Ikeuchi, Takuro; Agrawal, Saurabh; Ezoe, Masayuki; Mori, Shogo; Kimura, Mutsumi
2015-11-01
A series of zinc phthalocyanine sensitizers (PcS22-24) having a pyridine anchoring group are designed and synthesized to investigate the structural dependence on performance in dye-sensitized solar cells. The pyridine-anchor zinc phthalocyanine sensitizer PcS23 shows 79 % incident-photon to current-conversion efficiency (IPCE) and 6.1 % energy conversion efficiency, which are comparable with similar phthalocyanine dyes having a carboxylic acid anchoring group. Based on DFT calculations, the high IPCE is attributed with the mixture of an excited-state molecular orbital of the sensitizer and the orbitals of TiO2 . Between pyridine and carboxylic acid anchor dyes, opposite trends are observed in the linker-length dependence of the IPCE. The red-absorbing PcS23 is applied for co-sensitization with a carboxyl-anchor organic dye D131 that has a complementary spectral response. The site-selective adsorption of PcS23 and D131 on the TiO2 surface results in a panchromatic photocurrent response for the whole visible-light region of sun light. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Zhang, Lei; Cole, Jacqueline M.
2016-06-21
The nitro group has recently been suggested as a new type of anchor for dye-sensitized solar cells (DSSCs) and has shown promising optoelectronic properties. Considering the excellent electron withdrawing ability of the nitro group and wider materials selection brought about by this substituent, it is helpful to evaluate the interfacial structures and photophysics of more organic dyes where NO 2 poses as the dye-to-TiO 2 anchor. A computational study on a family of azo dyes bearing a nitro group is presented in this paper, where the effect of certain side groups on their optical properties is examined. Both isolated dyemore » molecules and dye/TiO 2 nanocomposites are studied via density functional theory and time-dependent density functional theory, with complementary experimental UV/vis absorption spectroscopy and photovoltaic device testing. Results demonstrate that these nitro-containing dyes prefer a monodentate anchoring mode on a TiO 2 cluster. These nitro dyes reveal weak, but non-negligible, adsorption onto TiO 2; yet, very low photovoltaic performance once incorporated into a DSSC device. Finally, this poor delivery of nitro groups as DSSC anchors is ostensibly inconsistent with previous findings; but is rationalized via the “auxiliary anchor” concept.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Yang; Tu, Xingchen; Wang, Hao
The electronic efficiency and binding energy of contacts formed between graphene electrodes and poly-aromatic hydrocarbon (PAH) anchoring groups have been investigated by the non-equilibrium Green’s function formalism combined with density functional theory. Our calculations show that PAH molecules always bind in the interior and at the edge of graphene in the AB stacking manner, and that the binding energy increases following the increase of the number of carbon and hydrogen atoms constituting the PAH molecule. When we move to analyzing the electronic transport properties of molecular junctions with a six-carbon alkyne chain as the central molecule, the electronic efficiency ofmore » the graphene-PAH contacts is found to depend on the energy gap between the highest occupied molecular orbital (HOMO) and the lowest unoccupied molecular orbital (LUMO) of the corresponding PAH anchoring group, rather than its size. To be specific, the smaller is the HOMO-LUMO gap of the PAH anchoring group, the higher is the electronic efficiency of the graphene-PAH contact. Although the HOMO-LUMO gap of a PAH molecule depends on its specific configuration, PAH molecules with similar atomic structures show a decreasing trend for their HOMO-LUMO gap as the number of fused benzene rings increases. Therefore, graphene-conjugated molecule-graphene junctions with high-binding and high-conducting graphene-PAH contacts can be realized by choosing appropriate PAH anchor groups with a large area and a small HOMO-LUMO gap.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Lei; Cole, Jacqueline M.; Dai, Chencheng
2014-05-28
The optoelectronic properties of four azo dye-sensitized TiO2 interfaces are systematically studied as a function of a changing dye anchoring group: carboxylate, sulfonate, hydroxyl, and pyridyl. The variation in optoelectronic properties of the free dyes and those in dye/TiO 2 nanocomposites are studied both experimentally and computationally, in the context of prospective dye-sensitized solar cell (DSSC) applications. Experimental UV/vis absorption spectroscopy, cyclic voltammetry, and DSSC device performance testing reveal a strong dependence on the nature of the anchor of the optoelectronic properties of these dyes, both in solution and as dye/TiO2 nanocomposites. First-principles calculations on both an isolated dye/TiO2 clustermore » model (using localized basis sets) and each dye modeled onto the surface of a 2D periodic TiO2 nanostructure (using plane wave basis sets) are presented. Detailed examination of these experimental and computational results, in terms of light harvesting, electron conversion and photovoltaic device performance characteristics, indicates that carboxylate is the best anchoring group, and hydroxyl is the worst, whereas sulfonate and pyridyl groups exhibit competing potential. Different sensitization solvents are found to affect critically the extent of dye adsorption achieved in the dye-sensitization of the TiO2 semiconductor, especially where the anchor is a pyridyl group.« less
NASA Astrophysics Data System (ADS)
Zhang, Lei; Wang, Qiaoyi
2018-03-01
We report a combined experimental and computational investigation on the structure and photophysics of 4-[(4-pyridinylmethylene)amino]-benzoic acid, a functional molecule bearing two anchoring groups for attachment onto a TiO2 surface and perovskite surface, for potential solar cell application. This molecule possesses interesting adsorption properties in perovskite solar cell because the pyridyl group serves as the Lewis base and targets Lewis acidic sites in the perovskite surface, while the carboxyl group targets TiO2 surface, improving the coupling between the perovskite surface and the TiO2 surface. The electronic structures of the molecule and its photochemistry are revealed by the UV-vis absorption spectra and the fluorescence spectra under visible light irradiation, which are combined with density functional theory (DFT) and time-dependent density functional theory (TDDFT) analysis. Considering the bi-anchoring groups and the conjugated π system embedded in the molecule, we anticipate it can molecular engineer the TiO2/perovskite interface in perovskite solar cell.
Exopolysaccharide-Independent Social Motility of Myxococcus xanthus
Hu, Wei; Hossain, Muhaiminu; Lux, Renate; Wang, Jing; Yang, Zhe; Li, Yuezhong; Shi, Wenyuan
2011-01-01
Social motility (S motility), the coordinated movement of large cell groups on agar surfaces, of Myxococcus xanthus requires type IV pili (TFP) and exopolysaccharides (EPS). Previous models proposed that this behavior, which only occurred within cell groups, requires cycles of TFP extension and retraction triggered by the close interaction of TFP with EPS. However, the curious observation that M. xanthus can perform TFP-dependent motility at a single-cell level when placed onto polystyrene surfaces in a highly viscous medium containing 1% methylcellulose indicated that “S motility” is not limited to group movements. In an apparent further challenge of the previous findings for S motility, mutants defective in EPS production were found to perform TFP-dependent motility on polystyrene surface in methylcellulose-containing medium. By exploring the interactions between pilin and surface materials, we found that the binding of TFP onto polystyrene surfaces eliminated the requirement for EPS in EPS- cells and thus enabled TFP-dependent motility on a single cell level. However, the presence of a general anchoring surface in a viscous environment could not substitute for the role of cell surface EPS in group movement. Furthermore, EPS was found to serve as a self-produced anchoring substrate that can be shed onto surfaces to enable cells to conduct TFP-dependent motility regardless of surface properties. These results suggested that in certain environments, such as in methylcellulose solution, the cells could bypass the need for EPS to anchor their TPF and conduct single-cell S motility to promote exploratory movement of colonies over new specific surfaces. PMID:21245931
The C-terminal ester of membrane anchored peptide ion channels affects anion transport.
Djedovic, Natasha; Ferdani, Riccardo; Harder, Egan; Pajewska, Jolanta; Pajewski, Robert; Schlesinger, Paul H; Gokel, George W
2003-12-07
Five heptapeptide derivatives, [CH3(CH2)17]2NCOCH2OCH2CO-Gly-Gly-Gly-Pro-Gly-Gly-Gly-OR, in which R = ethyl, 2-propyl, heptyl, benzyl, and cyclohexylmethyl, were found to transport chloride anion through a phospholipid bilayer to varying extents dependent on the identity of R. It was concluded that the R group is a membrane anchor for the synthetic chloride channels.
Room temperature stable single molecule rectifiers with graphite electrodes
NASA Astrophysics Data System (ADS)
Rungger, Ivan; Kaliginedi, V.; Droghetti, A.; Ozawa, H.; Kuzume, A.; Haga, M.; Broekmann, P.; Rudnev, A. V.
In this combined theoretical and experimental study we present new molecular electronics device characteristics of unprecedented stability at room temperature by using electrodes based on highly oriented pyrolytic graphite with covalently attached molecules. To this aim, we explore the effect of the anchoring group chemistry on the charge transport properties of graphite/molecule contacts by means of the scanning tunneling microscopy break-junction technique and ab initio simulations. The theoretical approach to evaluate the conductance is based on density functional theory calculations combined with the non-equilibrium Greens function technique, as implemented in the Smeagol electron transport code. We also demonstrate a strong bias dependence and rectification of the single molecule conductance induced by the anchoring chemistry in combination with the very low density of states of graphite around the Fermi energy. We show that the direction of tunneling current rectification can be tuned by anchoring group chemistry.
Park, Jong Kyu; Moon, Jong Ho; Choi, Hyun Jong; Min, Seul Ki; Lee, Tae Hoon; Cheon, Gab Jin; Cheon, Young Koog; Cho, Young Deok; Park, Sang-Heum; Kim, Sun-Joo
2011-10-01
Fully covered self-expandable metal stents (FCSEMSs) can be effectively placed in patients with benign biliary stricture (BBS). However, stent migration is an inherent problem of FCSEMSs. We evaluated the efficacy of anchoring with a 5F double-pigtail plastic stent (anchoring stent) to prevent migration of an FCSEMS in patients with BBS. Between January 2007 and December 2009, 33 of 37 consecutive patients with BBS who had experienced treatment failure of at least one plastic stent placement were prospectively enrolled in this study. The patients with BBS were randomly assigned to undergo FCSEMS placement with or without an anchoring stent (anchoring group: 16 patients; non-anchoring group: 17 patients). The main outcome measures were the stent migration rate and success rates. The technical success rate was 100% in both groups. Significantly less stent migration occurred in the anchoring group (6.3%, 1/16) than in the non-anchoring group (41.2%, 7/17; P=0.024). The median indwelling time was significantly longer in the anchoring group (154 days; range, 86-176 days) than in the non-anchoring group (114 days; range, 19-162 days; P=0.010). Improvement or resolution of the BBS was confirmed in 15 of 16 patients (93.8%) in the anchoring group, and in 12 of 17 patients (70.6%) in the non-anchoring group (P=0.101). The placement of an anchoring stent appears to be a simple and effective method of preventing premature migration of FCSEMSs in patients with BBS. Appropriately powered studies are needed to confirm this finding.
Cyclic load testing of biodegradable suture anchors containing 2 high-strength sutures.
Barber, F Alan; Coons, David A; Ruiz-Suarez, Michell
2007-04-01
The purpose of this study was to test 4 different biodegradable suture anchors threaded with 2 high-strength sutures under cyclic loading conditions in humeral cadaveric specimens divided into 2 different age groups. Thirty-two paired human cadaveric humeri were stripped of all soft tissue. Two groups were studied: group 1, in which the mean age was 54 years, and group 2, in which the mean age was 70 years. We placed 1 suture anchor at 3 humeral sites per bone (anterior, middle, and posterior greater tuberosity). We tested 24 specimens using each of 4 anchors: TwinFix AB (Smith & Nephew Endoscopy, Andover, MA), BioZip (Stryker Endoscopy, San Jose, CA), Bio-Corkscrew FT (Arthrex, Naples, FL), and SpiraLok (DePuy Mitek, Raynham, MA). The anchor's sutures were grasped with an Instron clamp (Instron, Canton, MA), preloaded, and cycled from 10 to 60 N 500 times, followed by destructive testing. The mean displacement at 500 cycles, yield loads, failure modes, and ultimate loads were recorded. Most cyclic motion occurred during the first 100 cycles. More motion occurred in older bones than in younger bones (P < .05). The mean yield loads were greater for the young group for the SpiraLok anchors than for Bio-Corkscrew FT anchors in the young and old groups (P < .001), TwinFix anchors in the old group (P < .05), and BioZip anchors in the old group (P < .05). The ultimate failure loads for SpiraLok anchors in the young group were greater than for Bio-Corkscrew FT anchors in the young and old groups and BioZip anchors in the old group (P < .05). In group 1 TwinFix AB (P = .01) and BioZip (P = .02) ultimate loads were statistically greater than that for Bio-Corkscrew FT. The TwinFix AB failed by anchor pullout. The Bio-Corkscrew FT failed by eyelet pullout. The BioZip and SpiraLok pulled out in older bone and experienced eyelet breakage in younger bone. None of the 4 anchors reached 5 mm of displacement even after 500 loading cycles. Most of the displacement occurred in the first 100 cycles. Of all anchors tested, the Bio-Corkscrew FT recorded the lowest displacement after 500 cycles (P < .05). The SpiraLok had the highest ultimate load of all anchors tested (P < .01). Rotator cuff anchors perform differently in younger humeral bone than in older humeral bone. Most displacement with cyclic loading occurring between the anchor and bone takes place in the first 100 cycles. Anchors in older bones can be expected to fail at lower loads.
Kang, Yun Gyeong; Kim, Jung-Han; Shin, Jung-Woog; Baik, Jong-Min; Choo, Hye-Jung
2013-11-01
The bioabsorbable suture anchor is probably one of the most commonly used tools in arthroscopic shoulder operations. However, there is controversy about whether the bioabsorbable anchor is replaced by bone. The object of this study is to evaluate bone ingrowth into the micropore bioabsorbable suture anchor and the differences in the biomechanical properties of a micropore anchor and a nonpore anchor. A total of 16 microsized holes (diameter, 250 ± 50 μm; depth, 0.2 mm) were made on the bioabsorbable anchors with a microdrill. Twelve adult New Zealand White rabbits were randomly divided into two groups: group A (n = 6), the nonpore bioabsorbable suture anchor group, and group pA (n = 6), the micropore bioabsorbable suture anchor group. Microcomputed tomography was used at 4 and 8 weeks postoperatively to evaluate ingrowth by bone volume fraction (BVF), which was measured by calculating the ratio of the total volume of bone ingrowth to that of the region of interest. For pullout strength testing, 3 additional rabbits (6 limbs) were used for mechanical testing. The mean BVF was higher in group pA (0.288 ± 0.054) than in group A (0.097 ± 0.006). The micropore anchor had a higher pullout strength (0.520 ± 0.294 N) than the nonpore anchor (0.275 ± 0.064 N). Micropore bioabsorbable suture anchors induced bone ingrowth and showed higher pullout strength, despite processing. Copyright © 2013 Journal of Shoulder and Elbow Surgery Board of Trustees. Published by Mosby, Inc. All rights reserved.
Hu, Jinglei; Lipowsky, Reinhard; Weikl, Thomas R
2013-09-17
Cell adhesion and the adhesion of vesicles to the membranes of cells or organelles are pivotal for immune responses, tissue formation, and cell signaling. The adhesion processes depend sensitively on the binding constant of the membrane-anchored receptor and ligand proteins that mediate adhesion, but this constant is difficult to measure in experiments. We have investigated the binding of membrane-anchored receptor and ligand proteins with molecular dynamics simulations. We find that the binding constant of the anchored proteins strongly decreases with the membrane roughness caused by thermally excited membrane shape fluctuations on nanoscales. We present a theory that explains the roughness dependence of the binding constant for the anchored proteins from membrane confinement and that relates this constant to the binding constant of soluble proteins without membrane anchors. Because the binding constant of soluble proteins is readily accessible in experiments, our results provide a useful route to compute the binding constant of membrane-anchored receptor and ligand proteins.
Costa, Andréia Abud da Silva; Manciopi, Priscila Abbári Rossi; Mauerberg-deCastro, Eliane; Moraes, Renato
2015-11-16
This study assessed whether the use of an "anchor system" benefited older adults who performed a tandem walking task. Additionally, we tested the effects of practice with the anchor system during walking on trunk stability, in the frontal plane, of older adults. Forty-four older adults were randomly assigned to three groups: control group, 0g anchor group, and 125g anchor group. Individuals in each group performed a tandem walking task on the GaitRite system with an accelerometer placed on the cervical region. The participants in the 125g anchor group held, in each hand, a flexible cable with a light mass attached at the end of the cable, which rested on the ground. While the participants walked, they pulled on the cables just enough to keep them taut as the masses slid over the ground. The 0g anchor group held an anchor tool without any mass attached to the end portion. The results of this study demonstrated that the use of the anchor system contributed to the reduction of trunk acceleration in the frontal plane. However, this effect did not persist after removal of the anchors, which suggests that the amount of practice with this tool was insufficient to generate any lasting effect, or that the task was not sufficiently challenging, or both. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
Madhavan, Poornima; Wiegmann, Douglas A
2005-01-01
Automation users often disagree with diagnostic aids that are imperfectly reliable. The extent to which users' agreements with an aid are anchored to their personal, self-generated diagnoses was explored. Participants (N = 75) performed 200 trials in which they diagnosed pump failures using an imperfectly reliable automated aid. One group (nonforced anchor, n = 50) provided diagnoses only after consulting the aid. Another group (forced anchor, n = 25) provided diagnoses both before and after receiving feedback from the aid. Within the nonforced anchor group, participants' self-reported tendency to prediagnose system failures significantly predicted their tendency to disagree with the aid, revealing a cognitive anchoring effect. Agreement rates of participants in the forced anchor group indicated that public commitment to a diagnosis did not strengthen this effect. Potential applications include the development of methods for reducing cognitive anchoring effects and improving automation utilization in high-risk domains.
Cho, Byung-Ki; Kim, Yong-Min; Kim, Dong-Soo; Choi, Eui-Sung; Shon, Hyun-Chul; Park, Kyoung-Jin
2013-01-01
The present prospective, randomized study was conducted to compare the clinical outcomes of the modified Brostrom procedure using single and double suture anchors for chronic lateral ankle instability. A total of 50 patients were followed up for more than 2 years after undergoing the modified Brostrom procedure. Of the 50 procedures, 25 each were performed using single and double suture anchors by 1 surgeon. The Karlsson scale had improved significantly to 89.8 points and 90.6 points in the single and double anchor groups, respectively. Using the Sefton grading system, 23 cases (92%) in the single anchor group and 22 (88%) in the double anchor group achieved satisfactory results. The talar tilt angle and anterior talar translation on stress radiographs using the Telos device had improved significantly to an average of 5.7° and 4.6 mm in the single anchor group and 4.5° and 4.3 mm in the double anchor group, respectively. The double anchor technique was superior with respect to the postoperative talar tilt. The single and double suture anchor techniques produced similar clinical and functional outcomes, with the exception of talar tilt as a reference of mechanical stability. The modified Brostrom procedure using both single and double suture anchors appears to be an effective treatment method for chronic lateral ankle instability. Copyright © 2013 American College of Foot and Ankle Surgeons. Published by Elsevier Inc. All rights reserved.
Barber, F Alan; Herbert, Morley A; Schroeder, F Alexander; Aziz-Jacobo, Jorge; Mays, Matthew M; Rapley, Jay H
2010-03-01
To evaluate the strength and suture-tendon interface security of various suture anchors triply and doubly loaded with ultrahigh-molecular weight polyethylene-containing sutures and to evaluate the relative effectiveness of placing these anchors in a single-row or double-row arrangement by cyclic loading and then destructive testing. The infraspinatus muscle was reattached to the original humeral footprint by use of 1 of 5 different repair patterns in 40 bovine shoulders. Two single-row repairs and three double-row repairs were tested. High-strength sutures were used for all repairs. Five groups were studied: group 1, 2 triple-loaded screw suture anchors in a single row with simple stitches; group 2, 2 triple-loaded screw anchors in a single row with simple stitches over a fourth suture passed perpendicularly ("rip-stop" stitch); group 3, 2 medial and 2 lateral screw anchors with a single vertical mattress stitch passed from the medial anchors and 2 simple stitches passed from the lateral anchors; group 4, 2 medial double-loaded screw anchors tied in 2 mattress stitches and 2 push-in lateral anchors capturing the medial sutures in a "crisscross" spanning stitch; and group 5, 2 medial double-loaded screw anchors tied in 2 mattress stitches and 2 push-in lateral anchors creating a "suture-bridge" stitch. The specimens were cycled between 10 and 180 N at 1.0 Hz for 3,500 cycles or until failure. Endpoints were cyclic loading displacement (5 and 10 mm), total displacement, and ultimate failure load. A single row of triply loaded anchors was more resistant to stretching to a 5- and 10-mm gap than the double-row repairs with or without the addition of a rip-stop suture (P < .05). The addition of a rip-stop stitch made the repair more resistant to gap formation than a double row repair (P < .05). The crisscross double row created by 2 medial double-loaded suture anchors and 2 lateral push-in anchors stretched more than any other group (P < .05). Double-row repairs with either crossing sutures or 4 separate anchor points were more likely to fail (5- or 10-mm gap) than a single-row repair loaded with 3 simple sutures. The triple-loaded anchors with ultrahigh-molecular weight polyethylene-containing sutures placed in a single row were more resistant to stretching than the double-row groups. Copyright 2010 Arthroscopy Association of North America. Published by Elsevier Inc. All rights reserved.
What do you do when you have a loose screw?
Brady, Paul C; Arrigoni, Paolo; Burkhart, Stephen S
2006-09-01
This study seeks to compare the pullout strength of various anchor configurations in an osteoporotic bone model. We have tested and present here a technique designed to augment the pullout resistance of an anchor in poor-quality bone with the use of a second anchor as an interference fit; this report describes our in vivo results with this procedure. Four groups of suture anchor constructs were tested. These included a single 5.0-mm Bio-Corkscrew (Arthrex, Naples, FL) (group I), a single 5.5-mm Bio-Corkscrew FT (fully threaded; Arthrex, Naples, FL) (group II), a single 6.5-mm Bio-Corkscrew (Arthrex, Naples, FL) (group III), and an interference fit of two 5.0-mm Bio-Corkscrew suture anchors (group IV). Anchors were secured in a 10-lb/ft3 polyurethane foam block to simulate osteoporotic bone. Each construct was cycled, then was pulled to failure with an Instron testing device (Instron, Canton, MA); measurements regarding cyclic displacement, yield load, and extension at yield load were recorded. During the in vivo portion of the study, the interference fit technique was performed in 18 shoulder arthroscopy cases in which a loose screw was a matter of concern. After the technique was performed, both anchors were pulled so their security could be assessed; cuff repair then proceeded normally. Biomechanical study: In terms of yield load, every anchor construct was significantly different from every other construct. Specifically, pullout strength increased significantly as follows: group I was the weakest against pullout (176 +/- 13 N), group III (223 +/- 17 N) was significantly stronger than group I, group II (247 +/- 12 N) was significantly stronger than group III, and, finally, group IV (305 +/- 16 N) was significantly stronger than group II. The only statistically significant difference in terms of cyclic displacement was that group IV (1.4 mm +/- 0.2) had significantly less displacement than group III (1.9 mm +/- 0.3). No significant differences in extension at yield load were observed among any of the groups. In vivo study: The interference anchor technique was used in 18 of 24 loose screw situations over a 6-month period. In all 18 of these cases (100%), a stable dual-anchor construct was achieved. All anchors were stable to the tug test, and none failed during knot tying or at any time during the procedure. From the perspective of strength against pullout, the strongest suture construct of those tested in the osteoporotic bone model was the dual-anchor-against-an-anchor interference fit construct. The next strongest anchor tested was the 5.5-mm Bio-Corkscrew FT, followed by the 6.5-mm Bio-Corkscrew, and, finally, the 5.0-mm Bio-Corkscrew. Each group was statistically different from every other group in terms of pullout strength. The interference fit construct was not only the strongest in vitro, but it performed well in the in vivo setting, offering the added benefit of additional sutures to be used for securing a cuff defect. This study gives the arthroscopic surgeon important data for use in planning what to do when a loose screw is encountered. Data from this study may be useful for the arthroscopic surgeon in choosing the proper anchor construct for osteoporotic bone. This study also lends support to the technique of press-fitting an anchor against an anchor in the loose screw situation.
The application of zero-profile anchored spacer in anterior cervical discectomy and fusion.
Wang, Zhiwen; Jiang, Weimin; Li, Xuefeng; Wang, Heng; Shi, Jinhui; Chen, Jie; Meng, Bin; Yang, Huilin
2015-01-01
We aimed to analyze the clinical efficacy of the zero-profile anchored spacers in the treatment of one-level or two-level cervical degenerative disc disease. From April 2011 to April 2013, a total of 63 consecutive patients with cervical degenerative disc disease who underwent one- or two-level ACDF using either the zero-profile anchored spacer or the stand-alone cages and a titanium plate fixation were reviewed for the radiological and clinical outcomes and complications. The zero-profile anchored spacers were used in 30 patients (anchored group) and stand-alone cages with an anterior cervical plate were implanted in 33 cases (non-anchored group). Operative time, intraoperative blood loss, clinical and radiological results were compared between the anchored group and the non-anchored group. All patients were followed up for at least 12 months. There were not bolt loosening or rupture of anchoring clips, screws or titanium plates observed in two groups during follow-up period. There were no significant difference in neck disability index scores, Japanese Orthopedic Association scores, fusion rate, and cervical lordosis during follow-up between two groups (P > 0.05), but significant difference in the operation time, blood loss and the presence of dysphagia were found (P < 0.05). There were no adjacent disc degeneration and instability observed in two groups. The zero-profile anchored spacer achieved similar clinical outcomes compared to ACDF with anterior plating for the treatment of the cervical degenerative disc disease. However, zero-profile anchored spacer was associated with a lower risk of postoperative dysphagia, shorter operation time, less blood loss, and relatively greater simplicity than the stand-alone cage with a titanium plate.
Paek, Hye-Jin; Yoon, Hye Jin; Hove, Thomas
2011-03-01
Despite the increased use of health claims in food advertising, few studies have investigated how specific nutrition claims have differential effects depending on how they are presented. In this context, the current study tests the anchoring hypothesis. Anchoring refers to a common human tendency to evaluate information differently depending on the presence or absence of a numerical "anchor" or reference point. Two (pilot and main) experimental studies explore anchoring effects on audience response to food advertising both directly and moderated by cognitive, motivational, and message factors. The pilot study finds that food product ads employing nutrition claims with an anchor rather than without an anchor generate two results: First, participants perceive the product to have lower fat/lower calorie contents (anchoring hypothesis); second, they prefer the messages with an anchor over those without an anchor. The main study reports that when anchoring is successfully evoked, it produces favorable attitudes toward the ad, favorable attitudes toward the brand, and purchase intention-but only when moderated by health orientation, claim believability, and nutrition knowledge. Practical implications are provided with respect to regulatory guidelines and effective communication strategies for promoting low-fat and low-calorie products in food advertising.
Installation and use of epoxy-grouted rock anchors for skyline logging in southeast Alaska.
W.L. Schroeder; D.N. Swanston
1992-01-01
Field tests of the load-carrying capacity of epoxy-grouted rock anchors in poor quality bedrock on Wrangel Island in southeast Alaska demonstrated the effectiveness of rock anchors as substitutes for stump anchors for logging system guylines. Ultimate capacity depends mainly on rock hardness or strength and length of the imbedded anchor.
ERIC Educational Resources Information Center
Lin, Shu-Yuan; Xie, Ying
2017-01-01
Group discussions are critical for students constructing new understanding and knowledge in both classroom and distance education. Tagclouds can provide an intuitive overview about the group's collective knowledge and could potentially be used as an anchor for group discussions. The effect of using tagclouds as anchors for group discussions was…
ERIC Educational Resources Information Center
Moses, Tim; Deng, Weiling; Zhang, Yu-Li
2010-01-01
In the equating literature, a recurring concern is that equating functions that utilize a single anchor to account for examinee groups' nonequivalence are biased when the groups are extremely different and/or when the anchor only weakly measures what the tests measure. Several proposals have been made to address this equating bias by incorporating…
NASA Astrophysics Data System (ADS)
Demin, V. F.; Fofanov, O. B.; Demina, T. V.; Yavorskiy, V. V.
2017-02-01
Regularities of the change of the stress-strain state of coal containing rock masses, depending on mining-geological factors, were revealed. These factors allow establishing rational parameters of anchoring of wall rocks to enhance the stability of development workings. Specific conditions of the deflected mode, displays of rock pressure, terms of maintenance depending on technological parameters are investigated. Researches allowed determining the degree of their development influence on the efficiency of application of the anchoring of the hollow making and will allow a reasonable application of anchoring certificates, provide stability of the rocks mining and reduce expenses on its realization and maintenance.
Fernandes, Sara S M; Castro, M Cidália R; Pereira, Ana Isabel; Mendes, Adélio; Serpa, Carlos; Pina, João; Justino, Licínia L G; Burrows, Hugh D; Raposo, M Manuela M
2017-12-31
The effect of anchoring groups on the optical and electrochemical properties of triphenylamine-thienothiophenes, and on the photovoltaic performance of DSSCs photosensitized with the prepared dyes, was studied using newly synthesized compounds with cyanoacetic acid or rhodanine-3-acetic acid groups. Precursor aldehydes were synthesized through Suzuki cross-coupling, whereas Knoevenagel condensation of these with 2-cyanoacetic acid or rhodanine-3-acetic acid afforded the final push-pull dyes. A comprehensive photophysical study was performed in solution and in the solid state. The femtosecond time-resolved transient absorption spectra for the synthesized dyes were obtained following photoexcitation in solution and for the dyes adsorbed to TiO 2 mesoporous films. Information on conformation, electronic structure, and electron distribution was obtained by density functional theory (DFT) and time-dependent DFT calculations. Triphenylamine-thienothiophene functionalized with a cyanoacetic acid anchoring group displayed the highest conversion efficiency (3.68%) as the dye sensitizer in nanocrystalline TiO 2 solar cells. Coadsorption studies were performed for this dye with the ruthenium-based N719 dye, and they showed dye power conversion efficiencies enhanced by 20-64%. The best cell performance obtained with the coadsorbed N719 and cyanoacetic dye showed an efficiency of 6.05%.
2017-01-01
The effect of anchoring groups on the optical and electrochemical properties of triphenylamine-thienothiophenes, and on the photovoltaic performance of DSSCs photosensitized with the prepared dyes, was studied using newly synthesized compounds with cyanoacetic acid or rhodanine-3-acetic acid groups. Precursor aldehydes were synthesized through Suzuki cross-coupling, whereas Knoevenagel condensation of these with 2-cyanoacetic acid or rhodanine-3-acetic acid afforded the final push–pull dyes. A comprehensive photophysical study was performed in solution and in the solid state. The femtosecond time-resolved transient absorption spectra for the synthesized dyes were obtained following photoexcitation in solution and for the dyes adsorbed to TiO2 mesoporous films. Information on conformation, electronic structure, and electron distribution was obtained by density functional theory (DFT) and time-dependent DFT calculations. Triphenylamine–thienothiophene functionalized with a cyanoacetic acid anchoring group displayed the highest conversion efficiency (3.68%) as the dye sensitizer in nanocrystalline TiO2 solar cells. Coadsorption studies were performed for this dye with the ruthenium-based N719 dye, and they showed dye power conversion efficiencies enhanced by 20–64%. The best cell performance obtained with the coadsorbed N719 and cyanoacetic dye showed an efficiency of 6.05%. PMID:29302638
Cholesteric pitch transitions induced by mechanical strain.
Lelidis, I; Barbero, G; Alexe-Ionescu, A L
2013-02-01
We investigate thickness and surface anchoring strength influence on pitch transitions in a planar cholesteric liquid crystal layer. The cholesteric-nematic transition is also investigated. We assume planar boundary conditions, with strong anchoring strength at one interface and weak anchoring strength at the other. The surface anchoring energy we consider to describe the deviation of the surface twist angle from the easy axis induced by a bulk deformation is a parabolic potential or Rapini and Papoular periodic potential, respectively. We show that under strain, all pitch transitions take place at a critical thickness that is equal to the quarter of the natural cholesteric pitch. The latter result does not depend on the anchoring strength, the particular surface potential, or material properties. The twist angle on the limiting surface characterized by weak anchoring varies with strain either by slipping and or in a discontinuous manner according to the thickness of the sample. The position of the bifurcation point depends only on the ratio of the extrapolation length over the layer thickness, but its value is model dependent. Multistability and multiplicity of the transition are discussed.
Comparison between suture anchor and transosseous suture for the modified-Broström procedure.
Cho, Byung-Ki; Kim, Yong-Min; Kim, Dong-Soo; Choi, Eui-Sung; Shon, Hyun-Chul; Park, Kyoung-Jin
2012-06-01
This prospective, randomized study was conducted to compare clinical outcomes of the modified Broström procedure using suture anchor or transosseous suture technique for chronic ankle instability. Forty patients were followed for more than 2 years after modified Broström procedure. Twenty procedures using a suture anchor and 20 procedures using a transosseous suture were performed by one surgeon. The clinical evaluation consisted of the Karlsson scale and the Sefton grading system. Talar tilt and anterior talar translation were measured on anterior and varus stress radiographs. The Karlsson scale had improved significantly to 90.8 points in the suture anchor group, and to 89.2 points in the transosseous suture group. According to Sefton grading system, 18 patients (90%) in suture anchor group and 17 patients (85%) in transosseous suture group achieved satisfactory results. The talar tilt angle and anterior talar translation improved significantly to 5.9 degrees and 4.2 mm in suture anchor group, and to 5.4 degrees and 4.1 mm in transosseous suture group, respectively. No significant differences existed in clinical and functional outcomes between the two techniques for ligament reattachment. Both modified Broström procedures using the suture anchor and transosseous suture seem to be effective treatment methods for chronic lateral ankle instability.
Chen, Shi-yi; Malcarney, Hilary L; Murrell, George A C
2009-02-01
To evaluate results of margin convergence versus suture anchors in rotator cuff repair, and to determine which method is mechanically superior. Eighteen kangaroo shoulders were randomly divided into three groups (n = 6). A full thickness tendon defect 1.0 cm × 1.5 cm in size was created in the supraspinatus tendon at humeral insertion, simulating a massive rotator cuff tear. Three different techniques were employed for rotator cuff repair: (i) Mitek GII suture anchor alone (Group 1); (ii) margin convergence alone (Group 2); and (iii) margin convergence plus Mitek GII suture anchor (Group 3). Combined loads were applied to each specimen. After completion of cyclic loading, the construct was loaded to failure. ANOVA and LSD (Least Significant Difference) multiple comparisons of the means were applied to results. Cyclic load testing showed progressive gap formation in each repaired specimen with increasing cycles. Group 1 reached 50% failure at an average of 34 cycles, Group 2 at 75 cycles and Group 3 at 73 cycles. There were significant difference between Groups 1 and 2, and Groups 1 and 3 (P ≤ 0.001). After 100 loading cycles, the average gap size was 6.8 mm, 6.1 mm and 4.7 mm in Groups 1, 2 and 3, respectively. There was a significant difference between Groups 1 and 3 (P ≤ 0.015). All specimens eventually reached failure. Rotator cuff repairs with margin convergence +/- suture anchor were far stronger than suture anchor alone, both in gap formation and ultimate failure load. However, progressive gap formation with cyclic loading seems inevitable after cuff repair, which may facilitate clinical understanding of the phenomena of re-tear or residual defect. © 2009 Tianjin Hospital and Blackwell Publishing Asia Pty Ltd.
Scranton, Pierce E; Lawhon, S Michael; McDermott, John E
2005-07-01
Suture anchors have been developed for the fixation of ligaments, capsules, or tendons to bone. These devices have led to improved fixation, smaller incisions, earlier limb mobility, and improved outcomes. They were originally developed for use in shoulder reconstructions but are now used in almost all extremities. In the lower leg they are used in the tibia, the talus, the calcaneus, tarsal bones, and phalanges. Nevertheless, techniques for insertion and mechanisms of failure are not well described. Five suture anchors were studied to determine the pullout strength in four distal cadaver femurs and four proximal cadaver tibias from 55- and 62-year-old males. Eight hundred ninety Newton line was used, testing the anchors to failure with an Instron testing device (Instron, Norwood, MA). The anchor devices were inserted randomly and tested blindly (12 tests per anchor device, 60 tests in all). Two anchors in each group tested failed at low loads. Both types of plastic anchors had failures at the eyelet. Average pullout strength varied from 85.4 to 185.6 N. Insertion techniques are specific for each device, and they must be followed for optimal fixation. In this study, in all five groups of anchors tested two of the 12 anchors in each group failed with minimal force. On the basis of this finding we recommend that, if suture anchor fixation is necessary, at least two anchors should be used. Since there appears to be a percentage of failure in all devices, the second anchor can serve as a backup. It is imperative that surgeons be familiar with the insertion techniques of each device before use.
Anchoring the Deficit of the Anchor Deficit: Dyslexia or Attention?
ERIC Educational Resources Information Center
Willburger, Edith; Landerl, Karin
2010-01-01
In the anchoring deficit hypothesis of dyslexia ("Trends Cogn. Sci.", 2007; 11: 458-465), it is proposed that perceptual problems arise from the lack of forming a perceptual anchor for repeatedly presented stimuli. A study designed to explicitly test the specificity of the anchoring deficit for dyslexia is presented. Four groups, representing all…
Anomalous length dependence of conductance of aromatic nanoribbons with amine anchoring groups
NASA Astrophysics Data System (ADS)
Bilić, Ante; Sanvito, Stefano
2012-09-01
Two sets of aromatic nanoribbons, based around a common hexagonal scaffolding, with single and dual terminal amine groups have been considered as potential molecular wires in a junction formed by gold leads. Charge transport through the two-terminal device has been modeled using density functional theory (with and without self-interaction correction) and the nonequilibrium Green's function method. The effects of wire length, multiple terminal contacts, and pathways across the junction have been investigated. For nanoribbons with the oligopyrene motif and conventional single amine terminal groups, an increase in the wire length causes an exponential drop in the conductance. In contrast, for the nanoribbons with the oligoperylene motif and dual amine anchoring groups the predicted conductance rises with the wire length over the whole range of investigated lengths. Only when the effects of self-interaction correction are taken into account, the conductance of the oligoperylene ribbons exhibits saturation for longer members of the series. The oligoperylene nanoribbons, with dual amine groups at both terminals, show the potential to fully harness the highly conjugated system of π molecular orbitals across the junction.
Wei, Zhuang; Thoreson, Andrew R.; Amadio, Peter C.; An, Kai-Nan; Zhao, Chunfeng
2014-01-01
We compared the mechanical force of tendon-to-bone repair techniques for flexor tendon reconstruction. Thirty-six flexor digitorum profundus (FDP) tendons were divided into three groups based upon the repair technique: (1) suture/button repair using FDP tendon (Pullout button group), (2) suture bony anchor using FDP tendon (Suture anchor group), and (3) suture/button repair using FDP tendon with its bony attachment preserved (Bony attachment group). The repair failure force and stiffness were measured. The mean load to failure and stiffness in the bony attachment group were significantly higher than that in the pullout button and suture anchor groups. No significant difference was found in failure force and stiffness between the pullout button and suture anchor groups. An intrasynovial flexor tendon graft with its bony attachment has significantly improved tensile properties at the distal repair site when compared with a typical tendon-to-bone attachment with a button or suture anchor. The improvement in the tensile properties at the repair site may facilitate postoperative rehabilitation and reduce the risk of graft rupture. PMID:23754507
[Comparative study on microplate and anchor fixation in open-door cervical expansive laminoplasty].
Zeng, Yun; Xiong, Min; Yu, Hualong; He, Ning; Wang, Zhiyong; Liu, Zhigang; Han, Heng; Chen, Sen
2011-08-01
To evaluate the effectiveness of microplate fixation in open-door cervical expansive laminoplasty (ELP) by comparing with anchor fixation. Between January 2005 and October 2008, 35 patients with multi-segment cervical spondylotic myelopathy were treated. Of them, 15 patients underwent ELP by microplate fixation (microplate group) and 20 patients underwent ELP by anchor fixation (anchor group). In microplate group, there were 10 males and 5 females with the age of (51.2 +/- 11.5) years; the disease duration ranged from 6 to 60 months (mean, 14 months); and the preoperative Japanese Orthopaedic Association (JOA) score was 7.7 +/- 2.5. In anchor group, there were 13 males and 7 females with the age of (50.7 +/- 10.8) years; the disease duration ranged from 3 to 58 months (mean, 17 months); and the preoperative JOA score was 7.8 +/- 2.9. There was no significant difference in the general data, such as gender, age, and JOA score between 2 groups (P > 0.05). All incisions healed by first intention. Thirty-five cases were followed up 24-68 months (mean, 32 months). The operation time was (113 +/- 24) minutes in anchor group and (111 +/- 27) minutes in microplate group, showing no significant difference (t = 0.231 3, P = 0.818 5). The rate of spinal canal expansion in microplate group (60% +/- 24%) was significantly higher than that in anchor group (40% +/- 18%) (t = 2.820, P = 0.008). The JOA scores of 2 groups at 3 months and 24 months after operation were significantly higher than the preoperative scores (P < 0.01). There was no significant difference in JOA score between 2 groups at 3 months after operation (t = 1.620 5, P = 0.114 6), but the JOA score of microplate group was significantly higher than that of anchor group at 24 months after operation (t = 3.454 3, P = 0.001 5). X-ray film, MRI, and CT scan at 3-6 months after operation displayed that door spindle reached bony fusion. There was no occurrence of "re-close of door" in 2 groups. The rate of complication in microplate group (13.3%, 2/15) was significantly lower than that in anchor group (25.0%, 5/20) (chi2 = 7.160 0, P = 0.008 6). ELP by microplate fixation can achieve the stability quickly after operation, which can help patients to do functional exercises early, and has satisfactory effectiveness and less complications.
Noyes, Matthew P; Lederman, Evan; Adams, Christopher R; Denard, Patrick J
2018-05-01
To compare the biomechanical properties of single-row repair with triple-loaded (TL) anchor repair versus a knotless rip stop (KRS) repair in a rotator cuff repair model. Rotator cuff tears were created in 8 cadaveric matched-pair specimens and repaired with a TL anchor or KRS construct. In the TL construct, anchors were placed in the greater tuberosity and then all suture limbs were passed through the rotator cuff as simple sutures and tied. In the KRS construct, a 2-mm suture tape was passed through the tendon in an inverted mattress fashion, and a free suture was passed medial to the suture tape to create a rip-stop. Then, the suture tape and free suture were secured with knotless anchors. Displacement was observed with video tracking after cyclic loading, and specimens were loaded to failure. The mean load to failure was 438 ± 59 N in TL anchor repairs compared with 457 ± 110 N in KRS repairs (P = .582). The mean displacement with cyclic loading was 3.8 ± 1.6 mm in TL anchor repairs versus 4.3 ± 1.8 mm in the KRS group (P = .297). Mode of failure was consistent in both groups, with 6 of 8 failures in the TL anchor group and 7 of 8 failures in KRS group occurring from anchor pullout. There is no statistical difference in load to failure and cyclic loading between TL anchor and KRS single-row repair techniques. KRS repair technique may be an alternative method of repairing full-thickness supraspinatus tendon tears with a single-row construct. Copyright © 2018 Arthroscopy Association of North America. Published by Elsevier Inc. All rights reserved.
Hazratwala, Kaushik; Best, Alistair; Kopplin, Matthew; Giza, Eric; Sullivan, Martin
2005-03-01
The modified Broström ligament reconstruction using anchor sutures has been performed in adults with clinical success; however, the safety parameters for the use of suture anchors in adolescent lateral ankle ligament reconstruction have not been established. To perform a radiographic analysis comparing the depth of penetration of suture anchors in adult ankle ligament reconstruction with the average distance of the physis from the tip of the fibula in adolescents. Cross-sectional study, Level of evidence, 4. Forty postoperative ankle radiographs of adult patients who had a modified Broström procedure were compared with 40 normal adolescent ankle radiographs. In the adult group, the distance of the suture anchor penetration from the distal tip of the fibula was measured; in the adolescent group, the distance of the physis from the distal tip of the fibula was measured. The mean depth of the suture anchors was 17 mm (range, 14-21 mm) from the tip of the fibula in the adult group, and the mean distance of the growth plate was 23 mm (range, 18-29 mm) in the adolescent group. Eight radiographs from the adolescent group (20%) had a physis measurement of <22 mm on the anteroposterior or mortise view. Using careful preoperative planning and intraoperative technique, it is possible to safely perform lateral ankle ligament repair in the skeletally immature patient using suture anchors.
Dwyer, Tim; Willett, Thomas L; Dold, Andrew P; Petrera, Massimo; Wasserstein, David; Whelan, Danny B; Theodoropoulos, John S
2016-02-01
The purpose of this study was to evaluate the biomechanical behavior of an all-suture glenoid anchor in comparison with a more conventional screw-in glenoid anchor, with regard to maximum load to failure and tensile displacement. All mechanical testing was performed using an Instron ElectroPuls E1000 mechanical machine, with a 10 N pre-load and displacement rate of 10 mm/min. Force-displacement curves were generated, with calculation of maximum load, maximum displacement, displacement at 50 N and stiffness. Pretesting of handset Y-Knots in bone analog models revealed low force displacement below 60 N of force. Subsequently, three groups of anchors were tested for pull out strength in bovine bone and cadaver glenoid bone: a bioabsorbable screw-in anchor (Bio Mini-Revo, ConMed Linvatec), a handset all-suture anchor (Y-Knot, ConMed Linvatec) and a 60 N pre-tensioned all-suture anchor (Y-Knot). A total of 8 anchors from each group was tested in proximal tibia of bovine bone and human glenoids (age range 50-90). In bovine bone, the Bio Mini-Revo displayed greater maximum load to failure (206 ± 77 N) than both the handset (140 ± 51 N; P = 0.01) and the pre-tensioned Y-Knot (135 ± 46 N; P = 0.001); no significant difference was seen between the three anchor groups in glenoid bone. Compared to the screw-in anchors, the handset all-suture anchor displayed inferior fixation, early displacement and greater laxity in the bovine bone and cadaveric bone (P < 0.05). Pre-tensioning the all-suture anchor to 60 N eliminated this behavior in all bone models. Handset Y-Knots display low force anchor displacement, which is likely due to slippage in the pilot hole. Pre-tensioning the Y-Knot to 60 N eliminates this behavior. I.
Comparison of Suture-Based Anchors and Traditional Bioabsorbable Anchors in Foot and Ankle Surgery.
