Dephosphorylation of 2-deoxyglucose 6-phosphate and 2-deoxyglucose export from cultured astrocytes.
Forsyth, R J; Bartlett, K; Eyre, J
1996-03-01
Neurotransmitter-stimulated mobilization of astrocyte glycogen has been proposed as a basis for local energy homeostasis in brain. However, uncertainty remains over the fate of astrocyte glycogen. Upon transfer of cultured astrocytes pre-loaded with [2-3H]2-deoxyglucose 6-phosphate at non-tracer concentrations to a glucose-free, 2-deoxyglucose-free medium, rapid dephosphorylation of a proportion of the intracellular 2-deoxyglucose 6-phosphate pool and export of 2-deoxyglucose to the extracellular fluid occurs. Astrocytes show very low, basal rates of gluconeogenesis from pyruvate (approx. 1 nmol mg protein-1 h-1). Astrocytes in vivo may be capable of physiologically significant glucose export from glucose-6-phosphate. The low gluconeogenic activity in astrocytes suggests that the most likely source of glucose-6-phosphate may be glycogen. These findings support the hypothesis that export, as glucose, to adjacent neurons may be one of the possible fate(s) of astrocytic glycogen. Such export of glycogen as glucose occurring in response to increases in neuronal activity could contribute to energy homeostasis on a paracrine scale within brain.
The role of FDG-PET in detecting rejection after liver transplantation.
Watson, Ashley M; Bhutiani, Neal; Philips, Prejesh; Davis, Eric G; Eng, Mary; Cannon, Robert M; Jones, Christopher M
2018-05-15
The activation and increased metabolic activity of T cells in acute cellular rejection could allow fluoro-2-deoxyglucose positron emission tomography to be utilized for detection of acute cellular rejection. The objective of this study was to evaluate the effectiveness of fluoro-2-deoxyglucose positron emission tomography in detecting acute cellular rejection in the clinical setting. Fluoro-2-deoxyglucose positron emission tomography studies were performed on 88 orthotopic liver transplant patients at 7 and 17 days postoperatively (first positron emission tomography and second positron emission tomography, respectively). Additional studies were performed if patients had suspicion of rejection and at resolution of rejection (third positron emission tomography and fourth positron emission tomography, respectively). A circular region of interest was placed over the liver for semiquantitative evaluation of fluoro-2-deoxyglucose positron emission tomography images by means of standard uptake values. Eighteen of 88 patients in our study (20.5%) had histologically proven acute cellular rejection during a 16 ± 11 day follow-up. There was no significant difference between the standard uptake values of first positron emission tomography among non-rejecters versus rejecters (2.05 ±0.46 non-rejecters versus 1.82 ± 0.40 rejecters, P = .127). Within the rejection cohort, the standard uptake values from the third positron emission tomography (rejection) were higher compared to the first positron emission tomography (baseline) (2.41 ± 0.48 third positron emission tomography versus 1.82 ± 0.41 first positron emission tomography, P < .001). Increased signal on fluoro-2-deoxyglucose positron emission tomography over baseline is associated with acute cellular rejection in liver transplant recipients. Additional prospective validation studies are essential to define the role of fluoro-2-deoxyglucose positron emission tomography scan as an early marker for acute cellular rejection. Copyright © 2018 Elsevier Inc. All rights reserved.
2-deoxyglucose as a selective agent for derepressed mutants of Pichia stipitis
Hassan K. Sreenath; Thomas W. Jeffries
1998-01-01
The glucose analog 2-deoxyglucose (2-DOG) has been used to obtain mutants derepressed for pentose metabolism. Some researchers have used 2-DOG alone whereas others have used it in the presence of a glucoserepressible carbon source. We examined both methods and screened mutant strains for improved use of xylose in the presence of glucose. Pichia stipitis mutants...
Lea, Michael A; Qureshi, Mehreen S; Buxhoeveden, Michael; Gengel, Nicolette; Kleinschmit, Jessica; Desbordes, Charles
2013-02-01
In previous studies performed by our group, we observed that 2-deoxyglucose blocked the acidification of the medium used for culture of colon cancer cells caused by incubation with biguanides and it had an additive inhibitory effect on growth. In the present work, we found that 3-bromopyruvate can also prevent the lowering of pH caused by biguanide treatment. 3-Bromopyruvate inhibited colonic cancer cell proliferation, but the effect was not always additive to that of biguanides and an additive effect was more notable in combined treatment with 3-bromopyruvate and 2-deoxyglucose. The induction of alkaline phosphatase activity by butyrate was not consistently affected by combination with other agents that modified glucose metabolism. The drug combinations that were examined inhibited proliferation of wild-type and p53-null cells and affected colonic cancer lines with different growth rates.
Lea, Michael A.; Qureshi, Mehreen S.; Buxhoeveden, Michael; Gengel, Nicolette; Kleinschmit, Jessica; desBordes, Charles
2013-01-01
In previous studies we observed that 2-deoxyglucose blocked the acidification of the medium used for culture of colon cancer cells caused by incubation with biguanides and had an additive inhibitory effect on growth. In the present work, we found that 3-bromopyruvate can also prevent the lowering of pH caused by biguanide treatment. 3-Bromopyruvate inhibited colonic cancer cell proliferation but the effect was not always additive to that of biguanides and an additive effect was more notable in combined treatment with 3-bromopyruvate and 2-deoxyglucose. The induction of alkaline phosphatase activity by butyrate was not consistently affected by combination with other agents that modified glucose metabolism. The drug combinations that were examined inhibited proliferation of wild-type and P53 null cells and affected colonic cancer lines with different growth rates. PMID:23393330
Testosterone enhances C-14 2-deoxyglucose uptake by striated muscle. [sex hormones and muscle
NASA Technical Reports Server (NTRS)
Toop, J.; Max, S. R.
1982-01-01
The effect of testosterone propionate (TP) on C-14 2-deoxyglucose (C-14 2DG) uptake was studied in the rat levator ani muscle in vivo using the autoradiographic technique. Following a delay of 1 to 3 h after injecting TP, the rate of C-14 2DG uptake in experimental animals began to increase and continued to increase for at least 20 h. The label, which corresponds to C-14 2-deoxyglucose 6-phosphate, as demonstrated by chromatographic analysis of muscle extracts, was uniformly distributed over the entire muscle and was predominantly in muscle fibers, although nonmuscular elements were also labeled. The 1 to 3 h time lag suggests that the TP effect may be genomic, acting via androgen receptors, rather than directly on muscle membranes. Acceleration of glucose uptake may be an important early event in the anabolic response of the rat levator ani muscle to androgens.
Yu, B; Schroeder, A; Nagy, L E
2000-12-01
Short-term exposure to ethanol impairs glucose homeostasis, but the effects of ethanol on individual components of the glucose disposal pathway are not known. To understand the mechanisms by which ethanol disrupts glucose homeostasis, we have investigated the direct effects of ethanol on glucose uptake and translocation of GLUT-4 in H9c2 myotubes. Short-term treatment with 12.5-50 mM ethanol increased uptake of 2-deoxyglucose by 1.8-fold in differentiated myotubes. Pretreatment of H9c2 myotubes with 100 nM wortmannin, an inhibitor of phosphatidylinositol 3-kinase, had no effect on ethanol-induced increases in 2-deoxyglucose uptake. In contrast, preincubation with 25 microM dantrolene, an inhibitor of Ca(2+) release from the sarcoplasmic reticulum, blocked the stimulation of 2-deoxyglucose uptake by ethanol. Increased 2-deoxyglucose uptake after ethanol treatment was associated with a decrease in small intracellular GLUT-4 vesicles and an increase in GLUT-4 localized at the cell surface. In contrast, ethanol had no effect on the quantity of GLUT-1 and GLUT-3 at the plasma membrane. These data demonstrate that physiologically relevant concentrations of ethanol disrupt the trafficking of GLUT-4 in H9c2 myotubes resulting in translocation of GLUT-4 to the plasma membrane and increased glucose uptake.
Bele, M S; Gajare, K A; Deshmukh, A A
2015-06-01
Typical form of neurons is crucially important for their functions. This is maintained by microtubules and associated proteins like tau. Hyperphosphorylation of tau is a major concern in neurodegenerative diseases. Glycogen synthase kinase3β (GSK3β) and cyclin-dependent protein kinase 5 (Cdk5) are the enzymes that govern tau phosphorylation. Currently, efforts are being made to target GSK3β and Cdk5 as possible therapeutic avenues to control tau phosphorylation and treat neurodegenerative diseases related to taupathies. In a number of studies, caloric restriction mimetic 2-deoxyglucose (C6H12O5) was found to be beneficial in improving the brain functions. However, no reports are available on the effect of 2-deoxyglucose 2-DG on tau phosphorylation. In the present study, hippocampal pyramidal neurons from E17 mouse embryos were isolated and cultured on poly-L-lysine-coated coverslips. Neurons from the experimental group were treated with 10 mM 2-deoxyglucose. The treatment of 2-DG resulted in healthier neuronal morphology in terms of significantly lower number of cytoplasmic vacuoles, little or no membrane blebbings, maintained axon hillock and intact neurites. There were decreased immunofluorescence signals for GSK3β, pTau at Ser262, Cdk5 and pTau at Ser235 suggesting decreased tau phosphorylation, which was further confirmed by Western blotting. The results indicate the beneficial effects of 2-DG in controlling the tau phosphorylation and maintaining the healthy neuronal cytoarchitecture.
Ngala, R A; O'Dowd, J; Wang, S J; Agarwal, A; Stocker, C; Cawthorne, M A; Arch, J R S
2008-01-01
Background and purpose: Picomolar concentrations of the β3-adrenoceptor agonist BRL37344 stimulate 2-deoxyglucose uptake in soleus muscle via undefined receptors. Higher concentrations alter uptake, apparently via β2-adrenoceptors. Effects of BRL37344 and β2-adrenoceptor agonists are compared. Experimental approach: Mouse soleus muscles were incubated with 2-deoxy[1-14C]-glucose, [1-14C]-palmitate or [2-14C]-pyruvate, and BRL37344, β2-adrenoceptor agonists and selective β-adrenoceptor antagonists. Formation of 2-deoxy[1-14C]-glucose-6-phosphate or 14CO2 was measured. 2-Deoxy[1-14C]-glucose uptake and β-adrenoceptor mRNA were measured in C2C12 cells. Key results: 10 pM BRL37344, 10 pM clenbuterol and 100 pM salbutamol stimulated 2-deoxyglucose uptake in soleus muscle by 33–54%. The effect of BRL37344 was prevented by 1 μM atenolol but not by 300 nM CGP20712A or IC3118551, or 1 μM SR59230A; that of clenbuterol was prevented by ICI118551 but not atenolol. 10 nM BRL37344 st4mulated 2-deoxyglucose uptake, whereas 100 nM clenbuterol and salbutamol inhibited uptake. These effects were blocked by ICI118551. Similar results were obtained in C2C12 cells, in which only β2-adrenoceptor mRNA could be detected by RT-PCR. 10 nM BRL37344 and 10 pM clenbuterol stimulated muscle palmitate oxidation. In the presence of palmitate, BRL37344 no longer stimulated 2-deoxyglucose uptake and the effect of clenbuterol was not significant. Conclusions and implications: Stimulation of glucose uptake by 10 pM BRL37344 and clenbuterol involves different atypical pharmacologies. Nanomolar concentrations of BRL37344 and clenbuterol, probably acting via β2-adrenoceptors, have opposite effects on glucose uptake. The agonists preferentially stimulate fat rather than carbohydrate oxidation, but stimulation of endogenous fat oxidation cannot explain why 100 nM clenbuterol inhibited 2-deoxyglucose uptake. PMID:18552870
2014-01-01
Introduction Ganglioneuroma is a rare tumor in the posterior mediastinum; fat-containing ganglioneuromas are rarely reported. The present case report documents a brown fat-containing, posterior mediastinal ganglioneuroma, which has not been reported previously. Radiological examination, in particular 18F-2-fluoro-2-deoxyglucose-positron emission tomography, suggested that the tumor had low-grade malignant potential. This led to uncertainty at preoperative diagnosis. Case presentation An asymptomatic 66-year-old Japanese woman with no significant past medical history was referred for the evaluation of a posterior mediastinal mass. Although its size had not changed in the past 5 years, a malignant lipomatous tumor could not be excluded due to the presence of intratumoral fat and increased 18F-2-fluoro-2-deoxyglucose uptake observed by positron emission tomography imaging. A computed tomography-guided core-needle biopsy revealed a mixture of mature adipocytes, spindle-shaped cells, and fibrotic stroma. Definite diagnosis was not possible, and surgical resection was performed. Three years after the surgery, she remains disease-free. Conclusions Histological diagnosis of the surgically resected mass confirmed ganglioneuroma with substantial amounts of white and brown adipose tissues in peripheral areas. The existence of both ganglion cells and brown fat tissue intensified the accumulation of 18F-2-fluoro-2-deoxyglucose, resulting in a false-positive result by positron emission tomography. Considering this, ganglioneuroma should not be excluded either clinically or pathologically in fat-containing, posterior mediastinal tumors. PMID:25319096
Izawati, Abang Masli Dayang; Masani, Mat Yunus Abdul; Ismanizan, Ismail; Parveez, Ghulam Kadir Ahmad
2015-01-01
DOGR1, which encodes 2-deoxyglucose-6-phosphate phosphatase, has been used as a selectable marker gene to produce transgenic plants. In this study, a transformation vector, pBIDOG, which contains the DOGR1 gene, was transformed into oil palm embryogenic calli (EC) mediated by Agrobacterium tumefaciens strain LBA4404. Transformed EC were exposed to 400 mg l-1 2-deoxyglucose (2-DOG) as the selection agent. 2-DOG resistant tissues were regenerated into whole plantlets on various regeneration media containing the same concentration of 2-DOG. The plantlets were later transferred into soil and grown in a biosafety screenhouse. PCR and subsequently Southern blot analyses were carried out to confirm the integration of the transgene in the plantlets. A transformation efficiency of about 1.0% was obtained using DOGR1 gene into the genome of oil palm. This result demonstrates the potential of using combination of DOGR1 gene and 2-DOG for regenerating transgenic oil palm. PMID:26442041
NASA Astrophysics Data System (ADS)
Poitry-Yamate, C.; Gianoncelli, A.; Kourousias, G.; Kaulich, B.; Lepore, M.; Gruetter, R.; Kiskinova, M.
2013-10-01
Low energy x-ray fluorescence (LEXRF) detection was optimized for imaging cerebral glucose metabolism by mapping the fluorine LEXRF signal of 19F in 19FDG, trapped as intracellular 19F-deoxyglucose-6-phosphate (19FDG-6P) at 1μm spatial resolution from 3μm thick brain slices. 19FDG metabolism was evaluated in brain structures closely resembling the general cerebral cytoarchitecture following formalin fixation of brain slices and their inclusion in an epon matrix. 2-dimensional distribution maps of 19FDG-6P were placed in a cytoarchitectural and morphological context by simultaneous LEXRF mapping of N and O, and scanning transmission x-ray (STXM) imaging. A disproportionately high uptake and metabolism of glucose was found in neuropil relative to intracellular domains of the cell body of hypothalamic neurons, showing directly that neurons, like glial cells, also metabolize glucose. As 19F-deoxyglucose-6P is structurally identical to 18F-deoxyglucose-6P, LEXRF of subcellular 19F provides a link to in vivo 18FDG PET, forming a novel basis for understanding the physiological mechanisms underlying the 18FDG PET image, and the contribution of neurons and glia to the PET signal.
PET scanning in head and neck oncology: a review.
McGuirt, W F; Greven, K; Williams, D; Keyes, J W; Watson, N; Cappellari, J O; Geisinger, K R
1998-05-01
The objective of this study was to review and describe the usage of fluorine-labeled deoxyglucose (FDG) and positron emission tomography (PET) in the diagnosis and management of head and neck cancer. Several prospective series,-including 159 newly diagnosed and previously untreated and 23 previously irradiated head and neck squamous cell carcinoma patients initially seen at the Wake Forest University Medical Center and evaluated by clinical examination, conventional computed tomography/ magnetic resonance imaging (CT/MRI) scans, PET scans, and histopathologic studies,-were reviewed and the findings summarized for comparison of the correct differentiation of primary and metastatic cancers and for postirradiation tumor clearance in a subsegment of those cases. Positron emission tomography scanning using a fluorine-labeled deoxyglucose (FDG) radiotracer proved as reliable as conventional scanning for primary and metastatic tumor identification. Compared with clinical examination, PET was better for identification of nodal metastatic tumors but poorer for small primary tumors. For previously irradiated patients treated at least 4 months before the test, PET scanning was clearly superior to clinical examination and conventional imaging in differentiating tumor recurrence from soft-tissue irradiation effects. Fluorine-labeled deoxyglucose-PET scanning is comparable to conventional imaging of head and neck cancers in detecting primary and metastatic carcinoma. Lack of anatomic detail remains its major drawback. Currently, its greatest role is in the evaluation of the postradiotherapy patient.
Stenbit, A E; Burcelin, R; Katz, E B; Tsao, T S; Gautier, N; Charron, M J; Le Marchand-Brustel, Y
1996-08-01
The ability of muscles from Glut 4-null mice to take up and metabolize glucose has been studied in the isolated white EDL and red soleus muscles. In EDL muscles from male or female Glut 4-null mice, basal deoxyglucose uptake was lower than in control muscles and was not stimulated by insulin. In parallel, glycogen synthesis and content were decreased. Soleus muscles from male Glut 4-null mice took up twice more deoxyglucose in the absence of insulin than control muscles, but did not respond to insulin. In females, soleus deoxyglucose uptake measured in the absence of hormone was similar in Glut 4-null mice and in control mice. This uptake was stimulated twofold in Glut 4-null mice and threefold in control mice. Basal glycogen synthesis was increased by 4- and 2.2-fold in male and female null mice, respectively, compared to controls, and insulin had no or small (20% stimulation over basal) effect. These results indicate that while EDL muscles behaved as expected, soleus muscles were able to take up a large amount of glucose in the absence (males) or the presence of insulin (females). Whether this is due to a change in Glut 1 intrinsic activity or targeting and/or to the appearance of another glucose transporter remains to be determined.
Suppression of gain-of-function mutant p53 with metabolic inhibitors reduces tumor growth in vivo
Jung, Chae Lim; Mun, Hyemin; Jo, Se-Young; Oh, Ju-Hee; Lee, ChuHee; Choi, Eun-Kyung; Jang, Se Jin; Suh, Young-Ah
2016-01-01
Mutation of p53 occasionally results in a gain of function, which promotes tumor growth. We asked whether destabilizing the gain-of-function protein would kill tumor cells. Downregulation of the gene reduced cell proliferation in p53-mutant cells, but not in p53-null cells, indicating that the former depended on the mutant protein for survival. Moreover, phenformin and 2-deoxyglucose suppressed cell growth and simultaneously destabilized mutant p53. The AMPK pathway, MAPK pathway, chaperone proteins and ubiquitination all contributed to this process. Interestingly, phenformin and 2-deoxyglucose also reduced tumor growth in syngeneic mice harboring the p53 mutation. Thus, destabilizing mutant p53 protein in order to kill cells exhibiting “oncogene addiction” could be a promising strategy for combatting p53 mutant tumors. PMID:27765910
Suppression of gain-of-function mutant p53 with metabolic inhibitors reduces tumor growth in vivo.
Jung, Chae Lim; Mun, Hyemin; Jo, Se-Young; Oh, Ju-Hee; Lee, ChuHee; Choi, Eun-Kyung; Jang, Se Jin; Suh, Young-Ah
2016-11-22
Mutation of p53 occasionally results in a gain of function, which promotes tumor growth. We asked whether destabilizing the gain-of-function protein would kill tumor cells. Downregulation of the gene reduced cell proliferation in p53-mutant cells, but not in p53-null cells, indicating that the former depended on the mutant protein for survival. Moreover, phenformin and 2-deoxyglucose suppressed cell growth and simultaneously destabilized mutant p53. The AMPK pathway, MAPK pathway, chaperone proteins and ubiquitination all contributed to this process. Interestingly, phenformin and 2-deoxyglucose also reduced tumor growth in syngeneic mice harboring the p53 mutation. Thus, destabilizing mutant p53 protein in order to kill cells exhibiting "oncogene addiction" could be a promising strategy for combatting p53 mutant tumors.
Design and Synthesis of Novel Arctigenin Analogues for the Amelioration of Metabolic Disorders
2015-01-01
Analogues of the natural product (−)-arctigenin, an activator of adenosine monophosphate activated protein kinase, were prepared in order to evaluate their effects on 2-deoxyglucose uptake in L6 myotubes and possible use in ameliorating metabolic disorders. Racemic arctigenin 2a was found to display a similar uptake enhancement as does (−)-arctigenin. As a result, the SAR study was conducted utilizing racemic compounds. The structure–activity relationship study led to the discovery of key substitution patterns on the lactone motif that govern 2-deoxyglucose uptake activities. The results show that replacement of the para-hydroxyl group of the C-2 benzyl moiety of arctigenin by Cl has a pronounced effect on uptake activity. Specifically, analogue 2p, which contains the p-Cl substituent, stimulates glucose uptake and fatty acid oxidation in L6 myotubes. PMID:25941553
Design and synthesis of novel arctigenin analogues for the amelioration of metabolic disorders.
Duan, Shudong; Huang, Suling; Gong, Jian; Shen, Yu; Zeng, Limin; Feng, Ying; Ren, Wenming; Leng, Ying; Hu, Youhong
2015-04-09
Analogues of the natural product (-)-arctigenin, an activator of adenosine monophosphate activated protein kinase, were prepared in order to evaluate their effects on 2-deoxyglucose uptake in L6 myotubes and possible use in ameliorating metabolic disorders. Racemic arctigenin 2a was found to display a similar uptake enhancement as does (-)-arctigenin. As a result, the SAR study was conducted utilizing racemic compounds. The structure-activity relationship study led to the discovery of key substitution patterns on the lactone motif that govern 2-deoxyglucose uptake activities. The results show that replacement of the para-hydroxyl group of the C-2 benzyl moiety of arctigenin by Cl has a pronounced effect on uptake activity. Specifically, analogue 2p, which contains the p-Cl substituent, stimulates glucose uptake and fatty acid oxidation in L6 myotubes.
Ahn, Seong Kyu; Cho, Pyo Yun; Na, Byoung-Kuk; Hong, Sung-Jong; Nam, Ho-Woo; Sohn, Woon-Mok; Ardelli, Bernadette F; Park, Yun-Kyu; Kim, Tong-Soo; Cha, Seok Ho
2016-01-01
A complementary DNA (cDNA) encoding a glucose transporter of Clonorchis sinensis (CsGLUT) was isolated from the adult C. sinensis cDNA library. The open reading frame of CsGLUT cDNA consists of 1653 base pairs that encode a 550-amino acid residue protein. Hydropathy analysis suggested that CsGLUT possess 12 putative membrane-spanning domains. The Northern blot analysis result using poly(A)(+)RNA showed a strong band at ~2.1 kb for CsGLUT. When expressed in Xenopus oocytes, CsGLUT mediated the transport of radiolabeled deoxy-D-glucose in a time-dependent but sodium-independent manner. Concentration-dependency results showed saturable kinetics and followed the Michaelis-Menten equation. Nonlinear regression analyses yielded a Km value of 588.5 ± 53.0 μM and a Vmax value of 1500.0 ± 67.5 pmol/oocyte/30 min for [1,2-(3)H]2-deoxy-D-glucose. No trans-uptakes of bile acid (taurocholic acid), amino acids (tryptophan and arginine), or p-aminohippuric acid were observed. CsGLUT-mediated transport of deoxyglucose was significantly and concentration-dependently inhibited by radio-unlabeled deoxyglucose and D-glucose. 3-O-Methylglucose at 10 and 100 μM inhibited deoxyglucose uptake by ~50 % without concentration dependence. No inhibitory effects by galactose, mannose, and fructose were observed. This work may contribute to the molecular biological study of carbohydrate metabolism and new drug development of C. sinensis.
Does perinatal omega-3 polyunsaturated fatty acid deficiency increase appetite signaling?
Mathai, Michael L; Soueid, Mona; Chen, Nora; Jayasooriya, Anura P; Sinclair, Andrew J; Wlodek, Mary E; Weisinger, Harrison S; Weisinger, Richard S
2004-11-01
To investigate the effect of maternal dietary omega-3 polyunsaturated fatty acid (PUFA) deficiency and repletion on food appetite signaling. Sprague-Dawley rat dams were maintained on diets either supplemented with (CON) or deficient in (DEF) omega-3 PUFA. All offspring were raised on the maternal diet until weaning. After weaning, two groups remained on the respective maternal diet (CON and DEF groups), whereas a third group, born of dams fed the DEF diet, were switched to the CON diet (REC). Experiments on food intake began when the male rats reached 16 weeks of age. Food intake was stimulated either by a period of food restriction, by blocking glucose utilization (by 2-deoxyglucose injection), or by blocking beta-oxidation of fatty acids (by beta-mercaptoacetate injection). DEF animals consumed more than CON animals in response to all stimuli, with the greatest difference (1.9-fold) demonstrated following administration of 2-deoxyglucose. REC animals also consumed more than CON animals in response to food restriction and 2-deoxyglucose but not to beta-mercaptoacetate. These findings indicate that supply of omega-3 PUFA, particularly during the perinatal period, plays a role in the normal development of mechanisms controlling food intake, especially glucoprivic (i.e. reduced glucose availability) appetite signaling. Dietary repletion of omega-3 PUFA from 3 weeks of age restored intake responses to fatty acid metabolite signaling but did not reverse those in response to food restriction or glucoprivic stimuli.
Mleczko, Justyna; Ortega, Francisco J.; Falcon‐Perez, Juan Manuel; Wabitsch, Martin; Fernandez‐Real, Jose Manuel
2018-01-01
Scope We investigate the effects of extracellular vesicles (EVs) obtained from in vitro adipocyte cell models and from obese subjects on glucose transport and insulin responsiveness. Methods and results EVs are isolated from the culture supernatant of adipocytes cultured under normoxia, hypoxia (1% oxygen), or exposed to macrophage conditioned media (15% v/v). EVs are isolated from the plasma of lean individuals and subjects with obesity. Cultured adipocytes are incubated with EVs and activation of insulin signalling cascades and insulin‐stimulated glucose transport are measured. EVs released from hypoxic adipocytes impair insulin‐stimulated 2‐deoxyglucose uptake and reduce insulin mediated phosphorylation of AKT. Insulin‐mediated phosphorylation of extracellular regulated kinases (ERK1/2) is not affected. EVs from individuals with obesity decrease insulin stimulated 2‐deoxyglucose uptake in adipocytes (p = 0.0159). Conclusion EVs released by stressed adipocytes impair insulin action in neighboring adipocytes. PMID:29292863
Massardo, Teresa; Jofré, María Josefina; Sierralta, María Paulina; Canessa, José; Castro, Gabriel; Berrocal, Isabel; Gallegos, Iván
2012-09-01
The usefulness of positron emission tomography (PET) with fluorine-deoxyglucose (FDG) in sarcomas and non-sarcoma non-epithelial (NSNE) tumors is not clearly defined. To report a Chilean experience with NSNE tumors evaluated using PET with FDG. Retrospective review of the database of a PET laboratory. Demographic data, indications and metabolic findings were compared with conventional imaging in 88 adults and children with diverse bone and soft tissue sarcomas as well as 24 gastrointestinal stromal tumors (GIST), 6 pleural malignant mesotheliomas in adults, and 9 medulloblastomas in children. FDG showed good concordance with conventional imaging in NSNE tumors. It was helpful for staging, restaging, follow-up after treatment and for the detection of new not previously suspected lesions. PET with FDG could have a prognostic role and help in patient management, mainly in musculoskeletal and high grade or less differentiated sarcomas. In GIST, it was a good tool for immunotherapy control.
Piscopo, Sara-Pier; Drouin, Guy
2014-05-01
Gene conversions are nonreciprocal sequence exchanges between genes. They are relatively common in Saccharomyces cerevisiae, but few studies have investigated the evolutionary fate of gene conversions or their functional impacts. Here, we analyze the evolution and impact of gene conversions between the two genes encoding 2-deoxyglucose-6-phosphate phosphatase in S. cerevisiae, Saccharomyces paradoxus and Saccharomyces mikatae. Our results demonstrate that the last half of these genes are subject to gene conversions among these three species. The greater similarity and the greater percentage of GC nucleotides in the converted regions, as well as the absence of long regions of adjacent common converted sites, suggest that these gene conversions are frequent and occur independently in all three species. The high frequency of these conversions probably result from the fact that they have little impact on the protein sequences encoded by these genes.
Koop, A; Cobbold, P H
1993-01-01
We have devised a technique for monitoring cytoplasmic ATP continuously in single hepatocytes. Single isolated rat hepatocytes were injected with the ATP-dependent luminescent protein firefly luciferase, and then superfused with 45 microM luciferin in air-equilibrated medium. Signals of approx. 10-200 photoelectron counts per second could be recorded from individual healthy cells for up to 3 h. The response of the luminescent signal to chemical hypoxia (2-5 mM CN- and 5-10 mM 2-deoxyglucose) was monitored. We found a great cell-to-cell variability in the time course of the ATP decline in response to CN-, 2-deoxyglucose or to their combination; the time for the signal to fall to 10% of the original (corresponding to approx. 100 microM ATP) ranged from approx. 20 to 75 min. This resistance of the cytoplasmic ATP concentration to depletion after blockade of oxidative phosphorylation and glycolysis could be abolished by pretreatment of the cells with etomoxir, which blocks mitochondrial beta-oxidation. Etomoxir alone had no effect on the luciferase signal, but etomoxir-pre-treated cells showed a prompt fall in the luciferase signal starting within 1-2 min of application of cyanide and 2-deoxyglucose and falling to 10% of the original signal in approx. 6-10 min. The technique allows cytoplasmic ATP changes to be monitored in single hepatocytes at concentrations of 1 mM or lower, but more precise calibration of the signal will require correction for the effects of cytoplasmic pH changes. PMID:8216212
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cooney, G.J.; Astbury, L.D.; Williams, P.F.
The dose-response characteristics of several glucose-utilizing tissues (brain, heart, white adipose tissue, brown adipose tissue, and quadriceps muscle) to a single injection of insulin have been compared in control mice and mice made obese with a single injection of gold thioglucose (GTG). Tissue content of (1-/sup 14/C)2-deoxyglucose 6-phosphate and blood disappearance rate of (1-/sup 14/C)2-deoxyglucose (2-DG) were measured at nine different insulin doses and used to calculate rates of 2-DG uptake and phosphorylation in tissues from control and obese mice. The insulin sensitivity of tissues reflected in the ED50 of insulin response varied widely, and brown adipose tissue was themore » most insulin-sensitive tissue studied. In GTG-obese mice, heart, quadriceps, and brown adipose tissue were insulin resistant (demonstrated by increased ED50), whereas in white adipose tissue, 2-DG phosphorylation was more sensitive to insulin. Brain 2-DG phosphorylation was insulin independent in control and obese animals. The largest decrease in insulin sensitivity in GTG-obese mice was observed in brown adipose tissue. The loss of diet-induced thermogenesis in brown adipose tissue as a result of the hypothalamic lesion in GTG-obese mice could be a major cause of insulin resistance in brown adipose tissue. Because brown adipose tissue can make a major contribution to whole-body glucose utilization, insulin resistance in this tissue may have a significant effect on whole-animal glucose homeostasis in GTG-obese mice.« less
Thoden, James B; Holden, Hazel M
2014-06-01
Unusual di- and trideoxysugars are often found on the O-antigens of Gram-negative bacteria, on the S-layers of Gram-positive bacteria, and on various natural products. One such sugar is 3-acetamido-3,6-dideoxy-D-glucose. A key step in its biosynthesis, catalyzed by a 3,4-ketoisomerase, is the conversion of thymidine diphosphate (dTDP)-4-keto-6-deoxyglucose to dTDP-3-keto-6-deoxyglucose. Here we report an X-ray analysis of a 3,4-ketoisomerase from Thermoanaerobacterium thermosaccharolyticum. For this investigation, the wild-type enzyme, referred to as QdtA, was crystallized in the presence of dTDP and its structure solved to 2.0-Å resolution. The dimeric enzyme adopts a three-dimensional architecture that is characteristic for proteins belonging to the cupin superfamily. In order to trap the dTDP-4-keto-6-deoxyglucose substrate into the active site, a mutant protein, H51N, was subsequently constructed, and the structure of this protein in complex with the dTDP-sugar ligand was solved to 1.9-Å resolution. Taken together, the structures suggest that His 51 serves as a catalytic base, that Tyr 37 likely functions as a catalytic acid, and that His 53 provides a proton shuttle between the C-3' hydroxyl and the C-4' keto group of the hexose. This study reports the first three-dimensional structure of a 3,4-ketoisomerase in complex with its dTDP-sugar substrate and thus sheds new molecular insight into this fascinating class of enzymes. © 2014 The Protein Society.
Tomás, Mónica; Lázaro-Diéguez, Francisco; Durán, Juan M; Marín, Pilar; Renau-Piqueras, Jaime; Egea, Gustavo
2003-10-01
Ethanol induces severe alterations in membrane trafficking in hepatocytes and astrocytes, the molecular basis of which is unclear. One of the main candidates is the cytoskeleton and the molecular components that regulate its organization and dynamics. Here, we examine the effect of chronic exposure to ethanol on the organization and dynamics of actin and microtubule cytoskeletons and glucose uptake in rat astrocytes. Ethanol-treated cells cultured in either the presence or absence of fetal calf serum showed a significant increase in 2-deoxyglucose uptake. Ethanol also caused alterations in actin organization, consisting of the dissolution of stress fibres and the appearance of circular filaments beneath the plasma membrane. When lysophosphatidic acid (LPA), which is a normal constituent of serum and a potent intercellular lipid mediator with growth factor and actin rearrangement activities, was added to ethanol-treated astrocytes cultured without fetal calf serum, it induced the re-appearance of actin stress fibres and the normalization of 2-deoxyglucose uptake. Furthermore, ethanol also perturbed the microtubule dynamics, which delayed the recovery of the normal microtubule organization following removal of the microtubule-disrupting agent nocodazole. Again, pre-treatment with LPA prevented this alteration. Ethanol-treated rodent fibroblast NIH3T3 cells that constitutively express an activated Rho mutant protein (GTP-bound form) were insensitive to ethanol, as they showed no alteration either in actin stress-fibre organization or in 2-deoxyglucose uptake. We discuss the putative signalling targets by which ethanol could alter the cytoskeleton and hexose uptake and the cytoprotective effect of LPA against ethanol-induced damages. The latter opens the possibility that LPA or a similar non-hydrolysable lipid derivative could be used as a cytoprotective agent against the noxious effects of ethanol.
Uptake of (/sup 14/C)deoxyglucose into brain of young rats with inherited hydrocephalus
DOE Office of Scientific and Technical Information (OSTI.GOV)
Richards, H.K.; Bucknall, R.M.; Jones, H.C.
1989-02-01
The effect of hydrocephalus on cerebral glucose utilization as reflected by deoxyglucose uptake has been examined in rats with inherited hydrocephalus at 10, 20, and 28 days after birth using a semiquantitative method. Injection of (14C)deoxyglucose intraperitoneally was followed by freezing the brain, sectioning, and quantitative autoradiography of 10 brain regions. Brain (14C) concentration, cortical thickness, and plasma glucose concentrations were measured. Maximal thinning of the cerebral cortex had already occurred by 10 days after birth, although obvious symptoms such as gait disturbance developed after 20 days. In control rats, the cerebral isotope concentration was lower and more homogeneous atmore » 10 days than at 20 or 28 days, which may be a reflection of the use of metabolic substrates other than glucose in younger animals. In order to make comparisons between control and hydrocephalic groups, tissue isotope concentrations were normalized to cerebellar cortex which was not affected by the hydrocephalus at any age. In hydrocephalic rats at 10 and 20 days, the concentration of (14C) was lower in all areas except the inferior colliculi and pons but the reduction was only significant in the sensory-motor cortex at 10 days and in the caudate nuclei at 20 days. By 28 days after birth, all areas except the cerebellum (six cortical regions, inferior colliculi, pons, and caudate) had significantly lower isotope concentrations in the hydrocephalic group. It is concluded that cerebral glucose metabolism is significantly reduced by 28 days after birth in H-Tx rats with congenital hydrocephalus and that less marked reductions occur prior to 28 days.« less
Ferreira, Graziella Nascimento; Rossi-Valentim, Rafael; Buzelle, Samyra Lopes; Paula-Gomes, Sílvia; Zanon, Neusa Maria; Garófalo, Maria Antonieta Rissato; Frasson, Danúbia; Navegantes, Luiz Carlos Carvalho; Chaves, Valéria Ernestânia; Kettelhut, Isis do Carmo
2017-08-01
Investigate the glycerol-3-phosphate generation pathways in epididymal (EPI) and retroperitoneal (RETRO) adipose tissues from dexamethasone-treated rats. Rats were treated with dexamethasone for 7 days. Glycerol-3-phosphate generation pathways via glycolysis, glyceroneogenesis and direct phosphorylation of glycerol were evaluated, respectively, by 2-deoxyglucose uptake, phosphoenolpyruvate carboxykinase (PEPCK-C) activity and pyruvate incorporation into triacylglycerol (TAG)-glycerol, and glycerokinase activity and glycerol incorporation into TAG-glycerol. Dexamethasone treatment markedly decreased the body weight, but increased the weight and lipid content of EPI and RETRO and plasma insulin, glucose, non-esterified fatty acid and TAG levels. EPI and RETRO from dexamethasone-treated rats showed increased rates of de novo fatty acid synthesis (80 and 100%) and basal lipolysis (20%). In EPI, dexamethasone decreased the 2-deoxyglucose uptake (50%), as well as glyceroneogenesis, evidenced by a decrease of PEPCK-C activity (39%) and TAG-glycerol synthesis from pyruvate (66%), but increased the glycerokinase activity (50%) and TAG-glycerol synthesis from glycerol (72%) in this tissue. In spite of a similar reduction in 2-deoxyglucose uptake in RETRO, dexamethasone treatment increased glyceroneogenesis, evidenced by PEPCK activity (96%), and TAG-glycerol synthesis from pyruvate (110%), accompanied by a decrease in glycerokinase activity (50%) and TAG-glycerol synthesis from glycerol (50%). Dexamethasone effects on RETRO were accompanied by a decrease in p-Akt content and by lower insulin effects on the rates of glycerol release in the presence of isoproterenol and on the rates of glucose uptake in isolated adipocytes. Our data demonstrated differential regulation of glyceroneogenesis and direct phosphorylation of glycerol by glucocorticoids in EPI and RETRO from rats.
Translocation of myocardial GLUT-4 and increased glucose uptake through activation of AMPK by AICAR.
Russell, R R; Bergeron, R; Shulman, G I; Young, L H
1999-08-01
Insulin increases glucose uptake through the translocation of GLUT-4 via a pathway mediated by phosphatidylinositol 3-kinase (PI3K). In contrast, myocardial glucose uptake during ischemia and hypoxia is stimulated by the translocation of GLUT-4 to the surface of cardiac myocytes through a PI3K-independent pathway that has not been characterized. AMP-activated protein kinase (AMPK) activity is also increased by myocardial ischemia, and we examined whether AMPK stimulates glucose uptake and GLUT-4 translocation. In isolated rat ventricular papillary muscles, 5-aminoimidazole-4-carboxyamide-1-beta-D-ribofuranoside (AICAR), an activator of AMPK, as well as cyanide-induced chemical hypoxia and insulin, increased 2-[(3)H]deoxyglucose uptake two- to threefold. Wortmannin, a PI3K inhibitor, did not affect either the AICAR- or the cyanide-stimulated increase in deoxyglucose uptake but eliminated the insulin-stimulated increase in deoxyglucose uptake. Immunofluorescence studies demonstrated translocation of GLUT-4 to the myocyte sarcolemma in response to stimulation with AICAR, cyanide, or insulin. Preincubation of papillary muscles with the kinase inhibitor iodotubercidin or adenine 9-beta-D-arabinofuranoside (araA), a precursor of araATP (a competitive inhibitor of AMPK), decreased AICAR- and cyanide-stimulated glucose uptake but did not affect basal or insulin-stimulated glucose uptake. In vivo infusion of AICAR caused myocardial AMPK activation and GLUT-4 translocation in the rat. We conclude that AMPK activation increases cardiac muscle glucose uptake through translocation of GLUT-4 via a pathway that is independent of PI3K. These findings suggest that AMPK activation may be important in ischemia-induced translocation of GLUT-4 in the heart.
Mapping the Primate Visual System with [2-14C]Deoxyglucose
NASA Astrophysics Data System (ADS)
Macko, Kathleen A.; Jarvis, Charlene D.; Kennedy, Charles; Miyaoka, Mikoto; Shinohara, Mami; Sokoloff, Louis; Mishkin, Mortimer
1982-10-01
The [2-14C]deoxyglucose method was used to identify the cerebral areas related to vision in the rhesus monkey (Macaca mulatta). This was achieved by comparing glucose utilization in a visually stimulated with that in a visually deafferented hemisphere. The cortical areas related to vision included the entire expanse of striate, prestriate, and inferior temporal cortex as far forward as the temporal pole, the posterior part of the inferior parietal lobule, and the prearcuate and inferior prefrontal cortex. Subcortically, in addition to the dorsal lateral geniculate nucleus and superficial layers of the superior colliculus, the structures related to vision included large parts of the pulvinar, caudate, putamen, claustrum, and amygdala. These results, which are consonant with a model of visual function that postulates an occipito-temporo-prefrontal pathway for object vision and an occipito-parieto-prefrontal pathway for spatial vision, reveal the full extent of those pathways and identify their points of contact with limbic, striatal, and diencephalic structures.
Growth of Mycobacterium tuberculosis in vivo segregates with host macrophage metabolism and ontogeny
Tan, Shumin; Liu, Yancheng
2018-01-01
To understand how infection by Mycobacterium tuberculosis (Mtb) is modulated by host cell phenotype, we characterized those host phagocytes that controlled or supported bacterial growth during early infection, focusing on the ontologically distinct alveolar macrophage (AM) and interstitial macrophage (IM) lineages. Using fluorescent Mtb reporter strains, we found that bacilli in AM exhibited lower stress and higher bacterial replication than those in IM. Interestingly, depletion of AM reduced bacterial burden, whereas depletion of IM increased bacterial burden. Transcriptomic analysis revealed that IMs were glycolytically active, whereas AMs were committed to fatty acid oxidation. Intoxication of infected mice with the glycolytic inhibitor, 2-deoxyglucose, decreased the number of IMs yet increased the bacterial burden in the lung. Furthermore, in in vitro macrophage infections, 2-deoxyglucose treatment increased bacterial growth, whereas the fatty acid oxidation inhibitor etomoxir constrained bacterial growth. We hypothesize that different macrophage lineages respond divergently to Mtb infection, with IMs exhibiting nutritional restriction and controlling bacterial growth and AMs representing a more nutritionally permissive environment. PMID:29500179
Lea, Michael A; Chacko, Jerel; Bolikal, Sandhya; Hong, Ji Y; Chung, Ryan; Ortega, Andres; desbordes, Charles
2011-02-01
A report that effects of butyrate on some cells may be mediated by activation of AMP-activated protein kinase (AMPK) prompted this study which examines if other AMPK activators can induce differentiation and inhibit proliferation of colon cancer cells in a manner similar to butyrate. Using induction of alkaline phosphatase as a marker, it was observed that compound C, an AMPK inhibitor, is able to reduce the differentiating effect of butyrate on SW1116 and Caco-2 colon cancer cells. Metformin was observed to be less effective than butyrate in the induction of alkaline phosphatase but was more effective as a growth inhibitor. Phenformin was found to be a more potent growth inhibitor than metformin and both compounds cause acidification of the medium when incubated with colon cancer cells. Combined incubation of 2-deoxyglucose with either of the biguanides prevented the acidification of the medium but enhanced the growth inhibitory effects.
Androgens enhance in vivo 2-deoxyglucose uptake by rat striated muscle
NASA Technical Reports Server (NTRS)
Max, S. R.; Toop, J.
1983-01-01
It is shown that testosterone propionate (TP) causes a striking increase in the in vivo uptake of 2-deoxyglucose (2-DG) by the levator ani muscle of immature male rats, which was found to be uniformly distributed over the entire muscle. After a single subcutaneous injection of TP, no enhancement of 2-DG was observed before 3.5 hr, at which time uptake was increased 2-fold; maximum enhancement (4-fold) was attained at 12 hr. At 72 hr, 2-DG uptake remained elevated at twice the control value. It was determined that the effect of TP probably is mediated by specific androgen receptors. In addition, it was found that the effect of TP was blocked by the simultaneous administration of an androgen antagonist, cyproterone acetate. TP also was found to enhance the uptake of 2-DG in the bulbocavernosus (253 percent over control) and extensor digitorum longus muscles (150 percent over control), but not in the biceps brachii or soleus. It is suggested that the increased uptake of glucose may be an important early step in the anabolic response of muscle to androgens.
Pietzke, Matthias; Zasada, Christin; Mudrich, Susann; Kempa, Stefan
2014-01-01
Cellular metabolism is highly dynamic and continuously adjusts to the physiological program of the cell. The regulation of metabolism appears at all biological levels: (post-) transcriptional, (post-) translational, and allosteric. This regulatory information is expressed in the metabolome, but in a complex manner. To decode such complex information, new methods are needed in order to facilitate dynamic metabolic characterization at high resolution. Here, we describe pulsed stable isotope-resolved metabolomics (pSIRM) as a tool for the dynamic metabolic characterization of cellular metabolism. We have adapted gas chromatography-coupled mass spectrometric methods for metabolomic profiling and stable isotope-resolved metabolomics. In addition, we have improved robustness and reproducibility and implemented a strategy for the absolute quantification of metabolites. By way of examples, we have applied this methodology to characterize central carbon metabolism of a panel of cancer cell lines and to determine the mode of metabolic inhibition of glycolytic inhibitors in times ranging from minutes to hours. Using pSIRM, we observed that 2-deoxyglucose is a metabolic inhibitor, but does not directly act on the glycolytic cascade.
[Chilean experience with the use of 18F-deoxyglucose positron emission tomography].
Massardo, Teresa; Jofré, M Josefina; Sierralta, Paulina; Canessa, José; González, Patricio; Humeres, Pamela; Valdebenito, Robert
2007-03-01
Clinical oncology is the main application of 18F-deoxyglucose (FDG) positron emission tomography (PET). To evaluate the first 1,000 patients studied with FDG PET in Chile. Retrospective analysis of 1,000 patients (aged between 1 and 94 years, 550 females) studied with FDG PET, since 2003. All studies were performed in a high resolution Siemens Ecat-Exact HR (+). All reports were based on the visual analysis of three plane and three-dimensional images. Ninety seven percent of exams were done for oncological indications, mainly lung lesions, lymphoma, colorectal and gastroesophageal, cancer and breast tumors. Only 1% of patients had brain tumors. Non tumor neurological indications corresponded to 1.7%. Cardiac studies were only 0.3% and inflammatory process corresponded to 1%. The 5.6% corresponded to pediatric population. Six percent of patients were aged less than 18 years and in 50% of them, the indication was oncological, mainly lymphomas, brain tumors, endocrine cancers and sarcomas. The remaining 50% had a neurological indications, mainly for refractory epilepsy. PET FDG imaging was effective in the management of diverse diseases of children and adults.
GSM mobile phone radiation suppresses brain glucose metabolism
Kwon, Myoung Soo; Vorobyev, Victor; Kännälä, Sami; Laine, Matti; Rinne, Juha O; Toivonen, Tommi; Johansson, Jarkko; Teräs, Mika; Lindholm, Harri; Alanko, Tommi; Hämäläinen, Heikki
2011-01-01
We investigated the effects of mobile phone radiation on cerebral glucose metabolism using high-resolution positron emission tomography (PET) with the 18F-deoxyglucose (FDG) tracer. A long half-life (109 minutes) of the 18F isotope allowed a long, natural exposure condition outside the PET scanner. Thirteen young right-handed male subjects were exposed to a pulse-modulated 902.4 MHz Global System for Mobile Communications signal for 33 minutes, while performing a simple visual vigilance task. Temperature was also measured in the head region (forehead, eyes, cheeks, ear canals) during exposure. 18F-deoxyglucose PET images acquired after the exposure showed that relative cerebral metabolic rate of glucose was significantly reduced in the temporoparietal junction and anterior temporal lobe of the right hemisphere ipsilateral to the exposure. Temperature rise was also observed on the exposed side of the head, but the magnitude was very small. The exposure did not affect task performance (reaction time, error rate). Our results show that short-term mobile phone exposure can locally suppress brain energy metabolism in humans. PMID:21915135
Ma, Liang; Salas, Omar; Bowler, Kyle
2017-01-01
ABSTRACT Can accumulation of a normally transient metabolite affect fungal biology? UDP-4-keto-6-deoxyglucose (UDP-KDG) represents an intermediate stage in conversion of UDP-glucose to UDP-rhamnose. Normally, UDP-KDG is not detected in living cells, because it is quickly converted to UDP-rhamnose by the enzyme UDP-4-keto-6-deoxyglucose-3,5-epimerase/-4-reductase (ER). We previously found that deletion of the er gene in Botrytis cinerea resulted in accumulation of UDP-KDG to levels that were toxic to the fungus due to destabilization of the cell wall. Here we show that these negative effects are at least partly due to inhibition by UDP-KDG of the enzyme UDP-galactopyranose mutase (UGM), which reversibly converts UDP-galactopyranose (UDP-Galp) to UDP-galactofuranose (UDP-Galf). An enzymatic activity assay showed that UDP-KDG inhibits the B. cinerea UGM enzyme with a Ki of 221.9 µM. Deletion of the ugm gene resulted in strains with weakened cell walls and phenotypes that were similar to those of the er deletion strain, which accumulates UDP-KDG. Galf residue levels were completely abolished in the Δugm strain and reduced in the Δer strain, while overexpression of the ugm gene in the background of a Δer strain restored Galf levels and alleviated the phenotypes. Collectively, our results show that the antifungal activity of UDP-KDG is due to inhibition of UGM and possibly other nucleotide sugar-modifying enzymes and that the rhamnose metabolic pathway serves as a shunt that prevents accumulation of UDP-KDG to toxic levels. These findings, together with the fact that there is no Galf in mammals, support the possibility of developing UDP-KDG or its derivatives as antifungal drugs. PMID:29162710
DISTRIBUTION OF BIOLOGICALLY ACTIVE COMPOUNDS IN THE BODY.
and organ granules; Adrenomedullary response to 2-deoxyglucose in the hypothyroid, euthyroid, and hyperthyroid rat; Effect of respiratory acidosis on...vasoconstrictor effects of directly and indirectly acting sympathomimetic amines in cats; The adrenergic innervation of the vas deferens and the...accessory male genital gland; Distribution and function of adrenergic nerves in the rabbit fallopian tube; Effects of acute heart failure and
Nutritional Relationships in Schistosomiasis.
1978-07-01
to presence of ou~bain, phlorizin, phloretin . 1lexose mediated accumulation is Na coupled. Accession For NTIS GREA&I DDC TAB Unannounced...mediat,!d system is apparently Na + dependent and sensitive to presence of ouabain, phlorizin, phloretin . Hexose mediated accumulation is Na+ coupled. i...decreased Na+, ouabain, phiorizin phloretin and other sugars. Studies with Na22 suggest that the accumulation of 2-deoxyglucose and Na+ were coupled
Comparison of (/sup 14/C)glucose and (/sup 14/C)deoxyglucose as tracers of brain glucose use
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hawkins, R.A.; Mans, A.M.; Davis, D.W.
1988-03-01
Because glucose metabolism and functional activity in brain regions are normally coupled, knowledge of regional brain glucose use can yield insights into regional functional activity. The deoxyglucose (DG) method is widely used for this purpose in experimental animals and humans but questions have arisen regarding its limits and accuracy. Therefore an experiment was designed to compare the DG method on a structure-by-structure basis with another tracer of glucose use, (6-/sup 14/C)glucose, in normal rats. The cerebral metabolic rates obtained using the two tracers were similar in the telencephalon, but the results using DG were substantially lower in the midbrain andmore » hindbrain (diencephalon, 18%; mesencephalon, 20%; metencephalon, 29%; and myelencephalon, 35%). The primary DG metabolite, DG 6-phosphate (DG-6-P) was found to disappear in a non-uniform manner from the major brain structures: telencephalon less than diencephalon less than mesencephalon = metencephalon less than myelencephalon. Thus a correlation was found between the rate of DG-6-P loss and the extent to which the DG method gave lower values of glucose use. Thus this may explain, at least in part, the discrepancies between the two methods.« less
Correlation of PET and AMS analyses for early kinetics of 2-fluoro-2-deoxyglucose (FDG)
NASA Astrophysics Data System (ADS)
Minamimoto, Ryogo; Hamabe, Yoshimi; Miyaoka, Teiji; Theeraladanon, Chumpol; Oka, Takashi; Matsui, Takao; Inoue, Tomio
2010-04-01
The draft of the guidelines for microdosing in clinical trials was published in Japan in 2008 following the guidelines of the European Medicines Agency (EMEA) and the Food and Drug Administration (FDA). It recommends utilizing accelerator mass spectrometry (AMS), liquid chromatography/mass spectrometry (LC/MS/MS), and positron emission tomography (PET) for monitoring drug metabolites in preclinical studies. In this study, we clarified the correlation in measuring result between PET and AMS. The AMS measurement was undergone by using AMS system of Institute of Accelerator Analysis Ltd. (IAA, Kawasaki, Japan). First the back ground 14C level of blood in mice was measured by AMS. Second, we clarified the relationship between AMS and PET by using 2-fluoro-2-deoxyglucose (FDG). The correlation coefficient ( r) of the measurements using PET ( 18F-FDG) and AMS ( 14C-FDG) were quite high at 0.97 ( Y = 7.54 E - 05 X + 0.02, p < 0.001). The blood clearance profile of 18F-FDG was nearly identical with that of 14C-FDG. These results indicate that the AMS analysis has excellent correlation with the PET method.
Mi, Qian; Ma, Yuru; Gao, Xiangqian; Liu, Ran; Liu, Pengxing; Mi, Yi; Fu, Xuegang; Gao, Qingzhi
2016-11-01
Malignant neoplasms exhibit an elevated rate of glycolysis over normal cells. To target the Warburg effect, we designed a new series of 2-deoxyglucose (2-DG) conjugated platinum (II) complexes for glucose transporter 1 (GLUT1)-mediated anticancer drug delivery. The potential GLUT1 transportability of the complexes was investigated through a comparative molecular docking analysis utilizing the latest GLUT1 protein crystal structure. The key binding site for 2-DG as GLUT1's substrate was identified with molecular dynamics simulation, and the docking study demonstrated that the 2-DG conjugated platinum (II) complexes can be recognized by the same binding site as potential GLUT1 substrate. The conjugates were synthesized and evaluated for in vitro cytotoxicity study with seven human cancer cell lines. The results of this study revealed that 2-DG conjugated platinum (II) complexes are GLUT1 transportable substrates and exhibit improved cytotoxicities in cancer cell lines that over express GLUT1 when compared to the clinical drug, Oxaliplatin. The correlation between GLUT1 expression and antitumor effects are also confirmed. The study provides fundamental information supporting the potential of the 2-DG conjugated platinum (II) complexes as lead compounds for further pharmaceutical R&D.
Metabolism-independent sugar sensing in central orexin neurons.
González, J Antonio; Jensen, Lise T; Fugger, Lars; Burdakov, Denis
2008-10-01
Glucose sensing by specialized neurons of the hypothalamus is vital for normal energy balance. In many glucose-activated neurons, glucose metabolism is considered a critical step in glucose sensing, but whether glucose-inhibited neurons follow the same strategy is unclear. Orexin/hypocretin neurons of the lateral hypothalamus are widely projecting glucose-inhibited cells essential for normal cognitive arousal and feeding behavior. Here, we used different sugars, energy metabolites, and pharmacological tools to explore the glucose-sensing strategy of orexin cells. We carried out patch-clamp recordings of the electrical activity of individual orexin neurons unambiguously identified by transgenic expression of green fluorescent protein in mouse brain slices. RESULTS- We show that 1) 2-deoxyglucose, a nonmetabolizable glucose analog, mimics the effects of glucose; 2) increasing intracellular energy fuel production with lactate does not reproduce glucose responses; 3) orexin cell glucose sensing is unaffected by glucokinase inhibitors alloxan, d-glucosamine, and N-acetyl-d-glucosamine; and 4) orexin glucosensors detect mannose, d-glucose, and 2-deoxyglucose but not galactose, l-glucose, alpha-methyl-d-glucoside, or fructose. Our new data suggest that behaviorally critical neurocircuits of the lateral hypothalamus contain glucose detectors that exhibit novel sugar selectivity and can operate independently of glucose metabolism.
Landers, M S; Sullivan, R M
1999-06-15
The following experiments determined that the somatosensory whisker system is functional and capable of experience-dependent behavioral plasticity in the neonate before functional maturation of the somatosensory whisker cortex. First, unilateral whisker stimulation caused increased behavioral activity in both postnatal day (P) 3-4 and P8 pups, whereas stimulation-evoked cortical activity (14C 2-deoxyglucose autoradiography) was detectable only in P8 pups. Second, neonatal rat pups are capable of forming associations between whisker stimulation and a reinforcer. A classical conditioning paradigm (P3-P4) showed that the learning groups (paired whisker stimulation-shock or paired whisker stimulation-warm air stream) exhibited significantly higher behavioral responsiveness to whisker stimulation than controls. Finally, stimulus-evoked somatosensory cortical activity during testing [P8; using 14C 2-deoxyglucose (2-DG) autoradiography] was assessed after somatosensory conditioning from P1-P8. No learning-associated differences in stimulus-evoked cortical activity were detected between learning and nonlearning control groups. Together, these experiments demonstrate that the whisker system is functional in neonates and capable of experience-dependent behavioral plasticity. Furthermore, in contrast to adult somatosensory classical conditioning, these data suggest that the cortex is not required for associative somatosensory learning in neonates.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Caldecott-Hazard, S.; Mazziotta, J.; Phelps, M.
1988-06-01
/sup 14/C-2-Deoxyglucose (2DG) was used to investigate changes in the rate of cerebral metabolism in 3 rat models of depressed behavior. The models had already been established in the literature and were induced by injections of alpha-methyl-para-tyrosine, withdrawal from chronic amphetamine, or stress. We verified that exploratory behaviors were depressed in each model and that an antidepressant drug, tranylcypromine, prevented the depressed behavior in each model. 2DG studies revealed that the rate of regional glucose metabolism was elevated bilaterally in the lateral habenula of each of the 3 models. Regional metabolic rates were reduced in each model in the dorsalmore » medial prefrontal cortex, anterior ventral nucleus of the thalamus, and inferior colliculus. Forebrain global metabolic rates were also reduced in each of the models. Tranylcypromine prevented the elevated rate of lateral habenula metabolism seen in each of the models alone but did not significantly affect the rates of global metabolism. Our findings of identical metabolic changes in each of the models indicate that these changes are not idiosyncratic to a particular model; rather, they correlate with a generalizable state of depressed exploratory behavior in rats.« less
Enzymatic Biosynthesis of Novel Resveratrol Glucoside and Glycoside Derivatives
Pandey, Ramesh Prasad; Parajuli, Prakash; Shin, Ju Yong; Lee, Jisun; Lee, Seul; Hong, Young-Soo; Park, Yong Il; Kim, Joong Su
2014-01-01
A UDP glucosyltransferase from Bacillus licheniformis was overexpressed, purified, and incubated with nucleotide diphosphate (NDP) d- and l-sugars to produce glucose, galactose, 2-deoxyglucose, viosamine, rhamnose, and fucose sugar-conjugated resveratrol glycosides. Significantly higher (90%) bioconversion of resveratrol was achieved with α-d-glucose as the sugar donor to produce four different glucosides of resveratrol: resveratrol 3-O-β-d-glucoside, resveratrol 4′-O-β-d-glucoside, resveratrol 3,5-O-β-d-diglucoside, and resveratrol 3,5,4′-O-β-d-triglucoside. The conversion rates and numbers of products formed were found to vary with the other NDP sugar donors. Resveratrol 3-O-β-d-2-deoxyglucoside and resveratrol 3,5-O-β-d-di-2-deoxyglucoside were found to be produced using TDP-2-deoxyglucose as a donor; however, the monoglycosides resveratrol 4′-O-β-d-galactoside, resveratrol 4′-O-β-d-viosaminoside, resveratrol 3-O-β-l-rhamnoside, and resveratrol 3-O-β-l-fucoside were produced from the respective sugar donors. Altogether, 10 diverse glycoside derivatives of the medically important resveratrol were generated, demonstrating the capacity of YjiC to produce structurally diverse resveratrol glycosides. PMID:25239890
The Effect of Glycolytic Modulation on Prostate Cancer
2010-07-01
this paradigm in the clinic, we completed a phase I study of 2-deoxyglucose (2DG), and assessed 2DG uptake with fluorodeoxyglucose (FDG) positron ...efficacy. In vitro studies with 2DG have demonstrated activity in osteosarcoma cells that were defective in oxidative phosphorylation implying that cells...diagnostic studies developing positron emission tomography (PET), which uses a trapped glucose analogue, 2-deoxy-D-glucose (2DG), for detec- tion of
1989-11-01
standing overnight. Washing the filtered crystals with ether removed triethylamine hydrochloride and triphenyl phosphine, then recrystallisation from...pyridine to from an ester, DMF and pyridinium hydrochloride . The reaction of the Vilsmeier reagent with (E)-5-(2-carboxyvinyl)uridine and quenching...include 2-deoxy-2-glucose (28), D- glucosamine (29) and tunicamycin (30). Deoxyglucose is utilized instead of glucose in the formation of guanosine
Feng, Xiaolan; Wang, Pan; Liu, Quanhong; Zhang, Ting; Mai, Bingjie; Wang, Xiaobing
2015-06-01
Most cancer cells have the specially increased glycolytic phenotype, which makes this pathway become an attractive therapeutic target. Although glycolytic inhibitor 2-deoxyglucose (2-DG) has been demonstrated to potentiate the cytotoxicity of photodynamic therapy (PDT), the impacts on cell migration after the combined treatment has never been reported yet. The present study aimed to analyze the influence of glycolytic inhibitors 2-DG and 3-bromopyruvate (3-BP) combined with Ce6-PDT on cell motility of Triple Negative Breast Cancer MDA-MB-231 cells. As determined by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltertrazolium-bromide-Tetraz-olium (MTT) assay, more decreased cell viability was observed in 2-DG + PDT and 3-BP + PDT groups when compared with either monotherapy. Under optimal conditions, synergistic potentiation on cell membrane destruction and the decline of cell adhesion and cells migratory ability were observed in both 2-DG + PDT and 3-BP + PDT by electron microscope observation (SEM), wound healing and trans-well assays. Besides, serious microfilament network collapses as well as impairment of matrix metalloproteinases-9 (MMP-9) were notably improved after the combined treatments by immunofluorescent staining. These results suggest that 2-DG and 3-BP can both significantly potentiated Ce6-PDT efficacy of cell migration inhibition.
The organization of orientation selectivity throughout macaque visual cortex.
Vanduffel, Wim; Tootell, Roger B H; Schoups, Aniek A; Orban, Guy A
2002-06-01
A double-label deoxyglucose technique was used to study orientation columns throughout visual cortex in awake behaving macaques. Four macaques were trained to fixate while contrastreversing, stationary gratings or one-dimensional noise of a single orientation or an orthogonal orientation were presented, during uptake of [14C]deoxyglucose ([14C]DG) or [3H]DG, respectively. The two orthogonal stimulus orientations produced DG-labeled columns that were maximally separated in the two isotope maps (inter-digitated) in four areas: V1, V2, V3 and VP. The topographic change from interdigitated to overlapping columns occurred abruptly rather than gradually, at corresponding cortical area borders (e.g. VP and V4v, respectively). In addition, the data suggest that orientation column topography systematically changes with retinotopic eccentricity. In V1, the orientation columns systematically avoided the cytochrome oxidase blobs in the parafoveal representation, but converged closer to the blobs in the foveal representation. A control experiment indicated that this was unlikely to reflect eccentricity-dependent differences in cortical spatial frequency sensitivity. A similar eccentricity-dependent change in the topography of orientation columns occurred in V2. In parafoveal but not foveal visual field representations of V2, the orientation columns were centered on the thick cytochrome oxidase stripes, extended into the adjacent interstripe region, but were virtually absent in the thin stripes.
Expanding role of 18F-fluoro-d-deoxyglucose PET and PET/CT in spinal infections
Rijk, Paul C.; Collins, James M. P.; Parlevliet, Thierry; Stumpe, Katrin D.; Palestro, Christopher J.
2010-01-01
18F-fluoro-d-deoxyglucose positron emission tomography ([18F]-FDG PET) is successfully employed as a molecular imaging technique in oncology, and has become a promising imaging modality in the field of infection. The non-invasive diagnosis of spinal infections (SI) has been a challenge for physicians for many years. Morphological imaging modalities such as conventional radiography, computed tomography (CT), and magnetic resonance imaging (MRI) are techniques frequently used in patients with SI. However, these methods are sometimes non-specific, and difficulties in differentiating infectious from degenerative end-plate abnormalities or postoperative changes can occur. Moreover, in contrast to CT and MRI, FDG uptake in PET is not hampered by metallic implant-associated artifacts. Conventional radionuclide imaging tests, such as bone scintigraphy, labeled leukocyte, and gallium scanning, suffer from relatively poor spatial resolution and lack sensitivity, specificity, or both. Initial data show that [18F]-FDG PET is an emerging imaging technique for diagnosing SI. [18F]-FDG PET appears to be especially helpful in those cases in which MRI cannot be performed or is non-diagnostic, and as an adjunct in patients in whom the diagnosis is inconclusive. The article reviews the currently available literature on [18F]-FDG PET and PET/CT in the diagnosis of SI. PMID:20052505
Chang, Wen-Chang; Shen, Szu-Chuan
2013-02-01
This study investigated the glucose uptake activity of the water extracts from the leaves and fruit of edible Myrtaceae plants, including guava (Psidium guajava Linn.), wax apples [Syzygium samarangense (Blume) Merr. and L.M. Perry], Pu-Tau [Syzygium jambo (L.) Alston], and Kan-Shi Pu-Tau (Syzygium cumini Linn.) in FL83B mouse hepatocytes. The fluorescent dye 2-(n-(7-nitrobenz-2-oxa-1,3-diazol-4-yl)amino)-2-deoxyglucose was used to estimate the uptake ability of the cells. Glucose uptake test showed that pink wax apple fruit extract (PWFE) exhibits the highest glucose uptake activity, at an increment of 21% in the insulin-resistant FL83B mouse hepatocytes as compared with the TNF-α-treated control group. Vescalagin was isolated using column chromatography of PWFE. This compound, at the concentration of 6.25 µg/mL, exhibits the same glucose uptake improvement in insulin-resistant cells as PWFE at a 100-µg/mL dose. We postulate that vescalagin is an active component in PWFE that may alleviate the insulin resistance in mouse hepatocytes. Copyright © 2012 John Wiley & Sons, Ltd.
Baud, Maxime O; Parafita, Julia; Nguyen, Audrey; Magistretti, Pierre J; Petit, Jean-Marie
2016-10-01
Sleep is viewed as a fundamental restorative function of the brain, but its specific role in neural energy budget remains poorly understood. Sleep deprivation dampens brain energy metabolism and impairs cognitive functions. Intriguingly, sleep fragmentation, despite normal total sleep duration, has a similar cognitive impact, and in this paper we ask the question of whether it may also impair brain energy metabolism. To this end, we used a recently developed mouse model of 2 weeks of sleep fragmentation and measured 2-deoxy-glucose uptake and glycogen, glucose and lactate concentration in different brain regions. In order to homogenize mice behaviour during metabolic measurements, we exposed them to a novel environment for 1 h. Using an intra-hippocampal electrode, we first showed that hippocampal electroencephalograph (EEG) response to exploration was unaltered by 1 or 14 days of sleep fragmentation. However, after 14 days, sleep fragmented mice exhibited a lower uptake of 2-deoxy-glucose in cortex and hippocampus and lower cortical lactate levels than control mice. Our results suggest that long-term sleep fragmentation impaired brain metabolism to a similar extent as total sleep deprivation without affecting the neuronal responsiveness of hippocampus to a novel environment. © 2016 European Sleep Research Society.
Johnson, Brett A.; Ong, Joan; Leon, Michael
2014-01-01
To determine how responses evoked by natural odorant mixtures compare to responses evoked by individual odorant chemicals, we mapped 2-deoxyglucose uptake during exposures to vapors arising from a variety of odor objects that may be important to rodents in the wild. We studied 21 distinct natural odor stimuli ranging from possible food sources such as fruits, vegetables, and meats to environmental odor objects such as grass, herbs, and tree leaves. The natural odor objects evoked robust and surprisingly focal patterns of 2-deoxyglucose uptake involving clusters of neighboring glomeruli, thereby resembling patterns evoked by pure chemicals. Overall, the patterns were significantly related to patterns evoked by monomolecular odorant components that had been studied previously. Object patterns also were significantly related to the molecular features present in the mixture components. Despite these overall relationships, there were individual examples of object patterns that were simpler than might have been predicted given the multiplicity of components present in the vapors. In these cases, the object patterns lacked certain responses evoked by their major odorant mixture components. These data suggest the possibility of mixture response interactions and provide a foundation for understanding the neural coding of natural odor stimuli. PMID:20187145
The Role of Perfluorocarbons in Mitigating Traumatic Brain Injury
2014-05-01
the lesion. The effect of closed head trauma upon Glycolysis , as measured by the 2-Deoxyglucose method, is well known, and the findings in this...model accord quite closely with human TBI. However, the effect of Penetrating TBI upon glycolysis has never been studied, in any animal model, nor in...tested was seen upon VO2 in the PBBI model (Fig.17-18) However, significant improvements in glycolysis could be observed, especially with Perftec
Neuropharmacological Specificity of Brain Structures Involved in Soman-Induced Seizures
2012-01-01
Bernabé Burckhart M-F, Lallement G. Efficacy of the ketamine-atropine combination in the delayed treatment of soman- induced status epilepticus ...The functional anatomy of limbic status epilepticus in the rat. I. Patterns of 14C-2-deoxyglucose uptake and fos immunochemistry. Journal of...Neuroscience 1993a;13(11):4787–801. White LE, Price JL. The functional anatomy of limbic status epilepticus in the rat. II. The effects of focal deactivation
Characteristics of (3H)2-Deoxyglucose Uptake by Slices of Rat Cerebral Cortex
1983-05-17
phlorizin or by phloretin , two compounds known to inhibit glucose transport by kidney and by erythrocytes, respectively. Net [-̂ H]2-de- oxyglucose uptake...Hexoses 53 17. The Effect of Phlorizin and Phloretin on Net [3H]2-Deoxy- glucose Transport by Slices of Cerebral Cortex 55 18. The Effect of Sodium...LeFevre, 1961). Transport by erythrocytes is not dependent on sodium (Silverman, 1976). Transport is, however, sensitive to inhibition by phloretin
2013-11-01
overexpression of glucose transporters ( Gluts ) and the increased activity of mitochondria- bound hexokinases in tumors (5, 6). Since 1976, 2-(fluorine-18...glucose transport through the cell membrane via Gluts has been reported as an important factor in the increase of FDG uptake in malignant tumors (5). In...capabilities of bronchoscopy without substantially increasing cost. Although there has been no work evaluating the use of 2-NBDG for lung cancer
Choich, J A; Sass, J B; Silbergeld, E K
2002-01-01
Methods of identifying and preventing ecotoxicity related to environmental stressors on wildlife species are underdeveloped. To detect sublethal effects, we have devised a neurochemical method of evaluating environmental neurotoxins by a measuring changes in regional neural activity in the central nervous system of fish. Our system is a unique adaptation of the 2-deoxyglucose (2-DG) method originally developed by L. Sokoloff in 1977, which is based on the direct relationship between glucose metabolism and neural functioning at the regional level. We applied these concepts to test the assumption that changes in neural activity as a result of chemical exposure would produce measurable effects on the amount of [(14)C]2-DG accumulated regionally in the brain of Tilapia nilatica. For purposes of this study, we utilized the excitotoxin N-methyl-D-aspartate (NMDA) to characterize the response of the central nervous system. Regional accumulation of [(14)C]2-DG was visualized by autoradiography and digital image processing. Observable increases in regional [(14) C] 2-DG uptake were evident in all NMDA-treated groups as compared to controls. Specific areas of increased [(14)C] 2-DG uptake included the telencephalon, optic tectum, and regions of the cerebellum, all areas in which high concentrations of NMDA-subtype glutamate receptors have been found in Tilapia monsanbica. These results are consistent with the known neural excitatory action of NMDA.
Specht, Lena
2007-07-01
2-[18F]fluoro-2-deoxyglucose positron-emission tomography (FDG-PET) is used increasingly in the clinical management of lymphomas. With regard to staging, FDG-PET is more sensitive and specific than conventional staging methods in FDG avid lymphomas (ie, Hodgkin lymphoma and most aggressive non-Hodgkin lymphomas). Despite methodological problems, in particular the lack of a valid reference test, FDG-PET is approved and generally used for this purpose. With regard to response evaluation, FDG-PET at the end of treatment seems to aid considerably in differentiating between residual masses with or without residual lymphoma. Hence, new revised response criteria have been proposed, incorporating the result of FDG-PET at the end of treatment. An early interim FDG-PET scan after 1 to 3 cycles of chemotherapy is a very strong predictor of outcome, and trials are now in progress testing treatment modifications on this basis. With regard to treatment planning, in the context of combined-modality therapy, radiotherapy for lymphomas is moving toward more conformal techniques reducing the irradiated volume to include only the macroscopic lymphoma. In this situation, accurate imaging is essential, and FDG-PET coregistered with the planning computed tomography (CT) scan is used increasingly. The availability of PET/CT scanners suited for virtual simulation has aided this process. However, clinical data evaluating this technique are at present sparse.
Gounder, Murugesan K.; Lin, Hongxia; Stein, Mark; Goodin, Susan; Bertino, Joseph R.; Kong, Ah-Ng Tony; DiPaola, Robert S.
2015-01-01
2-deoxyglucose (2-DG), an analog of glucose, is widely used to interfere with the glycolysis in tumor cells and studied as a therapeutic approach in clinical trials. To evaluate the pharmacokinetics of 2-DG, we describe the development and validation of a sensitive HPLC fluorescent method for the quantitation of 2-DG in plasma. Plasma samples were deproteinized with methanol and the supernatant was dried at 45°C. The residues were dissolved in methanolic sodium acetate/boric acid solution. 2-DG and other monosaccharides were derivatized to 2-aminobenzoic acid derivatives in a single step in the presence of sodium cyanoborohydride at 80°C for 45min. The analytes were separated on a YMC ODS C18 reversed-phase column using gradient elution. The excitation and emission wavelengths were set at 360 and 425nm. The 2-DG calibration curves were linear over the range of 0.63 to 300μg/mL with the limit of detection of 0.5μg/mL. The assay provided satisfactory intra-day and inter-day precision with RSD less than 9.8% and the accuracy ranged from 86.8% to 110.0%. The HPLC method is reproducible and suitable for the quantitation of 2-DG in plasma. The method was successfully applied to characterize the pharmacokinetics profile of 2-DG in patients with advanced solid tumors. PMID:21932382
Ito, Y; Hasegawa, S; Yamaguchi, H; Yoshioka, J; Uehara, T; Nishimura, T
2000-01-01
Clinical studies have shown discrepancies in the distribution of thallium-201 and iodine 123-beta-methyl-iodophenylpentadecanoic acid (BMIPP) in patients with hypertrophic cardiomyopathy (HCM). Myocardial uptake of fluorine 18 deoxyglucose (FDG) is increased in the hypertrophic area in HCM. We examined whether the distribution of a Tl-201/BMIPP subtraction polar map correlates with that of an FDG polar map. We normalized to maximum count each Tl-201 and BMIPP bull's-eye polar map of 6 volunteers and obtained a standard Tl-201/BMIPP subtraction polar map by subtracting a normalized BMIPP bull's-eye polar map from a normalized Tl-201 bull's-eye polar map. The Tl-201/BMIPP subtraction polar map was then applied to 8 patients with HCM (mean age 65+/-12 years) to evaluate the discrepancy between Tl-201 and BMIPP distribution. We compared the Tl-201/BMIPP subtraction polar map with an FDG polar map. In patients with HCM, the Tl-201/BMIPP subtraction polar map showed a focal uptake pattern in the hypertrophic area similar to that of the FDG polar map. By quantitative analysis, the severity score of the Tl-201/BMIPP subtraction polar map was significantly correlated with the percent dose uptake of the FDG polar map. These results suggest that this new quantitative method may be an alternative to FDG positron emission tomography for the routine evaluation of HCM.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Beck, R.N.; Cooper, M.D.
1985-09-01
This comprehensive report outlines the progress made during the past three years in the areas described below. In all instances, initial studies have been carried out and the technical feasibility of carrying through each study has been demonstrated. The studies described include development of cesium-130 and bromine-75 radioisotope generators, the feasibility of using rubidium-82 as a myocardial imaging agent, and radiochemical preparation of C-11 deoxyglucose. 28 refs. (DT)
Gounder, Murugesan K; Lin, Hongxia; Stein, Mark; Goodin, Susan; Bertino, Joseph R; Kong, Ah-Ng Tony; DiPaola, Robert S
2012-05-01
2-Deoxyglucose (2-DG), an analog of glucose, is widely used to interfere with glycolysis in tumor cells and studied as a therapeutic approach in clinical trials. To evaluate the pharmacokinetics of 2-DG, we describe the development and validation of a sensitive HPLC fluorescent method for the quantitation of 2-DG in plasma. Plasma samples were deproteinized with methanol and the supernatant was dried at 45°C. The residues were dissolved in methanolic sodium acetate-boric acid solution. 2-DG and other monosaccharides were derivatized to 2-aminobenzoic acid derivatives in a single step in the presence of sodium cyanoborohydride at 80°C for 45 min. The analytes were separated on a YMC ODS C₁₈ reversed-phase column using gradient elution. The excitation and emission wavelengths were set at 360 and 425 nm. The 2-DG calibration curves were linear over the range of 0.63-300 µg/mL with a limit of detection of 0.5 µg/mL. The assay provided satisfactory intra-day and inter-day precision with RSD less than 9.8%, and the accuracy ranged from 86.8 to 110.0%. The HPLC method is reproducible and suitable for the quantitation of 2-DG in plasma. The method was successfully applied to characterize the pharmacokinetics profile of 2-DG in patients with advanced solid tumors. Copyright © 2011 John Wiley & Sons, Ltd.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Buchsbaum, M.S.; Wu, J.; Haier, R.
1987-06-22
Patients with generalized anxiety disorder (n = 18) entered a 21-day, double-blind, placebo-controlled random assignment trial of clorazepate. Positron emission tomography with YF-deoxyglucose was carried out before and after treatment. Decreases in glucose metabolic rate in visual cortex and relative increases in the basal ganglia and thalamus were found. A correlation between regional changes in metabolic rate and regional benzodiazepine receptor binding density from other human autopsy studies was observed; brain regions highest in receptor density showed the greatest decrease in rate.
Quercetin inhibits hexose transport in a human diploid fibroblast
DOE Office of Scientific and Technical Information (OSTI.GOV)
Salter, D.W.; Custead-Jones, S.; Cook, J.S.
1978-01-01
The flavonol quercetin, a phloretin analog, inhibits transport of 2-deoxyglucose and 3-O-methylglucose in a cultured human diploid fibroblast. This inhibition is related to transport itself and not to the reported effects of flavonoids on membrane-bound ATPases. From concentration-inhibition curves at several pH's we conclude that uncharged (acid) quercetin (pH = 7.65) is the inhibitory form of the molecule (K/sub I/ = 10 ..mu..m). Quercetin, unlike phloretin, is rapidly degraded in 0.1 N NaOH; the degradation products are weakly inhibitory to hexose transport.
Characterization of Diabetogenic CD8+ T Cells
Garyu, Justin W.; Uduman, Mohamed; Stewart, Alex; Rui, Jinxiu; Deng, Songyan; Shenson, Jared; Staron, Matt M.; Kleinstein, Steven H.
2016-01-01
Type 1 diabetes mellitus is caused by the killing of insulin-producing β cells by CD8+T cells. The disease progression, which is chronic, does not follow a course like responses to conventional antigens such as viruses, but accelerates as glucose tolerance deteriorates. To identify the unique features of the autoimmune effectors that may explain this behavior, we analyzed diabetogenic CD8+ T cells that recognize a peptide from the diabetes antigen IGRP (NRP-V7-reactive) in prediabetic NOD mice and compared them to others that shared their phenotype (CD44+CD62LloPD-1+CXCR3+) but negative for diabetes antigen tetramers and to LCMV (lymphocytic choriomeningitis)-reactive CD8+ T cells. There was an increase in the frequency of the NRP-V7-reactive cells coinciding with the time of glucose intolerance. The T cells persisted in hyperglycemic NOD mice maintained with an insulin pellet despite destruction of β cells. We compared gene expression in the three groups of cells compared with the other two subsets of cells, and the NRP-V7-reactive cells exhibited gene expression of memory precursor effector cells. They had reduced cellular proliferation and were less dependent on oxidative phosphorylation. When prediabetic NOD mice were treated with 2-deoxyglucose to block aerobic glycolysis, there was a reduction in the diabetes antigen versus other cells of similar phenotype and loss of lymphoid cells infiltrating the islets. In addition, treatment of NOD mice with 2-deoxyglucose resulted in improved β cell granularity. These findings identify a link between metabolic disturbances and autoreactive T cells that promotes development of autoimmune diabetes. PMID:26994137
Soubere Mahamoud, Yonis; Aite, Meziane; Martin, Catherine; Zhadobov, Maxim; Sauleau, Ronan; Le Dréan, Yves; Habauzit, Denis
2016-01-01
Millimeter Waves (MMW) will be used in the next-generation of high-speed wireless technologies, especially in future Ultra-Broadband small cells in 5G cellular networks. Therefore, their biocompatibilities must be evaluated prior to their massive deployment. Using a microarray-based approach, we analyzed modifications to the whole genome of a human keratinocyte model that was exposed at 60.4 GHz-MMW at an incident power density (IPD) of 20 mW/cm2 for 3 hours in athermic conditions. No keratinocyte transcriptome modifications were observed. We tested the effects of MMWs on cell metabolism by co-treating MMW-exposed cells with a glycolysis inhibitor, 2-deoxyglucose (2dG, 20 mM for 3 hours), and whole genome expression was evaluated along with the ATP content. We found that the 2dG treatment decreased the cellular ATP content and induced a high modification in the transcriptome (632 coding genes). The affected genes were associated with transcriptional repression, cellular communication and endoplasmic reticulum homeostasis. The MMW/2dG co-treatment did not alter the keratinocyte ATP content, but it did slightly alter the transcriptome, which reflected the capacity of MMW to interfere with the bioenergetic stress response. The RT-PCR-based validation confirmed 6 MMW-sensitive genes (SOCS3, SPRY2, TRIB1, FAM46A, CSRNP1 and PPP1R15A) during the 2dG treatment. These 6 genes encoded transcription factors or inhibitors of cytokine pathways, which raised questions regarding the potential impact of long-term or chronic MMW exposure on metabolically stressed cells.
Albaugh, V L; Judson, J G; She, P; Lang, C H; Maresca, K P; Joyal, J L; Lynch, C J
2011-05-01
Olanzapine and other atypical antipsychotics cause metabolic side effects leading to obesity and diabetes; although these continue to be an important public health concern, their underlying mechanisms remain elusive. Therefore, an animal model of these side effects was developed in male Sprague-Dawley rats. Chronic administration of olanzapine elevated fasting glucose, impaired glucose and insulin tolerance, increased fat mass but, in contrast to female rats, did not increase body weight or food intake. Acute studies were conducted to delineate the mechanisms responsible for these effects. Olanzapine markedly decreased physical activity without a compensatory decline in food intake. It also acutely elevated fasting glucose and worsened oral glucose and insulin tolerance, suggesting that these effects are adiposity independent. Hyperinsulinemic-euglycemic clamp studies measuring (14)C-2-deoxyglucose uptake revealed tissue-specific insulin resistance. Insulin sensitivity was impaired in skeletal muscle, but either unchanged or increased in adipose tissue depots. Consistent with the olanzapine-induced hyperglycemia, there was a tendency for increased (14)C-2-deoxyglucose uptake into fat depots of fed rats and, surprisingly, free fatty acid (FFA) uptake into fat depots was elevated approximately twofold. The increased glucose and FFA uptake into adipose tissue was coupled with increased adipose tissue lipogenesis. Finally, olanzapine lowered fasting plasma FFA, and as it had no effect on isoproterenol-stimulated rises in plasma glucose, it blunted isoproterenol-stimulated in vivo lipolysis in fed rats. Collectively, these results suggest that olanzapine exerts several metabolic effects that together favor increased accumulation of fuel into adipose tissue, thereby increasing adiposity.
Parker, Lindsay M; Le, Sheng; Wearne, Travis A; Hardwick, Kate; Kumar, Natasha N; Robinson, Katherine J; McMullan, Simon; Goodchild, Ann K
2017-06-15
Previous studies have demonstrated that a range of stimuli activate neurons, including catecholaminergic neurons, in the ventrolateral medulla. Not all catecholaminergic neurons are activated and other neurochemical content is largely unknown hence whether stimulus specific populations exist is unclear. Here we determine the neurochemistry (using in situ hybridization) of catecholaminergic and noncatecholaminergic neurons which express c-Fos immunoreactivity throughout the rostrocaudal extent of the ventrolateral medulla, in Sprague Dawley rats treated with hydralazine or saline. Distinct neuronal populations containing PPCART, PPPACAP, and PPNPY mRNAs, which were largely catecholaminergic, were activated by hydralazine but not saline. Both catecholaminergic and noncatecholaminergic neurons containing preprotachykinin and prepro-enkephalin (PPE) mRNAs were also activated, with the noncatecholaminergic population located in the rostral C1 region. Few GlyT2 neurons were activated. A subset of these data was then used to compare the neuronal populations activated by 2-deoxyglucose evoked glucoprivation (Brain Structure and Function (2015) 220:117). Hydralazine activated more neurons than 2-deoxyglucose but similar numbers of catecholaminergic neurons. Commonly activated populations expressing PPNPY and PPE mRNAs were defined. These likely include PPNPY expressing catecholaminergic neurons projecting to vasopressinergic and corticotrophin releasing factor neurons in the paraventricular nucleus, which when activated result in elevated plasma vasopressin and corticosterone. Stimulus specific neurons included noncatecholaminergic neurons and a few PPE positive catecholaminergic neuron but neurochemical codes were largely unidentified. Reasons for the lack of identification of stimulus specific neurons, readily detectable using electrophysiology in anaesthetized preparations and for which neural circuits can be defined, are discussed. © 2017 Wiley Periodicals, Inc.
O'Donnell, Allyson F; McCartney, Rhonda R; Chandrashekarappa, Dakshayini G; Zhang, Bob B; Thorner, Jeremy; Schmidt, Martin C
2015-03-01
The glucose analog 2-deoxyglucose (2DG) inhibits the growth of Saccharomyces cerevisiae and human tumor cells, but its modes of action have not been fully elucidated. Yeast cells lacking Snf1 (AMP-activated protein kinase) are hypersensitive to 2DG. Overexpression of either of two low-affinity, high-capacity glucose transporters, Hxt1 and Hxt3, suppresses the 2DG hypersensitivity of snf1Δ cells. The addition of 2DG or the loss of Snf1 reduces HXT1 and HXT3 expression levels and stimulates transporter endocytosis and degradation in the vacuole. 2DG-stimulated trafficking of Hxt1 and Hxt3 requires Rod1/Art4 and Rog3/Art7, two members of the α-arrestin trafficking adaptor family. Mutations in ROD1 and ROG3 that block binding to the ubiquitin ligase Rsp5 eliminate Rod1- and Rog3-mediated trafficking of Hxt1 and Hxt3. Genetic analysis suggests that Snf1 negatively regulates both Rod1 and Rog3, but via different mechanisms. Snf1 activated by 2DG phosphorylates Rod1 but fails to phosphorylate other known targets, such as the transcriptional repressor Mig1. We propose a novel mechanism for 2DG-induced toxicity whereby 2DG stimulates the modification of α-arrestins, which promote glucose transporter internalization and degradation, causing glucose starvation even when cells are in a glucose-rich environment. Copyright © 2015, American Society for Microbiology. All Rights Reserved.
Yoon, Na Ri; Park, Jae Myung; Jung, Hee Sun; Cho, Yu Kyung; Lee, In Seok; Choi, Myung Gyu; Chung, In Sik; Song, Kyo Young; Park, Cho Hyun
2012-05-01
The usefulness of ¹⁸F-fluoro-2-deoxyglucose (FDG)-PET in detecting primary cancer, lymph node metastasis, and distant metastasis were studied in the gastric cancer patients. The subjects were 392 gastric cancer patients who received FDG-PET and an abdominal CT test prior to surgery. The results of FDG-PET and CT were compared with the surgical and pathologic results. The primary site detection rate of FDG-PET was 74.4%, 50.3% in early gastric cancer and 92.0% in advanced gastric cancer. Detection rate was higher when tumors were larger than 3.5 cm, had deeper depth of invasion, and at a later stage (p<0.05, respectively). In multivariate analysis, tumor size, spread of tumor cells beyond the muscle layer (≥T2), and lymph node metastasis were statistically significant factors in primary site detection rate. The sensitivity, specificity, and positive predictive value of FDG-PET to lymph node metastasis were 59.6%, 88.8%, and 81.1% respectively, sensitivity being lower compared to CT while specificity and positive predictive value were higher. Sensitivity, specificity, and positive predictive value to distant metastasis were, respectively, 66.7%, 99.2%, and 88.0%, similar to CT. In 21 of the 392 patients (5.4%), synchronous double primary cancers were detected. In gastric cancer, usefullness of FDG-PET is limited to the advanced stage. Diagnostic value of this test was not superior to CT. However, FDG-PET may be useful in detecting synchronous double primary cancers.
Robertson, Craig A; McCabe, Christopher; Gallagher, Lindsay; Lopez-Gonzalez, Maria del Rosario; Holmes, William M; Condon, Barrie; Muir, Keith W; Santosh, Celestine; Macrae, I Mhairi
2011-08-01
Accurate identification of ischemic penumbra will improve stroke patient selection for reperfusion therapies and clinical trials. Current magnetic resonance imaging (MRI) techniques have limitations and lack validation. Oxygen challenge T(2)(*) MRI (T(2)(*) OC) uses oxygen as a biotracer to detect tissue metabolism, with penumbra displaying the greatest T(2)(*) signal change during OC. [(14)C]2-deoxyglucose (2-DG) autoradiography was combined with T(2)(*) OC to determine metabolic status of T(2)(*)-defined penumbra. Permanent middle cerebral artery occlusion was induced in anesthetized male Sprague-Dawley rats (n=6). Ischemic injury and perfusion deficit were determined by diffusion- and perfusion-weighted imaging, respectively. At 147 ± 32 minutes after stroke, T(2)(*) signal change was measured during a 5-minute 100% OC, immediately followed by 125 μCi/kg 2-DG, intravenously. Magnetic resonance images were coregistered with the corresponding autoradiograms. Regions of interest were located within ischemic core, T(2)(*)-defined penumbra, equivalent contralateral structures, and a region of hyperglycolysis. A T(2)(*) signal increase of 9.22% ± 3.9% (mean ± s.d.) was recorded in presumed penumbra, which displayed local cerebral glucose utilization values equivalent to contralateral cortex. T(2)(*) signal change was negligible in ischemic core, 3.2% ± 0.78% in contralateral regions, and 1.41% ± 0.62% in hyperglycolytic tissue, located outside OC-defined penumbra and within the diffusion abnormality. The results support the utility of OC-MRI to detect viable penumbral tissue following stroke.
