Sample records for density-stratified thin keplerian

  1. The Structure of a Quasi-Keplerian Accretion Disk around Magnetized Stars

    NASA Astrophysics Data System (ADS)

    Habumugisha, Isaac; Jurua, Edward; Tessema, Solomon B.; Simon, Anguma K.

    2018-06-01

    In this paper, we present the complete structure of a quasi-Keplerian thin accretion disk with an internal dynamo around a magnetized neutron star. We assume a full quasi-Keplerian disk with the azimuthal velocity deviating from the Keplerian fashion by a factor of ξ (0 < ξ < 2). In our approach, we vertically integrate the radial component of the momentum equation to obtain the radial pressure gradient equation for a thin quasi-Keplerian accretion disk. Our results show that, at large radial distance, the accretion disk behaves in a Keplerian fashion. However, close to the neutron star, pressure gradient force (PGF) largely modifies the disk structure, resulting into sudden dynamical changes in the accretion disk. The corotation radius is shifted inward (outward) for ξ > 1 (for ξ < 1), and the position of the inner edge with respect to the new corotation radius is also relocated accordingly, as compared to the Keplerian model. The resulting PGF torque couples with viscous torque (when ξ < 1) to provide a spin-down torque and a spin-up torque (when ξ > 1) while in the advective state. Therefore, neglecting the PGF, as has been the case in previous models, is a glaring omission. Our result has the potential to explain the observable dynamic consequences of accretion disks around magnetized neutron stars.

  2. Background oriented schlieren in a density stratified fluid.

    PubMed

    Verso, Lilly; Liberzon, Alex

    2015-10-01

    Non-intrusive quantitative fluid density measurement methods are essential in the stratified flow experiments. Digital imaging leads to synthetic schlieren methods in which the variations of the index of refraction are reconstructed computationally. In this study, an extension to one of these methods, called background oriented schlieren, is proposed. The extension enables an accurate reconstruction of the density field in stratified liquid experiments. Typically, the experiments are performed by the light source, background pattern, and the camera positioned on the opposite sides of a transparent vessel. The multimedia imaging through air-glass-water-glass-air leads to an additional aberration that destroys the reconstruction. A two-step calibration and image remapping transform are the key components that correct the images through the stratified media and provide a non-intrusive full-field density measurements of transparent liquids.

  3. Equatorial magnetic Rossby waves — evidence for a thin, strongly-buoyant stratified layer in earth's core

    NASA Astrophysics Data System (ADS)

    Knezek, Nicholas; Buffett, Bruce

    2017-04-01

    A low density stratified layer at the top of Earth's core has been proposed by many authors on the basis of chemical and thermodynamic arguments and has implications for Earth's thermal history, core energetics, and core-mantle interactions. Past studies claiming to detect a layer using perturbations in seismic wave speeds are contentious due to the extremely small magnitude of the detected signal. Recently, several studies have instead argued for the existence of a stratified layer by hypothesizing that oscillations in the observed geomagnetic field arise from waves propagating in the layer. In particular, 60 year oscillations in dipole strength have been attributed to global MAC waves, and 8 year oscillations of secular acceleration have been attributed to equatorially-trapped waves. We use a new hybrid finite-volume and Fourier numerical method we developed to model magnetohydrodynamic waves in a thin layer and show that a thin, strongly buoyant layer can produce equatorially-trapped waves with similar structures and periods to the observed 8 year signal. Using these simulated wave structures, we provide additional evidence for the existence of several propagating wave modes and place constraints on estimates for the wave periods, stratified layer thickness, and strength of buoyancy within the layer.

  4. Stratified turbulent Bunsen flames: flame surface analysis and flame surface density modelling

    NASA Astrophysics Data System (ADS)

    Ramaekers, W. J. S.; van Oijen, J. A.; de Goey, L. P. H.

    2012-12-01

    In this paper it is investigated whether the Flame Surface Density (FSD) model, developed for turbulent premixed combustion, is also applicable to stratified flames. Direct Numerical Simulations (DNS) of turbulent stratified Bunsen flames have been carried out, using the Flamelet Generated Manifold (FGM) reduction method for reaction kinetics. Before examining the suitability of the FSD model, flame surfaces are characterized in terms of thickness, curvature and stratification. All flames are in the Thin Reaction Zones regime, and the maximum equivalence ratio range covers 0.1⩽φ⩽1.3. For all flames, local flame thicknesses correspond very well to those observed in stretchless, steady premixed flamelets. Extracted curvature radii and mixing length scales are significantly larger than the flame thickness, implying that the stratified flames all burn in a premixed mode. The remaining challenge is accounting for the large variation in (subfilter) mass burning rate. In this contribution, the FSD model is proven to be applicable for Large Eddy Simulations (LES) of stratified flames for the equivalence ratio range 0.1⩽φ⩽1.3. Subfilter mass burning rate variations are taken into account by a subfilter Probability Density Function (PDF) for the mixture fraction, on which the mass burning rate directly depends. A priori analysis point out that for small stratifications (0.4⩽φ⩽1.0), the replacement of the subfilter PDF (obtained from DNS data) by the corresponding Dirac function is appropriate. Integration of the Dirac function with the mass burning rate m=m(φ), can then adequately model the filtered mass burning rate obtained from filtered DNS data. For a larger stratification (0.1⩽φ⩽1.3), and filter widths up to ten flame thicknesses, a β-function for the subfilter PDF yields substantially better predictions than a Dirac function. Finally, inclusion of a simple algebraic model for the FSD resulted only in small additional deviations from DNS data

  5. Quantum image pseudocolor coding based on the density-stratified method

    NASA Astrophysics Data System (ADS)

    Jiang, Nan; Wu, Wenya; Wang, Luo; Zhao, Na

    2015-05-01

    Pseudocolor processing is a branch of image enhancement. It dyes grayscale images to color images to make the images more beautiful or to highlight some parts on the images. This paper proposes a quantum image pseudocolor coding scheme based on the density-stratified method which defines a colormap and changes the density value from gray to color parallel according to the colormap. Firstly, two data structures: quantum image GQIR and quantum colormap QCR are reviewed or proposed. Then, the quantum density-stratified algorithm is presented. Based on them, the quantum realization in the form of circuits is given. The main advantages of the quantum version for pseudocolor processing over the classical approach are that it needs less memory and can speed up the computation. Two kinds of examples help us to describe the scheme further. Finally, the future work are analyzed.

  6. A KEPLERIAN-LIKE DISK AROUND THE FORMING O-TYPE STAR AFGL 4176

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnston, Katharine G.; Hoare, Melvin G.; Robitaille, Thomas P.

    We present Atacama Large Millimeter/submillimeter Array line and continuum observations at 1.2 mm with ∼0.″3 resolution that uncover a Keplerian-like disk around the forming O-type star AFGL 4176. The continuum emission from the disk at 1.21 mm (source mm1) has a deconvolved size of 870 ± 110 AU × 330 ± 300 AU and arises from a structure ∼8 M{sub ⊙} in mass, calculated assuming a dust temperature of 190 K. The first-moment maps, pixel-to-pixel line modeling, assuming local thermodynamic equilibrium (LTE), and position–velocity diagrams of the CH{sub 3}CN J = 13–12 K-line emission all show a velocity gradient alongmore » the major axis of the source, coupled with an increase in velocity at small radii, consistent with Keplerian-like rotation. The LTE line modeling shows that where CH{sub 3}CN J = 13–12 is excited, the temperatures in the disk range from ∼70 to at least 300 K and that the H{sub 2} column density peaks at 2.8 × 10{sup 24} cm{sup −2}. In addition, we present Atacama Pathfinder Experiment {sup 12}CO observations that show a large-scale outflow from AFGL 4176 perpendicular to the major axis of mm1, supporting the disk interpretation. Finally, we present a radiative transfer model of a Keplerian disk surrounding an O7 star, with a disk mass and radius of 12 M{sub ⊙} and 2000 AU that reproduces the line and continuum data, further supporting our conclusion that our observations have uncovered a Keplerian-like disk around an O-type star.« less

  7. Inertial floaters in stratified turbulence

    NASA Astrophysics Data System (ADS)

    Sozza, A.; De Lillo, F.; Boffetta, G.

    2018-01-01

    We investigate numerically the dynamics and statistics of inertial particles transported by stratified turbulence, in the case of particle density intermediate in the average density profile of the fluid. Under these conditions, particles tend to form a thin layer around the corresponding fluid isopycnal. The thickness of the resulting layer is determined by a balance between buoyancy (which attracts the particle to the isopycnal) and inertia (which prevents them from following it exactly). By means of extensive numerical simulations, we explore the parameter space of the system and we find that in a range of parameters particles form fractal clusters within the layer.

  8. Secular instabilities of Keplerian stellar discs

    NASA Astrophysics Data System (ADS)

    Kaur, Karamveer; Kazandjian, Mher V.; Sridhar, S.; Touma, Jihad R.

    2018-05-01

    We present idealized models of a razor-thin, axisymmetric, Keplerian stellar disc around a massive black hole, and study non-axisymmetric secular instabilities in the absence of either counter-rotation or loss cones. These discs are prograde mono-energetic waterbags, whose phase-space distribution functions are constant for orbits within a range of eccentricities (e) and zero outside this range. The linear normal modes of waterbags are composed of sinusoidal disturbances of the edges of distribution function in phase space. Waterbags that include circular orbits (polarcaps) have one stable linear normal mode for each azimuthal wavenumber m. The m = 1 mode always has positive pattern speed and, for polarcaps consisting of orbits with e < 0.9428, only the m = 1 mode has positive pattern speed. Waterbags excluding circular orbits (bands) have two linear normal modes for each m, which can be stable or unstable. We derive analytical expressions for the instability condition, pattern speeds, growth rates, and normal mode structure. Narrow bands are unstable to modes with a wide range in m. Numerical simulations confirm linear theory and follow the non-linear evolution of instabilities. Long-time integration suggests that instabilities of different m grow, interact non-linearly, and relax collisionlessly to a coarse-grained equilibrium with a wide range of eccentricities.

  9. Probing flexible thermoplastic thin films on a substrate using ultrasonic waves to retrieve mechanical moduli and density: Inverse problem

    NASA Astrophysics Data System (ADS)

    Lazri, H.; Ogam, E.; Amar, B.; Fellah, Z. E. A.; Sayoud, N.; Boumaiza, Y.

    2018-05-01

    Flexible, supple thermoplastic thin films (PVB and PET) placed on elastic substrates were probed using ultrasonic waves to identify their mechanical moduli and density. The composite medium immersed in a fluid host medium (water) was excited using a 50 Mhz transducer operating at normal incidence in reflection mode. Elastic wave propagation data from the stratified medium was captured in the host medium as scattered field. These data were used along with theoretical fluid-solid interaction forward models for stratified-media developed using elasticity theory, to solve an inverse problem for the recovery of the model parameters of the thin films. Two configurations were modeled, one considering the substrate as a semi-infinite elastic medium and the second the substrate having a finite thickness and flanked by a semi-infinite host medium. Transverse slip for the sliding interface between the films and substrate was chosen. This was found to agree with the experiments whereby the thin films were just placed on the substrate without bonding. The inverse problems for the recovery of the mechanical parameters were successful in retrieving the thin films’ parameters under the slip boundary condition. The possible improvements to the new method for the characterization of thin films are discussed.

  10. An affordable and accurate conductivity probe for density measurements in stratified flows

    NASA Astrophysics Data System (ADS)

    Carminati, Marco; Luzzatto-Fegiz, Paolo

    2015-11-01

    In stratified flow experiments, conductivity (combined with temperature) is often used to measure density. The probes typically used can provide very fine spatial scales, but can be fragile, expensive to replace, and sensitive to environmental noise. A complementary instrument, comprising a low-cost conductivity probe, would prove valuable in a wide range of applications where resolving extremely small spatial scales is not needed. We propose using micro-USB cables as the actual conductivity sensors. By removing the metallic shield from a micro-B connector, 5 gold-plated microelectrodes are exposed and available for 4-wire measurements. These have a cell constant ~550m-1, an intrinsic thermal noise of at most 30pA/Hz1/2, as well as sub-millisecond time response, making them highly suitable for many stratified flow measurements. In addition, we present the design of a custom electronic board (Arduino-based and Matlab-controlled) for simultaneous acquisition from 4 sensors, with resolution (in conductivity, and resulting density) exceeding the performance of typical existing probes. We illustrate the use of our conductivity-measuring system through stratified flow experiments, and describe plans to release simple instructions to construct our complete system for around 200.

  11. Periodicity of the density wake past a vortex ring in a stratified liquid

    NASA Astrophysics Data System (ADS)

    Prokhorov, V.

    2009-04-01

    Spatial coherent structure of the density wake past a vortex ring moving horizontally in viscid stratified liquid is experimentally revealed. It follows from analysis that repetition period of the structure is determined by rotation radial frequency (or mean vorticity) of the vortex core and toward speed of the vortex ring. The wake formation of the ring is considered in respect to vorticity shedding which produces velocity disturbances in ambient medium. In case of stratified liquid velocity fluctuations, in their turn, cause density field distortion. This process is superimposed by vortex core oscillations, and, in result, vorticity shedding will be not monotonous but modulated at some frequency. So, the density wake is periodically structured, and the spatial period is defined by intrinsic frequency of the core and forward speed of the ring. To support analysis, experiments were conducted in which vortex rings excited by spring-piston generator were observed with high-sensitive Schlieren instrument and computer-controlled camera. Experimental tank was filled with salt-stratified water of constant buoyancy period, vortex ring velocities range from 3 to 16 cm/s. Spatial period is derived from schlieren image using two independent methods, both 2D spectral analysis and geometry calculations of the vortex core. Spatial periods and vortex intrinsic frequencies calculated by both algorithms are in good agreement; they vary in power lows depending on vortex speed

  12. A Theory of Density Layering in Stratified Turbulence using Statistical State Dynamics

    NASA Astrophysics Data System (ADS)

    Fitzgerald, J.; Farrell, B.

    2016-12-01

    Stably stratified turbulent fluids commonly develop density structures that are layered in the vertical direction (e.g., Manucharyan et al., 2015). Within layers, density is approximately constant and stratification is weak. Between layers, density varies rapidly and stratification is strong. A common explanation for the existence of layers invokes the negative diffusion mechanism of Phillips (1972) & Posmentier (1977). The physical principle underlying this mechanism is that the flux-gradient relationship connecting the turbulent fluxes of buoyancy to the background stratification must have the special property of weakening fluxes with strengthening gradient. Under these conditions, the evolution of the stratification is governed by a negative diffusion problem which gives rise to spontaneous layer formation. In previous work on stratified layering, this flux-gradient property is often assumed (e.g, Posmentier, 1977) or drawn from phenomenological models of turbulence (e.g., Balmforth et al., 1998).In this work we develop the theoretical underpinnings of layer formation by applying stochastic turbulence modeling and statistical state dynamics (SSD) to predict the flux-gradient relation and analyze layer formation directly from the equations of motion. We show that for stochastically-forced homogeneous 2D Boussinesq turbulence, the flux-gradient relation can be obtained analytically and indicates that the fluxes always strengthen with stratification. The Phillips mechanism thus does not operate in this maximally simplified scenario. However, when the problem is augmented to include a large scale background shear, we show that the flux-gradient relationship is modified so that the fluxes weaken with stratification. Sheared and stratified 2D Boussinesq turbulence thus spontaneously forms density layers through the Phillips mechanism. Using SSD (Farrell & Ioannou 2003), we obtain a closed, deterministic dynamics for the stratification and the statistical turbulent

  13. Stability and nonlinear adjustment of vortices in Keplerian flows

    NASA Astrophysics Data System (ADS)

    Bodo, G.; Tevzadze, A.; Chagelishvili, G.; Mignone, A.; Rossi, P.; Ferrari, A.

    2007-11-01

    Aims:We investigate the stability, nonlinear development and equilibrium structure of vortices in a background shearing Keplerian flow Methods: We make use of high-resolution global two-dimensional compressible hydrodynamic simulations. We introduce the concept of nonlinear adjustment to describe the transition of unbalanced vortical fields to a long-lived configuration. Results: We discuss the conditions under which vortical perturbations evolve into long-lived persistent structures and we describe the properties of these equilibrium vortices. The properties of equilibrium vortices appear to be independent from the initial conditions and depend only on the local disk parameters. In particular we find that the ratio of the vortex size to the local disk scale height increases with the decrease of the sound speed, reaching values well above the unity. The process of spiral density wave generation by the vortex, discussed in our previous work, appear to maintain its efficiency also at nonlinear amplitudes and we observe the formation of spiral shocks attached to the vortex. The shocks may have important consequences on the long term vortex evolution and possibly on the global disk dynamics. Conclusions: Our study strengthens the arguments in favor of anticyclonic vortices as the candidates for the promotion of planetary formation. Hydrodynamic shocks that are an intrinsic property of persistent vortices in compressible Keplerian flows are an important contributor to the overall balance. These shocks support vortices against viscous dissipation by generating local potential vorticity and should be responsible for the eventual fate of the persistent anticyclonic vortices. Numerical codes have be able to resolve shock waves to describe the vortex dynamics correctly.

  14. Optical effects related to Keplerian discs orbiting Kehagias-Sfetsos naked singularities

    NASA Astrophysics Data System (ADS)

    Stuchlík, Zdeněk; Schee, Jan

    2014-10-01

    We demonstrate possible optical signatures of the Kehagias-Sfetsos (KS) naked singularity spacetimes representing a spherically symmetric vacuum solution of the modified Hořava gravity. In such spacetimes, accretion structures significantly different from those present in standard black hole spacetimes occur due to the ‘antigravity’ effect, which causes an internal static sphere surrounded by Keplerian discs. We focus our attention on the optical effects related to the Keplerian accretion discs, constructing the optical appearance of the Keplerian discs, the spectral continuum due to their thermal radiation, and the spectral profiled lines generated in the innermost parts of such discs. The KS naked singularity signature is strongly encoded in the characteristics of predicted optical effects, especially in cases where the spectral continuum and spectral lines are profiled by the strong gravity of the spacetimes due to the vanishing region of the angular velocity gradient influencing the effectiveness of the viscosity mechanism. We can conclude that optical signatures of KS naked singularities can be well distinguished from the signatures of standard black holes.

  15. On Estimating the Mass of Keplerian Accretion Disks in H2O Maser Galaxies

    NASA Astrophysics Data System (ADS)

    Kuo, C. Y.; Reid, M. J.; Braatz, J. A.; Gao, F.; Impellizzeri, C. M. V.; Chien, W. T.

    2018-06-01

    H2O maser disks with Keplerian rotation in active galactic nuclei offer a clean way to determine accurate black hole mass and the Hubble constant. An important assumption made in using a Keplerian H2O maser disk for measuring black hole mass and the Hubble constant is that the disk mass is negligible compared to the black hole mass. A simple and useful model of Huré et al. can be used to test this assumption. In that work, the authors apply a linear disk model to a position–dynamical mass diagram and re-analyze position–velocity data from H2O maser disks associated with active galactic nuclei. They claim that a maser disk with nearly perfect Keplerian rotation could have a disk mass comparable to the black hole mass. This would imply that ignoring the effects of disk self-gravity can lead to large systematic errors in the measurement of black hole mass and the Hubble constant. We examine their methods and find that their large estimated disk masses of Keplerian disks are likely the result of their use of projected instead of three-dimensional position and velocity information. To place better constraints on the disk masses of Keplerian maser systems, we incorporate disk self-gravity into a three-dimensional Bayesian modeling program for maser disks and also evaluate constraints based on the physical conditions for disks that support water maser emission. We find that there is little evidence that disk masses are dynamically important at the ≲1% level compared to the black holes.

  16. Proper motion and secular variations of Keplerian orbital elements

    NASA Astrophysics Data System (ADS)

    Butkevich, Alexey G.

    2018-05-01

    High-precision observations require accurate modelling of secular changes in the orbital elements in order to extrapolate measurements over long time intervals, and to detect deviation from pure Keplerian motion caused, for example, by other bodies or relativistic effects. We consider the evolution of the Keplerian elements resulting from the gradual change of the apparent orbit orientation due to proper motion. We present rigorous formulae for the transformation of the orbit inclination, longitude of the ascending node and argument of the pericenter from one epoch to another, assuming uniform stellar motion and taking radial velocity into account. An approximate treatment, accurate to the second-order terms in time, is also given. The proper motion effects may be significant for long-period transiting planets. These theoretical results are applicable to the modelling of planetary transits and precise Doppler measurements as well as analysis of pulsar and eclipsing binary timing observations.

  17. On the dynamical and geometrical symmetries of Keplerian motion

    NASA Astrophysics Data System (ADS)

    Wulfman, Carl E.

    2009-05-01

    The dynamical symmetries of classical, relativistic and quantum-mechanical Kepler systems are considered to arise from geometric symmetries in PQET phase space. To establish their interconnection, the symmetries are related with the aid of a Lie-algebraic extension of Dirac's correspondence principle, a canonical transformation containing a Cunningham-Bateman inversion, and a classical limit involving a preliminary canonical transformation in ET space. The Lie-algebraic extension establishes the conditions under which the uncertainty principle allows the local dynamical symmetry of a quantum-mechanical system to be the same as the geometrical phase-space symmetry of its classical counterpart. The canonical transformation converts Poincaré-invariant free-particle systems into ISO(3,1) invariant relativistic systems whose classical limit produces Keplerian systems. Locally Cartesian relativistic PQET coordinates are converted into a set of eight conjugate position and momentum coordinates whose classical limit contains Fock projective momentum coordinates and the components of Runge-Lenz vectors. The coordinate systems developed via the transformations are those in which the evolution and degeneracy groups of the classical system are generated by Poisson-bracket operators that produce ordinary rotation, translation and hyperbolic motions in phase space. The way in which these define classical Keplerian symmetries and symmetry coordinates is detailed. It is shown that for each value of the energy of a Keplerian system, the Poisson-bracket operators determine two invariant functions of positions and momenta, which together with its regularized Hamiltonian, define the manifold in six-dimensional phase space upon which motions evolve.

  18. Hierarchical spatial capture-recapture models: Modeling population density from stratified populations

    USGS Publications Warehouse

    Royle, J. Andrew; Converse, Sarah J.

    2014-01-01

    Capture–recapture studies are often conducted on populations that are stratified by space, time or other factors. In this paper, we develop a Bayesian spatial capture–recapture (SCR) modelling framework for stratified populations – when sampling occurs within multiple distinct spatial and temporal strata.We describe a hierarchical model that integrates distinct models for both the spatial encounter history data from capture–recapture sampling, and also for modelling variation in density among strata. We use an implementation of data augmentation to parameterize the model in terms of a latent categorical stratum or group membership variable, which provides a convenient implementation in popular BUGS software packages.We provide an example application to an experimental study involving small-mammal sampling on multiple trapping grids over multiple years, where the main interest is in modelling a treatment effect on population density among the trapping grids.Many capture–recapture studies involve some aspect of spatial or temporal replication that requires some attention to modelling variation among groups or strata. We propose a hierarchical model that allows explicit modelling of group or strata effects. Because the model is formulated for individual encounter histories and is easily implemented in the BUGS language and other free software, it also provides a general framework for modelling individual effects, such as are present in SCR models.

  19. The effects of stand structure after thinning on the growth of an Allegheny hardwood stand

    Treesearch

    David A. Marquis; Richard L. Ernst

    1991-01-01

    A 50-year-old Allegheny hardwood stand in which the crown canopy had stratified into distinct species groups was thinned to 60% relative density leaving dramatically different stand structures and species composition. Treatments included combined thinning, thin from middle, thin from above, thin from below, and unthinned control. Individual tree growth was stimulated...

  20. Forbidden tangential orbit transfers between intersecting Keplerian orbits

    NASA Technical Reports Server (NTRS)

    Burns, Rowland E.

    1990-01-01

    The classical problem of tangential impulse transfer between coplanar Keplerian orbits is addressed. A completely analytic solution which does not rely on sequential calculation is obtained and this solution is used to demonstrate that certain initially chosen angles can produce singularities in the parameters of the transfer orbit. A necessary and sufficient condition for such singularities is that the initial and final orbits intersect.

  1. Metrics in Keplerian orbits quotient spaces

    NASA Astrophysics Data System (ADS)

    Milanov, Danila V.

    2018-03-01

    Quotient spaces of Keplerian orbits are important instruments for the modelling of orbit samples of celestial bodies on a large time span. We suppose that variations of the orbital eccentricities, inclinations and semi-major axes remain sufficiently small, while arbitrary perturbations are allowed for the arguments of pericentres or longitudes of the nodes, or both. The distance between orbits or their images in quotient spaces serves as a numerical criterion for such problems of Celestial Mechanics as search for common origin of meteoroid streams, comets, and asteroids, asteroid families identification, and others. In this paper, we consider quotient sets of the non-rectilinear Keplerian orbits space H. Their elements are identified irrespective of the values of pericentre arguments or node longitudes. We prove that distance functions on the quotient sets, introduced in Kholshevnikov et al. (Mon Not R Astron Soc 462:2275-2283, 2016), satisfy metric space axioms and discuss theoretical and practical importance of this result. Isometric embeddings of the quotient spaces into R^n, and a space of compact subsets of H with Hausdorff metric are constructed. The Euclidean representations of the orbits spaces find its applications in a problem of orbit averaging and computational algorithms specific to Euclidean space. We also explore completions of H and its quotient spaces with respect to corresponding metrics and establish a relation between elements of the extended spaces and rectilinear trajectories. Distance between an orbit and subsets of elliptic and hyperbolic orbits is calculated. This quantity provides an upper bound for the metric value in a problem of close orbits identification. Finally the invariance of the equivalence relations in H under coordinates change is discussed.

  2. Characterizing the performance of an affordable, multichannel conductivity probe for density measurements in stratified flows

    NASA Astrophysics Data System (ADS)

    Subramanian, Balaji; Carminati, Marco; Luzzatto-Fegiz, Paolo

    2017-11-01

    In stratified flows, conductivity (combined with temperature) is often used to measure density. The conductivity probes typically used can resolve very fine spatial scales, but on the downside they are fragile, expensive, sensitive to environmental noise and have only single channel capability. Recently a low-cost, robust, arduino-based probe called Conduino was developed, which can be valuable in a wide range of applications where resolving extremely small spatial scales is not needed. This probe uses micro-USB connectors as actual conductivity sensors with a custom designed electronic board for simultaneous acquisition from multiple probes, with conductivity resolution comparable to commercially available PME conductivity probe. A detailed assessment of performance of this Conduino probe is described here. To establish time response and sensitivity as a function of electrode geometry, we build a variety of shapes for different kinds of applications, with tip spacing ranging from 0.5-2.5 mm, and with electrode length ranging from 2.3-6 mm. We set up a two-layer density profile and traverse it rapidly, yielding a time response comparable to PME. The Conduino's multi-channel capability is used to operate probe arrays, which helps to construct density fields in stratified flows.

  3. Stratified flows with variable density: mathematical modelling and numerical challenges.

    NASA Astrophysics Data System (ADS)

    Murillo, Javier; Navas-Montilla, Adrian

    2017-04-01

    Stratified flows appear in a wide variety of fundamental problems in hydrological and geophysical sciences. They may involve from hyperconcentrated floods carrying sediment causing collapse, landslides and debris flows, to suspended material in turbidity currents where turbulence is a key process. Also, in stratified flows variable horizontal density is present. Depending on the case, density varies according to the volumetric concentration of different components or species that can represent transported or suspended materials or soluble substances. Multilayer approaches based on the shallow water equations provide suitable models but are not free from difficulties when moving to the numerical resolution of the governing equations. Considering the variety of temporal and spatial scales, transfer of mass and energy among layers may strongly differ from one case to another. As a consequence, in order to provide accurate solutions, very high order methods of proved quality are demanded. Under these complex scenarios it is necessary to observe that the numerical solution provides the expected order of accuracy but also converges to the physically based solution, which is not an easy task. To this purpose, this work will focus in the use of Energy balanced augmented solvers, in particular, the Augmented Roe Flux ADER scheme. References: J. Murillo , P. García-Navarro, Wave Riemann description of friction terms in unsteady shallow flows: Application to water and mud/debris floods. J. Comput. Phys. 231 (2012) 1963-2001. J. Murillo B. Latorre, P. García-Navarro. A Riemann solver for unsteady computation of 2D shallow flows with variable density. J. Comput. Phys.231 (2012) 4775-4807. A. Navas-Montilla, J. Murillo, Energy balanced numerical schemes with very high order. The Augmented Roe Flux ADER scheme. Application to the shallow water equations, J. Comput. Phys. 290 (2015) 188-218. A. Navas-Montilla, J. Murillo, Asymptotically and exactly energy balanced augmented flux

  4. A Gauge-generalized Solution for Non-Keplerian Motion in the Frenet-Serret Frame

    NASA Astrophysics Data System (ADS)

    Garber, Darren D.

    2009-05-01

    The customary modeling of perturbed planetary and spacecraft motion as a continuous sequence of unperturbed two-body orbits (instantaneous ellipses) is conveniently assigned a physical interpretation through the Keplerian and Delaunay elements and complemented mathematically by the Lagrange-type equations which describe the evolution of these variables. If however the actual motion is very non-Keplerian (i.e. the perturbed orbit varies greatly from a two-body orbit), then its modeling by a sequence of conics is not necessarily optimal in terms of its mathematical description and its resulting physical interpretation. Since, in principle a curve of any type can be represented as a sequence of points from a family of curves of any other type (Efroimsky 2005), alternate non-conic curves can be utilized to better describe the perturbed non-Keplerian motion of the body both mathematically and with a physically relevant interpretation. Non-Keplerian motion exists in both celestial mechanics and astrodynamics as evident by the complex interactions within star clusters and also as the result of a spacecraft accelerating via ion propulsion, solar sails and electro-dynamic tethers. For these cases, the sequence of simple orbits to describe the motion is not based on conics, but instead a family of spirals. The selection of spirals as the underlying simple motion is supported by the fact that it is unnecessary to describe the motion in terms of instantaneous orbits tangent to the actual trajectory (Efroimsky 2002, Newman & Efroimsky 2003) and at times there is an advantage to deviate from osculation, in order to greatly simplify the resulting mathematics via gauge freedom (Efroimsky & Goldreich 2003, Slabinski 2003, Gurfil 2004). From these two principles, (1) spirals as instantaneous orbits, and (2) controlled deviation from osculation, new planetary equations are derived for new non-osculating elements in the Frenet-Serret frame with the gauge function as a measure of non-osculation.

  5. Experimental study of stratified jet by simultaneous measurements of velocity and density fields

    NASA Astrophysics Data System (ADS)

    Xu, Duo; Chen, Jun

    2012-07-01

    Stratified flows with small density difference commonly exist in geophysical and engineering applications, which often involve interaction of turbulence and buoyancy effect. A combined particle image velocimetry (PIV) and planar laser-induced fluorescence (PLIF) system is developed to measure the velocity and density fields in a dense jet discharged horizontally into a tank filled with light fluid. The illumination of PIV particles and excitation of PLIF dye are achieved by a dual-head pulsed Nd:YAG laser and two CCD cameras with a set of optical filters. The procedure for matching refractive indexes of two fluids and calibration of the combined system are presented, as well as a quantitative analysis of the measurement uncertainties. The flow structures and mixing dynamics within the central vertical plane are studied by examining the averaged parameters, turbulent kinetic energy budget, and modeling of momentum flux and buoyancy flux. At downstream, profiles of velocity and density display strong asymmetry with respect to its center. This is attributed to the fact that stable stratification reduces mixing and unstable stratification enhances mixing. In stable stratification region, most of turbulence production is consumed by mean-flow convection, whereas in unstable stratification region, turbulence production is nearly balanced by viscous dissipation. Experimental data also indicate that at downstream locations, mixing length model performs better in mixing zone of stable stratification regions, whereas in other regions, eddy viscosity/diffusivity models with static model coefficients represent effectively momentum and buoyancy flux terms. The measured turbulent Prandtl number displays strong spatial variation in the stratified jet.

  6. Self-anti-reflective density-modulated thin films by HIPS technique

    NASA Astrophysics Data System (ADS)

    Keles, Filiz; Badradeen, Emad; Karabacak, Tansel

    2017-08-01

    A critical factor for an efficient light harvesting device is reduced reflectance in order to achieve high optical absorptance. In this regard, refractive index engineering becomes important to minimize reflectance. In this study, a new fabrication approach to obtain density-modulated CuIn x Ga(1-x)Se2 (CIGS) thin films with self-anti-reflective properties has been demonstrated. Density-modulated CIGS samples were fabricated by utilizing high pressure sputtering (HIPS) at Ar gas pressure of 2.75 × 10-2 mbar along with conventional low pressure sputtering (LPS) at Ar gas pressure of 3.0 × 10-3 mbar. LPS produces conventional high density thin films while HIPS produces low density thin films with approximate porosities of ˜15% due to a shadowing effect originating from the wide-spread angular atomic of HIPS. Higher pressure conditions lower the film density, which also leads to lower refractive index values. Density-modulated films that incorporate a HIPS layer at the side from which light enters demonstrate lower reflectance thus higher absorptance compared to conventional LPS films, although there is not any significant morphological difference between them. This result can be attributed to the self-anti-reflective property of the density-modulated samples, which was confirmed by the reduced refractive index calculated for HIPS layer via an envelope method. Therefore, HIPS, a simple and scalable approach, can provide enhanced optical absorptance in thin film materials and eliminate the need for conventional light trapping methods such as anti-reflective coatings of different materials or surface texturing.

  7. Evaluation of double-layer density modulated Si thin films as Li-ion battery anodes

    NASA Astrophysics Data System (ADS)

    Taha Demirkan, Muhammed; Yurukcu, Mesut; Dursun, Burcu; Demir-Cakan, Rezan; Karabacak, Tansel

    2017-10-01

    Double-layer density modulated silicon thin films which contain alternating low and high density Si film layers were fabricated by magnetron sputtering. Two different samples consisting of alternating layers of high-density/low-density and low-density/high-density Si thin film layers were investigated as anode electrodes in Li-ion batteries. Si thin film in which the terminating layer at the top is low density Si layer-quoted as low-density/high-density film (LD/HD)- exhibits better performance than Si thin film that has high density layer at the top, -quoted as high-density/low-density (HD/LD). A highly stabilized cycling performance with the specific charge capacities of 2000 mAh g-1 at the 150th cycle at C/2 current density, and 1200 mAh g-1 at the 240th cycle at 10 C current density were observed for the LD/HD Si anode in the presence of fluoroethylene carbonate (FEC) electrolyte additive.

  8. Magnetized stratified rotating shear waves.

    PubMed

    Salhi, A; Lehner, T; Godeferd, F; Cambon, C

    2012-02-01

    stability of the solution at infinite vertical wavelength (k(3) = 0): There is an oscillatory behavior for τ > 1+|K(2)/k(1)|, where τ = St is a dimensionless time and K(2) is the radial component of the wave vector at τ = 0. The model is suitable to describe instabilities leading to turbulence by the bypass mechanism that can be relevant for the analysis of magnetized stratified Keplerian disks with a purely azimuthal field. For initial isotropic conditions, the time evolution of the spectral density of total energy (kinetic + magnetic + potential) is considered. At k(3) = 0, the vertical motion is purely oscillatory, and the sum of the vertical (kinetic + magnetic) energy plus the potential energy does not evolve with time and remains equal to its initial value. The horizontal motion can induce a rapid transient growth provided K(2)/k(1)>1. This rapid growth is due to the aperiodic velocity vortex mode that behaves like K(h)/k(h) where k(h)(τ)=[k(1)(2) + (K(2) - k(1)τ)(2)](1/2) and K(h) =k(h)(0). After the leading phase (τ > K(2)/k(1)>1), the horizontal magnetic energy and the horizontal kinetic energy exhibit a similar (oscillatory) behavior yielding a high level of total energy. The contribution to energies coming from the modes k(1) = 0 and k(3) = 0 is addressed by investigating the one-dimensional spectra for an initial Gaussian dense spectrum. For a magnetized Keplerian disk with a purely vertical field, it is found that an important contribution to magnetic and kinetic energies comes from the region near k(1) = 0. The limit at k(1) = 0 of the streamwise one-dimensional spectra of energies, or equivalently, the streamwise two-dimensional (2D) energy, is then computed. The comparison of the ratios of these 2D quantities with their three-dimensional counterparts provided by previous direct numerical simulations shows a quantitative agreement.

  9. Oxygen Reduction Reaction Activity of Platinum Thin Films with Different Densities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ergul, Busra; Begum, Mahbuba; Kariuki, Nancy

    Platinum thin films with different densities were grown on glassy carbon electrodes by high pressure sputtering deposition and evaluated as oxygen reduction reaction catalysts for polymer electrolyte fuel cells using cyclic voltammetry and rotating disk electrode techniques in aqueous perchloric acid electrolyte. The electrochemically active surface area, ORR mass activity (MA) and specific activity (SA) of the thin film electrodes were obtained. MA and SA were found to be higher for low-density films than for high-density film.

  10. Numerical analysis of internal waves in stratified wake flows

    NASA Astrophysics Data System (ADS)

    Fraunie, Philppe

    2014-05-01

    In laboratory investigations, increased attention has been given to internal waves generated by stationary placed oscillating sources and moving bodies in stratified fluids [1]. The main attention was paid to study flows past bodies of perfect shapes like sphere [2], cylinder [3] of thin strip [3] which are the best theoretical (analytical or numerical) studies. Due to simplicity of geometry, flow around a strip has a potential to investigate separately effects of a drag and lift forces on the body by changing the slope of the horizontally moving strip which can be placed vertically [1], horizontally [2], or be tilted under some angle to the direction of towing velocity [5]. Numeric modeling of a flow past vertical strip uniformly towing with permanent velocity in horizontal direction in a linearly stratified talk which was based on a finite differences solver adapted to the low Reynolds Navier-Stokes equation with transport equation for salinity (LES simulation [6] and RANS [7]) has demonstrated reasonable agreement with data of Schlieren visualization, density marker and probe measurements of internal wave fields. The chosen test cases allowed demonstrating the ability of selected numerical methods to represent stably stratified flows over horizontal strip [4] and hill type 2D obstacles [1, 3] with generation of internal waves. ACKNOWLEDGMENTS This research work was supported by the Region Provence Alpes Côte d'Azur - Modtercom project. The work was also supported by the Russian Foundation for Basic Research (grant 12-01-00128). REFERENCES [1] Chashechkin Yu.D., Mitkin V.V. Experimental study of a fine structure of 2D wakes and mixing past an obstacle in a continuously stratified fluid // Dynamics of Atmosphere and Oceans. 2001. V. 34. P. 165-187. [2] Chashechkin, Yu. D. Hydrodynamics of a sphere in a stratified fluid // Fluid Dyn. 1989. V.24(1) P. 1-7. [3] Mitkin V. V., Chashechkin Yu. D. Transformation of hanging discontinuities into vortex systems in a

  11. Stratified flows in complex terrain

    NASA Astrophysics Data System (ADS)

    Retallack, Charles

    The focus of this dissertation is the study of stratified atmospheric flows in the presence of complex terrain. Two large-scale field study campaigns were carried out, each with a focus on a specific archetypal terrain. Each field study involved the utilization of remote and in-situ atmospheric monitoring devices to collect experimental data. The first of the two field studies focused on pollution transport mechanisms near an escarpment. The analysis aimed to determine the combined effect of the escarpment and ambient density stratification on the flow and aerosol pollution transport. It was found that under specific atmospheric conditions, the escarpment prompted the channeling, down-mixing, and trapping of aerosol pollutant plumes. The objective of the second field campaign was the study of stratified flows in a mountain valley. Analysis revealed that buoyancy driven katabatic currents originating on the surrounding valley slopes created a scenario in which a down-slope gravity current transitioned into an intrusive gravity current. The intrusive gravity current propagated near the interface of a density stratified lower ambient layer and a non-stratified upper ambient layer. A combination of shallow water theory and energy arguments is used to produce a model for the propagation of a gravity current moving along the interface of a homogeneous ambient layer and a linearly stratified layer. It is found that the gravity current propagating entirely within the homogeneous layer travels at the greatest speed. As the relative density of the gravity current is increased, the gravity current begins to slump below the interface of the two layers and the propagation speed decreases.

  12. A Keplerian-based Hamiltonian splitting for gravitational N-body simulations

    NASA Astrophysics Data System (ADS)

    Gonçalves Ferrari, G.; Boekholt, T.; Portegies Zwart, S. F.

    2014-05-01

    We developed a Keplerian-based Hamiltonian splitting for solving the gravitational N-body problem. This splitting allows us to approximate the solution of a general N-body problem by a composition of multiple, independently evolved two-body problems. While the Hamiltonian splitting is exact, we show that the composition of independent two-body problems results in a non-symplectic non-time-symmetric first-order map. A time-symmetric second-order map is then constructed by composing this basic first-order map with its self-adjoint. The resulting method is precise for each individual two-body solution and produces quick and accurate results for near-Keplerian N-body systems, like planetary systems or a cluster of stars that orbit a supermassive black hole. The method is also suitable for integration of N-body systems with intrinsic hierarchies, like a star cluster with primordial binaries. The superposition of Kepler solutions for each pair of particles makes the method excellently suited for parallel computing; we achieve ≳64 per cent efficiency for only eight particles per core, but close to perfect scaling for 16 384 particles on a 128 core distributed-memory computer. We present several implementations in SAKURA, one of which is publicly available via the AMUSE framework.

  13. Using a Density-Management Diagram to Develop Thinning Schedules for Loblolly Pine Plantations

    Treesearch

    Thomas J. Dean; V. Clark Baldwin

    1993-01-01

    A method for developing thinning schedules using a density-management diagram is presented. A density-management diagram is a form of stocking chart based on patterns of natural stand development. The diagram allows rotation diameter and the upper and lower limits of growing stock to be easily transformed into before and after thinning densities. Site height lines on...

  14. Filamentary structure and Keplerian rotation in the high-mass star-forming region G35.03+0.35 imaged with ALMA

    NASA Astrophysics Data System (ADS)

    Beltrán, M. T.; Sánchez-Monge, Á.; Cesaroni, R.; Kumar, M. S. N.; Galli, D.; Walmsley, C. M.; Etoka, S.; Furuya, R. S.; Moscadelli, L.; Stanke, T.; van der Tak, F. F. S.; Vig, S.; Wang, K.-S.; Zinnecker, H.; Elia, D.; Schisano, E.

    2014-11-01

    Context. Theoretical scenarios propose that high-mass stars are formed by disk-mediated accretion. Aims: To test the theoretical predictions on the formation of massive stars, we wish to make a thorough study at high-angular resolution of the structure and kinematics of the dust and gas emission toward the high-mass star-forming region G35.03+0.35, which harbors a disk candidate around a B-type (proto)star. Methods: We carried out ALMA Cycle 0 observations at 870 μm of dust of typical high-density, molecular outflow, and cloud tracers with resolutions of < 0''&dotbelow;5. Complementary Subaru COMICS 25 μm observations were carried out to trace the mid-infrared emission toward this star-forming region. Results: The submillimeter continuum emission has revealed a filamentary structure fragmented into six cores, called A-F. The filament could be in quasi-equilibrium taking into account that the mass per unit length of the filament, 200-375 M⊙/pc, is similar to the critical mass of a thermally and turbulently supported infinite cylinder, ~335 M⊙/pc. The cores, which are on average separated by ~0.02 pc, have deconvolved sizes of 1300-3400 AU, temperatures of 35-240 K, H2 densities >107 cm -3, and masses in the range 1-5 M⊙, and they are subcritical. Core A, which is associated with a hypercompact Hii region and could be the driving source of the molecular outflow observed in the region, is the most chemically rich source in G35.03+0.35 with strong emission of typical hot core tracers such as CH3CN. Tracers of high density and excitation show a clear velocity gradient along the major axis of the core, which is consistent with a disk rotating about the axis of the associated outflow. The PV plots along the SE-NW direction of the velocity gradient show clear signatures of Keplerian rotation, although infall could also be present, and they are consistent with the pattern of an edge-on Keplerian disk rotating about a star with a mass in the range 5-13 M⊙. The high

  15. Baroclinic Vortices in Rotating Stratified Shearing Flows: Cyclones, Anticyclones, and Zombie Vortices

    NASA Astrophysics Data System (ADS)

    Hassanzadeh, Pedram

    Large coherent vortices are abundant in geophysical and astrophysical flows. They play significant roles in the Earth's oceans and atmosphere, the atmosphere of gas giants, such as Jupiter, and the protoplanetary disks around forming stars. These vortices are essentially three-dimensional (3D) and baroclinic, and their dynamics are strongly influenced by the rotation and density stratification of their environments. This work focuses on improving our understanding of the physics of 3D baroclinic vortices in rotating and continuously stratified flows using 3D spectral simulations of the Boussinesq equations, as well as simplified mathematical models. The first chapter discusses the big picture and summarizes the results of this work. In Chapter 2, we derive a relationship for the aspect ratio (i.e., vertical half-thickness over horizontal length scale) of steady and slowly-evolving baroclinic vortices in rotating stratified fluids. We show that the aspect ratio is a function of the Brunt-Vaisala frequencies within the vortex and outside the vortex, the Coriolis parameter, and the Rossby number of the vortex. This equation is basically the gradient-wind equation integrated over the vortex, and is significantly different from the previously proposed scaling laws that find the aspect ratio to be only a function of the properties of the background flow, and independent of the dynamics of the vortex. Our relation is valid for cyclones and anticyclones in either the cyclostrophic or geostrophic regimes; it works with vortices in Boussinesq fluids or ideal gases, and non-uniform background density gradient. The relation for the aspect ratio has many consequences for quasi-equilibrium vortices in rotating stratified flows. For example, cyclones must have interiors more stratified than the background flow (i.e., super-stratified), and weak anticyclones must have interiors less stratified than the background (i.e., sub-stratified). In addition, this equation is useful to

  16. Mean-field theory of differential rotation in density stratified turbulent convection

    NASA Astrophysics Data System (ADS)

    Rogachevskii, I.

    2018-04-01

    A mean-field theory of differential rotation in a density stratified turbulent convection has been developed. This theory is based on the combined effects of the turbulent heat flux and anisotropy of turbulent convection on the Reynolds stress. A coupled system of dynamical budget equations consisting in the equations for the Reynolds stress, the entropy fluctuations and the turbulent heat flux has been solved. To close the system of these equations, the spectral approach, which is valid for large Reynolds and Péclet numbers, has been applied. The adopted model of the background turbulent convection takes into account an increase of the turbulence anisotropy and a decrease of the turbulent correlation time with the rotation rate. This theory yields the radial profile of the differential rotation which is in agreement with that for the solar differential rotation.

  17. The effect of surfactant on stratified and stratifying gas-liquid flows

    NASA Astrophysics Data System (ADS)

    Heiles, Baptiste; Zadrazil, Ivan; Matar, Omar

    2013-11-01

    We consider the dynamics of a stratified/stratifying gas-liquid flow in horizontal tubes. This flow regime is characterised by the thin liquid films that drain under gravity along the pipe interior, forming a pool at the bottom of the tube, and the formation of large-amplitude waves at the gas-liquid interface. This regime is also accompanied by the detachment of droplets from the interface and their entrainment into the gas phase. We carry out an experimental study involving axial- and radial-view photography of the flow, in the presence and absence of surfactant. We show that the effect of surfactant is to reduce significantly the average diameter of the entrained droplets, through a tip-streaming mechanism. We also highlight the influence of surfactant on the characteristics of the interfacial waves, and the pressure gradient that drives the flow. EPSRC Programme Grant EP/K003976/1.

  18. Experimental study of mixing mechanisms in stably stratified Taylor-Couette flow

    NASA Astrophysics Data System (ADS)

    Augier, Pierre; Caulfield, Colm-Cille; Dalziel, Stuart

    2014-11-01

    We consider experimentally the mechanisms of mixing in stably stratified Taylor-Couette (TC) flow in a TC apparatus for which both cylinders can rotate independently. In the case for which only the inner cylinder rotates, centrifugal instability rapidly splits an initially linear density profile into an array of thin nearly homogeneous layers. Shadowgraph, PIV and density profiles measured by a moving conductivity probe allow us to characterise this process and the resulting flow. In particular, we observe turbulent intrusions of mixed fluid propagating relatively slowly around the tank at the interfaces between the layers, leading to a time-dependent variation in the sharpness and turbulent activity at these interfaces, whose period scales with (but is much larger than) the rotation period. Interestingly, the turbulent intrusions are anti-correlated between adjacent interfaces leading to snake-skin-like patterns in the spatio-temporal diagrams of the density profiles. We also explore how the presence of a density stratification modifies end effects at the top and bottom of the cylinders, in both the presence and absence of primary centrifugal instability.

  19. Variable-density thinning in coast redwood: a comparison of marking strategies to attain stand variability

    Treesearch

    Kevin L. O' Hara; Lathrop P. Leonard; Christopher R. Keyes

    2012-01-01

    Variable-density thinning (VDT) is an emerging thinning method that attempts to enhance stand structural heterogeneity by deliberately thinning at different intensities throughout a stand. VDT may create stands with dense areas, open areas, and other areas that may be intermediate in density. Subsequent stand development forms a more varied structure than is...

  20. Thinning of young Douglas-fir forests decreases density of northern flying squirrels in the Oregon Cascades

    USGS Publications Warehouse

    Manning, Tom; Hagar, Joan C.; McComb, Brenda C.

    2012-01-01

    Large-scale commercial thinning of young forests in the Pacific Northwest is currently promoted on public lands to accelerate the development of late-seral forest structure for the benefit of wildlife species such as northern spotted owls (Strix occidentalis caurina) and their prey, including the northern flying squirrel (Glaucomys sabrinus). Attempts to measure the impact of commercial thinning on northern flying squirrels have mostly addressed short-term effects (2–5 years post-thinning) and the few published studies of longer-term results have been contradictory. We measured densities of northern flying squirrels 11–13 years after thinning of young (55–65 years) Douglas-fir forest stands in the Cascade Range of Oregon, as part of the Young Stand Thinning & Diversity Study. The study includes four replicate blocks, each consisting of an unthinned control stand and one stand each of the following thinning treatments: Heavy Thin; Light Thin; and Light Thin with Gaps. Thinning decreased density of northern flying squirrels, and squirrel densities were significantly lower in heavily thinned stands than in more lightly thinned stands. Regression analysis revealed a strong positive relationship of flying squirrel density with density of large (>30 cm diameter) standing dead trees and a negative relationship with percent cover of low understory shrubs. Maintaining sufficient area and connectivity of dense, closed canopy forest is recommended as a strategy to assure that long-term goals of promoting late-seral structure do not conflict with short-term habitat requirements of this important species.

  1. Nonlinear dielectric thin films for high-power electric storage with energy density comparable with electrochemical supercapacitors.

    PubMed

    Yao, Kui; Chen, Shuting; Rahimabady, Mojtaba; Mirshekarloo, Meysam Sharifzadeh; Yu, Shuhui; Tay, Francis Eng Hock; Sritharan, Thirumany; Lu, Li

    2011-09-01

    Although batteries possess high energy storage density, their output power is limited by the slow movement of charge carriers, and thus capacitors are often required to deliver high power output. Dielectric capacitors have high power density with fast discharge rate, but their energy density is typically much lower than electrochemical supercapacitors. Increasing the energy density of dielectric materials is highly desired to extend their applications in many emerging power system applications. In this paper, we review the mechanisms and major characteristics of electric energy storage with electrochemical supercapacitors and dielectric capacitors. Three types of in-house-produced ferroic nonlinear dielectric thin film materials with high energy density are described, including (Pb(0.97)La(0.02))(Zr(0.90)Sn(0.05)Ti(0.05))O(3) (PLZST) antiferroelectric ceramic thin films, Pb(Zn(1/3)Nb(2/3))O(3-)Pb(Mg(1/3)Nb(2/3))O(3-)PbTiO(3) (PZN-PMN-PT) relaxor ferroelectric ceramic thin films, and poly(vinylidene fluoride) (PVDF)-based polymer blend thin films. The results showed that these thin film materials are promising for electric storage with outstandingly high power density and fairly high energy density, comparable with electrochemical supercapacitors.

  2. Transport of particles, drops, and small organisms in density stratified fluids

    NASA Astrophysics Data System (ADS)

    Ardekani, Arezoo M.; Doostmohammadi, Amin; Desai, Nikhil

    2017-10-01

    Sedimenting particles and motile organisms are ubiquitously found in oceans and lakes, where density stratification naturally occurs due to temperature or salinity gradients. We explore the effects of stratification on the fundamental hydrodynamics of settling particles, rising drops, and small organisms. The results of our direct numerical simulations of the sedimentation of particles show that the presence of vertical density gradients in the water column can substantially affect the settling dynamics of a particle, interaction between a pair of particles, and settling rates and microstructure of suspension of particles. We show that elongation of particles affects both the settling orientation and the settling rate of particles in stratified fluids, which will have direct consequences on the vertical flux of particulate matter and carbon flux in the ocean. We further demonstrate an unexpected effect of buoyancy, potentially affecting a broad range of processes at pycnoclines in oceans and lakes. In particular, stratification has a major effect on the flow field, energy expenditure, and nutrient uptake of small organisms. In addition, the role of stratification in pattern formation of bioconvection plumes of algal cells and in biogenic mixing is investigated. In particular, the numerical approach allows for considering the effects of background turbulence and hydrodynamic perturbations produced by swimming organisms, shedding light on the contribution of organisms in the mixing process in aqueous environments.

  3. High density nonmagnetic cobalt in thin films

    NASA Astrophysics Data System (ADS)

    Banu, Nasrin; Singh, Surendra; Basu, Saibal; Roy, Anupam; Movva, Hema C. P.; Lauter, V.; Satpati, B.; Dev, B. N.

    2018-05-01

    Recently high density (HD) nonmagnetic cobalt has been discovered in a nanoscale cobalt thin film, grown on Si(111) single crystal. This form of cobalt is not only nonmagnetic but also superconducting. These promising results have encouraged further investigations of the growth of the nonmagnetic (NM) phase of cobalt. In the original investigation, the cobalt film had a natural cobalt oxide at the top. We have investigated whether the growth of HD NM cobalt layers in the thin film depends on (i) a capping layer on the cobalt film, (ii) the thickness of the cobalt film and (iii) the nature of the substrate on which the cobalt film is grown. The results of such investigations indicate that for cobalt films capped with a thin gold layer, and for various film thicknesses, HD NM cobalt layers are formed. However, instead of a Si substrate, when the cobalt films are grown on oxide substrates, such as silicon oxide or cobalt oxide, HD NM cobalt layers are not formed. The difference is attributed to the nature—crystalline or amorphous—of the substrate.

  4. Thin layer asphaltic concrete density measuring using nuclear gages.

    DOT National Transportation Integrated Search

    1989-03-01

    A Troxler 4640 thin layer nuclear gage was evaluated under field conditions to determine if it would provide improved accuracy of density measurements on asphalt overlays of 1-3/4 and 2 inches in thickness. Statistical analysis shows slightly improve...

  5. First direct detection of a Keplerian rotating disk around the Be star α Arae using AMBER/VLTI

    NASA Astrophysics Data System (ADS)

    Meilland, A.; Stee, P.; Vannier, M.; Millour, F.; Domiciano de Souza, A.; Malbet, F.; Martayan, C.; Paresce, F.; Petrov, R. G.; Richichi, A.; Spang, A.

    2007-03-01

    Aims:We aim to study the geometry and kinematics of the disk around the Be star α Arae as a function of wavelength, especially across the Brγ emission line. The main purpose of this paper is to understand the nature of the disk rotation around Be stars. Methods: We use the AMBER/VLTI instrument operating in the K-band, which provides a gain by a factor of 5 in spatial resolution compared to previous MIDI/VLTI observations. Moreover, it is possible to combine the high angular resolution provided with the (medium) spectral resolution of AMBER to study the kinematics of the inner part of the disk and to infer its rotation law. Results: For the first time, we obtain direct evidence that the disk is in Keplerian rotation, answering a question that has existed since the discovery of the first Be star γ Cas by Father Secchi in 1866. We also present the global geometry of the disk, showing that it is compatible with a thin disk and polar enhanced winds modeled with the SIMECA code. We found that the disk around α Arae is compatible with a dense equatorial matter confined to the central region, whereas a polar wind is contributing along the rotational axis of the central star. Between these two regions, the density must be low enough to reproduce the large visibility modulus (small extension) obtained for two of the four VLTI baselines. Moreover, we obtain that α Arae is rotating very close to its critical rotation. This scenario is also compatible with the previous MIDI measurements. Based on observations collected at the European Southern Observatory, Paranal, Chile, within the science demonstration time programme 074.A-9026(A).

  6. Local study of helical magnetorotational instability in viscous Keplerian disks

    NASA Astrophysics Data System (ADS)

    MahdaviGharavi, M.; Hajisharifi, K.; Mehidan, H.

    2018-03-01

    In this paper, regarding the recent detection of significant azimuthal magnetic field in some accretion disks such as protostellar (Donati et al. in Nature 438:466, 2005), the multi-fluid model has been employed to analysis the stability of Keplerian rotational viscous dusty plasma system in a current-free helical magnetic field structure. Using the fluid-Maxwell equations, the general dispersion relation of the excited modes in the system has been obtained by applying the local approximation method in the linear perturbation theory. The typical numerical analysis of the obtained dispersion relation in the high-frequency regime shows that the presence of azimuthal magnetic field component in Keplerian flow has a considerable role in the stability conditions of the system. It also shows that the magnetic field helicity has a stabilization role against the magnetorotational instability (MRI) in the system due to contraction of the unstable wavelength region and decreasing the maximum growth rate of the instability. In this sense, the stabilization role of the viscosity term is more considerable for HMRI (instability in the presence of azimuthal magnetic field component) than the corresponding MRI (instability in the absence of azimuthal magnetic field component). Moreover, considering the discovered azimuthal magnetic field in these systems, the MRI can be arisen in the over-all range of dust grains construction values in contract with traditional MRI. This investigation can greatly contribute to better understanding the physics of some astrophysical phenomena, such as the main source of turbulence and angular momentum transport in protostellar and the other sufficiently ionized astrophysical disks, where the azimuthal magnetic field component in these systems can play a significant role.

  7. The secular evolution of discrete quasi-Keplerian systems. II. Application to a multi-mass axisymmetric disc around a supermassive black hole

    NASA Astrophysics Data System (ADS)

    Fouvry, J.-B.; Pichon, C.; Chavanis, P.-H.

    2018-01-01

    A discrete self-gravitating quasi-Keplerian razor-thin axisymmetric stellar disc orbiting a massive black hole sees its orbital structure diffuse on secular timescales as a result of a self-induced resonant relaxation. In the absence of collective effects, such a process is described by the recently derived inhomogeneous multi-mass degenerate Landau equation. Relying on Gauss' method, we computed the associated drift and diffusion coefficients to characterise the properties of the resonant relaxation of razor-thin discs. For a disc-like configuration in our Galactic centre, we showed how this secular diffusion induces an adiabatic distortion of orbits and estimate the typical timescale of resonant relaxation. When considering a disc composed of multiple masses similarly distributed, we have illustrated how the population of lighter stars will gain eccentricity, driving it closer to the central black hole, provided the distribution function increases with angular momentum. The kinetic equation recovers as well the quenching of the resonant diffusion of a test star in the vicinity of the black hole (the "Schwarzschild barrier") as a result of the divergence of the relativistic precessions. The dual stochastic Langevin formulation yields consistent results and offers a versatile framework in which to incorporate other stochastic processes.

  8. Effect of Target Density on Microstructural, Electrical, and Optical Properties of Indium Tin Oxide Thin Films

    NASA Astrophysics Data System (ADS)

    Zhu, Guisheng; Zhi, Li; Yang, Huijuan; Xu, Huarui; Yu, Aibing

    2012-09-01

    In this paper, indium tin oxide (ITO) targets with different densities were used to deposit ITO thin films. The thin films were deposited from these targets at room temperature and annealed at 750°C. Microstructural, electrical, and optical properties of the as-prepared films were studied. It was found that the target density had no effect on the properties or deposition rate of radiofrequency (RF)-sputtered ITO thin films, different from the findings for direct current (DC)-sputtered films. Therefore, when using RF sputtering, the target does not require a high density and may be reused.

  9. Modeling the Conducting Stably-Stratified Layer of the Earth's Core

    NASA Astrophysics Data System (ADS)

    Petitdemange, L.; Philidet, J.; Gissinger, C.

    2017-12-01

    Observations of the Earth magnetic field as well as recent theoretical works tend to show that the Earth's outer liquid core is mostly comprised of a convective zone in which the Earth's magnetic field is generated - likely by dynamo action -, but also features a thin, stably stratified layer at the top of the core.We carry out direct numerical simulations by modeling this thin layer as an axisymmetric spherical Couette flow for a stably stratified fluid embedded in a dipolar magnetic field. The dynamo region is modeled by a conducting inner core rotating slightly faster than the insulating mantle due to magnetic torques acting on it, such that a weak differential rotation (low Rossby limit) can develop in the stably stratified layer.In the case of a non-stratified fluid, the combined action of the differential rotation and the magnetic field leads to the well known regime of `super-rotation', in which the fluid rotates faster than the inner core. Whereas in the classical case, this super-rotation is known to vanish in the magnetostrophic limit, we show here that the fluid stratification significantly extends the magnitude of the super-rotation, keeping this phenomenon relevant for the Earth core. Finally, we study how the shear layers generated by this new state might give birth to magnetohydrodynamic instabilities or waves impacting the secular variations or jerks of the Earth's magnetic field.

  10. Instabilities in a staircase stratified shear flow

    NASA Astrophysics Data System (ADS)

    Ponetti, G.; Balmforth, N. J.; Eaves, T. S.

    2018-01-01

    We study stratified shear flow instability where the density profile takes the form of a staircase of interfaces separating uniform layers. Internal gravity waves riding on density interfaces can resonantly interact due to a background shear flow, resulting in the Taylor-Caulfield instability. The many steps of the density profile permit a multitude of interactions between different interfaces, and a rich variety of Taylor-Caulfield instabilities. We analyse the linear instability of a staircase with piecewise-constant density profile embedded in a background linear shear flow, locating all the unstable modes and identifying the strongest. The interaction between nearest-neighbour interfaces leads to the most unstable modes. The nonlinear dynamics of the instabilities are explored in the long-wavelength, weakly stratified limit (the defect approximation). Unstable modes on adjacent interfaces saturate by rolling up the intervening layer into a distinctive billow. These nonlinear structures coexist when stacked vertically and are bordered by the sharp density gradients that are the remnants of the steps of the original staircase. Horizontal averages remain layer-like.

  11. Direct measurement of density of states in pentacene thin film transistors

    NASA Astrophysics Data System (ADS)

    Yogev, S.; Halpern, E.; Matsubara, R.; Nakamura, M.; Rosenwaks, Y.

    2011-10-01

    We report on direct high lateral resolution measurements of density of states in pentacene thin film transistors using Kelvin probe force microscopy. The measurements were conducted on passivated (hexamethyldisilazane) and unpassivated field effect transistors with 10- and 30-nm-thick pentacene polycrystalline layers. The analysis takes into account both the band bending in the organic film and the trapped charge at the SiO2-pentacene interface. We found that the density of states for the highest occupied molecular orbital band of pentacene film on the treated substrate is Gaussian with a width (variance) of σ=0.07±0.01eV and an exponential tail. The concentration of the density of states in the gap for pentacene on bare SiO2 substrate was larger by one order of magnitude, had a different energy distribution, and induced Fermi level pinning. The results are discussed in view of their effect on pentacene thin film transistors’ performance.

  12. Understanding exchanges across turbulent/stratified zones interfaces

    NASA Astrophysics Data System (ADS)

    Le Bars, M.; Ribeiro, A.; Le Gal, P.; Aurnou, J. M.

    2013-12-01

    In many geophysical and astrophysical situations, a turbulent fluid layer is separated from a stably stratified one by a relatively sharp but deformable interface. Examples include the convective and radiative zones in stars, the atmospheric convective layer and overlying stratosphere, the Earth's outer core... While motions in the stratified layer are often neglected, it actually supports oscillatory motions called gravito-inertial waves (GIW) excited by Reynolds stresses, entropy fluctuations and interface deformations associated with the turbulence. Besides their direct observation as for instance in asteroseismology, GIW transport energy, carry momentum, break, mix... and are thus essential for accurate models of global climate and solar or core dynamics. Global integrated models including length scales and time scales spanning many orders of magnitude are required to fully address motions in turbulent and stratified zones and to understand the details of the highly non-linear couplings between rotation, meridional circulation, turbulence and waves: this is clearly very challenging from both analytical and numerical points of view. Here, we present results from two complementary laboratory experiments using water as a working fluid and salt or temperature to control the buoyancy effects, allowing to address the whole range of relevant physical issues in simplified models. In the first set-up, we take benefit from the unusual property of water that its density has a maximum value near 4oC to study its convective and oscillatory motions in a tank with a bottom boundary at about 0oC and a hotter upper surface. High precision local measurements of temperature fluctuations are performed simultaneously in the convective and stratified zones to produce the corresponding power density spectrum and probability density function. In the second set-up, a turbulent jet generated by injection of water impinges upon the interface between a uniform density layer and a

  13. Planetary Defense From Space: Part 1-Keplerian Theory

    NASA Astrophysics Data System (ADS)

    Maccone, Claudio

    A system of two space bases housing missiles is proposed to achieve the Planetary Defense of the Earth against dangerous asteroids and comets. We show that the layout of the Earth-Moon system with the five relevant Lagrangian (or libration) points in space leads naturally to only one, unmistakable location of these two space bases within the sphere of influence of the Earth. These locations are at the two Lagrangian points L1 (in between the Earth and the Moon) and L3 (in the direction opposite to the Moon from the Earth). We show that placing bases of missiles at L1 and L3 would cause those missiles to deflect the trajectory of asteroids by hitting them orthogonally to their impact trajectory toward the Earth, so as to maximize their deflection. We show that the confocal conics are the best class of trajectories fulfilling this orthogonal deflection requirement. An additional remark is that the theory developed in this paper is just a beginning of a larger set of future research work. In fact, while in this paper we only develop the Keplerian analytical theory of the Optimal Planetary Defense achievable from the Earth-Moon Lagrangian points L1 and L3, much more sophisticated analytical refinements would be needed to: Take into account many perturbation forces of all kinds acting on both the asteroids and missiles shot from L1 and L3; add more (non-optimal) trajectories of missiles shot from either the Lagrangian points L4 and L5 of the Earth-Moon system or from the surface of the Moon itself; encompass the full range of missiles currently available to the US (and possibly other countries) so as to really see "which asteroids could be diverted by which missiles", even in the very simplified scheme outlined here. Outlined for the first time in February 2002, our Confocal Planetary Defense concept is a Keplerian Theory that proved simple enough to catch the attention of scholars, representatives of the US Military and popular writers. These developments could

  14. Dynamo Action in a Quasi-Keplerian Taylor-Couette Flow.

    PubMed

    Guseva, Anna; Hollerbach, Rainer; Willis, Ashley P; Avila, Marc

    2017-10-20

    We numerically compute the flow of an electrically conducting fluid in a Taylor-Couette geometry where the rotation rates of the inner and outer cylinders satisfy Ω_{o}/Ω_{i}=(r_{o}/r_{i})^{-3/2}. In this quasi-Keplerian regime, a nonmagnetic system would be Rayleigh stable for all Reynolds numbers Re, and the resulting purely azimuthal flow incapable of kinematic dynamo action for all magnetic Reynolds numbers Rm. For Re = 10^{4} and Rm=10^{5}, we demonstrate the existence of a finite-amplitude dynamo, whereby a suitable initial condition yields mutually sustaining turbulence and magnetic fields, even though neither could exist without the other. This dynamo solution results in significantly increased outward angular momentum transport, with the bulk of the transport being by Maxwell rather than Reynolds stresses.

  15. Unsteady Shear Disturbances Within a Two Dimensional Stratified Flow

    NASA Technical Reports Server (NTRS)

    Yokota, Jeffrey W.

    1992-01-01

    The origin and evolution of shear disturbances within a stratified, inviscid, incompressible flow are investigated numerically by a Clebsch/Weber decomposition based scheme. In contrast to homogeneous flows, within which vorticity can be redistributed but not generated, the presence of a density stratification can render an otherwise irrotational flow vortical. In this work, a kinematic decomposition of the unsteady Euler equations separates the unsteady velocity field into rotational and irrotational components. The subsequent evolution of these components is used to study the influence various velocity disturbances have on both stratified and homogeneous flows. In particular, the flow within a two-dimensional channel is used to investigate the evolution of rotational disturbances, generated or convected, downstream from an unsteady inflow condition. Contrasting simulations of both stratified and homogeneous flows are used to distinguish between redistributed inflow vorticity and that which is generated by a density stratification.

  16. Variable-density thinning for parks and reserves: An experimental case study at Humboldt Redwoods State Park, California

    Treesearch

    Christopher R. Keyes; Thomas E. Perry; Jesse F. Plummer

    2010-01-01

    Variable-density thinning is emerging as a valuable tool for the silvicultural promotion of old-growth conditions in second-growth forests of the Pacific Coast. This paper reports on an experimental variable-density thinning prescription applied between 2006 and 2007 at north coastal California’s Humboldt Redwoods State Park. The prescription strategy relied on known...

  17. Canopy microclimate response to pattern and density of thinning in a Sierra Nevada forest

    Treesearch

    T. Rambo; M. North

    2009-01-01

    Restoring Sierra Nevada mixed-conifer forests after a century of fire suppression has become an important management priority as fuel reduction thinning has been mandated by the Healthy Forests Restoration Act. However, in mechanically thinned stands there is little information on the effects of different patterns and densities of live-tree retention on forest canopy...

  18. Domain Growth Kinetics in Stratifying Foam Films

    NASA Astrophysics Data System (ADS)

    Zhang, Yiran; Sharma, Vivek

    2015-03-01

    Baking bread, brewing cappuccino, pouring beer, washing dishes, shaving, shampooing, whipping eggs and blowing bubbles all involve creation of aqueous foam films. Typical foam films consist of two surfactant-laden surfaces that are μ 5 nm - 10 micron apart. Sandwiched between these interfacial layers is a fluid that drains primarily under the influence of viscous and interfacial forces, including disjoining pressure. Interestingly, for certain low molecular weight surfactants, a layered ordering of micelles inside the foam films (thickness <100 nm) leads to a stepwise thinning phenomena called stratification. We experimentally elucidate the influence of these different driving forces, and confinement on drainage kinetics of horizontal stratifying foam films. Thinner, darker domains spontaneously grow within foam films. Quantitative characterization of domain growth visualized in a using Scheludko-type thin film cell and a theoretical model based on lubrication analysis, provide critical insights into hydrodynamics of thin foam films, and the strength and nature of surface forces, including supramolecular oscillatory structural forces.

