of the three bean salad control algorithm on the ACRR (Annular Core Research Reactor)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ball, R.M.; Madaras, J.J.; Trowbridge, F.R. Jr.

    Experimental tests on the Annular Core Research Reactor have confirmed that the Three-Bean-Salad'' control algorithm based on the Pontryagin maximum principle can change the power of a nuclear reactor many decades with a very fast startup rate and minimal overshoot. The paper describes the results of simulations and operations up to 25 MW and 87 decades per minute. 3 refs., 4 figs., 1 tab.

  5. Initial verification and validation of RAZORBACK - A research reactor transient analysis code

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Talley, Darren G.

    2015-09-01

    This report describes the work and results of the initial verification and validation (V&V) of the beta release of the Razorback code. Razorback is a computer code designed to simulate the operation of a research reactor (such as the Annular Core Research Reactor (ACRR)) by a coupled numerical solution of the point reactor kinetics equations, the energy conservation equation for fuel element heat transfer, and the mass, momentum, and energy conservation equations for the water cooling of the fuel elements. This initial V&V effort was intended to confirm that the code work to-date shows good agreement between simulation and actualmore » ACRR operations, indicating that the subsequent V&V effort for the official release of the code will be successful.« less

  6. Hanford Laboratories Operation monthly activities report, August 1959

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1959-09-15

    This is the monthly report for the Hanford Laboratories Operation, August, 1959. Reactor fuels, chemistry, dosimetry, separation processes, reactor technology financial activities, visits, biology operation, physics and instrumentation research, employee relations, and operations research and synthesis operation are discussed.

  7. Hanford Laboratories Operation monthly activities report, September 1961

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1961-10-16

    This is the monthly report for the Hanford Laboratories Operation September 1961. Reactor fuels, chemistry, dosimetry, separation processes, reactor technology, financial activities, biology operation, physics and instrumentation research, operations research and synthesis, programming, and radiation protection operation are discussed.

  8. Experimental study of ELM-like heat loading on beryllium under ITER operational conditions

    NASA Astrophysics Data System (ADS)

    Spilker, B.; Linke, J.; Pintsuk, G.; Wirtz, M.

    2016-02-01

    The experimental fusion reactor ITER, currently under construction in Cadarache, France, is transferring the nuclear fusion research to the power plant scale. ITER’s first wall (FW), armoured by beryllium, is subjected to high steady state and transient power loads. Transient events like edge localized modes not only deposit power densities of up to 1.0 GW m-2 for 0.2-0.5 ms in the divertor of the machine, but also affect the FW to a considerable extent. Therefore, a detailed study was performed, in which transient power loads with absorbed power densities of up to 1.0 GW m-2 were applied by the electron beam facility JUDITH 1 on beryllium specimens at base temperatures of up to 300 °C. The induced damage was evaluated by means of scanning electron microscopy and laser profilometry. As a result, the observed damage was highly dependent on the base temperatures and absorbed power densities. In addition, five different classes of damage, ranging from ‘no damage’ to ‘crack network plus melting’, were defined and used to locate the damage, cracking, and melting thresholds within the tested parameter space.

  9. Flow instability in particle-bed nuclear reactors

    NASA Astrophysics Data System (ADS)

    Kerrebrock, Jack L.

    The particle-bed core offers mitigation of some of the problems of solid-core nuclear rocket reactors. Dividing the fuel elements into small spherical particles contained in a cylindrical bed through which the propellant flows radially, may reduce the thermal stress in the fuel elements, allowing higher propellant temperatures to be reached. The high temperature regions of the reactor are confined to the interior of cylindrical fuel assemblies, so most of the reactor can be relatively cool. This enables the use of structural and moderating materials which reduce the minimum critical size and mass of the reactor. One of the unresolved questions about this concept is whether the flow through the particle-bed will be well behaved, or will be subject to destructive flow instabilities. Most of the recent analyses of the stability of the particle-bed reactor have been extensions of the approach of Bussard and Delauer, where the bed is essentially treated as an array of parallel passages, so that the mass flow is continuous from inlet to outlet through any one passage. A more general three dimensional model of the bed is adopted, in which the fluid has mobility in three dimensions. Comparison of results of the earlier approach to the present one shows that the former does not accurately represent the stability at low Re. The more complete model presented should be capable of meeting this deficiency while accurately representing the effects of the cold and hot frits, and of heat conduction and radiation in the particle-bed. It can be extended to apply to the cylindrical geometry of particle-bed reactors without difficulty. From the exemplary calculations which were carried out, it can be concluded that a particle-bed without a cold frit would be subject to instability if operated at the high temperatures desired for nuclear rockets, and at power densities below about 4 megawatts per liter. Since the desired power density is about 40 megawatts per liter, it can be concluded that operation at design exit temperature but at reduced power could be hazardous for such a reactor. But the calculations also show that an appropriate cold frit could very likely cure the instability. More definite conclusions must await calculations for specific designs.

  10. Flow instability in particle-bed nuclear reactors

    NASA Technical Reports Server (NTRS)

    Kerrebrock, Jack L.

    1993-01-01

    The particle-bed core offers mitigation of some of the problems of solid-core nuclear rocket reactors. Dividing the fuel elements into small spherical particles contained in a cylindrical bed through which the propellant flows radially, may reduce the thermal stress in the fuel elements, allowing higher propellant temperatures to be reached. The high temperature regions of the reactor are confined to the interior of cylindrical fuel assemblies, so most of the reactor can be relatively cool. This enables the use of structural and moderating materials which reduce the minimum critical size and mass of the reactor. One of the unresolved questions about this concept is whether the flow through the particle-bed will be well behaved, or will be subject to destructive flow instabilities. Most of the recent analyses of the stability of the particle-bed reactor have been extensions of the approach of Bussard and Delauer, where the bed is essentially treated as an array of parallel passages, so that the mass flow is continuous from inlet to outlet through any one passage. A more general three dimensional model of the bed is adopted, in which the fluid has mobility in three dimensions. Comparison of results of the earlier approach to the present one shows that the former does not accurately represent the stability at low Re. The more complete model presented should be capable of meeting this deficiency while accurately representing the effects of the cold and hot frits, and of heat conduction and radiation in the particle-bed. It can be extended to apply to the cylindrical geometry of particle-bed reactors without difficulty. From the exemplary calculations which were carried out, it can be concluded that a particle-bed without a cold frit would be subject to instability if operated at the high temperatures desired for nuclear rockets, and at power densities below about 4 megawatts per liter. Since the desired power density is about 40 megawatts per liter, it can be concluded that operation at design exit temperature but at reduced power could be hazardous for such a reactor. But the calculations also show that an appropriate cold frit could very likely cure the instability. More definite conclusions must await calculations for specific designs.

  11. Delayed Gamma Measurements in Different Nuclear Research Reactors Bringing Out the Importance of the Delayed Contribution in Gamma Flux Calculations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fourmentel, D.; Radulovic, V.; Barbot, L.

    Neutron and gamma flux levels are key parameters in nuclear research reactors. In Material Testing Reactors, such as the future Jules Horowitz Reactor, under construction at the French Alternative Energies and Atomic Energy Commission (CEA Cadarache, France), the expected gamma flux levels are very high (nuclear heating is of the order of 20 W/g at 100 MWth). As gamma rays deposit their energy in the reactor structures and structural materials it is important to take them into account when designing irradiation devices. There are only a few sensors which allow measurements of the nuclear heating ; a recent development atmore » the CEA Cadarache allows measurements of the gamma flux using a miniature ionization chamber (MIC). The measured MIC response is often compared with calculation using modern Monte Carlo (MC) neutron and photon transport codes, such as TRIPOLI-4 and MCNP6. In these calculations only the production of prompt gamma rays in the reactor is usually modelled thus neglecting the delayed gamma rays. Hence calculations and measurements are usually in better accordance for the neutron flux than for the gamma flux. In this paper we study the contribution of delayed gamma rays to the total MIC signal in order to estimate the systematic error in gamma flux MC calculations. In order to experimentally determine the delayed gamma flux contributions to the MIC response, we performed gamma flux measurements with CEA developed MIC at three different research reactors: the OSIRIS reactor (MTR - 70 MWth at CEA Saclay, France), the TRIGA MARK II reactor (TRIGA - 250 kWth at the Jozef Stefan Institute, Slovenia) and the MARIA reactor (MTR - 30 MWth at the National Center for Nuclear Research, Poland). In order to experimentally assess the delayed gamma flux contribution to the total gamma flux, several reactor shut down (scram) experiments were performed specifically for the purpose of the measurements. Results show that on average about 30 % of the MIC signal is due to the delayed gamma rays. In this paper we describe experiments in each of the three reactors and how we estimate delayed gamma rays with MIC measurements. The results and perspectives are discussed. (authors)« less

  12. Electron emission produced by photointeractions in a slab target

    NASA Technical Reports Server (NTRS)

    Thinger, B. E.; Dayton, J. A., Jr.

    1973-01-01

    The current density and energy spectrum of escaping electrons generated in a uniform plane slab target which is being irradiated by the gamma flux field of a nuclear reactor are calculated by using experimental gamma energy transfer coefficients, electron range and energy relations, and escape probability computations. The probability of escape and the average path length of escaping electrons are derived for an isotropic distribution of monoenergetic photons. The method of estimating the flux and energy distribution of electrons emerging from the surface is outlined, and a sample calculation is made for a 0.33-cm-thick tungsten target located next to the core of a nuclear reactor. The results are to be used as a guide in electron beam synthesis of reactor experiments.

  13. Laser or charged-particle-beam fusion reactor with direct electric generation by magnetic flux compression

    DOEpatents

    Lasche, G.P.

    1983-09-29

    The invention is a laser or particle-beam-driven fusion reactor system which takes maximum advantage of both the very short pulsed nature of the energy release of inertial confinement fusion (ICF) and the very small volumes within which the thermonuclear burn takes place. The pulsed nature of ICF permits dynamic direct energy conversion schemes such as magnetohydrodynamic (MHD) generation and magnetic flux compression; the small volumes permit very compact blanket geometries. By fully exploiting these characteristics of ICF, it is possible to design a fusion reactor with exceptionally high power density, high net electric efficiency, and low neutron-induced radioactivity. The invention includes a compact blanket design and method and apparatus for obtaining energy utilizing the compact blanket.

  14. 77 FR 34367 - Proposed Subsequent Arrangement

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-06-11

    ... reactors, and a research reactor, at the Post Irradiation Examination Facility (PIEF), the Irradiated.../2011, ``Post-Irradiation Examination and R&D Programs Using Irradiated Fuels at KAERI,'' dated June... fuel elements for post-irradiation examination and for research, development and manufacture of DUPIC...

  15. A National Natural Laboratory.

    ERIC Educational Resources Information Center

    Cohn, Jeffrey P.

    1994-01-01

    Describes the Savannah River Site, a national environmental research park that shelters wild animals and idle nuclear reactors. Outlines research conducted at the site that focuses on the recovery of ecosystems after disturbance related to the operation of nuclear reactors and other land uses. (LZ)

  16. United States and Russian Cooperation on Issues of Nuclear Nonproliferation

    DTIC Science & Technology

    2005-06-01

    Reactors ( RERTR ) This project works with Russia to facilitate conversion of its research and test reactors from highly enriched uranium (HEU) fuel...reactor fuel purchase, accelerated RERTR activities, and accelerated Material Conversion and Consolidation implementation. 89 j. Fissile Materials

  17. Broadband sidebands generated by parametric instability in lower hybrid current drive experiments on EAST

    NASA Astrophysics Data System (ADS)

    Amicucci, L.; Ding, B. J.; Castaldo, C.; Cesario, R.; Giovannozzi, E.; Li, M. H.; Tuccillo, A. A.

    2015-12-01

    Modern research on nuclear fusion energy, based on the tokamak concept, has strong need of tools for actively driving non-inductive current especially at the periphery of plasma column, where tools available so far have poor efficiency. This is essential for solving one of the most critical problems for thermonuclear reactor, consisting in how to achieve the figure of fusion gain in the context of sufficient stability. The lower hybrid current drive (LHCD) effect has the potential capability of driving current at large radii of reactor plasma with high efficiency [1]. Experiments recently carried out on EAST showed that a strong activity of LH sideband waves (from the RF probe spectra), accompanied by weak core penetration of the coupled LH power, is present when operating at relatively high plasma densities. Previous theoretical results, confirmed by experiments on FTU, showed that the LH sideband phenomenon is produced by parametric instability (PI), which are mitigated by higher plasma edge temperatures. This condition is thus useful for enabling the LH power propagation when operating with profiles having high plasma densities even at the edge. In the present work, we show new PI modeling of EAST plasmas data, obtained in condition of higher plasma edge temperature due to chamber lithisation. The obtained trend of the PI frequencies and growth rates is consistent with data of RF probe spectra, available in different regimes of lithisated and not lithisated vessel. Moreover, these spectra are interpreted as PI effect occurring at the periphery of plasma column, however in the low field side where the LH power is coupled.

  18. Swelling of U-7Mo/Al-Si dispersion fuel plates under irradiation - Non-destructive analysis of the AFIP-1 fuel plates

    NASA Astrophysics Data System (ADS)

    Wachs, D. M.; Robinson, A. B.; Rice, F. J.; Kraft, N. C.; Taylor, S. C.; Lillo, M.; Woolstenhulme, N.; Roth, G. A.

    2016-08-01

    Extensive fuel-matrix interactions leading to plate pillowing have proven to be a significant impediment to the development of a suitable high density low-enriched uranium molybdenum alloy (U-Mo) based dispersion fuel for high power applications in research reactors. The addition of silicon to the aluminum matrix was previously demonstrated to reduce interaction layer growth in mini-plate experiments. The AFIP-1 project involved the irradiation, in-canal examination, and post-irradiation examination of two fuel plates. The irradiation of two distinct full size, flat fuel plates (one using an Al-2wt%Si matrix and the other an Al-4043 (∼4.8 wt% Si) matrix) was performed in the INL ATR reactor in 2008-2009. The irradiation conditions were: ∼250 W/cm2 peak Beginning Of Life (BOL) power, with a ∼3.5e21 f/cm3 peak burnup. The plates were successfully irradiated and did not show any pillowing at the end of the irradiation. This paper reports the results and interpretation of the in-canal and post-irradiation non-destructive examinations that were performed on these fuel plates. It further compares additional PIE results obtained on fuel plates irradiated in contemporary campaigns in order to allow a complete comparison with all results obtained under similar conditions. Except for a brief indication of accelerated swelling early in the irradiation of the Al-2Si plate, the fuel swelling is shown to evolve linearly with the fission density through the maximum burnup.

  19. International Research Reactor Decommissioning Project

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Leopando, Leonardo; Warnecke, Ernst

    2008-01-15

    Many research reactors have been or will be shut down and are candidates for decommissioning. Most of the respective countries neither have a decommissioning policy nor the required expertise and funds to effectively implement a decommissioning project. The IAEA established the Research Reactor Decommissioning Demonstration Project (R{sup 2}D{sup 2}P) to help answer this need. It was agreed to involve the Philippine Research Reactor (PRR-1) as model reactor to demonstrate 'hands-on' experience as it is just starting the decommissioning process. Other facilities may be included in the project as they fit into the scope of R{sup 2}D{sup 2}P and complement tomore » the PRR-1 decommissioning activities. The key outcome of the R{sup 2}D{sup 2}P will be the decommissioning of the PRR-1 reactor. On the way to this final goal the preparation of safety related documents (i.e., decommissioning plan, environmental impact assessment, safety analysis report, health and safety plan, cost estimate, etc.) and the licensing process as well as the actual dismantling activities could provide a model to other countries involved in the project. It is expected that the R{sup 2}D{sup 2}P would initiate activities related to planning and funding of decommissioning activities in the participating countries if that has not yet been done.« less

  20. Iron removal, energy consumption and operating cost of electrocoagulation of drinking water using a new flow column reactor.

    PubMed

    Hashim, Khalid S; Shaw, Andy; Al Khaddar, Rafid; Pedrola, Montserrat Ortoneda; Phipps, David

    2017-03-15

    The goal of this project was to remove iron from drinking water using a new electrocoagulation (EC) cell. In this research, a flow column has been employed in the designing of a new electrocoagulation reactor (FCER) to achieve the planned target. Where, the water being treated flows through the perforated disc electrodes, thereby effectively mixing and aerating the water being treated. As a result, the stirring and aerating devices that until now have been widely used in the electrocoagulation reactors are unnecessary. The obtained results indicated that FCER reduced the iron concentration from 20 to 0.3 mg/L within 20 min of electrolysis at initial pH of 6, inter-electrode distance (ID) of 5 mm, current density (CD) of 1.5 mA/cm 2 , and minimum operating cost of 0.22 US $/m 3 . Additionally, it was found that FCER produces H 2 gas enough to generate energy of 10.14 kW/m 3 . Statistically, it was found that the relationship between iron removal and operating parameters could be modelled with R 2 of 0.86, and the influence of operating parameters on iron removal followed the order: C 0 >t>CD>pH. Finally, the SEM (scanning electron microscopy) images showed a large number of irregularities on the surface of anode due to the generation of aluminium hydroxides. Crown Copyright © 2016. Published by Elsevier Ltd. All rights reserved.

  1. Blanket design and optimization demonstrations of the first wall/blanket/shield design and optimization system (BSDOS).