Leppens-Luisier, G; Urner, F; Sakkas, D
2001-06-01
The role of glucose fluctuates during preimplantation mouse embryo development, indicating that a specific interplay exists between glucose metabolism and uptake. In this study, attempts were made to characterize the role of the Na(+)-coupled active and the facilitated glucose transporters (GLUT) during preimplantation development by using specific glucose analogues and transport inhibitors and by examining the expression of GLUT1. One-cell outbred mouse embryos were cultured in medium M16 (5.5 mmol/l glucose), M16 without glucose (M16-G), M16-G + 2-deoxyglucose, M16-G + 3-O-methylglucose, M16 + phlorizin and M16 + phloretin and development to the blastocyst stage assessed. The absence of glucose, or the presence of 3-O-methylglucose, which is taken up but not metabolized, did not inhibit blastocyst development. 2-Deoxyglucose, which is phosphorylated but not metabolized, inhibited blastocyst development. Culture in M16 supplemented with phlorizin, an inhibitor of Na(+)-coupled active glucose transport did not inhibit blastocyst formation. Phloretin had no effect on the cleavage of two-cell embryos to the four-cell stage, but inhibited the morula/blastocyst transition. Both phloretin and phlorizin inhibited glucose uptake in two-cell embryos. Finally, GLUT1 expression was 10-fold less in blastocysts cultured in M16 compared to in-vivo blastocysts and those cultured in M16-G. The results show that both types of glucose transporters influence preimplantation embryo development and that the embryo has an innate ability to control the uptake of glucose by regulating the expression of GLUT1.
Beta-carotene and lutein protect HepG2 human liver cells against oxidant-induced damage.
Martin, K R; Failla, M L; Smith, J C
1996-09-01
Numerous epidemiological studies support a strong inverse relationship between consumption of carotenoid-rich fruits and vegetables and the incidence of some degenerative diseases. One proposed mechanism of protection by carotenoids centers on their putative antioxidant activity, although direct evidence in support of this contention is limited at the cellular level. The antioxidant potential of beta-carotene (BC) and lutein (LUT), carotenoids with or without provitamin A activity, respectively, was evaluated using the human liver cell line HepG2. Pilot studies showed that a 90-min exposure of confluent cultures to 500 mumol/L tert-butylhydroperoxide (TBHP) at 37 degrees C significantly (P < 0.05) increased lipid peroxidation and cellular leakage of lactate dehydrogenase (LDH), and decreased the uptake of 3H-alpha-aminoisobutyric acid and 3H-2-deoxyglucose. Protein synthesis, mitochondrial activity and glucose oxidation were not affected by TBHP treatment, suggesting that the plasma membrane was the primary site of TBHP-induced damage. Overnight incubation of cultures with > or = 1 mumol/L dl-alpha-tocopherol protected cells against oxidant-induced changes. In parallel studies, overnight incubation of HepG2 in medium containing micelles with either BC or LUT (final concentrations of 1.1 and 10.9 mumol/L, respectively), the cell content of the carotenoids increased from < 0.04 to 0.32 and 3.39 nmol/mg protein, respectively. Carotenoid-loaded cells were partially or completely protected against oxidant-induced changes in lipid peroxidation, LDH release and amino acid and deoxyglucose transport. These data demonstrate that BC and LUT or their metabolites protect HepG2 cells against oxidant-induced damage and that the protective effect is independent of provitamin A activity.
Klacanova, Katarina; Pilchova, Ivana; Klikova, Katarina; Racay, Peter
2016-04-01
Both translation arrest and proteasome stress associated with accumulation of ubiquitin-conjugated protein aggregates were considered as a cause of delayed neuronal death after transient global brain ischemia; however, exact mechanisms as well as possible relationships are not fully understood. The aim of this study was to compare the effect of chemical ischemia and proteasome stress on cellular stress responses and viability of neuroblastoma SH-SY5Y and glioblastoma T98G cells. Chemical ischemia was induced by transient treatment of the cells with sodium azide in combination with 2-deoxyglucose. Proteasome stress was induced by treatment of the cells with bortezomib. Treatment of SH-SY5Y cells with sodium azide/2-deoxyglucose for 15 min was associated with cell death observed 24 h after treatment, while glioblastoma T98G cells were resistant to the same treatment. Treatment of both SH-SY5Y and T98G cells with bortezomib was associated with cell death, accumulation of ubiquitin-conjugated proteins, and increased expression of Hsp70. These typical cellular responses to proteasome stress, observed also after transient global brain ischemia, were not observed after chemical ischemia. Finally, chemical ischemia, but not proteasome stress, was in SH-SY5Y cells associated with increased phosphorylation of eIF2α, another typical cellular response triggered after transient global brain ischemia. Our results showed that short chemical ischemia of SH-SY5Y cells is not sufficient to induce both proteasome stress associated with accumulation of ubiquitin-conjugated proteins and stress response at the level of heat shock proteins despite induction of cell death and eIF2α phosphorylation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Gang; Department of Anesthesiology, First Affiliated Hospital of China Medical University, Shenyang; Hitomi, Hirofumi, E-mail: hitomi@kms.ac.jp
Insulin resistance and hypertension have been implicated in the pathogenesis of cardiovascular disease; however, little is known about the roles of insulin and mechanical force in vascular smooth muscle cell (VSMC) remodeling. We investigated the contribution of mechanical stretch to insulin-induced VSMC proliferation. Thymidine incorporation was stimulated by insulin in stretched VSMCs, but not in un-stretched VSMCs. Insulin increased 2-deoxy-glucose incorporation in both stretched and un-stretched VSMCs. Mechanical stretch augmented insulin-induced extracellular signal-regulated kinase (ERK) and Akt phosphorylation. Inhibitors of epidermal growth factor (EGF) receptor tyrosine kinase and Src attenuated insulin-induced ERK and Akt phosphorylation, as well as thymidine incorporation,more » whereas 2-deoxy-glucose incorporation was not affected by these inhibitors. Moreover, stretch augmented insulin-like growth factor (IGF)-1 receptor expression, although it did not alter the expression of insulin receptor and insulin receptor substrate-1. Insulin-induced ERK and Akt activation, and thymidine incorporation were inhibited by siRNA for the IGF-1 receptor. Mechanical stretch augments insulin-induced VSMC proliferation via upregulation of IGF-1 receptor, and downstream Src/EGF receptor-mediated ERK and Akt activation. Similar to in vitro experiment, IGF-1 receptor expression was also augmented in hypertensive rats. These results provide a basis for clarifying the molecular mechanisms of vascular remodeling in hypertensive patients with hyperinsulinemia. -- Highlights: {yields} Mechanical stretch augments insulin-induced VSMC proliferation via IGF-1 receptor. {yields} Src/EGFR-mediated ERK and Akt phosphorylation are augmented in stretched VSMCs. {yields} Similar to in vitro experiment, IGF-1 receptor is increased in hypertensive rats. {yields} Results provide possible mechanisms of vascular remodeling in hypertension with DM.« less
Inhibition of glioblastoma tumorspheres by combined treatment with 2-deoxyglucose and metformin.
Kim, Eui Hyun; Lee, Ji-Hyun; Oh, Yoonjee; Koh, Ilkyoo; Shim, Jin-Kyoung; Park, Junseong; Choi, Junjeong; Yun, Mijin; Jeon, Jeong Yong; Huh, Yong Min; Chang, Jong Hee; Kim, Sun Ho; Kim, Kyung-Sup; Cheong, Jae-Ho; Kim, Pilnam; Kang, Seok-Gu
2017-02-01
Deprivation of tumor bioenergetics by inhibition of multiple energy pathways has been suggested as an effective therapeutic approach for various human tumors. However, this idea has not been evaluated in glioblastoma (GBM). We hypothesized that dual inhibition of glycolysis and oxidative phosphorylation could effectively suppress GBM tumorspheres (TS). Effects of 2-deoxyglucose (2DG) and metformin, alone and in combination, on GBM-TS were evaluated. Viability, cellular energy metabolism status, stemness, invasive properties, and GBM-TS transcriptomes were examined. In vivo efficacy was tested in a mouse orthotopic xenograft model. GBM-TS viability was decreased by the combination of 2DG and metformin. ATP assay and PET showed that cellular energy metabolism was also decreased by this combination. Sphere formation, expression of stemness-related proteins, and invasive capacity of GBM-TS were also significantly suppressed by combined treatment with 2DG and metformin. A transcriptome analysis showed that the expression levels of stemness- and epithelial mesenchymal transition-related genes were also significantly downregulated by combination of 2DG and metformin. Combination treatment also prolonged survival of tumor-bearing mice and decreased invasiveness of GBM-TS. The combination of 2DG and metformin effectively decreased the stemness and invasive properties of GBM-TS and showed a potential survival benefit in a mouse orthotopic xenograft model. Our findings suggest that targeting TS-forming cells by this dual inhibition of cellular bioenergetics warrants expedited clinical evaluation for the treatment of GBM. © The Author(s) 2016. Published by Oxford University Press on behalf of the Society for Neuro-Oncology. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com
Spragg, R G; Hinshaw, D B; Hyslop, P A; Schraufstätter, I U; Cochrane, C G
1985-01-01
To investigate mechanisms whereby oxidant injury of cells results in cell dysfunction and death, cultured endothelial cells or P388D1 murine macrophage-like cells were exposed to oxidants including H2O2, O2-. (generated by the enzymatic oxidation of xanthine), or to stimulated polymorphonuclear leukocytes (PMN). Although Trypan Blue exclusion was not diminished before 30 min, cellular ATP was found to fall to less than 30% of control values within 3 min of exposure to 5 mM H2O2. Stimulated PMN plus P388D1 caused a 50% fall in cellular ATP levels. During the first minutes of oxidant injury, total adenylate content of cells fell by 85%. Cellular ADP increased 170%, AMP increased 900%, and an 83% loss of ATP was accompanied by a stoichiometric increase in IMP and inosine. Calculated energy charge [(ATP + 1/2 AMP)/(ATP + ADP + AMP)] fell from 0.95 to 0.66. Exposure of P388D1 to oligomycin plus 2-deoxyglucose (which inhibit oxidative and glycolytic generation of ATP, respectively) resulted in a rate of ATP fall similar to that induced by H2O2. In addition, nucleotide alterations induced by exposure to oligomycin plus 2-deoxyglucose were qualitatively similar to those induced by the oxidant. Loss of cell adenylates could not be explained by arrest of de novo purine synthesis or increased ATP consumption by the Na+-K+ ATPase or the mitochondrial F0-ATPase. These results indicate that H2O2 causes a rapid and profound fall in cellular ATP levels similar to that seen when ATP production is arrested by metabolic inhibitors. PMID:2997279
Dienel, Gerald A; Cruz, Nancy F; Sokoloff, Louis; Driscoll, Bernard F
2017-01-01
2-Deoxy-D-[ 14 C]glucose ([ 14 C]DG) is commonly used to determine local glucose utilization rates (CMR glc ) in living brain and to estimate CMR glc in cultured brain cells as rates of [ 14 C]DG phosphorylation. Phosphorylation rates of [ 14 C]DG and its metabolizable fluorescent analog, 2-(N-(7-nitrobenz-2-oxa-1,3-diazol-4-yl)amino)-2-deoxyglucose (2-NBDG), however, do not take into account differences in the kinetics of transport and metabolism of [ 14 C]DG or 2-NBDG and glucose in neuronal and astrocytic cells in cultures or in single cells in brain tissue, and conclusions drawn from these data may, therefore, not be correct. As a first step toward the goal of quantitative determination of CMR glc in astrocytes and neurons in cultures, the steady-state intracellular-to-extracellular concentration ratios (distribution spaces) for glucose and [ 14 C]DG were determined in cultured striatal neurons and astrocytes as functions of extracellular glucose concentration. Unexpectedly, the glucose distribution spaces rose during extreme hypoglycemia, exceeding 1.0 in astrocytes, whereas the [ 14 C]DG distribution space fell at the lowest glucose levels. Calculated CMR glc was greatly overestimated in hypoglycemic and normoglycemic cells because the intracellular glucose concentrations were too high. Determination of the distribution space for [ 14 C]glucose revealed compartmentation of intracellular glucose in astrocytes, and probably, also in neurons. A smaller metabolic pool is readily accessible to hexokinase and communicates with extracellular glucose, whereas the larger pool is sequestered from hexokinase activity. A new experimental approach using double-labeled assays with DG and glucose is suggested to avoid the limitations imposed by glucose compartmentation on metabolic assays.
Southworth, Richard; Parry, Craig R; Parkes, Harold G; Medina, Rodolfo A; Garlick, Pamela B
2003-12-01
2-Fluoro-[(18)F]-2-deoxy-glucose (FDG) is a positron-emitting analogue of glucose used clinically in positron emission tomography (PET) to assess glucose utilization in diseased and healthy tissue. Originally developed to measure local cerebral glucose utilization rates, it has now found applications in tumour diagnosis and in the study of myocardial glucose uptake. Once taken up into the cell, FDG is phosphorylated to FDG-6-phosphate (FDG-6-P) by hexokinase and was originally believed to be trapped as a terminal metabolite. This 'metabolic trapping' of FDG-6-P forms the basis of the analysis of PET data. In this study, we have used (19)F NMR spectroscopy to investigate FDG metabolism following the injection of a bolus of the glucose tracer into the rat (n=6). Ninety minutes after the (19)FDG injection, the brain, heart, liver and kidneys were removed and the (19)FDG metabolites in each were extracted and quantified. We report that significant metabolism of FDG occurs beyond FDG-6-P in all organs examined and that the extent of this metabolism varies from tissue to tissue (degree of metabolism beyond FDG-6-P, expressed as percentage of total organ FDG content, was brain 45 +/- 3%; heart 29 +/- 2%; liver 22+/-3% and kidney 17 +/- 3%, mean +/- SEM n=6). Furthermore, we demonstrate that the relative accumulation of each metabolite was tissue-dependent and reflected the metabolic and regulatory characteristics of each organ. Such inter-tissue differences may have implications for the mathematical modelling of glucose uptake and phosphorylation using FDG as a glucose tracer. Copyright 2003 John Wiley & Sons, Ltd.
Hato, Takashi; Friedman, Allon N.; Mang, Henry; Plotkin, Zoya; Dube, Shataakshi; Hutchins, Gary D.; Territo, Paul R.; McCarthy, Brian P.; Riley, Amanda A.; Pichumani, Kumar; Malloy, Craig R.; Harris, Robert A.; Dagher, Pierre C.
2016-01-01
The metabolic status of the kidney is a determinant of injury susceptibility and a measure of progression for many disease processes; however, noninvasive modalities to assess kidney metabolism are lacking. In this study, we employed positron emission tomography (PET) and intravital multiphoton microscopy (MPM) to assess cortical and proximal tubule glucose tracer uptake, respectively, following experimental perturbations of kidney metabolism. Applying dynamic image acquisition PET with 2-18fluoro-2-deoxyglucose (18F-FDG) and tracer kinetic modeling, we found that an intracellular compartment in the cortex of the kidney could be distinguished from the blood and urine compartments in animals. Given emerging literature that the tumor suppressor protein p53 is an important regulator of cellular metabolism, we demonstrated that PET imaging was able to discern a threefold increase in cortical 18F-FDG uptake following the pharmacological inhibition of p53 in animals. Intravital MPM with the fluorescent glucose analog 2-[N-(7-nitrobenz-2-oxa-1,3-diazol-4-yl)amino]-2-deoxyglucose (2-NBDG) provided increased resolution and corroborated these findings at the level of the proximal tubule. Extending our observation of p53 inhibition on proximal tubule glucose tracer uptake, we demonstrated by intravital MPM that pharmacological inhibition of p53 diminishes mitochondrial potential difference. We provide additional evidence that inhibition of p53 alters key metabolic enzymes regulating glycolysis and increases intermediates of glycolysis. In summary, we provide evidence that PET is a valuable tool for examining kidney metabolism in preclinical and clinical studies, intravital MPM is a powerful adjunct to PET in preclinical studies of metabolism, and p53 inhibition alters basal kidney metabolism. PMID:26764206
Porrino, Linda J; Beveridge, Thomas J R; Smith, Hilary R; Nader, Michael A
2016-05-01
Exposure to stimuli and environments associated with drug use is considered one of the most important contributors to relapse among substance abusers. Neuroimaging studies have identified neural circuits underlying these responses in cocaine-dependent subjects. But these studies are often difficult to interpret because of the heterogeneity of the participants, substances abused, and differences in drug histories and social variables. Therefore, the goal of this study was to assess the functional effects of exposure to cocaine-associated stimuli in a non-human primate model of cocaine self-administration, providing precise control over these variables, with the 2-[(14) C]deoxyglucose method. Rhesus monkeys self-administered 0.3 mg/kg/injection cocaine (n = 4) under a fixed-interval 3-minute (FI 3-min) schedule of reinforcement (30 injections/session) for 100 sessions. Control animals (n = 4) underwent identical schedules of food reinforcement. Sessions were then discontinued for 30 days, after which time, monkeys were exposed to cocaine- or food-paired cues, and the 2-[(14) C]deoxyglucose experiment was conducted. The presentation of the cocaine-paired cues resulted in significant increases in functional activity within highly restricted circuits that included portions of the pre-commissural striatum, medial prefrontal cortex, rostral temporal cortex and limbic thalamus when compared with control animals presented with the food-paired cues. The presentation of cocaine-associated cues increased brain functional activity in contrast to the decreases observed after cocaine consumption. Furthermore, the topography of brain circuits engaged by the expectation of cocaine is similar to the distribution of effects during the earliest phases of cocaine self-administration, prior to the onset of neuroadaptations that accompany chronic cocaine exposure. © 2015 Society for the Study of Addiction.
Lebasnier, Adrien; Legallois, Damien; Bienvenu, Boris; Bergot, Emmanuel; Desmonts, Cédric; Zalcman, Gérard; Agostini, Denis; Manrique, Alain
2018-06-01
The identification of cardiac sarcoidosis is challenging as there is no gold standard consensually admitted for its diagnosis. The aim of this study was to evaluate the diagnostic value of the assessment of cardiac dynamic 18 F-fluoro-2-deoxyglucose positron emission tomography ( 18 F-FDG PET/CT) and net influx constant (Ki) in patients suspected of cardiac sarcoidosis. Data obtained from 30 biopsy-proven sarcoidosis patients suspected of cardiac sarcoidosis who underwent a 50-min list-mode cardiac dynamic 18 F-FDG PET/CT after a 24 h high-fat and low-carbohydrate diet were analyzed. A normalized coefficient of variation of quantitative glucose influx constant, calculated as the ratio: standard deviation of the segmental Ki (min -1 )/global Ki (min -1 ) was determined using a validated software (Carimas ® 2.4, Turku PET Centre). Cardiac sarcoidosis was diagnosed according to the Japanese Ministry of Health and Welfare criteria. Receiving operating curve analysis was performed to determine sensitivity and specificity of cardiac dynamic 18 F-FDG PET/CT analysis to diagnose cardiac sarcoidosis. Six out of 30 patients (20%) were diagnosed as having cardiac sarcoidosis. Myocardial glucose metabolism was significantly heterogeneous in patients with cardiac sarcoidosis who showed significantly higher normalized coefficient of variation values compared to patients without cardiac sarcoidosis (0.513 ± 0.175 vs. 0.205 ± 0.081; p = 0.0007). Using ROC curve analysis, we found a cut-off value of 0.38 for the diagnosis of cardiac sarcoidosis with a sensitivity of 100% and a specificity of 91%. Our results suggest that quantitative analysis of cardiac dynamic 18 F-FDG PET/CT could be a useful tool for the diagnosis of cardiac sarcoidosis.
The absorption of protons with specific amino acids and carbohydrates by yeast
Seaston, A.; Inkson, C.; Eddy, A. A.
1973-01-01
1. Proton uptake in the presence of various amino acids was studied in washed yeast suspensions containing deoxyglucose and antimycin to inhibit energy metabolism. A series of mutant strains of Saccharomyces cerevisiae with defective amino acid permeases was used. The fast absorption of glycine, l-citrulline and l-methionine through the general amino acid permease was associated with the uptake of about 2 extra equivalents of protons per mol of amino acid absorbed, whereas the slower absorption of l-methionine, l-proline and, possibly, l-arginine through their specific permeases was associated with about 1 proton equivalent. l-Canavanine and l-lysine were also absorbed with 1–2 equivalents of protons. 2. A strain of Saccharomyces carlsbergensis behaved similarly with these amino acids. 3. Preparations of the latter yeast grown with maltose subsequently absorbed it with 2–3 equivalents of protons. The accelerated rate of proton uptake increased up to a maximum value with the maltose concentration (Km=1.6mm). The uptake of protons was also faster in the presence of α-methylglucoside and sucrose, but not in the presence of glucose, galactose or 2-deoxyglucose. All of these compounds except the last could cause acid formation. The uptake of protons induced by maltose, α-methylglucoside and sucrose was not observed when the yeast was grown with glucose, although acid was then formed both from sucrose and glucose. 4. A strain of Saccharomyces fragilis that both fermented and formed acid from lactose absorbed extra protons in the presence of lactose. 5. The observations show that protons were co-substrates in the systems transporting the amino acids and certain of the carbohydrates. PMID:4587071
beta-adrenergic effects on carbohydrate metabolism in the unweighted rat soleus muscle
NASA Technical Reports Server (NTRS)
Kirby, Christopher R.; Tischler, Marc E.
1990-01-01
The effect of unweighting on the response of the soleus-muscle carbohydrate metabolism to a beta-adrenergic agonist (isoproterenol) was investigated in rats that were subjected to three days of tail-cast suspension. It was found that isoproterenol promoted glycogen degradation in soleus from suspended rats to a higher degree than in weighted soleus from control rats, and had no effect in unweighted digitorum longus. However, isoproterenol did not have a greater inhibitory effect on the net uptake of tritium-labeled 2-deoxy-glucose by the unweighted soleus and that isoproterenol inhibited hexose phosphorylation less in the unweighted than in the control muscle.
Effect of insulin-like factors on glucose transport activity in unweighted rat skeletal muscle
NASA Technical Reports Server (NTRS)
Henriksen, Erik J.; Ritter, Leslie S.
1993-01-01
The effect of 3 or 6 days of unweighting on glucose transport activity, as assessed by 2-deoxyglucose uptake, in soleus strips stimulated by maximally effective concentrations of insulin, IGF-I, vanadate, or phospholipase C (PLC) is examined. Progressively increased responses to maximally effective doses of insulin or insulin-like growth factor were observed after 3 and 6 days of unweighting compared with weight matched control strips. Enhanced maximal responses to vanadate (6 days only) and PLC (3 and 6 days) were also observed. The data provide support for the existance of postreceptor binding mechanisms for the increased action of insulin on the glucose transport system in unweighted rat skeletal muscle.
NUT Midline Carcinoma in Elderly Patients: Usefulness of 18F-FDG PET/CT for Treatment Assessment.
Kawase, Takatsugu; Naka, Go; Kubota, Kazuo; Sakashita, Baku; Takeda, Yuichiro
2015-09-01
Nuclear protein in testis (NUT) midline carcinoma is a rare disease that generally arises in adolescents and young adults. However, we encountered a rare NUT midline carcinoma case in an elderly patient. F-2-fluoro-2-deoxyglucose positron emission tomography/computed tomography (PET/CT) studies were performed before and during the treatment course. In this case, the initial PET/CT study revealed locoregional hypermetabolism in the mediastinal lesion. After then, the interim PET/CT study indicated a clear diminishing response to the initial treatment, whereas the residual masses were morphologically observable. Nuclear imaging may allow visualization of the therapeutic effect of antineoplastic therapies in both young and elderly patients.
Sheikhbahaei, Sara; Mena, Esther; Pattanayak, Puskar; Taghipour, Mehdi; Solnes, Lilja B; Subramaniam, Rathan M
2017-01-01
A variety of methods have been developed to assess tumor response to therapy. Standardized qualitative criteria based on 18F-fluoro-deoxyglucose PET/computed tomography have been proposed to evaluate the treatment effectiveness in specific cancers and these allow more accurate therapy response assessment and survival prognostication. Multiple studies have addressed the utility of the volumetric PET biomarkers as prognostic indicators but there is no consensus about the preferred segmentation methodology for these metrics. Heterogeneous intratumoral uptake was proposed as a novel PET metric for therapy response assessment. PET imaging techniques will be used to study the biological behavior of cancers during therapy. Copyright © 2016 Elsevier Inc. All rights reserved.
Köfalvi, Attila; Lemos, Cristina; Martín-Moreno, Ana M; Pinheiro, Bárbara S; García-García, Luis; Pozo, Miguel A; Valério-Fernandes, Ângela; Beleza, Rui O; Agostinho, Paula; Rodrigues, Ricardo J; Pasquaré, Susana J; Cunha, Rodrigo A; de Ceballos, María L
2016-11-01
Cannabinoid CB2 receptors (CB2Rs) are emerging as important therapeutic targets in brain disorders that typically involve neurometabolic alterations. We here addressed the possible role of CB2Rs in the regulation of glucose uptake in the mouse brain. To that aim, we have undertaken 1) measurement of (3)H-deoxyglucose uptake in cultured cortical astrocytes and neurons and in acute hippocampal slices; 2) real-time visualization of fluorescently labeled deoxyglucose uptake in superfused hippocampal slices; and 3) in vivo PET imaging of cerebral (18)F-fluorodeoxyglucose uptake. We now show that both selective (JWH133 and GP1a) as well as non-selective (WIN55212-2) CB2R agonists, but not the CB1R-selective agonist, ACEA, stimulate glucose uptake, in a manner that is sensitive to the CB2R-selective antagonist, AM630. Glucose uptake is stimulated in astrocytes and neurons in culture, in acute hippocampal slices, in different brain areas of young adult male C57Bl/6j and CD-1 mice, as well as in middle-aged C57Bl/6j mice. Among the endocannabinoid metabolizing enzymes, the selective inhibition of COX-2, rather than that of FAAH, MAGL or α,βDH6/12, also stimulates the uptake of glucose in hippocampal slices of middle-aged mice, an effect that was again prevented by AM630. However, we found the levels of the endocannabinoid, anandamide reduced in the hippocampus of TgAPP-2576 mice (a model of β-amyloidosis), and likely as a consequence, COX-2 inhibition failed to stimulate glucose uptake in these mice. Together, these results reveal a novel general glucoregulatory role for CB2Rs in the brain, raising therapeutic interest in CB2R agonists as nootropic agents. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.
Kleszcz, Robert; Paluszczak, Jarosław; Krajka-Kuźniak, Violetta; Baer-Dubowska, Wanda
2018-05-17
Cancer cells are dependent on aerobic glycolysis for energy production and increased glutamine consumption. HIF-1α and c-MYC transcription factors regulate the expression of glycolytic and glutaminolytic genes. Their activity may be repressed by SIRT6. Head and neck carcinomas show frequent activation of c-MYC function and SIRT6 down-regulation, which contributes to a strong dependence on glucose and glutamine availability. The aim of this study was to compare the influence of HIF-1α and c-MYC inhibitors (KG-548 and 10058-F4, respectively) and potential SIRT6 inducers - resveratrol and its synthetic derivative DMU-212 with the effect of glycolysis and glutaminolysis inhibitors (2-deoxyglucose and aminooxyacetic acid, respectively) on the metabolism and expression of metabolic enzymes in FaDu hypopharyngeal carcinoma cells. Cell viability was assessed by means of an MTT assay. Quantitative PCR was performed to evaluate the expression of SIRT6, HIF-1α, c-MYC, GLUT1, SLC1A5, HK2, PFKM, PKM2, LDHA, GLS, and GDH. The release of glycolysis and glutaminolysis end-products into the culture medium - lactate and ammonia, respectively - was assessed using standard colorimetric assays. Lactate production was significantly inhibited by 10058-F4, KG-548, and 2-deoxyglucose. Moreover, 10058-F4 strongly reduced the amount of ammonia release. The effects of 10058-F4 activity can be attributed to a reduction in the expression of PKM2 and LDHA. On the other hand, the induction of SIRT6 expression by resveratrol and DMU-212 was not associated with significant modulation of the expression of metabolic enzymes. Overall, the results of this study indicate that the inhibition of c-MYC may be considered to be a promising strategy of the modulation of cancer-related metabolic changes in head and neck carcinomas.
Shimomura, Hiroyuki; Sasahira, Tomonori; Yamanaka, Yasutsugu; Kurihara, Miyako; Imai, Yuichiro; Tamaki, Shigehiro; Yamakawa, Nobuhiro; Shirone, Norihisa; Hasegawa, Masatoshi; Kuniyasu, Hiroki; Kirita, Tadaaki
2015-04-01
[(18)F]fluoro-2-deoxyglucose-positron emission tomography (FDG-PET) is widely used to evaluate tumor metabolic activity. The aim of this study was to evaluate the usefulness of FDG-PET in assessing the histopathological response to preoperative concurrent chemoradiotherapy (CRT) in patients with oral squamous cell carcinoma (OSCC). Forty-five patients with resectable advanced OSCC who had received preoperative CRT followed by tumor ablative surgery between January 2004 and December 2011 were included in the study. All patients underwent FDG-PET before and after preoperative CRT. The maximum standardized uptake value (SUVmax) before (pre-SUV) and after preoperative CRT (post-SUV) and the SUVmax reduction rate (ΔSUV %) were used to evaluate the response to preoperative CRT. Correlations among SUVmax, histopathological response, and expression of cancer antigen Ki-67 and hypoxia-inducible factor-1α (HIF-1α) were analyzed. Preoperative CRT significantly reduced intratumoral FDG uptake (P < 0.001). The pre-SUV and post-SUV were significantly lower in patients with a pathological complete response (pCR) than in those with a non-pCR (pre-SUV P = 0.037; post-SUV P = 0.001). ΔSUV % was higher in patients with pCR than in those with non-pCR (P = 0.029). The pre-SUV was significantly correlated with Ki-67 and HIF-1α expression in pretreatment biopsy specimens (Ki-67 P = 0.046, R = 0.292; HIF-1α P = 0.007, R = 0.385). The expression of both Ki-67 and HIF-1α was significantly lower in patients with pCR than in those with non-pCR (Ki-67 P < 0.001; HIF-1α P < 0.001). Low pre-SUV and post-SUV and high ΔSUV % may predict a good histopathological response to preoperative CRT. Ki-67 and HIF-1α expression in pretreatment biopsy specimens were predictors of histopathological response to preoperative CRT.
Tavakoli, Sina; Short, John D.; Downs, Kevin; Nguyen, Huynh Nga; Lai, Yanlai; Zhang, Wei; Jerabek, Paul; Goins, Beth; Sadeghi, Mehran M.
2017-01-01
Purpose To determine the divergence of immunometabolic phenotypes of macrophages stimulated with macrophage colony-stimulating factor (M-CSF) and granulocyte-M-CSF (GM-CSF) and its implications for fluorine 18 (18F) fluorodeoxyglucose (FDG) imaging of atherosclerosis. Materials and Methods This study was approved by the animal care committee. Uptake of 2-deoxyglucose and various indexes of oxidative and glycolytic metabolism were evaluated in nonactivated murine peritoneal macrophages (MΦ0) and macrophages stimulated with M-CSF (MΦM-CSF) or GM-CSF (MΦGM-CSF). Intracellular glucose flux was measured by using stable isotope tracing of glycolytic and tricyclic acid intermediary metabolites. 18F-FDG uptake was evaluated in murine atherosclerotic aortas after stimulation with M-CSF or GM-CSF by using quantitative autoradiography. Results Despite inducing distinct activation states, GM-CSF and M-CSF stimulated progressive but similar levels of increased 2-deoxyglucose uptake in macrophages that reached up to sixfold compared with MΦ0. The expression of glucose transporters, oxidative metabolism, and mitochondrial biogenesis were induced to similar levels in MΦM-CSF and MΦGM-CSF. Unexpectedly, there was a 1.7-fold increase in extracellular acidification rate, a 1.4-fold increase in lactate production, and overexpression of several critical glycolytic enzymes in MΦM-CSF compared with MΦGM-CSF with associated increased glucose flux through glycolytic pathway. Quantitative autoradiography demonstrated a 1.6-fold induction of 18F-FDG uptake in murine atherosclerotic plaques by both M-CSF and GM-CSF. Conclusion The proinflammatory and inflammation-resolving activation states of macrophages induced by GM-CSF and M-CSF in either cell culture or atherosclerotic plaques may not be distinguishable by the assessment of glucose uptake. © RSNA, 2016 Online supplemental material is available for this article. PMID:27849433
Sekiguchi, Masau; Kakugawa, Yasuo; Terauchi, Takashi; Matsumoto, Minori; Saito, Hiroshi; Muramatsu, Yukio; Saito, Yutaka; Matsuda, Takahisa
2016-12-01
The sensitivity of 2-[ 18 F]fluoro-2-deoxyglucose positron emission tomography (FDG-PET) for advanced colorectal neoplasms among healthy subjects is not yet fully understood. The present study aimed to clarify the sensitivity by analyzing large-scale data from an asymptomatic screening population. A total of 7505 asymptomatic screenees who underwent both FDG-PET and colonoscopy at our Cancer Screening Division between February 2004 and March 2013 were analyzed. FDG-PET and colonoscopy were performed on consecutive days, and each examination was interpreted in a blinded fashion. The results of the two examinations were compared for each of the divided six colonic segments, with those from colonoscopy being set as the reference. The relationships between the sensitivity of FDG-PET and clinicopathological features of advanced neoplasms were also evaluated. Two hundred ninety-one advanced neoplasms, including 24 invasive cancers, were detected in 262 individuals. Thirteen advanced neoplasms (advanced adenomas) were excluded from the analysis because of the coexistence of lesions in the same colonic segment. The sensitivity, specificity, and positive and negative predictive values of FDG-PET for advanced neoplasms were 16.9 % [95 % confidence interval (CI) 12.7-21.8 %], 99.3 % (95 % CI 99.2-99.4 %), 13.5 % (95 % CI 10.1-17.6 %), and 99.4 % (95 % CI 99.3-99.5 %), respectively. The sensitivity was lower for lesions with less advanced histological grade, of smaller size, and flat-type morphology, and for those located in the proximal part of the colon. FDG-PET is believed to be difficult to use as a primary screening tool in population-based colorectal cancer screening because of its low sensitivity for advanced neoplasms. Even when it is used in opportunistic cancer screening, the limit of its sensitivity should be considered.
Simmons, J M; Ackermann, R F; Gallistel, C R
1998-10-15
Lesions in the medial forebrain bundle rostral to a stimulating electrode have variable effects on the rewarding efficacy of self-stimulation. We attempted to account for this variability by measuring the anatomical and functional effects of electrolytic lesions at the level of the lateral hypothalamus (LH) and by correlating these effects to postlesion changes in threshold pulse frequency (pps) for self-stimulation in the ventral tegmental area (VTA). We implanted True Blue in the VTA and compared cell labeling patterns in forebrain regions of intact and lesioned animals. We also compared stimulation-induced regional [14C]deoxyglucose (DG) accumulation patterns in the forebrains of intact and lesioned animals. As expected, postlesion threshold shifts varied: threshold pps remained the same or decreased in eight animals, increased by small but significant amounts in three rats, and increased substantially in six subjects. Unexpectedly, LH lesions did not anatomically or functionally disconnect all forebrain nuclei from the VTA. Most septal and preoptic regions contained equivalent levels of True Blue label in intact and lesioned animals. In both intact and lesioned groups, VTA stimulation increased metabolic activity in the fundus of the striatum (FS), the nucleus of the diagonal band, and the medial preoptic area. On the other hand, True Blue labeling demonstrated anatomical disconnection of the accumbens, FS, substantia innominata/magnocellular preoptic nucleus (SI/MA), and bed nucleus of the stria terminalis. [14C]DG autoradiography indicated functional disconnection of the lateral preoptic area and SI/MA. Correlations between patterns of True Blue labeling or [14C]deoxyglucose accumulation and postlesion shifts in threshold pulse frequency were weak and generally negative. These direct measures of connectivity concord with the behavioral measures in suggesting a diffuse net-like connection between forebrain nuclei and the VTA.
Cartee, Gregory D; Arias, Edward B; Yu, Carmen S; Pataky, Mark W
2016-11-01
One exercise session can induce subsequently elevated insulin sensitivity that is largely attributable to greater insulin-stimulated glucose uptake by skeletal muscle. Because skeletal muscle is a heterogeneous tissue comprised of diverse fiber types, our primary aim was to determine exercise effects on insulin-independent and insulin-dependent glucose uptake by single fibers of different fiber types. We hypothesized that each fiber type featuring elevated insulin-independent glucose uptake immediately postexercise (IPEX) would be characterized by increased insulin-dependent glucose uptake at 3.5 h postexercise (3.5hPEX). Rat epitrochlearis muscles were isolated and incubated with 2-[ 3 H]deoxyglucose. Muscles from IPEX and sedentary (SED) controls were incubated without insulin. Muscles from 3.5hPEX and SED controls were incubated ± insulin. Glucose uptake (2-[ 3 H]deoxyglucose accumulation) and fiber type (myosin heavy chain isoform expression) were determined for single fibers dissected from the muscles. Major new findings included the following: 1) insulin-independent glucose uptake was increased IPEX in single fibers of each fiber type (types I, IIA, IIB, IIBX, and IIX), 2) glucose uptake values from insulin-stimulated type I and IIA fibers exceeded the values for the other fiber types, 3) insulin-stimulated glucose uptake for type IIX exceeded IIB fibers, and 4) the 3.5hPEX group vs. SED had greater insulin-stimulated glucose uptake in type I, IIA, IIB, and IIBX but not type IIX fibers. Insulin-dependent glucose uptake was increased at 3.5hPEX in each fiber type except for IIX fibers, although insulin-independent glucose uptake was increased IPEX in all fiber types (including type IIX). Single fiber analysis enabled the discovery of this fiber type-related difference for postexercise, insulin-stimulated glucose uptake. Copyright © 2016 the American Physiological Society.
A rare adult renal neuroblastoma better imaged by 18F-FDG than by 68Ga-dotanoc in the PET/CT scan.
Jain, Tarun Kumar; Singh, Sharwan Kumar; Sood, Ashwani; Ashwathanarayama, Abhiram Gj; Basher, Rajender Kumar; Shukla, Jaya; Mittal, Bhagwant Rai
2017-01-01
Primary renal neuroblastoma is an uncommon tumor in children and extremely rare in adults. We present a case of a middle aged female having a large retroperitoneal mass involving the right kidney with features of neuroblastoma on pre-operative histopathology. Whole-body fluorine-18-fluoro-deoxyglucose positron emission tomography ( 18 F-FDG PET/CT) and 68 Ga-dotanoc PET/CT scans performed for staging and therapeutic potential revealed a tracer avid mass replacing the right kidney and also pelvic lymph nodes. The 18 F-FDG PET/CT scan showed better both the primary lesion and the metastases in the pelvic lymph nodes than the 68 Ga-dotanoc scan supporting diagnosis and treatment planning.
Zugaza, J L; Casabiell, X A; Bokser, L; Casanueva, F F
1995-02-06
EGFR-T17 cells were pretreated with oleic acid and 5-10 minutes later stimulated with EGF, to study if early ionic signals are instrumental in inducing metabolic cellular response. Oleic acid blocks EGF-induced [Ca2+]i rise and Ca2+ influx without altering 2-deoxyglucose and 2-aminobutiryc acid uptake nor acute, nor chronically. Oleic acid it is shown, in the first minutes favors the entrance of both molecules to modify the physico-chemical membrane state. On the other hand, oleic acid is unable to block protein synthesis. The results suggest that EGF-induced Ins(1,4,5)P3/Ca2+ pathway does not seem to be decisive in the control of cellular metabolic activity.
Gross, H; Kling, A; Henry, G; Herndon, C; Lavretsky, H
1996-01-01
A retrospective study of 20 patients with mild traumatic brain injury (MTBI) examined brain regions of interest by comparing [18F]-2-deoxyglucose PET, neuropsychological test results, and continuing behavioral dysfunction. Abnormal local cerebral metabolic rates (rLCMs) were most prominent in midtemporal, anterior cingulate, precuneus, anterior temporal, frontal white, and corpus callosum brain regions. Abnormal rLCMs were significantly correlated statistically with 1) overall clinical complaints, most specifically with inconsistent attention/concentration and 2) overall neuropsychological test results. The authors conclude that 1) even mild TBI may result in continuing brain behavioral deficits; 2) PET can help elucidate dysfunctional brain circuitry in neurobehavioral disorders; and 3) specific brain areas may correlate with deficits in daily neurobehavioral functioning and neuropsychological test findings.
Hirooka, K; Yasumura, Y; Ishida, Y; Komamura, K; Hanatani, A; Nakatani, S; Yamagishi, M; Miyatake, K
2000-09-01
A 27-year-old man diagnosed as having dilated cardiomyopathy (DCM) without myocardial accumulation of 123I-beta-methyl-iodophenylpentadecanoic acid, and he was found to have type I CD36 deficiency. This abnormality of cardiac free fatty acid metabolism was also confirmed by other methods: 18F-fluoro-2-deoxyglucose positron emission tomography, measurements of myocardial respiratory quotient and cardiac fatty acid uptake. Although the type I CD36 deficiency was reconfirmed after 3 months, the abnormal free fatty acid metabolism improved after carvedilol therapy and was accompanied by improved cardiac function. Apart from a cause-and-effect relationship, carvedilol can improve cardiac function and increase free fatty acid metabolism in patients with both DCM and CD36 deficiency.
Cheng, Zhen; Levi, Jelena; Xiong, Zhengming; Gheysens, Olivier; Keren, Shay; Chen, Xiaoyuan; Gambhir, Sanjiv Sam
2011-01-01
2-deoxy-2-[18F]fluoro-d-glucose ([18F]FDG) has extensively been used for clinical diagnosis, staging and therapy monitoring of cancer and other diseases. Non-radioactive glucose analogs enabling the screening of the glucose metabolic rate of tumors are of particular interest for anticancer drug development. A non-radioactive fluorescent deoxyglucose analog may have many applications for both imaging of tumors and monitoring therapeutic efficacy of drugs in living animals and may eventually translate to clinical applications. We found that a fluorescent 2-deoxyglucose analog, 2-[N-(7-nitrobenz-2-oxa-1,3-diazol-4-yl)amino]-2-deoxy-d-glucose (2-NBDG) can be delivered in several tumor cells via the glucose transporters (GLUTs). We therefore conjugated d-glucosamine with a near-infrared (NIR) fluorphor Cy5.5 and tested the feasibility of Cy5.5-d-glucosamine conjugate (Cy5.5-2DG) for NIR fluorescence imaging of tumors in a pre-clinical xenograft animal model. Cy5.5-2DG was prepared by conjugating Cy5.5 monofunctional N-hydroxysuccinimide ester (Cy5.5-NHS) and d-glucosamine followed by high-performance liquid chromatography purification. The accumulation of Cy5.5-2DG and Cy5.5-NHS in different tumor cell lines at 37 °C and 4 °C were imaged using a fluorescence microscope. Tumor targeting and retention of Cy5.5-2DG and Cy5.5-NHS in a subcutaneous U87MG glioma and A375M melanoma tumor model were evaluated and quantified by a Xenogen IVIS 200 optical cooled charged-coupled device system. Fluorescence microscopy imaging shows that Cy5.5-2DG and Cy5.5-NHS are taken up and trapped by a variety of tumor cell lines at 37 °C incubation, while they exhibit marginal uptake at 4 °C. The tumor cell uptake of Cy5.5-2DG can not be blocked by the 50 mM d-glucose, suggesting that Cy5.5-2DG may not be delivered in tumor cells by GLUTs. U87MG and A375M tumor localization were clearly visualized in living mice with both NIR fluorescent probes. Tumor/muscle contrast was clearly visible as early as 30 min post-injection, and the highest U87MG tumor/muscle ratio of 2.81 ± 0.10, 3.34 ± 0.23 were achieved 24 hours post-injection for Cy5.5-2DG and Cy5.5-NHS, respectively. While as a comparison, the micro-positron emission tomography imaging study shows that [18F]FDG preferentially localize to the U87MG tumor, with resulting tumor/muscle ratios ranging from 3.89 to 4.08 after 30 min to 2 h post-administration of the probe. In conclusion, the NIR fluorescent glucose analog, Cy5.5-2DG and Cy5.5-NHS both demonstrate tumor targeting abilities in cell culture and in living mice. More studies are warranted to further explore their application for optical tumor imaging. In order to develop NIR glucose analog with ability to targeting GLUTs/hexokinase, it is highly important to select NIR dyes with reasonable molecular size. PMID:16704203
Akt substrate TBC1D1 regulates GLUT1 expression through the mTOR pathway in 3T3-L1 adipocytes
Zhou, Qiong L.; Jiang, Zhen Y.; Holik, John; Chawla, Anil; Hagan, G. Nana; Leszyk, John; Czech, Michael P.
2010-01-01
Multiple studies have suggested that the protein kinase Akt/PKB (protein kinase B) is required for insulin-stimulated glucose transport in skeletal muscle and adipose cells. In an attempt to understand links between Akt activation and glucose transport regulation, we applied mass spectrometry-based proteomics and bioinformatics approaches to identify potential Akt substrates containing the phospho-Akt substrate motif RXRXXpS/T. The present study describes the identification of the Rab GAP (GTPase-activating protein)-domain containing protein TBC1D1 [TBC (Tre-2/Bub2/Cdc16) domain family, member 1], which is closely related to TBC1D4 [TBC domain family, member 4, also denoted AS160 (Akt substrate of 160 kDa)], as an Akt substrate that is phosphorylated at Thr590. RNAi (RNA interference)-me-diated silencing of TBC1D1 elevated basal deoxyglucose uptake by approx. 61% in 3T3-L1 mouse embryo adipocytes, while the suppression of TBC1D4 and RapGAP220 under the same conditions had little effect on basal and insulin-stimulated deoxy-glucose uptake. Silencing of TBC1D1 strongly increased expression of the GLUT1 glucose transporter but not GLUT4 in cultured adipocytes, whereas the decrease in TBC1D4 had no effect. Remarkably, loss of TBC1D1 in 3T3-L1 adipocytes activated the mTOR (mammalian target of rapamycin)-p70 S6 protein kinase pathway, and the increase in GLUT1 expression in the cells treated with TBC1D1 siRNA (small interfering RNA) was blocked by the mTOR inhibitor rapamycin. Furthermore, overexpression of the mutant TBC1D1-T590A, lacking the putative Akt/PKB phosphorylation site, inhibited insulin stimulation of p70 S6 kinase phosphorylation at Thr389, a phosphorylation induced by mTOR. Taken together, our data suggest that TBC1D1 may be involved in controlling GLUT1 glucose transporter expression through the mTOR-p70 S6 kinase pathway. PMID:18215134
Leukemia cells demonstrate a different metabolic perturbation provoked by 2-deoxyglucose.
Miwa, Hiroshi; Shikami, Masato; Goto, Mineaki; Mizuno, Shohei; Takahashi, Miyuki; Tsunekawa-Imai, Norikazu; Ishikawa, Takamasa; Mizutani, Motonori; Horio, Tomohiro; Gotou, Mayuko; Yamamoto, Hidesuke; Wakabayashi, Motohiro; Watarai, Masaya; Hanamura, Ichiro; Imamura, Akira; Mihara, Hidetsugu; Nitta, Masakazu
2013-05-01
The shift in energy metabolism from oxidative phosphorylation to glycolysis can serve as a target for the inhibition of cancer growth. Here, we examined the metabolic changes induced by 2-deoxyglucose (2-DG), a glycolysis inhibitor, in leukemia cells by metabolome analysis. NB4 cells mainly utilized glucose as an energy source by glycolysis and oxidative phosphorylation in mitochondria, since metabolites in the glycolytic pathway and in the tricarboxylic acid (TCA) cycle were significantly decreased by 2-DG. In THP-1 cells, metabolites in the TCA cycle were not decreased to the same extent by 2-DG as in NB4 cells, which indicates that THP-1 utilizes energy sources other than glucose. TCA cycle metabolites in THP-1 cells may be derived from acetyl-CoA by fatty acid β-oxidation, which was supported by abundant detection of carnitine and acetylcarnitine in THP-1 cells. 2-DG treatment increased the levels of pentose phosphate pathway (PPP) metabolites and augmented the generation of NADPH by glucose-6-phosphate dehydrogenase. An increase in NADPH and upregulation of glutathione synthetase expression resulted in the increase in the reduced form of glutathione by 2-DG in NB4 cells. We demonstrated that a combination of 2-DG and inhibition of PPP by dehydroepiandrosterone (DHEA) effectively suppressed the growth of NB4 cells. The replenishment of the TCA cycle by fatty acid oxidation by carnitine palmitoyltransferase in THP-1 cells, treated by 2-DG, might be regulated by AMPK, as the combination of 2-DG and inhibition of AMPK by compound C potently suppressed the growth of THP-1 cells. Although 2-DG has been effective in preclinical and clinical studies, this treatment has not been fully explored due to concerns related to potential toxicities such as brain toxicity at high doses. We demonstrated that a combination of 2-DG and DHEA or compound C at a relatively low concentration effectively inhibits the growth of NB4 and THP-1 cells, respectively. These observations may aid in the identification of appropriate combinations of metabolic inhibitors at low concentrations which do not cause toxicities.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nair, Vimoj J.; MacRae, Robert; Ottawa Hospital Research Institute, Ottawa, Ontario
2014-02-01
Purpose: The aim of this study was to determine whether the preradiation maximum standardized uptake value (SUV{sub max}) of the primary tumor for [{sup 18}F]-fluoro-2-deoxy-glucose positron emission tomography (FDG-PET) has a prognostic significance in patients with Stage T1 or T2N0 non-small cell lung cancer (NSCLC) treated with curative radiation therapy, whether conventional or stereotactic body radiation therapy (SBRT). Methods and Materials: Between January 2007 and December 2011, a total of 163 patients (180 tumors) with medically inoperable histologically proven Stage T1 or T2N0 NSCLC and treated with radiation therapy (both conventional and SBRT) were entered in a research ethics boardmore » approved database. All patients received pretreatment FDG-PET / computed tomography (CT) at 1 institution with consistent acquisition technique. The medical records and radiologic images of these patients were analyzed. Results: The overall survival at 2 years and 3 years for the whole group was 76% and 67%, respectively. The mean and median SUV{sub max} were 8.1 and 7, respectively. Progression-free survival at 2 years with SUV{sub max} <7 was better than that of the patients with tumor SUV{sub max} ≥7 (67% vs 51%; P=.0096). Tumors with SUV{sub max} ≥7 were associated with a worse regional recurrence-free survival and distant metastasis-free survival. In the multivariate analysis, SUV{sub max} ≥7 was an independent prognostic factor for distant metastasis-free survival. Conclusion: In early-stage NSCLC managed with radiation alone, patients with SUV{sub max} ≥7 on FDG-PET / CT scan have poorer outcomes and high risk of progression, possibly because of aggressive biology. There is a potential role for adjuvant therapies for these high-risk patients with intent to improve outcomes.« less
Dazzo, F B; Hubbell, D H
1975-01-01
Cross-reactive antigens of clover roots and Rhizobium trifolii were detected on their cell surfaces by tube agglutination, immunofluorescent, and radioimmunoassay techniques. Anti-clover root antiserum had a higher agglutinating titer with infective strains of R. trifolii than with noninfective strains. The root antiserum previously adsorbed with noninfective R. trifolii cells remained reactive only with infective cells, including infective revertants. When adsorbed with infective cells, the root antiserum was reactive with neither infective nor noninfective cells. Other Rhizobium species incapable of infecting clover did not demonstrate surface antigens cross-reactive with clover. Radioimmunoassay indicated twice as much antigenic cross-reactivity of clover roots and R. trifolii 403 (infective) than R. trifolii Bart A (noninfective). Immunofluorescence with anti-R. trifolii (infective) antiserum was detected on the exposed surface of the root epidermal cells and diminished at the root meristem. The immunofluorescent crossreaction on clover roots was totally removed by adsorption of anti-R. trifolii (infective) antiserum with encapsulated infective cells but not with noninfective cells. The cross-reactive capsular antigens from R. trifolii strains were extracted and purified. The ability of these antigens to induce clover root hair deformation was much greater when they were obtained from the infective than noninfective strains. The cross-reactive capsular antigen of R. trifolii 403 was characterized as a high-molecular-weight (greater than 4.6 times 10(6) daltons), beta-linked, acidic heteropolysaccharide containing 2-deoxyglucose, galactose, glucose, and glucuronic acid. A soluble, nondialyzable, substance (clover lectin) capable of binding to the cross-reactive antigen and agglutinating only infective cells of R. trifolii was extracted from white clover seeds. This lectin was sensitive to heat, Pronase, and trypsin. inhibition studies indicated that 2-deoxyglucose was the most probable haptenic determinant of the cross-reactive capsular antigen capable of binding to the root antiserum and the clover lectin. A model is proposed suggesting the preferential adsorption of infective versus noninfective cells of R. trifolii on the surface of clover roots by a cross-bridging of their common surface antigens with a multivalent clover lectin. Images PMID:55100
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hong, Shin Yee; Hagen, Thilo, E-mail: bchth@nus.edu.sg
2015-10-02
The high proliferation rate of cancer cells and the microenvironment in the tumor tissue require the reprogramming of tumor cell metabolism. The major mechanism of metabolic reprogramming in cancer cells is the Warburg effect, defined as the preferential utilization of glucose via glycolysis even in the presence of oxygen. Targeting the Warburg effect is considered as a promising therapeutic strategy in cancer therapy. In this regard, the glycolytic inhibitor 2-deoxyglucose (2DG) has been evaluated clinically. 2DG exerts its effect by directly inhibiting glycolysis at the level of hexokinase and phosphoglucoisomerase. In addition, 2DG is also known to induce the expressionmore » of thioredoxin interacting protein (TXNIP), a tumor suppressor protein and an important negative regulator of cellular glucose uptake. Hence, characterization of the mechanism through which 2DG regulates TXNIP expression may reveal novel approaches to target the Warburg effect in cancer cells. Therefore, in this study we sought to test various hypotheses for the mechanistic basis of the 2DG dependent TXNIP regulation. We have shown that 2DG induced TXNIP expression is independent of carbohydrate response element mediated transcription. Furthermore, the induction of TXNIP is neither dependent on the ability of 2DG to deplete cellular ATP nor to cause endoplasmic reticulum stress. We found that the 2DG induced TXNIP expression is at least in part dependent on the inhibition of the O-GlcNAcase enzyme and the accumulation of O-GlcNAc modified proteins. These results have implications for the identification of therapeutic targets to increase TXNIP expression in cancer. - Highlights: • 2DG increases TXNIP expression at the mRNA and protein level. • The effect of 2DG on TXNIP is independent of ChoRE mediated transcription. • 2DG induces TXNIP independent of ER stress induction and ATP depletion. • 2DG inhibits OGA and leads to accumulation of O-GlcNAcylated proteins. • The upregulation of TXNIP by 2DG is partially due to an increase in O-GlcNAcylation.« less
Metabolic regulation of SIRT1 transcription via a HIC1:CtBP corepressor complex
Zhang, Qinghong; Wang, Su-Yan; Fleuriel, Capucine; Leprince, Dominique; Rocheleau, Jonathan V.; Piston, David W.; Goodman, Richard H.
2007-01-01
The Sir2 histone deacetylases are important for gene regulation, metabolism, and longevity. A unique feature of these enzymes is their utilization of NAD+ as a cosubstrate, which has led to the suggestion that Sir2 activity reflects the cellular energy state. We show that SIRT1, a mammalian Sir2 homologue, is also controlled at the transcriptional level through a mechanism that is specific for this isoform. Treatment with the glycolytic blocker 2-deoxyglucose (2-DG) decreases association of the redox sensor CtBP with HIC1, an inhibitor of SIRT1 transcription. We propose that the reduction in transcriptional repression mediated by HIC1, due to the decrease of CtBP binding, increases SIRT1 expression. This mechanism allows the specific regulation of SIRT1 in response to nutrient deprivation. PMID:17213307
Regional cerebral glucose metabolic rate in human sleep assessed by positron emission tomography
DOE Office of Scientific and Technical Information (OSTI.GOV)
Buchsbaum, M.S.; Wu, J.; Hazlett, E.
The cerebral metabolic rate of glucose was measured during nighttime sleep in 36 normal volunteers using positron emission tomography and fluorine-18-labeled 2-deoxyglucose (FDG). In comparison to waking controls, subjects given FDG during non-rapid eye movement (NREM) sleep showed about a 23% reduction in metabolic rate across the entire brain. This decrease was greater for the frontal than temporal or occipital lobes, and greater for basal ganglia and thalamus than cortex. Subjects in rapid eye movement (REM) sleep tended to have higher cortical metabolic rates than walking subjects. The cingulate gyrus was the only cortical structure to show a significant increasemore » in glucose metabolic rate in REM sleep in comparison to waking. The basal ganglia were relatively more active on the right in REM sleep and symmetrical in NREM sleep.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kimmich, G.A.; Randles, J.
1981-01-01
The unidirectional influx of ..cap alpha..-methylglucoside (..cap alpha..-MG) by isolated chicken intestinal epithelial cells is 98% inhibited by phlorizin. The remaining 2% of the total influx occurs in the absence of Na/sup +/, is not sensitive to phloretin, and is equal to the diffusional entry rate for 2-deoxyglucose. The glucoside is much more strongly accumulated (75-fold) than 3-O-methylglucose (3-OMG) (10-fold). Inhibitors of the serosal sugar carrier (phloretin, cytochalasin B, theophylline, and flavanoids) do not enhance ..cap alpha..-MG accumulation. It is concluded that the glycoside is not a substrate for the intestinal serosal transport system. Steady-state gradients of the sugar canmore » be represented accurately by a concentrative, phlorizin-sensitive system that is opposed by a diffusional efflux process.« less
2-D And 3-D Reconstructions Of The Olfactory System Of The Rat
NASA Astrophysics Data System (ADS)
Reisner, Alex H.; Bell, G. A.; Bucholtz, C. A.; Rosenfeld, Dov; Tsui, K. K.
1989-04-01
The olfactory system of the rat is a useful model for the study of mammalian sensory systems. However, the anatomy of the nasal epithelium, where the cells responsible for detecting odors are located, is extremely complex. Therefore, we have focused our attention on the development of two- and three-dimensional automated imaging methods. The presentation of pure odorants to the experimental animal together with the injection of [14M-deoxyglucose has been combined with autoradiography of frozen sectioned material. Several approaches have been used to obtain optimal alignments of the digitized images of the sections so as to be able to generate appropriate 2-D and 3-D reconstructions. Such reconstructions allow visualization of the ethmo-turbinal bones (turbinates) and the associated soft tissue and appear to be useful in analyzing and highlighting differential metabolic activity.
Sadananda, Monika; Bischof, Hans-Joachim
2006-10-16
Two forebrain areas in the hyperpallium apicale and in the lateral nidopallium of isolated male zebra finches are highly active (2-deoxyglucose technique) on exposure to females for the first time, that is first courtship. These areas also demonstrate enhanced neuronal plasticity when screened with c-fos immunocytochemistry. Both are areas involved in the processing of visual information conveyed by the two major visual pathways in birds, strengthening our hypothesis that courtship in the zebra finch is a visually guided behaviour. First courtship and chased birds show enhanced c-fos induction in the hyperpallial area, which could represent neuronal activity reflecting changes in the immediate environment. The enhanced expression of fos in first courtship birds in lateral nidopallial neurons indicates imminent long-lasting changes at the synaptic level that form the substrate for imprinting, a stable form of learning in birds.
Senthil, Raja; Mohapatra, Ranjan Kumar; Sampath, Mouleeswaran Koramadai; Sundaraiya, Sumati
2016-01-01
Anaplastic large cell lymphoma (ALCL) is a rare type of nonHodgkin's lymphoma (NHL), but one of the most common subtypes of T-cell lymphoma. It is an aggressive T-cell lymphoma, and some ALCL may mimic less aggressive classical HL histopathlogically. It may be misdiagnosed unless careful immunohistochemical examination is performed. As the prognosis and management of these two lymphomas vary significantly, it is important to make a correct diagnosis. We describe a case who was diagnosed as classical HL by histopathological examination of cervical lymph node, in whom (18)F-flouro deoxyglucose positron emission tomography/computed tomography appearances were unusual for HL and warranted review of histopathology that revealed anaplastic lymphoma kinase-1 negative anaplastic large T-cell lymphoma, Hodgkin-like variant, thereby changing the management.
NASA Technical Reports Server (NTRS)
Hardy, R. W.; Ladenson, J. H.; Henriksen, E. J.; Holloszy, J. O.; McDonald, J. M.
1991-01-01
In rat adipocytes, palmitate: a) increases basal 2-deoxyglucose transport 129 +/- 27% (p less than 0.02), b) decreases the insulin sensitive glucose transporter (GLUT4) in low density microsomes and increases GLUT4 in plasma membranes and c) increases the activity of the insulin receptor tyrosine kinase. Palmitate-stimulated glucose transport is not additive with the effect of insulin and is not inhibited by the protein kinase C inhibitors staurosporine and sphingosine. In rat muscle, palmitate: a) does not affect basal glucose transport in either the soleus or epitrochlearis and b) inhibits insulin-stimulated glucose transport by 28% (p less than 0.005) in soleus but not in epitrochlearis muscle. These studies demonstrate a potentially important differential role for fatty acids in the regulation of glucose transport in different insulin target tissues.
Direct neuronal glucose uptake heralds activity-dependent increases in cerebral metabolism
Lundgaard, Iben; Li, Baoman; Xie, Lulu; Kang, Hongyi; Sanggaard, Simon; Haswell, John Douglas R; Sun, Wei; Goldman, Siri; Blekot, Solomiya; Nielsen, Michael; Takano, Takahiro; Deane, Rashid; Nedergaard, Maiken
2015-01-01
Metabolically, the brain is a highly active organ that relies almost exclusively on glucose as its energy source. According to the astrocyte-to-neuron lactate shuttle hypothesis, glucose is taken up by astrocytes and converted to lactate, which is then oxidized by neurons. Here we show, using 2-photon imaging of a near-infrared 2-deoxyglucose analogue (2DG-IR), that glucose is taken up preferentially by neurons in awake behaving mice. Anesthesia suppressed neuronal 2DG-IR uptake and sensory stimulation was associated with a sharp increase in neuronal, but not astrocytic, 2DG-IR uptake. Moreover, hexokinase, which catalyze the first enzymatic steps in glycolysis, was highly enriched in neurons compared with astrocytes, in mouse as well as in human cortex. These observations suggest that brain activity and neuronal glucose metabolism are directly linked, and identifies the neuron as the principal locus of glucose uptake as visualized by functional brain imaging. PMID:25904018
Polymethoxyflavonoids tangeretin and nobiletin increase glucose uptake in murine adipocytes.
Onda, Kenji; Horike, Natsumi; Suzuki, Tai-ichi; Hirano, Toshihiko
2013-02-01
Tangeretin and nobiletin are polymethoxyflavonoids that are contained in citrus fruits. Polymethoxyflavonoids are reported to have several biological functions including anti-inflammatory, anti-atherogenic, or anti-diabetic effects. However, whether polymethoxyflavonoids directly affect glucose uptake in tissues is not well understood. In the current study, we investigated whether tangeretin and nobiletin affect glucose uptake in insulin target cells such as adipocytes. We observed that treatment with tangeretin or nobiletin significantly increased the uptake of [(3) H]-deoxyglucose in differentiated 3T3-F442A adipocytes in a concentration-dependent manner. Data showed that phosphatidyl inositol 3 kinase, Akt1/2, and the protein kinase A pathways were involved in the increase in glucose uptake induced by polymethoxyflavonoids. These data suggest that the anti-diabetic action of polymethoxyflavonoids is partly exerted via these signaling pathways in insulin target tissues. Copyright © 2012 John Wiley & Sons, Ltd.
Haffmans, J; De Kloet, R; Dzoljic, M R
1984-06-04
The glucose utilization during specific delta opiate agonist-induced epileptiform phenomena, determined by the [14C]2-deoxyglucose technique (2-DG), was examined in various rat brain areas at different time intervals. The peak in EEG spiking response and the most intensive 2-DG uptake occurred 5 min after intraventricular (i.v.t.) administration of the delta opiate receptor agonist. The most pronounced 2-DG uptake at this time interval can be observed in the subiculum, including the CA1 hippocampal area, frontal cortex and central amygdala. A general decrease of glucose consumption, compared to control values, is observed after 10 min, in all regions, with exception of the subiculum. Since functional activity and 2-DG uptake are correlated, we suggest that the subiculum and/or CA1 area, are probably the brain regions most involved in the enkephalin-induced epileptic phenomena.
Direct neuronal glucose uptake heralds activity-dependent increases in cerebral metabolism.
Lundgaard, Iben; Li, Baoman; Xie, Lulu; Kang, Hongyi; Sanggaard, Simon; Haswell, John D R; Sun, Wei; Goldman, Siri; Blekot, Solomiya; Nielsen, Michael; Takano, Takahiro; Deane, Rashid; Nedergaard, Maiken
2015-04-23
Metabolically, the brain is a highly active organ that relies almost exclusively on glucose as its energy source. According to the astrocyte-to-neuron lactate shuttle hypothesis, glucose is taken up by astrocytes and converted to lactate, which is then oxidized by neurons. Here we show, using two-photon imaging of a near-infrared 2-deoxyglucose analogue (2DG-IR), that glucose is taken up preferentially by neurons in awake behaving mice. Anaesthesia suppressed neuronal 2DG-IR uptake and sensory stimulation was associated with a sharp increase in neuronal, but not astrocytic, 2DG-IR uptake. Moreover, hexokinase, which catalyses the first enzymatic steps in glycolysis, was highly enriched in neurons compared with astrocytes, in mouse as well as in human cortex. These observations suggest that brain activity and neuronal glucose metabolism are directly linked, and identify the neuron as the principal locus of glucose uptake as visualized by functional brain imaging.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Underwood, M.D.
1988-01-01
Neurons within the rostral ventrolateral medulla (RVL) corresponding to the location of adrenaline neurons of the C1 group (C1 area) maintain resting levels of arterial pressure (AP) and mediate the reflex cardiovascular responses to baro- and chemoreceptor activation and cerebral ischemia. The author therefore sought to determine whether neurons in the C1 area: (a) modulate regional cerebral blood flow (rCBF) and/or cerebral glucose utilization (rCGU), (b) participate in the maintenance of resting levels of CBF and CGU, and (c) mediate the CBF response to hypoxia. Rats were anesthetized, paralyzed and ventilated. The RVL was stimulated electrically or chemically, with kainicmore » acid; lesions were placed electrolytically. rCBF was measured using 14-C-iodoantipyrine and rCGU with {sup 14}C-2-deoxyglucose in 11 dissected brain regions.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Beck, R.N.; Cooper, M.C.
1982-06-01
This 3-y report cites progress in the following areas of radiopharmaceutical research: cyclotron operations; /sup 51/Mn for myocardial localization; /sup 82/Rb for heart imaging; /sup 15/O-labelled H/sub 2/O and molecular oxygen; studies on /sup 11/C-2-deoxyglucose localization; /sup 13/NH/sub 3/ measurements of myocardial perfusion; /sup 130/Cs myocardial imaging; heart motion studies; labelled amino acids for pancreatic imaging; /sup 11/C-hexamethonium for cartilage imaging; /sup 11/C-cholic acid pharmacology; blood element labelling with /sup 115m/In; /sup 75/Br studies; extrapolation of animal data to humans; in vivo quantification of radioactivity; fetal and neonatal radiation effects from radiopharmaceuticals administered to pregnant and lactating mice; and verificationmore » of MIRD absorbed dose calculations for some organ-incorporated radionuclides. (ERB)« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bairamian, D.; Di Chiro, G.; Blume, H.
1986-05-01
A patient with a benign chromophobe adenoma, who had incomplete surgical removal followed by radiotherapy, continued to have epileptic seizures up to two or three times a day. She was studied with positron emission tomography using /sup 18/F-2-deoxyglucose (FDG). This technique showed a high level of glucose utilization in the area of the operated tumor but also clear reduction of glucose utilization in the left medial temporal region adjacent to the sella and the scar tissue from the neoplasm. This area of reduced glucose utilization corresponded well to the same finding observed in other patients with complex partial epilepsy. Amore » left temporal anterior lobectomy was carried out followed by improved control of the epilepsy. Positron emission tomography using FDG, together with electrophysiological examinations, may assist in the management of epilepsy related to pituitary tumors.« less
Glucose induces the translocation and the aggregation of glycogen synthase in rat hepatocytes.
Fernández-Novell, J M; Ariño, J; Vilaró, S; Guinovart, J J
1992-01-01
Incubation of rat hepatocytes with glucose results in a decrease in the amount of glycogen synthase activity found in supernatants obtained after centrifugation of cell homogenates at 9200 g. The enzymic activity was quantitatively recovered in the sediments. This effect of translocation was dose- and time-dependent and correlated with the amount of immunoreactive enzyme determined by immunoblotting in both fractions. Hydrolysis by alpha-amylase of glycogen accumulated upon incubation with the sugar did not affect the translocation pattern. Translocation was also observed when cells were incubated with 2-deoxyglucose, which did not result in accumulation of glycogen. Immunocytochemical evidence indicates that glucose induces the aggregation of glycogen synthase molecules into clusters which are recovered in the sediments. These results indicate that glucose, in addition to activating glycogen synthase, may trigger changes in the localization of the enzyme in the cell. Images Fig. 1. Fig. 2. Fig. 4. Fig. 5. PMID:1736893
Rosilio, Célia; Lounnas, Nadia; Nebout, Marielle; Imbert, Véronique; Hagenbeek, Thijs; Spits, Hergen; Asnafi, Vahid; Pontier-Bres, Rodolphe; Reverso, Julie; Michiels, Jean-François; Sahra, Issam Ben; Bost, Fréderic; Peyron, Jean-François
2013-08-09
We show here that the antidiabetic agents metformin and phenformin and the AMPK activator AICAR exert strong anti-tumoural effects on tPTEN-/- lymphoma cells and on human T-ALL cell lines and primary samples. The compounds act by inhibiting tumour metabolism and proliferation and by inducing apoptosis in parallel with an activation of AMPK and an inhibition of constitutive mTOR. In tPTEN-/- cells, the drugs potentiated the anti-leukaemic effects of dexamethasone, and metformin and phenformin synergised with 2-deoxyglucose (2DG) to impair tumour cell survival. In vivo, metformin and AICAR strongly decreased the growth of luciferase-expressing tPTEN-/- cells xenografted in Nude mice, demonstrating that metabolism targeting could be a potent adjuvant strategy for lymphoma/leukaemia treatment. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.
Glucose uptake and glycogen synthesis in muscles from immobilized limbs
NASA Technical Reports Server (NTRS)
Nicholson, W. F.; Watson, P. A.; Booth, F. W.
1984-01-01
Defects in glucose metabolism in muscles of immobilized limbs of mice were related to alterations in insulin binding, insulin responsiveness, glucose supply, and insulin activation of glycogen synthase. These were tested by in vitro methodology. A significant lessening in the insulin-induced maximal response of 2-deoxyglucose uptake into the mouse soleus muscle occurred between the 3rd and 8th h of limb immobilization, suggesting a decreased insulin responsiveness. Lack of change in the specific binding of insulin to muscles of 24-h immobilized limbs indicates that a change in insulin receptor number did not play a role in the failure of insulin to stimulate glucose metabolism. Its inability to stimulate glycogen synthesis in muscle from immobilized limbs is due, in part, to a lack of glucose supply to glycogen synthesis and also to the ineffectiveness of insulin to increase the percentage of glycogen synthase in its active form in muscles from 24-h immobilized limbs.
A novel description of FDG excretion in the renal system: application to metformin-treated models
NASA Astrophysics Data System (ADS)
Garbarino, S.; Caviglia, G.; Sambuceti, G.; Benvenuto, F.; Piana, M.
2014-05-01
This paper introduces a novel compartmental model describing the excretion of 18F-fluoro-deoxyglucose (FDG) in the renal system and a numerical method based on the maximum likelihood for its reduction. This approach accounts for variations in FDG concentration due to water re-absorption in renal tubules and the increase of the bladder’s volume during the FDG excretion process. From the computational viewpoint, the reconstruction of the tracer kinetic parameters is obtained by solving the maximum likelihood problem iteratively, using a non-stationary, steepest descent approach that explicitly accounts for the Poisson nature of nuclear medicine data. The reliability of the method is validated against two sets of synthetic data realized according to realistic conditions. Finally we applied this model to describe FDG excretion in the case of animal models treated with metformin. In particular we show that our approach allows the quantitative estimation of the reduction of FDG de-phosphorylation induced by metformin.
Chao, Julie; Weathersbee, Carolyn J.
1974-01-01
Cyclic adenosine 3′, 5′-monophosphate (AMP) stimulates maltodextrin phosphorylase synthesis in Escherichia coli cells induced with maltose. A maximal effect occurs at 2 to 3 mM cyclic AMP. The action of cyclic AMP is specific, inasmuch as adenosine triphosphate, 3′-AMP, 5′-AMP, adenosine, and dibutyryl cyclic AMP are inactive. Glucose, α-methyl glucoside, 2-deoxyglucose, and pyridoxal 5′-phosphate repress maltodextrin phosphorylase synthesis. This repression is reversed by cyclic AMP. The action of cyclic AMP appears to be at the transcriptional level, since cyclic AMP fails to stimulate phosphorylase production in induced cells in which messenger ribonucleic acid synthesis has been arrested by rifampin or by inducer removal. The two other enzymes involved in the metabolism of maltose, amylomaltase and maltose permease, are also induced in this strain of E. coli and affected by glucose and cyclic AMP in a manner similar to phosphorylase. PMID:4358043
Genetic diversity of the "Mediterranean" glucose-6-phosphate dehydrogenase deficiency phenotype.
Stamatoyannopoulos, G; Voigtlander, V; Kotsakis, P; Akrivakis, A
1971-06-01
Genetic diversity of the "Mediterranean" phenotype of G-6-PD (glucose-6-phosphate dehydrogenase) deficiency was revealed when detailed studies were performed on blood specimens from 79 Greek males with G-6-PD levels 0-10% of normal. Four different mutants were found to be responsible for the severely deficient phenotypes: two mutants. G-6-PD U-M (Union-Markham) and G-6-PD Orchomenos, were distinguishable by electrophoresis, while the other two. G-6-PD Athens-like and G-6-PD Mediterranean, were distinguishable on the basis of their kinetic characteristics. Of the kinetic tests applied, the most useful for differentiating the variants were those measuring utilization rates of the analogue substrates deamino-NADP, 2-deoxyglucose-6-phosphate, and galactose-6-phosphate. Among unrelated males with severe G-6-PD deficiency, the relative frequencies of the four variants were: G-6-PD U-M. 5%; G-6-PD Orchomenos, 7%; G-6-PD Athens-like, 16%; G-6-PD Mediterranean, 72%. Genetic, biochemical, and clinical implications of the findings are discussed.
Canessa, José A; Larach, Jorge A; Massardo, Teresa; Parra, Juan; Jofré, Josefina; González, Patricio; Morales, Bernardo; Humeres, Pamela; Sierralta, Paulina; Galaz, Rodrigo
2004-03-01
We report a 38 year old female patient with a pancreatic mucinous cystadenocarcinoma. She presented at the onset with a peritoneal rupture that required emergency surgery. Five months later, the patient was subjected to a segmental pancreatectomy and splenectomy. One year later, the patient had a serious gastric bleeding secondary to a gastric ulcer. Due to a persistent increase in her CA 19-9 levels, a Positron Emission Tomography (PET) functional imaging with fluorine 18-deoxyglucose (F18FDG) was done. It showed an intense focal hypermetabolism in the gastric wall reported as a secondary tumour location. The patient was subjected to a total gastrectomy and Roux en Y anastomosis, with a good outcome. The pathological study confirmed the presence of a metastasis of an adenocarcinoma in the gastric wall. The relative value of CA 19-9 markers and FDG PET in pancreatic and gastric carcinomas is discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hayakawa, Kunihiro; Hiramatsu, Nobuhiko; Okamura, Maro
2008-01-04
Geranylgeranylacetone (GGA), an anti-ulcer agent, has anti-inflammatory potential against experimental colitis and ischemia-induced renal inflammation. However, molecular mechanisms involved in its anti-inflammatory effects are largely unknown. We found that, in glomerular mesangial cells, GGA blocked activation of nuclear factor-{kappa}B and consequent induction of monocyte chemoattractant protein 1 (MCP-1) by inflammatory cytokines. It was inversely correlated with induction of unfolded protein response (UPR) evidenced by expression of 78 kDa glucose-regulated protein (GRP78) and suppression of endoplasmic reticulum stress-responsive alkaline phosphatase. Various inducers of UPR including tunicamycin, thapsigargin, A23187, 2-deoxyglucose, dithiothreitol, and AB{sub 5} subtilase cytotoxin reproduced the suppressive effects of GGA.more » Furthermore, attenuation of UPR by stable transfection with GRP78 diminished the anti-inflammatory effects of GGA. These results disclosed a novel, UPR-dependent mechanism underlying the anti-inflammatory potential of GGA.« less
Hierarchical multivariate covariance analysis of metabolic connectivity.
Carbonell, Felix; Charil, Arnaud; Zijdenbos, Alex P; Evans, Alan C; Bedell, Barry J
2014-12-01
Conventional brain connectivity analysis is typically based on the assessment of interregional correlations. Given that correlation coefficients are derived from both covariance and variance, group differences in covariance may be obscured by differences in the variance terms. To facilitate a comprehensive assessment of connectivity, we propose a unified statistical framework that interrogates the individual terms of the correlation coefficient. We have evaluated the utility of this method for metabolic connectivity analysis using [18F]2-fluoro-2-deoxyglucose (FDG) positron emission tomography (PET) data from the Alzheimer's Disease Neuroimaging Initiative (ADNI) study. As an illustrative example of the utility of this approach, we examined metabolic connectivity in angular gyrus and precuneus seed regions of mild cognitive impairment (MCI) subjects with low and high β-amyloid burdens. This new multivariate method allowed us to identify alterations in the metabolic connectome, which would not have been detected using classic seed-based correlation analysis. Ultimately, this novel approach should be extensible to brain network analysis and broadly applicable to other imaging modalities, such as functional magnetic resonance imaging (MRI).
Use of FDG-PET to detect a chronic odontogenic infection as a possible source of the brain abscess.
Sato, Jun; Kuroshima, Takeshi; Wada, Mayumi; Satoh, Akira; Watanabe, Shiro; Okamoto, Shozo; Shiga, Tohru; Tamaki, Nagara; Kitagawa, Yoshimasa
2016-05-01
This study describes the use of (18)F-fluoro-2-deoxyglucose positron emission tomography (FDG-PET) to detect a chronic odontogenic infection as the possible origin of a brain abscess (BA). A 74-year-old man with esophageal carcinoma was referred to our department to determine the origin of a BA in his oral cavity. He had no acute odontogenic infections. The BA was drained, and bacteria of the Staphylococcus milleri group were detected. Whole body FDG-PET revealed that the only sites of definite uptake of FDG were the esophageal carcinoma and the left upper maxillary region (SUVmax: 4.5). These findings suggested that the BA may have originated from a chronic periodontal infection. Six teeth with progressive chronic periodontal disease were extracted to remove the possible source of BA. These findings excluded the possibility of direct spread of bacteria from the odontogenic infectious lesion to the intracranial cavity. After extraction, there was no relapse of BA.
Fujita, Youshi; Ikeda, Akio; Kadono, Kentaro; Kawamata, Jun; Tomimoto, Hidekazu; Fukuyama, Hidenao; Takahashi, Ryosuke
2009-04-01
We described a clinical feature of autosomal dominant lateral temporal epilepsy (ADLTE) in a Japanese patient having LGI1 mutation. The patient was a 27-year-old woman who had her first seizure at the age of 10 years, a nocturnal generalized seizure. She then had partial seizures manifesting auditory symptoms with or without anxiety, panic attack, déjà vu, sensory aphasia and visual symptoms. Repeated EEGs were normal. Brain MRI showed small left superior temporal gyrus. 18F-deoxyglucose positron emission tomography (PDG-PET) demonstrated glucose hypometabolism in the left lateral temporal lobe. Sequencing of the LGI1 revealed a single base substitution in exon 8 (1642C-->T) causing missense mutation at residue 473 of the LGI1 protein (S473 L). When one demonstrates ictal symptoms arising from the lateral temporal to occipital area with psychotic symptoms, ADLTE should be suspected and a detailed family history is warranted.
Bock, J; Breuer, S; Poeggel, G; Braun, K
2017-03-01
In a novel animal model Octodon degus we tested the hypothesis that, in addition to genetic predisposition, early life stress (ELS) contributes to the etiology of attention-deficit hyperactivity disorder-like behavioral symptoms and the associated brain functional deficits. Since previous neurochemical observations revealed that early life stress impairs dopaminergic functions, we predicted that these symptoms can be normalized by treatment with methylphenidate. In line with our hypothesis, the behavioral analysis revealed that repeated ELS induced locomotor hyperactivity and reduced attention towards an emotionally relevant acoustic stimulus. Functional imaging using ( 14 C)-2-fluoro-deoxyglucose-autoradiography revealed that the behavioral symptoms are paralleled by metabolic hypoactivity of prefrontal, mesolimbic and subcortical brain areas. Finally, the pharmacological intervention provided further evidence that the behavioral and metabolic dysfunctions are due to impaired dopaminergic neurotransmission. Elevating dopamine in ELS animals by methylphenidate normalized locomotor hyperactivity and attention-deficit and ameliorated brain metabolic hypoactivity in a dose-dependent manner.
Extracellular oxidation of D-glucose by some members of the Enterobacteriaceae.
Bouvet, O M; Grimont, P A
1988-01-01
Extracellular D-glucose oxidation by 5 enterobacterial species was studied with the purpose of selecting conditions useful for taxonomic studies. Extracellular production of gluconate from 14C-glucose by bacterial cells was evidenced by DEAE-cellulose paper chromatography. Escherichia coli oxidized glucose only when pyrroloquinoline quinone (PQQ) was added, whereas Serratia marcescens, Yersinia frederiksenii, Erwinia cypripedii and Cedecea lapagei oxidized D-glucose without added PQQ. 2-Deoxyglucose was found to be an excellent non-metabolized analogue of D-glucose in oxidation experiments. D-glucose oxidation was inhibited by KCN, p-chloromercuribenzoic acid and carbonyl cyanide m-chlorophenylhydrazone; and activated by p-benzoquinone. Iodoacetate had no action. Comparative cellulose thin-layer chromatography including 2-ketogluconate and 2,5-diketogluconate (produced by Janthinobacterium lividum) as standards, showed that gluconate was oxidized to 2-ketogluconate by S. marcescens and E. cypripedii, and 2-ketogluconate was oxidized to 2,5-diketogluconate by E. cypripedii. The diversity of D-glucose oxidation products in the Enterobacteriaceae could have some taxonomic applications.
Modeling the Effect of Cigarette Smoke on Hexose Utilization in Spermatocytes
Esakky, Prabagaran; Debosch, Brian J.; Schoeller, Erica L.; Chi, Maggie M.; Moley, Kelle H.
2015-01-01
We set out to determine whether the addition of an aryl hydrocarbon receptor (AHR) antagonist has an effect on glucose/fructose utilization in the spermatocyte when exposed to cigarette smoke condensate (CSC). We exposed male germ cells to 5 and 40 μg/mL of CSC ± 10 μmol/L of AHR antagonist at various time points. Immunoblot expression of specific glucose/fructose transporters was compared to control. Radiolabeled uptake of 2-deoxyglucose (2-DG) and fructose was also performed. Spermatocytes utilized fructose nearly 50-fold more than 2-DG. Uptake of 2-DG decreased after CSC + AHR antagonist exposure. Glucose transporters (GLUTs) 9a and 12 declined after CSC + AHR antagonist exposure. Synergy between CSC and the AHR antagonist in spermatocytes may disrupt the metabolic profile in vitro. Toxic exposures alter energy homeostasis in early stages of male germ cell development, which could contribute to later effects explaining decreases in sperm motility in smokers. PMID:24803506
Azevedo, Ítalo Medeiros; Carvalho, Marília Daniela Ferreira; Nascimento, Rafael Pereira; Macedo, Robson; Aquino, Mônica Raquel de Souza; Medeiros, Aldo Cunha
2017-03-01
To examine a correlation of micro-PET images with photographic images of the digestive organs in abdominal sepsis model. Male Wistar rats weighing 265±18g were used. Abdominal sepsis was induced by ligature and cecal puncture. Micro-PET Images from abdominal cavity septic foci were obtained using 18-Fluoro-deoxyglucose, looking for a correlation with photographic images of abdominal cavity organs. Pearson's correlation test was used. The mean standard uptake values (SUV) and lesion areas were 2.58±0.63SUVbwg/ml and 546.87±300.95mm2, respectively. There was a strong positive correlation between the two variables (r=0.863, p=0.137), which resulted in a coefficient of determination r2?0.75, meaning that 75% of SUV variation is explained by the lesion areas of digestive organs. Micro-PET allows high throughput assessment of lesion count and volume in pre-clinical rat model of CPL abdominal sepsis.
Yamamoto, Norio; Ueda, Manabu; Kawabata, Kyuichi; Sato, Takuya; Kawasaki, Kengo; Hashimoto, Takashi; Ashida, Hitoshi
2010-01-01
Artemisia princeps is a familiar plant as a food substance and medicinal herb. In this study, we evaluated the effects of an ethanol extract of A. princeps (APE) on glucose uptake in differentiated L6 muscle cells. Treatment with APE elevated deoxyglucose uptake, and translocation of the insulin-responsive glucose transporter (GLUT4) to the plasma membrane in L6 myotubes occurred. The PI3K inhibitor LY294002 attenuated glucose uptake induced by APE. Phosphorylation of the Ser(473) residue of Akt was not observed, but phosphorylation of PI3K, Akt (Thr(308)), and atypical PKC was. In addition, APE stimulated phosphorylation of AMP-activated protein kinase (AMPK) at a level similar to 5'-amino-5-imidazolecarboxamide-riboside (AICAR). These results indicate that APE stimulates glucose uptake by inducing GLUT4 translocation, which is in part mediated by combination of the PI3K-dependent atypical PKC pathway and AMPK pathways.
Cerebral glucose metabolic differences in patients with panic disorder
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nordahl, T.E.; Semple, W.E.; Gross, M.
Regional glucose metabolic rates were measured in patients with panic disorder during the performance of auditory discrimination. Those regions examined by Reiman and colleagues in their blood flow study of panic disorder were examined with a higher resolution positron emission tomography (PET) scanner and with the tracer (F-18)-2-fluoro-2-deoxyglucose (FDG). In contrast to the blood flow findings of Reiman et al., we did not find global gray metabolic differences between patients with panic disorder and normal controls. Consistent with the findings of Reiman et al., we found hippocampal region asymmetry. We also found metabolic decreases in the left inferior parietal lobulemore » and in the anterior cingulate (trend), as well as an increase in the metabolic rate of the medial orbital frontal cortex (trend) of panic disorder patients. It is unclear whether the continuous performance task (CPT) enhanced or diminished findings that would have been noted in a study performed without task.« less
NASA Astrophysics Data System (ADS)
Xia, Jun; Chatni, Muhammad; Maslov, Konstantin; Wang, Lihong V.
2013-03-01
Due to the wide use of animals for human disease studies, small animal whole-body imaging plays an increasingly important role in biomedical research. Currently, none of the existing imaging modalities can provide both anatomical and glucose metabolic information, leading to higher costs of building dual-modality systems. Even with image coregistration, the spatial resolution of the metabolic imaging modality is not improved. We present a ring-shaped confocal photoacoustic computed tomography (RC-PACT) system that can provide both assessments in a single modality. Utilizing the novel design of confocal full-ring light delivery and ultrasound transducer array detection, RC-PACT provides full-view cross-sectional imaging with high spatial resolution. Scanning along the orthogonal direction provides three-dimensional imaging. While the mouse anatomy was imaged with endogenous hemoglobin contrast, the glucose metabolism was imaged with a near-infrared dye-labeled 2-deoxyglucose. Through mouse tumor models, we demonstrate that RC-PACT may be a paradigm shifting imaging method for preclinical research.
Bodie, E A; Armstrong, G L; Dunn-Coleman, N S
1994-05-01
Parasexual recombination was used to obtain improved chymosin-producing strains and to perform genetic analysis on existing strains. Chlorate resistance was used to select for a variety of spontaneous nitrate assimilation pathway mutations in strains previously improved for chymosin production using classical strain improvement methods including mutation and screening, and selection for 2-deoxyglucose resistance (dgr). Diploids of these improved strains were generated via parasexual recombination and were isolated on selective media by complementation of nitrate assimilation mutations. A preliminary genetic analysis of diploid and haploid segregants indicated that the dgr trait, resulting in overexpression of chymosin, was recessive. Also, mutations in two different dgr genes resulted in an increased level of chymosin production. When these mutations were combined via parasexual recombination, the resulting haploid segregants produced about 15% more chymosin than either parental strain. CHEF gel electrophoresis was used to determine the chromosomal location of the integrated chymosin DNA sequences, and to verify diploidy in one case where the chromosome composition of two haploid parents differed.
Generation of a glucose de-repressed mutant of Trichoderma reesei using disparity mutagenesis.
Iwakuma, Hidekazu; Koyama, Yoshiyuki; Miyachi, Ayako; Nasukawa, Masashi; Matsumoto, Hitoshi; Yano, Shuntaro; Ogihara, Jun; Kasumi, Takafumi
2016-01-01
We obtained a novel glucose de-repressed mutant of Trichoderma reesei using disparity mutagenesis. A plasmid containing DNA polymerase δ lacking proofreading activity, and AMAI, an autonomously replicating sequence was introduced into T. reesei ATCC66589. The rate of mutation evaluated with 5-fluoroorotic acid resistance was approximately 30-fold higher than that obtained by UV irradiation. The transformants harboring incompetent DNA polymerase δ were then selected on 2-deoxyglucose agar plates with hygromycin B. The pNP-lactoside hydrolyzing activities of mutants were 2 to 5-fold higher than the parent in liquid medium containing glucose. Notably, the amino acid sequence of cre1, a key gene involved in glucose repression, was identical in the mutant and parent strains, and further, the cre1 expression levels was not abolished in the mutant. Taken together, these results demonstrate that the strains of T. reesei generated by disparity mutagenesis are glucose de-repressed variants that contain mutations in yet-unidentified factors other than cre1.
Second primary tumor in anti-Ma1/2-positive paraneoplastic limbic encephalitis.
Leyhe, T; Schüle, R; Schwärzler, F; Gasser, T; Haarmeier, T
2006-05-01
Memory loss can be a symptom of paraneoplastic limbic encephalitis (PLE) a neuropsychiatric disorder associated mostly with small-cell lung cancer and anti-Hu antibodies or with testicular tumors and anti-Ma2 antibodies. We present the case of a patient with temporal coincidence of beginning cognitive decline and diagnosis of a carcinoma of the prostate in whom we diagnosed anti-Ma1/Ma2-positive PLE. The tumor had been completely resected but memory impairment further deteriorated. As the effective treatment of the cancer is considered as the most efficient treatment of a paraneoplastic neurological syndrome (PNS) a second neoplasia was suspected in the patient. By the aid of whole body positron emission tomography with 18-fluorine fluoro-2-deoxy-glucose (FDG-PET) an adenocarcinoma of the cecum could be detected. Two months after surgery anti-Ma antibodies were negative. We conclude that a second neoplasia should be considered, if effective cancer treatment does not lead to improvement or stabilisation of a PNS. Tumor search should be exhaustive and include PET when conventional imaging fails to show a malignancy.
Dong, Ping; Xue, Chang-Hu; Yu, Lin-Fang; Xu, Jie; Chen, Shi-Guo
2008-07-09
A creative and sensitive method has been developed for the determination of triterpene glycosides concentrations in sea cucumber ( Stichopus japonicus) and related products by using d-quinovose (6-deoxyglucose) as the measurement standard by reverse-phase high-performance liquid chromatography (HPLC) and variable-wavelength detection. d-quinovose, which is a unique monosaccharide in holostane triterpene glycosides, was liberated by acid hydrolysis and precolumn derivatized by 1-phenyl-3-methyl-5-pyrazolone (PMP). PMP-quinovose was analyzed by HPLC with 22% acetonitrile in 0.05 M KH2PO4 aquatic solution (pH 5.2) as mobile phase. The calibration curves of d-quinovose were linear within the range of 6.56-164 mg/L (r(2) > 0.995). The contents of triterpene glycosides in various S. japonicus products were determined after appropriate pretreatment methods. The concentration of triterpene glycosides was calculated by the formula C = C(qui) x alpha (alpha = 8.5). The result showed that this method was a simple, rapid, and stable method for the determination of triterpene glycosides in S. japonicus products.