  19. Effects of low-density thinning in a declining white pine stand in Maine

    Treesearch

    William B. Leak; Mariko. Yamasaki

    2013-01-01

    Low-density (32 ft2/acre residual basal area) and medium-low density (60 ft2/acre residual basal area) thinnings were studied over a 4-year period in a declining white pine stand on the Massabesic Experimental Forest in southern Maine. Gross basal area growth at 60 ft2 was about three-fourths the rate...

  20. On the Milankovitch orbital elements for perturbed Keplerian motion

    NASA Astrophysics Data System (ADS)

    Rosengren, Aaron J.; Scheeres, Daniel J.

    2014-03-01

    We consider sets of natural vectorial orbital elements of the Milankovitch type for perturbed Keplerian motion. These elements are closely related to the two vectorial first integrals of the unperturbed two-body problem; namely, the angular momentum vector and the Laplace-Runge-Lenz vector. After a detailed historical discussion of the origin and development of such elements, nonsingular equations for the time variations of these sets of elements under perturbations are established, both in Lagrangian and Gaussian form. After averaging, a compact, elegant, and symmetrical form of secular Milankovitch-like equations is obtained, which reminds of the structure of canonical systems of equations in Hamiltonian mechanics. As an application of this vectorial formulation, we analyze the motion of an object orbiting about a planet (idealized as a point mass moving in a heliocentric elliptical orbit) and subject to solar radiation pressure acceleration (obeying an inverse-square law). We show that the corresponding secular problem is integrable and we give an explicit closed-form solution.

  1. On the stability analysis of sharply stratified shear flows

    NASA Astrophysics Data System (ADS)

    Churilov, Semyon

    2018-05-01

    When the stability of a sharply stratified shear flow is studied, the density profile is usually taken stepwise and a weak stratification between pycnoclines is neglected. As a consequence, in the instability domain of the flow two-sided neutral curves appear such that the waves corresponding to them are neutrally stable, whereas the neighboring waves on either side of the curve are unstable, in contrast with the classical result of Miles (J Fluid Mech 16:209-227, 1963) who proved that in stratified flows unstable oscillations can be only on one side of the neutral curve. In the paper, the contradiction is resolved and changes in the flow stability pattern under transition from a model stepwise to a continuous density profile are analyzed. On this basis, a simple self-consistent algorithm is proposed for studying the stability of sharply stratified shear flows with a continuous density variation and an arbitrary monotonic velocity profile without inflection points. Because our calculations and the algorithm are both based on the method of stability analysis (Churilov J Fluid Mech 539:25-55, 2005; ibid, 617, 301-326, 2008), which differs essentially from usually used, the paper starts with a brief review of the method and results obtained with it.

  2. Ultra-high current density thin-film Si diode

    DOEpatents

    Wang; Qi

    2008-04-22

    A combination of a thin-film .mu.c-Si and a-Si:H containing diode structure characterized by an ultra-high current density that exceeds 1000 A/cm.sup.2, comprising: a substrate; a bottom metal layer disposed on the substrate; an n-layer of .mu.c-Si deposited the bottom metal layer; an i-layer of .mu.c-Si deposited on the n-layer; a buffer layer of a-Si:H deposited on the i-layer, a p-layer of .mu.c-Si deposited on the buffer layer; and a top metal layer deposited on the p-layer.

  3. Tree and understory responses to variable-density thinning in western Washington.

    Treesearch

    Constance A. Harrington; Scott D. Roberts; Leslie C. Brodie

    2005-01-01

    The Olympic Habitat Development Study was initiated in 1994 to evaluate whether active management in 35- to 70-year-old stands could accelerate development of stand structures and plant and animal communities associated with late-successional forests. The study used a variable-density thinning prescription as the main tool to alter stand structure; the prescription...

  4. Boundary layers and global stability of laboratory quasi-Keplerian flow

    NASA Astrophysics Data System (ADS)

    Edlund, E. M.; Ji, H.

    2013-11-01

    Studies in the HTX device at PPPL, a modified Taylor-Couette experiment, have demonstrated a robust stability of astrophysically relevant, quasi-Keplerian flows. Independent rings on the axial boundary can be used to fine tune the rotation profile, allowing ideal Couette rotation to be achieved over nearly the entire radial gap. Fluctuation levels in these flows are observed to be at nearly the noise floor of the laser Doppler velocimetry (LDV) diagnostic, in agreement with prior studies under similar conditions. Deviations from optimal operating parameters illustrate the importance of centrifugally unstable boundary layers in Taylor-Couette devices of the classical configuration where the axial boundaries rotate with the outer cylinder. The global stability of nearly ideal-Couette flows, with implications for astrophysical systems, will be discussed in light of the global stability of these flows with respect to externally applied perturbations of large magnitude.

  5. Antiferroelectric Thin-Film Capacitors with High Energy-Storage Densities, Low Energy Losses, and Fast Discharge Times.

    PubMed

    Ahn, Chang Won; Amarsanaa, Gantsooj; Won, Sung Sik; Chae, Song A; Lee, Dae Su; Kim, Ill Won

    2015-12-09

    We demonstrate a capacitor with high energy densities, low energy losses, fast discharge times, and high temperature stabilities, based on Pb(0.97)Y(0.02)[(Zr(0.6)Sn(0.4))(0.925)Ti(0.075)]O3 (PYZST) antiferroelectric thin-films. PYZST thin-films exhibited a high recoverable energy density of U(reco) = 21.0 J/cm(3) with a high energy-storage efficiency of η = 91.9% under an electric field of 1300 kV/cm, providing faster microsecond discharge times than those of commercial polypropylene capacitors. Moreover, PYZST thin-films exhibited high temperature stabilities with regard to their energy-storage properties over temperatures ranging from room temperature to 100 °C and also exhibited strong charge-discharge fatigue endurance up to 1 × 10(7) cycles.

  6. Excitation of nonaxisymmetric perturbations by the axisymmetric explosive magnetorotational instability in Keplerian discs

    NASA Astrophysics Data System (ADS)

    Shtemler, Yu.; Mond, M.; Liverts, E.

    2018-02-01

    The excitation of nonaxisymmetric quasi-resonant triads by clustering around a dominant axisymmetric explosively unstable magnetorotational instability (MRI) in Keplerian discs is investigated. Clustering, namely, the mutual interactions of a large number of quasi-resonant triads that are connected by a single dominant explosively unstable axisymmetric triad, is invoked in order to provide a viable mechanism for the stabilization of the explosive nature of the latter. The results, however, are of wider scope as the proposed clustering scenario also provides a strong mechanism for the excitation of high-amplitude nonaxisymmetric perturbations. The latter play a major role in the nonlinear evolution of the MRI on the route to fully developed turbulence.

  7. Numerical simulation of stratified flows from laboratory experiments to coastal ocean

    NASA Astrophysics Data System (ADS)

    Fraunie, Philippe

    2014-05-01

    Numeric modeling of a flow past vertical strip uniformly towing with permanent velocity in horizontal direction in a linearly stratified talk which was based on a finite differences solver adapted to the low Reynolds Navier-Stokes equation with transport equation for salinity (LES simulation [6]) has demonstrated reasonable agreement with data of schlieren visualization, density marker and probe measurements of internal wave fields. Another approach based on two different numerical methods for one specific case of stably stratified incompressible flow was developed, using the compact finite-difference discretizations. The numerical scheme itself follows the principle of semi-discretisation, with high order compact discretisation in space, while the time integration is carried out by the Strong Stability Preserving Runge-Kutta scheme. Results were compared against the reference solution obtained by the AUSM finite volume method [7]. The test case allowed demonstrating the ability of selected numerical methods to represent stably stratified flows over horizontal strip [4] and hill type 2D obstacles [1, 3] with generation of internal waves. From previous LES [4] and RANS [8] realistic simulations code, the ability of research codes to reproduce field observations is discussed. ACKNOWLEDGMENTS This research work was supported by Region Provence Alpes Côte d'Azur - Modtercom project, the Research Plan MSM 6840770010 of the Ministry of education of Czech Republic and the Russian Foundation for Basic Research (grant 12-01-00128). REFERENCES 1. Chashechkin Yu.D., Mitkin V.V. Experimental study of a fine structure of 2D wakes and mixing past an obstacle in a continuously stratified fluid // Dynamics of Atmosphere and Oceans. 2001. V. 34. P. 165-187. 2. Chashechkin, Yu. D. Hydrodynamics of a sphere in a stratified fluid // Fluid Dyn. 1989. V.24(1) P. 1-7. 3. Mitkin V. V., Chashechkin Yu. D. Transformation of hanging discontinuities into vortex systems in a stratified flow

  8. PHYSICAL CHARACTERISTICS AND NON-KEPLERIAN ORBITAL MOTION OF 'PROPELLER' MOONS EMBEDDED IN SATURN'S RINGS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tiscareno, Matthew S.; Burns, Joseph A.; Hedman, Matthew M.

    2010-08-01

    We report the discovery of several large 'propeller' moons in the outer part of Saturn's A ring, objects large enough to be followed over the 5 year duration of the Cassini mission. These are the first objects ever discovered that can be tracked as individual moons, but do not orbit in empty space. We infer sizes up to 1-2 km for the unseen moonlets at the center of the propeller-shaped structures, though many structural and photometric properties of propeller structures remain unclear. Finally, we demonstrate that some propellers undergo sustained non-Keplerian orbit motion.

  9. Polycrystalline Superconducting Thin Films: Texture Control and Critical Current Density

    NASA Astrophysics Data System (ADS)

    Yang, Feng

    1995-01-01

    The growth processes of polycrystalline rm YBa_2CU_3O_{7-X} (YBCO) and yttria-stabilized-zirconia (YSZ) thin films have been developed. The effectiveness of YSZ buffer layers on suppression of the reaction between YBCO thin films and metallic substrates was carefully studied. Grown on the chemically inert surfaces of YSZ buffer layers, YBCO thin films possessed good quality of c-axis alignment with the c axis parallel to the substrate normal, but without any preferred in-plane orientations. This leads to the existence of a large percentage of the high-angle grain boundaries in the YBCO films. The critical current densities (rm J_{c}'s) found in these films were much lower than those in single crystal YBCO thin films, which was the consequence of the weak -link effect of the high-angle grain boundaries in these films. It became clear that the in-plane alignment is vital for achieving high rm J_{c }s in polycrystalline YBCO thin films. To induce the in-plane alignment, ion beam-assisted deposition (IBAD) technique was integrated into the conventional pulsed laser deposition process for the growth of the YSZ buffer layers. It was demonstrated that using IBAD the in-plane orientations of the YSZ grains could be controlled within a certain range of a common direction. This ion -bombardment induced in-plane texturing was explained using the anisotropic sputtering yield theory. Our observations and analyses have provided valuable information on the optimization of the IBAD process, and shed light on the texturing mechanism in YSZ. With the in-plane aligned YSZ buffer layers, YBCO thin films grown on metallic substrates showed improved rm J_{c}s. It was found that the in-plane alignment of YSZ and that of YBCO were closely related. A direct correlation was revealed between the rm J_{c} value and the degree of the in-plane alignment for the YBCO thin films. To explain this correlation, a numerical model was applied to multi-grain superconducting paths with different

  10. Radiation-pressure-driven sub-Keplerian rotation of the disc around the AGB star L2 Pup

    NASA Astrophysics Data System (ADS)

    Haworth, Thomas J.; Booth, Richard A.; Homan, Ward; Decin, Leen; Clarke, Cathie J.; Mohanty, Subhanjoy

    2018-01-01

    We study the sub-Keplerian rotation and dust content of the circumstellar material around the asymptotic giant branch (AGB) star L2 Puppis. We find that the thermal pressure gradient alone cannot explain the observed rotation profile. We find that there is a family of possible dust populations for which radiation pressure can drive the observed sub-Keplerian rotation. This set of solutions is further constrained by the spectral energy distribution (SED) of the system, and we find that a dust-to-gas mass ratio of ∼10-3 and a maximum grain size that decreases radially outwards can satisfy both the rotation curve and SED. These dust populations are dynamically tightly coupled to the gas azimuthally. However, grains larger than ∼ 0.5 μm are driven outwards radially by radiation pressure at velocities ∼5 km s-1, which implies a dust replenishment rate of ∼3 × 10-9 M⊙ yr-1. This replenishment rate is consistent with observational estimates to within uncertainties. Coupling between the radial motion of the dust and gas is weak and hence the gas does not share in this rapid outward motion. Overall, we conclude that radiation pressure is a capable and necessary mechanism to explain the observed rotation profile of L2 Pup, and offers other additional constraints on the dust properties.

  11. On the rising motion of a drop in stratified fluids

    NASA Astrophysics Data System (ADS)

    Bayareh, M.; Doostmohammadi, A.; Dabiri, S.; Ardekani, A. M.

    2013-10-01

    The rising dynamics of a deformable drop in a linearly stratified fluid is numerically obtained using a finite-volume/front-tracking method. Our results show that the drag coefficient of a spherical drop in a stratified fluid enhances as C_{d,s}/C_{d,h}-1˜ Fr_d^{-2.86} for drop Froude numbers in the range of 4 < Frd < 16. The role of the deformability of the drop on the temporal evolution of the motion is investigated along with stratification and inertial effects. We also present the important role of stratification on the transient rising motion of the drop. It is shown that a drop can levitate in the presence of a vertical density gradient. The drop undergoes a fading oscillatory motion around its neutrally buoyant position except for high viscosity ratio drops where the oscillation occurs around a density level lighter than the neutral buoyancy level. In addition, a detailed characterization of the flow signature of a rising drop in a linearly stratified fluid including the buoyancy induced vortices and the resultant buoyant jet is presented.

  12. Unique Non-Keplerian Orbit Vantage Locations for Sun-Earth Connection and Earth Science Vision Roadmaps

    NASA Technical Reports Server (NTRS)

    Folta, David; Young, Corissa; Ross, Adam

    2001-01-01

    The purpose of this investigation is to determine the feasibility of attaining and maintaining unique non-Keplerian orbit vantage locations in the Earth/Moon environment in order to obtain continuous scientific measurements. The principal difficulty associated with obtaining continuous measurements is the temporal nature of astrodynamics, i.e., classical orbits. This investigation demonstrates advanced trajectory designs to meet demanding science requirements which cannot be met following traditional orbital mechanic logic. Examples of continuous observer missions addressed include Earth pole-sitters and unique vertical libration orbits that address Sun-Earth Connection and Earth Science Vision roadmaps.

  13. Flow and transport within a coastal aquifer adjacent to a stratified water body

    NASA Astrophysics Data System (ADS)

    Oz, Imri; Yechieli, Yoseph; Eyal, Shalev; Gavrieli, Ittai; Gvirtzman, Haim

    2016-04-01

    The existence of a freshwater-saltwater interface and the circulation flow of saltwater beneath the interface is a well-known phenomenon found at coastal aquifers. This flow is a natural phenomenon that occurs due to density differences between fresh groundwater and the saltwater body. The goals of this research are to use analytical, numerical, and physical models in order to examine the configuration of the freshwater-saltwater interface and the density-driven flow patterns within a coastal aquifer adjacent to long-term stratified saltwater bodies (e.g. meromictic lake). Such hydrological systems are unique, as they consist of three different water types: the regional fresh groundwater, and low and high salinity brines forming the upper and lower water layers of the stratified water body, respectively. This research also aims to examine the influence of such stratification on hydrogeological processes within the coastal aquifer. The coastal aquifer adjacent to the Dead Sea, under its possible future meromictic conditions, serves as an ideal example to examine these processes. The results show that adjacent to a stratified saltwater body three interfaces between three different water bodies are formed, and that a complex flow system, controlled by the density differences, is created, where three circulation cells are developed. These results are significantly different from the classic circulation cell that is found adjacent to non-stratified water bodies (lakes or oceans). In order to obtain a more generalized insight into the groundwater behavior adjacent to a stratified water body, we used the numerical model to perform sensitivity analysis. The hydrological system was found be sensitive to three dimensionless parameters: dimensionless density (i.e. the relative density of the three water bodies'); dimensionless thickness (i.e. the ratio between the relative thickness of the upper layer and the whole thickness of the lake); and dimensionless flux. The results

  14. Corneal endothelial cell density after femtosecond thin-flap LASIK and PRK for myopia: a contralateral eye study.

    PubMed

    Smith, Ryan T; Waring, George O; Durrie, Daniel S; Stahl, Jason E; Thomas, Priscilla

    2009-12-01

    To compare the effect of femtosecond thinflap LASIK and photorefractive keratectomy (PRK) on postoperative endothelial cell density. In a prospective, randomized, contralateral, single-center clinical trial, 25 patients (mean age: 30+/-5 years [range: 21 to 38 years]) underwent PRK in one eye and thin-flap LASIK in the fellow eye for the correction of myopia using a wavefront-guided platform. The central corneal endothelial cell density was measured using the NIDEK Confoscan 4 preoperatively, and at 1 and 3 months postoperatively. Changes in endothelial cell density were analyzed over time between the two refractive techniques. In PRK, the average preoperative endothelial cell density was 3011+/-329 cells/mm(2), which decreased to 2951+/-327 cells/mm(2) at 1 month (P=.5736) and 2982+/-365 cells/mm(2) at 3 months (P=.6513). In thinflap LASIK, the average preoperative endothelial cell density was 2995+/-325 cells/mm(2), which decreased to 2977+/-358 cells/mm(2) at 1 month (P=.5756) and 2931+/-369 cells/mm(2) at 3 months (P=.4106). No statistically significant difference was found between the two groups at 1 (P=.7404) or 3 (P=.3208) months postoperatively. No statistically significant change was noted in endothelial cell density following either PRK or thin-flap LASIK for the treatment of myopia. Furthermore, no statistically significant difference was found between the two groups out to 3 months postoperatively, indicating that thin-flap LASIK is as safe as PRK with regards to endothelial health.

  15. Optical Probe of the Density of Defect States in Organic Thin-Film Transistors

    NASA Astrophysics Data System (ADS)

    Breban, Mihaela; Romero, Danilo; Ballarotto, Vincent; Williams, Ellen

    2006-03-01

    We investigate the role of defect states associated with different gate dielectric materials on charge transport in organic thin film transistors. Using a modulation technique we measure the magnitude and the phase of the photocurrent^1 in pentacene thin film transistors as a function of the modulation frequency. The photocurrent generation process is modeled as exciton dissociation due to interaction with localized traps. A time domain analyses of this multi-step process allows us to extract the density of defect states. We use this technique to compare the physical mechanism underlying performances of pentacene devices fabricated with different dielectric materials. *Supported by the Laboratory for Physical Science ^1 M. Breban, et al. ``Photocurrent probe of field-dependent mobility in organic thin-film transistors'' Appl. Phys. Letts. 87, 203503 (2005)

  16. Ecosystem responses to variable-density thinning for forest restoration in Mill Creek

    Treesearch

    Lathrop P. Leonard; John-Pascal Berrill; Christa M. Dagley

    2017-01-01

    Variable-density thinning (VDT) has promise as a forest restoration tool that accelerates development of old-growth redwood (Sequoia sempervirens (D.Don) Endl.) forest characteristics (O’Hara et al. 2010) but can lead to bear damage in north coastal California (Hosack and Fulgham 1998, Perry et al. 2016). Three novel VDT prescriptions (O’...

  17. Effects of cultural intensity and density regime treatment on post-thinning loblolly pine individual tree DBH increment in the lower coastal plain of the southeastern United States

    Treesearch

    John T. Perren; Michael Kane; Dehai Zhao; Richard Daniels

    2016-01-01

    Thinning is a well understood concept used to manage density dependent factors at the stand level. This study evaluates the effect of planting density, cultural intensity, and thinning treatment on loblolly pine post-thinning individual tree development. The Lower Coastal Plain Culture/Density Study, has four initial densities, in combination with two cultural...

  18. White dwarf stars with chemically stratified atmospheres

    NASA Technical Reports Server (NTRS)

    Muchmore, D.

    1982-01-01

    Recent observations and theory suggest that some white dwarfs may have chemically stratified atmospheres - thin layers of hydrogen lying above helium-rich envelopes. Models of such atmospheres show that a discontinuous temperature inversion can occur at the boundary between the layers. Model spectra for layered atmospheres at 30,000 K and 50,000 K tend to have smaller decrements at 912 A, 504 A, and 228 A than uniform atmospheres would have. On the basis of their continuous extreme ultraviolet spectra, it is possible to distinguish observationally between uniform and layered atmospheres for hot white dwarfs.

  19. Preliminary thinning guidelines using stand density index for the maintenance of uneven-aged pinyon-juniper ecosystems

    Treesearch

    Douglas H. Page

    2008-01-01

    This paper demonstrates how Stand Density Index may be used to guide postthinning stand structure for the sustainable management of pinyon-juniper ecosystems. The post-thinning residual stand density can be varied to achieve various management objectives. Uneven-aged management is recommended, where possible, as a better approximation of the natural development process...

  20. Visualizing Nanoscopic Topography and Patterns in Freely Standing Thin Films

    NASA Astrophysics Data System (ADS)

    Yilixiati, Subinuer; Zhang, Yiran; Pearsall, Collin; Sharma, Vivek

    Thin liquid films containing micelles, nanoparticles, polyelectrolyte-surfactant complexes and smectic liquid crystals undergo thinning in a discontinuous, step-wise fashion. The discontinuous jumps in thickness are often characterized by quantifying changes in the intensity of reflected monochromatic light, modulated by thin film interference from a region of interest. Stratifying thin films exhibit a mosaic pattern in reflected white light microscopy, attributed to the coexistence of domains with various thicknesses, separated by steps. Using Interferometry Digital Imaging Optical Microscopy (IDIOM) protocols developed in the course of this study, we spatially resolve for the first time, the landscape of stratifying freestanding thin films. In particular, for thin films containing micelles of sodium dodecyl sulfate (SDS), discontinuous, thickness transitions with concentration-dependent steps of 5-25 nm are visualized and analyzed using IDIOM protocols. We distinguish nanoscopic rims, mesas and craters and show that the non-flat features are sculpted by oscillatory, periodic, supramolecular structural forces that arise in confined fluids

  1. Growth of western larch after thinning from above and below to several density levels: 10-year results.

    Treesearch

    K.W. Seidel

    1980-01-01

    The 10-year growth of a 55-year-old, even-aged western larch (Larix occidentalis Nutt.) stand after it was thinned from above and below to a wide range of stocking levels was measured in eastern Oregon. Basal area and volume growth increased as stand density increased for both thinning methods. Despite heavy infestations of the larch casebearer...

  2. Appearance of Keplerian discs orbiting Kerr superspinars

    NASA Astrophysics Data System (ADS)

    Stuchlík, Zdeněk; Schee, Jan

    2010-11-01

    We study optical phenomena related to the appearance of Keplerian accretion discs orbiting Kerr superspinars predicted by string theory. The superspinar exterior is described by standard Kerr naked singularity geometry breaking the black hole limit on the internal angular momentum (spin). We construct local photon escape cones for a variety of orbiting sources that enable us to determine the superspinars silhouette in the case of distant observers. We show that the superspinar silhouette depends strongly on the assumed edge where the external Kerr spacetime is joined to the internal spacetime governed by string theory and significantly differs from the black hole silhouette. The appearance of the accretion disc is strongly dependent on the value of the superspinar spin in both their shape and frequency shift profile. Apparent extension of the disc grows significantly with the growing spin, while the frequency shift grows with the descending spin. This behaviour differs substantially from the appearance of discs orbiting black holes enabling thus, at least in principle, to distinguish clearly the Kerr superspinars and black holes. In vicinity of a Kerr superspinar the non-escaped photons have to be separated to those captured by the superspinar and those being trapped in its strong gravitational field leading to self-illumination of the disc that could even influence its structure and cause self-reflection effect of radiation of the disc. The amount of trapped photons grows with descending superspinar spin. We thus can expect significant self-illumination effects in the field of Kerr superspinars with near-extreme spin a ~ 1.

  3. Individual tree growth response to variable-density thinning in coastal Pacific Northwest forests.

    Treesearch

    Scott D.s Roberts; Constance A. Harrington

    2008-01-01

    We examined 5-year basal area growth of nearly 2600 trees in stem-mapped plots at five locations differing in site characteristics, species composition, and management history on the Olympic Peninsula in Western Washington, USA. Our objectives were to determine if internal edges, the boundaries within the stand between components of the variable-density thinning,...

  4. Buoyant miscible displacement flow of shear-thinning fluids: Experiments and Simulations

    NASA Astrophysics Data System (ADS)

    Ale Etrati Khosroshahi, Seyed Ali; Frigaard, Ian

    2017-11-01

    We study displacement flow of two miscible fluids with density and viscosity contrast in an inclined pipe. Our focus is mainly on displacements where transverse mixing is not significant and thus a two-layer, stratified flow develops. Our experiments are carried out in a long pipe, covering a wide range of flow-rates, inclination angles and viscosity ratios. Density and viscosity contrasts are achieved by adding Glycerol and Xanthan gum to water, respectively. At each angle, flow rate and viscosity ratio are varied and density contrast is fixed. We identify and map different flow regimes, instabilities and front dynamics based on Fr , Re / Frcosβ and viscosity ratio m. The problem is also studied numerically to get a better insight into the flow structure and shear-thinning effects. Numerical simulations are completed using OpenFOAM in both pipe and channel geometries and are compared against the experiments. Schlumberger, NSERC.

  5. Characterization of forced response of density stratified reacting wake

    NASA Astrophysics Data System (ADS)

    Pawar, Samadhan A.; Sujith, Raman I.; Emerson, Benjamin; Lieuwen, Tim

    2018-02-01

    The hydrodynamic stability of a reacting wake depends primarily on the density ratio [i.e., ratio of unburnt gas density (ρu) to burnt gas density (ρb)] of the flow across the wake. The variation of the density ratio from high to low value, keeping ρ u / ρ b > 1 , transitions dynamical characteristics of the reacting wake from a linearly globally stable (or convectively unstable) to a globally unstable mode. In this paper, we propose a framework to analyze the effect of harmonic forcing on the deterministic and synchronization characteristics of reacting wakes. Using the recurrence quantification analysis of the forced wake response, we show that the deterministic behaviour of the reacting wake increases as the amplitude of forcing is increased. Furthermore, for different density ratios, we found that the synchronization of the top and bottom branches of the wake with the forcing signal is dependent on whether the mean frequency of the natural oscillations of the wake (fn) is lesser or greater than the frequency of external forcing (ff). We notice that the response of both branches (top and bottom) of the reacting wake to the external forcing is asymmetric and symmetric for the low and high density ratios, respectively. Furthermore, we characterize the phase-locking behaviour between the top and bottom branches of the wake for different values of density ratios. We observe that an increase in the density ratio results in a gradual decrease in the relative phase angle between the top and bottom branches of the wake, which leads to a change in the vortex shedding pattern from a sinuous (anti-phase) to a varicose (in-phase) mode of the oscillations.

  6. Free Falling in Stratified Fluids

    NASA Astrophysics Data System (ADS)

    Lam, Try; Vincent, Lionel; Kanso, Eva

    2017-11-01

    Leaves falling in air and discs falling in water are examples of unsteady descents due to complex interaction between gravitational and aerodynamic forces. Understanding these descent modes is relevant to many branches of engineering and science such as estimating the behavior of re-entry space vehicles to studying biomechanics of seed dispersion. For regularly shaped objects falling in homogenous fluids, the motion is relatively well understood. However, less is known about how density stratification of the fluid medium affects the falling behavior. Here, we experimentally investigate the descent of discs in both pure water and in stable linearly stratified fluids for Froude numbers Fr 1 and Reynolds numbers Re between 1000 -2000. We found that stable stratification (1) enhances the radial dispersion of the disc at landing, (2) increases the descent time, (3) decreases the inclination (or nutation) angle, and (4) decreases the fluttering amplitude while falling. We conclude by commenting on how the corresponding information can be used as a predictive model for objects free falling in stratified fluids.

  7. Investigation of light induced effect on density of states of Pb doped CdSe thin films

    NASA Astrophysics Data System (ADS)

    Kaur, Jagdish; Singh, Baljinder; Tripathi, S. K.

    2016-05-01

    Thin films of Pb doped CdSe are deposited on the glass substrates by thermal evaporation technique using inert gas condensation method. The prepared thin films are light soaked under vacuum of 2×10-3 mbar for two hour. The absorption coefficient in the sub-band gap region has been studied using Constant Photocurrent Method (CPM). The absorption coefficient in the sub-band gap region follows an exponential Urbach tail. The value of Urbach energy and number density of defect states have been calculated from the absorption coefficient in the sub-band gap region and found to increase after light soaking treatment. The energy distribution of the occupied density of states below Fermi level has been evaluated using derivative procedure of the absorption coefficient.

  8. Stabilizing laser energy density on a target during pulsed laser deposition of thin films

    DOEpatents

    Dowden, Paul C.; Jia, Quanxi

    2016-05-31

    A process for stabilizing laser energy density on a target surface during pulsed laser deposition of thin films controls the focused laser spot on the target. The process involves imaging an image-aperture positioned in the beamline. This eliminates changes in the beam dimensions of the laser. A continuously variable attenuator located in between the output of the laser and the imaged image-aperture adjusts the energy to a desired level by running the laser in a "constant voltage" mode. The process provides reproducibility and controllability for deposition of electronic thin films by pulsed laser deposition.

  9. Novel technique of making thin target foil of high density material via rolling method

    NASA Astrophysics Data System (ADS)

    Gupta, C. K.; Rohilla, Aman; Singh, R. P.; Singh, Gurjot; Chamoli, S. K.

    2018-05-01

    The conventional rolling method fails to yield good quality thin foils of thicknesses less than 2 mg/cm2 for high density materials with Z ≥ 70 (e.g. gold, lead). A special and improved technique has been developed to obtain such low thickness good quality gold foils by rolling method. Using this technique thin gold foils of thickness in the range of 0.850-2.5 mg/cm2 were obtained in the present work. By making use of alcohol during rolling, foils of thickness 1 mg/cm2 can be obtained in shorter time with less effort.

  10. Characterization and modeling of turbidity density plume induced into stratified reservoir by flood runoffs.

    PubMed

    Chung, S W; Lee, H S

    2009-01-01

    In monsoon climate area, turbidity flows typically induced by flood runoffs cause numerous environmental impacts such as impairment of fish habitat and river attraction, and degradation of water supply efficiency. This study was aimed to characterize the physical dynamics of turbidity plume induced into a stratified reservoir using field monitoring and numerical simulations, and to assess the effect of different withdrawal scenarios on the control of downstream water quality. Three different turbidity models (RUN1, RUN2, RUN3) were developed based on a two-dimensional laterally averaged hydrodynamic and transport model, and validated against field data. RUN1 assumed constant settling velocity of suspended sediment, while RUN2 estimated the settling velocity as a function of particle size, density, and water temperature to consider vertical stratification. RUN3 included a lumped first-order turbidity attenuation rate taking into account the effects of particles aggregation and degradable organic particles. RUN3 showed best performance in replicating the observed variations of in-reservoir and release turbidity. Numerical experiments implemented to assess the effectiveness of different withdrawal depths showed that the alterations of withdrawal depth can modify the pathway and flow regimes of the turbidity plume, but its effect on the control of release water quality could be trivial.

  11. Formation of temperature front in stably stratified turbulence

    NASA Astrophysics Data System (ADS)

    Kimura, Yoshifumi; Sullivan, Peter; Herring, Jackson

    2016-11-01

    An important feature of stably stratified turbulence is the significant influence of internal gravity waves which makes stably stratified turbulence unique compared to homogeneous isotropic turbulence. In this paper, we investigate the genesis of temperature fronts-a crucial subject both practically and fundamentally-in stably stratified turbulence using Direct Numerical Simulations (DNS) of the Navier-Stokes equation under the Boussinesq approximation with 10243 grid points. Vertical profiles of temperature fluctuations show almost vertically periodic sawtooth wavy structures with negative and positive layers stacked together with clear boundaries implying a sharp temperature fronts. The sawtooth waves consist of gradual decreasing temperature fluctuations with rapid recovery to a positive value as the frontal boundary is crossed vertically. This asymmetry of gradients comes from the structure that warm temperature region lies on top of cool temperature region, and can be verified in the skewed probability density function (PDF) of vertical temperature gradient. We try to extract the flow structures and mechanism for the formation and maintenance of the strong temperature front numerically.

  12. Visualizing Nanoscopic Topography and Patterns in Freely Standing Thin Films

    NASA Astrophysics Data System (ADS)

    Sharma, Vivek; Zhang, Yiran; Yilixiati, Subinuer

    Thin liquid films containing micelles, nanoparticles, polyelectrolyte-surfactant complexes and smectic liquid crystals undergo thinning in a discontinuous, step-wise fashion. The discontinuous jumps in thickness are often characterized by quantifying changes in the intensity of reflected monochromatic light, modulated by thin film interference from a region of interest. Stratifying thin films exhibit a mosaic pattern in reflected white light microscopy, attributed to the coexistence of domains with various thicknesses, separated by steps. Using Interferometry Digital Imaging Optical Microscopy (IDIOM) protocols developed in the course of this study, we spatially resolve for the first time, the landscape of stratifying freely standing thin films. We distinguish nanoscopic rims, mesas and craters, and follow their emergence and growth. In particular, for thin films containing micelles of sodium dodecyl sulfate (SDS), these topological features involve discontinuous, thickness transitions with concentration-dependent steps of 5-25 nm. These non-flat features result from oscillatory, periodic, supramolecular structural forces that arise in confined fluids, and arise due to complex coupling of hydrodynamic and thermodynamic effects at the nanoscale.

  13. The growth and breakdown of a vortex-pair in a stably stratified fluid

    NASA Astrophysics Data System (ADS)

    Advaith, S.; Tinaikar, Aashay; Manu, K. V.; Basu, Saptarshi

    2017-11-01

    Vortex interaction with density stratification is ubiquitous in nature and applied to various engineering applications. Present study have characterized the spatial and temporal dynamics of the interaction between a vortex and a density stratified interface. The present work is prompted by our research on single tank Thermal Energy Storage (TES) system used in concentrated solar power (CSP) plants where hot and cold fluids are separated by means of density stratification. Rigorous qualitative (High speed Shadowgraph) and quantitative (high speed PIV) studies enable us to have great understanding about vortex formation, propagation, interaction dynamics with density stratified interface, resulted plume characteristics and so on. We have categorized this interaction phenomena in to three different cases based on its nature as non-penetrative, partial penetrative and extensively penetrative. Along with that we have proposed a regime map consisting non-dimensional parameters like Reynolds, Richardson and Atwood numbers which predicts the occurrence above mentioned cases.

  14. Does variable-density thinning increase wind damage in conifer stands on the Olympic Peninsula?

    Treesearch

    S.D. Roberts; C.A. Harrington; K.R. Buermeyer

    2007-01-01

    Silvicultural treatments designed to enhance stand structural diversity may result in increased wind damage. The ability to avoid conditions that might lead to excessive wind damage would benefit forest managers. We analyzed wind damage following implementation of a variable-density thinning at four sites on the Olympic National Forest in northwest Washington. The...

  15. Mapping of trap densities and hotspots in pentacene thin-film transistors by frequency-resolved scanning photoresponse microscopy.

    PubMed

    Westermeier, Christian; Fiebig, Matthias; Nickel, Bert

    2013-10-25

    Frequency-resolved scanning photoresponse microscopy of pentacene thin-film transistors is reported. The photoresponse pattern maps the in-plane distribution of trap states which is superimposed by the level of trap filling adjusted by the gate voltage of the transistor. Local hotspots in the photoresponse map thus indicate areas of high trap densities within the pentacene thin film. © 2013 WILEY-VCH Verlag GmbH 8 Co. KGaA, Weinheim.

  16. Galactic Spiral Shocks with Thermal Instability in Vertically Stratified Galactic Disks

    NASA Astrophysics Data System (ADS)

    Kim, Chang-Goo; Kim, Woong-Tae; Ostriker, Eve C.

    2010-09-01

    Galactic spiral shocks are dominant morphological features and believed to be responsible for substructure formation within spiral arms in disk galaxies. They can also contribute a substantial amount of kinetic energy to the interstellar gas by tapping the (differential) rotational motion. We use numerical hydrodynamic simulations to investigate dynamics and structure of spiral shocks with thermal instability (TI) in vertically stratified galactic disks, focusing on environmental conditions (of heating and the galactic potential) similar to the Solar neighborhood. We initially consider an isothermal disk in vertical hydrostatic equilibrium and let it evolve subject to interstellar cooling and heating as well as a stellar spiral potential. Due to TI, a disk with surface density Σ0 >= 6.7 M sun pc-2 rapidly turns to a thin dense slab near the midplane sandwiched between layers of rarefied gas. The imposed spiral potential leads to a vertically curved shock that exhibits strong flapping motions in the plane perpendicular to the arm. The overall flow structure at saturation is comprised of the arm, postshock expansion zone, and interarm regions that occupy typically 10%, 20%, and 70% of the arm-to-arm distance, in which the gas resides for 15%, 30%, and 55% of the arm-to-arm crossing time, respectively. The flows are characterized by transitions from rarefied to dense phases at the shock and from dense to rarefied phases in the postshock expansion zone, although gas with too-large postshock-density does not undergo this return phase transition, instead forming dense condensations. If self-gravity is omitted, the shock flapping drives random motions in the gas, but only up to ~2-3 km s-1 in the in-plane direction and less than 2 km s-1 in the vertical direction. Time-averaged shock profiles show that the spiral arms in stratified disks are broader and less dense compared to those in unstratified models, and that the vertical density distribution is overall consistent

  17. Analysis of Wave Propagation in Stratified Structures Using Circuit Analogues, with Application to Electromagnetic Absorbers

    ERIC Educational Resources Information Center

    Sjoberg, Daniel

    2008-01-01

    This paper presents an overview of how circuit models can be used for analysing wave propagation in stratified structures. Relatively complex structures can be analysed using models which are accessible to undergraduate students. Homogeneous slabs are modelled as transmission lines, and thin sheets between the slabs are modelled as lumped…

  18. 40 CFR Appendix B to Subpart II to... - Maximum Allowable Thinning Rates as a Function of As Supplied VOC Content and Thinner Density

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 10 2010-07-01 2010-07-01 false Maximum Allowable Thinning Rates as a Function of As Supplied VOC Content and Thinner Density B Appendix B to Subpart II to Part 63 Protection of...—Maximum Allowable Thinning Rates as a Function of As Supplied VOC Content and Thinner Density EC01MY92.046 ...

  19. 40 CFR Appendix B to Subpart II to... - Maximum Allowable Thinning Rates as a Function of As Supplied VOC Content and Thinner Density

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 11 2012-07-01 2012-07-01 false Maximum Allowable Thinning Rates as a Function of As Supplied VOC Content and Thinner Density B Appendix B to Subpart II to Part 63 Protection of...—Maximum Allowable Thinning Rates as a Function of As Supplied VOC Content and Thinner Density EC01MY92.046 ...

  20. 40 CFR Appendix B to Subpart II of... - Maximum Allowable Thinning Rates as a Function of As Supplied VOC Content and Thinner Density

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 11 2014-07-01 2014-07-01 false Maximum Allowable Thinning Rates as a Function of As Supplied VOC Content and Thinner Density B Appendix B to Subpart II of Part 63 Protection of...—Maximum Allowable Thinning Rates as a Function of As Supplied VOC Content and Thinner Density EC01MY92.046 ...

  1. Calculation of periodic flows in a continuously stratified fluid

    NASA Astrophysics Data System (ADS)

    Vasiliev, A.

    2012-04-01

    Analytic theory of disturbances generated by an oscillating compact source in a viscous continuously stratified fluid was constructed. Exact solution of the internal waves generation problem was constructed taking into account diffusivity effects. This analysis is based on set of fundamental equations of incompressible flows. The linearized problem of periodic flows in a continuously stratified fluid, generated by an oscillating part of the inclined plane was solved by methods of singular perturbation theory. A rectangular or disc placed on a sloping plane and oscillating linearly in an arbitrary direction was selected as a source of disturbances. The solutions include regularly perturbed on dissipative component functions describing internal waves and a family of singularly perturbed functions. One of the functions from the singular components family has an analogue in a homogeneous fluid that is a periodic or Stokes' flow. Its thickness is defined by a universal micro scale depending on kinematics viscosity coefficient and a buoyancy frequency with a factor depending on the wave slope. Other singular perturbed functions are specific for stratified flows. Their thickness are defined the diffusion coefficient, kinematic viscosity and additional factor depending on geometry of the problem. Fields of fluid density, velocity, vorticity, pressure, energy density and flux as well as forces acting on the source are calculated for different types of the sources. It is shown that most effective source of waves is the bi-piston. Complete 3D problem is transformed in various limiting cases that are into 2D problem for source in stratified or homogeneous fluid and the Stokes problem for an oscillating infinite plane. The case of the "critical" angle that is equality of the emitting surface and the wave cone slope angles needs in separate investigations. In this case, the number of singular component is saved. Patterns of velocity and density fields were constructed and

  2. Reynolds number scaling of the influence of boundary layers on the global behavior of laboratory quasi-Keplerian flows

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Edlund, E. M.; Ji, H.

    2015-10-06

    Here, we present fluid velocity measurements in a modified Taylor-Couette device operated in the quasi-Keplerian regime, where it is observed that nearly ideal flows exhibit self-similarity under scaling of the Reynolds number. In contrast, nonideal flows show progressive departure from ideal Couette as the Reynolds number is increased. We present a model that describes the observed departures from ideal Couette rotation as a function of the fluxes of angular momentum across the boundaries, capturing the dependence on Reynolds number and boundary conditions.

  3. Reynolds number scaling of the influence of boundary layers on the global behavior of laboratory quasi-Keplerian flows.

    PubMed

    Edlund, E M; Ji, H

    2015-10-01

    We present fluid velocity measurements in a modified Taylor-Couette device operated in the quasi-Keplerian regime, where it is observed that nearly ideal flows exhibit self-similarity under scaling of the Reynolds number. In contrast, nonideal flows show progressive departure from ideal Couette as the Reynolds number is increased. We present a model that describes the observed departures from ideal Couette rotation as a function of the fluxes of angular momentum across the boundaries, capturing the dependence on Reynolds number and boundary conditions.

  4. Position Extrema in Keplerian Relative Motion: A Gröbner Basis Approach

    NASA Astrophysics Data System (ADS)

    Allgeier, Shawn E.; Fitz-Coy, Norman G.; Erwin, R. Scott

    2012-12-01

    This paper analyzes the relative motion between two spacecraft in orbit. Specifically, the paper provides bounds for relative spacecraft position-based measures which impact spacecraft formation-flight mission design and analysis. Previous efforts have provided bounds for the separation distance between two spacecraft. This paper presents a methodology for bounding the local vertical, horizontal, and cross track components of the relative position vector in a spacecraft centered, rotating reference frame. Three metrics are derived and a methodology for bounding them is presented. The solution of the extremal equations for the metrics is formulated as an affine variety and obtained using a Gröbner basis reduction. No approximations are utilized and the only assumption is that the two spacecraft are in bound Keplerian orbits. Numerical examples are included to demonstrate the efficacy of the method. The metrics have utility to the mission designer of formation flight architectures, with relevance to Earth observation constellations.

  5. Foldable interpenetrated metal-organic frameworks/carbon nanotubes thin film for lithium-sulfur batteries

    NASA Astrophysics Data System (ADS)

    Mao, Yiyin; Li, Gaoran; Guo, Yi; Li, Zhoupeng; Liang, Chengdu; Peng, Xinsheng; Lin, Zhan

    2017-03-01

    Lithium-sulfur batteries are promising technologies for powering flexible devices due to their high energy density, low cost and environmental friendliness, when the insulating nature, shuttle effect and volume expansion of sulfur electrodes are well addressed. Here, we report a strategy of using foldable interpenetrated metal-organic frameworks/carbon nanotubes thin film for binder-free advanced lithium-sulfur batteries through a facile confinement conversion. The carbon nanotubes interpenetrate through the metal-organic frameworks crystal and interweave the electrode into a stratified structure to provide both conductivity and structural integrity, while the highly porous metal-organic frameworks endow the electrode with strong sulfur confinement to achieve good cyclability. These hierarchical porous interpenetrated three-dimensional conductive networks with well confined S8 lead to high sulfur loading and utilization, as well as high volumetric energy density.

  6. Lianas escape self-thinning: Experimental evidence of positive density dependence in temperate lianas Celastrus orbiculatus and C. scandens

    USGS Publications Warehouse

    Leicht-Young, S. A.; Latimer, A.M.; Silander, J.A.

    2011-01-01

    The neighborhood density of plants strongly affects their growth, reproduction, and survival. In most cases, high density increases competition and negatively affects a focal plant in predictable ways, leading to the self-thinning law. There are, however, situations in which high densities of plants facilitate focal plant performance, resulting in positive density dependence. Despite their importance in forest gap dynamics and distinctive growth form, there have been very few studies of the effect of density on lianas or vines. We grew an invasive (Celastrus orbiculatus) and a native (Celastrus scandens) liana species together in three different density treatments, while also manipulating the light and support availability. We found that across treatment conditions, C. orbiculatus always out-performed C. scandens, showing greater relative growth rate in height and diameter, greater biomass and higher survival. Both species responded similarly to the density treatments: with plants in high density not showing a decrease in relative height growth rate compared to medium density. Aboveground biomass for C. scandens was not affected by density, while for C. orbiculatus, the most massive plants were growing in medium density without support. More surprisingly, survival analysis indicated that the two species both had significantly lower mortality rates in the highest density treatment; this trend held true across the other treatments of light and supports. More generally, this study demonstrates that these lianas can escape the consequences of high density and thus the self-thinning law that affects self-supporting plants. This suggests a broader hypothesis about lianas in general: their greater flexibility in allocating growth resources allows them to grow taller and thinner without collapsing and thereby potentially escape shading and mortality even at high densities.

  7. Growth and yield of western larch in response to several density levels and two thinning methods: 15-year results.

    Treesearch

    K.W. Seidel

    1986-01-01

    The 15-year growth response from a levels-of-growing-stock study in an even-aged western larch (Larix occidentalis Nutt.) stand, first thinned from above and below at age 55, was measured in northeastern Oregon. Basal area and volume growth increased with stand density for both thinning methods, whereas diameter growth decreased. Attacks of the...

  8. Tsien's method for generating non-Keplerian trajectories. Part 2: The question of thrust to orbit a sphere and the restricted three-body problem

    NASA Technical Reports Server (NTRS)

    Murad, P. A.

    1993-01-01

    Tsien's method is extended to treat the orbital motion of a body undergoing accelerations and decelerations. A generalized solution is discussed for the generalized case where a body undergoes azimuthal and radial thrust and the problem is further simplified for azimuthal thrust alone. Judicious selection of thrust could generate either an elliptic or hyperbolic trajectory. This is unexpected especially when the body has only enough energy for a lower state trajectory. The methodology is extended treating the problem of vehicle thrust for orbiting a sphere and vehicle thrust within the classical restricted three-body problem. Results for the latter situation can produce hyperbolic trajectories through eigen value decomposition. Since eigen values for no-thrust can be imaginary, thrust can generate real eigen values to describe hyperbolic trajectories. Keplerian dynamics appears to represent but a small subset of a much larger non-Keplerian domain especially when thrust effects are considered. The need for high thrust long duration space-based propulsion systems for changing a trajectory's canonical form is clearly demonstrated.

  9. Study of composite thin films for applications in high density data storage

    NASA Astrophysics Data System (ADS)

    Yuan, Hua

    Granular Co-alloy + oxide thin films are currently used as the magnetic recording layer of perpendicular media in hard disk drives. The microstructure of these films is composed mainly of fine (7--10 nm) magnetic grains physically surrounded by oxide phases, which produce magnetic isolation of the grains. As a result, the magnetic switching volume is maintained as small as the physical grain size. Consequently, ample number of magnetic switching units can be obtained in one recording bit, in other words, higher signal to noise ratios (SNR) can be achieved. Therefore, a good understanding and control of the microstructure of the films is very important for high areal density magnetic recording media. Interlayers and seedlayers play important roles in controlling the microstructure in terms of grain size, grain size distribution, oxide segregation and orientation dispersion of the crystallographic texture. Developing novel interlayers or seedlayers with smaller grain size is a key approach to produce smaller grain size in the recording layer. This study focuses on how to achieve smaller grain sizes in the recording layer through novel interlayer/seedlayer materials and processes. It also discusses the resulting microstructure in smaller-grain-size thin films. Metal + oxide (e.g. Ru + SiO2) composite thin films were chosen as interlayer and seedlayer materials due to their unique segregated microstructure. Such layers can be grown epitaxially on top of fcc metal seedlayers with good orientation. It can also provide an epitaxial growth template for the subsequent magnetic layer (recording layer). The metal and oxide phases in the composite thin films are immiscible. The final microstructure of the interlayer depends on factors, such as, sputtering pressure, oxide species, oxide volume fraction, thickness, alloy composition, temperature etc. Moreover, it has been found that the microstructure of the composite thin films is affected mostly by two important factors

  10. A model for thin layer formation by delayed particle settling at sharp density gradients

    NASA Astrophysics Data System (ADS)

    Prairie, Jennifer C.; White, Brian L.

    2017-02-01

    Thin layers - regions where plankton or particles accumulate vertically on scales of a few meters or less - are common in coastal waters, and have important implications for both trophic dynamics and carbon cycling. These features can form by a variety of biological and physical mechanisms, including localized growth, shear-thinning, and directed swimming. An additional mechanism may result in the formation of thin layers of marine aggregates, which have been shown to decrease their settling velocity when passing through sharp density gradients, a behavior termed delayed settling. Here, we apply a simple vertical advection-diffusion model to predict the properties of aggregate thin layers formed by this process. We assume a constant vertical flux of particles from the surface, which is parameterized by observations from laboratory experiments with marine aggregates. The formation, maintenance, and shape of the layers are described in relation to non-dimensional numbers that depend on environmental conditions and particle settling properties. In particular, model results demonstrate layer intensity and sharpness both increase with higher Péclet number (Pe), that is, under conditions with weaker mixing relative to layer formation. Similarly, more intense and sharper layers are found when the delayed settling behavior of aggregates is characterized by a lower velocity minimum. The model also predicts layers that are vertically asymmetric and highly "peaky" when compared with a Gaussian distribution, features often seen in thin layers in natural environments. Lastly, by comparing model predictions with observations of thin layers in the field, we are able to gain some insight into the applicability of delayed settling as a thin layer formation mechanism in different environmental conditions.

  11. Turbulent circulation above the surface heat source in stably stratified atmosphere

    NASA Astrophysics Data System (ADS)

    Kurbatskii, A. F.; Kurbatskaya, L. I.

    2016-10-01

    The 3-level RANS approach for simulating a turbulent circulation over the heat island in a stably stratified environment under nearly calm conditions is formulated. The turbulent kinetic energy its spectral consumption (dissipation) and the dispersion of turbulent fluctuations of temperature are found from differential equations, thus the correct modeling of transport processes in the interface layer with the counter-gradient heat flux is assured. The three-parameter turbulence RANS approach minimizes difficulties in simulating the turbulent transport in a stably stratified environment and reduces efforts needed for the numerical implementation of the 3-level RANS approach. Numerical simulation of the turbulent structure of the penetrative convection over the heat island under conditions of stably stratified atmosphere demonstrates that the three-equation model is able to predict the thermal circulation induced by the heat island. The temperature distribution, root-mean-square fluctuations of the turbulent velocity and temperature fields and spectral turbulent kinetic energy flux are in good agreement with the experimental data. The model describes such thin physical effects, as a crossing of vertical profiles of temperature of a thermal plume with the formation of the negative buoyancy area testifying to development of the dome-shaped form at the top part of a plume in the form of "hat".

  12. Effects of variable-density thinning on understory diversity and heterogeneity in young Douglas-fir forests.

    Treesearch

    Juliann E. Aukema; Andrew B. Carey

    2008-01-01

    Nine years after variable-density thinning (VDT) on the Forest Ecosystem Study, we examined low understory vegetation in 60 plots of eight stands (four pairs of VDT and control). We compared native, exotic, ruderal, and nonforest species richness among the stands. We used clustering, ordination, and indicator species analysis to look for distinctive patches of plant...

  13. Foldable interpenetrated metal-organic frameworks/carbon nanotubes thin film for lithium–sulfur batteries

    PubMed Central

    Mao, Yiyin; Li, Gaoran; Guo, Yi; Li, Zhoupeng; Liang, Chengdu; Peng, Xinsheng; Lin, Zhan

    2017-01-01

    Lithium–sulfur batteries are promising technologies for powering flexible devices due to their high energy density, low cost and environmental friendliness, when the insulating nature, shuttle effect and volume expansion of sulfur electrodes are well addressed. Here, we report a strategy of using foldable interpenetrated metal-organic frameworks/carbon nanotubes thin film for binder-free advanced lithium–sulfur batteries through a facile confinement conversion. The carbon nanotubes interpenetrate through the metal-organic frameworks crystal and interweave the electrode into a stratified structure to provide both conductivity and structural integrity, while the highly porous metal-organic frameworks endow the electrode with strong sulfur confinement to achieve good cyclability. These hierarchical porous interpenetrated three-dimensional conductive networks with well confined S8 lead to high sulfur loading and utilization, as well as high volumetric energy density. PMID:28262801

  14. Water Quality Research Program. Simultaneous, Multiple-Level Withdrawal from a Density Stratified Reservoir

    DTIC Science & Technology

    1990-11-01

    Furusawa , M . 1969. "Experiments on Selective Withdrawal into a Sink from a Uniformly Stratified Fluid--Phenomenon of Layer Separation and Middle-Layer...E. Howington prepared this report. Assisting in the testing were Messrs. Jack E. Davis; Calvin Buie, Jr.; Douglas M . White; and Paul Ahlrich; and Ms...virtually horizontal. Several researchers such as Hino and Furusawa (1969), Croach (1971), Hino (1980), and Farrant (1982) have studied withdrawal

  15. Transport of magnetohydrodynamic nanomaterial in a stratified medium considering gyrotactic microorganisms

    NASA Astrophysics Data System (ADS)

    Waqas, M.; Hayat, T.; Shehzad, S. A.; Alsaedi, A.

    2018-01-01

    Impact of gyrotactic microorganisms on two-dimensional (2D) stratified flow of an Oldroyd-B nanomaterial is highlighted. Applied magnetic field along with mixed convection is considered in the formulation. Theory of microorganisms is utilized just to stabilize the suspended nanoparticles through bioconvection induced by combined effects of buoyancy forces and magnetic field. Convergent series solutions for the obtained nonlinear differential systems are derived. Impacts of different emerging parameters on velocity, temperature, concentration, motile microorganisms density, density number of motile microorganisms and local Nusselt and Sherwood numbers are graphically addressed. It is observed that thermal, concentration and motile density stratification parameters result in reduction of temperature, concentration and motile microorganisms density distributions respectively.

  16. Degradation of organic dyes using spray deposited nanocrystalline stratified WO3/TiO2 photoelectrodes under sunlight illumination

    NASA Astrophysics Data System (ADS)

    Hunge, Y. M.; Yadav, A. A.; Mahadik, M. A.; Bulakhe, R. N.; Shim, J. J.; Mathe, V. L.; Bhosale, C. H.

    2018-02-01

    The need to utilize TiO2 based metal oxide hetero nanostructures for the degradation of environmental pollutants like Rhodamine B and reactive red 152 from the wastewater using stratified WO3/TiO2 catalyst under sunlight illumination. WO3, TiO2 and stratified WO3/TiO2 catalysts were prepared by a spray pyrolysis method. It was found that the stratified WO3/TiO2 heterostructure has high crystallinity, no mixed phase formation occurs, strong optical absorption in the visible region of the solar spectrum, and large surface area. The photocatalytic activity was tested for degradation of Rhodamine B (Rh B) and reactive red 152 in an aqueous medium. TiO2 layer in stratified WO3/TiO2 catalyst helps to extend its absorption spectrum in the solar light region. Rh B and Reactive red 152is eliminated up to 98 and 94% within the 30 and 40 min respectively at optimum experimental condition by stratified WO3/TiO2. Moreover, stratified WO3/TiO2 photoelectrode has good stability and reusability than individual TiO2 and WO3 thin film in the degradation of Rh B and reactive red 152. The photoelectrocatalytic experimental results indicate that stratified WO3/TiO2 photoelectrode is a promising material for dye removal.

  17. Schrödinger evolution of self-gravitating discs

    NASA Astrophysics Data System (ADS)

    Batygin, Konstantin

    2018-04-01

    An understanding of the long-term evolution of self-gravitating discs ranks among the classic outstanding problems of astrophysics. In this work, we show that the secular inclination dynamics of a geometrically thin quasi-Keplerian disc, with a surface density profile that scales as the inverse square-root of the orbital radius, are described by the time-dependent Schrödinger equation. Within the context of this formalism, nodal bending waves correspond to the eigenmodes of a quasi-particle's wavefunction, confined in an infinite square well with boundaries given by the radial extent of the disc. We further show that external secular perturbations upon self-gravitating discs exhibit a mathematical similarity to quantum scattering theory. Employing this framework, we derive an analytic criterion for the gravitational rigidity of a nearly-Keplerian disc under external perturbations. Applications of the theory to circumstellar discs and Galactic nuclei are discussed.

  18. Pyrolyzed thin film carbon

    NASA Technical Reports Server (NTRS)

    Harder, Theodore (Inventor); Konishi, Satoshi (Inventor); Miserendino, Scott (Inventor); Tai, Yu-Chong (Inventor); Liger, Matthieu (Inventor)

    2010-01-01

    A method of making carbon thin films comprises depositing a catalyst on a substrate, depositing a hydrocarbon in contact with the catalyst and pyrolyzing the hydrocarbon. A method of controlling a carbon thin film density comprises etching a cavity into a substrate, depositing a hydrocarbon into the cavity, and pyrolyzing the hydrocarbon while in the cavity to form a carbon thin film. Controlling a carbon thin film density is achieved by changing the volume of the cavity. Methods of making carbon containing patterned structures are also provided. Carbon thin films and carbon containing patterned structures can be used in NEMS, MEMS, liquid chromatography, and sensor devices.

  19. Domain and nanoridge growth kinetics in stratifying foam films

    NASA Astrophysics Data System (ADS)

    Zhang, Yiran; Sharma, Vivek

    Ultrathin films exhibit stratification due to confinement-induced structuring and layering of small molecules in simple fluids, and of supramolecular structures like micelles, lipid layers and nanoparticles in complex fluids. Stratification proceeds by the formation and growth of thinner domains at the expense of surrounding thicker film, and results in formation of nanoscopic terraces and mesas within a film. The detailed mechanisms underlying stratification are still under debate, and are resolved in this contribution by addressing long-standing experimental and theoretical challenges. Thickness variations in stratifying films are visualized and analyzed using interferometry, digital imaging and optical microscopy (IDIOM) protocols, with unprecedented high spatial (thickness <100 nm, lateral 500 nm) and temporal resolution (<1 ms). Using IDIOM protocols we developed recently, we characterize the shape and the growth dynamics of nanoridges that flank the expanding domains in micellar thin films. We show that topographical changes including nanoridge growth, and the overall stratification dynamics, can be described quantitatively by nonlinear thin film equation, amended with supramolecular oscillatory surface forces.

  20. On the lifetime of a pancake anticyclone in a rotating stratified flow

    NASA Astrophysics Data System (ADS)

    Facchini, Giulio; Le Bars, Michael

    2016-11-01

    We present an experimental study of the time evolution of an isolated anticyclonic pancake vortex in a laboratory rotating stratified flow. Motivations come from the variety of compact anticyclones observed to form and persist for a strikingly long lifetime in geophysical and astrophysical settings combining rotation and stratification. We generate anticyclones by injecting a small amount of isodense fluid at the center of a rotating tank filled with salty water linearly stratified in density. Our two control parameters are the Coriolis parameter f and the Brunt-Väisälä frequency N. We observe that anticyclones always slowly decay by viscous diffusion, spreading mainly in the horizontal direction irrespective of the initial aspect ratio. This behavior is correctly explained by a linear analytical model in the limit of small Rossby and Ekman numbers, where density and velocity equations reduce to a single equation for the pressure. Direct numerical simulations further confirm the theoretical predictions. Notably, they show that the azimuthal shear stress generates secondary circulations, which advect the density anomaly: this mechanism is responsible for the slow time evolution, rather than the classical viscous dissipation of the azimuthal kinetic energy.

  1. DISPERSING ENVELOPE AROUND THE KEPLERIAN CIRCUMBINARY DISK IN L1551 NE AND ITS IMPLICATIONS FOR BINARY GROWTH

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Takakuwa, Shigehisa; Kiyokane, Kazuhiro; Saigo, Kazuya

    2015-12-01

    We performed mapping observations of the Class I protostellar binary system L1551 NE in the C{sup 18}O (J = 3–2), {sup 13}CO (J = 3–2), CS (J = 7–6), and SO (J{sub N} = 7{sub 8}–6{sub 7}) lines with the Atacama Submillimeter Telescope Experiment (ASTE). The ASTE C{sup 18}O data were combined with our previous SMA C{sup 18}O data, which show a r ∼ 300 AU scale Keplerian disk around the protostellar binary system. The C{sup 18}O maps show a ∼20,000 AU scale protostellar envelope surrounding the central Keplerian circumbinary disk. The envelope exhibits a northeast (blue) to southwest (red) velocity gradient along the minor axis, which can be interpreted as amore » dispersing gas motion with an outward velocity of 0.3 km s{sup −1}, while no rotational motion in the envelope is seen. In addition to the envelope, two ≲4000 AU scale, high-velocity (≳1.3 km s{sup −1}) redshifted {sup 13}CO and CS emission components are found ∼40″ southwest and ∼20″ west of the protostellar binary. These redshifted components are most likely outflow components driven from the neighboring protostellar source L1551 IRS 5, and are colliding with the envelope in L1551 NE. The net momentum, kinetic, and internal energies of the L1551 IRS 5 outflow components are comparable to those of the L1551 NE envelope, and the interactions between the outflows and the envelope are likely to cause the dissipation of the envelope and thus suppression of further growth of the mass and mass ratio of the central protostellar binary in L1551 NE.« less

  2. Bulk contribution to magnetotransport properties of low-defect-density Bi2Te3 topological insulator thin films

    NASA Astrophysics Data System (ADS)

    Ngabonziza, P.; Wang, Y.; Brinkman, A.

    2018-04-01

    An important challenge in the field of topological materials is to carefully disentangle the electronic transport contribution of the topological surface states from that of the bulk. For Bi2Te3 topological insulator samples, bulk single crystals and thin films exposed to air during fabrication processes are known to be bulk conducting, with the chemical potential in the bulk conduction band. For Bi2Te3 thin films grown by molecular beam epitaxy, we combine structural characterization (transmission electron microscopy), chemical surface analysis as function of time (x-ray photoelectron spectroscopy) and magnetotransport analysis to understand the low defect density and record high bulk electron mobility once charge is doped into the bulk by surface degradation. Carrier densities and electronic mobilities extracted from the Hall effect and the quantum oscillations are consistent and reveal a large bulk carrier mobility. Because of the cylindrical shape of the bulk Fermi surface, the angle dependence of the bulk magnetoresistance oscillations is two dimensional in nature.

  3. Critical current density of TlBa 2Ca 2Cu 3O 9 thin films on MgO (100) in magnetic fields

    NASA Astrophysics Data System (ADS)

    Piehler, A.; Ströbel, J. P.; Reschauer, N.; Löw, R.; Schönberger, R.; Renk, K. F.; Kraus, M.; Daniel, J.; Saemann-Ischenko, G.

    1994-04-01

    We report on the critical current density of TlBa 2Ca 2Cu 3O 9 thin films on (100) MgO substrates in magnetic fields. Single- phase and highly c-axis oriented thin films were prepared by laser ablation in combination with thermal evaporation of Tl 2O 3. Scanning electron microscope investigations indicated a flat plate-like microstructure and DC magnetization measurements showed the onset of superconductivity at ∼ 115 K. The critical current density jc was determined from magnetization cycles. Typical values of jc were 9 × 10 5 A/cm 2 at 6 K and 2.5 × 10 5 A/cm 2 at 77 K. In a magnetic field to 1 T applied parallel to the c-axis the critical current densities were 3 × 10 5 A/cm 2 at 6 K and 3 × 10 3 A/cm 2 at 77 K. The decrease of jc at higher magnetic fields is discussed and attributed to the microstructure of the TlBa 2Ca 2Cu 3O 9 thin films.

  4. Tsunami Speed Variations in Density-stratified Compressible Global Oceans

    NASA Astrophysics Data System (ADS)

    Watada, S.

    2013-12-01

    Recent tsunami observations in the deep ocean have accumulated unequivocal evidence that tsunami traveltime delays compared with the linear long-wave tsunami simulations occur during tsunami propagation in the deep ocean. The delay is up to 2% of the tsunami traveltime. Watada et al. [2013] investigated the cause of the delay using the normal mode theory of tsunamis and attributed the delay to the compressibility of seawater, the elasticity of the solid earth, and the gravitational potential change associated with mass motion during the passage of tsunamis. Tsunami speed variations in the deep ocean caused by seawater density stratification is investigated using a newly developed propagator matrix method that is applicable to seawater with depth-variable sound speeds and density gradients. For a 4-km deep ocean, the total tsunami speed reduction is 0.45% compared with incompressible homogeneous seawater; two thirds of the reduction is due to elastic energy stored in the water and one third is due to water density stratification mainly by hydrostatic compression. Tsunami speeds are computed for global ocean density and sound speed profiles and characteristic structures are discussed. Tsunami speed reductions are proportional to ocean depth with small variations, except for in warm Mediterranean seas. The impacts of seawater compressibility and the elasticity effect of the solid earth on tsunami traveltime should be included for precise modeling of trans-oceanic tsunamis. Data locations where a vertical ocean profile deeper than 2500 m is available in World Ocean Atlas 2009. The dark gray area indicates the Pacific Ocean defined in WOA09. a) Tsunami speed variations. Red, gray and black bars represent global, Pacific, and Mediterranean Sea, respectively. b) Regression lines of the tsunami velocity reduction for all oceans. c)Vertical ocean profiles at grid points indicated by the stars in Figure 1.

  5. Exact Delaunay normalization of the perturbed Keplerian Hamiltonian with tesseral harmonics

    NASA Astrophysics Data System (ADS)

    Mahajan, Bharat; Vadali, Srinivas R.; Alfriend, Kyle T.

    2018-03-01

    A novel approach for the exact Delaunay normalization of the perturbed Keplerian Hamiltonian with tesseral and sectorial spherical harmonics is presented in this work. It is shown that the exact solution for the Delaunay normalization can be reduced to quadratures by the application of Deprit's Lie-transform-based perturbation method. Two different series representations of the quadratures, one in powers of the eccentricity and the other in powers of the ratio of the Earth's angular velocity to the satellite's mean motion, are derived. The latter series representation produces expressions for the short-period variations that are similar to those obtained from the conventional method of relegation. Alternatively, the quadratures can be evaluated numerically, resulting in more compact expressions for the short-period variations that are valid for an elliptic orbit with an arbitrary value of the eccentricity. Using the proposed methodology for the Delaunay normalization, generalized expressions for the short-period variations of the equinoctial orbital elements, valid for an arbitrary tesseral or sectorial harmonic, are derived. The result is a compact unified artificial satellite theory for the sub-synchronous and super-synchronous orbit regimes, which is nonsingular for the resonant orbits, and is closed-form in the eccentricity as well. The accuracy of the proposed theory is validated by comparison with numerical orbit propagations.

  6. Unique determination of stratified steady water waves from pressure

    NASA Astrophysics Data System (ADS)

    Chen, Robin Ming; Walsh, Samuel

    2018-01-01

    Consider a two-dimensional stratified solitary wave propagating through a body of water that is bounded below by an impermeable ocean bed. In this work, we study how such a wave can be recovered from data consisting of the wave speed, upstream and downstream density and velocity profile, and the trace of the pressure on the bed. In particular, we prove that this data uniquely determines the wave, both in the (real) analytic and Sobolev regimes.

  7. Structured block copolymer thin film composites for ultra-high energy density capacitors

    NASA Astrophysics Data System (ADS)

    Samant, Saumil; Hailu, Shimelis; Grabowski, Christopher; Durstock, Michael; Raghavan, Dharmaraj; Karim, Alamgir

    2014-03-01

    Development of high energy density capacitors is essential for future applications like hybrid vehicles and directed energy weaponry. Fundamentally, energy density is governed by product of dielectric permittivity ɛ and breakdown strength Vbd. Hence, improvements in energy density are greatly reliant on improving either ɛ or Vbd or a combination of both. Polymer films are widely used in capacitors due to high Vbd and low loss but they suffer from very low permittivities. Composite dielectrics offer a unique opportunity to combine the high ɛ of inorganic fillers with the high Vbd of a polymer matrix. For enhancement of dielectric properties, it is essential to improve matrix-filler interaction and control the spatial distribution of fillers for which nanostructured block copolymers BCP act as ideal templates. We use Directed Self-assembly of block copolymers to rapidly fabricate highly aligned BCP-TiO2 composite nanostructures in thin films under dynamic thermal gradient field to synergistically combine the high ɛ of functionalized TiO2 and high Vbd of BCP matrix. The results of impact of BCP morphology, processing conditions and concentration of TiO2 on capacitor performance will be reported. U.S. Air Force of Scientific Research under contract FA9550-12-1-0306

  8. EXPERIMENTS ON STABLY AND NEUTRALLY STRATIFIED FLOW OVER A MODEL THREE-DIMENSIONAL HILL

    EPA Science Inventory

    The flow structure over a bell shaped hill (reciprocal of a fourth order polynomial in cross section and height h) was studied in large and small stably stratified towing tanks (with uniform density gradients) and in an unstratified wind tunnel. Observations were made at Froude n...

  9. Crystalline Stratification in Semiconducting Polymer Thin Film Quantified by Grazing Incidence X-ray Scattering

    NASA Astrophysics Data System (ADS)

    Gann, Eliot; Caironi, Mario; Noh, Yong-Young; Kim, Yun-Hi; McNeill, Christopher R.

    The depth dependence of crystalline structure within thin films is critical for many technological applications, but has been impossible to measure directly using common techniques. In this work, by monitoring diffraction peak intensity and location and utilizing the highly angle-dependent waveguiding effects of X-rays near grazing incidence we quantitatively measure the thickness, roughness and orientation of stratified crystalline layers within thin films of a high-performance semiconducting polymer. In particular, this diffractive X-ray waveguiding reveals a self-organized 5-nm-thick crystalline surface layer with crystalline orientation orthogonal to the underlying 65-nm-thick layer. While demonstrated for an organic semiconductor film, this approach is applicable to any thin film material system where stratified crystalline structure and orientation can influence important interfacial processes such as charge injection and field-effect transport.