Hembree, W Chad; Tsai, Michael A; Parks, Brent G; Miller, Stuart D
We compared the pullout strength of a suture-based anchor versus a bioabsorbable anchor in the distal fibula and calcaneus and evaluated the relationship between bone mineral density and peak load to failure. Eight paired cadaveric specimens underwent a modified Broström procedure and Achilles tendon reattachment. The fibula and calcaneus in the paired specimens received either a suture-based anchor or a bioabsorbable suture anchor. The fibular and calcaneal specimens were loaded to failure, defined as a substantial decrease in the applied load or pullout from the bone. In the fibula, the peak load to failure was significantly greater with the suture-based versus the bioabsorbable anchors (133.3 ± 41.8 N versus 76.8 ± 35.3 N; p = .002). No significant difference in load with 5 mm of displacement was found between the 2 groups. In the calcaneus, no difference in the peak load to failure was found between the 2 groups, and the peak load to failure with 5 mm of displacement was significantly lower with the suture-based than with the bioabsorbable anchors (52.2 ± 9.8 N versus 75.9 ± 12.4 N; p = .003). Bone mineral density and peak load to failure were significantly correlated in the fibula with the suture-based anchor. An innovative suture-based anchor had a greater peak load to failure compared with a bioabsorbable anchor in the fibula. In the calcaneus, the load at 5 mm of displacement was significantly lower in the suture-based than in the bioabsorbable group. The correlation findings might indicate the need for a cortical bone shelf with the suture-based anchor. Suture-based anchors could be a viable alternative to bioabsorbable anchors for certain foot and ankle procedures. Copyright © 2016 American College of Foot and Ankle Surgeons. Published by Elsevier Inc. All rights reserved.
Intermittent use of an "anchor system" improves postural control in healthy older adults.
Freitas, Milena de Bem Zavanella; Mauerberg-deCastro, Eliane; Moraes, Renato
2013-07-01
Haptic information, provided by a non-rigid tool (i.e., an "anchor system"), can reduce body sway in individuals who perform a standing postural task. However, it was not known whether or not continuous use of the anchor system would improve postural control after its removal. Additionally, it was unclear as to whether or not frequency of use of the anchor system is related to improved control in older adults. The present study evaluated the effect of the prolonged use of the anchor system on postural control in healthy older individuals, at different frequencies of use, while they performed a postural control task (semi-tandem position). Participants were divided into three groups according to the frequency of the anchor system's use (0%, 50%, and 100%). Pre-practice phase (without anchor) was followed by a practice phase (they used the anchor system at the predefined frequency), and a post-practice phase (immediate and late-without anchor). All three groups showed a persistent effect 15min after the end of the practice phase (immediate post-practice phase). However, only the 50% group showed a persistent effect in the late post-practice phase (24h after finishing the practice phase). Older adults can improve their postural control by practicing the standing postural task, and use of the anchor system limited to half of their practice time can provide additional improvement in their postural control. Copyright © 2013 Elsevier B.V. All rights reserved.
ERIC Educational Resources Information Center
Lu, Ru; Haberman, Shelby; Guo, Hongwen; Liu, Jinghua
2015-01-01
In this study, we apply jackknifing to anchor items to evaluate the impact of anchor selection on equating stability. In an ideal world, the choice of anchor items should have little impact on equating results. When this ideal does not correspond to reality, selection of anchor items can strongly influence equating results. This influence does not…
Contact area and pressure in suture bridge rotator cuff repair using knotless lateral anchors.
Tompkins, Marc; Monchik, Keith O; Plante, Matthew J; Fleming, Braden C; Fadale, Paul D
2011-10-01
To evaluate whether the use of knotless lateral anchors in a suture bridge construct produces better contact area and pressure parameters than a suture bridge construct with standard lateral anchors that require knots or a double-row repair. The hypothesis was that knotless lateral anchors would produce better contact area and pressure parameters than the other two constructs. A total of fifteen matched pairs of cadaveric shoulders were divided into three groups. In Group 1, a suture bridge using knotless anchors for the lateral row was performed on five shoulders. A suture bridge using standard lateral row anchors that require knots was performed on the contralateral shoulders. In Group 2, suture bridge with knotless lateral row anchors was compared with double-row repair. In Group 3, suture bridge using standard lateral row anchors was compared with double-row repair. The contact conditions of the rotator cuff footprint were measured using pressure-sensitive film. There were no statistically significant differences between any of the techniques regarding contact area F(2, 15.7) = 3.09, P = 0.07 or mean contact pressure F(2, 15.1) = 2.35, P = 0.12. A post hoc power analysis suggests differences between techniques are likely less than 91-113 mm(2) for area and 0.071-0.089 N for pressure. The use of knotless anchors in the lateral row of a suture bridge repair did not increase the footprint contact area or contact pressure when compared to a suture bridge repair requiring knots laterally or to a double-row repair.
Anchor enhanced capsulorraphy in bunionectomies using an L-shaped capsulotomy.
Gould, John S; Ali, Sheriff; Fowler, Rachel; Fleisig, Glenn S
2003-01-01
The objective of this study was to investigate potential benefit of a suture anchor-enhanced capsulorraphy in the early maintenance of correction in bunionectomies. We compared, retrospectively, in successive series, the loss of correction of the Hallux Valgus (HV) and intermetatarsal (IM) angle, in those repaired with an L-shaped capsulorraphy enhanced with anchors to those without. Intraoperative and second week postoperative simulated weightbearing anterior posterior (AP) X-rays were used to evaluate results. By using only intraoperative and early postoperative X-rays, we should have effectively eliminated extraneous factors that might have influenced our results. A Total of 106 cases were investigated, 65 of which were repaired using anchors, the remaining 41 without. In the anchor group, 38 underwent a proximal metatarsal concentric shelf osteotomy (CSO)/modified McBride procedure, while the remaining 27 had a distal Chevron correction. In the without-anchor group, 21 had a CSO/modified McBride procedure while 20 underwent the Chevron procedure. In the without-anchor group, the average HV and IM loss of correction was 4.60 degrees (range, -2 to 21 degrees) and 0.6 degrees (range, -1 to 9 degrees) respectively. In the anchor group, the corresponding loss was 2.8 degrees (range, -3 to 17 degrees) and 0.6 degrees (range, -2 to 14 degrees) respectively. These results, when statistically analyzed, demonstrated that while the IM angle change was not statistically significant, the HV angle change was statistically significant, implying that the anchor plays a significant role in maintaining the surgical correction in both the distal Chevron and CSO/ modified McBride bunionectomies.
Non-canonical active site architecture of the radical SAM thiamin pyrimidine synthase.
Fenwick, Michael K; Mehta, Angad P; Zhang, Yang; Abdelwahed, Sameh H; Begley, Tadhg P; Ealick, Steven E
2015-03-27
Radical S-adenosylmethionine (SAM) enzymes use a [4Fe-4S] cluster to generate a 5'-deoxyadenosyl radical. Canonical radical SAM enzymes are characterized by a β-barrel-like fold and SAM anchors to the differentiated iron of the cluster, which is located near the amino terminus and within the β-barrel, through its amino and carboxylate groups. Here we show that ThiC, the thiamin pyrimidine synthase in plants and bacteria, contains a tethered cluster-binding domain at its carboxy terminus that moves in and out of the active site during catalysis. In contrast to canonical radical SAM enzymes, we predict that SAM anchors to an additional active site metal through its amino and carboxylate groups. Superimposition of the catalytic domains of ThiC and glutamate mutase shows that these two enzymes share similar active site architectures, thus providing strong evidence for an evolutionary link between the radical SAM and adenosylcobalamin-dependent enzyme superfamilies.
Waldrop, Norman E; Wijdicks, Coen A; Jansson, Kyle S; LaPrade, Robert F; Clanton, Thomas O
2012-11-01
Despite the popularity of the Broström procedure for secondary repair of chronic lateral ankle instability, there have been no biomechanical studies reporting on the strength of this secondary repair method, whether using suture fixation or suture anchors. The purpose of our study was to perform a biomechanical comparison of the ultimate load to failure and stiffness of the traditional Broström technique using only a suture repair compared with a suture anchor repair of the anterior talofibular ligament (ATFL) at time zero. We believed that fixation strength of the suture anchor repair would be closer to the strength of the native ligament and allow more aggressive rehabilitation. Controlled laboratory study. Twenty-four fresh-frozen cadaveric ankles were randomly divided into 4 groups of 6 specimens. One group was an intact control group, and the other groups consisted of the traditional Broström and 2 suture anchor modifications (suture anchors in talus or fibula) of the Broström procedure. The specimens were loaded to failure to determine the strength and stiffness of each construct. In load-to-failure testing, ultimate failure loads of the Broström (68.2 ± 27.8 N; P = .013), suture anchor fibula (79.2 ± 34.3 N; P = .037), and suture anchor talus (75.3 ± 45.6 N; P = .027) repairs were significantly lower than that of the intact (160.9 ± 72.2 N) ATFL group. Stiffness of the Broström (6.0 ± 2.5 N/mm; P = .02), suture anchor fibula (6.8 N/mm ± 2.7; P = .05), and suture anchor talus (6.6 N/mm ± 4.0; P = .04) repairs were significantly lower than that of the intact (12.4 N/mm ± 4.1 N/mm) ATFL group. The 3 repair groups were not significantly different from each other, but all 3 were substantially lower in strength and stiffness when compared to the intact ATFL. The use of suture anchors to repair the ATFL produces a repair that can withstand loads to failure similar to the suture-only Broström repair. However, all 3 repair groups were much weaker than the intact, uninjured ATFL. Biomechanically, the results show that both suture anchor and direct suture repair of the ATFL provide similar strength and stiffness. Unfortunately, these methods provide less than half the strength and stiffness of the native ATFL at time zero. As a result, regardless of the repair method, it is necessary to sufficiently protect the repair to avoid premature failure.
The Effect of Mini and Midi Anchor Tests on Test Equating
ERIC Educational Resources Information Center
Arikan, Çigdem Akin
2018-01-01
The main purpose of this study is to compare the test forms to the midi anchor test and the mini anchor test performance based on item response theory. The research was conducted with using simulated data which were generated based on Rasch model. In order to equate two test forms the anchor item nonequivalent groups (internal anchor test) was…
Hydroxamate anchors for improved photoconversion in dye-sensitized solar cells.
Brewster, Timothy P; Konezny, Steven J; Sheehan, Stafford W; Martini, Lauren A; Schmuttenmaer, Charles A; Batista, Victor S; Crabtree, Robert H
2013-06-03
We present the first analysis of performance of hydroxamate linkers as compared to carboxylate and phosphonate groups when anchoring ruthenium-polypyridyl dyes to TiO2 surfaces in dye-sensitized solar cells (DSSCs). The study provides fundamental insight into structure/function relationships that are critical for cell performance. Our DSSCs have been produced by using newly synthesized dye molecules and characterized by combining measurements and simulations of experimental current density-voltage (J-V) characteristic curves. We show that the choice of anchoring group has a direct effect on the overall sunlight-to-electricity conversion efficiency (η), with hydroxamate anchors showing the best performance. Solar cells based on the pyridyl-hydroxamate complex exhibit higher efficiency since they suppress electron transfer from the photoanode to the electrolyte and have superior photoinjection characteristics. These findings suggest that hydroxamate anchoring groups should be particularly valuable in DSSCs and photocatalytic applications based on molecular adsorbates covalently bound to semiconductor surfaces. In contrast, analogous acetylacetonate anchors might undergo decomposition under similar conditions suggesting limited potential in future applications.
NASA Astrophysics Data System (ADS)
Zhao, Yuming; Zhao, Jingxiang
2017-08-01
The large-scale practical application of lithium-sulfur (Li-S) batteries cannot be relized unless the challenge of dissolving of soluble lithium polysulfides (Li2Sn) species in electrolytes can be solved. Herein, by means of density functional theory (DFT) computations, we systematically exploited the anchoring effects of various titanium carbide-based MXenes for Li-S batteries. Our results revealed that, due to the attraction between Li ions in Li2Sn species and O atoms in Ti2CO2 and Ti3C2O2 monolayer, the two Mxenes can strongly interact with Li2Sn species with remarkable but not too strong binding strength to effectively immobilize the soluble polysulfides. Especially, the intactness of the Li2Sn species can be well saved, although the Lisbnd S bonds are weakened. Therefore, Ti2CO2 and Ti3C2O2 monolayers are quite promising anchoring materials with good cycling performances for Li-S batteries.
Uruc, Vedat; Ozden, Raif; Dogramacı, Yunus; Kalacı, Aydıner; Hallaceli, Hasan; Küçükdurmaz, Fatih
2014-01-01
The aim of this study was to test a simple technique to augment the pullout resistance of an anchor in an over-drilled sheep humerus model. Sixty-four paired sheep humeri were harvested from 32 male sheep aged 18 months. Specimens were divided into an augmented group and non-augmented group. FASTIN RC 5-mm titanium screw anchors (DePuy Mitek, Raynham, MA) double loaded with suture material (braided polyester, nonabsorbable USP No. 2) were used in both groups. Osteoporosis was simulated by over-drilling with a 4.5-mm drill. Augmentation was performed by fixing 1 of the sutures 1.5 cm inferior to the anchor insertion site with a washer screw. This was followed by a pull-to-failure test at 50 mm/min. The ultimate load (the highest value of strength before anchor pullout) was recorded. A paired t test was used to compare the biomechanical properties of the augmented and non-augmented groups. In all specimens the failure mode was pullout of the anchor. The ultimate failure loads were statistically significantly higher in the augmented group (P < .0001). The mean pullout strength was 121.1 ± 10.17 N in the non-augmented group and 176.1 ± 10.34 N in the augmented group. The described augmentation technique, which is achieved by inferior-lateral fixation of 1 of the sutures of the double-loaded anchor to a fully threaded 6.5-mm cancellous screw with a washer, significantly increases the ultimate failure loads in the over-drilled sheep humerus model. Our technique is simple, safe, and inexpensive. It can be easily used in all osteoporotic patients and will contribute to the reduction of anchor failure. This technique might be difficult to apply arthroscopically. Cannulated smaller screws would probably be more practical for arthroscopic use. Further clinical studies are needed. Copyright © 2014 Arthroscopy Association of North America. Published by Elsevier Inc. All rights reserved.
Cholesterol-dependent retention of GPI-anchored proteins in endosomes.
Mayor, S; Sabharanjak, S; Maxfield, F R
1998-01-01
Several cell surface eukaryotic proteins have a glycosylphosphatidylinositol (GPI) modification at the Cterminal end that serves as their sole means of membrane anchoring. Using fluorescently labeled ligands and digital fluorescence microscopy, we show that contrary to the potocytosis model, GPI-anchored proteins are internalized into endosomes that contain markers for both receptor-mediated uptake (e.g. transferrin) and fluid phase endocytosis (e.g. dextrans). This was confirmed by immunogold electron microscopy and the observation that a fluorescent folate derivative bound to the GPI-anchored folate receptor is internalized into the same compartment as co-internalized horseradish peroxidase-transferrin; the folate fluorescence was quenched when cells subsequently were incubated with diaminobenzidine and H2O2. Most of the GPI-anchored proteins are recycled back to the plasma membrane but at a rate that is at least 3-fold slower than C6-NBD-sphingomyelin or recycling receptors. This endocytic retention is regulated by the level of cholesterol in cell membranes; GPI-anchored proteins are recycled back to the cell surface at the same rate as recycling transferrin receptors and C6-NBD-sphingomyelin in cholesterol-depleted cells. Cholesterol-dependent endocytic sorting of GPI-anchored proteins is consistent with the involvement of specialized lipid domains or 'rafts' in endocytic sorting. These results provide an alternative explanation for GPI-requiring functions of some GPI-anchored proteins. PMID:9707422
Dye anchored ZnO nanoparticles: The positive and negative photoluminescence quenching effects
NASA Astrophysics Data System (ADS)
Ganesh, T.; Kim, Jong Hoon; Yoon, Seog Joon; Lee, Sangjin; Lee, Wonjoo; Mane, Rajaram S.; Han, Jin Wook; Han, Sung-Hwan
2009-10-01
The positive and negative photoluminescence quenching effects in dye [BCMoxo and BCtCM (curcumin-derived molecules)] anchored ZnO nanoparticles (NPs) are investigated using the optical and electronic properties. The photoluminescence, band gap (BCMoxo, 2.2 eV; BCtCM, 2.3 eV), and wettability studies confirm an optical quenching, well-matched electronic structure and relative hydrophobic nature, respectively, in the presence of dicarboxylic anchor groups (BCtCM) on ZnO NPs in contrast to that of keto groups (BCMoxo). Systematic change in UV-visible absorption band edge is noticeable for the BCtCM and BCMoxo-anchored ZnO NPs. The atomic absorption spectroscopy and inductively coupled-mass-spectroscopy analysis quantitatively verifies the amount of BCtCM dye molecules present on ZnO NPs surface area about three times higher than that of BCMoxo dye molecule without anchor groups.
Modified Kidner procedure utilizing a Mitek bone anchor.
Dawson, D M; Julsrud, M E; Erdmann, B B; Jacobs, P M; Ringstrom, J B
1998-01-01
The recent development of small bone suture anchors has created several potential applications in reconstructive surgery of the foot. Mitek bone anchors are simple to insert, require less aggressive dissection and surgical time than reefing of the redundant posterior tibial tendon, and are a reliable method of tendon-to-bone fixation. Mitek bone anchors are an excellent technique for the treatment of redundant tibialis posterior tendon following a modified Kidner procedure. In modified Kidner procedures involving an excessively large os tibiale externum, Mitek anchoring of the redundant tibialis posterior tendon to the navicular bone is an excellent means for secure plication of the posterior tibial tendon in cases involving intraoperative tendon laxity. A description of the Mitek Anchor System and technique of application in a modified Kinder procedure is presented. The purpose of this study was to describe patient satisfaction and long-term clinical outcomes of the modified Kinder procedure with and without the Mitek bone anchoring system. A retrospective study of the modified Kinder procedure was performed with 13 patients being evaluated, seven with Mitek anchoring and six without. The University of Maryland 100-point Painful Foot Center Scoring System was modified to be more specific to the modified Kinder procedure for assessment of subjective long-term results. Patient overall satisfaction was rated good to excellent by 85.6% of patients in the Mitek group and by 100% of patients in the non-Mitek group. Use of the Mitek anchor allowed for quicker postoperative recovery to resumption of ambulation without assistive devices (average of 3 weeks vs. 4.42 weeks) and a quicker return to pain-free ambulation in normal shoegear (average of 4 weeks vs. 6 weeks). Mitek anchoring of the tibialis posterior tendon, theoretically, increases medial arch support as evidenced by 14% of the Mitek group and 67% of the non-Mitek group requiring postoperative orthotics.
Li, Hong-Yun; Hua, Ying-Hui; Wu, Zi-Ying; Chen, Bo; Chen, Shi-Yi
2013-11-01
The purpose of this study was to compare the biomechanical characteristics of fixation with 2-suture anchors versus transosseous tunnel fixation in anatomic reconstruction of the ankle lateral ligaments. Six matched pairs of human cadaveric ankles underwent anatomic lateral ankle reconstruction, and fixation of the graft on the talus was achieved with 2 suture anchors or a transosseous tunnel. Ankles for the transosseous tunnel group were chosen at random, with the paired contralateral ankles used for the 2-suture anchor group. Half of the peroneus brevis tendon was harvested as a graft. For each technique, one end of the tendon was secured to the original insertion point of the anterior talofibular ligament (ATFL) at the talus, whereas the other end was armed with 2 No. 5 nonabsorbable sutures (Ethicon, Somerville, NJ) and passed through the bone tunnel in the fibula. Biomechanical testing was performed by applying the force in line with the graft. Load to failure was determined at a displacement rate of 50 mm/min. The load-displacement curve, maximum load at failure (N), and stiffness (N/mm) were recorded and compared between the 2 techniques. There was no difference between constructs in the 2-suture anchor group and the transosseous tunnel group in terms of the ultimate load and stiffness (161.8 ± 47.6 N v 171.9 ± 76.0 N; P = .92; 4.59 ± 1.85 N/mm v 5.77 ± 1.98 N/mm; P = .35). Most constructs failed because of anchor pullout in the 2-suture anchor group (5 of 6) and fracture of the bony bridge in the transosseous tunnel group (6 of 6). The strength of fixation with suture anchors in anatomic reconstruction of the ankle lateral ligaments was equivalent to transosseous tunnel fixation as determined with biomechanical testing. However, this study did not prove that one is advantageous over the other. Both techniques showed excellent biomechanical results. Therefore, the 2-suture anchor fixation approach can be safely used in anatomic reconstruction of the ankle lateral ligaments. Copyright © 2013 Arthroscopy Association of North America. Published by Elsevier Inc. All rights reserved.
Spang, Jeffrey T; Buchmann, Stefan; Brucker, Peter U; Kouloumentas, Panos; Obst, Tobias; Schröder, Manuel; Burgkart, Rainer; Imhoff, Andreas B
2009-08-01
A novel double-row configuration was compared with a traditional double-row configuration for rotator cuff repair. In 10 matched-pair sheep shoulders in vitro repair was performed with either a double-row technique with corkscrew suture anchors for the medial row and insertion anchors for the lateral row (group A) or a double-row technique with a new tape-like suture material with insertion anchors for both the medial and lateral rows (group B). Each specimen underwent cyclic loading from 10 to 150 N for 100 cycles, followed by unidirectional failure testing. Gap formation and strain within the repair area for the first and last cycles were analyzed with a video digitizing system, and stiffness and failure load were determined from the load-elongation curve. The results were similar for the 2 repair types. There was no significant difference between the ultimate failure loads of the 2 techniques (421 +/- 150 N in group A and 408 +/- 66 N in group B, P = .31) or the stiffness of the 2 techniques (84 +/- 26 N/mm in group A and 99 +/- 20 N/mm in group B, P = .07). In addition, gap formation was not different between the repair types. Strain over the repair area was also not different between the repair types. Both tested rotator cuff repair techniques had high failure loads, limited gap formation, and acceptable strain patterns. No significant difference was found between the novel and conventional double-row repair types. Two double-row techniques-one with corkscrew suture anchors for the medial row and insertion anchors for the lateral row and one with insertion anchors for both the medial and lateral rows-provided excellent biomechanical profiles at time 0 for double-row repairs in a sheep model. Although the sheep model may not directly correspond to in vivo conditions, all-insertion anchor double-row constructs are worthy of further investigation.
ERIC Educational Resources Information Center
Marshall, Verena; Bonner, Dede
2003-01-01
The relationships among career anchors, age, culture, gender, employment experience, and the impact of career planning on downsizing were examined with data from 423 management students (49% had been downsized). Lifestyle was the most valued anchor across age groups, stability/security the least; compared with Schein's earlier anchors research,…
Analysis of suture anchor eyelet position on suture failure load.
Aktay, Sevima A; Kowaleski, Michael P
2011-06-01
To compare mechanical performance of 2 orientations of the 5 mm Corkscrew® suture anchor with #5 Fiberwire® . In vitro biomechanical study. Suture anchor-suture constructs (n=40). Acute and cyclic tensile loads were applied to suture threaded through eyelets of 40 anchors perpendicular to the long axis of the anchor. Eyelets were positioned so that the suture pull was in line with (anchor rotation angle of 0° [ARA 0]) or 90° (ARA 90) to the eyelet plane. Load at failure, stiffness, and cycles to failure were determined. All constructs failed by suture breakage at the eyelet. Mean load at failure was significantly higher in the ARA 90 group (634 ± 93 N) compared with the ARA 0 group (495 ± 52 N; P=.0015). No significant difference was found between groups for mean number of cycles to failure (270 ± 177 versus 178 ± 109; P=.2166) and stiffness (50 ± 4 versus 48 ± 5 N/mm; P=.3141). The Corkscrew® 5 mm suture anchor with Fiberwire® suture fails via suture breakage at the eyelet under higher acute loads if the suture is loaded at an angle of 90° compared with 0° with respect to the plane of the eyelet. © Copyright 2011 by The American College of Veterinary Surgeons.
Esarey, Samuel L; Bartlett, Bart M
2018-04-17
The binding constants and rate constants for desorption of the modified molecular dye [Ru(bpy) 3 ] 2+ anchored by either phosphonate or hydroxamate on the bipyridine ligand to anatase TiO 2 and WO 3 have been measured. In aqueous media at pH 1-10, repulsive electrostatic interactions between the negatively charged anchor and the negatively charged surface govern phosphonate desorption under neutral and basic conditions for TiO 2 anatase due to the high acidity of phosphonic acid (p K a,4 = 5.1). In contrast, the lower acidity of hydroxamate (p K a,1 = 6.5, p K a,2 = 9.1) leads to little change in adsorption/desorption properties as a function of pH from 1 to 7. The binding constant for hydroxamate is 10 3 in water, independent of pH in this range. These results are true for WO 3 as well, but are not reported at pH > 4 due to its Arrhenius acidity. Kinetics for desorption as a function of pH are reported, with a proposed mechanism for phosphonate desorption at high pH being the electrostatic repulsion of negative charges between the surface and the anionic anchor. Further, the hydroxamic acid anchor itself is likely the site of quasi-reversible redox activity in [Ru(bpy) 2 (2,2'-bpy-4,4'-(C(O)N(OH)) 2 )] 2+ , which does not lead to any measurable deterioration of the complex within 2 h of dark cyclic voltammogram scans in aqueous media. These results posit phosphonate as the preferred anchoring group under acidic conditions and hydroxamate for neutral/basic conditions.
Non-canonical active site architecture of the radical SAM thiamin pyrimidine synthase
Fenwick, Michael K.; Mehta, Angad P.; Zhang, Yang; ...
2015-03-27
Radical S-adenosylmethionine (SAM) enzymes use a [4Fe-4S] cluster to generate a 5'-deoxyadenosyl radical. Canonical radical SAM enzymes are characterized by a β-barrel-like fold and SAM anchors to the differentiated iron of the cluster, which is located near the amino terminus and within the β-barrel, through its amino and carboxylate groups. Here we show that ThiC, the thiamin pyrimidine synthase in plants and bacteria, contains a tethered cluster-binding domain at its carboxy terminus that moves in and out of the active site during catalysis. In contrast to canonical radical SAM enzymes, we predict that SAM anchors to an additional active sitemore » metal through its amino and carboxylate groups. Superimposition of the catalytic domains of ThiC and glutamate mutase shows that these two enzymes share similar active site architectures, thus providing strong evidence for an evolutionary link between the radical SAM and adenosylcobalamin-dependent enzyme superfamilies.« less
A Genetic Linkage Map for Cattle
Bishop, M. D.; Kappes, S. M.; Keele, J. W.; Stone, R. T.; Sunden, SLF.; Hawkins, G. A.; Toldo, S. S.; Fries, R.; Grosz, M. D.; Yoo, J.; Beattie, C. W.
1994-01-01
We report the most extensive physically anchored linkage map for cattle produced to date. Three-hundred thirteen genetic markers ordered in 30 linkage groups, anchored to 24 autosomal chromosomes (n = 29), the X and Y chromosomes, four unanchored syntenic groups and two unassigned linkage groups spanning 2464 cM of the bovine genome are summarized. The map also assigns 19 type I loci to specific chromosomes and/or syntenic groups and four cosmid clones containing informative microsatellites to chromosomes 13, 25 and 29 anchoring syntenic groups U11, U7 and U8, respectively. This map provides the skeletal framework prerequisite to development of a comprehensive genetic map for cattle and analysis of economic trait loci (ETL). PMID:7908653
Grant, John A; Bissell, Benjamin; Hake, Mark E; Miller, Bruce S; Hughes, Richard E; Carpenter, James E
2012-11-01
The suture anchor and transosseous drill hole techniques for reattachment of the distal biceps tendon to the radius have been found to have similar clinical and biomechanical outcomes. However, a comparison of the cost effectiveness of these techniques is lacking. The purpose of this study was to determine whether the use of suture anchors decreases operative time enough to offset the additional cost of the implants. The records of all patients undergoing a distal biceps tendon reattachment were reviewed to determine the method of fixation, operative time, and associated surgical costs. Two surgeons used a technique of fixing the tendon directly to the bone (transosseous group), whereas 3 surgeons used suture anchors. Given the standard nature of the surgical procedure (other than the fixation technique), only the costs that differed between the 2 groups were included. Surgical center costs were obtained from the local outpatient surgical center in 2011 US dollars. Five surgeons treated 70 men (mean age, 45.9±9.2 years). Mean time from injury to surgery was 14 days. Mean operative times for the transosseous and suture anchor groups were 97.6±14.9 and 95.8±25.8 minutes, respectively (P=.74). Two anchors were used in 79% of the anchor cases. The use of anchors cost $474.33 more per patient. However, this value is sensitive to the cost of the individual anchors, intersurgeon variation in operative time, and per-minute value of saved operative time. No operative time was saved with the use of suture anchors. This cost comparison framework can be used to evaluate the balance in surgical resource use due to implant cost vs savings in operative time. Copyright 2012, SLACK Incorporated.
Bio-inert interfaces via biomimetic anchoring of a zwitterionic copolymer on versatile substrates.
Dizon, Gian Vincent; Chou, Ying-Nien; Yeh, Lu-Chen; Venault, Antoine; Huang, James; Chang, Yung
2018-05-22
Bio-inert biomaterial design is vital for fields like biosensors, medical implants, and drug delivery systems. Bio-inert materials are generally hydrophilic and electrical neutral. One limitation faced in the design of bio-inert materials is that most of the modifiers used are specific to their substrate. In this work, we synthesized a novel zwitterionic copolymer containing a catechol group, a non-substrate dependent biomimetic anchoring segment, that can form a stable coating on various materials. No previous study was conducted using a grafting-to approach and determined the critical amount of catechol groups needed to effectively modify a material. The synthesized copolymers of sulfobetaine acrylamide (SBAA) and dopamine methacrylamide (DMA) in this work contains varying numbers of catechol groups, in which the critical number of catechol groups that had effectively modified substrates to have the bio-inert property was determined. The bio-inert property and capability to do coating on versatile substrates were evaluated in contact with human blood by coating different material groups such as ceramic, metallic, and polymeric groups. The novel structure and the simple grafting-to approach provides bio-inert property on various materials, giving them non-specific adsorption and attachment of biomolecules such as plasma proteins, erythrocytes, thrombocytes, bacteria, and tissue cells (85-95% reduction). Copyright © 2018 Elsevier Inc. All rights reserved.
ERIC Educational Resources Information Center
Lin, Peng; Dorans, Neil; Weeks, Jonathan
2016-01-01
The nonequivalent groups with anchor test (NEAT) design is frequently used in test score equating or linking. One important assumption of the NEAT design is that the anchor test is a miniversion of the 2 tests to be equated/linked. When the content of the 2 tests is different, it is not possible for the anchor test to be adequately representative…
The Importance of Content Representation for Common-Item Equating with Nonrandom Groups.
ERIC Educational Resources Information Center
Klein, Lawrence W.; Jarjoura, David
1985-01-01
The test equating accuracy of content-representative anchors (subsets of items in common) versus nonrepresentative, but substantially longer, anchors was compared for a professional certification examination. Through a chain of equatings, it was found that content representation in anchors was critical. (Author/GDC)
Promises and Pitfalls of Anchoring Vignettes in Health Survey Research
Verdes-Tennant, Emese; McEniry, Mary; Ispány, Márton
2016-01-01
Data harmonization is a topic of growing importance to demographers, who increasingly conduct domestic or international comparative research. Many self-reported survey items cannot be directly compared across demographic groups or countries because these groups differ in how they use subjective response categories. Anchoring vignettes, already appearing in numerous surveys worldwide, promise to overcome this problem. However, many anchoring vignettes have not been formally evaluated for adherence to the key measurement assumptions of vignette equivalence and response consistency. This article tests these assumptions in some of the most widely fielded anchoring vignettes in the world: the health vignettes in the World Health Organization (WHO) Study on Global AGEing and Adult Health (SAGE) and World Health Survey (WHS) (representing 10 countries; n = 52,388), as well as similar vignettes in the Health and Retirement Study (HRS) (n = 4,528). Findings are encouraging regarding adherence to response consistency, but reveal substantial violations of vignette equivalence both cross-nationally and across socioeconomic groups. That is, members of different sociocultural groups appear to interpret vignettes as depicting fundamentally different levels of health. The evaluated anchoring vignettes do not fulfill their promise of providing interpersonally comparable measures of health. Recommendations for improving future implementations of vignettes are discussed. PMID:26335547
Onay, Ulaş; Akpınar, Sercan; Akgün, Rahmi Can; Balçık, Cenk; Tuncay, Ismail Cengiz
2013-01-01
The aim of this study was to compare new knotless single-row and double-row suture anchor techniques with traditional transosseous suture techniques for different sized rotator cuff tears in an animal model. The study included 56 cadaveric sheep shoulders. Supraspinatus cuff tears of 1 cm repaired with new knotless single-row suture anchor technique and supraspinatus and infraspinatus rotator cuff tears of 3 cm repaired with double-row suture anchor technique were compared to traditional transosseous suture techniques and control groups. The repaired tendons were loaded with 5 mm/min static velocity with 2.5 kgN load cell in Instron 8874 machine until the repair failure. The 1 cm transosseous group was statistically superior to 1 cm control group (p=0.021, p<0.05) and the 3 cm SpeedBridge group was statistically superior to the 1 cm SpeedFix group (p=0.012, p<0.05). The differences between the other groups were not statistically significant. No significant difference was found between the new knotless suture anchor techniques and traditional transosseous suture techniques.
Coverage-Dependent Anchoring of 4,4'-Biphenyl Dicarboxylic Acid to CoO(111) Thin Films.
Mohr, Susanne; Schmitt, Tobias; Döpper, Tibor; Xiang, Feifei; Schwarz, Matthias; Görling, Andreas; Schneider, M Alexander; Libuda, Jörg
2017-05-02
We investigated the adsorption behavior of 4,4'-biphenhyl dicarboxylic acid (BDA) on well-ordered CoO(111) films grown on Ir(100) as a function of coverage and temperature using time-resolved and temperature-programmed infrared reflection absorption spectroscopy (TR-IRAS, TP-IRAS) in combination with density functional theory (DFT) and scanning tunneling microscopy (STM) under ultrahigh vacuum (UHV) conditions. To compare the binding behavior of BDA as a function of the oxide film thickness, three different CoO(111) film thicknesses were explored: films of about 20 bilayers (BLs) (approximately 5 nm), 2 BLs, and 1 BL. The two carboxylic acid groups of BDA offer two potential anchoring points to the oxide surface. At 150 K, intact BDA adsorbs on 20 BL thick oxide films in planar geometry with the phenyl rings aligned parallel to the surface. With decreasing oxide film thickness, we observe an increasing tendency for deprotonation and the formation of flat-lying BDA molecules anchored as dicarboxylates. After saturation of the first monolayer, intact BDA multilayers grow with molecules aligned parallel to the surface. The BDA multilayer desorbs at around 360 K. Completely different growth behavior is observed if BDA is deposited above the multilayer desorption temperature. Initially, doubly deprotonated dicarboxylates are formed by adopting a flat-lying orientation. With increasing exposure, however, the adsorbate layer transforms into upright standing monocarboxylates. A sharp OH stretching band (3584 cm -1 ) and a blue-shifted CO stretching band (1759 cm -1 ) indicate weakly interacting apical carboxylic acid groups at the vacuum interface. The anchored monocarboxylate phase slowly desorbs in a temperature range of up to 470 K. At higher temperature, a flat-lying doubly deprotonated BDA is formed, which desorbs and decomposes in a temperature range of up to 600 K.
Pattern-induced anchoring transitions in nematic liquid crystals
NASA Astrophysics Data System (ADS)
Rojas-Gómez, Óscar A.; Romero-Enrique, José M.; Silvestre, Nuno M.; Telo da Gama, Margarida M.
2017-02-01
In this paper we revisit the problem of a nematic liquid crystal in contact with patterned substrates. The substrate is modelled as a periodic array of parallel infinite grooves of well-defined cross-section sculpted on a chemically homogeneous substrate which favours local homeotropic anchoring of the nematic. We consider three cases: a sawtooth, a crenellated and a sinusoidal substrate. We analyse this problem within the modified Frank-Oseen formalism. We argue that, for substrate periodicities much larger than the extrapolation length, the existence of different nematic textures with distinct far-field orientations, as well as the anchoring transitions between them, are associated with the presence of topological defects either on or close to the substrate. For the sawtooth and sinusoidal cases, we observe a homeotropic to planar anchoring transition as the substrate roughness increases. On the other hand, a homeotropic to oblique anchoring transition is observed for crenellated substrates. In this case, the anchoring phase diagram shows a complex dependence on the substrate roughness and substrate anchoring strength.
ERIC Educational Resources Information Center
Kim, Sooyeon; Walker, Michael E.
2011-01-01
This study examines the use of subpopulation invariance indices to evaluate the appropriateness of using a multiple-choice (MC) item anchor in mixed-format tests, which include both MC and constructed-response (CR) items. Linking functions were derived in the nonequivalent groups with anchor test (NEAT) design using an MC-only anchor set for 4…
Arasada, Rajesh; Pollard, Thomas D
2014-09-11
Cdc15p is known to contribute to cytokinesis in fission yeast; however, the protein is not required to assemble the contractile ring of actin and myosin, but it helps to anchor the ring to the plasma membrane. Cdc15p has a lipid-binding F-BAR domain, suggesting that it provides a physical link between the plasma membrane and contractile ring proteins. However, we find that a more important function of Cdc15p during cytokinesis is to help deliver a transmembrane enzyme, Bgs1p (also called Cps1p), from the Golgi apparatus to the plasma membrane, where it appears to anchor the contractile ring. Bgs1p synthesizes the cell wall in the cleavage furrow, but its enzyme activity is not required to anchor the contractile ring. We estimate that ∼ 2,000 Bgs1p molecules are required to anchor the ring. Without Bgs1p anchors, contractile rings slide along the plasma membrane, a phenomenon that depends on an unconventional type II myosin called Myp2p. Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.
Pounraj, P; Mohankumar, V; Pandian, M Senthil; Ramasamy, P
2018-01-01
Twenty eight bi-anchored triphenylamine (TH-1 to TH-14) and phenyl modified triphenylamine (PH-TH-1 to PH-TH-14) based metal free organic dyes are designed for DSSC application. The electronic effect of different π-bridge configurations in donor-π-bridge-acceptor (D-π-A) 2 structure was theoretically simulated and verified using density functional theory (DFT) and time dependent density functional theory (TD-DFT). The triphenylamine and phenyl modified triphenylamine groups are used as donor and cyanoacrylic acid group is used as acceptor. Thiophene and cyanovinyl groups are used as π-bridge. The ground state molecular structure was optimized by density functional theory and the electronic absorption spectra were calculated by time dependent density functional theory. The light harvesting efficiency (LHE), dye regeneration energy (ΔG reg ) and electron injection energy (ΔG inject ) are determined by computational examination. It is observed that, when the number of π-bridge increases, the band gap of the dye decreases. Also the absorption maximum and molar extinction coefficient of the dyes are increased. Theoretical result shows that the thiophene-cyanovinyl and thiophene-thiophene-cyanovinyl-cyanovinyl configurations give broader and red shifted absorption spectrum compared to other configurations. Also the results of phenyl modified triphenylamine (PH-TH) dyes clearly show better absorption and dye regeneration energy compared to TH dyes. Copyright © 2017 Elsevier Inc. All rights reserved.
Quantum transport in alkane molecular wires: Effects of binding modes and anchoring groups
NASA Astrophysics Data System (ADS)
Sheng, W.; Li, Z. Y.; Ning, Z. Y.; Zhang, Z. H.; Yang, Z. Q.; Guo, H.
2009-12-01
Effects of binding modes and anchoring groups on nonequilibrium electronic transport properties of alkane molecular wires are investigated from atomic first-principles based on density functional theory and nonequilibrium Green's function formalism. Four typical binding modes, top, bridge, hcp-hollow, and fcc-hollow, are considered at one of the two contacts. For wires with three different anchoring groups, dithiol, diamine, or dicarboxylic acid, the low bias conductances resulting from the four binding modes are all found to have either a high or a low value, well consistent with recent experimental observations. The trend can be rationalized by the behavior of electrode-induced gap states at small bias. When bias increases to higher values, states from the anchoring groups enter into the bias window and contribute significantly to the tunneling process so that transport properties become more complicated for the four binding modes. Other low bias behaviors including the values of the inverse length scale for tunneling characteristic, contact resistance, and the ratios of the high/low conductance values are also calculated and compared to experimental results. The conducting capabilities of the three anchoring groups are found to decrease from dithiol, diamine to dicarboxylic-acid, largely owing to a decrease in binding strength to the electrodes. Our results give a clear microscopic picture to the transport physics and provide reasonable qualitative explanations for the corresponding experimental data.
NASA Astrophysics Data System (ADS)
Isomae, Yoshitomo; Shibata, Yosei; Ishinabe, Takahiro; Fujikake, Hideo
2018-03-01
We demonstrated that the uniform phase modulation in a pixel can be realized by optimizing the anchoring strength on the walls and the wall width in the dielectric shield wall structure, which is the needed pixel structure for realizing a 1-µm-pitch optical phase modulator. The anchoring force degrades the uniformity of the phase modulation in ON-state pixels, but it also keeps liquid crystals from rotating against the leakage of an electric field. We clarified that the optimal wall width and anchoring strength are 250 nm and less than 10-4 J/m2, respectively.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Souza, R.F. de; Yang, D.-Ke; Lenzi, E.K.
2014-07-15
An analytical expression for the relaxation time of a nematic liquid crystal is obtained for the first time by considering the influence of surface viscosity, anchoring energy strength and cell gap, validated numerically by using the so-called relaxation method. This general equation for the molecular response time (τ{sub 0}) was derived for a vertical aligned cell and by solving an eigenvalue equation coming from the usual balance of torque equation in the Derzhanskii and Petrov formulation, recovering the usual equations in the appropriate limit. The results show that τ∼d{sup b}, where b=2 is observed only for strongly anchored cells, whilemore » for moderate to weak anchored cells, the exponent lies between 1 and 2, depending on both, surface viscosity and anchoring strength. We found that the surface viscosity is important when calculating the response time, specially for thin cells, critical for liquid crystal devices. The surface viscosity’s effect on the optical response time with pretilt is also explored. Our results bring new insights about the role of surface viscosity and its effects in applied physics. - Highlights: • The relaxation of nematic liquid crystals is calculated by taking the surface viscosity into account. • An analytical expression for the relaxation time depending on surface viscosity, anchoring strength and cell gap is obtained. • The results are numerically verified. • Surface viscosity is crucial for thin and weak anchored cells. • The effect on optical time and pretilt angle is also studied.« less
Meier, Steven W; Meier, Jeffrey D
2006-11-01
The purpose of this study was to compare the initial mechanical strength of 3 rotator cuff repair techniques. A total of 30 fresh-frozen cadaveric shoulders were prepared, and full-thickness supraspinatus tears were created. Specimens were randomized and placed into 3 groups: (1) transosseous suture technique (group I: TOS, n = 10, 6F/4M), (2) single-row suture anchor fixation (group II: SRSA, n = 10, 6F/4M), and (3) double-row suture anchor fixation (group III: DRSA, n = 10, 6F/4M). Each specimen underwent cyclic load testing from 5 N to 180 N at a rate of 33 mm/sec. The test was stopped when complete failure (repair site gap of 10 mm) or a total of 5,000 cycles was attained. Group I (TOS) failed at an average of 75.3 +/- 22.49 cycles, and group II (SRSA) at an average of 798.3 +/- 73.28 cycles; group III (DRSA) had no failures because all samples were stopped when 5,000 cycles had been completed. Fixation strength of the DRSA technique proved to be significantly greater than that of SRSA (P < .001), and both suture anchor groups were significantly stronger than the TOS group (P < .001). Suture anchor repairs were significantly stronger than transosseous repairs. Furthermore, double-row suture anchor fixation was significantly stronger than was single-row repair. Therefore, double-row fixation may be superior to other techniques in that it provides a substantially stronger repair that could lead to improved biologic healing. A high incidence of incomplete healing occurs in rotator cuff repair. Use of double-row fixation may help the clinician to address some deficiencies in current methods by increasing the strength of the repair, potentially leading to improved healing rates.
ERIC Educational Resources Information Center
Kane, Michael T.; Mroch, Andrew A.; Suh, Youngsuk; Ripkey, Douglas R.
2009-01-01
This paper analyzes five linear equating models for the "nonequivalent groups with anchor test" (NEAT) design with internal anchors (i.e., the anchor test is part of the full test). The analysis employs a two-dimensional framework. The first dimension contrasts two general approaches to developing the equating relationship. Under a "parameter…
Jung, Christian; Spreiter, Gregor; Audigé, Laurent; Ferguson, Stephen J; Flury, Matthias
2016-05-01
There is an ongoing debate about the potential of patch augmentation to improve biomechanical stability and healing associated with rotator cuff repair. The biomechanical properties of three different patch-augmented rotator cuff repair techniques were assessed in vitro and compared with a standard repair. Dermal collagen patch augmentation may increase the primary stability and strength of the repaired tendon in vitro, depending on the technique used for patch application. Forty cadaveric sheep shoulders with dissected infraspinatus tendons were randomized into four groups (n = 10/group) for tendon repair using a knotless double-row suture anchor technique. A xenologous dermal extracellular matrix patch was used for augmentation in the three test groups using an "integrated", "cover", or "hybrid" technique. Tendons were preconditioned, cyclically loaded from 10 to 30 N at 1 Hz, and then loaded monotonically to failure. Biomechanical properties and the mode of failure were evaluated. Patch augmentation significantly increased the maximum load at failure by 61 % in the "cover" technique test group (225.8 N) and 51 % in the "hybrid" technique test group (211.4 N) compared with the non-augmented control group (140.2 N) (P ≤ 0.015). For the test group with "integrated" patch augmentation, the load at failure was 28 % lower (101.6 N) compared with the control group (P = 0.043). There was no significant difference in initial and linear stiffness among the four experimental groups. The most common mode of failure was tendon pullout. No anchor dislocation, patch disruption or knot breakage was observed. Additional patch augmentation with a collagen patch influences the biomechanical properties of a rotator cuff repair in a cadaveric sheep model. Primary repair stability can be significantly improved depending on the augmentation technique.
Recommended placement torque when tightening an orthodontic mini-implant.
Motoyoshi, Mitsuru; Hirabayashi, Masayuki; Uemura, Miwa; Shimizu, Noriyoshi
2006-02-01
To determine an adequate placement torque for obtaining a better success rate of mini-implants that are screwed into the buccal alveolar bone of the posterior region as an anchor for orthodontic treatment, implant placement torque (IPT) was measured. The subjects were 41 orthodontic patients (124 implants), with an average age of 24.9 years (SD 6.5 years), who had surgery to place titanium mini-implants. The peak value of IPT was measured using a torque screwdriver. The success rate of the mini-implant anchor for 124 implants was 85.5%. The mean IPT ranged from 7.2 to 13.5 N cm, depending on the location of the implants. There was a significant difference in the IPT between maxilla and mandible. The IPT in the mandible was, unexpectedly, significantly higher in the failure group than in the success group. Therefore, a large IPT should not be used always. According to our calculations of the risk ratio for failure, to raise the success rate of 1.6-mm diameter mini-implants, the recommended IPT is within the range from 5 to 10 N cm.