Hierarchical multivariate covariance analysis of metabolic connectivity
Carbonell, Felix; Charil, Arnaud; Zijdenbos, Alex P; Evans, Alan C; Bedell, Barry J
2014-01-01
Conventional brain connectivity analysis is typically based on the assessment of interregional correlations. Given that correlation coefficients are derived from both covariance and variance, group differences in covariance may be obscured by differences in the variance terms. To facilitate a comprehensive assessment of connectivity, we propose a unified statistical framework that interrogates the individual terms of the correlation coefficient. We have evaluated the utility of this method for metabolic connectivity analysis using [18F]2-fluoro-2-deoxyglucose (FDG) positron emission tomography (PET) data from the Alzheimer's Disease Neuroimaging Initiative (ADNI) study. As an illustrative example of the utility of this approach, we examined metabolic connectivity in angular gyrus and precuneus seed regions of mild cognitive impairment (MCI) subjects with low and high β-amyloid burdens. This new multivariate method allowed us to identify alterations in the metabolic connectome, which would not have been detected using classic seed-based correlation analysis. Ultimately, this novel approach should be extensible to brain network analysis and broadly applicable to other imaging modalities, such as functional magnetic resonance imaging (MRI). PMID:25294129
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ambudkar, S.V.; Sonna, L.A.; Maloney, P.C.
Phosphate:2-deoxyglucose 6-phosphate (Pi:2DG6P) antiport was extracted from Streptococcus lactis or Staphylococcus aureus with 1.1% octylglucoside in the presence of 0.37% E. coli lipid and reconstituted by detergent dilution. Because previous work suggested inactivation at an early stage, the authors introduced protein stabilants during solubilization. When 20% glycerol was used, proteoliposomes showed a 20-fold increase in /sup 32/Pi transport. This enhanced recovery required phospholipid plus glycerol, and was found only when both were added together with the detergent. Glycerol protection yielded proteoliposomes in which antiporters retained their normal kinetic properties, and Pi exchange by the streptococcal example gave a maximal ratemore » (200-400 nmol/min per mg protein) and a turnover number (30-50/s) which suggested that inactivation had been avoided. Further study showed that 20% glycerol could be replaced by equally high concentrations of compounds classified as osmolytes polyols (erythritol, xylitol, sorbitol), sugars (glucose, trehalose) and certain amino acids (glycine, proline, but not valine). The authors suggest that osmolytes may be used to fully stabilize chemiosmotic transporters during reconstitution.« less
Tseng, Jen-Chieh; Wang, Yuchuan; Banerjee, Pallab; Kung, Andrew L
2012-10-01
We compared the use of near-infrared conjugates of 2-deoxyglucose (NIR 2-DG) to 2-deoxy-2-[18F]fluoro-d-glucose (18F-FDG) for the purposes of imaging tumors, as well as response to therapy. Uptake of both 18F-FDG and NIR 2-DG within gastrointestinal stromal tumor xenografts were imaged before and after nilotinib treatment. Confocal microscopy was performed to determine NIR 2-DG distribution in tumors. Treatment with nilotinib resulted in a rapid reduction in 18F-FDG uptake and reduced tumor cell viability which was predictive of long-term antitumor efficacy. In contrast, optical imaging with NIR 2-DG probes was unable to differentiate control from niltonib-treated animals, and microscopic analysis revealed no change in probe distribution as a result of treatment. These results suggest that conjugation of large bulky fluorophores to 2-DG disrupts the facilitated transport and retention of these probes in cells. Therefore, optical imaging of NIR 2-DG probes cannot substitute for 18F-FDG positron emission tomography imaging as a biomarker of tumor cell viability and metabolism.
Adenosine formation and release from neonatal-rat heart cells in culture.
Meghji, P; Holmquist, C A; Newby, A C
1985-01-01
The incorporation of [3H]adenosine (10 microM) into neonatal-rat heart cell nucleotides was inhibited in a concentration-dependent manner, such that 50% inhibition was obtained with 0.75 microM-dipyridamole, 0.26 microM-hexobendine or 0.22 microM-dilazep. Adenosine formation was accelerated 2.5-fold to 2.1 +/- 0.3 nmol/10(7) cells in 10 min when cells were incubated with a combination of 30 mM-2-deoxyglucose and 2 micrograms of oligomycin/ml. Of the newly formed adenosine, 6 +/- 2% was in the cells. Dipyridamole, hexobendine or dilazep (10 microM) increased the amount of adenosine in the cells and decreased that in the medium such that 45-50% of the newly formed adenosine was in the cells. Antibodies which inhibited ecto-5'-nucleotidase by 98.7 +/- 0.3% did not alter the rate of adenosine formation or its distribution between cells and medium. We conclude that adenosine was formed in the cytoplasm during catabolism of cellular ATP and was released via the dipyridamole-sensitive symmetric nucleoside transporter. PMID:2996488
Lalli, Stefania; Piacentini, Sylvie; Franzini, Angelo; Panzacchi, Andrea; Cerami, Chiara; Messina, Giuseppe; Ferré, Francesca; Perani, Daniela; Albanese, Alberto
2012-04-01
The aim of this study was to evaluate the efficacy and safety of epidural premotor stimulation in patients with primary focal dystonia. Seven patients were selected: 6 had cervical dystonia and 1 had right upper limb dystonia. In 2 patients, sustained muscle contractions led to a prevalently fixed head posture. Patients with cervical dystonia received a bilateral implant, whereas the patient with hand dystonia received a unilateral implant. Neurological and neuropsychological evaluations were performed before surgery (baseline), and 1, 3, 6, and 12 months afterward. The Burke-Fahn-Marsden scale (BFMS) and the Toronto Western spasmodic torticollis rating scale (TWSTRS) were administered at the same time points. Patients underwent resting (18)F-fluorodeoxyglucose (FDG) positron emission tomography (PET) scans, before and 12 months after surgery. No adverse events occurred. An overall improvement was observed on the BFMS and TWSTRS after surgery. Patients with prevalently fixed cervical dystonia had a reduced benefit. Presurgical neuroimaging revealed a significant bilateral metabolic increase in the sensorimotor areas, which was reduced after surgery. Copyright © 2012 Movement Disorder Society.
Saccharin and Cyclamate Inhibit Binding of Epidermal Growth Factor
NASA Astrophysics Data System (ADS)
Lee, L. S.
1981-02-01
The binding of 125I-labeled mouse epidermal growth factor (EGF) to 18 cell lines, including HeLa (human carcinoma), MDCK (dog kidney cells), HTC (rat hepatoma), K22 (rat liver), HF (human foreskin), GM17 (human skin fibroblasts), XP (human xeroderma pigmentosum fibroblasts), and 3T3-L1 (mouse fibroblasts), was inhibited by saccharin and cyclamate. The human cells were more sensitive to inhibition by these sweeteners than mouse or rat cells. EGF at doses far above the physiological levels reversed the inhibition in rodent cells but not in HeLa cells. In HeLa cells, the doses of saccharin and cyclamate needed for 50% inhibition were 3.5 and 9.3 mg/ml, respectively. Glucose, 2-deoxyglucose, sucrose, and xylitol did not inhibit EGF binding. Previous studies have shown that phorbol esters, strongly potent tumor promoters, also inhibit EGF binding to tissue culture cells. To explain the EGF binding inhibition by such greatly dissimilar molecules as phorbol esters, saccharin, and cyclamate, it is suggested that they operate through the activation of a hormone response control unit.
Nashalian, Ossanna; Yaylayan, Varoujan A
2016-04-15
Replacing amino acids with their binary metal complexes during the Maillard reaction can initiate various processes, including the oxidative degradation of their glucose conjugates, generating 1-amino-1-deoxy-fructose and its derivatives. These reactive amino sugars are not easily accessible under Maillard reaction conditions and are only formed in the presence of ammonia. To explore the generality of this observation and to study in particular the ability of fructose to generate glucosamine, the amino acid-metal complexes were heated in aqueous solutions with three aldohexoses and two ketohexoses at 110°C for 2 h and the dry residues were analysed by ESI/qTOF/MS/MS. All the sugars generated relatively intense ions at [M+H](+) 180 (C6H14NO5); those ions originating from ketohexoses exhibited MS/MS fragmentations identical to glucosamine and those originating form aldohexoses showed ions identical to fructosamine. Furthermore, the amino sugars were found to form fructosazine, react with other sugars and undergo dehydration reactions. Copyright © 2015 Elsevier Ltd. All rights reserved.
F18-FDG-PET for recurrent differentiated thyroid cancer: a systematic meta-analysis
Haslerud, Torjan; Brauckhoff, Katrin; Reisæter, Lars; Küfner Lein, Regina; Heinecke, Achim; Varhaug, Jan Erik
2015-01-01
Background Positron emission tomography (PET) with fluor-18-deoxy-glucose (FDG) is widely used for diagnosing recurrent or metastatic disease in patients with differentiated thyroid cancer (DTC). Purpose To assess the diagnostic accuracy of FDG-PET for DTC in patients after ablative therapy. Material and Methods A systematic search was conducted in Medline/PubMed, EMBASE, Cochrane Library, Web of Science, and Open Grey looking for all English-language original articles on the performance of FDG-PET in series of at least 20 patients with DTC having undergone ablative therapy including total thyroidectomy. Diagnostic performance measures were pooled using Reitsma’s bivariate model. Results Thirty-four publications between 1996 and 2014 met the inclusion criteria. Pooled sensitivity and specificity were 79.4% (95% confidence interval [CI], 73.9–84.1) and 79.4% (95% CI, 71.2–85.4), respectively, with an area under the curve of 0.858. Conclusion F18-FDG-PET is a useful method for detecting recurrent DTC in patients having undergone ablative therapy. PMID:26163534
NASA Astrophysics Data System (ADS)
Mason-Jones, Kyle; Kuzyakov, Yakov
2016-04-01
Priming of soil organic matter remains the subject of intense research, but a mechanistic explanation of the phenomenon remains to be demonstrated. This is largely due to the multiple effects of easily available carbon on the soil microbial community, and the challenge of separating these influences from one another. Several glucose analogues can be taken up by microbial glucose transporters and have similar regulatory effects on metabolism. These substances are, however, not easily catabolized by the common glycolytic pathway, limiting their energy value. Therefore, they can be used to distinguish between the action of glucose as a metabolic signal, and its influence as an energy source. We incubated an agricultural Haplic Luvisol under controlled conditions for 24 days after addition of: 1) glucose, 2) 3-O-methyl-glucose, 3) α-methylglucoside or 4) 2-deoxyglucose, at three concentration levels, along with a control treatment of water addition. CO2 efflux from soil was monitored by trapping evolved CO2 in NaOH and back-titration with HCl. On the first day after amendment, CO2 efflux from soil increased strongly for glucose and much less for the analogues, relative to the control. Only glucose caused a peak in efflux within the first two days. Peak mineralization of 2-deoxyglucose and α-methylglucoside was delayed until the third day, while CO2 from 3-O-methyl-glucose increased gradually, with a peak delayed by approximately a week. For glucose, the immediate increase in respiration was strongly dependent on the amount of glucose added, but this was not the case for the analogues, indicating that the catabolic potential for these substances was saturated. This is consistent with only a small part of the microbial community being capable of utilizing these carbon sources. In a subsequent experiment, 14C-labelled glucose or 14C-labelled 3-O-methyl-glucose were added to the same soil, enabling quantification of the priming effect. For 3-O-methyl-glucose, priming was observed before the peak of amendment-derived CO2 efflux, indicating that proposed short-term mechanisms involving apparent priming should not be mechanistically dependent on use of an external energy source. Instead, microorganisms respond to glucose through a regulated metabolic activation that can draw on their internal reserves. Stronger priming occurred during the delayed CO2 peak of 3-O-methyl-glucose. The correspondence of maximum catabolism and priming supports a role for carbon and energy supply in the mechanisms of 'real' priming, which take place over the longer term. These results demonstrate the potential of glucose analogues for disentangling energy-driven from activation-driven mechanisms of priming.
Salinska, Elzbieta; Bourne, Rachel C; Rose, Steven P R
2004-06-01
Memory traces, once established, are no longer sensitive to disruption by metabolic inhibitors. However, memories reactivated by reminder are once again vulnerable, in a time-dependent manner, to amnestic treatment. To determine whether the metabolic events following a reminder recapitulate those following initial training we examined the temporal dynamics of amnesia induced by the protein synthesis inhibitor anisomycin and the glycosylation inhibitor 2-deoxygalactose. The effects of both were transient and dependent on time of reminder post-training and time of injection relative to reminder, and differed from those following initial training. 2-[(14)C]-deoxyglucose uptake increased in two brain regions, the intermediate medial hyperstriatum ventrale (IMHV) and lobus parolfactorius (LPO) following reminder as it did following training, but the increase was bilateral rather than confined to the left hemisphere and was more marked in LPO than IMHV. C-fos expression after reminder was increased only in the LPO, the chick brain region associated with a late phase of memory processing and recall. Thus although, like initial consolidation, memory processing after reminder is sensitive to inhibitors of protein synthesis and glycosylation, the temporal and pharmacological dynamics indicate differences between these two processes.
Cox, Benjamin L; Mackie, Thomas R; Eliceiri, Kevin W
2015-01-01
Multi-modal imaging approaches of tumor metabolism that provide improved specificity, physiological relevance and spatial resolution would improve diagnosing of tumors and evaluation of tumor progression. Currently, the molecular probe FDG, glucose fluorinated with 18F at the 2-carbon, is the primary metabolic approach for clinical diagnostics with PET imaging. However, PET lacks the resolution necessary to yield intratumoral distributions of deoxyglucose, on the cellular level. Multi-modal imaging could elucidate this problem, but requires the development of new glucose analogs that are better suited for other imaging modalities. Several such analogs have been created and are reviewed here. Also reviewed are several multi-modal imaging studies that have been performed that attempt to shed light on the cellular distribution of glucose analogs within tumors. Some of these studies are performed in vitro, while others are performed in vivo, in an animal model. The results from these studies introduce a visualization gap between the in vitro and in vivo studies that, if solved, could enable the early detection of tumors, the high resolution monitoring of tumors during treatment, and the greater accuracy in assessment of different imaging agents. PMID:25625022
Effects of cytochalasin B, colchicine and vincristine on the metabolism of isolated fat-cells
Loten, Ernest G.; Jeanrenaud, Bernard
1974-01-01
1. Colchicine and vincristine only slightly inhibit the metabolism of glucose to CO2 and lipids by isolated fat-cells. 2. Prolonged incubation with these agents causes no further inhibition. 3. Cytochalasin B, however, inhibits glucose metabolism to both CO2 and lipids in fat-cells. 4. However, at a concentration that causes a strong inhibition of glucose metabolism cytochalasin B is without effect on the metabolism of pyruvate, lactate or arginine to these end products. The uptake of labelled α-aminoisobutyrate is likewise not modified. Similarly it does not affect release of glycerol or free fatty acid, or the actions of adrenaline, insulin or caffeine on these parameters. At 10μg/ml it slightly lowers ATP concentrations, an effect that does not occur at 2μg/ml. 5. The transport of fructose into adipocytes by a specific fructose-transport system is also not affected by the agent, but the uptake of 2-deoxyglucose is strongly inhibited. It is concluded that cytochalasin B may specifically inhibit the glucose-transport system of isolated fat-cells. 6. Cytochalasin A has a much weaker action than cytochalasin B on glucose metabolism. PMID:4455189
The Vacuolar-Type H+-ATPase in Ovine Rumen Epithelium is Regulated by Metabolic Signals
Kuzinski, Judith; Zitnan, Rudolf; Warnke-Gurgel, Christina; Schweigel, Monika
2010-01-01
In this study, the effect of metabolic inhibition (MI) by glucose substitution with 2-deoxyglucose (2-DOG) and/or application of antimycin A on ovine rumen epithelial cells (REC) vacuolar-type H+-ATPase (vH+-ATPase) activity was investigated. Using fluorescent spectroscopy, basal pHi of REC was measured to be 7.3 ± 0.1 in HCO3−-free, glucose-containing NaCl medium. MI induced a strong pHi reduction (−0.44 ± 0.04 pH units) with a more pronounced effect of 2-DOG compared to antimycin A (−0.30 ± 0.03 versus −0.21 ± 0.03 pH units). Treatment with foliomycin, a specific vH+-ATPase inhibitor, decreased REC pHi by 0.21 ± 0.05 pH units. After MI induction, this effect was nearly abolished (−0.03 ± 0.02 pH units). In addition, membrane-associated localization of vH+-ATPase B subunit disappeared. Metabolic control of vH+-ATPase involving regulation of its assembly state by elements of the glycolytic pathway could provide a means to adapt REC ATP consumption according to energy availability. PMID:20069127
Gurung, Rit Bahadur; Gong, So Youn; Dhakal, Dipesh; Le, Tuoi Thi; Jung, Na Rae; Jung, Hye Jin; Oh, Tae Jin; Sohng, Jae Kyung
2017-09-28
Curcumin is a natural polyphenolic compound, widely acclaimed for its antioxidant, antiinflammatory, antibacterial, and anticancerous properties. However, its use has been limited due to its low-aqueous solubility and poor bioavailability, rapid clearance, and low cellular uptake. In order to assess the effect of glycosylation on the pharmacological properties of curcumin, one-pot multienzyme (OPME) chemoenzymatic glycosylation reactions with UDP- α-D-glucose or UDP-α-D-2-deoxyglucose as donor substrate were employed. The result indicated significant conversion of curcumin to its glycosylated derivatives: curcumin 4'- O -β- glucoside, curcumin 4',4''-di- O -β-glucoside, curcumin 4'- O -β-2-deoxyglucoside, and curcumin 4',4''-di- O -β-2-deoxyglucoside. The products were characterized by ultra-fast performance liquid chromatography, high-resolution quadruple-time-of-flight electrospray ionization-mass spectrometry, and NMR analyses. All the products showed improved water solubility and comparable antibacterial activities. Additionally, the curcumin 4'- O -β-glucoside and curcumin 4'- O -β-2-deoxyglucoside showed enhanced anticancer activities compared with the parent aglycone and diglycoside derivatives. This result indicates that glycosylation can be an effective approach for enhancing the pharmaceutical properties of different natural products, such as curcumin.
Greatly decreased susceptibility of nonmetabolizing cells towards detergents.
Komor, E; Weber, H; Tanner, W
1979-01-01
The addition of different detergents to Chlorella cells that had previously accumulated 6-deoxyglucose causes a rapid release of the hexose analogue into the medium. This effect is independent of the nature of the detergent and is observed only when the cells are in an energized state. Thus, in the presence of the uncoupler p-trifluoromethoxycarbonylcyanide phenylhydrazone or of inhibitors such as N-ethylmaleimide, the cells show a greatly reduced susceptibility towards detergents. Similarly, the detergent-induced loss of accumulated alpha-aminoisobutyric acid from Saccharomyces cerevisiae and of potassium from Escherichia coli is also strongly affected by the energy state of the cells. The differential susceptibility of energized and nonenergized cells was observed at all detergent concentrations tested. Measurements of substrate efflux at different concentrations of Triton indicated that only Triton monomers are responsible for the increase in permeability. The absorption of [14C]Triton X-100 by Chlorella and the binding of detergent to the cells were measured in the presence of metabolic inhibitors. Again, nonenergized cells bound a significantly lower amount of Triton X-100. The amphiphilic antibiotic nystatin produced effects on cell permeability similar to those of detergents, whereas toluene, which is apolar, gave opposite results. PMID:377284
Sleep Restriction Impairs Blood–Brain Barrier Function
He, Junyun; Hsuchou, Hung; He, Yi; Kastin, Abba J.; Wang, Yuping
2014-01-01
The blood–brain barrier (BBB) is a large regulatory and exchange interface between the brain and peripheral circulation. We propose that changes of the BBB contribute to many pathophysiological processes in the brain of subjects with chronic sleep restriction (CSR). To achieve CSR that mimics a common pattern of human sleep loss, we quantified a new procedure of sleep disruption in mice by a week of consecutive sleep recording. We then tested the hypothesis that CSR compromises microvascular function. CSR not only diminished endothelial and inducible nitric oxide synthase, endothelin1, and glucose transporter expression in cerebral microvessels of the BBB, but it also decreased 2-deoxy-glucose uptake by the brain. The expression of several tight junction proteins also was decreased, whereas the level of cyclooxygenase-2 increased. This coincided with an increase of paracellular permeability of the BBB to the small tracers sodium fluorescein and biotin. CSR for 6 d was sufficient to impair BBB structure and function, although the increase of paracellular permeability returned to baseline after 24 h of recovery sleep. This merits attention not only in neuroscience research but also in public health policy and clinical practice. PMID:25355222
Sleep restriction impairs blood-brain barrier function.
He, Junyun; Hsuchou, Hung; He, Yi; Kastin, Abba J; Wang, Yuping; Pan, Weihong
2014-10-29
The blood-brain barrier (BBB) is a large regulatory and exchange interface between the brain and peripheral circulation. We propose that changes of the BBB contribute to many pathophysiological processes in the brain of subjects with chronic sleep restriction (CSR). To achieve CSR that mimics a common pattern of human sleep loss, we quantified a new procedure of sleep disruption in mice by a week of consecutive sleep recording. We then tested the hypothesis that CSR compromises microvascular function. CSR not only diminished endothelial and inducible nitric oxide synthase, endothelin1, and glucose transporter expression in cerebral microvessels of the BBB, but it also decreased 2-deoxy-glucose uptake by the brain. The expression of several tight junction proteins also was decreased, whereas the level of cyclooxygenase-2 increased. This coincided with an increase of paracellular permeability of the BBB to the small tracers sodium fluorescein and biotin. CSR for 6 d was sufficient to impair BBB structure and function, although the increase of paracellular permeability returned to baseline after 24 h of recovery sleep. This merits attention not only in neuroscience research but also in public health policy and clinical practice. Copyright © 2014 the authors 0270-6474/14/3414697-10$15.00/0.
Pandey, Suresh K.; Sajjad, Munawwar; Chen, Yihui; Zheng, Xiang; Yao, Rutao; Missert, Joseph R.; Batt, Carrie; Nabi, Hani A.; Oseroff, Allan R.; Pandey, Ravindra K.
2009-01-01
In our present study, 3-(1′-m-iodobenzyloxyethyl) pyropheophorbide-a methyl ester 1, 3-(1′-m-iodobenzyloxyethyl)-172-{(2-deoxy)glucose} pyropheophorbide-a 2, and 3-(1′-m-iodo benzyloxyethyl)-172-{(1-deoxy)galactose} pyropheophorbide-a 3 were synthesized and converted into the corresponding 124I- labeled analogs by reacting the intermediate trimethyltin analogs with Na124I. Photosensitizers 1–3 were evaluated for the PDT efficacy in C3H mice bearing RIF tumors at variable doses and showed a significant long-term tumor cure. Among the compounds investigated, the non-carbohydrate analog 1 was most effective. These results were in contrast to the in vitro data, where compared to the parent analog the corresponding galactose-and glucose derivatives showed enhanced cell kill. Among the corresponding 124I-labeled in analogs, excellent tumor images were obtained from compound 1 both tumor models (RIF and Colon-26) and the best tumor contrast was observed at 72 h post injection. Conjugating a glucose moiety to photosensitizer 1 diminished its tumor uptake, whereas with time the corresponding galactose analog showed improved tumor contrast. PMID:19090663
Brain and spinal cord metabolic activity during propofol anaesthesia.
Cavazzuti, M; Porro, C A; Barbieri, A; Galetti, A
1991-04-01
We have investigated the effects of propofol anaesthesia on the metabolic activity pattern of 35 regions of the rat brain and cervical spinal cord using the 14C-2-deoxyglucose technique. Anaesthesia was produced by an i.v. bolus of the commercial preparation of the drug (8 mg kg-1) and maintained with successive bolus administrations of 6 mg kg-1. Functional activity values (expressed as rates of local utilization of glucose) were reduced in 31 grey matter and two white matter structures in a propofol group relative both to saline-injected and vehicle-injected (aqueous emulsion containing 10% soya bean oil, 1.2% egg phosphatide and 2.25% glycerol) controls. Values from the two control groups did not differ significantly. Propofol-induced depression of metabolic activity was present in central nervous system regions belonging to sensory (auditory, visual and somatosensory), motor and limbic systems, including spinal cord grey matter. Mean percentage decreases ranged from 40% (vestibular nuclei) to 76% (cingulate cortex). Although these values may be slightly overestimated because of the modest increase in PaCo2 in the anaesthetized group, propofol appeared to elicit generalized reduction of central nervous system functional activity.
Dickinson, Elizabeth; Arnold, John R P; Fisher, Julie
2017-02-01
The cause of the pregnancy condition preeclampsia (PE) is thought to be endothelial dysfunction caused by oxidative stress. As abnormal glucose tolerance has also been associated with PE, we use a fluorinated-mimic of this metabolite to establish whether any oxidative damage to lipids and proteins in the erythrocyte membrane has increased cell membrane permeability. Data were acquired using 19 F Dynamic-NMR (DNMR) to measure exchange of 3-fluoro-3-deoxyglucose (3-FDG) across the membrane of erythrocytes from 10 pregnant women (5 healthy control women, and 5 from women suffering from PE). Magnetisation transfer was measured using the 1D selective inversion and 2D EXSY pulse sequences, over a range of time delays. Integrated intensities from these experiments were used in matrix diagonalisation to estimate the values of the rate constants of exchange and membrane permeability. No significant differences were observed for the rate of exchange of 3-FDG and membrane permeability between healthy pregnant women and those suffering from PE, leading us to conclude that no oxidative damage had occurred at this carrier-protein site in the membrane.
Kleinjung, T; Steffens, T; Langguth, B; Eichhammer, P; Marienhagen, J; Hajak, G; Strutz, J
2006-06-01
Idiopathic tinnitus is a frequent and debilitating disorder of largely unknown pathophysiology. Focal brain activation in the auditory cortex has recently been demonstrated in chronic tinnitus. Low-frequency rTMS can reduce cortical hyperexcitability. In 12 patients with chronic tinnitus, fusion of [18F]deoxyglucose-PET and structural MRI (T1, MPRAGE) scans allowed the area of increased metabolic activity in the auditory cortex to be exactly identified; this area was selected as the target for rTMS. A neuronavigational system adapted for TMS positioning enabled the relative positions of the figure-8 coil and the target area to be monitored. Repetitive TMS (110% motor threshold; 1 Hz; 2000 stimuli per day over 5 days) was performed using a placebo-controlled crossover design. A sham coil system was used for the placebo stimulation. Treatment outcome was assessed with a specific tinnitus questionnaire (Goebel and Hiller). In all 12 patients an asymmetrically increased metabolic activation of the gyrus of Heschl was detected. The tinnitus score was significantly improved after 5 days of active rTMS, an effect not seen after placebo stimulation. These preliminary results show that neuronavigated rTMS may improve our understanding and treatment of chronic tinnitus.
Jeong, Da Un; Oh, Jin Hwan; Lee, Ji Eun; Lee, Jihyeon; Cho, Zang Hee; Chang, Jin Woo; Chang, Won Seok
2016-01-01
Reduced brain glucose metabolism and basal forebrain cholinergic neuron degeneration are common features of Alzheimer's disease and have been correlated with memory function. Although regions representing glucose hypometabolism in patients with Alzheimer's disease are targets of cholinergic basal forebrain neurons, the interaction between cholinergic denervation and glucose hypometabolism is still unclear. The aim of the present study was to evaluate glucose metabolism changes caused by cholinergic deficits. We lesioned basal forebrain cholinergic neurons in rats using 192 immunoglobulin G-saporin. After 3 weeks, lesioned animals underwent water maze testing or were analyzed by ¹⁸F-2-fluoro-2-deoxyglucose positron emission tomography. During water maze probe testing, performance of the lesioned group decreased with respect to time spent in the target quadrant and platform zone. Cingulate cortex glucose metabolism in the lesioned group decreased, compared with the normal group. Additionally, acetylcholinesterase activity and glutamate decarboxylase 65/67 expression declined in the cingulate cortex. Our results reveal that spatial memory impairment in animals with selective basal forebrain cholinergic neuron damage is associated with a functional decline in the GABAergic and cholinergic system associated with cingulate cortex glucose hypometabolism.
Petit, T; Herrero, P; Gancedo, C
1998-10-29
Alignment of amino acids of the region implicated in glucose binding from a series of hexokinases showed that Schizosaccharomyces pombe hexokinase 1 had a Ser residue in a place where all other kinases had an Asn. We changed an AGT codon to AAT to place an Asn in the Ser213 position. This mutation decreased Km for glucose from 9.4 mM to 1.6 mM and the ratio Vmax (Fructose)/Vmax (Glucose) from 5 to 2.5. Also the Km for 2-deoxyglucose decreased from 2.7 mM to 0.8 mM. A mutation in the similar position of S. pombe hexokinase 2 (Asn196/Ser) increased the Km for glucose from 0.16 mM to 0.56 mM. Fermentation of glucose is not detectable in a S. pombe mutant with only hexokinase 1 activity but expression of the hxk1(S213/N) gene conferred ability to ferment the sugar. While the mutated hexokinase 1 partially mimicked S. cerevisiae hexokinase II in catabolite repression of invertase, the wild type one could not substitute for it. Copyright 1998 Academic Press.
Bettenbrock, Katja; Siebers, Ulrike; Ehrenreich, Petra; Alpert, Carl-Alfred
1999-01-01
Galactose metabolism in Lactobacillus casei 64H was analyzed by genetic and biochemical methods. Mutants with defects in ptsH, galK, or the tagatose 6-phosphate pathway were isolated either by positive selection using 2-deoxyglucose or 2-deoxygalactose or by an enrichment procedure with streptozotocin. ptsH mutations abolish growth on lactose, cellobiose, N-acetylglucosamine, mannose, fructose, mannitol, glucitol, and ribitol, while growth on galactose continues at a reduced rate. Growth on galactose is also reduced, but not abolished, in galK mutants. A mutation in galK in combination with a mutation in the tagatose 6-phosphate pathway results in sensitivity to galactose and lactose, while a galK mutation in combination with a mutation in ptsH completely abolishes galactose metabolism. Transport assays, in vitro phosphorylation assays, and thin-layer chromatography of intermediates of galactose metabolism also indicate the functioning of a permease/Leloir pathway and a phosphoenolpyruvate-dependent phosphotransferase system (PTS)/tagatose 6-phosphate pathway. The galactose-PTS is induced by growth on either galactose or lactose, but the induction kinetics for the two substrates are different. PMID:9864334
Progress report on new antiepileptic drugs: A summary of the Twelfth Eilat Conference (EILAT XII).
Bialer, Meir; Johannessen, Svein I; Levy, René H; Perucca, Emilio; Tomson, Torbjörn; White, H Steve
2015-03-01
The Twelfth Eilat Conference on New Antiepileptic Drugs (AEDs) - EILAT XII, took place in Madrid, Spain from August 31st to September 3rd 2014. About 130 basic scientists, clinical pharmacologists and neurologists from 22 countries attended the conference, whose main themes included "Conquering pharmacoresistant epilepsy", "Innovative emergency treatments", "Progress report on second-generation treatment" and "New methods and formulations". Consistent with previous formats of this conference, a large part of the program was devoted to a review of AEDs in development, as well as updates on AEDs introduced since 2004. Like the EILAT X and EILAT XI reports, the current article focuses on the preclinical and clinical pharmacology of AEDs that are currently in development. These include adenosine-releasing silk, allopregnanolone (SAGE-547), AMP-X-0079, brivaracetam, bumetanide, cannabidiol, cannabidivarin, 2-deoxy-glucose, everolimus, ganaxolone, huperzine A, imepitoin, minocycline, NAX 801-2, pitolisant, PRX 0023, SAGE-217, valnoctamide and its homologue sec-butyl-propylacetamide (SPD), and VLB-01. Since the previous Eilat conference, perampanel has been introduced into the market and twelve novel potential epilepsy treatments are presented for the first time. Copyright © 2015 Elsevier B.V. All rights reserved.
Progress report on new antiepileptic drugs: a summary of the Eleventh Eilat Conference (EILAT XI).
Bialer, Meir; Johannessen, Svein I; Levy, René H; Perucca, Emilio; Tomson, Torbjörn; White, H Steve
2013-01-01
The Eleventh Eilat Conference on New Antiepileptic Drugs (AEDs)-EILAT XI, took place in Eilat, Israel from the 6th to 10th of May 2012. About 100 basic scientists, clinical pharmacologists and neurologists from 20 countries attended the conference, whose main themes included "Indications overlapping with epilepsy" and "Securing the successful development of an investigational antiepileptic drug in the current environment". Consistent with previous formats of this conference, a large part of the program was devoted to a review of AEDs in development, as well as updates on AEDs introduced since 1994. Like the EILAT X report, the current manuscript focuses only on the preclinical and clinical pharmacology of AEDs that are currently in development. These include brivaracetam, 2-deoxy-glucose, ganaxolone, ICA-105665, imepitoin, NAX 801-2, perampanel and other AMPA receptor antagonists, tonabersat, valnoctamide and its homologue sec-propylbutylacetamide (SPD), VX-765 and YK3089. Since the previous Eilat conference, retigabine (ezogabine) has been marketed and four newer AEDs in development (NAX 810-2, SPD, tonabersat and VX-765) are included in this manuscript. Copyright © 2012 Elsevier B.V. All rights reserved.
Development switch in neural circuitry underlying odor-malaise learning.
Shionoya, Kiseko; Moriceau, Stephanie; Lunday, Lauren; Miner, Cathrine; Roth, Tania L; Sullivan, Regina M
2006-01-01
Fetal and infant rats can learn to avoid odors paired with illness before development of brain areas supporting this learning in adults, suggesting an alternate learning circuit. Here we begin to document the transition from the infant to adult neural circuit underlying odor-malaise avoidance learning using LiCl (0.3 M; 1% of body weight, ip) and a 30-min peppermint-odor exposure. Conditioning groups included: Paired odor-LiCl, Paired odor-LiCl-Nursing, LiCl, and odor-saline. Results showed that Paired LiCl-odor conditioning induced a learned odor aversion in postnatal day (PN) 7, 12, and 23 pups. Odor-LiCl Paired Nursing induced a learned odor preference in PN7 and PN12 pups but blocked learning in PN23 pups. 14C 2-deoxyglucose (2-DG) autoradiography indicated enhanced olfactory bulb activity in PN7 and PN12 pups with odor preference and avoidance learning. The odor aversion in weanling aged (PN23) pups resulted in enhanced amygdala activity in Paired odor-LiCl pups, but not if they were nursing. Thus, the neural circuit supporting malaise-induced aversions changes over development, indicating that similar infant and adult-learned behaviors may have distinct neural circuits.
Active myocarditis in a patient with chronic active Epstein-Barr virus infection.
Takano, Hiroyuki; Nakagawa, Keiichi; Ishio, Naoki; Daimon, Michiko; Daimon, Masao; Kobayashi, Yoshio; Hiroshima, Kenzo; Komuro, Issei
2008-10-30
Chronic active Epstein-Barr virus (CAEBV) infection is characterized by chronic or recurrent infectious mononucleosis-like symptoms and the prognosis of CAEBV infection is quite poor. The incidence of myocarditis as a complication of EBV infection is not so high and it is unusual that heart failure appears as the initial symptom. However, it is very important to detect and treat chronic active myocarditis in the early phase of CAEBV infection because chronic active myocarditis disorganizes and decreases cardiomyocytes, resulting in the progression to heart failure. We report a case of a 45-year-old man with CAEBV infection for 5 years. Echocardiography revealed moderate left ventricular systolic dysfunction with mild pericardial effusion. Endomyocardial biopsies demonstrated massive lymphocytic infiltration with adjacent myocytolysis and necrosis of cardiomyocytes suggesting active myocarditis. Immunohistological analysis of biopsies revealed that the infiltrating cells were mainly T lymphocytes. And some of the infiltrating cells showed a positive signal for the EBV-encoded small nuclear RNA by in situ hybridization. Positron emission tomography using (18)F-fluoro-2-deoxyglucose ((18)F-FDG) performed revealed increased uptake of (18)F-FDG of whole left ventricular wall with mild heterogeneity.
Cheng, Gang; Zielonka, Jacek; McAllister, Donna; Hardy, Micael; Ouari, Olivier; Joseph, Joy; Dwinell, Michael B.; Kalyanaraman, Balaraman
2015-01-01
One of the proposed mechanisms for tumor proliferation involves redox signaling mediated by reactive oxygen species such as superoxide and hydrogen peroxide generated at moderate levels. Thus, the antiproliferative and anti-tumor effects of certain antioxidants were attributed to their ability to mitigate intracellular reactive oxygen species (ROS). Recent reports support a role for mitochondrial ROS in stimulating tumor cell proliferation. In this study, we compared the antiproliferative effects and the effects on mitochondrial bioenergetic functions of a mitochondria-targeted cationic carboxyproxyl nitroxide (Mito-CP), exhibiting superoxide dismutase (SOD)-like activity and a synthetic cationic acetamide analog (Mito-CP-Ac) lacking the nitroxide moiety responsible for the SOD activity. Results indicate that both Mito-CP and Mito-CP-Ac potently inhibited tumor cell proliferation. Both compounds altered mitochondrial and glycolytic functions, and intracellular citrate levels. Both Mito-CP and Mito-CP-Ac synergized with 2-deoxy-glucose (2-DG) to deplete intracellular ATP, inhibit cell proliferation and induce apoptosis in pancreatic cancer cells. We conclude that mitochondria-targeted cationic agents inhibit tumor proliferation via modification of mitochondrial bioenergetics pathways rather than by dismutating and detoxifying mitochondrial superoxide. PMID:26004344
Pratx, Guillem; Chen, Kai; Sun, Conroy; Martin, Lynn; Carpenter, Colin M.; Olcott, Peter D.; Xing, Lei
2012-01-01
Radiotracers play an important role in interrogating molecular processes both in vitro and in vivo. However, current methods are limited to measuring average radiotracer uptake in large cell populations and, as a result, lack the ability to quantify cell-to-cell variations. Here we apply a new technique, termed radioluminescence microscopy, to visualize radiotracer uptake in single living cells, in a standard fluorescence microscopy environment. In this technique, live cells are cultured sparsely on a thin scintillator plate and incubated with a radiotracer. Light produced following beta decay is measured using a highly sensitive microscope. Radioluminescence microscopy revealed strong heterogeneity in the uptake of [18F]fluoro-deoxyglucose (FDG) in single cells, which was found consistent with fluorescence imaging of a glucose analog. We also verified that dynamic uptake of FDG in single cells followed the standard two-tissue compartmental model. Last, we transfected cells with a fusion PET/fluorescence reporter gene and found that uptake of FHBG (a PET radiotracer for transgene expression) coincided with expression of the fluorescent protein. Together, these results indicate that radioluminescence microscopy can visualize radiotracer uptake with single-cell resolution, which may find a use in the precise characterization of radiotracers. PMID:23056276
An animal model of tinnitus: a decade of development.
Jastreboff, P J; Sasaki, C T
1994-01-01
Although tinnitus affects approximately 9 million people in the United States, a cure remains elusive and the mechanisms of its origin are speculative. The crucial obstacle in tinnitus research has been the lack of an animal model. Over the last decade we have been creating such a model by combining a variety of methodologies, including a behavioral component, to allow for the detection of tinnitus perception. Initially, 2-deoxyglucose had been used to map changes in the metabolic activity after unilateral destruction of the cochlea. It has been found that the initial decrease of the metabolic rate in the auditory nuclei recovered to preoperative values, which could be attributable to the development of tinnitus. The spontaneous activity of single units recorded from the inferior colliculus before and after salicylate administration revealed an increase of discharges, which might reflect the presence of salicylate-induced tinnitus. Recent data have confirmed, and further elaborated this observation, including the discovery of abnormal, epileptic-like, neuronal activity. Finally, the authors have developed a behavioral model of tinnitus, tested it extensively, and used it to measure tinnitus pitch and loudness. The model is presently used for investigating the hypotheses for the mechanisms of tinnitus.
Okano, Takaichi; Saegusa, Jun; Nishimura, Keisuke; Takahashi, Soshi; Sendo, Sho; Ueda, Yo; Morinobu, Akio
2017-02-10
Recent studies have shown that cellular metabolism plays an important role in regulating immune cell functions. In immune cell differentiation, both interleukin-17-producing T (Th17) cells and dendritic cells (DCs) exhibit increased glycolysis through the upregulation of glycolytic enzymes, such as hexokinase-2 (HK2). Blocking glycolysis with 2-deoxyglucose was recently shown to inhibit Th17 cell differentiation while promoting regulatory T (Treg) cell generation. However, 2-DG inhibits all isoforms of HK. Thus, it is unclear which isoform has a critical role in Th17 cell differentiation and in rheumatoid arthritis (RA) pathogenesis. Here we demonstrated that 3-bromopyruvate (BrPA), a specific HK2 inhibitor, significantly decreased the arthritis scores and the histological scores in SKG mice, with a significant increase in Treg cells, decrease in Th17 cells, and decrease in activated DCs in the spleen. In vitro, BrPA facilitated the differentiation of Treg cells, suppressed Th17 cells, and inhibited the activation of DCs. These results suggested that BrPA may be a therapeutic target of murine arthritis. Although the role of IL-17 is not clarified in the treatment of RA, targeting cell metabolism to alter the immune cell functions might lead to a new therapeutic strategy for RA.
Cohen, Gadi; Natsheh, Hiba; Sunny, Youhan; Bawiec, Christopher R; Touitou, Elka; Lerman, Melissa A; Lazarovici, Philip; Lewin, Peter A
2015-09-01
The purpose of this work was to investigate whether low-frequency, low-intensity (20 kHz, <100 mW/cm(2), spatial-peak, temporal-peak intensity) ultrasound, delivered with a lightweight (<100 g), tether-free, fully wearable, battery-powered applicator, is capable of reducing inflammation in a mouse model of rheumatoid arthritis. The therapeutic, acute, anti-inflammatory effect was estimated from the relative swelling induced in mice hindlimb paws. In an independent, indirect approach, the inflammation was bio-imaged by measuring glycolytic activity with near-infrared labeled 2-deoxyglucose. The outcome of the experiments indicated that the combination of ultrasound exposure and topical application of 0.1% (w/w) betamethasone gel resulted in statistically significantly (p < 0.05) enhanced anti-inflammatory activity in comparison with drug or ultrasound treatment alone. The present study underscores the potential benefits of low-frequency, low-intensity ultrasound-assisted drug delivery. However, the proof of concept presented indicates the need for additional experiments to systematically evaluate and optimize the potential of, and the conditions for, tolerable low-frequency, low-intensity ultrasound-promoted non-invasive drug delivery. Copyright © 2015 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.
Lowered extracellular pH is involved in the pathogenesis of skeletal muscle insulin resistance.
Hayata, Hiroki; Miyazaki, Hiroaki; Niisato, Naomi; Yokoyama, Noriko; Marunaka, Yoshinori
2014-02-28
Insulin resistance in the skeletal muscle is manifested by diminished insulin-stimulated glucose uptake and is a core factor in the pathogenesis of type 2 diabetes mellitus (DM), but the mechanism causing insulin resistance is still unknown. Our recent study has shown that pH of interstitial fluids was lowered in early developmental stage of insulin resistance in OLETF rats, a model of type 2 DM. Therefore, in the present study, we confirmed effects of the extracellular pH on the insulin signaling pathway in a rat skeletal muscle-derived cell line, L6 cell. The phosphorylation level (activation) of the insulin receptor was significantly diminished in low pH media. The phosphorylation level of Akt, which is a downstream target of the insulin signaling pathway, also decreased in low pH media. Moreover, the insulin binding to its receptor was reduced by lowering extracellular pH, while the expression of insulin receptors on the plasma membrane was not affected by the extracellular pH. Finally, insulin-stimulated 2-deoxyglucose uptake in L6 cells was diminished in low pH media. Our present study suggests that lowered extracellular pH conditions may produce the pathogenesis of insulin resistance in skeletal muscle cells. Copyright © 2014. Published by Elsevier Inc.
Structural (CT) and functional imaging (PET/SPECT) for the investigation of dolphin bioacoustics
NASA Astrophysics Data System (ADS)
Houser, Dorian S.; Finneran, James J.; Mattrey, Robert; Hoh, Carl; Ridgway, Sam
2003-10-01
A combination of imaging modalities was used to address physiological and anatomical questions relevant to dolphin bioacoustics. Three dolphins (Tursiops truncatus) were scanned with CT to investigate in vivo dolphin cranial anatomy. One dolphin underwent SPECT and PET scanning to investigate blood flow and metabolic activity of the cranial tissues. Air spaces were mostly contiguous and covered the periotic bone and auditory bulla dorsally and medially. Cranial air was compartmentalized by the nasal plug and constriction of the palatopharyngeus muscle. Blood flow, determined from SPECT imaging of 99Tc-bicisate distribution, was greatest in the brain, melon, and posterior fats of the lower jaw. Metabolic activity of tissues, assessed by monitoring the uptake of 18F-deoxyglucose via PET, indicated that melon and jaw fats were metabolically inert compared to the brain. Nasal cavity and sinus air volume that is reduced during diving may be replenished with lung air via the palatopharyngeus and Eustachian tube. Air covering the bulla may protect the ears from outgoing echolocation pulses and contribute to spectral and time of arrival cues. Blood flow to the melon and lower jaw fats may serve to either regulate the temperature of acoustic lipids or act as a site of counter-current heat exchange.
Dhanya, R.; Arun, K. B.; Nisha, V. M.; Syama, H. P.; Nisha, P.; Santhosh Kumar, T. R.; Jayamurthy, P.
2015-01-01
Enhanced oxidative stress contributes to pathological changes in diabetes and its complications. Thus, strategies to reduce oxidative stress may alleviate these pathogenic processes. Herein, we have investigated Naringin mediated regulation of glutathione (GSH) & intracellular free radical levels and modulation of glucose uptake under oxidative stress in L6 cell lines. The results from the study demonstrated a marked decrease in glutathione with a subsequent increase in free radical levels, which was reversed by the pretreatment of Naringin. We also observed that the increased malondialdehyde level, the marker of lipid peroxidation on induction of oxidative stress was retrieved on Naringin pretreatment. Addition of Naringin (100 μM) showed approximately 40% reduction in protein glycation in vitro. Furthermore, we observed a twofold increase in uptake of fluorescent labeled glucose namely 2-(N-(7-Nitrobenz-2-oxa-1,3-diazol-4-yl)Amino)-2-Deoxyglucose (2 - NBDG) on Naringin treatment in differentiated L6 myoblast. The increased uptake of 2-NBDG by L6 myotubes may be attributed due to the enhanced translocation of GLUT4. Our results demonstrate that Naringin activate GSH synthesis through a novel antioxidant defense mechanism against excessive Reactive Oxygen Species (ROS) production, contributing to the prevention of oxidative damage in addition to its effect on glycemic control. PMID:26147673
Moon, Seung Hwan; Hong, Sun-Pyo; Cho, Young Seok; Noh, Tae Soo; Choi, Joon Young; Kim, Byung-Tae; Lee, Kyung-Han
2017-06-01
Hepatic F-18 fluoro-2-deoxyglucose (FDG) uptake is associated with non-alcoholic fatty liver disease (NAFLD) which is an independent risk factor for cardiovascular disease. However, the value of hepatic FDG uptake for predicting future cardiovascular events has not been explored. Study participants were 815 consecutive asymptomatic participants who underwent a health screening program that included FDG positron emission tomography/computed tomography (PET/CT), abdominal ultrasonography, and carotid intima-media thickness (CIMT) measurements (age 51.8 ± 6.0 year; males 93.9%). We measured hepatic FDG uptake and assessed the prognostic significance of this parameter with other cardiovascular risk factors including Framingham risk score and CIMT. Multivariate Cox proportional hazards analyses including all study participants revealed that NAFLD with high-hepatic FDG uptake was the only independent predictor for future cardiovascular events [hazard ratio (HR) 4.23; 95% CI 1.05-17.04; P = .043). Subgroup analysis conducted in the NAFLD group showed that high-hepatic FDG uptake was a significant independent predictor of cardiovascular events (HR 9.29; 95% CI 1.05-81.04; P = .045). This exploratory study suggests that high-hepatic FDG uptake may be a useful prognostic factor for cardiovascular events in individuals with NAFLD.
Aydogan, Bulent; Li, Ji; Rajh, Tijana; Chaudhary, Ahmed; Chmura, Steven J; Pelizzari, Charles; Wietholt, Christian; Kurtoglu, Metin; Redmond, Peter
2010-10-01
To study the feasibility of using 2-deoxy-D-glucose (2-DG)-labeled gold nanoparticle (AuNP-DG) as a computed tomography (CT) contrast agent with tumor targeting capability through in vitro experiments. Gold nanoparticles (AuNP) were fabricated and were conjugated with 2-deoxy-D-glucose. The human alveolar epithelial cancer cell line, A-549, was chosen for the in vitro cellular uptake assay. Two groups of cell samples were incubated with the AuNP-DG and the unlabeled AuNP, respectively. Following the incubation, the cells were washed with sterile PBS to remove the excess gold nanoparticles and spun to cell pellets using a centrifuge. The cell pellets were imaged using a microCT scanner immediately after the centrifugation. The reconstructed CT images were analyzed using a commercial software package. Significant contrast enhancement in the cell samples incubated with the AuNP-DG with respect to the cell samples incubated with the unlabeled AuNP was observed in multiple CT slices. Results from this study demonstrate enhanced uptake of 2-DG-labeled gold nanoparticle by cancer cells in vitro and warrant further experiments to study the exact molecular mechanism by which the AuNP-DG is internalized and retained in the tumor cells.
Wu, Hui; Xu, Xiao; Meng, Ying; Xia, Fangzhen; Zhai, Hualing; Lu, Yingli
2014-01-01
Objective. Blood glucose concentrations of type 1 diabetic rats are vulnerable, especially to stress and trauma. The present study aimed to investigate the fasting endogenous glucose production and skeletal muscle glucose uptake of Streptozotocin induced type 1 diabetic rats using an unstressed vein and artery implantation of catheters at the tails of the rats as a platform. Research Design and Methods. Streptozotocin (65 mg·kg−1) was administered to induce type 1 diabetic state. The unstressed approach of catheters of vein and artery at the tails of the rats was established before the isotope tracer injection. Dynamic measurement of fasting endogenous glucose production was assessed by continuously infusing stable isotope [6, 6-2H2] glucose, while skeletal muscle glucose uptake by bolus injecting radioactively labeled [1-14C]-2-deoxy-glucose. Results. Streptozotocin induced type 1 diabetic rats displayed polydipsia, polyphagia, and polyuria along with overt hyperglycemia and hypoinsulinemia. They also had enhanced fasting endogenous glucose production and reduced glucose uptake in skeletal muscle compared to nondiabetic rats. Conclusions. The dual catheters implantation at the tails of the rats together with isotope tracers injection is a save time, unstressed, and feasible approach to explore the glucose metabolism in animal models in vivo. PMID:24772449
Cicciarello, R; Russi, E; Albiero, F; Mesiti, M; Torre, E; D'Aquino, A; Raffaele, L; Bertolani, S; D'Avella, D
1990-11-01
Whole brain irradiation (WBR) can produce acute and chronic neurological adverse effects, which are usually divided into acute, early delayed and late delayed reactions according to the time of onset. To assess the impact of WBR on brain functional parameters during the early-delayed phase, we employed the [14C]-2-deoxyglucose (2-DG) and the [14C]-alfa-aminoisobutyric (AIB) acid quantitative autoradiographic techniques to study local cerebral glucose utilization and blood-brain barrier permeability, respectively. Sprague-Dowley albino rats were exposed to conventional fractionation (200 Gy/day 5 days a week) for a total dose of 4000 Gy. Experiments were made 3 weeks after completion of the radiation exposure. In comparison with control and sham-irradiated animals, cerebral metabolic activity was diffusely decreased following irradiation. As a rule, brain areas with the highest basal metabolic rates showed the highest percentage drop in glucose utilization. Changes in blood-brain barrier function, as assessed by an increased transcapillary transport of AIB, were also demonstrated in specific brain regions. This study illustrates how moderate doses of WBR induce well-defined changes in brain metabolism and BBB function, which are possibly involved in the pathogenesis of the early-delayed radiation-induced cerebral dysfunction in humans.
Alvero, Ayesha B; Montagna, Michele K; Sumi, Natalia J; Joo, Won Duk; Graham, Emma; Mor, Gil
2014-09-30
Survival rate in ovarian cancer has not improved since chemotherapy was introduced a few decades ago. The dismal prognosis is mostly due to disease recurrence where majority of the patients succumb to the disease. The demonstration that tumors are comprised of subfractions of cancer cells displaying heterogeneity in stemness potential, chemoresistance, and tumor repair capacity suggests that recurrence may be driven by the chemoresistant cancer stem cells. Thus to improve patient survival, novel therapies should eradicate this cancer cell population. We show that in contrast to the more differentiated ovarian cancer cells, the putative CD44+/MyD88+ ovarian cancer stem cells express lower levels of pyruvate dehydrogenase, Cox-I, Cox-II, and Cox-IV, and higher levels of UCP2. Together, this molecular phenotype establishes a bioenergetic profile that prefers the use of glycolysis over oxidative phosphorylation to generate ATP. This bioenergetic profile is conserved in vivo and therefore a maintenance regimen of 2-deoxyglucose administered after Paclitaxel treatment is able to delay the progression of recurrent tumors and decrease tumor burden in mice. Our findings strongly suggest the value of maintenance with glycolysis inhibitors with the goal of improving survival in ovarian cancer patients.
Qin, Pengmin; Duncan, Niall W; Chen, David Yen-Ting; Chen, Chi-Jen; Huang, Li-Kai; Huang, Zirui; Lin, Chien-Yuan E; Wiebking, Christine; Yang, Che-Ming; Northoff, Georg; Lane, Timothy J
2018-05-21
Neural activity varies continually from moment to moment. Such temporal variability (TV) has been highlighted as a functionally specific brain property playing a fundamental role in cognition. We sought to investigate the mechanisms involved in TV changes between two basic behavioral states, namely having the eyes open (EO) or eyes closed (EC) in vivo in humans. To these ends we acquired BOLD fMRI, ASL, and [ 18 F]-fluoro-deoxyglucose PET in a group of healthy participants (n = 15), along with BOLD fMRI and [ 18 F]-flumazenil PET in a separate group (n = 19). Focusing on an EO- vs EC-sensitive region in the occipital cortex (identified in an independent sample), we show that TV is constrained in the EO condition compared to EC. This reduction is correlated with an increase in energy consumption and with regional GABA A receptor density. This suggests that the modulation of TV by behavioral state involves an increase in overall neural activity that is related to an increased effect from GABAergic inhibition in addition to any excitatory changes. These findings contribute to our understanding of the mechanisms underlying activity variability in the human brain and its control. Copyright © 2018 IBRO. Published by Elsevier Ltd. All rights reserved.
Cohen, Gadi; Natsheh, Hiba; Sunny, Youhan; Bawiec, Christopher R.; Touitou, Elka; Lerman, Melissa A.; Lazarovici, Philip; Lewin, Peter A.
2015-01-01
The purpose of this work was to investigate whether low frequency, low intensity (LFLI, 20 kHz, <100 mW/cm2, spatial-peak, temporal-peak) ultrasound (US), delivered by a light-weight (<100g), tether-free, fully wearable, battery powered applicator is capable of reducing inflammation in a mouse model of Rheumatoid Arthritis (RA). The therapeutic, acute, anti-inflammatory effect was estimated by the relative swelling induced in mice hind limb paws. In an independent, indirect approach, the inflammation was bio-imaged by measuring glycolytic activity with near infrared labeled 2-deoxy-glucose (2DG). The outcome of the experiments indicated that the combination of US exposure with topical application of 0.1% w/w betamethasone gel, exhibited statistically significant (p<0.05) enhanced anti-inflammatory properties in comparison with the drug or US treatment alone. The present study underscores the potential benefits of LFLI US assisted drug delivery. However, the proof of concept presented indicates the need for additional experiments to systematically evaluate and optimize the potential of, and the conditions for, safe, LFLI ultrasound promoted non-invasive drug delivery. PMID:26003010
Tributyltin differentially promotes development of a phenotypically distinct adipocyte.
Regnier, Shane M; El-Hashani, Essam; Kamau, Wakanene; Zhang, Xiaojie; Massad, Nicole L; Sargis, Robert M
2015-09-01
Environmental endocrine disrupting chemicals (EDCs) are increasingly implicated in the pathogenesis of obesity. Evidence implicates various EDCs as being proadipogenic, including tributyltin (TBT), which activates the peroxisome proliferator activated receptor-γ (PPARγ). However, the conditions required for TBT-induced adipogenesis and its functional consequences are incompletely known. The costimulatory conditions necessary for preadipocyte-to-adipocyte differentiation were compared between TBT and the pharmacological PPARγ agonist troglitazone (Trog) in the 3T3-L1 cell line; basal and insulin-stimulated glucose uptake were assessed using radiolabeled 2-deoxyglucose. TBT enhanced expression of the adipocyte marker C/EBPα with coexposure to either isobutylmethylxanthine or insulin in the absence of other adipogenic stimuli. Examination of several adipocyte-specific proteins revealed that TBT and Trog differentially affected protein expression despite comparable PPARγ stimulation. In particular, TBT reduced adiponectin expression upon maximal adipogenic stimulation. Under submaximal stimulation, TBT and Trog differentially promoted adipocyte-specific gene expression despite similar lipid accumulation. Moreover, TBT attenuated Trog-induced adipocyte gene expression under conditions of cotreatment. Finally, TBT-induced adipocytes exhibited altered glucose metabolism, with increased basal glucose uptake. TBT-induced adipocytes are functionally distinct from those generated by a pharmacological PPARγ agonist, suggesting that obesogen-induced adipogenesis may generate dysfunctional adipocytes with the capacity to deleteriously affect global energy homeostasis. © 2015 The Obesity Society.
Real-Time NMR Studies of Oxyamine Ligations of Reducing Carbohydrates under Equilibrium Conditions.
Baudendistel, Oliver R; Wieland, Daniel E; Schmidt, Magnus S; Wittmann, Valentin
2016-11-21
Ligation reactions at the anomeric center of carbohydrates have gained increasing importance in the field of glycobiology. Oxyamines are frequently used in labeling, immobilization, and bioconjugation of reducing carbohydrates. Herein, we present a systematic investigation of these ligation reactions under aqueous conditions. A series of four unprotected monosaccharides (glucose, N-acetylglucosamine, mannose, and 2-deoxyglucose) and one disaccharide (N,N'-diacetylchitobiose) was reacted with three primary and one secondary oxyamine. We monitored the concentrations of the starting materials and products by 1 H NMR spectroscopy and determined reaction times and equilibrium yields. Our experiments show that the outcome of the ligation reaction is not only dependent on the sugar and oxyamine used but also strongly on the reaction conditions. In the case of glucose, lowering the pH from 6 to 3 led to steadily increasing reaction rates, whereas the yields were decreasing at the same time. Variation of the temperature did not only influence the product ratio in equilibrium but can also have a strong impact on the equilibrium yield. In the case of reactions of a primary oxyamine, increased temperatures led to a higher proportion of acyclic products. Reaction of the secondary oxyamine with glucose unexpectedly led to lower yields at higher temperatures. © 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Lea, Michael A; Altayyar, Mansour; desBordes, Charles
2015-11-01
In seven out of eight human bladder cell lines that were examined herein, growth was more dependent on the presence in the incubation medium of glucose rather than glutamine. The exception was the slowly growing RT4 cells that were more glutamine-dependent. Growth of all the cell lines was reduced by an inhibitor of 6-phosphofructo-2-kinase/2,6-bisphosphatase 3, namely 3-(3-pyridinyl)-1-(4-pyridinyl)-2-propen-1-one (3PO). Growth was also reduced by three compounds that reduce the conversion of glucose to lactate: namely 2-deoxyglucose, butyrate and dichloroacetate. Additive effects were seen when these molecules were combined with 3PO. Treatment of bladder cancer cells with phenformin resulted in growth inhibition that was frequently accompanied by increased glucose uptake and acidification of the medium that was blocked by co-incubation with 3PO. The actions of 3PO suggest that inhibitors of PFKB3 merit further investigation in the treatment of bladder cancer and they may be useful agents in combination with other drugs that inhibit cancer cell proliferation. Copyright© 2015 International Institute of Anticancer Research (Dr. John G. Delinassios), All rights reserved.
Cho, Jae Youl; Katz, David R; Chain, Benjamin M
2003-01-01
Staurosporine is a broad-specificity kinase inhibitor, which has acted as lead compound for the development of some novel cytotoxic compounds for treatment of cancer. This study investigates the unexpected observation that staurosporine can also induce homotypic cellular aggregation. In this study, staurosporine is shown to activate rapid homotypic aggregation of U937 cells, at concentrations below those required to induce cell death. This activity is a particular feature of staurosporine, and is not shared by a number of other kinase inhibitors. The proaggregating activity of staurosporine is inhibited by deoxyglucose, cytochalasin B and colchicine. Staurosporine-induced aggregation can be distinguished from that induced by the phorbol 12-myristate 13-acetate by faster kinetics and insensitivity to cycloheximide. Staurosporine induces translocation of conventional and novel, but not atypical isoforms of protein kinase C (PKC). Aggregation induced by staurosporine is inhibited by a number of inhibitors of PKC isoforms, and by inhibitors of protein tyrosine kinases. Staurosporine also induces rapid phosphorylation of ERK and p38, and inhibitors of both these enzymes block aggregation. Staurosporine induces dysregulated activation of multiple kinase signaling pathways in U937 cells, and the combined activity of several of these pathways is essential for the induction of aggregation. PMID:12970105
Gu, Yuan; Qi, Chunting; Sun, Xiaoxiao; Ma, Xiuquan; Zhang, Haohao; Hu, Lihong; Yuan, Junying; Yu, Qiang
2012-08-15
Selectively eradicating cancer cells with minimum adverse effects on normal cells is a major challenge in the development of anticancer therapy. We hypothesize that nutrient-limiting conditions frequently encountered by cancer cells in poorly vascularized solid tumors might provide an opportunity for developing selective therapy. In this study, we investigated the function and molecular mechanisms of a natural compound, arctigenin, in regulating tumor cell growth. We demonstrated that arctigenin selectively promoted glucose-starved A549 tumor cells to undergo necrosis by inhibiting mitochondrial respiration. In doing so, arctigenin elevated cellular level of reactive oxygen species (ROS) and blocked cellular energy metabolism in the glucose-starved tumor cells. We also demonstrated that cellular ROS generation was caused by intracellular ATP depletion and played an essential role in the arctigenin-induced tumor cell death under the glucose-limiting condition. Furthermore, we combined arctigenin with the glucose analogue 2-deoxyglucose (2DG) and examined their effects on tumor cell growth. Interestingly, this combination displayed preferential cell-death inducing activity against tumor cells compared to normal cells. Hence, we propose that the combination of arctigenin and 2DG may represent a promising new cancer therapy with minimal normal tissue toxicity. Crown Copyright © 2012. Published by Elsevier Inc. All rights reserved.
Haeffner, E W
1975-02-03
The initial rate of incorporation of 14C or 3H-labeled choline into Ehrlich-Lettre ascites cells of the glycogen-free strain seven days after inoculation was investigated in vitro. 1. At choline concentrations in the medium between 6 to 30 muM and 100 to 500 muM the choline uptake by the cells followed Michaelis-Menton Kinetics with V values between 31 to 100 and 59 to 500 pmol per minute at a given cell density, and average Q10-values of 2.1 at the high and of 2.4 at the low choline molarity. The K-m-values increased from 27 muM to 58.8 muM at low and from 0.11 mM to 0.22 mM at high choline concentrations over a temperature range between 15 degrees C and 37 degrees C. Arrhenius plot of the V values gave two lines, one with a transition temperature at 25 degrees C at low and one straight line at high choline concentrations, from which the energy of activation for choline uptake was determined to be 16 kcal/mol. 2. It is assumed that two systems exist for the choline uptake by the ascites cells. One, operative at low substrate concentrations, which is saturable and probably is to be classified as a carrier-mediated facilitated diffusion process, can be strongly inhibited by deoxyglucose or 2,4-dinitrophenol and also by substrate analogues such as chlorocholine or benzoylcholine. Ouabain affects this system to a lesser extent. The other system functioning at high choline concentrations may be a simple diffusion process, which is little inhibited by substrate analogues, ouabain and deoxyglucose; however, it is also inhibited by 2,4-dinitrophenol and p-chloromercuribenzoate. 3. Choline incorporation into the acid-insoluble material (lecithin) gave linear Michaelis-Menton kinetics at the low and the high substrate concentration respectively. K-m-values decreased with an increase in temperature at low and increased with rising temperature at high substrate concentrations thus reflecting a close relationship between choline uptake and its metabolism. Labeling of lecithin choline in the various subcellular fractions under the conditions of the functioning of a carrier-mediated process was in the order: mitochondria (50%) greater than plasma membranes (25%) greater nuclei (14%) greater than microsomes (9%) greater than supernatant (1.5%). 4. Treatment of the cells with p-chloromercuribenzoate or heat shock at 50 degrees C markedly reduced the cholinee uptake and concomitantly its conversion into lecithin. Kinetic analysis revealed that the inhibitory effect of p-chloromercuribenzoate was competitive and that of the heat shock non-competitive in nature. Further the choline uptake by the cells was found to be the rate-limiting step, since the rate of choline phosphorylation was determined by the extracellular choline concentration. Pulse chase experiments showed a rapid turnover of the choline moiety with a concomitant increase in activity of the lecithin fraction and little change within the choline phosphate pool.
Yu, Tao; Wang, Yong-Tao; Chen, Pan; Li, Yu-Hua; Chen, Yi-Xin; Zeng, Hang; Yu, Ai-Ming; Huang, Min; Bi, Hui-Chang
2015-01-01
Aberrant expression of Nicotinamide N-methyltransferase (NNMT) has been reported in pancreatic cancer. However, the role of NNMT in pancreatic cancer development remains elusive. Therefore, the present study was to investigate the impact of NNMT on pancreatic cancer cell proliferation, metastatic potential and survival under metabolic stress. Pancreatic cancer cell line PANC-1 was transfected with NNMT expression plasmid or small interfering RNA of NNMT to overexpress or knockdown intracellular NNMT expression, respectively. Rate of cell proliferation was monitored. Transwell migration and matrigel invasion assays were conducted to assess cell migration and invasion capacity. Resistance to glucose deprivation, sensitivity to glycolytic inhibition, mitochondrial inhibtion and resistance to rapamycin were examined to evaluate cell survival under metabolic stress. NNMT silencing markedly reduced cell proliferation, whereas NNMT overexpression promoted cell growth moderately. Knocking down NNMT also significantly suppressed the migration and invasion capacities of PANC-1 cells. Conversely, NNMT upregulation enhanced cell migration and invasion capacities. In addition, NNMT knockdown cells were much less resistant to glucose deprivation and rapamycin as well as glycolytic inhibitor 2-deoxyglucose whereas NNMT-expressing cells showed opposite effects although the effects were not so striking. These data sugguest that NNMT plays an important role in PANC-1 cell proliferation, metastatic potential and survival under metabolic stress. © 2015 S. Karger AG, Basel.
PET Imaging: Basics and New Trends
NASA Astrophysics Data System (ADS)
Dahlbom, Magnus
Positron Emission Tomography or PET is a noninvasive molecular imaging method used both in research to study biology and disease, and clinically as a routine diagnostic imaging tool. In PET imaging, the subject is injected with a tracer labeled with a positron-emitting isotope and is then placed in a scanner to localize the radioactive tracer in the body. The localization of the tracer utilizes the unique decay characteristics of isotopes decaying by positron emission. In the PET scanner, a large number of scintillation detectors use coincidence detection of the annihilation radiation that is emitted as a result of the positron decay. By collecting a large number of these coincidence events, together with tomographic image reconstruction methods, the 3-D distribution of the radioactive tracer in the body can be reconstructed. Depending on the type of tracer used, the distribution will reflect a particular biological process, such as glucose metabolism when fluoro-deoxyglucose is used. PET has evolved from a relatively inefficient single-slice imaging system with relatively poor spatial resolution to an efficient, high-resolution imaging modality which can acquire a whole-body scan in a few minutes. This chapter will describe the basic physics and instrumentation used in PET. The various corrections that are necessary to apply to the acquired data in order to produce quantitative images are also described. Finally, some of the latest trends in instrumentation development are also discussed.
Yin, Yiming; Choi, Seung-Chul; Xu, Zhiwei; Zeumer, Leilani; Kanda, Nathalie; Croker, Byron P.; Morel, Laurence
2015-01-01
We have previously shown that CD4+ T cells from B6.Sle1.Sle2.Sle3 (TC) lupus mice and patients present a high cellular metabolism, and a treatment combining 2-deoxyglucose (2DG), which inhibits glucose metabolism, and metformin, which inhibits oxygen consumption, normalized lupus T cell functions in vitro and reverted disease in mice. We obtained similar results with B6.lpr mice, another model of lupus, and showed that a continuous treatment is required to maintain the beneficial effect of metabolic inhibitors. Further, we investigated the relative roles of glucose oxidation and pyruvate reduction into lactate in this process.. Treatments of TC mice with either 2DG or metformin were sufficient to prevent autoimmune activation, while their combination was necessary to reverse the process. Treatment of TC mice with dichloroacetate (DCA), an inhibitor of lactate production, failed to effectively prevent or reverse autoimmune pathology. In vitro, CD4+ T cell activation upregulated the expression of genes that favor oxidative phosphorylation. Blocking glucose oxidation inhibited both IFNγ and IL-17 production, which could not be achieved by blocking pyruvate reduction. Overall, our data shows that targeting glucose oxidation is required to prevent or reverse lupus development in mice, which cannot be achieved by simply targeting the pyruvate-lactate conversion. PMID:26608911
Pancani, Tristano; Anderson, Katie L.; Porter, Nada M.; Thibault, Olivier
2011-01-01
Neuronal Ca2+ dyshomeostasis associated with cognitive impairment and mediated by changes in several Ca2+ sources has been seen in animal models of both aging and diabetes. In the periphery, dysregulation of intracellular Ca2+ signals may contribute to the development of insulin resistance. In the brain, while it is well-established that type 2 diabetes mellitus is a risk factor for the development of dementia in the elderly, it is not clear whether Ca2+ dysregulation might also affect insulin sensitivity and glucose utilization. Here we present a combination of imaging techniques testing the disappearance of the fluorescent glucose analog 2-(N-(7-nitrobenz-2-oxa-1,3-diazol-4-yl)amino)-2-deoxyglucose (2-NBDG) as an indication of glycolytic activity in neurons and astrocytes. Our work shows that glucose utilization at rest is greater in neurons compared to astrocytes, and ceases upon activation in neurons with little change in astrocytes. Pretreatment of hippocampal cultures with pioglitazone, a drug used in the treatment of type 2 diabetes, significantly reduced glycolytic activity in neurons and enhanced it in astrocytes. This series of experiments, including FURA-2 and NADH imaging, provides results that are consistent with the idea that Ca2+ levels may rapidly alter glycolytic activity, and that downstream events beyond Ca2+ dysregulation with aging, may alter cellular metabolism in the brain. PMID:21978418
Etxeberria, Ed; Gonzalez, Pedro; Fanton Borges, Ana; Brodersen, Craig
2016-01-01
Premise of the study: Uptake of foliar-applied substances across the leaf cuticle is central to world food production as well as for physiological investigations into phloem structure and function. Yet, despite the presence of stomata, foliar application as a delivery system can be extremely inefficient due to the low permeability of leaf surfaces to polar compounds. Methods: Using laser light to generate microscopic perforations in the leaf cuticle, we tested the penetration of several substances into the leaf, their uptake into the phloem, and their subsequent movement through the phloem tissue. Substances varied in their size, charge, and Stokes radius. Results: The phloem-mobile compounds 2-[N-(7-nitrobenz-2-oxa-1,3-diazol-4-yl)amino]-2-deoxyglucose (2-NBDG), lysine, Biocillin, adenosine triphosphate (ATP), trehalose, carboxyfluorescein-SE, and poly(amidomine) (PAMAM) dendrimer G-4 nanoparticles (4.5 nm in size) showed a high degree of mobility and were able to penetrate and be transported in the phloem. Discussion: Our investigation demonstrated the effectiveness of laser light technology in enhancing the penetration of foliar-applied substances into citrus leaves. The technology is also applicable to the study of phloem mobility of substances by providing a less invasive, highly repeatable, and more quantifiable delivery method. The implied superficial lesions to the leaf can be mitigated by applying a waxy coating. PMID:26819863
NASA Astrophysics Data System (ADS)
Horilova, Julia; Cunderlikova, Beata; Marcek Chorvatova, Alzbeta
2015-05-01
Early detection of cancer is crucial for the successful diagnostics of its presence and its subsequent treatment. To improve cancer detection, we tested the progressive multimodal optical imaging of U87MG cells in culture. A combination of steady-state spectroscopic methods with the time-resolved approach provides a new insight into the native metabolism when focused on endogenous tissue fluorescence. In this contribution, we evaluated the metabolic state of living U87MG cancer cells in culture by means of endogenous flavin fluorescence. Confocal microscopy and time-resolved fluorescence imaging were employed to gather spectrally and time-resolved images of the flavin fluorescence. We observed that flavin fluorescence in U87MG cells was predominantly localized outside the cell nucleus in mitochondria, while exhibiting a spectral maximum under 500 nm and fluorescence lifetimes under 1.4 ns, suggesting the presence of bound flavins. In some cells, flavin fluorescence was also detected inside the cell nuclei in the nucleoli, exhibiting longer fluorescence lifetimes and a red-shifted spectral maximum, pointing to the presence of free flavin. Extra-nuclear flavin fluorescence was diminished by 2-deoxyglucose, but failed to increase with 2,4-dinitrophenol, the uncoupler of oxidative phosphorylation, indicating that the cells use glycolysis, rather than oxidative phosphorylation for functioning. These gathered data are the first step toward monitoring the metabolic state of U87MG cancer cells.
Neurobiology of secure infant attachment and attachment despite adversity: a mouse model.
Roth, T L; Raineki, C; Salstein, L; Perry, R; Sullivan-Wilson, T A; Sloan, A; Lalji, B; Hammock, E; Wilson, D A; Levitt, P; Okutani, F; Kaba, H; Sullivan, R M
2013-10-01
Attachment to an abusive caregiver has wide phylogenetic representation, suggesting that animal models are useful in understanding the neural basis underlying this phenomenon and subsequent behavioral outcomes. We previously developed a rat model, in which we use classical conditioning to parallel learning processes evoked during secure attachment (odor-stroke, with stroke mimicking tactile stimulation from the caregiver) or attachment despite adversity (odor-shock, with shock mimicking maltreatment). Here we extend this model to mice. We conditioned infant mice (postnatal day (PN) 7-9 or 13-14) with presentations of peppermint odor and either stroking or shock. We used (14) C 2-deoxyglucose (2-DG) to assess olfactory bulb and amygdala metabolic changes following learning. PN7-9 mice learned to prefer an odor following either odor-stroke or shock conditioning, whereas odor-shock conditioning at PN13-14 resulted in aversion/fear learning. 2-DG data indicated enhanced bulbar activity in PN7-9 preference learning, whereas significant amygdala activity was present following aversion learning at PN13-14. Overall, the mouse results parallel behavioral and neural results in the rat model of attachment, and provide the foundation for the use of transgenic and knockout models to assess the impact of both genetic (biological vulnerabilities) and environmental factors (abusive) on attachment-related behaviors and behavioral development. © 2013 John Wiley & Sons Ltd and International Behavioural and Neural Genetics Society.
Mailloux, Ryan J; Dumouchel, Tyler; Aguer, Céline; deKemp, Rob; Beanlands, Rob; Harper, Mary-Ellen
2011-07-15
UCP3 (uncoupling protein-3) mitigates mitochondrial ROS (reactive oxygen species) production, but the mechanisms are poorly understood. Previous studies have also examined UCP3 effects, including decreased ROS production, during metabolic states when fatty acid oxidation is high (e.g. a fasting state). However, the role of UCP3 when carbohydrate oxidation is high (e.g. fed state) has remained largely unexplored. In the present study, we show that mitochondrial-bound HK (hexokinase) II curtails oxidative stress and enhances aerobic metabolism of glucose in the fed state in a UCP3-dependent manner. Genetic knockout or inhibition of UCP3 significantly decreased mitochondrial-bound HKII. Furthermore, UCP3 was required for the HKII-mediated decrease in mitochondrial ROS emission. Intriguingly, the UCP3-mediated modulation of mitochondria-associated HKII was only observed in cells cultured under high-glucose conditions. UCP3 was required to maintain high rates of aerobic metabolism in high-glucose-treated cells and in muscle of fed mice. Deficiency in UCP3 resulted in a metabolic shift that favoured anaerobic glycolytic metabolism, increased glucose uptake and increased sensitivity to oxidative challenge. PET (positron emission tomography) of [18F]fluoro-deoxyglucose uptake confirmed these findings in UCP3-knockout and wild-type mice. Collectively, our findings link the anti-oxidative and metabolic functions of UCP3 through a surprising molecular connection with mitochondrial-bound HKII.
Jha, Abhinav K.; Mena, Esther; Caffo, Brian; Ashrafinia, Saeed; Rahmim, Arman; Frey, Eric; Subramaniam, Rathan M.
2017-01-01
Abstract. Recently, a class of no-gold-standard (NGS) techniques have been proposed to evaluate quantitative imaging methods using patient data. These techniques provide figures of merit (FoMs) quantifying the precision of the estimated quantitative value without requiring repeated measurements and without requiring a gold standard. However, applying these techniques to patient data presents several practical difficulties including assessing the underlying assumptions, accounting for patient-sampling-related uncertainty, and assessing the reliability of the estimated FoMs. To address these issues, we propose statistical tests that provide confidence in the underlying assumptions and in the reliability of the estimated FoMs. Furthermore, the NGS technique is integrated within a bootstrap-based methodology to account for patient-sampling-related uncertainty. The developed NGS framework was applied to evaluate four methods for segmenting lesions from F-Fluoro-2-deoxyglucose positron emission tomography images of patients with head-and-neck cancer on the task of precisely measuring the metabolic tumor volume. The NGS technique consistently predicted the same segmentation method as the most precise method. The proposed framework provided confidence in these results, even when gold-standard data were not available. The bootstrap-based methodology indicated improved performance of the NGS technique with larger numbers of patient studies, as was expected, and yielded consistent results as long as data from more than 80 lesions were available for the analysis. PMID:28331883
Targeted Delivery of siRNA with pH-Responsive Hybrid Gold Nanostars for Cancer Treatment
Zhu, Hongyan; Liu, Wanwan; Cheng, Ziting; Yao, Ke; Yang, Yu; Xu, Bohui
2017-01-01
In this work, we report the engineering of gold nanostars (GNS) to deliver small interfering RNA (siRNA) into HepG2 cells. The ligand DG-PEG-Lipoic acid (LA)-Lys-9R (hydrazone) was designed to functionalize GNS, and create the nanoparticles named as 9R/DG-GNS (hydrazone). In the ligand, 2-deoxyglucose (DG) is the targeting molecule, polyethylene glycol (PEG) helps to improve the dispersity and biocompatibility, 9-poly-d-arginine (9R) is employed to provide a positive surface charge and adsorb negative siRNA, and hydrazone bonds are pH-responsive and can avoid receptor-mediated endosomal recycling. Compared to GNS alone, 9R/DG-GNS (hydrazone) showed superior transfection efficiency. The expressions of cyclooxygenase-2 (COX-2) in HepG2 and SGC7901 cells were significantly suppressed by siRNA/9R/DG-GNS (hydrazone) complex. Notably, 9R/DG-GNS (hydrazone) possessed low cytotoxicity even at high concentrations in both normal cells and tumor cells. The combination treatment of siRNA/9R/DG-GNS (hydrazone) complex inhibited the cell growth rate by more than 75%. These results verified that the pH-responsive GNS complex is a promising siRNA delivery system for cancer therapy, and it is anticipated that near-infrared absorbing GNS with good photothermal conversion efficiency can be potentially used for photothermal therapy of tumors. PMID:28937584
Litz, Brett T.; Resick, Patricia A.; Woolsey, Mary D.; Dondanville, Katherine A.; Young-McCaughan, Stacey; Borah, Adam M.; Borah, Elisa V.; Peterson, Alan L.; Fox, Peter T.
2016-01-01
Post-traumatic stress disorder (PTSD) is presumably the result of life threats and conditioned fear. However, the neurobiology of fear fails to explain the impact of traumas that do not entail threats. Neuronal function, assessed as glucose metabolism with 18fluoro-deoxyglucose positron emission tomography, was contrasted in active duty, treatment-seeking US Army Soldiers with PTSD endorsing either danger- (n = 19) or non-danger-based (n = 26) traumas, and was compared with soldiers without PTSD (Combat Controls, n = 26) and Civilian Controls (n = 24). Prior meta-analyses of regions associated with fear or trauma script imagery in PTSD were used to compare glucose metabolism across groups. Danger-based traumas were associated with higher metabolism in the right amygdala than the control groups, while non-danger-based traumas associated with heightened precuneus metabolism relative to the danger group. In the danger group, PTSD severity was associated with higher metabolism in precuneus and dorsal anterior cingulate and lower metabolism in left amygdala (R2 = 0.61). In the non-danger group, PTSD symptom severity was associated with higher precuneus metabolism and lower right amygdala metabolism (R2 = 0.64). These findings suggest a biological basis to consider subtyping PTSD according to the nature of the traumatic context. PMID:26373348
Al Aïn, Syrina; Perry, Rosemarie E; Nuñez, Bestina; Kayser, Kassandra; Hochman, Chase; Brehman, Elizabeth; LaComb, Miranda; Wilson, Donald A; Sullivan, Regina M
2017-02-01
Social support can attenuate the behavioral and stress hormone response to threat, a phenomenon called social buffering. The mother's social buffering of the infant is one of the more robust examples; yet we understand little about the neurobiology. Using a rodent model, we explore the neurobiology of social buffering by assessing neural processing of the maternal odor, a major cue controlling social buffering in rat pups. We used pups before (postnatal day (PN) 7) and after (PN14, PN23) the functional emergence of social buffering. Pups were injected with 14 C 2-deoxyglucose (2-DG) and presented with the maternal odor, a control preferred odor incapable of social buffering (acetophenone), or no odor. Brains were removed, processed for autoradiography and brain areas identified as important in adult social buffering were assessed, including the amygdala basolateral complex (Basolateral Amygdala [BLA]), medial prefrontal cortex (mPFC), and anterior cingulate cortex (ACC). Results suggest dramatic changes in the processing of maternal odor. PN7 pups show mPFC and ACC activation, although PN14 pups showed no activation of the mPFC, ACC, or BLA. All brain areas assessed were recruited by PN23. Additional analysis suggests substantial changes in functional connectivity across development. Together, these results imply complex nonlinear transitions in the neurobiology of social buffering in early life that may provide insight into the changing role of the mother in supporting social buffering.
Steviol glycosides in purified stevia leaf extract sharing the same metabolic fate.
Purkayastha, Sidd; Markosyan, Avetik; Prakash, Indra; Bhusari, Sachin; Pugh, George; Lynch, Barry; Roberts, Ashley
2016-06-01
The safety of steviol glycosides is based on data available on several individual steviol glycosides and on the terminal absorbed metabolite, steviol. Many more steviol glycosides have been identified, but are not yet included in regulatory assessments. Demonstration that these glycosides share the same metabolic fate would indicate applicability of the same regulatory paradigm. In vitro incubation assays with pooled human fecal homogenates, using rebaudiosides A, B, C, D, E, F and M, as well as steviolbioside and dulcoside A, at two concentrations over 24-48 h, were conducted to assess the metabolic fate of various steviol glycoside classes and to demonstrate that likely all steviol glycosides are metabolized to steviol. The data show that glycosidic side chains containing glucose, rhamnose, xylose, fructose and deoxy-glucose, including combinations of α(1-2), β-1, β(1-2), β(1-3), and β(1-6) linkages, were degraded to steviol mostly within 24 h. Given a common metabolite structure and a shared metabolic fate, safety data available for individual steviol glycosides can be used to support safety of purified steviol glycosides in general. Therefore, steviol glycosides specifications adopted by the regulatory authorities should include all steviol glycosides belonging to the five groups of steviol glycosides and a group acceptable daily intake established. Copyright © 2016 Elsevier Inc. All rights reserved.
Henis, Y I; Elson, E L
1981-01-01
Fluorescence photobleaching recovery was used to study directly and quantitatively the inhibition of the lateral mobility of surface immunoglobulins (sIg) on mouse lymphocytes by localized binding of concanavalin A (Con A) coupled to platelets. Up to a threshold occupancy of about 10% of the upper cell surface by Con A-platelets, the diffusion coefficient and mobile fraction of sIg remained as in untreated cells (5.3 X 10(-10) cm2/sec and 0.65, respectively). At higher surface occupancy, these values decreased to 8 X 10(-11) cm2/sec and 0.11. The magnitude of the effect was independent of the percentage occupancy above the threshold and of the distance from the bound Con A-platelets, indicating a cooperative and propagated phenomenon. Treatment with colchicine or cytochalasin B separately induced only partial reversal of the Con A-induced modulation. Treatment with both reversal of the Con A-induced modulation. Treatment with both drugs together was synergistic and fully reversed the mobility inhibition. The modulation was unaffected by NaN3 and 2-deoxyglucose, suggesting no dependence on metabolic energy. Con A-platelets did not affect the mobility of a lipid probe. Models for the Con A-induced modulation and the relationship between the effects of Con A on sIg mobility and patch formation are discussed. PMID:6940124
Mayberg, H S; Sadzot, B; Meltzer, C C; Fisher, R S; Lesser, R P; Dannals, R F; Lever, J R; Wilson, A A; Ravert, H T; Wagner, H N
1991-07-01
Alterations in a variety of neurotransmitter systems have been identified in experimental models of epilepsy and in brain tissue from patients with intractable temporal lobe seizures. The availability of new high-affinity radioligands permits the study of some neuroreceptors in vivo with positron emission tomography (PET). We previously characterized the in vivo binding of 11C-carfentanil, a potent and selective mu opiate receptor agonist, and described increases in 11C-carfentanil binding in the temporal neocortex of patients with unilateral temporal lobe epilepsy. These studies have been extended to 11C-diprenorphine, which labels mu, kappa, and delta opiate receptor subtypes. Paired measurements of opiate receptor binding were performed with PET using 11C-carfentanil and 11C-diprenorphine in patients with unilateral temporal lobe seizures. Carfentanil binding, reflecting changes in mu opiate receptors, was increased in the temporal neocortex and decreased in the amygdala on the side of the epileptic focus. Diprenorphine binding, reflecting mu as well as non-mu opiate subtypes, was not significantly different among regions in the focus and nonfocus temporal lobes. Regional glucose metabolism, measured using 18F-2-fluoro-2-deoxyglucose, was decreased in the mesial and lateral aspects of the temporal lobe ipsilateral to the epileptogenic focus. The variation in pattern of carfentanil and diprenorphine binding supports a differential regulation of opiate subtypes in unilateral temporal lobe epilepsy.
Liu, Yong-Qiang; Cheng, Xin; Guo, Liang-Xia; Mao, Chan; Chen, Yi-Jie; Liu, Hai-Xia; Xiao, Qi-Cai; Jiang, Sheng; Yao, Zhu-Jun; Zhou, Guang-Biao
2012-01-01
Annonaceous acetogenins, a large family of naturally occurring polyketides isolated from various species of the plant genus Annonaceae, have been found to exhibit significant cytotoxicity against a variety of cancer cells. Previous studies showed that these compounds could act on the mitochondria complex-I and block the corresponding electron transport chain and terminate ATP production. However, more details of the mechanisms of action remain ambiguous. In this study we tested the effects of a set of mimetics of annonaceous acetogenin on some cancer cell lines, and report that among them AA005 exhibits the most potent antitumor activity. AA005 depletes ATP, activates AMP-activated protein kinase (AMPK) and inhibits mTOR complex 1 (mTORC1) signal pathway, leading to growth inhibition and autophagy of colon cancer cells. AMPK inhibitors compound C and inosine repress, while AMPK activator AICAR enhances, AA005-caused proliferation suppression and subsequent autophagy of colon cancer cells. AA005 enhances the ATP depletion and AMPK activation caused by 2-deoxyglucose, an inhibitor of mitochondrial respiration and glycolysis. AA005 also inhibits chemotherapeutic agent cisplatin-triggered up-regulation of mTOR and synergizes with this drug in suppression of proliferation and induction of apoptosis of colon cancer cells. These data indicate that AA005 is a new metabolic inhibitor which exhibits therapeutic potentials in colon cancer.
Liu, Jian-Min; Wu, Peng-Fei; Rao, Jing; Zhou, Jun; Shen, Zu-Cheng; Luo, Han; Huang, Jian-Geng; Liang, Xiao; Long, Li-Hong; Xie, Qing-Guo; Jiang, Feng-Chao; Wang, Fang; Chen, Jian-Guo
2016-03-01
Chemical entities containing mercapto group have been increasingly attractive in the therapy of central nerve system (CNS) diseases. In the recent study, we screened a series of mercapto-tacrine derivatives with synergistic neuropharmacological profiles in vitro. We investigated the effect and mechanism of ST09, a thioester derivative of tacrine containing a potential mercapto group, on the vascular dementia (VaD) model of rat induced by bilateral common carotid arteries occlusion (2-VO). ST09 and its active metabolite ST10 retained excellent inhibition on acetylcholinesterase (AChE) activity. ST09 significantly attenuated the 2-VO-induced impairment in spatial acquisition performance and inhibited the 2-VO-induced rise of AChE activity. In the VaD model, ST09 attenuated the oxidative stress and decreased the apoptosis in the cortex and hippocampus. Compared with donepezil, ST09 exhibited a better effect on the regeneration of free thiols in 2-VO rats. Interestingly, ST09, not donepezil, greatly improved glucose metabolism in various brain regions of 2-VO rats using functional imaging of (18) F-labeled fluoro-deoxyglucose (FDG) positron emission tomography (PET). ST09 may serve as a more promising agent for the therapy of VaD than tacrine owing to the introduction of a potential mercapto group into the parent skeleton. © 2016 John Wiley & Sons Ltd.
NASA Astrophysics Data System (ADS)
Ilany, Jacob; Bilan, Philip J.; Kapur, Sonia; Caldwell, James S.; Patti, Mary-Elizabeth; Marette, Andre; Kahn, C. Ronald
2006-03-01
Rad is a low molecular weight GTPase that is overexpressed in skeletal muscle of some patients with type 2 diabetes mellitus and/or obesity. Overexpression of Rad in adipocytes and muscle cells in culture results in diminished insulin-stimulated glucose uptake. To further elucidate the potential role of Rad in vivo, we have generated transgenic (tg) mice that overexpress Rad in muscle using the muscle creatine kinase (MCK) promoter-enhancer. Rad tg mice have a 6- to 12-fold increase in Rad expression in muscle as compared to wild-type littermates. Rad tg mice grow normally and have normal glucose tolerance and insulin sensitivity, but have reduced plasma triglyceride levels. On a high-fat diet, Rad tg mice develop more severe glucose intolerance than the wild-type mice; this is due to increased insulin resistance in muscle, as exemplified by a rightward shift in the dose-response curve for insulin stimulated 2-deoxyglucose uptake. There is also a unexpected further reduction of the plasma triglyceride levels that is associated with increased levels of lipoprotein lipase in the Rad tg mice. These results demonstrate a potential synergistic interaction between increased expression of Rad and high-fat diet in creation of insulin resistance and altered lipid metabolism present in type 2 diabetes. diabetes mellitus | glucose transport | RGK GTPase | transgenic mouse
The effect of work system on the hand exposure of workers in 18F-FDG production centres.