  10. Generation of large-scale vorticity in rotating stratified turbulence with inhomogeneous helicity: mean-field theory

    NASA Astrophysics Data System (ADS)

    Kleeorin, N.

    2018-06-01

    We discuss a mean-field theory of the generation of large-scale vorticity in a rotating density stratified developed turbulence with inhomogeneous kinetic helicity. We show that the large-scale non-uniform flow is produced due to either a combined action of a density stratified rotating turbulence and uniform kinetic helicity or a combined effect of a rotating incompressible turbulence and inhomogeneous kinetic helicity. These effects result in the formation of a large-scale shear, and in turn its interaction with the small-scale turbulence causes an excitation of the large-scale instability (known as a vorticity dynamo) due to a combined effect of the large-scale shear and Reynolds stress-induced generation of the mean vorticity. The latter is due to the effect of large-scale shear on the Reynolds stress. A fast rotation suppresses this large-scale instability.

  11. BiFeO3-doped (K0.5,Na0.5)(Mn0.005,Nb0.995)O3 ferroelectric thin film capacitors for high energy density storage applications

    NASA Astrophysics Data System (ADS)

    Won, Sung Sik; Kawahara, Masami; Kuhn, Lindsay; Venugopal, Vineeth; Kwak, Jiyeon; Kim, Ill Won; Kingon, Angus I.; Kim, Seung-Hyun

    2017-04-01

    Environmentally benign lead-free ferroelectric (K0.5,Na0.5)(Mn0.005,Nb0.995)O3 (KNMN) thin film capacitors with a small concentration of a BiFeO3 (BF) dopant were prepared by a cost effective chemical solution deposition method for high energy density storage device applications. 6 mol. % BF-doped KNMN thin films showed very slim hysteresis loops with high maximum and near-zero remanent polarization values due to a phase transition from the orthorhombic structure to the pseudo-cubic structure. Increasing the electric field up to 2 MV/cm, the total energy storage density (Jtotal), the effective recoverable energy density (Jeff), and the energy conversion efficiency (η) of lead-free KNMN-BF thin film capacitors were 31.0 J/cm3, 28.0 J/cm3, and 90.3%, respectively. In addition, these thin film capacitors exhibited a fast discharge time of a few μs and a high temperature stability up to 200 °C, proving their strong potential for high energy density storage and conversion applications.

  12. Extended analytical formulas for the perturbed Keplerian motion under a constant control acceleration

    NASA Astrophysics Data System (ADS)

    Zuiani, Federico; Vasile, Massimiliano

    2015-03-01

    This paper presents a set of analytical formulae for the perturbed Keplerian motion of a spacecraft under the effect of a constant control acceleration. The proposed set of formulae can treat control accelerations that are fixed in either a rotating or inertial reference frame. Moreover, the contribution of the zonal harmonic is included in the analytical formulae. It will be shown that the proposed analytical theory allows for the fast computation of long, multi-revolution spirals while maintaining good accuracy. The combined effect of different perturbations and of the shadow regions due to solar eclipse is also included. Furthermore, a simplified control parameterisation is introduced to optimise thrusting patterns with two thrust arcs and two cost arcs per revolution. This simple parameterisation is shown to ensure enough flexibility to describe complex low thrust spirals. The accuracy and speed of the proposed analytical formulae are compared against a full numerical integration with different integration schemes. An averaging technique is then proposed as an application of the analytical formulae. Finally, the paper presents an example of design of an optimal low-thrust spiral to transfer a spacecraft from an elliptical to a circular orbit around the Earth.

  13. Simplified solution for osculating Keplerian parameter corrections of GEO satellites for intersatellite optical link

    NASA Astrophysics Data System (ADS)

    Yılmaz, Umit C.; Cavdar, Ismail H.

    2015-04-01

    In intersatellite optical communication, the Pointing, Acquisition and Tracking (PAT) phase is one of the important phases that needs to be completed successfully before initiating communication. In this paper, we focused on correcting the possible errors on the Geostationary Earth Orbit (GEO) by using azimuth and elevation errors between Low Earth Orbit (LEO) to GEO optical link during the PAT phase. To minimise the PAT duration, a simplified correction of longitude and inclination errors of the GEO satellite's osculating Keplerian parameters has been suggested. A simulation has been done considering the beaconless tracking and spiral-scanning technique. As a result, starting from the second day, we are able to reduce the uncertainty cone of the GEO satellite by about 200 μrad, if the values are larger than that quantity. The first day of the LEO-GEO links have been used to determine the parameters. Thanks to the corrections, the locking time onto the GEO satellite has been reduced, and more data are able to transmit to the GEO satellite.

  14. Evaluation of a Stratified National Breast Screening Program in the United Kingdom: An Early Model-Based Cost-Effectiveness Analysis.

    PubMed

    Gray, Ewan; Donten, Anna; Karssemeijer, Nico; van Gils, Carla; Evans, D Gareth; Astley, Sue; Payne, Katherine

    2017-09-01

    To identify the incremental costs and consequences of stratified national breast screening programs (stratified NBSPs) and drivers of relative cost-effectiveness. A decision-analytic model (discrete event simulation) was conceptualized to represent four stratified NBSPs (risk 1, risk 2, masking [supplemental screening for women with higher breast density], and masking and risk 1) compared with the current UK NBSP and no screening. The model assumed a lifetime horizon, the health service perspective to identify costs (£, 2015), and measured consequences in quality-adjusted life-years (QALYs). Multiple data sources were used: systematic reviews of effectiveness and utility, published studies reporting costs, and cohort studies embedded in existing NBSPs. Model parameter uncertainty was assessed using probabilistic sensitivity analysis and one-way sensitivity analysis. The base-case analysis, supported by probabilistic sensitivity analysis, suggested that the risk stratified NBSPs (risk 1 and risk-2) were relatively cost-effective when compared with the current UK NBSP, with incremental cost-effectiveness ratios of £16,689 per QALY and £23,924 per QALY, respectively. Stratified NBSP including masking approaches (supplemental screening for women with higher breast density) was not a cost-effective alternative, with incremental cost-effectiveness ratios of £212,947 per QALY (masking) and £75,254 per QALY (risk 1 and masking). When compared with no screening, all stratified NBSPs could be considered cost-effective. Key drivers of cost-effectiveness were discount rate, natural history model parameters, mammographic sensitivity, and biopsy rates for recalled cases. A key assumption was that the risk model used in the stratification process was perfectly calibrated to the population. This early model-based cost-effectiveness analysis provides indicative evidence for decision makers to understand the key drivers of costs and QALYs for exemplar stratified NBSP. Copyright

  15. Regulating Stand Density by Precommercial Thinning in Naturally Regenerated Loblolly Pine Stands: Evaluation of Management and Economic Opportunities

    Treesearch

    David J. Moorhead; Coleman W. Dangerfield; M. Boyd Edwards

    1997-01-01

    The economic performance of converting 13-year-old, overstocked (>3,000 trees per acre), naturally regenerated pine stands using precommercial thinning at a cost of $140 per acre was modeled for 25-, 35-, and 50-year rotations. The stand density was reduced to 283 trees per acre. Subsequent management scenarios recovered establishment and management costs through...

  16. Ultrasonic wave propagation in trabecular bone predicted by the stratified model

    NASA Technical Reports Server (NTRS)

    Lin, W.; Qin, Y. X.; Rubin, C.

    2001-01-01

    The objective of this study was to investigate ultrasound propagation in trabecular bone by considering the wave reflection and transmission in a multilayered medium. The use of ultrasound to identify those at risk of osteoporosis is a promising diagnostic method providing a measure of bone mineral density (BMD). A stratified model was proposed to study the effect of transmission and reflection of ultrasound wave within the trabecular architecture on the relationship between ultrasound and BMD. The results demonstrated that ultrasound velocity in trabecular bone was highly correlated with the bone apparent density (r=0.97). Moreover, a consistent pattern of the frequency dependence of ultrasound attenuation coefficient has been observed between simulation using this model and experimental measurement of trabecular bone. The normalized broadband ultrasound attenuation (nBUA) derived from the simulation results revealed that nBUA was nonlinear with respect to trabecular porosity and BMD. The curve of the relationship between nBUA and BMD was parabolic in shape, and the peak magnitude of nBUA was observed at approximately 60% of bone porosity. These results agreed with the published experimental data and demonstrated that according to the stratified model, reflection and transmission were important factors in the ultrasonic propagation through the trabecular bone.

  17. Effect of O2 plasma treatment on density-of-states in a-IGZO thin film transistors

    NASA Astrophysics Data System (ADS)

    Ding, Xingwei; Huang, Fei; Li, Sheng; Zhang, Jianhua; Jiang, Xueyin; Zhang, Zhilin

    2017-01-01

    This work reports an efficient route for enhancing the performance of amorphous InGaZnO (a-IGZO) thin film transistors (TFT). The mobility was greatly improved by about 38% by means of O2 plasma treatment. Temperature-stress was carried out to investigate the stability and extract the parameters related to activation energy ( E a) and density-of-states (DOS). The DOS was calculated on the basis of the experimentally obtained E a, which can explain the experimental observation. A lower activation energy ( E a, 0.72 eV) and a smaller DOS were obtained in the O2 plasma treatment TFT based on the temperature-dependent transfer curves. The results showed that temperature stability and electrical properties enhancements in a-IGZO thin film transistors were attributed to the smaller DOS. [Figure not available: see fulltext.

  18. The effect of initial number of trees per acre and thinning densities on timber yields from red pine plantations in the Lake States.

    Treesearch

    Allen L. Lundgren

    1981-01-01

    Describes an analysis of initial density and subsequent thinning options for red pine (Pinus resinosa Ait.) plantations in the Lake States. Results showed that the initial number of established trees per acres has a major impact on the amount and quality of timber product yields, with 200 trees per acre (500/ha) thinned to 120 square feet of basal area per acre (27.5...

  19. Sensitivity of the Geomagnetic Octupole to a Stably Stratified Layer in the Earth's Core

    NASA Astrophysics Data System (ADS)

    Yan, C.; Stanley, S.

    2017-12-01

    The presence of a stably stratified layer at the top of the core has long been proposed for Earth, based on evidence from seismology and geomagnetic secular variation. Geodynamo modeling offers a unique window to inspect the properties and dynamics in Earth's core. For example, numerical simulations have shown that magnetic field morphology is sensitive to the presence of stably stratified layers in a planet's core. Here we use the mMoSST numerical dynamo model to investigate the effects of a thin stably stratified layer at the top of the fluid outer core in Earth on the resulting large-scale geomagnetic field morphology. We find that the existence of a stable layer has significant influence on the octupolar component of the magnetic field in our models, whereas the quadrupole doesn't show an obvious trend. This suggests that observations of the geomagnetic field can be applied to provide information of the properties of this plausible stable layer, such as how thick and how stable this layer could be. Furthermore, we have examined whether the dominant thermal signature from mantle tomography at the core-mantle boundary (CMB) (a degree & order 2 spherical harmonic) can influence our results. We found that this heat flux pattern at the CMB has no outstanding effects on the quadrupole and octupole magnetic field components. Our studies suggest that if there is a stably stratified layer at the top of the Earth's core, it must be limited in terms of stability and thickness, in order to be compatible with the observed paleomagnetic record.

  20. Magneto-optical characterizations of FeTe₀̣₅Se₀̣₅ thin films with critical current density over 1 MA/cm²

    DOE PAGES

    Sun, Yue; Li, Qiang; Tsuchiya, Yuji; ...

    2014-12-03

    We performed magneto-optical (MO) measurements on FeTe₀̣₅Se₀̣₅ thin films grown on LaAlO₃ (LAO) and Yttria-stabilized zirconia (YSZ) single-crystalline substrates. These thin films show superconducting transition temperature T c ~19 K, 4 K higher than the bulk sample. Typical roof-top patterns can be observed in the MO images of thin films grown on LAO and YSZ, from which a large and homogeneous critical current density J c ~ 3 - 4 x 10⁶ A/cm² at 5 K was obtained. In this study, magnetic flux penetration measurement reveals that the current is almost isotropically distributed in the two thin films. Compared withmore » bulk crystals, FeTe₀̣₅Se₀̣₅ thin film demonstrates not only higher T c, but also much larger J c, which is attractive for applications.« less

  1. Seasonal variability of Dinophysis spp. and Protoceratium reticulatum associated to lipophilic shellfish toxins in a strongly stratified Chilean fjord

    NASA Astrophysics Data System (ADS)

    Alves-de-Souza, Catharina; Varela, Daniel; Contreras, Cristóbal; de La Iglesia, Pablo; Fernández, Pamela; Hipp, Byron; Hernández, Cristina; Riobó, Pilar; Reguera, Beatriz; Franco, José M.; Diogène, Jorge; García, Carlos; Lagos, Néstor

    2014-03-01

    The fine scale vertical distribution of Dinophysis spp. and Protoceratium reticulatum (potential producers of lipophilic shellfish toxins, LSTs) and its relation with LSTs in shellfish was studied in Reloncaví fjord, a strongly stratified system in Southern Chile. Samples were taken over two years from late spring to early autumn (2007-2008 period) and from early spring to late summer (2008-2009 period). Dinophysis spp., in particular Dinophysis acuminata, were always detected, often forming thin layers in the region of the salinity driven pycnocline, with cell maxima for D. acuminata of 28.5×103 cells L-1 in March 2008 and 17.1×103 cells L-1 in November 2008. During the 2008-2009 sampling period, blooms of D. acuminata co-occurred with high densities of cryptophyceans and the ciliate Mesodinium spp. The highest levels of pectenotoxin-2 (PTX-2; 2.2 ng L-1) were found in the plankton in February 2009, associated with moderate densities of D. acuminata, Dinophysis tripos and Dinophysis subcircularis (0.1-0.6×103 cells L-1). However, only trace levels of PTX-2 were observed in bivalves at that time. Dinophysistoxin (DTX-1 and DTX-3) levels in bivalves and densities of Dinophysis spp. were not well correlated. Low DTX levels in bivalves observed during a major bloom of D. acuminata in March 2008 suggested that there is a large seasonal intraspecific variability in toxin content of Dinophysis spp. driven by changes in population structure associated with distinct LST toxin profiles in Reloncaví fjord during the study period. A heterogeneous vertical distribution was also observed for P. reticulatum, whose presence was restricted to summer months. A bloom of this species of 2.2×103 cells L-1 at 14 m depth in February 2009 was positively correlated with high concentrations of yessotoxins in bivalves (51-496 ng g-1) and plankton samples (3.2 ng L-1). Our results suggest that a review of monitoring strategies for Dinophysis spp. in strongly stratified fjord systems

  2. Determination of bulk and interface density of states in metal oxide semiconductor thin-film transistors by using capacitance-voltage characteristics

    NASA Astrophysics Data System (ADS)

    Wei, Xixiong; Deng, Wanling; Fang, Jielin; Ma, Xiaoyu; Huang, Junkai

    2017-10-01

    A physical-based straightforward extraction technique for interface and bulk density of states in metal oxide semiconductor thin film transistors (TFTs) is proposed by using the capacitance-voltage (C-V) characteristics. The interface trap density distribution with energy has been extracted from the analysis of capacitance-voltage characteristics. Using the obtained interface state distribution, the bulk trap density has been determined. With this method, for the interface trap density, it is found that deep state density nearing the mid-gap is approximately constant and tail states density increases exponentially with energy; for the bulk trap density, it is a superposition of exponential deep states and exponential tail states. The validity of the extraction is verified by comparisons with the measured current-voltage (I-V) characteristics and the simulation results by the technology computer-aided design (TCAD) model. This extraction method uses non-numerical iteration which is simple, fast and accurate. Therefore, it is very useful for TFT device characterization.

  3. Strongly Stratified Turbulence Wakes and Mixing Produced by Fractal Wakes

    NASA Astrophysics Data System (ADS)

    Dimitrieva, Natalia; Redondo, Jose Manuel; Chashechkin, Yuli; Fraunie, Philippe; Velascos, David

    2017-04-01

    This paper describes Shliering and Shadowgraph experiments of the wake induced mixing produced by tranversing a vertical or horizontal fractal grid through the interfase between two miscible fluids at low Atwood and Reynolds numbers. This is a configuration design to models the mixing across isopycnals in stably-stratified flows in many environmental relevant situations (either in the atmosphere or in the ocean. The initial unstable stratification is characterized by a reduced gravity: g' = gΔρ ρ where g is gravity, Δρ being the initial density step and ρ the reference density. Here the Atwood number is A = g' _ 2 g . The topology of the fractal wake within the strong stratification, and the internal wave field produces both a turbulent cascade and a wave cascade, with frecuen parametric resonances, the envelope of the mixing front is found to follow a complex non steady 3rd order polinomial function with a maximum at about 4-5 Brunt-Vaisalla non-dimensional time scales: t/N δ = c1(t/N) + c2g Δρ ρ (t/N)2 -c3(t/N)3. Conductivity probes and Shliering and Shadowgraph visual techniques, including CIV with (Laser induced fluorescence and digitization of the light attenuation across the tank) are used in order to investigate the density gradients and the three-dimensionality of the expanding and contracting wake. Fractal analysis is also used in order to estimate the fastest and slowest growing wavelengths. The large scale structures are observed to increase in wave-length as the mixing progresses, and the processes involved in this increase in scale are also examined.Measurements of the pointwise and horizontally averaged concentrations confirm the picture obtained from past flow visualization studies. They show that the fluid passes through the mixing region with relatively small amounts of molecular mixing,and the molecular effects only dominate on longer time scales when the small scales have penetrated through the large scale structures. The Non

  4. Sedimentary Fabrics of Stratified Slope Deposits at a Site near Hoover's Camp, Shenandoah National Park, Virginia

    USGS Publications Warehouse

    Smoot, Joseph P.

    2004-01-01

    An outcrop of stratified slope deposits in Shenandoah National Park is described in detail. The Pleistocene age deposits are comprised of a mixture of clay to cobbles defining a series of offlapping wedges. Elongate clasts are oriented parallel to wedge boundaries except at the toe of the wedge, where they are oriented nearly vertical. The wedges represent sedimentation by freeze-thaw of ground ice. Thin layers of pebbly sand separate matrix-rich wedge deposits, which represent sheetfloods during periods of thaw. Thicker sand layers and lenses of clay are placed upslope of coarse-grained wedge fronts. This association represents ponding of water around the solifluction lobe topography during warm periods. Stratified slope deposits at an outcrop at a higher elevation lack the sandy sheetflood and pond deposits, whereas sheetflood fabrics dominate deposits at a lower elevation. These variations are attributed to differences in temperature at the different elevations.

  5. Scanning micro-Hall probe mapping of magnetic flux distributions and current densities in YBa2Cu3O7 thin films

    NASA Technical Reports Server (NTRS)

    Xing, W.; Heinrich, B.; Zhou, HU; Fife, A. A.; Cragg, A. R.; Grant, P. D.

    1995-01-01

    Mapping of the magnetic flux density B(sub z) (perpendicular to the film plane) for a YBa2Cu3O7 thin-film sample was carried out using a scanning micro-Hall probe. The sheet magnetization and sheet current densities were calculated from the B(sub z) distributions. From the known sheet magnetization, the tangential (B(sub x,y)) and normal components of the flux density B were calculated in the vicinity of the film. It was found that the sheet current density was mostly determined by 2B(sub x,y)/d, where d is the film thickness. The evolution of flux penetration as a function of applied field will be shown.

  6. Super-Keplerian Motions in the AU Mic Circumstellar Debris System

    NASA Astrophysics Data System (ADS)

    Wisniewski, John

    2017-08-01

    We found enigmatic, few-au-scale features in spatially resolved near-IR scattered light observations of the AU Mic debris disk system obtained with VLT/SPHERE in 2014. We recovered these structures in re-analysis of HST/STIS imagery from 2010/2011, and discovered that they are moving away from the star at super-Keplerian speeds, possibly escaping the system. To-date, these are the only moving features seen in resolved imagery of debris disks. To help diagnose the origin of this phenomenon and in concert with multi-wavelength diagnostics being pursued with other facilities, we propose to use 12 orbits of HST/STIS to re-image the AU Mic scattered light disk from 0.2 (2 au) to 13 (130 au) 8 years after the previous epoch of HST/STIS imagery. HST/STIS provides the only means to trace the motion of structures that have already moved outside the FOV of ground-based extreme-AO imagers, the best means to accurately diagnose the morphological and kinematic evolution of these moving features, and the best means to trace the evolution of small grains in the system. Our optical STIS coronagraphy observations are critically needed to establish the locations and shapes of the blobs, establish their optical fluxes at high photometric fidelity, and therefore enable (IR - optical) colors of disk features to be measured in JWST's cycle-1, using NIRCAM's and MIRI's coronagraphs. These data will constrain the grain size distribution, hence mass, of the moving features and by extension the magnitude of the force that is expelling the features, enabling us to test whether mechanisms like the stellar wind or coronal-mass ejections are responsible for the newly observed phenomenon.

  7. Layering of sustained vortices in rotating stratified fluids

    NASA Astrophysics Data System (ADS)

    Aubert, O.; Le Bars, M.; Le Gal, P.

    2013-05-01

    The ocean is a natural stratified fluid layer where large structures are influenced by the rotation of the planet through the Coriolis force. In particular, the ocean Meddies are long-lived anticyclonic pancake vortices of Mediterranean origin evolving in the Atlantic Ocean: they have a saltier and warmer core than the sourrounding oceanic water, their diameters go up to 100 km and they can survive for 2 to 3 years in the ocean. Their extensive study using seismic images revealed finestructures surrounding their core (Biescas et al., 2008; Ruddick et al., 2009) corresponding to layers of constant density which thickness is about 40 m and horizontal extent is more than 10 km. These layers can have different origins: salt fingers from a double-diffusive instabilities of salt and heat (Ruddick & Gargett, 2003), viscous overturning motions from a double-diffusive instabilities of salt and momentum (McIntyre, 1970) or global modes of the quasi-geostrophic instability (Nguyen et al., 2011)? As observed by Griffiths & Linden (1981), sustained laboratory anticyclonic vortices created via a continuous injection of isodense fluid in a rotating and linearly stratified layer of salty water are quickly surrounded by layers of constant density. In the continuity of their experiments, we systematically investigated the double-diffusive instability of McIntyre by varying the Coriolis parameter f and the buoyancy frequency N of the background both in experiments and in numerical simulations, and studied the influence of the Schmidt number in numerical simulations. Following McIntyre's approach, typical length and time scales of the instability are well described by a linear stability analysis based on a gaussian model that fits both laboratory and oceanic vortices. The instability appears to be favoured by high Rossby numbers and ratios f/N. We then apply these results to ocean Meddies and conclude about their stability.

  8. Design of dry sand soil stratified sampler

    NASA Astrophysics Data System (ADS)

    Li, Erkang; Chen, Wei; Feng, Xiao; Liao, Hongbo; Liang, Xiaodong

    2018-04-01

    This paper presents a design of a stratified sampler for dry sand soil, which can be used for stratified sampling of loose sand under certain conditions. Our group designed the mechanical structure of a portable, single - person, dry sandy soil stratified sampler. We have set up a mathematical model for the sampler. It lays the foundation for further development of design research.

  9. Effect of Ionic Strength and Surface Charge Density on the Kinetics of Cellulose Nanocrystal Thin Film Swelling.

    PubMed

    Reid, Michael S; Kedzior, Stephanie A; Villalobos, Marco; Cranston, Emily D

    2017-08-01

    This work explores cellulose nanocrystal (CNC) thin films (<50 nm) and particle-particle interactions by investigating film swelling in aqueous solutions with varying ionic strength (1-100 mM). CNC film hydration was monitored in situ via surface plasmon resonance, and the kinetics of liquid uptake were quantified. The contribution of electrostatic double-layer forces to film swelling was elucidated by using CNCs with different surface charges (anionic sulfate half ester groups, high and low surface charge density, and cationic trimethylammonium groups). Total water uptake in the thin films was found to be independent of ionic strength and surface chemistry, suggesting that in the aggregated state van der Waals forces dominate over double-layer forces to hold the films together. However, the rate of swelling varied significantly. The water uptake followed Fickian behavior, and the measured diffusion constants decreased with the ionic strength gradient between the film and the solution. This work highlights that nanoparticle interactions and dispersion are highly dependent on the state of particle aggregation and that the rate of water uptake in aggregates and thin films can be tailored based on surface chemistry and solution ionic strength.

  10. Elliptical instability in stably stratified fluid interiors

    NASA Astrophysics Data System (ADS)

    Vidal, J.; Hollerbach, R.; Schaeffer, N.; Cebron, D.

    2016-12-01

    Self-sustained magnetic fields in celestial bodies (planets, moons, stars) are due to flows in internal electrically conducting fluids. These fluid motions are often attributed to convection, as it is the case for the Earth's liquid core and the Sun. However some past or present liquid cores may be stably stratified. Alternative mechanisms may thus be needed to understand the dynamo process in these celestial objects. Turbulent flows driven by mechanical forcings, such as tides or precession, seem very promising since they are dynamo capable. However the effect of density stratification is not clear, because it can stabilize or destabilize mechanically-driven flows.To mimic an elliptical distortion due to tidal forcing in spherical geometry (full sphere and shell), we consider a theoretical base flow with elliptical streamlines and an associated density profile. It allows to keep the numerical efficiency of spectral methods in this geometry. The flow satisfies the stress-free boundary condition. We perform the stability analysis of the base state using three-dimensional simulations to study both the linear and nonlinear regimes. Stable and unstable density profiles are considered. A complementary local stability analysis (WKB) is also performed. We show that elliptical instability can still grow upon a stable stratification. We also study the mixing of the stratification by the elliptical instability. Finally we look at the dynamo capability of these flows.

  11. Measuring mixing efficiency in experiments of strongly stratified turbulence

    NASA Astrophysics Data System (ADS)

    Augier, P.; Campagne, A.; Valran, T.; Calpe Linares, M.; Mohanan, A. V.; Micard, D.; Viboud, S.; Segalini, A.; Mordant, N.; Sommeria, J.; Lindborg, E.

    2017-12-01

    Oceanic and atmospheric models need better parameterization of the mixing efficiency. Therefore, we need to measure this quantity for flows representative of geophysical flows, both in terms of types of flows (with vortices and/or waves) and of dynamical regimes. In order to reach sufficiently large Reynolds number for strongly stratified flows, experiments for which salt is used to produce the stratification have to be carried out in a large rotating platform of at least 10-meter diameter.We present new experiments done in summer 2017 to study experimentally strongly stratified turbulence and mixing efficiency in the Coriolis platform. The flow is forced by a slow periodic movement of an array of large vertical or horizontal cylinders. The velocity field is measured by 3D-2C scanned horizontal particles image velocimetry (PIV) and 2D vertical PIV. Six density-temperature probes are used to measure vertical and horizontal profiles and signals at fixed positions.We will show how we rely heavily on open-science methods for this study. Our new results on the mixing efficiency will be presented and discussed in terms of mixing parameterization.

  12. Reduction of MRI-targeted biopsies in men with low-risk prostate cancer on active surveillance by stratifying to PI-RADS and PSA-density, with different thresholds for significant disease.

    PubMed

    Schoots, Ivo G; Osses, Daniel F; Drost, Frank-Jan H; Verbeek, Jan F M; Remmers, Sebastiaan; van Leenders, Geert J L H; Bangma, Chris H; Roobol, Monique J

    2018-02-01

    The fear of undergrading prostate cancer (PCa) in men on active surveillance (AS) have led to strict criteria for monitoring, which have resulted in good long-term cancer-specific survival, proving the safety of this approach. Reducing undergrading, MRI-targeted biopsies are increasingly used in men with low-risk disease despite their undefined role yet. The objective of this study is to investigate the rate of upgrading using MRI-targeted biopsies in men with low-risk disease on AS, stratified on the basis of PI-RADS and PSA-density, with the aim to reduce potential unnecessary repeat biopsy procedures. A total of 331 men were prospectively enrolled following the MRI-PRIAS protocol. MR imaging was according to Prostate Imaging Reporting and Data System (PI-RADSv2) guidelines. Suspicious MRI lesions (PI-RADS 3-5) were additionally targeted by MRI-TRUS fusion biopsies. Outcome measure was upgrading to Gleason score (GS) ≥3+4 with MRI-targeted biopsies, stratified for PI-RADS and PSA-density. In total, 25% (82/331) of men on AS showed upgrading from GS 3+3. Only 3% (11/331) was upgraded to GS ≥8. In 60% (198/331) a suspicious MRI lesion was identified, but in only 41% (82/198) of men upgrading was confirmed. PI-RADS 3, 4 and 5 categorized index lesions, showed upgrading in 30%, 34% and 66% of men, respectively. Stratification to PI-RADS 4-5, instead of PI-RADS 3-5, would have missed a small number of high volume Gleason 4 PCa in PI-RADS 3 category. However, further stratification into PI-RADS 3 lesions and PSA-density <0.15 ng/mL 2 could result in a safe targeted biopsy reduction of 36% in this category, without missing any upgrades. Stratification with the combination of PI-RADS and PSA-density may reduce unnecessary additional MRI biopsy testing. Overall, the high rate of detected upgrading in men on AS may result in an unintended tightening of continuing in AS. Since patients, included under current AS criteria showed extremely favorable outcome, there might

  13. Hydrodynamics of stratified epithelium: Steady state and linearized dynamics

    NASA Astrophysics Data System (ADS)

    Yeh, Wei-Ting; Chen, Hsuan-Yi

    2016-05-01

    A theoretical model for stratified epithelium is presented. The viscoelastic properties of the tissue are assumed to be dependent on the spatial distribution of proliferative and differentiated cells. Based on this assumption, a hydrodynamic description of tissue dynamics at the long-wavelength, long-time limit is developed, and the analysis reveals important insights into the dynamics of an epithelium close to its steady state. When the proliferative cells occupy a thin region close to the basal membrane, the relaxation rate towards the steady state is enhanced by cell division and cell apoptosis. On the other hand, when the region where proliferative cells reside becomes sufficiently thick, a flow induced by cell apoptosis close to the apical surface enhances small perturbations. This destabilizing mechanism is general for continuous self-renewal multilayered tissues; it could be related to the origin of certain tissue morphology, tumor growth, and the development pattern.

  14. Stratified Charge Engines

    DOT National Transportation Integrated Search

    1976-01-01

    This report reviews stratified charge concepts and engines, with emphasis on the important issues of exhaust emissions, fuel economy, and performance. Divided and open chamber designs are discussed. Potential improvements in exhaust emissions and fue...

  15. Dynamo magnetic field modes in thin astrophysical disks - An adiabatic computational approximation

    NASA Technical Reports Server (NTRS)

    Stepinski, T. F.; Levy, E. H.

    1991-01-01

    An adiabatic approximation is applied to the calculation of turbulent MHD dynamo magnetic fields in thin disks. The adiabatic method is employed to investigate conditions under which magnetic fields generated by disk dynamos permeate the entire disk or are localized to restricted regions of a disk. Two specific cases of Keplerian disks are considered. In the first, magnetic field diffusion is assumed to be dominated by turbulent mixing leading to a dynamo number independent of distance from the center of the disk. In the second, the dynamo number is allowed to vary with distance from the disk's center. Localization of dynamo magnetic field structures is found to be a general feature of disk dynamos, except in the special case of stationary modes in dynamos with constant dynamo number. The implications for the dynamical behavior of dynamo magnetized accretion disks are discussed and the results of these exploratory calculations are examined in the context of the protosolar nebula and accretion disks around compact objects.

  16. Design and simulation of stratified probability digital receiver with application to the multipath communication

    NASA Technical Reports Server (NTRS)

    Deal, J. H.

    1975-01-01

    One approach to the problem of simplifying complex nonlinear filtering algorithms is through using stratified probability approximations where the continuous probability density functions of certain random variables are represented by discrete mass approximations. This technique is developed in this paper and used to simplify the filtering algorithms developed for the optimum receiver for signals corrupted by both additive and multiplicative noise.

  17. Closed-Form and Numerically-Stable Solutions to Problems Related to the Optimal Two-Impulse Transfer Between Specified Terminal States of Keplerian Orbits

    NASA Technical Reports Server (NTRS)

    Senent, Juan

    2011-01-01

    The first part of the paper presents some closed-form solutions to the optimal two-impulse transfer between fixed position and velocity vectors on Keplerian orbits when some constraints are imposed on the magnitude of the initial and final impulses. Additionally, a numerically-stable gradient-free algorithm with guaranteed convergence is presented for the minimum delta-v two-impulse transfer. In the second part of the paper, cooperative bargaining theory is used to solve some two-impulse transfer problems when the initial and final impulses are carried by different vehicles or when the goal is to minimize the delta-v and the time-of-flight at the same time.

  18. Density-controlled, solution-based growth of ZnO nanorod arrays via layer-by-layer polymer thin films for enhanced field emission

    NASA Astrophysics Data System (ADS)

    Weintraub, Benjamin; Chang, Sehoon; Singamaneni, Srikanth; Han, Won Hee; Choi, Young Jin; Bae, Joonho; Kirkham, Melanie; Tsukruk, Vladimir V.; Deng, Yulin

    2008-10-01

    A simple, scalable, and cost-effective technique for controlling the growth density of ZnO nanorod arrays based on a layer-by-layer polyelectrolyte polymer film is demonstrated. The ZnO nanorods were synthesized using a low temperature (T = 90 °C), solution-based method. The density-control technique utilizes a polymer thin film pre-coated on the substrate to control the mass transport of the reactant to the substrate. The density-controlled arrays were investigated as potential field emission candidates. The field emission results revealed that an emitter density of 7 nanorods µm-2 and a tapered nanorod morphology generated a high field enhancement factor of 5884. This novel technique shows promise for applications in flat panel display technology.

  19. Estimating loblolly pine size-density trajectories across a range of planting densities

    Treesearch

    Curtis L. VanderSchaaf; Harold E. Burkhart

    2013-01-01

    Size-density trajectories on the logarithmic (ln) scale are generally thought to consist of two major stages. The first is often referred to as the density-independent mortality stage where the probability of mortality is independent of stand density; in the second, often referred to as the density-dependent mortality or self-thinning stage, the probability of...

  20. Risk-Stratified Imputation in Survival Analysis

    PubMed Central

    Kennedy, Richard E.; Adragni, Kofi P.; Tiwari, Hemant K.; Voeks, Jenifer H.; Brott, Thomas G.; Howard, George

    2013-01-01

    Background Censoring that is dependent on covariates associated with survival can arise in randomized trials due to changes in recruitment and eligibility criteria to minimize withdrawals, potentially leading to biased treatment effect estimates. Imputation approaches have been proposed to address censoring in survival analysis; and while these approaches may provide unbiased estimates of treatment effects, imputation of a large number of outcomes may over- or underestimate the associated variance based on the imputation pool selected. Purpose We propose an improved method, risk-stratified imputation, as an alternative to address withdrawal related to the risk of events in the context of time-to-event analyses. Methods Our algorithm performs imputation from a pool of replacement subjects with similar values of both treatment and covariate(s) of interest, that is, from a risk-stratified sample. This stratification prior to imputation addresses the requirement of time-to-event analysis that censored observations are representative of all other observations in the risk group with similar exposure variables. We compared our risk-stratified imputation to case deletion and bootstrap imputation in a simulated dataset in which the covariate of interest (study withdrawal) was related to treatment. A motivating example from a recent clinical trial is also presented to demonstrate the utility of our method. Results In our simulations, risk-stratified imputation gives estimates of treatment effect comparable to bootstrap and auxiliary variable imputation while avoiding inaccuracies of the latter two in estimating the associated variance. Similar results were obtained in analysis of clinical trial data. Limitations Risk-stratified imputation has little advantage over other imputation methods when covariates of interest are not related to treatment, although its performance is superior when covariates are related to treatment. Risk-stratified imputation is intended for

  1. Differences observed in the surface morphology and microstructure of Ni-Fe-Cu ternary thin films electrochemically deposited at low and high applied current densities

    NASA Astrophysics Data System (ADS)

    Sarac, U.; Kaya, M.; Baykul, M. C.

    2016-10-01

    In this research, nanocrystalline Ni-Fe-Cu ternary thin films using electrochemical deposition technique were produced at low and high applied current densities onto Indium Tin Oxide (ITO) coated conducting glass substrates. Change of surface morphology and microstructural properties of the films were investigated. Energy dispersive X-ray spectroscopy (EDX) measurements showed that the Ni-Fe-Cu ternary thin films exhibit anomalous codeposition behaviour during the electrochemical deposition process. From the X-ray diffraction (XRD) analyses, it was revealed that there are two segregated phases such as Cu- rich and Ni-rich within the films. The crystallographic structure of the films was face-centered cubic (FCC). It was also observed that the film has lower lattice micro-strain and higher texture degree at high applied current density. Scanning electron microscopy (SEM) studies revealed that the films have rounded shape particles on the base part and cauliflower-like structures on the upper part. The film electrodeposited at high current density had considerably smaller rounded shape particles and cauliflower-like structures. From the atomic force microscopy (AFM) analyses, it was shown that the film deposited at high current density has smaller particle size and surface roughness than the film grown at low current density.

  2. High-resolution time-resolved experiments on mixing and entrainment of buoyant jets in stratified environments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Manera, Annalisa; Bardet, Philippe; Petrov, Victor

    Fluid jets interacting with a stratified layer play an important role in the safety of several reactor designs. In the containment of nuclear power plants, fluid jets dominate the transport and mixing of gaseous species and consequent hydrogen distribution in case of a severe accident. The mixing phenomena in the containment are driven by buoyant high-momentum injections (jets) and low momentum injection plumes. Mixing near the postulated break is initially dominated by high flow velocities. Plumes with moderate flow velocities are instead relevant in the break compartment during the long-term pressurization phase, or in any of the apertures between twomore » connected compartments if the mass flows are sufficiently high and the density differences between efflux and ambient are sufficiently low. Phenomena of interest include free plumes (as produced by the efflux from the break compartment in a larger room or directly from a break flow), wall plumes (such those produced by low mass flows through inter-compartment apertures), and propagating stratification fronts in the ambient (for any stably stratified conditions). These phenomena have been highly ranked about nuclear reactor design, especially regarding of safety protocols. During a Pressurized Thermal Shock (PTS) scenario, the interaction between the cold ECCS injection plume and the stratified fluid present in the cold (or hot) leg is important in order to determine the temperature at the time-dependent temperature at the inlet of the reactor pressure vessel (RPV) and the potential to cause a thermal shock on the RPV wall. In sodium-cooled fast reactors (SFRs), core channels are typically hydro-dynamically isolated so that there exists a considerable temperature variation at the exit of adjacent fuel assemblies. All the above phenomena are characterized by the interaction of buoyant jets with the stratified flow. In stratified layers baroclinic forces create significant redistribution of turbulent kinetic

  3. Generation of dynamo magnetic fields in thin Keplerian disks

    NASA Technical Reports Server (NTRS)

    Stepinski, T. F.; Levy, E. H.

    1990-01-01

    The combined action of nonuniform rotation and helical convection in protoplanetary disks, in the Galaxy, or in accretion disks surrounding black holes and other compact objects, enables an alpha-omega dynamo to generate a large-scale magnetic field. In this paper, the properties of such magnetic fields are investigated using a two-dimensional, partially numerical method. The structures of the lowest-order steady state and oscillatory modes are calculated for two kinds of external boundary conditions. A quadruple, steady state, highly localized mode is the most easily excited for low values of the dynamo number. The results indicate that, except under special conditions, disk dynamo modes tend to consist of relatively localized rings structures. For large values of the dynamo number, the magnetic field consists of a number of quasi-independent, spatially localized modes generated in various concentric rings filling the disk inward of a dynamo generation 'front'.

  4. Hard TiCx/SiC/a-C:H nanocomposite thin films using pulsed high energy density plasma focus device

    NASA Astrophysics Data System (ADS)

    Umar, Z. A.; Rawat, R. S.; Tan, K. S.; Kumar, A. K.; Ahmad, R.; Hussain, T.; Kloc, C.; Chen, Z.; Shen, L.; Zhang, Z.

    2013-04-01

    Thin films of TiCx/SiC/a-C:H were synthesized on Si substrates using a complex mix of high energy density plasmas and instability accelerated energetic ions of filling gas species, emanated from hot and dense pinched plasma column, in dense plasma focus device. The conventional hollow copper anode of Mather type plasma focus device was replaced by solid titanium anode for synthesis of TiCx/SiC/a-C:H nanocomposite thin films using CH4:Ar admixture of (1:9, 3:7 and 5:5) for fixed 20 focus shots as well as with different number of focus shots with fixed CH4:Ar admixture ratio 3:7. XRD results showed the formation of crystalline TiCx/SiC phases for thin film synthesized using different number of focus shots with CH4:Ar admixture ratio fixed at 3:7. SEM results showed that the synthesized thin films consist of nanoparticle agglomerates and the size of agglomerates depended on the CH4:Ar admixture ratio as well as on the number of focus shots. Raman analysis showed the formation of polycrystalline/amorphous Si, SiC and a-C for different CH4:Ar ratio as well as for different number of focus shots. The XPS analysis confirmed the formation of TiCx/SiC/a-C:H composite thin film. Nanoindentation results showed that the hardness and elastic modulus values of composite thin films increased with increasing number of focus shots. Maximum values of hardness and elastic modulus at the surface of the composite thin film were found to be about 22 and 305 GPa, respectively for 30 focus shots confirming the successful synthesis of hard composite TiCx/SiC/a-C:H coatings.

  5. Ultra-wide-range measurements of thin-film filter optical density over the visible and near-infrared spectrum.

    PubMed

    Lequime, Michel; Liukaityte, Simona; Zerrad, Myriam; Amra, Claude

    2015-10-05

    We present the improved structure and operating principle of a spectrophotometric mean that allows us for the recording of the transmittance of a thin-film filter over an ultra-wide range of optical densities (from 0 to 11) between 400 and 1000 nm. The operation of this apparatus is based on the combined use of a high power supercontinuum laser source, a tunable volume hologram filter, a standard monochromator and a scientific grade CCD camera. The experimentally recorded noise floor is in good accordance with the optical density values given by the theoretical approach. A demonstration of the sensitivity gain provided by this new set-up with respect to standard spectrophotometric means is performed via the characterization of various types of filters (band-pass, long-pass, short-pass, and notch).

  6. Small Scale Chemical Segregation Within Keplerian Disk Candidate G35.20-0.74N

    NASA Astrophysics Data System (ADS)

    Allen, Veronica; van der Tak, Floris; Sánchez-Monge, Álvaro; Cesaroni, Riccardo; Beltrán, Maria T.

    2016-06-01

    In the study of high-mass star formation, hot cores are empirically defined stages where chemically rich emission is detected toward a massive protostar. It is unknown whether the physical origin of this emission is a disk, inner envelope, or outflow cavity wall and whether the hot core stage is common to all massive stars. With the advent of the highly sensitive sub-millimeter interferometer, ALMA, the ability to chemically characterize high mass star forming regions other than Orion has become possible. In the up-and-coming field of observational astrochemistry, these sensitive high resolution observations have opened up opportunities to find small scale variations in young protostellar sources.We have done an in depth analysis of high spatial resolution (~1000 AU) Cycle 0 ALMA observations of the high mass star forming region G35.20-0.74N, where Sánchez-Monge et al (2013) found evidence for Keplerian rotation. After further chemical analysis, numerous complex organic species have been identified in this region and we notice an interesting asymmetry in the distribution of the Nitrogen-bearing species within this source. In my talk, I will briefly outline the case for the disk and the consequences for this hypothesis following the chemical segregation we have seen.

  7. Thinning regimes and initial spacing for Eucalyptus plantations in Brazil.

    PubMed

    Ferraz Filho, Antonio C; Mola-Yudego, Blas; González-Olabarria, José R; Scolforo, José Roberto S

    2018-01-01

    This study focuses on the effects of different thinning regimes on clonal Eucalyptus plantations growth. Four different trials, planted in 1999 and located in Bahia and Espírito Santo States, were used. Aside from thinning, initial planting density, and post thinning fertilization application were also evaluated. Before canopy closure, and therefore before excessive competition between trees took place, it was found that stands planted under low densities (667 trees per hectare) presented a lower mortality proportion when compared to stand planted under higher densities (1111 trees per hectare). However, diameter growth prior to thinning operations was not statistically different between these two densities, presenting an overall mean of 4.9 cm/year. After canopy closure and the application of the thinning treatments, it was found that thinning regimes beginning early in the life of the stand and leaving a low number of residual trees presented the highest diameter and height growth. Unthinned treatments and thinning regimes late in the life of the stand (after 5.5 years), leaving a large number of residual trees presented the highest values of basal area production. The choice of the best thinning regime for Eucalyptus clonal material will vary according to the plantation objective.

  8. NuSTAR Observations of Water Megamaser AGN

    NASA Technical Reports Server (NTRS)

    Masini, A.; Comastri, A.; Balokvic, M.; Zaw, I.; Puccetti, S.; Ballantyne, D. R.; Bauer, F. E.; Boggs, S. E.; Brandt, W. N.; Zhang, William W.

    2016-01-01

    Aims. We study the connection between the masing disk and obscuring torus in Seyfert 2 galaxies. Methods. We present a uniform X-ray spectral analysis of the high energy properties of 14 nearby megamaser active galactic nuclei observed by NuSTAR. We use a simple analytical model to localize the maser disk and understand its connection with the torus by combining NuSTAR spectral parameters with the available physical quantities from VLBI mapping.Results. Most of the sources that we analyzed are heavily obscured, showing a column density in excess of approx.10(exp 23) cm(exp -2); in particular, 79% are Compton-thick [NH is greater than 1.5 x 10(exp 24) cm(exp -2)]. When using column densities measured by NuSTAR with the assumption that the torus is the extension of the maser disk, and further assuming a reasonable density profile, we can predict the torus dimensions. They are found to be consistent with mid-IR interferometry parsec-scale observations of Circinus and NGC 1068. In this picture, the maser disk is intimately connected to the inner part of the torus. It is probably made of a large number of molecular clouds that connect the torus and the outer part of the accretion disk, giving rise to a thin disk rotating in most cases in Keplerian or sub-Keplerian motion. This toy model explains the established close connection between water megamaser emission and nuclear obscuration as a geometric effect.

  9. High-density carrier-accumulated and electrically stable oxide thin-film transistors from ion-gel gate dielectric

    PubMed Central

    Fujii, Mami N.; Ishikawa, Yasuaki; Miwa, Kazumoto; Okada, Hiromi; Uraoka, Yukiharu; Ono, Shimpei

    2015-01-01

    The use of indium–gallium–zinc oxide (IGZO) has paved the way for high-resolution uniform displays or integrated circuits with transparent and flexible devices. However, achieving highly reliable devices that use IGZO for low-temperature processes remains a technological challenge. We propose the use of IGZO thin-film transistors (TFTs) with an ionic-liquid gate dielectric in order to achieve high-density carrier-accumulated IGZO TFTs with high reliability, and we discuss a distinctive mechanism for the degradation of this organic–inorganic hybrid device under long-term electrical stress. Our results demonstrated that an ionic liquid or gel gate dielectric provides highly reliable and low-voltage operation with IGZO TFTs. Furthermore, high-density carrier accumulation helps improve the TFT characteristics and reliability, and it is highly relevant to the electronic phase control of oxide materials and the degradation mechanism for organic–inorganic hybrid devices. PMID:26677773

  10. High-density carrier-accumulated and electrically stable oxide thin-film transistors from ion-gel gate dielectric.

    PubMed

    Fujii, Mami N; Ishikawa, Yasuaki; Miwa, Kazumoto; Okada, Hiromi; Uraoka, Yukiharu; Ono, Shimpei

    2015-12-18

    The use of indium-gallium-zinc oxide (IGZO) has paved the way for high-resolution uniform displays or integrated circuits with transparent and flexible devices. However, achieving highly reliable devices that use IGZO for low-temperature processes remains a technological challenge. We propose the use of IGZO thin-film transistors (TFTs) with an ionic-liquid gate dielectric in order to achieve high-density carrier-accumulated IGZO TFTs with high reliability, and we discuss a distinctive mechanism for the degradation of this organic-inorganic hybrid device under long-term electrical stress. Our results demonstrated that an ionic liquid or gel gate dielectric provides highly reliable and low-voltage operation with IGZO TFTs. Furthermore, high-density carrier accumulation helps improve the TFT characteristics and reliability, and it is highly relevant to the electronic phase control of oxide materials and the degradation mechanism for organic-inorganic hybrid devices.

  11. Theory of hyperbolic stratified nanostructures for surface-enhanced Raman scattering

    NASA Astrophysics Data System (ADS)

    Wong, Herman M. K.; Dezfouli, Mohsen Kamandar; Axelrod, Simon; Hughes, Stephen; Helmy, Amr S.

    2017-11-01

    We theoretically investigate the enhancement of surface enhanced Raman spectroscopy (SERS) using hyperbolic stratified nanostructures and compare to metal nanoresonators. The photon Green function of each nanostructure within its environment is first obtained from a semianalytical modal theory, which is used in a quantum optics formalism of the molecule-nanostructure interaction to model the SERS spectrum. An intuitive methodology is presented for calculating the single-molecule enhancement factor (SMEF), which is also able to predict known experimental SERS enhancement factors of a gold nanodimer. We elucidate the important figures-of-merit of the enhancement and explore these for different designs. We find that the use of hyperbolic stratified materials can enhance the photonic local density of states (LDOS) by close to two times in comparison to pure metal nanostructures, when both designed to work at the same operating wavelengths. However, the increased LDOS is accompanied by higher electric field concentration within the lossy hyperbolic material, which leads to increased quenching that serves to reduce the overall detected SERS enhancement in the far field. For nanoresonators with resonant localized surface plasmon wavelengths in the near-infrared, the SMEF for the hyperbolic stratified nanostructure is approximately one order of magnitude lower than the pure metal counterpart. Conversely, we show that by detecting the Raman signal using a near-field probe, hyperbolic materials can provide an improvement in SERS enhancement compared to using pure metal nanostructures when the probe is sufficiently close (<50 nm ) to the Raman active molecule at the plasmonic hotspot.

  12. The propagation of the shock wave from a strong explosion in a plane-parallel stratified medium: the Kompaneets approximation

    NASA Astrophysics Data System (ADS)

    Olano, C. A.

    2009-11-01

    Context: Using certain simplifications, Kompaneets derived a partial differential equation that states the local geometrical and kinematical conditions that each surface element of a shock wave, created by a point blast in a stratified gaseous medium, must satisfy. Kompaneets could solve his equation analytically for the case of a wave propagating in an exponentially stratified medium, obtaining the form of the shock front at progressive evolutionary stages. Complete analytical solutions of the Kompaneets equation for shock wave motion in further plane-parallel stratified media were not found, except for radially stratified media. Aims: We aim to analytically solve the Kompaneets equation for the motion of a shock wave in different plane-parallel stratified media that can reflect a wide variety of astrophysical contexts. We were particularly interested in solving the Kompaneets equation for a strong explosion in the interstellar medium of the Galactic disk, in which, due to intense winds and explosions of stars, gigantic gaseous structures known as superbubbles and supershells are formed. Methods: Using the Kompaneets approximation, we derived a pair of equations that we call adapted Kompaneets equations, that govern the propagation of a shock wave in a stratified medium and that permit us to obtain solutions in parametric form. The solutions provided by the system of adapted Kompaneets equations are equivalent to those of the Kompaneets equation. We solved the adapted Kompaneets equations for shock wave propagation in a generic stratified medium by means of a power-series method. Results: Using the series solution for a shock wave in a generic medium, we obtained the series solutions for four specific media whose respective density distributions in the direction perpendicular to the stratification plane are of an exponential, power-law type (one with exponent k=-1 and the other with k =-2) and a quadratic hyperbolic-secant. From these series solutions, we deduced

  13. Optimal energy growth in a stably stratified shear flow

    NASA Astrophysics Data System (ADS)

    Jose, Sharath; Roy, Anubhab; Bale, Rahul; Iyer, Krithika; Govindarajan, Rama

    2018-02-01

    Transient growth of perturbations by a linear non-modal evolution is studied here in a stably stratified bounded Couette flow. The density stratification is linear. Classical inviscid stability theory states that a parallel shear flow is stable to exponentially growing disturbances if the Richardson number (Ri) is greater than 1/4 everywhere in the flow. Experiments and numerical simulations at higher Ri show however that algebraically growing disturbances can lead to transient amplification. The complexity of a stably stratified shear flow stems from its ability to combine this transient amplification with propagating internal gravity waves (IGWs). The optimal perturbations associated with maximum energy amplification are numerically obtained at intermediate Reynolds numbers. It is shown that in this wall-bounded flow, the three-dimensional optimal perturbations are oblique, unlike in unstratified flow. A partitioning of energy into kinetic and potential helps in understanding the exchange of energies and how it modifies the transient growth. We show that the apportionment between potential and kinetic energy depends, in an interesting manner, on the Richardson number, and on time, as the transient growth proceeds from an optimal perturbation. The oft-quoted stabilizing role of stratification is also probed in the non-diffusive limit in the context of disturbance energy amplification.

  14. DUST AND GAS IN THE DISK OF HL TAURI: SURFACE DENSITY, DUST SETTLING, AND DUST-TO-GAS RATIO

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pinte, C.; Ménard, F.; Dent, W. R. F.

    The recent ALMA observations of the disk surrounding HL Tau reveal a very complex dust spatial distribution. We present a radiative transfer model accounting for the observed gaps and bright rings as well as radial changes of the emissivity index. We find that the dust density is depleted by at least a factor of 10 in the main gaps compared to the surrounding rings. Ring masses range from 10–100 M{sub ⊕} in dust, and we find that each of the deepest gaps is consistent with the removal of up to 40 M{sub ⊕} of dust. If this material has accumulatedmore » into rocky bodies, these would be close to the point of runaway gas accretion. Our model indicates that the outermost ring is depleted in millimeter grains compared to the central rings. This suggests faster grain growth in the central regions and/or radial migration of the larger grains. The morphology of the gaps observed by ALMA—well separated and showing a high degree of contrast with the bright rings over all azimuths—indicates that the millimeter dust disk is geometrically thin (scale height ≈1 AU at 100 AU) and that a large amount of settling of large grains has already occurred. Assuming a standard dust settling model, we find that the observations are consistent with a turbulent viscosity coefficient of a few 10{sup −4}. We estimate the gas/dust ratio in this thin layer to be of the order of 5 if the initial ratio is 100. The HCO{sup +} and CO emission is consistent with gas in Keplerian motion around a 1.7 M{sub ⊙} star at radii from ≤10–120 AU.« less

  15. Dimensional crossover of the charge density wave transition in thin exfoliated VSe2

    NASA Astrophysics Data System (ADS)

    Pásztor, Árpád; Scarfato, Alessandro; Barreteau, Céline; Giannini, Enrico; Renner, Christoph

    2017-12-01

    Isolating single unit-cell thin layers from the bulk matrix of layered compounds offers tremendous opportunities to design novel functional electronic materials. However, a comprehensive thickness dependence study is paramount to harness the electronic properties of such atomic foils and their stacking into synthetic heterostructures. Here we show that a dimensional crossover and quantum confinement with reducing thickness result in a striking non-monotonic evolution of the charge density wave transition temperature in VSe2. Our conclusion is drawn from a direct derivation of the local order parameter and transition temperature from the real space charge modulation amplitude imaged by scanning tunnelling microscopy. This study lifts the disagreement of previous independent transport measurements. We find that thickness can be a non-trivial tuning parameter and demonstrate the importance of considering a finite thickness range to accurately characterize its influence.

  16. Initial thinning in red pine plantations.

    Treesearch

    John H. Cooley

    1969-01-01

    Response to thinning in six red pine plantations in Lower Michigan supported previous findings by showing basal area growth to vary little over a wide range of residual densities. Furthermore, the method of selecting trees for removal in the first thinning had little or no influence on basal area growth. However, the immediate effect of thinning on average stand...

  17. Effect of oxygen partial pressure on the density of antiphase boundaries in Fe3O4 thin films on Si(100)

    NASA Astrophysics Data System (ADS)

    Singh, Suraj Kumar; Husain, Sajid; Kumar, Ankit; Chaudhary, Sujeet

    2018-02-01

    Polycrystalline Fe3O4 thin films were grown on Si(100) substrate by reactive DC sputtering at different oxygen partial pressures PO2 for controlling the growth associated density of antiphase boundaries (APBs). The micro-Raman analyses were performed to study the structural and electronic properties in these films. The growth linked changes in the APBs density are probed by electron-phonon coupling strength (λ) and isothermal magnetization measurements. The estimated values of λ are found to vary from 0.39 to 0.56 with the increase in PO2 from 2.2 × 10-5 to 3.0 × 10-5 Torr, respectively. The saturation magnetization (saturation field) values are found to increase (decrease) from 394 (5.9) to 439 (3.0) emu/cm3 (kOe) with the increase in PO2 . The sharp Verwey transition (∼120 K), low saturation field, high saturation magnetization and low value of λ (comparable to the bulk value ∼0.51) clearly affirm the negligible amount of APBs in the high oxygen partial pressure deposited thin films.

  18. Jet-front systems nearing strongly stratified region in differentially heated, rotating stratified annulus

    NASA Astrophysics Data System (ADS)

    Rolland, Joran; Achatz, Ulrich

    2017-04-01

    The differentially heated, rotating annulus configuration has been used for a long time as a model system of the earth troposphere. It can easily reproduce thermal wind and baroclinic waves in the laboratory. It has recently been shown numerically that provided the Rossby number, the rotation rate and the Brunt-Väisälä frequency were well chosen, this configuration also reproduces the spontaneous emission of gravity waves by jet front systems [1]. This offers a very practical configuration in which to study an important process of emission of atmospheric gravity waves. It has also been shown experimentally that this configuration can be modified in order to add the possibility for the emitted wave to reach a strongly stratified region [2]. It thus creates a system containing a model troposphere where gravity waves are spontaneously emitted and can propagate to a model stratosphere. For this matter a stratification was created using a salinity gradient in the experimental apparatus. Through double diffusion, this generates a strongly stratified layer in the middle of the flow (the model stratosphere) and two weakly stratified region in the top and bottom layers (the model troposphere). In this poster, we present simulations of this configuration displaying baroclinic waves in the top and bottom layers. We aim at creating jet front systems strong enough that gravity waves can be spontaneously emitted. This will thus offer the possibility of studying the wave characteristic and mechanisms in emission and propagation in details. References [1] S. Borchert, U. Achatz, M.D. Fruman, Spontaneous Gravity wave emission in the differentially heated annulus, J. Fluid Mech. 758, 287-311 (2014). [2] M. Vincze, I. Borcia, U. Harlander, P. Le Gal, Double-diffusive convection convection and baroclinic instability in a differentially heated and initially stratified rotating system: the barostrat instability, Fluid Dyn. Res. 48, 061414 (2016).

  19. Undersized description on motile gyrotactic micro-organisms individualities in MHD stratified water-based Newtonian nanofluid

    NASA Astrophysics Data System (ADS)

    Rehman, Khalil Ur; Malik, Aneeqa Ashfaq; Tahir, M.; Malik, M. Y.

    2018-03-01

    The current pagination summarized the influence of bio-convection Schmidt number, bio-convection Peclet number and micro-organisms concentration difference parameter on the density of motile gyrotactic micro-organisms when they have interaction with the thermally stratified magneto-nanofluid flow past a vertical stretching surface. It is observed that the density of motile microorganisms is the decreasing function of the bio-convection Schmidt and Peclet numbers. It is trusted that the outcomes of present analysis will serve as a helping source for the upcoming developments regarding individualities of motile gyrotactic micro-organisms subject to boundary layer flows induced by stretching surfaces.

  20. Charge density on thin straight wire, revisited

    NASA Astrophysics Data System (ADS)

    Jackson, J. D.

    2000-09-01

    The question of the equilibrium linear charge density on a charged straight conducting "wire" of finite length as its cross-sectional dimension becomes vanishingly small relative to the length is revisited in our didactic presentation. We first consider the wire as the limit of a prolate spheroidal conductor with semi-minor axis a and semi-major axis c when a/c<<1. We then treat an azimuthally symmetric straight conductor of length 2c and variable radius r(z) whose scale is defined by a parameter a. A procedure is developed to find the linear charge density λ(z) as an expansion in powers of 1/Λ, where Λ≡ln(4c2/a2), beginning with a uniform line charge density λ0. We show, for this rather general wire, that in the limit Λ>>1 the linear charge density becomes essentially uniform, but that the tiny nonuniformity (of order 1/Λ) is sufficient to produce a tangential electric field (of order Λ0) that cancels the zeroth-order field that naively seems to belie equilibrium. We specialize to a right circular cylinder and obtain the linear charge density explicitly, correct to order 1/Λ2 inclusive, and also the capacitance of a long isolated charged cylinder, a result anticipated in the published literature 37 years ago. The results for the cylinder are compared with published numerical computations. The second-order correction to the charge density is calculated numerically for a sampling of other shapes to show that the details of the distribution for finite 1/Λ vary with the shape, even though density becomes constant in the limit Λ→∞. We give a second method of finding the charge distribution on the cylinder, one that approximates the charge density by a finite polynomial in z2 and requires the solution of a coupled set of linear algebraic equations. Perhaps the most striking general observation is that the approach to uniformity as a/c→0 is extremely slow.

  1. Implementing optimal thinning strategies

    Treesearch

    Kurt H. Riitters; J. Douglas Brodie

    1984-01-01

    Optimal thinning regimes for achieving several management objectives were derived from two stand-growth simulators by dynamic programming. Residual mean tree volumes were then plotted against stand density management diagrams. The results supported the use of density management diagrams for comparing, checking, and implementing the results of optimization analyses....

  2. Simulation and study of stratified flows around finite bodies

    NASA Astrophysics Data System (ADS)

    Gushchin, V. A.; Matyushin, P. V.

    2016-06-01

    The flows past a sphere and a square cylinder of diameter d moving horizontally at the velocity U in a linearly density-stratified viscous incompressible fluid are studied. The flows are described by the Navier-Stokes equations in the Boussinesq approximation. Variations in the spatial vortex structure of the flows are analyzed in detail in a wide range of dimensionless parameters (such as the Reynolds number Re = Ud/ ν and the internal Froude number Fr = U/( Nd), where ν is the kinematic viscosity and N is the buoyancy frequency) by applying mathematical simulation (on supercomputers of Joint Supercomputer Center of the Russian Academy of Sciences) and three-dimensional flow visualization. At 0.005 < Fr < 100, the classification of flow regimes for the sphere (for 1 < Re < 500) and for the cylinder (for 1 < Re < 200) is improved. At Fr = 0 (i.e., at U = 0), the problem of diffusion-induced flow past a sphere leading to the formation of horizontal density layers near the sphere's upper and lower poles is considered. At Fr = 0.1 and Re = 50, the formation of a steady flow past a square cylinder with wavy hanging density layers in the wake is studied in detail.

  3. Carrier-density dependence of photoluminescence from localized states in InGaN/GaN quantum wells in nanocolumns and a thin film

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shimosako, N., E-mail: n-shimosako@sophia.jp; Inose, Y.; Satoh, H.

    2015-11-07

    We have measured and analyzed the carrier-density dependence of photoluminescence (PL) spectra and the PL efficiency of InGaN/GaN multiple quantum wells in nanocolumns and in a thin film over a wide excitation range. The localized states parameters, such as the tailing parameter, density and size of the localized states, and the mobility edge density are estimated. The spectral change and reduction of PL efficiency are explained by filling of the localized states and population into the extended states around the mobility edge density. We have also found that the nanocolumns have a narrower distribution of the localized states and amore » higher PL efficiency than those of the film sample although the In composition of the nanocolumns is higher than that of the film.« less

  4. Analysis of Turbulent Combustion in Simplified Stratified Charge Conditions

    NASA Astrophysics Data System (ADS)

    Moriyoshi, Yasuo; Morikawa, Hideaki; Komatsu, Eiji

    The stratified charge combustion system has been widely studied due to the significant potentials for low fuel consumption rate and low exhaust gas emissions. The fuel-air mixture formation process in a direct-injection stratified charge engine is influenced by various parameters, such as atomization, evaporation, and in-cylinder gas motion at high temperature and high pressure conditions. It is difficult to observe the in-cylinder phenomena in such conditions and also challenging to analyze the following stratified charge combustion. Therefore, the combustion phenomena in simplified stratified charge conditions aiming to analyze the fundamental stratified charge combustion are examined. That is, an experimental apparatus which can control the mixture distribution and the gas motion at ignition timing was developed, and the effects of turbulence intensity, mixture concentration distribution, and mixture composition on stratified charge combustion were examined. As a result, the effects of fuel, charge stratification, and turbulence on combustion characteristics were clarified.

  5. Determination of Charge-Carrier Mobility in Disordered Thin-Film Solar Cells as a Function of Current Density

    NASA Astrophysics Data System (ADS)

    Mäckel, Helmut; MacKenzie, Roderick C. I.

    2018-03-01

    Charge-carrier mobility is a fundamental material parameter, which plays an important role in determining solar-cell efficiency. The higher the mobility, the less time a charge carrier will spend in a device and the less likely it is that it will be lost to recombination. Despite the importance of this physical property, it is notoriously difficult to measure accurately in disordered thin-film solar cells under operating conditions. We, therefore, investigate a method previously proposed in the literature for the determination of mobility as a function of current density. The method is based on a simple analytical model that relates the mobility to carrier density and transport resistance. By revising the theoretical background of the method, we clearly demonstrate what type of mobility can be extracted (constant mobility or effective mobility of electrons and holes). We generalize the method to any combination of measurements that is able to determine the mean electron and hole carrier density, and the transport resistance at a given current density. We explore the robustness of the method by simulating typical organic solar-cell structures with a variety of physical properties, including unbalanced mobilities, unbalanced carrier densities, and for high or low carrier trapping rates. The simulations reveal that near VOC and JSC , the method fails due to the limitation of determining the transport resistance. However, away from these regions (and, importantly, around the maximum power point), the method can accurately determine charge-carrier mobility. In the presence of strong carrier trapping, the method overestimates the effective mobility due to an underestimation of the carrier density.

  6. Two-component scattering model and the electron density spectrum

    NASA Astrophysics Data System (ADS)

    Zhou, A. Z.; Tan, J. Y.; Esamdin, A.; Wu, X. J.

    2010-02-01

    In this paper, we discuss a rigorous treatment of the refractive scintillation caused by a two-component interstellar scattering medium and a Kolmogorov form of density spectrum. It is assumed that the interstellar scattering medium is composed of a thin-screen interstellar medium (ISM) and an extended interstellar medium. We consider the case that the scattering of the thin screen concentrates in a thin layer represented by a δ function distribution and that the scattering density of the extended irregular medium satisfies the Gaussian distribution. We investigate and develop equations for the flux density structure function corresponding to this two-component ISM geometry in the scattering density distribution and compare our result with the observations. We conclude that the refractive scintillation caused by this two-component ISM scattering gives a more satisfactory explanation for the observed flux density variation than does the single extended medium model. The level of refractive scintillation is strongly sensitive to the distribution of scattering material along the line of sight (LOS). The theoretical modulation indices are comparatively less sensitive to the scattering strength of the thin-screen medium, but they critically depend on the distance from the observer to the thin screen. The logarithmic slope of the structure function is sensitive to the scattering strength of the thin-screen medium, but is relatively insensitive to the thin-screen location. Therefore, the proposed model can be applied to interpret the structure functions of flux density observed in pulsar PSR B2111 + 46 and PSR B0136 + 57. The result suggests that the medium consists of a discontinuous distribution of plasma turbulence embedded in the interstellar medium. Thus our work provides some insight into the distribution of the scattering along the LOS to the pulsar PSR B2111 + 46 and PSR B0136 + 57.

  7. Stratified Sampling Design Based on Data Mining

    PubMed Central

    Kim, Yeonkook J.; Oh, Yoonhwan; Park, Sunghoon; Cho, Sungzoon

    2013-01-01

    Objectives To explore classification rules based on data mining methodologies which are to be used in defining strata in stratified sampling of healthcare providers with improved sampling efficiency. Methods We performed k-means clustering to group providers with similar characteristics, then, constructed decision trees on cluster labels to generate stratification rules. We assessed the variance explained by the stratification proposed in this study and by conventional stratification to evaluate the performance of the sampling design. We constructed a study database from health insurance claims data and providers' profile data made available to this study by the Health Insurance Review and Assessment Service of South Korea, and population data from Statistics Korea. From our database, we used the data for single specialty clinics or hospitals in two specialties, general surgery and ophthalmology, for the year 2011 in this study. Results Data mining resulted in five strata in general surgery with two stratification variables, the number of inpatients per specialist and population density of provider location, and five strata in ophthalmology with two stratification variables, the number of inpatients per specialist and number of beds. The percentages of variance in annual changes in the productivity of specialists explained by the stratification in general surgery and ophthalmology were 22% and 8%, respectively, whereas conventional stratification by the type of provider location and number of beds explained 2% and 0.2% of variance, respectively. Conclusions This study demonstrated that data mining methods can be used in designing efficient stratified sampling with variables readily available to the insurer and government; it offers an alternative to the existing stratification method that is widely used in healthcare provider surveys in South Korea. PMID:24175117

  8. Stratified sampling design based on data mining.

    PubMed

    Kim, Yeonkook J; Oh, Yoonhwan; Park, Sunghoon; Cho, Sungzoon; Park, Hayoung

    2013-09-01

    To explore classification rules based on data mining methodologies which are to be used in defining strata in stratified sampling of healthcare providers with improved sampling efficiency. We performed k-means clustering to group providers with similar characteristics, then, constructed decision trees on cluster labels to generate stratification rules. We assessed the variance explained by the stratification proposed in this study and by conventional stratification to evaluate the performance of the sampling design. We constructed a study database from health insurance claims data and providers' profile data made available to this study by the Health Insurance Review and Assessment Service of South Korea, and population data from Statistics Korea. From our database, we used the data for single specialty clinics or hospitals in two specialties, general surgery and ophthalmology, for the year 2011 in this study. Data mining resulted in five strata in general surgery with two stratification variables, the number of inpatients per specialist and population density of provider location, and five strata in ophthalmology with two stratification variables, the number of inpatients per specialist and number of beds. The percentages of variance in annual changes in the productivity of specialists explained by the stratification in general surgery and ophthalmology were 22% and 8%, respectively, whereas conventional stratification by the type of provider location and number of beds explained 2% and 0.2% of variance, respectively. This study demonstrated that data mining methods can be used in designing efficient stratified sampling with variables readily available to the insurer and government; it offers an alternative to the existing stratification method that is widely used in healthcare provider surveys in South Korea.