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gohar, Y.; Nuclear Engineering Division

    2005-05-01

    In fusion reactors, the blanket design and its characteristics have a major impact on the reactor performance, size, and economics. The selection and arrangement of the blanket materials, dimensions of the different blanket zones, and different requirements of the selected materials for a satisfactory performance are the main parameters, which define the blanket performance. These parameters translate to a large number of variables and design constraints, which need to be simultaneously considered in the blanket design process. This represents a major design challenge because of the lack of a comprehensive design tool capable of considering all these variables to definemore » the optimum blanket design and satisfying all the design constraints for the adopted figure of merit and the blanket design criteria. The blanket design capabilities of the First Wall/Blanket/Shield Design and Optimization System (BSDOS) have been developed to overcome this difficulty and to provide the state-of-the-art research and design tool for performing blanket design analyses. This paper describes some of the BSDOS capabilities and demonstrates its use. In addition, the use of the optimization capability of the BSDOS can result in a significant blanket performance enhancement and cost saving for the reactor design under consideration. In this paper, examples are presented, which utilize an earlier version of the ITER solid breeder blanket design and a high power density self-cooled lithium blanket design for demonstrating some of the BSDOS blanket design capabilities.« less

  2. Blanket Design and Optimization Demonstrations of the First Wall/Blanket/Shield Design and Optimization System (BSDOS)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gohar, Yousry

    2005-05-15

    In fusion reactors, the blanket design and its characteristics have a major impact on the reactor performance, size, and economics. The selection and arrangement of the blanket materials, dimensions of the different blanket zones, and different requirements of the selected materials for a satisfactory performance are the main parameters, which define the blanket performance. These parameters translate to a large number of variables and design constraints, which need to be simultaneously considered in the blanket design process. This represents a major design challenge because of the lack of a comprehensive design tool capable of considering all these variables to definemore » the optimum blanket design and satisfying all the design constraints for the adopted figure of merit and the blanket design criteria. The blanket design capabilities of the First Wall/Blanket/Shield Design and Optimization System (BSDOS) have been developed to overcome this difficulty and to provide the state-of-the-art research and design tool for performing blanket design analyses. This paper describes some of the BSDOS capabilities and demonstrates its use. In addition, the use of the optimization capability of the BSDOS can result in a significant blanket performance enhancement and cost saving for the reactor design under consideration. In this paper, examples are presented, which utilize an earlier version of the ITER solid breeder blanket design and a high power density self-cooled lithium blanket design for demonstrating some of the BSDOS blanket design capabilities.« less

  3. RERTR 2009 (Reduced Enrichment for Research and Test Reactors)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Totev, T.; Stevens, J.; Kim, Y. S.

    2010-03-01

    The U.S. Department of Energy/National Nuclear Security Administration's Office of Global Threat Reduction in cooperation with the China Atomic Energy Authority and International Atomic Energy Agency hosted the 'RERTR 2009 International Meeting on Reduced Enrichment for Research and Test Reactors.' The meeting was organized by Argonne National Laboratory, China Institute of Atomic Energy and Idaho National Laboratory and was held in Beijing, China from November 1-5, 2009. This was the 31st annual meeting in a series on the same general subject regarding the conversion of reactors within the Global Threat Reduction Initiative (GTRI). The Reduced Enrichment for Research and Testmore » Reactors (RERTR) Program develops technology necessary to enable the conversion of civilian facilities using high enriched uranium (HEU) to low enriched uranium (LEU) fuels and targets.« less

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wichman, K.; Tsao, J.; Mayfield, M.

    The regulatory application of leak before break (LBB) for operating and advanced reactors in the U.S. is described. The U.S. Nuclear Regulatory Commission (NRC) has approved the application of LBB for six piping systems in operating reactors: reactor coolant system primary loop piping, pressurizer surge, safety injection accumulator, residual heat removal, safety injection, and reactor coolant loop bypass. The LBB concept has also been applied in the design of advanced light water reactors. LBB applications, and regulatory considerations, for pressurized water reactors and advanced light water reactors are summarized in this paper. Technology development for LBB performed by the NRCmore » and the International Piping Integrity Research Group is also briefly summarized.« less

  5. The U.S. Geological Survey's TRIGA® reactor

    USGS Publications Warehouse

    DeBey, Timothy M.; Roy, Brycen R.; Brady, Sally R.

    2012-01-01

    The U.S. Geological Survey (USGS) operates a low-enriched uranium-fueled, pool-type reactor located at the Federal Center in Denver, Colorado. The mission of the Geological Survey TRIGA® Reactor (GSTR) is to support USGS science by providing information on geologic, plant, and animal specimens to advance methods and techniques unique to nuclear reactors. The reactor facility is supported by programs across the USGS and is organizationally under the Associate Director for Energy and Minerals, and Environmental Health. The GSTR is the only facility in the United States capable of performing automated delayed neutron analyses for detecting fissile and fissionable isotopes. Samples from around the world are submitted to the USGS for analysis using the reactor facility. Qualitative and quantitative elemental analyses, spatial elemental analyses, and geochronology are performed. Few research reactor facilities in the United States are equipped to handle the large number of samples processed at the GSTR. Historically, more than 450,000 sample irradiations have been performed at the USGS facility. Providing impartial scientific information to resource managers, planners, and other interested parties throughout the world is an integral part of the research effort of the USGS.

  6. 10 CFR 110.42 - Export licensing criteria.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... research on or development of any nuclear explosive device. (3) Adequate physical security measures will be... to exports of high-enriched uranium to be used as a fuel or target in a nuclear research or test... can be used in the reactor. (iii) A fuel or target “can be used” in a nuclear research or test reactor...

  7. Two-Dimensional Mapping of the Calculated Fission Power for the Full-Size Fuel Plate Experiment Irradiated in the Advanced Test Reactor

    NASA Astrophysics Data System (ADS)

    Chang, G. S.; Lillo, M. A.

    2009-08-01

    The National Nuclear Security Administrations (NNSA) Reduced Enrichment for Research and Test Reactors (RERTR) program assigned to the Idaho National Laboratory (INL) the responsibility of developing and demonstrating high uranium density research reactor fuel forms to enable the use of low enriched uranium (LEU) in research and test reactors around the world. A series of full-size fuel plate experiments have been proposed for irradiation testing in the center flux trap (CFT) position of the Advanced Test Reactor (ATR). These full-size fuel plate tests are designated as the AFIP tests. The AFIP nominal fuel zone is rectangular in shape having a designed length of 21.5-in (54.61-cm), width of 1.6-in (4.064-cm), and uniform thickness of 0.014-in (0.03556-cm). This gives a nominal fuel zone volume of 0.482 in3 (7.89 cm3) per fuel plate. The AFIP test assembly has two test positions. Each test position is designed to hold 2 full-size plates, for a total of 4 full-size plates per test assembly. The AFIP test plates will be irradiated at a peak surface heat flux of about 350 W/cm2 and discharged at a peak U-235 burn-up of about 70 at.%. Based on limited irradiation testing of the monolithic (U-10Mo) fuel form, it is desirable to keep the peak fuel temperature below 250°C to achieve this, it will be necessary to keep plate heat fluxes below 500 W/cm2. Due to the heavy U-235 loading and a plate width of 1.6-in (4.064-cm), the neutron self-shielding will increase the local-to-average-ratio (L2AR) fission power near the sides of the fuel plates. To demonstrate that the AFIP experiment will meet the ATR safety requirements, a very detailed 2-dimensional (2D) Y-Z fission power profile was evaluated in order to best predict the fuel plate temperature distribution. The ability to accurately predict fuel plate power and burnup are essential to both the design of the AFIP tests as well as evaluation of the irradiated fuel performance. To support this need, a detailed MCNP Y-Z mini-plate fuel model was developed. The Y-Z model divides each fuel plate into 30 equal intervals in both the Y and Z directions. The MCNP-calculated results and the detailed Y-Z fission power mapping were used to help design the AFIP fuel test assembly to demonstrate that the AFIP test assembly thermal-hydraulic limits will not exceed the ATR safety limits.

  8. Irradiation response of commercial, high-Tc superconducting tapes: Electromagnetic transport properties

    DOE PAGES

    Gapud, A. A.; Greenwood, N. T.; Alexander, J. A.; ...

    2015-07-01

    Effects of low dose irradiation on the electrical transport current properties of commercially available high-temperature superconducting, coated-conductor tapes were investigated, in view of potential applications in the irradiative environment of fusion reactors. Three different tapes, each with unique as-grown flux-pinning structures, were irradiated with Au and Ni ions at energies that provide a range of damage effects, with accumulated damage levels near that expected for conductors in a fusion reactor environment. Measurements using transport current determined the pre- and post-irradiation resistivity, critical current density, and pinning force density, yielding critical temperatures, irreversibility lines, and inferred vortex creep rates. Results showmore » that at the irradiation damage levels tested, any detriment to as-grown pre-irradiation properties is modest; indeed in one case already-superior pinning forces are enhanced, leading to higher critical currents.« less

  9. Contributions of Cu-rich clusters, dislocation loops and nanovoids to the irradiation-induced hardening of Cu-bearing low-Ni reactor pressure vessel steels

    NASA Astrophysics Data System (ADS)

    Bergner, F.; Gillemot, F.; Hernández-Mayoral, M.; Serrano, M.; Török, G.; Ulbricht, A.; Altstadt, E.

    2015-06-01

    Dislocation loops, nanovoids and Cu-rich clusters (CRPs) are known to represent obstacles for dislocation glide in neutron-irradiated reactor pressure vessel (RPV) steels, but a consistent experimental determination of the respective obstacle strengths is still missing. A set of Cu-bearing low-Ni RPV steels and model alloys was characterized by means of SANS and TEM in order to specify mean size and number density of loops, nanovoids and CRPs. The obstacle strengths of these families were estimated by solving an over-determined set of linear equations. We have found that nanovoids are stronger than loops and loops are stronger than CRPs. Nevertheless, CRPs contribute most to irradiation hardening because of their high number density. Nanovoids were only observed for neutron fluences beyond typical end-of-life conditions of RPVs. The estimates of the obstacle strength are critically compared with reported literature data.

  10. Observation of the inductive to helicon mode transition in a weakly magnetized solenoidal inductive discharge

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Min-Hyong; Chung, Chin-Wook

    2008-10-13

    A mode transition from an inductive mode to a helicon mode is observed in a solenoidal inductive discharge immersed in a weak dc magnetic field. The measured electron temperature and the plasma density at the reactor radial boundary show a sudden increase when the magnetic field strength reaches the critical value and the electron cyclotron frequency exceeds the rf driving frequency. These increases are due to the electron heating by the helicon wave. Such increases in the temperature and the density are not observed at the plasma center because the helicon wave cannot propagate to the center of the solenoidalmore » type reactor unless the magnetic field is very high. These results show that the transition of the discharge from the inductive to the helicon mode occurs at the critical magnetic field strength.« less

  11. Influence of catalyst packing configuration on the discharge characteristics of dielectric barrier discharge reactors: A numerical investigation

    NASA Astrophysics Data System (ADS)

    Gadkari, Siddharth; Gu, Sai

    2018-06-01

    A two-dimensional numerical fluid model is developed for studying the influence of packing configurations on dielectric barrier discharge (DBD) characteristics. Discharge current profiles and time averaged electric field strength, electron number density, and electron temperature distributions are compared for the three DBD configurations, plain DBD with no packing, partially packed DBD, and fully packed DBD. The results show that a strong change in discharge behaviour occurs when a DBD is fully packed as compared to partial packing or no packing. While the average electric field strength and electron temperature of a fully packed DBD are higher relative to the other DBD configurations, the average electron density is substantially lower and may impede the DBD reactor performance under certain operating conditions. Possible scenarios of the synergistic effect of the combination of plasma with catalysis are also discussed.

  12. Mechanical properties of irradiated beryllium

    NASA Astrophysics Data System (ADS)

    Beeston, J. M.; Longhurst, G. R.; Wallace, R. S.; Abeln, S. P.

    1992-10-01

    Beryllium is planned for use as a neutron multiplier in the tritium breeding blanket of the International Thermonuclear Experimental Reactor (ITER). After fabricating samples of beryllium at densities varying from 80 to 100% of the theoretical density, we conducted a series of experiments to measure the effect of neutron irradiation on mechanical properties, especially strength and ductility. Samples were irradiated in the Advanced Test Reactor (ATR) to a neutron fluence of 2.6 × 10 25 n/m 2 ( E > 1 MeV) at an irradiation temperature of 75°C. These samples were subsequently compression-tested at room temperature, and the results were compared with similar tests on unirradiated specimens. We found that the irradiation increased the strength by approximately four times and reduced the ductility to approximately one fourth. Failure was generally ductile, but the 80% dense irradiated samples failed in brittle fracture with significant generation of fine particles and release of small quantities of tritium.

  13. Advanced Power Conversion Efficiency in Inventive Plasma for Hybrid Toroidal Reactor

    NASA Astrophysics Data System (ADS)

    Hançerlioğullari, Aybaba; Cini, Mesut; Güdal, Murat

    2013-08-01

    Apex hybrid reactor has a good potential to utilize uranium and thorium fuels in the future. This toroidal reactor is a type of system that facilitates the occurrence of the nuclear fusion and fission events together. The most important feature of hybrid reactor is that the first wall surrounding the plasma is liquid. The advantages of utilizing a liquid wall are high power density capacity good power transformation productivity, the magnitude of the reactor's operational duration, low failure percentage, short maintenance time and the inclusion of the system's simple technology and material. The analysis has been made using the MCNP Monte Carlo code and ENDF/B-V-VI nuclear data. Around the fusion chamber, molten salts Flibe (LI2BeF4), lead-lithium (PbLi), Li-Sn, thin-lityum (Li20Sn80) have used as cooling materials. APEX reactor has modeled in the torus form by adding nuclear materials of low significance in the specified percentages between 0 and 12 % to the molten salts. In this study, the neutronic performance of the APEX fusion reactor using various molten salts has been investigated. The nuclear parameters of Apex reactor has been searched for Flibe (LI2BeF4) and Li-Sn, for blanket layers. In case of usage of the Flibe (LI2BeF4), PbLi, and thin-lityum (Li20Sn80) salt solutions at APEX toroidal reactors, fissile material production per source neutron, tritium production speed, total fission rate, energy reproduction factor has been calculated, the results obtained for both salt solutions are compared.

  14. Tory II-A: a nuclear ramjet test reactor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hadley, J.W.

    Declassified 28 Nov 1973. The first test reactor in the Pluto program, leading to development of a nuclear ramjet engine, is called Tory II-A. While it is not an actual prototype engine, this reactor embodies a core design which is considered feasible for an engine, and operation of the reactor will provide a test of that core type as well as more generalized values in reactor design and testing. The design of Tory II-A and construction of the reactor and of its test facility are described. Operation of the Tory II-A core at a total power of 160 megawatts, withmore » 800 pounds of air per second passing through the core and emerging at a temperature of 2000 deg F, is the central objective of the test program. All other reactor and facility components exist to support operation of the core, and preliminary steps in the test program itself will be directed primarily toward ensuring attalnment of full-power operation and collection of meaningful data on core behavior during that operation. The core, 3 feet in diameter and 41/2 feet long, will be composed of bundled ceramic tubes whose central holes will provide continuous air passages from end to end of the reactor. These tubes are to be composed of a homogeneous mixture of UO/sub 2/ fuel and BeO moderator, compacted and sintered to achieve high strength and density. (30 references) (auth)« less

  15. Needs and Requirements for Future Research Reactors (ORNL Perspectives)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ilas, Germina; Bryan, Chris; Gehin, Jess C.

    2016-02-10

    The High Flux Isotope Reactor (HFIR) is a vital national and international resource for neutron science research, production of radioisotopes, and materials irradiation. While HFIR is expected to continue operation for the foreseeable future, interest is growing in understanding future research reactors features, needs, and requirements. To clarify, discuss, and compile these needs from the perspective of Oak Ridge National Laboratory (ORNL) research and development (R&D) missions, a workshop, titled “Needs and Requirements for Future Research Reactors”, was held at ORNL on May 12, 2015. The workshop engaged ORNL staff that is directly involved in research using HFIR to collectmore » valuable input on the reactor’s current and future missions. The workshop provided an interactive forum for a fruitful exchange of opinions, and included a mix of short presentations and open discussions. ORNL staff members made 15 technical presentations based on their experience and areas of expertise, and discussed those capabilities of the HFIR and future research reactors that are essential for their current and future R&D needs. The workshop was attended by approximately 60 participants from three ORNL directorates. The agenda is included in Appendix A. This document summarizes the feedback provided by workshop contributors and participants. It also includes information and insights addressing key points that originated from the dialogue started at the workshop. A general overview is provided on the design features and capabilities of high performance research reactors currently in use or under construction worldwide. Recent and ongoing design efforts in the US and internationally are briefly summarized, followed by conclusions and recommendations.« less

  16. Preliminary study on aerobic granular biomass formation with aerobic continuous flow reactor

    NASA Astrophysics Data System (ADS)

    Yulianto, Andik; Soewondo, Prayatni; Handajani, Marissa; Ariesyady, Herto Dwi

    2017-03-01

    A paradigm shift in waste processing is done to obtain additional benefits from treated wastewater. By using the appropriate processing, wastewater can be turned into a resource. The use of aerobic granular biomass (AGB) can be used for such purposes, particularly for the processing of nutrients in wastewater. During this time, the use of AGB for processing nutrients more reactors based on a Sequencing Batch Reactor (SBR). Studies on the use of SBR Reactor for AGB demonstrate satisfactory performance in both formation and use. SBR reactor with AGB also has been applied on a full scale. However, the use use of SBR reactor still posses some problems, such as the need for additional buffer tank and the change of operation mode from conventional activated sludge to SBR. This gives room for further reactor research with the use of a different type, one of which is a continuous reactor. The purpose of this study is to compare AGB formation using continuous reactor and SBR with same operation parameter. Operation parameter are Organic Loading Rate (OLR) set to 2,5 Kg COD/m3.day with acetate as substrate, aeration rate 3 L/min, and microorganism from Hospital WWTP as microbial source. SBR use two column reactor with volumes 2 m3, and continuous reactor uses continuous airlift reactor, with two compartments and working volume of 5 L. Results from preliminary research shows that although the optimum results are not yet obtained, AGB can be formed on the continuous reactor. When compared with AGB generated by SBR, then the characteristics of granular diameter showed similarities, while the sedimentation rate and Sludge Volume Index (SVI) characteristics showed lower yields.

  17. Neutron lifetimes behavior analysis considering the two-region kinetic model in the IPEN/MB-01 reactor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gonnelli, Eduardo; Diniz, Ricardo

    2014-11-11

    This is a complementary work about the behavior analysis of the neutron lifetimes that was developed in the IPEN/MB-01 nuclear reactor facility. The macroscopic neutron noise technique was experimentally employed using pulse mode detectors for two stages of control rods insertion, where a total of twenty levels of subcriticality have been carried out. It was also considered that the neutron reflector density was treated as an additional group of delayed neutrons, being a sophisticated approach in the two-region kinetic theoretical model.

  18. FAST CHOPPER DETECTOR HOUSE, TRA665. FIRST FLOOR, PLAN AND SECTION, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    FAST CHOPPER DETECTOR HOUSE, TRA-665. FIRST FLOOR, PLAN AND SECTION, AS PROPOSED FOR MODIFICATION IN 1962. CONCRETE WALLS THREE FEET THICK. EXISTING WINDOWS IN MTR AND DETECTOR HOUSE WALLS WERE TO BE FILLED IN WITH HIGH-DENSITY BRICK. NOTE 20-METER MARK, WHERE THE FAST CHOPPER DETECTOR HAD BEEN LOCATED. F.C. TORKELSON 842-MTR-665-S-2, 4/1962. INL INDEX NO. 531-0665-60-851-150996, REV. 5. - Idaho National Engineering Laboratory, Test Reactor Area, Materials & Engineering Test Reactors, Scoville, Butte County, ID

  19. Research gaps and technology needs in development of PHM for passive AdvSMR components

    NASA Astrophysics Data System (ADS)

    Meyer, Ryan M.; Ramuhalli, Pradeep; Coble, Jamie B.; Hirt, Evelyn H.; Mitchell, Mark R.; Wootan, David W.; Berglin, Eric J.; Bond, Leonard J.; Henagar, Chuck H., Jr.