Wrzesień, Małgorzata
2018-05-07
The production of the 18 F isotope-the marker of deoxyglucose ( 18 F-FDG)-the radiopharmaceutical most commonly used in the oncological diagnostic technique of positron emission tomography, requires a cyclotron device. At present, there are nine facilities working in Poland that are equipped with cyclotrons used for producing the short-lived isotopes. The aim of the paper is to determine the hand exposure of workers employed in the two 18 F-FDG production centres taking in to account the production procedures and work system in those facilities. Measurements, which included all professional workers exposed to ionizing radiation that were employed in two facilities, were performed by using high-sensitivity thermoluminescent detectors during the routine activities of the personnel. The work system used at the production centre has an impact on the level of the recorded doses. Among the production procedures performed by the staff, the highest ionizing radiation doses have been received by the staff during the 18 F-FDG quality control. The maximum estimated annual Hp(0.07) for chemists from the quality control department can exceed the annual skin limit dose (500 mSv). The source of lowest doses on the hands are the cyclotron operating procedure and the 18 F-FDG production, provided that these procedures can't be combined with other production procedures.
Hexose transport by brain slices: further studies on energy dependence
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kyle-Lillegard, J.; Gold, B.I.
1983-04-01
We studied the uptake of (/sup 3/H)2-deoxyglucose ((/sup 3/H)2DG) by slices of rat cerebral cortex in vitro as a model of glucose transport by brain. Slices were incubated with (/sup 3/H)2DG, or with L-(/sup 3/H)glucose as a marker for diffusion; the difference between (/sup 3/H)2DG uptake and L-(/sup 3/H)glucose uptake was defined as net (/sup 3/H)2DG transport. Net (/sup 3/H)2DG transport was a function of incubation temperature, with an estimated temperature coefficient of 1.87 from 15 degrees C to 25 degrees C. The net uptake of (/sup 3/H)2DG was not inhibited by phlorizin or phloretin in concentrations well above themore » reported Ki of these inhibitors for hexose uptake in other systems. To examine the hypothesis that (/sup 3/H)2DG transport by brain slices is dependent on mitochondrial energy, we studied net (/sup 3/H)2DG uptake by slices which had been preincubated in media designed to alter intracellular ATP stores. The transport process was very sensitive to inhibition by DNP, but the correlation between (/sup 3/H)2DG transport and ATP levels was unclear. In contrast to our published hypothesis that the transport process required mitochondrial energy, these data indicate that dependence on energy is not absolute.« less
Action of Cortisol on Sodium Transport in Canine Erythrocytes
Streeten, David H. P.; Moses, Arnold M.
1968-01-01
Incubation of blood from deoxycorticosterone-treated, adrenalectomized dogs with glucose, 22NaCl, and cortisol, added in vitro, revealed log dose-related acceleration of sodium influx, of glucose utilization, and of lactate formation by cortisol in concentrations between 150 and 1000 µg/liter. Addition of 2-deoxyglucose, or preincubation of the blood until blood glucose concentration had fallen below 2.0 mg per 100 ml, reduced or abolished the acceleratory action of added cortisol on sodium influx but had no effect on sodium influx in the absence of added cortisol. Cortisol did not change the ATP or ATPase content of erythrocytes, or the metabolism of glucose via the pentose phosphate pathway, or the rate of efflux of 22Na from the erythrocytes. The acceleratory actions of cortisol on sodium, influx, glucose utilization, and lactate formation were significantly correlated. Cortisol (1000 µg/liter) enhanced sodium influx by approximately 8.7 mmole per liter erythrocytes per hour for each 1 mmole cortisol-induced increment in ATP production. It is concluded that sodium influx in canine erythrocytes comprises a passive component, unchanged by cellular metabolism, and a second component which is accelerated and inhibited in proportion to prevailing plasma concentrations of cortisol and aldosterone, and which (for cortisol) depends upon accelerated ATP production via glycolysis. These steroid actions probably result from effects on enzyme activity rather than on new enzyme induction. PMID:4233676
Kawamoto, Emi; Tamakoshi, Keigo; Ra, Song-Gyu; Masuda, Hiroyuki; Kawanaka, Kentaro
2018-05-24
Acute short-duration of disuse induces the development of insulin resistance for glucose uptake in rodent skeletal muscle. Since thioredoxin-interacting protein (TXNIP) has been implicated in the downregulation of insulin signaling and glucose uptake, we examined the possibility that muscle disuse rapidly induces insulin resistance via increased TXNIP mRNA and protein expression. Male Wistar rats were subjected to unilateral 6-hr hindlimb immobilization by plaster cast. At the end of this period, the soleus muscles from both immobilized and contralateral non-immobilized hindlimbs were excised and examined. The 6-hr immobilization resulted in an increase in TXNIP mRNA and protein expressions together with a decrease in insulin-stimulated 2-deoxyglucose uptake in the rat soleus muscle. Additionally, in the rats sacrificed 6 hr after the plaster cast removal, TXNIP protein expression and insulin-stimulated glucose uptake in the immobilized muscle had both been restored to a normal level. Various interventions (pretreatment with transcription inhibitor actinomycin D or AMPK activator AICAR) also suppressed the increase in TXNIP protein expression in 6-hr-immobilized muscle together with partial prevention of insulin resistance for glucose uptake. These results suggested the possibility that increased TXNIP protein expression in immobilized rat soleus muscles was associated with the rapid induction of insulin resistance for glucose uptake in that tissue.
Nehlig, A; Boyet, S
2000-03-06
Caffeine is a behavioral stimulant consumed on a worldwide basis. The question of whether caffeine is addictive has been debated for over a decade. Caffeine acts as a mild positive reinforcer but is not consistently self-administered in humans or animals. With [14C]2-deoxyglucose autoradiography, we studied the effects of increasing doses of caffeine on cerebral glucose utilization in rats. At 1 mg/kg, caffeine activated the caudate nucleus mediating locomotion, and the raphe nuclei and locus coeruleus involved with mood and sleep. After 2.5 and 5 mg/kg caffeine, metabolic activation spread to other components of the nigrostriatal dopaminergic system, the thalamus, ventral tegmental area and amygdala. The functional activation of the shell of the nucleus accumbens, an area involved in addiction and reward, was only induced by the highest dose of caffeine, 10 mg/kg. At this dose, the activation of the shell of the nucleus accumbens occurred together with that of the core of the nucleus accumbens and of most other brain regions. These data correlate well with the known sensitivity of locomotion, mood and sleep to low doses of caffeine. They also show that low doses of caffeine which reflect the usual human level of consumption fail to activate reward circuits in the brain and thus provide functional evidence of the very low addictive potential of caffeine.
Tributyltin Differentially Promotes Development of a Phenotypically Distinct Adipocyte
Regnier, Shane M.; El-Hashani, Essam; Kamau, Wakanene; Zhang, Xiaojie; Massad, Nicole L.; Sargis, Robert M.
2015-01-01
Objective Environmental endocrine disrupting chemicals (EDCs) are increasingly implicated in the pathogenesis of obesity. Evidence implicates various EDCs as being pro-adipogenic, including tributyltin (TBT), which activates the peroxisome proliferator activated receptor-γ (PPARγ). However, the conditions required for TBT-induced adipogenesis and its functional consequences are incompletely known. Methods The co-stimulatory conditions necessary for preadipocyte-to-adipocyte differentiation were compared between TBT and the pharmacological PPARγ agonist troglitazone (Trog) in the 3T3-L1 cell line; basal and insulin-stimulated glucose uptake were assessed using radiolabeled 2-deoxyglucose. Results TBT enhanced expression of the adipocyte marker C/EBPα with co-exposure to either isobutylmethylxanthine or insulin in the absence of other adipogenic stimuli. Examination of several adipocyte-specific proteins revealed that TBT and Trog differentially affected protein expression despite comparable PPARγ stimulation. In particular, TBT reduced adiponectin expression upon maximal adipogenic stimulation. Under submaximal stimulation, TBT and Trog differentially promoted adipocyte-specific gene expression despite similar lipid accumulation. Moreover, TBT attenuated Trog-induced adipocyte gene expression under conditions of co-treatment. Finally, TBT-induced adipocytes exhibited altered glucose metabolism, with increased basal glucose uptake. Conclusions TBT-induced adipocytes are functionally distinct from those generated by a pharmacological PPARγ agonist, suggesting that obesogen-induced adipogenesis may generate dysfunctional adipocytes with the capacity to deleteriously affect global energy homeostasis. PMID:26243053
Mou, Xiaodun; Lennartz, Michelle R; Loegering, Daniel J; Stenken, Julie A
2011-01-01
Modulation of the foreign body reaction is considered to be an important step toward creation of implanted sensors with reliable long-term performance. In this work, microdialysis probes were implanted into the subcutaneous space of Sprague-Dawley rats. The probe performance was evaluated by comparing collected endogenous glucose concentrations with internal standard calibration (2-deoxyglucose, antipyrine, and vitamin B12). Probes were tested until failure, which for this work was defined as loss of fluid flow. In order to determine the effect of fibrous capsule formation on probe function, monocyte chemoattractant protein-1/CC chemokine ligand 2 (MCP-1/CCL2) was delivered locally via the probe to increase capsule thickness and dexamethasone 21-phosphate was delivered to reduce capsule thickness. Probes delivering MCP-1 had a capsule that was twice the thickness (500–600 μm) of control probes (200–225 μm) and typically failed 2 days earlier than control probes. Probes delivering dexamethasone 21-phosphate had more fragile capsules and the probes typically failed 2 days later than controls. Unexpectedly, extraction efficiency and collected glucose concentrations exhibited minor differences between groups. This is an interesting result in that the foreign body capsule formation was related to the duration of probe function but did not consistently relate to probe calibration. PMID:21722577
Long-term Calibration Considerations during Subcutaneous Microdialysis Sampling in Mobile Rats
Mou, Xiaodun; Lennartz, Michelle; Loegering, Daniel J.; Stenken, Julie A.
2010-01-01
The level at which implanted sensors and sampling devices maintain their calibration is an important research area. In this work, microdialysis probes with identical geometry and different membranes, polycarbonate/polyether (PC) or polyethersulfone (PES), were used with internal standards (vitamin B12 (MW 1355), antipyrine (MW 188) and 2-deoxyglucose (2-DG, MW 164)) and endogenous glucose to investigate changes in their long-term calibration after implantation into the subcutaneous space of Sprague-Dawley rats. Histological analysis confirmed an inflammatory response to the microdialysis probes and the presence of a collagen capsule. The membrane extraction efficiency (percentage delivered to the tissue space) for antipyrine and 2-DG was not altered throughout the implant lifetime for either PC- or PES-membranes. Yet, Vitamin B12 extraction efficiency and collected glucose concentrations decreased during the implant lifetime. Antipyrine was administered i.v. and its concentrations obtained in both PC-and PES-membrane probes were significantly reduced between the implant day and seven (PC) or 10 (PES) days post implantation suggesting that solute supply is critical for in vivo extraction efficiency. For the low molecular weight solutes such as antipyrine and glucose, localized delivery is not affected by the foreign body reaction, but recovery is significantly reduced. For Vitamin B12, a larger solute, the fibrotic capsule formed around the probe significantly restricts diffusion from the implanted microdialysis probes. PMID:20223515
AMP-activated protein kinase protects against necroptosis via regulation of Keap1-PGAM5 complex.
Wang, Yi-Shu; Yu, Peng; Wang, Yong; Zhang, Jing; Hang, Wei; Yin, Zhi-Xian; Liu, Gang; Chen, Jianfeng; Werle, Kaitlin D; Quan, Cheng-Shi; Gao, Hang; Zeng, Qinghua; Cui, Rutao; Liang, Jiyong; Ding, Qiang; Li, Yu-Lin; Xu, Zhi-Xiang
2018-05-15
The AMP-activated protein kinase (AMPK) plays critical roles in growth regulation and metabolism reprogramming. AMPK activation protects cells against apoptosis from injury in different cell and animal models. However, its function in necroptosis remains largely unclear. In the current study, we demonstrated that AMPK was activated upon necroptosis induction and protected mouse embryonic fibroblasts (MEFs) and cardiomyocytes from N-methyl-N'-nitro-N-nitrosoguanidine (MNNG) and reactive oxygen species (ROS) induced necroptosis. Activation of AMPK with chemicals A-769662, 2-deoxyglucose (2-DG), and metformin or constitutively active (CA) AMPK markedly decreased necroptosis and cytotoxicity induced by MNNG. In contrast, AMPK inhibitor compound C, dominant negative (DN) AMPK, as well as AMPK shRNAs increased necroptosis and cytotoxicity induced by MNNG. We further showed that AMPK physically associated with a protein complex containing PGAM5 and Keap1 whereby facilitating Keap1-mediated PGAM5 ubiquitination upon necroptosis induction. The AMPK agonist metformin ameliorated myocardial ischemia and reperfusion (IR) injury and reduced necroptosis through down-regulating the expression of PGAM5 in the Langendorff-perfused rat hearts. Activation of AMPK protects against necroptosis via promoting Keap1-mediated PGAM5 degradation. Metformin may act as a valuable agent for the protection of myocardial ischemia and reperfusion injury by activating AMPK and reducing necroptosis. Copyright © 2018. Published by Elsevier B.V.
Active inhibition of herpes simplex virus type 1-induced cell fusion
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bzik, D.J.; Person, S.; Read, G.S.
1982-01-01
Previous studies have demonstrated that syn mutant-infected cells fuse less well with nonsyncytial virus-infected cells than with uninfected cells, a phenomenon defined as function inhibition. The present study characterizes the kinetics as well as the requirements for expression of fusion inhibition. Initially, the capacity of sparse syn mutant-infected cells to fuse with uninfected surrounding cells was determined throughout infection. Of seven syn mutants examined, including representatives with alterations in two different viral genes that affect cell fusion, all showed an increase in fusion capacity up to 12 hr after infection and a decrease at later times. Fusion inhibition was examinedmore » in experiments employing sparse syn20-infected cells which had been incubated to a maximum fusion capacity; it was shown that surrounding cells infected with KOS, the parent of syn20, began to inhibit fusion by the syn20-infected cells at about 4 hr after infection, and that the maximum ability to inhibit fusion was attained at about 6 hr after infection. The metabolic blocking agents actinomycin D (RNA), cycloheximide (protein), 2-deoxyglucose, and tunicamycin (glycoslyation of glycoproteins) all showed the ability to inhibit the expression of fusion inhibition by KOS-infected cells if added shortly after infection. It is concluded that fusion inhibition is an active process that requires the synthesis of RNA, proteins, and glycoproteins. 17 references, 3 figures, 2 tables.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kirikae, M.; Diksic, M.; Yamamoto, Y.L.
1989-02-01
We examined the rate of glucose utilization and the rate of valine incorporation into proteins using 2-(/sup 18/F)fluoro-2-deoxyglucose and L-(1-14C)-valine in a rat brain tumor model by quantitative double-tracer autoradiography. We found that in the implanted tumor the rate of valine incorporation into proteins was about 22 times and the rate of glucose utilization was about 1.5 times that in the contralateral cortex. (In the ipsilateral cortex, the tumor had a profound effect on glucose utilization but no effect on the rate of valine incorporation into proteins.) Our findings suggest that it is more useful to measure protein synthesis thanmore » glucose utilization to assess the effectiveness of antitumor agents and their toxicity to normal brain tissue. We compared two methods to estimate the rate of valine incorporation: kinetic (quantitation done using an operational equation and the average brain rate coefficients) and washed slices (unbound labeled valine removed by washing brain slices in 10% trichloroacetic acid). The results were the same using either method. It would seem that the kinetic method can thus be used for quantitative measurement of protein synthesis in brain tumors and normal brain tissue using (/sup 11/C)-valine with positron emission tomography.« less
Ando, Romeo D; Benko, Anita; Ferrington, Linda; Kirilly, Eszter; Kelly, Paul A T; Bagdy, Gyorgy
2006-06-01
The acute effects of 3,4-methylenedioxymethamphetamine (MDMA, ecstasy) on anxiety-related behaviours were studied using indices of social interaction in Dark Agouti (DA) both drug naive rats and those pretreated with MDMA (15 mg/kg i.p.) 3 weeks earlier. The functional neuroanatomy of these MDMA effects was visualised using 2-deoxyglucose imaging of local cerebral glucose use (LCMRglu), whilst MDMA-induced serotonergic neurotoxicity was measured by radioligand binding with [3H]paroxetine. Acute MDMA alone markedly decreased most typical elements of social interaction but increased adjacent lying, a behaviour that also contains social elements. In animals pre-exposed to MDMA, decreased [3H]paroxetine binding indicated serotonergic terminal depletion, and in these animals significant increases in locomotor activity, exploratory behaviour and aggressive behaviour were found. Both behavioural effects and also the metabolic activation induced by acute MDMA were potentiated in rats previously exposed to the drug. In conclusion, a single dose of MDMA caused marked changes in social behaviour acutely that might be interpreted either as a decrease or increase in anxiety. Three weeks after MDMA a behavioural disinhibition similar to psychomotor agitation, a symptom connected to depression or mania, and a sensitization to the acute effects of MDMA are apparent in both the behavioural and brain metabolic effects of the drug.
Lee, Christopher T; Ussher, John R; Mohammad, Askar; Lam, Anna; Lopaschuk, Gary D
2014-04-01
Glucose uptake and glycolysis are increased in the heart during ischemia, and this metabolic alteration constitutes an important contributing factor towards ischemic injury. Therefore, it is important to understand glucose uptake regulation in the ischemic heart. There are primarily 2 glucose transporters controlling glucose uptake into cardiac myocytes: GLUT1 and GLUT4. In the non-ischemic heart, insulin stimulates GLUT4 translocation to the sarcolemmal membrane, while both GLUT1 and GLUT4 translocation can occur following AMPK stimulation. Using a newly developed technique involving [(3)H]2-deoxyglucose, we measured glucose uptake in H9c2 ventricular myoblasts, and demonstrated that while insulin has no detectable effect on glucose uptake, phenformin-induced AMPK activation increases glucose uptake 2.5-fold. Furthermore, insulin treatment produced no discernible effect on either Akt serine 473 phosphorylation or AMPKα threonine 172 phosphorylation, while treatment with phenformin results in an increase in AMPKα threonine 172 phosphorylation, and a decrease in Akt serine 473 phosphorylation. Visualization of a dsRed-GLUT4 fusion construct in H9c2 cells by laser confocal microscopy showed that unlike insulin, AMPK activation did not redistribute GLUT4 to the sarcolemmal membrane, suggesting that AMPK may regulate glucose uptake via another glucose transporter. These studies suggest that AMPK is a major regulator of glucose uptake in cardiac myocytes.
Alimentary tract innervation deficits and dysfunction in mice lacking GDNF family receptor alpha2.
Rossi, Jari; Herzig, Karl-Heinz; Võikar, Vootele; Hiltunen, Païvi H; Segerstråle, Mikael; Airaksinen, Matti S
2003-09-01
Subsets of parasympathetic and enteric neurons require neurturin signaling via glial cell line-derived neurotrophic factor family receptor alpha2 (GFRalpha2) for development and target innervation. Why GFRalpha2-deficient (Gfra2-/-) mice grow poorly has remained unclear. Here, we analyzed several factors that could contribute to the growth retardation. Neurturin mRNA was localized in the gut circular muscle. GFRalpha2 protein was expressed in most substance P-containing myenteric neurons, in most intrapancreatic neurons, and in surrounding glial cells. In the Gfra2-/- mice, density of substance P-containing myenteric ganglion cells and nerve bundles in the myenteric ganglion cell layer was significantly reduced, and transit of test material through small intestine was 25% slower compared to wild-type mice. Importantly, the knockout mice had approximately 80% fewer intrapancreatic neurons, severely impaired cholinergic innervation of the exocrine but not the endocrine pancreas, and increased fecal fat content. Vagally mediated stimulation of pancreatic secretion by 2-deoxy-glucose in vivo was virtually abolished. Retarded growth of the Gfra2-/- mice was accompanied by reduced fat mass and elevated basal metabolic rate. Moreover, the knockout mice drank more water than wild-type controls, and wet-mash feeding resulted in partial growth rescue. Taken together, the results suggest that the growth retardation in mice lacking GFRalpha2 is largely due to impaired salivary and pancreatic secretion and intestinal dysmotility.
Yu, Wen; Cai, Xu-Wei; Liu, Qi; Zhu, Zheng-Fei; Feng, Wen; Zhang, Qin; Zhang, Ying-Jian; Yao, Zhi-Feng; Fu, Xiao-Long
2015-02-01
To observe the safety of selective dose boost to the pre-treatment high (18)F-deoxyglucose (FDG) uptake areas of the esophageal GTV. Patients with esophageal squamous cell carcinoma were treated with escalating radiation dose of 4 levels, with a simultaneous integrated boost (SIB) to the pre-treatment 50% SUVmax area of the primary tumor. Patients received 4 monthly cycles of cisplatin and fluorouracil. Dose-limiting toxicity (DLT) was defined as any Grade 3 or higher acute toxicities causing continuous interruption of radiation for over 1 week. From April 2012 to February 2014, dose has been escalated up to LEVEL 4 (70Gy). All of the 25 patients finished the prescribed dose without DLT, and 10 of them developed Grade 3 acute esophagitis. One patient of LEVEL 2 died of esophageal hemorrhage within 1 month after completion of radiotherapy, which was not definitely correlated with treatment yet. Late toxicities remained under observation. With median follow up of 8.9months, one-year overall survival and local control was 69.2% and 77.4%, respectively. Dose escalation in esophageal cancer based on (18)FDG-PET/CT has been safely achieved up to 70Gy using the SIB technique. Acute toxicities were well tolerated, whereas late toxicities and long-term outcomes deserved further observation. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
Rodrussamee, Nadchanok; Lertwattanasakul, Noppon; Hirata, Katsushi; Suprayogi; Limtong, Savitree; Kosaka, Tomoyuki; Yamada, Mamoru
2011-05-01
Ethanol fermentation ability of the thermotolerant yeast Kluyveromyces marxianus, which is able to utilize various sugars including glucose, mannose, galactose, xylose, and arabinose, was examined under shaking and static conditions at high temperatures. The yeast was found to produce ethanol from all of these sugars except for arabinose under a shaking condition but only from hexose sugars under a static condition. Growth and sugar utilization rate under a static condition were slower than those under a shaking condition, but maximum ethanol yield was slightly higher. Even at 40°C, a level of ethanol production similar to that at 30°C was observed except for galactose under a static condition. Glucose repression on utilization of other sugars was observed, and it was more evident at elevated temperatures. Consistent results were obtained by the addition of 2-deoxyglucose. The glucose effect was further examined at a transcription level, and it was found that KmGAL1 for galactokinase and KmXYL1 for xylose reductase for galactose and xylose/arabinose utilization, respectively, were repressed by glucose at low and high temperatures, but KmHXK2 for hexokinase was not repressed. We discuss the possible mechanism of glucose repression and the potential for utilization of K. marxianus in high-temperature fermentation with mixed sugars containing glucose.
Hiroi, M
1996-08-01
Fertilization is the process including many events such as maturation of egg and sperm, attachment, binding, acrosomal reaction, penetration, fusion, cortical reaction, zona reaction and nuclear fusion of both gamete, whereby individual gametes from the female and male unite to create offspring. Although the reason for mechanism of fertilization is still not clearly understood, this process may accelerate the rate adaptation in evolution. In this special lecture, I would like to present our experimental and clinical results especially concerning with morphological, physiological, biochemical and molecular approach on the mechanism of fertilization. 1. Development and maturation of follicles and oocytes. It is well known that pituitary FSH, LH control the ovarian function. Follicular development and ovum maturation are also controlled by both pituitary gonadotropins and local factors such as autocrine and paracrine agents. When hMG is injected during 1-6 day of menstrual cycle, several dominant follicles are developed. If hMG is injected after selection of dominant follicles, only one dominant follicle develop in the ovary. When PMS-treated immature rats were injected with immature or mature follicle fluids, rats injected with mature follicular fluid showed strongly suppress in the ovarian weights and numbers of ovulated follicles. Also mature follicle suppress aromatization from and androstenedione to estradiol. These findings mean that mature follicular fluid contains inhibitory factors. Apoptosis of granulosa cells and follicular steroids are related to fertilization. 2. Intracellular calcium of oocyte. Intracellular calcium concentration is known to start to increase in a periodic manner after fertilization in oocytes of mammalians. In 65% of tested mouse oocytes, fertilization occurred during 4 hours observation after sperm insemination in vitro. An initial long lasting intracellular calcium concentration was observed and followed by periodic manner. This calcium oscillation is inhibited by calcium blockers such as verpamil and nifedipine, but increased by high concentration of extracellular calcium concentration in the medium. Role of increase of intracellular calcium are understood to prevent polysperm and activate metabolism of oocytes. 3. Glucose metabolism of oocytes. Mouse embryo utilizes pyruvate as an essential nutrient until the 8-cell stage, and glucose thereafter. We have devised non-radiometrie and enzymatic microassay method to measure glucose, deoxyglucose, deoxyglucose 6-phosphate incorporated into individual mouse oocytes and preimplantation embryo. In parallel, the activities of several enzymes of glycolytic pathway were also determined. In this study, glucose metabolism is necessary to develop in fertilized ova with changing activity of enzymes. 4. Molecular bases of ovarian fluid. The zona pellucida ZP is involved in a number of events in fertilization, all these fertilization events occur in the oviduct. Oviductal glycoprotein 200-240 KD has been identified from oviductal zona pellucida. Monoclonal antibody of oviductal glycoprotein reacted with ZP of oviductal egg but not with the ovarian egg. Anti-ZPO antibody inhibit to bind sperm to ZP. Sequences in mouse and hamster oviduct specific glycoprotein are estimated, this glycoprotein mRNA was observed in only oviduct by northern blotting method. These molecular gene expression was observed by in situ hybridization in the oviduct of estrous cycle of hamster. 5. Microinsemination of sperm. Microinsemination of sperm into oocyte is widely used in clinical medicine. Sperm penetration assay (hamster test) is useful method to estimate fertilization capacity of sperm. But immotile sperm cannot estimate it. So modified micro sperm penetration assay was established to estimate fertilization capacity of sperm by using micro-manipulator. Subzonal sperm injection (SUZI) and intracytoplasmic sperm injection (ICSI) promotes fertilization and cleavage rate in immotile
Exercise training, glucose transporters, and glucose transport in rat skeletal muscles
NASA Technical Reports Server (NTRS)
Rodnick, K. J.; Henriksen, E. J.; James, D. E.; Holloszy, J. O.
1992-01-01
It was previously found that voluntary wheel running induces an increase in the insulin-sensitive glucose transporter, i.e., the GLUT4 isoform, in rat plantaris muscle (K. J. Rodnick, J. O. Holloszy, C. E. Mondon, and D. E. James. Diabetes 39: 1425-1429, 1990). The present study was undertaken to determine whether 1) the increase in muscle GLUT4 protein is associated with an increase in maximally stimulated glucose transport activity, 2) a conversion of type IIb to type IIa or type I muscle fibers plays a role in the increase in GLUT4 protein, and 3) an increase in the GLUT1 isoform is a component of the adaptation of muscle to endurance exercise. Five weeks of voluntary wheel running that resulted in a 33% increase in citrate synthase activity induced a 50% increase in GLUT4 protein in epitrochlearis muscles of female Sprague-Dawley rats. The rate of 2-deoxy-glucose transport maximally stimulated with insulin or insulin plus contractions was increased approximately 40% (P less than 0.05). There was no change in muscle fiber type composition, evaluated by myosin ATPase staining, in the epitrochlearis. There was also no change in GLUT1 protein concentration. We conclude that an increase in GLUT4, but not of GLUT1 protein, is a component of the adaptive response of muscle to endurance exercise and that the increase in GLUT4 protein is associated with an increased capacity for glucose transport.
Role of PET in medullary thyroid carcinoma.
Rufini, V; Treglia, G; Perotti, G; Leccisotti, L; Calcagni, M L; Rubello, D
2008-06-01
In the diagnostic assessment of medullary thyroid carcinoma (MTC), nuclear medicine imaging provides its contribution mainly in the postoperative work-up to detect residual or recurrent tumor. With respect to scintigraphy with gamma-emitter radiopharmaceuticals, positron emission tomography (PET) offers interesting perspectives owing to its higher image quality, spatial resolution and speed. Moreover, the recent developments of hybrid machines allow to obtain images that simultaneously hold both anatomic (computed tomography) and functional (PET) information with great impact on diagnostic efficacy. (18)F-fluoro-deoxyglucose ((18)F-FDG) is the most frequently used PET tracer in oncology. Preliminary reports of FDG-PET in MTC patients show encouraging results with a higher sensitivity in detecting local recurrent and metastatic disease when compared with single photon emission tracers. However, (18)F-FDG uptake depends on lesion size and to some extent on the grade of differentiation and biologic aggressiveness of the tumor; so FDG-PET seems useful mainly in patients with very high calcitonin levels and high progression rate. Like other neuroendocrine tumors, MTC is characterized by the presence of amine uptake mechanism and/or peptide receptors at the cell membrane allowing the clinical use of specific radiopharmaceuticals that reflect the different metabolic pathways of MTC, and in particular the synthesis, storage and release of hormones ((18)F-dihydroxyphenilalanine, (18)F-DOPA and (18)F-fluorodopamine, (18)F-FDA) and the expression of receptors ((68)Ga-labeled somatostatin analogs). These tracers are currently under investigation and will further improve the diagnostic approach of MTC.
Jeong, Hyeonseok S; Choi, Eun Kyoung; Song, In-Uk; Chung, Yong-An; Park, Jong-Sik; Oh, Jin Kyoung
2017-01-01
In preparation for 131 I ablation, temporary withdrawal of thyroid hormone is commonly used in patients with thyroid cancer after total thyroidectomy. The current study aimed to investigate brain glucose metabolism and its relationships with mood or cognitive function in these patients using 18 F-fluoro-2-deoxyglucose positron emission tomography ( 18 F-FDG-PET). A total of 40 consecutive adult patients with thyroid carcinoma who had undergone total thyroidectomy were recruited for this cross-sectional study. At the time of assessment, 20 patients were hypothyroid after two weeks of thyroid hormone withdrawal, while 20 received thyroid hormone replacement therapy and were euthyroid. All participants underwent brain 18 F-FDG-PET scans and completed mood questionnaires and cognitive tests. Multivariate spatial covariance analysis and univariate voxel-wise analysis were applied for the image data. The hypothyroid patients were more anxious and depressed than the euthyroid participants. The multivariate covariance analysis showed increases in glucose metabolism primarily in the bilateral insula and surrounding areas and concomitant decreases in the parieto-occipital regions in the hypothyroid group. The level of thyrotropin was positively associated with the individual expression of the covariance pattern. The decreased 18 F-FDG uptake in the right cuneus cluster from the univariate analysis was correlated with the increased thyrotropin level and greater depressive symptoms in the hypothyroid group. These results suggest that temporary hypothyroidism, even for a short period, may induce impairment in glucose metabolism and related affective symptoms.
Neuron-glia metabolic coupling and plasticity.
Magistretti, Pierre J
2006-06-01
The coupling between synaptic activity and glucose utilization (neurometabolic coupling) is a central physiological principle of brain function that has provided the basis for 2-deoxyglucose-based functional imaging with positron emission tomography (PET). Astrocytes play a central role in neurometabolic coupling, and the basic mechanism involves glutamate-stimulated aerobic glycolysis; the sodium-coupled reuptake of glutamate by astrocytes and the ensuing activation of the Na-K-ATPase triggers glucose uptake and processing via glycolysis, resulting in the release of lactate from astrocytes. Lactate can then contribute to the activity-dependent fuelling of the neuronal energy demands associated with synaptic transmission. An operational model, the 'astrocyte-neuron lactate shuttle', is supported experimentally by a large body of evidence, which provides a molecular and cellular basis for interpreting data obtained from functional brain imaging studies. In addition, this neuron-glia metabolic coupling undergoes plastic adaptations in parallel with adaptive mechanisms that characterize synaptic plasticity. Thus, distinct subregions of the hippocampus are metabolically active at different time points during spatial learning tasks, suggesting that a type of metabolic plasticity, involving by definition neuron-glia coupling, occurs during learning. In addition, marked variations in the expression of genes involved in glial glycogen metabolism are observed during the sleep-wake cycle, with in particular a marked induction of expression of the gene encoding for protein targeting to glycogen (PTG) following sleep deprivation. These data suggest that glial metabolic plasticity is likely to be concomitant with synaptic plasticity.
Cheraghchi-Bashi, Azadeh; Parker, Christine A; Curry, Ed; Salazar, Jean-Frederic; Gungor, Hatice; Saleem, Azeem; Cunnea, Paula; Rama, Nona; Salinas, Cristian; Mills, Gordon B; Morris, Shannon R; Kumar, Rakesh; Gabra, Hani; Stronach, Euan A
2015-12-08
Our identification of dysregulation of the AKT pathway in ovarian cancer as a platinum resistance specific event led to a comprehensive analysis of in vitro, in vivo and clinical behaviour of the AKT inhibitor GSK2141795. Proteomic biomarker signatures correlating with effects of GSK2141795 were developed using in vitro and in vivo models, well characterised for related molecular, phenotypic and imaging endpoints. Signatures were validated in temporally paired biopsies from patients treated with GSK2141795 in a clinical study. GSK2141795 caused growth-arrest as single agent in vitro, enhanced cisplatin-induced apoptosis in vitro and reduced tumour volume in combination with platinum in vivo. GSK2141795 treatment in vitro and in vivo resulted in ~50-90% decrease in phospho-PRAS40 and 20-80% decrease in fluoro-deoxyglucose (FDG) uptake. Proteomic analysis of GSK2141795 in vitro and in vivo identified a signature of pathway inhibition including changes in AKT and p38 phosphorylation and total Bim, IGF1R, AR and YB1 levels. In patient biopsies, prior to treatment with GSK2141795 in a phase 1 clinical trial, this signature was predictive of post-treatment changes in the response marker CA125. Development of this signature represents an opportunity to demonstrate the clinical importance of AKT inhibition for re-sensitisation of platinum resistant ovarian cancer to platinum.
SIRT3 aggravates metformin-induced energy stress and apoptosis in ovarian cancer cells.
Wu, Yao; Gao, Wei-Nan; Xue, Ya-Nan; Zhang, Li-Chao; Zhang, Juan-Juan; Lu, Sheng-Yao; Yan, Xiao-Yu; Yu, Hui-Mei; Su, Jing; Sun, Lian-Kun
2018-06-15
Increasing evidence suggests that mitochondrial respiratory chain complex I participates in carcinogenesis and cancer progression by providing energy and maintaining mitochondrial function. However, the role of complex I in ovarian cancer is largely unknown. In this study we showed that metformin, considered to be an inhibitor of complex I, simultaneously inhibited cell growth and induced mitochondrial-related apoptosis in human ovarian cancer cells. Metformin interrupted cellular energy metabolism mainly by causing damage to complex I that impacted mitochondrial function. Additionally, treatment with metformin increased the activation of sirtuin 3 (SIRT3), a mitochondrial deacetylase. We demonstrated that SIRT3 overexpression aggravated metformin-induced apoptosis, energy stress and mitochondrial dysfunction. Moreover, treatment with metformin or SIRT3 overexpression increased activation of AMP-activated protein kinase (AMPK), a major sensor of cellular energy status. AMPK compensated for energy loss by increasing glycolysis. The impact of this was assessed by reducing glucose levels in the media or by using inhibitors (2-deoxyglucose, Compound C) of glycolysis and AMPK. The combination of these factors with metformin intensified cytotoxicity through further downregulation of ATP. Our study outlines an important role for SIRT3 in the antitumor effect of mitochondrial complex I inhibitors in human ovarian cancer cells. This effect appears to be mediated by induction of energy stress and apoptosis. Strategies that target the mitochondria could be enhanced by modulating glycolysis to further aggravate energy stress that may increase the antitumor effect. Copyright © 2018 Elsevier Inc. All rights reserved.
Nakatsu, Yusuke; Iwashita, Misaki; Sakoda, Hideyuki; Ono, Hiraku; Nagata, Kengo; Matsunaga, Yasuka; Fukushima, Toshiaki; Fujishiro, Midori; Kushiyama, Akifumi; Kamata, Hideaki; Takahashi, Shin-Ichiro; Katagiri, Hideki; Honda, Hiroaki; Kiyonari, Hiroshi; Uchida, Takafumi; Asano, Tomoichiro
2015-01-01
AMP-activated protein kinase (AMPK) plays a critical role in metabolic regulation. In this study, first, it was revealed that Pin1 associates with any isoform of γ, but not with either the α or the β subunit, of AMPK. The association between Pin1 and the AMPK γ1 subunit is mediated by the WW domain of Pin1 and the Thr211-Pro-containing motif located in the CBS domain of the γ1 subunit. Importantly, overexpression of Pin1 suppressed AMPK phosphorylation in response to either 2-deoxyglucose or biguanide stimulation, whereas Pin1 knockdown by siRNAs or treatment with Pin1 inhibitors enhanced it. The experiments using recombinant Pin1, AMPK, LKB1, and PP2C proteins revealed that the protective effect of AMP against PP2C-induced AMPKα subunit dephosphorylation was markedly suppressed by the addition of Pin1. In good agreement with the in vitro data, the level of AMPK phosphorylation as well as the expressions of mitochondria-related genes, such as PGC-1α, which are known to be positively regulated by AMPK, were markedly higher with reduced triglyceride accumulation in the muscles of Pin1 KO mice as compared with controls. These findings suggest that Pin1 plays an important role in the pathogenic mechanisms underlying impaired glucose and lipid metabolism, functioning as a negative regulator of AMPK. PMID:26276391
Baechli, Heidi; Behzad, Melika; Schreckenberger, Matthias; Buchholz, Hans-Georg; Heimann, Axel; Kempski, Oliver; Alessandri, Beat
2010-03-01
Outcome from acute subdural hematoma is often worse than would be expected from the pure increase of intracranial volume by bleeding. The aim was to test whether volume-independent pathomechanisms aggravate damage by comparing the effects of blood infusion with those of an inert fluid, paraffin oil, on intracranial pressure (ICP), cerebral perfusion pressure (CPP), local cerebral blood flow (CBF), edema formation, glucose metabolism ([18F]-deoxyglucose, MicroPET ), and histological outcome. Rats were injured by subdural infusion of 300 muL venous blood or paraffin. ICP, CPP, and CBF changes, assessed during the first 30 mins after injury, were not different between the injury groups at most time points (n=8 per group). Already at 2 h after injury, blood caused a significantly more pronounced decrease in glucose metabolism in the injured cortex when compared with paraffin (P<0.001, n=5 per group). Ipsilateral brain edema did not differ between groups at 2 h, but was significantly more pronounced in the blood-treated groups at 24 and 48 h after injury (n=8 per group). These changes caused a 56.2% larger lesion after blood when compared with paraffin (48.1+/-23.0 versus 21.1+/-11.8 mm(3); P<0.02). Blood constituent-triggered pathomechanisms aggravate the immediate effects due to ICP, CPP, and CBF during hemorrhage and lead to early reduction of glucose metabolism followed by more severe edema and histological damage.
PPARdelta activator GW-501516 has no acute effect on glucose transport in skeletal muscle.
Terada, Shin; Wicke, Scott; Holloszy, John O; Han, Dong-Ho
2006-04-01
It has been reported that treatment of cultured human skeletal muscle myotubes with the peroxisome proliferator-activated receptor-delta (PPARdelta) activator GW-501516 directly stimulates glucose transport and enhances insulin action. Cultured myotubes are minimally responsive to insulin stimulation of glucose transport and are not a good model for studying skeletal muscle glucose transport. The purpose of this study was to evaluate the effect of GW-501516 on glucose transport to determine whether the findings on cultured myotubes have relevance to skeletal muscle. Rat epitrochlearis and soleus muscles were treated for 6 h with 10, 100, or 500 nM GW-501516, followed by measurement of 2-deoxyglucose uptake. GW-501516 had no effect on glucose uptake. There was no effect on insulin sensitivity or responsiveness. Also, in contrast to findings on myotubes, treatment of muscles with GW-501516 did not result in increased phosphorylation or increased expression of AMP-activated protein kinase (AMPK) or p38 mitogen-activated protein kinase (MAPK). Treatment of epitrochlearis muscles with GW-501516 for 24 h induced a threefold increase in uncoupling protein-3 mRNA, providing evidence that the GW-501516 compound that we used gets into and is active in skeletal muscle. In conclusion, our results show that, in contrast to myotubes in culture, skeletal muscle does not respond to GW-501516 with 1) an increase in AMPK or p38 MAPK phosphorylation or expression or 2) direct stimulation of glucose transport or enhanced insulin action.
NASA Astrophysics Data System (ADS)
Pal, Rahul; Yang, Jinping; Qiu, Suimin; McCammon, Susan; Resto, Vicente; Vargas, Gracie
2016-03-01
Volumetric Multiphoton Autofluorescence Microscopy (MPAM) and Second Harmonic Generation Microscopy (SHGM) show promise for revealing indicators of neoplasia representing the complex microstructural organization of mucosa, potentially providing high specificity for detection of neoplasia, but is limited by small imaging area. Large area fluorescence methods on the other hand show high sensitivity appropriate for screening but are hampered by low specificity. In this study, we apply MPAM-SHGM following guidance from large area fluorescence, by either autofluorescence or a targeted metabolic fluorophore, as a potentially clinically viable approach for detection of oral neoplasia. Sites of high neoplastic potentially were identified by large area red/green autofluorescence or by a fluorescently labelled deoxy-glucose analog, 2-deoxy-2-[(7-nitro-2,1,3-benzoxadiazol-4-yl)amino]-D-glucose (2-NBDG) to highlight areas of high glucose uptake across the buccal pouch of a hamster model for OSCC. Follow-up MPAM-SHGM was conducted on regions of interests (ROIs) to assess whether microscopy would reveal microscopic features associated with neoplasia to confirm or exclude large area fluorescence findings. Parameters for analysis included cytologic metrics, 3D epithelial connective tissue interface metrics (MPAM-SHGM) and intensity of fluorescence (widefield). Imaged sites were biopsied and processed for histology and graded by a pathologist. A small sample of human ex vivo tissues were also imaged. A generalized linear model combining image metrics from large area fluorescence and volumetric MPAM-SHGM indicated the ability to delineate normal and inflammation from neoplasia.
Typical cerebral metabolic patterns in neurodegenerative brain diseases.
Teune, Laura K; Bartels, Anna L; de Jong, Bauke M; Willemsen, Antoon T M; Eshuis, Silvia A; de Vries, Jeroen J; van Oostrom, Joost C H; Leenders, Klaus L
2010-10-30
The differential diagnosis of neurodegenerative brain diseases on clinical grounds is difficult, especially at an early disease stage. Several studies have found specific regional differences of brain metabolism applying [(18)F]-fluoro-deoxyglucose positron emission tomography (FDG-PET), suggesting that this method can assist in early differential diagnosis of neurodegenerative brain diseases.We have studied patients who had an FDG-PET scan on clinical grounds at an early disease stage and included those with a retrospectively confirmed diagnosis according to strictly defined clinical research criteria. Ninety-six patients could be included of which 20 patients with Parkinson's disease (PD), 21 multiple system atrophy (MSA), 17 progressive supranuclear palsy (PSP), 10 corticobasal degeneration (CBD), 6 dementia with Lewy bodies (DLB), 15 Alzheimer's disease (AD), and 7 frontotemporal dementia (FTD). FDG PET images of each patient group were analyzed and compared to18 healthy controls using Statistical Parametric Mapping (SPM5).Disease-specific patterns of relatively decreased metabolic activity were found in PD (contralateral parietooccipital and frontal regions), MSA (bilateral putamen and cerebellar hemispheres), PSP (prefrontal cortex and caudate nucleus, thalamus, and mesencephalon), CBD (contralateral cortical regions), DLB (occipital and parietotemporal regions), AD (parietotemporal regions), and FTD (frontotemporal regions).The integrated method addressing a spectrum of various neurodegenerative brain diseases provided means to discriminate patient groups also at early disease stages. Clinical follow-up enabled appropriate patient inclusion. This implies that an early diagnosis in individual patients can be made by comparing each subject's metabolic findings with a complete database of specific disease related patterns.
Mouradian, Michael; Ma, Irvin V; Vicente, Erika D; Kikawa, Keith D; Pardini, Ronald S
2017-01-01
The molecular chaperone, heat shock protein 90 (Hsp90), is a critical regulator for the proper folding and stabilization of several client proteins, and is a major contributor to carcinogenesis. Specific Hsp90 inhibitors have been designed to target the ATP-binding site in order to prevent Hsp90 chaperone maturation. The current study investigated the effects of docosahexaenoic acid (DHA; C22:6 n-3) on Hsp90 function and downstream client protein expression. In vitro analyses of BT-474 human breast carcinoma and A549 human lung adenocarcinoma cell lines revealed dose-dependent decreases in intracellular ATP levels by DHA treatment, resulting in a significant reduction of Hsp90 and p23 association in both cell lines. Attenuation of the Hsp90-p23 complex led to the inhibition of Hsp90 client proteins, epidermal growth factor receptor 2 (ErbB2), and hypoxia-inducible factor 1α (HIF-1α). Similar results were observed when employing 2-deoxyglucose (2-DG), confirming that DHA and 2-DG, both independently and combined, can disturb Hsp90 molecular chaperone function. In vivo A549 xenograft analysis also demonstrated decreased expression levels of Hsp90-p23 association and diminished protein levels of ErbB2 and HIF-1α in mice supplemented with dietary DHA. These data support a role for dietary intervention to improve cancer therapy in tumors overexpressing Hsp90 and its client proteins.
Huang, Chi-Cheng; Wu, Chun-Hu; Huang, Ya-Yao; Tzen, Kai-Yuan; Chen, Szu-Fu; Tsai, Miao-Ling; Wu, Hsiao-Ming
2017-04-01
Performing quantitative small-animal PET with an arterial input function has been considered technically challenging. Here, we introduce a catheterization procedure that keeps a rat physiologically stable for 1.5 mo. We demonstrated the feasibility of quantitative small-animal 18 F-FDG PET in rats by performing it repeatedly to monitor the time course of variations in the cerebral metabolic rate of glucose (CMR glc ). Methods: Aseptic surgery was performed on 2 rats. Each rat underwent catheterization of the right femoral artery and left femoral vein. The catheters were sealed with microinjection ports and then implanted subcutaneously. Over the next 3 wk, each rat underwent 18 F-FDG quantitative small-animal PET 6 times. The CMR glc of each brain region was calculated using a 3-compartment model and an operational equation that included a k* 4 Results: On 6 mornings, we completed 12 18 F-FDG quantitative small-animal PET studies on 2 rats. The rats grew steadily before and after the 6 quantitative small-animal PET studies. The CMR glc of the conscious brain (e.g., right parietal region, 99.6 ± 10.2 μmol/100 g/min; n = 6) was comparable to that for 14 C-deoxyglucose autoradiographic methods. Conclusion: Maintaining good blood patency in catheterized rats is not difficult. Longitudinal quantitative small-animal PET imaging with an arterial input function can be performed routinely. © 2017 by the Society of Nuclear Medicine and Molecular Imaging.
Mori, Kentaro; Iwata, Junko; Miyazaki, Masahiro; Nakao, Yasuaki; Maeda, Minoru
2005-07-01
The effect of transplantation of adult bone marrow stromal cells (MSCs) into the freeze-lesioned left barrel field cortex in the rat was investigated by measurement of local cerebral glucose utilization (lCMR(glc)) in the anatomic structures of the whisker-to-barrel cortex sensory pathway. Bone marrow stromal cells or phosphate-buffered saline (PBS) were injected intracerebrally into the boundary zone 1 h after induction of the freezing cortical lesion. Three weeks after surgery, the 2-[(14)C]deoxyglucose method was used to measure lCMR(glc) during right whisker stimulation. The volume of the primary necrotic freezing lesion was significantly reduced (P<0.05), and secondary retrograde degeneration in the left ventral posteromedial (VPM) thalamic nucleus was diminished in the MSC-treated group. Local cerebral glucose utilization measurements showed that the freezing cortical lesion did not alter the metabolic responses to stimulation in the brain stem trigeminal nuclei, but eliminated the responses in the left VPM nucleus and periphery of the barrel cortex in the PBS-treated group. The left/right (stimulated/unstimulated) lCMR(glc) ratios were significantly improved in both the VPM nucleus and periphery of the barrel cortex in the MSC-treated group compared with the PBS-treated group (P<0.05). These results indicate that MSC transplantation in adults may stimulate metabolic and functional recovery in injured neuronal pathways.
Bonnett, Tiffany R; Robert, Jeanne A; Pitt, Caitlin; Fraser, Jordie D; Keeling, Christopher I; Bohlmann, Jörg; Huber, Dezene P W
2012-12-01
Mountain pine beetles, Dendroctonus ponderosae Hopkins (Coleoptera: Curculionidae), are native to western North America, but have recently begun to expand their range across the Canadian Rocky Mountains. The requirement for larvae to withstand extremely cold winter temperatures and potentially toxic host secondary metabolites in the midst of their ongoing development makes this a critical period of their lives. We have uncovered global protein profiles for overwintering mountain pine beetle larvae. We have also quantitatively compared the proteomes for overwintering larvae sampled during autumn cooling and spring warming using iTRAQ methods. We identified 1507 unique proteins across all samples. In total, 33 proteins exhibited differential expression (FDR < 0.05) when compared between larvae before and after a cold snap in the autumn; and 473 proteins exhibited differential expression in the spring when measured before and after a steady incline in mean daily temperature. Eighteen proteins showed significant changes in both autumn and spring samples. These first proteomic data for mountain pine beetle larvae show evidence of the involvement of trehalose, 2-deoxyglucose, and antioxidant enzymes in overwintering physiology; confirm and expand upon previous work implicating glycerol in cold tolerance in this insect; and provide new, detailed information on developmental processes in beetles. These results and associated data will be an invaluable resource for future targeted research on cold tolerance mechanisms in the mountain pine beetle and developmental biology in coleopterans. Copyright © 2012 Elsevier Ltd. All rights reserved.
Al Aïn, Syrina; Perry, Rosemarie E.; Nuñez, Bestina; Kayser, Kassandra; Hochman, Chase; Brehman, Elizabeth; LaComb, Miranda; Wilson, Donald A.; Sullivan, Regina M.
2016-01-01
Social support can attenuate the behavioral and stress hormone response to threat, a phenomenon called social buffering. The mother’s social buffering of the infant is one of the more robust examples; yet we understand little about the neurobiology. Using a rodent model, we explore the neurobiology of social buffering by assessing neural processing of the maternal odor, a major cue controlling social buffering in rat pups. We used pups before (postnatal day (PN) 7) and after (PN14, PN23) the functional emergence of social buffering. Pups were injected with 14C 2-deoxyglucose (2-DG) and presented with the maternal odor, a control preferred odor incapable of social buffering (acetophenone), or no odor. Brains were removed, processed for autoradiography and brain areas identified as important in adult social buffering were assessed, including the amygdala basolateral complex (Basolateral Amygdala [BLA]), medial prefrontal cortex (mPFC), and anterior cingulate cortex (ACC). Results suggest dramatic changes in the processing of maternal odor. PN7 pups show mPFC and ACC activation, although PN14 pups showed no activation of the mPFC, ACC, or BLA. All brain areas assessed were recruited by PN23. Additional analysis suggests substantial changes in functional connectivity across development. Together, these results imply complex nonlinear transitions in the neurobiology of social buffering in early life that may provide insight into the changing role of the mother in supporting social buffering. PMID:26934130
Jung, Hyun Ah; Bhakta, Himanshu Kumar; Min, Byung-Sun; Choi, Jae Sue
2016-10-01
Insulin resistance is a characteristic feature of type 2 diabetes mellitus (T2DM) and is characterized by defects in insulin signaling. This study investigated the modulatory effects of fucosterol on the insulin signaling pathway in insulin-resistant HepG2 cells by inhibiting protein tyrosine phosphatase 1B (PTP1B). In addition, molecular docking simulation studies were performed to predict binding energies, the specific binding site of fucosterol to PTP1B, and to identify interacting residues using Autodock 4.2 software. Glucose uptake was determined using a fluorescent D-glucose analogue and the glucose tracer 2-[N-(7-nitrobenz-2-oxa-1,3-diazol-4-yl) amino]-2-deoxyglucose, and the signaling pathway was detected by Western blot analysis. We found that fucosterol enhanced insulin-provoked glucose uptake and conjointly decreased PTP1B expression level in insulin-resistant HepG2 cells. Moreover, fucosterol significantly reduced insulin-stimulated serine (Ser307) phosphorylation of insulin receptor substrate 1 (IRS1) and increased phosphorylation of Akt, phosphatidylinositol-3-kinase, and extracellular signal- regulated kinase 1 at concentrations of 12.5, 25, and 50 µM in insulin-resistant HepG2 cells. Fucosterol inhibited caspase-3 activation and nuclear factor kappa B in insulin-resistant hepatocytes. These results suggest that fucosterol stimulates glucose uptake and improves insulin resistance by downregulating expression of PTP1B and activating the insulin signaling pathway. Thus, fucosterol has potential for development as an anti-diabetic agent.
Sawayama, Hiroshi; Yoshida, Naoya; Miyamoto, Yuji; Uchihara, Tomoyuki; Toihata, Tasuku; Yagi, Taisuke; Hiyoshi, Yukiharu; Iwatsuki, Masaaki; Baba, Yoshifumi; Baba, Hideo
2017-08-30
Primary colonic and dedifferentiated liposarcomas are both remarkably rare. This work describes a case of primary colonic well-differentiated/dedifferentiated liposarcoma and reviews the clinical characteristics and current therapies for liposarcoma tumors. A 52-year-old woman was referred to our hospital with a submucosal tumor of the ascending colon. Clinical analysis by ultrasound colonoscopy and computed tomography revealed a partially ossified tumor with irregular edges continuous with the muscular layer. High F-18 deoxyglucose uptake was detected by positron emission tomography. Radical resection with lymph node dissection was performed, yielding a tumor specimen approximately 6.5 × 4.0 × 3.2 cm. Neoplastic spindle cell proliferation was found from submucosa to subserosa. Well-differentiated adipose tissue surrounded the tumor, but contained atypical nuclei with condensed chromosomes. Immunohistochemical staining was positive for p16, CDK4, and MDM2 expression. Based on these findings, a diagnosis of well-differentiated/dedifferentiated liposarcoma was given. Dedifferentiated liposarcomas are more aggressive than their well-differentiated, low-grade counterparts. While local recurrence can occur with both tumor types, dedifferentiated liposarcomas are more prone to developing distant metastases. The patient received no postoperative therapy, and no recurrences have been observed 12 months after surgery. Here we report an extremely rare case of well-differentiated/dedifferentiated liposarcoma of the ascending colon. The dedifferentiated component was high-grade liposarcoma and well-differentiated liposarcoma was detected around the main tumor.
Sato, J; Kitagawa, Y; Watanabe, S; Asaka, T; Ohga, N; Hirata, K; Shiga, T; Satoh, A; Tamaki, N
2018-05-01
Tumour hypoxia can be detected by 18 F-fluoromisonidazole positron emission tomography (FMISO-PET). Few studies have assessed the relationships of new PET parameters, including hypoxic volume (HV), metabolic tumour volume (MTV), and total lesion glycolysis (TLG), with 5-year survival of patients treated surgically for oral squamous cell carcinoma (OSCC). This study evaluated the relationships between these PET parameters and 5-year survival in OSCC patients. Twenty-three patients (age 42-84 years; 15 male, eight female) with OSCC underwent FMISO- and 18 F-fluoro-2-deoxyglucose (FDG)-PET computed tomography before surgery. All of them underwent radical surgery and were followed up for more than 5 years. The FDG-PET maximum standardized uptake value (SUV max ), HV, MTV, and TLG were measured. The ability of PET parameters to predict disease-free survival (DFS) and loco-regional recurrence (LR) was evaluated using receiver operating characteristic curve analysis. During the follow-up period, five of the 23 patients (22%) died and six (26%) experienced LR. Although FDG-PET SUV max was not significantly associated with DFS or LR, HV correlated significantly with both DFS and LR. TLG, but not MTV, was significantly associated with DFS; however neither MTV nor TLG was related significantly to LR. In conclusion, tumour HV may predict outcomes in patients with OSCC. Copyright © 2017 International Association of Oral and Maxillofacial Surgeons. Published by Elsevier Ltd. All rights reserved.
Visiedo, F; Bugatto, F; Carrasco-Fernández, C; Sáez-Benito, A; Mateos, R M; Cózar-Castellano, I; Bartha, J L; Perdomo, G
2015-04-01
To evaluate the impact of the pro-inflammatory cytokine hepatocyte growth factor (HGF) on the regulation of glucose and lipid placental metabolism. HGF levels were quantified in amniotic fluid and placenta from control and obese women. 2-deoxy-glucose (2-DOG) uptake, glycolysis, fatty acid oxidation (FAO), fatty acid esterification, de novo fatty acid synthesis, triglyceride levels and carnitine palmitoyltransferase activities (CPT) were measured in placental explants upon addition of pathophysiological HGF levels. In obese women, total- and -activated-HGF levels in amniotic fluid were elevated ∼24%, and placental HGF levels were ∼3-fold higher than in control women. At a similar dose to that present in amniotic fluid of obese women, HGF (30 ng/mL) increased Glut-1 levels and 2-DOG uptake by ∼25-30% in placental explants. HGF-mediated effect on 2-DOG uptake was dependent on the activation of phosphatidylinositol 3-kinase signaling pathway. In addition, HGF decreased ∼20% FAO, whereas esterification and de novo fatty acid synthesis increased ∼15% and ∼25% respectively, leading to 2-fold triglyceride accumulation in placental explants. In parallel, HGF reduced CPT-I activity ∼70%. HGF is a cytokine elevated in amniotic fluid and placental tissue of obese women, which through its ability to stimulate 2-DOG uptake and metabolism impairs FAO and enhances esterification and de novo fatty acid synthesis, leading to accumulation of placental triglycerides. Copyright © 2015 Elsevier Ltd. All rights reserved.
Zheng, Lu; Bai, Zhongzhong; Xu, Tingting; He, Bingfang
2012-11-01
Sporolactobacillus inulinus, a homofermentative lactic acid bacterium, is a species capable of efficient industrial D-lactic acid production from glucose. Glucose phosphorylation is the key step of glucose metabolism, and fine-tuned expression of which can improve D-lactic acid production. During growth on high-concentration glucose, a fast induction of high glucokinase (GLK) activity was observed, and paralleled the patterns of glucose consumption and D-lactic acid accumulation, while phosphoenolpyruvate phosphotransferase system (PTS) activity was completely repressed. The transmembrane proton gradient of 1.3-1.5 units was expected to generate a large proton motive force to the uptake of glucose. This suggests that the GLK pathway is the major route for glucose utilization, with the uptake of glucose through PTS-independent transport systems and phosphorylation of glucose by GLK in S. inulinus D-lactic acid production. The gene encoding GLK was cloned from S. inulinus and expressed in Escherichia coli. The amino acid sequence revealed significant similarity to GLK sequences from Bacillaceae. The recombinant GLK was purified and shown to be a homodimer with a subunit molecular mass of 34.5 kDa. Strikingly, it demonstrated an unusual broad substrate specificity, catalyzing phosphorylation of 2-deoxyglucose, mannitol, maltose, galactose and glucosamine, in addition to glucose. This report documented the key step concerning glucose phosphorylation of S. inulinus, which will help to understand the regulation of glucose metabolism and D-lactic acid production.
Richter, Jonathan W; Shull, Gabriella M; Fountain, John H; Guo, Zhongyuan; Musselman, Laura P; Fiumera, Anthony C; Mahler, Gretchen J
2018-06-01
Nanosized titanium dioxide (TiO 2 ) is a common additive in food and cosmetic products. The goal of this study was to investigate if TiO 2 nanoparticles affect intestinal epithelial tissues, normal intestinal function, or metabolic homeostasis using in vitro and in vivo methods. An in vitro model of intestinal epithelial tissue was created by seeding co-cultures of Caco-2 and HT29-MTX cells on a Transwell permeable support. These experiments were repeated with monolayers that had been cultured with the beneficial commensal bacteria Lactobacillus rhamnosus GG (L. rhamnosus). Glucose uptake and transport in the presence of TiO 2 nanoparticles was assessed using fluorescent glucose analog 2-(N-(7-nitrobenz-2-oxa-1,3-diazol-4-yl)amino)-2-deoxyglucose (2-NBDG). When the cell monolayers were exposed to physiologically relevant doses of TiO 2 , a statistically significant reduction in glucose transport was observed. These differences in glucose absorption were eliminated in the presence of beneficial bacteria. The decrease in glucose absorption was caused by damage to intestinal microvilli, which decreased the surface area available for absorption. Damage to microvilli was ameliorated in the presence of L. rhamnosus. Complimentary studies in Drosophila melanogaster showed that TiO 2 ingestion resulted in decreased body size and glucose content. The results suggest that TiO 2 nanoparticles alter glucose transport across the intestinal epithelium, and that TiO 2 nanoparticle ingestion may have physiological consequences.
Scharko, A M; Perlman, S B; Hinds PW2nd; Hanson, J M; Uno, H; Pauza, C D
1996-01-01
Pathogenesis of simian immunodeficiency virus (SIV) infection in rhesus macaques begins with acute viremia and then progresses to a distributed infection in the solid lymphoid tissues, which is followed by a process of cellular destruction leading to terminal disease and death. Blood and tissue specimens show the progress of infection at the cellular level but do not reveal the pattern of infection and host responses occurring throughout the body. The purpose of this investigation was to determine whether positron emission tomography (PET) imaging with intravenous 2-18F-2-deoxyglucose (FDG) could identify activated lymphoid tissues in a living animal and whether this pattern would reflect the extent of SIV infection. PET images from SIV-infected animals were distinguishable from uninfected controls and revealed a pattern consistent with widespread lymphoid tissue activation. Significant FDG accumulation in colon along with mesenteric and ileocaecal lymph nodes was found in SIV infection, especially during terminal disease stages. Areas of elevated FDG uptake in the PET images were correlated with productive SIV infection using in situ hybridization as a test for virus replication. PET-FDG images of SIV-infected animals correlated sites of virus replication with high FDG accumulation. These data show that the method can be used to evaluate the distribution and activity of infected tissues in a living animal without biopsy. Fewer tissues had high FDG uptake in terminal animals than midstage animals, and both were clearly distinguishable from uninfected animal scans. Images Fig. 1 Fig. 2 Fig. 3 PMID:8692831
Bural, Gonca G; Torigian, Drew A; Burke, Anne; Houseni, Mohamed; Alkhawaldeh, Khaled; Cucchiara, Andrew; Basu, Sandip; Alavi, Abass
2010-06-01
The aim of this study was to compare hepatic standardized uptake values (SUVs) and hepatic metabolic volumetric products (HMVP) between patients of diffuse hepatic steatosis and control subjects with normal livers. Twenty-seven subjects were included in the study (13 men and 14 women; age range, 34-72 years). All had 18F-2-fluoro-2-D-deoxyglucose-positron emission tomography (FDG-PET) and magnetic resonance imaging (MRI) scans with an interscan interval of 0-5 months. Twelve of 27 subjects had diffuse hepatic steatosis on MRI. The remaining 15 were selected as age-matched controls based on normal liver parenchyma on MRI. Mean and maximum hepatic SUVs were calculated for both patient groups on FDG-PET images. Hepatic volumes were measured from MRI. HMVP in each subject was subsequently calculated by multiplication of hepatic volume by mean hepatic SUV. HMVPs as well as mean and maximum hepatic SUVs were compared between the two study groups. HMVPs, mean hepatic SUVs, and maximum hepatic SUVs were greater (statistically significant, p < 0.05) in subjects with diffuse hepatic steatosis compared to those in the control group. The increase in HMVP is the result of increased hepatic metabolic activity likely related to the diffuse hepatic steatosis. The active inflammatory process related to the diffuse hepatic steatosis is the probable explanation for the increase in hepatic metabolic activity on FDG-PET study.
Davila, M Plaza; Muñoz, P Martin; Bolaños, J M Gallardo; Stout, T A E; Gadella, B M; Tapia, J A; da Silva, C Balao; Ferrusola, C Ortega; Peña, F J
2016-12-01
To investigate the hypothesis that oxidative phosphorylation is a major source of ATP to fuel stallion sperm motility, oxidative phosphorylation was suppressed using the mitochondrial uncouplers CCCP and 2,4,-dinitrophenol (DNP) and by inhibiting mitochondrial respiration at complex IV using sodium cyanide or at the level of ATP synthase using oligomycin-A. As mitochondrial dysfunction may also lead to oxidative stress, production of reactive oxygen species was monitored simultaneously. All inhibitors reduced ATP content, but oligomycin-A did so most profoundly. Oligomycin-A and CCCP also significantly reduced mitochondrial membrane potential. Sperm motility almost completely ceased after the inhibition of mitochondrial respiration and both percentage of motile sperm and sperm velocity were reduced in the presence of mitochondrial uncouplers. Inhibition of ATP synthesis resulted in the loss of sperm membrane integrity and increased the production of reactive oxygen species by degenerating sperm. Inhibition of glycolysis by deoxyglucose led to reduced sperm velocities and reduced ATP content, but not to loss of membrane integrity. These results suggest that, in contrast to many other mammalian species, stallion spermatozoa rely primarily on oxidative phosphorylation to generate the energy required for instance to maintain a functional Na + /K + gradient, which is dependent on an Na + -K + antiporter ATPase, which relates directly to the noted membrane integrity loss. Under aerobic conditions, however, glycolysis also provides the energy required for sperm motility. © 2016 Society for Reproduction and Fertility.
2017-01-01
The conserved target of rapamycin (TOR) pathway integrates growth and development with available nutrients, but how cellular glucose controls TOR function and signaling is poorly understood. Here, we provide functional evidence from the devastating rice blast fungus Magnaporthe oryzae that glucose can mediate TOR activity via the product of a novel carbon-responsive gene, ABL1, in order to tune cell cycle progression during infection-related development. Under nutrient-free conditions, wild type (WT) M. oryzae strains form terminal plant-infecting cells (appressoria) at the tips of germ tubes emerging from three-celled spores (conidia). WT appressorial development is accompanied by one round of mitosis followed by autophagic cell death of the conidium. In contrast, Δabl1 mutant strains undergo multiple rounds of accelerated mitosis in elongated germ tubes, produce few appressoria, and are abolished for autophagy. Treating WT spores with glucose or 2-deoxyglucose phenocopied Δabl1. Inactivating TOR in Δabl1 mutants or glucose-treated WT strains restored appressorium formation by promoting mitotic arrest at G1/G0 via an appressorium- and autophagy-inducing cell cycle delay at G2/M. Collectively, this work uncovers a novel glucose-ABL1-TOR signaling axis and shows it engages two metabolic checkpoints in order to modulate cell cycle tuning and mediate terminal appressorial cell differentiation. We thus provide new molecular insights into TOR regulation and cell development in response to glucose. PMID:28072818
THE FUNCTIONAL ARCHITECTURE OF DEHYDRATION-ANOREXIA
Watts, Alan G.; Boyle, Christina N.
2010-01-01
The anorexia that accompanies the drinking of hypertonic saline (DE-anorexia) is a critical adaptive behavioral mechanism that helps protect the integrity of fluid compartments during extended periods of cellular dehydration. Feeding is rapidly reinstated once drinking water is made available again. The relative simplicity and reproducibility of these behaviors makes DE-anorexia a very useful model for investigating how the various neural networks that control ingestive behaviors first suppress and then reinstate feeding. We show that DE-anorexia develops primarily because the mechanisms that terminate ongoing meals are upregulated in such a way as to significantly reduce meal size. At the same time however, signals generated by the ensuing negative energy balance appropriately activate neural mechanisms that can increase food intake. But as the output from these two competing processes is integrated, the net result is an increasing reduction of nocturnal food intake, despite the fact that spontaneous meals are initiated with the same frequency as in control animals. Furthermore, hypothalamic NPY injections also stimulate feeding in DE-anorexic animals with the same latency as controls, but again meals are prematurely terminated. Comparing Fos expression patterns across the brain following 2-deoxyglucose administration to control and DE-anorexic animals implicates neurons in the descending part of the parvicellular paraventricular nucleus of the hypothalamus and the lateral hypothalamic areas as key components of the networks that control DE-anorexia. Finally, DE-anorexia generates multiple inhibitory processes to suppress feeding. These are differentially disengaged once drinking water is reinstated. PMID:20399797
Chromium (d-Phenylalanine)3 Alleviates High Fat-Induced Insulin Resistance and Lipid Abnormalities
Kandadi, Machender Reddy; Unnikrishnan, MK; Warrier, Ajaya Kumar Sankara; Du, Min; Ren, Jun; Sreejayan, Nair
2010-01-01
High-fat diet has been implicated as a major cause of insulin resistance and dyslipidemia. The objective of this study was to evaluate the impact of dietary-supplementation of chromium (d-phenylalanine)3 [Cr(d-Phe)3] on -glucose and -insulin tolerance in high-fat diet fed mice. C57BL/6-mice were randomly assigned to orally receive vehicle or Cr(d-Phe)3 (45 μg of elemental chromium/kg/day) for 8-weeks. High-fat-fed mice exhibited impaired whole-body -glucose and- insulin tolerance and elevated serum triglyceride levels compared to normal chow-fed mice. Insulin-stimulated glucose up- take in the gastrocnemius muscles, assessed as 2-[3H-deoxyglucose] incorporation was markedly diminished in high-fat fed mice compared to control mice. Treatment with chromium reconciled the high-fat diet-induced alterations in carbohydrate and lipid metabolism. Treatment of cultured, differentiated myotubes with palmitic acid evoked insulin resistance as evidenced by lower levels of insulin-stimulated Akt-phosphorylation, elevated JNK-phosphorylation, (assessed by Western blotting), attenuation of phosphoinositol-3-kinase activity (determined in the insulin-receptor substrate-1-immunoprecipitates by measuring the extent of phosphorylation of phosphatidylinositol by γ-32P-ATP), and impairment in cellular glucose up-take, all of which were inhibited by Cr(d-Phe)3. These results suggest a beneficial effect of chromium-supplementation in insulin resistant conditions. It is likely that these effects of chromium may be mediated by augmenting downstream insulin signaling. PMID:21134603
Metzger, Shulamit; Nusair, Samir; Planer, David; Barash, Varda; Pappo, Orit; Shilyansky, Joel; Chajek-Shaul, Tova
2004-11-01
Mice bearing IL-1beta-secreting tumor were used to study the chronic effect of IL-1beta on glucose metabolism. Mice were injected with syngeneic tumor cells transduced with the human IL-1beta gene. Serum IL-1beta levels increased exponentially with time. Secretion of IL-1beta from the developed tumors was associated with decreased food consumption, reduced body weight, and reduced blood glucose levels. Body composition analysis revealed that IL-1beta caused a significant loss in fat tissue without affecting lean body mass and water content. Hepatic phosphoenolpyruvate carboxykinase and glucose-6-phosphatase activities and mRNA levels of these enzymes were reduced, and 2-deoxy-glucose uptake by peripheral tissues was enhanced. mRNA levels of glucose transporters (Gluts) in the liver were determined by real-time PCR analysis. Glut-3 mRNA levels were up-regulated by IL-1beta. Glut-1 and Glut-4 mRNA levels in IL-1beta mice were similar to mRNA levels in pair-fed mice bearing nonsecreting tumor. mRNA level of Glut-2, the major Glut of the liver, was down-regulated by IL-1beta. We concluded that both decreased glucose production by the liver and enhanced glucose disposal lead to the development of hypoglycemia in mice bearing IL-1beta-secreting tumor. The observed changes in expression of hepatic Gluts that are not dependent on insulin may contribute to the increased glucose uptake.
Metabolism of [U-13C]glucose in Human Brain Tumors In Vivo
Maher, Elizabeth A.; Marin-Valencia, Isaac; Bachoo, Robert M.; Mashimo, Tomoyuki; Raisanen, Jack; Hatanpaa, Kimmo J.; Jindal, Ashish; Jeffrey, F. Mark; Choi, Changho; Madden, Christopher; Mathews, Dana; Pascual, Juan M.; Mickey, Bruce E.; Malloy, Craig R.; DeBerardinis, Ralph J.
2012-01-01
Glioblastomas (GBMs) and brain metastases demonstrate avid uptake of 18fluoro-2-deoxyglucose (FDG) by positron emission tomography (PET) and display perturbations of intracellular metabolite pools by 1H magnetic resonance spectroscopy (MRS). These observations suggest that metabolic reprogramming contributes to brain tumor growth in vivo. The Warburg effect, excess metabolism of glucose to lactate in the presence of oxygen, is a hallmark of cancer cells in culture. FDG-positive tumors are assumed to metabolize glucose in a similar manner, with high rates of lactate formation compared to mitochondrial glucose oxidation, but few studies have specifically examined the metabolic fates of glucose in vivo. In particular, the capacity of human brain malignancies to oxidize glucose in the tricarboxylic acid cycle is unknown. Here we studied the metabolism of human brain tumors in situ. [U-13C]glucose was infused during surgical resection, and tumor samples were subsequently subjected to 13C NMR spectroscopy. Analysis of tumor metabolites revealed lactate production, as expected. We also determined that pyruvate dehydrogenase, turnover of the TCA cycle, anaplerosis and de novo glutamine and glycine synthesis contributed significantly to the ultimate disposition of glucose carbon. Surprisingly, less than 50% of the acetyl-CoA pool was derived from blood-borne glucose, suggesting that additional substrates contribute to tumor bioenergetics. This study illustrates a convenient approach that capitalizes on the high information content of 13C NMR spectroscopy and enables the analysis of intermediary metabolism in diverse malignancies growing in their native microenvironment. PMID:22419606
Lutas, Andrew; Birnbaumer, Lutz
2014-01-01
Neurons use glucose to fuel glycolysis and provide substrates for mitochondrial respiration, but neurons can also use alternative fuels that bypass glycolysis and feed directly into mitochondria. To determine whether neuronal pacemaking depends on active glucose metabolism, we switched the metabolic fuel from glucose to alternative fuels, lactate or β-hydroxybutyrate, while monitoring the spontaneous firing of GABAergic neurons in mouse substantia nigra pars reticulata (SNr) brain slices. We found that alternative fuels, in the absence of glucose, sustained SNr spontaneous firing at basal rates, but glycolysis may still be supported by glycogen in the absence of glucose. To prevent any glycogen-fueled glycolysis, we directly inhibited glycolysis using either 2-deoxyglucose or iodoacetic acid. Inhibiting glycolysis in the presence of alternative fuels lowered SNr firing to a slower sustained firing rate. Surprisingly, we found that the decrease in SNr firing was not mediated by ATP-sensitive potassium (KATP) channel activity, but if we lowered the perfusion flow rate or omitted the alternative fuel, KATP channels were activated and could silence SNr firing. The KATP-independent slowing of SNr firing that occurred with glycolytic inhibition in the presence of alternative fuels was consistent with a decrease in a nonselective cationic conductance. Although mitochondrial metabolism alone can prevent severe energy deprivation and KATP channel activation in SNr neurons, active glucose metabolism appears important for keeping open a class of ion channels that is crucial for the high spontaneous firing rate of SNr neurons. PMID:25471572
Chow, C M; Yagüe, E; Raguz, S; Wood, D A; Thurston, C F
1994-01-01
A 52-kDa protein, CEL3, has been separated from the culture filtrate of Agaricus bisporus during growth on cellulose. A PCR-derived probe was made, with a degenerate oligodeoxynucleotide derived from the amino acid sequence of a CEL3 CNBr cleavage product and was used to select cel3 cDNA clones from an A. bisporus cDNA library. Two allelic cDNAs were isolated. They showed 98.8% identity of their nucleotide sequences. The deduced amino acid sequence and domain architecture of CEL3 showed a high degree of similarity to those of cellobiohydrolase II of Trichoderma reesei. Functional expression of cel3 cDNA in Saccharomyces cerevisiae was achieved by placing it under the control of a constitutive promoter and fusing it to the yeast invertase signal sequence. Recombinant CEL3 secreted by yeast showed enzymatic activity towards crystalline cellulose. At long reaction times, CEL3 was also able to degrade carboxymethyl cellulose. Northern (RNA) analysis showed that cel3 gene expression was induced by cellulose and repressed by glucose, fructose, 2-deoxyglucose, and lactose. Glycerol, mannitol, sorbitol, and maltose were neutral carbon sources. Nuclear run-on analysis showed that the rate of synthesis of cel3 mRNA in cellulose-grown cultures was 13 times higher than that in glucose-grown cultures. A low basal rate of cel3 mRNA synthesis was observed in the nuclei isolated from glucose-grown mycelia. Images PMID:8085821
Glucose-6-phosphate mediates activation of the carbohydrate responsive binding protein (ChREBP)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Ming V.; Departments of Medicine and Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030; Chen, Weiqin
2010-05-07
Carbohydrate response element binding protein (ChREBP) is a Mondo family transcription factor that activates a number of glycolytic and lipogenic genes in response to glucose stimulation. We have previously reported that high glucose can activate the transcriptional activity of ChREBP independent of the protein phosphatase 2A (PP2A)-mediated increase in nuclear entry and DNA binding. Here, we found that formation of glucose-6-phosphate (G-6-P) is essential for glucose activation of ChREBP. The glucose response of GAL4-ChREBP is attenuated by D-mannoheptulose, a potent hexokinase inhibitor, as well as over-expression of glucose-6-phosphatase (G6Pase); kinetics of activation of GAL4-ChREBP can be modified by exogenously expressedmore » GCK. Further metabolism of G-6-P through the two major glucose metabolic pathways, glycolysis and pentose-phosphate pathway, is not required for activation of ChREBP; over-expression of glucose-6-phosphate dehydrogenase (G6PD) diminishes, whereas RNAi knockdown of the enzyme enhances, the glucose response of GAL4-ChREBP, respectively. Moreover, the glucose analogue 2-deoxyglucose (2-DG), which is phosphorylated by hexokinase, but not further metabolized, effectively upregulates the transcription activity of ChREBP. In addition, over-expression of phosphofructokinase (PFK) 1 and 2, synergistically diminishes the glucose response of GAL4-ChREBP. These multiple lines of evidence support the conclusion that G-6-P mediates the activation of ChREBP.« less
Frazer, Lauren C; Darville, Toni; Chandra-Kuntal, Kumar; Andrews, Charles W; Zurenski, Matthew; Mintus, Margaret; AbdelRahman, Yasser M; Belland, Robert J; Ingalls, Robin R; O'Connell, Catherine M
2012-01-01
Loss of the conserved "cryptic" plasmid from C. trachomatis and C. muridarum is pleiotropic, resulting in reduced innate inflammatory activation via TLR2, glycogen accumulation and infectivity. The more genetically distant C. caviae GPIC is a natural pathogen of guinea pigs and induces upper genital tract pathology when inoculated intravaginally, modeling human disease. To examine the contribution of pCpGP1 to C. caviae pathogenesis, a cured derivative of GPIC, strain CC13, was derived and evaluated in vitro and in vivo. Transcriptional profiling of CC13 revealed only partial conservation of previously identified plasmid-responsive chromosomal loci (PRCL) in C. caviae. However, 2-deoxyglucose (2DG) treatment of GPIC and CC13 resulted in reduced transcription of all identified PRCL, including glgA, indicating the presence of a plasmid-independent glucose response in this species. In contrast to plasmid-cured C. muridarum and C. trachomatis, plasmid-cured C. caviae strain CC13 signaled via TLR2 in vitro and elicited cytokine production in vivo similar to wild-type C. caviae. Furthermore, inflammatory pathology induced by infection of guinea pigs with CC13 was similar to that induced by GPIC, although we observed more rapid resolution of CC13 infection in estrogen-treated guinea pigs. These data indicate that either the plasmid is not involved in expression or regulation of virulence in C. caviae or that redundant effectors prevent these phenotypic changes from being observed in C. caviae plasmid-cured strains.
Marroquin-Guzman, Margarita; Sun, Guangchao; Wilson, Richard A
2017-01-01
The conserved target of rapamycin (TOR) pathway integrates growth and development with available nutrients, but how cellular glucose controls TOR function and signaling is poorly understood. Here, we provide functional evidence from the devastating rice blast fungus Magnaporthe oryzae that glucose can mediate TOR activity via the product of a novel carbon-responsive gene, ABL1, in order to tune cell cycle progression during infection-related development. Under nutrient-free conditions, wild type (WT) M. oryzae strains form terminal plant-infecting cells (appressoria) at the tips of germ tubes emerging from three-celled spores (conidia). WT appressorial development is accompanied by one round of mitosis followed by autophagic cell death of the conidium. In contrast, Δabl1 mutant strains undergo multiple rounds of accelerated mitosis in elongated germ tubes, produce few appressoria, and are abolished for autophagy. Treating WT spores with glucose or 2-deoxyglucose phenocopied Δabl1. Inactivating TOR in Δabl1 mutants or glucose-treated WT strains restored appressorium formation by promoting mitotic arrest at G1/G0 via an appressorium- and autophagy-inducing cell cycle delay at G2/M. Collectively, this work uncovers a novel glucose-ABL1-TOR signaling axis and shows it engages two metabolic checkpoints in order to modulate cell cycle tuning and mediate terminal appressorial cell differentiation. We thus provide new molecular insights into TOR regulation and cell development in response to glucose.
Yang, Lin; Xia, Liangping; Wang, Yan; He, Shasha; Chen, Haiyang; Liang, Shaobo; Peng, Peijian; Hong, Shaodong; Chen, Yong
2017-09-06
The skeletal system is the most common site of distant metastasis in nasopharyngeal carcinoma (NPC); various prognostic factors have been reported for skeletal metastasis, though most studies have focused on a single factor. We aimed to establish nomograms to effectively predict skeletal metastasis at initial diagnosis (SMAD) and skeletal metastasis-free survival (SMFS) in NPC. A total of 2685 patients with NPC who received bone scintigraphy (BS) and/or 18F-deoxyglucose positron emission tomography/computed tomography (18F-FDG PET/CT) and 2496 patients without skeletal metastasis were retrospectively assessed to develop individual nomograms for SMAD and SMFS. The models were validated externally using separate cohorts of 1329 and 1231 patients treated at two other institutions. Five independent prognostic factors were included in each nomogram. The SMAD nomogram had a significantly higher c-index than the TNM staging system (training cohort, P = 0.005; validation cohort, P < 0.001). The SMFS nomogram had significantly higher c-index values in the training and validation sets than the TNM staging system (P < 0.001 and P = 0.005, respectively). Three proposed risk stratification groups were created using the nomograms, and enabled significant discrimination of SMFS for each risk group. The prognostic nomograms established in this study enable accurate stratification of distinct risk groups for skeletal metastasis, which may improve counseling and facilitate individualized management of patients with NPC.
Correlation between quantified breast densities from digital mammography and 18F-FDG PET uptake.
Lakhani, Paras; Maidment, Andrew D A; Weinstein, Susan P; Kung, Justin W; Alavi, Abass
2009-01-01
To correlate breast density quantified from digital mammograms with mean and maximum standardized uptake values (SUVs) from positron emission tomography (PET). This was a prospective study that included 56 women with a history of suspicion of breast cancer (mean age 49.2 +/- 9.3 years), who underwent 18F-fluoro-2-deoxyglucose (FDG)-PET imaging of their breasts as well as digital mammography. A computer thresholding algorithm was applied to the contralateral nonmalignant breasts to quantitatively estimate the breast density on digital mammograms. The breasts were also classified into one of four Breast Imaging Reporting and Data System categories for density. Comparisons between SUV and breast density were made using linear regression and the Student's t-test. Linear regression of mean SUV versus average breast density showed a positive relationship with a Pearson's correlation coefficient of R(2) = 0.83. The quantified breast densities and mean SUVs were significantly greater for mammographically dense than nondense breasts (p < 0.0001 for both). The average quantified densities and mean SUVs of the breasts were significantly greater for premenopausal than postmenopausal patients (p < 0.05). 8/51 (16%) of the patients had maximum SUVs that equaled 1.6 or greater. There is a positive linear correlation between quantified breast density on digital mammography and FDG uptake on PET. Menopausal status affects the metabolic activity of normal breast tissue, resulting in higher SUVs in pre- versus postmenopausal patients.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Samson, F.; Nelson, S.
The research aim was to determine the effects of soman, related organophosphate toxins and potential antidotes on brain regional functions in rats: The (/sup 14/C)-2-deoxyglucose procedure (2-DG) was used for mapping brain regional glucose use. Quantitative autoradiography was used for muscarinic and nicotinic cholinergic receptors. The 2-DG procedure gives a quantitative measure of glucose utilization in brain regions and is in index of the 'functional activity' in brain regions and systems. Values were determined in controls, rats with soman induced seizures, seizures induced by convulsants (DFP, strychnine, picrotoxin, pentylenetetrazol, penicillin) and soman pretreated with TAB. Brain regional cholinergic receptor mapsmore » were prepared and some regional muscarinic and nicotinic receptor densities have been quantified. Soman (112 micrograms/kg i.m.) causes strong, continuous seizures and a dramatic (2-6 fold) increase in the rate of glucose use in 10 major brain regions. Most intense increases were in septum, substants nigra reticularis and outer layer of hippcampal dendata gyrus. The overt seizures of rats induced by convulsants DFP, strychnine, picrotoxin, pentylenetetrazol and penicillin (in hippocampus) were strikingly different from that of rats with soman seizures. High doses (2X LD50) of soman in rats protected with TAB caused a 50% depression of glucose use in most brain regions. The effects of repeated soman exposure on muscarinic and nicotinic receptors are under study.« less
NASA Astrophysics Data System (ADS)
Robinson, S.; Julyan, P. J.; Hastings, D. L.; Zweit, J.
2004-12-01
The key performance measures of resolution, count rate, sensitivity and scatter fraction are predicted for a dedicated BGO block detector patient PET scanner (GE Advance) in 2D mode for imaging with the non-pure positron-emitting radionuclides 124I, 55Co, 61Cu, 62Cu, 64Cu and 76Br. Model calculations including parameters of the scanner, decay characteristics of the radionuclides and measured parameters in imaging the pure positron-emitter 18F are used to predict performance according to the National Electrical Manufacturers Association (NEMA) NU 2-1994 criteria. Predictions are tested with measurements made using 124I and show that, in comparison with 18F, resolution degrades by 1.2 mm radially and tangentially throughout the field-of-view (prediction: 1.2 mm), count-rate performance reduces considerably and in close accordance with calculations, sensitivity decreases to 23.4% of that with 18F (prediction: 22.9%) and measured scatter fraction increases from 10.0% to 14.5% (prediction: 14.7%). Model predictions are expected to be equally accurate for other radionuclides and may be extended to similar scanners. Although performance is worse with 124I than 18F, imaging is not precluded in 2D mode. The viability of 124I imaging and performance in a clinical context compared with 18F is illustrated with images of a patient with recurrent thyroid cancer acquired using both [124I]-sodium iodide and [18F]-2-fluoro-2-deoxyglucose.
Ding, Hao; Jiang, Lei; Xu, Jing; Bai, Feng; Zhou, Yang; Yuan, Qi; Luo, Jing; Zen, Ke; Yang, Junwei
2017-09-01
Chronic kidney diseases generally lead to renal fibrosis. Despite great progress having been made in identifying molecular mediators of fibrosis, the mechanism that governs renal fibrosis remains unclear, and so far no effective therapeutic antifibrosis strategy is available. Here we demonstrated that a switch of metabolism from oxidative phosphorylation to aerobic glycolysis (Warburg effect) in renal fibroblasts was the primary feature of fibroblast activation during renal fibrosis and that suppressing renal fibroblast aerobic glycolysis could significantly reduce renal fibrosis. Both gene and protein assay showed that the expression of glycolysis enzymes was upregulated in mouse kidneys with unilateral ureter obstruction (UUO) surgery or in transforming growth factor-β1 (TGF-β1)-treated renal interstitial fibroblasts. Aerobic glycolysis flux, indicated by glucose uptake and lactate production, was increased in mouse kidney with UUO nephropathy or TGF-β1-treated renal interstitial fibroblasts and positively correlated with fibrosis process. In line with this, we found that increasing aerobic glycolysis can remarkably induce myofibroblast activation while aerobic glycolysis inhibitors shikonin and 2-deoxyglucose attenuate UUO-induced mouse renal fibrosis and TGF-β1-stimulated myofibroblast activation. Furthermore, mechanistic study indicated that shikonin inhibits renal aerobic glycolysis via reducing phosphorylation of pyruvate kinase type M2, a rate-limiting glycolytic enzyme associated with cell reliance on aerobic glycolysis. In conclusion, our findings demonstrate the critical role of aerobic glycolysis in renal fibrosis and support treatment with aerobic glycolysis inhibitors as a potential antifibrotic strategy. Copyright © 2017 the American Physiological Society.
Dufour, Franck; Koning, Estelle; Nehlig, Astrid
2003-08-01
The Genetic Absence Epilepsy Rats from Strasbourg (GAERS) are considered an isomorphic, predictive, and homologous model of human generalized absence epilepsy. It is characterized by the expression of spike-and-wave discharges in the thalamus and cortex. In this strain, basal regional rates of cerebral glucose utilization measured by the quantitative autoradiographic [(14)C]2-deoxyglucose technique display a widespread consistent increase compared to a selected strain of genetically nonepileptic rats (NE). In order to verify whether these high rates of glucose metabolism are paralleled by elevated activities of the enzymes of the glycolytic and tricarboxylic acid cycle pathways, we measured by histochemistry the regional activity of the two key enzymes of glucose metabolism, lactate dehydrogenase (LDH) for the anaerobic pathway and cytochrome oxidase (CO) for the aerobic pathway coupled to oxidative phosphorylation. CO and LDH activities were significantly higher in GAERS than in NE rats in 24 and 28 of the 30 brain regions studied, respectively. The differences in CO and LDH activity between both strains were widespread, affected all brain systems studied, and ranged from 12 to 63%. The data of the present study confirm the generalized increase in cerebral glucose metabolism in GAERS, occurring both at the glycolytic and at the oxidative step. However, they still do not allow us to understand why the ubiquitous mutation(s) generates spike-and-wave discharges only in the thalamocortical circuit.
[The 18F-FDG myocardial metabolic imaging in twenty seven pilots with regular aerobic training].
Fang, Ting-Zheng; Zhu, Jia-Rui; Chuan, Ling; Zhao, Wen-Rui; Xu, Gen-Xiang; Yang, Min-Fu; He, Zuo-Xiang
2009-02-01
To evaluate the characteristics of myocardial (18)F-FDG imaging in pilots with regular aerobic exercise training. Twenty seven healthy male pilots with regular aerobic exercise training were included in this study. The subjects were divided into fasting (n = 17) or non-fasting group (n = 10). Fluorine-18-labeled deoxyglucose and Tc-99m-sestamibi dual-nuclide myocardial imaging were obtained at rest and at target heart rate during bicycle ergometer test. The exercise and rest myocardial perfusion imaging were analyzed for myocardial ischemia presence. The myocardial metabolism imaging was analyzed with the visual semi-quantitative analyses model of seventeen segments. The secondary-extreme heart rate (195-age) was achieved in all subjects. There was no myocardial ischemia in all perfusion imaging. In the visual qualitative analyses, four myocardial metabolism imaging failed in the fasting group while one failed in the non-fasting group (P > 0.05). In the visual semi-quantitative analyses, myocardial metabolism imaging scores at rest or exercise in all segments were similar between two groups (P > 0.05). In the fasting group, the myocardial metabolism imaging scores during exercise were significantly higher than those at rest in 6 segments (P < 0.05). In the non-fasting group, the scores of 3 exercise myocardial metabolism imaging were significantly higher than those at rest (P < 0.05). Satisfactory high-quality myocardial metabolism imaging could be obtained at fasting and exercise situations in subjects with regular aerobic exercise.