  9. Pyroelectric energy conversion with large energy and power density in relaxor ferroelectric thin films

    NASA Astrophysics Data System (ADS)

    Pandya, Shishir; Wilbur, Joshua; Kim, Jieun; Gao, Ran; Dasgupta, Arvind; Dames, Chris; Martin, Lane W.

    2018-05-01

    The need for efficient energy utilization is driving research into ways to harvest ubiquitous waste heat. Here, we explore pyroelectric energy conversion from low-grade thermal sources that exploits strong field- and temperature-induced polarization susceptibilities in the relaxor ferroelectric 0.68Pb(Mg1/3Nb2/3)O3-0.32PbTiO3. Electric-field-driven enhancement of the pyroelectric response (as large as -550 μC m-2 K-1) and suppression of the dielectric response (by 72%) yield substantial figures of merit for pyroelectric energy conversion. Field- and temperature-dependent pyroelectric measurements highlight the role of polarization rotation and field-induced polarization in mediating these effects. Solid-state, thin-film devices that convert low-grade heat into electrical energy are demonstrated using pyroelectric Ericsson cycles, and optimized to yield maximum energy density, power density and efficiency of 1.06 J cm-3, 526 W cm-3 and 19% of Carnot, respectively; the highest values reported to date and equivalent to the performance of a thermoelectric with an effective ZT ≈ 1.16 for a temperature change of 10 K. Our findings suggest that pyroelectric devices may be competitive with thermoelectric devices for low-grade thermal harvesting.

  10. Pyroelectric energy conversion with large energy and power density in relaxor ferroelectric thin films.

    PubMed

    Pandya, Shishir; Wilbur, Joshua; Kim, Jieun; Gao, Ran; Dasgupta, Arvind; Dames, Chris; Martin, Lane W

    2018-05-01

    The need for efficient energy utilization is driving research into ways to harvest ubiquitous waste heat. Here, we explore pyroelectric energy conversion from low-grade thermal sources that exploits strong field- and temperature-induced polarization susceptibilities in the relaxor ferroelectric 0.68Pb(Mg 1/3 Nb 2/3 )O 3 -0.32PbTiO 3 . Electric-field-driven enhancement of the pyroelectric response (as large as -550 μC m -2  K -1 ) and suppression of the dielectric response (by 72%) yield substantial figures of merit for pyroelectric energy conversion. Field- and temperature-dependent pyroelectric measurements highlight the role of polarization rotation and field-induced polarization in mediating these effects. Solid-state, thin-film devices that convert low-grade heat into electrical energy are demonstrated using pyroelectric Ericsson cycles, and optimized to yield maximum energy density, power density and efficiency of 1.06 J cm -3 , 526 W cm -3 and 19% of Carnot, respectively; the highest values reported to date and equivalent to the performance of a thermoelectric with an effective ZT ≈ 1.16 for a temperature change of 10 K. Our findings suggest that pyroelectric devices may be competitive with thermoelectric devices for low-grade thermal harvesting.

  11. Gravity-induced stresses in stratified rock masses

    USGS Publications Warehouse

    Amadei, B.; Swolfs, H.S.; Savage, W.Z.

    1988-01-01

    This paper presents closed-form solutions for the stress field induced by gravity in anisotropic and stratified rock masses. These rocks are assumed to be laterally restrained. The rock mass consists of finite mechanical units, each unit being modeled as a homogeneous, transversely isotropic or isotropic linearly elastic material. The following results are found. The nature of the gravity induced stress field in a stratified rock mass depends on the elastic properties of each rock unit and how these properties vary with depth. It is thermodynamically admissible for the induced horizontal stress component in a given stratified rock mass to exceed the vertical stress component in certain units and to be smaller in other units; this is not possible for the classical unstratified isotropic solution. Examples are presented to explore the nature of the gravity induced stress field in stratified rock masses. It is found that a decrease in rock mass anisotropy and a stiffening of rock masses with depth can generate stress distributions comparable to empirical hyperbolic distributions previously proposed in the literature. ?? 1988 Springer-Verlag.

  12. DNS of helicity-induced stratified turbulent flow

    NASA Astrophysics Data System (ADS)

    Chandy, Abhilash J.; Rahimi, Abbas

    2013-11-01

    Helical flows undergoing density stratification have wide applications in meteorological phenomena such as dust devils, tornadoes, and hurricanes due to the complexity and disasters caused by them. Direct numerical simulations (DNS) of transition to turbulence in a stably stratified Boussinesq fluid are presented for different rotation and stratification intensities. In order to understand the effect of velocity on the energy cascade, comparisons are made between helicity initiated and non-helical flows. Results show that stratification decelerates the helicity decay and causes velocity and vorticity to align with each other. With respect to the helical and non-helical flow comparisons, the total energy in the presence of stratification decays faster with helicity. In addition, the behavior of length scales were examined by comparing temporal variations of the vertical shearing of velocities. Results showed a growing asymmetry with time in the case of helical flow, while non-helical flow stayed close to begin symmetric.

  13. Generation and decay dynamics of triplet excitons in Alq3 thin films under high-density excitation conditions.

    PubMed

    Watanabe, Sadayuki; Furube, Akihiro; Katoh, Ryuzi

    2006-08-31

    We studied the generation and decay dynamics of triplet excitons in tris-(8-hydroxyquinoline) aluminum (Alq3) thin films by using transient absorption spectroscopy. Absorption spectra of both singlet and triplet excitons in the film were identified by comparison with transient absorption spectra of the ligand molecule (8-hydroxyquinoline) itself and the excited triplet state in solution previously reported. By measuring the excitation light intensity dependence of the absorption, we found that exciton annihilation dominated under high-density excitation conditions. Annihilation rate constants were estimated to be gammaSS = (6 +/- 3) x 10(-11) cm3 s(-1) for single excitons and gammaTT = (4 +/- 2) x 10(-13) cm3 s(-1) for triplet excitons. From detailed analysis of the light intensity dependence of the quantum yield of triplet excitons under high-density conditions, triplet excitons were mainly generated through fission from highly excited singlet states populated by singlet-singlet exciton annihilation. We estimated that 30% of the highly excited states underwent fission.

  14. Effects of working pressure and annealing on bulk density and nanopore structures in amorphous In-Ga-Zn-O thin-film transistors

    NASA Astrophysics Data System (ADS)

    Ide, Keisuke; Kikuchi, Mitsuho; Ota, Masato; Sasase, Masato; Hiramatsu, Hidenori; Kumomi, Hideya; Hosono, Hideo; Kamiya, Toshio

    2017-03-01

    Microstructures of amorphous In-Ga-Zn-O (a-IGZO) thin films of different densities were analyzed. Device-quality a-IGZO films were deposited under optimum conditions, e.g., the total pressure P tot = 0.55 Pa produced high film densities of ˜6.1 g/cm3, while a very high P tot = 5.0 Pa produced low film densities of 5.5 g/cm3. Both films formed uniform high-density layers in the vicinity of the glass substrate, 10-20 nm in thickness depending on P tot, while their growth mode changed to a sparse columnar structure in thicker regions. X-ray reflectivity and in situ spectroscopic ellipsometry provided different results on densification by post deposition thermal annealing; i.e., the latter has a higher sensitivity. High-Z-contrast images obtained by high-angle annular dark-field scanning transmission electron microscopy were also useful for detecting nanometer-size non uniformity even in device-quality a-IGZO films.

  15. Numerical investigation of split flows by gravity currents into two-layered stratified water bodies

    NASA Astrophysics Data System (ADS)

    Cortés, A.; Wells, M. G.; Fringer, O. B.; Arthur, R. S.; Rueda, F. J.

    2015-07-01

    The behavior of a two-dimensional (2-D) gravity current impinging upon a density step in a two-layered stratified basin is analyzed using a high-resolution Reynolds-Averaged Navier-Stokes model. The gravity current splits at the density step, and the portion of the buoyancy flux becoming an interflow is largely controlled by the vertical distribution of velocity and density within the gravity current and the magnitude of the density step between the two ambient layers. This is in agreement with recent laboratory observations. The strongest changes in the ambient density profiles occur as a result of the impingement of supercritical currents with strong density contrasts, for which a large portion of the gravity current detaches from the bottom and becomes an interflow. We characterize the current partition process in the simulated experiments using the densimetric Froude number of the current (Fr) across the density step (upstream and downstream). When underflows are formed, more supercritical currents are observed downstream of the density step compared to upstream (Fru < Frd), and thus, stronger mixing of the current with the ambient water downstream. However, when split flows and interflows are formed, smaller Fr values are identified after the current crosses the density step (Fru > Frd), which indicates lower mixing between the current and ambient water after the impingement due to the significant stripping of interfacial material at the density step.

  16. Electrochemical Corrosion Properties of Commercial Ultra-Thin Copper Foils

    NASA Astrophysics Data System (ADS)

    Yen, Ming-Hsuan; Liu, Jen-Hsiang; Song, Jenn-Ming; Lin, Shih-Ching

    2017-08-01

    Ultra-thin electrodeposited Cu foils have been developed for substrate thinning for mobile devices. Considering the corrosion by residual etchants from the lithography process for high-density circuit wiring, this study investigates the microstructural features of ultra-thin electrodeposited Cu foils with a thickness of 3 μm and their electrochemical corrosion performance in CuCl2-based etching solution. X-ray diffraction and electron backscatter diffraction analyses verify that ultra-thin Cu foils exhibit a random texture and equi-axed grains. Polarization curves show that ultra-thin foils exhibit a higher corrosion potential and a lower corrosion current density compared with conventional (220)-oriented foils with fan-like distributed fine-elongated columnar grains. Chronoamperometric results also suggest that ultra-thin foils possess superior corrosion resistance. The passive layer, mainly composed of CuCl and Cu2O, forms and dissolves in sequence during polarization.

  17. Longevity of Compositionally Stratified Layers in Ice Giants

    NASA Astrophysics Data System (ADS)

    Friedson, A. J.

    2017-12-01

    In the hydrogen-rich atmospheres of gas giants, a decrease with radius in the mixing ratio of a heavy species (e.g. He, CH4, H2O) has the potential to produce a density stratification that is convectively stable if the heavy species is sufficiently abundant. Formation of stable layers in the interiors of these planets has important implications for their internal structure, chemical mixing, dynamics, and thermal evolution, since vertical transport of heat and constituents in such layers is greatly reduced in comparison to that in convecting layers. Various processes have been suggested for creating compositionally stratified layers. In the interiors of Jupiter and Saturn, these include phase separation of He from metallic hydrogen and dissolution of dense core material into the surrounding metallic-H envelope. Condensation of methane and water has been proposed as a mechanism for producing stable zones in the atmospheres of Saturn and the ice giants. However, if a stably stratified layer is formed adjacent to an active region of convection, it may be susceptible to progressive erosion as the convection intrudes and entrains fluid into the unstable envelope. We discuss the principal factors that control the rate of entrainment and associated erosion and present a specific example concerning the longevity of stable layers formed by condensation of methane and water in Uranus and Neptune. We also consider whether the temporal variability of such layers may engender episodic behavior in the release of the internal heat of these planets. This research is supported by a grant from the NASA Solar System Workings Program.

  18. Gravitational Instability of Small Particles in Stratified Dusty Disks

    NASA Astrophysics Data System (ADS)

    Shi, J.; Chiang, E.

    2012-12-01

    Self-gravity is an attractive means of forming the building blocks of planets, a.k.a. the first-generation planetesimals. For ensembles of dust particles to aggregate into self-gravitating, bound structures, they must first collect into regions of extraordinarily high density in circumstellar gas disks. We have modified the ATHENA code to simulate dusty, compressible, self-gravitating flows in a 3D shearing box configuration, working in the limit that dust particles are small enough to be perfectly entrained in gas. We have used our code to determine the critical density thresholds required for disk gas to undergo gravitational collapse. In the strict limit that the stopping times of particles in gas are infinitesimally small, our numerical simulations and analytic calculations reveal that the critical density threshold for gravitational collapse is orders of magnitude above what has been commonly assumed. We discuss how finite but still short stopping times under realistic conditions can lower the threshold to a level that may be attainable. Nonlinear development of gravitational instability in a stratified dusty disk. Shown are volume renderings of dust density for the bottom half of a disk at t=0, 6, 8, and 9 Omega^{-1}. The initial disk first develops shearing density waves. These waves then steep and form long extending filament along the azimuth. These filaments eventually break and form very dense dust clumps. The time evolution of the maximum dust density within the simulation box. Run std32 stands for a standard run which has averaged Toomre's Q=0.5. Qgtrsim 1.0 for the rest runs in the plot (Z1 has twice metallicity than the standard; Q1 has twice Q_g, the Toomre's Q for the gas disk alone; M1 has twice the dust-to-gas ratio than the standard at the midplane; R1 is constructed so that the midplane density exceeds the Roche criterion however the Toomre's Q is above unity.)

  19. Numerical simulations of the stratified oceanic bottom boundary layer

    NASA Astrophysics Data System (ADS)

    Taylor, John R.

    Numerical simulations are used to consider several problems relevant to the turbulent oceanic bottom boundary layer. In the first study, stratified open channel flow is considered with thermal boundary conditions chosen to approximate a shallow sea. Specifically, a constant heat flux is applied at the free surface and the lower wall is assumed to be adiabatic. When the surface heat flux is strong, turbulent upwellings of low speed fluid from near the lower wall are inhibited by the stable stratification. Subsequent studies consider a stratified bottom Ekman layer over a non-sloping lower wall. The influence of the free surface is removed by using an open boundary condition at the top of the computational domain. Particular attention is paid to the influence of the outer layer stratification on the boundary layer structure. When the density field is initialized with a linear profile, a turbulent mixed layer forms near the wall, which is separated from the outer layer by a strongly stable pycnocline. It is found that the bottom stress is not strongly affected by the outer layer stratification. However, stratification reduces turbulent transport to the outer layer and strongly limits the boundary layer height. The mean shear at the top of the boundary layer is enhanced when the outer layer is stratified, and this shear is strong enough to cause intermittent instabilities above the pycnocline. Turbulence-generated internal gravity waves are observed in the outer layer with a relatively narrow frequency range. An explanation for frequency content of these waves is proposed, starting with an observed broad-banded turbulent spectrum and invoking linear viscous decay to explain the preferential damping of low and high frequency waves. During the course of this work, an open-source computational fluid dynamics code has been developed with a number of advanced features including scalar advection, subgrid-scale models for large-eddy simulation, and distributed memory

  20. Internal combustion engine using premixed combustion of stratified charges

    DOEpatents

    Marriott, Craig D [Rochester Hills, MI; Reitz, Rolf D [Madison, WI

    2003-12-30

    During a combustion cycle, a first stoichiometrically lean fuel charge is injected well prior to top dead center, preferably during the intake stroke. This first fuel charge is substantially mixed with the combustion chamber air during subsequent motion of the piston towards top dead center. A subsequent fuel charge is then injected prior to top dead center to create a stratified, locally richer mixture (but still leaner than stoichiometric) within the combustion chamber. The locally rich region within the combustion chamber has sufficient fuel density to autoignite, and its self-ignition serves to activate ignition for the lean mixture existing within the remainder of the combustion chamber. Because the mixture within the combustion chamber is overall premixed and relatively lean, NO.sub.x and soot production are significantly diminished.

  1. Dipolar eddies in a decaying stratified turbulent flow

    NASA Astrophysics Data System (ADS)

    Voropayev, S. I.; Fernando, H. J. S.; Morrison, R.

    2008-02-01

    Laboratory experiments on the evolution of dipolar (momentum) eddies in a stratified fluid in the presence of random background motions are described. A turbulent jet puff was used to generate the momentum eddies, and a decaying field of ambient random vortical motions was generated by a towed grid. Data on vorticity/velocity fields of momentum eddies, those of background motions, and their interactions were collected in the presence and absence of the other, and the main characteristics thereof were parametrized. Similarity arguments predict that dipolar eddies in stratified fluids may preserve their identity in decaying grid-generated stratified turbulence, which was verified experimentally. Possible applications of the results include mushroomlike currents and other naturally/artificially generated large dipolar eddies in strongly stratified layers of the ocean, the longevity of which is expected to be determined by the characteristics of the eddies and random background motions.

  2. Wave Excitation in Accretion Disks by Protoplanets

    NASA Astrophysics Data System (ADS)

    Koller, J.; Li, H.

    2002-05-01

    The ongoing discoveries of extrasolar planets in the recent years revealed remarkable properties and unexpected results concerning the formation process. We studied the perturbation of a protostellar accretion disk by a companion utilizing APOLLO, a fast hydro disk code well tested in the case of accretion disks without a companion (Li et al. 2001, ApJ, 551, 874). We consider limiting cases where the companion's mass is much smaller than the central protostar and resides in a circular keplerian orbit. The gravitational field of the protoplanet, embedded in a numerically thin disk, generates spiral density waves and Rossby instabilities resulting in a non-axisymmetric density distribution. We present nonlinear hydro simulations to investigate those non-axisymmetric density distribution with different disk and planet parameters in order to understand how disks respond to a fixed companion in orbit. This work has been supported by IGPP at LANL (award # 1109) and NASA (grant # NAG5-9223).

  3. 40 CFR Appendix B to Subpart II of... - Maximum Allowable Thinning Rates as a Function of As Supplied VOC Content and Thinner Density

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 11 2013-07-01 2013-07-01 false Maximum Allowable Thinning Rates as a Function of As Supplied VOC Content and Thinner Density B Appendix B to Subpart II of Part 63 Protection of... Shipbuilding and Ship Repair (Surface Coating) Pt. 63, Subpt. II, App. B Appendix B to Subpart II of Part 63...

  4. 40 CFR Appendix B to Subpart II to... - Maximum Allowable Thinning Rates as a Function of As Supplied VOC Content and Thinner Density

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 10 2011-07-01 2011-07-01 false Maximum Allowable Thinning Rates as a Function of As Supplied VOC Content and Thinner Density B Appendix B to Subpart II to Part 63 Protection of... Shipbuilding and Ship Repair (Surface Coating) Pt. 63, Subpt. II, App. B Appendix B to Subpart II to Part 63...

  5. Development of a stand density index equation for slash pine stands

    Treesearch

    Paul F. Doruska

    2002-01-01

    Stand density index (SDI) is commonly used as the basis for density management guides for even-aged forest stands. Many tree species follow the same self-thinning trajectory, allowing for the use of stand density index in such guides. Slash pine (Pinus elliottii Englem.) has been shown to depart from the self-thinning trajectory exhibited by other...

  6. Emittance Theory for Thin Film Selective Emitter

    NASA Technical Reports Server (NTRS)

    Chubb, Donald L.; Lowe, Roland A.; Good, Brian S.

    1994-01-01

    Thin films of high temperature garnet materials such as yttrium aluminum garnet (YAG) doped with rare earths are currently being investigated as selective emitters. This paper presents a radiative transfer analysis of the thin film emitter. From this analysis the emitter efficiency and power density are calculated. Results based on measured extinction coefficients for erbium-YAG and holmium-YAG are presented. These results indicated that emitter efficiencies of 50 percent and power densities of several watts/sq cm are attainable at moderate temperatures (less than 1750 K).

  7. Study of electronic characteristics of heterojunction with intrinsic thin-layer devices and defect density profile of nanocrystalline silicon germanium devices

    NASA Astrophysics Data System (ADS)

    Mulder, Watson

    Heterojunction with Intrinsic Thin-layer (HIT) solar cells are an important photovoltaic technology, recently reaching record power conversion efficiencies. HIT cells hold advantages over the conventional crystalline Si solar cells, such as their fabrication at lower temperatures and their shorter fabrication time. It is important to understand the electronic characteristics and transport properties of HIT cells to continue to improve their efficiencies. The fundamental measurements of a HIT solar cell with an innovative n+/p/p+ structure are presented. We also report on a series of these HIT cells fabricated on wafers with different doping concentrations, observing the relationship between doping concentration and characteristics such as open-circuit voltage and diffusion length. Nanocrystalline Silicon-Germanium (nc-SiGe) is a useful material for photovoltaic devices and photodetectors. The material features good absorption extending to the infrared region even in thin layers. Its bandgap can be adjusted between that of Si (˜1.1 eV) and Ge (˜0.7 eV) by varying the alloy composition ratio during deposition. However, there has been very little previous work to measure and understand the defect density spectrum of nc-SiGe. Defects are responsible for controlling the recombination and thus the performance of solar cell devices. Capacitance-Frequency measurements at various temperatures are used in order to estimate the trap density profile within the bandgap of nc-SiGe.

  8. Spatial and Temporal Trends in the Density Stratification of Long Island Sound

    NASA Astrophysics Data System (ADS)

    Marchese, P.

    2017-12-01

    The density structure of Long Island Sound (LIS) was studied using historical hydrographic data. Like many estuaries, LIS suffers from hypoxia during the summer months; a result of the density stratification caused by surface warming and weak wind conditions. In summer, the water column is stratified at both ends (east and west) with a vertically well mixed region near the middle. During these months, the western side of LIS experiences low bottom dissolved from the higher nutrient influx and the resulting oxygen demand. Eastern LIS does not experience hypoxia despite sometimes being more highly stratified than the west because these bottom water are regularly ventilated by incoming higher DO water from outside. Topography and density gradients prevent the low DO water from encroaching to the eastern basin. In the fall, changing atmospheric conditions weakens the density stratification throughout LIS, although in some regions the vertical gradient will persist, sometimes until January.

  9. Radiative transfer in a plane stratified dielectric

    NASA Technical Reports Server (NTRS)

    Wilheit, T. T., Jr.

    1975-01-01

    A model is developed for calculating radiative transfer in a stratified dielectric. This model is used to show that the reflectivity of a stratified dielectric is primarily determined by gradients in the real part of the refractive index over distances on the order of 1/10 wavelength in the medium. The effective temperature of the medium is determined by the thermodynamic temperature profile over distances of the order delta T.

  10. Using a fast Fourier method to model sound propagation in a stratified atmosphere over a stratified porous-elastic ground

    NASA Technical Reports Server (NTRS)

    Tooms, S.; Attenborough, K.

    1990-01-01

    Using a Fast Fourier integration method and a global matrix method for solution of the boundary condition equations at all interfaces simultaneously, a useful tool for predicting acoustic propagation in a stratified fluid over a stratified porous-elastic solid was developed. The model for the solid is a modified Biot-Stoll model incorporating four parameters describing the pore structure corresponding to the Rayleigh-Attenborough rigid-porous structure model. The method is also compared to another Fast Fourier code (CERL-FFP) which models the ground as an impedance surface under a horizontally stratified air. Agreement with the CERL FFP is good. The effects on sound propagation of a combination of ground elasticity, complex ground structure, and atmospheric conditions are demonstrated by theoretical results over a snow layer, and experimental results over a model ground surface.

  11. Transition to turbulence in stratified shear flow: experiments in an inclined square duct

    NASA Astrophysics Data System (ADS)

    Meyer, Colin; Linden, Paul

    2013-11-01

    We describe laboratory experiments of countercurrent stratified shear flow in an inclined square duct. To achieve this, a long water tank was partitioned into regions of higher and lower density saltwater that are connected by an inclined square duct. The flow regime was characterized to be turbulent, intermittent, Holmboe or laminar as a function of the duct inclination, θ, and the density difference, Δρ , between the two reservoirs. The density difference and duct angle were systematically varied and a phase plane of flow regime was developed. The transition between the interrmittent regime and turbulence was experimentally determined to occur at θΔρ ~= 20 [degrees kg m-3]. This critical combination of parameters fits into the buoyancy-compensated Reynolds number scaling proposed by Brethouwer et al. (J. Fluid Mech., 2007). The turbulent interfacial thickness was found to be a function of the inclination angle, which can be predicted using the buoyancy lengthscale from Waite and Bartello (J. Fluid Mech., 2004) and others. Furthermore, we measured the density profiles at multiple points along the duct, and using these profiles, we modeled the entrainment at the interface. Support provided by the Winston Churchill Foundation of the United States.

  12. Influences of source condition and dissolution on bubble plume in a stratified environment

    NASA Astrophysics Data System (ADS)

    Chu, Shigan; Prosperetti, Andrea

    2017-11-01

    A cross-sectionally averaged model is used to study a bubble plume rising in a stratified quiescent liquid. Scaling analyses for the peel height, at which the plume momentum vanishes, and the neutral height, at which its average density equals the ambient density, are presented. Contrary to a widespread practice in the literature, it is argued that the neutral height cannot be identified with the experimentally reported intrusion height. Recognizing this difference provides an explanation of the reason why the intrusion height is found so frequently to lie so much above predictions, and brings the theoretical results in line with observations. The mathematical model depends on three dimensionless parameters, some of which are related to the inlet conditions at the plume source. Their influence on the peel and neutral heights is illustrated by means of numerical results. Aside from the source parameters, we incorporate dissolution of bubbles and the corresponding density change of plume into the model. Contrary to what's documented in literature, density change of plume due to dissolution plays an important role in keeping the total buoyancy of plume, thus alleviating the rapid decrease of peel height because of dissolution.

  13. Electronic structure of LiCoO2 thin films: A combined photoemission spectroscopy and density functional theory study

    NASA Astrophysics Data System (ADS)

    Ensling, David; Thissen, Andreas; Laubach, Stefan; Schmidt, Peter C.; Jaegermann, Wolfram

    2010-11-01

    The electronic properties of LiCoO2 have been studied by theoretical band-structure calculations (using density functional theory) and experimental methods (photoemission). Synchrotron-induced photoelectron spectroscopy, resonant photoemission spectroscopy (ResPES), and soft x-ray absorption (XAS) have been applied to investigate the electronic structure of both occupied and unoccupied states. High-quality PES spectra were obtained from stoichiometric and highly crystalline LiCoO2 thin films deposited “in situ” by rf magnetron sputtering. An experimental approach of separating oxygen- and cobalt-derived (final) states by ResPES in the valence-band region is presented. The procedure takes advantage of an antiresonant behavior of cobalt-derived states at the 3p-3d excitation threshold. Information about the unoccupied density of states has been obtained by OK XAS. The structure of the CoL absorption edge is compared to semiempirical charge-transfer multiplet calculations. The experimental results are furthermore compared with band-structure calculations considering three different exchange potentials [generalized gradient approximation (GGA), using a nonlocal Hubbard U (GGA+U) and using a hybrid functional (Becke, three-parameter, Lee-Yang-Parr [B3LYP])]. For these different approaches total density of states and partial valence-band density of states have been investigated. The best qualitative agreement with experimental results has been obtained by using a GGA+U functional with U=2.9eV .

  14. Growth of thin film containing high density ZnO nanorods with low temperature calcinated seed layer

    NASA Astrophysics Data System (ADS)

    Panda, Rudrashish; Samal, Rudranarayan; Khatua, Lizina; Das, Susanta Kumar

    2018-05-01

    In this work we demonstrate the growth of thin film containing high density ZnO nanorods by using drop casting of the seed layer calcinated at a low temperature of 132 °C. Chemical bath deposition (CBD) method is used to grow the nanorods. X-ray diffraction (XRD) analysis and Field Emission Scanning Electron Microscopy (FESEM) are performed for the structural and morphological characterizations of the nanorods. The average diameter and length of nanorods are found to be 33 nm and 270 nm respectively. The bandgap of the material is estimated to be 3.2 eV from the UV-Visible absorption spectroscopy. The reported method is much more cost-effective and can be used for growth of ZnO nanorods for various applications.

  15. Effect of hafnium doping on density of states in dual-target magnetron co-sputtering HfZnSnO thin film transistors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huang, Chuan-Xin; Li, Jun, E-mail: SHUniverjunli@163.com; Fu, Yi-Zhou

    2015-11-23

    This study investigates the effect of hafnium doping on the density of states (DOSs) in HfZnSnO thin film transistors fabricated by dual-target magnetron co-sputtering system. The DOSs is extracted by temperature-dependent field-effect measurements, and they decrease from 1.1 × 10{sup 17} to 4.6 × 10{sup 16 }eV/cm{sup 3} with increasing the hafnium concentrations. The behavior of DOSs for the increasing hafnium concentration HfZnSnO thin film transistors can be confirmed by both the reduction of ΔV{sub T} under bias stress and the trapping charges calculated by capacitance voltage measurements. It suggests that the reduction in DOSs due to the hafnium doping is closely related with themore » bias stability and thermal stability.« less

  16. Particle dispersion in a stably stratified channel flow

    NASA Astrophysics Data System (ADS)

    Pasquero, C.; Armenio, V.

    2003-04-01

    The motion of particles in a stably stratified channel flow is relevant in geophysic and environmental applications. In the present research this problem has been studied numerically using a mixed Lagrangian-Eulerian technique (Lagrangian motion of an ensemble of particles in an Eulerian field) by means of large eddy simulation. A stratified channel flows can be decomposed into a buoyancy affected region, with a strong turbulent activity, close to the walls, and into a buoyancy dominated region, where turbulence is strongly inhibited, in the center of the channel. For strong stratifications, counter gradient heat fluxes steepen the density gradient moving hot fluid up and cold fluid down. The stratification in the central region of the channel becomes extremely stable. However, the vertical turbulent energy, defined as the difference between the total vertical kinetic energy and its temporal average, is very strong. Particle statistics have shown that this can be related to the presence of high frequency internal waves, that do not contribute to dispersion because of their highly coherent behavior. Vertical stratification is shown to reduce or increase the decorrelation time for vertical motion, depending on the Richardson number. When stratification is increased there are two competing effects: Structures have a smaller vertical scale (acting to reduce the decorrelation time) and vertical velocities are smaller (acting to increase the decorrelation time, since particles stay for a longer time into a given structure in the flow). It has been shown that for low stratification the first mechanism dominates, while for large stratification the second effect is more important. The research is in progress and results for both fluid and inertial particles will be presented at the conference.

  17. Magnetic flux concentrations from turbulent stratified convection

    NASA Astrophysics Data System (ADS)

    Käpylä, P. J.; Brandenburg, A.; Kleeorin, N.; Käpylä, M. J.; Rogachevskii, I.

    2016-04-01

    Context. The formation of magnetic flux concentrations within the solar convection zone leading to sunspot formation is unexplained. Aims: We study the self-organization of initially uniform sub-equipartition magnetic fields by highly stratified turbulent convection. Methods: We perform simulations of magnetoconvection in Cartesian domains representing the uppermost 8.5-24 Mm of the solar convection zone with the horizontal size of the domain varying between 34 and 96 Mm. The density contrast in the 24 Mm deep models is more than 3 × 103 or eight density scale heights, corresponding to a little over 12 pressure scale heights. We impose either a vertical or a horizontal uniform magnetic field in a convection-driven turbulent flow in set-ups where no small-scale dynamos are present. In the most highly stratified cases we employ the reduced sound speed method to relax the time step constraint arising from the high sound speed in the deep layers. We model radiation via the diffusion approximation and neglect detailed radiative transfer in order to concentrate on purely magnetohydrodynamic effects. Results: We find that super-equipartition magnetic flux concentrations are formed near the surface in cases with moderate and high density stratification, corresponding to domain depths of 12.5 and 24 Mm. The size of the concentrations increases as the box size increases and the largest structures (20 Mm horizontally near the surface) are obtained in the models that are 24 Mm deep. The field strength in the concentrations is in the range of 3-5 kG, almost independent of the magnitude of the imposed field. The amplitude of the concentrations grows approximately linearly in time. The effective magnetic pressure measured in the simulations is positive near the surface and negative in the bulk of the convection zone. Its derivative with respect to the mean magnetic field, however, is positive in most of the domain, which is unfavourable for the operation of the negative

  18. Transverse Cascade and Sustenance of Turbulence in Keplerian Disks with an Azimuthal Magnetic Field

    NASA Astrophysics Data System (ADS)

    Gogichaishvili, D.; Mamatsashvili, G.; Horton, W.; Chagelishvili, G.; Bodo, G.

    2017-10-01

    The magnetorotational instability (MRI) in the sheared rotational Keplerian explains fundamental problems for both astrophysics and toroidal laboratory plasmas. The turbulence occurs before the threshold for the linear eigen modes. The work shows the turbulence occurs in nonzero toroidal magnetic field with a sheared toroidal flow velocity. We analyze the turbulence in Fourier k-space and x-space each time step to clarify the nonlinear energy-momentum transfers that produce the sustenance in the linearly stable plasma. The nonlinear process is a type 3D angular redistribution of modes in Fourier space - a transverse cascade - rather than the direct/inverse cascades. The turbulence is sustained an interplay of the linear transient growth from the radial gradient of the toroidal velocity (which is the only energy supply for the turbulence) and the transverse cascade. There is a relatively small ``vital area in Fourier space'' is crucial for the sustenance. Outside the vital area the direct cascade dominates. The interplay of the linear and nonlinear processes is generally too intertwined in k-space for a classical turbulence characterization. Subcycles occur from the interactions that maintain self-organization nonlinear turbulence. The spectral characteristics in four simulations are similar showing the universality of the sustenance mechanism of the shear flow driven MHDs-turbulence. Funded by the US Department of Energy under Grant DE-FG02-04ER54742 and the Space and Geophysics Laboratory at the University of Texas at Austin. G. Mamatsashvili is supported by the Alexander von Humboldt Foundation, Germany.

  19. The Influence of Hafnium Doping on Density of States in Zinc Oxide Thin-Film Transistors Deposited via Atomic Layer Deposition.

    PubMed

    Ding, Xingwei; Qin, Cunping; Song, Jiantao; Zhang, Jianhua; Jiang, Xueyin; Zhang, Zhilin

    2017-12-01

    Thin-film transistors (TFTs) with atomic layer deposition (ALD) HfZnO (HZO) as channel layer and Al 2 O 3 as gate insulator were successfully fabricated. Compared with ZnO-TFT, the stability of HZO-TFT was obviously improved as Hf doping can suppress the generation of oxygen related defects. The transfer characteristics of TFTs at different temperatures were also investigated, and temperature stability enhancement was observed for the TFT with Hf doping. The density of states (DOS) was calculated based on the experimentally obtained E a , which can explain the experimental observation. A high-field effect mobility of 9.4 cm 2 /Vs, a suitable turn-on voltage of 0.26 V, a high on/off ratio of over 10 7 and a steep sub-threshold swing of 0.3 V/decade were obtained in HZO-TFT. The results showed that temperature stability enhancement in HfZnO thin-film transistors are attributed to the smaller DOS.

  20. The Influence of Hafnium Doping on Density of States in Zinc Oxide Thin-Film Transistors Deposited via Atomic Layer Deposition

    NASA Astrophysics Data System (ADS)

    Ding, Xingwei; Qin, Cunping; Song, Jiantao; Zhang, Jianhua; Jiang, Xueyin; Zhang, Zhilin

    2017-01-01

    Thin-film transistors (TFTs) with atomic layer deposition (ALD) HfZnO (HZO) as channel layer and Al2O3 as gate insulator were successfully fabricated. Compared with ZnO-TFT, the stability of HZO-TFT was obviously improved as Hf doping can suppress the generation of oxygen related defects. The transfer characteristics of TFTs at different temperatures were also investigated, and temperature stability enhancement was observed for the TFT with Hf doping. The density of states (DOS) was calculated based on the experimentally obtained E a, which can explain the experimental observation. A high-field effect mobility of 9.4 cm2/Vs, a suitable turn-on voltage of 0.26 V, a high on/off ratio of over 107 and a steep sub-threshold swing of 0.3 V/decade were obtained in HZO-TFT. The results showed that temperature stability enhancement in HfZnO thin-film transistors are attributed to the smaller DOS.

  1. Vortex ring motions in stratified media

    NASA Astrophysics Data System (ADS)

    Auvity, Bruno; Koulal, Mokrane; Dupont, Pascal; Peerhossaini, Hassan

    2003-11-01

    The behavior of vortex rings generated in a stably stratified media has received only weak treatment in the literature. This configuration is believed to shed light on the basic phenomena involved in the collapse of wake in stratified fluid. The present study focused on experimental observations of the formation, the advection and the collapse of horizontal vortex rings in stratified media. Stable continuous vertical stratification was produced in a tank using the well-known two-tanks method. The generation of vortex ring was realized moving a piston through a tube. The maximum piston stroke achievable was seven tube diameters. The problem is mainly characterized by two parameters : the initial Reynolds number and the initial Froude number of the vortex ring. Both these numbers were varied in the study. The Reynolds number based on the tube diameter and piston velocity was in the range 1,500 - 5,500 and the Froude number based on the same parameters in the range 1.4 - 4.7. Dye visualizations were performed from the top and the side of the tank showing the vortex ring may develop an important asymmetry. Different processes to the complete collapse of the vortex ring were identified.

  2. The carbon consequences of thinning techniques: stand structure makes a difference

    Treesearch

    Coeli Hoover; Susan Stout

    2007-01-01

    Using results from a 25-year study of thinning in a northwestern Pennsylvania Allegheny hardwood stand, we assess whether and how thinning method affected carbon sequestration and merchantable volume production. Plots were thinned to similar residual relative density by removing trees from different portions of the diameter distribution. Plots that were thinned from...

  3. Effects of thinning on drought vulnerability and climate response in north temperate forest ecosystems

    USGS Publications Warehouse

    D’Amato, Anthony W.; Bradford, John B.; Fraver, Shawn; Palik, Brian J.

    2013-01-01

    Reducing tree densities through silvicultural thinning has been widely advocated as a strategy for enhancing resistance and resilience to drought, yet few empirical evaluations of this approach exist. We examined detailed dendrochronological data from a long-term (>50 yrs) replicated thinning experiment to determine if density reductions conferred greater resistance and/or resilience to droughts, assessed by the magnitude of stand-level growth reductions. Our results suggest that thinning generally enhanced drought resistance and resilience; however, this relationship showed a pronounced reversal over time in stands maintained at lower tree densities. Specifically, lower-density stands exhibited greater resistance and resilience at younger ages (49 years), yet exhibited lower resistance and resilience at older ages (76 years), relative to higher-density stands. We attribute this reversal to significantly greater tree sizes attained within the lower-density stands through stand development, which in turn increased tree-level water demand during the later droughts. Results from response-function analyses indicate that thinning altered growth-climate relationships, such that higher-density stands were more sensitive to growing-season precipitation relative to lower-density stands. These results confirm the potential of density management to moderate drought impacts on growth, and they highlight the importance of accounting for stand structure when predicting climate-change impacts to forest systems.

  4. Effects of thinning on drought vulnerability and climate response in north temperate forest ecosystems.

    PubMed

    D'Amato, Anthony W; Bradford, John B; Fraver, Shawn; Palik, Brian J

    2013-12-01

    Reducing tree densities through silvicultural thinning has been widely advocated as a strategy for enhancing resistance and resilience to drought, yet few empirical evaluations of this approach exist. We examined detailed dendrochronological data from a long-term (> 50 years) replicated thinning experiment to determine if density reductions conferred greater resistance and/or resilience to droughts, assessed by the magnitude of stand-level growth reductions. Our results suggest that thinning generally enhanced drought resistance and resilience; however, this relationship showed a pronounced reversal over time in stands maintained at lower tree densities. Specifically, lower-density stands exhibited greater resistance and resilience at younger ages (49 years), yet exhibited lower resistance and resilience at older ages (76 years), relative to higher-density stands. We attribute this reversal to significantly greater tree sizes attained within the lower-density stands through stand development, which in turn increased tree-level water demand during the later droughts. Results from response-function analyses indicate that thinning altered growth-climate relationships, such that higher-density stands were more sensitive to growing-season precipitation relative to lower-density stands. These results confirm the potential of density management to moderate drought impacts on growth, and they highlight the importance of accounting for stand structure when predicting climate-change impacts to forests.

  5. Young Stand Thinning and Diversity Study: Response of Songbird Community One Decade Post-Treatment

    USGS Publications Warehouse

    Hagar, Joan; Friesen, Cheryl

    2009-01-01

    The response of songbird assemblages to commercial thinning is likely to change as vegetation develops over time after thinning. The influence of thinning intensity and pattern on the timing of transitions in bird community composition following thinning is of interest to managers when a goal is to maintain diversity and accelerate the development of late-seral forest structure. We investigated changes in the composition of songbird assemblages and density of individual species from 2 years before to 12 years after experimental thinning of 40-year-old stands dominated by Douglas-fir (Pseudotsuga menziesii) in the Oregon Cascades. Species richness, and density for five species and the neotropical migrant group were greater in thinned than in unthinned control stands over all post-treatment years of the study. Similarly, three species maintained a negative response to thinning over the post-treatment period. The initial positive influence of thinning was no longer in evidence a decade after harvest for five species. Of seven species with an initial negative response to thinning, three indicated recovery towards pre-treatment densities by the end of the most recent post-treatment survey. Our study is one of the first to document long-term effects of commercial thinning on forest songbird assemblages in the Pacific Northwest.

  6. Stratifying repellent-treated pine seed.

    Treesearch

    T.A. Harrington

    1960-01-01

    Germinative capacity of loblolly, shortleaf, and Virginia pine may be seriously reduced if the seed is repellent-coated and then stratified when fresh. In contrast, cold storage for a few months may largely forestall damage from later repellent treatment and stratification.

  7. Effects of Density Stratification in Compressible Polytropic Convection

    NASA Astrophysics Data System (ADS)

    Manduca, Cathryn M.; Anders, Evan H.; Bordwell, Baylee; Brown, Benjamin P.; Burns, Keaton J.; Lecoanet, Daniel; Oishi, Jeffrey S.; Vasil, Geoffrey M.

    2017-11-01

    We study compressible convection in polytropically-stratified atmospheres, exploring the effect of varying the total density stratification. Using the Dedalus pseudospectral framework, we perform 2D and 3D simulations. In these experiments we vary the number of density scale heights, studying atmospheres with little stratification (1 density scale height) and significant stratification (5 density scale heights). We vary the level of convective driving (quantified by the Rayleigh number), and study flows at similar Mach numbers by fixing the initial superadiabaticity. We explore the differences between 2D and 3D simulations, and in particular study the equilibration between different reservoirs of energy (kinetic, potential and internal) in the evolved states.

  8. Nonenzymatic detection of glucose using BaCuO2 thin layer

    NASA Astrophysics Data System (ADS)

    Ito, Takeshi; Asada, Tsuyoshi; Asai, Naoto; Shimizu, Tomohiro; Shingubara, Shoso

    2017-01-01

    A BaCuO2 thin layer was deposited on a glassy carbon electrode and used for the direct oxidation of glucose. The crystalline, electrochemical, and physicochemical properties that depend on the deposition temperature and deposition time were studied. X-ray diffraction (XRD) analysis showed that the thin layer was amorphous even at 400 °C. The current density of the glucose oxidation using the thin layer deposited at 200 °C was higher than those at other deposition temperatures. Under this condition, the current density increased with the glucose concentration and deposition time. These results indicate that a BaCuO2 thin layer has potential for measuring the blood glucose level without enzymes.

  9. Shear Thinning in Xenon

    NASA Technical Reports Server (NTRS)

    Bergm Robert F.; Moldover, Michael R.; Yao, Minwu; Zimmerli, Gregory A.

    2009-01-01

    We measured shear thinning, a viscosity decrease ordinarily associated with complex liquids such as molten plastics or ketchup, near the critical point of xenon. The data span a wide range of dimensionless shear rate: the product of the shear rate and the relaxation time of critical fluctuations was greater than 0.001 and was less than 700. As predicted by theory, shear thinning occurred when this product was greater than 1. The measurements were conducted aboard the Space Shuttle Columbia to avoid the density stratification caused by Earth's gravity.

  10. Seismic modeling of complex stratified reservoirs

    NASA Astrophysics Data System (ADS)

    Lai, Hung-Liang

    Turbidite reservoirs in deep-water depositional systems, such as the oil fields in the offshore Gulf of Mexico and North Sea, are becoming an important exploration target in the petroleum industry. Accurate seismic reservoir characterization, however, is complicated by the heterogeneous of the sand and shale distribution and also by the lack of resolution when imaging thin channel deposits. Amplitude variation with offset (AVO) is a very important technique that is widely applied to locate hydrocarbons. Inaccurate estimates of seismic reflection amplitudes may result in misleading interpretations because of these problems in application to turbidite reservoirs. Therefore, an efficient, accurate, and robust method of modeling seismic responses for such complex reservoirs is crucial and necessary to reduce exploration risk. A fast and accurate approach generating synthetic seismograms for such reservoir models combines wavefront construction ray tracing with composite reflection coefficients in a hybrid modeling algorithm. The wavefront construction approach is a modern, fast implementation of ray tracing that I have extended to model quasi-shear wave propagation in anisotropic media. Composite reflection coefficients, which are computed using propagator matrix methods, provide the exact seismic reflection amplitude for a stratified reservoir model. This is a distinct improvement over conventional AVO analysis based on a model with only two homogeneous half spaces. I combine the two methods to compute synthetic seismograms for test models of turbidite reservoirs in the Ursa field, Gulf of Mexico, validating the new results against exact calculations using the discrete wavenumber method. The new method, however, can also be used to generate synthetic seismograms for the laterally heterogeneous, complex stratified reservoir models. The results show important frequency dependence that may be useful for exploration. Because turbidite channel systems often display complex

  11. Heterotrophic bacterioplankton control on organic and inorganic carbon cycle in stratified and non-stratified lakes of NW Russia

    NASA Astrophysics Data System (ADS)

    Shirokova, Liudmila; Vorobjeva, Taissia; Zabelina, Svetlana; Moreva, Olga; Klimov, Sergey; Shorina, Natalja; Chupakov, Artem; Pokrovsky, Oleg; Audry, Stephan; Viers, Jerome

    2010-05-01

    Lakes of boreal zone regulate the fate of dissolved carbon, nutrients and trace metals during their transport from the watershed to the ocean. Study of primary production - mineralization processes in the context of carbon biogeochemical cycle allows determination of the rate and mechanisms of phytoplankton biomass production and its degradation via aquatic heterotrophic bacteria. In particular, comparative study of vertical distribution of Dissolved Organic Carbon (DOC) in stratified and non-stratified lakes allows establishing the link between biological and chemical aspects of the carbon cycle which, in turns, determines an environmental stability and recovering potential of the entire ecosystem. In order to better understand the biogeochemical mechanisms that control dissolved organic and inorganic carbon migration in surface boreal waters, we studied in 2007-2009 two strongly stratified lakes (15-20 m deep) and two shallow lakes (2-4 m deep) in the Arkhangelsk region (NW Russia, White Sea basin). We conducted natural experiments of the lake water incubation for measurements of the intensity of production/mineralization processes and we determined vertical concentration of DOC during four basic hydrological seasons (winter and summer stratification, and spring and autumn lake overturn). Our seasonal studies of production/mineralization processes demonstrated high intensity of organic matter formation during summer period and significant retard of these processes during winter stagnation. During spring period, there is a strong increase of bacterial destruction of the allochtonous organic matter that is being delivered to the lake via terrigenous input. During autumn overturn, there is a decrease of the activity of phytoplankton, and the degradation of dead biomass by active bacterial community. Organic matter destruction processes are the most active in Svyatoe lake, whereas in the Beloe lake, the rate of organic matter production is significantly higher than

  12. Stratified charge rotary engine for general aviation

    NASA Technical Reports Server (NTRS)

    Mount, R. E.; Parente, A. M.; Hady, W. F.

    1986-01-01

    A development history, a current development status assessment, and a design feature and performance capabilities account are given for stratified-charge rotary engines applicable to aircraft propulsion. Such engines are capable of operating on Jet-A fuel with substantial cost savings, improved altitude capability, and lower fuel consumption by comparison with gas turbine powerplants. Attention is given to the current development program of a 400-hp engine scheduled for initial operations in early 1990. Stratified charge rotary engines are also applicable to ground power units, airborne APUs, shipboard generators, and vehicular engines.

  13. A novel method to create high density stratification with matching refractive index for optical flow investigations

    NASA Astrophysics Data System (ADS)

    Krohn, Benedikt; Manera, Annalisa; Petrov, Victor

    2018-04-01

    Turbulent mixing in stratified environments represents a challenging task in experimental turbulence research, especially when large density gradients are desired. When optical measurement techniques like particle image velocimetry (PIV) are applied to stratified liquids, it is common practice to combine two aqueous solutions with different density but equal refractive index, to suppress particle image deflections. While refractive image matching (RIM) has been developed in the late 1970s, the achieved limit of 4% density ratio was not rivalled up to day. In the present work, we report a methodology, based on the behavior of excess properties and their change in a multicomponent system while mixing, that allows RIM for solutions with higher density differences. The methodology is then successfully demonstrated using a ternary combination of water, isopropanol and glycerol, for which RIM in presence of a density ratio of 8.6% has been achieved. Qualitative PIV results of a turbulent buoyant jet with 8.6% density ratio are shown.

  14. A Semi-Analytical Extraction Method for Interface and Bulk Density of States in Metal Oxide Thin-Film Transistors

    PubMed Central

    Chen, Weifeng; Wu, Weijing; Zhou, Lei; Xu, Miao; Wang, Lei; Peng, Junbiao

    2018-01-01

    A semi-analytical extraction method of interface and bulk density of states (DOS) is proposed by using the low-frequency capacitance–voltage characteristics and current–voltage characteristics of indium zinc oxide thin-film transistors (IZO TFTs). In this work, an exponential potential distribution along the depth direction of the active layer is assumed and confirmed by numerical solution of Poisson’s equation followed by device simulation. The interface DOS is obtained as a superposition of constant deep states and exponential tail states. Moreover, it is shown that the bulk DOS may be represented by the superposition of exponential deep states and exponential tail states. The extracted values of bulk DOS and interface DOS are further verified by comparing the measured transfer and output characteristics of IZO TFTs with the simulation results by a 2D device simulator ATLAS (Silvaco). As a result, the proposed extraction method may be useful for diagnosing and characterising metal oxide TFTs since it is fast to extract interface and bulk density of states (DOS) simultaneously. PMID:29534492

  15. An evaluation of flow-stratified sampling for estimating suspended sediment loads

    Treesearch

    Robert B. Thomas; Jack Lewis

    1995-01-01

    Abstract - Flow-stratified sampling is a new method for sampling water quality constituents such as suspended sediment to estimate loads. As with selection-at-list-time (SALT) and time-stratified sampling, flow-stratified sampling is a statistical method requiring random sampling, and yielding unbiased estimates of load and variance. It can be used to estimate event...

  16. Sedimentology and geomorphology of the deposits from the August 2006 pyroclastic density currents at Tungurahua volcano, Ecuador.

    PubMed

    Douillet, Guilhem Amin; Tsang-Hin-Sun, Ève; Kueppers, Ulrich; Letort, Jean; Pacheco, Daniel Alejandro; Goldstein, Fabian; Von Aulock, Felix; Lavallée, Yan; Hanson, Jonathan Bruce; Bustillos, Jorge; Robin, Claude; Ramón, Patricio; Hall, Minard; Dingwell, Donald B

    The deposits of the pyroclastic density currents from the August 2006 eruption of Tungurahua show three facies associations depending on the topographic setting: the massive, proximal cross-stratified, and distal cross-stratified facies. (1) The massive facies is confined to valleys on the slopes of the volcano. It contains clasts of >1 m diameter to fine ash material, is massive, and interpreted as deposited from dense pyroclastic flows. Its surface can exhibit lobes and levees covered with disk-shaped and vesicular large clasts. These fragile large clasts must have rafted at the surface of the flows all along the path in order to be preserved, and thus imply a sharp density boundary near the surface of these flows. (2) The proximal cross-stratified facies is exposed on valley overbanks on the upper part of the volcano and contains both massive coarse-grained layers and cross-stratified ash and lapilli bedsets. It is interpreted as deposited from (a) dense pyroclastic flows that overflowed the gentle ridges of valleys of the upper part of the volcano and (b) dilute pyroclastic density currents created from the dense flows by the entrainment of air on the steep upper flanks. (3) The distal cross-stratified facies outcrops as spatially limited, isolated, and wedge-shaped bodies of cross-stratified ash deposits located downstream of cliffs on valleys overbanks. It contains numerous aggrading dune bedforms, whose crest orientations reveal parental flow directions. A downstream decrease in the size of the dune bedforms, together with a downstream fining trend in the grain size distribution are observed on a 100-m scale. This facies is interpreted to have been deposited from dilute pyroclastic density currents with basal tractional boundary layers. We suggest that the parental flows were produced from the dense flows by entrainment of air at cliffs, and that these diluted currents might rapidly deposit through "pneumatic jumps". Three modes are present in the grain

  17. Method and apparatus for measuring surface density of explosive and inert dust in stratified layers

    DOEpatents

    Sapko, Michael J.; Perlee, Henry E.

    1988-01-01

    A method for determining the surface density of coal dust on top of rock dust or rock dust on top of coal dust is disclosed which comprises directing a light source at either a coal or rock dust layer overlaying a substratum of the other, detecting the amount of light reflected from the deposit, generating a signal from the reflected light which is converted into a normalized output (V), and calculating the surface density from the normalized output. The surface density S.sub.c of coal dust on top of rock dust is calculated according to the equation: S.sub.c =1/-a.sub.c ln(V) wherein a.sub.c is a constant for the coal dust particles, and the surface density S.sub.r of rock dust on top of coal dust is determined by the equation: ##EQU1## wherein a.sub.r is a constant based on the properties of the rock dust particles. An apparatus is also disclosed for carrying out the method of the present invention.

  18. Electrochemically synthesized nanocrystalline spinel thin film for high performance supercapacitor

    NASA Astrophysics Data System (ADS)

    Gupta, Vinay; Gupta, Shubhra; Miura, Norio

    Spinels are not known for their supercapacitive nature. Here, we have explored electrochemically synthesized nanostructured NiCo 2O 4 spinel thin-film electrode for electrochemical supercapacitors. The nanostructured NiCo 2O 4 spinel thin film exhibited a high specific capacitance value of 580 F g -1 and an energy density of 32 Wh kg -1 at the power density of 4 kW kg -1, accompanying with good cyclic stability.

  19. Effects of thinning intensities on transpiration and productivity of 50-year-old Pinus koraeinsis stands

    NASA Astrophysics Data System (ADS)

    Park, Juhan; Kim, Taekyu; Moon, Minkyu; Cho, Sungsik; Ryu, Daun; Kim, Hyun Seok

    2015-04-01

    This study investigated the effects of thinning intensities on stand transpiration and productivity of 50-year-old Korean pine forests for two years. Forest thinning, which removes some fraction of trees from stand, is widely conducted for reducing competition between remaining trees, improving tree productivity, reducing the risk of natural fire, and thus maintaining healthy forest. Forest thinning alters the microclimatic conditions such as radiation distribution within canopy, vapor pressure deficit, and amount of available soil water. These changes influence on the tree water use, and related productivity. Thinning was conducted on March, 2012 with two intensities (Control, Light-thinning (20%), and Heavy-thinning (40% of tree density)). Transpiration was estimated from sap flux density, which was measured with Granier-type thermal dissipation sensors. Tree diameter growth was measured with dendrometer, and converted to tree productivity using allometric equations developed specifically in our study sites. The climatic conditions showed little differences between two years. During the first growing season after thinning, stand transpiration was ca. 20% and 42% lower on light-thinning and heavy-thinning stand, respectively, even though sap flux density were higher in thinned stand. The difference in stand transpiration among treatments showed seasonal trends, so it was larger on summer when soil moisture was abundant due to monsoon, but was diminished on spring and autumn when soil moisture was limited. Tree-level productivity increased ca. 8% and 21% on light-thinning and heavy thinning stand, respectively. However, stand net primary production was ca. 20% lower on light-thinning stand, and ca. 31% on heavy-thinning stand. As a result, water use efficiency increased only in heavy-thinning stand. During the second growing season after thinning, stand transpiration was ca. 19% lower on light-thinning stand, and ca. 37% lower on heavy-thinning stand. The reduction

  20. Thin metal electrode for AMTEC

    NASA Technical Reports Server (NTRS)

    Williams, Roger M. (Inventor); Wheeler, Bob L. (Inventor); Jefferies-Nakamura, Barbara (Inventor); Lamb, James L. (Inventor); Bankston, C. Perry (Inventor); Cole, Terry (Inventor)

    1989-01-01

    An electrode having higher power output is formed of a thin, porous film (less than 1 micrometer) applied to a beta-alumina solid electrolyte (BASE). The electrode includes an open grid, current collector such as a series of thin, parallel, grid lines applied to the thin film and a plurality of cross-members such as loop of metal wire surrounding the BASE tube. The loops are electrically connected by a bus wire. The overall impedance of the electrode considering both the contributions from the bulk BASE and the porous electrode BASE interface is low, about 0.5 OHM/cm.sup.2 and power densities of over 0.3 watt/cm.sup.2 for extended periods.

  1. Electronic and optical properties of nanocrystalline WO3 thin films studied by optical spectroscopy and density functional calculations

    NASA Astrophysics Data System (ADS)

    Johansson, Malin B.; Baldissera, Gustavo; Valyukh, Iryna; Persson, Clas; Arwin, Hans; Niklasson, Gunnar A.; Österlund, Lars

    2013-05-01

    The optical and electronic properties of nanocrystalline WO3 thin films prepared by reactive dc magnetron sputtering at different total pressures (Ptot) were studied by optical spectroscopy and density functional theory (DFT) calculations. Monoclinic films prepared at low Ptot show absorption in the near infrared due to polarons, which is attributed to a strained film structure. Analysis of the optical data yields band-gap energies Eg ≈ 3.1 eV, which increase with increasing Ptot by 0.1 eV, and correlate with the structural modifications of the films. The electronic structures of triclinic δ-WO3, and monoclinic γ- and ε-WO3 were calculated using the Green function with screened Coulomb interaction (GW approach), and the local density approximation. The δ-WO3 and γ-WO3 phases are found to have very similar electronic properties, with weak dispersion of the valence and conduction bands, consistent with a direct band-gap. Analysis of the joint density of states shows that the optical absorption around the band edge is composed of contributions from forbidden transitions (>3 eV) and allowed transitions (>3.8 eV). The calculations show that Eg in ε-WO3 is higher than in the δ-WO3 and γ-WO3 phases, which provides an explanation for the Ptot dependence of the optical data.

  2. Early forest thinning changes aboveground carbon distribution among pools, but not total amount

    Treesearch

    Michael S. Schaedel; Andrew J. Larson; David L. R. Affleck; Travis Belote; John M. Goodburn; Deborah S. Page-Dumroese

    2017-01-01

    Mounting concerns about global climate change have increased interest in the potential to use common forest management practices, such as forest density management with thinning, in climate change mitigation and adaptation efforts. Long-term effects of forest density management on total aboveground C are not well understood, especially for precommercial thinning (PCT)...

  3. Isotropic enhancement in the critical current density of YBCO thin films incorporating nanoscale Y2BaCuO5 inclusions

    NASA Astrophysics Data System (ADS)

    Jha, Alok K.; Matsumoto, Kaname; Horide, Tomoya; Saini, Shrikant; Mele, Paolo; Ichinose, Ataru; Yoshida, Yutaka; Awaji, Satoshi

    2017-09-01

    The effect of incorporation of nanoscale Y2BaCuO5 (Y211) inclusions on the vortex pinning properties of YBa2Cu3O7-δ (YBCO or Y123) superconducting thin films is investigated in detail on the basis of variation of critical current density (JC) with applied magnetic field and also with the orientation of the applied magnetic field at two different temperatures: 77 K and 65 K. Surface modified target approach is employed to incorporate nanoscale Y211 inclusions into the superconducting YBCO matrix. The efficiency of Y211 nanoinclusions in reducing the angular anisotropy of critical current density is found to be significant. The observed angular dependence of the critical current density is discussed on the basis of mutually occupied volume by a vortex and spherical and/or planar defect. A dip in JC near the ab-plane is also observed which has been analyzed on the basis of variation of pinning potential corresponding to a spherical (3-D) or planar (2-D) pinning center and has been attributed to a reduced interaction volume of the vortices with a pinning center and competing nature of the potentials due to spherical and planar defects.

  4. Soil Compaction Absent in Plantation Thinning

    Treesearch

    Tony King; Sharon Haines

    1979-01-01

    We examine the effects on soil bulk density by using a TH-105 Thinner Harvester and two forwarders in a mechanically thinned slash pine (Pinus elliottii Engelm.) plantation. Points in the machine tracks were sampled before and after harvesting at depths of 5 and 10 cm (2 and 4 in) for moisture and bulk density. Both the standard gravimetric method...

  5. Effects of repeated precommercial thinnings in central hardwood sapling stands

    Treesearch

    Donald E. Hilt; Martin E. Dale

    1982-01-01

    Precommercial thinnings were repeated four times in a central hardwood sapling stand beginning at age 8 and ending at age 22. Treated plots were thinned on an area-wide basis to specified density levels of 30-, 50-, and 70-percent stocking. The species composition of all stems in the stand was altered somewhat by thinning, but similar trends occurred on control plots....

  6. Response of a thin airfoil encountering strong density discontinuity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marble, F.E.

    1993-12-01

    Airfoil theory for unsteady motion has been developed extensively assuming the undisturbed medium to be of uniform density, a restriction accurate for motion in the atmosphere. In some instances, notably for airfoil comprising fan, compressor and turbine blade rows, the undisturbed medium may carry density variations or ``spots``, resulting from non-uniformities in temperature or composition, of a size comparable to the blade chord. This condition exists for turbine blades, immediately downstream of the main burner of a gas turbine engine where the density fluctuations of the order of 50 percent may occur. Disturbances of a somewhat smaller magnitude arise frommore » the ingestion of hot boundary layers into fans, and exhaust into hovercraft. Because these regions of non-uniform density convect with the moving medium, the airfoil experiences a time varying load and moment which the authors calculate.« less

  7. Effects of thinning on drought vulnerability and climate response in north temperate forest ecosystems

    Treesearch

    Anthony W. D' Amato; John B. Bradford; Shawn Fraver; Brian J. Palik

    2013-01-01

    Reducing tree densities through silvicultural thinning has been widely advocated as a strategy for enhancing resistance and resilience to drought, yet few empirical evaluations of this approach exist. We examined detailed dendrochronological data from a long-term (>50 years) replicated thinning experiment to determine if density reductions conferred greater...

  8. The relationship between breast density and bone mineral density in postmenopausal women.

    PubMed

    Buist, Diana S M; Anderson, Melissa L; Taplin, Stephen H; LaCroix, Andrea Z

    2004-11-01

    It is not well understood whether breast density is a marker of cumulative exposure to estrogen or a marker of recent exposure to estrogen. The authors examined the relationship between bone mineral density (BMD; a marker of lifetime estrogen exposure) and breast density. The authors conducted a cross-sectional analysis among 1800 postmenopausal women > or = 54 years. BMD data were taken from two population-based studies conducted in 1992-1993 (n = 1055) and in 1998-1999 (n = 753). The authors linked BMD data with breast density information collected as part of a mammography screening program. They used linear regression to evaluate the density relationship, adjusted for age, hormone therapy use, body mass index (BMI), and reproductive covariates. There was a small but significant negative association between BMD and breast density. The negative correlation between density measures was not explained by hormone therapy or age, and BMI was the only covariate that notably influenced the relationship. Stratification by BMI only revealed the negative correlation between bone and breast densities in women with normal BMI. There was no relationship in overweight or obese women. The same relationship was seen for all women who had never used hormone therapy, but it was not significant once stratified by BMI. BMD and breast density were not positively associated although both are independently associated with estrogen exposure. It is likely that unique organ responses obscure the relationship between the two as indicators of cumulative estrogen exposure.

  9. Plasma-Assisted Atomic Layer Deposition of High-Density Ni Nanoparticles for Amorphous In-Ga-Zn-O Thin Film Transistor Memory

    NASA Astrophysics Data System (ADS)

    Qian, Shi-Bing; Wang, Yong-Ping; Shao, Yan; Liu, Wen-Jun; Ding, Shi-Jin

    2017-02-01

    For the first time, the growth of Ni nanoparticles (NPs) was explored by plasma-assisted atomic layer deposition (ALD) technique using NiCp2 and NH3 precursors. Influences of substrate temperature and deposition cycles on ALD Ni NPs were studied by field emission scanning electron microscope and X-ray photoelectron spectroscopy. By optimizing the process parameters, high-density and uniform Ni NPs were achieved in the case of 280 °C substrate temperature and 50 deposition cycles, exhibiting a density of 1.5 × 1012 cm-2 and a small size of 3 4 nm. Further, the above Ni NPs were used as charge storage medium of amorphous indium-gallium-zinc oxide (a-IGZO) thin film transistor (TFT) memory, demonstrating a high storage capacity for electrons. In particular, the nonvolatile memory exhibited an excellent programming characteristic, e.g., a large threshold voltage shift of 8.03 V was obtained after being programmed at 17 V for 5 ms.

  10. Jet-mixing of initially-stratified liquid-liquid pipe flows: experiments and numerical simulations

    NASA Astrophysics Data System (ADS)

    Wright, Stuart; Ibarra-Hernandes, Roberto; Xie, Zhihua; Markides, Christos; Matar, Omar

    2016-11-01

    Low pipeline velocities lead to stratification and so-called 'phase slip' in horizontal liquid-liquid flows due to differences in liquid densities and viscosities. Stratified flows have no suitable single point for sampling, from which average phase properties (e.g. fractions) can be established. Inline mixing, achieved by static mixers or jets in cross-flow (JICF), is often used to overcome liquid-liquid stratification by establishing unstable two-phase dispersions for sampling. Achieving dispersions in liquid-liquid pipeline flows using JICF is the subject of this experimental and modelling work. The experimental facility involves a matched refractive index liquid-liquid-solid system, featuring an ETFE test section, and experimental liquids which are silicone oil and a 51-wt% glycerol solution. The matching then allows the dispersed fluid phase fractions and velocity fields to be established through advanced optical techniques, namely PLIF (for phase) and PTV or PIV (for velocity fields). CFD codes using the volume of a fluid (VOF) method are then used to demonstrate JICF breakup and dispersion in stratified pipeline flows. A number of simple jet configurations are described and their dispersion effectiveness is compared with the experimental results. Funding from Cameron for Ph.D. studentship (SW) gratefully acknowledged.

  11. Self-similar mixing in stratified plane Couette flow for varying Prandtl number

    NASA Astrophysics Data System (ADS)

    Caulfield, C. P.; Zhou, Qi; Taylor, John

    2017-11-01

    We investigate fully developed turbulence in statically stable stratified plane Couette flows (the flow between two horizontal plates a distance 2 h apart moving at velocities +/-U0 and held at densities ρa -/+ρ0) using direct numerical simulations at a range of Prandtl numbers Pr ≡ ν / κ ∈ { 0.7 , 7 , 70 } and Reynolds numbers Re ≡U0 h / ν ∈ [ 865 , 280000 ] . We observe significant effects of Pr on the heat and momentum fluxes across the channel gap and on the mean temperature and velocity profile, which can be described through a mixing length model using Monin-Obukhov (M-O) similarity theory. We employ M-O theory to formulate similarity scalings for various flow diagnostics in the gap interior. The mid-channel-gap gradient Richardson number Rig is determined by the length scale ratio h / L , where L is the Obukhov length scale. When h / L >> 1 , Rig asymptotes to a maximum characteristic value of approximately 0.2, for very high Re and for a range of Pr and bulk Richardson number Ri = gρ0 h /(ρaU02) . The flux Richardson number Rif = Rig , implying that such turbulent flows do not access the (strongly) `layered anisotropic stratified turbulence' regime, and that the turbulent Prandtl number is approximately one.

  12. Single-particle dispersion in stably stratified turbulence

    NASA Astrophysics Data System (ADS)

    Sujovolsky, N. E.; Mininni, P. D.; Rast, M. P.

    2018-03-01

    We present models for single-particle dispersion in vertical and horizontal directions of stably stratified flows. The model in the vertical direction is based on the observed Lagrangian spectrum of the vertical velocity, while the model in the horizontal direction is a combination of a continuous-time eddy-constrained random walk process with a contribution to transport from horizontal winds. Transport at times larger than the Lagrangian turnover time is not universal and dependent on these winds. The models yield results in good agreement with direct numerical simulations of stratified turbulence, for which single-particle dispersion differs from the well-studied case of homogeneous and isotropic turbulence.

  13. Simulation model of stratified thermal energy storage tank using finite difference method

    NASA Astrophysics Data System (ADS)

    Waluyo, Joko

    2016-06-01

    Stratified TES tank is normally used in the cogeneration plant. The stratified TES tanks are simple, low cost, and equal or superior in thermal performance. The advantage of TES tank is that it enables shifting of energy usage from off-peak demand for on-peak demand requirement. To increase energy utilization in a stratified TES tank, it is required to build a simulation model which capable to simulate the charging phenomenon in the stratified TES tank precisely. This paper is aimed to develop a novel model in addressing the aforementioned problem. The model incorporated chiller into the charging of stratified TES tank system in a closed system. The model was developed in one-dimensional type involve with heat transfer aspect. The model covers the main factors affect to degradation of temperature distribution namely conduction through the tank wall, conduction between cool and warm water, mixing effect on the initial flow of the charging as well as heat loss to surrounding. The simulation model is developed based on finite difference method utilizing buffer concept theory and solved in explicit method. Validation of the simulation model is carried out using observed data obtained from operating stratified TES tank in cogeneration plant. The temperature distribution of the model capable of representing S-curve pattern as well as simulating decreased charging temperature after reaching full condition. The coefficient of determination values between the observed data and model obtained higher than 0.88. Meaning that the model has capability in simulating the charging phenomenon in the stratified TES tank. The model is not only capable of generating temperature distribution but also can be enhanced for representing transient condition during the charging of stratified TES tank. This successful model can be addressed for solving the limitation temperature occurs in charging of the stratified TES tank with the absorption chiller. Further, the stratified TES tank can be

  14. Three-dimensional Simulations of Jets from Keplerian Disks: Self-regulatory Stability

    NASA Astrophysics Data System (ADS)

    Ouyed, Rachid; Clarke, David A.; Pudritz, Ralph E.