Roles of vacuum tunnelling and contact mechanics in single-molecule thermopower
NASA Astrophysics Data System (ADS)
Tsutsui, Makusu; Yokota, Kazumichi; Morikawa, Takanori; Taniguchi, Masateru
2017-03-01
Molecular junction is a chemically-defined nanostructure whose discrete electronic states are expected to render enhanced thermoelectric figure of merit suitable for energy-harvesting applications. Here, we report on geometrical dependence of thermoelectricity in metal-molecule-metal structures. We performed simultaneous measurements of the electrical conductance and thermovoltage of aromatic molecules having different anchoring groups at room temperature in vacuum. We elucidated the mutual contributions of vacuum tunnelling on thermoelectricity in the short molecular bridges. We also found stretching-induced thermoelectric voltage enhancement in thiol-linked single-molecule bridges along with absence of the pulling effects in diamine counterparts, thereby suggested that the electromechanical effect would be a rather universal phenomenon in Au-S anchored molecular junctions that undergo substantial metal-molecule contact elongation upon stretching. The present results provide a novel concept for molecular design to achieve high thermopower with single-molecule junctions.
Schuschke, Christian; Schwarz, Matthias; Hohner, Chantal; Silva, Thais N; Fromm, Lukas; Döpper, Tibor; Görling, Andreas; Libuda, Jörg
2018-04-19
We have studied the anchoring mechanism of a phosphonic acid on an atomically defined oxide surface. Using time-resolved infrared reflection absorption spectroscopy, we investigated the reaction of deuterated phenylphosphonic acid (DPPA, C 6 H 5 PO 3 D 2 ) with an atomically defined Co 3 O 4 (111) surface in situ during film growth by physical vapor deposition. We show that the binding motif of the phosphonate anchor group changes as a function of coverage. At low coverage, DPPA binds in the form of a chelating tridentate phosphonate, while a transition to a chelating bidentate occurs close to monolayer saturation coverage. However, the coverage-dependent change in the binding motif is not associated with a major change of the molecular orientation, suggesting that the rigid phosphonate linker always maintains the DPPA in a strongly tilted orientation irrespective of the surface coverage.
Using Anchoring Vignettes to Assess Group Differences in General Self-Rated Health
ERIC Educational Resources Information Center
Grol-Prokopczyk, Hanna; Freese, Jeremy; Hauser, Robert M.
2011-01-01
This article addresses a potentially serious problem with the widely used self-rated health (SRH) survey item: that different groups have systematically different ways of using the item's response categories. Analyses based on unadjusted SRH may thus yield misleading results. The authors evaluate anchoring vignettes as a possible solution to this…
The place of white in a world of grays: a double-anchoring theory of lightness perception.
Bressan, Paola
2006-07-01
The specific gray shades in a visual scene can be derived from relative luminance values only when an anchoring rule is followed. The double-anchoring theory I propose in this article, as a development of the anchoring theory of Gilchrist et al. (1999), assumes that any given region (a) belongs to one or more frameworks, created by Gestalt grouping principles, and (b) is independently anchored, within each framework, to both the highest luminance and the surround luminance. The region's final lightness is a weighted average of the values computed, relative to both anchors, in all frameworks. The new model accounts not only for all lightness illusions that are qualitatively explained by the anchoring theory but also for a number of additional effects, and it does so quantitatively, with the support of mathematical simulations. ((c) 2006 APA, all rights reserved).
21 CFR 872.3130 - Preformed anchor.
Code of Federal Regulations, 2014 CFR
2014-04-01
... DEVICES DENTAL DEVICES Prosthetic Devices § 872.3130 Preformed anchor. (a) Identification. A preformed... the platinum group intended to be incorporated into a dental appliance, such as a denture, to help...
Msd1/SSX2IP-dependent microtubule anchorage ensures spindle orientation and primary cilia formation
Hori, Akiko; Ikebe, Chiho; Tada, Masazumi; Toda, Takashi
2014-01-01
Anchoring microtubules to the centrosome is critical for cell geometry and polarity, yet the molecular mechanism remains unknown. Here we show that the conserved human Msd1/SSX2IP is required for microtubule anchoring. hMsd1/SSX2IP is delivered to the centrosome in a centriolar satellite-dependent manner and binds the microtubule-nucleator γ-tubulin complex. hMsd1/SSX2IP depletion leads to disorganised interphase microtubules and misoriented mitotic spindles with reduced length and intensity. Furthermore, hMsd1/SSX2IP is essential for ciliogenesis, and during zebrafish embryogenesis, knockdown of its orthologue results in ciliary defects and disturbs left-right asymmetry. We propose that the Msd1 family comprises conserved microtubule-anchoring proteins. PMID:24397932
De Carli, Angelo; Lanzetti, Riccardo Maria; Monaco, Edoardo; Labianca, Luca; Mossa, Luigi; Ferretti, Andrea; Feretti, Andrea
2012-11-01
Despite technical advances in rotator cuff surgery, recurrent or persistent defects in the repaired tendon continue to occur. The improved strength of sutures and suture anchors has shown that the most common site of failure is the suture-tendon interface. The purpose of this study was to compare two different types of repair under both cyclic and load-to-failure conditions. The hypothesis is that the use of a fixation system with knotless anchor and taped suture results in better biomechanical performance, under both cyclic and load-to-failure conditions. Thirty bovine shoulder specimens were randomly assigned to two group tests: the Swivelock 5-mm anchor with Fibertape (Group A) and the Bio-Corkscrew 5 mm with Fiberwire (Group B). We simulated the reconstruction of a rotator cuff tear with a single-row technique, performing a tenodesis with types A and B fixation. Each specimen underwent cyclic testing from 5 to 30 N for 30 cycles, followed by load-to-failure testing, in order to calculate the ultimate failure load (UFL). Load-to-failure tests revealed a significantly higher UFL in Group A than in Group B. Wire fixing failed at the anchor loop whereas tape fixing failed at the sutures, suture-tendon interface, and anchors. Cyclic testing revealed no significantly greater slippage between the two groups. Stiffness values were not statistically significantly different. In all cases, tendons remained intact until the end of the cyclic testing. The tape structure is biomechanically stronger than the wire structure.
Sherman, Seth L; Copeland, Marilyn E; Milles, Jeffrey L; Flood, David A; Pfeiffer, Ferris M
2016-06-01
To evaluate the biomechanical fixation strength of suture anchor and transosseous tunnel repair of the quadriceps tendon in a standardized cadaveric repair model. Twelve "patella-only" specimens were used. Dual-energy X-ray absorptiometry measurement was performed to ensure equal bone quality amongst groups. Specimens were randomly assigned to either a suture anchor repair of quadriceps tendon group (n = 6) or a transosseous tunnel repair group (n = 6). Suture type and repair configuration were equivalent. After the respective procedures were performed, each patella was mounted into a gripping jig. Tensile load was applied at a rate of 0.1 mm/s up to 100 N after which cyclic loading was applied at a rate of 1 Hz between magnitudes of 50 to 150 N, 50 to 200 N, 50 to 250 N, and tensile load at a rate of 0.1 mm/s until failure. Outcome measures included load to failure, displacement at 1st 100 N load, and displacement after each 10th cycle of loading. The measured cyclic displacement to the first 100 N, 50 to 150 N, 50 to 200 N, and 50 to 250 N was significantly less for suture anchors than transosseous tunnels. There was no statistically significant difference in ultimate load to failure between the 2 groups (P = .40). Failure mode for all suture anchors except one was through the soft tissue. Failure mode for all transosseous specimens but one was pulling the repair through the transosseous tunnel. Suture anchor quadriceps tendon repairs had significantly decreased gapping during cyclic loading, but no statistically significant difference in ultimate load to failure when compared with transosseous tunnel repairs. Although suture anchor quadriceps tendon repair appears to be a biomechanically superior construct, a clinical study is needed to confirm this technique as a viable alternative to gold standard transosseous techniques. Although in vivo studies are needed, these results support the suture anchor technique as a viable alternative to transosseous repair of the quadriceps tendon. Copyright © 2016 Arthroscopy Association of North America. Published by Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Cattes, Stefanie M.; Gubbins, Keith E.; Schoen, Martin
2016-05-01
In this work, we employ classical density functional theory (DFT) to investigate for the first time equilibrium properties of a Heisenberg fluid confined to nanoscopic slit pores of variable width. Within DFT pair correlations are treated at modified mean-field level. We consider three types of walls: hard ones, where the fluid-wall potential becomes infinite upon molecular contact but vanishes otherwise, and hard walls with superimposed short-range attraction with and without explicit orientation dependence. To model the distance dependence of the attractions, we employ a Yukawa potential. The orientation dependence is realized through anchoring of molecules at the substrates, i.e., an energetic discrimination of specific molecular orientations. If the walls are hard or attractive without specific anchoring, the results are "quasi-bulk"-like in that they can be linked to a confinement-induced reduction of the bulk mean field. In these cases, the precise nature of the walls is completely irrelevant at coexistence. Only for specific anchoring nontrivial features arise, because then the fluid-wall interaction potential affects the orientation distribution function in a nontrivial way and thus appears explicitly in the Euler-Lagrange equations to be solved for minima of the grand potential of coexisting phases.
Güleçyüz, Mehmet F; Mazur, Alexandra; Schröder, Christian; Braun, Christian; Ficklscherer, Andreas; Roßbach, Björn P; Müller, Peter E; Pietschmann, Matthias F
2015-06-01
The purpose of this study was to analyze the biomechanical integrity of suture anchors of different materials (titanium, PEEK [polyether ether ketone], poly-L-lactic acid [PLLA], and β-tricalcium phosphate PLLA) and almost identical design for rotator cuff repair in human humeri positioned in a water bath at room and body temperature undergoing cyclic loading rather than single-pull or static tests. Four different anchor models (n = 6) were tested using healthy human cadaveric humeri in a water bath thermostatically regulated at 20°C and 37°C. A cyclic testing protocol was used. The maximum failure load, the system displacement, and the respective mode of failure were recorded. There were no significant differences regarding the maximum failure load values between the 20°C groups and 37°C groups for the 4 different anchor materials. The displacement values for the 20°C groups and 37°C groups also were not statistically significant. Anchor and suture dislocations were the predominant modes of failure; suture ruptures were observed in few cases. This study shows that there are no significantly relevant differences regarding the maximum failure loads and the displacement values of the tested suture anchor systems in a wet environment at 20°C or 37°C. The temperature differences do not seem to affect the modes of failure either. Titanium, PEEK, PLLA, and β-tricalcium phosphate PLLA suture anchors for rotator cuff repair can be expected-on the basis of this investigation comparing laboratory temperature with body temperature and a wet environment-to perform in vivo similar to in vitro testing. Copyright © 2015 Arthroscopy Association of North America. Published by Elsevier Inc. All rights reserved.
Xiao, ShanWen; Liang, ZhuDe; Wei, Wu; Ning, JinPei
2017-04-01
To compare the rate of postoperative dysphagia between zero-profile anchored cage fixation (ZPC group) and cage with plate fixation (CP group) after anterior cervical discectomy and fusion (ACDF). A meta-analysis of cohort studies between zero-profile anchored cage and conventional cage with plate fixation after ACDF for the treatment of cervical diseases from 2008 to May 2016. An extensive search of studies was performed in PubMed, Medline, Embase, Cochrane library and Google Scholar. Dysphagia rate was extracted. Data analysis was conducted with RevMan 5.2. Sixteen trials involving 1066 patients were included in this meta-analysis. The results suggested that the ZPC group were associated with lower incidences of dysphagia than the CP group at postoperative immediately, 2 weeks, 2, 3, 6 and 12 months. In subgroup analysis, although significant differences were only found in the mild dysphagia at 3 and 6 months postoperatively and in the moderate dysphagia at 2 weeks after surgery; the ZPC group had a lower rate of postoperative dysphagia than the CCP group in short, medium and long term follow-up periods. Zero-profile anchored cage had a lower risk of postoperative dysphagia than cage with plate.
Biomechanical Analysis of Suture Anchor vs Tenodesis Screw for FHL Transfer.
Drakos, Mark C; Gott, Michael; Karnovsky, Sydney C; Murphy, Conor I; DeSandis, Bridget A; Chinitz, Noah; Grande, Daniel; Chahine, Nadeen
2017-07-01
Chronic Achilles injury is often treated with flexor hallucis longus (FHL) tendon transfer to the calcaneus using 1 or 2 incisions. A single incision avoids the risks of extended dissections yet yields smaller grafts, which may limit fixation options. We investigated the required length of FHL autograft and biomechanical profiles for suture anchor and biotenodesis screw fixation. Single-incision FHL transfer with suture anchor or biotenodesis screw fixation to the calcaneus was performed on 20 fresh cadaveric specimens. Specimens were cyclically loaded until maximal load to failure. Length of FHL tendon harvest, ultimate load, stiffness, and mode of failure were recorded. Tendon harvest length needed for suture anchor fixation was 16.8 ± 2.1 mm vs 29.6 ± 2.4 mm for biotenodesis screw ( P = .002). Ultimate load to failure was not significantly different between groups. A significant inverse correlation existed between failure load and donor age when all specimens were pooled (ρ = -0.49, P < .05). Screws in younger specimens (fewer than 70) resulted in significantly greater failure loads ( P < .03). No difference in stiffness was found between groups. Modes of failure for screw fixation were either tunnel pullout (n = 6) or tendon rupture (n = 4). Anchor failure occurred mostly by suture breakage (n = 8). Adequate FHL tendon length could be harvested through a single posterior incision for fixation to the calcaneus with either fixation option, but suture anchor required significantly less graft length. Stiffness, fixation strength, and load to failure were comparable between groups. An inverse correlation existed between failure load and donor age. Younger specimens with screw fixation demonstrated significantly greater failure loads. Adequate harvest length for FHL transfer could be achieved with a single posterior incision. There was no difference in strength of fixation between suture anchor and biotenodesis screw.
Bone anchors or interference screws? A biomechanical evaluation for autograft ankle stabilization.
Jeys, Lee; Korrosis, Sotiris; Stewart, Todd; Harris, Nicholas J
2004-01-01
Autograft stabilization uses free semitendinosus tendon grafts to anatomically reconstruct the anterior talofibular ligament. Study aims were to evaluate the biomechanical properties of Mitek GII anchors compared with the Arthrex Bio-Tenodesis Screw for free tendon reconstruction of the anterior talofibular ligament. There are no differences in load to failure and percentage specimen elongation at failure between the 2 methods. Controlled laboratory study using porcine models. Sixty porcine tendon constructs were failure tested. Re-creating the pull of the anterior talofibular ligament, loads were applied at 70 degrees to the bones. Thirty-six tendons were fixed to porcine tali and tested using a single pull to failure; 10 were secured with anchors and No. 2 Ethibond, 10 with anchors and FiberWire, 10 with screws and Fiberwire, and 6 with partially gripped screws. Cyclic preloading was conducted on 6 tendons fixed by anchors and on 6 tendons fixed by screws before failure testing. Two groups of 6 components fixed to the fibula were also tested. The talus single-pull anchor group produced a mean load of 114 N and elongation of 37% at failure. The talus single-pull screw group produced a mean load of 227 N and elongation of 22% at failure (P <.05). Cyclic preloading at 65% failure load before failure testing produced increases in load and decreases in elongation at failure. Partially gripped screws produced a load of 133 N and elongation of 30% at failure. The fibula model produced significant increases in load to failure for both. The human anterior talofibular ligament has loads of 139 N at failure with instability occurring at 20% elongation. Interference screw fixation produced significantly greater failure strength and less elongation at failure than bone anchors. The improved biomechanics of interference screws suggests that these may be more suited to in vivo reconstruction of the anterior talofibular ligament than are bone anchors.
Comparison of the One- and Bi-Direction Chained Equipercentile Equating
ERIC Educational Resources Information Center
Oh, Hyeonjoo; Moses, Tim
2012-01-01
This study investigated differences between two approaches to chained equipercentile (CE) equating (one- and bi-direction CE equating) in nearly equal groups and relatively unequal groups. In one-direction CE equating, the new form is linked to the anchor in one sample of examinees and the anchor is linked to the reference form in the other…
Jackknifing Techniques for Evaluation of Equating Accuracy. Research Report. ETS RR-09-39
ERIC Educational Resources Information Center
Haberman, Shelby J.; Lee, Yi-Hsuan; Qian, Jiahe
2009-01-01
Grouped jackknifing may be used to evaluate the stability of equating procedures with respect to sampling error and with respect to changes in anchor selection. Properties of grouped jackknifing are reviewed for simple-random and stratified sampling, and its use is described for comparisons of anchor sets. Application is made to examples of item…
Use of Continuous Exponential Families to Link Forms via Anchor Tests. Research Report. ETS RR-11-11
ERIC Educational Resources Information Center
Haberman, Shelby J.; Yan, Duanli
2011-01-01
Continuous exponential families are applied to linking test forms via an internal anchor. This application combines work on continuous exponential families for single-group designs and work on continuous exponential families for equivalent-group designs. Results are compared to those for kernel and equipercentile equating in the case of chained…
Psychometric Consequences of Subpopulation Item Parameter Drift
ERIC Educational Resources Information Center
Huggins-Manley, Anne Corinne
2017-01-01
This study defines subpopulation item parameter drift (SIPD) as a change in item parameters over time that is dependent on subpopulations of examinees, and hypothesizes that the presence of SIPD in anchor items is associated with bias and/or lack of invariance in three psychometric outcomes. Results show that SIPD in anchor items is associated…
The Kernel Levine Equipercentile Observed-Score Equating Function. Research Report. ETS RR-13-38
ERIC Educational Resources Information Center
von Davier, Alina A.; Chen, Haiwen
2013-01-01
In the framework of the observed-score equating methods for the nonequivalent groups with anchor test design, there are 3 fundamentally different ways of using the information provided by the anchor scores to equate the scores of a new form to those of an old form. One method uses the anchor scores as a conditioning variable, such as the Tucker…
Schiebener, Johannes; Wegmann, Elisa; Pawlikowski, Mirko; Brand, Matthias
2012-11-01
Models of decision making postulate that interactions between contextual conditions and characteristics of the decision maker determine decision-making performance. We tested this assumption by using a possible positive contextual influence (goals) and a possible negative contextual influence (anchor) in a risky decision-making task (Game of Dice Task, GDT). In this task, making advantageous choices is well known to be closely related to a specific decision maker variable: the individual level of executive functions. One hundred subjects played the GDT in one of four conditions: with self-set goal for final balance (n = 25), with presentation of an anchor (a fictitious Top 10 list, showing high gains of other participants; n = 25), with anchor and goal definition (n = 25), and with neither anchor nor goal setting (n = 25). Subjects in the conditions with anchor made more risky decisions irrespective of the negative feedback, but this anchor effect was influenced by goal monitoring and moderated by the level of the subjects' executive functions. The findings imply that impacts of situational influences on decision making as they frequently occur in real life depend upon the individual's cognitive abilities. Anchor effects can be overcome by subjects with good cognitive abilities.
Anchored but not internalized: shape dependent endocytosis of nanodiamond
NASA Astrophysics Data System (ADS)
Zhang, Bokai; Feng, Xi; Yin, Hang; Ge, Zhenpeng; Wang, Yanhuan; Chu, Zhiqin; Raabova, Helena; Vavra, Jan; Cigler, Petr; Liu, Renbao; Wang, Yi; Li, Quan
2017-04-01
Nanoparticle-cell interactions begin with the cellular uptake of the nanoparticles, a process that eventually determines their cellular fate. In the present work, we show that the morphological features of nanodiamonds (NDs) affect both the anchoring and internalization stages of their endocytosis. While a prickly ND (with sharp edges/corners) has no trouble of anchoring onto the plasma membrane, it suffers from difficult internalization afterwards. In comparison, the internalization of a round ND (obtained by selective etching of the prickly ND) is not limited by its lower anchoring amount and presents a much higher endocytosis amount. Molecular dynamics simulation and continuum modelling results suggest that the observed difference in the anchoring of round and prickly NDs likely results from the reduced contact surface area with the cell membrane of the former, while the energy penalty associated with membrane curvature generation, which is lower for a round ND, may explain its higher probability of the subsequent internalization.
Hart, Nathan D; Wallace, Matthew K; Scovell, J Field; Krupp, Ryan J; Cook, Chad; Wyland, Douglas J
2012-09-01
Quadriceps rupture off the patella is traditionally repaired by a transosseous tunnel technique, although a single-row suture anchor repair has recently been described. This study biomechanically tested a new transosseous equivalent (TE) double-row suture anchor technique compared with the transosseous repair for quadriceps repair. After simulated quadriceps-patella avulsion in 10 matched cadaveric knees, repairs were completed by either a three tunnel transosseous (TT = 5) or a TE suture anchor (TE = 5) technique. Double-row repairs were done using two 5.5 Bio-Corkscrew FT (fully threaded) (Arthrex, Inc., Naples, FL, USA) and two 3.5 Bio-PushLock anchors (Arthrex, Inc., Naples, FL, USA) with all 10 repairs done with #2 FiberWire suture (Arthrex, Inc., Naples, FL). Cyclic testing from 50 to 250 N for 250 cycles and pull to failure load (1 mm/s) were undertaken. Gap formation and ultimate tensile load (N) were recorded and stiffness data (N/mm) were calculated. Statistical analysis was performed using a Mann-Whitney U test and survival characteristics examined with Kaplan-Meier test. No significant difference was found between the TE and TT groups in stiffness (TE = 134 +/- 15 N/mm, TT = 132 +/- 26 N/mm, p = 0.28). The TE group had significantly less ultimate tensile load (N) compared with the TT group (TE = 447 +/- 86 N, TT = 591 +/- 84 N, p = 0.04), with all failures occurring at the suture eyelets. Although both quadriceps repairs were sufficiently strong, the transosseous repairs were stronger than the TE suture anchor repairs. The repair stiffness and gap formation were similar between the groups.
Urita, Atsushi; Funakoshi, Tadanao; Horie, Tatsunori; Nishida, Mutsumi; Iwasaki, Norimasa
2017-01-01
Vascularity is the important factor of biologic healing of the repaired tissue. The purpose of this study was to clarify sequential vascular patterns of repaired rotator cuff by suture techniques. We randomized 21 shoulders in 20 patients undergoing arthroscopic rotator cuff repair into 2 groups: transosseous-equivalent repair (TOE group, n = 10) and transosseous repair (TO group, n = 11). Blood flow in 4 regions inside the cuff (lateral articular, lateral bursal, medial articular, and medial bursal), in the knotless suture anchor in the TOE group, and in the bone tunnel in the TO group was measured using contrast-enhanced ultrasound at 1 month, 2 months, 3 months, and 6 months postoperatively. The sequential vascular pattern inside the repaired rotator cuff was different between groups. The blood flow in the lateral articular area at 1 month, 2 months, and 3 months (P = .002, .005, and .025) and that in the lateral bursal area at 2 months (P = .031) in the TO group were significantly greater than those in the TOE group postoperatively. Blood flow was significantly greater for the bone tunnels in the TO group than for the knotless suture anchor in the TOE group at 1 month and 2 months postoperatively (P = .041 and .009). This study clarified that the sequential vascular pattern inside the repaired rotator cuff depends on the suture technique used. Bone tunnels through the footprint may contribute to biologic healing by increasing blood flow in the repaired rotator cuff. Copyright © 2017 Journal of Shoulder and Elbow Surgery Board of Trustees. Published by Elsevier Inc. All rights reserved.
Design and Application of a Field Sensing System for Ground Anchors in Slopes
Choi, Se Woon; Lee, Jihoon; Kim, Jong Moon; Park, Hyo Seon
2013-01-01
In a ground anchor system, cables or tendons connected to a bearing plate are used for stabilization of slopes. Then, the stability of a slope is dependent on maintaining the tension levels in the cables. So far, no research on a strain-based field sensing system for ground anchors has been reported. Therefore, in this study, a practical monitoring system for long-term sensing of tension levels in tendons for anchor-reinforced slopes is proposed. The system for anchor-reinforced slopes is composed of: (1) load cells based on vibrating wire strain gauges (VWSGs), (2) wireless sensor nodes which receive and process the signals from load cells and then transmit the result to a master node through local area communication, (3) master nodes which transmit the data sent from sensor nodes to the server through mobile communication, and (4) a server located at the base station. The system was applied to field sensing of ground anchors in the 62 m-long and 26 m-high slope at the side of the highway. Based on the long-term monitoring, the safety of the anchor-reinforced slope can be secured by the timely applications of re-tensioning processes in tendons. PMID:23507820
Frequency sensitive mechanism in low-intensity ultrasound enhanced bioeffects
Chama, Abdoulkadri; Subramanian, Anuradha; Viljoen, Hendrik J.
2017-01-01
This study presents two novel theoretical models to elucidate frequency sensitive nuclear mechanisms in low-intensity ultrasound enhanced bioeffects. In contrast to the typical 1.5 MHz pulsed ultrasound regime, our group previously experimentally confirmed that ultrasound stimulation of anchored chondrocytes at resonant frequency maximized gene expression of load inducible genes which are regulatory markers for cellular response to external stimuli. However, ERK phosphorylation displayed no frequency dependency, suggesting that the biochemical mechanisms involved in enhanced gene expression is downstream of ERK phosphorylation. To elucidate such underlying mechanisms, this study presents a theoretical model of an anchored cell, representing an in vitro chondrocyte, in an ultrasound field. The model results showed that the mechanical energy storage is maximized at the chondrocyte’s resonant frequency and the energy density in the nucleus is almost twice as high as in the cytoplasm. Next, a mechanochemical model was developed to link the mechanical stimulation of ultrasound and the increased mechanical energy density in the nucleus to the downstream targets of the ERK pathway. This study showed for the first time that ultrasound stimulation induces frequency dependent gene expression as a result of altered rates of transcription factors binding to chromatin. PMID:28763448
Immobilization of mesoporous silica particles on stainless steel plates
NASA Astrophysics Data System (ADS)
Pasqua, Luigi; Morra, Marco
2017-03-01
A preliminary study aimed to the nano-engineering of stainless steel surface is presented. Aminopropyl-functionalized mesoporous silica is covalently and electrostatically anchored on the surface of stainless steel plates. The anchoring is carried out through the use of a nanometric spacer, and two different spacers are proposed (both below 2 nm in size). The first sample is obtained by anchoring to the stainless steel amino functionalized, a glutaryl dichloride spacer. This specie forms an amide linkage with the amino group while the unreacted acyl groups undergo hydrolysis giving a free carboxylic group. The so-obtained functionalized stainless steel plate is used as substrate for anchoring derivatized mesoporous silica particles. The second sample is prepared using 2-bromo-methyl propionic acid as spacer (BMPA). Successively, the carboxylic group of propionic acid is condensed to the aminopropyl derivatization on the external surface of the mesoporous silica particle through covalent bond. In both cases, a continuous deposition (coating thickness is around 10 μm) is obtained, in fact, XPS data do not reveal the metal elements constituting the plate. The nano-engineering of metal surfaces can represent an intriguing opportunity for producing long-term drug release or biomimetic surface.
ERIC Educational Resources Information Center
Walker, Michael E.; Kim, Sooyeon
2010-01-01
This study examined the use of an all multiple-choice (MC) anchor for linking mixed format tests containing both MC and constructed-response (CR) items, in a nonequivalent groups design. An MC-only anchor could effectively link two such test forms if either (a) the MC and CR portions of the test measured the same construct, so that the MC anchor…
One for all: social power increases self-anchoring of traits, attitudes, and emotions.
Overbeck, Jennifer R; Droutman, Vitaliya
2013-08-01
We argue that powerful people tend to engage in social projection. Specifically, they self-anchor: They use the self as a reference point when judging others' internal states. In Study 1, which used a reaction-time paradigm, powerful people used their own traits as a reference when assessing the traits of group members, classifying group descriptors more quickly if they had previously reported that those terms described themselves. Study 2, which used a classic false-consensus paradigm, showed that powerful people believed that their group-related attitudes were shared by group members. Study 3 showed that more-powerful people relied more on their own state affect when judging other people's ambiguous emotional expressions. These results support our argument that power fosters self-anchoring, because powerful individuals are often called on to act as the representative face of their groups, and the association between power and representation prompts the heuristic use of the self to infer group properties.
Elementary school children's science learning from school field trips
NASA Astrophysics Data System (ADS)
Glick, Marilyn Petty
This research examines the impact of classroom anchoring activities on elementary school students' science learning from a school field trip. Although there is prior research demonstrating that students can learn science from school field trips, most of this research is descriptive in nature and does not examine the conditions that enhance or facilitate such learning. The current study draws upon research in psychology and education to create an intervention that is designed to enhance what students learn from school science field trips. The intervention comprises of a set of "anchoring" activities that include: (1) Orientation to context, (2) Discussion to activate prior knowledge and generate questions, (3) Use of field notebooks during the field trip to record observations and answer questions generated prior to field trip, (4) Post-visit discussion of what was learned. The effects of the intervention are examined by comparing two groups of students: an intervention group which receives anchoring classroom activities related to their field trip and an equivalent control group which visits the same field trip site for the same duration but does not receive any anchoring classroom activities. Learning of target concepts in both groups was compared using objective pre and posttests. Additionally, a subset of students in each group were interviewed to obtain more detailed descriptive data on what children learned through their field trip.
Noël, Jean-Marc; Sjöberg, Béatrice; Marsac, Rémi; Zigah, Dodzi; Bergamini, Jean-François; Wang, Aifang; Rigaut, Stéphane; Hapiot, Philippe; Lagrost, Corinne
2009-11-03
A versatile two-step method is developed to covalently immobilize redox-active molecules onto carbon surfaces. First, a robust anchoring platform is grafted onto surfaces by electrochemical reduction of aryl diazonium salts in situ generated. Depending on the nature of the layer termini, -COOH or -NH(2), a further chemical coupling involving ferrocenemethylamine or ferrocene carboxylic acid derivatives leads to the covalent binding of ferrocene centers. The chemical strategy using acyl chloride activation is efficient and flexible, since it can be applied either to surface-reactive end groups or to reactive species in solution. Cyclic voltammetry analyses point to the covalent binding of ferrocene units restricted to the upper layers of the underlying aryl films, while AFM measurements show a lost of compactness of the layers after the chemical attachment of ferrocene centers. The preparation conditions of the anchoring layers were found to determine the interfacial properties of the resulted ferrocenyl-modified electrodes. The ferrocene units promoted effective redox mediation providing that the free redox probes are adequately chosen (i.e., vs size/formal potential) and the underlying layers exhibit strong blocking properties. For anchoring films with weaker blocking effect, the coexistence of two distinct phenomena, redox mediation and ET at pinholes could be evidenced.
Social-Cognitive Biases in Simulated Airline Luggage Screening
NASA Technical Reports Server (NTRS)
Brown, Jeremy R.; Madhavan, Poomima
2011-01-01
This study illustrated how social cognitive biases affect the decision making process of air1ine luggage screeners. Participants (n = 96) performed a computer simulated task to detect hidden weapons in 200 x-ray images of passenger luggage. Participants saw each image for two (high time pressure) or six seconds (low time pressure). Participants observed pictures of the "passenger" who owns the luggage . The "pre-anchor group" answered questions about the passenger before the luggage image appeared, the "post-snchor" group answered questions after the luggage appeared, and the "no-anchor group" answered no questions. Participants either stopped or did not stop the bag. and rated their confidence in their decision. Participants under high time pressure had lower hit rates and higher false alarms, Significant differences between the pre-, no-, and post-anchor groups were based on the gender and race of the passengers. Participants had higher false alarm rates in response to male than female passengers.
Anchorage Behaviors of Frictional Tieback Anchors in Silty Sand
NASA Astrophysics Data System (ADS)
Hsu, Shih-Tsung; Hsiao, Wen-Ta; Chen, Ke-Ting; Hu, Wen-Chi; Wu, Ssu-Yi
2017-06-01
Soil anchors are extensively used in geotechnical applications, most commonly serve as tieback walls in deep excavations. To investigate the anchorage mechanisms of this tieback anchor, a constitutive model that considers both strain hardening and softening and volume dilatancy entitled SHASOVOD model, and FLAC3D software are used to perform 3-D numerical analyses. The results from field anchor tests are compared with those calculated by numerical analyses to enhance the applicability of the numerical method. After the calibration, this research carried out the parameter studies by numerical analyses. The numerical results reveal that whether the yield of soil around an anchor develops to ground surface and/or touches the diaphragm wall depending on the overburden depth H and the embedded depth Z of an anchor, this study suggests the minimum overburden and embedded depths to avoid the yield of soils develop to ground surface and/or touch the diaphragm wall. When the embedded depth, overburden depth or fixed length of an anchor increases, the anchorage capacity also increases. Increasing fixed length should be the optimum method to increase the anchorage capacity for fixed length less than 20m. However, when the fixed length of an anchor exceeds 30 m, the increasing rate of anchorage capacity per fixed length decreases, and progressive yield occurs obviously between the fixed length and surrounding soil.
Azuma, Yasuo; Onuma, Yuto; Sakamoto, Masanori; Teranishi, Toshiharu; Majima, Yutaka
2016-02-28
Rhombic Coulomb diamonds are clearly observed in a chemically anchored Au nanoparticle single-electron transistor. The stability diagrams show stable Coulomb blockade phenomena and agree with the theoretical curve calculated using the orthodox model. The resistances and capacitances of the double-barrier tunneling junctions between the source electrode and the Au core (R1 and C1, respectively), and those between the Au core and the drain electrode (R2 and C2, respectively), are evaluated as 4.5 MΩ, 1.4 aF, 4.8 MΩ, and 1.3 aF, respectively. This is determined by fitting the theoretical curve against the experimental Coulomb staircases. Two-methylene-group short octanedithiols (C8S2) in a C8S2/hexanethiol (C6S) mixed self-assembled monolayer is concluded to chemically anchor the core of the Au nanoparticle at both ends between the electroless-Au-plated nanogap electrodes even when the Au nanoparticle is protected by decanethiol (C10S). This is because the R1 value is identical to that of R2 and corresponds to the tunneling resistances of the octanedithiol chemically bonded with the Au core and the Au electrodes. The dependence of the Coulomb diamond shapes on the tunneling resistance ratio (R1/R2) is also discussed, especially in the case of the rhombic Coulomb diamonds. Rhombic Coulomb diamonds result from chemical anchoring of the core of the Au nanoparticle at both ends between the electroless-Au-plated nanogap electrodes.
An exploratory study on the career anchors of educators in Singapore.
Tan, H H; Quek, B C
2001-09-01
In this exploratory study, the authors adopted an empirical approach to determine the various primary career anchors possessed by Singapore educators, the impact of the degree of congruency between teaching and the career anchors on intrinsic and extrinsic satisfaction, and turnover intentions. A number of hypotheses were supported and provided the 1st step in understanding this group of important individuals who nuture the future generation of human capital for the workplace.
N -Sm A -Sm C phase transitions probed by a pair of elastically bound colloids
NASA Astrophysics Data System (ADS)
M, Muhammed Rasi; Zuhail, K. P.; Roy, Arun; Dhara, Surajit
2018-03-01
The competing effect of surface anchoring of dispersed microparticles and elasticity of nematic and cholesteric liquid crystals has been shown to stabilize a variety of topological defects. Here we study a pair of colloidal microparticles with homeotropic and planar surface anchoring across N -Sm A -Sm C phase transitions. We show that below the Sm A -Sm C phase transition the temperature dependence of interparticle separation (D ) of colloids with homeotropic anchoring shows a power-law behavior; D ˜(1-T /TA C) α , with an exponent α ≈0.5 . For colloids with planar surface anchoring the angle between the joining line of the centers of the two colloids and the far field director shows characteristic variation elucidating the phase transitions.
Ferreira, José G L; Grein-Iankovski, Aline; Oliveira, Marco A S; Simas-Tosin, Fernanda F; Riegel-Vidotti, Izabel C; Orth, Elisa S
2015-04-11
Foreseeing the development of artificial enzymes by sustainable materials engineering, we rationally anchored reactive imidazole groups on gum arabic, a natural biocompatible polymer. The tailored biocatalyst GAIMZ demonstrated catalytic activity (>10(5)-fold) in dephosphorylation reactions with recyclable features and was effective in cleaving plasmid DNA, comprising a potential artificial nuclease.
Celikoglu, Mevlut; Buyuk, Suleyman Kutalmis; Ekizer, Abdullah; Unal, Tuba
2016-03-01
To evaluate the skeletal, dentoalveolar, and soft tissue effects of the Forsus FRD appliance with miniplate anchorage inserted in the mandibular symphyses and to compare the findings with a well-matched control group treated with a Herbst appliance for the correction of a skeletal Class II malocclusion due to mandibular retrusion. The sample consisted of 32 Class II subjects divided into two groups. Group I consisted of 16 patients (10 females and 6 males; mean age, 13.20 ± 1.33 years) treated using the Forsus FRD EZ appliance with miniplate anchorage inserted in the mandibular symphyses. Group II consisted of 16 patients (9 females and 7 males; mean age, 13.56 ± 1.27 years) treated using the Herbst appliance. Seventeen linear and 10 angular measurements were performed to evaluate and compare the skeletal, dentoalveolar, and soft tissue effects of the appliances using paired and Student's t-tests. Both appliances were effective in correcting skeletal class II malocclusion and showed similar skeletal and soft tissue changes. The maxillary incisor was statistically significantly more retruded in the skeletally anchored Forsus FRD group (P < .01). The mandibular incisor was retruded in the skeletally anchored Forsus FRD group (-4.09° ± 5.12°), while it was protruded in the Herbst group (7.50° ± 3.98°) (P < .001). Although both appliances were successful in correcting the skeletal Class II malocclusion, the skeletally anchored Forsus FRD EZ appliance did so without protruding the mandibular incisors.
Vabbilisetty, Pratima; Boron, Mallorie; Nie, Huan; Ozhegov, Evgeny; Sun, Xue-Long
2018-02-28
Introduction of selectively chemical reactive groups at the cell surface enables site-specific cell surface labeling and modification opportunity, thus facilitating the capability to study the cell surface molecular structure and function and the molecular mechanism it underlies. Further, it offers the opportunity to change or improve a cell's functionality for interest of choice. In this study, two chemical reactive anchor lipids, phosphatidylethanolamine-poly(ethylene glycol)-dibenzocyclooctyne (DSPE-PEG 2000 -DBCO) and cholesterol-PEG-dibenzocyclooctyne (CHOL-PEG 2000 -DBCO) were synthesized and their potential application for cell surface re-engineering via lipid fusion were assessed with RAW 264.7 cells as a model cell. Briefly, RAW 264.7 cells were incubated with anchor lipids under various concentrations and at different incubation times. The successful incorporation of the chemical reactive anchor lipids was confirmed by biotinylation via copper-free click chemistry, followed by streptavidin-fluorescein isothiocyanate binding. In comparison, the cholesterol-based anchor lipid afforded a higher cell membrane incorporation efficiency with less internalization than the phospholipid-based anchor lipid. Low cytotoxicity of both anchor lipids upon incorporation into the RAW 264.7 cells was observed. Further, the cell membrane residence time of the cholesterol-based anchor lipid was evaluated with confocal microscopy. This study suggests the potential cell surface re-engineering applications of the chemical reactive anchor lipids.
Two novel self-assemblies of supramolecular solar cells using N-heterocyclic-anchoring porphyrins.
Zhang, Qian; Wu, Fang-Yuan; Liu, Jia-Cheng; Li, Ren-Zhi; Jin, Neng-Zhi
2018-02-15
Two novel N-substituted anchoring porphyrins (ZnPAtz and ZnPAim) have been devised and synthesized. Moreover, these two anchoring porphyrins were linked to the TiO 2 semiconductor through carboxyl groups and then a zinc porphyrin ZnP was bound to the anchoring porphyrin using a zinc-to-ligand axial coordination approach. The different performances of these assemblies were compared with single anchoring porphyrin devices ZnPAtz and ZnPAim. The photoelectric conversion efficiency of the new supramolecular solar cells sensitized by ZnP-ZnPAx (x=tz, im) has been improved. The ZnP-ZnPAtz-based DSSCs provided the highest photovoltaic efficiency (1.86%). Fundamental studies showed that incorporation of these assemblies promote light-harvesting efficiency. Copyright © 2017. Published by Elsevier B.V.
Eibach, Richard P; Ehrlinger, Joyce
2006-01-01
White Americans tend to perceive greater progress toward racial equality than do ethnic minorities. Correlational evidence (Study 1) and two experimental manipulations of framing (Studies 2 and 3) supported the hypothesis that this perception gap is associated with different reference points the two groups spontaneously use to assess progress, with Whites anchoring on comparisons with the past and ethnic minorities anchoring on ideal standards. Consistent with the hypothesis that the groups anchor on different reference points, the gap in perceptions of progress was affected by the time participants spent deliberating about the topic (Study 4). Implications for survey methods and political conflict are discussed.
Paine, Arcadia M; Allen, Larry A; Thompson, Jocelyn S; McIlvennan, Colleen K; Jenkins, Amy; Hammes, Andrew; Kroehl, Miranda; Matlock, Daniel D
2016-11-01
People with end-stage heart failure may have to decide about destination-therapy left ventricular assist device (DT-LVAD). Individuals facing difficult decisions often rely on heuristics, such as anchoring, which predictably bias decision outcomes. We aimed to investigate whether showing a larger historical Heartmate XVE creates an anchoring effect, making the smaller Heartmate II (HMII) appear more favorable. With the use of Amazon Mechanical Turk, participants watched videos asking them to imagine themselves dying of end-stage heart failure, then were presented the option of LVAD as potentially life-prolonging therapy. Participants were randomized to a control group who were only shown the HMII device, and the intervention group who saw the XVE device before the HMII. Participants then completed surveys. A total of 487 participants completed the survey (control = 252; intervention = 235); 79% were <40 years of age, 84% were white, and 55% were male. The intervention group was not more likely to accept the LVAD therapy (68% vs 61%; P = .37). However, participants in the intervention group were more likely (51% vs 17%; P < .01) to agree or strongly agree with the statement that the HMII was "smaller than expected." Participants in the intervention group were also more likely to rate the size of the device as "important" or "very important" in their decision (61% vs 46%; P < .01). Although the XVE anchor did not affect likelihood of accepting the LVAD, it did affect device perception. This article highlights an important point with clinical implications: factors such as anchoring have the potential to inappropriately influence perceptions and decisions and should be carefully considered in research and practice. Copyright © 2016 Elsevier Inc. All rights reserved.
Cottom, James M; Baker, Joseph S; Richardson, Phillip E; Maker, Jared M
Acute ruptures of the Achilles tendon are a common injury, and debate has continued in published studies on how best to treat these injuries. Specifically, controversy exists regarding the surgical approaches for Achilles tendon repair when one considers percutaneous versus open repair. The present study investigated the biomechanical strength of 3 different techniques for Achilles tendon repair in a cadaveric model. A total of 36 specimens were divided into 3 groups, each of which received a different construct. The first group received a traditional Krackow suture repair, the second group was repaired using a jig-assisted percutaneous suture, and the third group received a repair using a jig-assisted percutaneous repair modified with suture anchors placed into the calcaneus. The specimens were tested with cyclical loading and to ultimate failure. Cyclical loading showed a trend toward a stronger repair with the use of suture anchors after 10 cycles (p = .295), 500 cycles (p = .120), and 1000 cycles (p = .040). The ultimate load to failure was greatest in the group repaired with the modified knotless technique using the suture anchors (p = .098). The results of the present study show a clear trend toward a stronger construct in Achilles repair using a knotless suture anchor technique, which might translate to a faster return to activity and be more resistant to an early and aggressive rehabilitation protocol. Further clinical studies are warranted to evaluate this technique in a patient population. Copyright © 2016 American College of Foot and Ankle Surgeons. Published by Elsevier Inc. All rights reserved.
Khanna, Dinesh; Pope, Janet E; Khanna, Puja P; Maloney, Michelle; Samedi, Nooshin; Norrie, Debbie; Ouimet, Gillian; Hays, Ron D
2008-12-01
To estimate the minimally important difference (MID) for a fatigue visual analog scale (VAS) using patient-reported anchors (fatigue, pain, and overall health). Patients with rheumatoid arthritis (RA; n = 307) had 2 clinic visits at a median of 5.9 months apart. They completed a fatigue VAS (0-10 scale) and the retrospective anchor items, "How would you describe your overall fatigue/pain/overall health since the last visit?" with response options: Much worsened, Somewhat worsened, Same, Somewhat better, or Much better. The fatigue anchor was used for primary analysis and the pain/overall health anchors for sensitivity analyses. The minimally changed group was defined by those reporting they were somewhat better or somewhat worsened. The mean [standard deviation (SD)] age was 59.4 (13.2) years, disease duration was 14.1 (11.5) years, and 83% of patients were women. The baseline mean (SD) Health Assessment Questionnaire-Disability Index score was 0.84 (0.75). The baseline fatigue VAS score was 4.2 (2.9) and at followup was 4.3 (2.8) [mean change of -0.07 (2.5); p = not significant]. The fatigue change score (0-10 scale) for Somewhat better and Somewhat worsened for the fatigue anchor averaged -1.12 and 1.26, respectively. Using the pain anchor, the fatigue change score for Somewhat better and Somewhat worsened averaged -0.87 and 1.13; and using the global anchor, the fatigue change score for Somewhat better and Somewhat worsened averaged -0.82 and 1.17, respectively. Effect size estimates using 3 anchors were small for the Somewhat better (range 0.27-0.39) and Somewhat worsened (0.40-0.44) groups, but larger than for the no-change group (0.03-0.08). The MID for fatigue VAS is between -0.82 for -1.12 for improvement and is 1.13 to 1.26 for worsening on a 0-10 scale in a large RA clinical practice, and is similar to that seen in RA clinical trials. This information can aid in interpreting fatigue VAS in day-to-day care in clinical practice.
Weikl, Thomas R; Hu, Jinglei; Xu, Guang-Kui; Lipowsky, Reinhard
2016-09-02
The adhesion of cell membranes is mediated by the binding of membrane-anchored receptor and ligand proteins. In this article, we review recent results from simulations and theory that lead to novel insights on how the binding equilibrium and kinetics of these proteins is affected by the membranes and by the membrane anchoring and molecular properties of the proteins. Simulations and theory both indicate that the binding equilibrium constant [Formula: see text] and the on- and off-rate constants of anchored receptors and ligands in their 2-dimensional (2D) membrane environment strongly depend on the membrane roughness from thermally excited shape fluctuations on nanoscales. Recent theory corroborated by simulations provides a general relation between [Formula: see text] and the binding constant [Formula: see text] of soluble variants of the receptors and ligands that lack the membrane anchors and are free to diffuse in 3 dimensions (3D).