    2014-02-01

    Advanced small modular reactors (AdvSMRs), which are based on modularization of advanced reactor concepts, may provide a longer-term alternative to traditional light-water reactors and near-term small modular reactors (SMRs), which are based on integral pressurized water reactor (iPWR) concepts. SMRs are challenged economically because of losses in economy of scale; thus, there is increased motivation to reduce the controllable operations and maintenance costs through automation technologies including prognostics health management (PHM) systems. In this regard, PHM systems have the potential to play a vital role in supporting the deployment of AdvSMRs and face several unique challenges with respect to implementation for passive AdvSMR components. This paper presents a summary of a research gaps and technical needs assessment performed for implementation of PHM for passive AdvSMR components.

  20. IAEA coordinated research project on thermal-hydraulics of Supercritical Water-Cooled Reactors (SCWRs)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yamada, K.; Aksan, S. N.

    The Supercritical Water-Cooled Reactor (SCWR) is an innovative water-cooled reactor concept, which uses supercritical pressure water as reactor coolant. It has been attracting interest of many researchers in various countries mainly due to its benefits of high thermal efficiency and simple primary systems, resulting in low capital cost. The IAEA started in 2008 a Coordinated Research Project (CRP) on Thermal-Hydraulics of SCWRs as a forum to foster the exchange of technical information and international collaboration in research and development. This paper summarizes the activities and current status of the CRP, as well as major progress achieved to date. At present,more » 15 institutions closely collaborate in several tasks. Some organizations have been conducting thermal-hydraulics experiments and analysing the data, and others have been participating in code-to-test and/or code-to-code benchmark exercises. The expected outputs of the CRP are also discussed. Finally, the paper introduces several IAEA activities relating to or arising from the CRP. (authors)« less

  1. A probabilistic safety analysis of incidents in nuclear research reactors.

    PubMed

    Lopes, Valdir Maciel; Agostinho Angelo Sordi, Gian Maria; Moralles, Mauricio; Filho, Tufic Madi

    2012-06-01

    This work aims to evaluate the potential risks of incidents in nuclear research reactors. For its development, two databases of the International Atomic Energy Agency (IAEA) were used: the Research Reactor Data Base (RRDB) and the Incident Report System for Research Reactor (IRSRR). For this study, the probabilistic safety analysis (PSA) was used. To obtain the result of the probability calculations for PSA, the theory and equations in the paper IAEA TECDOC-636 were used. A specific program to analyse the probabilities was developed within the main program, Scilab 5.1.1. for two distributions, Fischer and chi-square, both with the confidence level of 90 %. Using Sordi equations, the maximum admissible doses to compare with the risk limits established by the International Commission on Radiological Protection (ICRP) were obtained. All results achieved with this probability analysis led to the conclusion that the incidents which occurred had radiation doses within the stochastic effects reference interval established by the ICRP-64.

  2. The history and perspective of Romania-USA cooperation in the field of technologic transfer of TRIGA reactor concept

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ciocaanescu, M.; Ionescu, M.

    1996-08-01

    The cooperation between Romania and the USA in the field of technologic transfer of nuclear research reactor technology began with the steady state 14 MW{sub t} TRIGA reactor, installed at INR Pitesti, Romania. It is the first in the range of TRIGA reactors proposed as a materials testing reactor. The first criticality was reached in November 19, 1979 and first operation at 14 MW{sub t} level was in February 1980. The paper will present the short history of this cooperation and the perspective for a new cooperation for building a Nuclear Heating Plant using the TRIGA reactor concept for demonstrationmore » purpose. The energy crisis is a world-wide problem which affects each country in different ways because the resources and the consumption are unfairly distributed. World-wide research points out that the fossil fuel sources are not to be considered the main energy sources for the long term as they are limited.« less

  3. Feasibility study Part I - Thermal hydraulic analysis of LEU target for {sup 99}Mo production in Tajoura reactor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bsebsu, F.M.; Abotweirat, F.; Elwaer, S.

    2008-07-15

    The Renewable Energies and Water Desalination Research Center (REWDRC), Libya, will implement the technology for {sup 99}Mo isotope production using LEU foil target, to obtain new revenue streams for the Tajoura nuclear research reactor and desiring to serve the Libyan hospitals by providing the medical radioisotopes. Design information is presented for LEU target with irradiation device and irradiation Beryllium (Be) unit in the Tajoura reactor core. Calculated results for the reactor core with LEU target at different level of power are presented for steady state and several reactivity induced accident situations. This paper will present the steady state thermal hydraulicmore » design and transient analysis of Tajoura reactor was loaded with LEU foil target for {sup 99}Mo production. The results of these calculations show that the reactor with LEU target during the several cases of transient are in safe and no problems will occur. (author)« less

  4. Analysis of intergranular fission-gas bubble-size distributions in irradiated uranium-molybdenum alloy fuel

    NASA Astrophysics Data System (ADS)

    Rest, J.; Hofman, G. L.; Kim, Yeon Soo

    2009-04-01

    An analytical model for the nucleation and growth of intra and intergranular fission-gas bubbles is used to characterize fission-gas bubble development in low-enriched U-Mo alloy fuel irradiated in the advanced test reactor in Idaho as part of the Reduced Enrichment for Research and Test Reactor (RERTR) program. Fuel burnup was limited to less than ˜7.8 at.% U in order to capture the fuel-swelling stage prior to irradiation-induced recrystallization. The model couples the calculation of the time evolution of the average intergranular bubble radius and number density to the calculation of the intergranular bubble-size distribution based on differential growth rate and sputtering coalescence processes. Recent results on TEM analysis of intragranular bubbles in U-Mo were used to set the irradiation-induced diffusivity and re-solution rate in the bubble-swelling model. Using these values, good agreement was obtained for intergranular bubble distribution compared against measured post-irradiation examination (PIE) data using grain-boundary diffusion enhancement factors of 15-125, depending on the Mo concentration. This range of enhancement factors is consistent with values obtained in the literature.

  5. Manufacturing Technology of Ceramic Pebbles for Breeding Blanket.

    PubMed

    Lo Frano, Rosa; Puccini, Monica; Stefanelli, Eleonora; Del Serra, Daniele; Malquori, Stefano

    2018-05-02

    An open issue for the fusion power reactor is the choice of breeding blanket material. The possible use of Helium-Cooled Pebble Breeder ceramic material in the form of pebble beds is of great interest worldwide as demonstrated by the numerous studies and research on this subject. Lithium orthosilicate (Li₄SiO₄) is a promising breeding material investigated in this present study because the neutron capture of Li-6 allows the production of tritium, 6Li (n, t) 4He. Furthermore, lithium orthosilicate has the advantages of low activation characteristics, low thermal expansion coefficient, high thermal conductivity, high density and stability. Even if they are far from the industrial standard, a variety of industrial processes have been proposed for making orthosilicate pebbles with diameters of 0.1⁻1 mm. However, some manufacturing problems have been observed, such as in the chemical stability (agglomeration phenomena). The aim of this study is to provide a new methodology for the production of pebbles based on the drip casting method, which was jointly developed by the DICI-University of Pisa and Industrie Bitossi. Using this new (and alternative) manufacturing technology, in the field of fusion reactors, appropriately sized ceramic pebbles could be produced for use as tritium breeders.

  6. Progress and prospect of true steady state operation with RF

    NASA Astrophysics Data System (ADS)

    Jacquinot, Jean

    2017-10-01

    Operation of fusion confinement experiments in full steady state is a major challenge for the development towards fusion energy. Critical to achieving this goal is the availability of actively cooled plasma facing components and auxiliary systems withstanding the very harsh plasma environment. Equally challenging are physics issues related to achieving plasma conditions and current drive efficiency required by reactor plasmas. RF heating and current drive systems have been key instruments for obtaining the progress made until today towards steady state. They hold all the records of long pulse plasma operation both in tokamaks and in stellarators. Nevertheless much progress remains to be made in particular for integrating all the requirements necessary for maintaining in steady state the density and plasma pressure conditions of a reactor. This is an important stated aim of ITER and of devices equipped with superconducting magnets. After considering the present state of the art, this review will address the key issues which remain to be solved both in physics and technology for reaching this goal. They constitute very active subjects of research which will require much dedicated experimentation in the new generation of superconducting devices which are now in operation or becoming close to it.

  7. On Study of Application of Micro-reactor in Chemistry and Chemical Field

    NASA Astrophysics Data System (ADS)

    Zhang, Yunshen

    2018-02-01

    Serving as a micro-scale chemical reaction system, micro-reactor is characterized by high heat transfer efficiency and mass transfer, strictly controlled reaction time and good safety performance; compared with the traditional mixing reactor, it can effectively shorten reaction time by virtue of these advantages and greatly enhance the chemical reaction conversion rate. However, problems still exist in the process where micro-reactor is used for production in chemistry and chemical field, and relevant researchers are required to optimize and perfect the performance of micro-reactor. This paper analyzes specific application of micro-reactor in chemistry and chemical field.

  8. Radiation attenuation on labyrinth design bunker using Iridium-192 source

    NASA Astrophysics Data System (ADS)

    Ismail, Mohamad Pauzi bin; Sani, Suhairy bin; Masenwat, Noor Azreen bin; Mohd, Shukri; Sayuti, Shaharudin; Ahmad, Mohamad Ridzuan Bin; Mahmud, Mohamad Haniza bin; Isa, Nasharuddin bin

    2017-01-01

    Gamma rays are better absorbed by materials with high atomic numbers and high density. Steel, lead, depleted uranium, concrete, water or sand can be used as gamma shielding. Lead and steel are normally used for making doors of the bunker and to reduce radiation scatter. Depleted uranium is used for gamma container. Water is used in nuclear reactor as neutron and gamma absorber. Sand is used for mobile hot cell. However concrete is the most common and cheap material for gamma radiation bunker. In this research, concrete made from hematite aggregates was used to make chevron blocks for a temporary construction of labyrinth bunker. This paper explains and discusses the gamma attenuation around labyrinth bunker with concrete containing hematite aggregates.

  9. Point defects in thorium nitride: A first-principles study

    NASA Astrophysics Data System (ADS)

    Pérez Daroca, D.; Llois, A. M.; Mosca, H. O.

    2016-11-01

    Thorium and its compounds (carbides and nitrides) are being investigated as possible materials to be used as nuclear fuels for Generation-IV reactors. As a first step in the research of these materials under irradiation, we study the formation energies and stability of point defects in thorium nitride by means of first-principles calculations within the framework of density functional theory. We focus on vacancies, interstitials, Frenkel pairs and Schottky defects. We found that N and Th vacancies have almost the same formation energy and that the most energetically favorable defects of all studied in this work are N interstitials. These kind of results for ThN, to the best authors' knowledge, have not been obtained previously, neither experimentally, nor theoretically.

  10. Technology, safety, and costs of decommissioning reference nuclear research and test reactors: sensitivity of decommissioning radiation exposure and costs to selected parameters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Konzek, G.J.

    1983-07-01

    Additional analyses of decommissioning at the reference research and test (R and T) reactors and analyses of five recent reactor decommissionings are made that examine some parameters not covered in the initial study report (NUREG/CR-1756). The parameters examined for decommissioning are: (1) the effect on costs and radiation exposure of plant size and/or type; (2) the effects on costs of increasing disposal charges and of unavailability of waste disposal capacity at licensed waste disposal facilities; and (3) the costs of and the available alternatives for the disposal of nuclear R and T reactor fuel assemblies.

  11. Interactive effect of trivalent iron on activated sludge digestion and biofilm structure in attached growth reactor of waste tire rubber.

    PubMed

    Sharafat, Iqra; Saeed, Dania Khalid; Yasmin, Sumera; Imran, Asma; Zafar, Zargona; Hameed, Abdul; Ali, Naeem

    2018-01-01

    Waste tire rubber (WTR) has been introduced as an alternative, novel media for biofilm development in several experimental systems including attached growth bioreactors. In this context, four laboratory-scale static batch bioreactors containing WTR as a support material for biofilm development were run under anoxic condition for 90 days using waste activated sludge as an inoculum under the influence of different concentrations (2.5, 6.5, 8.5 mg/l) of trivalent ferric iron (Fe 3+ ). The data revealed that activated sludge with a Fe 3+ concentration of 8.5 mg/l supported the maximum bacterial biomass [4.73E + 10 CFU/ml cm 2 ]; besides, it removed 38% more Chemical oxygen demand compared to Fe 3+ free condition from the reactor. Biochemical testing and 16S rDNA phylogenetic analysis of WTR-derived biofilm communities further suggested the role of varying concentrations of Fe 3+ on the density and diversity of members of Enterobacteria(ceae), ammonium (AOB) and nitrite oxidizing bacteria. Furthermore, Fluorescent in situ hybridization with phylogenetic oligonucleotide probes and confocal laser scanning microscopy of WTR biofilms indicated a significant increase in density of eubacteria (3.00E + 01 to.05E + 02 cells/cm 2 ) and beta proteobacteria (8.10E + 01 to 1.42E + 02 cells/cm 2 ), respectively, with an increase in Fe 3+ concentration in the reactors, whereas, the cell density of gamma proteobacteria in biofilms decreased.

  12. Fabrication and testing of a 4-node micro-pocket fission detector array for the Kansas State University TRIGA Mk. II research nuclear reactor

    NASA Astrophysics Data System (ADS)

    Reichenberger, Michael A.; Nichols, Daniel M.; Stevenson, Sarah R.; Swope, Tanner M.; Hilger, Caden W.; Unruh, Troy C.; McGregor, Douglas S.; Roberts, Jeremy A.

    2017-08-01

    Advancements in nuclear reactor core modeling and computational capability have encouraged further development of in-core neutron sensors. Micro-Pocket Fission Detectors (MPFDs) have been fabricated and tested previously, but successful testing of these prior detectors was limited to single-node operation with specialized designs. Described in this work is a modular, four-node MPFD array fabricated and tested at Kansas State University (KSU). The four sensor nodes were equally spaced to span the length of the fuel-region of the KSU TRIGA Mk. II research nuclear reactor core. The encapsulated array was filled with argon gas, serving as an ionization medium in the small cavities of the MPFDs. The unified design improved device ruggedness and simplified construction over previous designs. A 0.315-in. (8-mm) penetration in the upper grid plate of the KSU TRIGA Mk. II research nuclear reactor was used to deploy the array between fuel elements in the core. The MPFD array was coupled to an electronic support system which has been developed to support pulse-mode operation. Neutron-induced pulses were observed on all four sensor channels. Stable device operation was confirmed by testing under steady-state reactor conditions. Each of the four sensors in the array responded to changes in reactor power between 10 kWth and full power (750 kWth). Reactor power transients were observed in real-time including positive transients with periods of 5, 15, and 30 s. Finally, manual reactor power oscillations were observed in real-time.

  13. Analysis of space reactor system components: Investigation through simulation and non-nuclear testing

    NASA Astrophysics Data System (ADS)

    Bragg-Sitton, Shannon M.

    The use of fission energy in space power and propulsion systems offers considerable advantages over chemical propulsion. Fission provides over six orders of magnitude higher energy density, which translates to higher vehicle specific impulse and lower specific mass. These characteristics enable ambitious space exploration missions. The natural space radiation environment provides an external source of protons and high energy, high Z particles that can result in the production of secondary neutrons through interactions in reactor structures. Applying the approximate proton source in geosynchronous orbit during a solar particle event, investigation using MCNPX 2.5.b for proton transport through the SAFE-400 heat pipe cooled reactor indicates an incoming secondary neutron current of (1.16 +/- 0.03) x 107 n/s at the core-reflector interface. This neutron current may affect reactor operation during low power maneuvers (e.g., start-up) and may provide a sufficient reactor start-up source. It is important that a reactor control system be designed to automatically adjust to changes in reactor power levels, maintaining nominal operation without user intervention. A robust, autonomous control system is developed and analyzed for application during reactor start-up, accounting for fluctuations in the radiation environment that result from changes in vehicle location or to temporal variations in the radiation field. Development of a nuclear reactor for space applications requires a significant amount of testing prior to deployment of a flight unit. High confidence in fission system performance can be obtained through relatively inexpensive non-nuclear tests performed in relevant environments, with the heat from nuclear fission simulated using electric resistance heaters. A series of non-nuclear experiments was performed to characterize various aspects of reactor operation. This work includes measurement of reactor core deformation due to material thermal expansion and implementation of a virtual reactivity feedback control loop; testing and thermal hydraulic characterization of the coolant flow paths for two space reactor concepts; and analysis of heat pipe operation during start-up and steady state operation.

  14. Preliminary study on new configuration with LEU fuel assemblies for the Dalat nuclear research reactor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Van Lam Pham; Vinh Vinh Le; Ton Nghiem Huynh

    2008-07-15

    The fuel conversion of the Dalat Nuclear Research Reactor (DNRR) is being realized. The DNRR is a pool type research reactor which was reconstructed from the 250 kW TRIGA- MARK II reactor. The reconstructed reactor attained its nominal power of 500 kW in February 1984. According to the results of design and safety analyses performed by the joint study between RERTR Program at Argonne National Laboratory (ANL) and Vietnam Atomic Energy Commission (VAEC) the mixed core of irradiated HEU and new LEU WWR-M2 fuel assemblies will be created soon. This paper presents the results of preliminary study on new configurationmore » with only LEU fuel assemblies for the DNRR. The codes MCNP, REBUS and VARI3D are used to calculate neutron flux performance in irradiation positions and kinetics parameters. The idea of change of Beryllium rod reloading enables to get working configuration assured shutdown margin, thermal-hydraulic safety and increase in thermal neutron flux in neutron trap at the center of DNRR active core. (author)« less

  15. Neem leaves as a source of fertilizer-cum-pesticide vermicompost.

    PubMed

    Gajalakshmi, S; Abbasi, S A

    2004-05-01

    Vermicomposting of neem (Azadirachta indica A. Juss) was accomplished in "high-rate" reactors operated at the earthworm (Eudrilus eugeniae) densities of 62.5 and 75 animals per litre of reactor volume. Contrary to the fears that neem--a powerful nematicide--might not be palatable to the annelids, the earthworms fed voraciously on the neem compost, converting upto 7% of the feed into vermicompost per day. Indeed the worms grew faster and reproduced more rapidly in the neem-fed vermireactors than in the reactors fed with mango leaf litter earlier studied by the authors (Gajalakshmi et al., 2003). Another set of experiments on the growth, flowering, and fruition of brinjal (Solanum melongena) plants with and without fertilization with vermicompost, revealed that the vermicompost had a significantly beneficial impact.