    2003-01-01

    We present the extension of previous two-dimensional simulations of the time-dependent evolution of nonrelativistic outflows from the surface of Keplerian accretion disks to three dimensions. As in the previous work, we investigate the outflow that arises from a magnetized accretion disk that is initially in hydrostatic balance with its surrounding cold corona. The accretion disk itself is taken to provide a set of fixed boundary conditions for the problem. We find that the mechanism of jet acceleration is identical to what was established from the previous two-dimensional simulations. The three-dimensional results are consistent with the theory of steady, axisymmetric, centrifugally driven disk winds up to the Alfvén surface of the outflow. Beyond the Alfvén surface, however, the jet in three dimensions becomes unstable to nonaxisymmetric, Kelvin-Helmholtz instabilities. The most important result of our work is that while the jet is unstable at super-Alfvénic speeds, it survives the onset of unstable modes that appear in this physical regime. We show that jets maintain their long-term stability through a self-limiting process wherein the average Alfvénic Mach number within the jet is maintained to the order of unity. This is accomplished in at least two ways. First, the poloidal magnetic field is concentrated along the central axis of the jet forming a ``backbone'' in which the Alfvén speed is sufficiently high to reduce the average jet Alfvénic Mach number to unity. Second, the onset of higher order Kelvin-Helmholtz ``flute'' modes (m>=2) reduces the efficiency with which the jet material is accelerated and transfers kinetic energy of the outflow into the stretched, poloidal field lines of the distorted jet. This too has the effect of increasing the Alfvén speed and thereby reducing the Alfvénic Mach number. The jet is able to survive the onset of the more destructive m=1 mode in this way. Our simulations also show that jets can acquire corkscrew or

  15. The effect of different methods to compute N on estimates of mixing in stratified flows

    NASA Astrophysics Data System (ADS)

    Fringer, Oliver; Arthur, Robert; Venayagamoorthy, Subhas; Koseff, Jeffrey

    2017-11-01

    The background stratification is typically well defined in idealized numerical models of stratified flows, although it is more difficult to define in observations. This may have important ramifications for estimates of mixing which rely on knowledge of the background stratification against which turbulence must work to mix the density field. Using direct numerical simulation data of breaking internal waves on slopes, we demonstrate a discrepancy in ocean mixing estimates depending on the method in which the background stratification is computed. Two common methods are employed to calculate the buoyancy frequency N, namely a three-dimensionally resorted density field (often used in numerical models) and a locally-resorted vertical density profile (often used in the field). We show that how N is calculated has a significant effect on the flux Richardson number Rf, which is often used to parameterize turbulent mixing, and the turbulence activity number Gi, which leads to errors when estimating the mixing efficiency using Gi-based parameterizations. Supported by ONR Grant N00014-08-1-0904 and LLNL Contract DE-AC52-07NA27344.

  16. Investigations of the drift mobility of carriers and density of states in nanocrystalline CdS thin films

    NASA Astrophysics Data System (ADS)

    Singh, Baljinder; Singh, Janpreet; Kaur, Jagdish; Moudgil, R. K.; Tripathi, S. K.

    2016-06-01

    Nanocrystalline Cadmium Sulfide (nc-CdS) thin films have been prepared on well-cleaned glass substrate at room temperature (300 K) by thermal evaporation technique using inert gas condensation (IGC) method. X-ray diffraction (XRD) analysis reveals that the films crystallize in hexagonal structure with preferred orientation along [002] direction. Scanning electron microscope (SEM) and Transmission electron microscope (TEM) studies reveal that grains are spherical in shape and uniformly distributed over the glass substrates. The optical band gap of the film is estimated from the transmittance spectra. Electrical parameters such as Hall coefficient, carrier type, carrier concentration, resistivity and mobility are determined using Hall measurements at 300 K. Transit time and mobility are estimated from Time of Flight (TOF) transient photocurrent technique in gap cell configuration. The measured values of electron drift mobility from TOF and Hall measurements are of the same order. Constant Photocurrent Method in ac-mode (ac-CPM) is used to measure the absorption spectra in low absorption region. By applying derivative method, we have converted the measured absorption data into a density of states (DOS) distribution in the lower part of the energy gap. The value of Urbach energy, steepness parameter and density of defect states have been calculated from the absorption and DOS spectra.

  17. Inverse-collimated proton radiography for imaging thin materials

    NASA Astrophysics Data System (ADS)

    Freeman, Matthew S.; Allison, Jason; Andrews, Malcolm; Ferm, Eric; Goett, John J.; Kwiatkowski, Kris; Lopez, Julian; Mariam, Fesseha; Marr-Lyon, Mark; Martinez, Michael; Medina, Jason; Medina, Patrick; Merrill, Frank E.; Morris, Chris L.; Murray, Matthew M.; Nedrow, Paul; Neukirch, Levi P.; Prestridge, Katherine; Rigg, Paolo; Saunders, Alexander; Schurman, Tamsen; Tainter, Amy; Trouw, Frans; Tupa, Dale; Tybo, Josh; Vogan-McNeil, Wendy; Wilde, Carl

    2017-01-01

    Relativistic, magnetically focused proton radiography was invented at Los Alamos National Laboratory using the 800 MeV LANSCE beam and is inherently well-suited to imaging dense objects, at areal densities >20 g cm-2. However, if the unscattered portion of the transmitted beam is removed at the Fourier plane through inverse-collimation, this system becomes highly sensitive to very thin media, of areal densities <100 mg cm-2. Here, this inverse-collimation scheme is described in detail and demonstrated by imaging Xe gas with a shockwave generated by an aluminum plate compressing the gas at Mach 8.8. With a 5-mrad inverse collimator, an areal density change of just 49 mg cm-2 across the shock front is discernible with a contrast-to-noise ratio of 3. Geant4 modeling of idealized and realistic proton transports can guide the design of inverse-collimators optimized for specific experimental conditions and show that this technique performs better for thin targets with reduced incident proton beam emittance. This work increases the range of areal densities to which the system is sensitive to span from ˜25 mg cm-2 to 100 g cm-2, exceeding three orders of magnitude. This enables the simultaneous imaging of a dense system as well as thin jets and ejecta material that are otherwise difficult to characterize with high-energy proton radiography.

  18. Inverse-collimated proton radiography for imaging thin materials.

    PubMed

    Freeman, Matthew S; Allison, Jason; Andrews, Malcolm; Ferm, Eric; Goett, John J; Kwiatkowski, Kris; Lopez, Julian; Mariam, Fesseha; Marr-Lyon, Mark; Martinez, Michael; Medina, Jason; Medina, Patrick; Merrill, Frank E; Morris, Chris L; Murray, Matthew M; Nedrow, Paul; Neukirch, Levi P; Prestridge, Katherine; Rigg, Paolo; Saunders, Alexander; Schurman, Tamsen; Tainter, Amy; Trouw, Frans; Tupa, Dale; Tybo, Josh; Vogan-McNeil, Wendy; Wilde, Carl

    2017-01-01

    Relativistic, magnetically focused proton radiography was invented at Los Alamos National Laboratory using the 800 MeV LANSCE beam and is inherently well-suited to imaging dense objects, at areal densities >20 g cm -2 . However, if the unscattered portion of the transmitted beam is removed at the Fourier plane through inverse-collimation, this system becomes highly sensitive to very thin media, of areal densities <100 mg cm -2 . Here, this inverse-collimation scheme is described in detail and demonstrated by imaging Xe gas with a shockwave generated by an aluminum plate compressing the gas at Mach 8.8. With a 5-mrad inverse collimator, an areal density change of just 49 mg cm -2 across the shock front is discernible with a contrast-to-noise ratio of 3. Geant4 modeling of idealized and realistic proton transports can guide the design of inverse-collimators optimized for specific experimental conditions and show that this technique performs better for thin targets with reduced incident proton beam emittance. This work increases the range of areal densities to which the system is sensitive to span from ∼25 mg cm -2 to 100 g cm -2 , exceeding three orders of magnitude. This enables the simultaneous imaging of a dense system as well as thin jets and ejecta material that are otherwise difficult to characterize with high-energy proton radiography.

  19. Inverse-collimated proton radiography for imaging thin materials

    DOE PAGES

    Freeman, Matthew S.; Allison, Jason; Andrews, Malcolm; ...

    2017-01-01

    Relativistic, magnetically-focused proton radiography was invented at Los Alamos National Laboratory using the 800 MeV LANSCE beam, and is inherently well-suited to imaging dense objects, at areal densities >20 g cm -2. However, if the unscattered portion of the transmitted beam is removed at the Fourier plane through inverse-collimation, this system becomes highly sensitive to very thin media, of areal densities <100 mg cm -2. Here, this inversecollimation scheme is described in detail and demonstrated by imaging Xe gas with a shockwave generated by an aluminum plate compressing the gas at Mach 8.8. With a 5-mrad inverse collimator, an arealmore » density change of just 49 mg cm-2 across the shock front is discernible with a contrast-to-noise ratio of 3. Geant4 modeling of idealized and realistic proton transports can guide the design of inverse-collimators optimized for specific experimental conditions and show that this technique performs better for thin targets with reduced incident proton beam emittance. This work increases the range of areal densities to which the system is sensitive to span from ~25 mg cm -2 to 100 g cm -2, exceeding three orders of magnitude. This enables the simultaneous imaging of a dense system, as well as thin jets and ejecta material that are otherwise difficult to characterize with high-energy proton radiography.« less

  20. Anisotropic spin-density distribution and magnetic anisotropy of strained La1-xSrxMnO3 thin films: angle-dependent x-ray magnetic circular dichroism

    NASA Astrophysics Data System (ADS)

    Shibata, Goro; Kitamura, Miho; Minohara, Makoto; Yoshimatsu, Kohei; Kadono, Toshiharu; Ishigami, Keisuke; Harano, Takayuki; Takahashi, Yukio; Sakamoto, Shoya; Nonaka, Yosuke; Ikeda, Keisuke; Chi, Zhendong; Furuse, Mitsuho; Fuchino, Shuichiro; Okano, Makoto; Fujihira, Jun-ichi; Uchida, Akira; Watanabe, Kazunori; Fujihira, Hideyuki; Fujihira, Seiichi; Tanaka, Arata; Kumigashira, Hiroshi; Koide, Tsuneharu; Fujimori, Atsushi

    2018-01-01

    Magnetic anisotropies of ferromagnetic thin films are induced by epitaxial strain from the substrate via strain-induced anisotropy in the orbital magnetic moment and that in the spatial distribution of spin-polarized electrons. However, the preferential orbital occupation in ferromagnetic metallic La1-xSrxMnO3 (LSMO) thin films studied by x-ray linear dichroism (XLD) has always been found out-of-plane for both tensile and compressive epitaxial strain and hence irrespective of the magnetic anisotropy. In order to resolve this mystery, we directly probed the preferential orbital occupation of spin-polarized electrons in LSMO thin films under strain by angle-dependent x-ray magnetic circular dichroism (XMCD). Anisotropy of the spin-density distribution was found to be in-plane for the tensile strain and out-of-plane for the compressive strain, consistent with the observed magnetic anisotropy. The ubiquitous out-of-plane preferential orbital occupation seen by XLD is attributed to the occupation of both spin-up and spin-down out-of-plane orbitals in the surface magnetic dead layer.

  1. Thermal Vibrational Convection in a Two-phase Stratified Liquid

    NASA Technical Reports Server (NTRS)

    Chang, Qingming; Alexander, J. Iwan D.

    2007-01-01

    The response of a two-phase stratified liquid system subject to a vibration parallel to an imposed temperature gradient is analyzed using a hybrid thermal lattice Boltzmann method (HTLB). The vibrations considered correspond to sinusoidal translations of a rigid cavity at a fixed frequency. The layers are thermally and mechanically coupled. Interaction between gravity-induced and vibration-induced thermal convection is studied. The ability of applied vibration to enhance the flow, heat transfer and interface distortion is investigated. For the range of conditions investigated, the results reveal that the effect of vibrational Rayleigh number and vibrational frequency on a two-phase stratified fluid system is much different than that for a single-phase fluid system. Comparisons of the response of a two-phase stratified fluid system with a single-phase fluid system are discussed.

  2. Experimental and theoretical studies of vibrational density of states in Fe3O4 single-crystalline thin films

    NASA Astrophysics Data System (ADS)

    Handke, B.; Kozłowski, A.; Parliński, K.; Przewoźnik, J.; Ślęzak, T.; Chumakov, A. I.; Niesen, L.; Kąkol, Z.; Korecki, J.

    2005-04-01

    This paper presents experimental and theoretical studies of lattice vibrations in a single-crystalline Fe3O4(001) thin film. The investigations were carried out in order to see how the lattice dynamics changes at the Verwey transition. Vibrational densities of states (DOS) were obtained from nuclear inelastic scattering (NIS) of synchrotron radiation in the temperature range 25 to 296 K, while theoretical DOS were calculated ab initio within density functional theory. Experimental phonon density of states shows good agreement with calculated DOS, reproducing both the general features of main line groups as well as the groups’ structure. This is also in qualitative accord with heat capacity data, provided that experimental DOS is augmented with that calculated for oxygen atoms. We have observed a gradual change in the NIS raw data as well as the relevant DOS while lowering the temperature. In particular, the main peak in the energy region 15-25 meV shows increasing splitting on cooling. The Lamb-Mössbauer factor calculated in the course of DOS evaluation shows a pronounced drop in the vicinity of the Verwey transition that may be partly connected to the observed abrupt lowering of the count rate at approximately 7 meV for T

  3. Efficient Suppression of Defects and Charge Trapping in High Density In-Sn-Zn-O Thin Film Transistor Prepared using Microwave-Assisted Sputter.

    PubMed

    Goh, Youngin; Ahn, Jaehan; Lee, Jeong Rak; Park, Wan Woo; Ko Park, Sang-Hee; Jeon, Sanghun

    2017-10-25

    Amorphous oxide semiconductor-based thin film transistors (TFTs) have been considered as excellent switching elements for driving active-matrix organic light-emitting diodes (AMOLED) owing to their high mobility and process compatibility. However, oxide semiconductors have inherent defects, causing fast transient charge trapping and device instability. For the next-generation displays such as flexible, wearable, or transparent displays, an active semiconductor layer with ultrahigh mobility and high reliability at low deposition temperature is required. Therefore, we introduced high density plasma microwave-assisted (MWA) sputtering method as a promising deposition tool for the formation of high density and high-performance oxide semiconductor films. In this paper, we present the effect of the MWA sputtering method on the defects and fast charge trapping in In-Sn-Zn-O (ITZO) TFTs using various AC device characterization methodologies including fast I-V, pulsed I-V, transient current, low frequency noise, and discharge current analysis. Using these methods, we were able to analyze the charge trapping mechanism and intrinsic electrical characteristics, and extract the subgap density of the states of oxide TFTs quantitatively. In comparison to conventional sputtered ITZO, high density plasma MWA-sputtered ITZO exhibits outstanding electrical performance, negligible charge trapping characteristics and low subgap density of states. High-density plasma MWA sputtering method has high deposition rate even at low working pressure and control the ion bombardment energy, resulting in forming low defect generation in ITZO and presenting high performance ITZO TFT. We expect the proposed high density plasma sputtering method to be applicable to a wide range of oxide semiconductor device applications.

  4. Turbulence Statistics of a Buoyant Jet in a Stratified Environment

    NASA Astrophysics Data System (ADS)

    McCleney, Amy Brooke

    Using non-intrusive optical diagnostics, turbulence statistics for a round, incompressible, buoyant, and vertical jet discharging freely into a stably linear stratified environment is studied and compared to a reference case of a neutrally buoyant jet in a uniform environment. This is part of a validation campaign for computational fluid dynamics (CFD). Buoyancy forces are known to significantly affect the jet evolution in a stratified environment. Despite their ubiquity in numerous natural and man-made flows, available data in these jets are limited, which constrain our understanding of the underlying physical processes. In particular, there is a dearth of velocity field data, which makes it challenging to validate numerical codes, currently used for modeling these important flows. Herein, jet near- and far-field behaviors are obtained with a combination of planar laser induced fluorescence (PLIF) and multi-scale time-resolved particle image velocimetry (TR-PIV) for Reynolds number up to 20,000. Deploying non-intrusive optical diagnostics in a variable density environment is challenging in liquids. The refractive index is strongly affected by the density, which introduces optical aberrations and occlusions that prevent the resolution of the flow. One solution consists of using index matched fluids with different densities. Here a pair of water solutions - isopropanol and NaCl - are identified that satisfy these requirements. In fact, they provide a density difference up to 5%, which is the largest reported for such fluid pairs. Additionally, by design, the kinematic viscosities of the solutions are identical. This greatly simplifies the analysis and subsequent simulations of the data. The spectral and temperature dependence of the solutions are fully characterized. In the near-field, shear layer roll-up is analyzed and characterized as a function of initial velocity profile. In the far-field, turbulence statistics are reported for two different scales, one

  5. Disproportionate loss of thin filaments in human soleus muscle after 17-day bed rest

    NASA Technical Reports Server (NTRS)

    Riley, D. A.; Bain, J. L.; Thompson, J. L.; Fitts, R. H.; Widrick, J. J.; Trappe, S. W.; Trappe, T. A.; Costill, D. L.

    1998-01-01

    Previously we reported that, after 17-day bed rest unloading of 8 humans, soleus slow fibers atrophied and exhibited increased velocity of shortening without fast myosin expression. The present ultrastructural study examined fibers from the same muscle biopsies to determine whether decreased myofilament packing density accounted for the observed speeding. Quantitation was by computer-assisted morphometry of electron micrographs. Filament densities were normalized for sarcomere length, because density depends directly on length. Thick filament density was unchanged by bed rest. Thin filaments/microm2 decreased 16-23%. Glycogen filled the I band sites vacated by filaments. The percentage decrease in thin filaments (Y) correlated significantly (P < 0.05) with the percentage increase in velocity (X), (Y = 0.1X + 20%, R2 = 0.62). An interpretation is that fewer filaments increases thick to thin filament spacing and causes earlier cross-bridge detachment and faster cycling. Increased velocity helps maintain power (force x velocity) as atrophy lowers force. Atrophic muscles may be prone to sarcomere reloading damage because force/microm2 was near normal, and force per thin filament increased an estimated 30%.

  6. Regeneration of a coastal pine (Pinus thunbergii Parl.) forest 11 years after thinning, Niigata, Japan.

    PubMed

    Zhu, Jiaojun; Gonda, Yutaka; Yu, Lizhong; Li, Fengqin; Yan, Qiaoling; Sun, Yirong

    2012-01-01

    To examine the effects of thinning intensity on wind vulnerability and regeneration in a coastal pine (Pinus thunbergii) forest, thinning with intensities of 20%, 30% and 50% was conducted in December 1997; there was an unthinned treatment as the control (total 8 stands). We re-measured the permanent sites to assess the regeneration characteristics 11 years after thinning. In the 50% thinned stand, seedlings aged from 2 to 10 years exhibited the highest pine seedling density and growth. The age composition ranged from 1-3 years with densities of 9.9 and 5.1 seedlings m(-2) in 30% and 20% thinned stands; only 1-year-old seedlings with a density of 6.1 seedlings m(-2) in the unthinned stand. Similar trends were found for the regeneration of broadleaved species such as Robinia pseudoacacia and Prunus serrulata. We speculate that the canopy openness and moss coverage contributed to the regeneration success in the 50% thinned stand, while the higher litter depth and lack of soil moisture induced the regeneration failure in the unthinned stand. The stands thinned at 20% or 30% were less favourable for pine regeneration than the stands thinned at 50%. Therefore, thinning with less than 30% canopy openness (20% and 30% thinned stands) should be avoided, and thinning at higher than 30% canopy openness (50% thinned stand, approximately 1500 stems ha(-1) at ages 40-50 years) is suggested for increasing regeneration in the coastal pine forest. The implications of thinning-based silviculture in the coastal pine forest management are also discussed. The ongoing development of the broadleaved seedlings calls for further observations.

  7. Effects of slope on the dynamics of dilute pyroclastic density currents from May 18th, 1980 Mt. St. Helens eruption

    NASA Astrophysics Data System (ADS)

    Bendana, S.; Self, S.; Dufek, J.

    2012-12-01

    The infamous, May 18th, 1980 eruption of Mt St Helens in the state of Washington produced several episodes of pyroclastic density currents (PDCs) including the initial lateral blast, which traveled nearly 30 km, and later PDCs, which filled in the area up to 8 km north of the volcano. The focus of this research is on the later PDCs, which differed from the lateral blast in that they have a higher particle concentration and filled in the topography up to 40 m. While the concentrated portions of the afternoon PDCs followed deep topographic drainages down the steep flanks of the volcano, the dilute overriding cloud partially decoupled to develop fully dilute, turbulent PDCs on the flanks of the volcano (Beeson, D.L. 1988. Proximal Flank Facies of the May 18, 1980 Ignimbrite: Mt. St. Helens, Washington.). The dilute PDCs deposited thin, cross-stratified and stratified pyroclastic deposits, known as the proximal bedded deposits, which differ greatly in depositional characteristics from the thick, massive, poorly-sorted, block-rich deposits associated with the more concentrated portions of the flow. We explore the influence of topography on the formation of these dilute currents and influence of slope on the currents transport and depositional mechanisms. The deposits on steeper slopes (>15°) are fines depleted relative to the proximal bedded deposits on shallower slopes (<15°). Bedform amplitude and wavelength increase with increasing slope, as does the occurrence of regressive dunes. Increasing slope causes an increase in flow velocity and thus an increase in flow turbulence. The fines depleted deposits suggest that fine ash elutriation is more efficient in flows with stronger turbulence. The longer wavelength and amplitudes suggest that bedform morphology is directly related to flow velocity, an important finding since the controls on bedform wavelength and amplitude in density stratified flows remains poorly constrained. The occurrence of regressive dunes, often

  8. Experimental Observation of Thin-shell Instability in a Collisionless Plasma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ahmed, H.; Doria, D.; Sarri, G.

    We report on the experimental observation of the instability of a plasma shell, which formed during the expansion of a laser-ablated plasma into a rarefied ambient medium. By means of a proton radiography technique, the evolution of the instability is temporally and spatially resolved on a timescale much shorter than the hydrodynamic one. The density of the thin shell exceeds that of the surrounding plasma, which lets electrons diffuse outward. An ambipolar electric field grows on both sides of the thin shell that is antiparallel to the density gradient. Ripples in the thin shell result in a spatially varying balancemore » between the thermal pressure force mediated by this field and the ram pressure force that is exerted on it by the inflowing plasma. This mismatch amplifies the ripples by the same mechanism that drives the hydrodynamic nonlinear thin-shell instability (NTSI). Our results thus constitute the first experimental verification that the NTSI can develop in colliding flows.« less

  9. Experimental Observation of Thin-shell Instability in a Collisionless Plasma

    NASA Astrophysics Data System (ADS)

    Ahmed, H.; Doria, D.; Dieckmann, M. E.; Sarri, G.; Romagnani, L.; Bret, A.; Cerchez, M.; Giesecke, A. L.; Ianni, E.; Kar, S.; Notley, M.; Prasad, R.; Quinn, K.; Willi, O.; Borghesi, M.

    2017-01-01

    We report on the experimental observation of the instability of a plasma shell, which formed during the expansion of a laser-ablated plasma into a rarefied ambient medium. By means of a proton radiography technique, the evolution of the instability is temporally and spatially resolved on a timescale much shorter than the hydrodynamic one. The density of the thin shell exceeds that of the surrounding plasma, which lets electrons diffuse outward. An ambipolar electric field grows on both sides of the thin shell that is antiparallel to the density gradient. Ripples in the thin shell result in a spatially varying balance between the thermal pressure force mediated by this field and the ram pressure force that is exerted on it by the inflowing plasma. This mismatch amplifies the ripples by the same mechanism that drives the hydrodynamic nonlinear thin-shell instability (NTSI). Our results thus constitute the first experimental verification that the NTSI can develop in colliding flows.

  10. Internal waves and rectification in a linearly stratified fluid

    NASA Astrophysics Data System (ADS)

    Pérenne, Nicolas; Renouard, Dominique P.

    Laboratory experiments were performed in a 13-m diameter rotating tank equipped with a continuous shelf break geometry and a central piston-like plunger. The fluid density was linearly stratified. The amplitude and period of the plunger, the rotation rate of the platform and the stratification are the parameters of the problem. The density fluctuations at six stations above and at mid-depth of the slope, along with dye visualization of the flow, were recorded. A limited set of experiments showed that a barotropic periodical forcing generated a first mode baroclinic wave which initially appears at the slope and propagates offshore. The likely presence of internal energy rays either slightly above, or immediately along the slope, is in agreement with previous analytical, laboratory and selected oceanic observations. In the former case, the stratification was such that the slope flow at mid-depth was supercritical while in the latter case, slope flow at mid-depth was critical. Rotation tended to decrease the amplitude of the generated internal wave. Also, non-linear processes were likely to act upon these waves for their normalized amplitude tended to decrease as the forcing increased (for similar forcing period, rotation rate and stratification). After the internal wave reflected from the plunger reaches the slope, there is a complex non-stationary regime with an occurrence of internal wave breaking in the vicinity of the slope. Thus there was an appearance of localized patches of turbulence and mixing. These events appeared both in dye visualization and in density fluctuations records. The subsequent mixing, or else the combined effect of topographical rectification and mixing, led to the appearance of a distinct Lagrangian transport, localized in the first few centimeters above the slope and oriented so as to leave the shallow waters on the right of its displacement.

  11. Metabolic theory predicts animal self-thinning.

    PubMed

    Jonsson, Tomas

    2017-05-01

    The metabolic theory of ecology (MTE) predicts observed patterns in ecology based on metabolic rates of individuals. The theory is influential but also criticized for a lack of firm empirical evidence confirming MTE's quantitative predictions of processes, e.g. outcome of competition, at population or community level. Self-thinning is a well-known population level phenomenon among plants, but a much less studied phenomenon in animal populations and no consensus exists on what a universal thinning slope for animal populations might be, or if it exists. The goal of this study was to use animal self-thinning as a tool to test population-level predictions from MTE, by analysing (i) if self-thinning can be induced in populations of house crickets (Acheta domesticus) and (ii) if the resulting thinning trajectories can be predicted from metabolic theory, using estimates of the species-specific metabolic rate of A. domesticus. I performed a laboratory study where the growth of A. domesticus was followed, from hatching until emergence as adults, in 71 cohorts of five different starting densities. Ninety-six per cent of all cohorts in the three highest starting densities showed evidence of self-thinning, with estimated thinning slopes in general being remarkably close to that expected under metabolic constraints: A cross-sectional analysis of all data showing evidence of self-thinning produced an ordinary least square (OLS) slope of -1·11, exactly that predicted from specific metabolic allometry of A. domesticus. This result is furthermore supported by longitudinal analyses, allowing for independent responses within cohorts, producing a mean OLS slope across cohorts of -1·13 and a fixed effect linear mixed effects models slope of -1·09. Sensitivity analysis showed that these results are robust to how the criterion for on-going self-thinning was defined. Finally, also as predicted by metabolic theory, temperature had a negative effect on the thinning intercept, producing

  12. Interaction of vortex ring with a stratified finite thickness interface

    NASA Astrophysics Data System (ADS)

    Advaith, S.; Manu, K. V.; Tinaikar, Aashay; Chetia, Utpal Kumar; Basu, Saptarshi

    2017-09-01

    This work experimentally investigates the dynamics of interaction between a propagating vortex ring and density stratified interface of finite thickness. The flow evolution has been quantified using a high speed shadowgraph technique and particle image velocimetry. The spatial and temporal behaviours of the vortex in the near and far field of the interface and the plume structure formed due to buoyancy are investigated systematically by varying the vortex strength (Reynolds number, Re) and the degree of stratification (Atwood number, At). Maximum penetration length (Lpmax) of the vortex ring through the interface is measured over a range of Reynolds (1350 ≤ Re ≤ 4600) and Richardson (0.1 ≤ Ri ≤ 4) numbers. It is found that for low Froude number values, the maximum penetration length varies linearly with the Froude number as in the study of Orlandi et al. ["Vortex rings descending in a stratified fluid," Phys. Fluids 10, 2819-2827 (1998)]. However, for high Reynolds and Richardson numbers (Ri), anomalous behaviour in maximum penetration is observed. The Lpmax value is used to characterize the vortex-interface interactions into non-penetrative, partially-penetrative, and extensively penetrative regimes. Flow visualization revealed the occurrence of short-wavelength instability of a plume structure, particularly in a partially penetrative regime. Fluid motion exhibits chaotic behaviour in an extensively penetrative regime. Detailed analyses of plume structure propagation are performed by measuring the plume length and plume rise. Appropriate scaling for the plume length and plume rise is derived, which allows universal collapse of the data for different flow conditions. Some information concerning the instability of the plume structure and decay of the vortex ring is obtained using proper orthogonal decomposition.

  13. Stratified turbulence diagnostics for high-Reynolds-number momentum wakes

    NASA Astrophysics Data System (ADS)

    Diamessis, Peter; Zhou, Qi

    2017-11-01

    We analyze a large-eddy simulation (LES) dataset of the turbulent wake behind a sphere of diameter D translating at speed U in a linearly stratified Boussinesq fluid with buoyancy frequency N. These simulations are performed at Reynolds numbers Re ≡ UD / ν ∈ { 5 ×103 , 105 , 4 ×105 } and various Froude numbers Fr ≡ 2 U /(ND) . The recently obtained data at Re = 4 ×105 , the highest Re attained so far in either simulation or laboratory, and Fr ∈ { 4 , 16 } enable us to systematically investigate the effects of Reynolds number on this prototypical localized stratified turbulent shear flow. Our analysis focuses on the time evolution of various diagnostics of stratified turbulence, such as the horizontal and vertical integral length scales, turbulent kinetic energy and its dissipation rate ɛ, and the local rate of shear between the spontaneously formed layers of vorticity within the larger-scale quasi-horizontal flow structures. This leads to a discussion of the transitions between distinct stratified flow regimes (Brethouwer et al. 2007) in the appropriately defined phase diagram, and we highlight the dynamical role of the Gibson number Gi = ɛ /(νN2) , and its dependence on the body-based Reynolds number Re . ONR Grants N00014-13-1-0665 and N00014-15-1-2513.

  14. Spatial Analysis of Geothermal Resource Potential in New York and Pennsylvania: A Stratified Kriging Approach

    NASA Astrophysics Data System (ADS)

    Smith, J. D.; Whealton, C. A.; Stedinger, J. R.

    2014-12-01

    Resource assessments for low-grade geothermal applications employ available well temperature measurements to determine if the resource potential is sufficient for supporting district heating opportunities. This study used a compilation of bottomhole temperature (BHT) data from recent unconventional shale oil and gas wells, along with legacy oil, gas, and storage wells, in Pennsylvania (PA) and New York (NY). Our study's goal was to predict the geothermal resource potential and associated uncertainty for the NY-PA region using kriging interpolation. The dataset was scanned for outliers, and some observations were removed. Because these wells were drilled for reasons other than geothermal resource assessment, their spatial density varied widely. An exploratory spatial statistical analysis revealed differences in the spatial structure of the geothermal gradient data (the kriging semi-variogram and its nugget variance, shape, sill, and the degree of anisotropy). As a result, a stratified kriging procedure was adopted to better capture the statistical structure of the data, to generate an interpolated surface, and to quantify the uncertainty of the computed surface. The area was stratified reflecting different physiographic provinces in NY and PA that have geologic properties likely related to variations in the value of the geothermal gradient. The kriging prediction and the variance-of-prediction were determined for each province by the generation of a semi-variogram using only the wells that were located within that province. A leave-one-out cross validation (LOOCV) was conducted as a diagnostic tool. The results of stratified kriging were compared to kriging using the whole region to determine the impact of stratification. The two approaches provided similar predictions of the geothermal gradient. However, the variance-of-prediction was different. The stratified approach is recommended because it gave a more appropriate site-specific characterization of uncertainty

  15. Bone mineral density and mammographic density in Mexican women.

    PubMed

    Moseson, Heidi; Rice, Megan S; López-Ridaura, Ruy; Bertrand, Kimberly A; Torres, Gabriela; Blanco, Margarita; Tamayo-Orozco, Juan Alfredo; Lajous, Martin; Romieu, Isabelle

    2016-01-01

    Bone mineral density (BMD) is a putative marker for lifetime exposure to estrogen. Studies that have explored whether BMD is a determinant of mammographic density (MD) have observed inconsistent results. Therefore,we examined this potential association in a sample of women (n = 1,516) from the clinical sub-cohort in the Mexican teachers’ cohort (n = 115,315). We used multivariable linear regression to assess the association between quartiles of BMD and percent MD, as well as total dense and non-dense area of the breast, stratified by menopausal status. We also examined the associations by body mass index (BMI) (< 30 kg/m(2), ≥ 30 kg/m(2)). Overall, there was no association between BMD and MD among premenopausal women. However, when we stratified by BMI, there was a modest inverse association between BMD and percent MD (difference between extreme quartiles = -2.8, 95 % CI -5.9, 0.27, p trend = 0.04) among women with BMI < 30 kg/m(2), but a positive association among obese women (comparable difference = 5.1, 95 % CI 0.02, 10.1, p trend = 0.03;p interaction < 0.01). Among postmenopausal women, BMD and percent MD were positively associated after adjustment for BMI (p trend < 0.01). Postmenopausal women in the highest two quartiles of BMD had 4–5 % point higher percent MD compared to women in the lowest quartile. The association did not differ by BMI in postmenopausal women (p interaction = 0.76). Among obese premenopausal women as well as postmenopausal women, BMD was positively associated with percent MD. Among leaner premenopausal women, BMD and percent MD were modestly inversely associated. These findings support the hypothesis that cumulative exposure to estrogen (as measured by BMD) may influence MD.

  16. Bone mineral density and mammographic density in Mexican women

    PubMed Central

    Moseson, Heidi; Rice, Megan S.; López-Ridaura, Ruy; Bertrand, Kimberly A.; Torres, Gabriela; Blanco, Margarita; Tamayo-Orozco, Juan Alfredo; Lajous, Martin; Romieu, Isabelle

    2016-01-01

    Background Bone mineral density (BMD) is a putative marker for lifetime exposure to estrogen. Studies that have explored whether BMD is a determinant of mammographic density (MD) have observed inconsistent results. Therefore, we examined this potential association in a sample of women (N=1,516) from the clinical sub-cohort in the Mexican Teachers’ Cohort (N=115,315). Methods We used multivariable linear regression to assess the association between quartiles of BMD and percent MD, as well as total dense and non-dense area of the breast, stratified by menopausal status. We also examined the associations by body mass index (BMI) (<30kg/m2,, ≥30kg/m2). Results Overall, there was no association between BMD and MD among premenopausal women. However, when we stratified by BMI, there was a modest inverse association between BMD and percent MD (difference between extreme quartiles= −2.8, 95%CI: −5.9, 0.27, p-trend=0.04) among women with BMI <30 kg/m2, but a positive association among obese women (comparable difference=5.1, 95%CI: 0.02, 10.1, p-trend=0.03; p-interaction<0.01). Among postmenopausal women, BMD and percent MD were positively associated after adjustment for BMI (p-trend<0.01). Postmenopausal women in the highest two quartiles of BMD had 4–5 percentage point higher percent MD compared to women in the lowest quartile. The association did not differ by BMI in postmenopausal women (p-interaction=0.76). Conclusion Among obese premenopausal women as well as postmenopausal women, BMD was positively associated with percent MD. Among leaner premenopausal women, BMD and percent MD were modestly inversely associated. These findings support the hypothesis that cumulative exposure to estrogen (as measured by BMD) may influence MD. PMID:26463740

  17. Growth and yield considerations and implications for alternative density management objectives and approaches

    Treesearch

    David Marshall

    2013-01-01

    Density management through thinning is the most important tool foresters have to aff ect stand development and stand structure of existing stands. Reducing stand density by thinning increases the growing space and resource availability (e.g., light, water, and nutrients) for the remaining trees. Th is can result in increased average tree growth. More available site...

  18. PLUME DISPERSION IN STABLY STRATIFIED FLOWS OVER COMPLEX TERRAIN, PHASE 2

    EPA Science Inventory

    Laboratory experiments were conducted in a stratified towing tank to investigate plume dispersion in stably stratified flows. First, plume dispersion over an idealized terrain model with a simulated elevated inversion in the atmosphere was investigated. These results were compare...

  19. Preliminary SAGE Simulations of Volcanic Jets Into a Stratified Atmosphere

    NASA Astrophysics Data System (ADS)

    Peterson, A. H.; Wohletz, K. H.; Ogden, D. E.; Gisler, G. R.; Glatzmaier, G. A.

    2007-12-01

    The SAGE (SAIC Adaptive Grid Eulerian) code employs adaptive mesh refinement in solving Eulerian equations of complex fluid flow desirable for simulation of volcanic eruptions. The goal of modeling volcanic eruptions is to better develop a code's predictive capabilities in order to understand the dynamics that govern the overall behavior of real eruption columns. To achieve this goal, we focus on the dynamics of underexpended jets, one of the fundamental physical processes important to explosive eruptions. Previous simulations of laboratory jets modeled in cylindrical coordinates were benchmarked with simulations in CFDLib (Los Alamos National Laboratory), which solves the full Navier-Stokes equations (includes viscous stress tensor), and showed close agreement, indicating that adaptive mesh refinement used in SAGE may offset the need for explicit calculation of viscous dissipation.We compare gas density contours of these previous simulations with the same initial conditions in cylindrical and Cartesian geometries to laboratory experiments to determine both the validity of the model and the robustness of the code. The SAGE results in both geometries are within several percent of the experiments for position and density of the incident (intercepting) and reflected shocks, slip lines, shear layers, and Mach disk. To expand our study into a volcanic regime, we simulate large-scale jets in a stratified atmosphere to establish the code's ability to model a sustained jet into a stable atmosphere.

  20. Analytical potential-density pairs for bars

    NASA Astrophysics Data System (ADS)

    Vogt, D.; Letelier, P. S.

    2010-11-01

    An identity that relates multipolar solutions of the Einstein equations to Newtonian potentials of bars with linear densities proportional to Legendre polynomials is used to construct analytical potential-density pairs of infinitesimally thin bars with a given linear density profile. By means of a suitable transformation, softened bars that are free of singularities are also obtained. As an application we study the equilibrium points and stability for the motion of test particles in the gravitational field for three models of rotating bars.

  1. Thin Films

    NASA Astrophysics Data System (ADS)

    Khorshidi, Zahra; Bahari, Ali; Gholipur, Reza

    2014-11-01

    Effect of annealing temperature on the characteristics of sol-gel-driven Ta ax La(1- a) x O y thin film spin-coated on Si substrate as a high- k gate dielectric was studied. Ta ax La(1- a) x O y thin films with different amounts of a were prepared (as-prepared samples). X-ray diffraction measurements of the as-prepared samples indicated that Ta0.3 x La0.7 x Oy film had an amorphous structure. Therefore, Ta0.3 x La0.7 x O y film was chosen to continue the present studies. The morphology of Ta0.3 x La0.7 x O y films was studied using scanning electron microscopy and atomic force microscopy techniques. The obtained results showed that the size of grain boundaries on Ta0.3 x La0.7 x O y film surfaces was increased with increasing annealing temperature. Electrical and optical characterizations of the as-prepared and annealed films were investigated as a function of annealing temperature using capacitance-voltage ( C- V) and current density-voltage ( J- V) measurements and the Tauc method. The obtained results demonstrated that Ta0.3 x La0.7 x O y films had high dielectric constant (≈27), wide band gap (≈4.5 eV), and low leakage current density (≈10-6 A/cm2 at 1 V).

  2. Double-diffusive convection and baroclinic instability in a differentially heated and initially stratified rotating system: the barostrat instability

    NASA Astrophysics Data System (ADS)

    Vincze, Miklos; Borcia, Ion; Harlander, Uwe; Le Gal, Patrice

    2016-12-01

    A water-filled differentially heated rotating annulus with initially prepared stable vertical salinity profiles is studied in the laboratory. Based on two-dimensional horizontal particle image velocimetry data and infrared camera visualizations, we describe the appearance and the characteristics of the baroclinic instability in this original configuration. First, we show that when the salinity profile is linear and confined between two non-stratified layers at top and bottom, only two separate shallow fluid layers can be destabilized. These unstable layers appear nearby the top and the bottom of the tank with a stratified motionless zone between them. This laboratory arrangement is thus particularly interesting to model geophysical or astrophysical situations where stratified regions are often juxtaposed to convective ones. Then, for more general but stable initial density profiles, statistical measures are introduced to quantify the extent of the baroclinic instability at given depths and to analyze the connections between this depth-dependence and the vertical salinity profiles. We find that, although the presence of stable stratification generally hinders full-depth overturning, double-diffusive convection can lead to development of multicellular sideways convection in shallow layers and subsequently to a multilayered baroclinic instability. Therefore we conclude that by decreasing the characteristic vertical scale of the flow, stratification may even enhance the formation of cyclonic and anticyclonic eddies (and thus, mixing) in a local sense.

  3. Barium ferrite thin-film recording media

    NASA Astrophysics Data System (ADS)

    Sui, Xiaoyu; Scherge, Matthias; Kryder, Mark H.; Snyder, John E.; Harris, Vincent G.; Koon, Norman C.

    1996-03-01

    Both longitudinal and perpendicular barium ferrite thin films are being pursued as overcoatless magnetic recording media. In this paper, prior research on thin-film Ba ferrite is reviewed and the most recent results are presented. Self-textured high-coercivity longitudinal Ba ferrite thin films have been achieved using conventional rf diode sputtering. Microstructural studies show that c-axis in-plane oriented grains have a characteristic acicular shape, while c-axis perpendicularly oriented grains have a platelet shape. Extended X-ray absorption fine structure (EXAFS) measurements indicate that the crystal orientations are predetermined by the structural anisotropy in the as-sputtered 'amorphous' state. Recording tests on 1500 Oe coercivity longitudinal Ba ferrite disks show performance comparable with that of a 1900 Oe Co alloy disk. To further improve the recording performance, both grain size and aspect ratio need to be reduced. Initial tribological tests indicate high hardness of Ba ferrite thin films. However, surface roughness needs to be reduced. For future ultrahigh-density contact recording, it is believed that perpendicular recording may be used. A thin Pt underlayer has been found to be capable of producing Ba ferrite thin films with excellent c-axis perpendicular orientation.

  4. SINDA/FLUINT Stratified Tank Modeling for Cryrogenic Propellant Tanks

    NASA Technical Reports Server (NTRS)

    Sakowski, Barbara

    2014-01-01

    A general purpose SINDA/FLUINT (S/F) stratified tank model was created to simulate self-pressurization and axial jet TVS; Stratified layers in the vapor and liquid are modeled using S/F lumps.; The stratified tank model was constructed to permit incorporating the following additional features:, Multiple or singular lumps in the liquid and vapor regions of the tank, Real gases (also mixtures) and compressible liquids, Venting, pressurizing, and draining, Condensation and evaporation/boiling, Wall heat transfer, Elliptical, cylindrical, and spherical tank geometries; Extensive user logic is used to allow detailed tailoring - Don't have to rebuilt everything from scratch!!; Most code input for a specific case is done through the Registers Data Block:, Lump volumes are determined through user input:; Geometric tank dimensions (height, width, etc); Liquid level could be input as either a volume percentage of fill level or actual liquid level height

  5. Plasma-Assisted Atomic Layer Deposition of High-Density Ni Nanoparticles for Amorphous In-Ga-Zn-O Thin Film Transistor Memory.

    PubMed

    Qian, Shi-Bing; Wang, Yong-Ping; Shao, Yan; Liu, Wen-Jun; Ding, Shi-Jin

    2017-12-01

    For the first time, the growth of Ni nanoparticles (NPs) was explored by plasma-assisted atomic layer deposition (ALD) technique using NiCp 2 and NH 3 precursors. Influences of substrate temperature and deposition cycles on ALD Ni NPs were studied by field emission scanning electron microscope and X-ray photoelectron spectroscopy. By optimizing the process parameters, high-density and uniform Ni NPs were achieved in the case of 280 °C substrate temperature and 50 deposition cycles, exhibiting a density of ~1.5 × 10 12  cm -2 and a small size of 3~4 nm. Further, the above Ni NPs were used as charge storage medium of amorphous indium-gallium-zinc oxide (a-IGZO) thin film transistor (TFT) memory, demonstrating a high storage capacity for electrons. In particular, the nonvolatile memory exhibited an excellent programming characteristic, e.g., a large threshold voltage shift of 8.03 V was obtained after being programmed at 17 V for 5 ms.

  6. Photoluminescence and cathodoluminescence properties of green emitting SrGa2{S}4 : Eu2+ thin film

    NASA Astrophysics Data System (ADS)

    Chartier, Céline; Benalloul, Paul; Barthou, Charles; Frigerio, Jean-Marc; Mueller, Gerd O.; Mueller-Mach, Regina; Trottier, Troy

    2002-02-01

    Photoluminescence and cathodoluminescence properties of SrGa2S4 : Eu2+ thin films prepared by reactive RF magnetron sputtering are investigated. Luminescence performances of the phosphor in the thin film form are compared to those of powder samples: the brightness efficiency of thin films is found to be about 30% of the efficiency of powder at low current density. A ratio higher than 40% is expected at higher current density. Thin film screens for FEDs will become a positive alternative to powder screens provided that film quality and light extraction could be improved by optimization of thickness and deposition parameters.

  7. Stand density relationships

    Treesearch

    John C. Tappeiner

    2013-01-01

    Th inning stands (managing their densities) aff ects the development of trees and understory plants as individuals, as well as stand-level characteristics like structure, microclimate, and stand growth, habitat for various species, and fuel and potential fi re severity. Th ese characteristics and the rate of changes are aff ected by thinning severity—the reduction in...

  8. Trap density of states in small-molecule organic semiconductors: A quantitative comparison of thin-film transistors with single crystals

    NASA Astrophysics Data System (ADS)

    Kalb, Wolfgang L.; Haas, Simon; Krellner, Cornelius; Mathis, Thomas; Batlogg, Bertram

    2010-04-01

    We show that it is possible to reach one of the ultimate goals of organic electronics: producing organic field-effect transistors with trap densities as low as in the bulk of single crystals. We studied the spectral density of localized states in the band gap [trap density of states (trap DOS)] of small-molecule organic semiconductors as derived from electrical characteristics of organic field-effect transistors or from space-charge-limited current measurements. This was done by comparing data from a large number of samples including thin-film transistors (TFT’s), single crystal field-effect transistors (SC-FET’s) and bulk samples. The compilation of all data strongly suggests that structural defects associated with grain boundaries are the main cause of “fast” hole traps in TFT’s made with vacuum-evaporated pentacene. For high-performance transistors made with small-molecule semiconductors such as rubrene it is essential to reduce the dipolar disorder caused by water adsorbed on the gate dielectric surface. In samples with very low trap densities, we sometimes observe a steep increase in the trap DOS very close (<0.15eV) to the mobility edge with a characteristic slope of 10-20 meV. It is discussed to what degree band broadening due to the thermal fluctuation of the intermolecular transfer integral is reflected in this steep increase in the trap DOS. Moreover, we show that the trap DOS in TFT’s with small-molecule semiconductors is very similar to the trap DOS in hydrogenated amorphous silicon even though polycrystalline films of small-molecules with van der Waals-type interaction on the one hand are compared with covalently bound amorphous silicon on the other hand.

  9. Electrical transport properties of thermally evaporated phthalocyanine (H 2Pc) thin films

    NASA Astrophysics Data System (ADS)

    El-Nahass, M. M.; Farid, A. M.; Attia, A. A.; Ali, H. A. M.

    2006-08-01

    Thin films of H 2Pc of various thicknesses have been deposited onto glass substrates using thermal evaporation technique at room temperature. The dark electrical resistivity measurements were carried out at different temperatures in the range 298-473 K. An estimation of mean free path ( lo) of charge carriers in H 2Pc thin films was attempted. Measurements of thermoelectric power confirm that H 2Pc thin films behave as a p-type semiconductor. The current density-voltage characteristics of Au/H 2Pc/Au at room temperature showed ohmic conduction mechanism at low voltages. At higher voltages the space-charge-limited conduction (SCLC) accompanied by an exponential trap distribution was dominant. The temperature dependence of current density allows the determination of some essential parameters such as the hole mobility ( μh), the total trap concentration ( Nt), the characteristic temperature ( Tt) and the trap density P( E).

  10. Effect of thinning on height and diameter growth of oak & yellow-poplar saplings

    Treesearch

    Rufus H., Jr. Allen; David A. Marquis; David A. Marquis

    1970-01-01

    Studying the response to thinning of a 7- to 9-year-old upland hardwood sapling stand, we found that height growth of yellow-poplar and oak trees was markedly reduced by heavy thinning. This suggests that stand density should be carefully controlled to achieve maximum benefit from thinnings in very young stands.

  11. Thin-film rechargeable lithium batteries

    NASA Astrophysics Data System (ADS)

    Dudney, N. J.; Bates, J. B.; Lubben, D.

    1994-11-01

    Small thin-film rechargeable cells have been fabricated with a lithium phosphorus oxynitride electrolyte, Li metal anode, and Li(1-x)Mn2O4 as the cathode film. The cathode films were fabricated by several different techniques resulting in both crystalline and amorphous films. These were compared by observing the cell discharge behavior. Estimates have been made for the scale-up of such a thin-film battery to meet the specifications for the electric vehicle application. The specific energy, energy density, and cycle life are expected to meet the USABC mid-term criteria. However, the areas of the thin-films needed to fabricate such a cell are very large. The required areas could be greatly reduced by operating the battery at temperatures near 100 C or by enhancing the lithium ion transport rate in the cathode material.

  12. Effect of small-scale turbulence on feeding rates of larval cod and haddock in stratified water on Georges Bank

    NASA Astrophysics Data System (ADS)

    Gregory Lough, R.; Mountain, David G.

    A set of vertically stratified MOCNESS tows made on the southern flank of Georges Bank in spring 1981 and 1983 was analyzed to examine the relationship between larval cod and haddock feeding success and turbulent dissipation in a stratified water column. Observed feeding ratios (mean no. prey larval gut -1) for three size classes of larvae were compared with estimated ingestion rates using the Rothschild and Osborn ( Journal of Plankton Research, 10, 1988, 465-474) predator-prey encounter rate model. Simulation of contact rates requires parameter estimates of larval fish and their prey cruising speeds, density of prey, and turbulent velocity of the water column. Turbulent dissipation was estimated from a formulation by James ( Estuarine and Coastal Marine Science, 5, 1977, 339-353) incorporating both a wind a tidal component. Larval ingestion rates were based on swallowing probabilities derived from calm-water laboratory observations. Model-predicted turbulence profiles generally showed that dissipation rates were low to moderate (10 -11-10 -7 W kg -1). Turbulence was minimal at or below the pycnocline (≈ 25 m) with higher values(1-2 orders of magnitude) near the surface due to wind mixing and at depth due to shear in the tidal current near bottom. In a stratified water column during the day, first-feeding larvae (5-6 mm) were located mostly within or above the pycnocline coincident with their copepod prey (nauplii and copepodites). The 7-8 mm larvae were most abundant within the pycnocline, whereas the 9-10 mm larvae were found within and below the pycnocline. Feeding ratios were relatively low in early morning following darkness when the wind speed was low, but increased by a factor of 2-13 by noon and evening when the wind speed doubled. Comparison of depth-specific feeding ratios with estimated ingestion rates, derived from turbulence-affected contact rates, generally were reasonable after allowing for an average gut evacuation time (4 h), and in many cases

  13. Mechanical properties and microstructures of Al-Cu Thin films with various heat treatments

    NASA Astrophysics Data System (ADS)

    Joo, Young-Chang

    1998-10-01

    The relationship between microstructure and mechanical properties has been investigated in Al-Cu thin films. The Cu content in Al-Cu samples used in this study ranges from 0 to 2 wt.% and substrate curvature measurement was used to measure film stress. In thin films, the constraints on the film by the substrate influence the microstructure and mechanical properties. Al-Cu thin films cooled from high temperatures have a large density of dislocations due to the plastic deformation caused by the thermal mismatch between the film and substrate. The high density of dislocations in the thin film enables precipitates to form inside the grain even during a very rapid quenching. The presence of a large density of dislocations and precipitates will in turn cause precipitation hardening of the Al-Cu films. The precipitation hardening is dominant at lower temperatures, and solid solution hardening is observed at higher temperatures in the tensile regime. Pure Al films showed the same values of tensile and compressive yield stresses at a given temperature during stress-temperature cycling.

  14. Highly robust thin-film composite pressure retarded osmosis (PRO) hollow fiber membranes with high power densities for renewable salinity-gradient energy generation.

    PubMed

    Han, Gang; Wang, Peng; Chung, Tai-Shung

    2013-07-16

    The practical application of pressure retarded osmosis (PRO) technology for renewable blue energy (i.e., osmotic power generation) from salinity gradient is being hindered by the absence of effective membranes. Compared to flat-sheet membranes, membranes with a hollow fiber configuration are of great interest due to their high packing density and spacer-free module fabrication. However, the development of PRO hollow fiber membranes is still in its infancy. This study aims to open up new perspectives and design strategies to molecularly construct highly robust thin film composite (TFC) PRO hollow fiber membranes with high power densities. The newly developed TFC PRO membranes consist of a selective polyamide skin formed on the lumen side of well-constructed Matrimid hollow fiber supports via interfacial polymerization. For the first time, laboratory PRO power generation tests demonstrate that the newly developed PRO hollow fiber membranes can withstand trans-membrane pressures up to 16 bar and exhibit a peak power density as high as 14 W/m(2) using seawater brine (1.0 M NaCl) as the draw solution and deionized water as the feed. We believe that the developed TFC PRO hollow fiber membranes have great potential for osmotic power harvesting.

  15. The effect of existing turbulence on stratified shear instability

    NASA Astrophysics Data System (ADS)

    Kaminski, Alexis; Smyth, William

    2017-11-01

    Ocean turbulence is an essential process governing, for example, heat uptake by the ocean. In the stably-stratified ocean interior, this turbulence occurs in discrete events driven by vertical variations of the horizontal velocity. Typically, these events have been modelled by assuming an initially laminar stratified shear flow which develops wavelike instabilities, becomes fully turbulent, and then relaminarizes into a stable state. However, in the real ocean there is always some level of turbulence left over from previous events, and it is not yet understood how this turbulence impacts the evolution of future mixing events. Here, we perform a series of direct numerical simulations of turbulent events developing in stratified shear flows that are already at least weakly turbulent. We do so by varying the amplitude of the initial perturbations, and examine the subsequent development of the instability and the impact on the resulting turbulent fluxes. This work is supported by NSF Grant OCE1537173.

  16. Thinning increases growth of 60-year-old cherry-maple stands in West Virginia

    Treesearch

    Neil I. Lamson; Neil I. Lamson

    1985-01-01

    In north-central West Virginia, previously unmanaged 60-year-old cherrymaple stands were thinned to 60 percent relative stand density. Thinning reduced mortality, redistributed growth onto fewer, larger stems, and increased individual tree growth. Five-year periodic basal-area growth per acre was 1.2 times greater in thinned stands than in unthinned stands. Periodic...

  17. Electrode/Dielectric Strip For High-Energy-Density Capacitor

    NASA Technical Reports Server (NTRS)

    Yen, Shiao-Ping S.

    1994-01-01

    Improved unitary electrode/dielectric strip serves as winding in high-energy-density capacitor in pulsed power supply. Offers combination of qualities essential for high energy density: high permittivity of dielectric layers, thinness, and high resistance to breakdown of dielectric at high electric fields. Capacitors with strip material not impregnated with liquid.

  18. Leaf area and structural changes after thinning in even-aged Picea rubens and Abies balsamea stands in Maine, USA

    Treesearch

    R. Justin DeRose; Robert S. Seymour

    2012-01-01

    We tested the hypothesis that changes in leaf area index (LAIm2 m-2) and mean stand diameter following thinning are due to thinning type and residual density. The ratios of pre- to postthinning diameter and LAI were used to assess structural changes between replicated crown, dominant, and low thinning treatments to 33% and 50% residual density in even-aged Picea rubens...

  19. Performance of Stratified and Subgrouped Disproportionality Analyses in Spontaneous Databases.

    PubMed

    Seabroke, Suzie; Candore, Gianmario; Juhlin, Kristina; Quarcoo, Naashika; Wisniewski, Antoni; Arani, Ramin; Painter, Jeffery; Tregunno, Philip; Norén, G Niklas; Slattery, Jim

    2016-04-01

    Disproportionality analyses are used in many organisations to identify adverse drug reactions (ADRs) from spontaneous report data. Reporting patterns vary over time, with patient demographics, and between different geographical regions, and therefore subgroup analyses or adjustment by stratification may be beneficial. The objective of this study was to evaluate the performance of subgroup and stratified disproportionality analyses for a number of key covariates within spontaneous report databases of differing sizes and characteristics. Using a reference set of established ADRs, signal detection performance (sensitivity and precision) was compared for stratified, subgroup and crude (unadjusted) analyses within five spontaneous report databases (two company, one national and two international databases). Analyses were repeated for a range of covariates: age, sex, country/region of origin, calendar time period, event seriousness, vaccine/non-vaccine, reporter qualification and report source. Subgroup analyses consistently performed better than stratified analyses in all databases. Subgroup analyses also showed benefits in both sensitivity and precision over crude analyses for the larger international databases, whilst for the smaller databases a gain in precision tended to result in some loss of sensitivity. Additionally, stratified analyses did not increase sensitivity or precision beyond that associated with analytical artefacts of the analysis. The most promising subgroup covariates were age and region/country of origin, although this varied between databases. Subgroup analyses perform better than stratified analyses and should be considered over the latter in routine first-pass signal detection. Subgroup analyses are also clearly beneficial over crude analyses for larger databases, but further validation is required for smaller databases.

  20. Improvement in interfacial characteristics of low-voltage carbon nanotube thin-film transistors with solution-processed boron nitride thin films

    NASA Astrophysics Data System (ADS)

    Jeon, Jun-Young; Ha, Tae-Jun

    2017-08-01

    In this article, we demonstrate the potential of solution-processed boron nitride (BN) thin films for high performance single-walled carbon nanotube thin-film transistors (SWCNT-TFTs) with low-voltage operation. The use of BN thin films between solution-processed high-k dielectric layers improved the interfacial characteristics of metal-insulator-metal devices, thereby reducing the current density by three orders of magnitude. We also investigated the origin of improved device performance in SWCNT-TFTs by employing solution-processed BN thin films as an encapsulation layer. The BN encapsulation layer improves the electrical characteristics of SWCNT-TFTs, which includes the device key metrics of linear field-effect mobility, sub-threshold swing, and threshold voltage as well as the long-term stability against the aging effect in air. Such improvements can be achieved by reduced interaction of interfacial localized states with charge carriers. We believe that this work can open up a promising route to demonstrate the potential of solution-processed BN thin films on nanoelectronics.

  1. Global Characteristics of Porosity and Density Stratification Within the Lunar Crust from GRAIL Gravity and Lunar Orbiter Laser Altimeter Topography Data

    NASA Technical Reports Server (NTRS)

    Han, Shin-Chan; Schmerr, Nicholas; Neumann, Gregory; Holmes, Simon

    2014-01-01

    The Gravity Recovery and Interior Laboratory (GRAIL) mission is providing unprecedentedly high-resolution gravity data. The gravity signal in relation to topography decreases from 100 km to 30 km wavelength, equivalent to a uniform crustal density of 2450 kg/cu m that is 100 kg/cu m smaller than the density required at 100 km. To explain such frequency-dependent behavior, we introduce rock compaction models under lithostatic pressure that yield radially stratified porosity (and thus density) and examine the depth extent of porosity. Our modeling and analysis support the assertion that the crustal density must vary from surface to deep crust by up to 500 kg/cu m. We found that the surface density of mega regolith is around 2400 kg/cu m with an initial porosity of 10-20%, and this porosity is eliminated at 10-20 km depth due to lithostatic overburden pressure. Our stratified density models provide improved fits to both GRAIL primary and extended mission data.

  2. Impacts of four decades of stand density management treatments on wood properties of loblolly pine

    Treesearch

    M.A. Blazier; A. Clark; J.M. Mahon; M.R. Strub; R.F. Daniels; L.R. Schimleck

    2013-01-01

    Stand density management is a powerful silvicultural tool for manipulating stand volumes, but it has the potential to alter key wood properties. At a site in northcentral Louisiana, five density management regimes were conducted over a 45-year period. At age 49, a stratified sample of trees was destructively harvested for crown length, taper, and specific gravity...

  3. Proton acceleration by multi-terawatt interaction with a near-critical density hydrogen jet

    NASA Astrophysics Data System (ADS)

    Goers, Andy; Feder, Linus; Hine, George; Salehi, Fatholah; Woodbury, Daniel; Su, J. J.; Papadopoulos, Dennis; Zigler, Arie; Milchberg, Howard

    2016-10-01

    We investigate the high intensity laser interaction with thin, near critical density plasmas as a means of efficient acceleration of MeV protons. A promising mechanism is magnetic vortex acceleration, where the ponderomotive force of a tightly focused laser pulse drives a relativistic electron current which generates a strong azimuthal magnetic field. The rapid expansion of this azimuthal magnetic field at the back side of the target can accelerate plasma ions to MeV scale energies. Compared to typical ion acceleration experiments utilizing a laser- thin solid foil interaction, magnetic vortex acceleration in near critical density plasma may be realized in a high density gas jet, making it attractive for applications requiring high repetition rates. We present preliminary experiments studying laser-plasma interaction and proton acceleration in a thin (< 200 μm) near-critical density hydrogen gas jet delivering electron densities 1020 -1021 cm-3 . This research was funded by the United States Department of Energy and the Defense Advanced Research Projects Agency (DARPA) under Contract Number W911-NF-15-C-0217, issued by the Army Research Office.

  4. Mobilifilum chasei: morphology and ecology of a spirochete from an intertidal stratified microbial mat community

    NASA Technical Reports Server (NTRS)

    Margulis, L.; Hinkle, G.; Stolz, J.; Craft, F.; Esteve, I.; Guerrero, R.

    1990-01-01

    Spirochetes were found in the lower anoxiphototrophic layer of a stratified microbial mat (North Pond, Laguna Figueroa, Baja California, Mexico). Ultra-structural analysis of thin sections of field samples revealed spirochetes approximately 0.25 micrometer in diameter with 10 or more periplasmic flagella, leading to the interpretation that these spirochetes bear 10 flagellar insertions on each end. Morphometric study showed these free-living spirochetes greatly resemble certain symbiotic ones, i.e., Borrelia and certain termite spirochetes, the transverse sections of which are presented here. The ultrastructure of this spirochete also resembles Hollandina and Diplocalyx (spirochetes symbiotic in arthropods) more than it does Spirochaeta, the well known genus of mud-dwelling spirochetes. The new spirochete was detected in mat material collected both in 1985 and in 1987. Unique morphology (i.e., conspicuous outer coat of inner membrane, large number of periplasmic flagella) and ecology prompt us to name a new free-living spirochete.

  5. Thin filament diversity and physiological properties of fast and slow fiber types in astronaut leg muscles

    NASA Technical Reports Server (NTRS)

    Riley, Danny A.; Bain, James L W.; Thompson, Joyce L.; Fitts, Robert H.; Widrick, Jeffrey J.; Trappe, Scott W.; Trappe, Todd A.; Costill, David L.

    2002-01-01

    Slow type I fibers in soleus and fast white (IIa/IIx, IIx), fast red (IIa), and slow red (I) fibers in gastrocnemius were examined electron microscopically and physiologically from pre- and postflight biopsies of four astronauts from the 17-day, Life and Microgravity Sciences Spacelab Shuttle Transport System-78 mission. At 2.5-microm sarcomere length, thick filament density is approximately 1,012 filaments/microm(2) in all fiber types and unchanged by spaceflight. In preflight aldehyde-fixed biopsies, gastrocnemius fibers possess higher percentages (approximately 23%) of short thin filaments than soleus (9%). In type I fibers, spaceflight increases short, thin filament content from 9 to 24% in soleus and from 26 to 31% in gastrocnemius. Thick and thin filament spacing is wider at short sarcomere lengths. The Z-band lattice is also expanded, except for soleus type I fibers with presumably stiffer Z bands. Thin filament packing density correlates directly with specific tension for gastrocnemius fibers but not soleus. Thin filament density is inversely related to shortening velocity in all fibers. Thin filament structural variation contributes to the functional diversity of normal and spaceflight-unloaded muscles.

  6. Local habitat conditions explain the variation in the strength of self-thinning in a stream salmonid

    PubMed Central

    Myrvold, Knut Marius; Kennedy, Brian P

    2015-01-01

    Self-thinning patterns are frequently used to describe density dependence in populations on timescales shorter than the organism's life span and have been used to infer carrying capacity of the environment. Among mobile animals, this concept has been used to document density dependence in stream salmonids, which compete over access to food and space. The carrying capacity, growth conditions, and initial cohort sizes often vary between streams and stream sections, which would influence the onset and strength of the density dependence. Despite much effort in describing habitat relationships in stream fishes, few studies have explicitly tested how the physical environment affects the slope of the thinning curves. Here, we investigate the prevalence and strength of self-thinning in juvenile stages of a steelhead (Oncorhynchus mykiss) population in Idaho, USA. Further, we investigate the roles of local physical habitat and metabolic constraints in explaining the variation in thinning curves among study sites in the watershed. Only yearling steelhead exhibited an overall significant thinning trend, but the slope of the mass–density relationship (−0.53) was shallower than predicted by theory and reported from empirical studies. There was no detectable relationship in subyearling steelhead. Certain abiotic factors explained a relatively large portion of the variation in the strength of the self-thinning among the study reaches. For subyearling steelhead, the slopes were negatively associated with the average water depth and flow velocity in the study sites, whereas slopes in yearlings were steeper in sites that incurred a higher metabolic cost. Our results show that the prevalence and strength of density dependence in natural fish populations can vary across heterogeneous watersheds and can be more pronounced during certain stages of a species' life history, and that environmental factors can mediate the extent to which density dependence is manifested in predictable

  7. Optimal Stratification of Item Pools in a-Stratified Computerized Adaptive Testing.

    ERIC Educational Resources Information Center

    Chang, Hua-Hua; van der Linden, Wim J.

    2003-01-01

    Developed a method based on 0-1 linear programming to stratify an item pool optimally for use in alpha-stratified adaptive testing. Applied the method to a previous item pool from the computerized adaptive test of the Graduate Record Examinations. Results show the new method performs well in practical situations. (SLD)

  8. Grain Boundary Induced Bias Instability in Soluble Acene-Based Thin-Film Transistors.

    PubMed

    Nguyen, Ky V; Payne, Marcia M; Anthony, John E; Lee, Jung Hun; Song, Eunjoo; Kang, Boseok; Cho, Kilwon; Lee, Wi Hyoung

    2016-09-12

    Since the grain boundaries (GBs) within the semiconductor layer of organic field-effect transistors (OFETs) have a strong influence on device performance, a substantial number of studies have been devoted to controlling the crystallization characteristics of organic semiconductors. We studied the intrinsic effects of GBs within 5,11-bis(triethylsilylethynyl) anthradithiophene (TES-ADT) thin films on the electrical properties of OFETs. The GB density was easily changed by controlling nulceation event in TES-ADT thin films. When the mixing time was increased, the number of aggregates in as-spun TES-ADT thin films were increased and subsequent exposure of the films to 1,2-dichloroethane vapor led to a significant increase in the number of nuleation sites, thereby increasing the GB density of TES-ADT spherulites. The density of GBs strongly influences the angular spread and crystallographic orientation of TES-ADT spherulites. Accordingly, the FETs with higher GB densities showed much poorer electrical characteristics than devices with lower GB density. Especially, GBs provide charge trapping sites which are responsible for bias-stress driven electrical instability. Dielectric surface treatment with a polystyrene brush layer clarified the GB-induced charge trapping by reducing charge trapping at the semiconductor-dielectric interface. Our study provides an understanding on GB induced bias instability for the development of high performance OFETs.

  9. [Study on good agricultural practice for Tulipa edulis--planting density and sowing depth tests].

    PubMed

    Bing, Qi-Zhong; Zhang, Ben-Gang; Zhang, Zhao; Chen, Zi-Hong

    2008-11-01

    To study optimum planting density and sowing depth of Tulipa edulis. The effects of different planting densities, sowing depth and thin plastic film cover were studied on yield, rate of increase, bulb weight increased multiples, and proliferation rate of bulb. Under 30-200 bulbs per squremeter density range, the yield increased with the density increasing, and reached significance level. In 5-20 centimeter depth range, the yield and the number of harvested bulbs enhanced along with the sowing depth increasing, and the best sowing depth was 20 cm. Thin plastic film cover showed no effect on the growth.

  10. Ferroelectric thin-film capacitors and piezoelectric switches for mobile communication applications.

    PubMed

    Klee, Mareike; van Esch, Harry; Keur, Wilco; Kumar, Biju; van Leuken-Peters, Linda; Liu, Jin; Mauczok, Rüdiger; Neumann, Kai; Reimann, Klaus; Renders, Christel; Roest, Aarnoud L; Tiggelman, Mark P J; de Wild, Marco; Wunnicke, Olaf; Zhao, Jing

    2009-08-01

    Thin-film ferroelectric capacitors have been integrated with resistors and active functions such as ESD protection into small, miniaturized modules, which enable a board space saving of up to 80%. With the optimum materials and processes, integrated capacitors with capacitance densities of up to 100 nF/mm2 for stacked capacitors combined with breakdown voltages of 90 V have been achieved. The integration of these high-density capacitors with extremely high breakdown voltage is a major accomplishment in the world of passive components and has not yet been reported for any other passive integration technology. Furthermore, thin-film tunable capacitors based on barium strontium titanate with high tuning range and high quality factor at 1 GHz have been demonstrated. Finally, piezoelectric thin films for piezoelectric switches with high switching speed have been realized.

  11. Hydrothermally formed three-dimensional nanoporous Ni(OH)2 thin-film supercapacitors.

    PubMed

    Yang, Yang; Li, Lei; Ruan, Gedeng; Fei, Huilong; Xiang, Changsheng; Fan, Xiujun; Tour, James M

    2014-09-23

    A three-dimensional nanoporous Ni(OH)2 thin-film was hydrothermally converted from an anodically formed porous layer of nickel fluoride/oxide. The nanoporous Ni(OH)2 thin-films can be used as additive-free electrodes for energy storage. The nanoporous layer delivers a high capacitance of 1765 F g(-1) under three electrode testing. After assembly with porous activated carbon in asymmetric supercapacitor configurations, the devices deliver superior supercapacitive performances with capacitance of 192 F g(-1), energy density of 68 Wh kg(-1), and power density of 44 kW kg(-1). The wide working potential window (up to 1.6 V in 6 M aq KOH) and stable cyclability (∼90% capacitance retention over 10,000 cycles) make the thin-film ideal for practical supercapacitor devices.

  12. Polycrystalline-thin-film thermophotovoltaic cells

    NASA Astrophysics Data System (ADS)

    Dhere, Neelkanth G.