Grohmann, Malcolm; Stewart, Claire; Welsh, Gavin; Hunt, Linda; Tavaré, Jeremy; Holly, Jeff; Shield, Julian; Sabin, Matt; Crowne, Elizabeth
2005-08-15
Body fat distribution determines obesity-related morbidity in adults but little is known of the aetiology or pathophysiology in children. This study investigates differences in insulin-mediated metabolism in primary cell cultures of subcutaneous and visceral preadipocytes derived from prepubertal children. The impact of differentiation and responses to TNFalpha exposure was also investigated. Proliferation rates were greater in subcutaneous versus visceral preadipocytes (41 h3 versus 69 h4; P=0.008). Insulin caused a dose-dependent increase in GSK-3 phosphorylation and an increase in MAPK phosphorylation over time, with increased sensitivity in subcutaneous preadipocytes. Post-differentiation, dose-dependent increases in GSK-3 phosphorylation were maintained, while MAPK phosphorylation was identical in both subtypes. No changes were observed in insulin receptor abundance pre-/post-differentiation. GLUT4 abundance was significantly increased in visceral versus subcutaneous adipocytes by 76(4)%; P=0.03), coincidental with increased insulin-stimulated 2-deoxy-glucose transport (+150(26)% versus +79(10)%; P=0.014) and further elevated by acute exposure to TNFalpha (+230(52)%; P=0.019 versus +123(24)%; P=0.025, respectively). TNFalpha also significantly increased basal glucose transport rates (+44(14)%; P=0.006 versus +34(11)%; P=0.007) and GLUT1 localisation to the plasma membrane. These data establish site-specific differences in subcutaneous and visceral fat cells from children. Responses to insulin varied with differentiation and TNFalpha exposure in the two depots, consistent with parallel changes in GLUT1/4 abundance and localisation.
Borgatti, Antonella; Winter, Amber L; Stuebner, Kathleen; Scott, Ruth; Ober, Christopher P; Anderson, Kari L; Feeney, Daniel A; Vallera, Daniel A; Koopmeiners, Joseph S; Modiano, Jaime F; Froelich, Jerry
2017-01-01
Positron Emission Tomography-Computed Tomography (PET-CT) is routinely used for staging and monitoring of human cancer patients and is becoming increasingly available in veterinary medicine. In this study, 18-fluorodeoxyglucose (18FDG)-PET-CT was used in dogs with naturally occurring splenic hemangiosarcoma (HSA) to assess its utility as a staging and monitoring modality as compared to standard radiography and ultrasonography. Nine dogs with stage-2 HSA underwent 18FDG-PET-CT following splenectomy and prior to commencement of chemotherapy. Routine staging (thoracic radiography and abdominal ultrasonography) was performed prior to 18FDG-PET-CT in all dogs. When abnormalities not identified on routine tests were noted on 18FDG-PET-CT, owners were given the option to repeat a PET-CT following treatment with eBAT. A PET-CT scan was repeated on Day 21 in three dogs. Abnormalities not observed on conventional staging tools, and most consistent with malignant disease based on location, appearance, and outcome, were detected in two dogs and included a right atrial mass and a hepatic nodule, respectively. These lesions were larger and had higher metabolic activity on the second scans. 18FDG-PET-CT has potential to provide important prognostic information and influence treatment recommendations for dogs with stage-2 HSA. Additional studies will be needed to precisely define the value of this imaging tool for staging and therapy monitoring in dogs with this and other cancers.
Shapes of the Trajectories of Five Major Biomarkers of Alzheimer’s Disease
Jack, Clifford R.; Vemuri, Prashanthi; Wiste, Heather J.; Weigand, Stephen D.; Lesnick, Timothy G.; Lowe, Val; Kantarci, Kejal; Bernstein, Matt A.; Senjem, Matthew L.; Gunter, Jeffrey L.; Boeve, Bradley F.; Trojanowski, John Q.; Shaw, Leslie M.; Aisen, Paul S.; Weiner, Michael W.; Petersen, Ronald C.; Knopman, David S.
2013-01-01
Objective To characterize the shape of the trajectories of Alzheimer’s Disease (AD) biomarkers as a function of MMSE. Design Longitudinal registries from the Mayo Clinic and the Alzheimer’s Disease Neuroimaging Initiative (ADNI). Patients Two different samples (n=343 and n=598) were created that spanned the cognitive spectrum from normal to AD dementia. Subgroup analyses were performed in members of both cohorts (n=243 and n=328) who were amyloid positive at baseline. Main Outcome Measures The shape of biomarker trajectories as a function of MMSE, adjusted for age, was modeled and described as baseline (cross-sectional) and within-subject longitudinal effects. Biomarkers evaluated were cerebro spinal fluid (CSF) Aβ42 and tau; amyloid and fluoro deoxyglucose position emission tomography (PET) imaging, and structural magnetic resonance imaging (MRI). Results Baseline biomarker values generally worsened (i.e., non-zero slope) with lower baseline MMSE. Baseline hippocampal volume, amyloid PET and FDG PET values plateaued (i.e., non-linear slope) with lower MMSE in one or more analyses. Longitudinally, within-subject rates of biomarker change were associated with worsening MMSE. Non-constant within-subject rates (deceleration) of biomarker change were found in only one model. Conclusions Biomarker trajectory shapes by MMSE were complex and were affected by interactions with age and APOE status. Non-linearity was found in several baseline effects models. Non-constant within-subject rates of biomarker change were found in only one model, likely due to limited within-subject longitudinal follow up. Creating reliable models that describe the full trajectories of AD biomarkers will require significant additional longitudinal data in individual participants. PMID:22409939
Ma, Yanlei; Zhang, Peng; Wang, Feng; Liu, Weijie; Yang, Jianjun; Qin, Huanlong
2012-04-01
The present study was designed to search for potential diagnostic biomarkers in the serum of colorectal cancer (CRC). CRC is the third most common cancer worldwide, and its prognosis is poor at early stages. A panel of novel biomarkers is urgently needed for early diagnosis of CRC. An integrated proteomics and metabolomics approach was performed to define oncofetal biomarkers in CRC by protein and metabolite profiling of serum samples from CRC patients, healthy control adults, and fetus. The differentially expressed proteins were identified by a 2-D DIGE (2-Dimensional Difference Gel Electrophoresis) coupled with a Finnigan LTQ-based proteomics approach. Meanwhile, the serum metabolome was analyzed using gas chromatography-mass spectrometry integrated with a commercial mass spectral library for peak identification. Of the 28 identified proteins and the 34 analyzed metabolites, only 5 protein spots and 6 metabolites were significantly increased or decreased in both CRC and fetal serum groups compared with the healthy adult group. Data from supervised predictive models allowed a separation of 93.5% of CRC patients from the healthy controls using the 6 metabolites. Finally, correlation analysis was applied to establish quantitative linkages between the 5 individual metabolite 3-hydroxybutyric acid, L-valine, L-threonine, 1-deoxyglucose, and glycine and the 5 individual proteins MACF1, APOH, A2M, IGL@, and VDB. Furthermore, 10 potential oncofetal biomarkers were characterized and their potential for CRC diagnosis was validated. The integrated approach we developed will promote the translation of biomarkers with clinical value into routine clinical practice.
Warburg and Crabtree Effects in Premalignant Barrett's Esophagus Cell Lines with Active Mitochondria
Suchorolski, Martin T.; Paulson, Thomas G.; Sanchez, Carissa A.; Hockenbery, David; Reid, Brian J.
2013-01-01
Background Increased glycolysis is a hallmark of cancer metabolism, yet relatively little is known about this phenotype at premalignant stages of progression. Periodic ischemia occurs in the premalignant condition Barrett's esophagus (BE) due to tissue damage from chronic acid-bile reflux and may select for early adaptations to hypoxia, including upregulation of glycolysis. Methodology/Principal Findings We compared rates of glycolysis and oxidative phosphorylation in four cell lines derived from patients with BE (CP-A, CP-B, CP-C and CP-D) in response to metabolic inhibitors and changes in glucose concentration. We report that cell lines derived from patients with more advanced genetically unstable BE have up to two-fold higher glycolysis compared to a cell line derived from a patient with early genetically stable BE; however, all cell lines preserve active mitochondria. In response to the glycolytic inhibitor 2-deoxyglucose, the most glycolytic cell lines (CP-C and CP-D) had the greatest suppression of extra-cellular acidification, but were able to compensate with upregulation of oxidative phosphorylation. In addition, these cell lines showed the lowest compensatory increases in glycolysis in response to mitochondrial uncoupling by 2,4-dinitrophenol. Finally, these cell lines also upregulated their oxidative phosphorylation in response to glucose via the Crabtree effect, and demonstrate a greater range of modulation of oxygen consumption. Conclusions/Significance Our findings suggest that cells from premalignant Barrett's esophagus tissue may adapt to an ever-changing selective microenvironment through changes in energy metabolic pathways typically associated with cancer cells. PMID:23460817
Hwang, Jung Hwan; Kim, Yong-Hoon; Noh, Jung-Ran; Choi, Dong-Hee; Kim, Kyoung-Shim; Lee, Chul-Ho
2015-01-01
The hepatic cell death induced by acetaminophen (APAP) is closely related to cellular adenosine triphosphate (ATP) depletion, which is mainly caused by mitochondrial dysfunction. Adenosine monophosphate (AMP)-activated protein kinase (AMPK) is a key sensor of low energy status. AMPK regulates metabolic homeostasis by stimulating catabolic metabolism and suppressing anabolic pathways to increase cellular energy levels. We found that the decrease in active phosphorylation of AMPK in response to APAP correlates with decreased ATP levels, in vivo. Therefore, we hypothesized that the enhanced production of ATP via AMPK stimulation can lead to amelioration of APAP-induced liver failure. A769662, an allosteric activator of AMPK, produced a strong synergistic effect on AMPK Thr172 phosphorylation with APAP in primary hepatocytes and liver tissue. Interestingly, activation of AMPK by A769662 ameliorated the APAP-induced hepatotoxicity in C57BL/6N mice treated with APAP at a dose of 400 mg/kg intraperitoneally. However, mice treated with APAP alone developed massive centrilobular necrosis, and APAP increased their serum alanine aminotransferase and aspartate aminotransferase levels. Furthermore, A769662 administration prevented the loss of intracellular ATP without interfering with the APAP-mediated reduction of mitochondrial dysfunction. In contrast, inhibition of glycolysis by 2-deoxy-glucose eliminated the beneficial effects of A769662 on APAP-mediated liver injury. In conclusion, A769662 can effectively protect mice against APAP-induced liver injury through ATP synthesis by anaerobic glycolysis. Furthermore, stimulation of AMPK may have potential therapeutic application for APAP overdose. PMID:26434492
Induction of the Metabolic Regulator Txnip in Fasting-Induced and Natural Torpor
Hand, Laura E.; Saer, Ben R. C.; Hui, Simon T.; Jinnah, Hyder A.; Steinlechner, Stephan
2013-01-01
Torpor is a physiological state characterized by controlled lowering of metabolic rate and core body temperature, allowing substantial energy savings during periods of reduced food availability or harsh environmental conditions. The hypothalamus coordinates energy homeostasis and thermoregulation and plays a key role in directing torpor. We recently showed that mice lacking the orphan G protein-coupled receptor Gpr50 readily enter torpor in response to fasting and have now used these mice to conduct a microarray analysis of hypothalamic gene expression changes related to the torpor state. This revealed a strong induction of thioredoxin-interacting protein (Txnip) in the hypothalamus of torpid mice, which was confirmed by quantitative RT-PCR and Western blot analyses. In situ hybridization identified the ependyma lining the third ventricle as the principal site of torpor-related expression of Txnip. To characterize further the relationship between Txnip and torpor, we profiled Txnip expression in mice during prolonged fasting, cold exposure, and 2-deoxyglucose-induced hypometabolism, as well as in naturally occurring torpor bouts in the Siberian hamster. Strikingly, pronounced up-regulation of Txnip expression was only observed in wild-type mice when driven into torpor and during torpor in the Siberian hamster. Increase of Txnip was not limited to the hypothalamus, with exaggerated expression in white adipose tissue, brown adipose tissue, and liver also demonstrated in torpid mice. Given the recent identification of Txnip as a molecular nutrient sensor important in the regulation of energy metabolism, our data suggest that elevated Txnip expression is critical to regulating energy expenditure and fuel use during the extreme hypometabolic state of torpor. PMID:23584857
Jeong, H S; Park, J S; Song, I U; Chung, Y A; Rhie, S J
2017-01-01
Subjective memory impairment (SMI) may precede mild cognitive impairment (MCI) stage and would offer an earlier therapeutic opportunity than MCI would. However, it is not clear whether complaints of forgetfulness are truly reflective of objective memory dysfunction or of impairments in other cognitive domains. The aim of this current longitudinal study was to investigate changes in various cognitive functions and in regional cerebral metabolic rate of glucose (rCMRglc) among elderly women with SMI. Clinical evaluation, comprehensive neuropsychological test, and 18 F-fluoro-2-deoxyglucose positron emission tomography scans were conducted on 24 women with SMI at the baseline and 24-month follow-up. Changes in the cognitive domain scores and rCMRglc were assessed, and the relationships between them were analyzed. All participants stayed in SMI all the way till the follow-up, not converted to MCI or dementia. A significant reduction in executive function was found (mean difference in z-score: -0.21, P = 0.02) without changes in other cognitive domains. Declines in rCMRglc were detected in the left superior temporal gyrus, right posterior cingulate gyrus, left parahippocampal gyrus, right lingual gyrus, and right angular gyrus. The change in executive function had a positive correlation with the percent change of rCMRglc in the right posterior cingulate gyrus (β = 0.43, P = 0.02). Our findings suggest that elderly women with SMI symptoms should be carefully monitored for declines in executive function and related brain glucose metabolism over time. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Rohleder, Cathrin; Wiedermann, Dirk; Neumaier, Bernd; Drzezga, Alexander; Timmermann, Lars; Graf, Rudolf; Leweke, F Markus; Endepols, Heike
2016-01-01
Prepulse inhibition (PPI) is a neuropsychological process during which a weak sensory stimulus ("prepulse") attenuates the motor response ("startle reaction") to a subsequent strong startling stimulus. It is measured as a surrogate marker of sensorimotor gating in patients suffering from neuropsychological diseases such as schizophrenia, as well as in corresponding animal models. A variety of studies has shown that PPI of the acoustical startle reaction comprises three brain circuitries for: (i) startle mediation, (ii) PPI mediation, and (iii) modulation of PPI mediation. While anatomical connections and information flow in the startle and PPI mediation pathways are well known, spatial and temporal interactions of the numerous regions involved in PPI modulation are incompletely understood. We therefore combined [(18)F]fluoro-2-deoxyglucose positron-emission-tomography (FDG-PET) with PPI and resting state control paradigms in awake rats. A battery of subtractive, correlative as well as seed-based functional connectivity analyses revealed a default mode-like network (DMN) active during resting state only. Furthermore, two functional networks were observed during PPI: Metabolic activity in the lateral circuitry was positively correlated with PPI effectiveness and involved the auditory system and emotional regions. The medial network was negatively correlated with PPI effectiveness, i.e., associated with startle, and recruited a spatial/cognitive network. Our study provides evidence for two distinct neuronal networks, whose continuous interplay determines PPI effectiveness in rats, probably by either protecting the prepulse or facilitating startle processing. Discovering similar networks affected in neuropsychological disorders may help to better understand mechanisms of sensorimotor gating deficits and provide new perspectives for therapeutic strategies.
Standaert, M L; Bandyopadhyay, G; Zhou, X; Galloway, L; Farese, R V
1996-07-01
Previous studies have provided conflicting findings on whether insulin activates certain, potentially important, phospholipid signaling systems in skeletal muscle preparations. In particular, insulin effects on the hydrolysis of phosphatidylcholine (PC) and subsequent activation of protein kinase C (PKC) have not been apparent in some studies. Presently, we examined insulin effects on phospholipid signaling systems, diacylglycerol (DAG) production, and PKC translocation/activation in L6 myotubes. We found that insulin provoked rapid increases in phospholipase D (PLD)-dependent hydrolysis of PC, as evidenced by increases in choline release and phosphatidylethanol production in cells incubated in the presence of ethanol. In association with PC-PLD activation, Rho, a small G protein that is known to activate PC-PLD activation, translocated from the cytosol to the membrane fraction in response to insulin treatment. PC-PLD activation was also accompanied by increases in total DAG production and increases in the translocation of both PKC enzyme activity and DAG-sensitive PKC-alpha, -beta, -delta, and -epsilon from the cytosol to the membrane fraction. A potential role for PKC or a related protein kinase in insulin action was suggested by the finding that RO 31-8220 inhibited both PKC enzyme activity and insulin-stimulated [3H]2-deoxyglucose uptake. Our findings provide the first evidence that insulin stimulates Rho translocation and activates PC-PLD in L6 skeletal muscle cells. Moreover, this signaling system appears to lead to increases in DAG/PKC signaling, which, along with other related signaling factors, may regulate certain metabolic processes, such as glucose transport, in these cells.
Hormonal and metabolic effects of neuroglucopenia.
Molina, P E; Eltayeb, K; Hourani, H; Okamura, K; Nanney, L B; Williams, P; Abumrad, N N
1993-06-18
We examined the role of central neuroglucopenia, induced by intracerebroventricular (i.c.v.) administration of 2-deoxyglucose (2-DG), on glucose and amino acid kinetics in conscious dogs. Group 1 received i.c.v. 2-DG at 2.5 mg.kg-1 x min-1 for 15 min. Group 2 received an equal intravenous (i.v.) amount of 2-DG. In the i.c.v. group, plasma glucose levels rose from 106 +/- 4 mg/dl to a peak of 204 +/- 12 mg/dl by 90 min. Blood lactate increased from 689 +/- 1 to 2,812 +/- 5 mumol/l and blood alanine not change from basal (256 +/- 41 mumol/l). The rate of hepatic glucose production, determined isotopically, was increased 2-fold over basal (P < 0.01). Significant increases (P < 0.001) over basal were also noted in plasma epinephrine, norepinephrine, insulin, glucagon and cortisol. Leucine rate of appearance (Ra) showed a 30% decrease from basal to 2.4 +/- 0.05 mumol.kg-1 x min-1 (P < 0.01). In group 2 plasma glucose levels were not altered but plasma cortisol and glucagon showed a modest transient increase above basal (P < 0.05). No significant changes were noted in amino acid kinetics. These findings suggest that periventricular neuroglucopenia, in the absence of peripheral glucose deprivation, is accompanied by hyperglycemia secondary to enhanced hepatic glucose production with decreased glucose utilization and by increased hepatic uptake of gluconeogenic precursors. These, however, were not accompanied by increased whole body proteolysis as was previously seen with generalized glucopenia resulting from insulin-induced hypoglycemia.
Lutas, Andrew; Birnbaumer, Lutz; Yellen, Gary
2014-12-03
Neurons use glucose to fuel glycolysis and provide substrates for mitochondrial respiration, but neurons can also use alternative fuels that bypass glycolysis and feed directly into mitochondria. To determine whether neuronal pacemaking depends on active glucose metabolism, we switched the metabolic fuel from glucose to alternative fuels, lactate or β-hydroxybutyrate, while monitoring the spontaneous firing of GABAergic neurons in mouse substantia nigra pars reticulata (SNr) brain slices. We found that alternative fuels, in the absence of glucose, sustained SNr spontaneous firing at basal rates, but glycolysis may still be supported by glycogen in the absence of glucose. To prevent any glycogen-fueled glycolysis, we directly inhibited glycolysis using either 2-deoxyglucose or iodoacetic acid. Inhibiting glycolysis in the presence of alternative fuels lowered SNr firing to a slower sustained firing rate. Surprisingly, we found that the decrease in SNr firing was not mediated by ATP-sensitive potassium (KATP) channel activity, but if we lowered the perfusion flow rate or omitted the alternative fuel, KATP channels were activated and could silence SNr firing. The KATP-independent slowing of SNr firing that occurred with glycolytic inhibition in the presence of alternative fuels was consistent with a decrease in a nonselective cationic conductance. Although mitochondrial metabolism alone can prevent severe energy deprivation and KATP channel activation in SNr neurons, active glucose metabolism appears important for keeping open a class of ion channels that is crucial for the high spontaneous firing rate of SNr neurons. Copyright © 2014 the authors 0270-6474/14/3416336-12$15.00/0.
FDG uptake in cervical lymph nodes in children without head and neck cancer.
Vali, Reza; Bakari, Alaa A; Marie, Eman; Kousha, Mahnaz; Charron, Martin; Shammas, Amer
2017-06-01
Reactive cervical lymphadenopathy is common in children and may demonstrate increased 18 F-fluoro-deoxyglucose ( 18 F-FDG) uptake on positron emission tomography/computed tomography (PET/CT). We sought to evaluate the frequency and significance of 18 F-FDG uptake by neck lymph nodes in children with no history of head and neck cancer. The charts of 244 patients (114 female, mean age: 10.4 years) with a variety of tumors such as lymphoma and post-transplant lymphoproliferative diseases (PTLD), but no head and neck cancers, who had undergone 18 F-FDG PET/CT were reviewed retrospectively. Using the maximum standardized uptake value (SUVmax), increased 18 F-FDG uptake by neck lymph nodes was recorded and compared with the final diagnosis based on follow-up studies or biopsy results. Neck lymph node uptake was identified in 70/244 (28.6%) of the patients. In 38 patients, the lymph nodes were benign. In eight patients, the lymph nodes were malignant (seven PTLD and one lymphoma). In 24 patients, we were not able to confirm the final diagnosis. Seven out of the eight malignant lymph nodes were positive for PTLD. The mean SUVmax was significantly higher in malignant lesions (4.2) compared with benign lesions (2.1) (P = 0.00049). 18 F-FDG uptake in neck lymph nodes is common in children and is frequently due to reactive lymph nodes, especially when the SUVmax is <3.2. The frequency of malignant cervical lymph nodes is higher in PTLD patients compared with other groups.
Cyclic movement stimulates hyaluronan secretion into the synovial cavity of rabbit joints
Ingram, K R; Wann, A K T; Angel, C K; Coleman, P J; Levick, J R
2008-01-01
The novel hypothesis that the secretion of the joint lubricant hyaluronan (HA) is coupled to movement has implications for normal function and osteoarthritis, and was tested in the knee joints of anaesthetized rabbits. After washing out the endogenous synovial fluid HA (miscibility coefficient 0.4), secretion into the joint cavity was measured over 5 h in static joints and in passively cycled joints. The net static secretion rate (11.2 ± 0.7 μg h−1, mean ± s.e.m., n = 90) correlated with the variable endogenous HA mass (mean 367 ± 8 μg), with a normalized value of 3.4 ± 0.2 μg h−1 (100 μg)−1 . Cyclic joint movement approximately doubled the net HA secretion rate to 22.6 ± 1.2 μg h−1 (n = 77) and raised the normalized percentage to 5.9 ± 0.3 μg h−1 (100 μg)−1. Secretion was inhibited by 2-deoxyglucose and iodoacetate, confirming active secretion. The net accumulation rate underestimated true secretion rate due to some trans-synovial loss. HA turnover time (endogenous mass/secretion rate) was 17–30 h (static) to 8–15 h (moved) The results demonstrate for the first time that the active secretion of HA is coupled to joint usage. Movement–secretion coupling may protect joints against the damaging effects of repetitive joint use, replace HA lost during periods of immobility (overnight), and contribute to the clinical benefit of exercise therapy in moderate osteoarthritis. PMID:18202097
Zhou, Xiang; Chen, Ruohua; Huang, Gang; Liu, Jianjun
2017-01-01
We assessed the clinical value of 2-fluoro-2-deoxyglucose (18F-FDG) PET/CT imaging for predicting occult nodal metastasis in non-small cell lung cancer (NSCLC) patients. This retrospective study included 54 patients with T1-2N0M0 NSCLC who had undergone 18F-FDG PET/CT before surgery. Occult nodal metastasis was detected in 25.9% (14/54) of the patients. Immunohistochemical analysis revealed that increased glucose transporter 1 expression was associated with occult nodal metastasis, but hexokinase 2 expression was not. Compared to the negative nodal metastasis group, the positive nodal metastasis group was associated with increased maximum standardized uptake value (SUVmax) and tumor size. Multivariate analysis indicated that SUVmax and tumor size were associated with nodal metastasis. Nodal metastasis could be predicted with a sensitivity of 92.9% and a specificity of 55.0% when the SUVmax cutoff was 4.35. When patients were divided into low-risk (tumor size ≤ 2.5 cm and SUVmax ≤ 4.35), moderate-risk (tumor size ≤ 2.5 cm and SUVmax > 4.35 or tumor size > 2.5 cm and SUVmax ≤ 4.35) and high-risk (tumor size > 2.5 cm and SUVmax > 4.35) groups, the lymph node metastasis rates were 4.3%, 22.7%, and 88.9%, respectively. These results indicate that the combination of SUVmax and tumor size has potential clinical value for predicting occult nodal metastasis in NSCLC patients. PMID:29137276
Glucose transporters and maximal transport are increased in endurance-trained rat soleus
NASA Technical Reports Server (NTRS)
Slentz, C. A.; Gulve, E. A.; Rodnick, K. J.; Henriksen, E. J.; Youn, J. H.; Holloszy, J. O.
1992-01-01
Voluntary wheel running induces an increase in the concentration of the regulatable glucose transporter (GLUT4) in rat plantaris muscle but not in soleus muscle (K. J. Rodnick, J. O. Holloszy, C. E. Mondon, and D. E. James. Diabetes 39: 1425-1429, 1990). Wheel running also causes hypertrophy of the soleus in rats. This study was undertaken to ascertain whether endurance training that induces enzymatic adaptations but no hypertrophy results in an increase in the concentration of GLUT4 protein in rat soleus (slow-twitch red) muscle and, if it does, to determine whether there is a concomitant increase in maximal glucose transport activity. Female rats were trained by treadmill running at 25 m/min up a 15% grade, 90 min/day, 6 days/wk for 3 wk. This training program induced increases of 52% in citrate synthase activity, 66% in hexokinase activity, and 47% in immunoreactive GLUT4 protein concentration in soleus muscles without causing hypertrophy. Glucose transport activity stimulated maximally with insulin plus contractile activity was increased to roughly the same extent (44%) as GLUT4 protein content in soleus muscle by the treadmill exercise training. In a second set of experiments, we examined whether a swim-training program increases glucose transport activity in the soleus in the presence of a maximally effective concentration of insulin. The swimming program induced a 44% increase in immunoreactive GLUT4 protein concentration. Glucose transport activity maximally stimulated with insulin was 62% greater in soleus muscle of the swimmers than in untrained controls. Training did not alter the basal rate of 2-deoxyglucose uptake.(ABSTRACT TRUNCATED AT 250 WORDS).
Choi, Hye-Jung; Lee, Kyoung Jae; Hwang, Eun Ah; Mun, Kyo-Cheol; Ha, Eunyoung
2015-07-01
Carbamylation is a cyanate-mediated posttranslational modification. We previously reported that carbamylated low-density lipoprotein (cLDL) increases reactive oxygen species and apoptosis via a lectin-like oxidized LDL receptor mediated pathway in human umbilical vein endothelial cells. A recent study reported an association between cLDL and type 2 diabetes mellitus (T2DM). In the current study, the effects of cLDL on glucose transport were explored in skeletal muscle cells. The effect of cLDL on glucose uptake, glucose transporter 4 (GLUT4) translocation, and signaling pathway were examined in cultured rat L6 muscle cells using 2-deoxyglucose uptake, immunofluorescence staining and western blot analysis. The quantity of nitric oxide (NO) was evaluated by the Griess reaction. The effect of native LDL (nLDL) from patients with chronic renal failure (CRF-nLDL) on glucose uptake was also determined. It was observed that cLDL significantly attenuated glucose uptake and GLUT4 translocation to the membrane, which was mediated via the increase in inducible nitric oxide synthase (iNOS)-induced NO production. Tyrosine nitration of the insulin receptor substrate-1 (IRS‑1) was increased. It was demonstrated that CRF-nLDL markedly reduced glucose uptake compared with nLDL from healthy subjects. Collectively, these findings indicate that cLDL, alone, attenuates glucose uptake via NO-mediated tyrosine nitration of IRS‑1 in L6 rat muscle cells and suggests the possibility that cLDL is involved in the pathogenesis of T2DM.
Kaplan, Kimberly A; Chiu, Veronica M; Lukus, Peter A; Zhang, Xing; Siems, William F; Schenk, James O; Hill, Herbert H
2013-02-01
We report results of studies of global and targeted neuronal metabolomes by ambient pressure ion mobility mass spectrometry. The rat frontal cortex, striatum, and thalamus were sampled from control nontreated rats and those treated with acute cocaine or pargyline. Quantitative evaluations were made by standard additions or isotopic dilution. The mass detection limit was ~100 pmol varying with the analyte. Targeted metabolites of dopamine, serotonin, and glucose followed the rank order of distribution expected between the anatomical areas. Data was evaluated by principal component analysis on 764 common metabolites (identified by m/z and reduced mobility). Differences between anatomical areas and treatment groups were observed for 53 % of these metabolites using principal component analysis. Global and targeted metabolic differences were observed between the three anatomical areas with contralateral differences between some areas. Following drug treatments, global and targeted metabolomes were found to shift relative to controls and still maintained anatomical differences. Pargyline reduced 3,4-dihydroxyphenylacetic acid below detection limits, and 5-HIAA varied between anatomical regions. Notable findings were: (1) global metabolomes were different between anatomical areas and were altered by acute cocaine providing a broad but targeted window of discovery for metabolic changes produced by drugs of abuse; (2) quantitative analysis was demonstrated using isotope dilution and standard addition; (3) cocaine changed glucose and biogenic amine metabolism in the anatomical areas tested; and (4) the largest effect of cocaine was on the glycolysis metabolome in the thalamus confirming inferences from previous positron emission tomography studies using 2-deoxyglucose.
CRHR1 genotypes, neural circuits and the diathesis for anxiety and depression.
Rogers, J; Raveendran, M; Fawcett, G L; Fox, A S; Shelton, S E; Oler, J A; Cheverud, J; Muzny, D M; Gibbs, R A; Davidson, R J; Kalin, N H
2013-06-01
The corticotrophin-releasing hormone (CRH) system integrates the stress response and is associated with stress-related psychopathology. Previous reports have identified interactions between childhood trauma and sequence variation in the CRH receptor 1 gene (CRHR1) that increase risk for affective disorders. However, the underlying mechanisms that connect variation in CRHR1 to psychopathology are unknown. To explore potential mechanisms, we used a validated rhesus macaque model to investigate association between genetic variation in CRHR1, anxious temperament (AT) and brain metabolic activity. In young rhesus monkeys, AT is analogous to the childhood risk phenotype that predicts the development of human anxiety and depressive disorders. Regional brain metabolism was assessed with (18)F-labeled fluoro-2-deoxyglucose (FDG) positron emission tomography in 236 young, normally reared macaques that were also characterized for AT. We show that single nucleotide polymorphisms (SNPs) affecting exon 6 of CRHR1 influence both AT and metabolic activity in the anterior hippocampus and amygdala, components of the neural circuit underlying AT. We also find evidence for association between SNPs in CRHR1 and metabolism in the intraparietal sulcus and precuneus. These translational data suggest that genetic variation in CRHR1 affects the risk for affective disorders by influencing the function of the neural circuit underlying AT and that differences in gene expression or the protein sequence involving exon 6 may be important. These results suggest that variation in CRHR1 may influence brain function before any childhood adversity and may be a diathesis for the interaction between CRHR1 genotypes and childhood trauma reported to affect human psychopathology.
Martínez-Montes, Eduardo
2013-01-01
This paper aims to study the abnormal patterns of brain glucose metabolism co-variations in Alzheimer disease (AD) and Mild Cognitive Impairment (MCI) patients compared to Normal healthy controls (NC) using the Alzheimer Disease Neuroimaging Initiative (ADNI) database. The local cerebral metabolic rate for glucose (CMRgl) in a set of 90 structures belonging to the AAL atlas was obtained from Fluro-Deoxyglucose Positron Emission Tomography data in resting state. It is assumed that brain regions whose CMRgl values are significantly correlated are functionally associated; therefore, when metabolism is altered in a single region, the alteration will affect the metabolism of other brain areas with which it interrelates. The glucose metabolism network (represented by the matrix of the CMRgl co-variations among all pairs of structures) was studied using the graph theory framework. The highest concurrent fluctuations in CMRgl were basically identified between homologous cortical regions in all groups. Significant differences in CMRgl co-variations in AD and MCI groups as compared to NC were found. The AD and MCI patients showed aberrant patterns in comparison to NC subjects, as detected by global and local network properties (global and local efficiency, clustering index, and others). MCI network’s attributes showed an intermediate position between NC and AD, corroborating it as a transitional stage from normal aging to Alzheimer disease. Our study is an attempt at exploring the complex association between glucose metabolism, CMRgl covariations and the attributes of the brain network organization in AD and MCI. PMID:23894356
Goel, Atul; Nag, Pankaj; Rahuja, Neha; Srivastava, Rohit; Chaurasia, Sumit; Gautam, Sudeep; Chandra, Sharat; Siddiqi, Mohammad Imran; Srivastava, Arvind K
2014-08-25
A series of functionalized biaryl-4-carbonitriles was synthesized in three steps and evaluated for PTP-1B inhibitory activity. Among the synthesized compounds, four biaryls 6a-d showed inhibition (IC50 58-75 μM) against in vitro PTP-1B assay possibly due to interaction with amino acid residues Lys120, Tyr46 through hydrogen bonding and aromatic-aromatic interactions, respectively. Two biaryl-4-carbonitriles 6b and 6c showed improved glucose tolerance, fasting as well as postprandial blood glucose, serum total triglycerides, and increased high-density lipoprotein-cholesterol in SLM, STZ, STZ-S and C57BL/KsJ-db/db animal models. The bioanalysis of 4'-bromo-2,3-dimethyl-5-(piperidin-1-yl)biphenyl-4-carbonitrile (6b) revealed that like insulin, it increased 2-deoxyglucose uptake in skeletal muscle cells (L6 and C2C12 myotubes). The compound 6b significantly up-regulated the genes related to the insulin signaling pathways like AMPK, MAPK including glucose transporter-4 (GLUT-4) gene in muscle tissue of C57BL/KsJ-db/db mice. Furthermore, it was observed that the compound 6b up-regulated PPARα, UCP2 and HNF4α, which are key regulator of glucose, lipid, and fatty acid metabolism. Western blot analysis of the compound 6b showed that it significantly increased the phosphorylation of AMPK and p38 MAPK and ameliorated glucose uptake in C57BL/KsJ-db/db mice through the AMPK-p38 MAPK pathway. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.
Guidine, Patrícia Alves Maia; Cash, Diana; Drumond, Luciana Estefani; de Souza E Rezende, Gustavo Henrique; Massensini, André Ricardo; Williams, Steve Charles Rees; Moraes-Santos, Tasso; Moraes, Márcio Flávio Dutra; Mesquita, Michel Bernanos Soares
2014-01-01
Severe scorpion envenoming (SSE) is more frequent in children and is characterized by systemic dysfunctions with a mortality rate of up to 9%. Recent evidence shows that the central nervous system (CNS) plays a key role in triggering the cascade of symptoms present in SSE. The age-dependent role of the CNS in SSE lethality may be summarized in 3 hypotheses: (1) the shown increased blood brain barrier permeability of infants to the toxins would especially and primarily compromise neurovegetative control areas, (2) the neurons within these areas have high affinity to the toxins, and (3) the neurovascular interaction is such that SSE metabolically compromises proper function of toxin-targeted areas. A pharmacological magnetic resonance imaging paradigm was used to evaluate localized hemodynamic changes in relative cerebral blood volume (rCBV) for 30 min after the injection of TsTX, the most lethal toxin from the venom of the Tityus serrulatus scorpion. The brainstem showed significant rCBV reduction 1 min after TsTX administration, whereas rostral brain areas had delayed increase in rCBV (confirmed by laser Doppler measurements of cortical cerebral blood flow). Moreover, metabolic activity by 14C-2-deoxyglucose autoradiography showed the highest relative increase at the brainstem. To test whether TsTX has high affinity to brainstem neurons, the lateral ventricle was injected with Alexa Fluor 568 TsTX. Although some neurons showed intense fluorescence, the labeling pattern suggests that specific neurons were targeted. Altogether, these results suggest that brainstem areas involved in neurovegetative control are most likely within the primary structures triggering the cascade of symptoms present in SSE.
Gu, Jincui; Xu, Siqi; Huang, Lixia; Li, Shaoli; Wu, Jian; Xu, Junwen; Feng, Jinlun; Liu, Baomo; Zhou, Yanbin
2018-02-01
We sought to investigate the associations between pretreatment serum Carcinoembryonic antigen (CEA) level, 18 F-Fluoro-2-deoxyglucose ( 18 F-FDG) uptake value of primary tumor and epidermal growth factor receptor ( EGFR ) mutation status in non-small cell lung cancer (NSCLC). We retrospectively reviewed medical records of 210 NSCLC patients who underwent EGFR mutation test and 18 F-FDG positron emission tomography/computed tomography (PET/CT) scan before anti-tumor therapy. The associations between EGFR mutations and patients' characteristics, serum CEA, PET/CT imaging characteristics maximal standard uptake value (SUVmax) of the primary tumor were analyzed. Receiver-operating characteristic (ROC) curve was used to assess the predictive value of these factors. EGFR mutations were found in 70 patients (33.3%). EGFR mutations were more common in high CEA group (CEA ≥7.0 ng/mL) than in low CEA group (CEA <7.0 ng/mL) (40.4% vs . 27.6%; P=0.05). Females (P<0.001), non-smokers (P<0.001), patients with adenocarcinoma (P<0.001) and SUVmax <9.0 (P=0.001) were more likely to be EGFR mutation-positive. Multivariate analysis revealed that gender, tumor histology, pretreatment serum CEA level, and SUVmax were the most significant predictors for EGFR mutations. The ROC curve revealed that combining these four factors yielded a higher calculated AUC (0.80). Gender, histology, pretreatment serum CEA level and SUVmax are significant predictors for EGFR mutations in NSCLC. Combining these factors in predicting EGFR mutations has a moderate diagnostic accuracy, and is helpful in guiding anti-tumor treatment.
Hwang, Jung Hwan; Kim, Yong-Hoon; Noh, Jung-Ran; Choi, Dong-Hee; Kim, Kyoung-Shim; Lee, Chul-Ho
2015-10-01
The hepatic cell death induced by acetaminophen (APAP) is closely related to cellular adenosine triphosphate (ATP) depletion, which is mainly caused by mitochondrial dysfunction. Adenosine monophosphate (AMP)-activated protein kinase (AMPK) is a key sensor of low energy status. AMPK regulates metabolic homeostasis by stimulating catabolic metabolism and suppressing anabolic pathways to increase cellular energy levels. We found that the decrease in active phosphorylation of AMPK in response to APAP correlates with decreased ATP levels, in vivo. Therefore, we hypothesized that the enhanced production of ATP via AMPK stimulation can lead to amelioration of APAP-induced liver failure. A769662, an allosteric activator of AMPK, produced a strong synergistic effect on AMPK Thr172 phosphorylation with APAP in primary hepatocytes and liver tissue. Interestingly, activation of AMPK by A769662 ameliorated the APAP-induced hepatotoxicity in C57BL/6N mice treated with APAP at a dose of 400 mg/kg intraperitoneally. However, mice treated with APAP alone developed massive centrilobular necrosis, and APAP increased their serum alanine aminotransferase and aspartate aminotransferase levels. Furthermore, A769662 administration prevented the loss of intracellular ATP without interfering with the APAP-mediated reduction of mitochondrial dysfunction. In contrast, inhibition of glycolysis by 2-deoxy-glucose eliminated the beneficial effects of A769662 on APAP-mediated liver injury. In conclusion, A769662 can effectively protect mice against APAP-induced liver injury through ATP synthesis by anaerobic glycolysis. Furthermore, stimulation of AMPK may have potential therapeutic application for APAP overdose.
Cook, G M; Kearns, D B; Russell, J B; Reizer, J; Saier, M H
1995-09-01
Streptococcus bovis had a diauxic pattern of glucose and lactose utilization, and both of these sugars were transported by the sugar phosphotransferase system (PTS). Lactose catabolism was inducible, and S. bovis used the tagatose pathway to ferment lactose. Since a mutant that was deficient in glucose PTS activity transported lactose as fast as the wild-type, it appeared that S. bovis has separate enzyme IIs for glucose and lactose. The nonmetabolizable glucose analogue 2-deoxyglucose (2-DG) was a noncompetitive inhibitor of methyl beta-D-thiogalactopyranoside (TMG) transport, and cells that were provided with either glucose or 2-DG were unable to transport TMG or lactose. Because the glucose-PTS-deficient mutant could ferment glucose, but could not exclude TMG, it appeared that enzyme IIGlc rather than glucose catabolism per se was the critical feature of inducer exclusion. Cells that had accumulated TMG as TMG 6-phosphate expelled free TMG when glucose was added, but 2-DG was unable to cause TMG expulsion. The glucose-PTS-deficient mutant could still expel TMG in the presence of exogenous glucose. Membrane vesicles also exhibited glucose-dependent TMG exclusion and TMG expulsion. Membrane vesicles that were electroporated with phosphoenolpyruvate (PEP) and HPr retained TMG for more than 3 min, but vesicles that were electroporated with PEP plus HPr and fructose 1,6-diphosphate (FDP) (or glycerate 2-phosphate) lost their ability to retain TMG. Because FDP was able to trigger the ATP-dependent phosphorylation of HPr, it appeared that inducer expulsion was mediated by an FDP-activated protein kinase.(ABSTRACT TRUNCATED AT 250 WORDS)
Sex differences in Alzheimer risk: Brain imaging of endocrine vs chronologic aging.
Mosconi, Lisa; Berti, Valentina; Quinn, Crystal; McHugh, Pauline; Petrongolo, Gabriella; Varsavsky, Isabella; Osorio, Ricardo S; Pupi, Alberto; Vallabhajosula, Shankar; Isaacson, Richard S; de Leon, Mony J; Brinton, Roberta Diaz
2017-09-26
This observational multimodality brain imaging study investigates emergence of endophenotypes of late-onset Alzheimer disease (AD) risk during endocrine transition states in a cohort of clinically and cognitively normal women and age-matched men. Forty-two 40- to 60-year-old cognitively normal women (15 asymptomatic perimenopausal by age [CNT], 13 perimenopausal [PERI], and 14 postmenopausal [MENO]) and 18 age- and education-matched men were examined. All patients had volumetric MRI, 18 F-fluoro-2-deoxyglucose (FDG)-PET (glucose metabolism), and Pittsburgh compound B-PET scans (β-amyloid [Aβ] deposition, a hallmark of AD pathology). As expected, the MENO group was older than the PERI and CNT groups. Otherwise, groups were comparable on clinical and neuropsychological measures and APOE4 distribution. Compared to CNT women and to men, and controlling for age, PERI and MENO groups exhibited increased indicators of AD endophenotype, including hypometabolism, increased Aβ deposition, and reduced gray and white matter volumes in AD-vulnerable regions ( p < 0.001). AD biomarker abnormalities were greatest in MENO, intermediate in PERI, and lowest in CNT women ( p < 0.001). Aβ deposition was exacerbated in APOE4 -positive MENO women relative to the other groups ( p < 0.001). Multimodality brain imaging indicates sex differences in development of the AD endophenotype, suggesting that the preclinical AD phase is early in the female aging process and coincides with the endocrine transition of perimenopause. These data indicate that the optimal window of opportunity for therapeutic intervention in women is early in the endocrine aging process. © 2017 American Academy of Neurology.
Preliminary Evidence for Adipocytokine Signals in Skeletal Muscle Glucose Uptake.
Kudoh, Akihiro; Satoh, Hiroaki; Hirai, Hiroyuki; Watanabe, Tsuyoshi; Shimabukuro, Michio
2018-01-01
The cross talk between the adipose tissue and insulin target tissues is a key mechanism for obesity-associated insulin resistance. However, the precise role of the interaction between the skeletal muscle and adipose tissue for insulin signaling and glucose uptake is questionable. L6 myocytes were co-cultured with or without 3T3-L1 adipocytes (~5 × 10 3 cells/cm 2 ) up to 24 h. Glucose uptake was evaluated by 2-[ 3 H] deoxyglucose uptake assay. Levels of mRNA expression of Glut1 and Glut4 and mitochondrial enzymes were analyzed by quantitative real-time reverse transcription polymerase chain reaction. Levels of Glut1 and Glut4 protein and phosphorylation of Akt (Ser473 and Thr308) were analyzed by immunoblotting. Study 1: co-culture with 3T3-L1 adipocytes increased glucose uptake in dose- and time-dependent manner in L6 myocytes under insulin-untreated conditions. When co-cultured with 3T3-L1 cells, reactive oxygen species production and levels of Glut1 mRNA and protein were increased in L6 cells, while these changes were abrogated and the glucose uptake partially inhibited by antioxidant treatment. Study 2: co-culture with 3T3-L1 adipocytes suppressed insulin-stimulated glucose uptake in L6 myocytes. Insulin-induced Akt phosphorylation at Ser473 decreased, which was proportional to 3T3-L1 density. Antioxidant treatment partially reversed this effect. Interactions between skeletal muscle and adipose tissues are important for glucose uptake under insulin-untreated or -treated condition through oxygen stress mechanism.
Lyoo, C H; Jeong, Y; Ryu, Y H; Lee, S Y; Song, T J; Lee, J H; Rinne, J O; Lee, M S
2008-02-01
To study the effect of disease duration on the clinical, neuropsychological and [(18)F]-deoxyglucose (FDG) PET findings in patients with mixed type multiple system atrophy (MSA), this study included 16 controls and 37 mixed-type MSA patients with a shorter than a 3-year history of cerebellar or parkinsonian symptoms. We classified the patients into three groups according to the duration of parkinsonian or cerebellar symptoms (Group I =
Walls, Anne B; Sickmann, Helle M; Brown, Angus; Bouman, Stephan D; Ransom, Bruce; Schousboe, Arne; Waagepetersen, Helle S
2008-05-01
The pharmacological properties of 1,4-dideoxy-1,4-imino-d-arabinitol (DAB), a potent inhibitor of glycogen phosphorylase and synthase activity in liver preparations, were characterized in different brain tissue preparations as a prerequisite for using it as a tool to investigate brain glycogen metabolism. Its inhibitory effect on glycogen phosphorylase was studied in homogenates of brain tissue and astrocytes and IC50-values close to 400 nM were found. However, the concentration of DAB needed for inhibition of glycogen shunt activity, i.e. glucose metabolism via glycogen, in intact astrocytes was almost three orders of magnitude higher. Additionally, such complete inhibition required a pre-incubation period, a finding possibly reflecting a limited permeability of the astrocytic membrane. DAB did not affect the accumulation of 2-deoxyglucose-6-phosphate indicating that the transport of DAB is not mediated by the glucose transporter. DAB had no effect on enzymes involving glucose-6-phosphate, i.e. glucose-6-phosphate dehydrogenase, phosphoglucoisomerase and hexokinase. Furthermore, DAB was evaluated in a functional preparation of the isolated mouse optic nerve, in which its presence severely reduced the ability to sustain evoked compound action potentials in the absence of glucose, a condition in which glycogen serves as an important energy substrate. Based on the experimental findings, DAB can be used to evaluate glycogen shunt activity and its functional importance in intact brain tissue and cells at a concentration of 300-1000 muM and a pre-incubation period of 1 h.
Chromium (D-phenylalanine)3 alleviates high fat-induced insulin resistance and lipid abnormalities.
Kandadi, Machender Reddy; Unnikrishnan, M K; Warrier, Ajaya Kumar Sankara; Du, Min; Ren, Jun; Sreejayan, Nair
2011-01-01
High-fat diet has been implicated as a major cause of insulin resistance and dyslipidemia. The objective of this study was to evaluate the impact of dietary-supplementation of chromium (D-phenylalanine)(3) [Cr(D-Phe)(3)] on glucose and insulin tolerance in high-fat diet fed mice. C57BL/6-mice were randomly assigned to orally receive vehicle or Cr(D-Phe)(3) (45 μg of elemental chromium/kg/day) for 8-weeks. High-fat-fed mice exhibited impaired whole-body-glucose and -insulin tolerance and elevated serum triglyceride levels compared to normal chow-fed mice. Insulin-stimulated glucose up-take in the gastrocnemius muscles, assessed as 2-[(3)H-deoxyglucose] incorporation was markedly diminished in high-fat fed mice compared to control mice. Treatment with chromium reconciled the high-fat diet-induced alterations in carbohydrate and lipid metabolism. Treatment of cultured, differentiated myotubes with palmitic acid evoked insulin resistance as evidenced by lower levels of insulin-stimulated Akt-phosphorylation, elevated JNK-phosphorylation, (assessed by Western blotting), attenuation of phosphoinositol-3-kinase activity (determined in the insulin-receptor substrate-1-immunoprecipitates by measuring the extent of phosphorylation of phosphatidylinositol by γ-(32)P-ATP), and impairment in cellular glucose up-take, all of which were inhibited by Cr(d-Phe)(3). These results suggest a beneficial effect of chromium-supplementation in insulin resistant conditions. It is likely that these effects of chromium may be mediated by augmenting downstream insulin signaling. Copyright © 2010 Elsevier Inc. All rights reserved.
Properties of the glucose phosphotransferase system of Clostridium acetobutylicum NCIB 8052
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mitchell, W.J.; Shaw, J.E.; Andrews, L.
1991-09-01
Acetone-butanol-ethanol fermentation by Clostridium acetobutylicum has been exploited on an industrial scale in the past, but for economic reasons the process has declined. However, with an increased understanding of solvent formation and the potential for genetic manipulation of the organism, this fermentation is once again receiving attention. An economical process would be founded on the use of cheap, renewable substrates, ideally carbohydrate-based waste materials. However, little is known about the mechanism and regulation of carbohydrate accumulation by C. acetobutylicum. The glucose phosphotransferase system (PTS) of C. acetobutylicum was studied by using cell extracts. The system exhibited a K{sub m} formore » glucose of 34 {mu}M, and glucose phosphorylation was inhibited competitively by mannose and 2-deoxyglucose. The analogs 3-O-methylglucoside and methyl {alpha}-glucoside did not inhibit glucose phosphorylation significantly. Activity showed no dependence on Mg{sup 2+} ions or on pH in the range 6.0 to 8.0. The PTS comprised both soluble and membrane-bound proteins, which interacted functionally with the PTSs of Clostridium pasteurianum, Bacillus subtilis, and Escherichia coli. In addition to a membrane-bound enzyme II{sup Glc}, sugar phosphorylation assays in heterologous systems incorporating extracts of pts mutants of other organisms provided evidence for enzyme I, HPr, and III{sup Glc} components. The HPr was found in the soluble fraction of C. acetobutylicum extracts, whereas enzyme I, and probably also III{sup Glc}, was present in both the soluble and membrane fractions, suggesting a membrane location in the intact cell.« less
Giorgi, F S; Pizzanelli, C; Ferrucci, M; Lazzeri, G; Faetti, M; Giusiani, M; Pontarelli, F; Busceti, C L; Murri, L; Fornai, F
2005-01-01
Seizures represent the most common neurological emergency in ecstasy abusers; however, no study addressed whether (+/-) 3,4-methylenedioxymethamphetamine ("ecstasy") per se might produce long-lasting alterations in brain excitability related to a pro-convulsant effect. C57 Black mice were treated with three regimens of (+/-) 3,4-methylenedioxymethamphetamine (5mg/kg x 2 for 1, 2 or three consecutive days). Following the last dose of (+/-) 3,4-methylenedioxymethamphetamine, during a time interval of 8 weeks, the following procedures were carried out: 1) cortical electroencephalographic recordings, including power-spectrum analysis; 2) administration of sub-threshold doses of kainate; 3) measurement of regional [(14)C]2-deoxyglucose uptake; 4) monoamine assay. We demonstrate that all mice pre-treated with (+/-) 3,4-methylenedioxymethamphetamine showed long-lasting encephalographic changes with frequencies peaking at 3-4.5 Hz at the power-spectrum analysis. This is concomitant with latent brain hyperexcitability within selected limbic brain regions, as shown by seizure facilitation and long-lasting latent metabolic hyperactivity which can be unraveled by phasic glutamate stimulation. This study sheds new light into the brain targets of (+/-) 3,4-methylenedioxymethamphetamine and discloses the occurrence of (+/-) 3,4-methylenedioxymethamphetamine-induced latent hyperexcitability within limbic areas, while it might provide a model to study in controlled experimental conditions limbic seizures and status epilepticus in C57 Black mice. Persistent changes produced by (+/-) 3,4-methylenedioxymethamphetamine in limbic brain excitability might be responsible for seizures and limbic-related disorders in chronic (+/-) 3,4-methylenedioxymethamphetamine abusers.
Takamochi, Kazuya; Mogushi, Kaoru; Kawaji, Hideya; Imashimizu, Kota; Fukui, Mariko; Oh, Shiaki; Itoh, Masayoshi; Hayashizaki, Yoshihide; Ko, Weijey; Akeboshi, Masao; Suzuki, Kenji
2017-01-01
18F-fluoro-2-deoxy-glucose (18F-FDG) positron emission tomography (PET) is a functional imaging modality based on glucose metabolism. The correlation between EGFR or KRAS mutation status and the standardized uptake value (SUV) of 18F-FDG PET scanning has not been fully elucidated. Correlations between EGFR or KRAS mutation status and clinicopathological factors including SUVmax were statistically analyzed in 734 surgically resected lung adenocarcinoma patients. Molecular causal relationships between EGFR or KRAS mutation status and glucose metabolism were then elucidated in 62 lung adenocarcinomas using cap analysis of gene expression (CAGE), a method to determine and quantify the transcription initiation activities of mRNA across the genome. EGFR and KRAS mutations were detected in 334 (46%) and 83 (11%) of the 734 lung adenocarcinomas, respectively. The remaining 317 (43%) patients had wild-type tumors for both genes. EGFR mutations were more frequent in tumors with lower SUVmax. In contrast, no relationship was noted between KRAS mutation status and SUVmax. CAGE revealed that 4 genes associated with glucose metabolism (GPI, G6PD, PKM2, and GAPDH) and 5 associated with the cell cycle (ANLN, PTTG1, CIT, KPNA2, and CDC25A) were positively correlated with SUVmax, although expression levels were lower in EGFR-mutated than in wild-type tumors. No similar relationships were noted with KRAS mutations. EGFR-mutated adenocarcinomas are biologically indolent with potentially lower levels of glucose metabolism than wild-type tumors. Several genes associated with glucose metabolism and the cell cycle were specifically down-regulated in EGFR-mutated adenocarcinomas.
Chernatynskaya, Anna V.; Looney, Benjamin; Wan, Suigui; Clare-Salzler, Michael J.
2014-01-01
Anti-CD3 antibody has been employed for various immune-mediated disorders. However, whether anti-CD3 administration leads to rapid metabolic alternation has not been well investigated. In the current study, we studied how anti-CD3 treatment affected blood glucose levels in mice. We found that anti-CD3 treatment induced immediate reduction of blood glucose after administration. Furthermore, a single dose of anti-CD3 treatment corrected hyperglycemia in all nonobese diabetic mice with recently diagnosed diabetes. This glucose-lowering effect was not attributable to major T cell produced cytokines. Of interest, when tested in a normal strain of mice (C57BL/6), the serum levels of C-peptide in anti-CD3 treated animals were significantly lower than control mice. Paradoxically, anti-CD3 treated animals were highly tolerant to exogenous glucose challenge. Additionally, we found that anti-CD3 treatment significantly induced activation of T and B cells in vitro and in vivo. Further studies demonstrated that anti-CD3 treatment lowered the glucose levels in T cell culture media and increased the intracellular transportation of 2-(N-(7-nitrobenz-2-oxa-1,3-diazol-4-yl)amino)-2 deoxyglucose (2-NBDG) particularly in activated T and B cells. In addition, injection of anti-CD3 antibodies induced enhanced levels of Glut1 expression in spleen cells. This study suggests that anti-CD3 therapy-induced hypoglycemia likely results from increased glucose transportation and consumption by the activated lymphocytes. PMID:24741590
Dawson, Neil; Thompson, Rhiannon J.; McVie, Allan; Thomson, David M.; Morris, Brian J.; Pratt, Judith A.
2012-01-01
Objective: In the present study, we employ mathematical modeling (partial least squares regression, PLSR) to elucidate the functional connectivity signatures of discrete brain regions in order to identify the functional networks subserving PCP-induced disruption of distinct cognitive functions and their restoration by the procognitive drug modafinil. Methods: We examine the functional connectivity signatures of discrete brain regions that show overt alterations in metabolism, as measured by semiquantitative 2-deoxyglucose autoradiography, in an animal model (subchronic phencyclidine [PCP] treatment), which shows cognitive inflexibility with relevance to the cognitive deficits seen in schizophrenia. Results: We identify the specific components of functional connectivity that contribute to the rescue of this cognitive inflexibility and to the restoration of overt cerebral metabolism by modafinil. We demonstrate that modafinil reversed both the PCP-induced deficit in the ability to switch attentional set and the PCP-induced hypometabolism in the prefrontal (anterior prelimbic) and retrosplenial cortices. Furthermore, modafinil selectively enhanced metabolism in the medial prelimbic cortex. The functional connectivity signatures of these regions identified a unifying functional subsystem underlying the influence of modafinil on cerebral metabolism and cognitive flexibility that included the nucleus accumbens core and locus coeruleus. In addition, these functional connectivity signatures identified coupling events specific to each brain region, which relate to known anatomical connectivity. Conclusions: These data support clinical evidence that modafinil may alleviate cognitive deficits in schizophrenia and also demonstrate the benefit of applying PLSR modeling to characterize functional brain networks in translational models relevant to central nervous system dysfunction. PMID:20810469
Lomber, Stephen G; Payne, Bertram R; Hilgetag, Claus C; Rushmore, JarrettR
2002-02-01
A contralateral hemineglect of the visual field can be induced by unilateral cooling deactivation of posterior middle suprasylvian (pMS) sulcal cortex of the posterior parietal region, and this neglect can be reversed by additional cooling deactivation of pMS cortex in the opposite hemisphere. The purpose of the present study was to test whether an enduring hemianopia induced by removal of all contiguous visual cortical areas of one hemisphere could be reversed by local cooling of pMS cortex in the opposite hemisphere. Two cats sustained large unilateral ablations of the contiguous visual areas, and cooling loops were placed in the pMS sulcus, and in contact with adjacent area 7 or posterior ectosylvian (PE) cortex of the opposite hemisphere. In both instances cooling of pMS cortex, but neither area 7 nor PE, restored a virtually normal level of orienting performance to stimuli presented anywhere in the previously hemianopic field. The reversal was highly sensitive to the extent of cooling deactivation. In a third cat, cooling deactivation of the superficial layers of the contralateral superior colliculus also restored orienting performance to a cortical ablation-induced hemianopia. This reversal was graded from center-to-periphery in a temperature-dependent manner. Neither the cortical ablation nor any of the cooling deactivations had any impact on an auditory detection and orienting task. The deactivations were localized and confirmed by reduced uptake of radiolabeled 2-deoxyglucose to be limited to the immediate vicinity of each cooling loop. The results are discussed in terms of excitation and disinhibition of visual circuits.
Osório, Camila Moreira; Latini, Alexandra; Leal, Rodrigo Bainy; de Oliveira Thais, Maria Emília Rodrigues; Vascouto, Helena Dresch; Remor, Aline Pertile; Lopes, Mark William; Linhares, Marcelo Neves; Ben, Juliana; de Paula Martins, Roberta; Prediger, Rui Daniel; Hoeller, Alexandre Ademar; Markowitsch, Hans Joachim; Wolf, Peter; Lin, Kátia; Walz, Roger
2017-12-01
Interictal hypometabolism is commonly measured by 18-fluoro-deoxyglucose Positron Emission Tomography (FDG-PET) in the temporal lobe of patients with mesial temporal lobe epilepsy (MTLE-HS). Left temporal lobe interictal FDG-PET hypometabolism has been associated with verbal memory impairment, while right temporal lobe FDG-PET hypometabolism is associated with nonverbal memory impairment. The biochemical mechanisms involved in these findings remain unknown. In comparison to healthy controls (n=21), surgically treated patients with MTLE-HS (n=32, left side=17) had significant lower scores in the Rey Auditory Verbal Learning Test (RAVLT retention and delayed), Logical Memory II (LMII), Boston Naming test (BNT), Letter Fluency and Category Fluency. We investigated whether enzymatic activities of the mitochondrial enzymes Complex I (C I), Complex II (C II), Complex IV (C IV) and Succinate Dehydrogenase (SDH) from the resected samples of the middle temporal neocortex (mTCx), amygdala (AMY) and hippocampus (HIP) were associated with performance in the RAVLT, LMII, BNT and fluency tests of our patients. After controlling for the side of hippocampus sclerosis, years of education, disease duration, antiepileptic treatment and seizure outcome after surgery, no independent associations were observed between the cognitive test scores and the analyzed mitochondrial enzymatic activities (p>0.37). Results indicate that memory and language impairment observed in MTLE-HS patients are not strongly associated with the levels of mitochondrial CI, CII, SDH and C IV enzymatic activities in the temporal lobe structures ipsilateral to the HS lesion. Copyright © 2017 Elsevier B.V. All rights reserved.
Cleasby, M E; Jarmin, S; Eilers, W; Elashry, M; Andersen, D K; Dickson, G; Foster, K
2014-04-01
Insulin resistance (IR) in skeletal muscle is a prerequisite for type 2 diabetes and is often associated with obesity. IR also develops alongside muscle atrophy in older individuals in sarcopenic obesity. The molecular defects that underpin this syndrome are not well characterized, and there is no licensed treatment. Deletion of the transforming growth factor-β family member myostatin, or sequestration of the active peptide by overexpression of the myostatin propeptide/latency-associated peptide (ProMyo) results in both muscle hypertrophy and reduced obesity and IR. We aimed to establish whether local myostatin inhibition would have a paracrine/autocrine effect to enhance glucose disposal beyond that simply generated by increased muscle mass, and the mechanisms involved. We directly injected adeno-associated virus expressing ProMyo in right tibialis cranialis/extensor digitorum longus muscles of rats and saline in left muscles and compared the effects after 17 days. Both test muscles were increased in size (by 7 and 11%) and showed increased radiolabeled 2-deoxyglucose uptake (26 and 47%) and glycogen storage (28 and 41%) per unit mass during an intraperitoneal glucose tolerance test. This was likely mediated through increased membrane protein levels of GLUT1 (19% higher) and GLUT4 (63% higher). Interestingly, phosphorylation of phosphoinositol 3-kinase signaling intermediates and AMP-activated kinase was slightly decreased, possibly because of reduced expression of insulin-like growth factor-I in these muscles. Thus, myostatin inhibition has direct effects to enhance glucose disposal in muscle beyond that expected of hypertrophy alone, and this approach may offer potential for the therapy of IR syndromes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kurumaji, A.; McCulloch, J.
1989-12-01
The effects of MK-801 (0.5 mg/kg i.v.), a non-competitive N-methyl-D-aspartate (NMDA) antagonist, upon local cerebral glucose utilization were examined in conscious, lightly restrained rats and in rats anaesthetised with halothane in nitrous oxide by means of the quantitative autoradiographic (14C)-2-deoxyglucose technique. In the conscious rats, MK-801 produced a heterogenous pattern of altered cerebral glucose utilization with significant increases being observed in 12 of the 28 regions of gray matter examined and significant decreases in 6 of the 28 regions. Pronounced increases in glucose use were observed after MK-801 in the olfactory areas and in a number of brain areas inmore » the limbic system (e.g., hippocampus molecular layer, dentate gyrus, subicular complex, posterior cingulate cortex, and mammillary body). In the cerebral cortices, large reductions in glucose use were observed after administration of MK-801, whereas in the extrapyramidal and sensory-motor areas, glucose use remained unchanged after MK-801 administration in conscious rats. In the halothane-anaesthetised rats, the pattern of altered glucose use after MK-801 differed qualitatively and quantitatively from that observed in conscious rats. In anaesthetised rats, significant reductions in glucose use were noted after MK-801 in 10 of the 28 regions examined, with no area displaying significantly increased glucose use after administration of the drug. In halothane-anaesthetised rats, MK-801 failed to change the rates of glucose use in the olfactory areas, the hippocampus molecular layer, and the dentate gyrus.« less
Andó, Rómeó D; Adori, Csaba; Kirilly, Eszter; Molnár, Eszter; Kovács, Gábor G; Ferrington, Linda; Kelly, Paul A T; Bagdy, György
2010-03-05
To assess the functional state of the serotonergic system, the acute behavioural and brain metabolic effect of SSRI antidepressants were studied during the recovery period after MDMA-induced neuronal damage. The effects of the SSRI fluoxetine and the serotonin receptor agonist meta-chloro-phenylpiperazine (m-CPP) were investigated in the social interaction test in Dark Agouti rats, 6 months after treatment with a single dose of MDMA (15 or 30 mg kg(-1), i.p.). At earlier time points these doses of MDMA have been shown to cause 30-60% loss in axonal densities in several brain regions. Densities of the serotonergic axons were assessed using serotonin-transporter and tryptophan-hydroxylase immunohistochemistry. In a parallel group of animals, brain function was examined following an acute challenge with either fluoxetine or citalopram, using 2-deoxyglucose autoradiographic imaging. Six months after MDMA treatment the densities of serotonergic axons were decreased in only a few brain areas including hippocampus and thalamus. Basal anxiety was unaltered in MDMA-treated animals. However, the acute anxiogenic effects of fluoxetine, but not m-CPP, were attenuated in animals pretreated with MDMA. The metabolic response to both citalopram and fluoxetine was normal in most of the brain areas examined with the exception of ventromedial thalamus and hippocampal sub-fields where the response was attenuated. These data provide evidence that 6 months after MDMA-induced damage serotonergic axons show recovery in most brain areas, but serotonergic functions to challenges with SSRIs including anxiety and aggression remain altered. Copyright 2009 Elsevier B.V. All rights reserved.
Glucose Transporter-1 Distribution in Fibrotic Lung Disease
Malide, Daniela; Yao, Jianhua; Nathan, Steven D.; Rosas, Ivan O.; Gahl, William A.; Moss, Joel; Gochuico, Bernadette R.
2013-01-01
Background: [18F]-2-fluoro-2-deoxyglucose (FDG)-PET scan uptake is increased in areas of fibrosis and honeycombing in patients with idiopathic pulmonary fibrosis (IPF). Glucose transporter-1 (Glut-1) is known to be the main transporter for FDG. There is a paucity of data regarding the distribution of Glut-1 and the cells responsible for FDG binding in fibrotic lung diseases. Methods: We applied immunofluorescence to localize Glut-1 in normal, IPF, and Hermansky-Pudlak syndrome (HPS) pulmonary fibrosis lung tissue specimens as well as an array of 19 different lung neoplasms. In addition, we investigated Glut-1 expression in inflammatory cells from BAL fluid (BALF) from healthy volunteers, subjects with IPF, and subjects with HPS pulmonary fibrosis. Results: In normal lung tissue, Glut-1 immunoreactivity was seen on the surface of erythrocytes. In tissue sections from fibrotic lung diseases (IPF and HPS pulmonary fibrosis), Glut-1 immunoreactivity was present on the surface of erythrocytes and inflammatory cells. BALF inflammatory cells from healthy control subjects showed no immunoreactivity; BALF cells from subjects with IPF and HPS pulmonary fibrosis showed Glut-1 immunoreactivity associated with neutrophils and alveolar macrophages. Conclusions: Glut-1 transporter expression in normal lung is limited to erythrocytes. In fibrotic lung, erythrocytes and inflammatory cells express Glut-1. Together, these data suggest that FDG-PET scan uptake in IPF could be explained by enhanced inflammatory and erythrocytes uptake due to neovascularization seen in IPF and not an upregulation of metabolic rate in pneumocytes. Thus, FDG-PET scan may detect inflammation and neovascularization in lung fibrosis. PMID:23699745
Induction of the metabolic regulator Txnip in fasting-induced and natural torpor.
Hand, Laura E; Saer, Ben R C; Hui, Simon T; Jinnah, Hyder A; Steinlechner, Stephan; Loudon, Andrew S I; Bechtold, David A
2013-06-01
Torpor is a physiological state characterized by controlled lowering of metabolic rate and core body temperature, allowing substantial energy savings during periods of reduced food availability or harsh environmental conditions. The hypothalamus coordinates energy homeostasis and thermoregulation and plays a key role in directing torpor. We recently showed that mice lacking the orphan G protein-coupled receptor Gpr50 readily enter torpor in response to fasting and have now used these mice to conduct a microarray analysis of hypothalamic gene expression changes related to the torpor state. This revealed a strong induction of thioredoxin-interacting protein (Txnip) in the hypothalamus of torpid mice, which was confirmed by quantitative RT-PCR and Western blot analyses. In situ hybridization identified the ependyma lining the third ventricle as the principal site of torpor-related expression of Txnip. To characterize further the relationship between Txnip and torpor, we profiled Txnip expression in mice during prolonged fasting, cold exposure, and 2-deoxyglucose-induced hypometabolism, as well as in naturally occurring torpor bouts in the Siberian hamster. Strikingly, pronounced up-regulation of Txnip expression was only observed in wild-type mice when driven into torpor and during torpor in the Siberian hamster. Increase of Txnip was not limited to the hypothalamus, with exaggerated expression in white adipose tissue, brown adipose tissue, and liver also demonstrated in torpid mice. Given the recent identification of Txnip as a molecular nutrient sensor important in the regulation of energy metabolism, our data suggest that elevated Txnip expression is critical to regulating energy expenditure and fuel use during the extreme hypometabolic state of torpor.
Fenoy, Albert J; Schulz, Paul E; Selvaraj, Sudhakar; Burrows, Christina L; Zunta-Soares, Giovanna; Durkin, Kathryn; Zanotti-Fregonara, Paolo; Quevedo, Joao; Soares, Jair C
2018-06-04
Deep brain stimulation (DBS) to the superolateral branch of the medial forebrain bundle (MFB) has been reported to lead to rapid antidepressant effects. In this longitudinal study, we expand upon the initial results we reported at 26 weeks (Fenoy et al., 2016), showing sustained antidepressant effects of MFB DBS on six patients with treatment-resistant depression (TRD) over 1 year. The Montgomery-Åsberg Depression Rating Scale (MADRS) was used as the primary assessment tool. Deterministic fiber tracking was used to individually map the target area; analysis was performed to compare modulated fiber tracts between patients. Intraoperatively, upon stimulation at target, responders reported immediate increases in energy and motivation. An insertional effect was seen during the 4-week sham stimulation phase from baseline (28% mean MADRS reduction, p = 0.02). However, after 1 week of initiating stimulation, three of six patients had a > 50% decrease in MADRS scores relative to baseline (43% mean MADRS reduction, p = 0.005). One patient withdrew from study participation. At 52 weeks, four of remaining five patients have > 70% decrease in MADRS scores relative to baseline (73% mean MADRS reduction, p = 0.007). Evaluation of modulated fiber tracts reveals significant common orbitofrontal connectivity to the target region in all responders. Neuropsychological testing and 18 F-fluoro-deoxyglucose-positron emission tomography cerebral metabolism evaluations performed at baseline and at 52 weeks showed minimal changes and verified safety. This longitudinal evaluation of MFB DBS demonstrated rapid antidepressant effects, as initially reported by Schlaepfer et al. (2013), and supports the use of DBS for TRD.
NASA Astrophysics Data System (ADS)
Sheth, Rahul A.; Josephson, Lee; Mahmood, Umar
2009-11-01
A fluorescent analog to 2-deoxy-2 [18F] fluoro-D-glucose position emission tomography (FDG-PET) would allow for the introduction of metabolic imaging into intraoperative and minimally invasive settings. We present through in vitro and in vivo experimentation an evaluation of 2-(N-(7-nitrobenz-2-oxa-1,3-diazol-4-yl)amino)-2-deoxyglucose (2-NBDG), a fluorescently labeled glucose molecule, as a molecular beacon of glucose utilization. The competitive inhibition of 2-NBDG uptake by excess free glucose is directly compared against FDG uptake inhibition in cultured cells. 2-NBDG uptake in the brain of a mouse experiencing a generalized seizure is measured, as well as in subcutaneously implanted tumors in mice during fed and fasting states. Localization of 2-NBDG into malignant tissues is studied by laser scanning microscopy. The clinical relevance of 2-NBDG imaging is examined by performing fluorescence colonoscopy, and by correlating preoperative FDG-PET with intraoperative fluorescence imaging. 2-NBDG exhibits a similar uptake inhibition to FDG by excess glucose in the growth media. Uptake is significantly increased in the brain of an animal experiencing seizures versus control, and in subcutaneous tumors after the animals are kept nil per os (NPO) for 24 h versus ad libidum feeding. The clinical utility of 2-NBDG is confirmed by the demonstration of very high target-to-background ratios in minimally invasive and intraoperative imaging of malignant lesions. We present an optical analog of FDG-PET to extend the applicability of metabolic imaging to minimally invasive and intraoperative settings.
Epigenetic Regulation of Glucose Transporters in Non-Small Cell Lung Cancer
O'Byrne, Kenneth J.; Baird, Anne-Marie; Kilmartin, Lisa; Leonard, Jennifer; Sacevich, Calen; Gray, Steven G.
2011-01-01
Due to their inherently hypoxic environment, cancer cells often resort to glycolysis, or the anaerobic breakdown of glucose to form ATP to provide for their energy needs, known as the Warburg effect. At the same time, overexpression of the insulin receptor in non-small cell lung cancer (NSCLC) is associated with an increased risk of metastasis and decreased survival. The uptake of glucose into cells is carried out via glucose transporters or GLUTs. Of these, GLUT-4 is essential for insulin-stimulated glucose uptake. Following treatment with the epigenetic targeting agents histone deacetylase inhibitors (HDACi), GLUT-3 and GLUT-4 expression were found to be induced in NSCLC cell lines, with minimal responses in transformed normal human bronchial epithelial cells (HBECs). Similar results for GLUT-4 were observed in cells derived from liver, muscle, kidney and pre-adipocytes. Bioinformatic analysis of the promoter for GLUT-4 indicates that it may also be regulated by several chromatin binding factors or complexes including CTCF, SP1 and SMYD3. Chromatin immunoprecipitation studies demonstrate that the promoter for GLUT-4 is dynamically remodeled in response to HDACi. Overall, these results may have value within the clinical setting as (a) it may be possible to use this to enhance fluorodeoxyglucose (18F) positron emission tomography (FDG-PET) imaging sensitivity; (b) it may be possible to target NSCLC through the use of HDACi and insulin mediated uptake of the metabolic targeting drugs such as 2-deoxyglucose (2-DG); or (c) enhance or sensitize NSCLC to chemotherapy. PMID:24212773
Baker, Mark A; Hetherington, Louise; Ecroyd, Heath; Roman, Shaun D; Aitken, R John
2004-01-15
The capacitation of mammalian spermatozoa involves the activation of a cAMP-mediated signal transduction pathway that drives tyrosine phosphorylation via mechanisms that are unique to this cell type. Controversy surrounds the impact of extracellular calcium on this process, with positive and negative effects being recorded in independent publications. We clearly demonstrate that the presence of calcium in the external medium decreases tyrosine phosphorylation in both human and mouse spermatozoa. Under these conditions, a rise in intracellular pH was recorded, however, this event was not responsible for the observed changes in phosphotyrosine expression. Rather, the impact of calcium on tyrosine phosphorylation in these cells was associated with an unexpected change in the intracellular availability of ATP. Thus, the ATP content of both human and mouse spermatozoa fell significantly when these cells were incubated in the presence of external calcium. Furthermore, the removal of glucose, or addition of 2-deoxyglucose, decreased ATP levels within human spermatozoon populations and induced a corresponding decline in phosphotyrosine expression. In contrast, the mitochondrial inhibitor rotenone had no effect on either ATP levels or tyrosine phosphorylation. Addition of the affinity-labeling probe 8-N3 ATP confirmed our prediction that spermatozoa have many calcium-dependent ATPases. Moreover, addition of the ATPase inhibitor thapsigargin, increased intracellular calcium levels, decreased ATP and suppressed tyrosine phosphorylation. Based on these findings, the present study indicates that extracellular calcium suppresses tyrosine phosphorylation by decreasing the availability of intracellular ATP, and not by activating tyrosine phosphatases or inhibiting tyrosine kinases as has been previously suggested.
Winter, Amber L.; Stuebner, Kathleen; Scott, Ruth; Ober, Christopher P.; Anderson, Kari L.; Feeney, Daniel A.; Vallera, Daniel A.; Koopmeiners, Joseph S.; Modiano, Jaime F.; Froelich, Jerry
2017-01-01
Positron Emission Tomography-Computed Tomography (PET-CT) is routinely used for staging and monitoring of human cancer patients and is becoming increasingly available in veterinary medicine. In this study, 18-fluorodeoxyglucose (18FDG)-PET-CT was used in dogs with naturally occurring splenic hemangiosarcoma (HSA) to assess its utility as a staging and monitoring modality as compared to standard radiography and ultrasonography. Nine dogs with stage-2 HSA underwent 18FDG-PET-CT following splenectomy and prior to commencement of chemotherapy. Routine staging (thoracic radiography and abdominal ultrasonography) was performed prior to 18FDG-PET-CT in all dogs. When abnormalities not identified on routine tests were noted on 18FDG-PET-CT, owners were given the option to repeat a PET-CT following treatment with eBAT. A PET-CT scan was repeated on Day 21 in three dogs. Abnormalities not observed on conventional staging tools, and most consistent with malignant disease based on location, appearance, and outcome, were detected in two dogs and included a right atrial mass and a hepatic nodule, respectively. These lesions were larger and had higher metabolic activity on the second scans. 18FDG-PET-CT has potential to provide important prognostic information and influence treatment recommendations for dogs with stage-2 HSA. Additional studies will be needed to precisely define the value of this imaging tool for staging and therapy monitoring in dogs with this and other cancers. PMID:28222142
Wang, Haiyan; Arias, Edward B; Yu, Carmen S; Verkerke, Anthony R P; Cartee, Gregory D
2017-11-09
Calorie restriction (CR; reducing calorie intake by ~40% below ad libitum) can increase glucose uptake by insulin-stimulated muscle. Because skeletal muscle is comprised of multiple, heterogeneous fiber types, our primary aim was to determine the effects of CR (initiated at 14 weeks old) and fiber type on insulin-stimulated glucose uptake by single fibers of diverse fiber types in 23-26-month-old rats. Isolated epitrochlearis muscles from AL and CR rats were incubated with [3H]-2-deoxyglucose ± insulin. Glucose uptake and fiber type were determined for single fibers dissected from the muscles. We also determined CR-effects on abundance of several key metabolic proteins in single fibers. CR resulted in: (a) significantly (p < .05 to .001) greater glucose uptake by insulin-stimulated type I, IIA, IIB, IIBX, and IIX fibers; (b) significantly (p < .05 to .001) reduced abundance of several mitochondrial electron transport chain (ETC) and oxidative phosphorylation (OxPhos) proteins in type I, IIA, and IIBX but not IIB and IIX fibers; and (c) unaltered hexokinase II abundance in each fiber type. These results demonstrate that CR can enhance glucose uptake in each fiber type of rat skeletal muscle in the absence of upregulation of the abundance of hexokinase II or key mitochondrial ETC and OxPhos proteins. © The Author 2017. Published by Oxford University Press on behalf of The Gerontological Society of America. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Márquez, C; Poirier, G L; Cordero, M I; Larsen, M H; Groner, A; Marquis, J; Magistretti, P J; Trono, D; Sandi, C
2013-01-01
Although adverse early life experiences have been found to increase lifetime risk to develop violent behaviors, the neurobiological mechanisms underlying these long-term effects remain unclear. We present a novel animal model for pathological aggression induced by peripubertal exposure to stress with face, construct and predictive validity. We show that male rats submitted to fear-induction experiences during the peripubertal period exhibit high and sustained rates of increased aggression at adulthood, even against unthreatening individuals, and increased testosterone/corticosterone ratio. They also exhibit hyperactivity in the amygdala under both basal conditions (evaluated by 2-deoxy-glucose autoradiography) and after a resident–intruder (RI) test (evaluated by c-Fos immunohistochemistry), and hypoactivation of the medial orbitofrontal (MO) cortex after the social challenge. Alterations in the connectivity between the orbitofrontal cortex and the amygdala were linked to the aggressive phenotype. Increased and sustained expression levels of the monoamine oxidase A (MAOA) gene were found in the prefrontal cortex but not in the amygdala of peripubertally stressed animals. They were accompanied by increased activatory acetylation of histone H3, but not H4, at the promoter of the MAOA gene. Treatment with an MAOA inhibitor during adulthood reversed the peripuberty stress-induced antisocial behaviors. Beyond the characterization and validation of the model, we present novel data highlighting changes in the serotonergic system in the prefrontal cortex—and pointing at epigenetic control of the MAOA gene—in the establishment of the link between peripubertal stress and later pathological aggression. Our data emphasize the impact of biological factors triggered by peripubertal adverse experiences on the emergence of violent behaviors. PMID:23321813
Ippolito, Joseph E.; Brandenburg, Matthew W.; Ge, Xia; Crowley, Jan R.; Kirmess, Kristopher M.; Som, Avik; D’Avignon, D. Andre; Arbeit, Jeffrey M.; Achilefu, Samuel; Yarasheski, Kevin E.; Milbrandt, Jeffrey
2016-01-01
Neuroendocrine prostate cancer is a lethal variant of prostate cancer that is associated with castrate-resistant growth, metastasis, and mortality. The tumor environment of neuroendocrine prostate cancer is heterogeneous and characterized by hypoxia, necrosis, and numerous mitoses. Although acidic extracellular pH has been implicated in aggressive cancer features including metastasis and therapeutic resistance, its role in neuroendocrine prostate cancer physiology and metabolism has not yet been explored. We used the well-characterized PNEC cell line as a model to establish the effects of extracellular pH (pH 6.5, 7.4, and 8.5) on neuroendocrine prostate cancer cell metabolism. We discovered that alkalinization of extracellular pH converted cellular metabolism to a nutrient consumption-dependent state that was susceptible to glucose deprivation, glutamine deprivation, and 2-deoxyglucose (2-DG) mediated inhibition of glycolysis. Conversely, acidic pH shifted cellular metabolism toward an oxidative phosphorylation (OXPHOS)-dependent state that was susceptible to OXPHOS inhibition. Based upon this mechanistic knowledge of pH-dependent metabolism, we identified that the FDA-approved anti-helminthic niclosamide depolarized mitochondrial potential and depleted ATP levels in PNEC cells whose effects were enhanced in acidic pH. To further establish relevance of these findings, we tested the effects of extracellular pH on susceptibility to nutrient deprivation and OXPHOS inhibition in a cohort of castrate-resistant prostate cancer cell lines C4-2B, PC-3, and PC-3M. We discovered similar pH-dependent toxicity profiles among all cell lines with these treatments. These findings underscore a potential importance to acidic extracellular pH in the modulation of cell metabolism in tumors and development of an emerging paradigm that exploits the synergy of environment and therapeutic efficacy in cancer. PMID:27438712
Glucosensing capacity of rainbow trout telencephalon.
Otero-Rodiño, C; Rocha, A; Álvarez-Otero, R; Ceinos, R M; López-Patiño, M A; Míguez, J M; Cerdá-Reverter, J M; Soengas, J L
2018-03-01
To assess the hypothesis of glucosensing systems present in fish telencephalon, we first demonstrated in rainbow trout, by in situ hybridisation, the presence of glucokinase (GK). Then, we assessed the response of glucosensing markers in rainbow trout telencephalon 6 hours after i.c.v. treatment with glucose or 2-deoxyglucose (inducing glucoprivation). We evaluated the response of parameters related to the mechanisms dependent on GK, liver X receptor (LXR), mitochondrial activity, sweet taste receptor and sodium-glucose linked transporter 1 (SGLT-1). We also assessed mRNA abundance of neuropeptides involved in the metabolic control of food intake (agouti-related protein, neuropeptide Y, pro-opiomelanocortin, and cocaine- and amphetamine-related transcript), as well as the abundance and phosphorylation status of proteins possibly involved in linking glucosensing with neuropeptide expression, such as protein kinase B (AkT), AMP-activated protein kinase (AMPK), mechanistic target of rapamycin and cAMP response element-binding protein (CREB). The responses obtained support the presence in the telencephalon of a glucosensing mechanism based on GK and maybe one based on LXR, although they do not support the presence of mechanisms dependent on mitochondrial activity and SGLT-1. The mechanism based on sweet taste receptor responded to glucose but in a converse way to that characterised previously in the hypothalamus. In general, systems responded only to glucose but not to glucoprivation. Neuropeptides did not respond to glucose or glucoprivation. By contrast, the presence of glucose activates Akt and inhibits AMPK, CREB and forkhead box01. This is the first study in any vertebrate species in which the response to glucose of putative glucosensing mechanisms is demonstrated in the telencephalon. Their role might relate to processes other than homeostatic control of food intake, such as the hedonic and reward system. © 2018 British Society for Neuroendocrinology.
Caffeine inhibition of GLUT1 is dependent on the activation state of the transporter.
Gunnink, Leesha K; Busscher, Brianna M; Wodarek, Jeremy A; Rosette, Kylee A; Strohbehn, Lauren E; Looyenga, Brendan D; Louters, Larry L
2017-06-01
Caffeine has been shown to be a robust uncompetitive inhibitor of glucose uptake in erythrocytes. It preferentially binds to the nucleotide-binding site on GLUT1 in its tetrameric form and mimics the inhibitory action of ATP. Here we demonstrate that caffeine is also a dose-dependent, uncompetitive inhibitor of 2-deoxyglucose (2DG) uptake in L929 fibroblasts. The inhibitory effect on 2DG uptake in these cells was reversible with a rapid onset and was additive to the competitive inhibitory effects of glucose itself, confirming that caffeine does not interfere with glucose binding. We also report for the first time that caffeine inhibition was additive to inhibition by curcumin, suggesting distinct binding sites for curcumin and caffeine. In contrast, caffeine inhibition was not additive to that of cytochalasin B, consistent with previous data that reported that these two inhibitors have overlapping binding sites. More importantly, we show that the magnitude of maximal caffeine inhibition in L929 cells is much lower than in erythrocytes (35% compared to 90%). Two epithelial cell lines, HCLE and HK2, have both higher concentrations of GLUT1 and increased basal 2DG uptake (3-4 fold) compared to L929 cells, and subsequently display greater maximal inhibition by caffeine (66-70%). Interestingly, activation of 2DG uptake (3-fold) in L929 cells by glucose deprivation shifted the responsiveness of these cells to caffeine inhibition (35%-70%) without a change in total GLUT1 concentration. These data indicate that the inhibition of caffeine is dependent on the activity state of GLUT1, not merely on the concentration. Copyright © 2017 Elsevier B.V. and Société Française de Biochimie et Biologie Moléculaire (SFBBM). All rights reserved.
Rodrigues-Ferreira, Clara; da Silva, Ana Paula Pereira; Galina, Antonio
2012-02-01
The alkylating agent 3-Bromopyruvate (3-BrPA) has been used as an anti-tumoral drug due to its anti-proliferative property in hepatomas cells. This propriety is believed to disturb glycolysis and respiration, which leads to a decreased rate of ATP synthesis. In this study, we evaluated the effects of the alkylating agent 3-BrPA on the respiratory states and the metabolic steps of the mitochondria of mice liver, brain and in human hepatocarcinoma cell line HepG2. The mitochondrial membrane potential (ΔΨ(m)), O(2) consumption and dehydrogenase activities were rapidly dissipated/or inhibited by 3-BrPA in respiration medium containing ADP and succinate as respiratory substrate. 3-BrPA inhibition was reverted by reduced glutathione (GSH). Respiration induced by yeast soluble hexokinase (HK) was rapidly inhibited by 3-BrPA. Similar results were observed using mice brain mitochondria that present HK naturally bound to the outer mitochondrial membrane. When the adenine nucleotide transporter (ANT) was blocked by the carboxyatractiloside, the 3-BrPA effect was significantly delayed. In permeabilized human hepatoma HepG2 cells that present HK type II bound to mitochondria (mt-HK II), the inhibiting effect occurred faster when the endogenous HK activity was activated by 2-deoxyglucose (2-DOG). Inhibition of mt-HK II by glucose-6-phosphate retards the mitochondria to react with 3-BrPA. The HK activities recovered in HepG2 cells treated or not with 3-BrPA were practically the same. These results suggest that mitochondrially bound HK supporting the ADP/ATP exchange activity levels facilitates the 3-BrPA inhibition reaction in tumors mitochondria by a proton motive force-dependent dynamic equilibrium between sensitive and less sensitive SDH in the electron transport system.
Rieber, Manuel; Strasberg-Rieber, Mary
2014-03-15
Most breast cancers express the estrogen receptor alpha (ERα(+)), harbor wt TP53, depend on estrogen/ERK signalling for proliferation, and respond to anti-estrogens. However, concomittant activation of the epidermal growth factor receptor (EGFR)/MEK pathway promotes resistance by decreasing estrogen dependence. Previously, we showed that retroviral transduction of mutant p53 R175H into wt TP53 ERα(+) MCF-7 cells induces epidermal growth factor (EGF)-independent proliferation, activation of the EGF receptor (p-EGFR) and some characteristics of epithelial-mesenchymal transition (EMT). To investigate whether p53 inactivation augments ERα(+) cell proliferation in response to restrictive estradiol, chemical MEK inhibition or metabolic inhibitors. Introduction of mutant p53 R175H lowered expression of p53-dependent PUMA and p21WAF1, decreased E-cadherin and cytokeratin 18 associated with EMT, but increased the % of proliferating ERα(+)/Ki67 cells, diminishing estrogen dependence. These cells also exhibited higher proliferation in the presence of MEK-inhibitor UO126, reciprocally correlating with preferential susceptibility to the pyruvate analog 3-bromopyruvate (3-BrPA) without a comparable response to 2-deoxyglucose. p53 siRNA silencing by electroporation in wt TP53 MCF-7 cells also decreased estrogen dependence and response to MEK inhibition, while also conferring susceptibility to 3-BrPA. (a) ERα(+) breast cancer cells dysfunctional for TP53 which proliferate irrespective of low estrogen and chemical MEK inhibition are likely to increase metabolic consumption becoming increasingly susceptible to 3-BrPA; (b) targeting the pyruvate pathway may improve response to endocrine therapy in ERα(+) breast cancer with p53 dysfunction. Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Lartizien, Carole; Marache-Francisco, Simon; Prost, Rémy
2012-02-01
Positron emission tomography (PET) using fluorine-18 deoxyglucose (18F-FDG) has become an increasingly recommended tool in clinical whole-body oncology imaging for the detection, diagnosis, and follow-up of many cancers. One way to improve the diagnostic utility of PET oncology imaging is to assist physicians facing difficult cases of residual or low-contrast lesions. This study aimed at evaluating different schemes of computer-aided detection (CADe) systems for the guided detection and localization of small and low-contrast lesions in PET. These systems are based on two supervised classifiers, linear discriminant analysis (LDA) and the nonlinear support vector machine (SVM). The image feature sets that serve as input data consisted of the coefficients of an undecimated wavelet transform. An optimization study was conducted to select the best combination of parameters for both the SVM and the LDA. Different false-positive reduction (FPR) methods were evaluated to reduce the number of false-positive detections per image (FPI). This includes the removal of small detected clusters and the combination of the LDA and SVM detection maps. The different CAD schemes were trained and evaluated based on a simulated whole-body PET image database containing 250 abnormal cases with 1230 lesions and 250 normal cases with no lesion. The detection performance was measured on a separate series of 25 testing images with 131 lesions. The combination of the LDA and SVM score maps was shown to produce very encouraging detection performance for both the lung lesions, with 91% sensitivity and 18 FPIs, and the liver lesions, with 94% sensitivity and 10 FPIs. Comparison with human performance indicated that the different CAD schemes significantly outperformed human detection sensitivities, especially regarding the low-contrast lesions.