  16. Laser or charged-particle-beam fusion reactor with direct electric generation by magnetic flux compression

    DOEpatents

    Lasche, George P.

    1988-01-01

    A high-power-density laser or charged-particle-beam fusion reactor system maximizes the directed kinetic energy imparted to a large mass of liquid lithium by a centrally located fusion target. A fusion target is embedded in a large mass of lithium, of sufficient radius to act as a tritium breeding blanket, and provided with ports for the access of beam energy to implode the target. The directed kinetic energy is converted directly to electricity with high efficiency by work done against a pulsed magnetic field applied exterior to the lithium. Because the system maximizes the blanket thickness per unit volume of lithium, neutron-induced radioactivities in the reaction chamber wall are several orders of magnitude less than is typical of other fusion reactor systems.

  17. Influence of fast alpha diffusion and thermal alpha buildup on tokamak reactor performance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Uckan, N.A.; Tolliver, J.S.; Houlberg, W.A.

    1987-11-01

    The effect of fast alpha diffusion and thermal alpha accumulation on the confinement capability of a candidate Engineering Test Reactor (ETR) plasma (Tokamak Ignition/Burn Experimental Reactor (TIBER-II)) in achieving ignition and steady-state driven operation has been assessed using both global and 1-1/2-D transport models. Estimates are made of the threshold for radial diffusion of fast alphas and thermal alpha buildup. It is shown that a relatively low level of radial transport, when combined with large gradients in the fast alpha density, leads to a significant radial flow with a deleterious effect on plasma performance. Similarly, modest levels of thermal alphamore » concentration significantly influence the ignition and steady-state burn capability. 23 refs., 9 figs., 4 tabs.« less

  18. Laser or charged-particle-beam fusion reactor with direct electric generation by magnetic flux compression

    DOEpatents

    Lasche, G.P.

    1987-02-20

    A high-power-density-laser or charged-particle-beam fusion reactor system maximizes the directed kinetic energy imparted to a large mass of liquid lithium by a centrally located fusion target. A fusion target is embedded in a large mass of lithium, of sufficient radius to act as a tritium breeding blanket, and provided with ports for the access of beam energy to implode the target. The directed kinetic energy is converted directly to electricity with high efficiency by work done against a pulsed magnetic field applied exterior to the lithium. Because the system maximizes the blanket thickness per unit volume of lithium, neutron-induced radioactivities in the reaction chamber wall are several orders of magnitude less than is typical of other fusion reactor systems. 25 figs.

  19. 15 CFR Supplement No. 2 to Part 783 - Manufacturing Activities

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... dissipates decay heat during handling, transportation and storage. (12) The manufacture of reactor control... or greater than the equivalent of 0.5 meters of concrete, with a density of 3.2 g/cm3 or greater...

  20. 15 CFR Supplement No. 2 to Part 783 - Manufacturing Activities

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... dissipates decay heat during handling, transportation and storage. (12) The manufacture of reactor control... or greater than the equivalent of 0.5 meters of concrete, with a density of 3.2 g/cm3 or greater...

  1. 15 CFR Supplement No. 2 to Part 783 - Manufacturing Activities

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... dissipates decay heat during handling, transportation and storage. (12) The manufacture of reactor control... or greater than the equivalent of 0.5 meters of concrete, with a density of 3.2 g/cm3 or greater...

  2. 15 CFR Supplement No. 2 to Part 783 - Manufacturing Activities

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... dissipates decay heat during handling, transportation and storage. (12) The manufacture of reactor control... or greater than the equivalent of 0.5 meters of concrete, with a density of 3.2 g/cm3 or greater...

  3. 15 CFR Supplement No. 2 to Part 783 - Manufacturing Activities

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... dissipates decay heat during handling, transportation and storage. (12) The manufacture of reactor control... or greater than the equivalent of 0.5 meters of concrete, with a density of 3.2 g/cm3 or greater...

  4. A Compact Torus Fusion Reactor Utilizing a Continuously Generated Strings of CT's. The CT String Reactor, CTSR.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hartman, C W; Reisman, D B; McLean, H S

    2007-05-30

    A fusion reactor is described in which a moving string of mutually repelling compact toruses (alternating helicity, unidirectional Btheta) is generated by repetitive injection using a magnetized coaxial gun driven by continuous gun current with alternating poloidal field. An injected CT relaxes to a minimum magnetic energy equilibrium, moves into a compression cone, and enters a conducting cylinder where the plasma is heated to fusion-producing temperature. The CT then passes into a blanketed region where fusion energy is produced and, on emergence from the fusion region, the CT undergoes controlled expansion in an exit cone where an alternating poloidal fieldmore » opens the flux surfaces to directly recover the CT magnetic energy as current which is returned to the formation gun. The CT String Reactor (CTSTR) reactor satisfies all the necessary MHD stability requirements and is based on extrapolation of experimentally achieved formation, stability, and plasma confinement. It is supported by extensive 2D, MHD calculations. CTSTR employs minimal external fields supplied by normal conductors, and can produce high fusion power density with uniform wall loading. The geometric simplicity of CTSTR acts to minimize initial and maintenance costs, including periodic replacement of the reactor first wall.« less

  5. Research Reactor Preparations for the Air Shipment of Highly Enriched Uranium from Romania

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    K. J. Allen; I. Bolshinsky; L. L. Biro

    2010-03-01

    In June 2009 two air shipments transported both unirradiated (fresh) and irradiated (spent) Russian-origin highly enriched uranium (HEU) nuclear fuel from two research reactors in Romania to the Russian Federation for conversion to low enriched uranium. The Institute for Nuclear Research at Pitesti (SCN Pitesti) shipped 30.1 kg of HEU fresh fuel pellets to Dimitrovgrad, Russia and the Horia Hulubei National Institute of Physics and Nuclear Engineering (IFIN-HH) shipped 23.7 kilograms of HEU spent fuel assemblies from the VVR S research reactor at Magurele, Romania, to Chelyabinsk, Russia. Both HEU shipments were coordinated by the Russian Research Reactor Fuel Returnmore » Program (RRRFR) as part of the U.S. Department of Energy Global Threat Reduction Initiative (GTRI), were managed in Romania by the National Commission for Nuclear Activities Control (CNCAN), and were conducted in cooperation with the Russian Federation State Corporation Rosatom and the International Atomic Energy Agency. Both shipments were transported by truck to and from respective commercial airports in Romania and the Russian Federation and stored at secure nuclear facilities in Russia until the material is converted into low enriched uranium. These shipments resulted in Romania becoming the 3rd country under the RRRFR program and the 14th country under the GTRI program to remove all HEU. This paper describes the research reactor preparations and license approvals that were necessary to safely and securely complete these air shipments of nuclear fuel.« less

  6. RADON LEVELS AND ЕQUIVALENT DOSE RATES AT THE IRT-SOFIA RESEARCH REACTOR SITE.

    PubMed

    Krezhov, Kiril; Mladenov, Aleksander; Dimitrov, Dobromir

    2018-06-11

    Results from radon measurements by active sampling of indoor air in the buildings within the Nuclear Scientific Experimental and Educational Centre (NSEEC) protected site at the Institute for Nuclear Research and Nuclear Energy (INRNE) are presented. The inspected buildings included in this report are the IRT research reactor structure and several auxiliary formations wherein the laundry facilities and the gamma irradiator GOU-1 (60Co source) are installed as well as the Central Alarm Station (CAS) premises. Besides the reactor hall and the primary cooling loop area, special attention was given to the premises of the First Class Radiochemical Laboratory in the IRT reactor basement. Determination of radon concentration distribution in the premises of the constructions within the site is an important part of radiation surveillance during the operation and maintenance of the NSEEC facilities as well as for their involvement in the educational activities at INRNE.

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Graslund, C.; Hellstrand, E.

    Sweden benefits in many ways from the reactor safety research performed in other countries. Its own activity complements this effort, but a certain fraction is oriented toward safety issues that are intimately related to the special design of the ASEA-ATOM boiling-water reactor. Through the availability of the decommissioned Marviken reactor plant, Sweden has been able to play a leading role in integral containment experiments with international participation. Joint efforts with other countries are now devoted to defining new large-scale experiments to be performed in the unique Marviken facility. The largest portion of the safety research program in Sweden is performedmore » by Studsvik Energiteknik AB, but various universities, consultant firms, and research institutes are also involved. In addition, a substantial amount of work is done by the reactor vendor ASEA-ATOM. The overall annual budget is at present between $7 and $8 million, with three governmental authorities as the main financing bodies.« less

  8. Evaluation of infrared thermography as a diagnostic tool in CVD applications

    NASA Astrophysics Data System (ADS)

    Johnson, E. J.; Hyer, P. V.; Culotta, P. W.; Clark, I. O.

    1998-05-01

    This research is focused on the feasibility of using infrared temperature measurements on the exterior of a chemical vapor deposition (CVD) reactor to ascertain both real-time information on the operating characteristics of a CVD system and provide data which could be post-processed to provide quantitative information for research and development on CVD processes. Infrared thermography techniques were used to measure temperatures on a horizontal CVD reactor of rectangular cross section which were correlated with the internal gas flow field, as measured with the laser velocimetry (LV) techniques. For the reactor tested, thermal profiles were well correlated with the gas flow field inside the reactor. Correlations are presented for nitrogen and hydrogen carrier gas flows. The infrared data were available to the operators in real time with sufficient sensitivity to the internal flow field so that small variations such as misalignment of the reactor inlet could be observed. The same data were post-processed to yield temperature measurements at known locations on the reactor surface. For the experiments described herein, temperatures associated with approximately 3.3 mm 2 areas on the reactor surface were obtained with a precision of ±2°C. These temperature measurements were well suited for monitoring a CVD production reactor, development of improved thermal boundary conditions for use in CFD models of reactors, and for verification of expected thermal conditions.

  9. The conceptual design of a robust, compact, modular tokamak reactor based on high-field superconductors

    NASA Astrophysics Data System (ADS)

    Whyte, D. G.; Bonoli, P.; Barnard, H.; Haakonsen, C.; Hartwig, Z.; Kasten, C.; Palmer, T.; Sung, C.; Sutherland, D.; Bromberg, L.; Mangiarotti, F.; Goh, J.; Sorbom, B.; Sierchio, J.; Ball, J.; Greenwald, M.; Olynyk, G.; Minervini, J.

    2012-10-01

    Two of the greatest challenges to tokamak reactors are 1) large single-unit cost of each reactor's construction and 2) their susceptibility to disruptions from operation at or above operational limits. We present an attractive tokamak reactor design that substantially lessens these issues by exploiting recent advancements in superconductor (SC) tapes allowing peak field on SC coil > 20 Tesla. A R˜3.3 m, B˜9.2 T, ˜ 500 MW fusion power tokamak provides high fusion gain while avoiding all disruptive operating boundaries (no-wall beta, kink, and density limits). Robust steady-state core scenarios are obtained by exploiting the synergy of high field, compact size and ideal efficiency current drive using high-field side launch of Lower Hybrid waves. The design features a completely modular replacement of internal solid components enabled by the demountability of the coils/tapes and the use of an immersion liquid blanket. This modularity opens up the possibility of using the device as a nuclear component test facility.

  10. Noise source and reactor stability estimation in a boiling water reactor using a multivariate autoregressive model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kanemoto, S.; Andoh, Y.; Sandoz, S.A.

    1984-10-01

    A method for evaluating reactor stability in boiling water reactors has been developed. The method is based on multivariate autoregressive (M-AR) modeling of steady-state neutron and process noise signals. In this method, two kinds of power spectral densities (PSDs) for the measured neutron signal and the corresponding noise source signal are separately identified by the M-AR modeling. The closed- and open-loop stability parameters are evaluated from these PSDs. The method is applied to actual plant noise data that were measured together with artificial perturbation test data. Stability parameters identified from noise data are compared to those from perturbation test data,more » and it is shown that both results are in good agreement. In addition to these stability estimations, driving noise sources for the neutron signal are evaluated by the M-AR modeling. Contributions from void, core flow, and pressure noise sources are quantitatively evaluated, and the void noise source is shown to be the most dominant.« less

  11. REACTOR CONTROL

    DOEpatents

    Ruano, W.J.

    1957-12-10

    This patent relates to nuclear reactors of the type which utilize elongited rod type fuel elements immersed in a liquid moderator and shows a design whereby control of the chain reaction is obtained by varying the amount of moderator or reflector material. A central tank for containing liquid moderator and fuel elements immersed therein is disposed within a surrounding outer tank providing an annular space between the two tanks. This annular space is filled with liquid moderator which functions as a reflector to reflect neutrons back into the central reactor tank to increase the reproduction ratio. Means are provided for circulating and cooling the moderator material in both tanks and additional means are provided for controlling separately the volume of moderator in each tank, which latter means may be operated automatically by a neutron density monitoring device. The patent also shows an arrangement for controlling the chain reaction by injecting and varying an amount of poisoning material in the moderator used in the reflector portion of the reactor.

  12. A CAMAC based real-time noise analysis system for nuclear reactors

    NASA Astrophysics Data System (ADS)

    Ciftcioglu, Özer

    1987-05-01

    A CAMAC based real-time noise analysis system was designed for the TRIGA MARK II nuclear reactor at the Institute for Nuclear Energy, Istanbul. The input analog signals obtained from the radiation detectors are introduced to the system through CAMAC interface. The signals converted into digital form are processed by a PDP-11 computer. The fast data processing based on auto/cross power spectral density computations is carried out by means of assembly written FFT algorithms in real-time and the spectra obtained are displayed on a CAMAC driven display system as an additional monitoring device. The system has the advantage of being software programmable and controlled by a CAMAC system so that it is operated under program control for reactor surveillance, anomaly detection and diagnosis. The system can also be used for the identification of nonstationary operational characteristics of the reactor in long term by comparing the noise power spectra with the corresponding reference noise patterns prepared in advance.

  13. Research of fundamental interactions with use of ultracold neutrons

    NASA Astrophysics Data System (ADS)

    Serebrov, A. P.

    2017-01-01

    Use of ultracold neutrons (UCN) gives unique opportunities of a research of fundamental interactions in physics of elementary particles. Search of the electric dipole moment of a neutron (EDM) aims to test models of CP violation. Precise measurement of neutron lifetime is extremely important for cosmology and astrophysics. Considerable progress in these questions can be reached due to supersource of ultracold neutrons on the basis of superfluid helium which is under construction now in PNPI NRC KI. This source will allow us to increase density of ultracold neutrons approximately by 100 times in respect to the best UCN source at high flux reactor of Institute Laue-Langevin (Grenoble, France). Now the project and basic elements of the source are prepared, full-scale model of the source is tested, the scientific program is developed. Increase in accuracy of neutron EDM measurements by order of magnitude, down to level 10-27 -10-28 e cm is planned. It is highly important for physics of elementary particles. Accuracy of measurement of neutron lifetime can be increased by order of magnitude also. At last, at achievement of UCN density ˜ 103 - 104 cm-3, the experiment search for a neutron-antineutron oscillations using UCN will be possible. The present status of the project and its scientific program will be discussed.

  14. Advanced Reactor Technologies - Regulatory Technology Development Plan (RTDP)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moe, Wayne L.

    This DOE-NE Advanced Small Modular Reactor (AdvSMR) regulatory technology development plan (RTDP) will link critical DOE nuclear reactor technology development programs to important regulatory and policy-related issues likely to impact a “critical path” for establishing a viable commercial AdvSMR presence in the domestic energy market. Accordingly, the regulatory considerations that are set forth in the AdvSMR RTDP will not be limited to any one particular type or subset of advanced reactor technology(s) but rather broadly consider potential regulatory approaches and the licensing implications that accompany all DOE-sponsored research and technology development activity that deal with commercial non-light water reactors. However,more » it is also important to remember that certain “minimum” levels of design and safety approach knowledge concerning these technology(s) must be defined and available to an extent that supports appropriate pre-licensing regulatory analysis within the RTDP. Final resolution to advanced reactor licensing issues is most often predicated on the detailed design information and specific safety approach as documented in a facility license application and submitted for licensing review. Because the AdvSMR RTDP is focused on identifying and assessing the potential regulatory implications of DOE-sponsored reactor technology research very early in the pre-license application development phase, the information necessary to support a comprehensive regulatory analysis of a new reactor technology, and the resolution of resulting issues, will generally not be available. As such, the regulatory considerations documented in the RTDP should be considered an initial “first step” in the licensing process which will continue until a license is issued to build and operate the said nuclear facility. Because a facility license application relies heavily on the data and information generated by technology development studies, the anticipated regulatory importance of key DOE reactor research initiatives should be assessed early in the technology development process. Quality assurance requirements supportive of later licensing activities must also be attached to important research activities to ensure resulting data is usable in that context. Early regulatory analysis and licensing approach planning thus provides a significant benefit to the formulation of research plans and also enables the planning and development of a compatible AdvSMR licensing framework, should significant modification be required.« less

  15. Advanced Reactor Technology -- Regulatory Technology Development Plan (RTDP)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moe, Wayne Leland

    This DOE-NE Advanced Small Modular Reactor (AdvSMR) regulatory technology development plan (RTDP) will link critical DOE nuclear reactor technology development programs to important regulatory and policy-related issues likely to impact a “critical path” for establishing a viable commercial AdvSMR presence in the domestic energy market. Accordingly, the regulatory considerations that are set forth in the AdvSMR RTDP will not be limited to any one particular type or subset of advanced reactor technology(s) but rather broadly consider potential regulatory approaches and the licensing implications that accompany all DOE-sponsored research and technology development activity that deal with commercial non-light water reactors. However,more » it is also important to remember that certain “minimum” levels of design and safety approach knowledge concerning these technology(s) must be defined and available to an extent that supports appropriate pre-licensing regulatory analysis within the RTDP. Final resolution to advanced reactor licensing issues is most often predicated on the detailed design information and specific safety approach as documented in a facility license application and submitted for licensing review. Because the AdvSMR RTDP is focused on identifying and assessing the potential regulatory implications of DOE-sponsored reactor technology research very early in the pre-license application development phase, the information necessary to support a comprehensive regulatory analysis of a new reactor technology, and the resolution of resulting issues, will generally not be available. As such, the regulatory considerations documented in the RTDP should be considered an initial “first step” in the licensing process which will continue until a license is issued to build and operate the said nuclear facility. Because a facility license application relies heavily on the data and information generated by technology development studies, the anticipated regulatory importance of key DOE reactor research initiatives should be assessed early in the technology development process. Quality assurance requirements supportive of later licensing activities must also be attached to important research activities to ensure resulting data is usable in that context. Early regulatory analysis and licensing approach planning thus provides a significant benefit to the formulation of research plans and also enables the planning and development of a compatible AdvSMR licensing framework, should significant modification be required.« less