    1996-02-01

    Thermophotovoltaic (TPV) cells convert thermal energy to electricity. Modularity, portability, silent operation, absence of moving parts, reduced air pollution, rapid start-up, high power densities, potentially high conversion efficiencies, choice of a wide range of heat sources employing fossil fuels, biomass, and even solar radiation are key advantages of TPV cells in comparison with fuel cells, thermionic and thermoelectric convertors, and heat engines. The potential applications of TPV systems include: remote electricity supplies, transportation, co-generation, electric-grid independent appliances, and space, aerospace, and military power applications. The range of bandgaps for achieving high conversion efficiencies using low temperature (1000-2000 K) black-body or selective radiators is in the 0.5-0.75 eV range. Present high efficiency convertors are based on single crystalline materials such as In1-xGaxAs, GaSb, and Ga1-xInxSb. Several polycrystalline thin films such as Hg1-xCdxTe, Sn1-xCd2xTe2, and Pb1-xCdxTe, etc., have great potential for economic large-scale applications. A small fraction of the high concentration of charge carriers generated at high fluences effectively saturates the large density of defects in polycrystalline thin films. Photovoltaic conversion efficiencies of polycrystalline thin films and PV solar cells are comparable to single crystalline Si solar cells, e.g., 17.1% for CuIn1-xGaxSe2 and 15.8% for CdTe. The best recombination-state density Nt is in the range of 10-15-10-16 cm-3 acceptable for TPV applications. Higher efficiencies may be achieved because of the higher fluences, possibility of bandgap tailoring, and use of selective emitters such as rare earth oxides (erbia, holmia, yttria) and rare earth-yttrium aluminium garnets. As compared to higher bandgap semiconductors such as CdTe, it is easier to dope the lower bandgap semiconductors. TPV cell development can benefit from the more mature PV solar cell and opto

  13. Development of a sampling strategy and sample size calculation to estimate the distribution of mammographic breast density in Korean women.

    PubMed

    Jun, Jae Kwan; Kim, Mi Jin; Choi, Kui Son; Suh, Mina; Jung, Kyu-Won

    2012-01-01

    Mammographic breast density is a known risk factor for breast cancer. To conduct a survey to estimate the distribution of mammographic breast density in Korean women, appropriate sampling strategies for representative and efficient sampling design were evaluated through simulation. Using the target population from the National Cancer Screening Programme (NCSP) for breast cancer in 2009, we verified the distribution estimate by repeating the simulation 1,000 times using stratified random sampling to investigate the distribution of breast density of 1,340,362 women. According to the simulation results, using a sampling design stratifying the nation into three groups (metropolitan, urban, and rural), with a total sample size of 4,000, we estimated the distribution of breast density in Korean women at a level of 0.01% tolerance. Based on the results of our study, a nationwide survey for estimating the distribution of mammographic breast density among Korean women can be conducted efficiently.

  14. Maintenance cost, toppling risk and size of trees in a self-thinning stand.

    PubMed

    Larjavaara, Markku

    2010-07-07

    Wind routinely topples trees during storms, and the likelihood that a tree is toppled depends critically on its allometry. Yet none of the existing theories to explain tree allometry consider wind drag on tree canopies. Since leaf area index in crowded, self-thinning stands is independent of stand density, the drag force per unit land can also be assumed to be independent of stand density, with only canopy height influencing the total toppling moment. Tree stem dimensions and the self-thinning biomass can then be computed by further assuming that the risk of toppling over and stem maintenance per unit land area are independent of stand density, and that stem maintenance cost is a linear function of stem surface area and sapwood volume. These assumptions provide a novel way to understand tree allometry and lead to a self-thinning line relating tree biomass and stand density with a power between -3/2 and -2/3 depending on the ratio of maintenance of sapwood and stem surface. (c) 2010 Elsevier Ltd. All rights reserved.

  15. Cost-effectiveness of risk stratified followup after urethral reconstruction: a decision analysis.

    PubMed

    Belsante, Michael J; Zhao, Lee C; Hudak, Steven J; Lotan, Yair; Morey, Allen F

    2013-10-01

    We propose a novel risk stratified followup protocol for use after urethroplasty and explore potential cost savings. Decision analysis was performed comparing a symptom based, risk stratified protocol for patients undergoing excision and primary anastomosis urethroplasty vs a standard regimen of close followup for urethroplasty. Model assumptions included that excision and primary anastomosis has a 94% success rate, 11% of patients with successful urethroplasty had persistent lower urinary tract symptoms requiring cystoscopic evaluation, patients in whom treatment failed undergo urethrotomy and patients with recurrence on symptom based surveillance have a delayed diagnosis requiring suprapubic tube drainage. The Nationwide Inpatient Sample from 2010 was queried to identify the number of urethroplasties performed per year in the United States. Costs were obtained based on Medicare reimbursement rates. The 5-year cost of a symptom based, risk stratified followup protocol is $430 per patient vs $2,827 per patient using standard close followup practice. An estimated 7,761 urethroplasties were performed in the United States in 2010. Assuming that 60% were excision and primary anastomosis, and with more than 5 years of followup, the risk stratified protocol was projected to yield an estimated savings of $11,165,130. Sensitivity analysis showed that the symptom based, risk stratified followup protocol was far more cost-effective than standard close followup in all settings. Less than 1% of patients would be expected to have an asymptomatic recurrence using the risk stratified followup protocol. A risk stratified, symptom based approach to urethroplasty followup would produce a significant reduction in health care costs while decreasing unnecessary followup visits, invasive testing and radiation exposure. Copyright © 2013 American Urological Association Education and Research, Inc. Published by Elsevier Inc. All rights reserved.

  16. Soil mixing of stratified contaminated sands.

    PubMed

    Al-Tabba, A; Ayotamuno, M J; Martin, R J

    2000-02-01

    Validation of soil mixing for the treatment of contaminated ground is needed in a wide range of site conditions to widen the application of the technology and to understand the mechanisms involved. Since very limited work has been carried out in heterogeneous ground conditions, this paper investigates the effectiveness of soil mixing in stratified sands using laboratory-scale augers. This enabled a low cost investigation of factors such as grout type and form, auger design, installation procedure, mixing mode, curing period, thickness of soil layers and natural moisture content on the unconfined compressive strength, leachability and leachate pH of the soil-grout mixes. The results showed that the auger design plays a very important part in the mixing process in heterogeneous sands. The variability of the properties measured in the stratified soils and the measurable variations caused by the various factors considered, highlighted the importance of duplicating appropriate in situ conditions, the usefulness of laboratory-scale modelling of in situ conditions and the importance of modelling soil and contaminant heterogeneities at the treatability study stage.

  17. Galactic Spiral Shocks with Thermal Instability in Vertically Stratified Disks

    NASA Astrophysics Data System (ADS)

    Kim, Chang-Goo; Kim, W.; Ostriker, E. C.

    2010-01-01

    Galactic spiral shocks are dominant morphological features and believed to be responsible for substructure formation of spiral arms in disk galaxies. They can also provide a large amount of kinetic energy for the interstellar gas by tapping the rotational energy. We use numerical hydrodynamic simulations to investigate dynamics and structure of spiral shocks with thermal instability in vertically stratified galactic disks. We initially consider an isothermal disk in vertical hydrostatic equilibrium and let it evolve under interstellar cooling and heating. Due to cooling and heating, the disk rapidly turns to a dense slab near the midplane surrounded by rarefied gas at high-altitude regions. The imposed stellar spiral potential develops a vertically curved shock that exhibits strong flapping motions along the direction perpendicular to the arm. The flows across the spiral shock are characterized by transitions from rarefied to dense phases at the shock and from dense to rarefied phases at the postshock expansion zone. The shock flapping motions stirs the disk, supplying the gas with random kinetic energy. For a model resembling the galactic disk near the solar neighborhood, the density-weighted vertical velocity dispersions are 2 km/s for the rarefied gas and 1 km/s for the dense gas. The shock compression in this model reduces an amount of the rarefied gas from 29% to 19% by mass. Despite the flapping motions, the time-averaged profiles of surface density are similar to those of the one-dimensional counterparts, and the vertical density distribution is overall consistent with effective hydrostatic equilibrium. When self-gravity is included, the shock compression forms large gravitationally bound condensations with virial ratio of about 2 and typical masses of 0.5 to one million solar masses, comparable to the Jeans mass.

  18. Emissions from diesel and stratified charge powered cars. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Springer, K.J.

    A total of ten passenger cars, four powered by diesel engines, two by stratified charge gasoline engines, one by a stratified charge operating on gasoline and diesel fuel, two by control equipped conventional engines, and one powered by a gas turbine, have been subjected to a wide variety of emissions evaluations. The vehicles, all late model, low mileage, included a Nissan Datsun, a Mercedes 220D, a Peugeot 504D, an Opel Rekord 2100D, a standard Capri, a stratified charge (PROCO) Capri, a low emission prototype Ford LTD, the Texaco TCCS stratified charge powered Cricket operated on gasoline and on diesel fuel,more » a Honda CVCC stratified charge, and a Chrysler gas turbine car. All were 4-cylinder except the LTD and the gas turbine. Tailpipe emissions were measured by the 1975 light duty Federal Test Procedure for gaseous emissions. Smoke and fuel economy were also determined during this test cycle. Chassis dynamometer versions of the 1974 heavy duty diesel smoke and gaseous emissions tests were employed. Odor and related instrumental-chemical measurements were made under seven steady state and three acceleration conditions. The prototype diesel odor analytical system, developed under CRC contract, was applied to the exhaust from both diesel and gasoline engines. Its use as a predictive method of diesel odor was investigated. Noise measurements were taken by SAE driveby as well as under a variety of exterior-interior conditions. Comparisons of the results for all vehicles are by emission category. The emissions from the group of diesel cars are compared to the conventional gasoline, Ford PROCO, Texas TCCS, and Honda CVCC.« less

  19. Stratified charge rotary aircraft engine technology enablement program

    NASA Technical Reports Server (NTRS)

    Badgley, P. R.; Irion, C. E.; Myers, D. M.

    1985-01-01

    The multifuel stratified charge rotary engine is discussed. A single rotor, 0.7L/40 cu in displacement, research rig engine was tested. The research rig engine was designed for operation at high speeds and pressures, combustion chamber peak pressure providing margin for speed and load excursions above the design requirement for a high is advanced aircraft engine. It is indicated that the single rotor research rig engine is capable of meeting the established design requirements of 120 kW, 8,000 RPM, 1,379 KPA BMEP. The research rig engine, when fully developed, will be a valuable tool for investigating, advanced and highly advanced technology components, and provide an understanding of the stratified charge rotary engine combustion process.

  20. Gyroscopic analogy of a rotating stratified flow confined in a tilted spheroid and its implication to stability of a heavy symmetrical top

    NASA Astrophysics Data System (ADS)

    Fukumoto, Yasuhide; Miyachi, Yuki

    2017-11-01

    We address the suppression of the gravitational instability of rotating stratified flows in a confined geometry in two ways, continuous and discontinuous stratification. A rotating flow of a stratified fluid confined in an ellipsoid, subject to gravity force, whose velocity and density fields are linear in coordinates, bears an analogy with a mechanical system of finite degrees of freedom, that is, a heavy rigid body. An insight is gained into the mechanism of system rotation for the ability of a lighter fluid of sustaining, on top of it, a heavier fluid when the angular velocity is greater than a critical value. The sleeping top corresponds to such a state. First we show that a rotating stratified flow confined in a tilted spheroid is equivalent to a heavy symmetrical top with the symmetric axis tilted from the top axis. This tilting effect of the symmetric axis on the linear stability of the sleeping top and its bifurcation is investigated in some detail. Second, we explore the incompressible two-layer RTI of a discontinuously stratified fluid confined in the lower-half of an upright spheroid rotating about the axis of symmetry oriented parallel to the vertical direction. The gyroscopic analogy accounts for decrease of the critical rotation rate with oblateness. This work was supported in part by a Grant-in-Aid for Scientific Research from the Japan Society for the Promotion of Science (Grant No. 16K05476).

  1. Analyzing the management and disturbance in European forest based on self-thinning theory

    NASA Astrophysics Data System (ADS)

    Yan, Y.; Gielen, B.; Schelhaas, M.; Mohren, F.; Luyssaert, S.; Janssens, I. A.

    2012-04-01

    There is increasing awareness that natural and anthropogenic disturbance in forests affects exchange of CO2, H2O and energy between the ecosystem and the atmosphere. Consequently quantification of land use and disturbance intensity is one of the next steps needed to improve our understanding of the carbon cycle, its interactions with the atmosphere and its main drivers at local as well as at global level. The conventional NPP-based approaches to quantify the intensity of land management are limited because they lack a sound ecological basis. Here we apply a new way of characterising the degree of management and disturbance in forests using the self- thinning theory and observations of diameter at breast height and stand density. We used plot level information on dominant tree species, diameter at breast height, stand density and soil type from the French national forest inventory from 2005 to 2010. Stand density and diameter at breast height were used to parameterize the intercept of the self-thinning relationship and combined with theoretical slope to obtain an upper boundary for stand productivity given its density. Subsequently, we tested the sensitivity of the self-thinning relationship for tree species, soil type, climate and other environmental characteristics. We could find statistical differences in the self-thinning relationship between species and soil types, mainly due to the large uncertainty of the parameter estimates. Deviation from the theoretical self-thinning line defined as DBH=αN-3/4, was used as a proxy for disturbances, allowing to make spatially explicit maps of forest disturbance over France. The same framework was used to quantify the density-DBH trajectory of even-aged stand management of beech and oak over France. These trajectories will be used as a driver of forest management in the land surface model ORCHIDEE.

  2. Managers’ perspectives: practical experience and challenges associated with variable-density operations and uneven-aged management

    Treesearch

    Kurtis E. Steele

    2013-01-01

    Variable-density thinning has received a lot of public attention in recent years and has subsequently become standard language in most of the Willamette National Forest’s timber management projects. Many techniques have been tried, with varying on-the-ground successes. To accomplish variable-density thinning, the McKenzie River Ranger District currently uses...

  3. Distribution-of-cut guides for thinning in Allegheny hardwoods: a review

    Treesearch

    Christopher A. Nowak; David A. Marquis

    1997-01-01

    Distribution-of-cut guidelines describe the amount of stand density to be removed from broad size classes of trees to attain a target residual stand density and stand structure. Current guides for thinning Allegheny hardwoods recommend that 75 percent of the cut relative stand density be taken from below the average stand diameter and 25 percent from above. These...

  4. Rechargeable thin film battery and method for making the same

    DOEpatents

    Goldner, Ronald B.; Liu, Te-Yang; Goldner, Mark A.; Gerouki, Alexandra; Haas, Terry E.

    2006-01-03

    A rechargeable, stackable, thin film, solid-state lithium electrochemical cell, thin film lithium battery and method for making the same is disclosed. The cell and battery provide for a variety configurations, voltage and current capacities. An innovative low temperature ion beam assisted deposition method for fabricating thin film, solid-state anodes, cathodes and electrolytes is disclosed wherein a source of energetic ions and evaporants combine to form thin film cell components having preferred crystallinity, structure and orientation. The disclosed batteries are particularly useful as power sources for portable electronic devices and electric vehicle applications where high energy density, high reversible charge capacity, high discharge current and long battery lifetimes are required.

  5. Localized thin-section CT with radiomics feature extraction and machine learning to classify early-detected pulmonary nodules from lung cancer screening

    NASA Astrophysics Data System (ADS)

    Tu, Shu-Ju; Wang, Chih-Wei; Pan, Kuang-Tse; Wu, Yi-Cheng; Wu, Chen-Te

    2018-03-01

    Lung cancer screening aims to detect small pulmonary nodules and decrease the mortality rate of those affected. However, studies from large-scale clinical trials of lung cancer screening have shown that the false-positive rate is high and positive predictive value is low. To address these problems, a technical approach is greatly needed for accurate malignancy differentiation among these early-detected nodules. We studied the clinical feasibility of an additional protocol of localized thin-section CT for further assessment on recalled patients from lung cancer screening tests. Our approach of localized thin-section CT was integrated with radiomics features extraction and machine learning classification which was supervised by pathological diagnosis. Localized thin-section CT images of 122 nodules were retrospectively reviewed and 374 radiomics features were extracted. In this study, 48 nodules were benign and 74 malignant. There were nine patients with multiple nodules and four with synchronous multiple malignant nodules. Different machine learning classifiers with a stratified ten-fold cross-validation were used and repeated 100 times to evaluate classification accuracy. Of the image features extracted from the thin-section CT images, 238 (64%) were useful in differentiating between benign and malignant nodules. These useful features include CT density (p  =  0.002 518), sigma (p  =  0.002 781), uniformity (p  =  0.032 41), and entropy (p  =  0.006 685). The highest classification accuracy was 79% by the logistic classifier. The performance metrics of this logistic classification model was 0.80 for the positive predictive value, 0.36 for the false-positive rate, and 0.80 for the area under the receiver operating characteristic curve. Our approach of direct risk classification supervised by the pathological diagnosis with localized thin-section CT and radiomics feature extraction may support clinical physicians in determining

  6. Localized thin-section CT with radiomics feature extraction and machine learning to classify early-detected pulmonary nodules from lung cancer screening.

    PubMed

    Tu, Shu-Ju; Wang, Chih-Wei; Pan, Kuang-Tse; Wu, Yi-Cheng; Wu, Chen-Te

    2018-03-14

    Lung cancer screening aims to detect small pulmonary nodules and decrease the mortality rate of those affected. However, studies from large-scale clinical trials of lung cancer screening have shown that the false-positive rate is high and positive predictive value is low. To address these problems, a technical approach is greatly needed for accurate malignancy differentiation among these early-detected nodules. We studied the clinical feasibility of an additional protocol of localized thin-section CT for further assessment on recalled patients from lung cancer screening tests. Our approach of localized thin-section CT was integrated with radiomics features extraction and machine learning classification which was supervised by pathological diagnosis. Localized thin-section CT images of 122 nodules were retrospectively reviewed and 374 radiomics features were extracted. In this study, 48 nodules were benign and 74 malignant. There were nine patients with multiple nodules and four with synchronous multiple malignant nodules. Different machine learning classifiers with a stratified ten-fold cross-validation were used and repeated 100 times to evaluate classification accuracy. Of the image features extracted from the thin-section CT images, 238 (64%) were useful in differentiating between benign and malignant nodules. These useful features include CT density (p  =  0.002 518), sigma (p  =  0.002 781), uniformity (p  =  0.032 41), and entropy (p  =  0.006 685). The highest classification accuracy was 79% by the logistic classifier. The performance metrics of this logistic classification model was 0.80 for the positive predictive value, 0.36 for the false-positive rate, and 0.80 for the area under the receiver operating characteristic curve. Our approach of direct risk classification supervised by the pathological diagnosis with localized thin-section CT and radiomics feature extraction may support clinical physicians in determining

  7. Correlations between critical current density, j(sub c), critical temperature, T(sub c),and structural quality of Y1B2Cu3O(7-x) thin superconducting films

    NASA Technical Reports Server (NTRS)

    Chrzanowski, J.; Xing, W. B.; Atlan, D.; Irwin, J. C.; Heinrich, B.; Cragg, R. A.; Zhou, H.; Angus, V.; Habib, F.; Fife, A. A.

    1995-01-01

    Correlations between critical current density (j(sub c)) critical temperature (T(sub c)) and the density of edge dislocations and nonuniform strain have been observed in YBCO thin films deposited by pulsed laser ablation on (001) LaAlO3 single crystals. Distinct maxima in j(sub c) as a function of the linewidths of the (00 l) Bragg reflections and as a function of the mosaic spread have been found in the epitaxial films. These maxima in j(sub c) indicate that the magnetic flux lines, in films of structural quality approachingthat of single crystals, are insufficiently pinned which results in a decreased critical current density. T(sub c) increased monotonically with improving crystalline quality and approached a value characteristic of a pure single crystal. A strong correlation between j(sub c) and the density of edge dislocations ND was found. At the maximum of the critical current density the density of edge dislocations was estimated to be N(sub D) approximately 1-2 x 10(exp 9)/sq cm.

  8. Stratified vapor generator

    DOEpatents

    Bharathan, Desikan [Lakewood, CO; Hassani, Vahab [Golden, CO

    2008-05-20

    A stratified vapor generator (110) comprises a first heating section (H.sub.1) and a second heating section (H.sub.2). The first and second heating sections (H.sub.1, H.sub.2) are arranged so that the inlet of the second heating section (H.sub.2) is operatively associated with the outlet of the first heating section (H.sub.1). A moisture separator (126) having a vapor outlet (164) and a liquid outlet (144) is operatively associated with the outlet (124) of the second heating section (H.sub.2). A cooling section (C.sub.1) is operatively associated with the liquid outlet (144) of the moisture separator (126) and includes an outlet that is operatively associated with the inlet of the second heating section (H.sub.2).

  9. Recent Progress Towards Space Applications Of Thin Film Solar Cells- The German Joint Project 'Flexible CIGSE Thin Film Solar Cells For Space Flight' And OOV

    NASA Astrophysics Data System (ADS)

    Brunner, Sebastian; Zajac, Kai; Nadler, Michael; Seifart, Klaus; Kaufmann, Christian A.; Caballero, Raquel; Schock, Hans-Werner; Hartmann, Lars; Otte, Karten; Rahm, Andreas; Scheit, Christian; Zachmann, Hendrick; Kessler, Friedrich; Wurz, Roland; Schulke, Peter

    2011-10-01

    A group of partners from an academic and industrial background are developing a flexible Cu(In,Ga)Se2 (CIGSe) thin film solar cell technology on a polyimide substrate that aims to be a future alternative to current rigid solar cell technologies for space applications. In particular on missions with high radiation volumes, the superior tolerance of chalcopyrite based thin film solar cell (TFSC) technologies with respect to electron and proton radiation, when compared to the established Si- or III-V based technologies, can be advantageous. Of all thin film technologies, those based on CIGSe have the highest potential to reach attractive photovoltaic conversion efficiencies and combine these with low weight in order to realize high power densities on solar cell and generator level. The use of a flexible substrate ensures a high packing density. A working demonstrator is scheduled for flight this year.

  10. Thinning cherry-maple stands in West Virginia: 5-year results

    Treesearch

    Neil I. Lamson; H. Clay. Smith; H. Clay. Smith

    1988-01-01

    In northern West Virginia, 60-year-old cherry-maple stands were thinned to 75,60, and 45 percent relative stand density. Analysis of 5-year growth data showed that basal-area growth was not reduced by thinning. Cubic-foot and board-foot volume growth decreased slightly. Individual-tree growth of all trees, dominant/codominant trees, and the 50 largest diameter trees...

  11. Plume Splitting in a Two-layer Stratified Ambient Fluid

    NASA Astrophysics Data System (ADS)

    Ma, Yongxing; Flynn, Morris; Sutherland, Bruce

    2017-11-01

    A line-source plume descending into a two-layer stratified ambient fluid in a finite sized tank is studied experimentally. Although the total volume of ambient fluid is fixed, lower- and upper-layer fluids are respectively removed and added at a constant rate mimicking marine outfall through diffusers and natural and hybrid ventilated buildings. The influence of the plume on the ambient depends on the value of λ, defined as the ratio of the plume buoyancy to the buoyancy loss of the plume as it crosses the ambient interface. Similar to classical filling-box experiments, the plume can always reach the bottom of the tank if λ > 1 . By contrast, if λ < 1 , an intermediate layer eventually forms as a result of plume splitting. Eventually all of the plume fluid spreads within the intermediate layer. The starting time, tv, and the ending time, tt, of the transition process measured from experiments correlate with the value of λ. A three-layer ambient fluid is observed after transition, and the mean value of the measured densities of the intermediate layer fluid is well predicted using plume theory. Acknowledgments: Funding for this study was provided by NSERC.

  12. Simplified models of circumstellar morphologies for interpreting high-resolution data. Analytical approach to the equatorial density enhancement

    NASA Astrophysics Data System (ADS)

    Homan, W.; Boulangier, J.; Decin, L.; de Koter, A.

    2016-12-01

    Context. Equatorial density enhancements (EDEs) are a very common astronomical phenomenon. Studies of the circumstellar environments (CSE) of young stellar objects and of evolved stars have shown that these objects often possess these features. These are believed to originate from different mechanisms, ranging from binary interactions to the gravitational collapse of interstellar material. Quantifying the effect of the presence of this type of EDE on the observables is essential for a correct interpretation of high-resolution data. Aims: We seek to investigate the manifestation in the observables of a circumstellar EDE, to assess which properties can be constrained, and to provide an intuitive bedrock on which to compare and interpret upcoming high-resolution data (e.g. ALMA data) using 3D models. Methods: We develop a simplified analytical parametrised description of a 3D EDE, with possible substructure such as warps, gaps, and spiral instabilities. In addition, different velocity fields (Keplerian, radial, super-Keplerian, sub-Keplerian and rigid rotation) are considered. The effect of a bipolar outflow is also investigated. The geometrical models are fed into the 3D radiative transfer code LIME, that produces 3D intensity maps throughout velocity space. We investigate the spectral signature of the J = 3-2 up to J = 7-6 rotational transitions of CO in the models, as well as the spatial aspect of this emission by means of channel maps, wide-slit position-velocity (PV) diagrams, stereograms, and spectral lines. Additionally, we discuss methods of constraining the geometry of the EDE, the inclination, the mass-contrast between the EDE and the bipolar outflow, and the global velocity field. Finally, we simulated ALMA observations to explore the effects of interferometric noise and artefacts on the emission signatures. Results: The effects of the different velocity fields are most evident in the PV diagrams. These diagrams also enable us to constrain the EDE height

  13. Stably stratified canopy flow in complex terrain

    NASA Astrophysics Data System (ADS)

    Xu, X.; Yi, C.; Kutter, E.

    2015-07-01

    Stably stratified canopy flow in complex terrain has been considered a difficult condition for measuring net ecosystem-atmosphere exchanges of carbon, water vapor, and energy. A long-standing advection error in eddy-flux measurements is caused by stably stratified canopy flow. Such a condition with strong thermal gradient and less turbulent air is also difficult for modeling. To understand the challenging atmospheric condition for eddy-flux measurements, we use the renormalized group (RNG) k-ϵ turbulence model to investigate the main characteristics of stably stratified canopy flows in complex terrain. In this two-dimensional simulation, we imposed persistent constant heat flux at ground surface and linearly increasing cooling rate in the upper-canopy layer, vertically varying dissipative force from canopy drag elements, buoyancy forcing induced from thermal stratification and the hill terrain. These strong boundary effects keep nonlinearity in the two-dimensional Navier-Stokes equations high enough to generate turbulent behavior. The fundamental characteristics of nighttime canopy flow over complex terrain measured by the small number of available multi-tower advection experiments can be reproduced by this numerical simulation, such as (1) unstable layer in the canopy and super-stable layers associated with flow decoupling in deep canopy and near the top of canopy; (2) sub-canopy drainage flow and drainage flow near the top of canopy in calm night; (3) upward momentum transfer in canopy, downward heat transfer in upper canopy and upward heat transfer in deep canopy; and (4) large buoyancy suppression and weak shear production in strong stability.

  14. Helicity dynamics in stratified turbulence in the absence of forcing.

    PubMed

    Rorai, C; Rosenberg, D; Pouquet, A; Mininni, P D

    2013-06-01

    A numerical study of decaying stably stratified flows is performed. Relatively high stratification (Froude number ≈10(-2)-10(-1)) and moderate Reynolds (Re) numbers (Re≈ 3-6×10(3)) are considered and a particular emphasis is placed on the role of helicity (velocity-vorticity correlations), which is not an invariant of the nondissipative equations. The problem is tackled by integrating the Boussinesq equations in a periodic cubical domain using different initial conditions: a nonhelical Taylor-Green (TG) flow, a fully helical Beltrami [Arnold-Beltrami-Childress (ABC)] flow, and random flows with a tunable helicity. We show that for stratified ABC flows helicity undergoes a substantially slower decay than for unstratified ABC flows. This fact is likely associated to the combined effect of stratification and large-scale coherent structures. Indeed, when the latter are missing, as in random flows, helicity is rapidly destroyed by the onset of gravitational waves. A type of large-scale dissipative "cyclostrophic" balance can be invoked to explain this behavior. No production of helicity is observed, contrary to the case of rotating and stratified flows. When helicity survives in the system, it strongly affects the temporal energy decay and the energy distribution among Fourier modes. We discover in fact that the decay rate of energy for stratified helical flows is much slower than for stratified nonhelical flows and can be considered with a phenomenological model in a way similar to what is done for unstratified rotating flows. We also show that helicity, when strong, has a measurable effect on the Fourier spectra, in particular at scales larger than the buoyancy scale, for which it displays a rather flat scaling associated with vertical shear, as observed in the planetary boundary layer.

  15. Thin and small form factor cells : simulated behavior.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Clews, Peggy Jane; Pluym, Tammy; Grubbs, Robert K.

    Thin and small form factor cells have been researched lately by several research groups around the world due to possible lower assembly costs and reduced material consumption with higher efficiencies. Given the popularity of these devices, it is important to have detailed information about the behavior of these devices. Simulation of fabrication processes and device performance reveals some of the advantages and behavior of solar cells that are thin and small. Three main effects were studied: the effect of surface recombination on the optimum thickness, efficiency, and current density, the effect of contact distance on the efficiency for thin cells,more » and lastly the effect of surface recombination on the grams per Watt-peak. Results show that high efficiency can be obtained in thin devices if they are well-passivated and the distance between contacts is short. Furthermore, the ratio of grams per Watt-peak is greatly reduced as the device is thinned.« less

  16. Stand quality management of a water oak plantation in Louisiana: preliminary results following thinning

    Treesearch

    James S. Meadows; Daniel A., Jr. Skojac

    2010-01-01

    Stand quality management is a new guiding principle in which thinning prescriptions are based on tree quality rather than on residual stand density. We recently initiated a series of hardwood thinning studies to determine the effects of four stand quality management thinning prescriptions on both stand-level and individual-tree-level growth, quality, and value: (1) no...

  17. Sharp magnetic structures from dynamos with density stratification

    NASA Astrophysics Data System (ADS)

    Jabbari, Sarah; Brandenburg, Axel; Kleeorin, Nathan; Rogachevskii, Igor

    2017-05-01

    Recent direct numerical simulations (DNS) of large-scale turbulent dynamos in strongly stratified layers have resulted in surprisingly sharp bipolar structures at the surface. Here, we present new DNS of helically and non-helically forced turbulence with and without rotation and compare with corresponding mean-field simulations (MFS) to show that these structures are a generic outcome of a broader class of dynamos in density-stratified layers. The MFS agree qualitatively with the DNS, but the period of oscillations tends to be longer in the DNS. In both DNS and MFS, the sharp structures are produced by converging flows at the surface and might be driven in non-linear stage of evolution by the Lorentz force associated with the large-scale dynamo-driven magnetic field if the dynamo number is at least 2.5 times supercritical.

  18. High-field magnets using high-critical-temperature superconducting thin films

    DOEpatents

    Mitlitsky, F.; Hoard, R.W.

    1994-05-10

    High-field magnets fabricated from high-critical-temperature superconducting ceramic (HTSC) thin films which can generate fields greater than 4 Tesla are disclosed. The high-field magnets are made of stackable disk-shaped substrates coated with HTSC thin films, and involves maximizing the critical current density, superconducting film thickness, number of superconducting layers per substrate, substrate diameter, and number of substrates while minimizing substrate thickness. The HTSC thin films are deposited on one or both sides of the substrates in a spiral configuration with variable line widths to increase the field. 4 figures.

  19. High-field magnets using high-critical-temperature superconducting thin films

    DOEpatents

    Mitlitsky, Fred; Hoard, Ronald W.

    1994-01-01

    High-field magnets fabricated from high-critical-temperature superconducting ceramic (HTSC) thin films which can generate fields greater than 4 Tesla. The high-field magnets are made of stackable disk-shaped substrates coated with HTSC thin films, and involves maximizing the critical current density, superconducting film thickness, number of superconducting layers per substrate, substrate diameter, and number of substrates while minimizing substrate thickness. The HTSC thin films are deposited on one or both sides of the substrates in a spiral configuration with variable line widths to increase the field.

  20. Effects of Convection During the Photodeposition of Polydiacetylene Thin Films

    NASA Technical Reports Server (NTRS)

    Frazier, D. O.; Hung, R. J.; Paley, M. S.; Long, Y. T.

    1997-01-01

    In this work, we describe a preliminary investigation of buoyancy-driven heat transfer during the growth of thin films from solution following exposure to ultraviolet (UV) light. Irradiation of the growth cell occurs at various directions relative to gravitational acceleration. Through numerical computations, the steady-state flow and temperature profiles are simulated during the course of light exposure. Light-induced polymerization accompanies a heat transfer process through a fairly complicated recirculating flow pattern. A scaling analysis shows that buoyancy-driven velocities only reduce by a factor of 10 for gravity levels as low as 10(exp -2)g(sub 0). Paley et al. observe what appears to be gravitationally sensitive particle development and inclusion in thin films using a photodeposition process. From this study it is clear that production of homogeneous thin films would have to occur in the environment of a complicated flow pattern of recirculation with a nonuniform temperature distribution. Indeed, even when irradiation occurs from the top of the cell, the most stable stratified cell orientation, defects remain in our films due to the persistence of buoyancy-driven convection. To achieve homogeneity, minimal scattering centers, and possible molecular order, photodeposition of polymer films by UV light exposure must proceed in a reduced-convection environment. Fluid mechanics simulations are useful for establishing gravitational sensitivity to this recently discovered process (patent # 5,451,433) for preparing thin films having quite promising nonlinear optical characteristics.

  1. Effects of Convection during the Photodeposition of Polydiacetylene Thin Films

    NASA Technical Reports Server (NTRS)

    Frazier, D. O.; Hung, R. J.; Paley, M. S.; Long, Y. T.

    1997-01-01

    In this work, we describe a preliminary investigation of buoyancy-driven heat transfer during the growth of thin films from solution following exposure to ultraviolet (UV) light. Irradiation of the growth cell occurs at various directions relative to gravitational acceleration. Through numerical computations, the steady-state flow and temperature profiles are simulated during the course of light exposure. Light-induced polymerization accompanies a heat transfer process through a fairly complicated recirculating flow pattern. A scaling analysis shows that buoyancy-driven velocities only reduce by a factor of 10 for gravity levels as low as 10(exp -2) g(sub 0). Paley et al. observe what appears to be gravitationally sensitive particle development and inclusion in thin films using a photodeposition process. From this study, it is clear that production of homogeneous thin films would have to occur in the environment of a complicated flow pattern of recirculation with a nonuniform temperature distribution. Indeed, even when irradiation occurs from the top of the cell, the most stable stratified cell orientation, defects remain in our films due to the persistence of buoyancy-driven convection. To achieve homogeneity, minimal scattering centers, and possible molecular order, photodeposition of polymer films by UV light exposure must proceed in a reduced-convection environment. Fluid mechanics simulations are useful for establishing gravitational sensitivity to this recently discovered process (patent # 5,451,433) for preparing thin films having quite promising nonlinear optical characteristics.

  2. Thin spray film thickness measuring technique

    NASA Technical Reports Server (NTRS)

    Jones, G.; Kurtz, G. W.

    1971-01-01

    Thin spray film application depths, in the 0.0002 cm to 0.002 cm range, are measured by portable, commercially available, light density measuring device used in conjunction with glass plate or photographic film. Method is automated by using mechanical/electrical control for shutting off film applicator at desired densitometer reading.

  3. Grain Boundary Induced Bias Instability in Soluble Acene-Based Thin-Film Transistors

    PubMed Central

    Nguyen, Ky V.; Payne, Marcia M.; Anthony, John E.; Lee, Jung Hun; Song, Eunjoo; Kang, Boseok; Cho, Kilwon; Lee, Wi Hyoung

    2016-01-01

    Since the grain boundaries (GBs) within the semiconductor layer of organic field-effect transistors (OFETs) have a strong influence on device performance, a substantial number of studies have been devoted to controlling the crystallization characteristics of organic semiconductors. We studied the intrinsic effects of GBs within 5,11-bis(triethylsilylethynyl) anthradithiophene (TES-ADT) thin films on the electrical properties of OFETs. The GB density was easily changed by controlling nulceation event in TES-ADT thin films. When the mixing time was increased, the number of aggregates in as-spun TES-ADT thin films were increased and subsequent exposure of the films to 1,2-dichloroethane vapor led to a significant increase in the number of nuleation sites, thereby increasing the GB density of TES-ADT spherulites. The density of GBs strongly influences the angular spread and crystallographic orientation of TES-ADT spherulites. Accordingly, the FETs with higher GB densities showed much poorer electrical characteristics than devices with lower GB density. Especially, GBs provide charge trapping sites which are responsible for bias-stress driven electrical instability. Dielectric surface treatment with a polystyrene brush layer clarified the GB-induced charge trapping by reducing charge trapping at the semiconductor-dielectric interface. Our study provides an understanding on GB induced bias instability for the development of high performance OFETs. PMID:27615358

  4. Thinning effects on tree mortality and snag recruitment in western Oregon

    Treesearch

    Erich Kyle Dodson; Klaus J. Puettmann; Adrian Ares

    2013-01-01

    Tree mortality shapes forest structural development and the resulting dead wood provides habitat for many species. However, the eff ects of thinning on mortality and large snag recruitment have been variable and remain poorly understood. We examined thinning eff ects on tree mortality at eleven Density Management Study (DMS) sites in western Oregon. Th inning reduced...

  5. Leaf δ18O of remaining trees is affected by thinning intensity in a semiarid pine forest.

    PubMed

    Moreno-Gutiérrez, Cristina; Barberá, Gonzalo G; Nicolás, Emilio; DE Luis, Martín; Castillo, Víctor M; Martínez-Fernández, Faustino; Querejeta, José I

    2011-06-01

    Silvicultural thinning usually improves the water status of remaining trees in water-limited forests. We evaluated the usefulness of a dual stable isotope approach (δ¹³C, δ¹⁸O) for comparing the physiological performance of remaining trees between forest stands subjected to two different thinning intensities (moderate versus heavy) in a 60-year-old Pinus halepensis Mill. plantation in semiarid southeastern Spain. We measured bulk leaf δ¹³C and δ¹⁸O, foliar elemental concentrations, stem water content, stem water δ¹⁸O (δ¹⁸O(stem water)), tree ring widths and leaf gas exchange rates to assess the influence of forest stand density on tree performance. Remaining trees in low-density stands (heavily thinned) showed lower leaf δ¹⁸O, and higher stomatal conductance (g(s)), photosynthetic rate and radial growth than those in moderate-density stands (moderately thinned). By contrast, leaf δ¹³C, intrinsic water-use efficiency, foliar elemental concentrations and δ¹⁸O(stem water) were unaffected by stand density. Lower foliar δ¹⁸O in heavily thinned stands reflected higher g(s) of remaining trees due to decreased inter-tree competition for water, whereas higher photosynthetic rate was largely attributable to reduced stomatal limitation to CO₂ uptake. The dual isotope approach provided insight into the early (12 months) effects of stand density manipulation on the physiological performance of remaining trees. © 2011 Blackwell Publishing Ltd.

  6. Background stratified Poisson regression analysis of cohort data.

    PubMed

    Richardson, David B; Langholz, Bryan

    2012-03-01

    Background stratified Poisson regression is an approach that has been used in the analysis of data derived from a variety of epidemiologically important studies of radiation-exposed populations, including uranium miners, nuclear industry workers, and atomic bomb survivors. We describe a novel approach to fit Poisson regression models that adjust for a set of covariates through background stratification while directly estimating the radiation-disease association of primary interest. The approach makes use of an expression for the Poisson likelihood that treats the coefficients for stratum-specific indicator variables as 'nuisance' variables and avoids the need to explicitly estimate the coefficients for these stratum-specific parameters. Log-linear models, as well as other general relative rate models, are accommodated. This approach is illustrated using data from the Life Span Study of Japanese atomic bomb survivors and data from a study of underground uranium miners. The point estimate and confidence interval obtained from this 'conditional' regression approach are identical to the values obtained using unconditional Poisson regression with model terms for each background stratum. Moreover, it is shown that the proposed approach allows estimation of background stratified Poisson regression models of non-standard form, such as models that parameterize latency effects, as well as regression models in which the number of strata is large, thereby overcoming the limitations of previously available statistical software for fitting background stratified Poisson regression models.

  7. Asphaltic mixture compaction and density validation : research brief.

    DOT National Transportation Integrated Search

    2017-02-01

    Research Objectives: : Evaluate HMA longitudinal joint type, method and compaction data to produce specification recommendations to ensure the highest density at longitudinal joints : Evaluate thin lift overlay HMA and provide recommendations...

  8. Large Energy Storage Density and High Thermal Stability in a Highly Textured (111)-Oriented Pb0.8Ba0.2ZrO3 Relaxor Thin Film with the Coexistence of Antiferroelectric and Ferroelectric Phases.

    PubMed

    Peng, Biaolin; Zhang, Qi; Li, Xing; Sun, Tieyu; Fan, Huiqing; Ke, Shanming; Ye, Mao; Wang, Yu; Lu, Wei; Niu, Hanben; Zeng, Xierong; Huang, Haitao

    2015-06-24

    A highly textured (111)-oriented Pb0.8Ba0.2ZrO3 (PBZ) relaxor thin film with the coexistence of antiferroelectric (AFE) and ferroelectric (FE) phases was prepared on a Pt/TiOx/SiO2/Si(100) substrate by using a sol-gel method. A large recoverable energy storage density of 40.18 J/cm(3) along with an efficiency of 64.1% was achieved at room temperature. Over a wide temperature range of 250 K (from room temperature to 523 K), the variation of the energy density is within 5%, indicating a high thermal stability. The high energy storage performance was endowed by a large dielectric breakdown strength, great relaxor dispersion, highly textured orientation, and the coexistence of FE and AFE phases. The PBZ thin film is believed to be an attractive material for applications in energy storage systems over a wide temperature range.

  9. Gross Basal Area Growth of Northern White-Cedar is Independent of Stand Density Over A Wide Range

    Treesearch

    Bruce W. Foltz; William F. Johnston

    1968-01-01

    A 20-year study in Wisconsin swamp stand of northern white-cedar indicates that after a second thinning gross basal area growth is independent of stand densities ranging from 90 to 225 square feet of basal area per acre. Mortality, net growth, and ingrowth were also independent of density in the thinned plots.

  10. Ground-water resources in New Hampshire; stratified-drift aquifers

    USGS Publications Warehouse

    Medalie, Laura; Moore, R.B.

    1995-01-01

    Stratified-drift aquifers underlie about 14 percent of the land surface in New Hampshire and are an important source of ground water for commercial, industrial, domestic, and public-water supplies in the State. This report introduces terms and concepts relevant to ground-water resources, summarizes some of the important information derived from a statewide stratified-drift-aquifer investigation, and provides examples of how the findings are used . The purpose of this report is to provide an overview of the stratified-drift aquifer assessment program, thus making summary information accessible to a broad audience, including legislators, State and local officials, and the public. Different audiences will use the report in different ways . To accommodate the varied audiences, some data are summarized statewide, some are presented by major river basin, and some are provided by town. During data collection, care was taken to use consistent methods for each of the 13 study areas (fig. 1) so that results would be comparable throughout the State . If more specific or detailed information about a particular area of interest is needed, the reader is directed to one or more of the technical reports listed in the Selected References section of this report.

  11. Survival analysis of cervical cancer using stratified Cox regression

    NASA Astrophysics Data System (ADS)

    Purnami, S. W.; Inayati, K. D.; Sari, N. W. Wulan; Chosuvivatwong, V.; Sriplung, H.

    2016-04-01

    Cervical cancer is one of the mostly widely cancer cause of the women death in the world including Indonesia. Most cervical cancer patients come to the hospital already in an advanced stadium. As a result, the treatment of cervical cancer becomes more difficult and even can increase the death's risk. One of parameter that can be used to assess successfully of treatment is the probability of survival. This study raises the issue of cervical cancer survival patients at Dr. Soetomo Hospital using stratified Cox regression based on six factors such as age, stadium, treatment initiation, companion disease, complication, and anemia. Stratified Cox model is used because there is one independent variable that does not satisfy the proportional hazards assumption that is stadium. The results of the stratified Cox model show that the complication variable is significant factor which influent survival probability of cervical cancer patient. The obtained hazard ratio is 7.35. It means that cervical cancer patient who has complication is at risk of dying 7.35 times greater than patient who did not has complication. While the adjusted survival curves showed that stadium IV had the lowest probability of survival.

  12. Holter Ridge Thinning Study, Redwood National Park: Preliminary Results of a 25-Year Retrospective

    Treesearch

    Andrew J. Chittick; Christopher R. Keyes

    2007-01-01

    Redwood National Park is comprised of large areas of overstocked stands resulting from harvest of the old-growth stands in the late 1940s to the 1970s. The Holter Ridge Thinning Study was initiated in 1978 to address this problem and examine the effects that thinning to varying spacing would have on forest development. Densities following thinning in 1979 ranged from...

  13. Hydrodynamic Stability Analysis on Sheared Stratified Flow in a Convective Flow Environment

    NASA Astrophysics Data System (ADS)

    Xiao, Yuan; Lin, Wenxian; Armfiled, Steven; Kirkpatrick, Michael; He, Yinghe; Fluid Dynamics Research Group, James Cook University Team; Fluid Dynamics Research Group, University of Sydney Team

    2014-11-01

    A hydrodynamic stability analysis on the convective sheared boundary layer (SCBL) flow, where a sheared stratified flow and a thermally convective flow coexist, is carried out in this study. The linear unstable stratifications representing the convective flow are included in the TaylorGoldstein equations as an unstable factor Jb. A new unstable region corresponding to the convective instability, which is not present in pure sheared stratified flows, is found with the analysis. It is also found that the boundaries of the convective instability regions expand with increasing Jb and interact with the sheared stratified instability region. More results will be presented at the conference

  14. Neural network based feed-forward high density associative memory

    NASA Technical Reports Server (NTRS)

    Daud, T.; Moopenn, A.; Lamb, J. L.; Ramesham, R.; Thakoor, A. P.

    1987-01-01

    A novel thin film approach to neural-network-based high-density associative memory is described. The information is stored locally in a memory matrix of passive, nonvolatile, binary connection elements with a potential to achieve a storage density of 10 to the 9th bits/sq cm. Microswitches based on memory switching in thin film hydrogenated amorphous silicon, and alternatively in manganese oxide, have been used as programmable read-only memory elements. Low-energy switching has been ascertained in both these materials. Fabrication and testing of memory matrix is described. High-speed associative recall approaching 10 to the 7th bits/sec and high storage capacity in such a connection matrix memory system is also described.

  15. Stand quality management in a late-rotation, red oak-sweetgum stand in east Mississippi: preliminary results following thinning

    Treesearch

    James S. Meadows; Daniel A. Skojac

    2012-01-01

    Stand quality management is a new management strategy in which thinning prescriptions are based solely on tree quality rather than a quantitative level of residual stand density. As long as residual density falls within fairly broad limits, prescriptions are based on tree quality alone. We applied four thinning prescriptions based on stand quality management, along...

  16. Modeling the size-density relationship in direct-seeded slash pine stands

    Treesearch

    Quang V. Cao; Thomas J. Dean; V. Clark Baldwin

    2000-01-01

    The relationship between quadratic mean diameter and tree density appeared curvilinear on a log–log scale, based on data from direct-seeded slash pine (Pinus elliotti var. elliotti Engelm.) stands. The self-thinning trajectory followed a straight line for high tree density levels and then turned away from this line as tree density...

  17. Use of surfactants to control island size and density

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Merrell, Jason; Liu, Feng; Stringfellow, Gerald B.

    Methods of controlling island size and density on an OMVPE growth film may comprise adding a surfactant at a critical concentration level, allowing a growth phase for a first period of time, and ending the growth phase when desired island size and density are achieved. For example, the island size and density of an OMVPE grown InGaN thin film may be controlled by adding an antimony surfactant at a critical concentration level.

  18. Structural and electrochemical analysis of chemically synthesized microcubic architectured lead selenide thin films

    NASA Astrophysics Data System (ADS)

    Bhat, T. S.; Shinde, A. V.; Devan, R. S.; Teli, A. M.; Ma, Y. R.; Kim, J. H.; Patil, P. S.

    2018-01-01

    The present work deals with the synthesis of lead selenide (PbSe) thin films by simple and cost-effective chemical bath deposition method with variation in deposition time. The structural, morphological, and electrochemical properties of as-deposited thin films were examined using characterization techniques such as X-ray diffraction spectroscopy (XRD), field-emission scanning electron microscopy (FE-SEM), X-ray photoelectron spectroscopy (XPS), cyclic voltammetry (CV), galvanostatic charge-discharge and electrochemical impedance spectroscopy. XRD reveals formation of rock salt phase cubic structured PbSe. FE-SEM images show the formation of microcubic structured morphology. The existence of the PbSe is confirmed from the XPS analysis. On the other hand, CV curves show four reaction peaks corresponding to oxidation [PbSe and Pb(OH)2] and reduction (PbO2 and Pb(OH)2) at the surface of PbSe thin films. The PbSe:2 sample deposited for 80 min. shows maximum specific capacitance of 454 ± 5 F g- 1 obtained at 0.25 mA cm- 2 current density. The maximum energy density of 69 Wh kg- 1 was showed by PbSe:2 electrode with a power density of 1077 W kg- 1. Furthermore, electrochemical impedance studies of PbSe:2 thin film show 80 ± 3% cycling stability even after 500 CV cycles. Such results show the importance of microcubic structured PbSe thin film as an anode in supercapacitor devices.

  19. Thinning results from a mixed upland hardwood stand after 35 years

    Treesearch

    Ronald J., Jr. Myers; Kenneth R. Roeder; W. Henry McNab

    2008-01-01

    A long-term study of precommercial thinning was installed in a 6-year-old oak-dominated stand regenerated by clearcutting in the southern Appalachian Mountains of North Carolina. Three levels of residual stand density were tested: control (no thinning), and 200, and 400 residual trees per acre (TPA). Objectives of the study were to determine the response of an upland...

  20. Methane and Dissolved Organic Carbon Sustain an Ecosystem within a Density Stratified Coastal Aquifer of the Yucatan Peninsula, Mexico. Evidence for a Subterranean Microbial Loop?

    NASA Astrophysics Data System (ADS)

    Brankovits, David; Pohlman, John W.; Niemann, Helge; Leigh, Mary Beth; Casso, Michael; Alvarez Noguera, Fernando; Lehmann, Moritz F.; Iliffe, Thomas M.

    2016-04-01

    In coastal karst terrains, anchialine caves that meander in density stratified aquifers provide an exceptional opportunity for scientists to study in situ biogeochemical processes within the groundwater. The Caribbean coast of Mexico's Yucatan Peninsula contains over 1000 km of mapped cave passages, the densest known accumulation of anchialine caves in the world. A decades-old study based on the simple observation of 13C-depleted biomass in the cave-adapted fauna suggested biogeochemical processes related to methane-linked carbon cycling and/or other chemoautotrophic pathways as a source of energy and carbon. In this study, we utilized cave diving and a novel sampling device (the Octopipi) to obtain cm-scale water column profiles of methane, DOC and DIC concentrations and stable carbon isotope ratios to identify the energy sources and microbial processes that sustain life in these subterranean estuaries. High concentrations (up to 9522 nM) low-δ13C (as low as -67.5 permil) methane near the ceiling of the cave (in the fresh water section of the stratified water column) and evidence for methane oxidation in the brackish water portion of the water column suggest methane availability and consumption. Profiles obtained by the Octopipi demonstrate that virtually all of the methane (˜99%) is oxidized at the interface of anoxic freshwater and hypoxic brackish water masses. The high-methane water mass near the ceiling also contained elevated concentrations of DOC (851 μM) that displayed comparatively high δ13C (-27.8 to -28.2 permil), suggesting terrestrial organic matter input from the overlying soils. Low-methane brackish and saline water was characterized by lower DOC concentration (15 to 97 μM), yet with similar δ13C (-25.9 to -27.2 permil), suggesting significant terrestrial organic matter consumption or removal with increasing depth, from fresh to saline water, within the water column. The presence of 13C-depleted fatty acids (e.g., C16:1ω7c with δ13C

  1. Dopant selection for control of charge carrier density and mobility in amorphous indium oxide thin-film transistors: Comparison between Si- and W-dopants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mitoma, Nobuhiko, E-mail: MITOMA.Nobuhiko@nims.go.jp, E-mail: TSUKAGOSHI.Kazuhito@nims.go.jp; Kizu, Takio; Lin, Meng-Fang

    The dependence of oxygen vacancy suppression on dopant species in amorphous indium oxide (a-InO{sub x}) thin film transistors (TFTs) is reported. In a-InO{sub x} TFTs incorporating equivalent atom densities of Si- and W-dopants, absorption of oxygen in the host a-InO{sub x} matrix was found to depend on difference of Gibbs free energy of the dopants for oxidation. For fully oxidized films, the extracted channel conductivity was higher in the a-InO{sub x} TFTs containing dopants of small ionic radius. This can be explained by a reduction in the ionic scattering cross sectional area caused by charge screening effects.

  2. Controls on Turbulent Mixing in a Strongly Stratified and Sheared Tidal River Plume

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jurisa, Joseph T.; Nash, Jonathan D.; Moum, James N.

    Considerable effort has been made to parameterize turbulent kinetic energy (TKE) dissipation rate ..epsilon.. and mixing in buoyant plumes and stratified shear flows. Here, a parameterization based on Kunze et al. is examined, which estimates ..epsilon.. as the amount of energy contained in an unstable shear layer (Ri < Ric) that must be dissipated to increase the Richardson number Ri = N2/S2 to a critical value Ric within a turbulent decay time scale. Observations from the tidal Columbia River plume are used to quantitatively assess the relevant parameters controlling ..epsilon.. over a range of tidal and river discharge forcings. Observedmore » ..epsilon.. is found to be characterized by Kunze et al.'s form within a factor of 2, while exhibiting slightly decreased skill near Ri = Ric. Observed dissipation rates are compared to estimates from a constant interfacial drag formulation that neglects the direct effects of stratification. This is found to be appropriate in energetic regimes when the bulk-averaged Richardson number Rib is less than Ric/4. However, when Rib > Ric/4, the effects of stratification must be included. Similarly, ..epsilon.. scaled by the bulk velocity and density differences over the plume displays a clear dependence on Rib, decreasing as Rib approaches Ric. The Kunze et al. ..epsilon.. parameterization is modified to form an expression for the nondimensional dissipation rate that is solely a function of Rib, displaying good agreement with the observations. It is suggested that this formulation is broadly applicable for unstable to marginally unstable stratified shear flows.« less

  3. The Effect of Density on the Height-Diameter Relationship

    Treesearch

    Boris Zeide; Curtis Vanderschaaf

    2002-01-01

    Using stand density along with mean diameter to predict average height increases the proportion of explained variance. This result, obtained from permanent plots established in a loblolly pine plantation thinned to different levels, makes sense. We know that due to competition, trees with the same diameter are taller in denser stands. Diameter and density are not only...

  4. BLM Density Management and Riparian Buffer Study: Establishment Report and Study Plan

    USGS Publications Warehouse

    Cissel, John H.; Anderson, P.D.; Olson, Deanna H.; Puettmann, Klaus; Berryman, Shanti; Chan, Samuel; Thompson, Charley

    2006-01-01

    The Bureau of Land Management (BLM), Pacific Northwest Research Station (PNW), U.S. Geological Survey (USGS), and Oregon State University (OSU) established the BLM Density Management and Riparian Buffer Study (DMS) in 1994 to demonstrate and test options for young stand management to meet Northwest Forest Plan objectives in western Oregon. The primary objectives of the DMS are to evaluate the effects of alternative forest density management treatments in young stands on the development of important late-successional forest habitat attributes and to assess the combined effects of density management and alternative riparian buffer widths on aquatic and riparian ecosystems. The DMS consists of three integrated studies: initial thinning, rethinning, and riparian buffer widths. The initial thinning study was installed in 50- to 80-year-old stands that had never been commercially thinned. Four stand treatments of 30-60 acres each were established at each of seven study sites: (1) unthinned control, (2) high density retention [120 trees per acre (TPA)], (3) moderate density retention (80 TPA), and (4) variable density retention (40-120 TPA). Small (1/4 to 1 acre in size) leave islands were included in all treatments except the control, and small patch cuts (1/4 to 1 acre in size) were included in the moderate and variable density treatments. An eighth site, Callahan Creek, contains a partial implementation of the study design. The rethinning study was installed in four 70- to 90-year-old stands that previously had been commercially thinned. Each study stand was split into two parts: one part as an untreated control and the other part as a rethinning (30-60 TPA). The riparian buffer study was nested within the moderate density retention treatment at each of the eight initial thinning study sites and two rethinning sites. Alternative riparian buffer widths included: (1) streamside retention (one tree canopy width, or 20-25 feet), (2) variable width (follows topographic and

  5. Measurement of High Reynolds Number Stratified Turbulent Wake of a Towed Sphere

    NASA Astrophysics Data System (ADS)

    Brandt, Alan; Kalumuck, Kenneth

    2017-11-01

    Although aircraft and ships operate at Reynolds numbers significantly greater than one million, there are virtually no extant data on the turbulence of wakes at Re >106, above the drag crisis regime. The present study is designed to characterize the near-field of a stratified wake at large Reynolds numbers, Re 2 x 105 - 106, by towing a large diameter (D 0.5 m) sphere through a thermally stratified fresh water lake and a thermally stratified large salt water towing tank. Stratification produced BV frequencies, N, up to 0.07 s-1 resulting in Froude numbers F = U/ND >= 15. Three component turbulent velocities and temperature measurements were obtained using Acoustic Doppler Velocimeters (ADVs) and an array of fast response thermistors at various downstream distances. Turbulence power spectra of both the velocity and temperature signals exhibited a clear -5/3 slope over an order-of-magnitude range in wavenumber, which is generally not clearly evident in lower Re laboratory experiments. This study is sponsored by the Office of Naval Research Turbulence and Stratified Wakes Program.

  6. Are self-thinning constraints needed in a tree-specific mortality model?

    Treesearch

    Robert A. Monserud; Thomas Ledermann; Hubert Sterba

    2005-01-01

    Can a tree-specific mortality model elicit expected forest stand density dynamics without imposing stand-level constraints such as Reineke's maximum stand density index (SDImax) or the -3/2 power law of self-thinning? We examine this emergent properties question using the Austrian stand simulator PROGNAUS. This simulator was chosen...

  7. Critical current density of high-quality Bi2Sr2Ca2Cu3Ox thin films prepared by metalorganic chemical-vapor deposition

    NASA Astrophysics Data System (ADS)

    Yamasaki, H.; Endo, K.; Nakagawa, Y.; Umeda, M.; Kosaka, S.; Misawa, S.; Yoshida, S.; Kajimura, K.

    1992-10-01

    Critical current densities Jc were measured in as-deposited, c-axis-oriented Bi2Sr2Ca2Cu3Ox thin films with Tc values as high as 97 K, which were prepared by metalorganic chemical-vapor deposition. These films showed high Jc (≳109 A/m2) at 77.3 K in high magnetic fields (≥1 T, H∥a-b plane). The best values are 3.3×109 A/m2 at 1 T and 9.1×108 A/m2 at 8 T, which are the highest Jc for Bi-oxide thin films among those reported so far. There were no signs of weak links in the Jc(H) behavior, and the surface morphology examined by scanning electron microscopy showed no apparent grain boundaries. The values of Jc decreased sharply when the applied field deviated from the a-b plane, and went to zero at the angles where the field component in the c direction is nearly equal to the irreversibility field Hc2* parallel to the c axis. The angular dependence of Jc of these films is most reasonably explained by the theory of intrinsic pinning.

  8. Thermally induced effect on sub-band gap absorption in Ag doped CdSe thin films

    NASA Astrophysics Data System (ADS)

    Kaur, Jagdish; Sharma, Kriti; Bharti, Shivani; Tripathi, S. K.

    2015-05-01

    Thin films of Ag doped CdSe have been prepared by thermal evaporation using inert gas condensation (IGC) method taking Argon as inert gas. The prepared thin films are annealed at 363 K for one hour. The sub-band gap absorption spectra in the as deposited and annealed thin films have been studied using constant photocurrent method (CPM). The absorption coefficient in the sub-band gap region is described by an Urbach tail in both as deposited and annealed thin films. The value of Urbach energy and number density of trap states have been calculated from the absorption coefficient in the sub-band gap region which have been found to increase after annealing treatment indicating increase in disorderness in the lattice. The energy distribution of the occupied density of states below Fermi level has also been studied using derivative procedure of absorption coefficient.

  9. Thin film mechanics

    NASA Astrophysics Data System (ADS)

    Cooper, Ryan C.

    This doctoral thesis details the methods of determining mechanical properties of two classes of novel thin films suspended two-dimensional crystals and electron beam irradiated microfilms of polydimethylsiloxane (PDMS). Thin films are used in a variety of surface coatings to alter the opto-electronic properties or increase the wear or corrosion resistance and are ideal for micro- and nanoelectromechanical system fabrication. One of the challenges in fabricating thin films is the introduction of strains which can arise due to application techniques, geometrical conformation, or other spurious conditions. Chapters 2-4 focus on two dimensional materials. This is the intrinsic limit of thin films-being constrained to one atomic or molecular unit of thickness. These materials have mechanical, electrical, and optical properties ideal for micro- and nanoelectromechanical systems with truly novel device functionality. As such, the breadth of applications that can benefit from a treatise on two dimensional film mechanics is reason enough for exploration. This study explores the anomylously high strength of two dimensional materials. Furthermore, this work also aims to bridge four main gaps in the understanding of material science: bridging the gap between ab initio calculations and finite element analysis, bridging the gap between ab initio calculations and experimental results, nanoscale to microscale, and microscale to mesoscale. A nonlinear elasticity model is used to determine the necessary elastic constants to define the strain-energy density function for finite strain. Then, ab initio calculations-density functional theory-is used to calculate the nonlinear elastic response. Chapter 2 focuses on validating this methodology with atomic force microscope nanoindentation on molybdenum disulfide. Chapter 3 explores the convergence criteria of three density functional theory solvers to further verify the numerical calculations. Chapter 4 then uses this model to investigate

  10. Forest thinning and soil respiration in a ponderosa pine plantation in the Sierra Nevada.

    PubMed

    Tang, Jianwu; Qi, Ye; Xu, Ming; Misson, Laurent; Goldstein, Allen H

    2005-01-01

    Soil respiration is controlled by soil temperature, soil water, fine roots, microbial activity, and soil physical and chemical properties. Forest thinning changes soil temperature, soil water content, and root density and activity, and thus changes soil respiration. We measured soil respiration monthly and soil temperature and volumetric soil water continuously in a young ponderosa pine (Pinus ponderosa Dougl. ex P. Laws. & C. Laws.) plantation in the Sierra Nevada Mountains in California from June 1998 to May 2000 (before a thinning that removed 30% of the biomass), and from May to December 2001 (after thinning). Thinning increased the spatial homogeneity of soil temperature and respiration. We conducted a multivariate analysis with two independent variables of soil temperature and water and a categorical variable representing the thinning event to simulate soil respiration and assess the effect of thinning. Thinning did not change the sensitivity of soil respiration to temperature or to water, but decreased total soil respiration by 13% at a given temperature and water content. This decrease in soil respiration was likely associated with the decrease in root density after thinning. With a model driven by continuous soil temperature and water time series, we estimated that total soil respiration was 948, 949 and 831 g C m(-2) year(-1) in the years 1999, 2000 and 2001, respectively. Although thinning reduced soil respiration at a given temperature and water content, because of natural climate variability and the thinning effect on soil temperature and water, actual cumulative soil respiration showed no clear trend following thinning. We conclude that the effect of forest thinning on soil respiration is the combined result of a decrease in root respiration, an increase in soil organic matter, and changes in soil temperature and water due to both thinning and interannual climate variability.

  11. Anisotropic thermal conductivity of thin polycrystalline oxide samples

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tiwari, A., E-mail: abhishektiwariiitr@gmail.com; Department of Mechanical and Aerospace Engineering, Monash University, Melbourne, VIC 3800; Boussois, K.

    2013-11-15

    This paper reports about the development of a modified laser-flash technique and relation to measure the in-plane thermal diffusivity of thin polycrystalline oxide samples. Thermal conductivity is then calculated with the product of diffusivity, specific heat and density. Design and operating features for evaluating in-plane thermal conductivities are described. The technique is advantageous as thin samples are not glued together to measure in-plane thermal conductivities like earlier methods reported in literature. The approach was employed to study anisotropic thermal conductivity in alumina sheet, textured kaolin ceramics and montmorillonite. Since it is rare to find in-plane thermal conductivity values for suchmore » anisotropic thin samples in literature, this technique offers a useful variant to existing techniques.« less

  12. Dual Spark Plugs For Stratified-Charge Rotary Engine

    NASA Technical Reports Server (NTRS)

    Abraham, John; Bracco, Frediano V.

    1996-01-01

    Fuel efficiency of stratified-charge, rotary, internal-combustion engine increased by improved design featuring dual spark plugs. Second spark plug ignites fuel on upstream side of main fuel injector; enabling faster burning and more nearly complete utilization of fuel.

  13. Precommercial thinning intensity in longleaf pine: effect on product volume and value

    Treesearch

    John S. Kush; William D. Boyer; Ralph S. Meldahl; George A. Ward

    1998-01-01

    The possible benefit of precommercial thinning in longleaf pine was evaluated from a spacing study initiated in 1967 on the Escambia Experimental Forest in Brewton, AL. The study was established in dense, naturally established, seedling stands 9 years from seed. Plots were thinned to densities of 300, 600, 900, 1200, and 1500 trees/acre. Later, the initial range of...

  14. Ultra-thin silicon oxide layers on crystalline silicon wafers: Comparison of advanced oxidation techniques with respect to chemically abrupt SiO2/Si interfaces with low defect densities

    NASA Astrophysics Data System (ADS)

    Stegemann, Bert; Gad, Karim M.; Balamou, Patrice; Sixtensson, Daniel; Vössing, Daniel; Kasemann, Martin; Angermann, Heike

    2017-02-01

    Six advanced oxidation techniques were analyzed, evaluated and compared with respect to the preparation of high-quality ultra-thin oxide layers on crystalline silicon. The resulting electronic and chemical SiO2/Si interface properties were determined by a combined x-ray photoemission (XPS) and surface photovoltage (SPV) investigation. Depending on the oxidation technique, chemically abrupt SiO2/Si interfaces with low densities of interface states were fabricated on c-Si either at low temperatures, at short times, or in wet-chemical environment, resulting in each case in excellent interface passivation. Moreover, the beneficial effect of a subsequent forming gas annealing (FGA) step for the passivation of the SiO2/Si interface of ultra-thin oxide layers has been proven. Chemically abrupt SiO2/Si interfaces have been shown to generate less interface defect states.

  15. Photocurrent spectroscopy of pentacene thin film transistors

    NASA Astrophysics Data System (ADS)

    Breban, Mihaela

    We demonstrate the application of photocurrent modulation spectroscopy in characterizing the performance of organic thin-film transistors. A parallel analysis of the direct current and photocurrent voltage characteristics provides a model free determination of the field-effect mobility and the density of free carriers in the transistor channel as a function of the applied gate voltage. Applying this technique to pentacene thin-film transistors demonstrates that the mobility increases as V1/3g . The free-carrier density is approximately 1/10 of the expected capacitive charge, and the mobility increases monotonically with the free carrier density, consistent with the trap and release model of transport. Also, the modulated photocurrent spectroscopy can be used as a probe of defect states in pentacene thin film transistors, measuring simultaneously the magnitude and the phase of the photocurrent as a function of the modulation frequency. This is accomplished by modeling the photo-carrier generation process as exciton dissociation via interaction with localized traps. Experimental data reveal a Gaussian distribution of localized states centered around 0.3 eV above the highest occupied molecular orbital. We also investigated the effect of the gate dielectric material with our probe and found that the position of the extracted Gaussian slightly shifts, consistent with the expected image charge effect for Pn through the dielectric substrate. Also shifts in the Gaussian position for samples fabricated with variable deposition conditions are correlated with changes in Pn morphology. The morphological differences between Pn films were also detected in current-voltage characteristics and photocurrent spectra. However, the origin of the ubiquitous 0.3 eV defect in Pn seems to be unrelated to structural differences in Pn films.

  16. Osculating Keplerian Elements for Highly Non-Keplerian Orbits

    DTIC Science & Technology

    2017-03-27

    1.52133 2 McInnes, C. R., “The Existence and Stability of Families of Displacement Two-Body Orbits”, Celestial Mechanics and Dynamical Astronomy , Vol...j.actaastro.2011.08.012 5 Xu, M. and Xu, S., “Nonlinear dynamical analysis for displaced orbits above a planet”, Celestial Mechanics and Dynamical Astronomy ...Celestial Mechanics and Dynamical Astronomy , Vol. 110, No. 3, 2011, pp. 199-215. doi: 10.1007/s10569-011-9351-5 7 Macdonald, M., McKay, R. J., Vasile, M

  17. Influence of thinning of Douglas-fir forests on population parameters and diet of northern flying squirrels

    USGS Publications Warehouse

    Gomez, D.M.; Anthony, R.G.; Hayes, J.P.

    2005-01-01

    We investigated the effects of thinning young (35- to 45-yr-old) Douglas-fir (Pseudotsuga menziesii) forests on density, survival, body mass, movements, and diets of northern flying squirrels (Glaucomys sabrinus) in the northern coast range of Oregon. We used a repeated measures, randomized block design with 3 treatments (control, moderate thinning, and heavy thinning) and 4 replicates to study diets and population characteristics from 1994-1997. Densities of flying squirrels were variable in space and time, but they were positively correlated to biomass and frequency of fungal sporocarps, suggesting they were responding to food resources rather than forest structure. Fungal sporocarps comprised a major portion of the squirrel's diet, and other vegetative material made up the remainder of the diet. Several fungal genera including Gautieria, Geopora, Hymenogaster, Hysterangium, Melanogaster, and Rhizopogon were found more frequently in diets than on the trapping grids and therefore appeared to be selected by the squirrels. Flying squirrel movements were negatively correlated with the frequency of occurrence of fungal sporocarps at trap stations, suggesting that squirrels traveled greater distances to find fungal sporocarps where these food items were more sparsely distributed. We hypothesized that flying squirrel densities would be relatively low in these young, structurally simple forests; however, densities on some of the grids were >1.5 squirrels/ha, which was comparable to densities described for the species in late-successional forests. Our results indicated that commercial thinning did not have measurable short-term effects on density, survival, or body mass of flying squirrels.