Kråkenes, Jostein; Brauckhoff, Katrin; Haugland, Hans Kristian; Heinecke, Achim; Akslen, Lars A; Varhaug, Jan Erik; Brauckhoff, Michael
2015-01-01
Background Positron emission tomography (PET) using fluor-18-deoxyglucose (18F-FDG) with or without computed tomography (CT) is generally accepted as the most sensitive imaging modality for diagnosing recurrent differentiated thyroid cancer (DTC) in patients with negative whole body scintigraphy with iodine-131 (I-131). Purpose To assess the potential incremental value of ultrasound (US) over 18F-FDG-PET-CT. Material and Methods Fifty-one consecutive patients with suspected recurrent DTC were prospectively evaluated using the following multimodal imaging protocol: (i) US before PET (pre-US) with or without fine needle biopsy (FNB) of suspicious lesions; (ii) single photon emission computed tomography (≥3 GBq I-131) with co-registered CT (SPECT-CT); (iii) 18F-FDG-PET with co-registered contrast-enhanced CT of the neck; (iv) US in correlation with the other imaging modalities (post-US). Postoperative histology, FNB, and long-term follow-up (median, 2.8 years) were taken as composite gold standard. Results Fifty-eight malignant lesions were identified in 34 patients. Forty lesions were located in the neck or upper mediastinum. On receiver operating characteristics (ROC) analysis, 18F-FDG-PET had a limited lesion-based specificity of 59% at a set sensitivity of 90%. Pre-US had poor sensitivity and specificity of 52% and 53%, respectively, increasing to 85% and 94% on post-US, with knowledge of the PET/CT findings (P < 0.05 vs. PET and pre-US). Multimodal imaging changed therapy in 15 out of 51 patients (30%). Conclusion In patients with suspected recurrent DTC, supplemental targeted US in addition to 18F-FDG-PET-CT increases specificity while maintainin sensitivity, as non-malignant FDG uptake in cervical lesions can be confirmed. PMID:25770086
Oncogene pathway activation in mammary tumors dictates [18F]-FDG-PET uptake
Alvarez, James V.; Belka, George K.; Pan, Tien-chi; Chen, Chien-Chung; Blankemeyer, Eric; Alavi, Abass; Karp, Joel; Chodosh, Lewis A.
2015-01-01
Increased glucose utilization is a hallmark of human cancer that is used to image tumors clinically. In this widely used application, glucose uptake by tumors is monitored by positron emission tomography (PET) of the labeled glucose analog F-18-2-fluoro-2-deoxyglucose (18F-FDG). Despite its widespread clinical use, the cellular and molecular mechanisms that determine FDG uptake - a tool that can monitor tumor heterogeneity - remain poorly understood. In this study, we compared FDG uptake in mammary tumors driven by the Akt1, c-MYC, HER2/neu, Wnt1 or H-Ras oncogenes in genetically engineered mice, correlating it to tumor growth, cell proliferation and levels of gene expression involved in key steps of glycolytic metabolism. We found that FDG uptake by tumors was dictated principally by the driver oncogene and was not independently associated with tumor growth or cellular proliferation. Oncogene downregulation resulted in a rapid decrease in FDG uptake, preceding effects on tumor regression, irrespective of the baseline level of uptake. FDG uptake correlated positively with expression of hexokinase-2 (HK2) and HIF-1α and associated negatively with PFK-2b expression and p-AMPK. The correlation of HK2 and FDG uptake was independent of all variables tested, including the initiating oncogene, suggesting that HK2 is an independent predictor of FDG uptake. In contrast, expression of Glut1 was correlated with FDG uptake only in tumors driven by Akt or HER2/neu. Together, these results showed that the oncogenic pathway activated within a tumor is a primary determinant of its FDG uptake, mediated by key glycolytic enzymes that provide a framework to interpret effects on this key parameter in clinical imaging. PMID:25239452
O'Sullivan, Finbarr; Muzi, Mark; Mankoff, David A; Eary, Janet F; Spence, Alexander M; Krohn, Kenneth A
2014-06-01
Most radiotracers used in dynamic positron emission tomography (PET) scanning act in a linear time-invariant fashion so that the measured time-course data are a convolution between the time course of the tracer in the arterial supply and the local tissue impulse response, known as the tissue residue function. In statistical terms the residue is a life table for the transit time of injected radiotracer atoms. The residue provides a description of the tracer kinetic information measurable by a dynamic PET scan. Decomposition of the residue function allows separation of rapid vascular kinetics from slower blood-tissue exchanges and tissue retention. For voxel-level analysis, we propose that residues be modeled by mixtures of nonparametrically derived basis residues obtained by segmentation of the full data volume. Spatial and temporal aspects of diagnostics associated with voxel-level model fitting are emphasized. Illustrative examples, some involving cancer imaging studies, are presented. Data from cerebral PET scanning with 18 F fluoro-deoxyglucose (FDG) and 15 O water (H2O) in normal subjects is used to evaluate the approach. Cross-validation is used to make regional comparisons between residues estimated using adaptive mixture models with more conventional compartmental modeling techniques. Simulations studies are used to theoretically examine mean square error performance and to explore the benefit of voxel-level analysis when the primary interest is a statistical summary of regional kinetics. The work highlights the contribution that multivariate analysis tools and life-table concepts can make in the recovery of local metabolic information from dynamic PET studies, particularly ones in which the assumptions of compartmental-like models, with residues that are sums of exponentials, might not be certain.
Coleman, Robert A.; Liang, Christopher; Patel, Rima; Ali, Sarah
2017-01-01
Objective: Imaging animal models of Alzheimer disease (AD) is useful for the development of therapeutic drugs and understanding AD. Transgenic Swedish hAPPswe Tg2576 mice are a good model of β-amyloid plaques. We report 18F-fluoro-2-deoxyglucose (18F-FDG) positron emission tomography (PET) imaging of brain and intrascapular brown adipose tissue (IBAT) in transgenic mice 2576 (Tg2576) and wild-type (WT) mice. Methods: Transgenic Tg2576 mice and WT mice, >18 months were injected intraperitonally with ≈ 25 to 30 MBq 18F-FDG while awake. After 60 minutes, they were anesthetized with isoflurane (2.5%) and imaged with Inveon MicroPET. Select mice were killed, imaged ex vivo, and 20 µm sections cut for autoradiography. 18F-FDG uptake in brain and IBAT PET and brain autoradiographs were analyzed. Results: Fasting blood glucose levels averaged 120 mg/dL for WT and 100 mg/dL for Tg2576. Compared to WT, Tg2576 mice exhibited a decrease in SUVglc in the various brain regions. Average reductions in the cerebrum regions were as high as −20%, while changes in cerebellum were −3%. Uptake of 18F-FDG in IBAT decreased by −60% in Tg2576 mice and was found to be significant. Intrascapular brown adipose tissue findings in Tg2576 mice are new and not previously reported. Use of blood glucose for PET data analysis and corpus callosum as reference region for autoradiographic analysis were important to detect change in Tg2576 mice. Conclusion: Our results suggest that 18F-FDG uptake in the Tg2576 mice brain show 18F-FDG deficits only when blood glucose is taken into consideration. PMID:28654383
Combined inhibition of glycolysis and AMPK induces synergistic breast cancer cell killing
Wu, Yong; Sarkissyan, Marianna; Mcghee, Eva; Lee, Sangkyu
2015-01-01
Targeting glycolysis for cancer treatment has been investigated as a therapeutic method but has not offered a feasible chemotherapeutic strategy. Our aim was to examine whether AMP-activated protein kinase (AMPK), a conditional oncogene, rescues the energetic stress and cytotoxicity induced by 2-deoxyglucose (2-DG), a glycolytic inhibitor, and the related mechanisms. Luciferin/luciferase adenosine triphosphate (ATP) determination, Western analysis, qRT-PCR analyses, MTT growth assay, clonogenic assay, and statistical analysis were performed in this study. 2-DG decreased ATP levels and subsequently activated AMPK, which contribute to intracellular ATP recovery in MCF-7 cells thus exhibiting no apparent cytotoxicity. Compound C, an AMPK inhibitor, further potentiates 2-DG-induced decrease in ATP levels and inhibits their recovery. 2-DG, via AMPK activation, stimulated cAMP response element-binding protein (CREB) phosphorylation and activity and promoted nuclear peroxisome proliferator-activated receptor gamma coactivator-1-beta (PGC-1β) and estrogen-related receptor α (ERRα) protein expression, leading to augmented mitochondrial biogenesis and expression of fatty acid oxidation (FAO) genes including PPARα, MCAD, CPT1C, and ACO. This metabolic adaptation elicited by AMPK counteracts the ATP-depleting and cancer cell-killing effect of 2-DG. However, 2-DG in combination with AMPK antagonists or small interfering RNA caused a dramatic increase in cytotoxicity in MCF-7 but not in MCF-10A cells. Similarly, when combined with inhibition of CREB/PGC-1β/ERRα pathway, 2-DG saliently suppressed mitochondrial biogenesis and the expression of FAO genes, depleted ATP production, and enhanced cytotoxicity in cancer cells. Collectively, the combination of 2-DG and AMPK inhibition synergistically enhanced the cytotoxic potential in breast cancer cells with a relative nontoxicity to normal cells and may offer a promising, safe, and effective breast cancer therapeutic strategy. PMID:25975952
NASA Astrophysics Data System (ADS)
Hacker, Henry D.; Yourick, Debra L.; Koenig, Michael K.; Slusher, Barbara S.; Meyerhoff, James L.
1999-06-01
Retinal tissue is subject to ischemia from diabetic retinopathy and other conditions that affect the retinal vasculature such as lupus erythematosus and temporal arteritis. There is evidence in animal models of reversible ischemia that a therapeutic window exists during early recovery when agents that reduce glutamate activity at its receptor sites can rescue neurons from injury. To model ischemia, we used sodium cyanide (NaCN), to inhibit oxidative metabolism, and 2-deoxyglucose (2-DG) to inhibit glycolysis. Dissociated rabbit retina cells were studied to evaluate the potential neuroprotective effects of N-acetyl-aspartyl-glutamate (MAAG), which competes with glutamate as a low-potency agonist at the NMDA receptor complex. N-acetylated α-linked acidic dipeptidase (NAALADase; the NAAG-hydrolyzing enzyme) is responsible for the hydrolysis of NAAG into glutamate, a neurotransmitter and potent excitotoxin, and N-acetylaspartate. 2-Phosphonyl-methyl pentanedioic acid (PMPA) and β-linked NAAG (β-NAAG), inhibitors of NAALADase, were also tested, since inhibition of NAALADase could reduce synaptic glutamate and increase the concentration of NAAG. We found that metabolic inhibition with NaCN/2-DG for 1 hour caused 50% toxicity as assessed with the MTT assay. Co-treatment with NAAG resulted in dose-dependent protection of up to 55% (p<0.005). When the non-hydrolyzable, NAALADase inhibitor β-NAAG was employed dose-dependent protection of up to 37% was observed (p<0.001). PMPA also showed 48% protection (p<.05-.001) against these insults. These data suggest that NAAG may antagonize the effect of glutamate at the NMDA receptor complex in retina. Inhibition of NAALADase by PMPA and β-NAAG may increase the activity of endogenous NAAG.
Regulation of sugar transport and metabolism by the Candida albicans Rgt1 transcriptional repressor.
Sexton, Jessica A; Brown, Victoria; Johnston, Mark
2007-10-01
The ability of the fungal pathogen Candida albicans to cause systemic infections depends in part on the function of Hgt4, a cell surface sugar sensor. The orthologues of Hgt4 in Saccharomyces cerevisiae, Snf3 and Rgt2, initiate a signalling cascade that inactivates Rgt1, a transcriptional repressor of genes encoding hexose transporters. To determine whether Hgt4 functions similarly through the C. albicans orthologue of Rgt1, we analysed Cargt1 deletion mutants. We found that Cargt1 mutants are sensitive to the glucose analogue 2-deoxyglucose, a phenotype probably due to uncontrolled expression of genes encoding glucose transporters. Indeed, transcriptional profiling revealed that expression of about two dozen genes, including multiple HGT genes encoding hexose transporters, is increased in the Cargt1 mutant in the absence of sugars, suggesting that CaRgt1 represses expression of several HGT genes under this condition. Some of the HGT genes (probably encoding high-affinity transporters) are also repressed by high levels of glucose, and we show that this repression is mediated by CaMig1, the orthologue of the major glucose-activated repressor in S. cerevisiae, but not by its paralogue CaMig2. Therefore, CaRgt1 and CaMig1 collaborate to control expression of C. albicans hexose transporters in response to different levels of sugars. We were surprised to find that CaRgt1 also regulates expression of GAL1, suggesting that regulation of galactose metabolism in C. albicans is unconventional. Finally, Cargt1 mutations cause cells to hyperfilament, and suppress the hypofilamented phenotype of an hgt4 mutant, indicating that the Hgt4 glucose sensor may affect filamentation by modulating sugar import and metabolism via CaRgt1. Copyright 2007 John Wiley & Sons, Ltd.
Nestle, Ursula; Rischke, Hans Christian; Eschmann, Susanne Martina; Holl, Gabriele; Tosch, Marco; Miederer, Matthias; Plotkin, Michail; Essler, Markus; Puskas, Cornelia; Schimek-Jasch, Tanja; Duncker-Rohr, Viola; Rühl, Friederike; Leifert, Anja; Mix, Michael; Grosu, Anca-Ligia; König, Jochem; Vach, Werner
2015-11-01
Oncologic imaging is a key for successful cancer treatment. While the quality assurance (QA) of image acquisition protocols has already been focussed, QA of reading and reporting offers still room for improvement. The latter was addressed in the context of a prospective multicentre trial on fluoro-deoxyglucose (FDG)-positron-emission tomography (PET)/CT-based chemoradiotherapy for locally advanced non-small cell lung cancer (NSCLC). An expert panel was prospectively installed performing blinded reviews of mediastinal NSCLC involvement in FDG-PET/CT. Due to a high initial reporting inter-observer disagreement, the independent data monitoring committee (IDMC) triggered an interventional harmonisation process, which overall involved 11 experts uttering 6855 blinded diagnostic statements. After assessing the baseline inter-observer agreement (IOA) of a blinded re-review (phase 1), a discussion process led to improved reading criteria (phase 2). Those underwent a validation study (phase 3) and were then implemented into the study routine. After 2 months (phase 4) and 1 year (phase 5), the IOA was reassessed. The initial overall IOA was moderate (kappa 0.52 CT; 0.53 PET). After improvement of reading criteria, the kappa values improved substantially (kappa 0.61 CT; 0.66 PET), which was retained until the late reassessment (kappa 0.71 CT; 0.67 PET). Subjective uncertainty was highly predictive for low IOA. The IOA of an expert panel was significantly improved by a structured interventional harmonisation process which could be a model for future clinical trials. Furthermore, the low IOA in reporting nodal involvement in NSCLC may bear consequences for individual patient care. Copyright © 2015 Elsevier Ltd. All rights reserved.
Kang, Li; Lustig, Mary E; Bonner, Jeffrey S; Lee-Young, Robert S; Mayes, Wesley H; James, Freyja D; Lin, Chien-Te; Perry, Christopher G R; Anderson, Ethan J; Neufer, P Darrell; Wasserman, David H
2012-10-15
The objective of this study was to test the hypothesis that exercise-stimulated muscle glucose uptake (MGU) is augmented by increasing mitochondrial reactive oxygen species (mtROS) scavenging capacity. This hypothesis was tested in genetically altered mice fed chow or a high-fat (HF) diet that accelerates mtROS formation. Mice overexpressing SOD2 (sod2(Tg)), mitochondria-targeted catalase (mcat(Tg)), and combined SOD2 and mCAT (mtAO) were used to increase mtROS scavenging. mtROS was assessed by the H(2)O(2) emitting potential (JH(2)O(2)) in muscle fibers. sod2(Tg) did not decrease JH(2)O(2) in chow-fed mice, but decreased JH(2)O(2) in HF-fed mice. mcat(Tg) and mtAO decreased JH(2)O(2) in both chow- and HF-fed mice. In parallel, the ratio of reduced to oxidized glutathione (GSH/GSSG) was unaltered in sod2(Tg) in chow-fed mice, but was increased in HF-fed sod2(Tg) and both chow- and HF-fed mcat(Tg) and mtAO. Nitrotyrosine, a marker of NO-dependent, reactive nitrogen species (RNS)-induced nitrative stress, was decreased in both chow- and HF-fed sod2(Tg), mcat(Tg), and mtAO mice. This effect was not changed with exercise. Kg, an index of MGU was assessed using 2-[(14)C]-deoxyglucose during exercise. In chow-fed mice, sod2(Tg), mcat(Tg), and mtAO increased exercise Kg compared with wild types. Exercise Kg was also augmented in HF-fed sod2(Tg) and mcat(Tg) mice but unchanged in HF-fed mtAO mice. In conclusion, mtROS scavenging is a key regulator of exercise-mediated MGU and this regulation depends on nutritional state.
pH regulation in glycosomes of procyclic form Trypanosoma brucei.
Lin, Sheng; Voyton, Charles; Morris, Meredith T; Ackroyd, P Christine; Morris, James C; Christensen, Kenneth A
2017-05-12
Here we report the use of a fluorescein-tagged peroxisomal targeting sequence peptide (F-PTS1, acetyl-C{K(FITC)}GGAKL) for investigating pH regulation of glycosomes in live procyclic form Trypanosoma brucei When added to cells, this fluorescent peptide is internalized within vesicular structures, including glycosomes, and can be visualized after 30-60 min. Using F-PTS1 we are able to observe the pH conditions inside glycosomes in response to starvation conditions. Previous studies have shown that in the absence of glucose, the glycosome exhibits mild acidification from pH 7.4 ± 0.2 to 6.8 ± 0.2. Our results suggest that this response occurs under proline starvation as well. This pH regulation is found to be independent from cytosolic pH and requires a source of Na + ions. Glycosomes were also observed to be more resistant to external pH changes than the cytosol; placement of cells in acidic buffers (pH 5) reduced the pH of the cytosol by 0.8 ± 0.1 pH units, whereas glycosomal pH decreases by 0.5 ± 0.1 pH units. This observation suggests that regulation of glycosomal pH is different and independent from cytosolic pH regulation. Furthermore, pH regulation is likely to work by an active process, because cells depleted of ATP with 2-deoxyglucose and sodium azide were unable to properly regulate pH. Finally, inhibitor studies with bafilomycin and EIPA suggest that both V-ATPases and Na + /H + exchangers are required for glycosomal pH regulation. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.
Mizukawa, N; Hino, A; Imahori, Y; Tenjin, H; Yano, I; Yoshino, E; Hirakawa, K; Yamashita, M; Oki, F; Nakahashi, H
1989-03-01
Blood flow and glucose metabolism of the tumors and perifocal edematous tissues were evaluated using positron emission tomography (PET). Thirty-one brain tumor cases were investigated 12 non glial tumors (9 meningiomas and 3 metastatic tumors) and 19 gliomas (these were classified in 5 astrocytomas, 7 anaplastic astrocytomas and 7 glioblastomas, according to the malignancy). The diagnosis were confirmed pathologically in 30 cases. Cerebral blood flow (CBF), cerebral metabolic rate for oxygen (CMRO2), oxygen extraction fraction (OEF) and cerebral blood volume (CBV) were measured by O-15 labeled gases inhalation methods. Cerebral metabolic rate for glucose (CMFglu) were measured by F-18 Deoxyglucose intravenous injection method and calculated by Hutchins's formula. The rate constant (ks) and lumped constant (LC) used in this study were the same as those published by Phelps et al. in 1979. The blood flow and glucose metabolic rates of tumors were measured by the same methods. The results were as follows: 1) Meningiomas showed very high blood flow and blood volume with a wide range. The OEF and metabolic rate for glucose (MRglu) values were very low. 2) Metastatic tumors showed the low values of blood flow, metabolic rate for oxygen (MRO2) and OEF. 3) The blood flow and MRglu values on gliomas were varied with no significant differences between the three subgroups. On the other hands, as the malignancy of the glioma increased, a statistically significant increase in blood volume and a decrease in OEF were noted. 4) The OEF values from the various types of tumors studied were significantly lower than those obtained from the normal tissue.(ABSTRACT TRUNCATED AT 250 WORDS)
Sex dimorphism in seizure-controlling networks.
Giorgi, Fillippo Sean; Galanopoulou, Aristea S; Moshé, Solomon L
2014-12-01
Males and females show a different predisposition to certain types of seizures in clinical studies. Animal studies have provided growing evidence for sexual dimorphism of certain brain regions, including those that control seizures. Seizures are modulated by networks involving subcortical structures, including thalamus, reticular formation nuclei, and structures belonging to the basal ganglia. In animal models, the substantia nigra pars reticulata (SNR) is the best studied of these areas, given its relevant role in the expression and control of seizures throughout development in the rat. Studies with bilateral infusions of the GABA(A) receptor agonist muscimol have identified distinct roles of the anterior or posterior rat SNR in flurothyl seizure control, that follow sex-specific maturational patterns during development. These studies indicate that (a) the regional functional compartmentalization of the SNR appears only after the third week of life, (b) only the male SNR exhibits muscimol-sensitive proconvulsant effects which, in older animals, is confined to the posterior SNR, and (c) the expression of the muscimol-sensitive anticonvulsant effects become apparent earlier in females than in males. The first three postnatal days are crucial in determining the expression of the muscimol-sensitive proconvulsant effects of the immature male SNR, depending on the gonadal hormone setting. Activation of the androgen receptors during this early period seems to be important for the formation of this proconvulsant SNR region. We describe molecular/anatomical candidates underlying these age- and sex-related differences, as derived from in vitro and in vivo experiments, as well as by [(14)C]2-deoxyglucose autoradiography. These involve sex-specific patterns in the developmental changes in the structure or physiology or GABA(A) receptors or of other subcortical structures (e.g., locus coeruleus, hippocampus) that may affect the function of seizure-controlling networks. Copyright © 2014 Elsevier Inc. All rights reserved.
Hiramoto, Tetsuya; Tanaka, Mizuki; Ichikawa, Takanori; Matsuura, Yuka; Hasegawa-Shiro, Sachiko; Shintani, Takahiro; Gomi, Katsuya
2015-09-01
In the filamentous fungus Aspergillus oryzae, amylolytic enzyme production is induced by the presence of maltose. Previously, we identified a putative maltose permease (MalP) gene in the maltose-utilizing cluster of A. oryzae. malP disruption causes a significant decrease in α-amylase activity and maltose consumption, indicating that MalP is a maltose transporter required for amylolytic enzyme production in A. oryzae. Although the expression of amylase genes and malP is repressed by the presence of glucose, the effect of glucose on the abundance of functional MalP is unknown. In this study, we examined the effect of glucose and other carbon sources on the subcellular localization of green fluorescence protein (GFP)-tagged MalP. After glucose addition, GFP-MalP at the plasma membrane was internalized and delivered to the vacuole. This glucose-induced internalization of GFP-MalP was inhibited by treatment with latrunculin B, an inhibitor of actin polymerization. Furthermore, GFP-MalP internalization was inhibited by repressing the HECT ubiquitin ligase HulA (ortholog of yeast Rsp5). These results suggest that MalP is transported to the vacuole by endocytosis in the presence of glucose. Besides glucose, mannose and 2-deoxyglucose also induced the endocytosis of GFP-MalP and amylolytic enzyme production was inhibited by the addition of these sugars. However, neither the subcellular localization of GFP-MalP nor amylolytic enzyme production was influenced by the addition of xylose or 3-O-methylglucose. These results imply that MalP endocytosis is induced when amylolytic enzyme production is repressed. Copyright © 2015 Elsevier Inc. All rights reserved.
Conti, Roberto; Mannucci, Edoardo; Pessotto, Pompeo; Tassoni, Emanuela; Carminati, Paolo; Giannessi, Fabio; Arduini, Arduino
2011-01-01
OBJECTIVE We have developed a new antihyperglycemic agent (teglicar) through the selective and reversible inhibition of the liver isoform of carnitine palmitoyl-transferase 1 (L-CPT1). RESEARCH DESIGN AND METHODS Glucose production was investigated in isolated hepatocytes and during pancreatic clamps in healthy rats. Chronic treatments on C57BL/6J, db/db, high-fat fed mice, and rats were performed to understand glucose metabolism and insulin sensitivity. RESULTS In isolated hepatocytes, teglicar concentration dependently reduced ketone bodies and glucose production up to 72 and 50%, respectively. In rats, teglicar reduced the endogenous glucose production (−62%) without affecting peripheral glucose utilization. Heart 2-[3H]deoxyglucose uptake in mice was also not affected, confirming in vivo the drug selectivity toward L-CPT1. Chronic treatment in db/db mice (50 mg/kg/bid; 45 days) reduced postabsorptive glycemia (−38%), water consumption (−31%), and fructosamine (−30%). Such antidiabetic activity was associated with an improved insulin sensitivity assessed by the insulin tolerance test. A significant 50% increase in hepatic triglyceride content (HTGC) was found, although plasma alanineaminotransferase was not altered. In addition, long-term teglicar administration to high-fat fed C57BL/6J mice normalized glycemia (−19%) and insulinemia (−53%). Long-term teglicar administration (30 days, 80 mg/kg) in healthy overnight-fasted rats slightly reduced basal glycemia (−20%, ns), reduced basal insulin levels by 60%, doubled triglycerides, and increased free-fatty acids (+53%). HTGC was markedly increased, but liver and peripheral insulin sensitivity assessed by hyperinsulinemiceuglycemic clamp were not affected. CONCLUSIONS Teglicar, in vitro and in animal models, reduces gluconeogenesis and improves glucose homeostasis, refreshing the interest in selective and reversible L-CPT1 inhibition as a potential antihyperglycemic approach. PMID:21270274
Bull, Eleanor J; Porkess, Veronica; Rigby, Michael; Hutson, Peter H; Fone, Kevin C F
2006-03-01
The current study examined the long-term effect of brief exposure to 3,4-methylenedioxymethamphetamine (MDMA) on local cerebral glucose utilization (LCGU) in specific brain regions immediately following administration of the 5-HT2A/2C receptor agonist, 1-(2,5-dimethoxy-4-iodophenyl)-2-aminopropane (DOI). Wistar rats (post-natal day (PND) 28, n = 24) were administered MDMA (5 mg/kg, i.p.) or saline (1 ml/kg, i.p.) four times daily for 2 consecutive days and core body temperature was recorded. Fifty-five days later and 10 min following injection of DOI (1 mg/kg, i.p.) or saline, LCGU was measured using the [14C]2-deoxyglucose (2-DG) technique. In the 4 hours following the initial injection (PND 28), MDMA-treated rats exhibited significant hyperthermia compared with saline-treated controls (p < 0.05-0.01). Eight weeks later, immediately following DOI challenge, LCGU was significantly elevated (an increase of 47%, p < 0.05) in the nucleus accumbens of MDMA/DOI pretreated rats, compared with that in MDMA/saline pre-treated controls. A similar trend was observed in other areas such as the lateral habenula, somatosensory cortex and hippocampal regions (percentage changes of 27-41%), but these did not reach significance. Blood glucose levels were significantly elevated in both groups of DOI-treated rats (p < 0.05-0.01). Thus, brief exposure of young rats to an MDMA regimen previously shown to cause anxiety-like behaviour and modest serotonergic neurotoxicity (Bull et al., 2004) increased DOI-induced energy metabolism in the nucleus accumbens and tended to increase metabolism in other brain regions, including the hippocampus, consistent with the induction of long-term brain region specific changes in synaptic plasticity.
Thompson, Garth J.; Grimmer, Timo; Drzezga, Alexander; Herman, Peter
2016-01-01
Abstract The evolution of functional magnetic resonance imaging to resting state (R-fMRI) allows measurement of changes in brain networks attributed to state changes, such as in neuropsychiatric diseases versus healthy controls. Since these networks are observed by comparing normalized R-fMRI signals, it is difficult to determine the metabolic basis of such group differences. To investigate the metabolic basis of R-fMRI network differences within a normal range, eyes open versus eyes closed in healthy human subjects was used. R-fMRI was recorded simultaneously with fluoro-deoxyglucose positron emission tomography (FDG-PET). Higher baseline FDG was observed in the eyes open state. Variance-based metrics calculated from R-fMRI did not match the baseline shift in FDG. Functional connectivity density (FCD)-based metrics showed a shift similar to the baseline shift of FDG, however, this was lost if R-fMRI “nuisance signals” were regressed before FCD calculation. Average correlation with the mean R-fMRI signal across the whole brain, generally regarded as a “nuisance signal,” also showed a shift similar to the baseline of FDG. Thus, despite lacking a baseline itself, changes in whole-brain correlation may reflect changes in baseline brain metabolism. Conversely, variance-based metrics may remain similar between states due to inherent region-to-region differences overwhelming the differences between normal physiological states. As most previous studies have excluded the spatial means of R-fMRI metrics from their analysis, this work presents the first evidence of a potential R-fMRI biomarker for baseline shifts in quantifiable metabolism between brain states. PMID:27029438
Carpéné, Christian; Grès, Sandra; Rascalou, Simon
2013-06-01
The antidepressant phenelzine is a monoamine oxidase inhibitor known to inhibit various other enzymes, among them semicarbazide-sensitive amine oxidase (currently named primary amine oxidase: SSAO/PrAO), absent from neurones but abundant in adipocytes. It has been reported that phenelzine inhibits adipocyte differentiation of cultured preadipocytes. To further explore the involved mechanisms, our aim was to study in vitro the acute effects of phenelzine on de novo lipogenesis in mature fat cells. Therefore, glucose uptake and incorporation into lipid were measured in mouse adipocytes in response to phenelzine, other hydrazine-based SSAO/PrAO-inhibitors, and reference agents. None of the inhibitors was able to impair the sevenfold activation of 2-deoxyglucose uptake induced by insulin. Phenelzine did not hamper the effect of lower doses of insulin. However, insulin-stimulated glucose incorporation into lipids was dose-dependently inhibited by phenelzine and pentamidine, but not by semicarbazide or BTT2052. In contrast, all these SSAO/PrAO inhibitors abolished the transport and lipogenesis stimulation induced by benzylamine. These data indicate that phenelzine does not inhibit glucose transport, the first step of lipogenesis, but inhibits at 100 μM the intracellular triacylglycerol assembly, consistently with its long-term anti-adipogenic effect and such rapid action was not found with all the hydrazine derivatives tested. Therefore, the alterations of body weight control consecutive to the use of this antidepressant drug might be not only related to central effects on food intake/energy expenditure, but could also depend on its direct action in adipocytes. Nonetheless, phenelzine antilipogenic action is not merely dependent on SSAO/PrAO inhibition.
Flepisi, T B; Lochner, Amanda; Huisamen, Barbara
2013-10-01
Glycogen synthase kinase-3 (GSK-3) is a serine-threonine protein kinase, discovered as a regulator of glycogen synthase. GSK-3 may regulate the expression of SERCA-2a potentially affecting myocardial contractility. It is known to phosphorylate and inhibit IRS-1, thus disrupting insulin signalling. This study aimed to determine whether myocardial GSK-3 protein and its substrate proteins are dysregulated in obesity and insulin resistance, and whether chronic GSK-3 inhibition can prevent or reverse this. Weight matched male Wistar rats were rendered obese by hyperphagia using a special diet (DIO) for 16 weeks and compared to chow fed controls. Half of each group was treated with the GSK-3 inhibitor CHIR118637 (30 mg/kg/day) from week 12 to16 of the diet period. Biometric and biochemical parameters were measured and protein expression determined by Western blotting and specific antibodies. Ca(2+)ATPase activity was determined spectrophotometrically. Cardiomyocytes were prepared by collagenase perfusion and insulin stimulated 2-deoxy-glucose uptake determined. DIO rats were significantly heavier than controls, associated with increased intra-peritoneal fat and insulin resistance. GSK-3 inhibition did not affect weight but improved insulin resistance, also on cellular level. It had no effect on GSK-3 expression but elevated its phospho/total ratio and elevated IRS-2 expression. Obesity lowered SERCA-2a expression and activity while GSK-3 inhibition alleviated this. The phospho/total ratio of phospholamban underscored inhibition of SERCA-2a in obesity. In addition, signs of myocardial hypertrophy were observed in treated control rats. GSK-3 inhibition could not reverse all the detrimental effects of obesity but may be harmful in normal rat hearts. It regulates IRS-2, SERCA-2a and phospholamban expression but not IRS-1.
Bhaskar, Jamuna J; Salimath, Paramahans V; Nandini, Chilkunda D
2011-06-01
Glucose uptake study plays a major role in diabetes research. Impaired glucose uptake has been implicated in the development of hyperglycemia during diabetes. Banana plant is known for its anti-diabetic properties and our earlier report revealed that banana flower and pseudostem of Musa sp. cv. elakki bale is beneficial during diabetes in rat models. The present study was designed to evaluate the potential effect of banana flower and pseudostem extracts on glucose uptake in Ehrlich ascites tumor (EAT) cells using 2-[N-(7-nitrobenz-2-oxa-1,3-diazol-4-yl)amino]-2-deoxy-D-glucose (2-NBDG), a fluorescent analogue of 2-deoxyglucose. Methanol and aqueous extracts of banana flower and pseudostem were more potent in promoting glucose uptake in EAT cells, in comparison to acetone and ethanol extracts. At 20 µg dosage, highest net glucose uptake was observed in aqueous extracts of banana flower (18.17 ± 0.43 nmol L⁻¹) and pseudostem (19.69 ± 0.41 nmol L⁻¹). Total polyphenol content was higher in methanol (9.031 ± 0.036 g kg⁻¹) and aqueous (6.862 ± 0.024 g kg⁻¹) extracts of banana flower compared to pseudostem, which were 0.442 ± 0.006 and 0.811 ± 0.011 g kg⁻¹, respectively. Banana flower and pseudostem extracts are able to promote glucose uptake into the cells, presumably through glucose transporters 1 and 3, which could be beneficial in diabetes. Glucose uptake is likely promoted by phenolic acids besides other bioactives. It can be hypothesized that consumption of nutraceutical-rich extract of banana flower and pseudostem could replace some amount of insulin being taken for diabetes. Copyright © 2011 Society of Chemical Industry.
Effects of ovariectomy and intrinsic aerobic capacity on tissue-specific insulin sensitivity
Park, Young-Min; Rector, R. Scott; Thyfault, John P.; Zidon, Terese M.; Padilla, Jaume; Welly, Rebecca J.; Meers, Grace M.; Morris, Matthew E.; Britton, Steven L.; Koch, Lauren G.; Booth, Frank W.; Kanaley, Jill A.
2015-01-01
High-capacity running (HCR) rats are protected against the early (i.e., ∼11 wk postsurgery) development of ovariectomy (OVX)-induced insulin resistance (IR) compared with low-capacity running (LCR) rats. The purpose of this study was to utilize the hyperinsulinemic euglycemic clamp to determine whether 1) HCR rats remain protected from OVX-induced IR when the time following OVX is extended to 27 wk and 2) tissue-specific glucose uptake differences are responsible for the protection in HCR rats under sedentary conditions. Female HCR and LCR rats (n = 40; aged ∼22 wk) randomly received either OVX or sham (SHM) surgeries and then underwent the clamp 27 wk following surgeries. [3-3H]glucose was used to determine glucose clearance, whereas 2-[14C]deoxyglucose (2-DG) was used to assess glucose uptake in skeletal muscle, brown adipose tissue (BAT), subcutaneous white adipose tissue (WAT), and visceral WAT. OVX decreased the glucose infusion rate and glucose clearance in both lines, but HCR had better insulin sensitivity than LCR (P < 0.05). In both lines, OVX significantly reduced glucose uptake in soleus and gastrocnemius muscles; however, HCR showed ∼40% greater gastrocnemius glucose uptake compared with LCR (P < 0.05). HCR also exhibited greater glucose uptake in BAT and visceral WAT compared with LCR (P < 0.05), yet these tissues were not affected by OVX in either line. In conclusion, OVX impairs insulin sensitivity in both HCR and LCR rats, likely driven by impairments in insulin-mediated skeletal muscle glucose uptake. HCR rats have greater skeletal muscle, BAT, and WAT insulin-mediated glucose uptake, which may aid in protection against OVX-associated insulin resistance. PMID:26646101
Debiec, Jacek; Sullivan, Regina Marie
2014-01-01
Emotional trauma is transmitted across generations. For example, children witnessing their parent expressing fear to specific sounds or images begin to express fear to those cues. Within normal range, this is adaptive, although pathological fear, such as occurs in posttraumatic stress disorder or specific phobias, is also socially transmitted to children and is thus of clinical concern. Here, using a rodent model, we report a mother-to-infant transfer of fear to a novel peppermint odor, which is dependent on the mother expressing fear to that smell in pups’ presence. Examination of pups’ neural activity using c-Fos early gene expression and 14C 2-deoxyglucose autoradiography during mother-to-infant fear transmission revealed lateral and basal amygdala nuclei activity, with a causal role highlighted by pharmacological inactivation of pups’ amygdala preventing the fear transmission. Maternal presence was not needed for fear transmission, because an elevation of pups’ corticosterone induced by the odor of the frightened mother along with a novel peppermint odor was sufficient to produce pups’ subsequent aversion to that odor. Disruption of axonal tracts from the Grueneberg ganglion, a structure implicated in alarm chemosignaling, or blockade of pups’ alarm odor-induced corticosterone increase prevented transfer of fear. These memories are acquired at younger ages compared with amygdala-dependent odor-shock conditioning and are more enduring following minimal conditioning. Our results provide clues to understanding transmission of specific fears across generations and its dependence upon maternal induction of pups’ stress response paired with the cue to induce amygdala-dependent learning plasticity. Results are discussed within the context of caregiver emotional responses and adaptive vs. pathological fears social transmission. PMID:25071168
R6/2 Huntington's disease mice develop early and progressive abnormal brain metabolism and seizures.
Cepeda-Prado, Efrain; Popp, Susanna; Khan, Usman; Stefanov, Dimitre; Rodríguez, Jorge; Menalled, Liliana B; Dow-Edwards, Diana; Small, Scott A; Moreno, Herman
2012-05-09
A hallmark feature of Huntington's disease pathology is the atrophy of brain regions including, but not limited to, the striatum. Though MRI studies have identified structural CNS changes in several Huntington's disease (HD) mouse models, the functional consequences of HD pathology during the progression of the disease have yet to be investigated using in vivo functional MRI (fMRI). To address this issue, we first established the structural and functional MRI phenotype of juvenile HD mouse model R6/2 at early and advanced stages of disease. Significantly higher fMRI signals [relative cerebral blood volumes (rCBVs)] and atrophy were observed in both age groups in specific brain regions. Next, fMRI results were correlated with electrophysiological analysis, which showed abnormal increases in neuronal activity in affected brain regions, thus identifying a mechanism accounting for the abnormal fMRI findings. [(14)C] 2-deoxyglucose maps to investigate patterns of glucose utilization were also generated. An interesting mismatch between increases in rCBV and decreases in glucose uptake was observed. Finally, we evaluated the sensitivity of this mouse line to audiogenic seizures early in the disease course. We found that R6/2 mice had an increased susceptibility to develop seizures. Together, these findings identified seizure activity in R6/2 mice and show that neuroimaging measures sensitive to oxygen metabolism can be used as in vivo biomarkers, preceding the onset of an overt behavioral phenotype. Since fMRI-rCBV can also be obtained in patients, we propose that it may serve as a translational tool to evaluate therapeutic responses in humans and HD mouse models.
Persistent cerebrovascular effects of MDMA and acute responses to the drug.
Ferrington, Linda; Kirilly, Eszter; McBean, Douglas E; Olverman, Henry J; Bagdy, György; Kelly, Paul A T
2006-07-01
Acutely, 3,4,-methylenedioxymethamphetamine (MDMA) induces cerebrovascular dysfunction [Quate et al., (2004)Psychopharmacol., 173, 287-295]. In the longer term the same single dose results in depletion of 5-hydroxytrptamine (5-HT) nerve terminals. In this study we examined the cerebrovascular consequences of this persistent neurodegeneration, and the acute effects of subsequent MDMA exposure, upon the relationship that normally exists between local cerebral blood flow (LCBF) and local cerebral glucose utilization (LCMRglu). Dark agouti (DA) rats were pre-treated with 15 mg/kg i.p. MDMA or saline. Three weeks later, rats from each pre-treatment group were treated with an acute dose of MDMA (15 mg/kg i.p.) or saline. Quantitative autoradiographic imaging was used to measure LCBF or LCMRglu with [(14)C]-iodoantipyrine and [(14)C]-2-deoxyglucose, respectively. Serotonergic terminal depletion was assessed using radioligand binding with [(3)H]-paroxetine and immunohistochemistry. Three weeks after MDMA pre-treatment there were significant reductions in densities of 5-HT transporter (SERT)-positive fibres (-46%) and [(3)H]-paroxetine binding (-47%). In animals pre-treated with MDMA there were widespread significant decreases in LCMRglu, but no change in LCBF indicating a persistent loss of cerebrovascular constrictor tone. In both pre-treatment groups, acute MDMA produced significant increases in LCMRglu, while LCBF was significantly decreased. In 50% of MDMA-pre-treated rats, random areas of focal hyperaemia indicated a loss of autoregulatory capacity in response to MDMA-induced hypertension. These results suggest that cerebrovascular regulatory dysfunction resulting from acute exposure to MDMA is not diminished by previous exposure, despite a significant depletion in 5-HT terminals. However, there may be a sub-population, or individual circumstances, in which this dysfunction develops into a condition that might predispose to stroke.
García-Krauss, Andrea; Ferrada, Luciano; Astuya, Allisson; Salazar, Katterine; Cisternas, Pedro; Martínez, Fernando; Ramírez, Eder; Nualart, Francisco
2016-11-01
Ascorbic acid (AA), the reduced form of vitamin C, is incorporated into neurons via the sodium ascorbate co-transporter SVCT2. However, this transporter is not expressed in astrocytes, which take up the oxidized form of vitamin C, dehydroascorbic acid (DHA), via the facilitative hexose transporter GLUT1. Therefore, neuron and astrocyte interactions are thought to mediate vitamin C recycling in the nervous system. Although astrocytes are essential for the antioxidant defense of neurons under oxidative stress, a condition in which a large amount of ROS is generated that may favor the extracellular oxidation of AA and the subsequent neuronal uptake of DHA via GLUT3, potentially increasing oxidative stress in neurons. This study analyzed the effects of oxidative stress and DHA uptake on neuronal cell death in vitro. Different analyses revealed the presence of the DHA transporters GLUT1 and GLUT3 in Neuro2a and HN33.11 cells and in cortical neurons. Kinetic analyses confirmed that all cells analyzed in this study possess functional GLUTs that take up 2-deoxyglucose and DHA. Thus, DHA promotes the death of stressed neuronal cells, which is reversed by incubating the cells with cytochalasin B, an inhibitor of DHA uptake by GLUT1 and GLUT3. Additionally, the presence of glial cells (U87 and astrocytes), which promote DHA recycling, reverses the observed cell death of stressed neurons. Taken together, these results indicate that DHA promotes the death of stressed neurons and that astrocytes are essential for the antioxidative defense of neurons. Thus, the astrocyte-neuron interaction may function as an essential mechanism for vitamin C recycling, participating in the antioxidative defense of the brain.
Gulec, Seza A; Daghighian, Farhad; Essner, Richard
2016-12-01
Positron emission tomography (PET) has become an invaluable part of patient evaluation in surgical oncology. PET is less than optimal for detecting lesions <1 cm, and the intraoperative localization of small PET-positive lesions can be challenging as a result of difficulties in surgical exposure. We undertook this investigation to assess the utility of a handheld high-energy gamma probe (PET-Probe) for intraoperative identification of 18 F-deoxyglucose (FDG)-avid tumors. Forty patients underwent a diagnostic whole-body FDG-PET scan for consideration for surgical exploration and resection. Before surgery, all patients received an intravenous injection of 7 to 10 mCi of FDG. At surgery, the PET-Probe was used to determine absolute counts per second at the known tumor site(s) demonstrated by whole-body PET and at adjacent normal tissue (at least 4 cm away from tumor-bearing sites). Tumor-to-background ratios were calculated. Thirty-two patients (80%) underwent PET-Probe-guided surgery with therapeutic intent in a recurrent or metastatic disease setting. Eight patients underwent surgery for diagnostic exploration. Anatomical locations of the PET-identified lesions were neck and supraclavicular (n = 8), axilla (n = 5), groin and deep iliac (n = 4), trunk and extremity soft tissue (n = 3), abdominal and retroperitoneal (n = 19), and lung (n = 2). PET-Probe detected all PET-positive lesions. The PET-Probe was instrumental in localization of lesions in 15 patients that were not immediately apparent by surgical exploration. The PET-Probe identified all lesions demonstrated by PET scanning and, in selected cases, was useful in localizing FDG-avid disease not seen with conventional PET scanning.
Park, Yun Yeon; Ahn, Ju-Hyun; Cho, Min-Guk; Lee, Jae-Ho
2018-04-27
ATP depletion inhibits cell cycle progression, especially during the G1 phase and the G2 to M transition. However, the effect of ATP depletion on mitotic progression remains unclear. We observed that the reduction of ATP after prometaphase by simultaneous treatment with 2-deoxyglucose and NaN 3 did not arrest mitotic progression. Interestingly, ATP depletion during nocodazole-induced prometaphase arrest resulted in mitotic slippage, as indicated by a reduction in mitotic cells, APC/C-dependent degradation of cyclin B1, increased cell attachment, and increased nuclear membrane reassembly. Additionally, cells successfully progressed through the cell cycle after mitotic slippage, as indicated by EdU incorporation and time-lapse imaging. Although degradation of cyclin B during normal mitotic progression is primarily regulated by APC/C Cdc20 , we observed an unexpected decrease in Cdc20 prior to degradation of cyclin B during mitotic slippage. This decrease in Cdc20 was followed by a change in the binding partner preference of APC/C from Cdc20 to Cdh1; consequently, APC/C Cdh1 , but not APC/C Cdc20 , facilitated cyclin B degradation following ATP depletion. Pulse-chase analysis revealed that ATP depletion significantly abrogated global translation, including the translation of Cdc20 and Cdh1. Additionally, the half-life of Cdh1 was much longer than that of Cdc20. These data suggest that ATP depletion during mitotic arrest induces mitotic slippage facilitated by APC/C Cdh1 -dependent cyclin B degradation, which follows a decrease in Cdc20 resulting from reduced global translation and the differences in the half-lives of the Cdc20 and Cdh1 proteins.
Glucose deprivation in tuberous sclerosis complex-related tumors
2011-01-01
Background Cancer cells possess unique metabolic phenotypes that are determined by their underlying oncogenic pathways. Activation of the PI3K/Akt/mTOR signaling cascade promotes glycolysis and leads to glucose-dependence in tumors. In particular, cells with constitutive mTORC1 activity secondary to the loss of TSC1/TSC2 function are prone to undergo apoptosis upon glucose withdrawal in vitro, but this concept has not been tested in vivo. This study examines the effects of restricting glucose metabolism by pharmacologic and dietary means in a tuberous sclerosis complex (TSC) tumor xenograft model. Results Tumor-bearing mice were randomly assigned to receive unrestricted carbohydrate-free ("Carb-free") or Western-style diet in the absence or presence of 2-deoxyglucose (2-DG) in one of four treatment groups. After 14 weeks, tumor sizes were significantly different among the four treatment groups with those receiving 2-DG having the smallest tumors. Unexpectedly, the "Carb-free" diet was associated with the largest tumors but they remained responsive to 2-DG. PET imaging showed significant treatment-related changes in tumor 18fluorodeoxyglucose-uptake but the standard uptake values did not correlate with tumor size. Alternative energy substrates such as ketone bodies and monounsaturated oleic acid supported the growth of the Tsc2-/- cells in vitro, whereas saturated palmitic acid was toxic. Correspondingly, tumors in the high-fat, "Carb-free" group showed greater necrosis and liquefaction that contributed to their larger sizes. In contrast, 2-DG treatment significantly reduced tumor cell proliferation, increased metabolic stress (i.e., ketonemia) and AMPK activity, whereas rapamycin primarily reduced cell size. Conclusions Our data support the concept of glycolytic inhibition as a therapeutic approach in TSC whereas dietary withdrawal of carbohydrates was not effective. PMID:22018000
Márquez, C; Poirier, G L; Cordero, M I; Larsen, M H; Groner, A; Marquis, J; Magistretti, P J; Trono, D; Sandi, C
2013-01-15
Although adverse early life experiences have been found to increase lifetime risk to develop violent behaviors, the neurobiological mechanisms underlying these long-term effects remain unclear. We present a novel animal model for pathological aggression induced by peripubertal exposure to stress with face, construct and predictive validity. We show that male rats submitted to fear-induction experiences during the peripubertal period exhibit high and sustained rates of increased aggression at adulthood, even against unthreatening individuals, and increased testosterone/corticosterone ratio. They also exhibit hyperactivity in the amygdala under both basal conditions (evaluated by 2-deoxy-glucose autoradiography) and after a resident-intruder (RI) test (evaluated by c-Fos immunohistochemistry), and hypoactivation of the medial orbitofrontal (MO) cortex after the social challenge. Alterations in the connectivity between the orbitofrontal cortex and the amygdala were linked to the aggressive phenotype. Increased and sustained expression levels of the monoamine oxidase A (MAOA) gene were found in the prefrontal cortex but not in the amygdala of peripubertally stressed animals. They were accompanied by increased activatory acetylation of histone H3, but not H4, at the promoter of the MAOA gene. Treatment with an MAOA inhibitor during adulthood reversed the peripuberty stress-induced antisocial behaviors. Beyond the characterization and validation of the model, we present novel data highlighting changes in the serotonergic system in the prefrontal cortex-and pointing at epigenetic control of the MAOA gene-in the establishment of the link between peripubertal stress and later pathological aggression. Our data emphasize the impact of biological factors triggered by peripubertal adverse experiences on the emergence of violent behaviors.
Delivery Rate Affects Uptake of a Fluorescent Glucose Analog in Murine Metastatic Breast Cancer
Rajaram, Narasimhan; Frees, Amy E.; Fontanella, Andrew N.; Zhong, Jim; Hansen, Katherine; Dewhirst, Mark W.; Ramanujam, Nirmala
2013-01-01
We demonstrate an optical strategy using intravital microscopy of dorsal skin flap window chamber models to image glucose uptake and vascular oxygenation in vivo. Glucose uptake was imaged using a fluorescent glucose analog, 2-[N-(7-nitrobenz-2-oxa-1,3-diaxol-4-yl)amino]-2-deoxyglucose (2-NBDG). SO2 was imaged using the differential absorption properties of oxygenated [HbO2] and deoxygenated hemoglobin [dHb]. This study was carried out on two sibling murine mammary adenocarcinoma lines, 4T1 and 4T07. 2-NBDG uptake in the 4T1 tumors was lowest when rates of delivery and clearance were lowest, indicating perfusion-limited uptake in poorly oxygenated tumor regions. For increasing rates of delivery that were still lower than the glucose consumption rate (as measured in vitro), both 2-NBDG uptake and the clearance rate from the tumor increased. When the rate of delivery of 2-NBDG exceeded the glucose consumption rate, 2-NBDG uptake decreased with any further increase in rate of delivery, but the clearance rate continued to increase. This inflection point was not observed in the 4T07 tumors due to an absence of low delivery rates close to the glucose consumption rate. In the 4T07 tumors, 2-NBDG uptake increased with increasing rates of delivery at low rates of clearance. Our results demonstrate that 2-NBDG uptake in tumors is influenced by the rates of delivery and clearance of the tracer. The rates of delivery and clearance are, in turn, dependent on vascular oxygenation of the tumors. Knowledge of the kinetics of tracer uptake as well as vascular oxygenation is essential to make an informed assessment of glucose demand of a tumor. PMID:24204635
The cerebral neurobiology of anxiety, anxiety displacement, and anxiety denial.
Gottschalk, L A; Fronczek, J; Abel, L; Buchsbaum, M S; Fallon, J H
2001-01-01
Previous studies examining the relationship of anxiety scores, derived from the content analysis of speech of normal individuals, have revealed that the anxiety scores occurring in the dreams associated with rapid eye movement (REM) sleep are significantly correlated with localized cerebral glucose metabolic rates assessed by positron emission tomography (PET) scanning. These significant intercorrelations occur in different cerebral areas when the anxiety scores are obtained from mental experiences reported during non-REM sleep or during wakeful silent mentation. The purpose of the present study was to examine the intercorrelations found between anxiety attributed to the self, anxiety-displacement, and anxiety denial measured from computerized content analysis of 5-min verbal reports of subjective thoughts and feelings obtained from wakeful normal subjects and localized cerebral glucose metabolic rates during PET scanning. The subjects were 10 wakeful young males. Their anxiety scores were derived from computerized content analysis of 5-min reports they gave of their subjective thoughts, feelings and fantasies during a 30-min period following an intravenous injection of F D-deoxyglucose (FDG). The subjects were moved 32--45 min after this injection to obtain a PET scan, which records all of the localized cerebral glucose metabolic rates during the 30 min following the FDG injection. Significant intercorrelations of localized cerebral glucose metabolic rates with the scores of self-anxiety, anxiety displacement, and anxiety-denial were found in dissimilar cerebral locations depending on the type of anxiety involved. The significant correlations occurred in brain regions known to be associated with the functions of emotions, cognition, memory, and vision. Specific combinations of cerebral areas, based on glucose metabolic rates, appear to distinguish and be associated with different verbal expressions of anxiety. Replication of this preliminary research will be carried out. Copyright 2001 S. Karger AG, Basel
Thompson, Garth J; Riedl, Valentin; Grimmer, Timo; Drzezga, Alexander; Herman, Peter; Hyder, Fahmeed
2016-07-01
The evolution of functional magnetic resonance imaging to resting state (R-fMRI) allows measurement of changes in brain networks attributed to state changes, such as in neuropsychiatric diseases versus healthy controls. Since these networks are observed by comparing normalized R-fMRI signals, it is difficult to determine the metabolic basis of such group differences. To investigate the metabolic basis of R-fMRI network differences within a normal range, eyes open versus eyes closed in healthy human subjects was used. R-fMRI was recorded simultaneously with fluoro-deoxyglucose positron emission tomography (FDG-PET). Higher baseline FDG was observed in the eyes open state. Variance-based metrics calculated from R-fMRI did not match the baseline shift in FDG. Functional connectivity density (FCD)-based metrics showed a shift similar to the baseline shift of FDG, however, this was lost if R-fMRI "nuisance signals" were regressed before FCD calculation. Average correlation with the mean R-fMRI signal across the whole brain, generally regarded as a "nuisance signal," also showed a shift similar to the baseline of FDG. Thus, despite lacking a baseline itself, changes in whole-brain correlation may reflect changes in baseline brain metabolism. Conversely, variance-based metrics may remain similar between states due to inherent region-to-region differences overwhelming the differences between normal physiological states. As most previous studies have excluded the spatial means of R-fMRI metrics from their analysis, this work presents the first evidence of a potential R-fMRI biomarker for baseline shifts in quantifiable metabolism between brain states.
Rybchyn, Mark Stephen; De Silva, Warusavithana Gunawardena Manori; Sequeira, Vanessa Bernadette; McCarthy, Bianca Yuko; Dilley, Anthony Vincent; Dixon, Katie Marie; Halliday, Gary Mark; Mason, Rebecca Sara
2018-05-01
Inadequately repaired post-UV DNA damage results in skin cancers. DNA repair requires energy but skin cells have limited capacity to produce energy after UV insult. We examined whether energy supply is important for DNA repair after UV exposure, in the presence of 1α,25-dihydroxyvitamin D 3 (1,25(OH) 2 D 3 ), which reduces UV-induced DNA damage and photocarcinogenesis in a variety of models. After UV exposure of primary human keratinocytes, the addition of 1,25(OH) 2 D 3 increased unscheduled DNA synthesis, a measure of DNA repair. Oxidative phosphorylation was depleted in UV-irradiated keratinocytes to undetectable levels within an hour of UV irradiation. Treatment with 1,25(OH) 2 D 3 but not vehicle increased glycolysis after UV. 2-Deoxyglucose-dependent inhibition of glycolysis abolished the reduction in cyclobutane pyrimidine dimers by 1,25(OH) 2 D 3 , whereas inhibition of oxidative phosphorylation had no effect. 1,25(OH) 2 D 3 increased autophagy and modulated PINK1/Parkin consistent with enhanced mitophagy. These data confirm that energy availability is limited in keratinocytes after exposure to UV. In the presence of 1,25(OH) 2 D 3 , glycolysis is enhanced along with energy-conserving processes such as autophagy and mitophagy, resulting in increased repair of cyclobutane pyrimidine dimers and decreased oxidative DNA damage. Increased energy availability in the presence of 1,25(OH) 2 D 3 is an important contributor to DNA repair in skin after UV exposure. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.
Role of reactive oxygen species in contraction-mediated glucose transport in mouse skeletal muscle
Sandström, Marie E; Zhang, Shi-Jin; Bruton, Joseph; Silva, José P; Reid, Michael B; Westerblad, Håkan; Katz, Abram
2006-01-01
Exercise increases glucose transport into skeletal muscle via a pathway that is poorly understood. We investigated the role of endogenously produced reactive oxygen species (ROS) in contraction-mediated glucose transport. Repeated contractions increased 2-deoxyglucose (2-DG) uptake roughly threefold in isolated, mouse extensor digitorum longus (fast-twitch) muscle. N-Acetylcysteine (NAC), a non-specific antioxidant, inhibited contraction-mediated 2-DG uptake by ∼50% (P < 0.05 versus control values), but did not significantly affect basal 2-DG uptake or the uptake induced by insulin, hypoxia or 5-aminoimidazole-4-carboxamide-1-β-d-ribofuranoside (AICAR, which mimics AMP-mediated activation of AMP-activated protein kinase, AMPK). Ebselen, a glutathione peroxidase mimetic, also inhibited contraction-mediated 2-DG uptake (by almost 60%, P < 0.001 versus control values). Muscles from mice overexpressing Mn2+-dependent superoxide dismutase, which catalyses H2O2 production from superoxide anions, exhibited a ∼25% higher rate of contraction-mediated 2-DG uptake versus muscles from wild-type control mice (P < 0.05). Exogenous H2O2 induced oxidative stress, as judged by an increase in the [GSSG]/[GSH + GSSG] (reduced glutathione + oxidized glutathione) ratio to 2.5 times control values, and this increase was substantially blocked by NAC. Similarly, NAC significantly attenuated contraction-mediated oxidative stress as judged by measurements of glutathione status and the intracellular ROS level with the fluorescent indicator 5-(and-6)-chloromethyl-2′,7′-dichlorodihydrofluorescein (P < 0.05). Finally, contraction increased AMPK activity and phosphorylation ∼10-fold, and NAC blocked ∼50% of these changes. These data indicate that endogenously produced ROS, possibly H2O2 or its derivatives, play an important role in contraction-mediated activation of glucose transport in fast-twitch muscle. PMID:16777943
Bimpisidis, Zisis; Öberg, Carl M; Maslava, Natallia; Cenci, M Angela; Lundblad, Cornelia
2017-06-01
Preclinical imaging of brain activity requires the use of anesthesia. In this study, we have compared the effects of two widely used anesthetics, inhaled isoflurane and ketamine/xylazine cocktail, on cerebral blood flow and metabolism in a rat model of Parkinson's disease and l-DOPA-induced dyskinesia. Specific tracers were used to estimate regional cerebral blood flow (rCBF - [ 14 C]-iodoantipyrine) and regional cerebral metabolic rate (rCMR - [ 14 C]-2-deoxyglucose) with a highly sensitive autoradiographic method. The two types of anesthetics had quite distinct effects on l-DOPA-induced changes in rCBF and rCMR. Isoflurane did not affect either the absolute rCBF values or the increases in rCBF in the basal ganglia after l-DOPA administration. On the contrary, rats anesthetized with ketamine/xylazine showed lower absolute rCBF values, and the rCBF increases induced by l-DOPA were masked. We developed a novel improved model to calculate rCMR, and found lower metabolic activities in rats anesthetized with isoflurane compared to animals anesthetized with ketamine/xylazine. Both anesthetics prevented changes in rCMR upon l-DOPA administration. Pharmacological challenges in isoflurane-anesthetized rats indicated that drugs mimicking the actions of ketamine/xylazine on adrenergic or glutamate receptors reproduced distinct effects of the injectable anesthetics on rCBF and rCMR. Our results highlight the importance of anesthesia in studies of cerebral flow and metabolism, and provide novel insights into mechanisms mediating abnormal neurovascular responses to l-DOPA in Parkinson's disease. Copyright © 2017 Elsevier Inc. All rights reserved.
Strobel, H J; Russell, J B
1991-01-01
Washed cells of strain H18, a newly isolated ruminal selenomonad, decarboxylated succinate 25-fold faster than Selenomonas ruminantium HD4 (130 versus 5 nmol min-1 mg of protein-1, respectively). Batch cultures of strain H18 which were fermenting glucose did not utilize succinate, and glucose-limited continuous cultures were only able to decarboxylate significant amounts of succinate at slow (less than 0.1 h-1) dilution rates. Strain H18 grew more slowly on lactate than glucose (0.2 versus 0.4 h-1, respectively), and more than half of the lactate was initially converted to succinate. Succinate was only utilized after growth on lactate had ceased. Although nonenergized and glucose-energized cells had similar proton motive forces and ATP levels, glucose-energized cells were unable to transport succinate. Transport by nonenergized cells was decreased by small increases in osmotic strength, and it is possible that energy-dependent inhibition of succinate transport was related to changes in cell turgor. Since cells which were deenergized with 2-deoxyglucose or iodoacetate did not transport succinate, it appeared that glycogen metabolism was providing the driving force for succinate uptake. An artificial delta pH drove succinate transport in deenergized cells, but an artificial membrane potential (delta psi) could not serve as a driving force. Because succinate is nearly fully dissociated at pH 7.0 and the transport process was electroneutral, it appeared that succinate was taken up in symport with two protons. An Eadie-Hofstee plot indicated that the rate of uptake was unusually rapid at high substrate concentrations, but the low-velocity, high-affinity component could account for succinate utilization by stationary cultures.(ABSTRACT TRUNCATED AT 250 WORDS)
Imaging of tumor hypermetabolism with near-infrared fluorescence contrast agents
NASA Astrophysics Data System (ADS)
Chen, Yu; Zheng, Gang; Zhang, Zhihong; Blessington, Dana; Intes, Xavier; Achilefu, Samuel I.; Chance, Britton
2004-08-01
We have developed a high sensitivity near-infrared (NIR) optical imaging system for non-invasive cancer detection through molecular labeled fluorescent contrast agents. Near-infrared (NIR) imaging can probe tissue deeply thus possess the potential for non-invasively detection of breast or lymph node cancer. Recent developments in molecular beacons can selectively label various pre-cancer/cancer signatures and provide high tumor to background contrast. To increase the sensitivity in detecting fluorescent photons and the accuracy of localization, phase cancellation (in- and anti-phase) device is employed. This frequency-domain system utilizes the interference-like pattern of diffuse photon density wave to achieve high detection sensitivity and localization accuracy for the fluorescent heterogeneity embedded inside the scattering media. The opto-electronic system consists of the laser sources, fiber optics, interference filter to select the fluorescent photons and the high sensitivity photon detector (photomultiplier tube). The source-detector pair scans the tissue surface in multiple directions and the two-dimensional localization image can be obtained using goniometric reconstruction. In vivo measurements with tumor-bearing mouse model using the novel Cypate-mono-2-deoxy-glucose (Cypate-2-D-Glucosamide) fluorescent contrast agent, which targets the enhanced tumor glycolysis, demonstrated the feasibility on detection of 2 cm deep subsurface tumor in the tissue-like medium, with a localization accuracy within 2 ~ 3 mm. This instrument has the potential for tumor diagnosis and imaging, and the accuracy of the localization suggests that this system could help to guide the clinical fine-needle biopsy. This portable device would be complementary to X-ray mammogram and provide add-on information on early diagnosis and localization of early breast tumor.
2013-01-01
Background The cardiac PRKAG2 mutation in the γ2-subunit of adenosine monophosphate activated kinase (AMPK) is characterized by excessive glycogen deposition, hypertrophy, frequent arrhythmias, and progressive conduction system disease. We investigated whether myocardial glucose uptake (MGU) was augmented following insulin stimulation in a mouse model of the PRKAG2 cardiac syndrome. Methods Myocardial and skeletal muscle glucose uptake was assessed with 2-[18F]fluoro-2-deoxyglucose positron emission tomography imaging in n = 3 transgenic wildtype (TGwt) vs n = 7 PRKAG2 mutant (TGmut) mice at baseline and 1 week later, 30 min following acute insulin. Systolic function, cardiac glycogen stores, phospho-AMPK α, and insulin-receptor expression levels were analyzed to corroborate to the in vivo findings. Results TGmut Patlak Ki was reduced 56% at baseline compared to TGwt (0.3 ± 0.2 vs 0.7 ± 0.1, t test p = 0.01). MGU was augmented 71% in TGwt mice following acute insulin from baseline (0.7 ± 0.1 to 1.2 ± 0.2, t test p < 0.05). No change was observed in TGmut mice. As expected for this cardiac specific transgene, skeletal muscle was unaffected at baseline with a 33% to 38% increase (standard uptake values) for both genotypes following insulin stimulation. TGmut mice had a 47% reduction in systolic function with a fourfold increase in cardiac glycogen stores correlated with a 29% reduction in phospho-AMPK α levels. There was no difference in cardiac insulin receptor expression between mouse genotypes. Conclusions These results demonstrate a correlation between insulin resistance and AMPK activity and provide the basis for the use of this animal model for assessing metabolic therapy in the treatment of affected PRKAG2 patients. PMID:23829931
Sugden, M C; Lall, H S; Harris, R A; Holness, M J
2000-11-01
The pyruvate dehydrogenase kinases (PDK1-4) regulate glucose oxidation through inhibitory phosphorylation of the pyruvate dehydrogenase complex (PDC). Immunoblot analysis with antibodies raised against recombinant PDK isoforms demonstrated changes in PDK isoform expression in response to experimental hyperthyroidism (100 microg/100 g body weight; 3 days) that was selective for fast-twitch vs slow-twitch skeletal muscle in that PDK2 expression was increased in the fast-twitch skeletal muscle (the anterior tibialis) (by 1. 6-fold; P<0.05) but not in the slow-twitch muscle (the soleus). PDK4 protein expression was increased by experimental hyperthyroidism in both muscle types, there being a greater response in the anterior tibialis (4.2-fold increase; P<0.05) than in the soleus (3.2-fold increase; P<0.05). The hyperthyroidism-associated up-regulation of PDK4 expression was observed in conjunction with suppression of skeletal-muscle PDC activity, but not suppression of glucose uptake/phosphorylation, as measured in vivo in conscious unrestrained rats (using the 2-[(3)H]deoxyglucose technique). We propose that increased PDK isoform expression contributes to the pathology of hyperthyroidism and to PDC inactivation by facilitating the operation of the glucose --> lactate --> glucose (Cori) and glucose --> alanine --> glucose cycles. We also propose that enhanced relative expression of the pyruvate-insensitive PDK isoform (PDK4) in skeletal muscle in hyperthyroidism uncouples glycolytic flux from pyruvate oxidation, sparing pyruvate for non-oxidative entry into the tricarboxylic acid (TCA) cycle, and thereby supporting entry of acetyl-CoA (derived from fatty acid oxidation) into the TCA cycle.
Ross, Renee M; Wadley, Glenn D; Clark, Michael G; Rattigan, Stephen; McConell, Glenn K
2007-12-01
We have previously shown in humans that local infusion of a nitric oxide synthase (NOS) inhibitor into the femoral artery attenuates the increase in leg glucose uptake during exercise without influencing total leg blood flow. However, rodent studies examining the effect of NOS inhibition on contraction-stimulated skeletal muscle glucose uptake have yielded contradictory results. This study examined the effect of local infusion of an NOS inhibitor on skeletal muscle glucose uptake (2-deoxyglucose) and capillary blood flow (contrast-enhanced ultrasound) during in situ contractions in rats. Male hooded Wistar rats were anesthetized and one hindleg electrically stimulated to contract (2 Hz, 0.1 ms) for 30 min while the other leg rested. After 10 min, the NOS inhibitor N(G)-nitro-L-arginine methyl ester (L-NAME) (arterial concentration of 5 micromol/l) or saline was infused into the epigastric artery of the contracting leg. Local NOS inhibition had no effect on blood pressure, heart rate, or muscle contraction force. Contractions increased (P < 0.05) skeletal muscle NOS activity, and this was prevented by L-NAME infusion. NOS inhibition caused a modest significant (P < 0.05) attenuation of the increase in femoral blood flow during contractions, but importantly there was no effect on capillary recruitment. NOS inhibition attenuated (P < 0.05) the increase in contraction-stimulated skeletal muscle glucose uptake by approximately 35%, without affecting AMP-activated protein kinase (AMPK) activation. NOS inhibition attenuated increases in skeletal muscle glucose uptake during contraction without influencing capillary recruitment, suggesting that NO is critical for part of the normal increase in skeletal muscle fiber glucose uptake during contraction.
Quercetin inhibits glucose transport by binding to an exofacial site on GLUT1.
Hamilton, Kathryn E; Rekman, Janelle F; Gunnink, Leesha K; Busscher, Brianna M; Scott, Jordan L; Tidball, Andrew M; Stehouwer, Nathan R; Johnecheck, Grace N; Looyenga, Brendan D; Louters, Larry L
2018-05-29
Quercetin, a common dietary flavone, is a competitive inhibitor of glucose uptake and is also thought to be transported into cells by GLUT1. In this study, we confirm that quercetin is a competitive inhibitor of GLUT1 and also demonstrate that newly synthesized compounds, WZB-117 and BAY-876 are robust inhibitors of GLUT1 in L929 cells. To measure quercetin interaction with L929 cells, we develop a new fluorescent assay using flow cytometry. The binding of quercetin and its inhibitory effects on 2-deoxyglucose (2DG) uptake showed nearly identical dose dependent effects, with both having maximum effects between 50 and 100 μM and similar half maximum effects at 8.9 and 8.5 μM respectively. The interaction of quercetin was rapid with t 1/2 of 54 s and the onset and loss of its inhibitory effects on 2DG uptake were equally fast. This suggests that either quercetin is simply binding to surface GLUT1 or its transport in and out of the cell reaches equilibrium very quickly. If quercetin is transported, the co-incubation of quercetin with other glucose inhibitors should block quercetin uptake. However, we observed that WZB-117, an exofacial binding inhibitor of GLUT1 reduced quercetin interaction, while cytochalasin B, an endofacial binding inhibitor, enhanced quercetin interaction, and BAY-876 had no effect on quercetin interaction. Taken together, these data are more consistent with quercetin simply binding to GLUT1, but not actually being transported into L929 cells via the glucose channel in GLUT1. Copyright © 2018. Published by Elsevier B.V.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Clow, D.W.; Lee, S.J.; Hammer, R.P. Jr.
1991-04-01
The effects of D,L-2-amino-7-phosphonoheptanoic acid (AP7), a competitive N-methyl-D-aspartate (NMDA) receptor antagonist, and MK-801, a non-competitive NMDA receptor antagonist, on regional brain metabolism were studied in unanesthetized, freely moving rats by using the quantitative {sup 14}C2-deoxyglucose autoradiographic procedure. AP7 (338 or 901 mg/kg) produced a dose-dependent decrease of metabolic activity throughout most of the regions studied including sensory, motor, and limbic cortices. In contrast, MK-801 (0.1 or 1.0 mg/kg) resulted in a dose-dependent decrease of metabolic activity in sensory cortices, and an increase in limbic regions such as the hippocampal stratum lacunosum moleculare and entorhinal cortex. MK-801 also produced amore » biphasic response in agranular motor cortex, whereby the low dose increased while the high dose decreased labeling. In addition, MK-801 produced heterogeneous effects on regional cerebral metabolism in sensory cortices. Metabolic activity decreased in layer IV relative to layer Va following MK-801 treatment in primary somatosensory (SI) and visual (VI) cortices, suggesting a shift in activity from afferent fibers innervating layer IV to those innervating layer Va. MK-801 administration also decreased metabolic activity in granular SI relative to dysgranular SI, and in VI relative to secondary visual cortex (VII), thus providing a relative sparing of activity in dysgranular SI and VII. Thus, the non-competitive NMDA receptor antagonist suppressed activity from extrinsic neocortical sources, enhancing relative intracortical activity and stimulating limbic regions, while the competitive NMDA antagonist depressed metabolic activity in all cortical regions.« less
99mTc-EDDA/HYNIC-TOC in the management of medullary thyroid carcinoma.
Parisella, Maria; D'Alessandria, Calogero; van de Bossche, Bieke; Chianelli, Marco; Ronga, Giuseppe; Papini, Enrico; Mikolajczak, Renata; Letizia, Claudio; De Toma, Giorgio; Veneziani, Augusto; Scopinaro, Francesco; Signore, Alberto
2004-04-01
An early diagnosis of distant metastases or local recurrences of medullary thyroid carcinoma (MTC) can be achieved by several conventional radiological modalities (e.g., ultrasonography, computed tomography [CT], and magnetic resonance imaging [MRI] as well as by radioisotopic procedures, such as positron emission tomography (PET), scintigraphy with different types of radiopharmaceuticals, and radiolabeled receptor-ligands in particular. The aim of this study was to evaluate the clinical utility of 99mTc-EDDA/HYNIC-TOC, a new octreotide derivative, to detect recurrences of disease or distant metastases in MTC. Images obtained of 5 patients with high levels of serum calcitonin were compared to findings obtained with other diagnostic procedures: 111In-octreotide, 99mTc-DMSA-V, 18F-flouro-D-deoxyglucose-PET, and CT/MRI. 99mTc-EDDA/HYNIC-TOC was positive in all patients and showed 15 areas of pathological uptake in the cervical and mediastinal regions. 111In-octreotide was positive in 3 of 3 patients and showed 4 areas, compared to 8 of 99mTc-EDDA/HYNIC-TOC. 99mTc-V-DMSA was positive in 3 of 4 patients but showed 6 pathological areas, compared to 13 of 99mTc-EDDA/HYNIC-TOC. 18F-FDG-PET was positive in 5 of 5 patients but showed only 11 areas, compared to 15 of 99mTc-EDDA/HYNIC-TOC. The CT scan was positive in only 2 patients. In conclusion, 99mTc-EDDA/HYNIC-TOC detected more sites of pathological uptake than other modalities, showed better imaging properties than 111In-octreotide, and might be the radiopharmaceutical of choice for providing a rationale for radioisotopic therapy.
Mozaffari, Mahmood S; Baban, Babak; Liu, Jun Yao; Abebe, Worku; Sullivan, Jennifer C; El-Marakby, Ahmed
2011-03-01
We tested the hypothesis that pressure overload exacerbates oxidative stress associated with augmented mitochondrial permeability transition (MPT) pore opening and cell death in ischemic-reperfused hearts. Pressure overload decreased the level of reduced glutathione but increased nitrotyrosine and 8-hydroxydeoxyguanosine levels in ischemic-reperfused hearts. The activity of catalase, but not superoxide dismutase (SOD), was lower in ischemic-reperfused hearts perfused at higher pressure. Mitochondria from ischemic-reperfused hearts subjected to higher perfusion pressure displayed significantly greater [³H]-2-deoxyglucose-6-P entrapment suggestive of greater MPT pore opening and consistent with greater necrosis and apoptosis. Tempol (SOD mimetic) reduced infarct size in both groups but it remained greater in the higher pressure group. By contrast, uric acid (peroxynitrite scavenger) markedly reduced infarct size at higher pressure, effectively eliminating the differential between the two groups. Inhibition of xanthine oxidase, with allopurinol, reduced infarct size but did not eliminate the differential between the two groups. However, amobarbital (inhibitor of mitochondrial complex I) or apocynin [inhibitor of NAD(P)H oxidase] reduced infarct size at both pressures and also abrogated the differential between the two groups. Consistent with the effect of apocynin, pressure-overloaded hearts displayed significantly higher NAD(P)H oxidase activity. Furthermore, pressure-overloaded hearts displayed increased nitric oxide synthase activity which, along with increased propensity to superoxide generation, may underlie uric acid-induced cardioprotection. In conclusion, increased oxidative and nitrosative stress, coupled with lack of augmented SOD and catalase activities, contributes importantly to the exacerbating impact of pressure overload on MPT pore opening and cell death in ischemic-reperfused hearts.
Miot-Noirault, Elisabeth; Reux, Bastien; Debiton, Eric; Madelmont, Jean-Claude; Chezal, Jean-Michel; Coudert, Pascal; Weber, Valérie
2011-06-01
Our strategy is to increase drug accumulation in target tumour cells using specific "vectors" tailored to neoplastic tissue characteristics, which ideally are not found in healthy tissues. The aim of this work was to use 2-fluoro-2-deoxyglucose (FDG) as a drug carrier, in view of its well-known accumulation by most primary and disseminated human tumours. We had previously selected two FDG-cytotoxic conjugates of chlorambucil (CLB), i.e. compounds 21a and 40a, on the basis of their in vitro profiles. Here we investigated the antitumour profile and tolerance of these compounds in vitro and in vivo in two murine cell lines of solid tumours. In vitro, we found that micromolar concentrations of compounds 21a and 40a inhibited proliferation of B16F0 and CT-26 cell lines. Interestingly, compounds 21a and 40a were found to act at different levels in the cell cycle: S and subG1 accumulation for 21a and G2 accumulation for 40a. In vivo, a single-dose-finding study to select the Maximum Tolerated Dose (MTD) by the intraperitoneal route (IP) showed that the two peracetylated glucoconjugates of CLB were less toxic than CLB itself. When given to tumour-bearing mice (melanoma and colon carcinoma models), according to a "q4d × 3" schedule (i.e., three doses at 4-day intervals) both compounds demonstrated a promising antitumour activity, with Log Cell Kill (LCK) values higher than 1.3 in both B16F0 and CT-26 models. Hence compounds 21a and 40a are good candidates for further works to develop new highly active antineoplastic compounds.
Johnson, Brett A; Ong, Joan; Lee, Kaman; Ho, Sabrina L; Arguello, Spart; Leon, Michael
2007-02-01
Many naturally occurring volatile chemicals that are detected through the sense of smell contain unsaturated (double or triple) carbon-carbon bonds. These bonds can affect odors perceived by humans, yet in a prior study of unsaturated hydrocarbons we found only very minor effects of unsaturated bonds. In the present study, we tested the possibility that unsaturated bonds affect the recognition of oxygen-containing functional groups, because humans perceive odor differences between such molecules. We therefore compared spatial activity patterns across the entire glomerular layer of the rat olfactory bulb evoked by oxygen-containing odorants differing systematically in the presence, position, number, and stereochemistry of unsaturated bonds. We quantified activity patterns by mapping [(14)C]2-deoxyglucose uptake into anatomically standardized data matrices, which we compared statistically. We found that the presence and number of unsaturated bonds consistently affected activity patterns, with the largest effect related to the presence of a triple bond. Effects of bond saturation included a loss of activity in glomeruli strongly activated by the corresponding saturated odorants and/or the presence of activity in areas not stimulated by the corresponding saturated compounds. The position of double bonds also affected patterns of activity, but cis vs. trans configuration had no measurable impact in all five sets of stereoisomers that we studied. These results simultaneously indicate the importance of interactions between carbon-carbon bond types and functional groups in the neural coding of odorant chemical information and highlight the emerging concept that the rat olfactory system is more sensitive to certain types of chemical differences than others. (c) 2006 Wiley-Liss, Inc.
Technetium glucose complexes as potential cancer imaging agents.
Dapueto, Rosina; Aguiar, Rodrigo B; Moreno, María; Machado, Camila M L; Marques, Fabio L N; Gambini, Juan P; Chammas, Roger; Cabral, Pablo; Porcal, Williams
2015-10-01
GLUT's (facilitative glucose transporters) over-expression in tumor cells has allowed the detection of several cancer types, using a glucose analogue ((18)F-FDG) with PET images, worldwide. New glucose analogs radiolabeled with (99m)Tc could be a less-expensive and more accessible alternative for diagnosis using SPECT imaging. d-Glucose ((99m)Tc-IDAG) and 2-d-deoxyglucose ((99m)Tc-AADG) organometallic complexes were proposed and studied as potential (18)F-FDG surrogates. The glucose complexes were prepared and evaluated as potential cancer imaging agents, in a melanoma tumor model. Iminodiacetic acid (IDA) and aminoacetate (AA) moieties were chosen as chelating system for radiolabeling with (99m)Tc. Tumor uptake of the formed complexes was evaluated in B16 murine cell line in vitro and in vivo in melanoma bearing C57BL/6 mice. In vitro and in vivo studies were conducted with (18)F-FDG in order to compare the uptake of (99m)Tc-glucose complexes in the tumor model. IDAG and AADG compounds were synthesized and radiolabeled with (99m)TcO4(-) to obtain the (99m)Tc-IDAG and (99m)Tc-AADG complexes in high yield and stability. In vitro cell studies showed maximum uptake at 60 min for complexes, (99m)Tc-IDAG and (99m)Tc-AADG, with 6% and 2%, respectively. Biodistribution studies showed high tumor uptake one hour post-injection, reaching tumor-to-muscle ratios of 12.1 ± 3.73 and 2.88 ± 1.40 for (99m)Tc-IDAG and (99m)Tc-AADG, respectively. SPECT and micro-SPECT-CT images acquired after the injection of (99m)Tc-IDAG showed accumulation in tumor sites, suggesting that this glucose complex would be a promising candidate for cancer imaging. Copyright © 2015 Elsevier Ltd. All rights reserved.
Pournourmohammadi, Shirin; Grimaldi, Mariagrazia; Stridh, Malin H; Lavallard, Vanessa; Waagepetersen, Helle S; Wollheim, Claes B; Maechler, Pierre
2017-07-01
Glucose homeostasis is determined by insulin secretion from the ß-cells in pancreatic islets and by glucose uptake in skeletal muscle and other insulin target tissues. While glutamate dehydrogenase (GDH) senses mitochondrial energy supply and regulates insulin secretion, its role in the muscle has not been elucidated. Here we investigated the possible interplay between GDH and the cytosolic energy sensing enzyme 5'-AMP kinase (AMPK), in both isolated islets and myotubes from mice and humans. The green tea polyphenol epigallocatechin-3-gallate (EGCG) was used to inhibit GDH. Insulin secretion was reduced by EGCG upon glucose stimulation and blocked in response to glutamine combined with the allosteric GDH activator BCH (2-aminobicyclo-[2,2,1] heptane-2-carboxylic acid). Insulin secretion was similarly decreased in islets of mice with ß-cell-targeted deletion of GDH (ßGlud1 -/- ). EGCG did not further reduce insulin secretion in the mutant islets, validating its specificity. In human islets, EGCG attenuated both basal and nutrient-stimulated insulin secretion. Glutamine/BCH-induced lowering of AMPK phosphorylation did not operate in ßGlud1 -/- islets and was similarly prevented by EGCG in control islets, while high glucose systematically inactivated AMPK. In mouse C2C12 myotubes, like in islets, the inhibition of AMPK following GDH activation with glutamine/BCH was reversed by EGCG. Stimulation of GDH in primary human myotubes caused lowering of insulin-induced 2-deoxy-glucose uptake, partially counteracted by EGCG. Thus, mitochondrial energy provision through anaplerotic input via GDH influences the activity of the cytosolic energy sensor AMPK. EGCG may be useful in obesity by resensitizing insulin-resistant muscle while blunting hypersecretion of insulin in hypermetabolic states. Copyright © 2017 Elsevier Ltd. All rights reserved.
Zwergal, Andreas; Schlichtiger, Julia; Xiong, Guoming; Beck, Roswitha; Günther, Lisa; Schniepp, Roman; Schöberl, Florian; Jahn, Klaus; Brandt, Thomas; Strupp, Michael; Bartenstein, Peter; Dieterich, Marianne; Dutia, Mayank B; la Fougère, Christian
2016-01-01
Unilateral inner ear damage is followed by a rapid behavioural recovery due to central vestibular compensation. In this study, we utilized serial [(18)F]Fluoro-deoxyglucose ([(18)F]FDG)-µPET imaging in the rat to visualize changes in brain glucose metabolism during behavioural recovery after surgical and chemical unilateral labyrinthectomy, to determine the extent and time-course of the involvement of different brain regions in vestibular compensation and test previously described hypotheses of underlying mechanisms. Systematic patterns of relative changes of glucose metabolism (rCGM) were observed during vestibular compensation. A significant asymmetry of rCGM appeared in the vestibular nuclei, vestibulocerebellum, thalamus, multisensory vestibular cortex, hippocampus and amygdala in the acute phase of vestibular imbalance (4 h). This was followed by early vestibular compensation over 1-2 days where rCGM re-balanced between the vestibular nuclei, thalami and temporoparietal cortices and bilateral rCGM increase appeared in the hippocampus and amygdala. Subsequently over 2-7 days, rCGM increased in the ipsilesional spinal trigeminal nucleus and later (7-9 days) rCGM increased in the vestibulocerebellum bilaterally and the hypothalamus and persisted in the hippocampus. These systematic dynamic rCGM patterns during vestibular compensation, were confirmed in a second rat model of chemical unilateral labyrinthectomy by serial [(18)F]FDG-µPET. These findings show that deafferentation-induced plasticity after unilateral labyrinthectomy involves early mechanisms of re-balancing predominantly in the brainstem vestibular nuclei but also in thalamo-cortical and limbic areas, and indicate the contribution of spinocerebellar sensory inputs and vestibulocerebellar adaptation at the later stages of behavioural recovery.
Levant, Beth; Pazdernik, Thomas L
2004-04-02
Ibogaine, a hallucinogenic indole alkaloid, has been proposed as a treatment for addiction to opioids and other drugs of abuse. The mechanism for its putative anti-addictive effects is unknown. In this study, the effects of ibogaine on local cerebral glucose utilization (LCGU) were determined in freely moving, drug-naive, or morphine-dependent adult, male, Sprague-Dawley rats using the [(14)C]2-deoxyglucose (2-DG) method. Morphine-dependent rats were treated with increasing doses of morphine (5-25 mg/kg, s.c., b.i.d.) and then maintained at 25 mg/kg (b.i.d.) for 4-7 days. For the 2-DG procedure, rats were injected with saline or ibogaine (40 mg/kg, i.p.). 2-DG was administered 1 h after administration of ibogaine. The rate of LCGU was determined by quantitative autoradiography in 46 brain regions. In drug-naive animals, ibogaine produced significant increases in LCGU in the parietal, cingulate, and occipital cortices and cerebellum compared to controls consistent with its activity as a hallucinogen and a tremorogen. Morphine-dependent rats had only minor alterations in LCGU at the time assessed in this experiment. However, in morphine-dependent animals, ibogaine produced a global decrease in LCGU that was greatest in brain regions such as the lateral and medial preoptic areas, nucleus of the diagonal band, nucleus accumbens shell, inferior colliculus, locus coeruleus, and flocculus compared to morphine-dependent animals treated with saline. These findings indicate that ibogaine produces distinctly different effects on LCGU in drug-naive and morphine-dependent rats. This suggests that different mechanisms may underlie ibogaine's hallucinogenic and anti-addictive effects.
Pang, Yaling; Zhu, Haihui; Xu, Jianqin; Yang, Lihua; Liu, Lingjiao; Li, Jing
2017-11-15
Type 2 diabetes mellitus (T2DM) is a common metabolic disease worldwide. It has been reported that irisin play regulatory role in glucose metabolism in T2DM. However, the underlying mechanism involved in that is not completely known. Herein, we determined the novel role of β-arrestin-2 in irisin-induced glucose utilization in diabetes. Effects of irisin and β-arrestin-2 on glucose utilization were investigated in a rat model of diabetes and in diabetic C2C12 cells in vitro. Results showed that irisin had positive role in glucose metabolism via regulating glucose tolerance as well as uptake in cardiac and skeletal muscle tissues, as evidenced by IPGTT, 2-deoxyglucose uptake and plasma membrane GLUT-4 assay. β-arrestin-2 also improved glucose utilization in diabetes by increasing the glucose uptake and insulin sensitivity, as shown in mice overexpressing β-arrestin-2. In diabetic C2C12 myocytes, irisin-induced GLUT4 and glucose uptake were restrained by β-arrestin-2 inhibition, but was enhanced by β-arrestin-2 overexpression. Additionally, irisin and β-arrestin-2 increased the activation of p38 MAPK in diabetic C2C12 cells, and the repression of p38 MAPK activation decreased the glucose uptake and plasma membrane GLUT-4 was enhanced by irisin and β-arrestin-2 overexpression in diabetic C2C12 cells. In conclusion, we demonstrated that β-arrestin-2 has a crucial role in irisin induced glucose metabolism in T2DM by regulating the p38 MAPK signaling. This might present a novel therapeutic target of treatment for human diabetes. Copyright © 2017 Elsevier Inc. All rights reserved.
Zhu, Qingdong; Wang, Li; Dong, Qianli; Chang, Shu; Wen, Kexin; Jia, Shenghua; Chu, Zhilin; Wang, Hanmeng; Gao, Ping; Zhao, Heping; Han, Shengcheng; Wang, Yingdian
2017-08-01
Glucose is the primary energy provider and the most important sugar-signalling molecule, regulating metabolites and modulating gene expression from unicellular yeast to multicellular plants and animals. Therefore, monitoring intracellular glucose levels temporally and spatially in living cells is an essential step for decoding the glucose signalling in response to biotic and abiotic stresses. In this study, the genetically encoded FRET (Förster resonance energy transfer) nanosensors, FLIPglu-2μ∆13 and FLIPglu-600μΔ13, were used to measure cytosolic glucose dynamics in rice plants. First, we found that the FRET signal decreased in response to external glucose in a concentration-dependent manner. The glucose concentration at which the cytosolic level corresponded to the K 0.5 value for FLIPglu-2μΔ13 was approximately 10.05μM, and that for FLIPglu-600μΔ13 was 0.9mM, respectively. The substrate selectivity of nanosensors for glucose and its analogues is D-Glucose>2-deoxyglucose>3-O-methylglucose>L-Glucose. We further showed that the biotic elicitors (flg22 and chitin) and the abiotic elicitors (osmotic stress, salinity and extreme temperature) induce the intracellular glucose increases in the detached root segments of transgenic rice containing FLIPglu-2μΔ13 in a stimulus-specific manner, but not in FLIPglu-600μΔ13 transgenic lines. These results demonstrated that FRET nanosensors can be used to detect increases in intracellular glucose within the physiological range of 0.2-20μM in response to various stimuli in transgenic rice root cells, which indicated that intracellular glucose may act as a potential secondary messenger to connect extracellular stimuli with cellular physiological responses in plants. Copyright © 2017 Elsevier GmbH. All rights reserved.
Huang, S-L; Yu, R-T; Gong, J; Feng, Y; Dai, Y-L; Hu, F; Hu, Y-H; Tao, Y-D; Leng, Y
2012-05-01
Arctigenin is a natural compound that had never been previously demonstrated to have a glucose-lowering effect. Here it was found to activate AMP-activated protein kinase (AMPK), and the mechanism by which this occurred, as well as the effects on glucose and lipid metabolism were investigated. 2-Deoxyglucose uptake and AMPK phosphorylation were examined in L6 myotubes and isolated skeletal muscle. Gluconeogenesis and lipid synthesis were evaluated in rat primary hepatocytes. The acute and chronic effects of arctigenin on metabolic abnormalities were observed in C57BL/6J and ob/ob mice. Changes in mitochondrial membrane potential were measured using the J-aggregate-forming dye, JC-1. Analysis of respiration of L6 myotubes or isolated mitochondria was conducted in a channel oxygen system. Arctigenin increased AMPK phosphorylation and stimulated glucose uptake in L6 myotubes and isolated skeletal muscles. In primary hepatocytes, it decreased gluconeogenesis and lipid synthesis. The enhancement of glucose uptake and suppression of hepatic gluconeogenesis and lipid synthesis by arctigenin were prevented by blockade of AMPK activation. The respiration of L6 myotubes or isolated mitochondria was inhibited by arctigenin with a specific effect on respiratory complex I. A single oral dose of arctigenin reduced gluconeogenesis in C57BL/6J mice. Chronic oral administration of arctigenin lowered blood glucose and improved lipid metabolism in ob/ob mice. This study demonstrates a new role for arctigenin as a potent indirect activator of AMPK via inhibition of respiratory complex I, with beneficial effects on metabolic disorders in ob/ob mice. This highlights the potential value of arctigenin as a possible treatment of type 2 diabetes.
Gonzalez, Reyna; Pao, Peng-Wen; Hofman, Florence M.; Chen, Thomas C.; Louie, Stan G.; Pirrung, Michael C.; Schönthal, Axel H.