  16. Key Assets for a Sustainable Low Carbon Energy Future

    NASA Astrophysics Data System (ADS)

    Carre, Frank

    2011-10-01

    Since the beginning of the 21st century, concerns of energy security and climate change gave rise to energy policies focused on energy conservation and diversified low-carbon energy sources. Provided lessons of Fukushima accident are evidently accounted for, nuclear energy will probably be confirmed in most of today's nuclear countries as a low carbon energy source needed to limit imports of oil and gas and to meet fast growing energy needs. Future challenges of nuclear energy are then in three directions: i) enhancing safety performance so as to preclude any long term impact of severe accident outside the site of the plant, even in case of hypothetical external events, ii) full use of Uranium and minimization long lived radioactive waste burden for sustainability, and iii) extension to non-electricity energy products for maximizing the share of low carbon energy source in transportation fuels, industrial process heat and district heating. Advanced LWRs (Gen-III) are today's best available technologies and can somewhat advance nuclear energy in these three directions. However, breakthroughs in sustainability call for fast neutron reactors and closed fuel cycles, and non-electric applications prompt a revival of interest in high temperature reactors for exceeding cogeneration performances achievable with LWRs. Both types of Gen-IV nuclear systems by nature call for technology breakthroughs to surpass LWRs capabilities. Current resumption in France of research on sodium cooled fast neutron reactors (SFRs) definitely aims at significant progress in safety and economic competitiveness compared to earlier reactors of this type in order to progress towards a new generation of commercially viable sodium cooled fast reactor. Along with advancing a new generation of sodium cooled fast reactor, research and development on alternative fast reactor types such as gas or lead-alloy cooled systems (GFR & LFR) is strategic to overcome technical difficulties and/or political opposition specific to sodium. In conclusion, research and technology breakthroughs in nuclear power are needed for shaping a sustainable low carbon future. International cooperation is key for sharing costs of research and development of the required novel technologies and cost of first experimental reactors needed to demonstrate enabling technologies. At the same time technology breakthroughs are developed, pre-normative research is required to support codification work and harmonized regulations that will ultimately apply to safety and security features of resulting innovative reactor types and fuel cycles.

  17. Reactor Monitoring with Antineutrinos - A Progress Report

    NASA Astrophysics Data System (ADS)

    Bernstein, Adam

    2012-08-01

    The Reactor Safeguards regime is the name given to a set of protocols and technologies used to monitor the consumption and production of fissile materials in nuclear reactors. The Safeguards regime is administered by the International Atomic Energy Agency (IAEA), and is an essential component of the global Treaty on Nuclear Nonproliferation, recently renewed by its 189 remaining signators. (The 190th, North Korea, withdrew from the Treaty in 2003). Beginning in Russia in the 1980s, a number of researchers worldwide have experimentally demonstrated the potential of cubic meter scale antineutrino detectors for non-intrusive real-time monitoring of fissile inventories and power output of reactors. The detectors built so far have operated tens of meters from a reactor core, outside of the containment dome, largely unattended and with remote data acquisition for an entire 1.5 year reactor cycle, and have achieved levels of sensitivity to fissile content of potential interest for the IAEA safeguards regime. In this article, I will describe the unique advantages of antineutrino detectors for cooperative monitoring, consider the prospects and benefits of increasing the range of detectability for small reactors, and provide a partial survey of ongoing global research aimed at improving near-field and far field monitoring and discovery of nuclear reactors.

  18. INL Experimental Program Roadmap for Thermal Hydraulic Code Validation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Glenn McCreery; Hugh McIlroy

    2007-09-01

    Advanced computer modeling and simulation tools and protocols will be heavily relied on for a wide variety of system studies, engineering design activities, and other aspects of the Next Generation Nuclear Power (NGNP) Very High Temperature Reactor (VHTR), the DOE Global Nuclear Energy Partnership (GNEP), and light-water reactors. The goal is for all modeling and simulation tools to be demonstrated accurate and reliable through a formal Verification and Validation (V&V) process, especially where such tools are to be used to establish safety margins and support regulatory compliance, or to design a system in a manner that reduces the role ofmore » expensive mockups and prototypes. Recent literature identifies specific experimental principles that must be followed in order to insure that experimental data meet the standards required for a “benchmark” database. Even for well conducted experiments, missing experimental details, such as geometrical definition, data reduction procedures, and manufacturing tolerances have led to poor Benchmark calculations. The INL has a long and deep history of research in thermal hydraulics, especially in the 1960s through 1980s when many programs such as LOFT and Semiscle were devoted to light-water reactor safety research, the EBRII fast reactor was in operation, and a strong geothermal energy program was established. The past can serve as a partial guide for reinvigorating thermal hydraulic research at the laboratory. However, new research programs need to fully incorporate modern experimental methods such as measurement techniques using the latest instrumentation, computerized data reduction, and scaling methodology. The path forward for establishing experimental research for code model validation will require benchmark experiments conducted in suitable facilities located at the INL. This document describes thermal hydraulic facility requirements and candidate buildings and presents examples of suitable validation experiments related to VHTRs, sodium-cooled fast reactors, and light-water reactors. These experiments range from relatively low-cost benchtop experiments for investigating individual phenomena to large electrically-heated integral facilities for investigating reactor accidents and transients.« less

  19. Soil bed reactor work of the Environmental Research Lab. of the University of Arizona in support of the research and development of Biosphere 2

    NASA Technical Reports Server (NTRS)

    Frye, Robert

    1990-01-01

    Research at the Environmental Research Lab in support of Biosphere 2 was both basic and applied in nature. One aspect of the applied research involved the use of biological reactors for the scrubbing of trace atmospheric organic contaminants. The research involved a quantitative study of the efficiency of operation of Soil Bed Reactors (SBR) and the optimal operating conditions for contaminant removal. The basic configuration of a SBR is that air is moved through a living soil that supports a population of plants. Upon exposure to the soil, contaminants are either passively adsorbed onto the surface of soil particles, chemically transformed in the soil to usable compounds that are taken up by the plants or microbes as a metabolic energy source and converted to CO2 and water.

  20. 77 FR 7613 - Dow Chemical Company; Dow Chemical TRIGA Research Reactor; Facility Operating License No. R-108

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-02-13

    ... NUCLEAR REGULATORY COMMISSION [Docket No. 50-264; NRC-2012-0026] Dow Chemical Company; Dow Chemical TRIGA Research Reactor; Facility Operating License No. R-108 AGENCY: Nuclear Regulatory Commission... Facility Operating License No. R-108 (``Application''), which currently authorizes the Dow Chemical Company...

  1. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ramalho, Antonio G.

    The Portuguese Research Reactor (RPI) is the main research facility in the Laboratorio de Fisica e Engenharia Nucleares. This laboratory is one of the departments of Junta de Energia Nuclear, the coordinating body of the nuclear activity in Portugal. A description of the facility, reactor utilization, positioning within Portugal, and areas of cooperation with other institutions are summarized.

  2. NRC Targets University Reactors.

    ERIC Educational Resources Information Center

    Marshall, Eliot

    1984-01-01

    The Nuclear Regulatory Commission (NRC) wants universities to convert to low-grade fuel in their research reactions. Researchers claim the conversion, which will bring U.S. reactors in line with a policy the NRC is trying to impress on foreigners, could be financially and scientifically costly. Impact of the policy is considered. (JN)

  3. 75 FR 62892 - Massachusetts Institute of Technology Research Reactor Environmental Assessment and Finding of No...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-10-13

    ... NUCLEAR REGULATORY COMMISSION [Docket No. 50-020; NRC-2010-0313] Massachusetts Institute of Technology Research Reactor Environmental Assessment and Finding of No Significant Impact Correction In notice document 2010-24809 beginning on page 61220 in the issue of Monday, October 4, 2010, make the...

  4. A PROGRAM OF RESEARCH ON MECHANICAL METALLURGY AS RELATED TO FUEL-ELEMENT FABRICATION. Summary Report, January 1-September 30, 1961

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Trozera, T.A.; White, J.L.; Chambers, R.H.

    Research progress on mechanical metallurgy of reactor materials is reported in three sections: deformation characteristics of reactor materials, stored energy of cold work, and microplastic propenties and mechanical relaxation spectra of very pure refractory bcc metals. (M.C.G.)

  5. An Evaluation of the Performance and Economics of Membranes and Separators in Single Chamber Microbial Fuel Cells Treating Domestic Wastewater.

    PubMed

    Christgen, Beate; Scott, Keith; Dolfing, Jan; Head, Ian M; Curtis, Thomas P

    2015-01-01

    The cost of materials is one of the biggest barriers for wastewater driven microbial fuel cells (MFCs). Many studies use expensive materials with idealistic wastes. Realistically the choice of an ion selective membrane or nonspecific separators must be made in the context of the cost and performance of materials available. Fourteen membranes and separators were characterized for durability, oxygen diffusion and ionic resistance to enable informed membrane selection for reactor tests. Subsequently MFCs were operated in a cost efficient reactor design using Nafion, ethylene tetrafluoroethylene (ETFE) or polyvinylidene fluoride (PVDF) membranes, a nonspecific separator (Rhinohide), and a no-membrane design with a carbon-paper internal gas diffusion cathode. Peak power densities during polarisation, from MFCs using no-membrane, Nafion and ETFE, reached 67, 61 and 59 mWm(-2), and coulombic efficiencies of 68±11%, 71±12% and 92±6%, respectively. Under 1000 Ω, Nafion and ETFE achieved an average power density of 29 mWm(-2) compared to 24 mWm(-2) for the membrane-less reactors. Over a hypothetical lifetime of 10 years the generated energy (1 to 2.5 kWhm(-2)) would not be sufficient to offset the costs of any membrane and separator tested.

  6. An Evaluation of the Performance and Economics of Membranes and Separators in Single Chamber Microbial Fuel Cells Treating Domestic Wastewater

    PubMed Central

    Christgen, Beate; Scott, Keith; Dolfing, Jan; Head, Ian M.; Curtis, Thomas P.

    2015-01-01

    The cost of materials is one of the biggest barriers for wastewater driven microbial fuel cells (MFCs). Many studies use expensive materials with idealistic wastes. Realistically the choice of an ion selective membrane or nonspecific separators must be made in the context of the cost and performance of materials available. Fourteen membranes and separators were characterized for durability, oxygen diffusion and ionic resistance to enable informed membrane selection for reactor tests. Subsequently MFCs were operated in a cost efficient reactor design using Nafion, ethylene tetrafluoroethylene (ETFE) or polyvinylidene fluoride (PVDF) membranes, a nonspecific separator (Rhinohide), and a no-membrane design with a carbon-paper internal gas diffusion cathode. Peak power densities during polarisation, from MFCs using no-membrane, Nafion and ETFE, reached 67, 61 and 59 mWm-2, and coulombic efficiencies of 68±11%, 71±12% and 92±6%, respectively. Under 1000Ω, Nafion and ETFE achieved an average power density of 29 mWm-2 compared to 24 mWm-2 for the membrane-less reactors. Over a hypothetical lifetime of 10 years the generated energy (1 to 2.5 kWhm-2) would not be sufficient to offset the costs of any membrane and separator tested. PMID:26305330

  7. The recovery of zinc from hot galvanizing slag in an anion-exchange membrane electrolysis reactor.

    PubMed

    Ren, Xiulian; Wei, Qifeng; Hu, Surong; Wei, Sijie

    2010-09-15

    This paper reports the optimization of the process parameters for recovery of zinc from hot galvanizing slag in an anion-exchange membrane electrolysis reactor. The experiments were carried out in an ammoniacal ammonium chloride system. The influence of composition of electrolytes, pH, stirring rate, current density and temperature, on cathodic current efficiency, specific power consumption and anodic dissolution of Zn were investigated. The results indicate that the cathode current efficiency increases and the hydrogen evolution decreased with increasing the cathode current density. The partial current for electrodeposition of Zn has liner relationship with omega(1/2) (omega: rotation rate). The highest current efficiency for dissolving zinc was obtained when NH(4)Cl concentration was 53.46 g L(-1) and the anodic dissolution of zinc was determined by mass transfer rate at stirring rate 0-300 r min(-1). Increase in temperature benefits to improve CE and dissolution of Zn, and reduce cell voltage. Initial pH of electrolytes plays an important role in the deposition and anodic dissolution of Zn. The results of single factor experiment show that about 50% energy consumption was saved for electrodeposition of Zn in the anion-exchange membrane electrolysis reactor. Copyright 2010 Elsevier B.V. All rights reserved.

  8. Neutron beams implemented at nuclear research reactors for BNCT

    NASA Astrophysics Data System (ADS)

    Bavarnegin, E.; Kasesaz, Y.; Wagner, F. M.

    2017-05-01

    This paper presents a survey of neutron beams which were or are in use at 56 Nuclear Research Reactors (NRRs) in order to be used for BNCT, either for treatment or research purposes in aspects of various combinations of materials that were used in their Beam Shaping Assembly (BSA) design, use of fission converters and optimized beam parameters. All our knowledge about BNCT is indebted to researches that have been done in NRRs. The results of about 60 years research in BNCT and also the successes of this method in medical treatment of tumors show that, for the development of BNCT as a routine cancer therapy method, hospital-based neutron sources are needed. Achieving a physical data collection on BNCT neutron beams based on NRRs will be helpful for beam designers in developing a non-reactor based neutron beam.

  9. Light-Water-Reactor safety research program. Quarterly progress report, January--March 1977

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    The report summarizes the Argonne National Laboratory work performed during January, February, and March 1977 on water-reactor-safety problems. The following research and development areas are covered: (1) loss-of-coolant accident research: heat transfer and fluid dynamics; (2) transient fuel response and fission-product release program; (3) mechanical properties of zircaloy containing oxygen; and (4) steam-explosion studies.

  10. Passive safety injection system using borated water

    DOEpatents

    Conway, Lawrence E.; Schulz, Terry L.

    1993-01-01

    A passive safety injection system relies on differences in water density to induce natural circulatory flow patterns which help maintain prescribed concentrations of boric acid in borated water, and prevents boron from accumulating in the reactor vessel and possibly preventing heat transfer.

  11. Nuclear reactor construction with bottom supported reactor vessel

    DOEpatents

    Sharbaugh, John E.

    1987-01-01

    An improved liquid metal nuclear reactor construction has a reactor core and a generally cylindrical reactor vessel for holding a large pool of low pressure liquid metal coolant and housing the core within the pool. The reactor vessel has an open top end, a closed flat bottom end wall and a continuous cylindrical closed side wall interconnecting the top end and bottom end wall. The reactor also has a generally cylindrical concrete containment structure surrounding the reactor vessel and being formed by a cylindrical side wall spaced outwardly from the reactor vessel side wall and a flat base mat spaced below the reactor vessel bottom end wall. A central support pedestal is anchored to the containment structure base mat and extends upwardly therefrom to the reactor vessel and upwardly therefrom to the reactor core so as to support the bottom end wall of the reactor vessel and the lower end of the reactor core in spaced apart relationship above the containment structure base mat. Also, an annular reinforced support structure is disposed in the reactor vessel on the bottom end wall thereof and extends about the lower end of the core so as to support the periphery thereof. In addition, an annular support ring having a plurality of inward radially extending linear members is disposed between the containment structure base mat and the bottom end of the reactor vessel wall and is connected to and supports the reactor vessel at its bottom end on the containment structure base mat so as to allow the reactor vessel to expand radially but substantially prevent any lateral motions that might be imposed by the occurrence of a seismic event. The reactor construction also includes a bed of insulating material in sand-like granular form, preferably being high density magnesium oxide particles, disposed between the containment structure base mat and the bottom end wall of the reactor vessel and uniformly supporting the reactor vessel at its bottom end wall on the containment structure base mat so as to insulate the reactor vessel bottom end wall from the containment structure base mat and allow the reactor vessel bottom end wall to freely expand as it heats up while providing continuous support thereof. Further, a deck is supported upon the side wall of the containment structure above the top open end of the reactor vessel, and a plurality of serially connected extendible and retractable annular bellows extend between the deck and the top open end of the reactor vessel and flexibly and sealably interconnect the reactor vessel at its top end to the deck. An annular guide ring is disposed on the containment structure and extends between its side wall and the top open end of the reactor vessel for providing lateral support of the reactor vessel top open end by limiting imposition of lateral loads on the annular bellows by the occurrence of a lateral seismic event.

  12. PREPARATION OF HIGH-DENSITY THORIUM OXIDE SPHERES

    DOEpatents

    McNees, R.A. Jr.; Taylor, A.J.

    1963-12-31

    A method of preparing high-density thorium oxide spheres for use in pellet beds in nuclear reactors is presented. Sinterable thorium oxide is first converted to free-flowing granules by means such as compression into a compact and comminution of the compact. The granules are then compressed into cubes having a density of 5.0 to 5.3 grams per cubic centimeter. The cubes are tumbled to form spheres by attrition, and the spheres are then fired at 1250 to 1350 deg C. The fired spheres are then polished and fired at a temperature above 1650 deg C to obtain high density. Spherical pellets produced by this method are highly resistant to mechanical attrition hy water. (AEC)

  13. Overview of Fuel Rod Simulator Usage at ORNL

    NASA Astrophysics Data System (ADS)

    Ott, Larry J.; McCulloch, Reg

    2004-02-01

    During the 1970s and early 1980s, the Oak Ridge National Laboratory (ORNL) operated large out-of-reactor experimental facilities to resolve thermal-hydraulic safety issues in nuclear reactors. The fundamental research ranged from material mechanical behavior of fuel cladding during the depressurization phase of a loss-of-coolant accident (LOCA) to basic heat transfer research in gas- or sodium-cooled cores. The largest facility simulated the initial phase (less than 1 min. of transient time) of a LOCA in a commercial pressurized-water reactor. The nonnuclear reactor cores of these facilities were mimicked via advanced, highly instrumented electric fuel rod simulators locally manufactured at ORNL. This paper provides an overview of these experimental facilities with an emphasis on the fuel rod simulators.