  18. Biogenic mixing induced by intermediate Reynolds number swimming in stratified fluids.

    PubMed

    Wang, Shiyan; Ardekani, Arezoo M

    2015-12-02

    We study fully resolved motion of interacting swimmers in density stratified fluids using an archetypal swimming model called "squirmer". The intermediate Reynolds number regime is particularly important, because the vast majority of organisms in the aphotic ocean (i.e. regions that are 200 m beneath the sea surface) are small (mm-cm) and their motion is governed by the balance of inertial and viscous forces. Our study shows that the mixing efficiency and the diapycnal eddy diffusivity, a measure of vertical mass flux, within a suspension of squirmers increases with Reynolds number. The mixing efficiency is in the range of O(0.0001-0.04) when the swimming Reynolds number is in the range of O(0.1-100). The values of diapycnal eddy diffusivity and Cox number are two orders of magnitude larger for vertically swimming cells compared to horizontally swimming cells. For a suspension of squirmers in a decaying isotropic turbulence, we find that the diapycnal eddy diffusivity enhances due to the strong viscous dissipation generated by squirmers as well as the interaction of squirmers with the background turbulence.

  19. Direct multiangle solution for poorly stratified atmospheres

    Treesearch

    Vladimir Kovalev; Cyle Wold; Alexander Petkov; Wei Min Hao

    2012-01-01

    The direct multiangle solution is considered, which allows improving the scanning lidar-data-inversion accuracy when the requirement of the horizontally stratified atmosphere is poorly met. The signal measured at zenith or close to zenith is used as a core source for extracting optical characteristics of the atmospheric aerosol loading. The multiangle signals are used...

  20. SPONTANEOUS FORMATION OF SURFACE MAGNETIC STRUCTURE FROM LARGE-SCALE DYNAMO IN STRONGLY STRATIFIED CONVECTION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Masada, Youhei; Sano, Takayoshi, E-mail: ymasada@auecc.aichi-edu.ac.jp, E-mail: sano@ile.osaka-u.ac.jp

    We report the first successful simulation of spontaneous formation of surface magnetic structures from a large-scale dynamo by strongly stratified thermal convection in Cartesian geometry. The large-scale dynamo observed in our strongly stratified model has physical properties similar to those in earlier weakly stratified convective dynamo simulations, indicating that the α {sup 2}-type mechanism is responsible for the dynamo. In addition to the large-scale dynamo, we find that large-scale structures of the vertical magnetic field are spontaneously formed in the convection zone (CZ) surface only in cases with a strongly stratified atmosphere. The organization of the vertical magnetic field proceedsmore » in the upper CZ within tens of convective turnover time and band-like bipolar structures recurrently appear in the dynamo-saturated stage. We consider several candidates to be possibly be the origin of the surface magnetic structure formation, and then suggest the existence of an as-yet-unknown mechanism for the self-organization of the large-scale magnetic structure, which should be inherent in the strongly stratified convective atmosphere.« less

  1. Radial Surface Density Profiles of Gas and Dust in the Debris Disk around 49 Ceti

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hughes, A. Meredith; Lieman-Sifry, Jesse; Flaherty, Kevin M.

    We present ∼0.″4 resolution images of CO(3–2) and associated continuum emission from the gas-bearing debris disk around the nearby A star 49 Ceti, observed with the Atacama Large Millimeter/Submillimeter Array (ALMA). We analyze the ALMA visibilities in tandem with the broadband spectral energy distribution to measure the radial surface density profiles of dust and gas emission from the system. The dust surface density decreases with radius between ∼100 and 310 au, with a marginally significant enhancement of surface density at a radius of ∼110 au. The SED requires an inner disk of small grains in addition to the outer diskmore » of larger grains resolved by ALMA. The gas disk exhibits a surface density profile that increases with radius, contrary to most previous spatially resolved observations of circumstellar gas disks. While ∼80% of the CO flux is well described by an axisymmetric power-law disk in Keplerian rotation about the central star, residuals at ∼20% of the peak flux exhibit a departure from axisymmetry suggestive of spiral arms or a warp in the gas disk. The radial extent of the gas disk (∼220 au) is smaller than that of the dust disk (∼300 au), consistent with recent observations of other gas-bearing debris disks. While there are so far only three broad debris disks with well characterized radial dust profiles at millimeter wavelengths, 49 Ceti’s disk shows a markedly different structure from two radially resolved gas-poor debris disks, implying that the physical processes generating and sculpting the gas and dust are fundamentally different.« less

  2. Radial Surface Density Profiles of Gas and Dust in the Debris Disk Around 49 Ceti

    NASA Technical Reports Server (NTRS)

    Hughes, A. Meredith; Lieman-Sifry, Jesse; Flaherty, Kevin M.; Daley, Cail M.; Roberge, Aki; Kospal, Agnes; Moor, Attila; Kamp, Inga; Wilner, David J.; Andrews, Sean M.; hide

    2017-01-01

    We present approximately 0".4 resolution images of CO(3-2) and associated continuum emission from the gas-bearing debris disk around the nearby A star 49 Ceti, observed with the Atacama Large Millimeter/Submillimeter Array (ALMA). We analyze the ALMA visibilities in tandem with the broadband spectral energy distribution to measure the radial surface density profiles of dust and gas emission from the system. The dust surface density decreases with radius between approximately 100 and 310 au, with a marginally significant enhancement of surface density at a radius of approximately 110 au. The SED requires an inner disk of small grains in addition to the outer disk of larger grains resolved by ALMA. The gas disk exhibits a surface density profile that increases with radius, contrary to most previous spatially resolved observations of circumstellar gas disks. While approximately 80% of the CO flux is well described by an axisymmetric power-law disk in Keplerian rotation about the central star, residuals at approximately 20% of the peak flux exhibit a departure from axisymmetry suggestive of spiral arms or a warp in the gas disk. The radial extent of the gas disk (approx. 220 au) is smaller than that of the dust disk (approx. 300 au), consistent with recent observations of other gasbearing debris disks. While there are so far only three broad debris disks with well characterized radial dust profiles at millimeter wavelengths, 49 Ceti's disk shows a markedly different structure from two radially resolved gas-poor debris disks, implying that the physical processes generating and sculpting the gas and dust are fundamentally different.

  3. Stratified coastal ocean interactions with tropical cyclones

    PubMed Central

    Glenn, S. M.; Miles, T. N.; Seroka, G. N.; Xu, Y.; Forney, R. K.; Yu, F.; Roarty, H.; Schofield, O.; Kohut, J.

    2016-01-01

    Hurricane-intensity forecast improvements currently lag the progress achieved for hurricane tracks. Integrated ocean observations and simulations during hurricane Irene (2011) reveal that the wind-forced two-layer circulation of the stratified coastal ocean, and resultant shear-induced mixing, led to significant and rapid ahead-of-eye-centre cooling (at least 6 °C and up to 11 °C) over a wide swath of the continental shelf. Atmospheric simulations establish this cooling as the missing contribution required to reproduce Irene's accelerated intensity reduction. Historical buoys from 1985 to 2015 show that ahead-of-eye-centre cooling occurred beneath all 11 tropical cyclones that traversed the Mid-Atlantic Bight continental shelf during stratified summer conditions. A Yellow Sea buoy similarly revealed significant and rapid ahead-of-eye-centre cooling during Typhoon Muifa (2011). These findings establish that including realistic coastal baroclinic processes in forecasts of storm intensity and impacts will be increasingly critical to mid-latitude population centres as sea levels rise and tropical cyclone maximum intensities migrate poleward. PMID:26953963

  4. Effects of low-temperature (120 °C) annealing on the carrier concentration and trap density in amorphous indium gallium zinc oxide thin film transistors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Jae-sung; Piao, Mingxing; Jang, Ho-Kyun

    2014-12-28

    We report an investigation of the effects of low-temperature annealing on the electrical properties of amorphous indium gallium zinc oxide (a-IGZO) thin-film transistors (TFTs). X-ray photoelectron spectroscopy was used to characterize the charge carrier concentration, which is related to the density of oxygen vacancies. The field-effect mobility was found to decrease as a function of the charge carrier concentration, owing to the presence of band-tail states. By employing the transmission line method, we show that the contact resistance did not significantly contribute to the changes in device performance after annealing. In addition, using low-frequency noise analyses, we found that themore » trap density decreased by a factor of 10 following annealing at 120 °C. The switching operation and on/off ratio of the a-IGZO TFTs improved considerably after low-temperature annealing.« less

  5. Graphene-based in-plane micro-supercapacitors with high power and energy densities

    PubMed Central

    Wu, Zhong–Shuai; Parvez, Khaled; Feng, Xinliang; Müllen, Klaus

    2013-01-01

    Micro-supercapacitors are important on-chip micro-power sources for miniaturized electronic devices. Although the performance of micro-supercapacitors has been significantly advanced by fabricating nanostructured materials, developing thin-film manufacture technologies and device architectures, their power or energy densities remain far from those of electrolytic capacitors or lithium thin-film batteries. Here we demonstrate graphene-based in-plane interdigital micro-supercapacitors on arbitrary substrates. The resulting micro-supercapacitors deliver an area capacitance of 80.7 μF cm−2 and a stack capacitance of 17.9 F cm−3. Further, they show a power density of 495 W cm−3 that is higher than electrolytic capacitors, and an energy density of 2.5 mWh cm−3 that is comparable to lithium thin-film batteries, in association with superior cycling stability. Such microdevices allow for operations at ultrahigh rate up to 1,000 V s−1, three orders of magnitude higher than that of conventional supercapacitors. Micro-supercapacitors with an in-plane geometry have great promise for numerous miniaturized or flexible electronic applications. PMID:24042088

  6. Graphene-based in-plane micro-supercapacitors with high power and energy densities.

    PubMed

    Wu, Zhong-Shuai; Parvez, Khaled; Feng, Xinliang; Müllen, Klaus

    2013-01-01

    Micro-supercapacitors are important on-chip micro-power sources for miniaturized electronic devices. Although the performance of micro-supercapacitors has been significantly advanced by fabricating nanostructured materials, developing thin-film manufacture technologies and device architectures, their power or energy densities remain far from those of electrolytic capacitors or lithium thin-film batteries. Here we demonstrate graphene-based in-plane interdigital micro-supercapacitors on arbitrary substrates. The resulting micro-supercapacitors deliver an area capacitance of 80.7 μF cm⁻² and a stack capacitance of 17.9 F cm⁻³. Further, they show a power density of 495 W cm⁻³ that is higher than electrolytic capacitors, and an energy density of 2.5 mWh cm⁻³ that is comparable to lithium thin-film batteries, in association with superior cycling stability. Such microdevices allow for operations at ultrahigh rate up to 1,000 V s⁻¹, three orders of magnitude higher than that of conventional supercapacitors. Micro-supercapacitors with an in-plane geometry have great promise for numerous miniaturized or flexible electronic applications.

  7. PTEN knockdown alters dendritic spine/protrusion morphology, not density

    PubMed Central

    Haws, Michael E.; Jaramillo, Thomas C.; Espinosa-Becerra, Felipe; Widman, Allie; Stuber, Garret D.; Sparta, Dennis R.; Tye, Kay M.; Russo, Scott J.; Parada, Luis F.; Kaplitt, Michael; Bonci, Antonello; Powell, Craig M.

    2014-01-01

    Mutations in phosphatase and tensin homolog deleted on chromosome ten (PTEN) are implicated in neuropsychiatric disorders including autism. Previous studies report that PTEN knockdown in neurons in vivo leads to increased spine density and synaptic activity. To better characterize synaptic changes in neurons lacking PTEN, we examined the effects of shRNA knockdown of PTEN in basolateral amygdala neurons on synaptic spine density and morphology using fluorescent dye confocal imaging. Contrary to previous studies in dentate gyrus, we find that knockdown of PTEN in basolateral amygdala leads to a significant decrease in total spine density in distal dendrites. Curiously, this decreased spine density is associated with increased miniature excitatory post-synaptic current frequency and amplitude, suggesting an increase in number and function of mature spines. These seemingly contradictory findings were reconciled by spine morphology analysis demonstrating increased mushroom spine density and size with correspondingly decreased thin protrusion density at more distal segments. The same analysis of PTEN conditional deletion in dentate gyrus demonstrated that loss of PTEN does not significantly alter total density of dendritic protrusions in the dentate gyrus, but does decrease thin protrusion density and increases density of more mature mushroom spines. These findings suggest that, contrary to previous reports, PTEN knockdown may not induce de novo spinogenesis, but instead may increase synaptic activity by inducing morphological and functional maturation of spines. Furthermore, behavioral analysis of basolateral amygdala PTEN knockdown suggests that these changes limited only to the basolateral amygdala complex may not be sufficient to induce increased anxiety-related behaviors. PMID:24264880

  8. Cross-shore stratified tidal flow seaward of a mega-nourishment

    NASA Astrophysics Data System (ADS)

    Meirelles, Saulo; Henriquez, Martijn; Reniers, Ad; Luijendijk, Arjen P.; Pietrzak, Julie; Horner-Devine, Alexander R.; Souza, Alejandro J.; Stive, Marcel J. F.

    2018-01-01

    The Sand Engine is a 21.5 million m3 experimental mega-nourishment project that was built in 2011 along the Dutch coast. This intervention created a discontinuity in the previous straight sandy coastline, altering the local hydrodynamics in a region that is influenced by the buoyant plume generated by the Rhine River. This work investigates the response of the cross-shore stratified tidal flow to the coastal protrusion created by the Sand Engine emplacement by using a 13 h velocity and density survey. Observations document the development of strong baroclinic-induced cross-shore exchange currents dictated by the intrusion of the river plume fronts as well as the classic tidal straining which are found to extend further into the nearshore (from 12 to 6 m depth), otherwise believed to be a mixed zone. Estimates of the centrifugal acceleration directly after construction of the Sand Engine showed that the curvature effects were approximately 2 times stronger, suggesting that the Sand Engine might have played a role in controlling the cross-shore exchange currents during the first three years after the completion of the nourishment. Presently, the curvature effects are minute.

  9. Unidirectional oxide hetero-interface thin-film diode

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Park, Youngmin; Lee, Eungkyu; Lee, Jinwon

    2015-10-05

    The unidirectional thin-film diode based on oxide hetero-interface, which is well compatible with conventional thin-film fabrication process, is presented. With the metal anode/electron-transporting oxide (ETO)/electron-injecting oxide (EIO)/metal cathode structure, it exhibits that electrical currents ohmically flow at the ETO/EIO hetero-interfaces for only positive voltages showing current density (J)-rectifying ratio of ∼10{sup 5} at 5 V. The electrical properties (ex, current levels, and working device yields) of the thin-film diode (TFD) are systematically controlled by changing oxide layer thickness. Moreover, we show that the oxide hetero-interface TFD clearly rectifies an AC input within frequency (f) range of 10{sup 2} Hz < f < 10{sup 6} Hz, providing amore » high feasibility for practical applications.« less

  10. Number of pins in two-stage stratified sampling for estimating herbage yield

    Treesearch

    William G. O' Regan; C. Eugene Conrad

    1975-01-01

    In a two-stage stratified procedure for sampling herbage yield, plots are stratified by a pin frame in stage one, and clipped. In stage two, clippings from selected plots are sorted, dried, and weighed. Sample size and distribution of plots between the two stages are determined by equations. A way to compute the effect of number of pins on the variance of estimated...

  11. Properties of the endogenous post-stratified estimator using a random forests model

    Treesearch

    John Tipton; Jean Opsomer; Gretchen G. Moisen

    2012-01-01

    Post-stratification is used in survey statistics as a method to improve variance estimates. In traditional post-stratification methods, the variable on which the data is being stratified must be known at the population level. In many cases this is not possible, but it is possible to use a model to predict values using covariates, and then stratify on these predicted...

  12. The Fine Transverse Structure of a Vortex Flow Beyond the Edge of a Disc Rotating in a Stratified Fluid

    NASA Astrophysics Data System (ADS)

    Chashechkin, Yu. D.; Bardakov, R. N.

    2018-02-01

    By the methods of schlieren visualization, the evolution of elements of the fine structure of transverse vortex loops formed in the circular vortex behind the edge of a disk rotating in a continuously stratified fluid is traced for the first time. An inhomogeneous distribution of the density of a table-salt solution in a basin was formed by the continuous-squeezing method. The development of periodic perturbations at the outer boundary of the circular vortex and their transformation at the vortex-loop vertex are traced. A slow change in the angular size of the structural elements in the supercritical-flow mode is noted.

  13. Recurrence networks from multivariate signals for uncovering dynamic transitions of horizontal oil-water stratified flows

    NASA Astrophysics Data System (ADS)

    Gao, Zhong-Ke; Zhang, Xin-Wang; Jin, Ning-De; Donner, Reik V.; Marwan, Norbert; Kurths, Jürgen

    2013-09-01

    Characterizing the mechanism of drop formation at the interface of horizontal oil-water stratified flows is a fundamental problem eliciting a great deal of attention from different disciplines. We experimentally and theoretically investigate the formation and transition of horizontal oil-water stratified flows. We design a new multi-sector conductance sensor and measure multivariate signals from two different stratified flow patterns. Using the Adaptive Optimal Kernel Time-Frequency Representation (AOK TFR) we first characterize the flow behavior from an energy and frequency point of view. Then, we infer multivariate recurrence networks from the experimental data and investigate the cross-transitivity for each constructed network. We find that the cross-transitivity allows quantitatively uncovering the flow behavior when the stratified flow evolves from a stable state to an unstable one and recovers deeper insights into the mechanism governing the formation of droplets at the interface of stratified flows, a task that existing methods based on AOK TFR fail to work. These findings present a first step towards an improved understanding of the dynamic mechanism leading to the transition of horizontal oil-water stratified flows from a complex-network perspective.

  14. Flying-plate detonator using a high-density high explosive

    DOEpatents

    Stroud, John R.; Ornellas, Donald L.

    1988-01-01

    A flying-plate detonator containing a high-density high explosive such as benzotrifuroxan (BTF). The detonator involves the electrical explosion of a thin metal foil which punches out a flyer from a layer overlying the foil, and the flyer striking a high-density explosive pellet of BTF, which is more thermally stable than the conventional detonator using pentaerythritol tetranitrate (PETN).

  15. Oscillations in a Linearly Stratified Salt Solution

    ERIC Educational Resources Information Center

    Heavers, Richard M.

    2007-01-01

    Our physics students like to watch a ball bouncing underwater. They do this by dropping a weighted plastic ball into a 1000-ml cylinder filled with a linearly stratified salt-water solution at room temperature. The ball oscillates and comes to rest at about mid-depth. Its motion is analogous to the damped vertical oscillations of a mass hanging…

  16. Enhanced electrochemical performance of monoclinic WO3 thin film with redox additive aqueous electrolyte.

    PubMed

    Shinde, Pragati A; Lokhande, Vaibhav C; Chodankar, Nilesh R; Ji, Taeksoo; Kim, Jin Hyeok; Lokhande, Chandrakant D

    2016-12-01

    To achieve the highest electrochemical performance for supercapacitor, it is very essential to find out a suitable pair of an active electrode material and an electrolyte. In the present work, a simple approach is employed to enhance the supercapacitor performance of WO3 thin film. The WO3 thin film is prepared by a simple and cost effective chemical bath deposition method and its electrochemical performance is tested in conventional (H2SO4) and redox additive [H2SO4+hydroquinone (HQ)] electrolytes. Two-fold increment in electrochemical performance for WO3 thin film is observed in redox additive aqueous electrolyte compared to conventional electrolyte. WO3 thin film showed maximum specific capacitance of 725Fg(-1), energy density of 25.18Whkg(-1) at current density of 7mAcm(-2) with better cycling stability in redox electrolyte. This strategy provides the versatile way for designing the high performance energy storage devices. Copyright © 2016 Elsevier Inc. All rights reserved.

  17. Porous CrN thin films by selectively etching CrCuN for symmetric supercapacitors

    NASA Astrophysics Data System (ADS)

    Wei, Binbin; Mei, Gui; Liang, Hanfeng; Qi, Zhengbing; Zhang, Dongfang; Shen, Hao; Wang, Zhoucheng

    2018-05-01

    Transition metal nitrides are regarded as a new class of excellent electrode materials for high-performance supercapacitors due to their superior chemical stability and excellent electrical conductivity. We synthesize successfully the porous CrN thin films for binder-free supercapacitor electrodes by reactive magnetron co-sputtering and selective chemical etching. The porous CrN thin film electrodes exhibit high-capacitance performance (31.3 mF cm-2 at 1.0 mA cm-2) and reasonable cycling stability (94% retention after 20000 cycles). Moreover, the specific capacitance is more than two-fold higher than that of the CrN thin film electrodes in previous work. In addition, a symmetric supercapacitor device with a maximum energy density of 14.4 mWh cm-3 and a maximum power density of 6.6 W cm-3 is achieved. These findings demonstrate that the porous CrN thin films will have potential applications in supercapacitors.

  18. Turbulent transport across an interface between dry and humid air in a stratified environment

    NASA Astrophysics Data System (ADS)

    Gallana, Luca; de Santi, Francesca; di Savino, Silvio; Iovieno, Michele; Ricchiardone, Renzo; Tordella, Daniela

    2014-11-01

    The transport of energy and water vapor across a thin layer which separates two decaying isotropic turbulent flows with different kinetic energy and humidity is considered. The interface is placed in a shearless stratified environment in temporal decay. This system reproduces a few aspects of small scale turbulent transport across a dry air/moist air interface in an atmospheric like context. In our incompressible DNS at Reλ = 250 , Boussinesq's approximation is used for momentum and energy transport while the vapor is modeled as a passive scalar (Kumar, Schumacher & Shaw 2014). We investigated different stratification levels with an initial Fr between 0.8 and 8 in presence of a kinetic energy ratio equal to 7. As the buoyancy term becomes of the same order of the inertial ones, a spatial redistribution of kinetic energy, dissipation and vapor concentration is observed. This eventually leads to the onset of a well of kinetic energy in the low energy side of the mixing layer which blocks the entrainment of dry air. Results are discussed and compared with laboratory and numerical experiments. A posteriori estimates of the eventual compression/expansion of fluid particles inside the interfacial mixing layer are given (Nance & Durran 1994).

  19. A stand density management diagram for sawtimber-sized mixed upland central hardwoods

    Treesearch

    J.A., Jr. Kershaw; B.C. Fischer

    1991-01-01

    Data from 190 CFI plots located in southern and west-central Indiana are used to develop a stand density diagram for sawtimber-sized mixed upland hardwoods in the Central States. The stand density diagram utilizes the concepts of self-thinning to establish a maximum size-density curve, and the stocking standards of Gingrich (1967) to formulate imtermediate stocking...

  20. Are self-thinning contraints needed in a tree-specific mortality model.

    Treesearch

    Robert A. Monserud; Thomas Ledermann; Hubert Sterba

    2005-01-01

    Can a tree-specific mortality model elicit expected forest stand density dynamics without imposing stand-level constraints such as Reineke's maximum stand density index (SDI,) or the -312 power law of self-thinning? We examine this emergent properties question using the Austrian stand simulator PROGNAUS. This simulator was chosen specifically because it does not...

  1. Study of MRI in stratified viscous plasma configuration

    NASA Astrophysics Data System (ADS)

    Carlevaro, Nakia; Montani, Giovanni; Renzi, Fabrizio

    2017-02-01

    We analyze the morphology of the magneto-rotational instability (MRI) for a stratified viscous plasma disk configuration in differential rotation, taking into account the so-called corotation theorem for the background profile. In order to select the intrinsic Alfvénic nature of MRI, we deal with an incompressible plasma and we adopt a formulation of the local perturbation analysis based on the use of the magnetic flux function as a dynamical variable. Our study outlines, as consequence of the corotation condition, a marked asymmetry of the MRI with respect to the equatorial plane, particularly evident in a complete damping of the instability over a positive critical height on the equatorial plane. We also emphasize how such a feature is already present (although less pronounced) even in the ideal case, restoring a dependence of the MRI on the stratified morphology of the gravitational field.

  2. Topological Insulator State in Thin Bismuth Films Subjected to Plane Tensile Strain

    NASA Astrophysics Data System (ADS)

    Demidov, E. V.; Grabov, V. M.; Komarov, V. A.; Kablukova, N. S.; Krushel'nitskii, A. N.

    2018-03-01

    The results of experimental examination of galvanomagnetic properties of thin bismuth films subjected to plane tensile strain resulting from the difference in thermal expansion coefficients of the substrate material and bismuth are presented. The resistivity, the magnetoresistance, and the Hall coefficient were studied at temperatures ranging from 5 to 300 K in magnetic fields as strong as 0.65 T. Carrier densities were calculated. A considerable increase in carrier density in films thinner than 30 nm was observed. This suggests that surface states are more prominent in thin bismuth films on mica substrates, while the films themselves may exhibit the properties of a topological insulator.

  3. Are prescribed fire and thinning dominant processes affecting snag occurrence at a landscape scale?

    DOE PAGES

    Zarnoch, Stanley J.; Blake, John I.; Parresol, Bernard R.

    2014-11-01

    Snags are standing dead trees that are an important component in the nesting habitat of birds and other species. Although snag availability is believed to limit populations in managed and non-managed forests, little data are available to evaluate the relative effect of stand conditions and management on snag occurrence. We analyzed point sample data from an intensive forest inventory within an 80,000 ha landscape for four major forest types to support the hypotheses that routine low-intensity prescribed fire would increase, and thinning would decrease, snag occurrence. We employed path analysis to define a priori causal relationships to determine the directmore » and indirect effects of site quality, age, relative stand density index and fire for all forest types and thinning effects for loblolly pine and longleaf pine. Stand age was an important direct effect for loblolly pine, mixed pine-hardwoods and hardwoods, but not for longleaf pine. Snag occurrence in loblolly pine was increased by prescribed fire and decreased by thinning which confirmed our initial hypotheses. Although fire was not important in mixed pine-hardwoods, it was for hardwoods but the relationship depended on site quality. For longleaf pine the relative stand density index was the dominant variable affecting snag occurrence, which increased as the density index decreased. Site quality, age and thinning had significant indirect effects on snag occurrence in longleaf pine through their effects on the density index. Although age is an important condition affecting snag occurrence for most forest types, path analysis revealed that fire and density management practices within certain forest types can also have major beneficial effects, particularly in stands less than 60 years old.« less

  4. X-Ray Fluorescence Determination of the Surface Density of Chromium Nanolayers

    NASA Astrophysics Data System (ADS)

    Mashin, N. I.; Chernjaeva, E. A.; Tumanova, A. N.; Ershov, A. A.

    2014-01-01

    An auxiliary system consisting of thin-film layers of chromium deposited on a polymer film substrate is used to construct calibration curves for the relative intensities of the K α lines of chromium on bulk substrates of different elements as functions of the chromium surface density in the reference samples. Correction coefficients are calculated to take into account the absorption of primary radiation from an x-ray tube and analytical lines of the constituent elements of the substrate. A method is developed for determining the surface density of thin films of chromium when test and calibration samples are deposited on substrates of different materials.

  5. Stratified spin-up in a sliced, square cylinder

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Munro, R. J.; Foster, M. R.

    We previously reported experimental and theoretical results on the linear spin-up of a linearly stratified, rotating fluid in a uniform-depth square cylinder [M. R. Foster and R. J. Munro, “The linear spin-up of a stratified, rotating fluid in a square cylinder,” J. Fluid Mech. 712, 7–40 (2012)]. Here we extend that analysis to a “sliced” square cylinder, which has a base-plane inclined at a shallow angle α. Asymptotic results are derived that show the spin-up phase is achieved by a combination of the Ekman-layer eruptions (from the perimeter region of the cylinder's lid and base) and cross-slope-propagating stratified Rossby waves.more » The final, steady state limit for this spin-up phase is identical to that found previously for the uniform depth cylinder, but is reached somewhat more rapidly on a time scale of order E{sup −1/2}Ω{sup −1}/log (α/E{sup 1/2}) (compared to E{sup −1/2}Ω{sup −1} for the uniform-depth cylinder), where Ω is the rotation rate and E the Ekman number. Experiments were performed for Burger numbers, S, between 0.4 and 16, and showed that for S≳O(1), the Rossby modes are severely damped, and it is only at small S, and during the early stages, that the presence of these wave modes was evident. These observations are supported by the theory, which shows the damping factors increase with S and are numerically large for S≳O(1)« less

  6. Diamond Thin-Film Thermionic Generator

    NASA Astrophysics Data System (ADS)

    Clewell, J. M.; Ordonez, C. A.; Perez, J. M.

    1997-03-01

    Since the eighteen-hundreds scientists have sought to develop the highest thermal efficiency in heat engines such as thermionic generators. Modern research in the emerging diamond film industry has indicated the work functions of diamond thin-films can be much less than one electron volt, compelling fresh investigation into their capacity as thermionic generators and inviting new methodology for determining that efficiency. Our objective is to predict the efficiency of a low-work-function, degenerate semiconductor (diamond film) thermionic generator operated as a heat engine between two constant-temperature thermal reservoirs. Our presentation will focus on a theoretical model which predicts the efficiency of the system by employing a Monte Carlo computational technique from which we report results for the thermal efficiency and the thermionic current densities of diamond thin-films.

  7. Corrections of stratified tropospheric delays in SAR interferometry: Validation with global atmospheric models

    NASA Astrophysics Data System (ADS)

    Doin, Marie-Pierre; Lasserre, Cécile; Peltzer, Gilles; Cavalié, Olivier; Doubre, Cécile

    2010-05-01

    The main limiting factor on the accuracy of Interferometric SAR measurements (InSAR) comes from phase propagation delays through the troposphere. The delay can be divided into a stratified component, which correlates with the topography and often dominates the tropospheric signal, and a turbulent component. We use Global Atmospheric Models (GAM) to estimate the stratified phase delay and delay-elevation ratio at epochs of SAR acquisitions, and compare them to observed phase delay derived from SAR interferograms. Three test areas are selected with different geographic and climatic environments and with large SAR archive available. The Lake Mead, Nevada, USA is covered by 79 ERS1/2 and ENVISAT acquisitions, the Haiyuan Fault area, Gansu, China, by 24 ERS1/2 acquisitions, and the Afar region, Republic of Djibouti, by 91 Radarsat acquisitions. The hydrostatic and wet stratified delays are computed from GAM as a function of atmospheric pressure P, temperature T, and water vapor partial pressure e vertical profiles. The hydrostatic delay, which depends on ratio P/T, varies significantly at low elevation and cannot be neglected. The wet component of the delay depends mostly on the near surface specific humidity. GAM predicted delay-elevation ratios are in good agreement with the ratios derived from InSAR data away from deforming zones. Both estimations of the delay-elevation ratio can thus be used to perform a first order correction of the observed interferometric phase to retrieve a ground motion signal of low amplitude. We also demonstrate that aliasing of daily and seasonal variations in the stratified delay due to uneven sampling of SAR data significantly bias InSAR data stacks or time series produced after temporal smoothing. In all three test cases, the InSAR data stacks or smoothed time series present a residual stratified delay of the order of the expected deformation signal. In all cases, correcting interferograms from the stratified delay removes all these

  8. Corrections of stratified tropospheric delays in SAR interferometry: Validation with global atmospheric models

    NASA Astrophysics Data System (ADS)

    Doin, M.-P.; Lasserre, C.; Peltzer, G.; Cavalié, O.; Doubre, C.

    2009-09-01

    The main limiting factor on the accuracy of Interferometric SAR measurements (InSAR) comes from phase propagation delays through the troposphere. The delay can be divided into a stratified component, which correlates with the topography and often dominates the tropospheric signal, and a turbulent component. We use Global Atmospheric Models (GAM) to estimate the stratified phase delay and delay-elevation ratio at epochs of SAR acquisitions, and compare them to observed phase delay derived from SAR interferograms. Three test areas are selected with different geographic and climatic environments and with large SAR archive available. The Lake Mead, Nevada, USA is covered by 79 ERS1/2 and ENVISAT acquisitions, the Haiyuan Fault area, Gansu, China, by 24 ERS1/2 acquisitions, and the Afar region, Republic of Djibouti, by 91 Radarsat acquisitions. The hydrostatic and wet stratified delays are computed from GAM as a function of atmospheric pressure P, temperature T, and water vapor partial pressure e vertical profiles. The hydrostatic delay, which depends on ratio P/ T, varies significantly at low elevation and cannot be neglected. The wet component of the delay depends mostly on the near surface specific humidity. GAM predicted delay-elevation ratios are in good agreement with the ratios derived from InSAR data away from deforming zones. Both estimations of the delay-elevation ratio can thus be used to perform a first order correction of the observed interferometric phase to retrieve a ground motion signal of low amplitude. We also demonstrate that aliasing of daily and seasonal variations in the stratified delay due to uneven sampling of SAR data significantly bias InSAR data stacks or time series produced after temporal smoothing. In all three test cases, the InSAR data stacks or smoothed time series present a residual stratified delay of the order of the expected deformation signal. In all cases, correcting interferograms from the stratified delay removes all these

  9. New Numerical Approaches for Modeling Thermochemical Convection in a Compositionally Stratified Fluid

    NASA Astrophysics Data System (ADS)

    Puckett, E. G.; Turcotte, D. L.; He, Y.; Lokavarapu, H. V.; Robey, J.; Kellogg, L. H.

    2017-12-01

    Geochemical observations of mantle-derived rocks favor a nearly homogeneous upper mantle, the source of mid-ocean ridge basalts (MORB), and heterogeneous lower mantle regions.Plumes that generate ocean island basalts are thought to sample the lower mantle regions and exhibit more heterogeneity than MORB.These regions have been associated with lower mantle structures known as large low shear velocity provinces below Africa and the South Pacific.The isolation of these regions is attributed to compositional differences and density stratification that, consequently, have been the subject of computational and laboratory modeling designed to determine the parameter regime in which layering is stable and understanding how layering evolves.Mathematical models of persistent compositional interfaces in the Earth's mantle may be inherently unstable, at least in some regions of the parameter space relevant to the mantle.Computing approximations to solutions of such problems presents severe challenges, even to state-of-the-art numerical methods.Some numerical algorithms for modeling the interface between distinct compositions smear the interface at the boundary between compositions, such as methods that add numerical diffusion or `artificial viscosity' in order to stabilize the algorithm. We present two new algorithms for maintaining high-resolution and sharp computational boundaries in computations of these types of problems: a discontinuous Galerkin method with a bound preserving limiter and a Volume-of-Fluid interface tracking algorithm.We compare these new methods with two approaches widely used for modeling the advection of two distinct thermally driven compositional fields in mantle convection computations: a high-order accurate finite element advection algorithm with entropy viscosity and a particle method.We compare the performance of these four algorithms on three problems, including computing an approximation to the solution of an initially compositionally stratified

  10. An x-ray backlit Talbot-Lau deflectometer for high-energy-density electron density diagnostics.

    PubMed

    Valdivia, M P; Stutman, D; Stoeckl, C; Theobald, W; Mileham, C; Begishev, I A; Bromage, J; Regan, S P

    2016-02-01

    X-ray phase-contrast techniques can measure electron density gradients in high-energy-density plasmas through refraction induced phase shifts. An 8 keV Talbot-Lau interferometer consisting of free standing ultrathin gratings was deployed at an ultra-short, high-intensity laser system using K-shell emission from a 1-30 J, 8 ps laser pulse focused on thin Cu foil targets. Grating survival was demonstrated for 30 J, 8 ps laser pulses. The first x-ray deflectometry images obtained under laser backlighting showed up to 25% image contrast and thus enabled detection of electron areal density gradients with a maximum value of 8.1 ± 0.5 × 10(23) cm(-3) in a low-Z millimeter sized sample. An electron density profile was obtained from refraction measurements with an error of <8%. The 50 ± 15 μm spatial resolution achieved across the full field of view was found to be limited by the x-ray source-size, similar to conventional radiography.

  11. How Thin Is Foil? Applying Density to Find the Thickness of Aluminum Foil

    ERIC Educational Resources Information Center

    Concannon, James P.

    2011-01-01

    In this activity, I show how high school students apply their knowledge of density to solve an unknown variable, such as thickness. Students leave this activity with a better understanding of density, the knowledge that density is a characteristic property of a given substance, and the ways density can be measured. (Contains 4 figures and 1 table.)

  12. Direct Numerical Simulation of a Weakly Stratified Turbulent Wake

    NASA Technical Reports Server (NTRS)

    Redford, J. A.; Lund, T. S.; Coleman, Gary N.

    2014-01-01

    Direct numerical simulation (DNS) is used to investigate a time-dependent turbulent wake evolving in a stably stratified background. A large initial Froude number is chosen to allow the wake to become fully turbulent and axisymmetric before stratification affects the spreading rate of the mean defect. The uncertainty introduced by the finite sample size associated with gathering statistics from a simulation of a time-dependent flow is reduced, compared to earlier simulations of this flow. The DNS reveals the buoyancy-induced changes to the turbulence structure, as well as to the mean-defect history and the terms in the mean-momentum and turbulence-kinetic-energy budgets, that characterize the various states of this flow - namely the three-dimensional (essentially unstratified), non-equilibrium (or 'wake-collapse') and quasi-two-dimensional (or 'two-component') regimes observed elsewhere for wakes embedded in both weakly and strongly stratified backgrounds. The wake-collapse regime is not accompanied by transfer (or 'reconversion') of the potential energy of the turbulence to the kinetic energy of the turbulence, implying that this is not an essential feature of stratified-wake dynamics. The dependence upon Reynolds number of the duration of the wake-collapse period is demonstrated, and the effect of the details of the initial/near-field conditions of the wake on its subsequent development is examined.

  13. Stratified Simulations of Collisionless Accretion Disks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hirabayashi, Kota; Hoshino, Masahiro, E-mail: hirabayashi-k@eps.s.u-tokyo.ac.jp

    This paper presents a series of stratified-shearing-box simulations of collisionless accretion disks in the recently developed framework of kinetic magnetohydrodynamics (MHD), which can handle finite non-gyrotropy of a pressure tensor. Although a fully kinetic simulation predicted a more efficient angular-momentum transport in collisionless disks than in the standard MHD regime, the enhanced transport has not been observed in past kinetic-MHD approaches to gyrotropic pressure anisotropy. For the purpose of investigating this missing link between the fully kinetic and MHD treatments, this paper explores the role of non-gyrotropic pressure and makes the first attempt to incorporate certain collisionless effects into disk-scale,more » stratified disk simulations. When the timescale of gyrotropization was longer than, or comparable to, the disk-rotation frequency of the orbit, we found that the finite non-gyrotropy selectively remaining in the vicinity of current sheets contributes to suppressing magnetic reconnection in the shearing-box system. This leads to increases both in the saturated amplitude of the MHD turbulence driven by magnetorotational instabilities and in the resultant efficiency of angular-momentum transport. Our results seem to favor the fast advection of magnetic fields toward the rotation axis of a central object, which is required to launch an ultra-relativistic jet from a black hole accretion system in, for example, a magnetically arrested disk state.« less

  14. Stratified Simulations of Collisionless Accretion Disks

    NASA Astrophysics Data System (ADS)

    Hirabayashi, Kota; Hoshino, Masahiro

    2017-06-01

    This paper presents a series of stratified-shearing-box simulations of collisionless accretion disks in the recently developed framework of kinetic magnetohydrodynamics (MHD), which can handle finite non-gyrotropy of a pressure tensor. Although a fully kinetic simulation predicted a more efficient angular-momentum transport in collisionless disks than in the standard MHD regime, the enhanced transport has not been observed in past kinetic-MHD approaches to gyrotropic pressure anisotropy. For the purpose of investigating this missing link between the fully kinetic and MHD treatments, this paper explores the role of non-gyrotropic pressure and makes the first attempt to incorporate certain collisionless effects into disk-scale, stratified disk simulations. When the timescale of gyrotropization was longer than, or comparable to, the disk-rotation frequency of the orbit, we found that the finite non-gyrotropy selectively remaining in the vicinity of current sheets contributes to suppressing magnetic reconnection in the shearing-box system. This leads to increases both in the saturated amplitude of the MHD turbulence driven by magnetorotational instabilities and in the resultant efficiency of angular-momentum transport. Our results seem to favor the fast advection of magnetic fields toward the rotation axis of a central object, which is required to launch an ultra-relativistic jet from a black hole accretion system in, for example, a magnetically arrested disk state.

  15. Formation of Spiral-Arm Spurs and Bound Clouds in Vertically Stratified Galactic Gas Disks

    NASA Astrophysics Data System (ADS)

    Kim, Woong-Tae; Ostriker, Eve C.

    2006-07-01

    We investigate the growth of spiral-arm substructure in vertically stratified, self-gravitating, galactic gas disks, using local numerical MHD simulations. Our new models extend our previous two-dimensional studies, which showed that a magnetized spiral shock in a thin disk can undergo magneto-Jeans instability (MJI), resulting in regularly spaced interarm spur structures and massive gravitationally bound fragments. Similar spur (or ``feather'') features have recently been seen in high-resolution observations of several galaxies. Here we consider two sets of numerical models: two-dimensional simulations that use a ``thick-disk'' gravitational kernel, and three-dimensional simulations with explicit vertical stratification. Both models adopt an isothermal equation of state with cs=7 km s-1. When disks are sufficiently magnetized and self-gravitating, the result in both sorts of models is the growth of spiral-arm substructure similar to that in our previous razor-thin models. Reduced self-gravity due to nonzero disk thickness increases the spur spacing to ~10 times the Jeans length at the arm peak. Bound clouds that form from spur fragmentation have masses ~(1-3)×107 Msolar each, similar to the largest observed GMCs. The mass-to-flux ratios and specific angular momenta of the bound condensations are lower than large-scale galactic values, as is true for observed GMCs. We find that unmagnetized or weakly magnetized two-dimensional models are unstable to the ``wiggle instability'' previously identified by Wada & Koda. However, our fully three-dimensional models do not show this effect. Nonsteady motions and strong vertical shear prevent coherent vortical structures from forming, evidently suppressing the wiggle instability. We also find no clear traces of Parker instability in the nonlinear spiral arm substructures that emerge, although conceivably Parker modes may help seed the MJI at early stages since azimuthal wavelengths are similar.

  16. Radiative Performance of Rare Earth Garnet Thin Film Selective Emitters

    NASA Technical Reports Server (NTRS)

    Lowe, Roland A.; Chubb, Donald L.; Good, Brian S.

    1994-01-01

    In this paper we present the first emitter efficiency results for the thin film 40 percent Er-1.5 percent Ho YAG (Yttrium Aluminum Garnet, Y3Al5O12) and 25 percent Ho YAG selective emitter at 1500 K with a platinum substrate. Spectral emittance and emissive power measurements were made (1.2 less than lambda less than 3.2 microns). Emitter efficiency and power density are significantly improved with the addition of multiple rare earth dopants. Predicted efficiency results are presented for an optimized (equal power density in the Er, (4)I(sub 15/2)-(4)I(sub 13/2) at 1.5 microns, and Ho, (5)I(sub 7)-(5)I(sub 8) at 2.0 micron emission bands) Er-Ho YAG thin film selective emitter.

  17. Quantifying factors for the success of stratified medicine.

    PubMed

    Trusheim, Mark R; Burgess, Breon; Hu, Sean Xinghua; Long, Theresa; Averbuch, Steven D; Flynn, Aiden A; Lieftucht, Alfons; Mazumder, Abhijit; Milloy, Judy; Shaw, Peter M; Swank, David; Wang, Jian; Berndt, Ernst R; Goodsaid, Federico; Palmer, Michael C

    2011-10-31

    Co-developing a drug with a diagnostic to create a stratified medicine - a therapy that is targeted to a specific patient population on the basis of a clinical characteristic such as a biomarker that predicts treatment response - presents challenges for product developers, regulators, payers and physicians. With the aim of developing a shared framework and tools for addressing these challenges, here we present an analysis using data from case studies in oncology and Alzheimer's disease, coupled with integrated computational modelling of clinical outcomes and developer economic value, to quantify the effects of decisions related to key issues such as the design of clinical trials. This illustrates how such analyses can aid the coordination of diagnostic and drug development, and the selection of optimal development and commercialization strategies. It also illustrates the impact of the interplay of these factors on the economic feasibility of stratified medicine, which has important implications for public policy makers.

  18. Damping of Loop Oscillations in the Stratified Corona

    NASA Astrophysics Data System (ADS)

    Erdélyi, R.; Mendoza-Briceño, C. A.

    2004-01-01

    SOHO and TRACE observations have confirmed the theoretical predictions by Roberts et al. (1984) almost two solar cycles ago, namely, coronal loops may oscillate. These oscillations, and in particular their damping, are of fundamental importance for solar physics since they can provide diagnostics of the plasma medium. In the present paper we apply this concept to hot and stratified and nonisothermal coronal loops observed by e.g. TRACE or SUMER on-board SOHO. We investigate the effect of stratification on (i) the damping of standing waves and (ii) on propagating coherent disturbances (i.e. basically slow MHD waves). The effect of stratification results, if we may say so, in an approximate 15-20% of reduction in damping time for the parameter regime that characterise hot SUMER or TRACE loops. This is a good news as theoretical speculations in the literature usually suffer from an over-estimate of the damping of oscillations caused by e.g. thermal conduction or viscosity in the non-stratified atmosphere approach.

  19. Dyadic Green's function of an eccentrically stratified sphere.

    PubMed

    Moneda, Angela P; Chrissoulidis, Dimitrios P

    2014-03-01

    The electric dyadic Green's function (dGf) of an eccentrically stratified sphere is built by use of the superposition principle, dyadic algebra, and the addition theorem of vector spherical harmonics. The end result of the analytical formulation is a set of linear equations for the unknown vector wave amplitudes of the dGf. The unknowns are calculated by truncation of the infinite sums and matrix inversion. The theory is exact, as no simplifying assumptions are required in any one of the analytical steps leading to the dGf, and it is general in the sense that any number, position, size, and electrical properties can be considered for the layers of the sphere. The point source can be placed outside of or in any lossless part of the sphere. Energy conservation, reciprocity, and other checks verify that the dGf is correct. A numerical application is made to a stratified sphere made of gold and glass, which operates as a lens.

  20. Characterising the structure of quasi-periodic mixing events in stratified turbulent Taylor-Couette flow

    NASA Astrophysics Data System (ADS)

    Singh, Kanwar Nain; Partridge, Jamie; Dalziel, Stuart; Caulfield, C. P.; Mathematical Underpinnings of Stratified Turbulence (MUST) Team

    2017-11-01

    We present results from experiments conducted to study mixing in a two-layer stably-stratified turbulent Taylor-Couette flow. It has previously been observed that there is a quasi-periodic mixing event located at the interface separating the layers. We observe, through conductivity probe measurements, that the power of the mixing event in the frequency spectrum of the density data at the interface is higher when measured near the inner cylinder than in the middle of the annular gap. This is consistent with Oglethorpe's (2014) hypothesis that the mixing structure is triggered near the inner cylinder, and then advects and decays or disperses radially. We also observe that at Ri =g/'Ro (RiΩi)2 7 , where Ri, Ro are the inner and outer cylinder radius, respectively, g ' the reduced gravity characterising the density jump between the layers and Ωi is the rotation rate of the inner cylinder, the power drops significantly at all radial locations, which is reminiscent of the onset of the enhanced flux regime as observed by Oglethorpe et al. (2013). We perform experiments to characterise the spatial extent and dynamics of this mixing structure using particle image velocimetry (PIV) giving further insights into this important mixing process. EPSRC programme Grant EP/K034529/1 & SGPC-CCT Scholarship.

  1. A Matter of Classes: Stratifying Health Care Populations to Produce Better Estimates of Inpatient Costs

    PubMed Central

    Rein, David B

    2005-01-01

    Objective To stratify traditional risk-adjustment models by health severity classes in a way that is empirically based, is accessible to policy makers, and improves predictions of inpatient costs. Data Sources Secondary data created from the administrative claims from all 829,356 children aged 21 years and under enrolled in Georgia Medicaid in 1999. Study Design A finite mixture model was used to assign child Medicaid patients to health severity classes. These class assignments were then used to stratify both portions of a traditional two-part risk-adjustment model predicting inpatient Medicaid expenditures. Traditional model results were compared with the stratified model using actuarial statistics. Principal Findings The finite mixture model identified four classes of children: a majority healthy class and three illness classes with increasing levels of severity. Stratifying the traditional two-part risk-adjustment model by health severity classes improved its R2 from 0.17 to 0.25. The majority of additional predictive power resulted from stratifying the second part of the two-part model. Further, the preference for the stratified model was unaffected by months of patient enrollment time. Conclusions Stratifying health care populations based on measures of health severity is a powerful method to achieve more accurate cost predictions. Insurers who ignore the predictive advances of sample stratification in setting risk-adjusted premiums may create strong financial incentives for adverse selection. Finite mixture models provide an empirically based, replicable methodology for stratification that should be accessible to most health care financial managers. PMID:16033501

  2. Growth mechanism and microstructure of low defect density InN (0001) In-face thin films on Si (111) substrates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kehagias, Th.; Dimitrakopulos, G. P.; Koukoula, T.

    2013-10-28

    Transmission electron microscopy has been employed to analyze the direct nucleation and growth, by plasma-assisted molecular beam epitaxy, of high quality InN (0001) In-face thin films on (111) Si substrates. Critical steps of the heteroepitaxial growth process are InN nucleation at low substrate temperature under excessively high N-flux conditions and subsequent growth of the main InN epilayer at the optimum conditions, namely, substrate temperature 400–450 °C and In/N flux ratio close to 1. InN nucleation occurs in the form of a very high density of three dimensional (3D) islands, which coalesce very fast into a low surface roughness InN film.more » The reduced reactivity of Si at low temperature and its fast coverage by InN limit the amount of unintentional Si nitridation by the excessively high nitrogen flux and good bonding/adhesion of the InN film directly on the Si substrate is achieved. The subsequent overgrowth of the main InN epilayer, in a layer-by-layer growth mode that enhances the lateral growth of InN, reduces significantly the crystal mosaicity and the density of threading dislocations is about an order of magnitude less compared to InN films grown using an AlN/GaN intermediate nucleation/buffer layer on Si. The InN films exhibit the In-face polarity and very smooth atomically stepped surfaces.« less

  3. Thirty-five-year growth of thinned and unthinned ponderosa pine in the Methow Valley of northern Washington.

    Treesearch

    P.H. Cochran; James W. Barrett

    1998-01-01

    It is commonly expected that self-thinning will maintain small-diameter stands at near-normal densities and allow dominant trees to grow reasonably well. Such self-thinning did not occur in the unthinned plots in a thinning study in the Methow Valley of northern Washington, even though there was some suppression-caused mortality. A shift from suppression-caused...

  4. Zirconium doped TiO{sub 2} thin films: A promising dielectric layer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kumar, Arvind; Mondal, Sandip, E-mail: sandipmondal@physics.iisc.ernet.in; Rao, K. S. R. Koteswara

    2016-05-06

    In the present work, we have fabricated the zirconium doped TiO{sub 2} thin (ZTO) films from a facile spin – coating method. The addition of Zirconium in TiO{sub 2} offers conduction band offset to Si and consequently decreased the leakage current density by approximately two orders as compared to pure TiO{sub 2} thin (TO) films. The ZTO thin film shows a high dielectric constant 27 with a very low leakage current density ∼10{sup −8} A/cm{sup 2}. The oxide capacitate, flat band voltage and change in flat band voltage are 172 pF, -1.19 V and 54 mV. The AFM analysis confirmed the compactmore » and pore free flat surface. The RMS surface roughness is found to be 1.5 Å. The ellipsometry analysis also verified the fact with a high refractive index 2.21.« less

  5. Exchange Stiffness in Thin-Film Cobalt Alloys

    NASA Astrophysics Data System (ADS)

    Eyrich, Charles

    The exchange stiffness, Aex, is one of the key parameters controlling magnetization reversal in magnetic materials but is very difficult to measure, especially in thin films. We developed a new technique for measuring the exchange stiffness of a magnetic material based on the formation of a spin spiral within two antiferromagnetically coupled ferromagnetic films [1]. Using this method, I was able to measure the exchange stiffness of thin film Co alloyed with Cr, Fe, Ni, Pd, Pt and Ru. The results of this work showed that the rate at which a substituent element reduces the exchange stiffness is not directly related to its effect on the magnetization of the alloy. These measured trends have been understood by combining measurements of element specific magnetic moments obtained using X-ray magnetic circular dichroism (XMCD) and material specific modeling based on density functional theory (DFT) within the local density approximation (LDA). The experimental results also hint at significant reduction of the exchange stiffness at the interface that can account for the difference between our results and those obtained on bulk materials.

  6. Penetrative cellular convection in a stratified atmosphere. [of stars

    NASA Technical Reports Server (NTRS)

    Massaguer, J. M.; Latour, J.; Toomre, J.; Zahn, J.-P.

    1984-01-01

    In the present investigation of penetrative convection within a simple compressible model, the middle one of the three layers of differing stratification prior to the onset of convection is a convectively unstable polytrope bounded above and below by two stably stratified polytropes. One- and two-mode steady solutions with hexagonal planforms have been studied for Rayleigh numbers up to aobut 1000 times critical, and for a range of Prandtl numbers, horizontal wavenumbers, and stratifications. These indicate that the penetration into the lower stable layer by downward plumes is substantially larger in a stratified medium than in a Boussinesq fluid, and produces an extended region of adiabatic stratification. The strong asymmetry between upward and downward penetration in compressible media has major implications for the mixing of stable regions above and below stellar convection zones.

  7. Black thin film silicon

    NASA Astrophysics Data System (ADS)

    Koynov, Svetoslav; Brandt, Martin S.; Stutzmann, Martin

    2011-08-01

    "Black etching" has been proposed previously as a method for the nanoscale texturing of silicon surfaces, which results in an almost complete suppression of reflectivity in the spectral range of absorption relevant for photovoltaics. The method modifies the topmost 150 to 300 nm of the material and thus also is applicable for thin films of silicon. The present work is focused on the optical effects induced by the black-etching treatment on hydrogenated amorphous and microcrystalline silicon thin films, in particular with respect to their application in solar cells. In addition to a strong reduction of the reflectivity, efficient light trapping within the modified thin films is found. The enhancement of the optical absorption due to the light trapping is investigated via photometric measurements and photothermal deflection spectroscopy. The correlation of the texture morphology (characterized via atomic force microscopy) with the optical effects is discussed in terms of an effective medium with gradually varying optical density and in the framework of the theory of statistical light trapping. Photoconductivity spectra directly show that the light trapping causes a significant prolongation of the light path within the black silicon films by up to 15 μm for ˜1 μm thick films, leading to a significant increase of the absorption in the red.

  8. Ice-sheet thinning and acceleration at Camp Century, Greenlan

    NASA Astrophysics Data System (ADS)

    Colgan, W. T.

    2017-12-01

    Camp Century, Greenland (77.18 °N, 61.12 °W, 1900 m), is located approximately 150 km inland from the ice-sheet margin in Northwest Greenland. In-situ and remotely-sensed measurements of ice-sheet elevation at Camp Century exhibit a thinning trend between 1964 and the present. A comparison of 1966 and 2017 firn density profiles indicates that a portion of this ice-sheet thinning is attributable to increased firn compaction rate. In-situ measurements of increasing ice surface velocity over the 1977-2017 period indicate that enhanced horizontal divergence of ice flux is also contributing to ice dynamic thinning at Camp Century. This apparent ice dynamic thinning could potentially result from a migrating local flow divide or decreasing effective ice viscosity. In a shorter-term context, observations of decadal-scale ice-sheet thinning and acceleration at Camp Century highlights underappreciated transience in inland ice form and flow during the satellite era. In a longer-term context, these multi-decadal observations contrast with inferences of millennial-scale ice-sheet thickening and deceleration at Camp Century.

  9. Forest inventory and stratified estimation: a cautionary note

    Treesearch

    John Coulston

    2008-01-01

    The Forest Inventory and Analysis (FIA) Program uses stratified estimation techniques to produce estimates of forest attributes. Stratification must be unbiased and stratification procedures should be examined to identify any potential bias. This note explains simple techniques for identifying potential bias, discriminating between sample bias and stratification bias,...

  10. The clinical benefits, ethics, and economics of stratified medicine and companion diagnostics.

    PubMed

    Trusheim, Mark R; Berndt, Ernst R

    2015-12-01

    The stratified medicine companion diagnostic (CDx) cut-off decision integrates scientific, clinical, ethical, and commercial considerations, and determines its value to developers, providers, payers, and patients. Competition already sharpens these issues in oncology, and might soon do the same for emerging stratified medicines in autoimmune, cardiovascular, neurodegenerative, respiratory, and other conditions. Of 53 oncology targets with a launched therapeutic, 44 have competing therapeutics. Only 12 of 141 Phase III candidates addressing new targets face no competition. CDx choices might alter competitive positions and reimbursement. Under current diagnostic incentives, payers see novel stratified medicines that improve public health and increase costs, but do not observe companion diagnostics for legacy treatments that would reduce costs. It would be in the interests of payers to rediscover their heritage of direct investment in diagnostic development. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. Stratified Volume Diffractive Optical Elements as Low-Mass Coherent Lidar Scanners

    NASA Technical Reports Server (NTRS)

    Chambers, Diana M.; Nordin, Gregory P.; Kavaya, Michael J.

    1999-01-01

    Transmissive scanning elements for coherent laser radar systems are typically optical wedges, or prisms, which deflect the lidar beam at a specified angle and are then rotated about the instrument optical axis to produce a scan pattern. The wedge is placed in the lidar optical system subsequent to a beam-expanding telescope, implying that it has the largest diameter of any element in the system. The combination of the wedge diameter and asymmetric profile result in the element having very large mass and, consequently, relatively large power consumption required for scanning. These two parameters, mass and power consumption, are among the instrument requirements which need to be minimized when designing a lidar for a space-borne platform. Reducing the scanner contributions in these areas will have a significant effect on the overall instrument specifications, Replacing the optical wedge with a diffraction grating on the surface of a thin substrate is a straight forward approach with potential to reduce the mass of the scanning element significantly. For example, the optical wedge that will be used for the SPAce Readiness Coherent Lidar Experiment (SPARCLE) is approximately 25 cm in diameter and is made from silicon with a wedge angle designed for 30 degree deflection of a beam operating at approx. 2 micrometer wavelength. The mass of this element could be reduced by a factor of four by instead using a fused silica substrate, 1 cm thick, with a grating fabricated on one of the surfaces. For a grating to deflect a beam with a 2 micrometer wavelength by 30 degrees, a period of approximately 4 micrometers is required. This is small enough that fabrication of appropriate high efficiency blazed or multi-phase level diffractive optical gratings is prohibitively difficult. Moreover, bulk or stratified volume holographic approaches appear impractical due to materials limitations at 2 micrometers and the need to maintain adequate wavefront quality. In order to avoid the

  12. Correlations between critical current density, j{sub c}, critical temperature, T{sub c}, and structural quality of Y{sub 1}B{sub 2}Cu{sub 3}O{sub 7-x} thin superconducting films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chrzanowski, J.; Xing, W.B.; Atlan, D.

    1994-12-31

    Correlations between critical current density (j{sub c}) critical temperature (T{sub c}) and the density of edge dislocations and nonuniform strain have been observed in YBCO thin films deposited by pulsed laser ablation on (001) LaAlO{sub 3} single crystals. Distinct maxima in j{sub c} as a function of the linewidths of the (00{ell}) Bragg reflections and as a function of the mosaic spread have been found in the epitaxial films. These maxima in j{sub c} indicate that the magnetic flux lines, in films of structural quality approaching that of single crystals, are insufficiently pinned which results in a decreased critical currentmore » density. T{sub c} increased monotonically with improving crystalline quality and approached a value characteristic of a pure single crystal. A strong correlation between j{sub c} and the density of edge dislocations N{sub D} was found. At the maximum of the critical current density the density of edge dislocations was estimated to be N{sub D}{approximately}1-2 x 10{sup 9}/cm{sup 2}.« less

  13. Statistics and Machine Learning based Outlier Detection Techniques for Exoplanets

    NASA Astrophysics Data System (ADS)

    Goel, Amit; Montgomery, Michele

    2015-08-01

    Architectures of planetary systems are observable snapshots in time that can indicate formation and dynamic evolution of planets. The observable key parameters that we consider are planetary mass and orbital period. If planet masses are significantly less than their host star masses, then Keplerian Motion is defined as P^2 = a^3 where P is the orbital period in units of years and a is the orbital period in units of Astronomical Units (AU). Keplerian motion works on small scales such as the size of the Solar System but not on large scales such as the size of the Milky Way Galaxy. In this work, for confirmed exoplanets of known stellar mass, planetary mass, orbital period, and stellar age, we analyze Keplerian motion of systems based on stellar age to seek if Keplerian motion has an age dependency and to identify outliers. For detecting outliers, we apply several techniques based on statistical and machine learning methods such as probabilistic, linear, and proximity based models. In probabilistic and statistical models of outliers, the parameters of a closed form probability distributions are learned in order to detect the outliers. Linear models use regression analysis based techniques for detecting outliers. Proximity based models use distance based algorithms such as k-nearest neighbour, clustering algorithms such as k-means, or density based algorithms such as kernel density estimation. In this work, we will use unsupervised learning algorithms with only the proximity based models. In addition, we explore the relative strengths and weaknesses of the various techniques by validating the outliers. The validation criteria for the outliers is if the ratio of planetary mass to stellar mass is less than 0.001. In this work, we present our statistical analysis of the outliers thus detected.

  14. TURBULENCE AND STEADY FLOWS IN THREE-DIMENSIONAL GLOBAL STRATIFIED MAGNETOHYDRODYNAMIC SIMULATIONS OF ACCRETION DISKS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Flock, M.; Dzyurkevich, N.; Klahr, H.

    2011-07-10

    We present full 2{pi} global three-dimensional stratified magnetohydrodynamic (MHD) simulations of accretion disks. We interpret our results in the context of protoplanetary disks. We investigate the turbulence driven by the magnetorotational instability (MRI) using the PLUTO Godunov code in spherical coordinates with the accurate and robust HLLD Riemann solver. We follow the turbulence for more than 1500 orbits at the innermost radius of the domain to measure the overall strength of turbulent motions and the detailed accretion flow pattern. We find that regions within two scale heights of the midplane have a turbulent Mach number of about 0.1 and amore » magnetic pressure two to three orders of magnitude less than the gas pressure, while in those outside three scale heights the magnetic pressure equals or exceeds the gas pressure and the turbulence is transonic, leading to large density fluctuations. The strongest large-scale density disturbances are spiral density waves, and the strongest of these waves has m = 5. No clear meridional circulation appears in the calculations because fluctuating radial pressure gradients lead to changes in the orbital frequency, comparable in importance to the stress gradients that drive the meridional flows in viscous models. The net mass flow rate is well reproduced by a viscous model using the mean stress distribution taken from the MHD calculation. The strength of the mean turbulent magnetic field is inversely proportional to the radius, so the fields are approximately force-free on the largest scales. Consequently, the accretion stress falls off as the inverse square of the radius.« less

  15. Interactions between gravity waves and cold air outflows in a stably stratified uniform flow

    NASA Technical Reports Server (NTRS)

    Lin, Yuh-Lang; Wang, Ting-An; Weglarz, Ronald P.

    1993-01-01

    Interactions between gravity waves and cold air outflows in a stably stratified uniform flow forced by various combinations of prescribed heat sinks and sources are studied using a hydrostatic two-dimensional nonlinear numerical model. The formation time for the development of a stagnation point or reversed flow at the surface is not always directly proportional to the Froude number when wave reflections exist from upper levels. A density current is able to form by the wave-otuflow interaction, even though the Froude number is greater than a critical value. This is the result of the wave-outflow interaction shifting the flow response to a different location in the characteristic parameter space. A density current is able to form or be destroyed due to the wave-outflow interaction between a traveling gravity wave and cold air outflow. This is proved by performing experiments with a steady-state heat sink and an additional transient heat source. In a quiescent fluid, a region of cold air, convergence, and upward motion is formed after the collision between two outflows produced by two prescribed heat sinks. After the collision, the individual cold air outflows lose their own identity and merge into a single, stationary, cold air outflow region. Gravity waves tend to suppress this new stationary cold air outflow after the collision. The region of upward motion associated with the collision is confined to a very shallow layer. In a moving airstream, a density current produced by a heat sink may be suppressed or enhanced nonlinearly by an adjacent heat sink due to the wave-outflow interaction.

  16. Thin-film Rechargeable Lithium Batteries for Implantable Devices

    DOE R&D Accomplishments Database

    Bates, J. B.; Dudney, N. J.

    1997-05-01

    Thin films of LiCoO{sub 2} have been synthesized in which the strongest x ray reflection is either weak or missing, indicating a high degree of preferred orientation. Thin film solid state batteries with these textured cathode films can deliver practical capacities at high current densities. For example, for one of the cells 70% of the maximum capacity between 4.2 V and 3 V ({approximately}0.2 mAh/cm{sup 2}) was delivered at a current of 2 mA/cm{sup 2}. When cycled at rates of 0.1 mA/cm{sup 2}, the capacity loss was 0.001%/cycle or less. The reliability and performance of Li LiCoO{sub 2} thin film batteries make them attractive for application in implantable devices such as neural stimulators, pacemakers, and defibrillators.

  17. Thin-film rechargeable lithium batteries for implantable devices

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bates, J.b.; Dudney, N.J.

    1997-05-01

    Thin films of LiCoO{sub 2} have been synthesized in which the strongest x-ray reflection is either weak or missing, indicating a high degree of preferred orientation. Thin-film solid state batteries with these textured cathode films can deliver practical capacities at high current densities. For example, for one of the cells 70% of the maximum capacity between 4.2 V and 3 V ({approximately}0.2 mAh/cm{sup 2}) was delivered at a current of 2 mA/cm{sup 2}. When cycled at rates of 0.1 mA/cm{sup 2}, the capacity loss was 0.001 %/cycle or less. The reliability and performance of Li-LiCoO{sub 2} thin-film batteries make themmore » attractive for application in implantable devices such as neural stimulators, pacemakers, and defibrillators.« less

  18. Structure Study of Magnetic Thin Films for Voltage Controlled Spintronics by Scanning Transmission Electron Microscopy Experiment and Density Functional Theory Calculations

    NASA Astrophysics Data System (ADS)

    Sun, Congli

    We have studied magnetic thin films for voltage controlled magnetic tunnel junctions (MTJs) by advanced scanning transmission electron microscopy (STEM) and density functional theory (DFT) simulations. MTJs are the prototypical spintronic device and manipulation of magnetism by electrical means is among the most promising approaches to novel voltage-controlled spin electronics. The voltage controlled magnetic effect can be achieved across many different materials systems, all of which depend on high-quality thin films with minimum crystallographic defects. Cr2O3 is antiferromagnetic in bulk but ferromagnetic on the (0001) surface. Bulk Cr2O3 has two degenerate antiferromagnetic states with opposite (0001) surface spin polarization. As Cr2O3 is also magnetoelectric, the degenerate antiferromagnetic states can be lifted by manipulating the free-energy gain DeltaF = aEH. Therefore, the surface ferromagnetism can be controlled by applied electric field. We have observed vertical grain boundaries in Cr2O 3/Al2O3 systems that are related with a 60° in-plane rotation by diffraction contrast TEM image. STEM as a function of scattering angle points out a simultaneous ⅓[101¯0] basal plane shift. Local boundary electron energy loss spectroscopy (EELS) shows a pre-peak on the O K-edge, indicating a reduced bandgap along the boundary that provides potential breakdown paths in Cr2O3 thin films. B doping of Cr2O3 is known to increase the Neel temperature. B was found to form either BCr4 tetrahedra or BO 3 triangles in the Cr2O3 lattice, with sigma * and pi* bonds exhibiting different energy loss features. Modeling the experimental spectra as a linear combination of simulated B K edges reproduces the experimental pi* / sigma * ratios for 12 to 43 % of the B in the sample occupying BCr 4 sites. Simulated BCr4 fraction / total B as a function of oxygen partial pressures supports the EELS results and indicates further increase of Neel temperature can be achieved by optimizing

  19. Stratified reproduction, family planning care and the double edge of history.

    PubMed

    Harris, Lisa H; Wolfe, Taida

    2014-12-01

    There is a growing clinical consensus that Medicaid sterilization consent protections should be revisited because they impede desired care for many women. Here, we consider the broad social and ideological contexts for past sterilization abuses, beyond informed consent. Throughout the US history, the fertility and childbearing of poor women and women of color were not valued equally to those of affluent white women. This is evident in a range of practices and policies, including black women's treatment during slavery, removal of Native children to off-reservation boarding schools and coercive sterilizations of poor white women and women of color. Thus, reproductive experiences throughout the US history were stratified. This ideology of stratified reproduction persists today in social welfare programs, drug policy and programs promoting long-acting reversible contraception. At their core, sterilization abuses reflected an ideology of stratified reproduction, in which some women's fertility was devalued compared to other women's fertility. Revisiting Medicaid sterilization regulations must therefore put issues of race, ethnicity, class, power and resources - not just informed consent - at the center of analyses.

  20. Turbulence and mixing from optimal perturbations to a stratified shear layer

    NASA Astrophysics Data System (ADS)

    Kaminski, Alexis; Caulfield, C. P.; Taylor, John

    2014-11-01

    The stability and mixing of stratified shear layers is a canonical problem in fluid dynamics with relevance to flows in the ocean and atmosphere. The Miles-Howard theorem states that a necessary condition for normal-mode instability in parallel, inviscid, steady stratified shear flows is that the gradient Richardson number, Rig is less than 1/4 somewhere in the flow. However, substantial transient growth of non-normal modes may be possible at finite times even when Rig > 1 / 4 everywhere in the flow. We have calculated the ``optimal perturbations'' associated with maximum perturbation energy gain for a stably-stratified shear layer. These optimal perturbations are then used to initialize direct numerical simulations. For small but finite perturbation amplitudes, the optimal perturbations grow at the predicted linear rate initially, but then experience sufficient transient growth to become nonlinear and susceptible to secondary instabilities, which then break down into turbulence. Remarkably, this occurs even in flows for which Rig > 1 / 4 everywhere. We will describe the nonlinear evolution of the optimal perturbations and characterize the resulting turbulence and mixing.