2013-01-01
Verrucosidin (VCD) belongs to a group of fungal metabolites that were identified in screening programs to detect molecules that preferentially kill cancer cells under glucose-deprived conditions. Its mode of action was proposed to involve inhibition of increased GRP78 (glucose regulated protein 78) expression during hypoglycemia. Because GRP78 plays an important role in tumorigenesis, inhibitors such as VCD might harbor cancer therapeutic potential. We therefore sought to characterize VCD’s anticancer activity in vitro. Triple-negative breast cancer cell lines MDA-MB-231 and MDA-MB-468 were treated with VCD under different conditions known to trigger increased expression of GRP78, and a variety of cellular processes were analyzed. We show that VCD was highly cytotoxic only under hypoglycemic conditions, but not in the presence of normal glucose levels, and VCD blocked GRP78 expression only when glycolysis was impaired (due to hypoglycemia or the presence of the glycolysis inhibitor 2-deoxyglucose), but not when GRP78 was induced by other means (hypoxia, thapsigargin, tunicamycin). However, VCD’s strictly hypoglycemia-specific toxicity was not due to the inhibition of GRP78. Rather, VCD blocked mitochondrial energy production via inhibition of complex I of the electron transport chain. As a result, cellular ATP levels were quickly depleted under hypoglycemic conditions, and common cellular functions, including general protein synthesis, deteriorated and resulted in cell death. Altogether, our study identifies mitochondria as the primary target of VCD. The possibility that other purported GRP78 inhibitors (arctigenin, biguanides, deoxyverrucosidin, efrapeptin, JBIR, piericidin, prunustatin, pyrvinium, rottlerin, valinomycin, versipelostatin) might act in a similar GRP78-independent fashion will be discussed. PMID:23755268
Nuclear Medicine in Prostate Cancer: A New Era for Radiotracers.
Cuccurullo, Vincenzo; Di Stasio, Giuseppe Danilo; Mansi, Luigi
2018-01-01
Natural history of prostate cancer (PCa) is extremely variable, as it ranges from indolent and slow growing tumors to highly aggressive histotypes. Genetic background and environmental factors co-operate to the genesis and clinical manifestation of the tumor and include among the others race, family, specific gene variants (i.e., BRCA1 and BRCA2 mutations), acute and chronic inflammation, infections, diet and drugs. In this scenario, remaining actual the clinical interest of bone scan (BS) in detecting skeletal metastases, an important role in diagnostic imaging may be also carried out by, positron emission tomography/computed tomography (PET/CT) and PET/magnetic resonance imaging (PET/MRI), which combine morphological information provided by CT and MRI with functional and metabolic data provided by PET acquisitions. With respect to PET radiotracers, being ancillary the usefulness of F-18 fluoro-deoxyglucose and not yet demonstrated the cost-effectiveness of F-18 Fluoride respect to BS, the main role is now played by choline derivatives, in particular by 11C-choline and 18F-fluorocholine. More recently, a greater interest for both diagnostic and therapeutic purposes has been associated with radiotracers directed to prostate-specific membrane antigen (PSMA), a transmembrane protein expressed on the cell surface, which showed high selective expression in PCa, metastatic lymph nodes and bone metastases. Several PSMA-targeted PET tracers have been developed many of which showing promising results for accurate diagnosis and staging of primary PCa and re-staging after biochemical recurrence, even in case of low prostate specific antigen values. In particular, the most widely used PSMA ligand for PET imaging is a 68 Ga-labelled PSMA inhibitor, 68 Ga-PSMA-HBED-CC ( 68 Ga-PSMA-11). 99m Tc-HYNIC-Glu-Urea-A for single photon emission computed tomography, and 177 Lu-PSMA-617 for radioligand therapy has also been applied in humans, with interesting preliminary results related to a possible theranostic approach. A potential role of PSMA radioligands in radio-guided surgery has also been proposed.
Nuclear Medicine in Prostate Cancer: A New Era for Radiotracers
Cuccurullo, Vincenzo; Di Stasio, Giuseppe Danilo; Mansi, Luigi
2018-01-01
Natural history of prostate cancer (PCa) is extremely variable, as it ranges from indolent and slow growing tumors to highly aggressive histotypes. Genetic background and environmental factors co-operate to the genesis and clinical manifestation of the tumor and include among the others race, family, specific gene variants (i.e., BRCA1 and BRCA2 mutations), acute and chronic inflammation, infections, diet and drugs. In this scenario, remaining actual the clinical interest of bone scan (BS) in detecting skeletal metastases, an important role in diagnostic imaging may be also carried out by, positron emission tomography/computed tomography (PET/CT) and PET/magnetic resonance imaging (PET/MRI), which combine morphological information provided by CT and MRI with functional and metabolic data provided by PET acquisitions. With respect to PET radiotracers, being ancillary the usefulness of F-18 fluoro-deoxyglucose and not yet demonstrated the cost-effectiveness of F-18 Fluoride respect to BS, the main role is now played by choline derivatives, in particular by 11C-choline and 18F-fluorocholine. More recently, a greater interest for both diagnostic and therapeutic purposes has been associated with radiotracers directed to prostate-specific membrane antigen (PSMA), a transmembrane protein expressed on the cell surface, which showed high selective expression in PCa, metastatic lymph nodes and bone metastases. Several PSMA-targeted PET tracers have been developed many of which showing promising results for accurate diagnosis and staging of primary PCa and re-staging after biochemical recurrence, even in case of low prostate specific antigen values. In particular, the most widely used PSMA ligand for PET imaging is a 68Ga-labelled PSMA inhibitor, 68Ga-PSMA-HBED-CC (68Ga-PSMA-11). 99mTc-HYNIC-Glu-Urea-A for single photon emission computed tomography, and 177Lu-PSMA-617 for radioligand therapy has also been applied in humans, with interesting preliminary results related to a possible theranostic approach. A potential role of PSMA radioligands in radio-guided surgery has also been proposed. PMID:29719480
Stahel, Priska; Kim, Julie J; Xiao, Changting; Cant, John P
2017-01-01
Consumption of dairy products reduces risk of type 2 diabetes. Milk proteins and fats exhibit anti-diabetic properties but milk sugars have been studied little in this context. Galactose from milk lactose is readily converted to glycogen in the liver but its effects on insulin sensitivity have not been assessed. Prebiotic oligosaccharides from milk alter gut microbiota and can thereby influence host metabolism. Our objective was to assess the effect on insulin sensitivity of dietary galactose compared to glucose and fructose, and fermentable galacto-oligosaccharides compared to non-fermentable methylcellulose. Diets containing 15% of dry matter from glucose, fructose, galactose, galacto-oligosaccharides, or methylcellulose were fed to 36 rats per diet for 9 weeks. Hyperinsulinemic-euglycemic clamps with [3-3H]glucose infusion and a steady-state 2-[1-14C]deoxyglucose bolus injection were used to assess insulin sensitivity and glucose uptake indices. Tissue was collected in fed, fasted and fasted, insulin-stimulated states. Galactose increased glucose infusion rate during the clamp by 53% and decreased endogenous glucose production by 57% compared to glucose and fructose. Fed-state hepatic glycogen content was greater with galactose compared to glucose and fructose, consistent with a potentiation of the insulin effect on glycogen synthase by dephosphorylation. Galactose decreased the fecal Firmicutes:Bacteroidetes ratio while galacto-oligosaccharides increased abundance of fecal Bifidobacterium spp. 481-fold compared to methylcellulose, and also increased abundance of Lactobacillus spp. and Bacteroidetes. Galacto-oligosaccharides did not affect glucose infusion rate or endogenous glucose production during basal or clamp periods compared to methylcellulose. Galactose at 15% of daily intake improved hepatic insulin sensitivity in rats compared to glucose and fructose. Galactose caused an increase in fed-state hepatic glycogen content and a favourable shift in gut microbial populations. Intake of galacto-oligosaccharides improved the gut microbial profile but did not improve insulin sensitivity.
Quantitation of Human Papillomavirus DNA in Plasma of Oropharyngeal Carcinoma Patients
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cao Hongbin; Banh, Alice; Kwok, Shirley
Purpose: To determine whether human papillomavirus (HPV) DNA can be detected in the plasma of patients with HPV-positive oropharyngeal carcinoma (OPC) and to monitor its temporal change during radiotherapy. Methods and Materials: We used polymerase chain reaction to detect HPV DNA in the culture media of HPV-positive SCC90 and VU147T cells and the plasma of SCC90 and HeLa tumor-bearing mice, non-tumor-bearing controls, and those with HPV-negative tumors. We used real-time quantitative polymerase chain reaction to quantify the plasma HPV DNA in 40 HPV-positive OPC, 24 HPV-negative head-and-neck cancer patients and 10 non-cancer volunteers. The tumor HPV status was confirmed bymore » p16{sup INK4a} staining and HPV16/18 polymerase chain reaction or HPV in situ hybridization. A total of 14 patients had serial plasma samples for HPV DNA quantification during radiotherapy. Results: HPV DNA was detectable in the plasma samples of SCC90- and HeLa-bearing mice but not in the controls. It was detected in 65% of the pretreatment plasma samples from HPV-positive OPC patients using E6/7 quantitative polymerase chain reaction. None of the HPV-negative head-and-neck cancer patients or non-cancer controls had detectable HPV DNA. The pretreatment plasma HPV DNA copy number correlated significantly with the nodal metabolic tumor volume (assessed using {sup 18}F-deoxyglucose positron emission tomography). The serial measurements in 14 patients showed a rapid decline in HPV DNA that had become undetectable at radiotherapy completion. In 3 patients, the HPV DNA level had increased to a discernable level at metastasis. Conclusions: Xenograft studies indicated that plasma HPV DNA is released from HPV-positive tumors. Circulating HPV DNA was detectable in most HPV-positive OPC patients. Thus, plasma HPV DNA might be a valuable tool for identifying relapse.« less
Sodium-dependent transport of sugars and iodide from the cerebral venticles of the rabbit.
Bradbury, M W; Brondsted, H E
1973-10-01
1. The objective was to discover whether the extraction of sugars and iodide from the perfused cerebral ventricles is Na(+)-dependent.2. In the ventriculo-aqueductal and ventriculo-cisternal perfusion systems in the rabbit the extraction of (14)C-labelled D-hexoses (glucose, 3-O-methyl-glucose, alpha-methyl-glucoside and galactose), (131)I(-) and (24)Na was inhibited when 82% of the Na(+) in the perfusion fluid was replaced by choline. The extraction returned to control levels when the Na(+) concentration in the perfusion fluid was returned to normal.3. Ouabain, 5 x 10(-5)M in the perfusion fluid inhibited the extraction of the above (14)C sugars and (131)I(-), but hardly affected that of [(3)H]2-deoxy-D-glucose. It enhanced the extraction of (24)Na. C.s.f. production was usually totally inhibited.4. The extraction of [(14)C]urea remained unchanged during perfusion with low Na(+) fluid or ouabain.5. Recovery from brain of [(14)C]3-O-methyl-glucose, [(3)H]2-deoxy-glucose and (131)I(-) was low while recovery of [(14)C]alpha-methyl-glucoside and (24)Na was high. On an equal weight basis recovery of [(14)C]3-O-methyl-glucose was about twelve times higher from the choroid plexus than from the brain.6. Part of the movement of (14)C sugars may be explained on basis of a Na(+)-gradient hypothesis with involvement of the Na(+) pump at the blood-c.s.f. or blood-brain barriers.7. The rate of c.s.f. production from the first three ventricles comprised about 40% of the rate from all four ventricles. The extraction of sugars, urea and cations was similar in both perfusion systems while the extraction of (131)I(-) was higher in the ventriculo-cisternal system than in the ventriculo-aqueductal system.
NASA Astrophysics Data System (ADS)
Xiong, Guoming; Cumming, Paul; Todica, Andrei; Hacker, Marcus; Bartenstein, Peter; Böning, Guido
2012-12-01
Absolute quantitation of the cerebral metabolic rate for glucose (CMRglc) can be obtained in positron emission tomography (PET) studies when serial measurements of the arterial [18F]-fluoro-deoxyglucose (FDG) input are available. Since this is not always practical in PET studies of rodents, there has been considerable interest in defining an image-derived input function (IDIF) by placing a volume of interest (VOI) within the left ventricle of the heart. However, spill-in arising from trapping of FDG in the myocardium often leads to progressive contamination of the IDIF, which propagates to underestimation of the magnitude of CMRglc. We therefore developed a novel, non-invasive method for correcting the IDIF without scaling to a blood sample. To this end, we first obtained serial arterial samples and dynamic FDG-PET data of the head and heart in a group of eight anaesthetized rats. We fitted a bi-exponential function to the serial measurements of the IDIF, and then used the linear graphical Gjedde-Patlak method to describe the accumulation in myocardium. We next estimated the magnitude of myocardial spill-in reaching the left ventricle VOI by assuming a Gaussian point-spread function, and corrected the measured IDIF for this estimated spill-in. Finally, we calculated parametric maps of CMRglc using the corrected IDIF, and for the sake of comparison, relative to serial blood sampling from the femoral artery. The uncorrected IDIF resulted in 20% underestimation of the magnitude of CMRglc relative to the gold standard arterial input method. However, there was no bias with the corrected IDIF, which was robust to the variable extent of myocardial tracer uptake, such that there was a very high correlation between individual CMRglc measurements using the corrected IDIF with gold-standard arterial input results. Based on simulation, we furthermore find that electrocardiogram-gating, i.e. ECG-gating is not necessary for IDIF quantitation using our approach.
Position of nuclear medicine techniques in the diagnostic work-up of neuroendocrine tumors.
Bombardieri, E; Seregni, E; Villano, C; Chiti, A; Bajetta, E
2004-06-01
In recent years nuclear medicine has contributed to the impressive development of the knowledge of neuroendocrine tumors in terms of biology (receptor scintigraphy), pharmacology (development of new tracers), and therapy (radiometabolic therapy). At present, it is impossible to plan the management of a patient affected by a neuroendocrine tumor without performing nuclear medicine examinations. The contribution of nuclear medicine had affected and improved the management of these patients by offering various important options that are part of the modern diagnosis and treatment protocols. The clinical experience and the literature confirm that, among the wide variety of tracers and nuclear medicine modalities available today, metaiodobenzylguanidine (MIBG) and DTPA-D-Phe-octreotide (pentetreotide) are the radiopharmaceuticals of current clinical use. Several new somatostatin analogues are under investigation. Positron emission tomography (PET) supplies a range of labelled compounds to be used for the visualization of tumor biochemistry. In addition to the first routinely used PET tracer in oncology, 18F-labelled deoxyglucose (FDG), a number of radiopharmaceuticals based on different precursors such as fluorodopamine and 5-hydroxytryptophan (5-HTP) are going to gain a clinical role. Of course, the diagnosis of neuroendocrine tumors has to be based on integrated information derived from different examinations including nuclear medicine studies. The clinical presentation of neuroendocrine tumors is highly variable: sometimes they manifest typical or atypical symptoms but they may also be detected by chance during an X-ray or ultrasound examination carried out for other reasons. At disease presentation nuclear medicine modalities are sometimes able to direct physicians towards the clinical diagnosis thanks to the specificity of their imaging mechanisms. They also play a role in disease staging and restaging, patient follow-up and treatment monitoring. In addition, the biological characterisation of neuroendocrine tissues (receptor status, glucose metabolism, differentiation, etc.) allows the interpretation of radiopharmaceutical uptake as a prognostic parameter and sometimes as a predictor of the response to treatment.
Sodium-Glucose Transporter-2 (SGLT2; SLC5A2) Enhances Cellular Uptake of Aminoglycosides
Jiang, Meiyan; Wang, Qi; Karasawa, Takatoshi; Koo, Ja-Won; Li, Hongzhe; Steyger, Peter S.
2014-01-01
Aminoglycoside antibiotics, like gentamicin, continue to be clinically essential worldwide to treat life-threatening bacterial infections. Yet, the ototoxic and nephrotoxic side-effects of these drugs remain serious complications. A major site of gentamicin uptake and toxicity resides within kidney proximal tubules that also heavily express electrogenic sodium-glucose transporter-2 (SGLT2; SLC5A2) in vivo. We hypothesized that SGLT2 traffics gentamicin, and promotes cellular toxicity. We confirmed in vitro expression of SGLT2 in proximal tubule-derived KPT2 cells, and absence in distal tubule-derived KDT3 cells. D-glucose competitively decreased the uptake of 2-(N-(7-nitrobenz-2-oxa-1,3-diazol-4-yl)amino)-2-deoxyglucose (2-NBDG), a fluorescent analog of glucose, and fluorescently-tagged gentamicin (GTTR) by KPT2 cells. Phlorizin, an SGLT2 antagonist, strongly inhibited uptake of 2-NBDG and GTTR by KPT2 cells in a dose- and time-dependent manner. GTTR uptake was elevated in KDT3 cells transfected with SGLT2 (compared to controls); and this enhanced uptake was attenuated by phlorizin. Knock-down of SGLT2 expression by siRNA reduced gentamicin-induced cytotoxicity. In vivo, SGLT2 was robustly expressed in kidney proximal tubule cells of heterozygous, but not null, mice. Phlorizin decreased GTTR uptake by kidney proximal tubule cells in Sglt2+/− mice, but not in Sglt2−/− mice. However, serum GTTR levels were elevated in Sglt2−/− mice compared to Sglt2+/− mice, and in phlorizin-treated Sglt2+/− mice compared to vehicle-treated Sglt2+/− mice. Loss of SGLT2 function by antagonism or by gene deletion did not affect gentamicin cochlear loading or auditory function. Phlorizin did not protect wild-type mice from kanamycin-induced ototoxicity. We conclude that SGLT2 can traffic gentamicin and contribute to gentamicin-induced cytotoxicity. PMID:25268124
Jin, Tao; Mehrens, Hunter; Wang, Ping; Kim, Seong-Gi
2016-12-01
Recent proof-of-principle studies have demonstrated the feasibility of measuring the uptake and metabolism of non-labeled 2-deoxy-D-glucose (2DG) by a chemical exchange-sensitive spin-lock (CESL) MRI approach. In order to gain better understanding of this new approach, we performed dynamic in vivo CESL MRI on healthy rat brains with an intravenous injection of 2DG under various conditions at 9.4T. For three 2DG doses of 0.25, 0.5 and 1g/kg, we found that 2DG-CESL signals increased linearly with injection dose at the initial (<20min) but not the later period (>40min) suggesting time-dependent differential weightings of 2DG transport and metabolism. Remaining 2DG-CESL studies were performed with 0.25g/kg 2DG. Since a higher isoflurane level reduces glucose metabolism and increases blood flow, 2DG-CESL was measured under 0.5%, 1.5% and 2.2% isoflurane. The 2DG-CESL signal was reduced at higher isoflurane levels correlating well with the 2DG phosphorylation in the intracellular space. To detect regional heterogeneities of glucose metabolism, 2DG-CESL with 0.33×0.33×1.50mm 3 resolution was obtained, which indeed showed a higher response in the cortex compared to the corpus callosum. Lastly, unlike CESL MRI with the injection of non-transportable mannitol, the 2DG-CESL response decreased with an increased spin-lock pulse power confirming that 2DG-CESL is dominated by chemical exchange processes in the extravascular space. Taken together, our results showed that 2DG-CESL MRI signals mainly indicate glucose transport and metabolism and may be a useful biomarker for metabolic studies of normal and diseased brains. Copyright © 2016 Elsevier Inc. All rights reserved.
Kornerup, Josefine S; Brodin, Patrik; Birk Christensen, Charlotte; Björk-Eriksson, Thomas; Kiil-Berthelsen, Anne; Borgwardt, Lise; Munck Af Rosenschöld, Per
2015-04-01
PET/CT may be more helpful than CT alone for radiation therapy planning, but the added risk due to higher doses of ionizing radiation is unknown. To estimate the risk of cancer induction and mortality attributable to the [F-18]2-fluoro-2-deoxyglucose (FDG) PET and CT scans used for radiation therapy planning in children with cancer, and compare to the risks attributable to the cancer treatment. Organ doses and effective doses were estimated for 40 children (2-18 years old) who had been scanned using PET/CT as part of radiation therapy planning. The risk of inducing secondary cancer was estimated using the models in BEIR VII. The prognosis of an induced cancer was taken into account and the reduction in life expectancy, in terms of life years lost, was estimated for the diagnostics and compared to the life years lost attributable to the therapy. Multivariate linear regression was performed to find predictors for a high contribution to life years lost from the radiation therapy planning diagnostics. The mean contribution from PET to the effective dose from one PET/CT scan was 24% (range: 7-64%). The average proportion of life years lost attributable to the nuclear medicine dose component from one PET/CT scan was 15% (range: 3-41%). The ratio of life years lost from the radiation therapy planning PET/CT scans and that of the cancer treatment was on average 0.02 (range: 0.01-0.09). Female gender was associated with increased life years lost from the scans (P < 0.001). Using FDG-PET/CT instead of CT only when defining the target volumes for radiation therapy of children with cancer does not notably increase the number of life years lost attributable to diagnostic examinations.
Mailloux, Ryan J; Harper, Mary-Ellen
2010-07-01
Reduced nicotinamide adenine dinucleotide (NADPH) is a functionally important metabolite required to support numerous cellular processes. However, despite the identification of numerous NADPH-producing enzymes, the mechanisms underlying how the organellar pools of NADPH are maintained remain elusive. Here, we have identified glucose-6-phosphate dehydrogenase (G6PDH) as an important source of NADPH in mitochondria. Activity analysis, submitochondrial fractionation, fluorescence microscopy, and protease sensitivity assays revealed that G6PDH is localized to the mitochondrial matrix. 6-ANAM, a specific G6PDH inhibitor, depleted mitochondrial NADPH pools and increased oxidative stress revealing the importance of G6PDH in NADPH maintenance. We also show that glucose availability and differences in metabolic state modulate the enzymatic sources of NADPH in mitochondria. Indeed, cells cultured in high glucose (HG) not only adopted a glycolytic phenotype but also relied heavily on matrix-associated G6PDH as a source of NADPH. In contrast, cells exposed to low-glucose (LG) concentrations, which displayed increased oxygen consumption, mitochondrial metabolic efficiency, and decreased glycolysis, relied predominantly on isocitrate dehydrogenase (ICDH) as the principal NADPH-producing enzyme in the mitochondria. Culturing glycolytic cells in LG for 48 h decreased G6PDH and increased ICDH protein levels in the mitochondria, further pointing to the regulatory role of glucose. 2-Deoxyglucose treatment also prevented the increase of mitochondrial G6PDH in response to HG. The role of glucose in regulating enzymatic sources of mitochondrial NADPH pool maintenance was confirmed using human myotubes from obese adults with a history of type 2 diabetes mellitus (post-T2DM). Myotubes from post-T2DM participants failed to increase mitochondrial G6PDH in response to HG in contrast to mitochondria in myotubes from control participants (non-T2DM). Hence, we not only identified a matrix-associated G6PDH but also provide evidence that metabolic state/glucose availability modulate enzymatic sources of NADPH.
Reactions to Media Violence: It’s in the Brain of the Beholder
Alia-Klein, Nelly; Wang, Gene-Jack; Preston-Campbell, Rebecca N.; Moeller, Scott J.; Parvaz, Muhammad A.; Zhu, Wei; Jayne, Millard C.; Wong, Chris; Tomasi, Dardo; Goldstein, Rita Z.; Fowler, Joanna S.; Volkow, Nora D.
2014-01-01
Media portraying violence is part of daily exposures. The extent to which violent media exposure impacts brain and behavior has been debated. Yet there is not enough experimental data to inform this debate. We hypothesize that reaction to violent media is critically dependent on personality/trait differences between viewers, where those with the propensity for physical assault will respond to the media differently than controls. The source of the variability, we further hypothesize, is reflected in autonomic response and brain functioning that differentiate those with aggression tendencies from others. To test this hypothesis we pre-selected a group of aggressive individuals and non-aggressive controls from the normal healthy population; we documented brain, blood-pressure, and behavioral responses during resting baseline and while the groups were watching media violence and emotional media that did not portray violence. Positron Emission Tomography was used with [18F]fluoro-deoxyglucose (FDG) to image brain metabolic activity, a marker of brain function, during rest and during film viewing while blood-pressure and mood ratings were intermittently collected. Results pointed to robust resting baseline differences between groups. Aggressive individuals had lower relative glucose metabolism in the medial orbitofrontal cortex correlating with poor self-control and greater glucose metabolism in other regions of the default-mode network (DMN) where precuneus correlated with negative emotionality. These brain results were similar while watching the violent media, during which aggressive viewers reported being more Inspired and Determined and less Upset and Nervous, and also showed a progressive decline in systolic blood-pressure compared to controls. Furthermore, the blood-pressure and brain activation in orbitofrontal cortex and precuneus were differentially coupled between the groups. These results demonstrate that individual differences in trait aggression strongly couple with brain, behavioral, and autonomic reactivity to media violence which should factor into debates about the impact of media violence on the public. PMID:25208327
San-Juan, R; Manuel, O; Hirsch, H H; Fernández-Ruiz, M; López-Medrano, F; Comoli, P; Caillard, S; Grossi, P; Aguado, J M
2015-06-01
There is limited clinical evidence on the utility of the monitoring of Epstein-Barr virus (EBV) DNAemia in the pre-emptive management of post-transplant lymphoproliferative disease (PTLD) in solid organ transplant (SOT) recipients. We investigated current preventive measures against EBV-related PTLD through a web-based questionnaire sent to 669 SOT programmes in 35 European countries. This study was performed on behalf of the ESGICH study group from the European Society of Clinical Microbiology and Infectious Diseases. A total of 71 SOT programmes from 15 European countries participated in the study. EBV serostatus of the recipient is routinely obtained in 69/71 centres (97%) and 64 (90%) have access to EBV DNAemia assays. EBV monitoring is routinely used in 85.9% of the programmes and 77.4% reported performing pre-emptive treatment for patients with significant EBV DNAemia levels. Pre-emptive treatment for EBV DNAemia included reduction of immunosuppression in 50.9%, switch to mammalian target of rapamycin inhibitors in 30.9%, and use of rituximab in 14.5% of programmes. Imaging by whole-body 18-fluoro-deoxyglucose positron emission tomography (FDG-PET) is used in 60.9% of centres to rule out PTLD and complemented computer tomography is used in 50%. In 10.9% of centres, FDG-PET is included in the first-line diagnostic workup in patients with high-risk EBV DNAemia. Despite the lack of definitive evidence, EBV load measurements are frequently used in Europe to guide diagnostic workup and pre-emptive reduction of immunosuppression. We need prospective and controlled studies to define the impact of EBV monitoring in reducing the risk of PTLD in SOT recipients. Copyright © 2015 European Society of Clinical Microbiology and Infectious Diseases. Published by Elsevier Ltd. All rights reserved.
Baek, Sora; Choi, Chang-Min; Ahn, Sei Hyun; Lee, Jong Won; Gong, Gyungyub; Ryu, Jin-Sook; Oh, Seung Jun; Bacher-Stier, Claudia; Fels, Lüder; Koglin, Norman; Hultsch, Christina; Schatz, Christoph A; Dinkelborg, Ludger M; Mittra, Erik S; Gambhir, Sanjiv S; Moon, Dae Hyuk
2012-10-01
(4S)-4-(3-[(18)F]fluoropropyl)-l-glutamate (BAY 94-9392, alias [(18)F]FSPG) is a new tracer to image x(C)(-) transporter activity with positron emission tomography (PET). We aimed to explore the tumor detection rate of [(18)F]FSPG in patients relative to 2-[(18)F]fluoro-2-deoxyglucose ([(18)F]FDG). The correlation of [(18)F]FSPG uptake with immunohistochemical expression of x(C)(-) transporter and CD44, which stabilizes the xCT subunit of system x(C)(-), was also analyzed. Patients with non-small cell lung cancer (NSCLC, n = 10) or breast cancer (n = 5) who had a positive [(18)F]FDG uptake were included in this exploratory study. PET images were acquired following injection of approximately 300 MBq [(18)F]FSPG. Immunohistochemistry was done using xCT- and CD44-specific antibody. [(18)F]FSPG PET showed high uptake in the kidney and pancreas with rapid blood clearance. [(18)F]FSPG identified all 10 NSCLC and three of the five breast cancer lesions that were confirmed by pathology. [(18)F]FSPG detected 59 of 67 (88%) [(18)F]FDG lesions in NSCLC, and 30 of 73 (41%) in breast cancer. Seven lesions were additionally detected only on [(18)F]FSPG in NSCLC. The tumor-to-blood pool standardized uptake value (SUV) ratio was not significantly different from that of [(18)F]FDG in NSCLC; however, in breast cancer, it was significantly lower (P < 0.05). The maximum SUV of [(18)F]FSPG correlated significantly with the intensity of immunohistochemical staining of x(C)(-) transporter and CD44 (P < 0.01). [(18)F]FSPG seems to be a promising tracer with a relatively high cancer detection rate in patients with NSCLC. [(18)F]FSPG PET may assess x(C)(-) transporter activity in patients with cancer.
Reactions to media violence: it's in the brain of the beholder.
Alia-Klein, Nelly; Wang, Gene-Jack; Preston-Campbell, Rebecca N; Moeller, Scott J; Parvaz, Muhammad A; Zhu, Wei; Jayne, Millard C; Wong, Chris; Tomasi, Dardo; Goldstein, Rita Z; Fowler, Joanna S; Volkow, Nora D
2014-01-01
Media portraying violence is part of daily exposures. The extent to which violent media exposure impacts brain and behavior has been debated. Yet there is not enough experimental data to inform this debate. We hypothesize that reaction to violent media is critically dependent on personality/trait differences between viewers, where those with the propensity for physical assault will respond to the media differently than controls. The source of the variability, we further hypothesize, is reflected in autonomic response and brain functioning that differentiate those with aggression tendencies from others. To test this hypothesis we pre-selected a group of aggressive individuals and non-aggressive controls from the normal healthy population; we documented brain, blood-pressure, and behavioral responses during resting baseline and while the groups were watching media violence and emotional media that did not portray violence. Positron Emission Tomography was used with [18F]fluoro-deoxyglucose (FDG) to image brain metabolic activity, a marker of brain function, during rest and during film viewing while blood-pressure and mood ratings were intermittently collected. Results pointed to robust resting baseline differences between groups. Aggressive individuals had lower relative glucose metabolism in the medial orbitofrontal cortex correlating with poor self-control and greater glucose metabolism in other regions of the default-mode network (DMN) where precuneus correlated with negative emotionality. These brain results were similar while watching the violent media, during which aggressive viewers reported being more Inspired and Determined and less Upset and Nervous, and also showed a progressive decline in systolic blood-pressure compared to controls. Furthermore, the blood-pressure and brain activation in orbitofrontal cortex and precuneus were differentially coupled between the groups. These results demonstrate that individual differences in trait aggression strongly couple with brain, behavioral, and autonomic reactivity to media violence which should factor into debates about the impact of media violence on the public.
Khan, Arshad M; Walker, Ellen M; Dominguez, Nicole; Watts, Alan G
2014-02-01
The hypothalamic arcuate nucleus (ARH) controls rat feeding behavior in part through peptidergic neurons projecting to the hypothalamic paraventricular nucleus (PVH). Hindbrain catecholaminergic (CA) neurons innervate both the PVH and ARH, and ablation of CA afferents to PVH neuroendocrine neurons prevents them from mounting cellular responses to systemic metabolic challenges such as insulin or 2-deoxy-d-glucose (2-DG). Here, we asked whether ablating CA afferents also limits their ARH responses to the same challenges or alters ARH connectivity with the PVH. We examined ARH neurons for three features: (1) CA afferents, visualized by dopamine-β-hydroxylase (DBH)- immunoreactivity; (2) activation by systemic metabolic challenge, as measured by increased numbers of neurons immunoreactive (ir) for phosphorylated ERK1/2 (pERK1/2); and (3) density of PVH-targeted axons immunoreactive for the feeding control peptides Agouti-related peptide and α-melanocyte-stimulating hormone (αMSH). Loss of PVH DBH immunoreactivity resulted in concomitant ARH reductions of DBH-ir and pERK1/2-ir neurons in the medial ARH, where AgRP neurons are enriched. In contrast, pERK1/2 immunoreactivity after systemic metabolic challenge was absent in αMSH-ir ARH neurons. Yet surprisingly, axonal αMSH immunoreactivity in the PVH was markedly increased in CA-ablated animals. These results indicate that (1) intrinsic ARH activity is insufficient to recruit pERK1/2-ir ARH neurons during systemic metabolic challenges (rather, hindbrain-originating CA neurons are required); and (2) rats may compensate for a loss of CA innervation to the ARH and PVH by increased expression of αMSH. These findings highlight the existence of a hierarchical dependence for ARH responses to neural and humoral signals that influence feeding behavior and metabolism.
HARADA, TARO; SATOH, SHIGERU; YOSHIOKA, TOSHIHITO; ISHIZAWA, KIMIHARU
2005-01-01
• Background and Aims Overwintering buds (turions) of the monocot aquatic pondweed species (Potamogeton distinctus) are highly tolerant to anoxic stress. Sucrose metabolism accompanied by enhanced activity of sucrose synthase (SuSy) operates actively during anaerobic elongation of pondweed turions. The aim of this study is to isolate SuSy genes from the turions and to investigate their transcriptional changes in response to anoxia and other stimuli. • Methods SuSy genes were isolated from pondweed turions by PCR methods and transcript levels of SuSy genes were examined in response to anoxia, sugars and plant hormones. In addition, the effects of anoxia on SuSy activity were examined both in the soluble fraction and in the microsomal fraction. • Key Results cDNAs of two SuSy genes (PdSUS1 and PdSUS2) were cloned from pondweed turions. The levels of PdSUS1 transcripts increased under anoxia but did not with sugar treatments. Anoxia-stimulated elongation of turions was further enhanced by 2,4-dichlorophenoxyacetic acid (2,4-D) and suppressed by treatments with sorbitol, 2-deoxyglucose (2-dGlc) and abscisic acid (ABA). The levels of PdSUS1 transcripts were increased by 2,4-D and decreased by sorbitol under anoxia. The levels of PdSUS2 transcripts were not significantly affected by anoxia and any other treatments. SuSy activity of turions under anoxia was enhanced in the soluble fraction, but not in the microsomal fraction. • Conclusions Up-regulation of PdSUS1 transcription under anoxia may not be attributed to sugar starvation under anoxia. A positive correlation between stem elongation and the level of PdSUS1 transcripts was observed in turions treated with anoxic conditions, 2,4-D and sorbitol. The increase in SuSy activity in the cytosol may contribute to sugar metabolism and sustain stem elongation under anoxia. PMID:16033779
Regulation of palmitoyl-CoA chain elongation by clofibric acid in the liver of Zucker fa/fa rats.
Toyama, Tomoaki; Kudo, Naomi; Mitsumoto, Atsushi; Kawashima, Yoichi
2005-05-01
The regulation of palmitoyl-CoA chain elongation (PCE) by clofibric acid [2-(4-chlorophenoxy)-2-methylpropionic acid] was investigated in comparison with stearoyl-CoA desaturase (SCD) in the liver of obese Zucker fa/fa rats. The proportion of oleic acid in the hepatic lipids of Zucker obese rats is 2.7 times higher than that of lean littermates. The activities of PCE and SCD in the liver of Zucker obese rats were markedly higher than in lean rats, and the hepatic uptake of 2-deoxyglucose (2-DG) was also higher in Zucker obese rats compared with lean rats. The increased activities of SCD and PCE in Zucker obese rats were due to the enhanced expression of mRNA of both SCD1 and rat FA elongase 2 (rELO2), but not SCD2 or rELO1. The proportion of oleic acid in the liver was significantly increased by the administration of clofibric acid to Zucker obese rats, and the hepatic PCE activity and rELO2 mRNA expression, but not the SCD activity or SCD1 mRNA expression, were increased in response to clofibric acid treatment. By contrast, the activities of both PCE and SCD and the mRNA expression of SCD1 and rELO2 in the liver were increased by the treatment of Zucker lean rats with clofibric acid. Multiple regression analysis, which was performed to determine the relationships involving PCE activity, SCD activity, and the proportion of oleic acid, revealed that the three parameters were significantly correlated and that the standardized partial regression coefficient of PCE was higher than that of SCD. These results indicate that oleic acid is synthesized by the concerted action of PCE and SCD and that PCE plays a crucial role in the formation of oleic acid when Zucker fa/fa rats are given clofibric acid.
Bresson-Hadni, Solange; Blagosklonov, Oleg; Knapp, Jenny; Grenouillet, Frédéric; Sako, Yasuhito; Delabrousse, Eric; Brientini, Marie-Pascale; Richou, Carine; Minello, Anne; Antonino, Anca-Teodora; Gillet, Michel; Ito, Akira; Mantion, Georges André; Vuitton, Dominique Angèle
2011-07-01
Liver transplantation (LT) is currently contraindicated in patients with residual or metastatic alveolar echinococcosis (AE) lesions. We evaluated the long-term course of such patients who underwent LT and were subsequently treated with benzimidazoles. Clinical, imaging, serological, and therapeutic data were collected from 5 patients with residual/recurrent AE lesions who survived for more than 15 years. Since 2004, [(18) F]-2-fluoro-2-deoxyglucose (FDG)-positron emission tomography (PET) images were available, and the levels of serum antibodies (Abs) against Echinococcus multilocularis-recombinant antigens were evaluated. Median survival time after LT was 21 years. These patients were from a prospective cohort of 23 patients with AE who underwent LT: 5 of 8 patients with residual/recurrent AE and 4 of 9 patients without residual/recurrent AE were alive in September 2009. High doses of immunosuppressive drugs, the late introduction of therapy with benzimidazoles, its withdrawal due to side effects, and nonadherence to this therapy adversely affected the prognosis. Anti-Em2(plus) and anti-rEm18 Ab levels and standard FDG-PET enabled the efficacy of therapy on the growth of EA lesions to be assessed. However, meaningful variations in Ab levels were observed below diagnostic cutoff values; and in monitoring AE lesions, images of FDG uptake taken 3 hours after its injection were more sensitive than images obtained 1 hour after its injection. In conclusion, benzimidazoles can control residual/recurrent AE lesions after LT. Using anti-rEm18 or anti-Em2(plus) Ab levels and the delayed acquisition of FDG-PET images can improve the functional assessment of disease activity. The potential recurrence of disease, especially in patients with residual or metastatic AE lesions, should not be regarded as a contraindication to LT when AE is considered to be lethal in the short term. Copyright © 2011 American Association for the Study of Liver Diseases.
Bedini, Gloria; Bersano, Anna; D'Incerti, Ludovico; Marotta, Giorgio; Rosazza, Cristina; Rossi Sebastiano, Davide; Franceschetti, Silvana; Sattin, Davide; Leonardi, Matilde; Nigri, Anna; Ferraro, Stefania; Parati, Eugenio Agostino
2017-10-15
Several methodologies including neuroimaging and sleep evaluation are being developed to complement the clinical bedside examinations in patients with disorder of consciousness (DOC). Recently, we demonstrated a possible association between Period3 (Per3) variable number tandem repeat (VNTR) polymorphism and functional impairment of DOC patients, speculating a possible role of this gene in sleep regulation. To assess whether the degree of structural and metabolic damage of the main brain areas involved in the sleep generation and homeostasis may influence the different outcome of DOC patients carrying the Per3 5/5 genotype in comparison to Per3 4/4 ones. For the present study, we reviewed 44 DOC patients from the Coma Research Centre of the Fondazione IRCCS Istituto Neurologico "C. Besta" of Milan. All patients underwent to polysomnographic sleep evaluation, cerebral structural magnetic resonance imaging (MRI) and 18 F-fluoro-2-deoxyglucose positron emission tomography (FDG-PET) analysis. Our DOC patients presented a moderate anatomical (median score 2) and metabolic damage (median value 2.36 SUVmean) of the sleep areas at both MRI and FDG-PET evaluation. Total sleep time seemed to be higher in 5/5 genotype DOC patients (median value Per3 5/5 , 221min, range 126-323min; median value Per3 4/4 , 167min, range 36-477min; and median value Per3 4/5 , 187min, range 29-422min). However, the MRI scores and FDG-PET values of whole brain, overall sleep areas, hypothalamus, midbrain and thalamus did not differ by genotype distribution. Although limited by the small sample size, our data might support the idea that Per3 genetic predisposition in DOC patients could affect impairment and residual cognitive functions through sleep homeostasis independently from structural and/or metabolic integrity of sleep areas. Copyright © 2017 Elsevier B.V. All rights reserved.
Dubois, Albertine; Hérard, Anne-Sophie; Delatour, Benoît; Hantraye, Philippe; Bonvento, Gilles; Dhenain, Marc; Delzescaux, Thierry
2010-06-01
Biomarkers and technologies similar to those used in humans are essential for the follow-up of Alzheimer's disease (AD) animal models, particularly for the clarification of mechanisms and the screening and validation of new candidate treatments. In humans, changes in brain metabolism can be detected by 1-deoxy-2-[(18)F] fluoro-D-glucose PET (FDG-PET) and assessed in a user-independent manner with dedicated software, such as Statistical Parametric Mapping (SPM). FDG-PET can be carried out in small animals, but its resolution is low as compared to the size of rodent brain structures. In mouse models of AD, changes in cerebral glucose utilization are usually detected by [(14)C]-2-deoxyglucose (2DG) autoradiography, but this requires prior manual outlining of regions of interest (ROI) on selected sections. Here, we evaluate the feasibility of applying the SPM method to 3D autoradiographic data sets mapping brain metabolic activity in a transgenic mouse model of AD. We report the preliminary results obtained with 4 APP/PS1 (64+/-1 weeks) and 3 PS1 (65+/-2 weeks) mice. We also describe new procedures for the acquisition and use of "blockface" photographs and provide the first demonstration of their value for the 3D reconstruction and spatial normalization of post mortem mouse brain volumes. Despite this limited sample size, our results appear to be meaningful, consistent, and more comprehensive than findings from previously published studies based on conventional ROI-based methods. The establishment of statistical significance at the voxel level, rather than with a user-defined ROI, makes it possible to detect more reliably subtle differences in geometrically complex regions, such as the hippocampus. Our approach is generic and could be easily applied to other biomarkers and extended to other species and applications. Copyright 2010 Elsevier Inc. All rights reserved.
Estacion, M.; Vohra, B. P. S; Liu, S.; Hoeijmakers, J.; Faber, C. G.; Merkies, I. S. J.; Lauria, G.; Black, J. A.
2015-01-01
Gain-of-function missense mutations in voltage-gated sodium channel Nav1.7 have been linked to small-fiber neuropathy, which is characterized by burning pain, dysautonomia and a loss of intraepidermal nerve fibers. However, the mechanistic cascades linking Nav1.7 mutations to axonal degeneration are incompletely understood. The G856D mutation in Nav1.7 produces robust changes in channel biophysical properties, including hyperpolarized activation, depolarized inactivation, and enhanced ramp and persistent currents, which contribute to the hyperexcitability exhibited by neurons containing Nav1.8. We report here that cell bodies and neurites of dorsal root ganglion (DRG) neurons transfected with G856D display increased levels of intracellular Na+ concentration ([Na+]) and intracellular [Ca2+] following stimulation with high [K+] compared with wild-type (WT) Nav1.7-expressing neurons. Blockade of reverse mode of the sodium/calcium exchanger (NCX) or of sodium channels attenuates [Ca2+] transients evoked by high [K+] in G856D-expressing DRG cell bodies and neurites. We also show that treatment of WT or G856D-expressing neurites with high [K+] or 2-deoxyglucose (2-DG) does not elicit degeneration of these neurites, but that high [K+] and 2-DG in combination evokes degeneration of G856D neurites but not WT neurites. Our results also demonstrate that 0 Ca2+ or blockade of reverse mode of NCX protects G856D-expressing neurites from degeneration when exposed to high [K+] and 2-DG. These results point to [Na+] overload in DRG neurons expressing mutant G856D Nav1.7, which triggers reverse mode of NCX and contributes to Ca2+ toxicity, and suggest subtype-specific blockade of Nav1.7 or inhibition of reverse NCX as strategies that might slow or prevent axon degeneration in small-fiber neuropathy. PMID:26156380
Gardener, Samantha L; Sohrabi, Hamid R; Shen, Kai-Kai; Rainey-Smith, Stephanie R; Weinborn, Michael; Bates, Kristyn A; Shah, Tejal; Foster, Jonathan K; Lenzo, Nat; Salvado, Olivier; Laske, Christoph; Laws, Simon M; Taddei, Kevin; Verdile, Giuseppe; Martins, Ralph N
2016-03-31
Increasing evidence suggests that Alzheimer's disease (AD) sufferers show region-specific reductions in cerebral glucose metabolism, as measured by [18F]-fluoro-2-deoxyglucose positron emission tomography (18F-FDG PET). We investigated preclinical disease stage by cross-sectionally examining the association between global cognition, verbal and visual memory, and 18F-FDG PET standardized uptake value ratio (SUVR) in 43 healthy control individuals, subsequently focusing on differences between subjective memory complainers and non-memory complainers. The 18F-FDG PET regions of interest investigated include the hippocampus, amygdala, posterior cingulate, superior parietal, entorhinal cortices, frontal cortex, temporal cortex, and inferior parietal region. In the cohort as a whole, verbal logical memory immediate recall was positively associated with 18F-FDG PET SUVR in both the left hippocampus and right amygdala. There were no associations observed between global cognition, delayed recall in logical memory, or visual reproduction and 18F-FDG PET SUVR. Following stratification of the cohort into subjective memory complainers and non-complainers, verbal logical memory immediate recall was positively associated with 18F-FDG PET SUVR in the right amygdala in those with subjective memory complaints. There were no significant associations observed in non-memory complainers between 18F-FDG PET SUVR in regions of interest and cognitive performance. We observed subjective memory complaint-specific associations between 18F-FDG PET SUVR and immediate verbal memory performance in our cohort, however found no associations between delayed recall of verbal memory performance or visual memory performance. It is here argued that the neural mechanisms underlying verbal and visual memory performance may in fact differ in their pathways, and the characteristic reduction of 18F-FDG PET SUVR observed in this and previous studies likely reflects the pathophysiological changes in specific brain regions that occur in preclinical AD.
Sarikaya, Ismet
2015-01-01
Various PET studies, such as measurements of glucose, serotonin and oxygen metabolism, cerebral blood flow and receptor bindings are availabe for epilepsy. 18Fluoro-2-deoxyglucose (18F-FDG) PET imaging of brain glucose metabolism is a well established and widely available technique. Studies have demonstrated that the sensitivity of interictal FDG-PET is higher than interictal SPECT and similar to ictal SPECT for the lateralization and localization of epileptogenic foci in presurgical patients refractory to medical treatments who have noncontributory EEG and MRI. In addition to localizing epileptogenic focus, FDG-PET provide additional important information on the functional status of the rest of the brain. The main limitation of interictal FDG-PET is that it cannot precisely define the surgical margin as the area of hypometabolism usually extends beyond the epileptogenic zone. Various neurotransmitters (GABA, glutamate, opiates, serotonin, dopamine, acethylcholine, and adenosine) and receptor subtypes are involved in epilepsy. PET receptor imaging studies performed in limited centers help to understand the role of neurotransmitters in epileptogenesis, identify epileptic foci and investigate new treatment approaches. PET receptor imaging studies have demonstrated reduced 11C-flumazenil (GABAA-cBDZ) and 18F-MPPF (5-HT1A serotonin) and increased 11C-cerfentanil (mu opiate) and 11C-MeNTI (delta opiate) bindings in the area of seizure. 11C-flumazenil has been reported to be more sensitive than FDG-PET for identifying epileptic foci. The area of abnormality on GABAAcBDZ and opiate receptor images is usually smaller and more circumscribed than the area of hypometabolism on FDG images. Studies have demonstrated that 11C-alpha-methyl-L-tryptophan PET (to study synthesis of serotonin) can detect the epileptic focus within malformations of cortical development and helps in differentiating epileptogenic from non-epileptogenic tubers in patients with tuberous sclerosis complex. 15O-H2O PET was reported to have a similar sensitivity to FDG-PET in detecting epileptic foci. PMID:26550535
Yang, Zhou; Wu, Fan; He, Yanming; Zhang, Qiang; Zhang, Yuan; Zhou, Guangrong; Yang, Hongjie; Zhou, Ping
2018-01-24
Insulin resistance caused by the overexpression of protein tyrosine phosphatase 1 B (PTP1B) as well as the dephosphorylation of its target is one of the main causes of type 2 diabetes (T2D). A newly discovered proteoglycan, Fudan-Yueyang Ganoderma lucidum (FYGL) extracted from Ganoderma lucidum, was first reported to be capable of competitively inhibiting PTP1B activity in vitro in our previous work. In the present study, we sought to reveal the mechanism of PTP1B inhibition by FYGL at the animal and cellular levels. We found that FYGL can decrease blood glucose, reduce body weight and ameliorate insulin resistance in ob/ob mice. Decrease of PTP1B expression and increase of the phosphorylation of PTP1B targets in the insulin signaling pathway of skeletal muscles were observed. In order to clearly reveal the underlying mechanism of the hypoglycemic effect caused by FYGL, we further investigated the effects of FYGL on the PTP1B-involved insulin signaling pathway in rat myoblast L6 cells. We demonstrated that FYGL had excellent cell permeability by using a confocal laser scanning microscope and a flow cytometer. We found that FYGL had a positive effect on insulin-stimulated glucose uptake by using the 2-deoxyglucose (2-DG) method. FYGL could inhibit PTP1B expression at the mRNA level, phosphorylating insulin receptor substrate-1 (IRS1), as well as activating phosphatidylinositol-3 kinase (PI3K) and protein kinase B (Akt). Finally, FYGL increased the phosphorylation of adenosine monophosphate-activated protein kinase (AMPK) and consequently up-regulated the expression of glucose transporter type 4 (GLUT4), promoting GLUT4 transportation to the plasma membrane in PTP1B-transfected L6 cells. Our study provides theoretical evidence for FYGL to be potentially used in T2D management.
Wang, Yiqun; Van Oort, Masja M; Yao, Minghui; Van der Horst, Dick J; Rodenburg, Kees W
2011-09-01
Chromium picolinate (CrPic) has been indicated to activate glucose transporter 4 (GLUT4) trafficking to the plasma membrane (PM) to enhance glucose uptake in 3T3-L1 adipocytes. In skeletal and heart muscle cells, insulin directs the intracellular trafficking of the fatty acid translocase/CD36 to induce the uptake of cellular long-chain fatty acid (LCFA). The current study describes the effects of CrPic and insulin on the translocation of CD36 from intracellular storage pools to the PM in 3T3-L1 adipocytes in comparison with that of GLUT4. Immunofluorescence microscopy and immunoblotting revealed that both CD36 and GLUT4 were expressed and primarily located intracellularly in 3T3-L1 adipocytes. Upon insulin or CrPic stimulation, PM expression of CD36 increased in a similar manner as that for GLUT4; the CrPic-stimulated PM expression was less strong than that of insulin. The increase in PM localization for these two proteins by insulin paralleled LCFA ([1-(14)C]palmitate) or [(3)H]deoxyglucose uptake in 3T3-L1 adipocytes. The induction of the PM expression of GLUT4, but not CD36, or substrate uptake by insulin and CrPic appears to be additive in adipocytes. Furthermore, wortmannin completely inhibited the insulin-stimulated translocation of GLUT4 or CD36 and prevented the increased uptake of glucose or LCFA in these cells. Taken together, for the first time, these findings suggest that both insulin and CrPic induce CD36 translocation to the PM in 3T3-L1 adipocytes and that their translocation-inducing effects are not additive. The signaling pathway inducing the translocations is different, apparently resulting in a differential activity of CD36.
Chen, Li-You; Renn, Ting-Yi; Liao, Wen-Chieh; Mai, Fu-Der; Ho, Ying-Jui; Hsiao, George; Lee, Ai-Wei; Chang, Hung-Ming
2017-09-01
Prolonged exposure to gamma-hydroxybutyric acid (GHB) would cause drug intoxication in which impaired cognitive function results from enhanced hippocampal oxidative stress may serve as a major symptom in this deficiency. Considering melatonin possesses significant anti-oxidative efficacy, this study aimed to determine whether melatonin would successfully promote the nuclear factor erythroid 2-related factor 2 and antioxidant responsive element (Nrf2-ARE) signaling, depress oxidative stress, and rescue hippocampal bioenergetics and cognitive function following drug intoxication injury. Adolescent rats subjected to 10 days of GHB were received melatonin at doses of either 10 or 100 mg/kg. Time-of-flight secondary ion mass spectrometry, biochemical assay, quantitative histochemistry, [ 14 C]-2-deoxyglucose analysis, together with Morris water maze were employed to detect the molecular signaling, oxidative status, bioenergetic level, as well as the cognitive performances, respectively. Results indicated that in GHB-intoxicated rats, enhanced oxidative stress, increased cholesterol level, and decreased anti-oxidative enzymes activities were detected in hippocampal regions. Intense oxidative stress paralleled well with reduced bioenergetics and poor performance in behavioral testing. However, in rats treated with melatonin following GHB intoxication, all above parameters and cognitive function were gradually returned to nearly normal levels. Melatonin also remarkably promoted the translocation of Nrf2 from cytoplasm to nucleus in a dose-dependent manner, thereby increased the Nrf2-ARE signaling-related downstream anti-oxidative enzymes activities. As melatonin effectively rescues hippocampal bioenergetics through depressing the oxidative stress by promoting Nrf2-ARE molecular machinery, this study thus highlights for the first time that clinical use of melatonin may serve as a therapeutic strategy to improve the cognitive function in unsuspecting victims suffered from GHB intoxication injury. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Smolarz, Kamilla; Krause, Bernd Joachim; Graner, Frank Philipp; Wagner, Franziska Martina; Wester, Hans-Jürgen; Sell, Tina; Bacher-Stier, Claudia; Fels, Lüder; Dinkelborg, Ludger; Schwaiger, Markus
2013-12-01
Novel tracers for the diagnosis of malignant disease with PET and PET/CT are being developed as the most commonly used (18)F deoxyglucose (FDG) tracer shows certain limitations. Employing radioactively labelled glutamate derivatives for specific imaging of the truncated citrate cycle potentially allows more specific tumour imaging. Radiation dosimetry of the novel tracer BAY 85-8050, a glutamate derivative, was calculated and the effective dose (ED) was compared with that of FDG. Five healthy volunteers were included in the study. Attenuation-corrected whole-body PET/CT scans were performed from 0 to 90 min, at 120 and at 240 min after injection of 305.0 ± 17.6 MBq of BAY 85-8050. Organs with moderate to high uptake at any of the imaging time points were used as source organs. Total activity in each organ at each time point was measured. Time-activity curves (TAC) were determined for the whole body and all source organs. The resulting TACs were fitted to exponential equations and accumulated activities were determined. OLINDA/EXM software was used to calculate individual organ doses and the whole-body ED from the acquired data. Uptake of the tracer was highest in the kidneys due to renal excretion of the tracer, followed by the pancreas, heart wall and osteogenic cells. The mean organ doses were: kidneys 38.4 ± 11.2 μSv/MBq, pancreas 23.2 ± 3.8 μSv/MBq, heart wall 17.4 ± 4.1 μSv/MBq, and osteogenic cells 13.6 ± 3.5 μSv/MBq. The calculated ED was 8.9 ± 1.5 μSv/MBq. Based on the distribution and dose estimates, the calculated radiation dose of BAY 85-8050 is 2.67 ± 0.45 mSv at a patient dose of 300 MBq, which compares favourably with the radiation dose of FDG (5.7 mSv).
Ma, Liang; Salas, Omar; Bowler, Kyle; Oren-Young, Liat; Bar-Peled, Maor; Sharon, Amir
2017-02-01
Botrytis cinerea is a model plant-pathogenic fungus that causes grey mould and rot diseases in a wide range of agriculturally important crops. A previous study has identified two enzymes and corresponding genes (bcdh, bcer) that are involved in the biochemical transformation of uridine diphosphate (UDP)-glucose, the major fungal wall nucleotide sugar precursor, to UDP-rhamnose. We report here that deletion of bcdh, the first biosynthetic gene in the metabolic pathway, or of bcer, the second gene in the pathway, abolishes the production of rhamnose-containing glycans in these mutant strains. Deletion of bcdh or double deletion of both bcdh and bcer has no apparent effect on fungal development or pathogenicity. Interestingly, deletion of the bcer gene alone adversely affects fungal development, giving rise to altered hyphal growth and morphology, as well as reduced sporulation, sclerotia production and virulence. Treatments with wall stressors suggest the alteration of cell wall integrity. Analysis of nucleotide sugars reveals the accumulation of the UDP-rhamnose pathway intermediate UDP-4-keto-6-deoxy-glucose (UDP-KDG) in hyphae of the Δbcer strain. UDP-KDG could not be detected in hyphae of the wild-type strain, indicating fast conversion to UDP-rhamnose by the BcEr enzyme. The correlation between high UDP-KDG and modified cell wall and developmental defects raises the possibility that high levels of UDP-KDG result in deleterious effects on cell wall composition, and hence on virulence. This is the first report demonstrating that the accumulation of a minor nucleotide sugar intermediate has such a profound and adverse effect on a fungus. The ability to identify molecules that inhibit Er (also known as NRS/ER) enzymes or mimic UDP-KDG may lead to the development of new antifungal drugs. © 2016 BSPP AND JOHN WILEY & SONS LTD.
Qi, Zhihua; Gates, Erica L; O'Brien, Maureen M; Trout, Andrew T
2018-02-01
Both [F-18]2-fluoro-2-deoxyglucose positron emission tomography/computed tomography ( 18 F-FDG PET/CT) and diagnostic CT are at times required for lymphoma staging. This means some body segments are exposed twice to X-rays for generation of CT data (diagnostic CT + localization CT). To describe a combined PET/diagnostic CT approach that modulates CT tube current along the z-axis, providing diagnostic CT of some body segments and localization CT of the remaining body segments, thereby reducing patient radiation dose. We retrospectively compared total patient radiation dose between combined PET/diagnostic CT and separately acquired PET/CT and diagnostic CT exams. When available, we calculated effective doses for both approaches in the same patient; otherwise, we used data from patients of similar size. To confirm image quality, we compared image noise (Hounsfield unit [HU] standard deviation) as measured in the liver on both combined and separately acquired diagnostic CT images. We used t-tests for dose comparisons and two one-sided tests for image-quality equivalence testing. Mean total effective dose for the CT component of the combined and separately acquired diagnostic CT exams were 6.20±2.69 and 8.17±2.61 mSv, respectively (P<0.0001). Average dose savings with the combined approach was 24.8±17.8% (2.60±2.51 mSv [range: 0.32-4.72 mSv]) of total CT effective dose. Image noise was not statistically significantly different between approaches (12.2±1.8 HU vs. 11.7±1.5 HU for the combined and separately acquired diagnostic CT images, respectively). A combined PET/diagnostic CT approach as described offers dose savings at similar image quality for children and young adults with lymphoma who have indications for both PET and diagnostic CT examinations.
Martinez-Outschoorn, Ubaldo E; Lin, Zhao; Trimmer, Casey; Flomenberg, Neal; Wang, Chenguang; Pavlides, Stephanos; Pestell, Richard G; Howell, Anthony; Sotgia, Federica; Lisanti, Michael P
2011-08-01
Previously, we proposed that cancer cells behave as metabolic parasites, as they use targeted oxidative stress as a "weapon" to extract recycled nutrients from adjacent stromal cells. Oxidative stress in cancer-associated fibroblasts triggers autophagy and mitophagy, resulting in compartmentalized cellular catabolism, loss of mitochondrial function, and the onset of aerobic glycolysis, in the tumor stroma. As such, cancer-associated fibroblasts produce high-energy nutrients (such as lactate and ketones) that fuel mitochondrial biogenesis, and oxidative metabolism in cancer cells. We have termed this new energy-transfer mechanism the "reverse Warburg effect." To further test the validity of this hypothesis, here we used an in vitro MCF7-fibroblast co-culture system, and quantitatively measured a variety of metabolic parameters by FACS analysis (analogous to laser-capture micro-dissection). Mitochondrial activity, glucose uptake, and ROS production were measured with highly-sensitive fluorescent probes (MitoTracker, NBD-2-deoxy-glucose, and DCF-DA). Interestingly, using this approach, we directly show that cancer cells initially secrete hydrogen peroxide that then triggers oxidative stress in neighboring fibroblasts. Thus, oxidative stress is contagious (spreads like a virus) and is propagated laterally and vectorially from cancer cells to adjacent fibroblasts. Experimentally, we show that oxidative stress in cancer-associated fibroblasts quantitatively reduces mitochondrial activity, and increases glucose uptake, as the fibroblasts become more dependent on aerobic glycolysis. Conversely, co-cultured cancer cells show significant increases in mitochondrial activity, and corresponding reductions in both glucose uptake and GLUT1 expression. Pre-treatment of co-cultures with extracellular catalase (an anti-oxidant enzyme that detoxifies hydrogen peroxide) blocks the onset of oxidative stress, and potently induces the death of cancer cells, likely via starvation. Given that cancer-associated fibroblasts show the largest increases in glucose uptake, we suggest that PET imaging of human tumors, with Fluoro-2-deoxy-D-glucose (F-2-DG), may be specifically detecting the tumor stroma, rather than epithelial cancer cells.
NASA Astrophysics Data System (ADS)
Piao, Daqing; Davis, Carole A.; Hurst, Robert E.; Slaton, Joel W.
2017-02-01
Bladder cancer is one of the most expensive cancers to manage due to frequent recurrences requiring life-long surveillance and treatment. A near-infrared labeled 2-deoxy-d-glucose probe IRDye800CW-DG targeting glucose metabolism pathway has shown to enhance the sensitivity of diagnosing several types of cancers as tested on tumor models not including bladder tumor. This pilot study has explored differential uptake of intravesically administered IRDye800CW-DG in an orthotopic rat bladder tumor model. Twenty-five female Fischer rats were randomly grouped to four conditions: no-tumor-control (n=3), no-tumor-control intravesically instilled with IRDye800CWDG (n=6), rats bearing GFP-labeled AY-27 rat bladder urothelial cell carcinoma cells and washed with saline (n=5), and rats bearing AY-27 tumors and intravesically instilled with IRDye800CW-DG (n=11). Near-infrared fluorescence was measured from the opened bladder wall of anesthetized rat at an excitation wavelength of 750nm and an emission wavelength of 776nm, by using an in-house fluorescence imaging system. There is no statistically significant difference of the peak fluorescence intensity among the no-tumor-control bladders (n=3), the no-tumorcontrol bladders instilled with IRDye800CW-DG (n=6), and the GFP-labeled AY-27 treated bladders washed by saline (n=5). When compared to that of the no-tumor-control bladders instilled with IRDye800CW-DG (n=6), the fluorescence intensity of GFP-labeled AY-27 treated bladders instilled with IRDye800CW-DG and with histology confirmed neoplastic bladder tissue (n=11) was remarkably more intense (3.34 fold of over the former) and was also statistically significant (p<0.0001). The differential uptake of IRDye800CW-DG by the neoplastic urinary bladder tissues suggests the potential for cystoscopy-adaptation to enhance diagnosis and guiding surgical management of flat urinary bladder cancer.
Hashiatni, Hikaru; Lang, Richard J; Suzuki, Hikaru
2010-01-01
BACKGROUND AND PURPOSE Although spontaneous Ca2+ waves in interstitial cells of Cajal (ICC)-like cells (ICC-LCs) primarily arise from endoplasmic reticulum (ER) Ca2+ release, the interactions among mitochondrial Ca2+ buffering, cellular energetics and ER Ca2+ release in determining the spatiotemporal dynamics of intracellular Ca2+ remain to be elucidated. EXPERIMENTAL APPROACH Spontaneous Ca2+ transients in freshly isolated ICC-LCs of the rabbit urethra were visualized using fluo-4 Ca2+ imaging, while the intracellular distribution of mitochondria was viewed with MitoTracker Red. KEY RESULTS Spontaneous Ca2+ waves invariably originated from the perinuclear region where clusters of mitochondria surround the nucleus. Perinuclear Ca2+ dynamics were characterized by a gradual rise in basal Ca2+ that preceded each regenerative Ca2+ transient. Caffeine evoked oscillatory Ca2+ waves originating from anywhere within ICC-LCs. Ryanodine or cyclopiazonic acid prevented Ca2+ wave generation with a rise in basal Ca2+, and subsequent caffeine evoked a single rudimentary Ca2+ transient. Inhibition of glycolysis with 2-deoxy-glucose or carbonyl cyanide 3-chlorophenylhydrazone, a mitochondrial protonophore, increased basal Ca2+ and abolished Ca2+ waves. However, caffeine still induced oscillatory Ca2+ transients. Mitochondrial Ca2+ uptake inhibition with RU360 attenuated Ca2+ wave amplitudes, while mitochondrial Ca2+ efflux inhibition with CGP37157 suppressed the initial Ca2+ rise to reduce Ca2+ wave frequency. CONCLUSIONS AND IMPLICATIONS Perinuclear mitochondria in ICC-LCs play a dominant role in the spatial regulation of Ca2+ wave generation and may regulate ER Ca2+ release frequency by buffering Ca2+ within microdomains between both organelles. Glycolysis inhibition reduced mitochondrial Ca2+ buffering without critically disrupting ER function. Perinuclear mitochondria may function as sensors of intracellular metabolites. PMID:20880405
Inal, Ali; Kaplan, Muhammed Ali; Kucukoner, Mehmet; Urakcı, Zuhat; Dostbil, Zeki; Komek, Hail; Onder, Hakan; Tasdemir, Bekir; Isıkdogan, Abdurrahman
2014-01-01
Bone scintigraphy (BS) and fluorine-18 deoxyglucose positron emission tomography computed tomography ((18)F-FDG-PET/CT) are widely used for the detection of bone involvement. The optimal imaging modality for the detection of bone metastases in histological subgroups of non-small cell lung cancer (NSCLC) remains ambiguous. The aim of this study was to compare the efficacy of (18)F-FDG-PET/C and 99mTc-methylene diphosphonate ((99m)Tc-MDP) BS in the detection of bone metastases of patients in NSCLC. Specifically, we compared the diagnostic accuracies of these imaging techniques evaluating bone metastasis in histological subgroups of NSCLC. Fifty-three patients with advanced NSCLC, who had undergone both (18)F-FDG-PET/CT and BS and were eventually diagnosed as having bone metastasis, were enrolled in this retrospective study. The sensitivity, specificity, positive predictive value, negative predictive value, and accuracy of (18)F-FDG-PET/CT and BS were 90.4%, 99.4%, 98.1%, 96.6%, 97.0% and 84.6%, 93.1%, 82.5%, 93.2, 90.8%, respectively. The κ statistics were calculated for (18)F-FDG-PET/CT and BS. The κ-value was 0.67 between (18)F-FDG-PET/CT and BS in all patients. On the other hand, the κ-value was 0.65 in adenocarcinoma, and 0.61 in squamous cell carcinoma between (18)F-FDG-PET/CT and BS. The κ-values suggested excellent agreement between all patients and histological subgroups of NSCLC. (18)F-FDG-PET/CT was more favorable than BS in the screening of metastatic bone lesions, but the trend did not reach statistical significance in all patients and histological subgroups of NSCLC. Our results need to be validated in prospective and larger study clinical trials to further clarify this topic.
Guzzardi, M A; Hodson, L; Guiducci, L; La Rosa, F; Salvadori, P A; Burchielli, S; Iozzo, P
2017-11-01
Metabolic factors initiating adipose tissue expansion and ectopic triglyceride accumulation are not completely understood. We aimed to investigate the independent role of circulating glucose, NEFA and insulin on glucose and NEFA uptake, and lipogenesis in skeletal muscle and subcutaneous adipose tissue (SCAT). Twenty-two pigs were stratified according to four protocols: 1) and 2) low NEFA + high insulin ± high glucose (hyperinsulinaemia-hyperglycaemia or hyperinsulinaemia-euglycaemia), 3) high NEFA + low insulin (fasting), 4) low NEFA + low insulin (nicotinic acid). Positron emission tomography with [ 18 F]fluoro-2-deoxyglucose and [ 11 C]acetate, was combined with [ 14 C]acetate and [U- 13 C]palmitate enrichment techniques to assess glucose and lipid metabolism. Hyperinsulinaemia increased glucose extraction, whilst hyperglycaemia enhanced glucose uptake in skeletal muscle and SCAT. In SCAT, during hyperglycaemia, elevated glucose uptake was accompanied by greater [U- 13 C]palmitate-TG enrichment compared to the other groups, and by a 39% increase in de novo lipogenesis (DNL) compared to baseline, consistent with a 70% increment in plasma lipogenic index. Conversely, in skeletal muscle, [U- 13 C]palmitate-TG enrichment was higher after prolonged fasting. Our data show the necessary role of hyperglycaemia-hyperinsulinaemia vs euglycaemia-hyperinsulinaemia in promoting expansion of TG stores in SCAT, by the consensual elevation in plasma NEFA and glucose uptake and DNL. In contrast, skeletal muscle NEFA uptake for TG synthesis is primarily driven by circulating NEFA levels. These results suggest that a) prolonged fasting or dietary regimens enhancing lipolysis might promote muscle steatosis, and b) the control of glucose levels, in association with adequate energy balance, might contribute to weight loss. Copyright © 2017 The Italian Society of Diabetology, the Italian Society for the Study of Atherosclerosis, the Italian Society of Human Nutrition, and the Department of Clinical Medicine and Surgery, Federico II University. Published by Elsevier B.V. All rights reserved.
Gardner, Thomas W; Abcouwer, Steven F; Losiewicz, Mandy K; Fort, Patrice E
2015-09-15
Control of protein synthesis in insulin-responsive tissues has been well characterized, but relatively little is known about how this process is regulated in nervous tissues. The retina exhibits a relatively high protein synthesis rate, coinciding with high basal Akt and metabolic activities, with the majority of retinal ATP being derived from aerobic glycolysis. We examined the dependency of retinal protein synthesis on the Akt-mTOR signaling and glycolysis using ex vivo rat retinas. Akt inhibitors significantly reduced retinal protein synthesis but did not affect glycolytic lactate production. Surprisingly, the glycolytic inhibitor 2-deoxyglucose (2-DG) markedly inhibited Akt1 and Akt3 activities, as well as protein synthesis. The effects of 2-DG, and 2-fluorodeoxyglucose (2-FDG) on retinal protein synthesis correlated with inhibition of lactate production and diminished ATP content, with all these effects reversed by provision of d-mannose. 2-DG treatment was not associated with increased AMPK, eEF2, or eIF2α phosphorylation; instead, it caused rapid dephosphorylation of 4E-BP1. 2-DG reduced total mTOR activity by 25%, but surprisingly, it did not reduce mTORC1 activity, as indicated by unaltered raptor-associated mTOR autophosphorylation and ribosomal protein S6 phosphorylation. Dephosphorylation of 4E-BP1 was largely prevented by inhibition of PP1/PP2A phosphatases with okadaic acid and calyculin A, and inhibition of PPM1 phosphatases with cadmium. Thus, inhibition of retinal glycolysis diminished Akt and protein synthesis coinciding with accelerated dephosphorylation of 4E-BP1 independently of mTORC1. These results demonstrate a novel mechanism regulating protein synthesis in the retina involving an mTORC1-independent and phosphatase-dependent regulation of 4E-BP1. Copyright © 2015 the American Physiological Society.
Vali, Mustafa; Vossen, Josephina A.; Buijs, Manon; Engles, James M.; Liapi, Eleni; Ventura, Veronica Prieto; Khwaja, Afsheen; Acha-Ngwodo, Obele; Shanmugasundaram, Ganapathy; Syed, Labiq; Wahl, Richard L.; Geschwind, Jean-Francois H.
2009-01-01
The aim of this study was to determine the biodistribution and tumor targeting ability of 14C-labeled 3-bromopyruvate ([14C]3-BrPA) after i.a. and i.v. delivery in the VX2 rabbit model. In addition, we evaluated the effects of [14C]3-BrPA on tumor and healthy tissue glucose metabolism by determining 18F-deoxyglucose (FDG) uptake. Last, we determined the survival benefit of i.a. administered 3-BrPA. In total, 60 rabbits with VX2 liver tumor received either 1.75 mM [14C]3-BrPA i.a., 1.75 mM [14C]3-BrPA i.v., 20 mM [14C]3-BrPA i.v., or 25 ml of phosphate-buffered saline (PBS). All rabbits (with the exception of the 20 mM i.v. group) received FDG 1 h before sacrifice. Next, we compared survival of animals treated with i.a. administered 1.75 mM [14C]3-BrPA in 25 ml of PBS (n = 22) with controls (n = 10). After i.a. infusion, tumor uptake of [14C]3-BrPA was 1.8 ± 0.2% percentage of injected dose per gram of tissue (%ID/g), whereas other tissues showed minimal uptake. After i.v. infusion (1.75 mM), tumor uptake of [14C]3-BrPA was 0.03 ± 0.01% ID/g. After i.a. administration of [14C]3-BrPA, tumor uptake of FDG was 26 times lower than in controls. After i.v. administration of [14C]3-BrPA, there was no significant difference in tumor FDG uptake. Survival analysis showed that rabbits treated with 1.75 mM 3-BrPA survived longer (55 days) than controls (18.6 days). Intra-arterially delivered 3-BrPA has a favorable biodistribution profile, combining a high tumor uptake resulting in blockage of FDG uptake with no effects on healthy tissue. The local control of the liver tumor by 3-BrPA resulted in a significant survival benefit. PMID:18591216
Wiesmüller, Marco; Quick, Harald H; Navalpakkam, Bharath; Lell, Michael M; Uder, Michael; Ritt, Philipp; Schmidt, Daniela; Beck, Michael; Kuwert, Torsten; von Gall, Carl C
2013-01-01
PET/MR hybrid scanners have recently been introduced, but not yet validated. The aim of this study was to compare the PET components of a PET/CT hybrid system and of a simultaneous whole-body PET/MR hybrid system with regard to reproducibility of lesion detection and quantitation of tracer uptake. A total of 46 patients underwent a whole-body PET/CT scan 1 h after injection and an average of 88 min later a second scan using a hybrid PET/MR system. The radioactive tracers used were (18)F-deoxyglucose (FDG), (18)F-ethylcholine (FEC) and (68)Ga-DOTATATE (Ga-DOTATATE). The PET images from PET/CT (PET(CT)) and from PET/MR (PET(MR)) were analysed for tracer-positive lesions. Regional tracer uptake in these foci was quantified using volumes of interest, and maximal and average standardized uptake values (SUV(max) and SUV(avg), respectively) were calculated. Of the 46 patients, 43 were eligible for comparison and statistical analysis. All lesions except one identified by PET(CT) were identified by PET(MR) (99.2 %). In 38 patients (88.4 %), the same number of foci were identified by PET(CT) and by PET(MR). In four patients, more lesions were identified by PET(MR) than by PET(CT), in one patient PET(CT) revealed an additional focus compared to PET(MR). The mean SUV(max) and SUV(avg) of all lesions determined by PET(MR) were by 21 % and 11 % lower, respectively, than the values determined by PET(CT) (p < 0.05), and a strong correlation between these variables was identified (Spearman rho 0.835; p < 0.01). PET/MR showed equivalent performance in terms of qualitative lesion detection to PET/CT. The differences demonstrated in quantitation of tracer uptake between PET(CT) and PET(MR) were minor, but statistically significant. Nevertheless, a more detailed study of the quantitative accuracy of PET(MR) and the factors governing it is needed to ultimately assess its accuracy in measuring tissue tracer concentrations.
Abdelazeem, Khalid N M; Singh, Yogesh; Lang, Florian; Salker, Madhuri S
2017-01-01
Key properties of tumor cells include enhanced glycolytic flux with excessive consumption of glucose and formation of lactate. As glycolysis is highly sensitive to cytosolic pH, maintenance of glycolysis requires export of H+ ions, which is in part accomplished by Na+/H+ exchangers, such as NHE1. The carrier is sensitive to oxidative stress. Growth of tumor cells could be suppressed by the polyphenol Ellagic acid, which is found in various fruits and vegetables. An effect of Ellagic acid on transport processes has, however, never been reported. The present study thus elucidated an effect of Ellagic acid on cytosolic pH (pHi), NHE1 transcript levels, NHE1 protein abundance, Na+/H+ exchanger activity, and lactate release. Experiments were performed in Ishikawa cells without or with prior Ellagic acid (20 µM) treatment. NHE1 transcript levels were determined by qRT-PCR, NHE1 protein abundance by Western blotting, pHi utilizing (2',7'-bis-(2-carboxyethyl)-5-(and-6)-carboxyfluorescein [BCECF] fluorescence, Na+/H+ exchanger activity from Na+ dependent realkalinization after an ammonium pulse, cell volume from forward scatter in flow cytometry, reactive oxygen species (ROS) from 2',7'-dichlorodihydrofluorescein fluorescence, glucose uptake utilizing 2-(N-(7-nitrobenz-2-oxa-1,3-diazol-4-yl)amino)-2-deoxyglucose, and lactate concentration in the supernatant utilizing a colorimetric (570 nm)/ fluorometric enzymatic assay. A 48 hour treatment with Ellagic acid (20 µM) significantly decreased NHE1 transcript levels by 75%, NHE1 protein abundance by 95%, pHi from 7.24 ± 0.01 to 7.02 ± 0.01, Na+/H+ exchanger activity by 77%, forward scatter by 10%, ROS by 82%, glucose uptake by 58%, and lactate release by 15%. Ellagic acid (20µM) markedly down-regulates ROS formation and NHE1 expression leading to decreased Na+/H+ exchanger activity, pHi, glucose uptake and lactate release in endometrial cancer cells. Those effects presumably contribute to reprogramming and growth inhibition of tumor cells. © 2017 The Author(s). Published by S. Karger AG, Basel.
Preston, R S; Philp, A; Claessens, T; Gijezen, L; Dydensborg, A B; Dunlop, E A; Harper, K T; Brinkhuizen, T; Menko, F H; Davies, D M; Land, S C; Pause, A; Baar, K; van Steensel, M A M; Tee, A R
2011-03-10
Under conditions of reduced tissue oxygenation, hypoxia-inducible factor (HIF) controls many processes, including angiogenesis and cellular metabolism, and also influences cell proliferation and survival decisions. HIF is centrally involved in tumour growth in inherited diseases that give rise to renal cell carcinoma (RCC), such as Von Hippel-Lindau syndrome and tuberous sclerosis complex. In this study, we examined whether HIF is involved in tumour formation of RCC in Birt-Hogg-Dubé syndrome. For this, we analysed a Birt-Hogg-Dubé patient-derived renal tumour cell line (UOK257) that is devoid of the Birt-Hogg-Dubé protein (BHD) and observed high levels of HIF activity. Knockdown of BHD expression also caused a threefold activation of HIF, which was not as a consequence of more HIF1α or HIF2α protein. Transcription of HIF target genes VEGF, BNIP3 and CCND1 was also increased. We found nuclear localization of HIF1α and increased expression of VEGF, BNIP3 and GLUT1 in a chromophobe carcinoma from a Birt-Hogg-Dubé patient. Our data also reveal that UOK257 cells have high lactate dehydrogenase, pyruvate kinase and 3-hydroxyacyl-CoA dehydrogenase activity. We observed increased expression of pyruvate dehydrogenase kinase 1 (a HIF gene target), which in turn leads to increased phosphorylation and inhibition of pyruvate dehydrogenase. Together with increased protein levels of GLUT1, our data reveal that UOK257 cells favour glycolytic rather than lipid metabolism (a cancer phenomenon termed the 'Warburg effect'). UOK257 cells also possessed a higher expression level of the L-lactate influx monocarboxylate transporter 1 and consequently utilized L-lactate as a metabolic fuel. As a result of their higher dependency on glycolysis, we were able to selectively inhibit the growth of these UOK257 cells by treatment with 2-deoxyglucose. This work suggests that targeting glycolytic metabolism may be used therapeutically to treat Birt-Hogg-Dubé-associated renal lesions. © 2011 Macmillan Publishers Limited
[The effect of high fat feeding and rosiglitazone intervention on pancreatic alpha cell in rats].
Wang, Xin; Yang, Wen-ying; Xiao, Jian-zhong; Zhao, Wen-hui; Wang, Na; Liu, Xue-li; Pan, Lin
2005-08-01
To observe the effect of high-fat diet and rosiglitazone intervention on the function of pancreatic alpha cell of SD rats. 36 normal male SD rats, 8-week old, were randomly divided into 3 groups i.e., a normal chow group (CC, n = 12), an isocaloric high-fat diet group (CF, n = 12), and a rosiglitazone-treated group (Ro, n = 12, rosiglitazone 3 mg.kg(-1).d(-1) and isocaloric high fat diet). Triglyceride (TG) was measured every 4 weeks after feeding for 6 weeks. After 28 weeks, the secretion of insulin and glucagon (Gg) was assessed with intravenous glucose tolerance test (IVGTT) at 0, 3, 5, and 10 minutes. (3)H-2-deoxyglucose ((3)H-2-DG) uptake by tissues was measured to evaluate the insulin sensitivity. The ratio of intra-abdominal fat mass and body weight was higher in the rats of CF and Ro group than that in the rats of CC group. At the first 10 min of IVGTT, the Gg level was higher in the CF group than that in CC group [(119.3 +/- 12.4, 82.3 +/- 6.4, 72.2 +/- 5.8, 68.2 +/- 9.1) ng/L vs (96.8 +/- 9.1, 67.6 +/- 5.9, 57.9 +/- 5.3, 55.3 +/- 6.9) ng/L, P < 0.05] and Ro group [(78.4 +/- 6.0, 59.4 +/- 4.0, 49.9 +/- 6.2, 40.9 +/- 6.0) ng/L, P < 0.01], the level was even lower in the latter group than in CC group (P < 0.01). There was no difference of insulin level among the 3 groups. By using quantitative image analysis, the integrated A (area x A) of alpha cells was significantly higher in the CF group and Ro group as compared with that in the CC group (1661 +/- 130 and 1532 +/- 132 vs 1188 +/- 104, P < 0.05). In contrast, there was no difference among the 3 groups in the integrated A of beta cells. High-fat feeding induces insulin resistance in rats, which is associated with pancreatic alpha cell proliferation and abnormal Gg secretion.
The Value of PET/CT in Detecting Bone Marrow Involvement in Patients With Follicular Lymphoma.
Perry, Chava; Lerman, Hedva; Joffe, Erel; Sarid, Nadav; Amit, Odelia; Avivi, Irit; Kesler, Mikhail; Ben-Ezra, Jonathan; Even-Sapir, Einat; Herishanu, Yair
2016-03-01
Follicular lymphoma (FL) is the 2nd most common type of lymphoma diagnosed in the Western World. Bone marrow (BM) involvement is an adverse prognostic factor in FL, routinely assessed by an arbitrary biopsy of the iliac crest. This study was aimed to investigate the role of positron emission tomography/computed tomography (PET/CT) in identifying BM involvement by FL. In this retrospective, single-center study we reviewed the records of consecutive patients with FL at diagnosis or relapse who underwent staging/restaging workup visual assessment of BM uptake was categorized as either normal, diffusely increased, or focally increased. Quantitative BM fluorine-18-fluro-deoxyglucose (FDG) uptake was measured using mean standardized uptake value (BM-SUVmean). The diagnosis of BM involvement was based on either BM histological findings or disappearance of increased uptake at end-treatment PET/CT in patients who responded to treatment. Sixty eight cases with FL were included. Sixteen (23.5%) had BM involvement, 13 (19.1%) had a biopsy proven involvement, and 3 (4.4%) had a negative BM biopsy, but increased medullary uptake that normalized post-treatment. BM FDG uptake in these patients was diffuse in 8 (50%) and focal in 8 (50%). Focal increased uptake was indicative of BM involvement; however, diffuse uptake was associated with 17 false positive cases (32.7%). Overall, visual assessment of BM involvement had a negative predictive value (NPV) of 100% and a positive predictive value (PPV) of 48.5%. On a quantitative assessment, BM-SUVmean was significantly higher in patients with BM involvement (SUVmean of 3.7 [1.7-6] vs 1.4 [0.4-2.65], P < 0.001). On receiver operator curve (ROC) analysis, BM-SUVmean > 2.7 had a PPV of 100% for BM involvement (sensitivity of 68%), while BM-SUVmean < 1.7 had an NPV of 100% (specificity of 73%). Visual assessment of PET/CT is appropriate for ruling out BM involvement by FL. Although focal increased uptake indicates marrow involvement, diffuse uptake is nonspecific. SUV measurement improves PET/CT diagnostic accuracy, identifying additional 19% of patients with BM involvement that would have been otherwise missed.
Optical contrast agents to visualize molecular expression in breast cancer
NASA Astrophysics Data System (ADS)
Langsner, Robert James
Breast cancer is the second leading cause of death of women in the United States. Improvements in screening technology have increased the breast cancer incidence rate, as smaller lesions are being detected. Due to the small size of lesions, patients can choose to receive breast conservation therapy (BCT) rather than a modified radical mastectomy. Even though the breast retains cosmesis after BCT, there is an increased risk of the patient having residual microscopic disease, known as positive margins. Patients with positive margins receive increased radiation and have an increased chance of second surgery. Pathology with hematoxylin and eosin (H&E) remains the gold standard for diagnosing margin status in patients. Intraoperative pathology has been shown to reduce the rate of positive margins in BCT. However, a minority of surgery centers have intraoperative pathology centers, limiting the number of patients that receive this standard of care. The expression profiles of surface receptors such as ErbB2 (HER2-positive) and epidermal growth factor receptor (EGFR) provide information about the aggressiveness of a particular tumor. Recent research has shown that there was elevated EGFR expression in patients with a local recurrence even though the biopsies were assessed to be disease free using standard H&E. If the physicians had known the molecular expression of these biopsies, a different treatment regimen or excision of more tissue might have prevented the recurrence. This thesis investigates targeted molecular contrast agents that enhance the visualization of molecular markers such as glucose transporters (GLUTs) and growth factor receptors in tissue specimens. First, application of 2-NBDG, a fluorescent deoxyglucose, enhances signal in cancerous tissue with a 20-minute incubation. Then, antibody functionalized silica-gold nanoshells enhance the visualization of ErbB2 overexpression in specimens with a 5-minute incubation. To image these contrast agents in cancerous tissue, a portable, inexpensive device was developed as a tool to help physicians visualize expression of surface markers. The system visualizes absorbance from nanoshell aggregates and fluorescence in the visible and near-infrared light spectrum. This study represents the first step in the development of an intraoperative optical imaging device to enhance the visualization of molecular markers overexpressed in cancerous cells.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ourique, Fabiana; Kviecinski, Maicon R.; Zirbel, Guilherme
The purpose of the study was to obtain further in vivo data of antitumor effects and mechanisms triggered by juglone and Q7 in combination with ascorbate. The study was done using Ehrlich ascites tumor-bearing mice. Treatments were intraperitoneal every 24 h for 9 days. Control group was treated with excipient. Previous tests selected the doses of juglone and Q7 plus ascorbate (1 and 100 mg/kg, respectively). Samples of ascitic fluid were collected to evaluate carbonyl proteins, GSH and activity of antioxidant enzymes such as catalase, superoxide dismutase, glutathione peroxidase and glutathione reductase. Hypoxia inducible factor HIF-1α, GLUT1, proteins driving cell cycle (p53, p16more » and cyclin A) and apoptosis (poly-ADP-polymerase PARP, Bax and Bcl-xL) were assessed by western blot. Tumor cells were categorized by the phase of cell cycle using flow cytometry and type of cell death using acridine orange/ethidium bromide. A glucose uptake assessment was performed by liquid scintillation using Ehrlich tumor cells cultured with {sup 14}C-deoxyglucose. Treatments caused increased protein carbonylation and activity of antioxidant enzymes and decreased levels of GSH, HIF-1α, GLUT1 and glucose uptake in tumor cells. They also caused increased number of tumor cells in G1, p53 and p16 activation and decreased cyclin A, but only when combined with ascorbate. Apoptosis was induced mostly when treatments were done with ascorbate, causing PARP and Bax cleavage, and increased Bax/Bcl-xL ratio. Juglone and Q7 in combination with ascorbate caused inhibition of tumor progress in vivo by triggering apoptosis and cell cycle arrest associated with oxidative stress, suppression of HIF-1 and uncoupling of glycolytic metabolism. - Highlights: • Ascorbate potentiates the inhibition caused by juglone and Q7on tumor progress in vivo. • Juglone and Q7 with ascorbate caused widespread oxidative stress in tumor tissue. • Treatments inhibited HIF-1 and GLUT1 expression causing reduced glucose uptake. • Treatments induced cell cycle arrest and apoptosis in tumor in vivo.« less
Deuchar, Graeme A; Brennan, David; Holmes, William M; Shaw, Martin; Macrae, I Mhairi; Santosh, Celestine
2018-01-01
The ability to identify metabolically active and potentially salvageable ischaemic penumbra is crucial for improving treatment decisions in acute stroke patients. Our solution involves two complementary novel MRI techniques (Glasgow Oxygen Level Dependant (GOLD) Metabolic Imaging), which when combined with a perfluorocarbon (PFC) based oxygen carrier and hyperoxia can identify penumbra due to dynamic changes related to continued metabolism within this tissue compartment. Our aims were (i) to investigate whether PFC offers similar enhancement of the second technique (Lactate Change) as previously demonstrated for the T2*OC technique (ii) to demonstrate both GOLD metabolic imaging techniques working concurrently to identify penumbra, following administration of Oxycyte® (O-PFC) with hyperoxia. Methods: An established rat stroke model was utilised. Part-1: Following either saline or PFC, magnetic resonance spectroscopy was applied to investigate the effect of hyperoxia on lactate change in presumed penumbra. Part-2; rats received O-PFC prior to T2*OC (technique 1) and MR spectroscopic imaging, which was used to identify regions of tissue lactate change (technique 2) in response to hyperoxia. In order to validate the techniques, imaging was followed by [14C]2-deoxyglucose autoradiography to correlate tissue metabolic status to areas identified as penumbra. Results: Part-1: PFC+hyperoxia resulted in an enhanced reduction of lactate in the penumbra when compared to saline+hyperoxia. Part-2: Regions of brain tissue identified as potential penumbra by both GOLD metabolic imaging techniques utilising O-PFC, demonstrated maintained glucose metabolism as compared to adjacent core tissue. Conclusion: For the first time in vivo, enhancement of both GOLD metabolic imaging techniques has been demonstrated following intravenous O-PFC+hyperoxia to identify ischaemic penumbra. We have also presented preliminary evidence of the potential therapeutic benefit offered by O-PFC. These unique theranostic applications would enable treatment based on metabolic status of the brain tissue, independent of time from stroke onset, leading to increased uptake and safer use of currently available treatment options. PMID:29556351
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yoon, Dok Hyun; Cho, Yoojin; Kim, Sang Yoon
2011-09-01
Purpose: Induction chemotherapy (ICT) has been used to select patients for organ preservation and determine subsequent treatments in patients with locally advanced squamous cell carcinoma of the head and neck (LASCCHN). Still, the clinical outcomes of LASCCHN patients who showed response to ICT are heterogeneous. We evaluated the efficacy of interim 18-fluoro-2-deoxy-glucose positron emission tomography (FDG-PET) after ICT in this specific subgroup of LASCCHN patients who achieved partial response (PR) after ICT to predict clinical outcomes after concurrent chemoradiotherapy (CCRT). Methods and Materials: Twenty-one patients with LASCCHN who showed PR to ICT by Response Evaluation Criteria In Solid Tumors beforemore » definitive CCRT were chosen in this retrospective analysis. FDG-PET was performed before and 2-4 weeks after ICT to assess the extent of disease at baseline and the metabolic response to ICT, respectively. We examined the correlation of the metabolic response by the percentage decrease of maximum standardized uptake value (SUVmax) on the primary tumor or lymph node after ICT or a specific threshold of SUVmax on interim FDG-PET with clinical outcomes including complete response (CR) rate to CCRT, progression-free survival (PFS), and overall survival (OS). Results: A SUVmax of 4.8 on interim FDG-PET could predict clinical CR after CCRT (100% vs. 20%, p = 0.001), PFS (median, not reached vs. 8.5 mo, p < 0.001), and OS (median, not reached vs. 12.0 months, p = 0.001) with a median follow-up of 20.3 months in surviving patients. A 65% decrease in SUVmax after ICT from baseline also could predict clinical CR after CCRT (100% vs. 33.3%, p = 0.003), PFS (median, not reached vs. 8.9 months, p < 0.001) and OS (median, not reached vs. 24.4 months, p = 0.001) of the patients. Conclusion: These data suggest that interim FDG-PET after ICT might be a useful determinant to predict clinical outcomes in patients with LASCCHN receiving sequential ICT followed by CCRT.« less
Fragasso, G; Chierchia, S L; Landoni, C; Lucignani, G; Rossetti, E; Sciammarella, M; Vanoli, G E; Fazio, F
1998-07-01
We studied the relationship between coronary anatomy, perfusion and metabolism in myocardial segments exhibiting transient and persistent perfusion defects on stress/rest 99Tcm-MIBI single photon emission tomography in 35 patients (31 males, 4 females, mean age 56 +/- 7 years) with a previous myocardial infarction. Quantitative coronary angiography and assessment of myocardial perfusion reserve and glucose metabolism were performed within 1 week of one another. Perfusion was assessed by SPET after the intravenous injection of 740 MBq of 99Tcm-MIBI at rest and after exercise. Regional myocardial glucose metabolism was assessed by position emission tomography at rest (200 MBq of 18F-2-deoxyglucose, FDG) after an overnight fast with no glucose loading. All 35 patients exhibited persistent perfusion defects consistent with the clinically identified infarct site, and 27 (77%) also showed various degrees of within-infarct FDG uptake; 11 patients developed exercise-induced transient perfusion defects within, or in the vicinity of, 15 infarct segments and resting FDG uptake was present in 10 of these segments (67%). Five patients also showed exercise-induced transient perfusion defects in nine segments remote from the site of infarct: resting FDG uptake was present in six of these regions (67%). Finally, nine patients had increased glucose uptake in non-infarcted regions not showing transient perfusion defects upon exercise testing and perfused by coronary arteries with only minor irregularities. Our results confirm the presence of viable tissue in a large proportion of infarct sites. Moreover, FDG uptake can be seen in regions perfused by coronary arteries showing minor irregularities, not necessarily resulting in detectable transient perfusion defects on a MIBI stress scan. Since the clinical significance of such findings is not clear, further studies should be conducted to assess the long-term evolution of perfusion, function and metabolism in non-revascularized patients of those remote areas which are apparently normally perfused, but show abnormal fasting FDG uptake after myocardial infarction. Such studies may have important implications for the management of post-infarct patients, as the preservation of coronary vasodilator reserve and myocardial metabolism in remote myocardium may be seen as an additional goal in the treatment of such patients.