  14. Effects of Irradiation on the Microstructure of U-7Mo Dispersion Fuel with Al-2Si Matrix

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dennis D. Keiser, Jr.; Jan-Fong Jue; Adam B. Robinson

    2012-06-01

    The Reduced Enrichment for Research and Test Reactor program is developing low-enriched uranium U-Mo dispersion fuels for application in research and test reactors around the world. As part of this development, fuel plates have been irradiated in the Advanced Test Reactor and then characterized using optical metallography (OM) and scanning electron microscopy (SEM) to determine the as-irradiated microstructure. To demonstrate the irradiation performance of U-7Mo dispersion fuel plates with 2 wt% Si added to the matrix, fuel plates were tested to medium burnups at intermediate fission rates as part of the RERTR-6 experiment. Further testing was performed to higher fissionmore » rates as part of the RERTR-7A experiment, and very aggressive testing (high temperature, high fission density, high fission rate) was performed in the RERTR-9A, RERTR-9B and AFIP-1 experiments. As-irradiated microstructures were compared to those observed after fabrication to determine the effects of irradiation on the microstructure. Based on comparison of the microstructural characterization results for each irradiated sample, some general conclusions can be drawn about how the microstructure evolves during irradiation: there is growth of the fuel/matrix interaction layer (FMI), which was present in the samples to some degree after fabrication, during irradiation; Si diffuses from the FMI layer to deeper depths in the U-7Mo particles as the irradiation conditions are made more aggressive; lowering of the Si content in the FMI layer results in an increase in the size of the fission gas bubbles; as the FMI layer grows during irradiation more Si diffuses from the matrix to the FMI layer/matrix interface, and interlinking of fission gas bubbles in the fuel plate microstructure that may indicate breakaway swelling is not observed.« less

  15. Benzophenone-3 ultrasound degradation in a multifrequency reactor: Response surface methodology approach.

    PubMed

    Vega-Garzon, Lina Patricia; Gomez-Miranda, Ingry Natalia; Peñuela, Gustavo A

    2018-05-01

    Response Surface Methodology was used for optimizing operating variables for a multi-frequency ultrasound reactor using BP-3 as a model compound. The response variable was the Triclosan degradation percent after 10 sonication min. Frequency at levels from 574, 856 and 1134 kHz were used. Power density, pulse time (PT), silent time (ST) and PT/ST ratio effects were also analyzed. 2 2 and 2 3 experimental designs were used for screening purposes and a central composite design was used for optimization. An optimum value of 79.2% was obtained for a frequency of 574 kHz, a power density of 200 W/L, and a PT/ST ratio of 10. Significant variables were frequency and power level, the first having an optimum value after which degradation decreases while power density level had a strong positive effect on the whole operational range. PT, ST, and PT/ST ratio were not significant variables although it was shown that pulsed mode ultrasound has better degradation rates than continuous mode ultrasound; the effect less significant at higher power levels. Copyright © 2017. Published by Elsevier B.V.

  16. Comparison of two-stage thermophilic (68 degrees C/55 degrees C) anaerobic digestion with one-stage thermophilic (55 degrees C) digestion of cattle manure.

    PubMed

    Nielsen, H B; Mladenovska, Z; Westermann, P; Ahring, B K

    2004-05-05

    A two-stage 68 degrees C/55 degrees C anaerobic degradation process for treatment of cattle manure was studied. In batch experiments, an increase of the specific methane yield, ranging from 24% to 56%, was obtained when cattle manure and its fractions (fibers and liquid) were pretreated at 68 degrees C for periods of 36, 108, and 168 h, and subsequently digested at 55 degrees C. In a lab-scale experiment, the performance of a two-stage reactor system, consisting of a digester operating at 68 degrees C with a hydraulic retention time (HRT) of 3 days, connected to a 55 degrees C reactor with 12-day HRT, was compared with a conventional single-stage reactor running at 55 degrees C with 15-days HRT. When an organic loading of 3 g volatile solids (VS) per liter per day was applied, the two-stage setup had a 6% to 8% higher specific methane yield and a 9% more effective VS-removal than the conventional single-stage reactor. The 68 degrees C reactor generated 7% to 9% of the total amount of methane of the two-stage system and maintained a volatile fatty acids (VFA) concentration of 4.0 to 4.4 g acetate per liter. Population size and activity of aceticlastic methanogens, syntrophic bacteria, and hydrolytic/fermentative bacteria were significantly lower in the 68 degrees C reactor than in the 55 degrees C reactors. The density levels of methanogens utilizing H2/CO2 or formate were, however, in the same range for all reactors, although the degradation of these substrates was significantly lower in the 68 degrees C reactor than in the 55 degrees C reactors. Temporal temperature gradient electrophoresis profiles (TTGE) of the 68 degrees C reactor demonstrated a stable bacterial community along with a less divergent community of archaeal species. Copyright 2004 Wiley Periodicals, Inc.

  17. Nuclear data activities at the n_TOF facility at CERN

    NASA Astrophysics Data System (ADS)

    Gunsing, F.; Aberle, O.; Andrzejewski, J.; Audouin, L.; Bécares, V.; Bacak, M.; Balibrea-Correa, J.; Barbagallo, M.; Barros, S.; Bečvář, F.; Beinrucker, C.; Belloni, F.; Berthoumieux, E.; Billowes, J.; Bosnar, D.; Brugger, M.; Caamaño, M.; Calviño, F.; Calviani, M.; Cano-Ott, D.; Cardella, R.; Casanovas, A.; Castelluccio, D. M.; Cerutti, F.; Chen, Y. H.; Chiaveri, E.; Colonna, N.; Cortés-Giraldo, M. A.; Cortés, G.; Cosentino, L.; Damone, L. A.; Deo, K.; Diakaki, M.; Domingo-Pardo, C.; Dressler, R.; Dupont, E.; Durán, I.; Fernández-Domínguez, B.; Ferrari, A.; Ferreira, P.; Finocchiaro, P.; Frost, R. J. W.; Furman, V.; Ganesan, S.; García, A. R.; Gawlik, A.; Gheorghe, I.; Glodariu, T.; Gonçalves, I. F.; González, E.; Goverdovski, A.; Griesmayer, E.; Guerrero, C.; Göbel, K.; Harada, H.; Heftrich, T.; Heinitz, S.; Hernández-Prieto, A.; Heyse, J.; Jenkins, D. G.; Jericha, E.; Käppeler, F.; Kadi, Y.; Katabuchi, T.; Kavrigin, P.; Ketlerov, V.; Khryachkov, V.; Kimura, A.; Kivel, N.; Kokkoris, M.; Krtička, M.; Leal-Cidoncha, E.; Lederer, C.; Leeb, H.; Lerendegui, J.; Licata, M.; Lo Meo, S.; Lonsdale, S. J.; Losito, R.; Macina, D.; Marganiec, J.; Martínez, T.; Masi, A.; Massimi, C.; Mastinu, P.; Mastromarco, M.; Matteucci, F.; Maugeri, E. A.; Mazzone, A.; Mendoza, E.; Mengoni, A.; Milazzo, P. M.; Mingrone, F.; Mirea, M.; Montesano, S.; Musumarra, A.; Nolte, R.; Oprea, A.; Palomo-Pinto, F. R.; Paradela, C.; Patronis, N.; Pavlik, A.; Perkowski, J.; Porras, I.; Praena, J.; Quesada, J. M.; Rajeev, K.; Rauscher, T.; Reifarth, R.; Riego-Perez, A.; Robles, M.; Rout, P.; Radeck, D.; Rubbia, C.; Ryan, J. A.; Sabaté-Gilarte, M.; Saxena, A.; Schillebeeckx, P.; Schmidt, S.; Schumann, D.; Sedyshev, P.; Smith, A. G.; Stamatopoulos, A.; Suryanarayana, S. V.; Tagliente, G.; Tain, J. L.; Tarifeño-Saldivia, A.; Tarrío, D.; Tassan-Got, L.; Tsinganis, A.; Valenta, S.; Vannini, G.; Variale, V.; Vaz, P.; Ventura, A.; Vlachoudis, V.; Vlastou, R.; Wallner, A.; Warren, S.; Weigand, M.; Weiss, C.; Wolf, C.; Woods, P. J.; Wright, T.; Žugec, P.

    2016-10-01

    Nuclear data in general, and neutron-induced reaction cross sections in particular, are important for a wide variety of research fields. They play a key role in the safety and criticality assessment of nuclear technology, not only for existing power reactors but also for radiation dosimetry, medical applications, the transmutation of nuclear waste, accelerator-driven systems, fuel cycle investigations and future reactor systems as in Generation IV. Applications of nuclear data are also related to research fields as the study of nuclear level densities and stellar nucleosynthesis. Simulations and calculations of nuclear technology applications largely rely on evaluated nuclear data libraries. The evaluations in these libraries are based both on experimental data and theoretical models. Experimental nuclear reaction data are compiled on a worldwide basis by the international network of Nuclear Reaction Data Centres (NRDC) in the EXFOR database. The EXFOR database forms an important link between nuclear data measurements and the evaluated data libraries. CERN's neutron time-of-flight facility n_TOF has produced a considerable amount of experimental data since it has become fully operational with the start of the scientific measurement programme in 2001. While for a long period a single measurement station (EAR1) located at 185 m from the neutron production target was available, the construction of a second beam line at 20 m (EAR2) in 2014 has substantially increased the measurement capabilities of the facility. An outline of the experimental nuclear data activities at CERN's neutron time-of-flight facility n_TOF will be presented.

  18. Development work for a borax internal core-catcher for a gas-cooled fast reactor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Donne, M.D.; Dorner, S.; Schumacher, G.

    1978-07-01

    Preliminary thermal calculations show that a corecatcher, which is able to cope with the complete meltdown of the core and blankets of a 1000-MW(electric) gas-cooled fast reactor, appears to be feasible. This core-catcher is based on borax (Na/sub 2/B/sub 4/O/sub 7/) dissolving the oxide fuel and the fission products occurring in oxide form. The borax is contained in steel boxes forming a 2.2-m-thick slab on the base of the reactor cavity inside the prestressed concrete reactor vessel (PCRV), just underneath the reactor core. After a complete meltdown accident, the fission products, in oxide form, are dispersed in the pool formedmore » by the liquid borax. The metallic fission products are contained in the steel lying below the borax pool and in contact with the water-cooled PCRV liner. The volumetric power density of the molten core is conveniently reduced as it is dissolved in the borax, and the resulting heat fluxes at the borders of the pool can be safely carried away through the PCRV liner and its water cooling system.« less

  19. Removal of natural organic matter and arsenic from water by electrocoagulation/flotation continuous flow reactor.

    PubMed

    Mohora, Emilijan; Rončević, Srdjan; Dalmacija, Božo; Agbaba, Jasmina; Watson, Malcolm; Karlović, Elvira; Dalmacija, Milena

    2012-10-15

    The performance of the laboratory scale electrocoagulation/flotation (ECF) reactor in removing high concentrations of natural organic matter (NOM) and arsenic from groundwater was analyzed in this study. An ECF reactor with bipolar plate aluminum electrodes was operated in the horizontal continuous flow mode. Electrochemical and flow variables were optimized to examine ECF reactor contaminants removal efficiency. The optimum conditions for the process were identified as groundwater initial pH 5, flow rate=4.3 l/h, inter electrode distance=2.8 cm, current density=5.78 mA/cm(2), A/V ratio=0.248 cm(-1). The NOM removal according to UV(254) absorbance and dissolved organic matter (DOC) reached highest values of 77% and 71% respectively, relative to the raw groundwater. Arsenic removal was 85% (6.2 μg As/l) relative to raw groundwater, satisfying the drinking water standards. The specific reactor electrical energy consumption was 17.5 kWh/kg Al. The specific aluminum electrode consumption was 66 g Al/m(3). According to the obtained results, ECF in horizontal continuous flow mode is an energy efficient process to remove NOM and arsenic from groundwater. Copyright © 2012 Elsevier B.V. All rights reserved.

  20. Preliminary Design Study of Medium Sized Gas Cooled Fast Reactor with Natural Uranium as Fuel Cycle Input

    NASA Astrophysics Data System (ADS)

    Meriyanti, Su'ud, Zaki; Rijal, K.; Zuhair, Ferhat, A.; Sekimoto, H.

    2010-06-01

    In this study a fesibility design study of medium sized (1000 MWt) gas cooled fast reactors which can utilize natural uranium as fuel cycle input has been conducted. Gas Cooled Fast Reactor (GFR) is among six types of Generation IV Nuclear Power Plants. GFR with its hard neuron spectrum is superior for closed fuel cycle, and its ability to be operated in high temperature (850° C) makes various options of utilizations become possible. To obtain the capability of consuming natural uranium as fuel cycle input, modified CANDLE burn-up scheme[1-6] is adopted this GFR system by dividing the core into 10 parts of equal volume axially. Due to the limitation of thermal hydraulic aspects, the average power density of the proposed design is selected about 70 W/cc. As an optimization results, a design of 1000 MWt reactors which can be operated 10 years without refueling and fuel shuffling and just need natural uranium as fuel cycle input is discussed. The average discharge burn-up is about 280 GWd/ton HM. Enough margin for criticallity was obtained for this reactor.

  1. Preliminary design study of small long life boiling water reactor (BWR) with tight lattice thorium nitride fuel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Trianti, Nuri, E-mail: nuri.trianti@gmail.com, E-mail: szaki@fi.itba.c.id; Su'ud, Zaki, E-mail: nuri.trianti@gmail.com, E-mail: szaki@fi.itba.c.id; Arif, Idam, E-mail: nuri.trianti@gmail.com, E-mail: szaki@fi.itba.c.id

    2014-09-30

    Neutronic performance of small long-life boiling water reactors (BWR) with thorium nitride based fuel has been performed. A recent study conducted on BWR in tight lattice environments (with a lower moderator percentage) produces small power reactor which has some specifications, i.e. 10 years operation time, power density of 19.1 watt/cc and maximum excess reactivity of about 4%. This excess reactivity value is smaller than standard reactivity of conventional BWR. The use of hexagonal geometry on the fuel cell of BWR provides a substantial effect on the criticality of the reactor to obtain a longer operating time. Supported by a tightmore » concept lattice where the volume fraction of the fuel is greater than the moderator and fuel, Thorium Nitride give good results for fuel cell design on small long life BWR. The excess reactivity of the reactor can be reduced with the addition of gadolinium as burnable poisons. Therefore the hexagonal tight lattice fuel cell design of small long life BWR that has a criticality more than 20 years of operating time has been obtained.« less

  2. Catalytic Reactor for Inerting of Aircraft Fuel Tanks

    DTIC Science & Technology

    1974-06-01

    Aluminum Panels After Triphase Corrosion Test 79 35 Inerting System Flows in Various Flight Modes 82 36 High Flow Reactor Parametric Data 84 37 System...AD/A-000 939 CATALYTIC REACTOR FOR INERTING OF AIRCRAFT FUEL TANKS George H. McDonald, et al AiResearch Manufacturing Company Prepared for: Air Force...190th Street 2b. GROUP Torrance, California .. REPORT TITLE CATALYTIC REACTOR FOR INERTING OF AIRCRAFT FUEL TANKS . OESCRIP TIVE NOTEs (Thpe of refpoft

  3. Reactors are indispensable for radioisotope production.

    PubMed

    Mushtaq, Ahmad

    2010-12-01

    Radioisotopes can be produced by reactors and accelerators. For certain isotopes there could be an advantage to a certain production method. However, nowadays many reports suggest, that useful isotopes needed in medicine, industry and research could be produced efficiently and dependence on reactors using enriched U-235 may be eliminated. In my view reactors and accelerators will continue to play their role side by side in the supply of suitable and economical sources of isotopes.

  4. Proceedings of the 1988 International Meeting on Reduced Enrichment for Research and Test Reactors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1993-07-01

    The international effort to develop and implement new research reactor fuels utilizing low-enriched uranium, instead of highly- enriched uranium, continues to make solid progress. This effort is the cornerstone of a widely shared policy aimed at reducing, and possibly eliminating, international traffic in highly-enriched uranium and the nuclear weapon proliferation concerns associated with this traffic. To foster direct communication and exchange of ideas among the specialists in this area, the Reduced Enrichment Research and Test Reactor (RERTR) Program, at Argonne National Laboratory, sponsored this meeting as the eleventh of a series which began 1978. Individual papers presented at the meetingmore » have been cataloged separately.« less

  5. Transactions of the Twenty-First Water Reactor Safety Information Meeting

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Monteleone, S.

    1993-10-01

    This report contains summaries of papers on reactor safety research to be presented at the 21st Water Reactor Safety Information Meeting at the Bethesda Marriott Hotel, Bethesda, Maryland, October 25--27, 1993. The summaries briefly describe the programs and results of nuclear safety research sponsored by the Office of Nuclear Regulatory Research, US NRC. Summaries of invited papers concerning nuclear safety issues from US government laboratories, the electric utilities, the Electric Power Research Institute (EPRI), the nuclear industry, and from foreign governments and industry are also included. The summaries have been compiled in one report to provide a basis for meaningfulmore » discussion and information exchange during the course of the meeting and are given in the order of their presentation in each session.« less

  6. Exploratory study of several advanced nuclear-MHD power plant systems.

    NASA Technical Reports Server (NTRS)

    Williams, J. R.; Clement, J. D.; Rosa, R. J.; Yang, Y. Y.

    1973-01-01

    In order for efficient multimegawatt closed cycle nuclear-MHD systems to become practical, long-life gas cooled reactors with exit temperatures of about 2500 K or higher must be developed. Four types of nuclear reactors which have the potential of achieving this goal are the NERVA-type solid core reactor, the colloid core (rotating fluidized bed) reactor, the 'light bulb' gas core reactor, and the 'coaxial flow' gas core reactor. Research programs aimed at developing these reactors have progressed rapidly in recent years so that prototype power reactors could be operating by 1980. Three types of power plant systems which use these reactors have been analyzed to determine the operating characteristics, critical parameters and performance of these power plants. Overall thermal efficiencies as high as 80% are projected, using an MHD turbine-compressor cycle with steam bottoming, and slightly lower efficiencies are projected for an MHD motor-compressor cycle.