  1. Super Nonlinear Electrodeposition-Diffusion-Controlled Thin-Film Selector.

    PubMed

    Ji, Xinglong; Song, Li; He, Wei; Huang, Kejie; Yan, Zhiyuan; Zhong, Shuai; Zhang, Yishu; Zhao, Rong

    2018-03-28

    Selector elements with high nonlinearity are an indispensable part in constructing high density, large-scale, 3D stackable emerging nonvolatile memory and neuromorphic network. Although significant efforts have been devoted to developing novel thin-film selectors, it remains a great challenge in achieving good switching performance in the selectors to satisfy the stringent electrical criteria of diverse memory elements. In this work, we utilized high-defect-density chalcogenide glass (Ge 2 Sb 2 Te 5 ) in conjunction with high mobility Ag element (Ag-GST) to achieve a super nonlinear selective switching. A novel electrodeposition-diffusion dynamic selector based on Ag-GST exhibits superior selecting performance including excellent nonlinearity (<5 mV/dev), ultra-low leakage (<10 fA), and bidirectional operation. With the solid microstructure evidence and dynamic analyses, we attributed the selective switching to the competition between the electrodeposition and diffusion of Ag atoms in the glassy GST matrix under electric field. A switching model is proposed, and the in-depth understanding of the selective switching mechanism offers an insight of switching dynamics for the electrodeposition-diffusion-controlled thin-film selector. This work opens a new direction of selector designs by combining high mobility elements and high-defect-density chalcogenide glasses, which can be extended to other materials with similar properties.

  2. MEMS-based thin-film fuel cells

    DOEpatents

    Jankowksi, Alan F.; Morse, Jeffrey D.

    2003-10-28

    A micro-electro-mechanical systems (MEMS) based thin-film fuel cells for electrical power applications. The MEMS-based fuel cell may be of a solid oxide type (SOFC), a solid polymer type (SPFC), or a proton exchange membrane type (PEMFC), and each fuel cell basically consists of an anode and a cathode separated by an electrolyte layer. Additionally catalyst layers can also separate the electrodes (cathode and anode) from the electrolyte. Gas manifolds are utilized to transport the fuel and oxidant to each cell and provide a path for exhaust gases. The electrical current generated from each cell is drawn away with an interconnect and support structure integrated with the gas manifold. The fuel cells utilize integrated resistive heaters for efficient heating of the materials. By combining MEMS technology with thin-film deposition technology, thin-film fuel cells having microflow channels and full-integrated circuitry can be produced that will lower the operating temperature an will yield an order of magnitude greater power density than the currently known fuel cells.

  3. Ethanol dehydration to ethylene in a stratified autothermal millisecond reactor.

    PubMed

    Skinner, Michael J; Michor, Edward L; Fan, Wei; Tsapatsis, Michael; Bhan, Aditya; Schmidt, Lanny D

    2011-08-22

    The concurrent decomposition and deoxygenation of ethanol was accomplished in a stratified reactor with 50-80 ms contact times. The stratified reactor comprised an upstream oxidation zone that contained Pt-coated Al(2)O(3) beads and a downstream dehydration zone consisting of H-ZSM-5 zeolite films deposited on Al(2)O(3) monoliths. Ethanol conversion, product selectivity, and reactor temperature profiles were measured for a range of fuel:oxygen ratios for two autothermal reactor configurations using two different sacrificial fuel mixtures: a parallel hydrogen-ethanol feed system and a series methane-ethanol feed system. Increasing the amount of oxygen relative to the fuel resulted in a monotonic increase in ethanol conversion in both reaction zones. The majority of the converted carbon was in the form of ethylene, where the ethanol carbon-carbon bonds stayed intact while the oxygen was removed. Over 90% yield of ethylene was achieved by using methane as a sacrificial fuel. These results demonstrate that noble metals can be successfully paired with zeolites to create a stratified autothermal reactor capable of removing oxygen from biomass model compounds in a compact, continuous flow system that can be configured to have multiple feed inputs, depending on process restrictions. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Diameter Growth 0f a Slash Pine Spacing Study Five Years After Being Thinned to a Constant Stand Density Index

    Treesearch

    Jamie C. Schexnayder; Thomas J. Dean; V. Clark Baldwin

    2002-01-01

    Abstract - In 1994, a 17-year old, slash pine (Pinus elliottii var. elliottii) spacing study was thinned to evaluate the influence of prethinning stand conditions on diameter growth after thinning. Diameter growth and crown dimensions measured just prior to thinning showed that diameter growth was positively...

  5. Analysing stratified medicine business models and value systems: innovation-regulation interactions.

    PubMed

    Mittra, James; Tait, Joyce

    2012-09-15

    Stratified medicine offers both opportunities and challenges to the conventional business models that drive pharmaceutical R&D. Given the increasingly unsustainable blockbuster model of drug development, due in part to maturing product pipelines, alongside increasing demands from regulators, healthcare providers and patients for higher standards of safety, efficacy and cost-effectiveness of new therapies, stratified medicine promises a range of benefits to pharmaceutical and diagnostic firms as well as healthcare providers and patients. However, the transition from 'blockbusters' to what might now be termed 'niche-busters' will require the adoption of new, innovative business models, the identification of different and perhaps novel types of value along the R&D pathway, and a smarter approach to regulation to facilitate innovation in this area. In this paper we apply the Innogen Centre's interdisciplinary ALSIS methodology, which we have developed for the analysis of life science innovation systems in contexts where the value creation process is lengthy, expensive and highly uncertain, to this emerging field of stratified medicine. In doing so, we consider the complex collaboration, timing, coordination and regulatory interactions that shape business models, value chains and value systems relevant to stratified medicine. More specifically, we explore in some depth two convergence models for co-development of a therapy and diagnostic before market authorisation, highlighting the regulatory requirements and policy initiatives within the broader value system environment that have a key role in determining the probable success and sustainability of these models. Copyright © 2012 Elsevier B.V. All rights reserved.

  6. Ultra-thin smart acoustic metasurface for low-frequency sound insulation

    NASA Astrophysics Data System (ADS)

    Zhang, Hao; Xiao, Yong; Wen, Jihong; Yu, Dianlong; Wen, Xisen

    2016-04-01

    Insulating low-frequency sound is a conventional challenge due to the high areal mass required by mass law. In this letter, we propose a smart acoustic metasurface consisting of an ultra-thin aluminum foil bonded with piezoelectric resonators. Numerical and experimental results show that the metasurface can break the conventional mass law of sound insulation by 30 dB in the low frequency regime (<1000 Hz), with an ultra-light areal mass density (<1.6 kg/m2) and an ultra-thin thickness (1000 times smaller than the operating wavelength). The underlying physical mechanism of such extraordinary sound insulation performance is attributed to the infinite effective dynamic mass density produced by the smart resonators. It is also demonstrated that the excellent sound insulation property can be conveniently tuned by simply adjusting the external circuits instead of modifying the structure of the metasurface.

  7. Biogenic mixing induced by intermediate Reynolds number swimming in stratified fluids

    PubMed Central

    Wang, Shiyan; Ardekani, Arezoo M.

    2015-01-01

    We study fully resolved motion of interacting swimmers in density stratified fluids using an archetypal swimming model called “squirmer”. The intermediate Reynolds number regime is particularly important, because the vast majority of organisms in the aphotic ocean (i.e. regions that are 200 m beneath the sea surface) are small (mm-cm) and their motion is governed by the balance of inertial and viscous forces. Our study shows that the mixing efficiency and the diapycnal eddy diffusivity, a measure of vertical mass flux, within a suspension of squirmers increases with Reynolds number. The mixing efficiency is in the range of O(0.0001–0.04) when the swimming Reynolds number is in the range of O(0.1–100). The values of diapycnal eddy diffusivity and Cox number are two orders of magnitude larger for vertically swimming cells compared to horizontally swimming cells. For a suspension of squirmers in a decaying isotropic turbulence, we find that the diapycnal eddy diffusivity enhances due to the strong viscous dissipation generated by squirmers as well as the interaction of squirmers with the background turbulence. PMID:26628288

  8. Temperature dependence of superfluid density in YBa 2Cu 3O 7- δ and Y 0.7Ca 0.3Ba 2Cu 3O 7- δ thin films: A doping dependence study of the linear slope

    NASA Astrophysics Data System (ADS)

    Lai, L. S.; Juang, J. Y.; Wu, K. H.; Uen, T. M.; Gou, Y. S.

    2005-11-01

    By using a microstrip ring resonator to measure the temperature dependence of the in-plane magnetic penetration depth λ(T) in YBa2Cu3O7-δ (YBCO) and Y0.7Ca0.3Ba2Cu3O7-δ (Ca-YBCO) epitaxially grown thin films, the linear temperature dependence of the superfluid density ρs/m∗ ≡ 1/λ2(T) was observed from the under- to the overdoped regime at the temperatures below T/Tc ≈ 0.3 . For the underdoped regime of YBCO and Ca-YBCO thin films, the magnitude of the slope d(1/λ2(T))/dT is insensitive to doping, and it can be treated in the framework of projected d-density-wave model. Combining these slope values with the thermal conductivity measurements, the Fermi-liquid correction factor α2 from the Fermi-liquid model, suggested by Wen and Lee, was revealed here with various doping levels.

  9. Treatment strategies in the acute therapy of migraine: stratified care and early intervention.

    PubMed

    D'Amico, D; Moschiano, F; Usai, S; Bussone, G

    2006-05-01

    Various treatment strategies have been proposed to help clinicians provide the most effective acute treatment for migraine patients. Stratified care is based on the concept that the most appropriate initial treatment can be prescribed after evaluation of each patient's headache characteristics. The results of a large multicentre trial showed that when patients were stratified according to disability grade, clinical outcomes were significantly better than with step-care approaches. Prospective studies have shown that treating migraines with triptans when pain is mild (early intervention) considerably increases success rates for endpoints (pain-free at 2 h, sustained pain-free state) for which triptans had relatively poor efficacy in pivotal trials, and which contribute most to patient satisfaction. Stratified care and early treatment are also cost-effective. However these strategies are not suitable for all patients. Stratified care may be rendered difficult by medication contraindications and changes in attack characteristics over time. Early triptan intervention carries a risk of medication overuse and might not be indicated in patients with lack of pain progression. Successful implementation of both strategies requires that physicians are well informed, and that they elicit an exhaustive headache history from each patient.

  10. Polyimide Aerogel Thin Films

    NASA Technical Reports Server (NTRS)

    Meador, Mary Ann; Guo, Haiquan

    2012-01-01

    Polyimide aerogels have been crosslinked through multifunctional amines. This invention builds on "Polyimide Aerogels With Three-Dimensional Cross-Linked Structure," and may be considered as a continuation of that invention, which results in a polyimide aerogel with a flexible, formable form. Gels formed from polyamic acid solutions, end-capped with anhydrides, and cross-linked with the multifunctional amines, are chemically imidized and dried using supercritical CO2 extraction to give aerogels having density around 0.1 to 0.3 g/cubic cm. The aerogels are 80 to 95% porous, and have high surface areas (200 to 600 sq m/g) and low thermal conductivity (as low as 14 mW/m-K at room temperature). Notably, the cross-linked polyimide aerogels have higher modulus than polymer-reinforced silica aerogels of similar density, and can be fabricated as both monoliths and thin films.

  11. Thermoelectric effects of amorphous Ga-Sn-O thin film

    NASA Astrophysics Data System (ADS)

    Matsuda, Tokiyoshi; Uenuma, Mutsunori; Kimura, Mutsumi

    2017-07-01

    The thermoelectric effects of an amorphous Ga-Sn-O (a-GTO) thin film have been evaluated as a physical parameter of a novel oxide semiconductor. Currently, a-GTO thin films are greatly desired not only because they do not contain rare metals and are therefore free from problems on the exhaustion of resources and the increase in cost but also because their initial characteristics and performance stabilities are excellent when they are used in thin-film transistors. In this study, an a-GTO thin film was deposited on a quartz substrate by RF magnetron sputtering and postannealing was performed in air at 350 °C for 1 h using an annealing furnace. The Seebeck coefficient and electrical conductivity of the a-GTO thin film were -137 µV/K and 31.8 S/cm at room temperature, and -183 µV/K and 43.8 S/cm at 397 K, respectively, and as a result, the power factor was 1.47 µW/(cm·K2) at 397 K; these values were roughly as high as those of amorphous In-Ga-Zn-O (a-IGZO) thin films. Therefore, a-GTO thin films will be a candidate material for thermoelectric devices fabricated in a large area at a low cost by controlling the carrier mobility, carrier density, device structures, and so forth.

  12. Turbidity Currents In The Ocean; Are They Stably Stratified?

    NASA Astrophysics Data System (ADS)

    Kneller, B. C.; Nasr-Azadani, M.; Meiburg, E. H.

    2013-12-01

    A large proportion of the sediment generated by erosion of the continents is ultimately delivered to the deep ocean to form submarine fans, being carried to the margins of these fans by turbidity currents that flow through submarine channels that may be hundreds or even thousands of kilometers long. The persistence of these flows over extremely long distances with gradients that may be 10-4 or less, while maintaining sediment as coarse as fine-grained sand in suspension, is enigmatic, given the drag that one would expect to be experienced by such flows, and the effects of progressive dilution by entrainment of ambient seawater. The commonly-held view of the flow structure of turbidity currents, based on many laboratory and numerical simulations and rare observations in the ocean, is that of a vertical profile of time-averaged horizontal velocity with a maximum value close the bed, largely due to much higher drag on the upper boundary than on the lower. This upper boundary drag is related to Kelvin-Helmholtz (K-H) instabilities generated by shear between the current and the ambient seawater. K-H instabilities result when fluid shear dominates over density stratification within the turbidity current; the dimensionless ratio of these two influences is the gradient Richardson number. When this exceeds a value of 0.25 the stratification is stable, and no K-H instabilities will form, eliminating much of the drag and entrainment. The majority of the entrainment of ambient seawater into the turbidity current also occurs via the K-H instabilities. Analysis by Birman et al. (2009) suggests that there may be little or no entrainment of ambient fluid in turbidity currents flowing over low gradients, implying that K-H instabilities may be absent under these conditions. We examine the case of flows on the extremely low gradients of the ocean floor, and suggest some conditions that may lead to stably-stratified currents, with dramatically reduced drag, and a fundamentally

  13. Ferroelectric and piezoelectric thin films and their applications for integrated capacitors, piezoelectric ultrasound transducers and piezoelectric switches

    NASA Astrophysics Data System (ADS)

    Klee, M.; Boots, H.; Kumar, B.; van Heesch, C.; Mauczok, R.; Keur, W.; de Wild, M.; van Esch, H.; Roest, A. L.; Reimann, K.; van Leuken, L.; Wunnicke, O.; Zhao, J.; Schmitz, G.; Mienkina, M.; Mleczko, M.; Tiggelman, M.

    2010-02-01

    Ferroelectric and piezoelectric thin films are gaining more and more importance for the integration of high performance devices in small modules. High-K 'Integrated Discretes' devices have been developed, which are based on thin film ferroelectric capacitors integrated together with resistors and ESD protection diodes in a small Si-based chip-scale package. Making use of ferroelectric thin films with relative permittivity of 950-1600 and stacking processes of capacitors, extremely high capacitance densities of 20-520 nF/mm2, high breakdown voltages up to 140 V and lifetimes of more than 10 years at operating voltages of 5 V and 85°C are achieved. Thin film high-density capacitors play also an important role as tunable capacitors for applications such as tuneable matching circuits for RF sections of mobile phones. The performance of thin film tuneable capacitors at frequencies between 1 MHz and 1 GHz is investigated. Finally thin film piezoelectric ultrasound transducers, processed in Si- related processes, are attractive for medical imaging, since they enable large bandwidth (>100%), high frequency operation and have the potential to integrate electronics. With these piezoelectric thin film ultrasound transducers real time ultrasound images have been realized. Finally, piezoelectric thin films are used to manufacture galvanic MEMS switches. A model for the quasi-static mechanical behaviour is presented and compared with measurements.

  14. Theory of negative refraction in periodic stratified metamaterials.

    PubMed

    Rukhlenko, Ivan D; Premaratne, Malin; Agrawal, Govind P

    2010-12-20

    We present a general theory of negative refraction in periodic stratified heterostructures with an arbitrary number of homogeneous, isotropic, nonmagnetic layers in a unit cell. With a 4×4-matrix technique, we derive analytic expressions for the normal modes of such a heterostructure slab, introduce the average refraction angles of the energy flow and wavevector for the TE- and TM-polarized plane waves falling obliquely on the slab, and derive expressions for the reflectivity and transmissivity of the whole slab. For a specific case, in which all layers in a unit cell are much thinner than the wavelength of light, we obtain approximate simple formulae for the effective refraction angles. Using the example of a semiconductor heterostructure slab with two layers in a unit cell, we demonstrate that ultrathin layers are preferable for metamaterial applications because they enable higher transmissivity within the frequency band of negative refraction. Our theory can be used to study the optical properties of any stratified metamaterial, irrespective of whether semiconductors or metals are employed for fabricating its various layers, because it includes absorption within each layer.

  15. Longer-term effects of selective thinning on microarthropod communities in a late-successional coniferous forest.

    Treesearch

    Robert W. Peck; Christine G. Niwa

    2005-01-01

    Microarthropod densities within late-successional coniferous forests thinned 16-41 yr before sampling were compared with adjacent unthinned stands to identify longer term effects of thinning on this community. Soil and forest floor layers were sampled separately on eight paired sites. Within the forest floor oribatid, mesostigmatid, and to a marginal extent,...

  16. An x-ray backlit Talbot-Lau deflectometer for high-energy-density electron density diagnostics

    DOE PAGES

    Valdivia, M. P.; Stutman, D.; Stoeckl, C.; ...

    2016-02-10

    X-ray phase-contrast techniques can measure electron density gradients in high-energy-density plasmas through refraction induced phase shifts. An 8 keV Talbot-Lau interferometer consisting of free standing ultrathin gratings was deployed at an ultra-short, high-intensity laser system using K-shell emission from a 1-30 J, 8 ps laser pulse focused on thin Cu foil targets. Grating survival was demonstrated for 30 J, 8 ps laser pulses. The first x-ray deflectometry images obtained under laser backlighting showed up to 25% image contrast and thus enabled detection of electron areal density gradients with a maximum value of 8.1 ± 0.5 × 10 23 cm ₋3more » in a low-Z millimeter sized sample. An electron density profile was obtained from refraction measurements with an error of <8%. We found the 50 ± 15 μm spatial resolution achieved across the full field of view was limited by the x-ray source-size, similar to conventional radiography.« less

  17. Balance in non-hydrostatic rotating stratified turbulence

    NASA Astrophysics Data System (ADS)

    McKiver, William J.; Dritschel, David G.

    It is now well established that two distinct types of motion occur in geophysical turbulence: slow motions associated with potential vorticity advection and fast oscillations due to inertiamaster variable this is known as balance. In real geophysical flows, deviations from balance in the form of inertiaimbalance|N/f) where optimal potential vorticity balancenonlinear quasi-geostrophic balance’ procedure expands the equations of motion to second order in Rossby number but retains the exact (unexpanded) definition of potential vorticity. This proves crucial for obtaining an accurate estimate of balanced motions. In the analysis of rotating stratified turbulence at Ro1 and N/f1, this procedure captures a significantly greater fraction of the underlying balance than standard (linear) quasi-geostrophic balance (which is based on the linearized equations about a state of rest). Nonlinear quasi-geostrophic balance also compares well with optimal potential vorticity balance, which captures the greatest fraction of the underlying balance overall.More fundamentally, the results of these analyses indicate that balance dominates in carefully initialized simulations of freely decaying rotating stratified turbulence up to O(1) Rossby numbers when N/f1. The fluid motion exhibits important quasi-geostrophic features with, in particular, typical height-to-width scale ratios remaining comparable to f/N.

  18. Rechargeable Thin-film Lithium Batteries

    DOE R&D Accomplishments Database

    Bates, J. B.; Gruzalski, G. R.; Dudney, N. J.; Luck, C. F.; Yu, Xiaohua

    1993-08-01

    Rechargeable thin film batteries consisting of lithium metal anodes, an amorphous inorganic electrolyte, and cathodes of lithium intercalation compounds have recently been developed. The batteries, which are typically less than 6 {mu}m thick, can be fabricated to any specified size, large or small, onto a variety of substrates including ceramics, semiconductors, and plastics. The cells that have been investigated include Li TiS{sub 2}, Li V{sub 2}O{sub 5}, and Li Li{sub x}Mn{sub 2}O{sub 4}, with open circuit voltages at full charge of about 2.5, 3.6, and 4.2, respectively. The development of these batteries would not have been possible without the discovery of a new thin film lithium electrolyte, lithium phosphorus oxynitride, that is stable in contact with metallic lithium at these potentials. Deposited by rf magnetron sputtering of Li{sub 3}PO{sub 4} in N{sub 2}, this material has a typical composition of Li{sub 2.9}PO{sub 3.3}N{sub 0.46} and a conductivity at 25{degrees}C of 2 {mu}S/cm. The maximum practical current density obtained from the thin film cells is limited to about 100 {mu}A/cm{sup 2} due to a low diffusivity of Li{sup +} ions in the cathodes. In this work, the authors present a short review of their work on rechargeable thin film lithium batteries.

  19. Ten-year growth of planted slash pine after thinnings

    Treesearch

    Hans G. Enghardt; W.F. Mann

    1972-01-01

    volume growth of slash pine between ages 17 and 27 years was directly related to residual basal area per acre after thinning. Diameter growth was inversely related to stand density, and very heavy cutting was required to attain a rate of 3 inches in 10 years.

  20. On the Post-Keplerian Corrections to the Orbital Periods of a Two-body System and Their Application to the Galactic Center

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Iorio, Lorenzo; Zhang, Fupeng, E-mail: lorenzo.iorio@libero.it, E-mail: zhangfp7@mail.sysu.edu.cn

    We perform detailed numerical analyses of the orbital motion of a test particle around a spinning primary, with the aim of investigating the possibility of using the post-Keplerian (pK) corrections to the orbiter’s periods (draconitic, anomalistic, and sidereal) as a further opportunity to perform new tests of post-Newtonian gravity. As a specific scenario, the S-stars orbiting the massive black hole (MBH) supposedly lurking in Sgr A* at the center of the Galaxy are adopted. We first study the effects of the pK Schwarzchild, Lense–Thirring, and quadrupole moment accelerations experienced by a target star for various possible initial orbital configurations. Itmore » turns out that the results of the numerical simulations are consistent with the analytical ones in the small eccentricity approximation for which almost all the latter ones were derived. For highly elliptical orbits, the sizes of the three pK corrections considered turn out to increase remarkably. The periods of the observed S2 and S0-102 stars as functions of the MBH’s spin axis orientation are considered as well. The pK accelerations lead to corrections of the orbital periods of the order of 1–100 days (Schwarzschild), 0.1–10 hr (Lense–Thirring), and 1–10{sup 3} s (quadrupole) for a target star with a = 300–800 au and e ≈ 0.8, which could be measurable with future facilities.« less

  1. Topographic controls on pyroclastic density current dynamics: Insight from 18 May 1980 deposits at Mount St. Helens, Washington (USA)

    NASA Astrophysics Data System (ADS)

    Brand, Brittany D.; Bendaña, Sylvana; Self, Stephen; Pollock, Nicholas

    2016-07-01

    Our ability to interpret the deposits of pyroclastic density currents (PDCs) is critical for understanding the transport and depositional processes that control PDC dynamics. This paper focuses on the influence of slope on flow dynamics and criticality as recorded in PDC deposits from the 18 May 1980 eruption of Mt. St. Helens (USA). PDC deposits are found along the steep flanks (10°-30°) and across the pumice plain ( 5°) up to 8 km north of the volcano. Granulometry, componentry and descriptions of depositional characteristics (e.g., bedform morphology) are recorded with distance from source. The pumice plain deposits are primarily thick (3-12 m), massive and poorly-sorted, and represent deposition from a series of concentrated PDCs. By contrast, the steep flank deposits are stratified to cross-stratified, suggesting deposition from PDCs where turbulence strongly influenced transport and depositional processes. We propose that acceleration of the concentrated PDCs along the steep flanks resulted in thinning of the concentrated, basal region of the current(s). Enhanced entrainment of ambient air, and autofluidization from upward fluxes of air from substrate interstices and plunging breakers across rugged, irregular topography further inflated the currents to the point that the overriding turbulent region strongly influenced transport and depositional mechanisms. Acceleration in combination with partial confinement in slot canyons and high surface roughness would also increase basal shear stress, further promoting shear and traction transport in the basal region of the current. Conditions along the steep flank resulted in supercritical flow, as recorded by regressive bedforms, which gradually transitioned to subcritical flow downstream as the concentrated basal region thickness increased as a function of decreasing slope and flow energy. We also find that (1) PDCs were erosive into the underlying granular substrate along high slopes (> 25°) where currents were

  2. A closer look at the pyroclastic density current deposits of the May 18, 1980 eruption of Mt St Helens

    NASA Astrophysics Data System (ADS)

    Mackaman-Lofland, C. A.; Brand, B. D.; Dufek, J.

    2010-12-01

    Pyroclastic Density Currents (PDCs) are the most dangerous hazard associated with explosive volcanic eruptions. Due to the danger associated with observing these ground-hugging currents of searing hot gas, ash, and rock in real time, their processes are poorly understood. In order to understand flow dynamics, including what controls how far PDCs travel and how they interact with topography, it is necessary to study their deposits. The May 18th, 1980 eruption of Mt. St. Helens produced multiple PDCs, burying the area north of the volcano under 10s of meters of PDC deposits. Because the eruption is one of the best observed on record, individual flow units can be correlated to changes in eruptive intensity throughout the day (e.g., Criswell, 1987). Deep drainage erosion over the past 30 years has exposed the three-dimensional structure of the PDC deposits, making this intensive study possible. Up to six flow units have been identified along the large western drainage of the pumice plain. Each flow unit has intricate vertical and lateral facies changes and complex cross-cutting relationships away from source. The most proximal PDC deposits associated with the afternoon flows on May 18 are exposed 4 km from source in tributaries of the large drainage on the western side of the pumice plain. Hummocks from the debris avalanche are also exposed above and within these proximal drainages. It is apparent that the PDCs were often erosional, entraining large blocks from the hummocks and depositing them in close proximity downstream. The currents were also depositional, as thick sequences of PDC deposits are found in areas between hummocks, which thin to veneers above them. This indicates that the currents were interacting with complex topography early in their propagation, and is reflected by spatially variable bed conditions including rapid changes in bedding and granulometry characteristics within individual flow units. For example, within 20 lateral meters of a given flow

  3. Commercial thinning in small-diameter aspen stands in northern Minnesota: study establishment report

    Treesearch

    Daniel W. Gilmore; Jennifer D. Glenn; Michael E. Ostry; John C. Zasada; Michael A. Benedict

    2006-01-01

    In the spring of 1999, a long-term study was established to examine the physical and biological aspects of thinning young aspen stands in Minnesota. Three aspen stands ranging in age from 25 to 35 years were selected on lands owned by the State of Minnesota and UPM Kymmene. Two thinning treatments (low and high density) and an unthinned control were installed at each...

  4. Effect of RF power density on micro- and macro-structural properties of PECVD grown hydrogenated nanocrystalline silicon thin films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gokdogan, Gozde Kahriman, E-mail: gozdekahriman@gmail.com; Anutgan, Tamila, E-mail: tamilaanutgan@karabuk.edu.tr

    2016-03-25

    This contribution provides the comparison between micro- and macro-structure of hydrogenated nanocrystalline silicon (nc-Si:H) thin films grown by plasma enhanced chemical vapor deposition (PECVD) technique under different RF power densities (P{sub RF}: 100−444 mW/cm{sup 2}). Micro-structure is assessed through grazing angle X-ray diffraction (GAXRD), while macro-structure is followed by surface and cross-sectional morphology via field emission scanning electron microscopy (FE-SEM). The nanocrystallite size (∼5 nm) and FE-SEM surface conglomerate size (∼40 nm) decreases with increasing P{sub RF}, crystalline volume fraction reaches maximum at 162 mW/cm{sup 2}, FE-SEM cross-sectional structure is columnar except for the film grown at 162 mW/cm{sup 2}. The dependence of previously determinedmore » ‘oxygen content–refractive index’ correlation on obtained macro-structure is investigated. Also, the effect of P{sub RF} is discussed in the light of plasma parameters during film deposition process and nc-Si:H film growth models.« less

  5. Atmospheric density models comparison and impact on orbit solutions of GRACE-1, Sentinel-1A, TerraSAR-X

    NASA Astrophysics Data System (ADS)

    Colace, Marco; Hackel, Stefan; Kirschner, Michael; Kahle, Ralph; Circi, Christian

    2017-04-01

    Satellites in Low Earth Orbit (LEO) are notably affected by the presence of the atmosphere, a predominant source of perturbations of the Keplerian motion at the altitudes of interest. For spacecraft of this class the main source of error in propagated trajectories is due to the mismodeling of the neutral density in the thermosphere and the associated drag force, which steadily decelerates orbital motion with both secular and periodic effects. Thermospheric density varies significantly with space and time because of complex interactions between solar activity and the Earth's atmosphere and magnetic field. Properly reproducing this variability by means of empirical dynamic models has always represented a difficult task but is of vital importance for orbit determination and propagation. The present study shows the influence of different atmospheric density models, predicted space weather proxies, and their related uncertainties on the orbit solutions of representative satellite missions. The study has been carried out by using a routine-like orbit propagation scenario applied to GRACE-1, Sentinel-1A, and TerraSAR-X, three LEO orbiting spacecraft with operational altitudes well spaced within the 400-700 km range. Archived space weather data predictions and some of the most recent and promising empirical atmospheric models (Naval Research Laboratory's NRLMSISE-00 and Jacchia-Bowman 2008) were used side-by-side with the well-known Jacchia 1971 model in order to assess potential gains in prediction accuracy. To evaluate the influence of solar variability on the atmospheric density models and associated orbit quality, two 2-month test time frames, in high and low solar activity periods, have been selected. The scope of the presentation is a detailed comparison of atmospheric density models and their influence on the estimated orbits of GRACE-1, Sentinel-1A and TerraSAR-X.

  6. Doubling the critical current density in superconducting FeSe 0.5Te 0.5 thin films by low temperature oxygen annealing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Cheng; Si, Weidong; Li, Qiang

    Iron chalcogenide superconducting thin films and coated conductors are attractive for potential high field applications at liquid helium temperature for their high critical current densities J c, low anisotropies, and relatively strong grain couplings. Embedding flux pinning defects is a general approach to increase the in-field performance of superconductors. However, many effective pinning defects can adversely affect the zero field or self-field J c, particularly in cuprate high temperature superconductors. Here, we report the doubling of the self-field J c in FeSe 0.5Te 0.5 films by low temperature oxygen annealing, reaching ~3 MA/cm 2. In-field performance is also dramatically enhanced.more » In conclusion, our results demonstrate that low temperature oxygen annealing is a simple and cost-efficient post-treatment technique which can greatly help to accelerate the potential high field applications of the iron-based superconductors.« less

  7. Doubling the critical current density in superconducting FeSe 0.5Te 0.5 thin films by low temperature oxygen annealing

    DOE PAGES

    Zhang, Cheng; Si, Weidong; Li, Qiang

    2016-11-14

    Iron chalcogenide superconducting thin films and coated conductors are attractive for potential high field applications at liquid helium temperature for their high critical current densities J c, low anisotropies, and relatively strong grain couplings. Embedding flux pinning defects is a general approach to increase the in-field performance of superconductors. However, many effective pinning defects can adversely affect the zero field or self-field J c, particularly in cuprate high temperature superconductors. Here, we report the doubling of the self-field J c in FeSe 0.5Te 0.5 films by low temperature oxygen annealing, reaching ~3 MA/cm 2. In-field performance is also dramatically enhanced.more » In conclusion, our results demonstrate that low temperature oxygen annealing is a simple and cost-efficient post-treatment technique which can greatly help to accelerate the potential high field applications of the iron-based superconductors.« less

  8. Spectral Index and Quasi-Periodic Oscillation Frequency Correlation in Black Hole (BH) Sources: Observational Evidence of Two Phases and Phase Transition in BHs

    NASA Technical Reports Server (NTRS)

    Titarchuk, Lev; Fiorito, Ralph

    2004-01-01

    Recent studies have shown that strong correlations are observed between the low frequencies (1-10 Hz) of quasiperiodic oscillations (QPOs) and the spectral power law index of several Black Hole (BH) candidate sources, in low hard states, steep power-law (soft) states and in transition between these states. The observations indicate that the X-ray spectrum of such state (phases) show the presence of a power-law component and are sometimes related to simultaneous radio emission indicated the probable presence of a jet. Strong QPOs (less than 20% rms) are present in the power density spectrum in the spectral range where the power-law component is dominant ( i.e. 60-90% ). This evidence contradicts the dominant long standing interpretation of QPOs as a signature of the thermal accretion disk. We present the data from the literature and our own data to illustrate the dominance of power-law index-QPO frequency correlations. We provide a model, that identifies and explains the origin of the QPOs and how they are imprinted on the properties of power-law flux component. We argue the existence of a bounded compact coronal region which is a natural consequence of the adjustment of Keplerian disk flow to the innermost sub-Keplerian boundary conditions near the central object and that ultimately leads to the formation of a transition layer (TL) between the adjustment radius and the innermost boundary. The model predicts two phases or states dictated by the photon upscattering produced in the TL: (1) hard state, in which the TL is optically thin and very hot (kT approx. greater than 50 keV) producing photon upscattering via thermal Componization; the photon spectrum index Gamma appprox.1.5 for this state is dictated by gravitational energy release and Compton cooling in an optically thin shock near the adjustment radius; (2) a soft state which is optically thick and relatively cold (approx. less than 5 keV); the index for this state, Gamma approx. 2.8 is determined by soft

  9. Spectral Index and Quasi-Periodic Oscillation Frequency Correlation in Black Hole Sources: Observational Evidence of Two Phases and Phase Transition in Black Holes

    NASA Technical Reports Server (NTRS)

    Titarchuk, Lev; Fiorito, Ralph

    2004-01-01

    Recent studies have shown that strong correlations are observed between the low frequencies (1-10 Hz) of quasi-periodic oscillations (QPOs) and the spectral power law index of several black hole (BH) candidate sources, in low (hard) states, steep power law (soft) states, and transitions between these states. The observations indicate that the X-ray spectra of such state (phases) show the presence of a power-law component and are sometimes related to simultaneous radio emission, indicating the probable presence of a jet. Strong QPOs (>20% rms) are present in the power density spectrum in the spectral range where the power-law component is dominant (i.e., 60%90%). This evidence contradicts the dominant, long-standing interpretation of QPOs as a signature of the thermal accretion disk. We present the data from the literature and our own data to illustrate the dominance of power-law index-QPO frequency correlations. We provide a model that identifies and explains the origin of the QPOs and how they are imprinted on the properties of the power-law flux component. We argue for the existence of a bounded compact coronal region that is a natural consequence of the adjustment of the Keplerian disk flow to the innermost sub-Keplerian boundary conditions near the central object and that ultimately leads to the formation of a transition layer (TL) between the adjustment radius and the innermost boundary. The model predicts two phases or states dictated by the photon upscattering produced in the TL: (1) a hard state, in which the TL is optically thin and very hot (kT approximately greater than 50 keV), producing photon upscattering via thermal Comptonization (the photon spectrum index Gamma approximates 1.7 for this state is dictated by gravitational energy release and Compton cooling in an optically thin shock near the adjustment radius), and (2) a soft state that is optically thick and relatively cold (kT approximately less than 5 keV the index for this state, Gamma

  10. Direct glycerol fuel cell with polytetrafluoroethylene (PTFE) thin film separator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Benipal, Neeva; Qi, Ji; Dalian Univ. of Technology, Dalian

    Here, anion-exchange membrane-based direct glycerol fuel cells (AEM-DGFCs) can yield high power density, however challenges exist in developing chemically stable AEMs. Here, we demonstrate a porous PTFE thin film, a well-known chemical, electro-chemical, and thermal robust material that can serve as a separator between anode and cathode, thus achieving high DGFC’s performance. A simple aqueous-phase reduction method was used to prepare carbon nanotube supported PdAg nanoparticles (PdAg/CNT) with an average particle size of 2.9 nm. A DGFC using a PTFE thin film without any further modification with PdAg/CNT anode catalyst exhibits a peak power density of 214.7 mW cm –2more » at 80 °C, about 22.6% lower than a DGFC using a state-of-the-art AEM. We report a 5.8% decrease and 11.1% decrease in cell voltage for a PTFE thin film and AEM; similarly, the cell voltage degradation rate decreases from 1.2 to 0.8 mV h –1 for PTFE thin film, while for AEM, it decreases from 9.6 to 3.0 mV h –1 over an 80 h durability test period. Transmission electron microscopy results indicate that the average particle size of PdAg/CNT increases from 2.9 to 3.7 nm after 80 h discharge; this suggests that PdAg particle growth may be the main reason for the performance drop.« less

  11. Direct glycerol fuel cell with polytetrafluoroethylene (PTFE) thin film separator

    DOE PAGES

    Benipal, Neeva; Qi, Ji; Dalian Univ. of Technology, Dalian; ...

    2017-01-04

    Here, anion-exchange membrane-based direct glycerol fuel cells (AEM-DGFCs) can yield high power density, however challenges exist in developing chemically stable AEMs. Here, we demonstrate a porous PTFE thin film, a well-known chemical, electro-chemical, and thermal robust material that can serve as a separator between anode and cathode, thus achieving high DGFC’s performance. A simple aqueous-phase reduction method was used to prepare carbon nanotube supported PdAg nanoparticles (PdAg/CNT) with an average particle size of 2.9 nm. A DGFC using a PTFE thin film without any further modification with PdAg/CNT anode catalyst exhibits a peak power density of 214.7 mW cm –2more » at 80 °C, about 22.6% lower than a DGFC using a state-of-the-art AEM. We report a 5.8% decrease and 11.1% decrease in cell voltage for a PTFE thin film and AEM; similarly, the cell voltage degradation rate decreases from 1.2 to 0.8 mV h –1 for PTFE thin film, while for AEM, it decreases from 9.6 to 3.0 mV h –1 over an 80 h durability test period. Transmission electron microscopy results indicate that the average particle size of PdAg/CNT increases from 2.9 to 3.7 nm after 80 h discharge; this suggests that PdAg particle growth may be the main reason for the performance drop.« less

  12. Line-driven ablation of circumstellar discs - I. Optically thin decretion discs of classical Oe/Be stars.

    PubMed

    Kee, Nathaniel Dylan; Owocki, Stanley; Sundqvist, J O

    2016-05-21

    The extreme luminosities of massive, hot OB stars drive strong stellar winds through line-scattering of the star's UV continuum radiation. For OB stars with an orbiting circumstellar disc, we explore here the effect of such line-scattering in driving an ablation of material from the disc's surface layers, with initial focus on the marginally optically thin decretion discs of classical Oe and Be stars. For this we apply a multidimensional radiation-hydrodynamics code that assumes simple optically thin ray tracing for the stellar continuum, but uses a multiray Sobolev treatment of the line transfer; this fully accounts for the efficient driving by non-radial rays, due to desaturation of line-absorption by velocity gradients associated with the Keplerian shear in the disc. Results show a dense, intermediate-speed surface ablation, consistent with the strong, blueshifted absorption of UV wind lines seen in Be shell stars that are observed from near the disc plane. A key overall result is that, after an initial adjustment to the introduction of the disc, the asymptotic disc destruction rate is typically just an order-unity factor times the stellar wind mass-loss rate. For optically thin Be discs, this leads to a disc destruction time of order months to years, consistent with observationally inferred disc decay times. The much stronger radiative forces of O stars reduce this time to order days, making it more difficult for decretion processes to sustain a disc in earlier spectral types, and so providing a natural explanation for the relative rarity of Oe stars in the Galaxy. Moreover, the decrease in line-driving at lower metallicity implies both a reduction in the winds that help spin-down stars from near-critical rotation, and a reduction in the ablation of any decretion disc; together these provide a natural explanation for the higher fraction of classical Be stars, as well as the presence of Oe stars, in the lower metallicity Magellanic Clouds. We conclude with a

  13. Studies of Ion Acceleration from Thin Solid-Density Targets on High-Intensity Lasers

    NASA Astrophysics Data System (ADS)

    Willis, Christopher R.

    Over the past two decades, a number of experiments have been performed demonstrating the acceleration of ions from the interaction of an intense laser pulse with a thin, solid density target. These ions are accelerated by quasi-static electric fields generated by energetic electrons produced at the front of the target, resulting in ion energies up to tens of MeV. These ions have been widely studied for a variety of potential applications ranging from treatment of cancer to the production of neutrons for advanced radiography techniques. However, realization of these applications will require further optimization of the maximum energy, spectrum, or species of the accelerated ions, which has been a primary focus of research to date. This thesis presents two experiments designed to optimize several characteristics of the accelerated ion beam. The first of these experiments took place on the GHOST laser system at the University of Texas at Austin, and was designed to demonstrate reliable acceleration of deuterium ions, as needed for the most efficient methods of neutron generation from accelerated ions. This experiment leveraged cryogenically cooled targets coated in D2 O ice to suppress the protons which typically dominate the accelerated ions, producing as many as 2 x 1010 deuterium ions per 1 J laser shot, exceeding the proton yield by an average ratio of 5:1. The second major experiment in this work was performed on the Scarlet laser system at The Ohio State University, and studied the accelerated ion energy, yield, and spatial distribution as a function of the target thickness. In principle, the peak energy increases with decreasing target thickness, with the thinnest targets accessing additional acceleration mechanisms which provide favorable scaling with the laser intensity. However, laser prepulse characteristics provide a lower bound for the target thickness, yielding an optimum target thickness for ion acceleration which is dependent on the laser system. This

  14. Changes in tree density do not influence epicormic branching of yellow-poplar

    Treesearch

    H. Clay Smith

    1977-01-01

    Epicormic branching was studied in a West Virginia yellow-poplar stand thinned to various tree density levels. Study trees in the 55- to 60-year-old second-growth stand were primarily codominant in crown class with 32 to 48 feet of log height. Eight-year study results indicated that yellow-poplar trees in this age class and locale could be thinned without serious loss...

  15. Profiling of poorly stratified atmospheres with scanning lidar

    Treesearch

    C. E. Wold; V. A. Kovalev; A. P. Petkov; W. M. Hao

    2012-01-01

    The direct multiangle solution may allow inversion of the scanning lidar data even when the requirement of the horizontally stratified atmosphere is poorly met. The solution is based on two principles: (1) The signal measured in zenith is the core source for extracting the information about the atmospheric aerosol loading, and (2) The multiangle signals are used as...

  16. Woody debris as a component of ecological diversity in thinned and unthinned northern hardwood forests

    Treesearch

    Christine E. Hura; Thomas R. Crow

    2004-01-01

    We examined the effects of management on coarse woody debris, both standing and downed, in thinned and unthinned northern hardwood forests in upper Michigan. The unthinned conditions included old growth and second growth, while the thinned conditions included both even- and uneven-aged management. The structural features analyzed were stem diameter, density, basal area...

  17. Automotive battery energy density — past, present and future

    NASA Astrophysics Data System (ADS)

    Peters, K.

    Energy and power densities of automotive batteries at engine starting rates have doubled over the past twenty years. Most recent improvements can be credited to the use of both very thin plates with optimized grid design and low-resistance polyethylene separators with a thin backweb and a reduced rib height. Opportunities for further improvements using the same design approach and similar processing techniques are limited. The effect of some recent innovative developments on weight reduction and performance improvement are reviewed, together with possible changes to the electrical system of vehicles.

  18. A diapycnal diffusivity model for stratified environmental flows

    NASA Astrophysics Data System (ADS)

    Bouffard, Damien; Boegman, Leon

    2013-06-01

    The vertical diffusivity of density, Kρ, regulates ocean circulation, climate and coastal water quality. Kρ is difficult to measure and model in these stratified turbulent flows, resulting in the need for the development of Kρ parameterizations from more readily measurable flow quantities. Typically, Kρ is parameterized from turbulent temperature fluctuations using the Osborn-Cox model or from the buoyancy frequency, N, kinematic viscosity, ν, and the rate of dissipation of turbulent kinetic energy, ɛ, using the Osborn model. More recently, Shih et al. (2005, J. Fluid Mech. 525: 193-214) proposed a laboratory scale parameterization for Kρ, at Prandtl number (ratio of the viscosity over the molecular diffusivity) Pr = 0.7, in terms of the turbulence intensity parameter, Re=ɛ/(νN), which is the ratio between the destabilizing effect of turbulence to the stabilizing effects of stratification and viscosity. In the present study, we extend the SKIF parameterization, against extensive sets of published data, over 0.7 < Pr < 700 and validate it at field scale. Our results show that the SKIF model must be modified to include a new Buoyancy-controlled mixing regime, between the Molecular and Transitional regimes, where Kρ is captured using the molecular diffusivity and Osborn model, respectively. The Buoyancy-controlled regime occurs over 10Pr

  19. Effect of thinning on growth and potential quality of young white oak crop trees

    Treesearch

    Martin E. Dale; David L. Sonderman

    1984-01-01

    Relative change in several types of stem defects were studied over a 16-year period to determine the effect of thinning intensity on the development of tree quality. We studied quality changes on sample white oak crop trees that were selected from five density levels created in a 1961 thinning. Branch-related and other stem defects on the butt 16-foot section were...

  20. Growth and bole quality responses to thinning in a red oak-sweetgum stand in southeastern Arkansas: nine-year results

    Treesearch

    James S. Meadows

    2012-01-01

    Science-based guidelines for thinning in southern bottomland hardwood stands are inadequate. To address this need, we established a series of thinning studies based on stand density management in hardwood stands on minor streambottom sites across the South. In the third study in this series, four thinning treatments were applied to a poletimber-sized, red oak-sweetgum...

  1. Salinization in a stratified aquifer induced by heat transfer from well casings

    NASA Astrophysics Data System (ADS)

    van Lopik, Jan H.; Hartog, Niels; Zaadnoordijk, Willem Jan; Cirkel, D. Gijsbert; Raoof, Amir

    2015-12-01

    The temperature inside wells used for gas, oil and geothermal energy production, as well as steam injection, is in general significantly higher than the groundwater temperature at shallower depths. While heat loss from these hot wells is known to occur, the extent to which this heat loss may result in density-driven flow and in mixing of surrounding groundwater has not been assessed so far. However, based on the heat and solute effects on density of this arrangement, the induced temperature contrasts in the aquifer due to heat transfer are expected to destabilize the system and result in convection, while existing salt concentration contrasts in an aquifer would act to stabilize the system. To evaluate the degree of impact that may occur under field conditions, free convection in a 50-m-thick aquifer driven by the heat loss from penetrating hot wells was simulated using a 2D axisymmetric SEAWAT model. In particular, the salinization potential of fresh groundwater due to the upward movement of brackish or saline water in a stratified aquifer is studied. To account for a large variety of well applications and configurations, as well as different penetrated aquifer systems, a wide range of well temperatures, from 40 to 100 °C, together with a range of salt concentration (1-35 kg/m3) contrasts were considered. This large temperature difference with the native groundwater (15 °C) required implementation of a non-linear density equation of state in SEAWAT. We show that density-driven groundwater flow results in a considerable salt mass transport (up to 166,000 kg) to the top of the aquifer in the vicinity of the well (radial distance up to 91 m) over a period of 30 years. Sensitivity analysis showed that density-driven groundwater flow and the upward salt transport was particularly enhanced by the increased heat transport from the well into the aquifer by thermal conduction due to increased well casing temperature, thermal conductivity of the soil, as well as decreased

  2. Dynamic response of the scenic beauty value of different forests to various thinning intensities in central eastern China.

    PubMed

    Deng, Songqiu; Yin, Na; Guan, Qingwei; Katoh, Masato

    2014-11-01

    Forest management has a significant influence on the preferences of people for forest landscapes. This study sought to evaluate the dynamic effects of thinning intensities on the landscape value of forests over time. Five typical stands in Wuxiangsi National Forest Park in Nanjing, China, were subjected to a thinning experiment designed with four intensities: unthinned, light thinning, moderate thinning, and heavy thinning. People's preferences for landscape photographs taken in plots under various thinning intensities were assessed through scenic beauty estimation (SBE) at 2 and 5 years after thinning. The differences in scenic beauty value between different thinning intensities were then analyzed with a paired samples t test for the two periods. The results indicated that the landscape value of all of the thinned plots significantly exceeded that of the unthinned plots 2 years after thinning (p < 0.01) and that the heavily thinned plots were most appreciated, showing an average improvement of 9.71 % compared with the control plots. Additionally, the heavily thinned plots were judged to be more beautiful than the lightly thinned and moderately thinned plots, whereas there was no significant difference between moderate thinning and light thinning. At 5 years after thinning, however, the moderately thinned plots received the highest preference scores among the four intensities, displaying an average improvement of 11.32 % compared with the unthinned plots. A multiple linear regression (MLR) model indicated that landscape value improved with increases in the average diameter at breast height (DBH) and with the improvement of environmental cleanliness in the stand, whereas the value decreased with an increasing stem density, species diversity, litter coverage, and canopy density. In addition, we found that the performance of a neural network model based on a multilayer perception (MLP) algorithm for predicting scenic beauty was slightly better than that of

  3. Electromagnetic Scattering From a Polygonal Thin Metallic Plate Using Quadrilateral Meshing

    NASA Technical Reports Server (NTRS)

    Deshpande, Manohar D.

    2003-01-01

    The problem of electromagnetic (EM) scattering from irregularly shaped, thin, metallic flat plates in free space is solved using the electric field integral equation (EFIE) approach in conjunction with the method of moments (MoM) with quadrilateral meshing. An irregularly shaped thin plate is discretized into quadrilateral patches and the unknown electric surface current over the plate is expressed in terms of proper basis functions over these patches. The basis functions for the electric surface current density that satisfy the proper boundary conditions on these quadrilateral patches are derived. The unknown surface current density on these quadrilateral patches is determined by setting up and solving the electric field integral equation by the application of the MoM. From the knowledge of the surface current density, the EM scattering from various irregularly shaped plates is determined and compared with the earlier published results. The novelty in the present approach is the use of quadrilateral patches instead of well known and often used triangular patches. The numerical results obtained using the quadrilateral patches compare favorably with measured results.

  4. High-coercivity FePt nanoparticle assemblies embedded in silica thin films.

    PubMed

    Yan, Q; Purkayastha, A; Singh, A P; Li, H; Li, A; Ramanujan, R V; Ramanath, G

    2009-01-14

    The ability to process assemblies using thin film techniques in a scalable fashion would be a key to transmuting the assemblies into manufacturable devices. Here, we embed FePt nanoparticle assemblies into a silica thin film by sol-gel processing. Annealing the thin film composite at 650 degrees C transforms the chemically disordered fcc FePt phase into the fct phase, yielding magnetic coercivity values H(c)>630 mT. The positional order of the particles is retained due to the protection offered by the silica host. Such films with assemblies of high-coercivity magnetic particles are attractive for realizing new types of ultra-high-density data storage devices and magneto-composites.

  5. Short-term responses of overstory and understory vegetation to thinning treatments: a tale of two studies

    Treesearch

    Klaus J. Puettmann; Erich Kyle Dodson; Adrian Ares; Carrie A. Berger

    2013-01-01

    The Density Management Study and Young Stand Th inning and Diversity Study were initiated to investigate whether alternative thinning treatments can accelerate the development of forests toward late-successional structures. An overview of overstory and understory vegetation responses indicates that the magnitude and direction of thinning eff ects initially varied among...

  6. Stratified charge rotary engine combustion studies

    NASA Astrophysics Data System (ADS)

    Shock, H.; Hamady, F.; Somerton, C.; Stuecken, T.; Chouinard, E.; Rachal, T.; Kosterman, J.; Lambeth, M.; Olbrich, C.

    1989-07-01

    Analytical and experimental studies of the combustion process in a stratified charge rotary engine (SCRE) continue to be the subject of active research in recent years. Specifically to meet the demand for more sophisticated products, a detailed understanding of the engine system of interest is warranted. With this in mind the objective of this work is to develop an understanding of the controlling factors that affect the SCRE combustion process so that an efficient power dense rotary engine can be designed. The influence of the induction-exhaust systems and the rotor geometry are believed to have a significant effect on combustion chamber flow characteristics. In this report, emphasis is centered on Laser Doppler Velocimetry (LDV) measurements and on qualitative flow visualizations in the combustion chamber of the motored rotary engine assembly. This will provide a basic understanding of the flow process in the RCE and serve as a data base for verification of numerical simulations. Understanding fuel injection provisions is also important to the successful operation of the stratified charge rotary engine. Toward this end, flow visualizations depicting the development of high speed, high pressure fuel jets are described. Friction is an important consideration in an engine from the standpoint of lost work, durability and reliability. MSU Engine Research Laboratory efforts in accessing the frictional losses associated with the rotary engine are described. This includes work which describes losses in bearing, seal and auxillary components. Finally, a computer controlled mapping system under development is described. This system can be used to map shapes such as combustion chamber, intake manifolds or turbine blades accurately.

  7. Stratified charge rotary engine combustion studies

    NASA Technical Reports Server (NTRS)

    Shock, H.; Hamady, F.; Somerton, C.; Stuecken, T.; Chouinard, E.; Rachal, T.; Kosterman, J.; Lambeth, M.; Olbrich, C.

    1989-01-01

    Analytical and experimental studies of the combustion process in a stratified charge rotary engine (SCRE) continue to be the subject of active research in recent years. Specifically to meet the demand for more sophisticated products, a detailed understanding of the engine system of interest is warranted. With this in mind the objective of this work is to develop an understanding of the controlling factors that affect the SCRE combustion process so that an efficient power dense rotary engine can be designed. The influence of the induction-exhaust systems and the rotor geometry are believed to have a significant effect on combustion chamber flow characteristics. In this report, emphasis is centered on Laser Doppler Velocimetry (LDV) measurements and on qualitative flow visualizations in the combustion chamber of the motored rotary engine assembly. This will provide a basic understanding of the flow process in the RCE and serve as a data base for verification of numerical simulations. Understanding fuel injection provisions is also important to the successful operation of the stratified charge rotary engine. Toward this end, flow visualizations depicting the development of high speed, high pressure fuel jets are described. Friction is an important consideration in an engine from the standpoint of lost work, durability and reliability. MSU Engine Research Laboratory efforts in accessing the frictional losses associated with the rotary engine are described. This includes work which describes losses in bearing, seal and auxillary components. Finally, a computer controlled mapping system under development is described. This system can be used to map shapes such as combustion chamber, intake manifolds or turbine blades accurately.

  8. Theoretical requirements for broadband perfect absorption of acoustic waves by ultra-thin elastic meta-films

    PubMed Central

    Duan, Yuetao; Luo, Jie; Wang, Guanghao; Hang, Zhi Hong; Hou, Bo; Li, Jensen; Sheng, Ping; Lai, Yun

    2015-01-01

    We derive and numerically demonstrate that perfect absorption of elastic waves can be achieved in two types of ultra-thin elastic meta-films: one requires a large value of almost pure imaginary effective mass density and a free space boundary, while the other requires a small value of almost pure imaginary effective modulus and a hard wall boundary. When the pure imaginary density or modulus exhibits certain frequency dispersions, the perfect absorption effect becomes broadband, even in the low frequency regime. Through a model analysis, we find that such almost pure imaginary effective mass density with required dispersion for perfect absorption can be achieved by elastic metamaterials with large damping. Our work provides a feasible approach to realize broadband perfect absorption of elastic waves in ultra-thin films. PMID:26184117

  9. Geometry of thin liquid sheet flows

    NASA Technical Reports Server (NTRS)

    Chubb, Donald L.; Calfo, Frederick D.; Mcconley, Marc W.; Mcmaster, Matthew S.; Afjeh, Abdollah A.

    1994-01-01

    Incompresible, thin sheet flows have been of research interest for many years. Those studies were mainly concerned with the stability of the flow in a surrounding gas. Squire was the first to carry out a linear, invicid stability analysis of sheet flow in air and compare the results with experiment. Dombrowski and Fraser did an experimental study of the disintegration of sheet flows using several viscous liquids. They also detected the formulation of holes in their sheet flows. Hagerty and Shea carried out an inviscid stability analysis and calculated growth rates with experimental values. They compared their calculated growth rates with experimental values. Taylor studied extensively the stability of thin liquid sheets both theoretically and experimentally. He showed that thin sheets in a vacuum are stable. Brown experimentally investigated thin liquid sheet flows as a method of application of thin films. Clark and Dumbrowski carried out second-order stability analysis for invicid sheet flows. Lin introduced viscosity into the linear stability analysis of thin sheet flows in a vacuum. Mansour and Chigier conducted an experimental study of the breakup of a sheet flow surrounded by high-speed air. Lin et al. did a linear stability analysis that included viscosity and a surrounding gas. Rangel and Sirignano carried out both a linear and nonlinear invisid stability analysis that applies for any density ratio between the sheet liquid and the surrounding gas. Now there is renewed interest in sheet flows because of their possible application as low mass radiating surfaces. The objective of this study is to investigate the fluid dynamics of sheet flows that are of interest for a space radiator system. Analytical expressions that govern the sheet geometry are compared with experimental results. Since a space radiator will operate in a vacuum, the analysis does not include any drag force on the sheet flow.

  10. Influence of spray time on the optical and electrical properties of CoNi2S4 thin films

    NASA Astrophysics Data System (ADS)

    El Radaf, I. M.; Fouad, S. S.; Ismail, A. M.; Sakr, G. B.

    2018-04-01

    In this paper, a facile spray pyrolysis technique was utilized to synthesize CoNi2S4 thin films. The influence of spray time on the structural, optical and electrical properties of the CoNi2S4 thin films was studied. The x-ray diffraction studies of the CoNi2S4 thin films illustrate that the films exhibit a polycrystalline nature with cubic structure. The values of the lattice strain ε, and the dislocation density δ, were decreased as the spray time increase while the grain size has reverse manner to lattice strain ε, and the dislocation density δ. The transmittance and reflectance spectra of the CoNi2S4 thin films were recorded in the wavelength range of (400–2500) nm to evaluate the optical parameters of the CoNi2S4 thin films. Optical absorption coefficient of CoNi2S4 thin films revealed a presence of a direct energy gap and the values of energy gap were decreased from 1.68 to 1.53 eV as the spray time increases from 15 min to 45 min. The nonlinear refractive index of the CoNi2S4 thin films was increased with increasing of the spray time. The CoNi2S4 thin films exhibit single activation energy and the activation energy was decreased as the spray time increased.

  11. Tree thinning as an option to increase herbaceous yield of an encroached semi-arid savanna in South Africa

    PubMed Central

    Smit, Gert N

    2005-01-01

    Background The investigation was conducted in a savanna area covered by what was considered an undesirably dense stand of Colophospermum mopane trees, mainly because such a dense stand of trees often results in the suppression of herbaceous plants. The objectives of this study were to determine the influence of intensity of tree thinning on the dry matter yield of herbaceous plants (notably grasses) and to investigate differences in herbaceous species composition between defined subhabitats (under tree canopies, between tree canopies and where trees have been removed). Seven plots (65 × 180 m) were subjected to different intensities of tree thinning, ranging from a totally cleared plot (0 %) to plots thinned to the equivalent of 10 %, 20%, 35 %, 50% and 75 % of the leaf biomass of a control plot (100 %) with a tree density of 2711 plants ha-1. The establishment of herbaceous plants (grasses and forbs) in response to reduced competition from the woody plants was measured during three full growing seasons following the thinning treatments. Results The grass component reacted positively to the tree thinning in terms of total dry matter (DM) yield, but forbs were negatively influenced. Rainfall interacted with tree density and the differences between grass DM yields in thinned plots during years of below average rainfall were substantially higher than those of the control. At high tree densities, yields differed little between seasons of varying rainfall. The relation between grass DM yield and tree biomass was curvilinear, best described by the exponential regression equation. Subhabitat differentiation by C. mopane trees did provide some qualitative benefits, with certain desirable grass species showing a preference for the subhabitat under tree canopies. Conclusion While it can be concluded from this study that high tree densities suppress herbaceous production, the decision to clear/thin the C. mopane trees should include additional considerations. Thinning of C

  12. Cellulose triacetate, thin film dielectric capacitor

    NASA Technical Reports Server (NTRS)

    Yen, Shiao-Ping S. (Inventor); Jow, T. Richard (Inventor)

    1995-01-01

    Very thin films of cellulose triacetate are cast from a solution containing a small amount of high boiling temperature, non-solvent which evaporates last and lifts the film from the casting surface. Stretched, oriented, crystallized films have high electrical breakdown properties. Metallized films less than about 2 microns in thickness form self-healing electrodes for high energy density, pulsed power capacitors. Thicker films can be utilized as a dielectric for a capacitor.

  13. Cellulose triacetate, thin film dielectric capacitor

    NASA Technical Reports Server (NTRS)

    Yen, Shiao-Ping S. (Inventor); Jow, T. Richard (Inventor)

    1993-01-01

    Very thin films of cellulose triacetate are cast from a solution containing a small amount of high boiling temperature, non-solvent which evaporates last and lifts the film from the casting surface. Stretched, oriented, crystallized films have high electrical breakdown properties. Metallized films less than about 2 microns in thickness form self-healing electrodes for high energy density, pulsed power capacitors. Thicker films can be utilized as a dielectric for a capacitor.

  14. Stability, intermittency and universal Thorpe length distribution in a laboratory turbulent stratified shear flow

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Odier, Philippe; Ecke, Robert E.

    Stratified shear flows occur in many geophysical contexts, from oceanic overflows and river estuaries to wind-driven thermocline layers. In this study, we explore a turbulent wall-bounded shear flow of lighter miscible fluid into a quiescent fluid of higher density with a range of Richardson numbersmore » $$0.05\\lesssim Ri\\lesssim 1$$. In order to find a stability parameter that allows close comparison with linear theory and with idealized experiments and numerics, we investigate different definitions of$Ri$$. We find that a gradient Richardson number defined on fluid interface sections where there is no overturning at or adjacent to the maximum density gradient position provides an excellent stability parameter, which captures the Miles–Howard linear stability criterion. For small $$Ri$$ the flow exhibits robust Kelvin–Helmholtz instability, whereas for larger $$Ri$$ interfacial overturning is more intermittent with less frequent Kelvin–Helmholtz events and emerging Holmboe wave instability consistent with a thicker velocity layer compared with the density layer. We compute the perturbed fraction of interface as a quantitative measure of the flow intermittency, which is approximately 1 for the smallest $$Ri$$ but decreases rapidly as $$Ri$ increases, consistent with linear theory. For the perturbed regions, we use the Thorpe scale to characterize the overturning properties of these flows. The probability distribution of the non-zero Thorpe length yields a universal exponential form, suggesting that much of the overturning results from increasingly intermittent Kelvin–Helmholtz instability events. Finally, the distribution of turbulent kinetic energy, conditioned on the intermittency fraction, has a similar form, suggesting an explanation for the universal scaling collapse of the Thorpe length distribution.« less

  15. Stability, intermittency and universal Thorpe length distribution in a laboratory turbulent stratified shear flow

    DOE PAGES

    Odier, Philippe; Ecke, Robert E.

    2017-02-21

    Stratified shear flows occur in many geophysical contexts, from oceanic overflows and river estuaries to wind-driven thermocline layers. In this study, we explore a turbulent wall-bounded shear flow of lighter miscible fluid into a quiescent fluid of higher density with a range of Richardson numbersmore » $$0.05\\lesssim Ri\\lesssim 1$$. In order to find a stability parameter that allows close comparison with linear theory and with idealized experiments and numerics, we investigate different definitions of$Ri$$. We find that a gradient Richardson number defined on fluid interface sections where there is no overturning at or adjacent to the maximum density gradient position provides an excellent stability parameter, which captures the Miles–Howard linear stability criterion. For small $$Ri$$ the flow exhibits robust Kelvin–Helmholtz instability, whereas for larger $$Ri$$ interfacial overturning is more intermittent with less frequent Kelvin–Helmholtz events and emerging Holmboe wave instability consistent with a thicker velocity layer compared with the density layer. We compute the perturbed fraction of interface as a quantitative measure of the flow intermittency, which is approximately 1 for the smallest $$Ri$$ but decreases rapidly as $$Ri$ increases, consistent with linear theory. For the perturbed regions, we use the Thorpe scale to characterize the overturning properties of these flows. The probability distribution of the non-zero Thorpe length yields a universal exponential form, suggesting that much of the overturning results from increasingly intermittent Kelvin–Helmholtz instability events. Finally, the distribution of turbulent kinetic energy, conditioned on the intermittency fraction, has a similar form, suggesting an explanation for the universal scaling collapse of the Thorpe length distribution.« less

  16. Towards Enhanced Performance Thin-film Composite Membranes via Surface Plasma Modification

    PubMed Central

    Reis, Rackel; Dumée, Ludovic F.; Tardy, Blaise L.; Dagastine, Raymond; Orbell, John D.; Schutz, Jürg A.; Duke, Mikel C.

    2016-01-01

    Advancing the design of thin-film composite membrane surfaces is one of the most promising pathways to deal with treating varying water qualities and increase their long-term stability and permeability. Although plasma technologies have been explored for surface modification of bulk micro and ultrafiltration membrane materials, the modification of thin film composite membranes is yet to be systematically investigated. Here, the performance of commercial thin-film composite desalination membranes has been significantly enhanced by rapid and facile, low pressure, argon plasma activation. Pressure driven water desalination tests showed that at low power density, flux was improved by 22% without compromising salt rejection. Various plasma durations and excitation powers have been systematically evaluated to assess the impact of plasma glow reactions on the physico-chemical properties of these materials associated with permeability. With increasing power density, plasma treatment enhanced the hydrophilicity of the surfaces, where water contact angles decreasing by 70% were strongly correlated with increased negative charge and smooth uniform surface morphology. These results highlight a versatile chemical modification technique for post-treatment of commercial membrane products that provides uniform morphology and chemically altered surface properties. PMID:27363670

  17. A mechanically enhanced hybrid nano-stratified barrier with a defect suppression mechanism for highly reliable flexible OLEDs.

    PubMed

    Jeong, Eun Gyo; Kwon, Seonil; Han, Jun Hee; Im, Hyeon-Gyun; Bae, Byeong-Soo; Choi, Kyung Cheol

    2017-05-18

    Understanding the mechanical behaviors of encapsulation barriers under bending stress is important when fabricating flexible organic light-emitting diodes (FOLEDs). The enhanced mechanical characteristics of a nano-stratified barrier were analyzed based on a defect suppression mechanism, and then experimentally demonstrated. Following the Griffith model, naturally-occurring cracks, which were caused by Zn etching at the interface of the nano-stratified structure, can curb the propagation of defects. Cross-section images after bending tests provided remarkable evidence to support the existence of a defect suppression mechanism. Many visible cracks were found in a single Al 2 O 3 layer, but not in the nano-stratified structure, due to the mechanism. The nano-stratified structure also enhanced the barrier's physical properties by changing the crystalline phase of ZnO. In addition, experimental results demonstrated the effect of the mechanism in various ways. The nano-stratified barrier maintained a low water vapor transmission rate after 1000 iterations of a 1 cm bending radius test. Using this mechanically enhanced hybrid nano-stratified barrier, FOLEDs were successfully encapsulated without losing mechanical or electrical performance. Finally, comparative lifetime measurements were conducted to determine reliability. After 2000 hours of constant current driving and 1000 iterations with a 1 cm bending radius, the FOLEDs retained 52.37% of their initial luminance, which is comparable to glass-lid encapsulation, with 55.96% retention. Herein, we report a mechanically enhanced encapsulation technology for FOLEDs using a nano-stratified structure with a defect suppression mechanism.

  18. Thin films with disordered nanohole patterns for solar radiation absorbers

    NASA Astrophysics Data System (ADS)

    Fang, Xing; Lou, Minhan; Bao, Hua; Zhao, C. Y.

    2015-06-01

    The radiation absorption in thin films with three disordered nanohole patterns, i.e., random position, non-uniform radius, and amorphous pattern, are numerically investigated by finite-difference time-domain (FDTD) simulations. Disorder can alter the absorption spectra and has an impact on the broadband absorption performance. Compared to random position and non-uniform radius nanoholes, amorphous pattern can induce a much better integrated absorption. The power density spectra indicate that amorphous pattern nanoholes reduce the symmetry and provide more resonance modes that are desired for the broadband absorption. The application condition for amorphous pattern nanoholes shows that they are much more appropriate in absorption enhancement for weak absorption materials. Amorphous silicon thin films with disordered nanohole patterns are applied in solar radiation absorbers. Four configurations of thin films with different nanohole patterns show that interference between layers in absorbers will change the absorption performance. Therefore, it is necessary to optimize the whole radiation absorbers although single thin film with amorphous pattern nanohole has reached optimal absorption.

  19. Seasonal development of loblolly pine lateral roots in response to stand density and fertilization

    Treesearch

    M.A. Sword

    1998-01-01

    In 1989, two levels each of stand density and fertilization treatments were factorially established in a 9-year-old loblolly pine plantation on a P-deficient Gulf Coastal Plain site in Rapides Parish, Louisiana, USA. In 1995, a second thinning was conducted on the previously thinned plots and fertilizer was re-applied to the previously fertilized plots. The morphology...

  20. Piezoresistivity of mechanically drawn single-walled carbon nanotube (SWCNT) thin films-: mechanism and optimizing principle

    NASA Astrophysics Data System (ADS)

    Obitayo, Waris

    The individual carbon nanotube (CNT) based strain sensors have been found to have excellent piezoresistive properties with a reported gauge factor (GF) of up to 3000. This GF on the other hand, has been shown to be structurally dependent on the nanotubes. In contrast, to individual CNT based strain sensors, the ensemble CNT based strain sensors have very low GFs e.g. for a single walled carbon nanotube (SWCNT) thin film strain sensor, GF is ~1. As a result, studies which are mostly numerical/analytical have revealed the dependence of piezoresistivity on key parameters like concentration, orientation, length and diameter, aspect ratio, energy barrier height and Poisson ratio of polymer matrix. The fundamental understanding of the piezoresistive mechanism in an ensemble CNT based strain sensor still remains unclear, largely due to discrepancies in the outcomes of these numerical studies. Besides, there have been little or no experimental confirmation of these studies. The goal of my PhD is to study the mechanism and the optimizing principle of a SWCNT thin film strain sensor and provide experimental validation of the numerical/analytical investigations. The dependence of the piezoresistivity on key parameters like orientation, network density, bundle diameter (effective tunneling area), and length is studied, and how one can effectively optimize the piezoresistive behavior of a SWCNT thin film strain sensors. To reach this goal, my first research accomplishment involves the study of orientation of SWCNTs and its effect on the piezoresistivity of mechanically drawn SWCNT thin film based piezoresistive sensors. Using polarized Raman spectroscopy analysis and coupled electrical-mechanical test, a quantitative relationship between the strain sensitivity and SWCNT alignment order parameter was established. As compared to randomly oriented SWCNT thin films, the one with draw ratio of 3.2 exhibited ~6x increase on the GF. My second accomplishment involves studying the