Weikl, Thomas R.; Hu, Jinglei; Xu, Guang-Kui; Lipowsky, Reinhard
2016-01-01
ABSTRACT The adhesion of cell membranes is mediated by the binding of membrane-anchored receptor and ligand proteins. In this article, we review recent results from simulations and theory that lead to novel insights on how the binding equilibrium and kinetics of these proteins is affected by the membranes and by the membrane anchoring and molecular properties of the proteins. Simulations and theory both indicate that the binding equilibrium constant K2D and the on- and off-rate constants of anchored receptors and ligands in their 2-dimensional (2D) membrane environment strongly depend on the membrane roughness from thermally excited shape fluctuations on nanoscales. Recent theory corroborated by simulations provides a general relation between K2D and the binding constant K3D of soluble variants of the receptors and ligands that lack the membrane anchors and are free to diffuse in 3 dimensions (3D). PMID:27294442
Bester, C L; Mouton, T
2006-08-01
In order to contribute to higher levels of job satisfaction, job involvement and productivity, a match or fit should be established between the dominant career anchor associated with a specific occupation and that of the employee. A career anchor is an individual's set of self-perceived talents, abilities, motives, needs and values that form the nucleus of one's occupational self-concept. Psychologists have always been part of the service orientated careers and therefore one would expect that it is likely that their dominant career anchor would be service orientation. If this is the case, psychologists with service as their dominant career anchor are supposed to have greater job satisfaction and job involvement compared to those with different career anchors. However, according to literature, this assumption is not necessarily correct. The primary goals of the current study were to determine whether in fact service is the dominant career anchor of psychologists in the Free State and whether there are significant differences regarding job satisfaction and job involvement between psychologists with and without service as their dominant career anchor. A third goal was to determine whether psychologists with different dominant career anchors differ significantly from one another regarding job satisfaction and job involvement. Questionnaires measuring career orientations, job satisfaction and job involvement were sent to 165 of the 171 registered psychologists in the Free State region. Only 75 psychologists (45,5%) responded which exceeded the traditional return rate of 20 to 30%. Due to the small sample of respondents, a nonparametric statistical test, namely the Mann Whitney U test was conducted to determine possible differences. An analysis of the data showed that 21 respondents had entrepreneurship as their dominant career orientation while 12 fell in the technical/functional, 12 in the challenging, 9 in the service and 8 in the autonomy categories of dominant career anchors. No significant differences regarding job satisfaction between psychologists with and without service as dominant career orientation could be determined. Both groups experienced a fairly high degree of job satisfaction and a higher level of intrinsic job satisfaction occurred compared to extrinsic job satisfaction. A significant difference between the two groups in terms of job involvement occurred. Psychologists with service as dominant career orientation showed a higher level of job involvement, although the degree of job involvement for both groups was fairly low. No significant differences regarding job satisfaction and job involvement among psychologists with different career orientations could be found.
Pharyngeal airway effects of Herbst and skeletal anchored Forsus FRD EZ appliances.
Celikoglu, Mevlut; Buyuk, Suleyman Kutalmis; Ekizer, Abdullah; Unal, Tuba
2016-11-01
To evaluate the skeletal and pharyngeal airway effects of skeletal anchored Forsus FRD EZ appliance using bilateral miniplates inserted on mandibular symphyses and to compare the findings with a well matched control group treated using a Herbst appliance. Thirty patients with skeletal Class II malocclusion due to mandibular retrusion were divided into two groups. Group 1 consisted of 15 patients (8 females and 7 males; mean age: 13.11 ± 1.29 years) treated using the Herbst appliance and Group 2 consisted of 15 patients (9 females and 7 males; 12.84 ± 1.27 years) treated using the skeletal anchored Forsus FRD EZ appliance. Treatment changes were assessed by means of linear, angular, and area measurements. The groups were well matched regarding to the chronological ages, gender distribution and initial cephalometric values (P > 0.05). In both groups, skeletal Class II malocclusion was corrected by decrease in SNA and increase in SNB, Co-Gn, VRL-B and VRL-Pog measurements. Those changes caused a significant correction in the maxillo-mandibular relationship. Upper and lower pharyngeal airway dimensions were increased in both group, while the increase in the lower pharyngeal dimension was found to be statistically significant in the skeletal anchored Forsus FRD EZ group (P < 0.05). Oropharyngeal area measurements significantly increased in both groups (P < 0.001 and P < 0.01, respectively). Comparison of the groups showed that both groups had similar changes with no statistically significant differences (P > 0.05). Skeletal changes produced by both appliances caused significant pharyngeal airway changes. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Suzuki, Tomiko M; Tanaka, Hiromitsu; Morikawa, Takeshi; Iwaki, Masayo; Sato, Shunsuke; Saeki, Shu; Inoue, Masae; Kajino, Tsutomu; Motohiro, Tomoyoshi
2011-08-14
Hybrid photocatalysts consisting of a ruthenium complex and p-type photoactive N-doped Ta(2)O(5) anchored with an organic group were successfully synthesized by a direct assembly method. The photocatalyst anchored by phosphonate exhibited excellent photoconversion activity of CO(2) to formic acid under visible-light irradiation with respect to the reaction rate and stability. This journal is © The Royal Society of Chemistry 2011
Date, Praveen V; Patel, Mitesh D; Majee, Sharmila B; Samad, Abdul; Devarajan, Padma V
2013-05-01
The present study discloses the design of folate anchored Rifampicin-Poly methylvinylether maleic anhydride copolymer (Gantrez AN-119, Gantrez) nanoparticles (RFMGzFa) by ionic complexation. Folic acid was anchored to the preformed drug loaded nanoparticles. Folic acid was anchored in different concentration by simply varying the amount of folic acid added during preparation. RFMGzFa nanoparticles were prepared by emulsion solvent diffusion method. Gantrez AN-119 rapidly hydrolyzes in aqueous medium releasing carboxylic acid groups, to create an acidic environment. This facilitates protonation and subsequent ionic complexation of folic acid with the carboxylic groups, to enable anchoring. FTIR spectra confirmed this interaction. Infrared imaging revealed distribution of folic acid across the nanoparticle surface. Nanoparticles were obtained in the size range 350-450 nm with RFM loading of 12-14% w/w. Zeta potential confirmed colloidal stability. TEM/SEM revealed spherical morphology. RFMGzFa nanoparticles exhibited sustained release of RFM and folic acid. Folic acid showed sustained release upto 12 h, which was ion exchange mediated. A 480% enhancement in RFM uptake with RFMGzFa nanoparticles compared to 300% with RFMGz nanoparticles in-vitro, in human macrophage cell line U-937, suggested the role of folic acid in folate receptor mediated uptake. Ionic complexation represents a simple non-covalent approach for anchoring folic acid on polymeric nanoparticles of Gantrez.
ERIC Educational Resources Information Center
Sinharay, Sandip; Holland, Paul W.
2008-01-01
The nonequivalent groups with anchor test (NEAT) design involves missing data that are missing by design. Three popular equating methods that can be used with a NEAT design are the poststratification equating method, the chain equipercentile equating method, and the item-response-theory observed-score-equating method. These three methods each…
Kernel Equating Under the Non-Equivalent Groups With Covariates Design
Bränberg, Kenny
2015-01-01
When equating two tests, the traditional approach is to use common test takers and/or common items. Here, the idea is to use variables correlated with the test scores (e.g., school grades and other test scores) as a substitute for common items in a non-equivalent groups with covariates (NEC) design. This is performed in the framework of kernel equating and with an extension of the method developed for post-stratification equating in the non-equivalent groups with anchor test design. Real data from a college admissions test were used to illustrate the use of the design. The equated scores from the NEC design were compared with equated scores from the equivalent group (EG) design, that is, equating with no covariates as well as with equated scores when a constructed anchor test was used. The results indicate that the NEC design can produce lower standard errors compared with an EG design. When covariates were used together with an anchor test, the smallest standard errors were obtained over a large range of test scores. The results obtained, that an EG design equating can be improved by adjusting for differences in test score distributions caused by differences in the distribution of covariates, are useful in practice because not all standardized tests have anchor tests. PMID:29881012
Kernel Equating Under the Non-Equivalent Groups With Covariates Design.
Wiberg, Marie; Bränberg, Kenny
2015-07-01
When equating two tests, the traditional approach is to use common test takers and/or common items. Here, the idea is to use variables correlated with the test scores (e.g., school grades and other test scores) as a substitute for common items in a non-equivalent groups with covariates (NEC) design. This is performed in the framework of kernel equating and with an extension of the method developed for post-stratification equating in the non-equivalent groups with anchor test design. Real data from a college admissions test were used to illustrate the use of the design. The equated scores from the NEC design were compared with equated scores from the equivalent group (EG) design, that is, equating with no covariates as well as with equated scores when a constructed anchor test was used. The results indicate that the NEC design can produce lower standard errors compared with an EG design. When covariates were used together with an anchor test, the smallest standard errors were obtained over a large range of test scores. The results obtained, that an EG design equating can be improved by adjusting for differences in test score distributions caused by differences in the distribution of covariates, are useful in practice because not all standardized tests have anchor tests.
Wang, Yibei; Fan, Xinmiao; Wang, Pu; Fan, Yue; Chen, Xiaowei
2018-01-01
To evaluate auditory development and hearing improvement in patients with bilateral microtia-atresia using softband and implanted bone-anchored hearing devices and to modify the implantation surgery. The subjects were divided into two groups: the softband group (40 infants, 3 months to 2 years old, Ponto softband) and the implanted group (6 patients, 6-28 years old, Ponto). The Infant-Toddler Meaning Auditory Integration Scale was used conducted to evaluate auditory development at baseline and after 3, 6, 12, and 24 months, and visual reinforcement audiometry was used to assess the auditory threshold in the softband group. In the implanted group, bone-anchored hearing devices were implanted combined with the auricular reconstruction surgery, and high-resolution CT was used to assess the deformity preoperatively. Auditory threshold and speech discrimination scores of the patients with implants were measured under the unaided, softband, and implanted conditions. Total Infant-Toddler Meaning Auditory Integration Scale scores in the softband group improved significantly and approached normal levels. The average visual reinforcement audiometry values under the unaided and softband conditions were 76.75 ± 6.05 dB HL and 32.25 ± 6.20 dB HL (P < 0.01), respectively. In the implanted group, the auditory thresholds under the unaided, softband, and implanted conditions were 59.17 ± 3.76 dB HL, 32.5 ± 2.74 dB HL, and 17.5 ± 5.24 dB HL (P < 0.01), respectively. The respective speech discrimination scores were 23.33 ± 14.72%, 77.17 ± 6.46%, and 96.50 ± 2.66% (P < 0.01). Using softband bone-anchored hearing devices is effective for auditory development and hearing improvement in infants with bilateral microtia-atresia. Wearing softband bone-anchored hearing devices before auricle reconstruction and combining bone-anchored hearing device implantation with auricular reconstruction surgery may bethe optimal clinical choice for these patients, and results in more significant hearing improvement and minimal surgical and anesthetic injury. Copyright © 2017 Elsevier B.V. All rights reserved.
Martín-Lomas, M; Khiar, N; García, S; Koessler, J L; Nieto, P M; Rademacher, T W
2000-10-02
The preparation of the pseudopentasaccharide 1a, an inositol-phosphoglycan (IPG) that contains the conserved linear structure of glycosyl phosphatidylinositol anchors (GPI anchors), was carried out by using a highly convergent 2+3-block synthesis approach which involves imidate and sulfoxide glycosylation reactions. The preferred solution conformation of this structure was determined by using NMR spectroscopy and molecular dynamics simulations prior to carrying out quantitative structure--activity relationship studies in connection with the insulin signalling process. The ability of 1a to stimulate lipogenesis in rat adipocytes as well as to inhibit cAMP dependent protein kinase and to activate pyruvate dehydrogenase phosphatase was investigated. Compound 1a did not show any significant activity, which may be taken as a strong indication that the GPI anchors are not the precursors of the IPG mediators.
Cluster Formation of Anchored Proteins Induced by Membrane-Mediated Interaction
Li, Shuangyang; Zhang, Xianren; Wang, Wenchuan
2010-01-01
Abstract Computer simulations were used to study the cluster formation of anchored proteins in a membrane. The rate and extent of clustering was found to be dependent upon the hydrophobic length of the anchored proteins embedded in the membrane. The cluster formation mechanism of anchored proteins in our work was ascribed to the different local perturbations on the upper and lower monolayers of the membrane and the intermonolayer coupling. Simulation results demonstrated that only when the penetration depth of anchored proteins was larger than half the membrane thickness, could the structure of the lower monolayer be significantly deformed. Additionally, studies on the local structures of membranes indicated weak perturbation of bilayer thickness for a shallowly inserted protein, while there was significant perturbation for a more deeply inserted protein. The origin of membrane-mediated protein-protein interaction is therefore due to the local perturbation of the membrane thickness, and the entropy loss—both of which are caused by the conformation restriction on the lipid chains and the enhanced intermonolayer coupling for a deeply inserted protein. Finally, in this study we addressed the difference of cluster formation mechanisms between anchored proteins and transmembrane proteins. PMID:20513399
Goschka, Andrew M; Hafer, Jason S; Reynolds, Kirk A; Aberle, Nicholas S; Baldini, Todd H; Hawkins, Monica J; McCarty, Eric C
2015-10-01
To further reduce the invasiveness of arthroscopic rotator cuff repair surgery the all-suture anchor has been developed. The all-suture anchor requires less bone removal and reduces the potential of loose body complications. The all-suture anchor must also have adequate biomechanical strength for the repair to heal. The hypothesis is there is no significant difference in the biomechanical performance of supraspinatus repairs using an all-suture anchor when compared to traditional solid-body suture anchors. Using nine shoulders per group, the supraspinatus tendon was dissected from the greater tuberosity. The four different double row repairs tested were (medial row/lateral row): A: ICONIX2/ICONIX2; B: ICONIX2/Stryker ReelX 3.9mm; C: ICONIX2/Stryker ReelX 4.5mm; D: Arthrex BioComposite CorkScrew FT 4.5mm/Arthrex BioComposite SwiveLock 4.75mm. The ICONIX2 was the only all-suture anchor tested. Tendons underwent cyclic loading from 10 to 100N for 500 cycles, followed by load-to-failure. Data was collected at cycles 5, 100, 200, 300, 400, and 500. One-way ANOVA analysis was used to assess significance (P≤0.05). The anchor combinations tested did not differ significantly in anterior (P>0.4) or posterior (P>0.3) gap formation, construct stiffness (P>0.7), ultimate load (P=0.06), or load to 5mm gap formation (P=0.84). The all-suture anchor demonstrated comparable biomechanical performance in multiple double-row anchor combinations to a combination of traditional solid-body anchors. Thus it may be an attractive option to further reduce the invasiveness of rotator cuff repairs. Copyright © 2015 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Chen, Ting-Yu
2012-06-01
This article presents a useful method for relating anchor dependency and accuracy functions to multiple attribute decision-making (MADM) problems in the context of Atanassov intuitionistic fuzzy sets (A-IFSs). Considering anchored judgement with displaced ideals and solution precision with minimal hesitation, several auxiliary optimisation models have proposed to obtain the optimal weights of the attributes and to acquire the corresponding TOPSIS (the technique for order preference by similarity to the ideal solution) index for alternative rankings. Aside from the TOPSIS index, as a decision-maker's personal characteristics and own perception of self may also influence the direction in the axiom of choice, the evaluation of alternatives is conducted based on distances of each alternative from the positive and negative ideal alternatives, respectively. This article originates from Li's [Li, D.-F. (2005), 'Multiattribute Decision Making Models and Methods Using Intuitionistic Fuzzy Sets', Journal of Computer and System Sciences, 70, 73-85] work, which is a seminal study of intuitionistic fuzzy decision analysis using deduced auxiliary programming models, and deems it a benchmark method for comparative studies on anchor dependency and accuracy functions. The feasibility and effectiveness of the proposed methods are illustrated by a numerical example. Finally, a comparative analysis is illustrated with computational experiments on averaging accuracy functions, TOPSIS indices, separation measures from positive and negative ideal alternatives, consistency rates of ranking orders, contradiction rates of the top alternative and average Spearman correlation coefficients.
CD1d-restricted immunoglobulin G formation to GPI-anchored antigens mediated by NKT cells.
Schofield, L; McConville, M J; Hansen, D; Campbell, A S; Fraser-Reid, B; Grusby, M J; Tachado, S D
1999-01-08
Immunoglobulin G (IgG) responses require major histocompatibility complex (MHC)-restricted recognition of peptide fragments by conventional CD4(+) helper T cells. Immunoglobulin G responses to glycosylphosphatidylinositol (GPI)- anchored protein antigens, however, were found to be regulated in part through CD1d-restricted recognition of the GPI moiety by thymus-dependent, interleukin-4-producing CD4(+), natural killer cell antigen 1.1 [(NK1.1)+] helper T cells. The CD1-NKT cell pathway regulated immunogobulin G responses to the GPI-anchored surface antigens of Plasmodium and Trypanosoma and may be a general mechanism for rapid, MHC-unrestricted antibody responses to diverse pathogens.
2018-01-01
Introduction of selectively chemical reactive groups at the cell surface enables site-specific cell surface labeling and modification opportunity, thus facilitating the capability to study the cell surface molecular structure and function and the molecular mechanism it underlies. Further, it offers the opportunity to change or improve a cell’s functionality for interest of choice. In this study, two chemical reactive anchor lipids, phosphatidylethanolamine–poly(ethylene glycol)–dibenzocyclooctyne (DSPE–PEG2000–DBCO) and cholesterol–PEG–dibenzocyclooctyne (CHOL–PEG2000–DBCO) were synthesized and their potential application for cell surface re-engineering via lipid fusion were assessed with RAW 264.7 cells as a model cell. Briefly, RAW 264.7 cells were incubated with anchor lipids under various concentrations and at different incubation times. The successful incorporation of the chemical reactive anchor lipids was confirmed by biotinylation via copper-free click chemistry, followed by streptavidin-fluorescein isothiocyanate binding. In comparison, the cholesterol-based anchor lipid afforded a higher cell membrane incorporation efficiency with less internalization than the phospholipid-based anchor lipid. Low cytotoxicity of both anchor lipids upon incorporation into the RAW 264.7 cells was observed. Further, the cell membrane residence time of the cholesterol-based anchor lipid was evaluated with confocal microscopy. This study suggests the potential cell surface re-engineering applications of the chemical reactive anchor lipids. PMID:29503972
Tang, Hongwei; Gao, Sheng; Yin, Yong; Li, Yunfei; Han, Qingtian; Li, Huizhang
2015-11-01
To evaluate and compare the effectiveness of double Endobutton technique and suture anchor combined Endobutton plate in the treatment of Tossy type III acromioclavicular joint dislocation. Between May 2010 and March 2014, a retrospective study was preformed on 56 patients with Tossy type III acromioclavicular joint dislocation. The coracoclavicular ligament was reconstructed with double Endobutton technique in 31 cases (Endobutton group), and with suture anchor combined Endobutton plate in 25 cases (Anchor group). There was no significant difference in age, gender, injury causes, injury side, associated injury, medical comorbidities, and disease duration between 2 groups (P>0.05). The operation time, medical device expenses, postoperative complications, preoperative and postoperative Constant-Murley scores, and postoperative Karlsson grading of the injured shoulder were compared between 2 groups. The average operation time in Endobutton group was significantly greater than that in Anchor group (t = 4.285, P = 0.000); there was no significant difference in the medical device expenses between 2 groups (t = 1.555, P = 0.126). Primary healing of incision was obtained in all patients of 2 groups; no early complications of infection and skin necrosis occurred. All patients were followed up 15.6 months on average (range, 11-35 months). During follow-up, some loss of reduction and ectopic ossification in the coracoclavicular gap were observed in 1 case and 6 cases of Endobutton group, respectively. No recurrence of acromioclavicular joint dislocation, implant fixation loosening and broken, and secondary fractures occurred in the other patients. There was significant difference in the incidence of postoperative complications between 2 groups (P = 0.013). Constant-Murley scores of the injured shoulder significantly increased at 9 months after operation when compared with preoperative values in 2 groups (P < 0.05), but no significant difference was observed between 2 groups (P > 0.05). At last follow-up, there was no significant difference in Karlsson grading between 2 groups (Z = -0.628, P = 0.530). Both double Endobutton technique and suture anchor combined Endobutton plate have good effectiveness in the treatment of Tossy type III acromioclavicular joint dislocation. But the latter is associated with easier operation, less operation time, and less complications.
A catalytic role of surface silanol groups in CO2 capture on the amine-anchored silica support.
Cho, Moses; Park, Joonho; Yavuz, Cafer T; Jung, Yousung
2018-05-03
A new mechanism of CO2 capture on the amine-functionalized silica support is demonstrated using density functional theory calculations, in which the silica surface not only acts as a support to anchor amines, but also can actively participate in the CO2 capture process through a facile proton transfer reaction with the amine groups. The surface-mediated proton transfer mechanism in forming a carbamate-ammonium product has lower kinetic barrier (8.1 kcal mol-1) than the generally accepted intermolecular mechanism (12.7 kcal mol-1) under dry conditions, and comparable to that of the water-assisted intermolecular mechanism (6.0 kcal mol-1) under humid conditions. These findings suggest that the CO2 adsorption on the amine-anchored silica surface would mostly occur via the rate-determining proton transfer step that is catalyzed by the surface silanol groups.
ERIC Educational Resources Information Center
Ross, Janet; And Others
1986-01-01
Three entries address various outdoor education issues. The first outlines eight steps for promoting professional work. The second suggests ways to adapt 16 games, group initiatives, and ropes course elements to teach environmental concepts. The third explains the use of belay anchors, or cork-screw anchors designed to tether large dogs. (JHZ)
Powis, Katie; Schrul, Bianca; Tienson, Heather; Gostimskaya, Irina; Breker, Michal; High, Stephen; Schuldiner, Maya; Jakob, Ursula; Schwappach, Blanche
2013-01-01
Summary The endomembrane system of yeast contains different tail-anchored proteins that are post-translationally targeted to membranes via their C-terminal transmembrane domain. This hydrophobic segment could be hazardous in the cytosol if membrane insertion fails, resulting in the need for energy-dependent chaperoning and the degradation of aggregated tail-anchored proteins. A cascade of GET proteins cooperates in a conserved pathway to accept newly synthesized tail-anchored proteins from ribosomes and guide them to a receptor at the endoplasmic reticulum, where membrane integration takes place. It is, however, unclear how the GET system reacts to conditions of energy depletion that might prevent membrane insertion and hence lead to the accumulation of hydrophobic proteins in the cytosol. Here we show that the ATPase Get3, which accommodates the hydrophobic tail anchor of clients, has a dual function: promoting tail-anchored protein insertion when glucose is abundant and serving as an ATP-independent holdase chaperone during energy depletion. Like the generic chaperones Hsp42, Ssa2, Sis1 and Hsp104, we found that Get3 moves reversibly to deposition sites for protein aggregates, hence supporting the sequestration of tail-anchored proteins under conditions that prevent tail-anchored protein insertion. Our findings support a ubiquitous role for the cytosolic GET complex as a triaging platform involved in cellular proteostasis. PMID:23203805
Pfiffner, Flurin; Kompis, Martin; Stieger, Christof
2009-10-01
To investigate correlations between preoperative hearing thresholds and postoperative aided thresholds and speech understanding of users of Bone-anchored Hearing Aids (BAHA). Such correlations may be useful to estimate the postoperative outcome with BAHA from preoperative data. Retrospective case review. Tertiary referral center. : Ninety-two adult unilaterally implanted BAHA users in 3 groups: (A) 24 subjects with a unilateral conductive hearing loss, (B) 38 subjects with a bilateral conductive hearing loss, and (C) 30 subjects with single-sided deafness. Preoperative air-conduction and bone-conduction thresholds and 3-month postoperative aided and unaided sound-field thresholds as well as speech understanding using German 2-digit numbers and monosyllabic words were measured and analyzed. Correlation between preoperative air-conduction and bone-conduction thresholds of the better and of the poorer ear and postoperative aided thresholds as well as correlations between gain in sound-field threshold and gain in speech understanding. Aided postoperative sound-field thresholds correlate best with BC threshold of the better ear (correlation coefficients, r2 = 0.237 to 0.419, p = 0.0006 to 0.0064, depending on the group of subjects). Improvements in sound-field threshold correspond to improvements in speech understanding. When estimating expected postoperative aided sound-field thresholds of BAHA users from preoperative hearing thresholds, the BC threshold of the better ear should be used. For the patient groups considered, speech understanding in quiet can be estimated from the improvement in sound-field thresholds.
Cho, Byung-Ki; Kim, Yong-Min; Park, Kyoung-Jin; Park, Ji-Kang; Kim, Do-Kyoon
2015-02-01
There are various ligament reattachment techniques for the modified Brostrom procedure. There have been few comparative studies on recently developed techniques. This prospective study was performed to compare the functional outcomes of 2 different ligament reattachment techniques using suture anchors. We furthermore evaluated the cost-effectiveness of the suture bridge technique. Forty-five amateur athletes under 30 years of age were followed for more than 2 years. Twenty-four procedures with the suture anchor technique and 21 procedures with the suture bridge technique were performed by one surgeon. The functional evaluation consisted of the American Orthopaedic Foot & Ankle Society (AOFAS) score, Foot and Ankle Outcome Score (FAOS), Karlsson score, Sefton grading system, and the period to return to various forms of exercise (jogging, spurt running, jumping, one leg standing for >1 minute, walking on uneven ground, and going down stairs). Measurement of talar tilt angle and anterior talar translation was obtained from stress radiographs to evaluate mechanical stability. There were no significant differences on AOFAS score, FAOS, Karlsson score, Sefton grade, and stress radiographs. There were no significant differences on the return to exercises, except for jumping. As the most common complication, there were 3 cases of skin irritation by suture materials in the suture anchor group and 2 cases of intraoperative breakage of the suture anchor in suture bridge group. Both ligament reattachment techniques using suture anchors showed similar functional outcomes. Considering the additional medical expenses incurred by more suture anchors, the modified Brostrom procedure using the suture bridge technique had low cost-effectiveness. Proper indication and clinical usefulness of suture bridge technique for chronic ankle instability will be addressed in further studies. Level II, prospective comparative study. © The Author(s) 2014.
NASA Astrophysics Data System (ADS)
Oswald, Patrick; Ignés-Mullol, Jordi
2017-09-01
The performance of light-controlled liquid crystal anchoring surfaces depends on the nature of the photosensitive moieties and on the concentration of spacer units. Here, we study the kinetics of photosensitive liquid crystal cells that incorporate an azobenzene-based self-assembled monolayer. We characterize the photoinduced homeotropic-to-planar transition and the subsequent reverse relaxation in terms of the underlying isomerization of the photosensitive layer. We show that the response time can be precisely adjusted by tuning the lateral packing of azobenzene units by means of inert spacer molecules. Using simple kinetic assumptions and a well-known model for the energetics of liquid crystal anchoring we are able to capture the details of the optical microscopy experimental observations. Our analysis provides fitted values for all the relevant material parameters, including the zenithal and the azimuthal anchoring strength.
Trovisco, Vítor; Belaya, Katsiaryna; Nashchekin, Dmitry; Irion, Uwe; Sirinakis, George; Butler, Richard; Lee, Jack J; Gavis, Elizabeth R; St Johnston, Daniel
2016-01-01
bicoid mRNA localises to the Drosophila oocyte anterior from stage 9 of oogenesis onwards to provide a local source for Bicoid protein for embryonic patterning. Live imaging at stage 9 reveals that bicoid mRNA particles undergo rapid Dynein-dependent movements near the oocyte anterior, but with no directional bias. Furthermore, bicoid mRNA localises normally in shot2A2, which abolishes the polarised microtubule organisation. FRAP and photo-conversion experiments demonstrate that the RNA is stably anchored at the anterior, independently of microtubules. Thus, bicoid mRNA is localised by random active transport and anterior anchoring. Super-resolution imaging reveals that bicoid mRNA forms 110–120 nm particles with variable RNA content, but constant size. These particles appear to be well-defined structures that package the RNA for transport and anchoring. DOI: http://dx.doi.org/10.7554/eLife.17537.001 PMID:27791980
NASA Astrophysics Data System (ADS)
Zhu, Han-Cheng; Zhang, Ji; Wang, Ying-Lin
2018-03-01
A new porphyrin dye with tropolone anchoring group showing superior stability but lower efficiency versus the promising dye YD2-o-C8 with benzoic acid anchoring group was theoretically investigated for the first time. A series of important parameters related to the efficiency of DSSC were calculated to explore the nature of the experimentally observed lower efficiency and superior stability of tropolone-based solar cells. We found these two dyes with different anchoring groups show comparable electron injection and dye regeneration process. Interestingly, the red-shifted absorption spectrum, relatively weaker ability of releasing protons, and the larger conduction band energy shift of tropolone-based dyes all demonstrated it should show better performance than the benzoic acid dyes, which contradicts with the experimental results. However, through investigating the interaction between the porphyrin dye and the semiconductor by analyzing the electron localization function of the porphyrin dye and preforming energy decomposition analysis, we found that the direction of lone-pair electrons of carbonyl oxygen in the tropolone-based dye makes the dye prefer to adsorb on the surface in an inclined way, in contrary to the benzoic acid-based dye that favored a vertical adsorption. The inclined adsorption could significantly accelerate the charge recombination process between the injected electrons and the oxidized dye, leading to a decreased efficiency of DSSC.
Khanna, Dinesh; Pope, Janet; Khanna, Puja P.; Maloney, Michelle; Samedi, Nooshin; Norrie, Debbie; Ouimet, Gillian; Hays, Ron D
2011-01-01
Introduction Fatigue is a common symptom in RA and used as an outcome measure in RA clinical trials. We studied a large academic clinical practice to estimate the minimally important difference (MID) for a fatigue visual analog scale using patient-reported anchors (fatigue, pain and overall health). Methods RA patients (N=307) had clinic visits at 2 time points at a median of 5.9 months apart. They completed fatigue visual analog scale (VAS; 0–10) and retrospective anchor items, “How would you describe your overall fatigue/pain/overall health since the last visit?” Much worsened, Somewhat worsened, Same, Somewhat better, or Much better. The fatigue anchor was used for primary analysis and the pain/ overall health anchors for sensitivity analyses. The minimally changed group was defined by those reporting they were somewhat better or somewhat worsened. Results The mean (SD) age was 59.4 (13.2) years, disease duration was 14.1 (11.5) years, and 83% of patients were women. The baseline mean (SD) HAQ-DI score was 0.84 (0.75). The baseline fatigue VAS score was 4.2 (2.9) and at follow up was 4.3 (2.8) (mean change of −0.07 [2.5], p=NS). The fatigue change score (0–10 scale) for somewhat better and somewhat worsened for fatigue anchor averaged −1.12 and 1.26, respectively. Using pain anchor, the fatigue changed score for somewhat better and somewhat worsened averaged −0.87 and 1.13 and using global anchor, the fatigue changed score for somewhat better and somewhat worsened averaged −0.82 and 1.17, respectively. Effect size (ES) estimates using 3 anchors were small for somewhat better (range: 0.27 to 0.39) and somewhat worsened (range: 0.40 to 0.44) groups but larger than the no-change group (range: 0.03 to 0.08). Conclusions The MID for fatigue VAS is between −0.82 to −1.12 for improvement and 1.13 to 1.26 for worsening on 0–10 scale in a large RA clinical practice and similar to that seen in RA clinical trials. This information can aid in interpreting fatigue VAS in day-to-day care in clinical practice. PMID:19004044
Hu, Chang-Yong; Lee, Keun-Bae; Song, Eun-Kyoo; Kim, Myung-Sun; Park, Kyung-Soon
2013-08-01
The modified Broström procedure is frequently used to treat chronic lateral ankle instability. There are 2 common methods of the modified Broström procedure, which are the bone tunnel and suture anchor techniques. To compare the clinical outcomes of the modified Broström procedure using the bone tunnel and suture anchor techniques. Cohort study; Level of evidence, 2. Eighty-one patients (81 ankles) treated with the modified Broström procedure for chronic lateral ankle instability constituted the study cohort. The 81 ankles were divided into 2 groups, namely, a bone tunnel technique (BT group; 40 ankles) and a suture anchor technique (SA group; 41 ankles). The Karlsson score, American Orthopaedic Foot and Ankle Society (AOFAS) ankle-hindfoot score, anterior talar translation, and talar tilt angle were used to evaluate clinical and radiographic outcomes. The BT group consisted of 32 men and 8 women with a mean age of 34.8 years at surgery and a mean follow-up duration of 34.2 months. The SA group consisted of 33 men and 8 women with a mean age of 33.3 years at surgery and a mean follow-up duration of 32.8 months. Mean Karlsson scores improved significantly from 57.0 points preoperatively to 94.9 points at final follow-up in the BT group and from 59.9 points preoperatively to 96.4 points at final follow-up in the SA group. Mean AOFAS scores also improved from 64.2 points preoperatively to 97.8 points at final follow-up in the BT group and from 70.3 points preoperatively to 97.4 points at final follow-up in the SA group. Mean anterior talar translations in the BT group and SA group improved from 9.0 mm and 9.2 mm preoperatively to 6.5 mm and 6.8 mm at final follow-up, respectively. Mean talar tilt angles were 12.0° in the BT group and 12.5° in the SA group preoperatively and 8.8° at final follow-up for both groups. No significant differences were found between the 2 groups in terms of the Karlsson score, AOFAS score, anterior talar translation, and talar tilt angle. The bone tunnel and suture anchor techniques of the modified Broström procedure showed similar good functional and radiographic outcomes. Both techniques appear to be effective and reliable methods for the treatment of chronic lateral ankle instability.
Baums, M H; Buchhorn, G H; Gilbert, F; Spahn, G; Schultz, W; Klinger, H-M
2010-09-01
This experimental study aimed to compare the load-to-failure rate and stiffness of single- versus double-row suture techniques for repairing rotator cuff lesions using two different suture materials. Additionally, the mode of failure of each repair was evaluated. In 32 sheep shoulders, a standardized tear of the infraspinatus tendon was created. Then, n = 8 specimen were randomized to four repair methods: (1) Double-row Anchor Ethibond coupled with polyester sutures, USP No. 2; (2) Double-Row Anchor HiFi with polyblend polyethylene sutures, USP No. 2; (3) Single-Row Anchor Ethibond coupled with braided polyester sutures, USP No. 2; and (4) Single-Row Anchor HiFi with braided polyblend polyethylene sutures, USP No. 2. Arthroscopic Mason-Allen stitches were placed (single-row) and combined with medial horizontal mattress stitches (double-row). All specimens were loaded to failure at a constant displacement rate on a material testing machine. Group 4 showed lowest load-to-failure result with 155.7 +/- 31.1 N compared to group 1 (293.4 +/- 16.1 N) and group 2 (397.7 +/- 7.4 N) (P < 0.001). Stiffness was highest in group 2 (162 +/- 7.3 N/mm) and lowest in group 4 (84.4 +/- 19.9 mm) (P < 0.001). In group 4, the main cause of failure was due to the suture cutting through the tendon (n = 6), a failure case observed in only n = 1 specimen in group 2 (P < 0.001). A double-row technique combined with arthroscopic Mason-Allen/horizontal mattress stitches provides high initial failure strength and may minimize the risk of the polyethylene sutures cutting through the tendon in rotator cuff repair when a single load force is used.
Lewis, Tyler; Esler, Daniel N.; Uher-Koch, Brian D.; Dickson, Rian D.; Anderson, Eric M.; Evenson, Joseph R.; Hupp, Jerry W.; Flint, Paul L.
2017-01-01
A major challenge of wildlife telemetry is choosing an attachment technique that maximizes transmitter retention while minimizing negative side effects. For waterbirds, attachment of transmitters with subcutaneous anchors has been an effective and well-established technique, having been used on >40 species. This method was recently modified to include a second subcutaneous anchor, presumably increasing transmitter retention beyond that of single-anchor attachments. This putative benefit may be offset, however, by increased health risks related to additional incisions and subcutaneous protrusions. To test this potential trade-off, we attached radiotransmitters to molting and wintering surf (Melanitta perspicillata) and white-winged scoters (M. fusca) during 2008 and 2009 in Washington State and southeast Alaska, USA, using single- (121 scoters) and double-anchor (128 scoters) attachment techniques. We estimated daily probabilities of survival and radio retention for each group, this being apparent retention for wintering scoters because we could not differentiate shed transmitters from flighted emigration. For scoters during the flightless remigial molt, we found that addition of a second anchor increased cumulative retention probability (±SE) over a 49-day period from 0.69 ± 0.11 for single-anchor to 0.88 ± 0.07 for double-anchor attachments, while having no effect on survival. However, during winter, scoters with double-anchor attachments experienced no improvement in apparent retention, while having significantly lower survival during their first 14 days following transmitter attachment; of 15 mortalities during this period, 11 had 2 subcutaneous anchors. From day 15 onward, winter survival rates were nearly identical for single- versus double-anchor attachments, indicating that adverse effects of subcutaneous anchors were mainly limited to the 14-day postattachment period. Overall, given that the survival cost of adding a second subcutaneous anchor was substantial for wintering scoters—decreasing 14-day survival by 12% for adults and 23% for juveniles—we recommend that researchers opt for single-anchor attachments under most circumstances, especially during winter when birds may be energetically challenged.
Turner, Lauren Senty; Kanamoto, Taisei; Unoki, Takeshi; Munro, Cindy L.; Wu, Hui; Kitten, Todd
2009-01-01
Streptococcus sanguinis is a member of the viridans group of streptococci and a leading cause of the life-threatening endovascular disease infective endocarditis. Initial contact with the cardiac infection site is likely mediated by S. sanguinis surface proteins. In an attempt to identify the proteins required for this crucial step in pathogenesis, we searched for surface-exposed, cell wall-anchored proteins encoded by S. sanguinis and then used a targeted signature-tagged mutagenesis (STM) approach to evaluate their contributions to virulence. Thirty-three predicted cell wall-anchored proteins were identified—a number much larger than those found in related species. The requirement of each cell wall-anchored protein for infective endocarditis was assessed in the rabbit model. It was found that no single cell wall-anchored protein was essential for the development of early infective endocarditis. STM screening was also employed for the evaluation of three predicted sortase transpeptidase enzymes, which mediate the cell surface presentation of cell wall-anchored proteins. The sortase A mutant exhibited a modest (∼2-fold) reduction in competitiveness, while the other two sortase mutants were indistinguishable from the parental strain. The combined results suggest that while cell wall-anchored proteins may play a role in S. sanguinis infective endocarditis, strategies designed to interfere with individual cell wall-anchored proteins or sortases would not be effective for disease prevention. PMID:19703977
Turner, Lauren Senty; Kanamoto, Taisei; Unoki, Takeshi; Munro, Cindy L; Wu, Hui; Kitten, Todd
2009-11-01
Streptococcus sanguinis is a member of the viridans group of streptococci and a leading cause of the life-threatening endovascular disease infective endocarditis. Initial contact with the cardiac infection site is likely mediated by S. sanguinis surface proteins. In an attempt to identify the proteins required for this crucial step in pathogenesis, we searched for surface-exposed, cell wall-anchored proteins encoded by S. sanguinis and then used a targeted signature-tagged mutagenesis (STM) approach to evaluate their contributions to virulence. Thirty-three predicted cell wall-anchored proteins were identified-a number much larger than those found in related species. The requirement of each cell wall-anchored protein for infective endocarditis was assessed in the rabbit model. It was found that no single cell wall-anchored protein was essential for the development of early infective endocarditis. STM screening was also employed for the evaluation of three predicted sortase transpeptidase enzymes, which mediate the cell surface presentation of cell wall-anchored proteins. The sortase A mutant exhibited a modest (approximately 2-fold) reduction in competitiveness, while the other two sortase mutants were indistinguishable from the parental strain. The combined results suggest that while cell wall-anchored proteins may play a role in S. sanguinis infective endocarditis, strategies designed to interfere with individual cell wall-anchored proteins or sortases would not be effective for disease prevention.
Francàs, Laia; Richmond, Craig; Garrido-Barros, Pablo; Planas, Nora; Roeser, Stephan; Benet-Buchholz, Jordi; Escriche, Lluís; Sala, Xavier; Llobet, Antoni
2016-04-04
Three distinct functionalisation strategies have been applied to the in,in-[{Ru(II)(trpy)}2(μ-bpp)(H2O)2](3+) (trpy=2,2':6',2''-terpyridine, bpp=bis(pyridine)pyrazolate) water-oxidation catalyst framework to form new derivatives that can adsorb onto titania substrates. Modifications included the addition of sulfonate, carboxylate, and phosphonate anchoring groups to the terpyridine and bis(pyridyl)pyrazolate ligands. The complexes were characterised in solution by using 1D NMR, 2D NMR, and UV/Vis spectroscopic analysis and electrochemical techniques. The complexes were then anchored on TiO2-coated fluorinated tin oxide (FTO) films, and the reactivity of these new materials as water-oxidation catalysts was tested electrochemically through controlled-potential electrolysis (CPE) with oxygen evolution detected by headspace analysis with a Clark electrode. The results obtained highlight the importance of the catalyst orientation with respect to the titania surface in regard to its capacity to catalytically oxidize water to dioxygen. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Bays, Harold E; Ballantyne, Christie M; Doyle, Ralph T; Juliano, Rebecca A; Philip, Sephy
2016-09-01
Icosapent ethyl is a high-purity prescription form of eicosapentaenoic acid (EPA) ethyl ester approved at a dose of 4g/day as an adjunct to diet to reduce triglyceride (TG) levels in adult patients with severe (≥500mg/dL) hypertriglyceridemia. This post-hoc exploratory analysis examined the relationship of icosapent ethyl dose with EPA concentrations in plasma and red blood cells (RBCs) across 3 clinical studies-a phase 1 pharmacokinetic study in healthy adult volunteers and 2 pivotal phase 3 studies (MARINE and ANCHOR) in adult patients with hypertriglyceridemia-and examined the relationship between EPA levels and TG-lowering effects in MARINE and ANCHOR. In all 3 studies, icosapent ethyl produced dose-dependent increases in the concentrations of EPA in plasma and RBCs. In both MARINE and ANCHOR, these dose-dependent EPA increases correlated with the degree of TG level lowering (all P<0.01). In patients with high TG levels (≥200mg/dL) and treated with icosapent ethyl 4g/day, the end-of-treatment plasma and RBC EPA concentrations were >170μg/mL and>70μg/mL, respectively. These studies support icosapent ethyl as producing predictable dose-dependent pharmacokinetics/pharmacodynamics, with TG level lowering dependent upon icosapent ethyl dose and EPA concentrations in plasma and RBCs. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.
Lenderking, William R; Wyrwich, Kathleen W; Stolar, Marilyn; Howard, Kellee A; Leibman, Chris; Buchanan, Jacqui; Lacey, Loretto; Kopp, Zoe; Stern, Yaakov
2013-12-01
The Dependence Scale (DS) was designed to measure dependence on others among patients with Alzheimer's disease (AD). The objectives of this research were primarily to strengthen the psychometric evidence for the use of the DS in AD studies. Patients with mild to moderately severe AD were examined in 3 study databases. Within each data set, internal consistency, validity, and responsiveness were examined, and structural equation models were fit. The DS has strong psychometric properties. The DS scores differed significantly across known groups and demonstrated moderate to strong correlations with measures hypothesized to be related to dependence (|r| ≥ .31). Structural equation modeling supported the validity of the DS concept. An anchor-based DS responder definition to interpret a treatment benefit over time was identified. The DS is a reliable, valid, and interpretable measure of dependence associated with AD and is shown to be related to--but provides information distinct from--cognition, functioning, and behavior.
Higashino, Tomohiro; Kurumisawa, Yuma; Cai, Ning; Fujimori, Yamato; Tsuji, Yukihiro; Nimura, Shimpei; Packwood, Daniel M; Park, Jaehong; Imahori, Hiroshi
2017-09-11
A hydroxamic acid group has been employed for the first time as an anchoring group for cobalt-based dye-sensitized solar cells (DSSCs). The porphyrin dye YD2-o-C8HA including a hydroxamic acid anchoring group exhibited a power conversion efficiency (η) of 6.4 %, which is close to that of YD2-o-C8, a representative porphyrin dye incorporating a conventional carboxylic acid. More importantly, YD2-o-C8HA was found to be superior to YD2-o-C8 in terms of both binding ability to TiO 2 and durability of cobalt-based DSSCs. Notably, YD2-o-C8HA photocells revealed a higher η-value (4.1 %) than YD2-o-C8 (2.8 %) after 500 h illumination. These results suggest that the hydroxamic acid can be used for DSSCs with other transition-metal-based redox shuttle to ensure high cell durability as well as excellent photovoltaic performance. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Poor anchoring limits dyslexics' perceptual, memory, and reading skills.
Oganian, Yulia; Ahissar, Merav
2012-07-01
The basic deficits underlying the severe and persistent reading difficulties in dyslexia are still highly debated. One of the major topics of debate is whether these deficits are language specific, or affect both verbal and non-verbal stimuli. Recently, Ahissar and colleagues proposed the "anchoring-deficit hypothesis" (Ahissar, Lubin, Putter-Katz, & Banai, 2006), which suggests that dyslexics have a general difficulty in automatic extraction of stimulus regularities from auditory inputs. This hypothesis explained a broad range of dyslexics' verbal and non-verbal difficulties. However, it was not directly tested in the context of reading and verbal memory, which poses the main stumbling blocks to dyslexics. Here we assessed the abilities of adult dyslexics to efficiently benefit from ("anchor to") regularities embedded in repeated tones, orally presented syllables, and written words. We also compared dyslexics' performance to that of individuals with attention disorder (ADHD), but no reading disability. We found an anchoring effect in all groups: all gained from stimulus repetition. However, in line with the anchoring-deficit hypothesis, controls and ADHD participants showed a significantly larger anchoring effect in all tasks. This study is the first that directly shows that the same domain-general deficit, poor anchoring, characterizes dyslexics' performance in perceptual, working memory and reading tasks. Copyright © 2012 Elsevier Ltd. All rights reserved.