Lavreysen, Hilde; Langlois, Xavier; Donck, Luc Ver; Nuñez, José María Cid; Pype, Stefan; Lütjens, Robert; Megens, Anton
2015-01-01
JNJ-40411813/ADX71149 (1-butyl-3-chloro-4-(4-phenylpiperidin-1-yl) pyridin-2(1H)-one) is a positive allosteric modulator (PAM) of the mGlu2 receptor, which also displays 5-Hydroxytryptamine (5HT2A) antagonism after administration in rodents due to a rodent-specific metabolite. JNJ-40411813 was compared with the orthosteric mGlu2/3 agonist LY404039 (4-amino-2-thiabicyclo [3.1.0] hexane-4,6-dicarboxylic acid 2,2-dioxide), the selective mGlu2 PAM JNJ-42153605 (3-(cyclopropylmethyl)-7-(4-phenylpiperidin-1-yl)-8-(trifluoromethyl)[1,2,4]triazolo[4,3-a]pyridine) and the 5HT2A antagonist ritanserin in rodent models for antipsychotic activity and potential side effects, attempting to differentiate between the various compounds and mechanisms of action. In mice, JNJ-40411813, JNJ-42153605, and LY404039 inhibited spontaneous locomotion and phencyclidine- and scopolamine-induced but not d-amphetamine-induced hyperlocomotion; the 5HT2A antagonist ritanserin inhibited only spontaneous locomotion and phencyclidine-induced hyperlocomotion. As measured by 2-deoxyglucose uptake, all compounds reversed memantine-induced brain activation in mice. The two mGlu2 PAMs and LY404039, but not ritanserin, inhibited conditioned avoidance behavior in rats. Like ritanserin, the mGlu2 ligands antagonized 2,5-dimethoxy-4-methylamphetamine-induced head twitches in rats. LY404039 but not the mGlu2 PAMs impaired rotarod performance in rats and increased the acoustic startle response in mice. Our results show that although 5HT2A antagonism has effect in some models, mGlu2 receptor activation is sufficient for activity in several animal models of antipsychotic activity. The mGlu2 PAMs mimicked the in vivo pharmacodynamic effects observed with LY404039 except for effects on the rotarod and acoustic startle, suggesting that they produce a primary activity profile similar to that of the mGlu2/3 receptor agonist while they can be differentiated based on their secondary activity profile. The results are discussed in light of clinical data available for some of these molecules, in particular JNJ-40411813. PMID:25692027
Wrzesień, Małgorzata
2018-05-22
A radiopharmaceutical is a combination of a non-radioactive compound with a radioactive isotope. Two isotopes: technetium-99m (99mTc) and fluorine-18 (18F) are worth mentioning on the rich list of isotopes which have found numerous medical applications. Their similarity is limited only to the diagnostic area of applicability. The type and the energy of emitted radiation, the half-life and, in particular, the production method demonstrate their diversity. The 99mTc isotope is produced by a short-lived nuclide generator - molybdenum-99 (99Mo)/99mTc, while 18F is resulting from nuclear reaction occurring in a cyclotron. A relatively simple and easy handling of the 99Mo/99mTc generator, compared to the necessary use a cyclotron, seems to favor the principle of optimizing the radiological protection of personnel. The thesis on the effect of automation of both the 18F isotope production and the deoxyglucose labelling process on the optimization of radiological protection of workers compared to manual procedures during handling of radiopharmaceuticals labelled with 99Tc need to be verified. Measurements of personal dose equivalent Hp(0.07) were made in 5 nuclear medicine departments and 2 radiopharmaceuticals production centers. High-sensitivity thermoluminescent detectors (LiF: Mg, Cu, P - MCP-N) were used to determine the doses. Among the activities performed by employees of both 18F-fluorodeoxyglucose (18F-FDG) production centers and nuclear medicine departments, the manual quality control procedures and labelling of radiopharmaceuticals with 99mTc isotope manifest the greatest contribution to the recorded Hp(0.07). The simplicity of obtaining the 99mTc isotope as well as the complex, but fully automated production process of the 18F-FDG radiopharmaceutical optimize the radiation protection of workers, excluding manual procedures labelling with 99mTc or quality control of 18F-FDG. Med Pr 2018;69(3):317–327. This work is available in Open Access model and licensed under a CC BY-NC 3.0 PL license.
SU-D-201-03: Imaging Cellular Pharmacokinetics of 18F-FDG in Inflammatory/Stem Cells
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zaman, R; Tuerkcan, S; Mahmoudi, M
Purpose: Atherosclerosis is a progressive inflammatory condition that underlies coronary artery disease (CAD)—the leading cause of death in the USA. Thus, understating the metabolism of inflammatory cells can be a valuable tool for investigating CAD. To the best of our knowledge, we are the first to successfully investigate the pharmacokinetics of [18F]fluoro-deoxyglucose (18F-FDG) uptake in a single macrophages and compared with induced pluripotent stem cells (iPSCs) and mesenchymal stem cells (MSCs) with a novel imaging technique, radioluminescence microscopy, initially developed for cancer imaging. Methods: Live cells were cultured sparsely on Matrigel in a glass-bottom dish and starved for 1 hourmore » before incubation with 250 microCi of 18F-FDG for 45 minutes. Excess radiotracer was removed using DMEM medium without glucose. Before imaging, DMEM (1 mL) was added to the cell culture and a 100 microm-thin CdWO4 scintillator plate was placed on top of the cells. Light produced following beta decay was imaged with a highly sensitive inverted microscope (LV200, Olympus) fitted with a 40x/1.3 high-NA oil objective, and an EM-CCD camera. The images were collected over 18,000 frames with 4×4 binning (1200 MHz EM Gain, 300ms exposure). Custom-written software was developed in MATLAB for image processing (Figure 1). For statistical analysis 10 different region-of-interests (ROIs) were selected for each cell type. Results: Figures 2A–2B show bright-field/fusion images for all three different cell types. The relationship between cell-to-cell comparisons was found to be linear for macrophages unlike iPSCs and MSCs, which were best fitted with moving or rolling average (Figure 2C). The average observed decay of 18F-FDG in a single cell of MSCs per second (0.067) was 20% and 36% higher compared to iPSCs (0.054) and macrophages (0.043), respectively (Figure 2D). Conclusion: MSCs was found to be 2–3x more sensitive to glucose molecule despite constant parameters for each cell type examined.« less
Conventional and Nuclear Medicine Imaging in Ectopic Cushing's Syndrome: A Systematic Review.
Isidori, Andrea M; Sbardella, Emilia; Zatelli, Maria Chiara; Boschetti, Mara; Vitale, Giovanni; Colao, Annamaria; Pivonello, Rosario
2015-09-01
Ectopic Cushing's Syndrome (ECS) can be a diagnostic challenge with the hormonal source difficult to find. This study analyzes the accuracy of imaging studies in ECS localization. Systematic review of medical literature for ECS case series providing individual patient data on at least one conventional imaging technique (computed tomography [CT]/magnetic resonance imaging) and one of the following: 111In-pentetreotide (OCT), 131I/123I-metaiodobenzylguanidine, 18Ffluoro-2-deoxyglucose-positron emission tomography (FDG-PET), 18F-fluorodopa-PET (F-DOPA-PET), 68Ga- DOTATATE-PET/CT or 68Ga-DOTATOC-PET/CT scan (68Gallium-SSTR-PET/CT). The analysis comprised 231 patients (females, 50.2%; age, 42.617 y). Overall, 52.4%(121/231) had "overt" ECS,18.6% had "occult" ECS, and 29% had "covert" ECS. Tumors were located in the lung (55.3%), mediastinum-thymus (7.9%), pancreas (8.5%), adrenal glands (6.4%), gastrointestinal tract (5.4%), thyroid (3.7%), and other sites (12.8%), and primary tumors were mostly bronchial neuroendocrine tumors (NETs) (54.8%), pancreatic NETs (8%), mediastinum-thymus NETs (6.9%), gastrointestinal NETs (5.3%), pheochromocytoma (6.4%), neuroblastoma (3.2%), and medullary thyroid carcinoma (3.2%). Tumors were localized byCTin66.2%(137/207), magnetic resonance imaging in 51.5% (53/103), OCT in 48.9% (84/172), FDG-PET in 51.7% (46/89), F-DOPAPET in 57.1% (12/21), 131/123I-metaiodobenzylguanidine in 30.8% (4/13), and 68Gallium-SSTRPET/CT in 81.8% (18/22) of cases. Molecular imaging discovered 79.1% (53/67) of tumors unidentified by conventional radiology, with OCT the most commonly used, revealing the tumor in 64%, followed by FDG-PET in 59.4%. F-DOPA-PET was used in only seven covert cases (sensitivity, 85.7%). Notably, 68Gallium-SSTR-PET/CT had 100% sensitivity among covert cases. Nuclear medicine improves the sensitivity of conventional radiology when tumor site identification is problematic. OCT offers a good availability/reliability ratio, and FDG-PET was proven useful. 68Gallium-SSTR-PET/CT use was infrequent, despite offering the highest sensitivity.
Brozinick, J T; Reynolds, T H; Dean, D; Cartee, G; Cushman, S W
1999-01-01
Previous studies have indicated a role for calmodulin in hypoxia-and insulin-stimulated glucose transport. However, since calmodulin interacts with multiple protein targets, it is unknown which of these targets is involved in the regulation of glucose transport. In the present study, we have used the calcium-dependent calmodulin protein kinase II (CAMKII) inhibitor 1-[N, O-bis-(5-isoquinolinesulphonyl) -N-methyl-L-tyrosyl]-4-phenylpiperazine (KN-62) to investigate the possible role of this enzyme in the regulation of glucose transport in isolated rat soleus and epitrochlearis muscles. KN-62 did not affect basal 2-deoxyglucose transport, but it did inhibit both insulin- and hypoxia-stimulated glucose transport activity by 46 and 40% respectively. 1-[N,O-Bis-(1, 5-isoquinolinesulphonyl)-N-methyl-l-tyrosyl]-4-phenylpiperazine (KN-04), a structural analogue of KN-62 that does not inhibit CAMKII, had no effect on hypoxia-or insulin-stimulated glucose transport. Accordingly, KN-62 decreased the stimulated cell-surface GLUT4 labelling by a similar extent as the inhibition of glucose transport (insulin, 49% and hypoxia, 54%). Additional experiments showed that KN-62 also inhibited insulin- and hypoxia-stimulated transport by 37 and 40% respectively in isolated rat epitrochlearis (a fast-twitch muscle), indicating that the effect of KN-62 was not limited to the slow-twitch fibres of the soleus. The inhibitory effect of KN-62 on hypoxia-stimulated glucose transport appears to be specific to CAMKII, since KN-62 did not inhibit hypoxia-stimulated 45Ca efflux from muscles pre-loaded with 45Ca, or hypoxia-stimulated glycogen breakdown. Additionally, KN-62 affected neither insulin-stimulated phosphoinositide 3-kinase nor Akt activity, suggesting that the effects of KN-62 are not due to non-specific effects of this inhibitor on these regions of the insulin-signalling cascade. The results of the present study suggest that CAMKII might have a distinct role in insulin- and hypoxia-stimulated glucose transport, possibly in the vesicular trafficking of GLUT4. PMID:10215590
Sodium-dependent magnesium uptake by ferret red cells.
Flatman, P W; Smith, L M
1991-01-01
1. Magnesium uptake can be measured in ferret red cells incubated in media containing more than 1 mM-magnesium. Uptake is substantially increased if the sodium concentration in the medium is reduced. 2. Magnesium uptake is half-maximally activated by 0.37 mM-external magnesium when the external sodium concentration is 5 mM. Increasing the external sodium concentration increases the magnesium concentration needed to activate the system. 3. Magnesium uptake is increased by reducing the external sodium concentration. Uptake is half-maximum at sodium concentrations of 17, 22 and 62 nM when the external magnesium concentrations are 2, 5 and 10 mM respectively. 4. Replacement of external sodium with choline does not affect the membrane potential of ferret red cells over a 45 min period. 5. Magnesium uptake from media containing 5 mM-sodium is inhibited by amiloride, quinidine and imipramine. It is not affected by ouabain or bumetanide. Vanadate stimulates magnesium uptake but has no effect on magnesium efflux. 6. When cell ATP content is reduced to 19 mumol (1 cell)-1 by incubating cells for 3 h with 2-deoxyglucose, magnesium uptake falls by 50% in the presence of 5 mM-sodium and is completely abolished in the presence of 145 mM-sodium. Some of the inhibition may be due to the increase in intracellular ionized magnesium concentration ([Mg2+]i) from 0.7 to 1.0 mM which occurs under these conditions. 7. Magnesium uptake can be driven against a substantial electrochemical gradient if the external sodium concentration is reduced sufficiently. 8. These findings are discussed in terms of several possible models for magnesium transport. It is concluded that the majority of magnesium uptake observed in low-sodium media is via sodium-magnesium antiport. A small portion of uptake is through a parallel leak pathway. It is believed that the antiport is responsible for maintaining [Mg2+]i below electrochemical equilibrium in these cells at physiological external sodium concentration. Thus in ferret red cells the direction of magnesium transport can be reversed by reversing the sodium gradient. PMID:1822527
NASA Technical Reports Server (NTRS)
Golanov, E. V.; Reis, D. J.
1996-01-01
1. We sought to determine whether hypoxic stimulation of neurons of the rostral ventrolateral reticular nucleus (RVL) would elevate regional cerebral blood flow (rCBF) in anaesthetized paralysed rats. 2. Microinjection of sodium cyanide (NaCN; 150-450 pmol) into the RVL rapidly (within 1-2 s), transiently, dose-dependently and site-specifically elevated rCBF1 measured by laser Doppler flowmetry, by 61.3 +/- 22.1% (P < 0.01), increased arterial pressure (AP; +30 +/- 8 mmHg; P < 0.01)1 and triggered a synchronized 6 Hz rhythm of EEG activity. 3. Following cervical spinal cord transection, NaCN and also dinitrophenol (DNP) significantly (P < 0.05) elevated rCBF and synchronized the EEG but did not elevate AP; the response to NaCN was attenuated by hyperoxia and deepening of anaesthesia. 4. Electrical stimulation of NaCN-sensitive sites in the RVL in spinalized rats increased rCBF measured autoradiographically with 14C iodoantipyrine (Kety method) in the mid-line thalamus (by 182.3 +/- 17.2%; P < 0.05) and cerebral cortex (by 172.6 +/- 15.6%; P < 0.05) regions, respectively, directly or indirectly innervated by RVL neurons, and in the remainder of the brain. In contrast regional cerebral glucose utilization (rCGU), measured autoradiographically with 14C-2-deoxyglucose (Sokoloff method), was increased in proportion to rCBF in the mid-line thalamus (165.6 +/- 17.8%, P < 0.05) but was unchanged in the cortex. 5. Bilateral electrolytic lesions of NaCN sensitive sites of RVL, while not altering resting rCBF or the elevation elicited by hypercarbia (arterial CO2 pressure, Pa,CO2, approximately 69 mmHg), reduced the vasodilatation elicited by normocapnic hypoxaemia (arterial O2 pressure, Pa,O2, approximately 27 mmHg) by 67% (P < 0.01) and flattened the slope of the Pa,O2-rCBF response curve. 6. We conclude that the elevation of rCBF produced in the cerebral cortex by hypoxaemia is in large measure neurogenic, mediated trans-synaptically over intrinsic neuronal pathways, and initiated by excitation of oxygen sensitive neurons in the RVL.
Lobley, Gerald E; Johnstone, Alexandra M; Fyfe, Claire; Horgan, Graham W; Holtrop, Grietje; Bremner, David M; Broom, Iain; Schweiger, Lutz; Welch, Andy
2014-02-01
Previous work has shown that hunger and food intake are lower in individuals on high-protein (HP) diets when combined with low carbohydrate (LC) intakes rather than with moderate carbohydrate (MC) intakes and where a more ketogenic state occurs. The aim of the present study was to investigate whether the difference between HPLC and HPMC diets was associated with changes in glucose and ketone body metabolism, particularly within key areas of the brain involved in appetite control. A total of twelve men, mean BMI 34·9 kg/m², took part in a randomised cross-over trial, with two 4-week periods when isoenergetic fixed-intake diets (8·3 MJ/d) were given, with 30% of the energy being given as protein and either (1) a very LC (22 g/d; HPLC) or (2) a MC (182 g/d; HPMC) intake. An ¹⁸fluoro-deoxyglucose positron emission tomography scan of the brain was conducted at the end of each dietary intervention period, following an overnight fast (n 4) or 4 h after consumption of a test meal (n 8). On the next day, whole-body ketone and glucose metabolism was quantified using [1,2,3,4-¹³C]acetoacetate, [2,4-¹³C]3-hydroxybutyrate and [6,6-²H₂]glucose. The composite hunger score was 14% lower (P= 0·013) for the HPLC dietary intervention than for the HPMC diet. Whole-body ketone flux was approximately 4-fold greater for the HPLC dietary intervention than for the HPMC diet (P< 0·001). The 9-fold difference in carbohydrate intakes between the HPLC and HPMC dietary interventions led to a 5% lower supply of glucose to the brain. Despite this, the uptake of glucose by the fifty-four regions of the brain analysed remained similar for the two dietary interventions. In conclusion, differences in the composite hunger score observed for the two dietary interventions are not associated with the use of alternative fuels by the brain.
Golinska, Monika; Troy, Helen; Chung, Yuen-Li; McSheehy, Paul M; Mayr, Manuel; Yin, Xiaoke; Ly, Lucy; Williams, Kaye J; Airley, Rachel E; Harris, Adrian L; Latigo, John; Perumal, Meg; Aboagye, Eric O; Perrett, David; Stubbs, Marion; Griffiths, John R
2011-05-25
HIF-1 deficiency has marked effects on tumour glycolysis and growth. We therefore investigated the consequences of HIF-1 deficiency in mice, using the well established Hepa-1 wild-type (WT) and HIF-1β-deficient (c4) model. These mechanisms could be clinically relevant, since HIF-1 is now a therapeutic target. Hepa-1 WT and c4 tumours grown in vivo were analysed by 18FDG-PET and 19FDG Magnetic Resonance Spectroscopy for glucose uptake; by HPLC for adenine nucleotides; by immunohistochemistry for GLUTs; by immunoblotting and by DIGE followed by tandem mass spectrometry for protein expression; and by classical enzymatic methods for enzyme activity. HIF-1β deficient Hepa-1 c4 tumours grew significantly more slowly than WT tumours, and (as expected) showed significantly lower expression of many glycolytic enzymes. However, HIF-1β deficiency caused no significant change in the rate of glucose uptake in c4 tumours compared to WT when assessed in vivo by measuring fluoro-deoxyglucose (FDG) uptake. Immunohistochemistry demonstrated less GLUT-1 in c4 tumours, whereas GLUT-2 (liver type) was similar to WT. Factors that might upregulate glucose uptake independently of HIF-1 (phospho-Akt, c-Myc) were shown to have either lower or similar expression in c4 compared to WT tumours. However the AMP/ATP ratio was 4.5 fold higher (p < 0.01) in c4 tumours, and phosphofructokinase-1 (PFK-1) activity, measured at prevailing cellular ATP and AMP concentrations, was up to two-fold higher in homogenates of the deficient c4 cells and tumours compared to WT (p < 0.001), suggesting that allosteric PFK activation could explain their normal level of glycolysis. Phospho AMP-Kinase was also higher in the c4 tumours. Despite their defective HIF-1 and consequent down-regulation of glycolytic enzyme expression, Hepa-1 c4 tumours maintain glucose uptake and glycolysis because the resulting low [ATP] high [AMP] allosterically activate PFK-1. This mechanism of resistance would keep glycolysis functioning and also result in activation of AMP-Kinase and growth inhibition; it may have major implications for the therapeutic activity of HIF inhibitors in vivo. Interestingly, this control mechanism does not involve transcriptional control or proteomics, but rather the classical activation and inhibition mechanisms of glycolytic enzymes.
Nguyen, Hieu M; Mejia, Edgard M; Chang, Wenguang; Wang, Ying; Watson, Emily; On, Ngoc; Miller, Donald W; Hatch, Grant M
2016-10-01
Microvessel endothelial cells form part of the blood-brain barrier, a restrictively permeable interface that allows transport of only specific compounds into the brain. Cardiolipin is a mitochondrial phospholipid required for function of the electron transport chain and ATP generation. We examined the role of cardiolipin in maintaining mitochondrial function necessary to support barrier properties of brain microvessel endothelial cells. Knockdown of the terminal enzyme of cardiolipin synthesis, cardiolipin synthase, in hCMEC/D3 cells resulted in decreased cellular cardiolipin levels compared to controls. The reduction in cardiolipin resulted in decreased mitochondrial spare respiratory capacity, increased pyruvate kinase activity, and increased 2-deoxy-[(3) H]glucose uptake and glucose transporter-1 expression and localization to membranes in hCMEC/D3 cells compared to controls. The mechanism for the increase in glucose uptake was an increase in adenosine-5'-monophosphate kinase and protein kinase B activity and decreased glycogen synthase kinase 3 beta activity. Knockdown of cardiolipin synthase did not affect permeability of fluorescent dextran across confluent hCMEC/D3 monolayers grown on Transwell(®) inserts. In contrast, knockdown of cardiolipin synthase resulted in an increase in 2-deoxy-[(3) H]glucose transport across these monolayers compared to controls. The data indicate that in hCMEC/D3 cells, spare respiratory capacity is dependent on cardiolipin. In addition, reduction in cardiolipin in these cells alters their cellular energy status and this results in increased glucose transport into and across hCMEC/D3 monolayers. Microvessel endothelial cells form part of the blood-brain barrier, a restrictively permeable interface that allows transport of only specific compounds into the brain. In human adult brain endothelial cell hCMEC/D3 monolayers cultured on Transwell(®) plates, knockdown of cardiolipin synthase results in decrease in mitochondrial cardiolipin and decreased mitochondrial spare respiratory capacity. The reduced cardiolipin results in an increased activity of adenosine monophosphate kinase (pAMPK) and protein kinase B (pAKT) and decreased activity of glycogen synthase kinase 3 beta (pGSK3β) which results in elevated glucose transporter-1 (GLUT-1) expression and association with membranes. This in turn increases 2-dexoyglucose uptake from the apical medium into the cells with a resultant 2-deoxyglucose movement into the basolateral medium. © 2016 International Society for Neurochemistry.
Schreckenberger, M; Gouzoulis-Mayfrank, E; Sabri, O; Arning, C; Zimny, M; Zeggel, T; Wagenknecht, G; Kaiser, H J; Sass, H; Buell, U
1999-12-01
The aim of this study was to determine the acute effects of the "Ecstasy" analogue MDE (3,4-methylene dioxyethamphetamine) on cerebral glucose metabolism (rMRGlu) of healthy volunteers and to correlate neurometabolism with acute psychopathology. In a randomized double-blind trial, 15 healthy volunteers without a history of drug abuse were examined with fluorine-18-deoxyglucose (18FDG) positron emission tomography (PET) 110-120 min after oral administration of 2 mg/kg MDE (n = 7) or placebo (n = 8). Two minutes prior to radiotracer injection, constant cognitive stimulation was started and maintained for 32 min using a word repetition paradigm to ensure constant and comparable mental conditions during cerebral glucose uptake. Individual brain anatomy was represented using Tl-weighted 3D flash magnetic resonance imaging (MRI), followed by manual regionalization into 108 regions of interest and PET/MRI overlay. After absolute quantification of rMRGlu and normalization to global metabolism, normalized rMRGlu under MDE was compared to placebo using the Mann-Whitney U-test. Acute psychopathology was assessed using the Positive and Negative Syndrome Scale (PANSS) and rMRGlu was correlated to PANSS scores according to Spearman. MDE subjects showed significantly decreased rMRGlu in the bilateral frontal cortex: left frontal posterior (-7.1%, P < 0.05) and right prefrontal superior (-4.6%, P < 0.05). On the other hand, rMRGlu was significantly increased in the bilateral cerebellum (right: +10.1%, P < 0.05; left: +7.6%, P < 0.05) and in the right putamen (+6.2%, P < 0.05). There were positive correlations between rMRGlu in the middle right cingulate and grandiosity (r = 0.87, P < 0.05), both the right amygdala (r = 0.90, P < 0.01) and the left posterior cingulate (r = 0.90, P < 0.01) to difficulties in abstract thinking, and the right frontal inferior (r = 0.85, P < 0.05), right anterior cingulate (r = 0.93, P < 0.01), and left anterior cingulate (r = 0.85, P < 0.05) to attentional deficits. A negative correlation was found between the left frontal operculum (Broca's area) and attentional deficits (r = -0.85, P < 0.05). The present study revealed acute neurometabolic changes under the "Ecstasy" analogue MDE, indicating a frontostriatocerebellar imbalance paralleling other psychotropic substances or various psychiatric disorders.
Bashir, Usman; Azad, Gurdip; Siddique, Muhammad Musib; Dhillon, Saana; Patel, Nikheel; Bassett, Paul; Landau, David; Goh, Vicky; Cook, Gary
2017-12-01
Measures of tumour heterogeneity derived from 18-fluoro-2-deoxyglucose positron emission tomography/computed tomography ( 18 F-FDG PET/CT) scans are increasingly reported as potential biomarkers of non-small cell lung cancer (NSCLC) for classification and prognostication. Several segmentation algorithms have been used to delineate tumours, but their effects on the reproducibility and predictive and prognostic capability of derived parameters have not been evaluated. The purpose of our study was to retrospectively compare various segmentation algorithms in terms of inter-observer reproducibility and prognostic capability of texture parameters derived from non-small cell lung cancer (NSCLC) 18 F-FDG PET/CT images. Fifty three NSCLC patients (mean age 65.8 years; 31 males) underwent pre-chemoradiotherapy 18 F-FDG PET/CT scans. Three readers segmented tumours using freehand (FH), 40% of maximum intensity threshold (40P), and fuzzy locally adaptive Bayesian (FLAB) algorithms. Intraclass correlation coefficient (ICC) was used to measure the inter-observer variability of the texture features derived by the three segmentation algorithms. Univariate cox regression was used on 12 commonly reported texture features to predict overall survival (OS) for each segmentation algorithm. Model quality was compared across segmentation algorithms using Akaike information criterion (AIC). 40P was the most reproducible algorithm (median ICC 0.9; interquartile range [IQR] 0.85-0.92) compared with FLAB (median ICC 0.83; IQR 0.77-0.86) and FH (median ICC 0.77; IQR 0.7-0.85). On univariate cox regression analysis, 40P found 2 out of 12 variables, i.e. first-order entropy and grey-level co-occurence matrix (GLCM) entropy, to be significantly associated with OS; FH and FLAB found 1, i.e., first-order entropy. For each tested variable, survival models for all three segmentation algorithms were of similar quality, exhibiting comparable AIC values with overlapping 95% CIs. Compared with both FLAB and FH, segmentation with 40P yields superior inter-observer reproducibility of texture features. Survival models generated by all three segmentation algorithms are of at least equivalent utility. Our findings suggest that a segmentation algorithm using a 40% of maximum threshold is acceptable for texture analysis of 18 F-FDG PET in NSCLC.
Bayés, M; Rabasseda, X; Prous, J R
2006-10-01
Gateways to Clinical Trials are a guide to the most recent clinical trials in current literature and congresses. The data the following tables have been retrieved from the Clinical Trials Knowledge Area of Prous Science Integrity, the drug discovery and development portal, http://integrity.prous.com. This issues focuses on the following selection of drugs: (-)-Epigallocatechin gallate, (-)-gossypol, 2-deoxyglucose, 3,4-DAP, 7-monohydroxyethylrutoside; Ad5CMV-p53, adalimumab, adefovir dipivoxil, ADH-1, alemtuzumab, aliskiren fumarate, alvocidib hydrochloride, aminolevulinic acid hydrochloride, aminolevulinic acid methyl ester, amrubicin hydrochloride, AN-152, anakinra, anecortave acetate, antiasthma herbal medicine intervention, AP-12009, AP-23573, apaziquone, aprinocarsen sodium, AR-C126532, AR-H065522, aripiprazole, armodafinil, arzoxifene hydrochloride, atazanavir sulfate, atilmotin, atomoxetine hydrochloride, atorvastatin, avanafil, azimilide hydrochloride; Bevacizumab, biphasic insulin aspart, BMS-214662, BN-83495, bortezomib, bosentan, botulinum toxin type B; Caspofungin acetate, cetuximab, chrysin, ciclesonide, clevudine, clofarabine, clopidogrel, CNF-1010, CNTO-328, CP-751871, CX-717, Cypher; Dapoxetine hydrochloride, darifenacin hydrobromide, dasatinib, deferasirox, dextofisopam, dextromethorphan/quinidine sulfate, diclofenac, dronedarone hydrochloride, drotrecogin alfa (activated), duloxetine hydrochloride, dutasteride; Edaravone, efaproxiral sodium, emtricitabine, entecavir, eplerenone, epratuzumab, erlotinib hydrochloride, escitalopram oxalate, etoricoxib, ezetimibe, ezetimibe/simvastatin; Finrozole, fipamezole hydrochloride, fondaparinux sodium, fulvestrant; Gabapentin enacarbil, gaboxadol, gefitinib, gestodene, ghrelin (human); Human insulin, human papillomavirus vaccine; Imatinib mesylate, immunoglobulin intravenous (human), indiplon, insulin detemir, insulin glargine, insulin glulisine, intranasal insulin, istradefylline, i.v. gamma-globulin, ivabradine hydrochloride, ixabepilone; LA-419, lacosamide, landiolol, lanthanum carbonate, lidocaine/prilocaine, liposomal cisplatin, lutropin alfa; Matuzumab, MBP(82-98), mecasermin, MGCD-0103, MMR-V, morphine hydrochloride, mycophenolic acid sodium salt; Natalizumab, NCX-4016, neridronic acid, nesiritide, nilotinib, NSC-330507; O6-benzylguanine, olanzapine/fluoxetine hydrochloride, omalizumab; Panitumumab, parathyroid hormone (human recombinant), parecoxib sodium, PEG-filgrastim, peginterferon alfa-2a, peginterferon alfa-2b, pegvisomant, pemetrexed disodium, perospirone hydrochloride, pexelizumab, phorbol 12-myristate 13-acetate, pneumococcal 7-valent conjugate vaccine, posaconazole, pramiconazole, prasugrel, pregabalin, prilocaine; rAAV-GAD65, raclopride, rasagiline mesilate, retapamulin, rosuvastatin calcium, rotigotine, rufinamide; SarCNU, SB-743921, SHL-749, sirolimus-eluting stent, sitaxsentan sodium, sorafenib; TachoSil, tadalafil, talampanel, Taxus, tegaserod maleate, telithromycin, telmisartan/hydrochlorothiazide, temsirolimus, tenatoprazole, teriflunomide, tetrathiomolybdate, ticilimumab, timcodar dimesilate, tipifarnib, tirapazamine, TPI, tramiprosate, trifluridine/TPI, trimethoprim; Ularitide, Urocortin 2; Valdecoxib, valganciclovir hydrochloride, valproate magnesium, valspodar, vardenafil hydrochloride hydrate, vitespen, vofopitant hydrochloride, volociximab, vorinostat; Yttrium 90 (90Y) ibritumomab tiuxetan; Ziprasidone hydrochloride, zotarolimus, zotarolimus-eluting stent.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Terezakis, Stephanie A.; Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins School of Medicine, Baltimore, Maryland; Schöder, Heiko
2014-06-01
Purpose: This prospective single-institution study examined the impact of positron emission tomography (PET) with the use of 2-[{sup 18}F] fluoro-2-deoxyglucose and computed tomography (CT) scan radiation treatment planning (TP) on target volume definition in lymphoma. Methods and Materials: 118 patients underwent PET/CT TP during June 2007 to May 2009. Gross tumor volume (GTV) was contoured on CT-only and PET/CT studies by radiation oncologists (ROs) and nuclear medicine physicians (NMPs) for 95 patients with positive PET scans. Treatment plans and dose-volume histograms were generated for CT-only and PET/CT for 95 evaluable sites. Paired t test statistics and Pearson correlation coefficients weremore » used for analysis. Results: 70 (74%) patients had non-Hodgkin lymphoma, 10 (11%) had Hodgkin lymphoma, 12 (10%) had plasma-cell neoplasm, and 3 (3%) had other hematologic malignancies. Forty-three (45%) presented with relapsed/refractory disease. Forty-five (47%) received no prior chemotherapy. The addition of PET increased GTV as defined by ROs in 38 patients (median, 27%; range, 5%-70%) and decreased GTV in 41 (median, 39.5%; range, 5%-80%). The addition of PET increased GTV as defined by NMPs in 27 patients (median, 26.5%; range, 5%-95%) and decreased GTV in 52 (median, 70%; range, 5%-99%). The intraobserver correlation between CT-GTV and PET-GTV was higher for ROs than for NMPs (0.94, P<.01 vs 0.89, P<.01). On the basis of Bland-Altman plots, the PET-GTVs defined by ROs were larger than those defined by NMPs. On evaluation of clinical TPs, only 4 (4%) patients had inadequate target coverage (D95 <95%) of the PET-GTV defined by NMPs. Conclusions: Significant differences between the RO and NMP volumes were identified when PET was coregistered to CT for radiation planning. Despite this, the PET-GTV defined by ROs and NMPs received acceptable prescription dose in nearly all patients. However, given the potential for a marginal miss, consultation with an experienced PET reader is highly encouraged when PET/CT volumes are delineated, particularly for questionable lesions and to assure complete and accurate target volume coverage.« less
Mirbolooki, M. Reza; Upadhyay, Sanjeev Kumar; Constantinescu, Cristian C.; Pan, Min-Liang; Mukherjee, Jogeshwar
2013-01-01
Objective Pharmacologic approaches to study brown adipocyte activation in vivo with a potential of being translational to humans are desired. The aim of this study was to examine pre- and postsynaptic targeting of adrenergic system for enhancing brown adipose tissue (BAT) metabolism quantifiable by [18F]fluoro-2-deoxyglucose ([18F]FDG) positron emission tomography (PET)/ computed tomography (CT) in mice. Methods A β3-adrenoreceptor selective agonist (CL 316243), an adenylyl cyclase enzyme activator (forskolin) and a potent blocker of presynaptic norepinephrine transporter (atomoxetine) were injected through the tail vein of Swiss Webster mice 30 minutes before intravenous (iv) administration of [18F]FDG. The mice were placed on the PET/CT bed for 30 min PET acquisition followed by 10 min CT acquisition for attenuation correction and anatomical delineation of PET images. Results Activated interscapular (IBAT), cervical, periaortic and intercostal BAT were observed in 3-dimentional analysis of [18F]FDG PET images. CL 316243 increased the total [18F]FDG standard uptake value (SUV) of IBAT 5-fold greater compared to that in placebo-treated mice. It also increased the [18F]FDG SUV of white adipose tissue (2.4-fold), and muscle (2.7-fold), as compared to the control. There was no significant difference in heart, brain, spleen and liver uptakes between groups. Forskolin increased [18F]FDG SUV of IBAT 1.9-fold greater than that in placebo-treated mice. It also increased the [18F]FDG SUV of white adipose tissue (2.2-fold) and heart (5.4-fold) compared to control. There was no significant difference in muscle, brain, spleen, and liver uptakes between groups. Atomoxetine increased [18F]FDG SUV of IBAT 1.7-fold greater than that in placebo-treated mice. There were no significant differences in all other organs compared to placebo-treated mice except liver (1.6 fold increase). A positive correlation between SUV levels of IBAT and CT hounsfiled unit (HU) (R2=0.55, p<0.001) and between CT HU levels of IBAT and liver (R2=0.69, p<0.006) was observed. Conclusions The three pharmacologic approaches reported here enhanced BAT metabolism by targeting different sites in adrenergic system as measured by [18F]FDG PET/CT. PMID:24090673
A novel botanical formula prevents diabetes by improving insulin resistance.
Kan, Juntao; Velliquette, Rodney A; Grann, Kerry; Burns, Charlie R; Scholten, Jeff; Tian, Feng; Zhang, Qi; Gui, Min
2017-07-05
Type 2 diabetes mellitus (T2DM) is a major risk factor for cardiovascular disease, and the prevalence has increased significantly in recent decades to epidemic proportions in China. Individually, fenugreek (Trigonella foenum graecum) seed, mulberry (Morus alba L.) leaf and American ginseng (Panax quinquefolius) root can improve glycemia in various animal models and humans with impaired glucose metabolism and T2DM. The aim of this study was to design an optimized botanical formula containing these herbal extracts as a nutritional strategy for the prevention of insulin resistance and T2DM. Cell-free α-amylase and α-glucosidase enzyme assays were used to determine inhibitory potential of extracts. Glucose uptake was examined in differentiated human adipocytes using radiolabeled 2-deoxyglucose. Male Sprague Dawley rats were divided and glycemia balanced into 5 groups: two controls (naïve and model) and three doses of the botanical test formula containing standardized fenugreek seed, mulberry leaf and American ginseng extracts (42.33, 84.66 and 169.33 mg/kg BW). Insulin resistance and T2DM was induced by feeding animals a high fat diet and with an alloxan injection. Glucose tolerance was examined by measuring serum glucose levels following an oral glucose load. Fenugreek seed and mulberry leaf dose dependently inhibited α-amylase (IC50 = 73.2 μg/mL) and α-glucosidase (IC50 = 111.8 ng/mL), respectively. All three botanical extracts improved insulin sensitivity and glucose uptake in human adipocytes, which lead to the design of an optimized botanical test formula. In a rat model of insulin resistance and T2DM, the optimized botanical test formula improved fasting serum glucose levels, fasting insulin resistance and the development of impaired glucose tolerance. The reduction in epididymal adipose tissue GLUT4 and PDK1 expression induced by high fat diet and alloxan was blunted by the botanical test formula. A novel botanical formula containing standardized extracts of mulberry leaf, fenugreek seed and American ginseng at a ratio of 1:1.3:3.4 prevented the development of insulin resistance, impaired glucose tolerance and T2DM. Given the rising need for effective non-drug targeting of insulin resistance and progression to T2DM, complementary and alternative nutritional strategies without intolerable side effects could have meaningful impact on metabolic health and diabetes risks.
Conventional and Nuclear Medicine Imaging in Ectopic Cushing's Syndrome: A Systematic Review
Isidori, Andrea M.; Sbardella, Emilia; Zatelli, Maria Chiara; Boschetti, Mara; Vitale, Giovanni; Colao, Annamaria
2015-01-01
Context: Ectopic Cushing's Syndrome (ECS) can be a diagnostic challenge with the hormonal source difficult to find. This study analyzes the accuracy of imaging studies in ECS localization. Evidence Acquisition: Systematic review of medical literature for ECS case series providing individual patient data on at least one conventional imaging technique (computed tomography [CT]/magnetic resonance imaging) and one of the following: 111In-pentetreotide (OCT), 131I/123I-metaiodobenzylguanidine, 18F-fluoro-2-deoxyglucose-positron emission tomography (FDG-PET), 18F-fluorodopa-PET (F-DOPA-PET), 68Ga-DOTATATE-PET/CT or 68Ga-DOTATOC-PET/CT scan (68Gallium-SSTR-PET/CT). Evidence Summary: The analysis comprised 231 patients (females, 50.2%; age, 42.6 ± 17 y). Overall, 52.4% (121/231) had “overt” ECS, 18.6% had “occult” ECS, and 29% had “covert” ECS. Tumors were located in the lung (55.3%), mediastinum-thymus (7.9%), pancreas (8.5%), adrenal glands (6.4%), gastrointestinal tract (5.4%), thyroid (3.7%), and other sites (12.8%), and primary tumors were mostly bronchial neuroendocrine tumors (NETs) (54.8%), pancreatic NETs (8%), mediastinum-thymus NETs (6.9%), gastrointestinal NETs (5.3%), pheochromocytoma (6.4%), neuroblastoma (3.2%), and medullary thyroid carcinoma (3.2%). Tumors were localized by CT in 66.2% (137/207), magnetic resonance imaging in 51.5% (53/103), OCT in 48.9% (84/172), FDG-PET in 51.7% (46/89), F-DOPA-PET in 57.1% (12/21), 131/123I-metaiodobenzylguanidine in 30.8% (4/13), and 68Gallium-SSTR-PET/CT in 81.8% (18/22) of cases. Molecular imaging discovered 79.1% (53/67) of tumors unidentified by conventional radiology, with OCT the most commonly used, revealing the tumor in 64%, followed by FDG-PET in 59.4%. F-DOPA-PET was used in only seven covert cases (sensitivity, 85.7%). Notably, 68Gallium-SSTR-PET/CT had 100% sensitivity among covert cases. Conclusions: Nuclear medicine improves the sensitivity of conventional radiology when tumor site identification is problematic. OCT offers a good availability/reliability ratio, and FDG-PET was proven useful. 68Gallium-SSTR-PET/CT use was infrequent, despite offering the highest sensitivity. PMID:26158607
Caloric restriction in primates and relevance to humans.
Roth, G S; Ingram, D K; Lane, M A
2001-04-01
Dietary caloric restriction (CR) is the only intervention conclusively and reproducibly shown to slow aging and maintain health and vitality in mammals. Although this paradigm has been known for over 60 years, its precise biological mechanisms and applicability to humans remain unknown. We began addressing the latter question in 1987 with the first controlled study of CR in primates (rhesus and squirrel monkeys, which are evolutionarily much closer to humans than the rodents most frequently employed in CR studies). To date, our results strongly suggest that the same beneficial "antiaging" and/or "antidisease" effects observed in CR rodents also occur in primates. These include lower plasma insulin levels and greater sensitivity; lower body temperatures; reduced cholesterol, triglycerides, blood pressure, and arterial stiffness; elevated HDL; and slower age-related decline in circulating levels of DHEAS. Collectively, these biomarkers suggest that CR primates will be less likely to incur diabetes, cardiovascular problems, and other age-related diseases and may in fact be aging more slowly than fully fed counterparts. Despite these very encouraging results, it is unlikely that most humans would be willing to maintain a 30% reduced diet for the bulk of their adult life span, even if it meant more healthy years. For this reason, we have begun to explore CR mimetics, agents that might elicit the same beneficial effects as CR, without the necessity of dieting. Our initial studies have focused on 2-deoxyglucose (2DG), a sugar analogue with a limited metabolism that actually reduces glucose/energy flux without decreasing food intake in rats. In a six-month pilot study, 2DG lowered plasma insulin and body temperature in a manner analagous to that of CR. Thus, metabolic effects that mediate the CR mechanism can be attained pharmacologically. Doses were titrated to eliminate toxicity; a long-term longevity study is now under way. In addition, data from other laboratories suggest that at least some of the same physiological/metabolic end points that are associated with the beneficial effects of underfeeding may be obtained from other potential CR mimetic agents, some naturally occurring in food products. Much work remains to be done, but taken together, our successful results with CR in primates and 2DG administration to rats suggest that it may indeed be possible to obtain the health- and longevity-promoting effects of the former intervention without actually decreasing food intake.
Tai, Suh-Jun; Liu, Ren-Shyan; Kuo, Ya-Chen; Hsu, Chi-Yang; Chen, Chi-Hsien
2010-04-30
The aim of this study was to determine glucose uptake patterns in exercised skeletal muscles of elite male long-distance and short-distance runners. Positron emission tomography (PET) using 18F-fluoro-2-deoxyglucose (FDG) was performed to determine the patterns of glucose uptake in lower limbs of short-distance (SD group, n=8) and long-distance (LD group, n=8) male runners after a modified 20 min Bruce treadmill test. Magnetic resonance imaging (MRI) was used to delineate the muscle groups in lower limbs. Muscle groups from hip, knee, and ankle movers were measured. The total FDG uptake and the standard uptake value (SUV) for each muscle group were compared between the 2 groups. For the SD and LD runners, the 2 major muscle groups utilizing glucose during running were knee extensors and ankle plantarflexors, which accounted for 49.3 +/- 8.1% (25.1 +/- 4.7% and 24.2 +/- 6.0%) of overall lower extremity glucose uptake for SD group, and 51.3 +/- 8.0% (27.2 +/- 2.7% and 24.0 +/- 8.1%) for LD group. No difference in muscle glucose uptake was noted for other muscle groups. For SD runners, the SUVs for the muscle groups varied from 0.49 +/- 0.27 for the ankle plantarflexors, to 0.20 +/- 0.08 for the hip flexor. For the LD runners, the highest and lowest SUVs were 0.43 +/- 0.15 for the ankle dorsiflexors and 0.21 +/- 0.19 for the hip. For SD and LD groups, no difference in muscle SUV was noted for the muscle groups. However, the SUV ratio between the ankle dorsiflexors and plantarflexors in the LD group was significantly greater than that in the SD group. We thus conclude that the major propelling muscle groups account for approximately 50% of lower limb glucose utilization during running. Thus, the other muscle groups involving maintenance of balance, limb deceleration, and shock absorption utilize an equal amount. This result provides a new insight into glucose distribution in skeletal muscle, suggesting that propellers and supporters are both energetically important during running. Furthermore, for each unit muscle volume, movers of ankle are more glucose-demanding than those of hip.
High-resolution 2-deoxyglucose mapping of functional cortical columns in mouse barrel cortex.
McCasland, J S; Woolsey, T A
1988-12-22
Cortical columns associated with barrels in layer IV of the somatosensory cortex were characterized by high-resolution 2-deoxy-D-glucose (2DG) autoradiography in freely behaving mice. The method demonstrates a more exact match between columnar labeling and cytoarchitectonic barrel boundaries than previously reported. The pattern of cortical activation seen with stimulation of a single whisker (third whisker in the middle row of large hairs--C3) was compared with the patterns from two control conditions--normal animals with all whiskers present ("positive control")--and with all large whiskers clipped ("negative control"). Two types of measurements were made from 2DG autoradiograms of tangential cortical sections: 1) labeled cells were identified by eye and tabulated with a computer, and 2) grain densities were obtained automatically with a computer-controlled microscope and image processor. We studied the fine-grained patterns of 2DG labeling in a nine-barrel grid with the C3 barrel in the center. From the analysis we draw five major conclusions. 1. Approximately 30-40% of the total number of neurons in the C3 barrel column are activated when only the C3 whisker is stimulated. This is about twice the number of neurons labeled in the C3 column when all whiskers are stimulated and about ten times the number of neurons labeled when all large whiskers are clipped. 2. There is evidence for a vertical functional organization within a barrel-related whisker column which has smaller dimensions in the tangential direction than a barrel. There are densely labeled patches within a barrel which are unique to an individual cortex. The same patchy pattern is found in the appropriate regions of sections above and below the barrels through the full thickness of the cortex. This functional arrangement could be considered to be a "minicolumn" or more likely a group of "minicolumns" (Mountcastle: In G.M. Edelman and U.B. Mountcastle (eds): The Material Brain: Cortical Organization and the Group-Selective Theory of Higher Brain Function. Cambridge: MIT Press, '78). 3. Within the stereotyped geometry of the barrel field, there is considerable individual variation in the radial labeling distribution in corresponding (homotypical) columns of different cerebral hemispheres. This result is consistent with the hypothesis that dynamic processes operate to determine the connection strengths between neural elements in somatosensory cortex. It provides a basis for testing various "connectionist" and "group selection" theories of neural organization and development.(ABSTRACT TRUNCATED AT 400 WORDS)
Dynamic whole-body PET parametric imaging: II. Task-oriented statistical estimation.
Karakatsanis, Nicolas A; Lodge, Martin A; Zhou, Y; Wahl, Richard L; Rahmim, Arman
2013-10-21
In the context of oncology, dynamic PET imaging coupled with standard graphical linear analysis has been previously employed to enable quantitative estimation of tracer kinetic parameters of physiological interest at the voxel level, thus, enabling quantitative PET parametric imaging. However, dynamic PET acquisition protocols have been confined to the limited axial field-of-view (~15-20 cm) of a single-bed position and have not been translated to the whole-body clinical imaging domain. On the contrary, standardized uptake value (SUV) PET imaging, considered as the routine approach in clinical oncology, commonly involves multi-bed acquisitions, but is performed statically, thus not allowing for dynamic tracking of the tracer distribution. Here, we pursue a transition to dynamic whole-body PET parametric imaging, by presenting, within a unified framework, clinically feasible multi-bed dynamic PET acquisition protocols and parametric imaging methods. In a companion study, we presented a novel clinically feasible dynamic (4D) multi-bed PET acquisition protocol as well as the concept of whole-body PET parametric imaging employing Patlak ordinary least squares (OLS) regression to estimate the quantitative parameters of tracer uptake rate Ki and total blood distribution volume V. In the present study, we propose an advanced hybrid linear regression framework, driven by Patlak kinetic voxel correlations, to achieve superior trade-off between contrast-to-noise ratio (CNR) and mean squared error (MSE) than provided by OLS for the final Ki parametric images, enabling task-based performance optimization. Overall, whether the observer's task is to detect a tumor or quantitatively assess treatment response, the proposed statistical estimation framework can be adapted to satisfy the specific task performance criteria, by adjusting the Patlak correlation-coefficient (WR) reference value. The multi-bed dynamic acquisition protocol, as optimized in the preceding companion study, was employed along with extensive Monte Carlo simulations and an initial clinical (18)F-deoxyglucose patient dataset to validate and demonstrate the potential of the proposed statistical estimation methods. Both simulated and clinical results suggest that hybrid regression in the context of whole-body Patlak Ki imaging considerably reduces MSE without compromising high CNR. Alternatively, for a given CNR, hybrid regression enables larger reductions than OLS in the number of dynamic frames per bed, allowing for even shorter acquisitions of ~30 min, thus further contributing to the clinical adoption of the proposed framework. Compared to the SUV approach, whole-body parametric imaging can provide better tumor quantification, and can act as a complement to SUV, for the task of tumor detection.
Zhang, H; Bolton, T B
1995-01-01
1. Single-channel recordings were made from cell-attached and isolated patches, and whole-cell currents were recorded under voltage clamp from single smooth muscle cells obtained by enzymic digestion of a small branch of the rat mesenteric artery. 2. In single voltage-clamped cells 1 mM uridine diphosphate (UDP) or guanidine diphosphate (GDP) added to the pipette solution, or pinacidil (100 microM) a K-channel opener (KCO) applied in the bathing solution, evoked an outward current of up to 100pA which was blocked by glibenclamide (10 microM). In single cells from which recordings were made by the 'perforated patch' (nystatin pipette) technique, metabolic inhibition by 1 mM NaCN and 10 mM 2-deoxy-glucose also evoked a similar glibenclamide-sensitive current. 3. Single K-channel activity was observed in cell-attached patches only infrequently unless the metabolism of the cell was inhibited, whereupon channel activity blocked by glibenclamide was seen; pinacidil applied to the cell evoked similar glibenclamide-sensitive channel activity. If the patch was pulled off the cell to form an isolated inside-out patch, similar glibenclamide-sensitive single-channel currents were observed in the presence of UDP and/or pinacidil to those seen in cell-attached mode; channel conductance was 20 pS (60:130 K-gradient) and openings showed no voltage-dependence and noisy inward currents, typical of the nucleoside diphosphate (NDP) activated K-channel (KNDP) seen previously in rabbit portal vein. 4. Formation of an isolated inside-out patch into an ATP-free solution did not increase the probability of channel opening which declined with time even when some single-channel activity had occurred in the cell-attached mode before detachment. However, application of 1 mM UDP or GDP, but not ATP, to inside-out patches evoked single-channel activity. Application of ATP-free solution to isolated patches, previously exposed to ATP and in which channel activity had been seen, did not evoke channel activity. 5. It is concluded that small conductance K-channels (KNDP) open in smooth muscle cells from this small artery in response to UDP or GDP acting from the inside, or pinacidil acting from the outside; the same channels open during inhibition of metabolism presumably mainly due to the rise in nucleoside diphosphates, but a fall in the ATP concentration on the inside of the channel did not by itself evoke channel activity.(ABSTRACT TRUNCATED AT 400 WORDS) PMID:7735693
Cunningham, Danielle A; Lowe, Lisa H; Shao, Lei; Acosta, Natasha R
2016-08-01
Astroblastoma is a rare tumor of uncertain origin most commonly presenting in the cerebrum of children and young adults. The literature contains only case reports and small series regarding its radiologic features. This systematic review is the largest study of imaging findings of astroblastoma to date and serves to identify features that might differentiate it from other neoplasms. This study describes the imaging features of astroblastoma based on a systematic review of the literature and two new cases. We conducted a PubMed and Google Scholar database search that identified 59 publications containing 125 cases of pathology-confirmed astroblastoma, and we also added two new cases from our own institution. Data collected include patient age, gender, tumor location, morphology, calcifications and calvarial changes. We recorded findings on CT, MRI, diffusion-weighted imaging (DWI), MR spectroscopy, positron emission tomography (PET) and catheter angiography. Age at diagnosis ranged 0-70 years (mean 18 years; median 14 years). Female-to-male ratio was 8:1. Of 127 cases, 66 reported CT, 78 reported MRI and 47 reported both findings. Not all authors reported all features, but the tumor features reported included supratentorial in 96% (122/127), superficial in 72% (48/67), well-demarcated in 96% (79/82), mixed cystic-solid in 93% (79/85), and enhancing in 99% (78/79). On CT, 84% (26/31) of astroblastomas were hyperattenuated, 73% (27/37) had calcifications and 7 cases reported adjacent calvarial erosion. Astroblastomas were hypointense on T1-W in 58% (26/45) and on T2-W in 50% (23/46) of MRI sequences. Peritumoral edema was present in 80% (40/50) of cases but was typically described as slight. Six cases included DWI findings, with 100% showing restricted diffusion. On MR spectroscopy, 100% (5/5) showed nonspecific tumor spectra with elevated choline and decreased N-acetylaspartate (NAA). PET revealed nonspecific reduced uptake of [F-18] 2-fluoro-2-deoxyglucose ((18)F-FDG) and increased uptake of [11C]-Methionine in 100% (3/3) of cases. Catheter angiography findings (n=12) were variable, including hypervascularity in 67%, arteriovenous shunting in 33% and avascular areas in 25%. Astroblastomas occur most often in adolescent girls. Imaging often shows a supratentorial, superficial, well-defined, cystic-solid enhancing mass. On CT, most are hyperattenuated, have calcifications, and may remodel adjacent bone if superficial. MRI characteristically reveals a hypointense mass on T1-W and T2-W sequences with restricted diffusion. MR spectroscopy, PET and catheter angiography findings are nonspecific.
Ueda, Shigeto; Tsuda, Hitoshi; Asakawa, Hideki; Omata, Jiro; Fukatsu, Kazuhiko; Kondo, Nobuo; Kondo, Tadaharu; Hama, Yukihiro; Tamura, Katsumi; Ishida, Jiro; Abe, Yoshiyuki; Mochizuki, Hidetaka
2008-06-09
Accurate evaluation of axillary lymph node (ALN) involvement is mandatory before treatment of primary breast cancer. The aim of this study is to compare preoperative diagnostic accuracy between positron emission tomography/computed tomography with 18F-fluorodeoxyglucose (18F-FDG PET/CT) and axillary ultrasonography (AUS) for detecting ALN metastasis in patients having operable breast cancer, and to assess the clinical management of axillary 18F-FDG PET/CT for therapeutic indication of sentinel node biopsy (SNB) and preoperative systemic chemotherapy (PSC). One hundred eighty-three patients with primary operable breast cancer were recruited. All patients underwent 18F-FDG PET/CT and AUS followed by SNB and/or ALN dissection (ALND). Using 18F-FDG PET/CT, we studied both a visual assessment of 18F-FDG uptake and standardized uptake value (SUV) for axillary staging. In a visual assessment of 18F-FDG PET/CT, the diagnostic accuracy of ALN metastasis was 83% with 58% in sensitivity and 95% in specificity, and when cut-off point of SUV was set at 1.8, sensitivity, specificity, and accuracy were 36, 100, and 79%, respectively. On the other hand, the diagnostic accuracy of AUS was 85% with 54% in sensitivity and 99% in specificity. By the combination of 18F-FDG PET/CT and AUS to the axilla, the sensitivity, specificity, and accuracy were 64, 94, and 85%, respectively. If either 18F-FDG PET uptake or AUS was positive in allixa, the probability of axillary metastasis was high; 50% (6 of 12) in 18F-FDG PET uptake only, 80% (4 of 5) in AUS positive only, and 100% (28 of 28) in dual positive. By the combination of AUS and 18F-FDG PET/CT, candidates of SNB were more appropriately selected. The axillary 18F-FDG uptake was correlated with the maximum size and nuclear grade of metastatic foci (p = 0.006 and p = 0.03). The diagnostic accuracy of 18F-FDG PET/CT was shown to be nearly equal to ultrasound, and considering their limited sensitivities, the high radiation exposure by 18F-FDG PET/CT and also costs of the examination, it is likely that AUS will be more cost-effective in detecting massive axillary tumor burden. However, when we cannot judge the axillary staging using AUS alone, metabolic approach of 18F-FDG PET/CT for axillary staging would enable us a much more confident diagnosis.
Han, Yeon-Hee; Lim, Seok Tae; Jeong, Hwan-Jeong; Sohn, Myung-Hee
2016-06-01
The aim of this study was to evaluate the clinical usefulness of additional low-dose high-resolution lung computed tomography (LD-HRCT) combined with (18)F-fluoro-2-deoxyglucose positron emission tomography with CT ((18)F-FDG PET/CT) compared with conventional lung setting image of (18)F-FDG PET/CT for the detection of metastatic lung nodules from colorectal cancer. From January 2011 to September 2011, 649 patients with colorectal cancer underwent additional LD-HRCT at maximum inspiration combined with (18)F-FDG PET/CT. Forty-five patients were finally diagnosed to have lung metastasis based on histopathologic study or clinical follow-up. Twenty-five of the 45 patients had ≤5 metastatic lung nodules and the other 20 patients had >5 metastatic nodules. One hundred and twenty nodules in the 25 patients with ≤5 nodules were evaluated by conventional lung setting image of (18)F-FDG PET/CT and by additional LD-HRCT respectively. Sensitivities, specificities, diagnostic accuracies, positive predictive values (PPVs), and negative predictive values (NPVs) of conventional lung setting image of (18)F-FDG PET/CT and additional LD-HRCT were calculated using standard formulae. The McNemar test and receiver-operating characteristic (ROC) analysis were performed. Of the 120 nodules in the 25 patients with ≤5 metastatic lung nodules, 66 nodules were diagnosed as metastatic. Eleven of the 66 nodules were confirmed histopathologically and the others were diagnosed by clinical follow-up. Conventional lung setting image of (18)F-FDG PET/CT detected 40 of the 66 nodules and additional LD-HRCT detected 55 nodules. All 15 nodules missed by conventional lung setting imaging but detected by additional LD-HRCT were <1 cm in size. The sensitivity, specificity, and diagnostic accuracy of the modalities were 60.6 %, 85.2 %, and 71.1 % for conventional lung setting image and 83.3 %, 88.9 %, and 85.8 % for additional LD-HRCT. By ROC analysis, the area under the ROC curve (AUC) of conventional lung setting image and additional LD-HRCT were 0.712 and 0.827 respectively. Additional LD-HRCT with maximum inspiration was superior to conventional lung setting image of (18)F-FDG PET/CT for the detection of metastatic lung nodules from colorectal cancer (P < 0.05).
NASA Astrophysics Data System (ADS)
Kwok, Connie Sau-Kuen
Nature in the form of DNA, proteins, and cells has the remarkable ability to interact with its environment by processing biological information through specific molecular recognition at the interface. As such, materials that are capable of triggering an appropriate biological response need to be engineered at the biomaterial surface. Chemically and structurally well-defined self-assembled monolayers (SAMs), biomimetics of the lipid bilayer in cell membranes, have been created and studied mostly on rigid metallic surfaces. This dissertation is motivated by the lack of methods to generate a molecularly designed surface for biomedical polymers and thus provides an enabling technology to engineer a polymeric surface precisely at a molecular and cellular level. To take this innovation one step further, we demonstrated that such self-assembled molecular structure coated on drug-containing polymeric devices could act as a stimulus-responsive barrier for controlled drug delivery. A simple, one-step procedure for generating ordered, crystalline methylene chains on polymeric surfaces via urethane linkages was successfully developed. The self-assemblies and molecular structures of these crystalline methylene chains are comparable to the SAM model surfaces, as evidenced by various surface characterization techniques (XPS, TOF-SIMS, and FTIR-ATR). For the first time, these self-assembled molecular structures are shown to function collectively as an ultrasound-responsive barrier membrane for pulsatile drug delivery, including delivery of low-molecular-weight ciprofloxacin and high-molecular-weight insulin. Encouraging results, based on the insulin-activated deoxyglucose uptakes in adipocytes, indicate that the released insulin remained biologically active. Both chemical and acoustic analyses suggest that the ultrasound-assisted release mechanism is primarily induced by transient cavitation, which causes temporary disruption of the self-assembled overlayer, and thus allows temporal release of the encapsulated drugs. In addition to acoustic energy, self-assembled surfaces experience order-disorder transition and have a transition temperature higher than body temperature if longer alkyl chains (C18) are used. The C18-assembled surface barrier membrane exhibits a relatively superior impermeable coating than the shorter C12 chains. The versatility of derivatizing the terminal groups of the self-assembled molecular structures is illustrated by attaching poly (ethyleneoxide) oligomers to the alkyl chains to minimize nonspecific protein adsorption. This study lays an important foundation for future work in conjugating other biomolecules to develop surface-based diagnostics and biomaterials. With much success, this original research work of forming self-assembled crystalline structures on synthetic materials still allows for numerous opportunities for new applications and possibly even more new discoveries.
Positron emission tomography with additional γ-ray detectors for multiple-tracer imaging.
Fukuchi, Tomonori; Okauchi, Takashi; Shigeta, Mika; Yamamoto, Seiichi; Watanabe, Yasuyoshi; Enomoto, Shuichi
2017-06-01
Positron emission tomography (PET) is a useful imaging modality that quantifies the physiological distributions of radiolabeled tracers in vivo in humans and animals. However, this technique is unsuitable for multiple-tracer imaging because the annihilation photons used for PET imaging have a fixed energy regardless of the selection of the radionuclide tracer. This study developed a multi-isotope PET (MI-PET) system and evaluated its imaging performance. Our MI-PET system is composed of a PET system and additional γ-ray detectors. The PET system consists of pixelized gadolinium orthosilicate (GSO) scintillation detectors and has a ring geometry that is 95 mm in diameter with an axial field of view of 37.5 mm. The additional detectors are eight bismuth germanium oxide (BGO) scintillation detectors, each of which is 50 × 50 × 30 mm 3 , arranged into two rings mounted on each side of the PET ring with a 92-mm-inner diameter. This system can distinguish between different tracers using the additional γ-ray detectors to observe prompt γ-rays, which are emitted after positron emission and have an energy intrinsic to each radionuclide. Our system can simultaneously acquire double- (two annihilation photons) and triple- (two annihilation photons and a prompt γ-ray) coincidence events. The system's efficiency for detecting prompt de-excitation γ-rays was measured using a positron-γ emitter, 22 Na. Dual-radionuclide ( 18 F and 22 Na) imaging of a rod phantom and a mouse was performed to demonstrate the performance of the developed system. Our system's basic performance was evaluated by reconstructing two images, one containing both tracers and the other containing just the second tracer, from list-mode data sets that were categorized by the presence or absence of the prompt γ-ray. The maximum detection efficiency for 1275 keV γ-rays emitted from 22 Na was approximately 7% at the scanner's center, and the minimum detection efficiency was 5.1% at the edge of the field of view. Dual-radionuclide imaging of the point sources and rod phantom revealed that our system maintained PET's intrinsic spatial resolution and quantitative nature for the second tracer. We also successfully acquired simultaneous double- and triple-coincidence events from a mouse containing 18 F-fluoro-deoxyglucose and 22 Na dissolved in water. The dual-tracer distributions in the mouse obtained by our MI-PET were reasonable from the viewpoints of physiology and pharmacokinetics. This study demonstrates the feasibility of multiple-tracer imaging using PET with additional γ-ray detectors. This method holds promise for enabling the reconstruction of quantitative multiple-tracer images and could be very useful for analyzing multiple-molecular dynamics. © 2017 American Association of Physicists in Medicine.
Kempen, H J; Imbach, A P; Giller, T; Neumann, W J; Hennes, U; Nakada, N
1995-08-01
It was the aim of this study to i) compare the effects of glucose and other hexoses with that of oleate on secretion of apolipoproteins (apos) A-I and B by HepG2 cells, and ii) document the effect of various metabolic inhibitors on the secretion of these apos in the absence or presence of extra glucose/oleate. i) The addition of 10 mM glucose increased secretion of apoA-I and apoB, as measured by enzyme immunoassay, by about 60% when cells were incubated for 48 h in DMEM + 10% fetal calf serum. The addition of extra glucose also increased the mRNA levels for these apos. Increased radioactivity was also found in these apolipoproteins by immunoprecipitation after metabolic labeling with [35S]methionine for 48 h. However, in a pulse-chase experiment (15 min labeling, 2 h chase), glucose was found to increase apoA-I synthesis but not apoB synthesis. More labeled apoB appeared in the medium during the chase because glucose inhibited its intracellular degradation. The effect of glucose on secretion of these apos could be mimicked by fructose and mannose but not by 6-deoxyglucose, showing that the hexoses must enter the cells and be phosphorylated. In contrast, the addition of 0.5 mM oleate had a weak inhibitory effect on secretion of apoA-I whereas it increased the secretion of apoB by more than twofold. The combination of 10 mM glucose and 0.5 mM oleate had no greater effect than glucose alone on apoA-I secretion but increased apoB secretion by fourfold. ii) Inhibiting glycolysis (by glucosamine) lowered secretion of both apoA-I and apoB, while inhibiting lipogenesis (using 8-Br-cyclic AMP or 5-(tetradecyloxy)-2-furancarboxylic acid (TOFA)) did not affect apoA-I secretion but clearly decreased that of apoB. However, the inhibitory effect of TOFA on apoB secretion was much smaller in the presence of 0.5 mM oleate instead of extra glucose. Actinomycin-D and cycloheximide strongly suppressed the stimulatory effect of glucose on secretion of both apolipoproteins. Actinomycin-D also suppressed basal secretion of apoA-I but surprisingly stimulated that of apoB. These observations indicate that in HepG2 cells secretion of apoA-I is strongly dependent on ongoing protein synthesis and can be boosted by glucose, whereas that of apoB is primarily driven by internal (via lipogenesis from glucose) or external supply of fatty acyl-residues.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Deniaud-Alexandre, Elisabeth; Touboul, Emmanuel; Lerouge, Delphine
2005-12-01
Purpose: To report a retrospective study concerning the impact of fused {sup 18}F-fluoro-deoxy-D-glucose (FDG)-hybrid positron emission tomography (PET) and CT images on three-dimensional conformal radiotherapy planning for patients with non-small-cell lung cancer. Methods and Materials: A total of 101 patients consecutively treated for Stage I-III non-small-cell lung cancer were studied. Each patient underwent CT and FDG-hybrid PET for simulation treatment in the same treatment position. Images were coregistered using five fiducial markers. Target volume delineation was initially performed on the CT images, and the corresponding FDG-PET data were subsequently used as an overlay to the CT data to define themore » target volume. Results: {sup 18}F-fluoro-deoxy-D-glucose-PET identified previously undetected distant metastatic disease in 8 patients, making them ineligible for curative conformal radiotherapy (1 patient presented with some positive uptake corresponding to concomitant pulmonary tuberculosis). Another patient was ineligible for curative treatment because the fused PET-CT images demonstrated excessively extensive intrathoracic disease. The gross tumor volume (GTV) was decreased by CT-PET image fusion in 21 patients (23%) and was increased in 24 patients (26%). The GTV reduction was {>=}25% in 7 patients because CT-PET image fusion reduced the pulmonary GTV in 6 patients (3 patients with atelectasis) and the mediastinal nodal GTV in 1 patient. The GTV increase was {>=}25% in 14 patients owing to an increase in the pulmonary GTV in 11 patients (4 patients with atelectasis) and detection of occult mediastinal lymph node involvement in 3 patients. Of 81 patients receiving a total dose of {>=}60 Gy at the International Commission on Radiation Units and Measurements point, after CT-PET image fusion, the percentage of total lung volume receiving >20 Gy increased in 15 cases and decreased in 22. The percentage of total heart volume receiving >36 Gy increased in 8 patients and decreased in 14. The spinal cord volume receiving at least 45 Gy (2 patients) decreased. Multivariate analysis showed that tumor with atelectasis was the single independent factor that resulted in a significant effect on the modification of the size of the GTV by FDG-PET: tumor with atelectasis (with vs. without atelectasis, p = 0.0001). Conclusion: The results of our study have confirmed that integrated hybrid PET/CT in the treatment position and coregistered images have an impact on treatment planning and management of non-small-cell lung cancer. However, FDG images using dedicated PET scanners and respiration-gated acquisition protocols could improve the PET-CT image coregistration. Furthermore, the impact on treatment outcome remains to be demonstrated.« less
Hwang, Ji-Sun; Park, Ji-Won; Nam, Moon-Suk; Cho, Hyeongjin; Han, Inn-Oc
2015-03-01
This study investigated the potential of glucosamine (GlcN) to affect body weight gain and insulin sensitivity in mice normal and at risk for developing diabetes. Male C57BL/6J mice were fed either chow diet (CD) or a high fat diet (HFD) and the half of mice from CD and HFD provided with a solution of 10% (w/v) GlcN. Total cholesterol and nonesterified free fatty acid levels were determined. Glucose tolerance test and insulin tolerance test were performed. HepG2 human hepatoma cells or differentiated 3T3-L1 adipocytes were stimulated with insulin under normal (5 mM) or high glucose (25 mM) conditions. Effect of GlcN on 2-deoxyglucose (2-DG) uptake was determined. JNK and Akt phosphorylation and nucleocytoplasmic protein O-GlcNAcylation were assayed by Western blotting. GlcN administration stimulated body weight gain (6.58±0.82 g vs. 11.1±0.42 g), increased white adipose tissue fat mass (percentage of bodyweight, 3.7±0.32 g vs. 5.61±0.34 g), and impaired the insulin response in livers of mice fed CD. However, GlcN treatment in mice fed HFD led to reduction of body weight gain (18.02±0.66 g vs. 16.22±0.96 g) and liver weight (2.27±0.1 vs. 1.85±0.12 g). Furthermore, obesity-induced insulin resistance and impaired Akt insulin signaling in the liver were alleviated by GlcN administration. GlcN inhibited the insulin response under low (5 mM) glucose conditions, whereas it restored the insulin response for Akt phosphorylation under high (25 mM) glucose conditions in HepG2 and 3T3-L1 cells. Uptake of 2-DG increased upon GlcN treatment under 5 mM glucose compared to control, whereas insulin-stimulated 2-DG uptake decreased under 5 mM and increased under 25 mM glucose in differentiated 3T3-L1 cells. Our results show that GlcN increased body weight gain and reduced the insulin response for glucose maintenance when fed to normal CD mice, whereas it alleviated body weight gain and insulin resistance in HFD mice. Therefore, the current data support the integrative function of the HBP reflecting the nutrient status of lipids or glucose and further implicate the importance of the pathway in insulin signaling for the regulation of metabolism. Copyright © 2015 Elsevier Inc. All rights reserved.
Drugs in the brain--cellular imaging with receptor microscopic autoradiography.
Stumpf, Walter E
2012-03-01
For cell and tissue localization of drugs, receptor microscopic autoradiography is reviewed, including its development history, multiple testing, extensive applications and significant discoveries. This sensitive high-resolution imaging method is based on the use of radiolabeled compounds (esp. tagged with (3)H or (125)I), preservation through freezing of in vivo localization of tissue constituents, cutting thin frozen sections, and close contact with the recording nuclear emulsion. After extensive testing of the utility of this method, the distribution of radiolabeled compounds has been identified and characterized for estradiol, progestagens, adrenal steroids, thyroid hormone, ecdysteroids, vitamin D, retinoic acid, metabolic indicators glucose and 2-deoxyglucose, as well as extracellular space indicators. Target cells and associated tissues have been characterized with special stains, fluorescing compounds, or combined autoradiography-immunocytochemistry with antibodies to dopamine-beta-hydroxylase, GABA, enkephalin, specific receptor proteins, or other cellular products. Blood-brain barrier and brain entries via capillary endothelium, ependyma, or circumventricular recess organs have been visualized for (3)H-dexamethasone, (210)Pb lead, and (3)H-1,25(OH)(2) vitamin D(3). With this histopharmacologic approach, cellular details and tissue integrative overviews can be assessed in the same preparation. As a result, information has been gained that would have been difficult or impossible otherwise. Maps of brain drug distribution have been developed and relevant target circuits have been recognized. Examples include the stria terminalis that links septal-amygdaloid-thalamic-hypothalamic structures and telencephalic limbic system components which extend as the periventricular autonomic-neuroendocrine ABC (Allocortex-Brainstem-Circuitry) system into the mid- and hindbrain. Discoveries with radiolabeled substances challenged existing paradigms, engendering new concepts and providing seminal incentives for further research toward understanding drug actions. Most notable are discoveries made during the 1980s with vitamin D in the brain together with over 50 target tissues that challenged the century-old doctrine of vitamin D's main role as 'the calcitropic hormone', when the new data made it apparent that the main biological function of this multifunctional sunshine hormone rather is maintenance of life and adapting vital functions to the solar environment. In the brain, vitamin D, in close relation to sex and adrenal steroids, participates in the regulation of the secretion of neuro-endocrines, such as, serotonin, dopamine, nerve growth factor, acetyl choline, with importance in prophylaxis and therapy of neuro-psychiatric disorders. Histochemical imaging with high cellular-subcellular resolution is necessary for obtaining detailed information, as this review indicates. New spectrometric methods, like MALDI-MSI, are unlikely to furnish the same information as receptor microautoradiography does, but can provide important correlative molecular information. Copyright © 2011 Elsevier GmbH. All rights reserved.
DeGrado, Timothy R; Kitapci, Mehmet T; Wang, Shuyan; Ying, Jun; Lopaschuk, Gary D
2006-01-01
Fatty acid oxidation (FAO) is the predominant energy-producing pathway in the healthy heart. Abnormalities in FAO are associated with many ischemic and nonischemic disease states. The aim of the present study was to further validate 16-[(18)F]-fluoro-4-thia-palmitate ((18)F-FTP) as a metabolically trapped FAO probe in the isolated perfused rat heart model by examining both the effects of hypoxia and the effects of changes in exogenous fatty acid availability. Hearts were excised from Sprague-Dawley rats and perfused in the Langendorff mode with Krebs-Henseleit solution under the following conditions: palmitate at 0.4 mmol/L with 95% oxygen, palmitate at 0.4 mmol/L with 35% oxygen, palmitate at 0.2 mmol/L plus oleate at 0.2 mmol/L with 95% oxygen, and palmitate at 0.2 mmol/L plus oleate at 0.2 mmol/L with 35% oxygen. Hearts were paced at 270 beats per minute, and the rate of left ventricular pressure change (LV dP/dt) was monitored. (18)F-FTP in the perfusion medium was administered for 20 min, and this step was followed by a 20-min washout period without tracer in the perfusion medium. (18)F kinetics in the whole heart were monitored externally, and the time-activity curves were analyzed to determine the fractional trapping rate for (18)F-FTP (FTR(FTP)). A "lumped constant" (LC) was defined as the ratio of FTR(FTP) to the fractional rate of oxidation of fatty acid in the perfusion medium. The kinetic data for (18)F-FTP demonstrated metabolic trapping of (18)F radioactivity that was insensitive to changes in the mixture of fatty acids in the perfusion medium but that was sensitive to the inhibition of mitochondrial FAO by hypoxia. LV dP/dt was reduced 47%-67% in hypoxic hearts relative to hearts with normal oxygenation (controls). FAO rates for palmitate and oleate were similar in group 3 (palmitate alone) and group 4 (palmitate and oleate). FAO was decreased 70%-76% with hypoxia, whereas FTR(FTP) was reduced 86%-88%, demonstrating hypersensitivity of a change in (18)F-FTP retention to FAO inhibition by oxygen deprivation. The (18)F-FTP LC was approximately 2 in myocardium with normal oxygenation and fell to 1.0-1.2 in hypoxic myocardium. The results confirm (18)F-FTP to be a metabolically trapped palmitate analog that is capable of indicating rates of myocardial oxidation of exogenous long-chain fatty acids. The heterogeneous nature of fatty acids in plasma does not alter the quantitative analysis of (18)F-FTP kinetics. However, the decreased LC value in hypoxic myocardium suggests the need to develop an understanding of the relationship of (18)F-FTP processing to natural fatty acids at key limiting transport and metabolism processes, analogous to previous studies examining the LC values for radiolabeled deoxyglucose tracers used to estimate the glucose metabolic rate.
Abass Alavi: A giant in Nuclear Medicine turns 80 and is still going strong!
Høilund-Carlsen, Poul F
2018-01-01
Little was written in the stars above the city of Tabriz in Iran on March 15, 1938 indicating that a newborn citizen would immigrate to America and become a master of modern mo-lecular imaging with a sharp focus on 18 F-FDG PET to the benefit of millions of people around the world. Nonetheless, that's what happened. A gifted boy who lost his farther early and grew up with his uneducated mother and two siblings in humble circumstances to become a premium student, nationally no. 1 in mathematics while in school, and later a medical doctor before he decided in 1966 to seek his fortune in the US. Here he started education in internal medicine, hematology and oncology, albeit found this unsatisfactory due to tradition and rote learning. He turned to radiology and nuclear medicine in a search for new knowledge and better methods to benefit patients and society, an attitude he had been taught from early childhood. The very same attitude has been the beacon for Alavi's activities throughout his professional life, instead of money, power and social status. He married into a highly academic environment. His wife, Jane Bradley Alavi, was a specialist in hematology and oncology and is still his life partner. They never had children, so their many students and the numerous medical doctors, physicists and other academics they coached became their family. While Jane Alavi retired some years ago, Abass Alavi continued his professional career and has no plans of retirement when he turns 80 on March 15, 2018 after 46 years in nuclear medicine at the University of Pennsylvania and with an admirable network of pupils and colleagues across all five continents. On the contrary, Alavi has probably never been busier, his scientific work goes on, his multinational scientific "family" steadily increases all over the world as does the appli-cation of PET in the shape of PET/CT or PET/MRI. Alavi's contributions to the scientific literature has more than doubled within the last decade making him one of the most cited researchers at the University of Pennsylvania with a production of more than 1,200 articles, a similar number of published abstracts and close to 58,000 citations according to Google Scholar, of which about 20,000 since 2012 when he was 74. This is just part of an amazing story. Having turned to nuclear medicine in 1971, Alavi entered into one of the World's most ingenious and productive medical research en-vironments comprising collaboration of experts in nuclear medicine (David Kuhl) and neurology (Martin Reivich) at Penn, and in physiology and pharmacology (Louis Sokoloff) at the NIH, all of whom contributed significantly to the development of PET. Focus was on cerebral research with beta-emitting 14 C-labeled deoxyglucose for mapping regional cerebral glucose metabolism by means of autoradiography. Alavi became a junior member of this collaboration in which the idea of labeling deoxyglucose with a gamma-emitting isotope arose to allow in vivo examination of the normal and diseased human brain. They contacted Alfred Wolf at Brookhaven National Laboratory who had an interest in synthesizing positron-emitting compounds. He suggested labeling instead with 18 F-FDG and in 1975 Wolf's group including Tatsuo Ido and Joanna Fowler succeeded in synthesizing 18 F-FDG. In the meantime, investigators at Penn had developed high energy collimators for the Mark IV scanner to allow imaging with 18 F-FDG, so in August 1976, two normal volunteers were the first to receive a dose of 18 F-FDG for tomographic brain imaging showing concentration of 18 F-FDG in the gray matter while in one volunteer a "whole-body" scan from the top of the scull to mid-thigh was also obtained. A year before, investigators at Washington University, i.e., Michel Ter-Pogossian in collaboration with Michael Phelps, Edward Hoffmann, and Nizar Mullani had developed what they termed a positron-emission transaxial tomograph for nuclear imaging, i.e. a machine which was the starting point of today's PET scanners. Alavi understood from the beginning the potential of PET and in particular 18 F-FDG PET even if PET images at that time were blurry and difficult to interpret, a circum-stance which for a quarter of a century brought the method in poor standing in the minds of many. Alavi started as a brain researcher, but training in internal medicine, hematology, radiology and nuclear medicine broadened his scope and over the years there are few diseases and clinical specialties in which Alavi has not provided results obtained with molecular imaging. He was a pioneer in using iodine-123 in thyroid cancer, MIBG in pheochromocytoma, radiolabeled white blood cells in infection, and 99m Tc for the detection of gastrointestinal bleeds, and together with his wife 18 F-FDG PET for the demonstration of recurrent brain tumors. Thus, Alavi has contributed often very successfully by promoting new ideas and their implementation to achieve improved ways of examining a variety of medical disorders. Alavi has been accused of seeing 18 F-FDG as the only useful PET tracer. In a way this is true. FDG became the dominant tracer and has remained so for over 40 years now. In his 2008 SNM Highlight Lecture, Henry N. Wagner, Jr. called FDG the "tracer molecule of the 20 th th century". According to a recent forecast of the Global Nuclear Medicine Radioisotopes Market, the global 18 F-FDG market is expected to grow from an estimated $1.233 billion in 2014 to $2.148 billion in 2019 and the vast majority of this growth is due to a continued increase in the use of 18 F-FDG, indicating that this tracer may remain the tracer molecule of at least the first half of the 21 st century. The world calls for more specific tracers than 18 F-FDG, and like others Dr. Alavi has constantly been looking for these, but with time, it became apparent that our body holds few organ or disease specific targets, so that the concept of very specific disease-characterizing tracers is not as rosy as previously assumed. Thus, in cancer, genetic profiling has demonstrated that tumors are genetically often a mixture of cellular clones and that these are not necessarily also present in local, regional or remote metastases, meaning that ultra-specific PET tracers for cancer diagnosis and staging may be more a utopian vision than a realistic future possibility. This, together with inborn limitations of the PET technique has made Abass Alavi more prudent and hesitant toward reports of highly promising new PET tracers and an advocate of timely carefulness when using our limited financial resources. Teaching and education of talented young individuals is one of Alavi's main academic missions. Thus, with Gerald Mandell, MD, he established the Alavi-Mandell Award, presented for the first time at the SNM meeting in 1999 to a candidate selected from among all those in a given year who were trainees at the time their names appeared as first authors of papers in JNM. Together with his wife Jane, Alavi established the Bradley-Alavi Student Fellowship which was presented for the first time in 2001 and is given to the top students selected by the SNMMI Education and Research Foundation. Alavi himself is a recipient of multiple awards, including the Georg Charles de Hevesy Nuclear Pioneer Award (2004), the Benedict Cassen Prize for Research in Nuclear Medicine (2012), the Honorary Citizenship of his native town Tabriz (2015) and the Gold Medal of the National Institute for Medical Research Development, Tehran (2015). In addition, he has received the Honorary PhD Degree in Molecular Biology of the University of Shiraz (2007), and the Honorary Doctoral Degrees of the University of Bologna (2007), the University of the Sciences in Philadelphia (2008), the Medical University of Gdansk (2016), and the University of Southern Denmark (2016). Since January 2011, Alavi has been a frequent guest in the city of Odense, Denmark. Its University Hospital holds one of the biggest departments of nuclear medicine and PET in Northern Europe. From being behind, Denmark has become the country in the world with the highest relative number of PET/CT scanners and PET scans, i.e., an estimated 0.7 and 1000, respectively, per 100 000 inhabitants in 2017. At 17 consecutive interdisciplinary Abass Alavi Meetings in Odense, he has been inspirer and initiator of multi-disciplinary scientific projects that have resulted in more than 100 publications and as many scientific presentations. Abass Alavi personifies the polymath, a species rarely found today. He discusses and produces science in as diverse areas as brain, cardiovascular, and musculoskeletal diseases, inflammation, cancer and many more disorders that plague humanity, and he has a clear eye to make results clinically useful. Had the Noble Prize been awarded not only for single inventions but also for the cumulated contribution of an outstanding researcher to patients who suffer and mankind as a whole, Dr. Abass Alavi would be on top of the candidate list. What may such an experienced birthday-person foretell about the future? He would probably say that the gamma camera and SPET will be entirely substituted by PET, that skeletal metastases are bone marrow and not bone metastases and that all indirect methodologies for imaging of skeletal metastases, including bone scintigraphy and CT, will be replaced by PET imaging with 18 F-FDG or more cancer specific tracers. Also that motion and partial volume correction will be satisfactorily dealt with to allow calculation of a global disease score representing the total burden of disease in the body, whether caused by cancer, atherosclerosis or other severe disorders, and that, thus, PET will take its lead position as the diagnostic imaging modality of the 21 st century. It is hard to say how many of these predictions will come true while Dr. Alavi is still going strong. What is certain is that very few persons, if any, has contributed so significantly to the development and clinical implementation of PET imaging worldwide as have this 80 year old giant in modern nuclear and molecular medicine! Abass Alavi currently holds appointments as Professor and Director of Research Education in the Department of Radiology, Perelman School of Medicine, of the University of Pennsylvania and as Honorary Fellow of the International Society of Medical Olympicus Association in Greece.
Brush, J; Boyd, K; Chappell, F; Crawford, F; Dozier, M; Fenwick, E; Glanville, J; McIntosh, H; Renehan, A; Weller, D; Dunlop, M
2011-09-01
In the UK, colorectal cancer (CRC) is the third most common malignancy (behind lung and breast cancer) with 37,514 cases registered in 2006: around two-thirds (23,384) in the colon and one-third (14,130) in the rectum. Treatment of cancers of the colon can vary considerably, but surgical resection is the mainstay of treatment for curative intent. Following surgical resection, there is a comprehensive assessment of the tumour, it's invasion characteristics and spread (tumour staging). A number of imaging modalities are used in the pre-operative staging of CRCs including; computerised tomography (CT), magnetic resonance imaging, ultrasound imaging and positron emission tomography (PET). This report examines the role of CT in combination with PET scanning (PET/CT 'hybrid' scan). The research objectives are: to evaluate the diagnostic accuracy and therapeutic impact of fluorine-18-deoxyglucose (FDG) PET/CT for the pre-operative staging of primary, recurrent and metastatic cancer using systematic review methods; undertake probabilistic decision-analytic modelling (using Monte Carlo simulation); and conduct a value of information analysis to help inform whether or not there is potential worth in undertaking further research. For each aspect of the research - the systematic review, the handsearch study and the economic evaluation - a database was assembled from a comprehensive search for published and unpublished studies, which included database searches, reference lists search and contact with experts. In the systematic review prospective and retrospective patient series (diagnostic cohort) and randomised controlled trials (RCTs) were eligible for inclusion. Both consecutive series and series that are not explicitly reported as consecutive were included. Two reviewers extracted all data and applied the criteria independently and resolved disagreements by discussion. Data to populate 2 × 2 contingency tables consisting of the number of true positives, true negatives, false positives and false negatives using the studies' own definitions were extracted, as were data relating to changes in management. Fourteen items from the Quality Assessment of Diagnostic Accuracy Studies checklist were used to assess the methodological quality of the included studies. Patient-level data were used to calculate sensitivity and specificity with confidence intervals (CIs). Data were plotted graphically in forest plots. For the economic evaluation, economic models were designed for each of the disease states: primary, recurrent and metastatic. These were developed and populated based on a variety of information sources (in particular from published data sources) and literature, and in consultation with clinical experts. The review found 30 studies that met the eligibility criteria. Only two small studies evaluated the use of FDG PET/CT in primary CRC, and there is insufficient evidence to support its routine use at this time. The use of FDG PET/CT for the detection of recurrent disease identified data from five retrospective studies from which a pooled sensitivity of 91% (95% CI 0.87% to 0.95%) and specificity of 91% (95% CI 0.85% to 0.95%) were observed. Pooled accuracy data from patients undergoing staging for suspected metastatic disease showed FDG PET/CT to have a pooled sensitivity of 91% (95% CI 87% to 94%) and a specificity of 76% (95% CI 58% to 88%), but the poor quality of the studies means the validity of the data may be compromised by several biases. The separate handsearch study did not yield any additional unique studies relevant to FDG PET/CT. Models for recurrent disease demonstrated an incremental cost-effectiveness ratio of £ 21,409 per quality-adjusted life-year (QALY) for rectal cancer, £ 6189 per QALY for colon cancer and £ 21,434 per QALY for metastatic disease. The value of handsearching to identify studies of less clearly defined or reported diagnostic tests is still to be investigated. The systematic review found insufficient evidence to support the routine use of FDG PET/CT in primary CRC and only a small amount of evidence supporting its use in the pre-operative staging of recurrent and metastatic CRC, and, although FDG PET/CT was shown to change patient management, the data are divergent and the quality of research is generally poor. The handsearch to identify studies of less clearly defined or reported diagnostic tests did not find additional studies. The primary limitations in the economic evaluations were due to uncertainty and lack of available evidence from the systematic reviews for key parameters in each of the five models. In order to address this, a conservative approach was adopted in choosing DTA estimates for the model parameters. Probabilistic analyses were undertaken for each of the models, incorporating wide levels of uncertainty particularly for the DTA estimates. None of the economic models reported cost-savings, but the approach adopted was conservative in order to determine more reliable results given the lack of current information. The economic evaluations conclude that FDG PET/CT as an add-on imaging device is cost-effective in the pre-operative staging of recurrent colon, recurrent rectal and metastatic disease but not in primary colon or rectal cancers. There would be value in undertaking an RCT with a concurrent economic evaluation to evaluate the therapeutic impact and cost-effectiveness of FDG PET/CT compared with conventional imaging (without PET) for the pre-operative staging of recurrent and metastatic CRC.