  7. Design and manufacture of a D-shape coil-based toroid-type HTS DC reactor using 2nd generation HTS wire

    NASA Astrophysics Data System (ADS)

    Kim, Kwangmin; Go, Byeong-Soo; Sung, Hae-Jin; Park, Hea-chul; Kim, Seokho; Lee, Sangjin; Jin, Yoon-Su; Oh, Yunsang; Park, Minwon; Yu, In-Keun

    2014-09-01

    This paper describes the design specifications and performance of a real toroid-type high temperature superconducting (HTS) DC reactor. The HTS DC reactor was designed using 2G HTS wires. The HTS coils of the toroid-type DC reactor magnet were made in the form of a D-shape. The target inductance of the HTS DC reactor was 400 mH. The expected operating temperature was under 20 K. The electromagnetic performance of the toroid-type HTS DC reactor magnet was analyzed using the finite element method program. A conduction cooling method was adopted for reactor magnet cooling. Performances of the toroid-type HTS DC reactor were analyzed through experiments conducted under the steady-state and charge conditions. The fundamental design specifications and the data obtained from this research will be applied to the design of a commercial-type HTS DC reactor.

  8. A User Guide to PARET/ANL

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Olson, A. P.; Dionne, B.; Marin-Lafleche, A.

    2015-01-01

    PARET was originally created in 1969 at what is now Idaho National Laboratory (INL), to analyze reactivity insertion events in research and test reactor cores cooled by light or heavy water, with fuel composed of either plates or pins. The use of PARET is also appropriate for fuel assemblies with curved fuel plates when their radii of curvatures are large with respect to the fuel plate thickness. The PARET/ANL version of the code has been developed at Argonne National Laboratory (ANL) under the sponsorship of the U.S. Department of Energy/NNSA, and has been used by the Reactor Conversion Program tomore » determine the expected transient behavior of a large number of reactors. PARET/ANL models the various fueled regions of a reactor core as channels. Each of these channels consists of a single flat fuel plate/pin (including cladding and, optionally, a gap) with water coolant on each side. In slab geometry the coolant channels for a given fuel plate are of identical dimensions (mirror symmetry), but they can be of different thickness in each channel. There can be many channels, but each channel is independent and coupled only through reactivity feedback effects to the whole core. The time-dependent differential equations that represent the system are replaced by an equivalent set of finite-difference equations in space and time, which are integrated numerically. PARET/ANL uses fundamentally the same numerical scheme as RELAP5 for the time-integration of the point-kinetics equations. The one-dimensional thermal-hydraulic model includes temperature-dependent thermal properties of the solid materials, such as heat capacity and thermal conductivity, as well as the transient heat production and heat transfer from the fuel meat to the coolant. Temperature- and pressure-dependent thermal properties of the coolant such as enthalpy, density, thermal conductivity, and viscosity are also used in determining parameters such as friction factors and heat transfer coefficients. The code first determines the steady-state solution for the initial state. Then the solution of the transient is obtained by integration in time and space. Multiple heat transfer, DNB and flow instability correlations are available. The code was originally developed to model reactors cooled by an open loop, which was adequate for rapid transients in pool-type cores. An external loop model appropriate for Miniature Neutron Source Reactors (MNSR’s) was also added to PARET/ANL to model natural circulation within the vessel, heat transfer from the vessel to pool and heat loss by evaporation from the pool. PARET/ANL also contains models for decay heat after shutdown, control rod reactivity versus time or position, time-dependent pump flow, and loss-of-flow event with flow reversal as well as logic for trips on period, power, and flow. Feedback reactivity effects from coolant density changes and temperature changes are represented by tables. Feedback reactivity from fuel heat-up (Doppler Effect) is represented by a four-term polynomial in powers of fuel temperature. Photo-neutrons produced in beryllium or in heavy water may be included in the point-kinetics equations by using additional delayed neutron groups.« less

  9. Fıxed bed slow pyrolysıs of bıomass solıd waste for bıo-char

    NASA Astrophysics Data System (ADS)

    Islam, M. N.; Ali, M. H.; Ahmad, I.

    2017-06-01

    Biomass solid waste in the form of rice husk particle is pyrolyzed in a fixed bed pyrolysis reactor. The reactor is made of stainless steel with dimensions of 76 mm in diameter and 90 cm in length. Rice husk is collected locally from Brunei-Muara district of Brunei Darussalam which is processed for pyrolysis. The particles are selected in the millimeter range. It is oven-dried at 105°C for 6 hours after being air-dried prior to pyrolysis. The reactor bed is heated by means of saw-dust in a biomass source heater. A temperature range of 390-410°C is maintained with an apperent vapor residence time of 30 min. Nitrogen gas is passed through the reactor system to make the atmosphere inert. A water-cooled condenser is used to derive bio-oil from the condensable vapors. The system is subjected to pyrolysis for a running time of 60 min. The products obtained are solid bio-char, liquid bio-oil and pyrolytic bio-gases. The solid char yield is found to be 45 by weight of solid biomass feedstock and the liquid product yield is found to be 29 by weight of solid biomass feedstock. The rest is gas flared into the atmosphere. The bio-char is retained in the reactor and collected at the end of the experimental run. The bio-char is found to be black in color retaining its original shape. The bio-char product is subjected to energy analysis for its higher heating value (HHV) by means of an oxygen bomb calorimeter. It is found to be 20.3 MJ/kg. The density of the bio-char is found to be 238.5 kg/m3 with an energy density of 4.85 GJ/m3.

  10. 76 FR 63668 - Guidelines for Preparing and Reviewing Licensing Applications for the Production of Radioisotopes

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-10-13

    ... Licensing of Non-Power Reactors: Format and Content,'' for the Production of Radioisotopes and NUREG-1537, part 2, ``Guidelines for Preparing and Reviewing Applications for the Licensing of Non-Power Reactors... production facility and the Research and Test Reactor Licensing Branch (PRLB) of the Division of Policy and...

  11. 78 FR 79019 - Advisory Committee on Reactor Safeguards (ACRS) Meeting of the ACRS Subcommittee on Materials...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-12-27

    ... Subcommittee on Materials, Metallurgy & Reactor Fuels; Notice of Meeting The ACRS Subcommittee on Materials, Metallurgy & Reactor Fuels will hold a meeting on January 14, 2014, Room T-2B1, 11545 Rockville Pike... NRC's research activities in materials and metallurgy. The Subcommittee will hear presentations by and...

  12. Oxidation of aluminum alloy cladding for research and test reactor fuel

    NASA Astrophysics Data System (ADS)

    Kim, Yeon Soo; Hofman, G. L.; Robinson, A. B.; Snelgrove, J. L.; Hanan, N.

    2008-08-01

    The oxide thicknesses on aluminum alloy cladding were measured for the test plates from irradiation tests RERTR-6 and 7A in the ATR (advanced test reactor). The measured thicknesses were substantially lower than those of test plates with similar power from other reactors available in the literature. The main reason is believed to be due to the lower pH (pH 5.1-5.3) of the primary coolant water in the ATR than in the other reactors (pH 5.9-6.5) for which we have data. An empirical model for oxide film thickness predictions on aluminum alloy used as fuel cladding in the test reactors was developed as a function of irradiation time, temperature, surface heat flux, pH, and coolant flow rate. The applicable ranges of pH and coolant flow rates cover most research and test reactors. The predictions by the new model are in good agreement with the in-pile test data available in the literature as well as with the RERTR test data measured in the ATR.

  13. 75 FR 4493 - Natural Resources Defense Council; Denial of Petition for Rulemaking

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-01-28

    ... NRC continues to license the civilian use of HEU to fuel seven existing research and test reactors... predicts that the three HEU-fueled TRIGA-type research reactors at Oregon State University, the University...) is scheduled for conversion to LEU but notes that the newer and larger LEU-fueled TRIGA facility at...

  14. An intrinsically safe facility for forefront research and training on nuclear technologies

    NASA Astrophysics Data System (ADS)

    Mansani, L.; Monti, S.; Ricco, G.; Ricotti, M.

    2014-04-01

    In this short paper the motivations for the development of fast spectrum lead-cooled reactors are briefly summarized. In particular the importance of subcritical research reactors, like the one described in this Focus Point, for the investigation of various scientifical and technological aspects and the training of students, is discussed.

  15. 40 CFR 61.60 - Applicability.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... equipment used in research and development if the reactor used to polymerize the vinyl chloride processed in the equipment has a capacity of no more than 0.19 m 3 (50 gal). (c) Sections of this subpart other... equipment used in research and development if the reactor used to polymerize the vinyl chloride processed in...

  16. Development of New Transportation/Storage Cask System for Use by DOE Russian Research Reactor Fuel Return Program

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Michael Tyacke; Frantisek Svitak; Jiri Rychecky

    2010-04-01

    The United States, the Russian Federation, and the International Atomic Energy Agency (IAEA) have been working together on a program called the Russian Research Reactor Fuel Return (RRRFR) Program. The purpose of this program is to return Soviet or Russian supplied high-enriched uranium (HEU) fuel currently stored at Russian-designed research reactors throughout the world to Russia. To accommodate transport of the HEU spent nuclear fuel (SNF), a new large-capacity transport/storage cask system was specially designed for handling and operations under the unique conditions for these research reactor facilities. This new cask system is named the ŠKODA VPVR/M cask. The design,more » licensing, testing, and delivery of this new cask system are the results of a significant international cooperative effort by several countries and involved numerous private and governmental organizations. This paper contains the following sections: (1) Introduction/Background; (2) VPVR/M Cask Description; (3) Ancillary Equipment, (4) Cask Licensing; (5) Cask Demonstration and Operations; (6) IAEA Procurement, Quality Assurance Inspections, Fabrication, and Delivery; and, (7) Summary and Conclusions.« less

  17. Development of a New Transportation/Storage Cask System for Use by the DOE Russian Research Reactor Fuel Return Program

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Michael J. Tyacke; Frantisek Svitak; Jiri Rychecky

    2007-10-01

    The United States, the Russian Federation, and the International Atomic Energy Agency (IAEA) have been working together on a program called the Russian Research Reactor Fuel Return (RRRFR) Program. The purpose of this program is to return Soviet or Russian-supplied high-enriched uranium (HEU) fuel, currently stored at Russian-designed research reactors throughout the world, to Russia. To accommodate transport of the HEU spent nuclear fuel (SNF), a new large-capacity transport/storage cask system was specially designed for handling and operations under the unique conditions at these research reactor facilities. This new cask system is named the ŠKODA VPVR/M cask. The design, licensing,more » testing, and delivery of this new cask system result from a significant international cooperative effort by several countries and involved numerous private and governmental organizations. This paper contains the following sections: 1) Introduction; 2) VPVR/M Cask Description; 3) Ancillary Equipment, 4) Cask Licensing; 5) Cask Demonstration and Operations; 6) IAEA Procurement, Quality Assurance Inspections, Fabrication, and Delivery; and, 7) Conclusions.« less

  18. Molten salts in Nuclear Reactors (Bibliography); LES SELS FONDUS DANS LES REACTEURS NUCLEAIRES (BIBLIOGRAPHIE)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dirian, J.; Saint-James, R.

    1959-01-01

    A collection is presented of references dealing with the physicochemical studies of fused salts, in partictular the alkali and alkali earth halides. Numerous binary, ternary and quaternary systems of these halides with those of uranium and thoriuna are examined, and the physical properties, density, viscosity, and vapor pressure going from the halides to the mixtures are also considered. References relating to the corrosion of materials by these salts are included and the treatment of the salts with a view to recovery after irradiation in a nuclear reactor is discussed. (auth)

  19. Monte Carlo PDF method for turbulent reacting flow in a jet-stirred reactor

    NASA Astrophysics Data System (ADS)

    Roekaerts, D.

    1992-01-01

    A stochastic algorithm for the solution of the modeled scalar probability density function (PDF) transport equation for single-phase turbulent reacting flow is described. Cylindrical symmetry is assumed. The PDF is represented by ensembles of N representative values of the thermochemical variables in each cell of a nonuniform finite-difference grid and operations on these elements representing convection, diffusion, mixing and reaction are derived. A simplified model and solution algorithm which neglects the influence of turbulent fluctuations on mean reaction rates is also described. Both algorithms are applied to a selectivity problem in a real reactor.

  20. Heat transfer evaluation in a plasma core reactor

    NASA Technical Reports Server (NTRS)

    Smith, D. E.; Smith, T. M.; Stoenescu, M. L.

    1976-01-01

    Numerical evaluations of heat transfer in a fissioning uranium plasma core reactor cavity, operating with seeded hydrogen propellant, was performed. A two-dimensional analysis is based on an assumed flow pattern and cavity wall heat exchange rate. Various iterative schemes were required by the nature of the radiative field and by the solid seed vaporization. Approximate formulations of the radiative heat flux are generally used, due to the complexity of the solution of a rigorously formulated problem. The present work analyzes the sensitivity of the results with respect to approximations of the radiative field, geometry, seed vaporization coefficients and flow pattern. The results present temperature, heat flux, density and optical depth distributions in the reactor cavity, acceptable simplifying assumptions, and iterative schemes. The present calculations, performed in cartesian and spherical coordinates, are applicable to any most general heat transfer problem.

  1. Impact of Reactor Operating Parameters on Cask Reactivity in BWR Burnup Credit

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ilas, Germina; Betzler, Benjamin R; Ade, Brian J

    This paper discusses the effect of reactor operating parameters used in fuel depletion calculations on spent fuel cask reactivity, with relevance for boiling-water reactor (BWR) burnup credit (BUC) applications. Assessments that used generic BWR fuel assembly and spent fuel cask configurations are presented. The considered operating parameters, which were independently varied in the depletion simulations for the assembly, included fuel temperature, bypass water density, specific power, and operating history. Different operating history scenarios were considered for the assembly depletion to determine the effect of relative power distribution during the irradiation cycles, as well as the downtime between cycles. Depletion, decay,more » and criticality simulations were performed using computer codes and associated nuclear data within the SCALE code system. Results quantifying the dependence of cask reactivity on the assembly depletion parameters are presented herein.« less

  2. Design and Application of a High-Temperature Linear Ion Trap Reactor

    NASA Astrophysics Data System (ADS)

    Jiang, Li-Xue; Liu, Qing-Yu; Li, Xiao-Na; He, Sheng-Gui

    2018-01-01

    A high-temperature linear ion trap reactor with hexapole design was homemade to study ion-molecule reactions at variable temperatures. The highest temperature for the trapped ions is up to 773 K, which is much higher than those in available reports. The reaction between V2O6 - cluster anions and CO at different temperatures was investigated to evaluate the performance of this reactor. The apparent activation energy was determined to be 0.10 ± 0.02 eV, which is consistent with the barrier of 0.12 eV calculated by density functional theory. This indicates that the current experimental apparatus is prospective to study ion-molecule reactions at variable temperatures, and more kinetic details can be obtained to have a better understanding of chemical reactions that have overall barriers. [Figure not available: see fulltext.

  3. Nuclear Fuel Traces Definition in Storage Ponds of Research VVR-2 and OR Reactors in NRC 'Kurchatov Institute'

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stepanov, Alexey; Simirskii, Iurii; Stepanov, Vyacheslav

    2015-07-01

    The Gas Plant complex is the experimental base of the Institute of Nuclear Reactors, which is part of the Kurchatov Institute. In 1954 the commissioning of the first Soviet water-cooled water-moderated research reactor VVR-2 on enriched uranium, and until 1983 the complex operated two research water-cooled water-moderated reactors 3 MW (VVR-2) and 300 kW (OR) capacity, which were dismantled in connection with the overall upgrades of the complex. The complex has three storage ponds in the reactor building. They are sub-surface vessels filled with water (the volume of water in each is about 6 m{sup 3}). In 2007-2013 the spentmore » nuclear fuel from storages was removed for processing to 'Mayk'. Survey of Storage Ponds by Underwater Collimated Spectrometric System shows a considerable layer of slime on the bottom of ponds and traces of spent nuclear fuel in one of the storage. For determination qualitative and the quantitative composition of radionuclide we made complex α-, β-, γ- spectrometric research of water and bottom slimes from Gas Plant complex storage ponds. We found the spent nuclear fuel in water and bottom slime in all storage ponds. Specific activity of radionuclides in the bottom slime exceeded specific activity of radionuclides in the ponds water and was closed to levels of high radioactive waste. Analysis of the obtained data and data from earlier investigation of reactor MR storage ponds showed distinctions of specific activity of uranium and plutonium radionuclides. (authors)« less

  4. Advanced fuels modeling: Evaluating the steady-state performance of carbide fuel in helium-cooled reactors using FRAPCON 3.4

    NASA Astrophysics Data System (ADS)

    Hallman, Luther, Jr.

    Uranium carbide (UC) has long been considered a potential alternative to uranium dioxide (UO2) fuel, especially in the context of Gen IV gas-cooled reactors. It has shown promise because of its high uranium density, good irradiation stability, and especially high thermal conductivity. Despite its many benefits, UC is known to swell at a rate twice that of UO2. However, the swelling phenomenon is not well understood, and we are limited to a weak empirical understanding of the swelling mechanism. One suggested cladding for UC is silicon carbide (SiC), a ceramic that demonstrates a number of desirable properties. Among them are an increased corrosion resistance, high mechanical strength, and irradiation stability. However, with increased temperatures, SiC exhibits an extremely brittle nature. The brittle behavior of SiC is not fully understood and thus it is unknown how SiC would respond to the added stress of a swelling UC fuel. To better understand the interaction between these advanced materials, each has been implemented into FRAPCON, the preferred fuel performance code of the Nuclear Regulatory Commission (NRC); additionally, the material properties for a helium coolant have been incorporated. The implementation of UC within FRAPCON required the development of material models that described not only the thermophysical properties of UC, such as thermal conductivity and thermal expansion, but also models for the swelling, densification, and fission gas release associated with the fuel's irradiation behavior. This research is intended to supplement ongoing analysis of the performance and behavior of uranium carbide and silicon carbide in a helium-cooled reactor.

  5. Pre-treatment of pyridine wastewater by new cathodic-anodic-electrolysis packing.

    PubMed

    Jin, Yang; Yue, Qinyan; Yang, Kunlun; Wu, Suqing; Li, Shengjie; Gao, Baoyu; Gao, Yuan

    2018-01-01

    A novel cathodic-anodic-electrolysis packing (CAEP) used in the treatment of pyridine wastewater was researched, which mainly consisted of 4,4'-diamino-2,2'-disulfonic acid (DSD acid) industrial iron sludge. The physical properties and morphology of the packing were studied. The CAEP was used in a column reactor during the pretreatment of pyridine wastewater. The influence of pH, hydraulic retention time (HRT), the air-liquid ratio (A/L) and the initial concentration of pyridine were investigated by measuring the removal of total organic carbon (TOC) and pyridine. The characterization results showed that the bulk density, grain density, water absorption percentage and specific surface area were 921kg/m 3 , 1086kg/m 3 , 25% and 29.89m 2 /g, respectively; the removal of TOC and pyridine could reach 50% and 58% at the optimal experimental conditions (pH=3, HRT=8hr, A/L=2). Notably, the surface of the packing was renewed constantly during the running of the filter, and the handling capacity was stable after running for three months. Copyright © 2017. Published by Elsevier B.V.