Chopra, S S; Mukherjee, Manish; Mitra, Rajat; Kochar, Gagan Deep; Kadu, Abhijeet
2017-04-01
Increased upper lip procumbency is commonly associated with maxillary dentoalveolar protrusion with the major goal of reducing maxillary dentoalveolar protrusion. The treatment plan usually includes extraction of the maxillary first premolars, followed by retraction of anterior teeth with maximum anchorage. Dental implants have been widely accepted as successful adjuncts for obtaining maximum anchorage in orthodontic treatment. 50 subjects between the ages of 13 and 17 years having bimaxillary dentoalveolar protrusion were included in the study. The patients were divided into two groups. Both groups received treatment with 0.022″ MBT prescription preadjusted edgewise appliance system. In addition, subjects of Group 'I' received the Nance button and lingual arch as anchorage reinforcement in the upper and lower arches, respectively. Subjects of Group 'II' received self-drilling titanium OI for anchorage reinforcement. Significant retraction was achieved in all cases with good vertical control. Anchor loss was observed in both groups. Anchor loss was much higher in Group I compared to Group II, and an intergroup comparison for anchor loss was highly significant. Implants as anchorage, for en masse retraction, can be incorporated into orthodontic practice. The use of orthodontic implants for anchorage is a viable alternative to conventional molar anchorage.
ANTS-anchored Zn-Al-CO3-LDH particles as fluorescent probe for sensing of folic acid
NASA Astrophysics Data System (ADS)
Liu, Pengfei; Liu, Dan; Liu, Yanhuan; Li, Lei
2016-09-01
A novel fluorescent nanosensor for detecting folic acid (FA) in aqueous media has been developed based on 8-aminonaphthalene-1,3,6-trisulfonate (ANTS) anchored to the surface of Zn-Al-CO3-layered double hydroxides (LDH) particles. The nanosensor showed high fluorescence intensity and good photostability due to a strong coordination interaction between surface Zn2+ ions of Zn-Al-CO3-LDH and N atoms of ANTS, which were verified by result of X-ray photoelectron spectroscopy (XPS). ANTS-anchored on the surface of Zn-Al-CO3-LDH restricted the intra-molecular rotation leading to ANTS-anchored J-type aggregation emission enhancement. ANTS-anchored Zn-Al-CO3-LDH particles exhibited highly sensitive and selective response to FA over other common metal ions and saccharides present in biological fluids. The proposed mechanism was that oxygen atoms of -SO3 groups in ANTS-anchored on the surface of Zn-Al-CO3-LDH were easily collided by FA molecules to form potential hydrogen bonds between ANTS-anchored and FA molecules, which could effectively quench the ANTS-anchored fluorescence. Under the simulated physiological conditions (pH of 7.4), the fluorescence quenching was fitted to Stern-Volmer equation with a linear response in the concentration range of 1 μM to 200 μM with a limit of detection of 0.1 μM. The results indicate that ANTS-anchored Zn-Al-CO3-LDH particles can afford a very sensitive system for the sensing FA in aqueous solution.
Lipardi, Concetta; Mora, Rosalia; Colomer, Veronica; Paladino, Simona; Nitsch, Lucio; Rodriguez-Boulan, Enrique; Zurzolo, Chiara
1998-01-01
Most epithelial cells sort glycosylphosphatidylinositol (GPI)-anchored proteins to the apical surface. The “raft” hypothesis, based on data mainly obtained in the prototype cell line MDCK, postulates that apical sorting depends on the incorporation of apical proteins into cholesterol/glycosphingolipid (GSL) rafts, rich in the cholesterol binding protein caveolin/VIP21, in the Golgi apparatus. Fischer rat thyroid (FRT) cells constitute an ideal model to test this hypothesis, since they missort both endogenous and transfected GPI- anchored proteins to the basolateral plasma membrane and fail to incorporate them into cholesterol/glycosphingolipid clusters. Because FRT cells lack caveolin, a major component of the caveolar coat that has been proposed to have a role in apical sorting of GPI- anchored proteins (Zurzolo, C., W. Van't Hoff, G. van Meer, and E. Rodriguez-Boulan. 1994. EMBO [Eur. Mol. Biol. Organ.] J. 13:42–53.), we carried out experiments to determine whether the lack of caveolin accounted for the sorting/clustering defect of GPI- anchored proteins. We report here that FRT cells lack morphological caveolae, but, upon stable transfection of the caveolin1 gene (cav1), form typical flask-shaped caveolae. However, cav1 expression did not redistribute GPI-anchored proteins to the apical surface, nor promote their inclusion into cholesterol/GSL rafts. Our results demonstrate that the absence of caveolin1 and morphologically identifiable caveolae cannot explain the inability of FRT cells to sort GPI-anchored proteins to the apical domain. Thus, FRT cells may lack additional factors required for apical sorting or for the clustering with GSLs of GPI-anchored proteins, or express factors that inhibit these events. Alternatively, cav1 and caveolae may not be directly involved in these processes. PMID:9456321
Hansen, Lars; Tawamie, Hasan; Murakami, Yoshiko; Mang, Yuan; ur Rehman, Shoaib; Buchert, Rebecca; Schaffer, Stefanie; Muhammad, Safia; Bak, Mads; Nöthen, Markus M; Bennett, Eric P; Maeda, Yusuke; Aigner, Michael; Reis, André; Kinoshita, Taroh; Tommerup, Niels; Baig, Shahid Mahmood; Abou Jamra, Rami
2013-04-04
PGAP2 encodes a protein involved in remodeling the glycosylphosphatidylinositol (GPI) anchor in the Golgi apparatus. After synthesis in the endoplasmic reticulum (ER), GPI anchors are transferred to the proteins and are remodeled while transported through the Golgi to the cell membrane. Germline mutations in six genes (PIGA, PIGL, PIGM, PIGV, PIGN, and PIGO) in the ER-located part of the GPI-anchor-biosynthesis pathway have been reported, and all are associated with phenotypes extending from malformation and lethality to severe intellectual disability, epilepsy, minor dysmorphisms, and elevated alkaline phosphatase (ALP). We performed autozygosity mapping and ultra-deep sequencing followed by stringent filtering and identified two homozygous PGAP2 alterations, p.Tyr99Cys and p.Arg177Pro, in seven offspring with nonspecific autosomal-recessive intellectual disability from two consanguineous families. Rescue experiments with the altered proteins in PGAP2-deficient Chinese hamster ovary cell lines showed less expression of cell-surface GPI-anchored proteins DAF and CD59 than of the wild-type protein, substantiating the pathogenicity of the identified alterations. Furthermore, we observed a full rescue when we used strong promoters before the mutant cDNAs, suggesting a hypomorphic effect of the mutations. We report on alterations in the Golgi-located part of the GPI-anchor-biosynthesis pathway and extend the phenotypic spectrum of the GPI-anchor deficiencies to isolated intellectual disability with elevated ALP. GPI-anchor deficiencies can be interpreted within the concept of a disease family, and we propose that the severity of the phenotype is dependent on the location of the altered protein in the biosynthesis chain. Copyright © 2013 The American Society of Human Genetics. Published by Elsevier Inc. All rights reserved.
Sipos, G; Puoti, A; Conzelmann, A
1994-01-01
Glycosylphosphatidylinositol (GPI) anchoring of membrane proteins occurs through two distinct steps, namely the assembly of a precursor glycolipid and its subsequent transfer onto newly synthesized proteins. To analyze the structure of the yeast precursor glycolipid we made use of the pmi40 mutant that incorporates very high amounts of [3H]mannose. Two very polar [3H]mannose-labeled glycolipids named CP1 and CP2 qualified as GPI precursor lipids since their carbohydrate head group, Man alpha 1,2(X-->PO4-->6)Man alpha 1,2Man alpha 1,6Man alpha-GlcN-inositol (with X most likely being ethanolamine) comprises the core structure which is common to all GPI anchors described so far. CP1 predominates in cells grown at 24 degrees C whereas CP2 is induced by stress conditions. The apparent structural identity of the head groups suggests that CP1 and CP2 contain different lipid moieties. The lipid moieties of both CP1 and CP2 can be removed by mild alkaline hydrolysis although the protein-bound GPI anchors made by the pmi40 cells under identical labeling conditions contain mild base resistant ceramides. These findings imply that the ceramide moiety found on the majority of yeast GPI anchored proteins is added through a lipid remodeling step that occurs after the addition of the GPI precursor glycolipids to proteins. Images PMID:8026463
Diffusion of GPI-anchored proteins is influenced by the activity of dynamic cortical actin
Saha, Suvrajit; Lee, Il-Hyung; Polley, Anirban; Groves, Jay T.; Rao, Madan; Mayor, Satyajit
2015-01-01
Molecular diffusion at the surface of living cells is believed to be predominantly driven by thermal kicks. However, there is growing evidence that certain cell surface molecules are driven by the fluctuating dynamics of cortical cytoskeleton. Using fluorescence correlation spectroscopy, we measure the diffusion coefficient of a variety of cell surface molecules over a temperature range of 24–37°C. Exogenously incorporated fluorescent lipids with short acyl chains exhibit the expected increase of diffusion coefficient over this temperature range. In contrast, we find that GPI-anchored proteins exhibit temperature-independent diffusion over this range and revert to temperature-dependent diffusion on cell membrane blebs, in cells depleted of cholesterol, and upon acute perturbation of actin dynamics and myosin activity. A model transmembrane protein with a cytosolic actin-binding domain also exhibits the temperature-independent behavior, directly implicating the role of cortical actin. We show that diffusion of GPI-anchored proteins also becomes temperature dependent when the filamentous dynamic actin nucleator formin is inhibited. However, changes in cortical actin mesh size or perturbation of branched actin nucleator Arp2/3 do not affect this behavior. Thus cell surface diffusion of GPI-anchored proteins and transmembrane proteins that associate with actin is driven by active fluctuations of dynamic cortical actin filaments in addition to thermal fluctuations, consistent with expectations from an “active actin-membrane composite” cell surface. PMID:26378258
ERIC Educational Resources Information Center
Vonkova, Hana; Zamarro, Gema; Hitt, Collin
2018-01-01
Self-reports are an indispensable source of information in education research but they are often affected by heterogeneity in reporting behavior. Failing to correct for this heterogeneity can lead to invalid comparisons across groups. The researchers use the parametric anchoring vignette method to correct for cross-country incomparability of…
A Monte Carlo Study of an Iterative Wald Test Procedure for DIF Analysis
ERIC Educational Resources Information Center
Cao, Mengyang; Tay, Louis; Liu, Yaowu
2017-01-01
This study examined the performance of a proposed iterative Wald approach for detecting differential item functioning (DIF) between two groups when preknowledge of anchor items is absent. The iterative approach utilizes the Wald-2 approach to identify anchor items and then iteratively tests for DIF items with the Wald-1 approach. Monte Carlo…
NASA Astrophysics Data System (ADS)
Wang, Wentao; Palui, Goutam; Ji, Xin; Aldeek, Fadi; Mattoussi, Hedi
2014-03-01
We prepared a set of multi-coordinating and reactive amphiphilic polymer ligands and used them for surface-functionalizing magnetic iron oxide nanoparticles. The amphiphilic oligomers were prepared by coupling (via one step nucleophilic addition) several dopamine anchoring groups, polyethylene glycol moieties and reactive groups onto a poly(isobutylene-alt-maleic anhydride) chain. The availability of several anchoring groups in the same ligand greatly enhances the ligand affinity to the nanoparticle surfaces, via multiplecoordination, while the hydrophilic and reactive groups promote colloidal stability in buffer media and allow subsequent conjugation to target biomolecules. The hydrophilic nanoparticles capped with these polymers maintain compact size and exhibit great long term colloidal stability.
NASA Astrophysics Data System (ADS)
Lorke, A.; Bodmer, P.; Noss, C.; Alshboul, Z.; Koschorreck, M.; Somlai-Haase, C.; Bastviken, D.; Flury, S.; McGinnis, D. F.; Maeck, A.; Müller, D.; Premke, K.
2015-12-01
Stream networks have recently been discovered to be major but poorly constrained natural greenhouse gas (GHG) sources. A fundamental problem is that several measurement approaches have been used without cross-comparisons. Flux chambers represent a potentially powerful methodological approach if robust and reliable ways to use chambers on running water can be defined. Here we compare the use of anchored and freely drifting chambers on various streams with different flow velocities. The study clearly shows that (1) anchored chambers enhance turbulence under the chambers and thus elevate fluxes, (2) drifting chambers have a very small impact on the water turbulence under the chamber and thus generate more reliable fluxes, (3) the bias of the anchored chambers greatly depends on chamber design and sampling conditions, and (4) there is a promising method to reduce the bias from anchored chambers by using a flexible plastic foil collar to seal the chambers to the water surface, rather than having rigid chamber walls penetrating into the water. Altogether, these results provide novel guidance on how to apply flux chambers in running water, which will have important consequences for measurements to constrain the global GHG balances.
NASA Astrophysics Data System (ADS)
Lorke, A.; Bodmer, P.; Noss, C.; Alshboul, Z.; Koschorreck, M.; Somlai, C.; Bastviken, D.; Flury, S.; McGinnis, D. F.; Maeck, A.; Müller, D.; Premke, K.
2015-09-01
Stream networks were recently discovered as major but poorly constrained natural greenhouse gas (GHG) sources. A fundamental problem is that several measurement approaches have been used without cross comparisons. Flux chambers represent a potentially powerful methodological approach if robust and reliable ways to use chambers on running water can be defined. Here we compare the use of anchored and freely drifting chambers on various streams having different flow velocities. The study clearly shows that (1) drifting chambers have a very small impact on the water turbulence under the chamber and thus generate more reliable fluxes, (2) anchored chambers enhance turbulence under the chambers and thus elevate fluxes, (3) the bias of the anchored chambers greatly depends on chamber design and sampling conditions, and (4) there is a promising method to reduce the bias from anchored chambers by using a flexible plastic foil seal to the water surface rather than having rigid chamber walls penetrating into the water. Altogether, these results provide novel guidance on how to apply flux chambers in running water, which will have important consequences for measurements to constrain the global GHG balances.
Fukushima, Keiko; Ikehara, Yukio; Kanai, Michiko; Kochibe, Naohisa; Kuroki, Masahide; Yamashita, Katsuko
2003-09-19
Glycosylphosphatidylinositol (GPI)-anchored proteins are ubiquitous in eukaryotes. The minimum conserved GPI core structure of all GPI-anchored glycans has been determined as EtN-PO4-6Manalpha1-2Manalpha1-6Manalpha1-4GlcN-myo-inositol-PO3H. Human placental alkaline phosphatase (AP) has been reported to be a GPI-anchored membrane protein. AP carries one N-glycan, (NeuAcalpha2-->3)2Gal2GlcNAc2Man3GlcNAc(+/-Fuc)GlcNAc, and a GPI anchor, which contains an ethanolamine phosphate diester group, as a side chain. However, we found that both sialidase-treated soluble AP (sAP) and its GPI-anchored glycan bound to a Psathyrella velutina lectin (PVL)-Sepharose column, which binds beta-GlcNAc residues. PVL binding of asialo-sAP and its GPI-anchored glycan was diminished by digestion with diplococcal beta-N-acetylhexosaminidase or by mild acid treatment. After sequential digestion of asialo-sAP with beta-N-acetylhexosaminidase and acid phosphatase, the elution patterns on chromatofocusing gels were changed in accordance with the negative charges of phosphate residues. Trypsin-digested sAP was analyzed by liquid chromatography/electrospray ionization mass spectrometry, and the structures of two glycopeptides with GPI-anchored glycans were confirmed as peptide-EtN-PO4-6Manalpha1-->2(GlcNAcbeta1-PO4-->6)Manalpha1-6(+/-EtN-PO4-->)Manalpha1-->4GlcN, which may be produced by endo-alpha-glucosaminidase. In addition to AP, GPI-anchored carcinoembryonic antigen, cholinesterase, and Tamm-Horsfall glycoprotein also bound to a PVL-Sepharose column, suggesting that the beta-N-acetylglucosaminyl phosphate diester residue is widely distributed in human GPI-anchored glycans. Furthermore, we found that the beta-N-acetylglucosaminyl phosphate diester residue is important for GPI anchor recognition of aerolysin, a channel-forming toxin derived from Aeromonas hydrophila.
Affective dependence and aggression: an exploratory study.
Petruccelli, Filippo; Diotaiuti, Pierluigi; Verrastro, Valeria; Petruccelli, Irene; Federico, Roberta; Martinotti, Giovanni; Fossati, Andrea; Di Giannantonio, Massimo; Janiri, Luigi
2014-01-01
Emotionally dependent subjects may engage in controlling, restrictive, and aggressive behaviours, which limit their partner's autonomy. The underlying causes of such behaviours are not solely based on levels of aggression, but act as a mean of maintaining the subject's own sense of self-worth, identity, and general functioning. The aim of the paper is to explore the correlation between affective dependency and reactive/proactive aggression and to evaluate individual differences as predisposing factors for aggressive behaviour and emotional dependency. The Spouse-Specific Dependency Scale (SSDS) and the Reactive Proactive Questionnaire (RPQ) were administered to a sample of 3375 subjects. In the whole sample, a positive correlation between emotional dependency and proactive aggression was identified. Differences with regard to sex, age group, and geographical distribution were evidenced for the scores of the different scales. A fundamental distinction between reactive and proactive aggression was observed, anchoring proactive aggression more strictly to emotional dependency. Sociocultural and demographical variables, together with the previous structuring of attachment styles, help to determine the scope, frequency, and intensity of the demands made to the partner, as well as to feed the fears of loss, abandonment, or betrayal.
Task difficulty has no effect on haptic anchoring during tandem walking in young and older adults.
Costa, Andréia Abud da Silva; Santos, Luciana Oliveira Dos; Mauerberg-deCastro, Eliane; Moraes, Renato
2018-02-14
This study assessed the contribution of the "anchor system's" haptic information to balance control during walking at two levels of difficulty. Seventeen young adults and seventeen older adults performed 20 randomized trials of tandem walking in a straight line, on level ground and on a slightly-raised balance beam, both with and without the use of the anchors. The anchor consists of two flexible cables, whose ends participants hold in each hand, to which weights (125 g) are attached at the opposing ends, and which rest on the ground. As the participants walk, they pull on the cables, dragging the anchors. Spatiotemporal gait variables (step speed and single- and double-support duration) were processed using retro-reflective markers on anatomical sites. An accelerometer positioned in the cervical region registered trunk acceleration. Walking on the balance beam increased single- and double-support duration and reduced step speed in older adults, which suggests that this condition was more difficult than walking on the level ground. The anchors reduced trunk acceleration in the frontal plane, but the level of difficulty of the walking task showed no effect. Thus, varying the difficulty of the task had no influence on the way in which participants used the anchor system while tandem walking. The older adults exhibited more difficulty in walking on the balance beam as compared to the younger adults; however, the effect of the anchor system was similar in both groups. Copyright © 2017 Elsevier B.V. All rights reserved.
Maynard, Jeffrey A; Anthony, Kenneth R N; Afatta, Siham; Dahl-Tacconi, Nancy; Hoegh-Guldberg, Ove
2010-10-01
Most of the world's coral reefs line the coasts of developing nations, where impacts from intense and destructive fishing practices form critical conservation issues for managers. Overfishing of herbivorous fishes can cause phase shifts to macroalgal dominance, and fishers' use of rocks as anchors lowers coral cover, giving further competitive advantage to macroalgae. Overfishing and anchoring have been studied extensively, but the role of their interaction in lowering coral reef resilience has not been quantified formally. We analyzed the combined effects of overfishing and rock anchoring on a range of reef habitat types--varying from high coral and low macroalgae cover to low coral and high macroalgae cover--in a marine park in Indonesia. We parameterized a model of coral and algal dynamics with three intensities of anchoring and fishing pressure. Results of the model indicated that damage caused by rock anchoring was equal to or possibly more devastating to coral reefs in the area than the impact of overfishing. This is an important outcome for local managers, who usually have the funds to distribute less-damaging anchors, but normally are unable to patrol regularly and effectively enough to reduce the impact of overfishing. We translated model results into an interactive visual tool that allows managers to explore the benefits of reducing anchoring frequency and fishing pressure. The potential consequences of inaction were made clear: the likelihood that any of the reef habitats will be dominated in the future by macroalgae rather than corals depends on reducing anchoring frequency, fishing pressure, or both. The tool provides a platform for strengthened relationships between managers and conservationists and can facilitate the uptake of recommendations regarding resource allocation and management actions. Conservation efforts for coral reefs in developing nations are likely to benefit from transforming model projections of habitat condition into tools local managers can understand and interact with. © 2010 Society for Conservation Biology.
Changes consequent to maxillary molar distalization with the bone-anchored pendulum appliance.
Cambiano, Aldo Otazú; Janson, Guilherme; Fuziy, Acácio; Garib, Daniela Gamba; Lorenzoni, Diego Coelho
2017-01-01
This retrospective study aimed to evaluate the dentoalveolar, skeletal, and soft tissue effects obtained with bone-anchored pendulum appliance in patients with Class II malocclusion. A total of 18 patients (4 male, 14 female) at a mean pretreatment age of 14.0 years (+1.08) were enrolled in this study. All patients were treated with the bone-anchored pendulum appliance for an average duration of 4.8 months. Only the active distalization period was evaluated with predistalization and postdistalization lateral cephalograms. Skeletal, dentoalveolar, and soft tissue variables were obtained. Based on these variables, the treatment effects were evaluated with dependent t -test. Correction of Class II molar relationship resulted from distal movement of 3.45 mm and tipping of 11.24° of the first maxillary molars. The premolars were distalized accompanying the molars. The bone-anchored pendulum appliance proved to be an effective method for distalization of maxillary molars in cases that require maximum anchorage, avoiding reciprocal mesial movement of premolars and incisors.
Creating Order from Chaos: Cellular Regulation by Kinase Anchoring
Scott, John D.; Dessauer, Carmen W.; Tasken, Kjetil
2012-01-01
Second messenger responses rely on where and when the enzymes that propagate these signals become active. Spatial and temporal organization of certain signaling enzymes is controlled in part by A-kinase anchoring proteins (AKAPs). This family of regulatory proteins was originally classified on the basis of their ability to compartmentalize the cyclic adenosine monophosphate (cAMP)-dependent protein kinase (also known as protein kinase A, or PKA). However, it is now recognized that AKAPs position G protein–coupled receptors, adenylyl cyclases, G proteins, and their effector proteins in relation to protein kinases and signal termination enzymes such as phosphodiesterases and protein phosphatases. This arrangement offers a simple and efficient means to limit the scope, duration, and directional flow of information to sites deep within the cell. This review focuses on the pros and cons of reagents that define the biological role of kinase anchoring inside cells and discusses recent advances in our understanding of anchored second messenger signaling in the cardiovascular and immune systems. PMID:23043438
NASA Astrophysics Data System (ADS)
Marchiori, Cleber F. N.; Garcia-Basabe, Yunier; de A. Ribeiro, Fabio; Koehler, Marlus; Roman, Lucimara S.; Rocco, Maria Luiza M.
2017-01-01
We use X-ray photoelectron spectroscopy (XPS), Near-edge X-ray absorption fine structure (NEXAFS), resonant Auger spectroscopy (RAS), Attenuation Total Reflection Infrared (ATR-IR) and Atomic Force Microscopy (AFM) to study the blend between the copolymer poly[2,7-(9,9-bis(2-ethylhexyl)-dibenzosilole)-alt-4,7-bis(thiophen-2-yl)benzo-2,1,3-thiadiazole] (PSiF-DBT) and the fullerene derivative PC71BM submitted to different annealing temperatures. Those measurements indicate that there is an incidental anchoring of a fullerene derivative to the Si-bridging atoms of a copolymer induced by thermal annealing of the film. Insights about the physical properties of one possible PSiF-DBT/PC71BM anchored structure are obtained using Density Functional Theory calculations. Since the performance of organic photovoltaic based on polymer-fullerene blends depends on the chemical structure of the blend components, the anchoring effect might affect the photovoltaic properties of those devices.
Lattice Boltzmann simulation of asymmetric flow in nematic liquid crystals with finite anchoring
NASA Astrophysics Data System (ADS)
Zhang, Rui; Roberts, Tyler; Aranson, Igor S.; de Pablo, Juan J.
2016-02-01
Liquid crystals (LCs) display many of the flow characteristics of liquids but exhibit long range orientational order. In the nematic phase, the coupling of structure and flow leads to complex hydrodynamic effects that remain to be fully elucidated. Here, we consider the hydrodynamics of a nematic LC in a hybrid cell, where opposite walls have conflicting anchoring boundary conditions, and we employ a 3D lattice Boltzmann method to simulate the time-dependent flow patterns that can arise. Due to the symmetry breaking of the director field within the hybrid cell, we observe that at low to moderate shear rates, the volumetric flow rate under Couette and Poiseuille flows is different for opposite flow directions. At high shear rates, the director field may undergo a topological transition which leads to symmetric flows. By applying an oscillatory pressure gradient to the channel, a net volumetric flow rate is found to depend on the magnitude and frequency of the oscillation, as well as the anchoring strength. Taken together, our findings suggest several intriguing new applications for LCs in microfluidic devices.
An ESR study of the anchoring of spin-labeled stearic acid in lecithin multilayers.
Sanson, A; Ptak, M; Rigaud, J L; Gary-Bobo, C M
1976-11-01
In egg lecithin-water lamellar phases, spin-labeled stearic acid gives two superimposed ESR spectra which are only well resolved when the temperature is greater than 30 degrees C. These two spectral components are attributed to the dissociated and non-dissociated forms of the fatty acid carboxylic group, anchored at two different positions in the polar interface constituted by the hydrated lipid polar heads. Results on such interactions of other functional groups (spin-labeled fatty ester and fatty alcohol) are also presented.
Molecularly precise dendrimer-drug conjugates with tunable drug release for cancer therapy.
Zhou, Zhuxian; Ma, Xinpeng; Murphy, Caitlin J; Jin, Erlei; Sun, Qihang; Shen, Youqing; Van Kirk, Edward A; Murdoch, William J
2014-10-06
The structural preciseness of dendrimers makes them perfect drug delivery carriers, particularly in the form of dendrimer-drug conjugates. Current dendrimer-drug conjugates are synthesized by anchoring drug and functional moieties onto the dendrimer peripheral surface. However, functional groups exhibiting the same reactivity make it impossible to precisely control the number and the position of the functional groups and drug molecules anchored to the dendrimer surface. This structural heterogeneity causes variable pharmacokinetics, preventing such conjugates to be translational. Furthermore, the highly hydrophobic drug molecules anchored on the dendrimer periphery can interact with blood components and alter the pharmacokinetic behavior. To address these problems, we herein report molecularly precise dendrimer-drug conjugates with drug moieties buried inside the dendrimers. Surprisingly, the drug release rates of these conjugates were tailorable by the dendrimer generation, surface chemistry, and acidity. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
ERIC Educational Resources Information Center
Bottge, Brian A.; Heinrichs, Mary; Chan, Shih-Yi; Mehta, Zara Dee; Watson, Elizabeth
2003-01-01
This study examined effects of video-based, anchored instruction and applied problems on the ability of 11 low-achieving (LA) and 26 average-achieving (AA) eighth graders to solve computation and word problems. Performance for both groups was higher during anchored instruction than during baseline, but no differences were found between instruction…
Testing the interval-level measurement property of multi-item visual analogue scales.
Krabbe, Paul F M; Stalmeier, Peep F M; Lamers, Leida M; Busschbach, Jan J V
2006-12-01
Conditions were studied that may invalidate health-state values derived from the visual analogue scale (VAS). Respondents were asked to place cards with descriptions of EQ-5D health states on a 20 cm EuroQol VAS and modified versions of it, positioning them such that the distances between the states reflect their valuation for these states. Anchor-point bias was examined using the standard EuroQol VAS (n = 212) and a modified version (n = 97) with a different lower anchor. Context bias was examined in another group of respondents (n = 112) who valued three different sets of EQ-5D health states. Marker bias was studied in yet another group of respondents (n = 100) who placed the same EQ-5D states on the standard EuroQol VAS and on a modified VAS without anchors, categories, or measurement markers. No indication for the existence of the anchor-point and the marker bias was found. However, the VAS valuations were significantly affected by the context of the set of health states in the scaling task. Advanced methodologies should be incorporated in VAS valuation studies to deal with the context bias.
NASA Astrophysics Data System (ADS)
Ji, Xiao-Li; Xie, Zhen; Zuo, Xi; Zhang, Guang-Ping; Li, Zong-Liang; Wang, Chuan-Kui
2016-09-01
By applying density functional theory based nonequilibrium Green's function method, we theoretically investigate the electron transport properties of a zigzag-edged trigonal graphene nanoflake (ZTGNF) sandwiched between two asymmetric zigzag graphene nanoribbon (zGNR) and armchair graphene nanoribbon (aGNR) electrodes with carbon atomic chains (CACs) as the anchoring groups. Significant rectifying effects have been observed for these molecular devices in low bias voltage regions. Interestingly, the rectifying performance of molecular devices can be optimized by changing the width of the aGNR electrode and the number of anchoring CACs. Especially, the molecular device displays giant rectification ratios up to the order of 104 when two CACs are used as the anchoring group between the ZTGNF and the right aGNR electrode. Further analysis indicates that the asymmetric shift of the perturbed molecular energy levels and the spatial parity of the electron wavefunctions in the electrodes around the Fermi level play key roles in determining the rectification performance. And the spatial distributions of tunneling electron wavefunctions under negative bias voltages can be modified to be very localized by changing the number of anchoring CACs, which is found to be the origin of the giant rectification ratios.
Experimental research on anchoring force in intestine for the motion of capsule robot.
Chen, Wenwen; Ke, Quan; He, Shu; Luo, Weijie; Ji, Xing Chun; Yan, Guozheng
2013-07-01
Multiple research groups are currently attempting to develop less-invasive robotic capsule endoscopes (RCEs) with better outcomes for enteroscopic procedures. Understanding the biomechanical response of the bowel to RCE is crucial for optimizing the design of these devices. For this reason, this study aims to develop an analytical model to predict the anchoring force of the model when travelling through the intestine. Previous work has developed, characterized and tested the frictional characteristics of the intestine with microgroove structures that had different surface contours. This work tested basic anchoring force characteristics with custom-built testers and clamping mechanism dummies to analyse the robot clamping movement (which is vital to improving movement efficiency). Balloon-shaped and leg-based clamping mechanisms were developed, which were found to have variable anchoring forces from 0.01 N to 1.2 N. After analysing the experimental results it was found that: (a) robot weight does not play a major role in anchoring force; (b) an increase in anchoring force corresponded to an increase in diameter of the clamping mechanism; and (c) textured contact surfaces effectively increased friction. These results could be explained by the biomechanical response of the intestine, friction and mucoadhesion characteristics of the small intestine material. With these factors considered, a model was developed for determining anchoring force in the small intestine.
Biosynthesis of GPI-anchored proteins: special emphasis on GPI lipid remodeling
Kinoshita, Taroh; Fujita, Morihisa
2016-01-01
Glycosylphosphatidylinositols (GPIs) act as membrane anchors of many eukaryotic cell surface proteins. GPIs in various organisms have a common backbone consisting of ethanolamine phosphate (EtNP), three mannoses (Mans), one non-N-acetylated glucosamine, and inositol phospholipid, whose structure is EtNP-6Manα-2Manα-6Manα-4GlNα-6myoinositol-P-lipid. The lipid part is either phosphatidylinositol of diacyl or 1-alkyl-2-acyl form, or inositol phosphoceramide. GPIs are attached to proteins via an amide bond between the C-terminal carboxyl group and an amino group of EtNP. Fatty chains of inositol phospholipids are inserted into the outer leaflet of the plasma membrane. More than 150 different human proteins are GPI anchored, whose functions include enzymes, adhesion molecules, receptors, protease inhibitors, transcytotic transporters, and complement regulators. GPI modification imparts proteins with unique characteristics, such as association with membrane microdomains or rafts, transient homodimerization, release from the membrane by cleavage in the GPI moiety, and apical sorting in polarized cells. GPI anchoring is essential for mammalian embryogenesis, development, neurogenesis, fertilization, and immune system. Mutations in genes involved in remodeling of the GPI lipid moiety cause human diseases characterized by neurological abnormalities. Yeast Saccharomyces cerevisiae has >60 GPI-anchored proteins (GPI-APs). GPI is essential for growth of yeast. In this review, we discuss biosynthesis of GPI-APs in mammalian cells and yeast with emphasis on the lipid moiety. PMID:26563290
Kim, Jae-Hwa; Chung, Ju-Hwan; Lee, Dong-Hoon; Lee, Yoon-Seok; Kim, Jung-Ryul; Ryu, Keun-Jung
2011-12-01
To evaluate functional and radiographic results of arthroscopic suture anchor repair for posterior root tear of the medial meniscus (PRTMM) and compare with pullout suture repair. From December 2006 to August 2008, 51 consecutive patients underwent arthroscopic repair of PRTMM at our hospital. The repair technique was switched over time from pullout suture repair (group 1) to suture anchor repair (group 2). Of the patients, 6 were lost to follow-up, leaving a study population of 45 patients, with 22 menisci (48.9%) in group 1 and 23 (51.1%) menisci in group 2. The mean follow-up duration was 25.9 months (range, 24 to 27 months) in group 1 and 26.8 months (range, 24 to 28 months) in group 2. Compared variables included International Knee Documentation Committee criteria, Kellgren-Lawrence grade, gap distance at PRTMM, structural healing, meniscal extrusion, and cartilage degeneration of the medial femoral condyle. At 2 years postoperatively, both groups showed significant improvements in function (P < .05) and did not show significant differences in Kellgren-Lawrence grade (P > .05) compared with preoperatively. On magnetic resonance imaging, the gap distance at PRTMM was 3.2 ± 1.1 mm in group 1 and 2.9 ± 0.9 mm in group 2 preoperatively (P > .05). Complete structural healing was seen in 11 cases in group 1 and 12 cases in group 2 (P > .05). Mean meniscal extrusion of 4.3 ± 0.9 mm (group 1) and 4.1 ± 1.0 mm (group 2) preoperatively was significantly decreased to 2.1 ± 1.0 mm (group 1) and 2.2 ± 0.8 mm (group 2) postoperatively (P < .05). Regardless of repair technique, incompletely healed cases showed progression of cartilage degeneration (4 cases in group 1 and 2 cases in group 2). For PRTMM, our results show significant functional improvement in both the suture anchor repair and pullout suture repair groups. Reduction of meniscal extrusion seems to be appropriate to preserve its protective role against progression of cartilage degeneration after complete healing at PRTMM. Level III, prospective therapeutic comparative study. Copyright © 2011 Arthroscopy Association of North America. Published by Elsevier Inc. All rights reserved.
Buchhorn, G. H.; Gilbert, F.; Spahn, G.; Schultz, W.; Klinger, H.-M.
2010-01-01
Aim This experimental study aimed to compare the load-to-failure rate and stiffness of single- versus double-row suture techniques for repairing rotator cuff lesions using two different suture materials. Additionally, the mode of failure of each repair was evaluated. Method In 32 sheep shoulders, a standardized tear of the infraspinatus tendon was created. Then, n = 8 specimen were randomized to four repair methods: (1) Double-row Anchor Ethibond® coupled with polyester sutures, USP No. 2; (2) Double-Row Anchor HiFi® with polyblend polyethylene sutures, USP No. 2; (3) Single-Row Anchor Ethibond® coupled with braided polyester sutures, USP No. 2; and (4) Single-Row Anchor HiFi® with braided polyblend polyethylene sutures, USP No. 2. Arthroscopic Mason–Allen stitches were placed (single-row) and combined with medial horizontal mattress stitches (double-row). All specimens were loaded to failure at a constant displacement rate on a material testing machine. Results Group 4 showed lowest load-to-failure result with 155.7 ± 31.1 N compared to group 1 (293.4 ± 16.1 N) and group 2 (397.7 ± 7.4 N) (P < 0.001). Stiffness was highest in group 2 (162 ± 7.3 N/mm) and lowest in group 4 (84.4 ± 19.9 mm) (P < 0.001). In group 4, the main cause of failure was due to the suture cutting through the tendon (n = 6), a failure case observed in only n = 1 specimen in group 2 (P < 0.001). Conclusions A double-row technique combined with arthroscopic Mason-Allen/horizontal mattress stitches provides high initial failure strength and may minimize the risk of the polyethylene sutures cutting through the tendon in rotator cuff repair when a single load force is used. PMID:20049605
Gold nanoparticles assembled with dithiocarbamate-anchored molecular wires
Reeler, Nini E. A.; Lerstrup, Knud A.; Somerville, Walter; Speder, Jozsef; Petersen, Søren V.; Laursen, Bo W.; Arenz, Matthias; Qiu, Xiaohui; Vosch, Tom; Nørgaard, Kasper
2015-01-01
A protocol for the bottom-up self-assembly of nanogaps is developed through molecular linking of gold nanoparticles (AuNPs). Two π-conjugated oligo(phenylene ethynylene) molecules (OPE) with dithiocarbamate anchoring groups are used as ligands for the AuNPs. OPE-4S with a dithiocarbamate in each end of the molecule and a reference molecule OPE-2S with only a single dithiocarbamate end group. The linking mechanism of OPE-4S is investigated by using a combination of TEM, UV-Vis absorption and surface enhanced Raman spectroscopy (SERS) as well as studying the effect of varying the OPE-4S to AuNP concentration ratio. UV-Vis absorption confirms the formation of AuNP aggregates by the appearance of an extended plasmon band (EPB) for which the red shift and intensity depend on the OPE-4S:AuNP ratio. SERS confirms the presence of OPE-4S and shows a gradual increase of the signal intensity with increasing OPE-4S:AuNP ratios up to a ratio of about 4000, after which the SERS intensity does not increase significantly. For OPE-2S, no linking is observed below full coverage of the AuNPs indicating that the observed aggregate formation at high OPE-2S:AuNP ratios, above full AuNP coverage, is most likely of a physical nature (van der Waals forces or π-π interactions). PMID:26471461
Fedorová, P; Srnec, R; Pěnčík, J; Dvořák, M; Krbec, M; Nečas, A
2015-01-01
PURPOSE OF THE STUDY Recent trends in the experimental surgical management of a partial anterior cruciate ligament (ACL) rupture in animals show repair of an ACL lesion using novel biomaterials both for biomechanical reinforcement of a partially unstable knee and as suitable scaffolds for bone marrow stem cell therapy in a partial ACL tear. The study deals with mechanical testing of the newly developed ultra-high-molecular-weight polyethylene (UHMWPE) biomaterial anchored to bone with Hexalon biodegradable ACL/PCL screws, as a new possibility of intra-articular reinforcement of a partial ACL tear. MATERIAL AND METHODS Two groups of ex vivo pig knee models were prepared and tested as follows: the model of an ACL tear stabilised with UHMWPE biomaterial using a Hexalon ACL/PCL screw (group 1; n = 10) and the model of an ACL tear stabilised with the traditional, and in veterinary medicine used, extracapsular technique involving a monofilament nylon fibre, a clamp and a Securos bone anchor (group 2; n = 11). The models were loaded at a standing angle of 100° and the maximum load (N) and shift (mm) values were recorded. RESULTS In group 1 the average maximal peak force was 167.6 ± 21.7 N and the shift was on average 19.0 ± 4.0 mm. In all 10 specimens, the maximum load made the UHMWPE implant break close to its fixation to the femur but the construct/fixation never failed at the site where the material was anchored to the bone. In group 2, the average maximal peak force was 207.3 ± 49.2 N and the shift was on average 24.1 ± 9.5 mm. The Securos stabilisation failed by pullout of the anchor from the femoral bone in nine out of 11 cases; the monofilament fibre ruptured in two cases. CONCLUSIONS It can be concluded that a UHMWPE substitute used in ex-vivo pig knee models has mechanical properties comparable with clinically used extracapsular Securos stabilisation and, because of its potential to carry stem cells and bioactive substances, it can meet the requirements for an implant appropriate to the unique technique of protecting a partial ACL tear. In addition, it has no critical point of ACL substitute failure at the site of its anchoring to the bone (compared to the previously used PET/PCL substitute). Key words: knee stabilisation, stifle surgery, ultra-high-molecular-weight polyethylene, UHMWPE, nylon monofilament thread, biodegradable screw, bone anchor.
Jones, Andrew O F; Knauer, Philipp; Resel, Roland; Ringk, Andreas; Strohriegl, Peter; Werzer, Oliver; Sferrazza, Michele
2015-06-08
The thermal stability and molecular order in monolayers of two organic semiconductors, PBI-PA and PBI-alkyl, based on perylene derivatives with an identical molecular structure except for an anchor group for attachment to the substrate in PBI-PA, are reported. In situ X-ray reflectivity measurements are used to follow the stability of these monolayers in terms of order and thickness as temperature is increased. Films have thicknesses corresponding approximately to the length of one molecule; molecules stand upright on the substrate with a defined structure. PBI-PA monolayers have a high degree of order at room temperature and a stable film exists up to 250 °C, but decomposes rapidly above 300 °C. In contrast, stable physisorbed PBI-alkyl monolayers only exist up to 100 °C. Above the bulk melting point at 200 °C no more order exists. The results encourage using anchor groups in monolayers for various applications as it allows enhanced stability at the interface with the substrate. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Philippova, Maria; Ivanov, Danila; Joshi, Manjunath B.; Kyriakakis, Emmanouil; Rupp, Katharina; Afonyushkin, Taras; Bochkov, Valery; Erne, Paul; Resink, Therese J.
2008-01-01
There is scant knowledge regarding how cell surface lipid-anchored T-cadherin (T-cad) transmits signals through the plasma membrane to its intracellular targets. This study aimed to identify membrane proteins colocalizing with atypical glycosylphosphatidylinositol (GPI)-anchored T-cad on the surface of endothelial cells and to evaluate their role as signaling adaptors for T-cad. Application of coimmunoprecipitation from endothelial cells expressing c-myc-tagged T-cad and high-performance liquid chromatography revealed putative association of T-cad with the following proteins: glucose-related protein GRP78, GABA-A receptor α1 subunit, integrin β3, and two hypothetical proteins, LOC124245 and FLJ32070. Association of Grp78 and integrin β3 with T-cad on the cell surface was confirmed by surface biotinylation and reciprocal immunoprecipitation and by confocal microscopy. Use of anti-Grp78 blocking antibodies, Grp78 small interfering RNA, and coexpression of constitutively active Akt demonstrated an essential role for surface Grp78 in T-cad-dependent survival signal transduction via Akt in endothelial cells. The findings herein are relevant in the context of both the identification of transmembrane signaling partners for GPI-anchored T-cad as well as the demonstration of a novel mechanism whereby Grp78 can influence endothelial cell survival as a cell surface signaling receptor rather than an intracellular chaperone. PMID:18411300
Turkkahraman, Hakan; Eliacik, Sule Kocabas; Findik, Yavuz
2016-11-01
To compare the skeletal, dentoalveolar, and soft tissue effects of the miniplate anchored Forsus Fatigue Resistant Device (FRD) and the conventional Forsus FRD in the treatment of Class II malocclusion. The study was carried out with 30 patients (10 girls, 20 boys). In the MA-Forsus group, 15 patients (2 girls, 13 boys) were treated with a miniplate anchored Forsus FRD for 9.40 ± 2.25 months. In the C-Forsus group, 15 patients (8 girls, 7 boys) were treated with a conventional Forsus FRD for 9.46 ± 0.81 months. A total of 16 measurements were calculated and statistically analyzed to find intragroup and intergroup differences. Statistically significant differences were found between the groups in IMPA, SN/Occ, SN/GoGn, overjet, overbite, and Li-S measurements (P < .05). In the C-Forsus group, a substantial amount of lower incisor protrusion was observed, whereas retrusion was found in the MA-Forsus group (P < .001). The mandible rotated backward in the MA-Forsus group, whereas it remained unchanged in the C-Forsus group (P < .05). Reductions in overjet (P < .001) and overbite were greater in the C-Forsus group (P < .05). Stimulation of mandibular growth and inhibition of maxillary growth were achieved in both treatment groups. In the C-Forsus group, a substantial amount of lower incisor protrusion was observed, whereas retrusion of lower incisors was found in the MA-Forsus group. The MA-Forsus group was found to be more advantageous as it had no dentoalveolar side effects on mandibular dentition.
Eye-Hand Coordination during Visuomotor Adaptation with Different Rotation Angles
Rentsch, Sebastian; Rand, Miya K.
2014-01-01
This study examined adaptive changes of eye-hand coordination during a visuomotor rotation task. Young adults made aiming movements to targets on a horizontal plane, while looking at the rotated feedback (cursor) of hand movements on a monitor. To vary the task difficulty, three rotation angles (30°, 75°, and 150°) were tested in three groups. All groups shortened hand movement time and trajectory length with practice. However, control strategies used were different among groups. The 30° group used proportionately more implicit adjustments of hand movements than other groups. The 75° group used more on-line feedback control, whereas the 150° group used explicit strategic adjustments. Regarding eye-hand coordination, timing of gaze shift to the target was gradually changed with practice from the late to early phase of hand movements in all groups, indicating an emerging gaze-anchoring behavior. Gaze locations prior to the gaze anchoring were also modified with practice from the cursor vicinity to an area between the starting position and the target. Reflecting various task difficulties, these changes occurred fastest in the 30° group, followed by the 75° group. The 150° group persisted in gazing at the cursor vicinity. These results suggest that the function of gaze control during visuomotor adaptation changes from a reactive control for exploring the relation between cursor and hand movements to a predictive control for guiding the hand to the task goal. That gaze-anchoring behavior emerged in all groups despite various control strategies indicates a generality of this adaptive pattern for eye-hand coordination in goal-directed actions. PMID:25333942
ERIC Educational Resources Information Center
Bressan, Paola
2007-01-01
Replies to comments mad by Howe et al. on the current author's original article. The double-anchoring theory of lightness (P. Bressan, 2006b) assumes that any given region belongs to a set of frameworks, created by Gestalt grouping principles, and receives a provisional lightness within each of them; the region's final lightness is a weighted…
Interactions of carbon nanotubes in a nematic liquid crystal. II. Experiment
NASA Astrophysics Data System (ADS)
Agha, Hakam; Galerne, Yves
2016-04-01
Multiwall carbon nanotube (CNT) colloids with different anchoring conditions are dispersed in pentyl-cyanobiphenyl (5CB), a thermotropic liquid crystal (LC) that exhibits a room-temperature nematic phase. The experiments make use of CNTs treated for strong planar, homeotropic, or Janus anchorings. Observations with a polarizing microscope show that the CNTs placed in a uniform nematic field stabilize parallel or perpendicular to n depending on their anchoring conditions. In the presence of a splay-bend disclination line, they are first attracted toward it and ultimately, they get trapped on it. Their orientation relative to the line is then found to be parallel or perpendicular to it, again depending on the anchoring conditions. When a sufficient number of particles are deposited on a disclination line, they form a micro- or nanonecklace in the shape of a thin thread or of a bottle brush, with the CNTs being oriented parallel or perpendicular to the disclination line according to the anchoring treatment. The system exhibits a rich versatility, even if until now the weak anchorings appear to be difficult to control. In a next step, the necklaces may be glued by means of pyrrole electropolymerization. In this manner, we realize a true materialization of the disclination lines, and we obtain nanowires capable of conducting the electricity in the place of the initial disclinations that just worked as templates. The advantage of the method is that it finally provides nanowires that are automatically connected to predesignated three-dimensional (3D) electrodes. Such a 3D nanowiring could have important applications, as it could allow one to develop electronic circuits in the third dimension. They could thus help with increasing the transistor density per surface unit, although downsizing of integrated circuits will soon be limited to atomic sizes or so. In other words, the predicted limitation to Moore's law could be avoided. For the moment, the nanowires that we obtain are not completely satisfactory, particularly because they are thickened by aggregates in some places. However, the method is far from being optimized. A few electric charges deposited on the CNTs could remedy those aggregates.
Sustained load performance of adhesive anchor systems in concrete
NASA Astrophysics Data System (ADS)
Davis, Todd Marshall
Stemming from a tragic failure of an adhesive anchor system, this research project investigated the sustained load performance of adhesive anchors in concrete under different installation and in-service conditions. The literature review investigated the current state of art of adhesive anchors. Extensive discussion was devoted to the behavior of adhesive anchors in concrete as well as the many factors that can affect their short-term and sustained load strength. Existing standards and specifications for the testing, design, construction, and inspection of adhesive anchors were covered. Based on the results of the literature review and the experience of the research group, a triage was conducted on many parameters identified as possibly affecting the sustained load performance of adhesive anchors and the highest priority parameters were investigated in this project. A stress versus time-to-failure approach was used to evaluate sensitivity of three ICC-ES AC 308 approved adhesive anchor systems. Of the various parameters investigated, only elevated in-service temperature and manufacturer's cure time was shown to exhibit adverse effects on sustained loads more than that predicted by short-term tests of fully cured adhesive over a reasonable structure lifetime of 75 years. In a related study, various tests were conducted on the adhesive alone (time-temperature superposition, time-stress superposition, and dogbone tensile tests). The results of that study were used to investigate the existence of a correlation with long-term anchor pullout testing in concrete. No consistent correlations were detected for the adhesives in the study. Tests were also conducted on the effect of early-age concrete on adhesive anchor bond strength. On the basis of confined test bond-strength alone, adhesive A (vinyl ester) did not show any significant increase after 14 days (102% of 28 day strength at 14 days), and adhesive B and C (epoxies) did not show any significant increase after 7 days (104% and 93% of 28 days strength at 7 days respectively). The results of this research were used to draft recommended standards and specifications for AASHTO pertaining to testing, design, construction, and inspection of adhesive anchors in concrete for transportation structures. These draft standards were not included in this dissertation.
Martin, Erik W.; Buzza, Marguerite S.; Driesbaugh, Kathryn H.; Liu, Shihui; Fortenberry, Yolanda M.; Leppla, Stephen H.; Antalis, Toni M.
2015-01-01
The membrane-anchored serine proteases are a unique group of trypsin-like serine proteases that are tethered to the cell surface via transmembrane domains or glycosyl-phosphatidylinositol-anchors. Overexpressed in tumors, with pro-tumorigenic properties, they are attractive targets for protease-activated prodrug-like anti-tumor therapies. Here, we sought to engineer anthrax toxin protective antigen (PrAg), which is proteolytically activated on the cell surface by the proprotein convertase furin to instead be activated by tumor cell-expressed membrane-anchored serine proteases to function as a tumoricidal agent. PrAg's native activation sequence was mutated to a sequence derived from protein C inhibitor (PCI) that can be cleaved by membrane-anchored serine proteases, to generate the mutant protein PrAg-PCIS. PrAg-PCIS was resistant to furin cleavage in vitro, yet cytotoxic to multiple human tumor cell lines when combined with FP59, a chimeric anthrax toxin lethal factor-Pseudomonas exotoxin fusion protein. Molecular analyses showed that PrAg-PCIS can be cleaved in vitro by several serine proteases including the membrane-anchored serine protease testisin, and mediates increased killing of testisin-expressing tumor cells. Treatment with PrAg-PCIS also potently attenuated the growth of testisin-expressing xenograft tumors in mice. The data indicates PrAg can be engineered to target tumor cell-expressed membrane-anchored serine proteases to function as a potent tumoricidal agent. PMID:26392335
Substance dependency among homeless American Indians.
Lobo, Susan; Vaughan, Margaret Mortensen
2003-01-01
Extensive qualitative research in the San Francisco Bay Area in California and in Tucson, Arizona, indicates strong associations between substance abuse and homelessness among American Indians. This article takes a comparative approach to describe and analyze precipitating factors and survival patterns of those who are both homeless and who suffer from substance dependency. Possible precipitating factors presented through case studies consider the complex interaction of childhood fostering or adoption into non-Native families, different types of involuntary institutionalization during youth, and the personal impact of accident, trauma and loss. Coping strategies and keys to survival are examined, including the role of the extended family and close friendships, American Indian and mainstream organizations that offer formal and informal services, the existence of anchor or key households, the helping relationships and sobriety groups among homeless individuals, spirituality, and cultural resiliency.
Heinen, Silke; Weinhart, Marie
2017-03-07
For a meaningful correlation of surface coatings with their respective biological response reproducible coating procedures, well-defined surface coatings, and thorough surface characterization with respect to layer thickness and grafting density are indispensable. The same applies to polymeric monolayer coatings which are intended to be used for, e.g., fundamental studies on the volume phase transition of surface end-tethered thermoresponsive polymer chains. Planar gold surfaces are frequently used as model substrates, since they allow a variety of straightforward surface characterization methods. Herein we present reproducible grafting-to procedures performed with thermoresponsive poly(glycidyl ether) copolymers composed of glycidyl methyl ether (GME) and ethyl glycidyl ether (EGE). The copolymers feature different molecular weights (2 kDa, 9 kDa, 24 kDa) and are equipped with varying sulfur-containing anchor groups in order to achieve adjustable grafting densities on gold surfaces and hence control the tethered polymers' chain conformation. We determined "wet" and "dry" thicknesses of these coatings by QCM-D and ellipsometry measurements and deduced anchor distances and degrees of chain overlap of the polymer chains assembled on gold. Grafting under cloud point conditions allowed for higher degrees of chain overlap compared to grafting from a good solvent like ethanol, independent of the used sulfur-containing anchor group for polymers with low (2 kDa) and medium (9 kDa) molecular weights. By contrast, the achieved grafting densities and thus chain overlaps of surface-tethered polymers with high (24 kDa) molecular weights were identical for both grafting methods. Monolayers prepared from an ethanolic solution of poly(glycidyl ether)s equipped with sterically demanding disulfide-containing anchors revealed the lowest degrees of chain overlap. The ratio of the radius of gyration to the anchor distance (2 R g /l) of the latter coating was found to be lower than 1.4, indicating that the assembly was rather in the mushroom-like than in the brush regime. Polymer chains with thiol-containing anchors of different alkyl chain lengths (C 11 SH vs C 4 SH) formed assemblies with comparable degrees of chain overlap with 2 R g /l values above 1.4 and are thus in the brush regime. Molecular weights influenced the achievable degree of chain overlap on the surface. Coatings prepared with the medium molecular weight polymer (9 kDa) resulted in the highest chain packing density. Control of grafting density and thus chain overlap in different regimes (brush vs mushroom) on planar gold substrates are attainable for monolayer coatings with poly(GME-ran-EGE) by adjusting the polymer's molecular weight and anchor group as well as the conditions for the grafting-to procedure.
Changes consequent to maxillary molar distalization with the bone-anchored pendulum appliance
Cambiano, Aldo Otazú; Janson, Guilherme; Fuziy, Acácio; Garib, Daniela Gamba; Lorenzoni, Diego Coelho
2017-01-01
OBJECTIVES: This retrospective study aimed to evaluate the dentoalveolar, skeletal, and soft tissue effects obtained with bone-anchored pendulum appliance in patients with Class II malocclusion. MATERIALS AND METHODS: A total of 18 patients (4 male, 14 female) at a mean pretreatment age of 14.0 years (+1.08) were enrolled in this study. All patients were treated with the bone-anchored pendulum appliance for an average duration of 4.8 months. Only the active distalization period was evaluated with predistalization and postdistalization lateral cephalograms. Skeletal, dentoalveolar, and soft tissue variables were obtained. Based on these variables, the treatment effects were evaluated with dependent t-test. RESULTS: Correction of Class II molar relationship resulted from distal movement of 3.45 mm and tipping of 11.24° of the first maxillary molars. The premolars were distalized accompanying the molars. CONCLUSIONS: The bone-anchored pendulum appliance proved to be an effective method for distalization of maxillary molars in cases that require maximum anchorage, avoiding reciprocal mesial movement of premolars and incisors. PMID:29119095
Cottom, James M; Baker, Joseph S; Richardson, Phillip E; Maker, Jared M
Arthroscopic lateral ankle stabilization has become an increasingly popular option among foot and ankle surgeons to address lateral ankle instability, because it combines a modified Broström-Gould procedure with the ability to address any intra-articular pathologic findings at the same session. The present study evaluated 3 different constructs in a cadaveric model. Thirty-six fresh frozen cadaver limbs were used, and the anterior talofibular ligament was identified and sectioned. The specimens were then placed into 1 of 3 groups. Group 1 received a repair with a single-row, 2-suture anchor construct; group 2 received repair with a novel, double-row, 4-anchor knotless construct; and group 3 received repair with a double-row, 3-anchor construct. Specimens were then tested for stiffness and load to ultimate failure using a customized jig. Stiffness was measured in each of the groups and was 12.10 ± 5.43 (range 5.50 to 22.24) N/mm for group 1, 13.40 ± 7.98 (range 6.71 to 36.28) N/mm for group 2, and 12.55 ± 4.00 (range 6.48 to 22.14) N/mm for group 3. No significant differences were found among the 3 groups in terms of stiffness (p = .939, 1-way analysis of variance, ɑ = 0.05). The groups were tested to failure, with observed force measurements of 156.43 ± 30.39 (range 83.69 to 192.00) N for group 1, 206.62 ± 55.62 (range 141.37 to 300.29) N for group 2, and 246.82 ± 82.37 (range 164.26 to 384.93) N for group 3. Statistically significant differences were noted between groups 1 and 3 (p = .006, 1-way analysis of variance, ɑ = 0.05). The results of the present study have shown that a previously reported arthroscopic lateral ankle stabilization procedure, when modified with an additional proximal suture anchor into the fibula, results in a statistically significant increase in strength in terms of the maximum load to failure. Additionally, we have described a previously unreported, knotless technique for arthroscopic lateral ankle stabilization. Copyright © 2016 American College of Foot and Ankle Surgeons. Published by Elsevier Inc. All rights reserved.
Basha, Asim Ghouse; Shantaraj, Ravi; Mogegowda, Shivalinga B
2010-04-01
The purpose of this study was to measure and compare the difference between rate of en-masse retraction with mini-implant and molar anchorage. A comparative study consisting of 14 patients (all females) randomized into 2 groups. Seven in group I (nonimplant) molar was used as anchor for en-masse retraction of anterior teeth (mean age 16 years SD +/- 1.41). In group II (implant), mini-implant was used as anchorage to retract the anterior teeth (mean age 17.36 SD +/- 1.35). In both groups, all first premolars were extracted. After leveling and aligning, surgical steel mini-implant of 1.3 mm in diameter and 8 mm in length were placed between the roots of second premolar and first molar in the maxilla in the implant group. Implants were immediately loaded with 2 N of force. In nonimplant group molar was used as anchorage. The retraction and postretraction lateral cephalograms were taken. Rate of retraction and anchor loss were measured by using pterygoid vertical in maxilla. Four implants became loose during the treatment, which were subsequently replaced. The stability of surgical steel in this study was 71.4%. Student t test were used to analyze the treatment charges in 2 groups. Mean anchor loss in maxilla in nonimplant group. No differences in the mean rate of retraction time were noted in both groups. Mini-implants provided absolute anchorage in patients requiring maximum anterior retraction. No differences in the mean retraction time were noted between 2 groups.
Namuangruk, Supawadee; Sirithip, Kanokkorn; Rattanatwan, Rattanawelee; Keawin, Tinnagon; Kungwan, Nawee; Sudyodsuk, Taweesak; Promarak, Vinich; Surakhot, Yaowarat; Jungsuttiwong, Siriporn
2014-06-28
The charge transfer effect of different meso-substituted linkages on porphyrin analogue 1 (A1, B1 and C1) was theoretically investigated using density functional theory (DFT) and time-dependent DFT (TDDFT) calculations. The calculated geometry parameters and natural bond orbital analysis reveal that the twisted conformation between porphyrin macrocycle and meso-substituted linkages leads to blocking of the conjugation of the conjugated backbone, and the frontier molecular orbital plot shows that the intramolecular charge transfer of A1, B1 and C1 hardly takes place. In an attempt to improve the photoinduced intramolecular charge transfer ability of the meso-linked zinc porphyrin sensitizer, a strong electron-withdrawing group (CN) was introduced into the anchoring group of analogue 1 forming analogue 2 (A2, B2 and C2). The density difference plot of A2, B2 and C2 shows that the charge transfer properties dramatically improved. The electron injection process has been performed using TDDFT; the direct charge-transfer transition in the A2-(TiO2)38 interacting system takes place; our results strongly indicated that introducing electron-withdrawing groups into the acceptor part of porphyrin dyes can fine-tune the effective conjugation length of the π-spacer and improve intramolecular charge transfer properties, consequently inducing the electron injection process from the anchoring group of the porphyrin dye to the (TiO2)38 surface which may improve the conversion efficiency of the DSSCs. Our calculated results can provide valuable information and a promising outlook for computation-aided sensitizer design with anticipated good properties in further experimental synthesis.
Defauw, Arne; Dawyndt, Peter; Panfilov, Alexander V
2013-12-01
In relation to cardiac arrhythmias, heterogeneity of cardiac tissue is one of the most important factors underlying the onset of spiral waves and determining their type. In this paper, we numerically model heterogeneity of realistic size and value and study formation and dynamics of spiral waves around such heterogeneity. We find that the only sustained pattern obtained is a single spiral wave anchored around the heterogeneity. Dynamics of an anchored spiral wave depend on the extent of heterogeneity, and for certain heterogeneity size, we find abrupt regional increase in the period of excitation occurring as a bifurcation. We study factors determining spatial distribution of excitation periods of anchored spiral waves and discuss consequences of such dynamics for cardiac arrhythmias and possibilities for experimental testings of our predictions.
Nemoto, Osamu; Kitada, Akira; Naitou, Satoko; Tachibana, Atsuko; Ito, Yuya; Fujikawa, Akira
2015-07-01
To avoid complications associated with plating in anterior cervical discectomy and fusion (ACDF), stand-alone anchored PEEK cage was developed and favourable outcomes with a low rate of dysphasia have been described. The objective of this study was to compare the clinical and radiological outcomes of ACDF using a standalone anchored PEEK cage (PREVAIL; Medtronic Sofamor Danek, Memphis, TN) with those of a PEEK cage with plating in a prospective randomized manner. Fifty patients with single-level cervical radiculopathy were randomly assigned to a PREVAIL or a PEEK cage with plating. Following 3, 6, 12, and 24 months, clinical and radiological outcomes were assessed. The mean surgical time for the patients with a PREVAIL was significantly shorter than that for those with a PEEK cage with plating. The clinical outcomes evaluated by visual analogue scale for pain and the Odom's criteria were comparable between both the groups. Both the groups demonstrated the high fusion rate (92% in PREVAIL; 96% in PEEK cage with plating). The subsidence rate and the improvement of cervical alignment were comparable between both the groups. The incidence of adjacent-level ossification was significantly lower for patients with a PREVAIL than that for those with a PEEK cage with plating. The rate of dysphasia graded by the method of Bazaz and measurement of prevertebral soft tissue swelling indicated no significant differences between both the groups. Our prospective randomized study confirmed that stand-alone anchored PEEK cage is a valid alternative to plating in ACDF with a low rate of adjacent-level ossification. However, the potential to reduce the incidence of dysphasia was not confirmed.
Affective Dependence and Aggression: An Exploratory Study
Petruccelli, Filippo; Diotaiuti, Pierluigi; Verrastro, Valeria; Petruccelli, Irene; Federico, Roberta; Martinotti, Giovanni; Fossati, Andrea; Di Giannantonio, Massimo; Janiri, Luigi
2014-01-01
Introduction. Emotionally dependent subjects may engage in controlling, restrictive, and aggressive behaviours, which limit their partner's autonomy. The underlying causes of such behaviours are not solely based on levels of aggression, but act as a mean of maintaining the subject's own sense of self-worth, identity, and general functioning. Objective. The aim of the paper is to explore the correlation between affective dependency and reactive/proactive aggression and to evaluate individual differences as predisposing factors for aggressive behaviour and emotional dependency. Methods. The Spouse-Specific Dependency Scale (SSDS) and the Reactive Proactive Questionnaire (RPQ) were administered to a sample of 3375 subjects. Results. In the whole sample, a positive correlation between emotional dependency and proactive aggression was identified. Differences with regard to sex, age group, and geographical distribution were evidenced for the scores of the different scales. Conclusion. A fundamental distinction between reactive and proactive aggression was observed, anchoring proactive aggression more strictly to emotional dependency. Sociocultural and demographical variables, together with the previous structuring of attachment styles, help to determine the scope, frequency, and intensity of the demands made to the partner, as well as to feed the fears of loss, abandonment, or betrayal. PMID:25054147
ANTS-anchored Zn-Al-CO{sub 3}-LDH particles as fluorescent probe for sensing of folic acid
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Pengfei; Liu, Dan; Liu, Yanhuan
2016-09-15
A novel fluorescent nanosensor for detecting folic acid (FA) in aqueous media has been developed based on 8-aminonaphthalene-1,3,6-trisulfonate (ANTS) anchored to the surface of Zn-Al-CO{sub 3}-layered double hydroxides (LDH) particles. The nanosensor showed high fluorescence intensity and good photostability due to a strong coordination interaction between surface Zn{sup 2+} ions of Zn-Al-CO{sub 3}-LDH and N atoms of ANTS, which were verified by result of X-ray photoelectron spectroscopy (XPS). ANTS-anchored on the surface of Zn-Al-CO{sub 3}-LDH restricted the intra-molecular rotation leading to ANTS-anchored J-type aggregation emission enhancement. ANTS-anchored Zn-Al-CO{sub 3}-LDH particles exhibited highly sensitive and selective response to FA over othermore » common metal ions and saccharides present in biological fluids. The proposed mechanism was that oxygen atoms of -SO{sub 3} groups in ANTS-anchored on the surface of Zn-Al-CO{sub 3}-LDH were easily collided by FA molecules to form potential hydrogen bonds between ANTS-anchored and FA molecules, which could effectively quench the ANTS-anchored fluorescence. Under the simulated physiological conditions (pH of 7.4), the fluorescence quenching was fitted to Stern-Volmer equation with a linear response in the concentration range of 1 μM to 200 μM with a limit of detection of 0.1 μM. The results indicate that ANTS-anchored Zn-Al-CO{sub 3}-LDH particles can afford a very sensitive system for the sensing FA in aqueous solution. - Highlights: • A novel fluorescent nanosensor has been developed. • The sensor exhibited highly sensitive and selective response to FA. • The fluorescence quenching was fitted to Stern–Volmer equation. • The linear response range was 1–200 μM with a limit of detection of 0.1 μM.« less
Molecular orbital evaluation of charge flow dynamics in natural pigments based photosensitizers.
Heera, Thekinneydath Rajan; Cindrella, Louis
2010-03-01
The relationship between structure and photo electrochemical property of ten natural pigments from plants, insects and microbes has been analyzed using density functional theory (DFT) at the B3LYP/6-31G(d) level. The essential parameters for their photoelectrochemical behaviour such as ground state geometries, electronic transition energies and oxidation potentials are computed. The attachment tendency of the anchoring groups, expressed as the deprotonation order, is determined by calculating the proton affinities at different sites of the molecules. A thorough analysis of the charge flow dynamics in the molecular orbitals (HOMO and LUMO) of these molecules has been carried out and presented to emphasize the role of these orbitals in effective charge separation, the important feature of photosensitizers for DSSC. This study highlights that the flexible spatial orientation provided by the bridging aliphatic unsaturation favours the oscillator strength and the hydroxyl anchor group attached to the ring of delocalized pi electron cloud acts as the effective anchor.
A novel CXCL10-based GPI-anchored fusion protein as adjuvant in NK-based tumor therapy.
Muenchmeier, Niklas; Boecker, Sophia; Bankel, Lorenz; Hinz, Laura; Rieth, Nicole; Lapa, Constantin; Mendler, Anna N; Noessner, Elfriede; Mocikat, Ralph; Nelson, Peter J
2013-01-01
Cellular therapy is a promising therapeutic strategy for malignant diseases. The efficacy of this therapy can be limited by poor infiltration of the tumor by immune effector cells. In particular, NK cell infiltration is often reduced relative to T cells. A novel class of fusion proteins was designed to enhance the recruitment of specific leukocyte subsets based on their expression of a given chemokine receptor. The proteins are composed of an N-terminal chemokine head, the mucin domain taken from the membrane-anchored chemokine CX3CL1, and a C-terminal glycosylphosphatidylinositol (GPI) membrane anchor replacing the normal transmembrane domain allowing integration of the proteins into cell membranes when injected into a solid tumor. The mucin domain in conjunction with the chemokine head acts to specifically recruit leukocytes expressing the corresponding chemokine receptor. A fusion protein comprising a CXCL10 chemokine head (CXCL10-mucin-GPI) was used for proof of concept for this approach and expressed constitutively in Chinese Hamster Ovary cells. FPLC was used to purify proteins. The recombinant proteins efficiently integrated into cell membranes in a process dependent upon the GPI anchor and were able to activate the CXCR3 receptor on lymphocytes. Endothelial cells incubated with CXCL10-mucin-GPI efficiently recruited NK cells in vitro under conditions of physiologic flow, which was shown to be dependent on the presence of the mucin domain. Experiments conducted in vivo using established tumors in mice suggested a positive effect of CXCL10-mucin-GPI on the recruitment of NK cells. The results suggest enhanced recruitment of NK cells by CXCL10-mucin-GPI. This class of fusion proteins represents a novel adjuvant in cellular immunotherapy. The underlying concept of a chemokine head fused to the mucin domain and a GPI anchor signal sequence may be expanded into a broader family of reagents that will allow targeted recruitment of cells in various settings.
Strain-induced alignment and phase behavior of blue phase liquid crystals confined to thin films.
Bukusoglu, Emre; Martinez-Gonzalez, Jose A; Wang, Xiaoguang; Zhou, Ye; de Pablo, Juan J; Abbott, Nicholas L
2017-12-06
We report on the influence of surface confinement on the phase behavior and strain-induced alignment of thin films of blue phase liquid crystals (BPs). Confining surfaces comprised of bare glass, dimethyloctadecyl [3-(trimethoxysilyl)propyl] ammonium chloride (DMOAP)-functionalized glass, or polyvinyl alcohol (PVA)-coated glass were used with or without mechanically rubbing to influence the azimuthal anchoring of the BPs. These experiments reveal that confinement can change the phase behavior of the BP films. For example, in experiments performed with rubbed-PVA surfaces, we measured the elastic strain of the BPs to change the isotropic-BPII phase boundary, suppressing formation of BPII for film thicknesses incommensurate with the BPII lattice. In addition, we observed strain-induced alignment of the BPs to exhibit a complex dependence on both the surface chemistry and azimuthal alignment of the BPs. For example, when using bare glass surfaces causing azimuthally degenerate and planar anchoring, BPI oriented with (110) planes of the unit cell parallel to the contacting surfaces for thicknesses below 3 μm but transitioned to an orientation with (200) planes aligned parallel to the contacting surfaces for thicknesses above 4 μm. In contrast, BPI aligned with (110) planes parallel to confining surfaces for all other thicknesses and surface treatments, including bare glass with uniform azimuthal alignment. Complementary simulations based on minimization of the total free energy (Landau-de Gennes formalism) confirmed a thickness-dependent reorientation due to strain of BPI unit cells within a window of surface anchoring energies and in the absence of uniform azimuthal alignment. In contrast to BPI, BPII did not exhibit thickness-dependent orientations but did exhibit orientations that were dependent on the surface chemistry, a result that was also captured in simulations by varying the anchoring energies. Overall, the results in this paper reveal that the orientations assumed by BPs in thin films reflect a complex interplay of surface interactions and elastic energies associated with strain of the BP lattice. The results also provide new principles and methods to control the structure and properties of BP thin films, which may find use in BP-templated material synthesis, and BP-based optical and electronic devices.
Differential insertion of GPI-anchored GFPs into lipid rafts of live cells.
Legler, Daniel F; Doucey, Marie-Agnès; Schneider, Pascal; Chapatte, Laurence; Bender, Florent C; Bron, Claude
2005-01-01
Partitioning of proteins in cholesterol and sphingolipid enriched plasma membrane microdomains, called lipid rafts, is critical for many signal transduction and protein sorting events. Although raft partitioning of many signaling molecules remains to be determined, glycosylphosphatidyl-inositol (GPI)-anchored proteins possess high affinity for lipid rafts and are currently exploited as markers to investigate fundamental mechanisms in protein sorting and signal transduction events. In this study, we demonstrate that two recombinant GPI-anchored green fluorescent proteins (GFP-GPIs) that differ in their GPI signal sequence confer distinct localization in plasma membrane microdomains. GFP fused to the GPI signal of the decay accelerating factor GFP-GPI(DAF) partitioned exclusively in lipid rafts, whereas GFP fused to the GPI signal of TRAIL-R3, GFP-GPI(TRAIL-R3), associated only minimally with microdomains. In addition, we investigated the unique ability of purified GFP-GPIs to insert into membrane microdomains of primary lymphocytes. This cell surface painting allows rapid, stable, and functional association of the GPI-anchored proteins with the target cell plasma membrane. The distinct membrane localization of the two GFP-GPIs was observed irrespective of whether the GPI-anchored molecules were painted or transfected. Furthermore, we show that painted GFP-GPI(DAF) was totally dependent on the GPI anchor and that the membrane insertion was increased by the addition of raft-associated lipids such as cholesterol, sphingomyelin, and dipalmitoyl-phosphatidylethanolamine. Thus, this study provides evidence that different GPI signal sequences lead to distinct membrane microdomain localization and that painted GFP-GPI(DAF) serves as an excellent fluorescent marker for lipid rafts in live cells.
Cho, Hyun-Jun; Hur, Junseok W; Lee, Jang-Bo; Han, Jin-Sol; Cho, Tai-Hyoung; Park, Jung-Yul
2015-08-01
We compared the clinical and radiographic outcomes of stand-alone polyetheretherketone (PEEK) cage and Zero-Profile anchored spacer (Zero-P) for single level anterior cervical discectomy and fusion (ACDF). We retrospectively reviewed 121 patients who underwent single level ACDF within 2 years (Jan 2011-Jan 2013) in a single institute. Total 50 patients were included for the analysis who were evaluated more than 2-year follow-up. Twenty-nine patients were allocated to the cage group (m : f=19 : 10) and 21 for Zero-P group (m : f=12 : 9). Clinical (neck disability index, visual analogue scale arm and neck) and radiographic (Cobb angle-segmental and global cervical, disc height, vertebral height) assessments were followed at pre-operative, immediate post-operative, post-3, 6, 12, and 24 month periods. Demographic features and the clinical outcome showed no difference between two groups. The change between final follow-up (24 months) and immediate post-op of Cobb-segmental angle (p=0.027), disc height (p=0.002), vertebral body height (p=0.033) showed statistically better outcome for the Zero-P group than the cage group, respectively. The Zero-Profile anchored spacer has some advantage after cage for maintaining segmental lordosis and lowering subsidence rate after single level anterior cervical discectomy and fusion.
Endocytosis of glycosylphosphatidylinositol-anchored proteins
2009-01-01
Glycosylphosphatidylinositol-anchored proteins (GPI-APs) represent an interesting amalgamation of the three basic kinds of cellular macromolecules viz. proteins, carbohydrates and lipids. An unusually hybrid moiety, the GPI-anchor is expressed in a diverse range of organisms from parasites to mammalian cells and serves to anchor a large number of functionally diverse proteins and has been the center of attention in scientific debate for some time now. Membrane organization of GPI-APs into laterally-organized cholesterol-sphingolipid ordered membrane domains or "rafts" and endocytosis of GPI-APs has been intensely debated. Inclusion into or exclusion from these membrane domains seems to be the critical factor in determining the endocytic mechanisms and intracellular destinations of GPI-APs. The intracellular signaling as well as endocytic trafficking of GPI-APs is critically dependent upon the cell surface organization of GPI-APs, and the associations with these lipid rafts play a vital role during these processes. The mechanism of endocytosis for GPI-APs may differ from other cellular endocytic pathways, such as those mediated by clathrin-coated pits (caveolae), and is necessary for unique biological functions. Numerous intracellular factors are involved in and regulate the endocytosis of GPI-APs, and these may be variably dependent on cell-type. The central focus of this article is to describe the significance of the endocytosis of GPI-APs on a multitude of biological processes, ranging from nutrient-uptake to more complex immune responses. Ultimately, a thorough elucidation of GPI-AP mediated signaling pathways and their regulatory elements will enhance our understanding of essential biological processes and benefit as components of disease intervention strategies. PMID:19832981
Goudeketting, Seline R; van Noort, Kim; Ouriel, Kenneth; Jordan, William D; Panneton, Jean M; Slump, Cornelis H; de Vries, Jean-Paul P M
2018-04-21
This study sought to quantify EndoAnchor (Medtronic Vascular, Santa Rosa, Calif) penetration into the aortic wall in patients undergoing endovascular abdominal aortic aneurysm repair and to assess predictors of successful penetration and its relationship to postprocedural type IA endoleak. A subset of patients from the Aneurysm Treatment Using the Heli-FX Aortic Securement System Global Registry (ANCHOR) were included if they met the following criteria: the indication for EndoAnchor use was to treat a type IA endoleak, and postprocedure contrast-enhanced computed tomography (CT) scans of sufficient quality were available for core laboratory review. Patients undergoing implantation of cuffs or stents during the EndoAnchor implantation procedure were excluded. Baseline anatomic characteristics were recorded. The cohort was divided into patients with and without persistent type IA endoleaks at the first postoperative CT scan. Penetration of each EndoAnchor measured on this CT scan was defined as good penetration when the EndoAnchor penetrated ≥2 mm into the aortic wall, borderline penetration when EndoAnchor penetration was <2 mm or a gap remained between the endograft and aortic wall, or no penetration when the EndoAnchor did not penetrate into the aortic wall. Differences between the groups were analyzed with the Mann-Whitney U test or Fisher exact test. Multivariate analyses were performed to identify independent predictors of EndoAnchor penetration, and procedural success was defined by absence of type IA endoleak. Eighty-six patients of the primary (n = 61 [71%]) and revision (n = 25 [29%]) arms of the ANCHOR registry were included. There were 53 (62%) without and 33 (38%) with persistent type IA endoleaks on the first postprocedural CT scan. The median number of EndoAnchors with good penetration was significantly greater in the cohort without endoleaks, 4 (interquartile range, 3-5) vs 3 (interquartile range, 1.5-4), respectively (P = .002). A multivariate model for EndoAnchor penetration identified use of a Medtronic Endurant endograft as a factor associated with good penetration (P = .001), whereas poor penetration was associated with a larger aortic neck diameter 10 mm distal to the lowest renal artery (P < .001) and greater proximal neck calcium thickness (P = .004). EndoAnchor penetration was the only variable that attained significance (P < .001) in the multivariate model for successful treatment of a type IA endoleak. Adequate EndoAnchor penetration into the aortic wall is less likely when the aortic neck diameter is large or when the neck contains significant mural calcium. No penetration of the EndoAnchor was the only factor predictive of postprocedural type IA endoleak. This study stresses the importance of careful selection of patients based on preoperative assessment of the infrarenal neck on CT angiography and emphasizes careful deployment of EndoAnchors into the aortic wall to improve successful treatment of type IA endoleaks. Copyright © 2018 Society for Vascular Surgery. Published by Elsevier Inc. All rights reserved.
Text Dependent Questions and the CCSS
ERIC Educational Resources Information Center
Aspen Institute, 2012
2012-01-01
An effective text dependent question first and foremost embraces the key principle of close reading embedded in the Common Core State Standards (CCSS) Anchor Reading Standards by asking students to provide evidence from complex text and draw inferences based on what the text explicitly says (Standards 1 and 10). A close look at the intervening…
Solving the measurement invariance anchor item problem in item response theory.
Meade, Adam W; Wright, Natalie A
2012-09-01
The efficacy of tests of differential item functioning (measurement invariance) has been well established. It is clear that when properly implemented, these tests can successfully identify differentially functioning (DF) items when they exist. However, an assumption of these analyses is that the metric for different groups is linked using anchor items that are invariant. In practice, however, it is impossible to be certain which items are DF and which are invariant. This problem of anchor items, or referent indicators, has long plagued invariance research, and a multitude of suggested approaches have been put forth. Unfortunately, the relative efficacy of these approaches has not been tested. This study compares 11 variations on 5 qualitatively different approaches from recent literature for selecting optimal anchor items. A large-scale simulation study indicates that for nearly all conditions, an easily implemented 2-stage procedure recently put forth by Lopez Rivas, Stark, and Chernyshenko (2009) provided optimal power while maintaining nominal Type I error. With this approach, appropriate anchor items can be easily and quickly located, resulting in more efficacious invariance tests. Recommendations for invariance testing are illustrated using a pedagogical example of employee responses to an organizational culture measure.
Aircraft Survivability: Modeling and Simulation Credibility, Summer 2002
2002-01-01
Weapons Center at China Lake in 1982 as a warfare analyst (Air-to- Air and Strike Warfare) for the Weapons Planning Group. In 1987 , he took over as...goal, the Workshop Executive Advisory Committee (WEAC) immediately fol- lowing WSII began sifting through the workshop presentations, panel discus...context is key.” V&V must be anchored to purpose (Hollenbach, pg 4) • Need to anchor across fidelity (Greaney)— maps to aggregation/de-aggregation
End-anchored polymers in good solvents from the single chain limit to high anchoring densities.
Whitmore, Mark D; Grest, Gary S; Douglas, Jack F; Kent, Michael S; Suo, Tongchuan
2016-11-07
An increasing number of applications utilize grafted polymer layers to alter the interfacial properties of solid substrates, motivating refinement in our theoretical understanding of such layers. To assess existing theoretical models of them, we have investigated end-anchored polymer layers over a wide range of grafting densities, σ, ranging from a single chain to high anchoring density limits, chain lengths ranging over two orders of magnitude, for very good and marginally good solvent conditions. We compare Monte Carlo and molecular dynamics simulations, numerical self-consistent field calculations, and experimental measurements of the average layer thickness, h, with renormalization group theory, the Alexander-de Gennes mushroom theory, and the classical brush theory. Our simulations clearly indicate that appreciable inter-chain interactions exist at all simulated areal anchoring densities so that there is no mushroom regime in which the layer thickness is independent of σ. Moreover, we find that there is no high coverage regime in which h follows the predicted scaling, h ∼ Nσ 1/3 , for classical polymer brushes either. Given that no completely adequate analytic theory seems to exist that spans wide ranges of N and σ, we applied scaling arguments for h as a function of a suitably defined reduced anchoring density, defined in terms of the solution radius of gyration of the polymer chains and N. We find that such a scaling approach enables a smooth, unified description of h in very good solvents over the full range of anchoring density and chain lengths, although this type of data reduction does not apply to marginal solvent quality conditions.
Vaissier, Valerie; Sakai, Victoria Garcia; Li, Xiaoe; Cabral, João T.; Nelson, Jenny; Barnes, Piers R. F.
2016-01-01
Motions of molecules adsorbed to surfaces may control the rate of charge transport within monolayers in systems such as dye sensitized solar cells. We used quasi-elastic neutron scattering (QENS) to evaluate the possible dynamics of two small dye moieties, isonicotinic acid (INA) and bis-isonicotinic acid (BINA), attached to TiO2 nanoparticles via carboxylate groups. The scattering data indicate that moieties are immobile and do not rotate around the anchoring groups on timescales between around 10 ps and a few ns (corresponding to the instrumental range). This gives an upper limit for the rate at which conformational fluctuations can assist charge transport between anchored molecules. Our observations suggest that if the conformation of larger dye molecules varies with time, it does so on longer timescales and/or in parts of the molecule which are not directly connected to the anchoring group. The QENS measurements also indicate that several layers of acetonitrile solvent molecules are immobilized at the interface with the TiO2 on the measurement time scale, in reasonable agreement with recent classical molecular dynamics results. PMID:27991538
Kirov, Ilya; Van Laere, Katrijn; De Riek, Jan; De Keyser, Ellen; Van Roy, Nadine; Khrustaleva, Ludmila
2014-01-01
In order to anchor Rosa linkage groups to physical chromosomes, a combination of the Tyramide-FISH technology and the modern molecular marker system based on High Resolution Melting (HRM) is an efficient approach. Although, Tyramide-FISH is a very promising technique for the visualization of short DNA probes, it is very challenging for plant species with small chromosomes such as Rosa. In this study, we successfully applied the Tyramide-FISH technique for Rosa and compared different detection systems. An indirect detection system exploiting biotinylated tyramides was shown to be the most suitable technique for reliable signal detection. Three gene fragments with a size of 1100 pb–1700 bp (Phenylalanine Ammonia Lyase, Pyrroline-5-Carboxylate Synthase and Orcinol O-Methyl Transferase) have been physically mapped on chromosomes 7, 4 and 1, respectively, of Rosa wichurana. The signal frequency was between 25% and 40%. HRM markers of these 3 gene fragments were used to include the gene fragments on the existing genetic linkage map of Rosa wichurana. As a result, three linkage groups could be anchored to their physical chromosomes. The information was used to check for synteny between the Rosa chromosomes and Fragaria. PMID:24755945
NASA Astrophysics Data System (ADS)
Zhao, Xin; Kastlunger, Georg; Stadler, Robert
2017-08-01
In our theoretical study where we combine a nonequilibrium Green's function approach with density functional theory we investigate branched compounds containing ferrocene moieties in both branches which, due to their metal centers, are designed to allow for asymmetry induced by local charging. In these compounds the ferrocene moieties are connected to pyridyl anchor groups either directly or via acetylenic spacers in a metaconnection, where we also compare our results with those obtained for the respective single-branched molecules with both meta- and paraconnections between the metal center and the anchors. We find a destructive quantum interference (DQI) feature in the transmission function slightly below the lowest unoccupied molecular orbital, which dominates the conductance even for the uncharged branched compound with spacer groups inserted. In an analysis based on mapping the structural characteristics of the range of molecules in our article onto tight-binding models, we identify the structural source of the DQI minimum as the through-space coupling between the pyridyl anchor groups. We also find that local charging in one of the branches changes the conductance only by about one order of magnitude, which we explain in terms of the spatial distributions of the relevant molecular orbitals for the branched compounds.
NASA Astrophysics Data System (ADS)
Vaissier, Valerie; Sakai, Victoria Garcia; Li, Xiaoe; Cabral, João T.; Nelson, Jenny; Barnes, Piers R. F.
2016-12-01
Motions of molecules adsorbed to surfaces may control the rate of charge transport within monolayers in systems such as dye sensitized solar cells. We used quasi-elastic neutron scattering (QENS) to evaluate the possible dynamics of two small dye moieties, isonicotinic acid (INA) and bis-isonicotinic acid (BINA), attached to TiO2 nanoparticles via carboxylate groups. The scattering data indicate that moieties are immobile and do not rotate around the anchoring groups on timescales between around 10 ps and a few ns (corresponding to the instrumental range). This gives an upper limit for the rate at which conformational fluctuations can assist charge transport between anchored molecules. Our observations suggest that if the conformation of larger dye molecules varies with time, it does so on longer timescales and/or in parts of the molecule which are not directly connected to the anchoring group. The QENS measurements also indicate that several layers of acetonitrile solvent molecules are immobilized at the interface with the TiO2 on the measurement time scale, in reasonable agreement with recent classical molecular dynamics results.
NASA Astrophysics Data System (ADS)
Martini, Lauren A.
Environmental concerns related to climate change and geopolitical issues related to energy security have led to a widespread pursuit of alternative, non-fossil fuel energy sources capable of meeting our increasing global energy demands. Solar energy, which strikes the earth's surface at a rate vastly exceeding our current worldwide power demand, presents itself as a promising source of clean, abundant and renewable energy. The capture and conversion of solar energy into electricity as well as storable, transportable chemical fuels has therefore become major area of chemical research. Inspired by photosynthesis in nature, in which plants and algae convert sunlight, water, and carbon dioxide into oxygen and stored chemical fuel in the form of sugars, recent work has focused on visible light-driven water-splitting technologies for the production of solar fuels. Honda and Fujishima reported the first example of photoelectrochemical water oxidation in 1972. In their system, an inexpensive titanium dioxide semiconductor irradiated with ultraviolet light produced oxygen at the photoanode surface and hydrogen at the surface of a platinum counter electrode. In attempt to harness visible light instead, titanium dioxide and other inexpensive wide band gap photoanodes have been functionalized with visible light-absorbing molecular dyes. These dye-sensitized photoanodes have been used successfully to convert solar energy into electrical current, as in dye-sensitized solar cells, and to drive chemical processes like water oxidation, as in photocatalytic cells. In both systems, a long-lived charge separation is established upon illumination of the photoanode surface when a photoexcited molecular chromophore transfers an electron to the semiconductor conduction band. Following this electron injection process, a nearby redox-active species is oxidized and refills the hole left behind on the molecular chromophore. While the steps of this scheme are relatively straightforward, the integration of efficient visible-light absorption, ultrafast forward electron transfer, and stable charge separation is quite complicated. The work presented here is devoted to the design, synthesis, spectroscopy, and computational study of dye-sensitized photoanodes. In particular, we explore the relative stability and performance of different anchoring groups for the surface attachment of light-harvesting molecular dyes to titanium dioxide. Here we present the first systematic study that directly compares carboxylate, phosphonate, acetylacetonate, and hydroxamate anchors using the same molecular chromophore framework. We discuss a number of novel methods for the incorporation of anchoring group functionalities on each chromophore framework. We also assess the relative water stability of each of the anchoring groups on titanium dioxide as well as the relative efficiency of electron transfer from photoexcited molecular chromophores through each anchoring group into the conduction band of titanium dioxide. We hope that the work presented here will contribute to the rational design of better photoanodes for light-driven water splitting.
α-Actinin/titin interaction: A dynamic and mechanically stable cluster of bonds in the muscle Z-disk
Grison, Marco; Merkel, Ulrich; Kostan, Julius; Djinović-Carugo, Kristina; Rief, Matthias
2017-01-01
Stable anchoring of titin within the muscle Z-disk is essential for preserving muscle integrity during passive stretching. One of the main candidates for anchoring titin in the Z-disk is the actin cross-linker α-actinin. The calmodulin-like domain of α-actinin binds to the Z-repeats of titin. However, the mechanical and kinetic properties of this important interaction are still unknown. Here, we use a dual-beam optical tweezers assay to study the mechanics of this interaction at the single-molecule level. A single interaction of α-actinin and titin turns out to be surprisingly weak if force is applied. Depending on the direction of force application, the unbinding forces can more than triple. Our results suggest a model where multiple α-actinin/Z-repeat interactions cooperate to ensure long-term stable titin anchoring while allowing the individual components to exchange dynamically. PMID:28096424
Grison, Marco; Merkel, Ulrich; Kostan, Julius; Djinović-Carugo, Kristina; Rief, Matthias
2017-01-31
Stable anchoring of titin within the muscle Z-disk is essential for preserving muscle integrity during passive stretching. One of the main candidates for anchoring titin in the Z-disk is the actin cross-linker α-actinin. The calmodulin-like domain of α-actinin binds to the Z-repeats of titin. However, the mechanical and kinetic properties of this important interaction are still unknown. Here, we use a dual-beam optical tweezers assay to study the mechanics of this interaction at the single-molecule level. A single interaction of α-actinin and titin turns out to be surprisingly weak if force is applied. Depending on the direction of force application, the unbinding forces can more than triple. Our results suggest a model where multiple α-actinin/Z-repeat interactions cooperate to ensure long-term stable titin anchoring while allowing the individual components to exchange dynamically.
Yeast Ras regulates the complex that catalyzes the first step in GPI-anchor biosynthesis at the ER.
Sobering, Andrew K; Watanabe, Reika; Romeo, Martin J; Yan, Benjamin C; Specht, Charles A; Orlean, Peter; Riezman, Howard; Levin, David E
2004-05-28
The yeast ERI1 gene encodes a small ER-localized protein that associates in vivo with GTP bound Ras2 in an effector loop-dependent manner. We showed previously that loss of Eri1 function results in hyperactive Ras phenotypes. Here, we demonstrate that Eri1 is a component of the GPI-GlcNAc transferase (GPI-GnT) complex in the ER, which catalyzes transfer of GlcNAc from UDP-GlcNAc to an acceptor phosphatidylinositol, the first step in the production of GPI-anchors for cell surface proteins. We also show that GTP bound Ras2 associates with the GPI-GnT complex in vivo and inhibits its activity, indicating that yeast Ras uses the ER as a signaling platform from which to negatively regulate the GPI-GnT. We propose that diminished GPI-anchor protein production contributes to hyperactive Ras phenotypes.
External post-tensioning anchorage.
DOT National Transportation Integrated Search
2011-05-01
Post-tensioning tendons in segmental bridge construction are often only anchored within the deviator and pier segments. The effectiveness of the post-tensioning (PT) system is therefore dependent on proper functioning of the anchorages. On August 28,...
Dynamics at a Peptide-TiO2 Anatase (101) Interface.
Polimeni, Marco; Petridis, Loukas; Smith, Jeremy C; Arcangeli, Caterina
2017-09-28
The interface between biological matter and inorganic materials is a widely investigated research topic due to possible applications in biomedicine and nanotechnology. In this context, the molecular level adsorption mechanism that drives specific recognition between small peptide sequences and inorganic surfaces represents an important topic likely to provide much information useful for designing bioderived materials. Here, we investigate the dynamics at the interface between a Ti-binding peptide sequence (AMRKLPDAPGMHC) and a TiO 2 anatase surface by using molecular dynamics (MD) simulations. In the simulations the adsorption mechanism is characterized by diffusion of the peptide from the bulk water phase toward the TiO 2 surface, followed by the anchoring of the peptide to the surface. The anchoring is mediated by the interfacial water layers by means of the charged groups of the side chains of the peptide. The peptide samples anchored and dissociated states from the surface and its conformation is not affected by the surface when anchored.