  6. High-Performance Biogas Upgrading Using a Biotrickling Filter and Hydrogenotrophic Methanogens.

    PubMed

    Dupnock, Trisha L; Deshusses, Marc A

    2017-10-01

    This research reports the development of a biotrickling filter (BTF) to upgrade biogas, which is achieved by adding H 2 to reduce CO 2 . H 2 and CO 2 (80:20% vol.) were fed to a bench-scale BTF packed with polyurethane foam (PUF) and inoculated with hydrogenotrophic methanogens. Maximum CH 4 production rates recorded were as high as 38 m 3 CH4  m -3 reactor  day -1 , which is 5-30 times faster than earlier reports with other kinds of bioreactors. The high rates were attributed to the efficient mass transfer and high density of methanogens in the BTF. The removal efficiencies for H 2 and CO 2 were 83 and 96%, respectively. 5-Cyano-2,3-ditolyl tetrazolium chloride/DAPI staining revealed that 67% of cells were alive near the gas entrance port, while only 8.3% were alive at the exit. Furthermore, DNA sequencing showed that only 27% of the biomass was composed of Euryarchaeota, the phylum which includes methanogens. These two observations suggest that optimizing the methanogen density and activity could possibly reach even higher biogas upgrading rates.

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Monteleone, S.

    This three-volume report contains 90 papers out of the 102 that were presented at the Twenty-First Water Reactor Safety Information Meeting held at the Bethesda Marriott Hotel, Bethesda, Maryland, during the week of October 25--27, 1993. The papers are printed in the order of their presentation in each session and describe progress and results of programs in nuclear safety research conducted in this country and abroad. Foreign participation in the meeting included papers presented by researchers from France, Germany, Japan, Russia, Switzerland, Taiwan, and United Kingdom. The titles of the papers and the names of the authors have been updatedmore » and may differ from those that appeared in the final program of the meeting. Individual papers have been cataloged separately. This document, Volume 1 covers the following topics: Advanced Reactor Research; Advanced Instrumentation and Control Hardware; Advanced Control System Technology; Human Factors Research; Probabilistic Risk Assessment Topics; Thermal Hydraulics; and Thermal Hydraulic Research for Advanced Passive Light Water Reactors.« less

  8. ReactorHealth Physics operations at the NIST center for neutron research.

    PubMed

    Johnston, Thomas P

    2015-02-01

    Performing health physics and radiation safety functions under a special nuclear material license and a research and test reactor license at a major government research and development laboratory encompasses many elements not encountered by industrial, general, or broad scope licenses. This article reviews elements of the health physics and radiation safety program at the NIST Center for Neutron Research, including the early history and discovery of the neutron, applications of neutron research, reactor overview, safety and security of radiation sources and radioactive material, and general health physics procedures. These comprise precautions and control of tritium, training program, neutron beam sample processing, laboratory audits, inventory and leak tests, meter calibration, repair and evaluation, radioactive waste management, and emergency response. In addition, the radiation monitoring systems will be reviewed including confinement building monitoring, ventilation filter radiation monitors, secondary coolant monitors, gaseous fission product monitors, gas monitors, ventilation tritium monitor, and the plant effluent monitor systems.

  9. Rebuilding the Brookhaven high flux beam reactor: A feasibility study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brynda, W.J.; Passell, L.; Rorer, D.C.

    1995-01-01

    After nearly thirty years of operation, Brookhaven`s High Flux Beam Reactor (HFBR) is still one of the world`s premier steady-state neutron sources. A major center for condensed matter studies, it currently supports fifteen separate beamlines conducting research in fields as diverse as crystallography, solid-state, nuclear and surface physics, polymer physics and structural biology and will very likely be able to do so for perhaps another decade. But beyond that point the HFBR will be running on borrowed time. Unless appropriate remedial action is taken, progressive radiation-induced embrittlement problems will eventually shut it down. Recognizing the HFBR`s value as a nationalmore » scientific resource, members of the Laboratory`s scientific and reactor operations staffs began earlier this year to consider what could be done both to extend its useful life and to assure that it continues to provide state-of-the-art research facilities for the scientific community. This report summarizes the findings of that study. It addresses two basic issues: (i) identification and replacement of lifetime-limiting components and (ii) modifications and additions that could expand and enhance the reactor`s research capabilities.« less

  10. Decommissioning of German Nuclear Research Facilities under the Governance of the Federal Ministry of Education and Research

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Weigl, M.

    2008-07-01

    Since the announcement of the first nuclear program in 1956, nuclear R and D in Germany has been supported by the Federal Government under four nuclear programs and later on under more general energy R and D programs. The original goal was to help German industry to achieve safe, low-cost generation of energy and self-sufficiency in the various branches of nuclear technology, including the fast breeder reactor and the fuel cycle. Several national research centers were established to host or operate experimental and demonstration plants. These are mainly located at the sites of the national research centers at Juelich andmore » Karlsruhe. In the meantime, all these facilities were shut down and most of them are now in a state of decommissioning and dismantling (D and D). Meanwhile, Germany is one of the leading countries in the world in the field of D and D. Two big demonstration plants, the Niederaichbach Nuclear Power Plant (KKN) a heavy-water cooled pressure tube reactor with carbon-dioxide cooling and the Karlstein Superheated Steam Reactor (HDR) a boiling light water reactor with a thermal power of 100 MW, are totally dismantled and 'green field' is reached. For two other projects the return to 'green field' sites will be reached by the end of this decade. These are the dismantling of the Multi-Purpose Research Reactor (MZFR) and the Compact Sodium Cooled Reactor (KNK) both located at the Forschungszentrum Karlsruhe. Within these projects a lot of new solutions und innovative techniques were tested, which were developed at German universities and in small and medium sized companies mostly funded by the Federal Ministry of Education and Research (BMBF). For example, high performance underwater cutting technologies like plasma arc cutting and contact arc metal cutting. (authors)« less

  11. A brief History of Neutron Scattering at the Oak Ridge High Flux Isotope Reactor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nagler, Stephen E; Mook Jr, Herbert A

    2008-01-01

    Neutron scattering at the Oak Ridge National Laboratory dates back to 1945 when Ernest Wollan installed a modified x-ray diffractometer on a beam port of the original graphite reactor. Subsequently, Wollan and Clifford Shull pioneered neutron diffraction and laid the foundation for an active neutron scattering effort that continued through the 1950s, using the Oak Ridge Research reactor after 1958, and, starting in 1966, the High Flux Isotope Reactor, or HFIR.

  12. Non-Invasive Imaging of Reactor Cores Using Cosmic Ray Muons

    NASA Astrophysics Data System (ADS)

    Milner, Edward

    2011-10-01

    Cosmic ray muons penetrate deeply in material, with some passing completely through very thick objects. This penetrating quality is the basis of two distinct, but related imaging techniques. The first measures the number of cosmic ray muons transmitted through parts of an object. Relatively fewer muons are absorbed along paths in which they encounter less material, compared to higher density paths, so the relative density of material is measured. This technique is called muon transmission imaging, and has been used to infer the density and structure of a variety of large masses, including mine overburden, volcanoes, pyramids, and buildings. In a second, more recently developed technique, the angular deflection of muons is measured by trajectory-tracking detectors placed on two opposing sides of an object. Muons are deflected more strongly by heavy nuclei, since multiple Coulomb scattering angle is approximately proportional to the nuclear charge. Therefore, a map showing regions of large deflection will identify the location of uranium in contrast to lighter nuclei. This technique is termed muon scattering tomography (MST) and has been developed to screen shipping containers for the presence of concealed nuclear material. Both techniques are a good way of non-invasively inspecting objects. A previously unexplored topic was applying MST to imaging large objects. Here we demonstrate extending the MST technique to the task of identifying relatively thick objects inside very thick shielding. We measured cosmic ray muons passing through a physical arrangement of material similar to a nuclear reactor, with thick concrete shielding and a heavy metal core. Newly developed algorithms were used to reconstruct an image of the ``mock reactor core,'' with resolution of approximately 30 cm.

  13. Nanoelectronics and Plasma Processing---The Next 15 Years and Beyond

    NASA Astrophysics Data System (ADS)

    Lieberman, Michael A.

    2006-10-01

    The number of transistors per chip has doubled every 2 years since 1959, and this doubling will continue over the next 15 years as transistor sizes shrink. There has been a 25 million-fold decrease in cost for the same performance, and in 15 years a desktop computer will be hundreds of times more powerful than one today. Transistors now have 37 nm (120 atoms) gate lengths and 1.5 nm (5 atoms) gate oxide thicknesses. The smallest working transistor has a 5 nm (17 atoms) gate length, close to the limiting gate length, from simulations, of about 4 nm. Plasma discharges are used to fabricate hundreds of billions of these nano-size transistors on a silicon wafer. These discharges have evolved from a first generation of ``low density'' reactors capacitively driven by a single source, to a second generation of ``high density'' reactors (inductive and electron cyclotron resonance) having two rf power sources, in order to control independently the ion flux and ion bombarding energy to the substrate. A third generation of ``moderate density'' reactors, driven capacitively by one high and one low frequency rf source, is now widely used. Recently, triple frequency and combined dc/dual frequency discharges have been investigated, to further control processing characteristics, such as ion energy distributions, uniformity, and plasma etch selectivities. There are many interesting physics issues associated with these discharges, including stochastic heating of discharge electrons by dual frequency sheaths, nonlinear frequency interactions, powers supplied by the multi-frequency sources, and electromagnetic effects such as standing waves and skin effects. Beyond the 4 nm transistor limit lies a decade of further performance improvements for conventional nanoelectronics, and beyond that, a dimly-seen future of spintronics, single-electron transistors, cross-bar latches, and molecular electronics.

  14. Enhancement of electricity production in a mediatorless air-cathode microbial fuel cell using Klebsiella sp. IR21.

    PubMed

    Lee, Yun-Yeong; Kim, Tae Gwan; Cho, Kyung-Suk

    2016-06-01

    A novel dissimilatory iron-reducing bacteria, Klebsiella sp. IR21, was isolated from the anode biofilm of an MFC reactor. Klebsiella sp. IR21 reduced 27.8 % of ferric iron to ferrous iron demonstrating that Klebsiella sp. IR21 has electron transfer ability. Additionally, Klebsiella sp. IR21 generated electricity forming a biofilm on the anode surface. When a pure culture of Klebsiella sp. IR21 was supplied into a single chamber, air-cathode MFC fed with a mixture of glucose and acetate (500 mg L(-1) COD), 40-60 mV of voltage (17-26 mA m(-2) of current density) was produced. Klebsiella sp. IR21 was also utilized as a biocatalyst to improve the electrical performance of a conventional MFC reactor. A single chamber, air-cathode MFC was fed with reject wastewater (10,000 mg L(-1) COD) from a H2 fermentation reactor. The average voltage, current density, and power density were 142.9 ± 25.74 mV, 60.5 ± 11.61 mA m(-2), and 8.9 ± 3.65 mW m(-2), respectively, in the MFC without inoculation of Klebsiella sp. IR21. However, these electrical performances of the MFC were significantly increased to 204.7 ± 40.24 mV, 87.5 ± 17.20 mA m(-2), and 18.6 ± 7.23 mW m(-2), respectively, with inoculation of Klebsiella sp. IR21. The results indicate that Klebsiella sp. IR21 can be utilized as a biocatalyst for enhancement of electrical performance in MFC systems.

  15. The Advanced Test Reactor National Scientific User Facility Advancing Nuclear Technology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    T. R. Allen; J. B. Benson; J. A. Foster

    2009-05-01

    To help ensure the long-term viability of nuclear energy through a robust and sustained research and development effort, the U.S. Department of Energy (DOE) designated the Advanced Test Reactor and associated post-irradiation examination facilities a National Scientific User Facility (ATR NSUF), allowing broader access to nuclear energy researchers. The mission of the ATR NSUF is to provide access to world-class nuclear research facilities, thereby facilitating the advancement of nuclear science and technology. The ATR NSUF seeks to create an engaged academic and industrial user community that routinely conducts reactor-based research. Cost free access to the ATR and PIE facilities ismore » granted based on technical merit to U.S. university-led experiment teams conducting non-proprietary research. Proposals are selected via independent technical peer review and relevance to DOE mission. Extensive publication of research results is expected as a condition for access. During FY 2008, the first full year of ATR NSUF operation, five university-led experiments were awarded access to the ATR and associated post-irradiation examination facilities. The ATR NSUF has awarded four new experiments in early FY 2009, and anticipates awarding additional experiments in the fall of 2009 as the results of the second 2009 proposal call. As the ATR NSUF program mature over the next two years, the capability to perform irradiation research of increasing complexity will become available. These capabilities include instrumented irradiation experiments and post-irradiation examinations on materials previously irradiated in U.S. reactor material test programs. The ATR critical facility will also be made available to researchers. An important component of the ATR NSUF an education program focused on the reactor-based tools available for resolving nuclear science and technology issues. The ATR NSUF provides education programs including a summer short course, internships, faculty-student team projects and faculty/staff exchanges. In June of 2008, the first week-long ATR NSUF Summer Session was attended by 68 students, university faculty and industry representatives. The Summer Session featured presentations by 19 technical experts from across the country and covered topics including irradiation damage mechanisms, degradation of reactor materials, LWR and gas reactor fuels, and non-destructive evaluation. High impact research results from leveraging the entire research infrastructure, including universities, industry, small business, and the national laboratories. To increase overall research capability, ATR NSUF seeks to form strategic partnerships with university facilities that add significant nuclear research capability to the ATR NSUF and are accessible to all ATR NSUF users. Current partner facilities include the MIT Reactor, the University of Michigan Irradiated Materials Testing Laboratory, the University of Wisconsin Characterization Laboratory, and the University of Nevada, Las Vegas transmission Electron Microscope User Facility. Needs for irradiation of material specimens at tightly controlled temperatures are being met by dedication of a large in-pile pressurized water loop facility for use by ATR NSUF users. Several environmental mechanical testing systems are under construction to determine crack growth rates and fracture toughness on irradiated test systems.« less

  16. Reactor Safety Gap Evaluation of Accident Tolerant Components and Severe Accident Analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Farmer, Mitchell T.; Bunt, R.; Corradini, M.

    The overall objective of this study was to conduct a technology gap evaluation on accident tolerant components and severe accident analysis methodologies with the goal of identifying any data and/or knowledge gaps that may exist, given the current state of light water reactor (LWR) severe accident research, and additionally augmented by insights obtained from the Fukushima accident. The ultimate benefit of this activity is that the results can be used to refine the Department of Energy’s (DOE) Reactor Safety Technology (RST) research and development (R&D) program plan to address key knowledge gaps in severe accident phenomena and analyses that affectmore » reactor safety and that are not currently being addressed by the industry or the Nuclear Regulatory Commission (NRC).« less

  17. Multi-Megawatt Power System Trade Study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Longhurst, Glen Reed; Schnitzler, Bruce Gordon; Parks, Benjamin Travis

    2001-11-01

    As part of a larger task, the Idaho National Engineering and Environmental Laboratory (INEEL) was tasked to perform a trade study comparing liquid-metal cooled reactors having Rankine power conversion systems with gas-cooled reactors having Brayton power conversion systems. This report summarizes the approach, the methodology, and the results of that trade study. Findings suggest that either approach has the possibility to approach the target specific mass of 3-5 kg/kWe for the power system, though it appears either will require improvements to achieve that. Higher reactor temperatures have the most potential for reducing the specific mass of gas-cooled reactors but domore » not necessarily have a similar effect for liquid-cooled Rankine systems. Fuels development will be the key to higher reactor operating temperatures. Higher temperature turbines will be important for Brayton systems. Both replacing lithium coolant in the primary circuit with gallium and replacing potassium with sodium in the power loop for liquid systems increase system specific mass. Changing the feed pump turbine to an electric motor in Rankine systems has little effect. Key technologies in reducing specific mass are high reactor and radiator operating temperatures, low radiator areal density, and low turbine/generator system masses. Turbine/generator mass tends to dominate overall power system mass for Rankine systems. Radiator mass was dominant for Brayton systems.« less

  18. Emergency Procedure Training for Reactor Operators at the High Flux Beam Reactor for Brookhaven National Laboratory.

    ERIC Educational Resources Information Center

    Reyer, Ronald

    A project was conducted to analyze, design, develop, implement, and evaluate an instructional unit intended to improve the diagnostic skills of operating personnel in responding to abnormal and emergency conditions at the High Flux Beam Reactor at Brookhaven National Laboratory. Research was conducted on the occurrence of emergencies at similar…

  19. RERTR-7 Irradiation Summary Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    D. M. Perez; M. A. Lillo; G. S. Chang

    2011-12-01

    The Reduced Enrichment for Research and Test Reactor (RERTR) experiment RERTR-7A, was designed to test several modified fuel designs to target fission densities representative of a peak low enriched uranium (LEU) burnup in excess of 90% U-235 at peak experiment power sufficient to generate a peak surface heat flux of approximately 300 W/cm2. The RERTR-7B experiment was designed as a high power test of 'second generation' dispersion fuels at peak experiment power sufficient to generate a surface heat flux on the order of 230 W/cm2.1 The following report summarizes the life of the RERTR-7A and RERTR-7B experiments through end ofmore » irradiation, including as-run neutronic analyses, thermal analyses and hydraulic testing results.« less

  20. MSTD 2007 Publications and Patents

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    King, W E

    2008-04-01

    The Materials Science and Technology Division (MSTD) supports the central scientific and technological missions of the Laboratory, and at the same time, executes world-class, fundamental research and novel technological development over a wide range of disciplines. Our organization is driven by the institutional needs in nuclear weapons stockpile science, high-energy-density science, nuclear reactor science, and energy and environment science and technology. We maintain expertise and capabilities in many diverse areas, including actinide science, electron microscopy, laser-materials interactions, materials theory, simulation and modeling, materials synthesis and processing, materials science under extreme conditions, ultrafast materials science, metallurgy, nanoscience and technology, nuclear fuelsmore » and energy security, optical materials science, and surface science. MSTD scientists play leadership roles in the scientific community in these key and emerging areas.« less

Top