Dynamics at a Peptide–TiO 2 Anatase (101) Interface
DOE Office of Scientific and Technical Information (OSTI.GOV)
Polimeni, Marco; Petridis, Loukas; Smith, Jeremy C.
The interface between biological matter and inorganic materials is a widely investigated research topic due to possible applications in biomedicine and nanotechnology. In this context, the molecular level adsorption mechanism that drives specific recognition between small peptide sequences and inorganic surfaces represents an important topic likely to provide much information useful for designing bioderived materials. In this paper, we investigate the dynamics at the interface between a Ti-binding peptide sequence (AMRKLPDAPGMHC) and a TiO 2 anatase surface by using molecular dynamics (MD) simulations. In the simulations the adsorption mechanism is characterized by diffusion of the peptide from the bulk watermore » phase toward the TiO 2 surface, followed by the anchoring of the peptide to the surface. The anchoring is mediated by the interfacial water layers by means of the charged groups of the side chains of the peptide. Finally, the peptide samples anchored and dissociated states from the surface and its conformation is not affected by the surface when anchored.« less
Dynamics at a Peptide–TiO 2 Anatase (101) Interface
Polimeni, Marco; Petridis, Loukas; Smith, Jeremy C.; ...
2017-08-29
The interface between biological matter and inorganic materials is a widely investigated research topic due to possible applications in biomedicine and nanotechnology. In this context, the molecular level adsorption mechanism that drives specific recognition between small peptide sequences and inorganic surfaces represents an important topic likely to provide much information useful for designing bioderived materials. In this paper, we investigate the dynamics at the interface between a Ti-binding peptide sequence (AMRKLPDAPGMHC) and a TiO 2 anatase surface by using molecular dynamics (MD) simulations. In the simulations the adsorption mechanism is characterized by diffusion of the peptide from the bulk watermore » phase toward the TiO 2 surface, followed by the anchoring of the peptide to the surface. The anchoring is mediated by the interfacial water layers by means of the charged groups of the side chains of the peptide. Finally, the peptide samples anchored and dissociated states from the surface and its conformation is not affected by the surface when anchored.« less
Structure–kinetic relationship study of CDK8/CycC specific compounds
Schneider, Elisabeth V.; Böttcher, Jark; Huber, Robert; Maskos, Klaus; Neumann, Lars
2013-01-01
In contrast with the very well explored concept of structure–activity relationship, similar studies are missing for the dependency between binding kinetics and compound structure of a protein ligand complex, the structure–kinetic relationship. Here, we present a structure–kinetic relationship study of the cyclin-dependent kinase 8 (CDK8)/cyclin C (CycC) complex. The scaffold moiety of the compounds is anchored in the kinase deep pocket and extended with diverse functional groups toward the hinge region and the front pocket. These variations can cause the compounds to change from fast to slow binding kinetics, resulting in an improved residence time. The flip of the DFG motif (“DMG” in CDK8) to the inactive DFG-out conformation appears to have relatively little influence on the velocity of binding. Hydrogen bonding with the kinase hinge region contributes to the residence time but has less impact than hydrophobic complementarities within the kinase front pocket. PMID:23630251
Sherman, Seth L
2018-01-01
Transosseous equivalent rotator cuff repair is an expensive construct that has demonstrated biomechanical superiority when compared with other rotator cuff repair techniques. A novel transosseous knotless repair that substitutes medial row anchors for a transosseous tunnel rivals the biomechanical advantages of transosseous equivalent rotator cuff repair at half the cost and with reduced dependence on bone quality. Surgeons should carefully consider if "knotless transosseous is more." Copyright © 2017 Arthroscopy Association of North America. Published by Elsevier Inc. All rights reserved.
Luo, Geng-Geng; Lu, Hui; Zhang, Xiao-Long; Dai, Jing-Cao; Wu, Ji-Huai; Wu, Jia-Jia
2015-04-21
A series of boron dipyrromethene (BODIPY) dyes (B1–B5) having H atoms at 2,6-positions or heavy-atom I at 2-/2,6-positions, and an ortho- or a para-COOH substituted phenyl moiety at the 8-position on the BODIPY core were synthesized and characterized. These organic dyes were applied for investigating the relationship between the BODIPY structure and the effectiveness of homogeneous and heterogeneous visible-light-driven hydrogen production as well as dye-sensitized solar cells (DSSCs). For the homogeneous photocatalytic hydrogen production systems with a cobaloxime catalyst, the efficiency of hydrogen production could be tuned by substituting with heavy atoms and varying carboxyl group orientations of BODIPYs. As a result, B5 containing two I atoms and an ortho-COOH anchoring group was the most active one (TONs = 197). The activity of hydrogen generation followed the order B5 > B3 > B2 > B1 = B4 = 0. An interesting “ortho-position effect” was observed in the present homogeneous systems, i.e., substitution groups were located at the ortho-position and higher hydrogen production activities were obtained. For the heterogeneous hydrogen production systems with a platinized TiO2 catalyst, the effectiveness of hydrogen evolution was highly influenced by the intersystem crossing efficiency, molar absorptivity and positions of the anchoring group of dyes. Thus, B3 having two core iodine atoms and a para-COOH group with TONs of 70 excelled other BODIPYs and the TONs of hydrogen generation showed the trend of B3 > B5 > B2 > B1 = B4 = 0. The results demonstrate that the present photocatalytic H2 production proceeds with higher efficiency and stability in the homogeneity than in the heterogeneity. In the case of DSSCs, the overall cell performance of BODIPY chromophores was highly dependent on both the absence or the presence of iodine atoms on the BODIPY core and –COOH anchoring positions. The B1–TiO2 system showed the best cell performance, because the most effective surface binding mode is allowed with this structure. This is also in contrast with the case of dye-sensitized solar H2 generation, in which B3 was the most efficient chromophore. The differences between dye-sensitized hydrogen-generating systems and DSSCs may be due to rates of electron transfer and the dye aggregation tendency.
Abdul Halim, Mohd Farid; Karch, Kelly R; Zhou, Yitian; Haft, Daniel H; Garcia, Benjamin A; Pohlschroder, Mechthild
2015-12-28
For years, the S-layer glycoprotein (SLG), the sole component of many archaeal cell walls, was thought to be anchored to the cell surface by a C-terminal transmembrane segment. Recently, however, we demonstrated that the Haloferax volcanii SLG C terminus is removed by an archaeosortase (ArtA), a novel peptidase. SLG, which was previously shown to be lipid modified, contains a C-terminal tripartite structure, including a highly conserved proline-glycine-phenylalanine (PGF) motif. Here, we demonstrate that ArtA does not process an SLG variant where the PGF motif is replaced with a PFG motif (slg(G796F,F797G)). Furthermore, using radiolabeling, we show that SLG lipid modification requires the PGF motif and is ArtA dependent, lending confirmation to the use of a novel C-terminal lipid-mediated protein-anchoring mechanism by prokaryotes. Similar to the case for the ΔartA strain, the growth, cellular morphology, and cell wall of the slg(G796F,F797G) strain, in which modifications of additional H. volcanii ArtA substrates should not be altered, are adversely affected, demonstrating the importance of these posttranslational SLG modifications. Our data suggest that ArtA is either directly or indirectly involved in a novel proteolysis-coupled, covalent lipid-mediated anchoring mechanism. Given that archaeosortase homologs are encoded by a broad range of prokaryotes, it is likely that this anchoring mechanism is widely conserved. Prokaryotic proteins bound to cell surfaces through intercalation, covalent attachment, or protein-protein interactions play critical roles in essential cellular processes. Unfortunately, the molecular mechanisms that anchor proteins to archaeal cell surfaces remain poorly characterized. Here, using the archaeon H. volcanii as a model system, we report the first in vivo studies of a novel protein-anchoring pathway involving lipid modification of a peptidase-processed C terminus. Our findings not only yield important insights into poorly understood aspects of archaeal biology but also have important implications for key bacterial species, including those of the human microbiome. Additionally, insights may facilitate industrial applications, given that photosynthetic cyanobacteria encode uncharacterized homologs of this evolutionarily conserved enzyme, or may spur development of unique drug delivery systems. Copyright © 2016, American Society for Microbiology. All Rights Reserved.
Diffusion of GPI-anchored proteins is influenced by the activity of dynamic cortical actin.
Saha, Suvrajit; Lee, Il-Hyung; Polley, Anirban; Groves, Jay T; Rao, Madan; Mayor, Satyajit
2015-11-05
Molecular diffusion at the surface of living cells is believed to be predominantly driven by thermal kicks. However, there is growing evidence that certain cell surface molecules are driven by the fluctuating dynamics of cortical cytoskeleton. Using fluorescence correlation spectroscopy, we measure the diffusion coefficient of a variety of cell surface molecules over a temperature range of 24-37 °C. Exogenously incorporated fluorescent lipids with short acyl chains exhibit the expected increase of diffusion coefficient over this temperature range. In contrast, we find that GPI-anchored proteins exhibit temperature-independent diffusion over this range and revert to temperature-dependent diffusion on cell membrane blebs, in cells depleted of cholesterol, and upon acute perturbation of actin dynamics and myosin activity. A model transmembrane protein with a cytosolic actin-binding domain also exhibits the temperature-independent behavior, directly implicating the role of cortical actin. We show that diffusion of GPI-anchored proteins also becomes temperature dependent when the filamentous dynamic actin nucleator formin is inhibited. However, changes in cortical actin mesh size or perturbation of branched actin nucleator Arp2/3 do not affect this behavior. Thus cell surface diffusion of GPI-anchored proteins and transmembrane proteins that associate with actin is driven by active fluctuations of dynamic cortical actin filaments in addition to thermal fluctuations, consistent with expectations from an "active actin-membrane composite" cell surface. © 2015 Saha et al. This article is distributed by The American Society for Cell Biology under license from the author(s). Two months after publication it is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).
Punitharasu, Vellimalai; Mele Kavungathodi, Munavvar Fairoos; Nithyanandhan, Jayaraj
2018-05-16
To synergize both steric and electronic factors in designing the dyes for dye-sensitized solar cells, a series of cis-configured unsymmetrical squaraine dyes P11-P15 with suitably functionalized alkyl groups and squaric acid units containing the electron-withdrawing groups were synthesized, respectively. These dyes capture the importance of (i) the effect and position of branched alkyl groups, (ii) mono- and di-anchoring groups containing dyes, and (iii) further appending the alkyl groups through the cyanoester vinyl unit on the central squaric acid units of D-A-D-based cis-configured squaraine dyes. All the above factors govern the controlled self-assembly of the dyes on the TiO 2 surface which helps to broaden the absorption profile of the dyes with an increased energy-harvesting process. With respect to the position of the branched alkyl groups, dye P11 with the sp 3 -C and N-alkyl groups away from the TiO 2 surface showed a better device efficiency of 5.98% ( J sc of 14.46 mA cm -2 , V oc of 0.576 V, and ff of 71.8%) than its positional isomer P12 with 3.45% ( J sc of 8.78 mA cm -2 , V oc of 0.554 V, and ff of 70.9%). However, with respect to the dyes containing mono- and di-anchoring groups, P13 with two anchoring units exhibited a superior device performance of 7.58% ( J sc of 17.12 mA cm -2 , V oc of 0.618 V, and ff of 71.7%) in the presence of optically transparent co-adsorbent CDCA (3α,7α-dihydroxy-5β-cholanic acid) than dyes P11 and P12.
NASA Astrophysics Data System (ADS)
Vabbilisetty, Pratima
For decades, lipid vesicular bodies such as liposomes have been widely used and explored as biomimetic models of cell membranes and as drug/gene delivery carrier systems. Similarly, micellar iron oxide nanoparticles have also been investigated as potential MRI agents as well as drug delivery carrier systems. Cell surface carbohydrate-protein interactions allow them to serve as markers for recognition of many molecular and cellular activities thereby, are exploited as attractive molecules for surface modification of nanocarrier systems with purpose for tissues specific targeting and biocompatibility. In addition, the cell lipid membrane serves as an important platform for occurrence of many biological processes that are governed and guided by cell surface receptors. Introduction of chemoselective functional groups, via bio-orthogonal conjugation strategies, at the cell surface facilitates many cellular modifications and paves path for novel and potential biomedical applications. Anchoring lipids are needed for liposome surface functionalization with ligands of interest and play important roles in ligand grafting density, liposomes stability and biological activity. On the other hand, anchoring lipids are also needed for cell surface re-engineering by lipid fusion approach and have high impact for ligand insertion efficiency and biological activity. Overall, in this dissertation study, functional anchoring lipids for glyco-functionalized carrier systems and for efficient cell surface re-engineering applications were systematically investigated, respectively. Firstly, investigation of the synthesis of glyco-functionalized liposome systems based on phosphatidylethonalamine (PE) and cholesterol (Chol) anchoring lipids, prepared by post chemically selective functionalization via Staudinger ligation were carried out. The effect of anchor lipids on the stability, encapsulation and releasing capacity of the glycosylated liposomes were investigated by dynamic light scattering (DLS) technique and by entrapping 5, 6-carboxyfluorescein (CF) dye and monitoring the fluorescence leakage, respectively. Overall, the Chol-anchored liposomes showed faster releasing rate than DSPE-anchored liposomes. This could be due to the increase in rigidity of the lipid membrane upon inclusion of Chol, thereby, leading to fast leakage of liposomes. Second, the potential effects of phospholipid (PE) and cholesterol (Chol)-based anchor lipids on cell surface re-engineering via copper free click chemistry were assessed with RAW 264.7 cells as model. The confocal microscopy and flow cytometry results indicated the successful incorporation of biotinylated Chol-based anchor lipids after specific streptavidin-FITC binding onto the cell surface. Higher fluorescence intensities from the cell membrane were observed for Chol-based anchor lipids when compared to DSPE as anchoring lipid. Furthermore, cytotoxicity of the synthesized biotinylated anchor lipids on the RAW 264.7 cells was assessed by MTT assay. The MTT assay results further confirmed that cell surface re-engineering via lipid anchoring approach strategy has very little or negligible amount of cytotoxicity on the cell viability. Thus, this study suggests the possible use of these lipids for potential cell surface re-engineering applications. In addition, synthesis of lipid coated iron oxide nanoparticles via dual solvent exchange approach and their glyco-functionalization via Staudinger ligation were investigated and characterized by FT-IR and TEM techniques. The stability of iron oxide nanoparticles with varying compositions of lipid anchors was evaluated by dynamic light scattering technique.
NASA Astrophysics Data System (ADS)
Sim, Eun Seob; Chung, Yong-Chae
2018-03-01
In this study, the influence of the non-uniform surface of F- and O-functionalized Ti2C on the anchoring behavior of lithium polysulfide (LiPS) is investigated using density functional theory. In order to consider the non-uniform surface, the substitutional, vacancy, and S-trapped sites of F- and O-functionalized Ti2C are designed. The anchoring behavior is investigated considering the adsorption energy of LiPS, reactivity between Li atoms and the substrate, and the reduction state of the S atoms. On the F-substitutional site of the O-functionalized surface, it is confirmed that the suppressing mechanism changes from the neutralization of S atoms to the anchoring of LiPS. However, too strong of an interaction between Ti atoms exposed at the vacancy site and S atoms induces trapping of the S atom at the vacancies of both F- and O-functionalized surfaces. As a result of the trapping of the S atom, the use of active material decreases. In addition, the S-trapped site originated from the vacancy site does not affect the suppressing mechanism. In conclusion, to optimize the Ti2C-based MXene as an anchoring material for Li-S batteries, the preparation process should be focused on eliminating the vacancy of functional groups.
Whiting, Jennifer L; Nygren, Patrick J; Tunquist, Brian J; Langeberg, Lorene K; Seternes, Ole-Morten; Scott, John D
2015-08-07
The proximity of an enzyme to its substrate can influence rate and magnitude of catalysis. A-kinase anchoring protein 220 (AKAP220) is a multivalent anchoring protein that can sequester a variety of signal transduction enzymes. These include protein kinase A (PKA) and glycogen synthase kinase 3β (GSK3β). Using a combination of molecular and cellular approaches we show that GSK3β phosphorylation of Thr-1132 on AKAP220 initiates recruitment of this kinase into the enzyme scaffold. We also find that AKAP220 anchors GSK3β and its substrate β-catenin in membrane ruffles. Interestingly, GSK3β can be released from the multienzyme complex in response to PKA phosphorylation on serine 9, which suppresses GSK3β activity. The signaling scaffold may enhance this regulatory mechanism, as AKAP220 has the capacity to anchor two PKA holoenzymes. Site 1 on AKAP220 (residues 610-623) preferentially interacts with RII, whereas site 2 (residues 1633-1646) exhibits a dual specificity for RI and RII. In vitro affinity measurements revealed that site 2 on AKAP220 binds RII with ∼10-fold higher affinity than site 1. Occupancy of both R subunit binding sites on AKAP220 could provide a mechanism to amplify local cAMP responses and enable cross-talk between PKA and GSK3β. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.
Arthroscopic suture anchor repair of the lateral ligament ankle complex: a cadaveric study.
Giza, Eric; Shin, Edward C; Wong, Stephanie E; Acevedo, Jorge I; Mangone, Peter G; Olson, Kirstina; Anderson, Matthew J
2013-11-01
Operative treatment of mechanical ankle instability is indicated for patients with multiple sprains and continued episodes of instability. Open repair of the lateral ankle ligaments involves exposure of the attenuated ligaments and advancement back to their anatomic insertions on the fibula using bone tunnels or suture implants. Open and arthroscopic fixation are equal in strength to failure for anatomic Broström repair. Controlled laboratory study. Seven matched pairs of human cadaveric ankle specimens were randomized into 2 groups of anatomic Broström repair: open or arthroscopic. The calcaneofibular ligament and anterior talofibular ligament were excised from their origin on the fibula. In the open repair group, 2 suture anchors were used to reattach the ligaments to their anatomic origins. In the arthroscopic repair group, identical suture anchors were used for repair via an arthroscopic technique. The ligaments were cyclically loaded 20 times and then tested to failure. Torque to failure, degrees to failure, initial stiffness, and working stiffness were measured. A matched-pair analysis was performed. Power analysis of 0.8 demonstrated that 7 pairs needed to show a difference of 30%, with a 15% standard error at a significance level of α = .05. There was no difference in the degrees to failure, torque to failure, or stiffness for the repaired ligament complex. Nine of 14 specimens failed at the suture anchor. There is no statistical difference in strength or stiffness of a traditional open repair as compared with an arthroscopic anatomic repair of the lateral ligaments of the ankle. An arthroscopic technique can be considered for lateral ligament stabilization in patients with mild to moderate mechanical instability.
The synthesis of silica nanotubes through chlorosilanization of single wall carbon nanotubes
NASA Astrophysics Data System (ADS)
Lin, Tsung-Wu; Shen, Hsin-Hui
2010-09-01
We demonstrate that single wall carbon nanotubes (SWCNTs) can be coated by a layer of silica through the reaction between chlorosilane and acid-treated SWCNTs. The presence of carboxylic acid groups in the SWCNTs provides the active sites where chlorosilane can be anchored to form the silica coating. Silica nanotubes with diameters ranging from 5 to 23 nm were synthesized after the calcination of silica coated SWCNTs at 900 °C in air. It was found that the presence of SWCNT templates and carboxylic acid groups on the SWCNTs' surface is essential to the formation of silica nanotubes. Furthermore, the dependence of the inner diameters of the silica nanotubes on the diameters of bundled or isolated SWCNTs was observed. This novel technique can be applied to the synthesis of other oxide nanotubes if a precursor such as TiCl4 or ZrCl4 is used.
Hosseini, Samira; Ibrahim, Fatimah; Djordjevic, Ivan; Koole, Leo H
2014-06-21
Biosensor chips for immune-based assay systems have been investigated for their application in early diagnostics. The development of such systems strongly depends on the effective protein immobilization on polymer substrates. In order to achieve this complex heterogeneous interaction the polymer surface must be functionalized with chemical groups that are reactive towards proteins in a way that surface functional groups (such as carboxyl, -COOH; amine, -NH2; and hydroxyl, -OH) chemically or physically anchor the proteins to the polymer platform. Since the proteins are very sensitive towards their environment and can easily lose their activity when brought in close proximity to the solid surface, effective surface functionalization and high level of control over surface chemistry present the most important steps in the fabrication of biosensors. This paper reviews recent developments in surface functionalization and preparation of polymethacrylates for protein immobilization. Due to their versatility and cost effectiveness, this particular group of plastic polymers is widely used both in research and in industry.
Side-information-dependent correlation channel estimation in hash-based distributed video coding.
Deligiannis, Nikos; Barbarien, Joeri; Jacobs, Marc; Munteanu, Adrian; Skodras, Athanassios; Schelkens, Peter
2012-04-01
In the context of low-cost video encoding, distributed video coding (DVC) has recently emerged as a potential candidate for uplink-oriented applications. This paper builds on a concept of correlation channel (CC) modeling, which expresses the correlation noise as being statistically dependent on the side information (SI). Compared with classical side-information-independent (SII) noise modeling adopted in current DVC solutions, it is theoretically proven that side-information-dependent (SID) modeling improves the Wyner-Ziv coding performance. Anchored in this finding, this paper proposes a novel algorithm for online estimation of the SID CC parameters based on already decoded information. The proposed algorithm enables bit-plane-by-bit-plane successive refinement of the channel estimation leading to progressively improved accuracy. Additionally, the proposed algorithm is included in a novel DVC architecture that employs a competitive hash-based motion estimation technique to generate high-quality SI at the decoder. Experimental results corroborate our theoretical gains and validate the accuracy of the channel estimation algorithm. The performance assessment of the proposed architecture shows remarkable and consistent coding gains over a germane group of state-of-the-art distributed and standard video codecs, even under strenuous conditions, i.e., large groups of pictures and highly irregular motion content.
Local structure of Iridium organometallic catalysts covalently bonded to carbon nanotubes.
NASA Astrophysics Data System (ADS)
Blasco, J.; Cuartero, V.; Subías, G.; Jiménez, M. V.; Pérez-Torrente, J. J.; Oro, L. A.; Blanco, M.; Álvarez, P.; Blanco, C.; Menéndez, R.
2016-05-01
Hybrid catalysts based on Iridium N-heterocyclic carbenes anchored to carbon nanotubes (CNT) have been studied by XAFS spectroscopy. Oxidation of CNT yields a large amount of functional groups, mainly hydroxyl groups at the walls and carboxylic groups at the tips, defects and edges. Different kinds of esterification reactions were performed to functionalize oxidized CNT with imidazolium salts. Then, the resulting products were reacted with an Ir organometallic compound to form hybrid catalysts efficient in hydrogen transfer processes. XANES spectroscopy agree with the presence of Ir(I) in these catalysts and the EXAFS spectra detected differences in the local structure of Ir atoms between the initial Ir organometallic compound and the Ir complexes anchored to the CNT. Our results confirm that the halide atom, present in the Ir precursor, was replaced by oxygen from -OH groups at the CNT wall in the first coordination shell of Ir. The lability of this group accounts for the good recyclability and the good efficiency shown by these hybrid catalysts.
Tethered fleximags: a physical model for ciliary propulsion.
NASA Astrophysics Data System (ADS)
Du Roure, Olivia; Babataheri, Avin; Jenffer, Patrice; Fermigier, Marc; Goubault, Cecile
2007-11-01
Fleximags are linear colloidal structures made of micron-sized superparamagnetic particles. Permanent links between colloids are established through molecules grafted on the particles. The elasticity of the linker bestows a flexibility to the filament. The fleximags have already been used to make one of the first artificial microswimmers (Dreyfus et al. Nature 2005) resembling a spermatozoon. They can also be anchored to a glass substrate isolated or as arrays. Those arrays build up experimental models of the array of cilia on paramecium for studying physical aspects of the propulsion. Here we'll show our first studies concerning anchored flexiamgs submitted to time-dependent field. The actuation is controlled by three electromagnets and allowing all types of 3-D movements: (a)symmetric beating in a plane, rotation... We first study one single anchored fleximag when the field is rotating on a cone. Only a part of the filament is moving reflecting the competition between magnetic interactions, elasticity and viscosity. The length of this mobile fraction decreases with frequency. We also study the induced flow by PIV.
Jezela-Stanek, Aleksandra; Ciara, Elżbieta; Piekutowska-Abramczuk, Dorota; Trubicka, Joanna; Jurkiewicz, Elżbieta; Rokicki, Dariusz; Mierzewska, Hanna; Spychalska, Justyna; Uhrynowska, Małgorzata; Szwarc-Bronikowska, Marta; Buda, Piotr; Said, Abdul Rahim; Jamroz, Ewa; Rydzanicz, Małgorzata; Płoski, Rafał; Krajewska-Walasek, Małgorzata; Pronicka, Ewa
2016-05-01
Glycosylphosphatidylinositol (GPI)-anchor deficiencies are a new subclass of congenital disorders of glycosylation. About 26 genes are involved in the GPI-anchor biosynthesis and remodeling pathway, of which mutations in thirteen have been reported to date as causative of a diverse spectrum of intellectual disabilities. Since the clinical phenotype of these disorders varies and the number of described individuals is limited, we present new patients with inherited GPI-anchor deficiency (IGD) caused by mutations in the PGAP2 and PIGN genes. The first girl presented with profound psychomotor retardation, low birth parameters, and chest deformities already existing in neonatal period. The disease course was slowly progressive with severe hypotonia, chronic fever, and respiration insufficiency at the age of 6. The second girl showed profound psychomotor retardation, marked hypotonia, and high birth weight (97 centile). Dysmorphy was mild or absent in both girls. Whole exome sequencing revealed novel variants in the genes PGAP2 (c.2T>G and c.221G>A) and PIGN (c.790G>A and c.932T>G). Impaired GPI binding were was subsequently uncovered, although the hyperactivity of alkaline phosphatase (a GPI-anchored protein) occurred only in first case. Based on our results we can conclude that: 1. GPI-anchor biosynthesis disorders may represent a relatively frequent and overlooked metabolic defect; 2. The utility of GPI binding assessment as a screening test for this group of rare diseases requires further studies. Copyright © 2016 European Paediatric Neurology Society. Published by Elsevier Ltd. All rights reserved.
Ramasamy, P; Brennan, G P
2000-02-01
Infections with Empleurosoma pyriforme occur between successive secondary gill lamellae on both sides of the primary lamella of Therapon jarbua. The haptoral disc bears two pairs of anchors and a pair of connecting transverse bars. The attachment of the parasite to the host gill causes inflammation, erosion and degeneration of the gill epithelia. The ventral anchors consist of an inner core of irregularly arranged, electron-dense fibrils and a smooth outer core of electron-lucent fibrils, whereas the surface of the dorsal anchors is ridged. Both the dorsal and the ventral anchors may be extended or withdrawn. The connecting transverse bars consist of longitudinally arranged fibrils in an electron-dense matrix, whereas the tendons consist of fibrils, supported in a less electron-dense matrix, which interconnect the anchor erector-protractor muscles and the haptor muscles. Two types of perikarya are present. The less common type contain large multivesicular bodies and small electron-dense granules and are located only in the haptor region. The second and more common perikarya are present throughout the body surface. The cytoplasmic syncytium contains numerous electron-dense granules and electron-lucent vesicles. Beneath the syncytium, unicellular epidermal gland cells contain electron-dense granules. Neurones containing numerous electron-dense vesicles are present in the haptor region. Uniciliate presumed sensory receptors are distributed over the body surface. Groups of ciliated sensory structures are present in the forebody. Ciliated and non-ciliated presumed sensory receptors are present in the sleeve cavity of the anchors, on the haptor and in the vicinity of the oral apertures.
Does 'anchor sleep' entrain circadian rhythms? Evidence from constant routine studies.
Minors, D S; Waterhouse, J M
1983-01-01
Experiments have been performed in an isolation unit to investigate the effects of abnormal sleep-waking schedules upon circadian rhythms of renal excretion and deep-body temperature. In confirmation of previous work, nychthemeral rhythms appeared to be 'anchored' to a 24 h period if 4 h sleep was taken regularly each day, even though another 4 h was taken irregularly. The endogenous components were investigated by assessing circadian rhythmicity under constant routine conditions, that is, when rhythmic influences in the environment and sleep-waking pattern had been minimized. Analysis of the constant routine data indicated the presence of a rhythmic component which had been stabilized to a period of 24 h by the 'anchor sleep'. In addition, a delayed component was also present. The starting time of the constant routines produced a direct effect upon the rhythms, which was presumed to result from removing the 'masking' effect that sleep normally exerts upon rhythms. There was some evidence that the relative importance of the masking effect and the delayed component depended upon the variable under consideration. The implications of these findings, in terms of the effects of anchor sleep, the presence of more than one internal clock and the usefulness of constant routines, are discussed. PMID:6663508
Organic transistor memory with a charge storage molecular double-floating-gate monolayer.
Tseng, Chiao-Wei; Huang, Ding-Chi; Tao, Yu-Tai
2015-05-13
A flexible, low-voltage, and nonvolatile memory device was fabricated by implanting a functional monolayer on an aluminum oxide dielectric surface in a pentacene-based organic transistor. The monolayer-forming molecule contains a phosphonic acid group as the anchoring moiety and a charge-trapping core group flanked between two alkyl chain spacers as the charge trapping site. The memory characteristics strongly depend on the monolayer used due to the localized charge-trapping capability for different core groups, including the diacetylenic (DA) unit as the hole carrier trap, the naphthalenetetracarboxyldiimide (ND) unit as the electron carrier trap, and the one with both DA and ND units present, respectively. The device with the monolayer carrying both DA and ND groups has a larger memory window than that for the one containing DA only and a longer retention time than that for the one containing DA or ND only, giving a memory window of 1.4 V and a retention time around 10(9) s. This device with hybrid organic monolayer/inorganic dielectrics also exhibited rather stable device characteristics upon bending of the polymeric substrate.
PP2B/calcineurin-mediated desensitization of TRPV1 does not require AKAP150
Por, Elaine D.; Samelson, Bret K.; Belugin, Sergei; Akopian, Armen N.; Scott, John D.; Jeske, Nathaniel A.
2011-01-01
Activation of protein kinases and phosphatases at the plasma membrane often initiates agonist-dependent signalling events. In sensory neurons, AKAP150 (A-kinase-anchoring protein 150) orientates PKA (protein kinase A), PKC (protein kinase C) and the Ca2+/calmodulin-dependent PP2B (protein phosphatase 2B, also known as calcineurin) towards membrane-associated substrates. Recent evidence indicates that AKAP150-anchored PKA and PKC phosphorylate and sensitize the TRPV1 (transient receptor potential subfamily V type 1 channel, also known as the capsaicin receptor). In the present study, we explore the hypothesis that an AKAP150-associated pool of PP2B catalyses the dephosphorylation and desensitization of TRPV1. Biochemical, electrophysiological and cell-based experiments indicate that PP2B associates with AKAP150 and TRPV1 in cultured TG (trigeminal ganglia) neurons. Gene silencing of AKAP150 reduces basal phosphorylation of TRPV1. However, functional studies in neurons isolated from AKAP150−/− mice indicate that the anchoring protein is not required for pharmacological desensitization of TRPV1. Behavioural analysis of AKAP150−/− mice further support this notion, demonstrating that agonist-stimulated desensitization of TRPV1 is sensitive to PP2B inhibition and does not rely on AKAP150. These findings allow us to conclude that pharmacological desensitization of TRPV1 by PP2B may involve additional regulatory components. PMID:20883208
Gaillard, Anne R.; Fox, Laura A.; Rhea, Jeanne M.; Craige, Branch
2006-01-01
Biochemical studies of Chlamydomonas flagellar axonemes revealed that radial spoke protein (RSP) 3 is an A-kinase anchoring protein (AKAP). To determine the physiological role of PKA anchoring in the axoneme, an RSP3 mutant, pf14, was transformed with an RSP3 gene containing a mutation in the PKA-binding domain. Analysis of several independent transformants revealed that the transformed cells exhibit an unusual phenotype: a fraction of the cells swim normally; the remainder of the cells twitch feebly or are paralyzed. The abnormal/paralyzed motility is not due to an obvious deficiency of radial spoke assembly, and the phenotype cosegregates with the mutant RSP3. We postulated that paralysis was due to failure in targeting and regulation of axonemal cAMP-dependent protein kinase (PKA). To test this, reactivation experiments of demembranated cells were performed in the absence or presence of PKA inhibitors. Importantly, motility in reactivated cell models mimicked the live cell phenotype with nearly equal fractions of motile and paralyzed cells. PKA inhibitors resulted in a twofold increase in the number of motile cells, rescuing paralysis. These results confirm that flagellar RSP3 is an AKAP and reveal that a mutation in the PKA binding domain results in unregulated axonemal PKA activity and inhibition of normal motility. PMID:16571668
Ezure, Toru; Nanatani, Kei; Sato, Yoko; Suzuki, Satomi; Aizawa, Keishi; Souma, Satoshi; Ito, Masaaki; Hohsaka, Takahiro; von Heijine, Gunnar; Utsumi, Toshihiko; Abe, Keietsu; Ando, Eiji; Uozumi, Nobuyuki
2014-01-01
Cell-free protein synthesis is a powerful method to explore the structure and function of membrane proteins and to analyze the targeting and translocation of proteins across the ER membrane. Developing a cell-free system based on cultured cells for the synthesis of membrane proteins could provide a highly reproducible alternative to the use of tissues from living animals. We isolated Sf21 microsomes from cultured insect cells by a simplified isolation procedure and evaluated the performance of the translocation system in combination with a cell-free translation system originating from the same source. The isolated microsomes contained the basic translocation machinery for polytopic membrane proteins including SRP-dependent targeting components, translocation channel (translocon)-dependent translocation, and the apparatus for signal peptide cleavage and N-linked glycosylation. A transporter protein synthesized with the cell-free system could be functionally reconstituted into a lipid bilayer. In addition, single and double labeling with non-natural amino acids could be achieved at both the lumen side and the cytosolic side in this system. Moreover, tail-anchored proteins, which are post-translationally integrated by the guided entry of tail-anchored proteins (GET) machinery, were inserted correctly into the microsomes. These results showed that the newly developed cell-free translocation system derived from cultured insect cells is a practical tool for the biogenesis of properly folded polytopic membrane proteins as well as tail-anchored proteins.
PP2B/calcineurin-mediated desensitization of TRPV1 does not require AKAP150.
Por, Elaine D; Samelson, Bret K; Belugin, Sergei; Akopian, Armen N; Scott, John D; Jeske, Nathaniel A
2010-12-15
Activation of protein kinases and phosphatases at the plasma membrane often initiates agonist-dependent signalling events. In sensory neurons, AKAP150 (A-kinase-anchoring protein 150) orientates PKA (protein kinase A), PKC (protein kinase C) and the Ca2+/calmodulin-dependent PP2B (protein phosphatase 2B, also known as calcineurin) towards membrane-associated substrates. Recent evidence indicates that AKAP150-anchored PKA and PKC phosphorylate and sensitize the TRPV1 (transient receptor potential subfamily V type 1 channel, also known as the capsaicin receptor). In the present study, we explore the hypothesis that an AKAP150-associated pool of PP2B catalyses the dephosphorylation and desensitization of TRPV1. Biochemical, electrophysiological and cell-based experiments indicate that PP2B associates with AKAP150 and TRPV1 in cultured TG (trigeminal ganglia) neurons. Gene silencing of AKAP150 reduces basal phosphorylation of TRPV1. However, functional studies in neurons isolated from AKAP150-/- mice indicate that the anchoring protein is not required for pharmacological desensitization of TRPV1. Behavioural analysis of AKAP150-/- mice further support this notion, demonstrating that agonist-stimulated desensitization of TRPV1 is sensitive to PP2B inhibition and does not rely on AKAP150. These findings allow us to conclude that pharmacological desensitization of TRPV1 by PP2B may involve additional regulatory components.
TRIM5α requires Ube2W to anchor Lys63-linked ubiquitin chains and restrict reverse transcription
Fletcher, Adam J; Christensen, Devin E; Nelson, Chad; Tan, Choon Ping; Schaller, Torsten; Lehner, Paul J; Sundquist, Wesley I; Towers, Greg J
2015-01-01
TRIM5α is an antiviral, cytoplasmic, E3 ubiquitin (Ub) ligase that assembles on incoming retroviral capsids and induces their premature dissociation. It inhibits reverse transcription of the viral genome and can also synthesize unanchored polyubiquitin (polyUb) chains to stimulate innate immune responses. Here, we show that TRIM5α employs the E2 Ub-conjugating enzyme Ube2W to anchor the Lys63-linked polyUb chains in a process of TRIM5α auto-ubiquitination. Chain anchoring is initiated, in cells and in vitro, through Ube2W-catalyzed monoubiquitination of TRIM5α. This modification serves as a substrate for the elongation of anchored Lys63-linked polyUb chains, catalyzed by the heterodimeric E2 enzyme Ube2N/Ube2V2. Ube2W targets multiple TRIM5α internal lysines with Ub especially lysines 45 and 50, rather than modifying the N-terminal amino group, which is instead αN-acetylated in cells. E2 depletion or Ub mutation inhibits TRIM5α ubiquitination in cells and restores restricted viral reverse transcription, but not infection. Our data indicate that the stepwise formation of anchored Lys63-linked polyUb is a critical early step in the TRIM5α restriction mechanism and identify the E2 Ub-conjugating cofactors involved. PMID:26101372
DOE Office of Scientific and Technical Information (OSTI.GOV)
Loiko, V. A., E-mail: loiko@ifanbel.bas-net.by; Konkolovich, A. V.; Zyryanov, V. Ya.
2017-03-15
We have described the method of analyzing and reporting on the results of calculation of the small-angle structure of radiation scattered by a polymer-dispersed liquid crystal film with electrically controlled interfacial anchoring. The method is based on the interference approximation of the wave scattering theory and the hard disk model. Scattering from an individual liquid crystal droplet has been described using the anomalous diffraction approximation extended to the case of droplets with uniform and nonuniform interface anchoring at the droplet–polymer boundary. The director field structure in an individual droplet is determined from the solution of the problem of minimizing themore » volume density of the free energy. The electrooptical effect of symmetry breaking in the angular distribution of scattered radiation has been analyzed. This effect means that the intensities of radiation scattered within angles +θ{sub s} and–θ{sub s} relative to the direction of illumination in the scattering plane can be different. The effect is of the interference origin and is associated with asymmetry of the phase shift of the wavefront of an incident wave from individual parts of the droplet, which appears due to asymmetry of the director field structure in the droplet, caused by nonuniform anchoring of liquid crystal molecules with the polymer on its surface. This effect is analyzed in the case of normal illumination of the film depending on the interfacial anchoring at the liquid crystal–polymer interface, the orientation of the optical axes of droplets, their concentration, sizes, anisometry, and polydispersity.« less
Martinière, Alexandre; Gayral, Philippe; Hawes, Chris; Runions, John
2011-04-01
Actin microfilament (MF) organization and remodelling is critical to cell function. The formin family of actin binding proteins are involved in nucleating MFs in Arabidopsis thaliana. They all contain formin homology domains in the intracellular, C-terminal half of the protein that interacts with MFs. Formins in class I are usually targeted to the plasma membrane and this is true of Formin1 (AtFH1) of A. thaliana. In this study, we have investigated the extracellular domain of AtFH1 and we demonstrate that AtFH1 forms a bridge from the actin cytoskeleton, across the plasma membrane and is anchored within the cell wall. AtFH1 has a large, extracellular domain that is maintained by purifying selection and that contains four conserved regions, one of which is responsible for immobilising the protein. Protein anchoring within the cell wall is reduced in constructs that express truncations of the extracellular domain and in experiments in protoplasts without primary cell walls. The 18 amino acid proline-rich extracellular domain that is responsible for AtFH1 anchoring has homology with cell-wall extensins. We also have shown that anchoring of AtFH1 in the cell wall promotes actin bundling within the cell and that overexpression of AtFH1 has an inhibitory effect on organelle actin-dependant dynamics. Thus, the AtFH1 bridge provides stable anchor points for the actin cytoskeleton and is probably a crucial component of the signalling response and actin-remodelling mechanisms. © 2011 The Authors. The Plant Journal © 2011 Blackwell Publishing Ltd.
Integrating Gender and Group Differences into Bridging Strategy
ERIC Educational Resources Information Center
Yilmaz, Serkan; Eryilmaz, Ali
2010-01-01
The main goal of this study was to integrate gender and group effect into bridging strategy in order to assess the effect of bridging analogy-based instruction on sophomore students' misconceptions in Newton's Third Law. Specifically, the authors developed and benefited from anchoring analogy diagnostic test to merge the effect of group and gender…
IntegratedMap: a Web interface for integrating genetic map data.
Yang, Hongyu; Wang, Hongyu; Gingle, Alan R
2005-05-01
IntegratedMap is a Web application and database schema for storing and interactively displaying genetic map data. Its Web interface includes a menu for direct chromosome/linkage group selection, a search form for selection based on mapped object location and linkage group displays. An overview display provides convenient access to the full range of mapped and anchored object types with genetic locus details, such as numbers, types and names of mapped/anchored objects displayed in a compact scrollable list box that automatically updates based on selected map location and object type. Also, multilinkage group and localized map views are available along with links that can be configured for integration with other Web resources. IntegratedMap is implemented in C#/ASP.NET and the package, including a MySQL schema creation script, is available from http://cggc.agtec.uga.edu/Data/download.asp
Takahashi, Daisuke; Inomata, Tatsuji; Fukui, Tatsuya
2017-06-26
We previously reported an efficient peptide synthesis method, AJIPHASE®, that comprises repeated reactions and isolations by precipitation. This method utilizes an anchor molecule with long-chain alkyl groups as a protecting group for the C-terminus. To further improve this method, we developed a one-pot synthesis of a peptide sequence wherein the synthetic intermediates were isolated by solvent extraction instead of precipitation. A branched-chain anchor molecule was used in the new process, significantly enhancing the solubility of long peptides and the operational efficiency compared with the previous method, which employed precipitation for isolation and a straight-chain aliphatic group. Another prerequisite for this solvent-extraction-based strategy was the use of thiomalic acid and DBU for Fmoc deprotection, which facilitates the removal of byproducts, such as the fulvene adduct. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Jevric, Martyn; Broman, Søren Lindbæk; Nielsen, Mogens Brøndsted
2013-05-03
The dihydroazulene (DHA)/vinylheptafulvene (VHF) photo/thermoswitch has attracted interest as a molecular switch for advanced materials and molecular electronics. We report here two synthetic approaches using palladium catalysis for synthesizing dihydroazulene (DHA) photoswitches with thioacetate anchoring groups intended for molecular electronics applications. The first methodology involves a Suzuki coupling using tert-butyl thioether protecting groups. Conversion to the thioacetate using boron tribromide/acetyl chloride results in the formation of the product as a mixture of regioisomers mediated by a ring-opening reaction. The second approach circumvents isomerization by the synthesis of stannanes as intermediates and their use in a Stille coupling. Although fully unsaturated azulenes are formed as byproducts during the synthesis of the DHA stannanes, this approach allowed the regioselective incorporation of the thioacetate anchoring group in either one of the two ends (positions 2 or 7) or at both.
Djedovič, Natasha; Ferdani, Riccardo; Harder, Egan; Pajewska, Jolanta; Pajewski, Robert; Weber, Michelle E.; Schlesinger, Paul H.; Gokel, George W.
2008-01-01
The synthetic peptide, R2N-COCH2OCH2CO-Gly-Gly-Gly-Pro-Gly-Gly-Gly-OR’, was shown to be selective for Cl- over K+ when R is n-octadecyl and R’ is benzyl. Nineteen heptapeptides have now been prepared in which the N-terminal and C-terminal residues have been varied. All of the N-terminal residues are dialkyl but the C-terminal chains are esters, 2° amides, or 3° amides. The compounds having varied N-terminal anchors and C-terminal benzyl groups are as follows: 1, R = n-propyl; 2, R = n-hexyl; 3, R = n-octyl; 4, R = n-decyl; 5, R = n-dodecyl; 6, R = n-tetradecyl; 7, R = n-hexadecyl; 8, R = n-octadecyl. Compounds 9-19 have R = n-octadecyl and C-terminal residues as follows: 9, OR’ = OCH2CH3; 10, OR’ = OCH(CH3)2; 11, OR’ = O(CH2)6CH3; 12, OR’ = OCH2-c-C6H11; 13, OR’ = O(CH2)9CH3; 14, OR’ = O (CH2)17CH3; 15, NR’2 = N[(CH2)6CH3]2; 16, NHR’ = NH(CH2)9CH3; 17, NR’2 = N[(CH2)9CH3]2; 18, NHR’ = NH(CH2)17CH3; 19, NR’2 = N[(CH2)17CH3]2. The highest anion transport activities were observed as follows. For the benzyl esters whose N-terminal residues were varied, i.e. 1-8, compound 3 was most active. For the C18 anchored esters 10-14, n-heptyl ester 11 was most active. For the C18 anchored, C-terminal amides 15-19, di-n-decylamide 17 was most active. It was concluded that both the C- and N-terminal anchors were important for channel function in the bilayer but that activity was lost unless only one of the two anchoring groups was dominant. PMID:19633728
A Comparative Biomechanical Analysis of 2 Double-Row, Distal Triceps Tendon Repairs
Dorweiler, Matthew A.; Van Dyke, Rufus O.; Siska, Robert C.; Boin, Michael A.; DiPaola, Mathew J.
2017-01-01
Background: Triceps tendon ruptures are rare orthopaedic injuries that almost always require surgical repair. This study tests the biomechanical properties of an original anchorless double-row triceps repair against a previously reported knotless double-row repair. Hypothesis: The anchorless double-row triceps repair technique will yield similar biomechanical properties when compared with the knotless double-row repair technique. Study Design: Controlled laboratory study. Methods: Eighteen cadaver arms were randomized into 2 groups. One group received the anchorless repair and the other received the knotless anchor repair. A materials testing system (MTS) machine was used to cycle the repaired arms from 0° to 90° with a 2.5-pound weight for 1500 cycles at 0.25 Hz. Real-time displacement of the tendon was measured during cycling using a probe. Load to failure was performed after completion of cyclic loading. Results: The mean displacement with the anchorless technique was 0.77 mm (SD, 0.25 mm) at 0° (full elbow extension) and 0.76 mm (SD, 0.38 mm) at 90° (elbow flexion). The mean displacement with the anchored technique was 0.83 mm (SD, 0.57 mm) at 0° and 1.01 mm (SD, 0.62 mm) at 90°. There was no statistically significant difference for tendon displacement at 0º (P = .75) or 90º (P = .31). The mean load to failure with the anchorless technique was 618.9 N (SD, 185.6 N), while it was 560.5 N (SD, 154.1 N) with the anchored technique, again with no statistically significant difference (P = .28). Conclusion: Our anchorless double-row triceps repair technique yields comparable biomechanical properties to previously described double-row triceps tendon repair techniques, with the added benefit of avoiding the cost of suture anchors. Clinical Relevance: This anchorless double-row triceps tendon repair can be considered as an acceptable alternative to a knotless anchor repair for triceps tendon ruptures. PMID:28607942
A Comparative Biomechanical Analysis of 2 Double-Row, Distal Triceps Tendon Repairs.
Dorweiler, Matthew A; Van Dyke, Rufus O; Siska, Robert C; Boin, Michael A; DiPaola, Mathew J
2017-05-01
Triceps tendon ruptures are rare orthopaedic injuries that almost always require surgical repair. This study tests the biomechanical properties of an original anchorless double-row triceps repair against a previously reported knotless double-row repair. The anchorless double-row triceps repair technique will yield similar biomechanical properties when compared with the knotless double-row repair technique. Controlled laboratory study. Eighteen cadaver arms were randomized into 2 groups. One group received the anchorless repair and the other received the knotless anchor repair. A materials testing system (MTS) machine was used to cycle the repaired arms from 0° to 90° with a 2.5-pound weight for 1500 cycles at 0.25 Hz. Real-time displacement of the tendon was measured during cycling using a probe. Load to failure was performed after completion of cyclic loading. The mean displacement with the anchorless technique was 0.77 mm (SD, 0.25 mm) at 0° (full elbow extension) and 0.76 mm (SD, 0.38 mm) at 90° (elbow flexion). The mean displacement with the anchored technique was 0.83 mm (SD, 0.57 mm) at 0° and 1.01 mm (SD, 0.62 mm) at 90°. There was no statistically significant difference for tendon displacement at 0º ( P = .75) or 90º ( P = .31). The mean load to failure with the anchorless technique was 618.9 N (SD, 185.6 N), while it was 560.5 N (SD, 154.1 N) with the anchored technique, again with no statistically significant difference ( P = .28). Our anchorless double-row triceps repair technique yields comparable biomechanical properties to previously described double-row triceps tendon repair techniques, with the added benefit of avoiding the cost of suture anchors. This anchorless double-row triceps tendon repair can be considered as an acceptable alternative to a knotless anchor repair for triceps tendon ruptures.
Double row equivalent for rotator cuff repair: A biomechanical analysis of a new technique.
Robinson, Sean; Krigbaum, Henry; Kramer, Jon; Purviance, Connor; Parrish, Robin; Donahue, Joseph
2018-06-01
There are numerous configurations of double row fixation for rotator cuff tears however, there remains to be a consensus on the best method. In this study, we evaluated three different double-row configurations, including a new method. Our primary question is whether the new anchor and technique compares in biomechanical strength to standard double row techniques. Eighteen prepared fresh frozen bovine infraspinatus tendons were randomized to one of three groups including the New Double Row Equivalent, Arthrex Speedbridge and a transosseous equivalent using standard Stabilynx anchors. Biomechanical testing was performed on humeri sawbones and ultimate load, strain, yield strength, contact area, contact pressure, and a survival plots were evaluated. The new double row equivalent method demonstrated increased survival as well as ultimate strength at 415N compared to the remainder testing groups as well as equivalent contact area and pressure to standard double row techniques. This new anchor system and technique demonstrated higher survival rates and loads to failure than standard double row techniques. This data provides us with a new method of rotator cuff fixation which should be further evaluated in the clinical setting. Basic science biomechanical study.
Influence of Self-generated Anchors on the Voice Handicap Index-10 (VHI-10).
Canals-Fortuny, Elisabet; Vila-Rovira, Josep
2017-03-01
The aim of this research is to study whether the presentation of the Voice Handicap Index-10 questionnaire administered at the beginning of the treatment impinged on the results of the responses from the end of the treatment. The questionnaire was administered at the beginning of the treatment to a total of 308 patients. After the treatment, a group of 235 patients answered the questionnaire again without any reference to their responses on the initial administration. The other group of participants, consisting of 73 subjects, completed the questionnaire with the answer sheet of their initial self-assessment in sight. The data obtained show that patients who responded to the anchored answer test show less dispersion and a smaller coefficient of variation (0.90) than those who responded to the nonanchored answer test (coefficient of variation = 1.66). The method of administration of the Voice Handicap Index-10 at the end of a treatment influences the dispersion of the results. We recommend that the patient be anchored to the initial answer sheet while responding to the final self-assessment. Copyright © 2017 The Voice Foundation. Published by Elsevier Inc. All rights reserved.
Effects of accuracy motivation and anchoring on metacomprehension judgment and accuracy.
Zhao, Qin
2012-01-01
The current research investigates how accuracy motivation impacts anchoring and adjustment in metacomprehension judgment and how accuracy motivation and anchoring affect metacomprehension accuracy. Participants were randomly assigned to one of six conditions produced by the between-subjects factorial design involving accuracy motivation (incentive or no) and peer performance anchor (95%, 55%, or no). Two studies showed that accuracy motivation did not impact anchoring bias, but the adjustment-from-anchor process occurred. Accuracy incentive increased anchor-judgment gap for the 95% anchor but not for the 55% anchor, which induced less certainty about the direction of adjustment. The findings offer support to the integrative theory of anchoring. Additionally, the two studies revealed a "power struggle" between accuracy motivation and anchoring in influencing metacomprehension accuracy. Accuracy motivation could improve metacomprehension accuracy in spite of anchoring effect, but if anchoring effect is too strong, it could overpower the motivation effect. The implications of the findings were discussed.
NASA Astrophysics Data System (ADS)
Lee, Kwang-Sup; Kim, Sung-Hyun; Jung, Juhyoung; Teng, Xue-Cheng; Prabhakaran, Prem
2017-02-01
Groups around the world are pursuing optoelctronic and magneto-optic properties of graphene-based materials since they hold a lot of promise for future technologies. Quantum dot (QD) decorated graphenic nanohybrids can be candidates for demonstrating energy transfer, while magnetic nanoparticles (MNPs) on graphene give rise to interesting electronic phenomena like magneto-optical effects. Graphene containing MNPs are also good candidates for exploring quantum-hall effect. In medicine these materials have demonstrated applications in bioimaging, drug delivery, photothermal treatment and magnetic resonance imaging. A majority of groups working on QD or MNPs have focused on chemical functionalization methods for making graphene-MNP nanohybrids. We have developed a set of small molecule as well as polymeric ligands for noncovalent self-assembly of nanoparticles on graphene. The ligands contain pyrene as an anchor group for graphene and also thiol or dipamine as anchor groups for QD or MNPs. In this presentation we discuss the synthesis and characterization of these materials and outline some early results regarding exploratory device fabrication involving these materials.
On the Theory of Ground Anchors
1975-01-01
Reinart 46 American Electric Power Service anchor tests 47 Expandable land anchor 51 Anchorages in frozen ground 52 Foundation anchoring in thawed ground...Idealized configuration of Malone anchor 48 54. Standard grillage anchor and pyramid grillage anchor tested by the American Electric Power Service...Corporation 49 55. Configuration of bell anchors tested by the American Electric Power Service Corporation 50 56. Configuration of steel grillage - screw
Ground anchors and anchored systems
DOT National Transportation Integrated Search
1999-06-01
This document presents state-of-the-practice information on the design and installation of cement-grouted ground anchors and anchored systems for highway applications. The anchored systems discussed include flexible anchored walls, slopes supported u...
Anchoring Revisited: The Role of the Comparative Question
Grau, Ina; Bohner, Gerd
2014-01-01
When people estimate a numeric value after judging whether it is larger or smaller than a high or low anchor value (comparative question), estimates are biased in the direction of the anchor. One explanation for this anchoring effect is that people selectively access knowledge consistent with the anchor value as part of a positive test strategy. Two studies (total N = 184) supported the alternative explanation that people access knowledge consistent with their own answer to the comparative question. Specifically, anchoring effects emerged when the answer to the comparative question was unexpected (lower than the low anchor or higher than the high anchor). For expected answers (lower than the high anchor or higher than the low anchor), however, anchoring effects were attenuated or reversed. The anchor value itself was almost never reported as an absolute estimate. PMID:24454953
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dong, Yu Cheng; Center of Super-Diamond and Advanced Films; Ma, Ru Guang
2013-05-01
We report a scalable strategy to synthesize Fe₃O₄/graphene nanocomposites as a high-performance anode material for lithium ion batteries. In this study, ferric citrate is used as precursor to prepare Fe₃O₄ nanoparticles without introducing additional reducing agent; furthermore and show that such Fe₃O₄ nanoparticles can be anchored on graphene sheets which attributed to multifunctional group effect of citrate. Electrochemical characterization of the Fe₃O₄/graphene nanocomposites exhibit large reversible capacity (~1347 mA h g⁻¹ at a current density of 0.2 C up to 100 cycles, and subsequent capacity of ~619 mA h g⁻¹ at a current density of 2 C up to 200more » cycles), as well as high coulombic efficiency (~97%), excellent rate capability, and good cyclic stability. High resolution transmission electron microscopy confirms that Fe₃O₄ nanoparticles, with a size of ~4–16 nm are densely anchored on thin graphene sheets, resulting in large synergetic effects between Fe₃O₄ nanoparticles and graphene sheets with high electrochemical performance. - Graphical abstract: The reduction of Fe³⁺ to Fe²⁺ and the deposition of Fe₃O₄ on graphene sheets occur simultaneously using citrate function as reductant and anchor agent in this reaction process. Highlights: • Fe₃O₄/graphene composites are synthesized directly from graphene and C₆H₅FeO₇. • The citrate function as reductant and anchor agent in this reaction process. • The resulting Fe₃O₄ particles (~4–16 nm) are densely anchored on graphene sheets. • The prepared Fe₃O₄/graphene composites exhibit excellent electrochemical performance.« less
Haquette, Pierre; Salmain, Michèle; Svedlung, Karolina; Martel, Annie; Rudolf, Bogna; Zakrzewski, Janusz; Cordier, Stéphane; Roisnel, Thierry; Fosse, Céline; Jaouen, Gérard
2007-01-22
Site-directed and covalent introduction of various transition metal-organic entities to the active site of the cysteine endoproteinase, papain, was achieved by treatment of this enzyme with a series of organometallic maleimide derivatives specially designed for the purpose. Kinetic studies made it clear that time-dependent irreversible inactivation of papain occurred in the presence of these organometallic maleimides as a result of Michael addition of the sulfhydryl of Cys25. The rate and mechanism of inactivation were highly dependent on the structure of the organometallic entity attached to the maleimide group. Combined ESI-MS and IR analysis indicated that all the resulting papain adducts contained one organometallic moiety per protein molecule. This confirmed that chemospecific introduction of the metal complexes was indeed achieved. Thus, three novel reagents for heavy-atom derivatization of protein crystals, which include ruthenium, rhenium and tungsten, are now available for the introduction of electron-dense scatterers for phasing of X-ray crystallographic data.
New force replica exchange method and protein folding pathways probed by force-clamp technique.
Kouza, Maksim; Hu, Chin-Kun; Li, Mai Suan
2008-01-28
We have developed a new extended replica exchange method to study thermodynamics of a system in the presence of external force. Our idea is based on the exchange between different force replicas to accelerate the equilibrium process. This new approach was applied to obtain the force-temperature phase diagram and other thermodynamical quantities of the three-domain ubiquitin. Using the C(alpha)-Go model and the Langevin dynamics, we have shown that the refolding pathways of single ubiquitin depend on which terminus is fixed. If the N end is fixed then the folding pathways are different compared to the case when both termini are free, but fixing the C terminal does not change them. Surprisingly, we have found that the anchoring terminal does not affect the pathways of individual secondary structures of three-domain ubiquitin, indicating the important role of the multidomain construction. Therefore, force-clamp experiments, in which one end of a protein is kept fixed, can probe the refolding pathways of a single free-end ubiquitin if one uses either the polyubiquitin or a single domain with the C terminus anchored. However, it is shown that anchoring one end does not affect refolding pathways of the titin domain I27, and the force-clamp spectroscopy is always capable to predict folding sequencing of this protein. We have obtained the reasonable estimate for unfolding barrier of ubiquitin, using the microscopic theory for the dependence of unfolding time on the external force. The linkage between residue Lys48 and the C terminal of ubiquitin is found to have the dramatic effect on the location of the transition state along the end-to-end distance reaction coordinate, but the multidomain construction leaves the transition state almost unchanged. We have found that the maximum force in the force-extension profile from constant velocity force pulling simulations depends on temperature nonlinearly. However, for some narrow temperature interval this dependence becomes linear, as have been observed in recent experiments.
Thermally induced anchoring of a zinc-carboxyphenylporphyrin on rutile TiO2 (110)
NASA Astrophysics Data System (ADS)
Jöhr, Res; Hinaut, Antoine; Pawlak, Rémy; Zajac, Łukasz; Olszowski, Piotr; Such, Bartosz; Glatzel, Thilo; Zhang, Jun; Muntwiler, Matthias; Bergkamp, Jesse J.; Mateo, Luis-Manuel; Decurtins, Silvio; Liu, Shi-Xia; Meyer, Ernst
2017-05-01
Functionalization of surfaces has become of high interest for a wealth of applications such as sensors, hybrid photovoltaics, catalysis, and molecular electronics. Thereby molecule-surface interactions are of crucial importance for the understanding of interface properties. An especially relevant point is the anchoring of molecules to surfaces. In this work, we analyze this process for a zinc-porphyrin equipped with carboxylic acid anchoring groups on rutile TiO2 (110) using scanning probe microscopy. After evaporation, the porphyrins are not covalently bound to the surface. Upon annealing, the carboxylic acid anchors undergo deprotonation and bind to surface titanium atoms. The formation of covalent bonds is evident from the changed stability of the molecule on the surface as well as the adsorption configuration. Annealed porphyrins are rotated by 45° and adopt another adsorption site. The influence of binding on electronic coupling with the surface is investigated using photoelectron spectroscopy. The observed shifts of Zn 2p and N 1s levels to higher binding energies indicate charging of the porphyrin core, which is accompanied by a deformation of the macrocycle due to a strong interaction with the surface.
Rosa, M; Lucchi, P; Mariani, L; Caprioglio, A
2012-09-01
The purpose of this study was to evaluate the effectiveness of Haas RPE anchored on deciduous teeth in the early mixed dentition, for inducing the spontaneous correction of permanent incisor's crossbite, without compliance, without post bite-plane and no involvement of the permanent teeth. The sample group comprised 50 consecutive patients (mean age 8y 5m, SD 2y 1m), 31 males, 19 females. They showed a cross-bite affecting one or more permanent incisors, for a total of 70 teeth. The patients were treated with Haas RPE appliance anchored on second deciduous molars and bonded on deciduous canines. No direct forces were applied on the permanent teeth. Anterior crossbite self-corrected 'spontaneously' in 84% of the cases. Lateral incisors had a higher rate of self-correction than central incisors. All hyper-divergent subjects showed a spontaneous crossbite self-correction. The early maxillary expansion by Haas RPE anchored on deciduous teeth is an efficient and effective procedure to induce the anterior crossbite self-correction in the early mixed dentition without the need of a bite-plane, no involvement of the permanent teeth and without compliance.
Motivated Use of Numerical Anchors for Judgments Relevant to the Self.
Joel, Samantha; Spielmann, Stephanie S; MacDonald, Geoff
2017-07-01
The anchoring effect has been replicated so extensively that it is generally thought to be ubiquitous. However, anchoring has primarily been tested in domains in which people are motivated to reach accurate conclusions rather than biased conclusions. Is the anchoring effect robust even when the anchors are threatening? In three studies, participants made a series of probability judgments about their own futures paired with either optimistic anchors (e.g., "Do you think that the chances that your current relationship will last a lifetime are more or less than 95%?"), pessimistic anchors (e.g., "more or less than 10%?"), or no anchors. A fourth study experimentally manipulated motivation to ignore the anchor with financial incentives. Across studies, anchors that implied high probabilities of unwanted events occurring were ineffective. Together, these studies suggest that anchoring has an important boundary condition: Personally threatening anchors are ignored as a result of motivated reasoning processes.
Msp1 Is a Membrane Protein Dislocase for Tail-Anchored Proteins.
Wohlever, Matthew L; Mateja, Agnieszka; McGilvray, Philip T; Day, Kasey J; Keenan, Robert J
2017-07-20
Mislocalized tail-anchored (TA) proteins of the outer mitochondrial membrane are cleared by a newly identified quality control pathway involving the conserved eukaryotic protein Msp1 (ATAD1 in humans). Msp1 is a transmembrane AAA-ATPase, but its role in TA protein clearance is not known. Here, using purified components reconstituted into proteoliposomes, we show that Msp1 is both necessary and sufficient to drive the ATP-dependent extraction of TA proteins from the membrane. A crystal structure of the Msp1 cytosolic region modeled into a ring hexamer suggests that active Msp1 contains a conserved membrane-facing surface adjacent to a central pore. Structure-guided mutagenesis of the pore residues shows that they are critical for TA protein extraction in vitro and for functional complementation of an msp1 deletion in yeast. Together, these data provide a molecular framework for Msp1-dependent extraction of mislocalized TA proteins from the outer mitochondrial membrane. Copyright © 2017 Elsevier Inc. All rights reserved.
Matlock, Daniel D; Jones, Jacqueline; Nowels, Carolyn T; Jenkins, Amy; Allen, Larry A; Kutner, Jean S
2017-11-01
Studies have demonstrated that patients with primary prevention implantable cardioverter-defibrillators (ICDs) often misunderstand the ICD. Advances in behavioral economics demonstrate that some misunderstandings may be due to cognitive biases. We aimed to explore the influence of cognitive bias on ICD decision making. We used a qualitative framework analysis including 9 cognitive biases: affect heuristic, affective forecasting, anchoring, availability, default effects, halo effects, optimism bias, framing effects, and state dependence. We interviewed 48 patients from 4 settings in Denver. The majority were male (n = 32). Overall median age was 61 years. We found frequent evidence for framing, default, and halo effects; some evidence of optimism bias, affect heuristic, state dependence, anchoring and availability bias; and little or no evidence of affective forecasting. Framing effects were apparent in overestimation of benefits and downplaying or omitting potential harms. We found evidence of cognitive bias in decision making for ICD implantation. The majority of these biases appeared to encourage ICD treatment. Published by Elsevier Inc.
Phagocytosis of gram-negative bacteria by a unique CD14-dependent mechanism.
Schiff, D E; Kline, L; Soldau, K; Lee, J D; Pugin, J; Tobias, P S; Ulevitch, R J
1997-12-01
THP-1-derived cell lines were stably transfected with constructs encoding glycophosphatidylinositol (GPI)-anchored or transmembrane forms of human CD14. CD14 expression was associated with enhanced phagocytosis of serum (heat-inactivated)-opsonized Escherichia coli (opEc). Both the GPI-anchored and transmembrane forms of CD14 supported phagocytosis of opEc equally well. Lipopolysaccharide-binding protein (LBP) played a role in CD14-dependent phagocytosis as evidenced by inhibition of CD14-dependent phagocytosis of opEc with anti-LBP monoclonal antibody (mAb) and by enhanced phagocytosis of E. coli opsonized with purified LBP. CD14-dependent phagocytosis was inhibited by a phosphatidylinositol (PI) 3-kinase inhibitor (wortmannin) and a protein tyrosine kinase inhibitor (tyrphostin 23) but not a protein kinase C inhibitor (bisindolyl-maleimide) or a divalent cation chelator (ethylenediaminetetraacetate). Anti-LBP mAb 18G4 and anti-CD14 mAb 18E12 were used to differentiate between the pathways involved in CD14-dependent phagocytosis and CD14-dependent cell activation. F(ab')2 fragments of 18G4, a mAb to LBP that does not block cell activation, inhibited ingestion of opEc by THP1-wtCD14 cells. 18E12 (an anti-CD14 mAb that does not block LPS binding to CD14 but does inhibit CD14-dependent cell activation) did not inhibit phagocytosis of LBP-opEc by THP1-wtCD14 cells. Furthermore, CD14-dependent phagocytosis was not inhibited by anti-CD18 (CR3 and CR4 beta-chain) or anti-Fcgamma receptor mAb.
Cytoplasmic proteasomes are not indispensable for cell growth in Saccharomyces cerevisiae
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tsuchiya, Hikaru; Arai, Naoko; Tanaka, Keiji, E-mail: tanaka-kj@igakuken.or.jp
2013-07-05
Highlights: •We succeeded to control the proteasome localization by the anchor-away technique. •Nuclear proteasome-depleted cells showed a lethal phenotype. •Cytoplasmic proteasomes are not indispensable for cell growth in dividing cells. -- Abstract: The 26S proteasome is an essential protease complex responsible for the degradation of ubiquitinated proteins in eukaryotic cells. In rapidly proliferating yeast cells, proteasomes are mainly localized in the nucleus, but the biological significance of the proteasome localization is still unclear. In this study, we investigated the relationship between the proteasome localization and the functions by the anchor-away technique, a ligand-dependent sequestration of a target protein into specificmore » compartment(s). Anchoring of the proteasome to the plasma membrane or the ribosome resulted in conditional depletion of the nuclear proteasomes, whereas anchoring to histone resulted in the proteasome sequestration into the nucleus. We observed that the accumulation of ubiquitinated proteins in all the proteasome-targeted cells, suggesting that both the nuclear and cytoplasmic proteasomes have proteolytic functions and that the ubiquitinated proteins are produced and degraded in each compartment. Consistent with previous studies, the nuclear proteasome-depleted cells exhibited a lethal phenotype. In contrast, the nuclear sequestration of the proteasome resulted only in a mild growth defect, suggesting that the cytoplasmic proteasomes are not basically indispensable for cell growth in rapidly growing yeast cells.« less
Hori, Akiko; Peddie, Christopher J.; Collinson, Lucy M.; Toda, Takashi
2015-01-01
Centriolar satellites are numerous electron-dense granules dispersed around the centrosome. Mutations in their components are linked to various human diseases, but their molecular roles remain elusive. In particular, the significance of spatial communication between centriolar satellites and the centrosome is unknown. hMsd1/SSX2IP localizes to both the centrosome and centriolar satellites and is required for tethering microtubules to the centrosome. Here we show that hMsd1/SSX2IP-mediated microtubule anchoring is essential for proper centriole assembly and duplication. On hMsd1/SSX2IP knockdown, the centriolar satellites become stuck at the microtubule minus end near the centrosome. Intriguingly, these satellites contain many proteins that normally localize to the centrosome. Of importance, microtubule structures, albeit not being anchored properly, are still required for the emergence of abnormal satellites, as complete microtubule depolymerization results in the disappearance of these aggregates from the vicinity of the centrosome. We highlighted, using superresolution and electron microscopy, that under these conditions, centriole structures are faulty. Remarkably, these cells are insensitive to Plk4 overproduction–induced ectopic centriole formation, yet they accelerate centrosome reduplication upon hydroxyurea arrest. Finally, the appearance of satellite aggregates is cancer cell specific. Together our findings provide novel insights into the mechanism of centriole assembly and microtubule anchoring. PMID:25833712
Anchored phylogenomics illuminates the skipper butterfly tree of life.
Toussaint, Emmanuel F A; Breinholt, Jesse W; Earl, Chandra; Warren, Andrew D; Brower, Andrew V Z; Yago, Masaya; Dexter, Kelly M; Espeland, Marianne; Pierce, Naomi E; Lohman, David J; Kawahara, Akito Y
2018-06-19
Butterflies (Papilionoidea) are perhaps the most charismatic insect lineage, yet phylogenetic relationships among them remain incompletely studied and controversial. This is especially true for skippers (Hesperiidae), one of the most species-rich and poorly studied butterfly families. To infer a robust phylogenomic hypothesis for Hesperiidae, we sequenced nearly 400 loci using Anchored Hybrid Enrichment and sampled all tribes and more than 120 genera of skippers. Molecular datasets were analyzed using maximum-likelihood, parsimony and coalescent multi-species phylogenetic methods. All analyses converged on a novel, robust phylogenetic hypothesis for skippers. Different optimality criteria and methodologies recovered almost identical phylogenetic trees with strong nodal support at nearly all nodes and all taxonomic levels. Our results support Coeliadinae as the sister group to the remaining skippers, the monotypic Euschemoninae as the sister group to all other subfamilies but Coeliadinae, and the monophyly of Eudaminae plus Pyrginae. Within Pyrginae, Celaenorrhinini and Tagiadini are sister groups, the Neotropical firetips, Pyrrhopygini, are sister to all other tribes but Celaenorrhinini and Tagiadini. Achlyodini is recovered as the sister group to Carcharodini, and Erynnini as sister group to Pyrgini. Within the grass skippers (Hesperiinae), there is strong support for the monophyly of Aeromachini plus remaining Hesperiinae. The giant skippers (Agathymus and Megathymus) once classified as a subfamily, are recovered as monophyletic with strong support, but are deeply nested within Hesperiinae. Anchored Hybrid Enrichment sequencing resulted in a large amount of data that built the foundation for a new, robust evolutionary tree of skippers. The newly inferred phylogenetic tree resolves long-standing systematic issues and changes our understanding of the skipper tree of life. These resultsenhance understanding of the evolution of one of the most species-rich butterfly families.
Majumder, Rupamanjari; Nayak, Alok Ranjan; Pandit, Rahul
2011-01-01
Cardiac arrhythmias, such as ventricular tachycardia (VT) and ventricular fibrillation (VF), are among the leading causes of death in the industrialized world. These are associated with the formation of spiral and scroll waves of electrical activation in cardiac tissue; single spiral and scroll waves are believed to be associated with VT whereas their turbulent analogs are associated with VF. Thus, the study of these waves is an important biophysical problem. We present a systematic study of the combined effects of muscle-fiber rotation and inhomogeneities on scroll-wave dynamics in the TNNP (ten Tusscher Noble Noble Panfilov) model for human cardiac tissue. In particular, we use the three-dimensional TNNP model with fiber rotation and consider both conduction and ionic inhomogeneities. We find that, in addition to displaying a sensitive dependence on the positions, sizes, and types of inhomogeneities, scroll-wave dynamics also depends delicately upon the degree of fiber rotation. We find that the tendency of scroll waves to anchor to cylindrical conduction inhomogeneities increases with the radius of the inhomogeneity. Furthermore, the filament of the scroll wave can exhibit drift or meandering, transmural bending, twisting, and break-up. If the scroll-wave filament exhibits weak meandering, then there is a fine balance between the anchoring of this wave at the inhomogeneity and a disruption of wave-pinning by fiber rotation. If this filament displays strong meandering, then again the anchoring is suppressed by fiber rotation; also, the scroll wave can be eliminated from most of the layers only to be regenerated by a seed wave. Ionic inhomogeneities can also lead to an anchoring of the scroll wave; scroll waves can now enter the region inside an ionic inhomogeneity and can display a coexistence of spatiotemporal chaos and quasi-periodic behavior in different parts of the simulation domain. We discuss the experimental implications of our study. PMID:21483682
Santos-Souza, R; Rodrigues-Palma, P C; Goulart-Fernandes-Dias, F; Teixeira-Siniscalchi, R; Zanettini-Riccetto, C L
2016-11-01
Currently, a sling implant is the standard treatment for stress urinary incontinence in women. To be effective, they require an adequate anchoring system. The aim of this study is compare biomechanical features of fixation systems of two mini slings models available on the market (Ophira™ and Mini Arc™) through a tensile test. Anchoring devices of each sling were surgically implanted in abdominal wall of 15 rats divided into three groups of five animals which were arranged according to the date of post implant euthanasia on 7, 14 and 30 days. Abdominal walls of rats were extracted on bloc containing the anchoring system and were submitted to a tensile strength test to measure the maximum load and elongation until device avulsion from the tissue. The results were compared using Student test t and a 5% cut off was considered significant. The Ophira™ mini sling fixation system demanded a greater maximum load and developed a longer stretch for avulsion from the implanted site at all moments evaluated (p value less than 0.05). There were significant differences in fixation patterns of the anchoring systems, which were exclusively related to their designs. The Ophira™ mini sling fixation device provided better fixation to the abdominal wall of rats compared to the Mini Arc™ device, even in the late post implant period. Copyright © 2016 AEU. Publicado por Elsevier España, S.L.U. All rights reserved.
A Typology of Disability Harassment in Secondary Schools
ERIC Educational Resources Information Center
Holzbauer, Jerome J.; Conrad, Clifton F.
2010-01-01
The purpose of this exploratory study of disability harassment was to develop a typology of disability harassment experiences anchored in the perspectives of students with disabilities who have experienced harassment in urban, suburban, and exurban-rural schools. Based on focus group interviews with four groups of young people with various…
Dunbar, Robert C; Berden, Giel; Martens, Jonathan K; Oomens, Jos
2015-09-24
Conformational preferences have been surveyed for divalent metal cation complexes with the dipeptide ligands AlaPhe, PheAla, GlyHis, and HisGly. Density functional theory results for a full set of complexes are presented, and previous experimental infrared spectra, supplemented by a number of newly recorded spectra obtained with infrared multiple photon dissociation spectroscopy, provide experimental verification of the preferred conformations in most cases. The overall structural features of these complexes are shown, and attention is given to comparisons involving peptide sequence, nature of the metal ion, and nature of the side-chain anchor. A regular progression is observed as a function of binding strength, whereby the weakly binding metal ions (Ba(2+) to Ca(2+)) transition from carboxylate zwitterion (ZW) binding to charge-solvated (CS) binding, while the stronger binding metal ions (Ca(2+) to Mg(2+) to Ni(2+)) transition from CS binding to metal-ion-backbone binding (Iminol) by direct metal-nitrogen bonds to the deprotonated amide nitrogens. Two new sequence-dependent reversals are found between ZW and CS binding modes, such that Ba(2+) and Ca(2+) prefer ZW binding in the GlyHis case but prefer CS binding in the HisGly case. The overall binding strength for a given metal ion is not strongly dependent on the sequence, but the histidine peptides are significantly more strongly bound (by 50-100 kJ mol(-1)) than the phenylalanine peptides.
Electro-osmosis of nematic liquid crystals under weak anchoring and second-order surface effects
NASA Astrophysics Data System (ADS)
Poddar, Antarip; Dhar, Jayabrata; Chakraborty, Suman
2017-07-01
Advent of nematic liquid crystal flows has attracted renewed attention in view of microfluidic transport phenomena. Among various transport processes, electro-osmosis stands as one of the efficient flow actuation mechanisms through narrow confinements. In the present study, we explore the electrically actuated flow of an ordered nematic fluid with ionic inclusions, taking into account the influences from surface-induced elasticity and electrical double layer (EDL) phenomena. Toward this, we devise the coupled flow governing equations from fundamental free-energy analysis, considering the contributions from first- and second-order elastic, dielectric, flexoelectric, charged surface polarization, ionic and entropic energies. The present study focuses on the influence of surface charge and elasticity effects in the resulting linear electro-osmosis through a slit-type microchannel whose surfaces are chemically treated to display a homeotropic-type weak anchoring state. An optical periodic stripe configuration of the nematic director has been observed, especially for higher electric fields, wherein the Ericksen number for the dynamic study is restricted to the order of unity. Contrary to the isotropic electrolytes, the EDL potential in this case was found to be dependent on the external field strength. Through a systematic investigation, we brought out the fact that the wavelength of the oscillating patterns is dictated mainly by the external field, while the amplitude depends on most of the physical variables ranging from the anchoring strength and the flexoelectric coefficients to the surface charge density and electrical double layer thickness.
Test Score Equating Using a Mini-Version Anchor and a Midi Anchor: A Case Study Using SAT[R] Data
ERIC Educational Resources Information Center
Liu, Jinghua; Sinharay, Sandip; Holland, Paul W.; Curley, Edward; Feigenbaum, Miriam
2011-01-01
This study explores an anchor that is different from the traditional miniature anchor in test score equating. In contrast to a traditional "mini" anchor that has the same spread of item difficulties as the tests to be equated, the studied anchor, referred to as a "midi" anchor (Sinharay & Holland), has a smaller spread of…
Consequences of placing an intramolecular crosslink in myosin S1
Konno, Kunihiko; Ue, Kathleen; Khoroshev, Mikhail; Martinez, Hugo; Ray, Bruce; Morales, Manuel F.
2000-01-01
This paper describes the placement of a crosslinking agent (dibromobimane) between two thiols (Cys-522 and Cys-707) of a fragment, “S1,” of the motor protein, myosin. It turns out that fastening the first anchor of the crosslinker is easy and rapid, but fastening the second anchor (Cys-522) is very temperature dependent, taking 30 min at room temperature but about a week on ice. Moreover, crystallography taken at 4°C would seem to predict that the linkage is impossible, because the span of the crosslinking agent is much less than the interthiol distance. The simplest resolution of this seeming paradox is that structural fluctuations of the protein render the linkage increasingly likely as the temperature increases. Also, measurements of the affinity of MgADP for the protein, as well as the magnetic resonance of the P-atoms of the ADP once emplaced, suggest that binding the first reagent anchor to Cys-707 initiates an influence that travels to the rather distant ADP-binding site, and it is speculated what this “path of influence” might be. PMID:10677484
Liger, D; Nizard, P; Gaillard, C; vanderSpek, J C; Murphy, J R; Pitard, B; Gillet, D
1998-11-01
We have constructed two fusion proteins T-hIL-2 and T-mIL-3 in which human interleukin-2 (hIL-2) or murine interleukin-3 (mIL-3) are fused to the C-terminus of the diphtheria toxin transmembrane domain (T domain). Two additional fusion proteins, T-(Gly4-Ser)2-hIL-2 and T-(Gly4-Ser)2-mIL-3, were derived by introduction of the (Gly4-Ser)2 spacer between the T domain and cytokine components. Recognition of the hIL-2 receptor or the mIL-3 receptor by the corresponding recombinant proteins was demonstrated by their capacity to stimulate cytokine-dependent cell lines. All proteins retained the capacity of the T domain to insert into phospholipid membranes at acidic pH. Finally, anchoring of both cytokines to the membrane of lipid vesicles or living cells was assessed by specific antibody recognition. Our results show that the T domain fused to the N-terminus of a given protein can function as a pH sensitive membrane anchor for that protein.
Use of the ROC anchor in foot and ankle surgery. A retrospective study.
Kuwada, G T
1999-05-01
A retrospective study was conducted on the use of the ROC (Radial Osteo Compression) soft-tissue anchor in foot and ankle surgery. This article describes how the anchor is deployed, problematic aspects of using the anchor, and complications and success rates associated with the anchor in ankle stabilizations, posterior tibial tendon reconstruction, peroneus brevis tendon reconstruction after fracture of the base of the fifth metatarsal, and detachment and reattachment of the Achilles tendon. The ROC anchor consists of the anchor with nonabsorbable suture attached to the shaft, the deployment handle, and drill bits. The anchor and shaft are snapped into the deployment handle and inserted into the drill hole. Compression of the trigger deploys the anchor into the hole. The ROC anchor was found to be reliable, useful, and relatively easy to deploy, with outcomes similar to those of other soft-tissue anchors.
Monogenean anchor morphometry: systematic value, phylogenetic signal, and evolution
Soo, Oi Yoon Michelle; Tan, Wooi Boon; Lim, Lee Hong Susan
2016-01-01
Background. Anchors are one of the important attachment appendages for monogenean parasites. Common descent and evolutionary processes have left their mark on anchor morphometry, in the form of patterns of shape and size variation useful for systematic and evolutionary studies. When combined with morphological and molecular data, analysis of anchor morphometry can potentially answer a wide range of biological questions. Materials and Methods. We used data from anchor morphometry, body size and morphology of 13 Ligophorus (Monogenea: Ancyrocephalidae) species infecting two marine mugilid (Teleostei: Mugilidae) fish hosts: Moolgarda buchanani (Bleeker) and Liza subviridis (Valenciennes) from Malaysia. Anchor shape and size data (n = 530) were generated using methods of geometric morphometrics. We used 28S rRNA, 18S rRNA, and ITS1 sequence data to infer a maximum likelihood phylogeny. We discriminated species using principal component and cluster analysis of shape data. Adams’s Kmult was used to detect phylogenetic signal in anchor shape. Phylogeny-correlated size and shape changes were investigated using continuous character mapping and directional statistics, respectively. We assessed morphological constraints in anchor morphometry using phylogenetic regression of anchor shape against body size and anchor size. Anchor morphological integration was studied using partial least squares method. The association between copulatory organ morphology and anchor shape and size in phylomorphospace was used to test the Rohde-Hobbs hypothesis. We created monogeneaGM, a new R package that integrates analyses of monogenean anchor geometric morphometric data with morphological and phylogenetic data. Results. We discriminated 12 of the 13 Ligophorus species using anchor shape data. Significant phylogenetic signal was detected in anchor shape. Thus, we discovered new morphological characters based on anchor shaft shape, the length between the inner root point and the outer root point, and the length between the inner root point and the dent point. The species on M. buchanani evolved larger, more robust anchors; those on L. subviridis evolved smaller, more delicate anchors. Anchor shape and size were significantly correlated, suggesting constraints in anchor evolution. Tight integration between the root and the point compartments within anchors confirms the anchor as a single, fully integrated module. The correlation between male copulatory organ morphology and size with anchor shape was consistent with predictions from the Rohde-Hobbs hypothesis. Conclusions. Monogenean anchors are tightly integrated structures, and their shape variation correlates strongly with phylogeny, thus underscoring their value for systematic and evolutionary biology studies. Our MonogeneaGM R package provides tools for researchers to mine biological insights from geometric morphometric data of speciose monogenean genera. PMID:26966649
Precision of the anchor influences the amount of adjustment.
Janiszewski, Chris; Uy, Dan
2008-02-01
The anchoring-and-adjustment heuristic has been used to account for a wide variety of numerical judgments. Five studies show that adjustment away from a numerical anchor is smaller if the anchor is precise than if it is rounded. Evidence suggests that precise anchors, compared with rounded anchors, are represented on a subjective scale with a finer resolution. If adjustment consists of a series of iterative mental movements along a subjective scale, then an adjustment from a precise anchor should result in a smaller overall correction than an adjustment from a rounded anchor.
Theoretical Study of Electron Transfer Properties of Squaraine Dyes for Dye Sensitized Solar Cell
NASA Astrophysics Data System (ADS)
Juwita, Ratna; Tsai, Hui-Hsu Gavin
2018-01-01
The environmental issues and high cost of Ru create many scientists to explore cheaper and safer sensitizer as alternative for dye sensitized solar cells (DSCs). Dyes play an important role in solar energy conversion efficiency. The squaraine (SQ) dyes has good spectral match with the solar spectra, therefore, SQ dyes have great potential for the applications in DSCs. SQ01_CA is an unsymmetrical SQ dye, reported by Grätzel and colleagues in 2007, featuring a D-π-spacer-A framework and has a carboxylic acid anchoring group. The electron donating ability of indolium in SQ01_CA and SQ01_CAA dyes is relatively weak, better performance may be achieved by introducing an additional donor moiety into indolium [1]. In this study, we investigate six unsymmetrical SQ dyes adsorbed on a (TiO2)38 cluster [2] using density functional theory (DFT) and time-dependent DFT to study electron transfer properties of squaraine dyes on their photophysical. SQ01_CA, WH-SQ01_CA, and WH-SQ02_CA use a carboxylic acid group as its electron acceptor. Furthermore, SQ01_CAA, WH-SQ01_CAA, and WH-SQ02_CAA use a cyanoacrylic acid group as its electron acceptor. WH-SQ01_CA and WH-SQ01_CAA have an alkyl, while WH-SQ02_CA and WH-SQ02_CAA have alkoxyl substituted diarylamines to the indolium donor of sensitizer SQ01_CA. Our calculations show with additional diarylamines in donor tail of WH-SQ02_CAA, the SQ dyes have red-shifted absorption and have slightly larger probability of electron density transferred to TiO2 moiety. Furthermore, an additional -CN group as electron a withdrawing group in the acceptor exhibits red-shifted absorption and enhances the electron density transferred to TiO2 and anchoring moiety after photo-excitation. The tendency of calculated probabilities of electron density being delocalized into TiO2 and driving force for excited-state electron injection of these studied SQ dyes is compatible with their experimentally observed.
Bhunia, Asamanjoy; Johnson, Ben A; Czapla-Masztafiak, Joanna; Sá, Jacinto; Ott, Sascha
2018-06-21
The molecular water oxidation catalyst [Ru(bda)(L)2] has been incorporated into pyridine-decorated MIL-101(Cr) metal-organic frameworks. The resulting MIL-101@Ru materials exhibit turnover frequencies (TOFs) up to ten times higher compared to the homogenous reference. An unusual dependence of the formal TOFs on oxidant concentration is observed that ultimately arises from differing amounts of catalysts in the MOF crystals being active.
2010-01-05
have imaged DNA Origami grown by the Norton group with sample bias larger than 900 mV. Since the image was not very good with STM and also the Origami ... Origami anchors on the Au surface. This will be crucial aspect of the project, involving discussions between our group and the Norton group with a
AKAP-Lbc mobilizes a cardiac hypertrophy signaling pathway.
Carnegie, Graeme K; Soughayer, Joseph; Smith, F Donelson; Pedroja, Benjamin S; Zhang, Fang; Diviani, Dario; Bristow, Michael R; Kunkel, Maya T; Newton, Alexandra C; Langeberg, Lorene K; Scott, John D
2008-10-24
Elevated catecholamines in the heart evoke transcriptional activation of the Myocyte Enhancer Factor (MEF) pathway to induce a cellular response known as pathological myocardial hypertrophy. We have discovered that the A-Kinase Anchoring Protein (AKAP)-Lbc is upregulated in hypertrophic cardiomyocytes. It coordinates activation and movement of signaling proteins that initiate MEF2-mediated transcriptional reprogramming events. Live-cell imaging, fluorescent kinase activity reporters, and RNA interference techniques show that AKAP-Lbc couples activation of protein kinase D (PKD) with the phosphorylation-dependent nuclear export of the class II histone deacetylase HDAC5. These studies uncover a role for AKAP-Lbc in which increased expression of the anchoring protein selectively amplifies a signaling pathway that drives cardiac myocytes toward a pathophysiological outcome.
ERIC Educational Resources Information Center
Liu, Jinghua; Sinharay, Sandip; Holland, Paul; Feigenbaum, Miriam; Curley, Edward
2011-01-01
Two different types of anchors are investigated in this study: a mini-version anchor and an anchor that has a less spread of difficulty than the tests to be equated. The latter is referred to as a midi anchor. The impact of these two different types of anchors on observed score equating are evaluated and compared with respect to systematic error…
Anchoring in Numeric Judgments of Visual Stimuli
Langeborg, Linda; Eriksson, Mårten
2016-01-01
This article investigates effects of anchoring in age estimation and estimation of quantities, two tasks which to different extents are based on visual stimuli. The results are compared to anchoring in answers to classic general knowledge questions that rely on semantic knowledge. Cognitive load was manipulated to explore possible differences between domains. Effects of source credibility, manipulated by differing instructions regarding the selection of anchor values (no information regarding anchor selection, information that the anchors are randomly generated or information that the anchors are answers from an expert) on anchoring were also investigated. Effects of anchoring were large for all types of judgments but were not affected by cognitive load or by source credibility in either one of the researched domains. A main effect of cognitive load on quantity estimations and main effects of source credibility in the two visually based domains indicate that the manipulations were efficient. Implications for theoretical explanations of anchoring are discussed. In particular, because anchoring did not interact with cognitive load, the results imply that the process behind anchoring in visual tasks is predominantly automatic and unconscious. PMID:26941684
Farley, J R; Magnusson, P
2005-01-01
Skeletal alkaline phosphatase (sALP) is a glycoprotein- approximately 20% carbohydrate by weight, with five presumptive sites for N-linked glycosylation, as well as a carboxy-terminal site for attachment of the glycolipid structure (glycosylphosphatidylinositol, GPI), which anchors sALP to the outer surface of osteoblasts. The current studies were intended to characterize the effects of inhibiting glycosylation and glycosyl-processing on the synthesis, plasma membrane attachment, cellular-extracellular distribution, and reaction kinetics of sALP in human osteosarcoma (SaOS-2) cells. sALP synthesis, glycosylation, and GPI-anchor attachment were assessed as total protein synthesis/immunospecific sALP synthesis, sialic acid content (i.e., wheat germ agglutinin precipitation), and insolubility (i.e., temperature-dependent phase-separation), respectively. sALP reaction kinetics were characterized by analysis of dose-dependent initial velocity data, with a phosphoryl substrate. The results of these studies revealed that the inhibition of either N-linked glycosylation or oligosaccharide synthesis for GPI-anchor addition could affect the synthesis and the distribution of sALP, but not the kinetics of the phosphatase reaction. Tunicamycin-which blocks N-linked glycosylation by inhibiting core oligosaccharide synthesis-decreased cell layer protein and the total amount of sALP in the cells, while increasing the relative level of sALP in the cell-conditioned culture medium (CM, i.e., the amount of sALP released). These effects were attributed to dose- and time-dependent decreases in sALP synthesis and N-linked glycosylation, and an increase in apoptotic cell death (P <0.001 for each). In contrast to the effects of tunicamycin on N-linked glycosylation, the effects of mannosamine, which inhibits GPI-anchor glycosylation/formation, included (1) an increase in cell layer protein; (2) decreases in sALP specific activity, in the cells and in the CM; and (3) increases in the percentages of both anchorless and wheat germ agglutinin (WGA)-soluble sALP in the medium, but not in the cells (P <0.005 for each). These effects of mannosamine were, presumably, a consequence of inhibiting the insertion/attachment of sALP to the outside of the plasma membrane surface. Neither mannosammine nor tunicamycin had any effect on the reaction kinetics of sALP or on the apparent affinity (the value of KM) for the phosphoryl substrate.
Tsvetkov, Vladimir B; Serbin, Alexander V
2014-06-01
In previous works we reported the design, synthesis and in vitro evaluations of synthetic anionic polymers modified by alicyclic pendant groups (hydrophobic anchors), as a novel class of inhibitors of the human immunodeficiency virus type 1 (HIV-1) entry into human cells. Recently, these synthetic polymers interactions with key mediator of HIV-1 entry-fusion, the tri-helix core of the first heptad repeat regions [HR1]3 of viral envelope protein gp41, were pre-studied via docking in terms of newly formulated algorithm for stepwise approximation from fragments of polymeric backbone and side-group models toward real polymeric chains. In the present article the docking results were verified under molecular dynamics (MD) modeling. In contrast with limited capabilities of the docking, the MD allowed of using much more large models of the polymeric ligands, considering flexibility of both ligand and target simultaneously. Among the synthesized polymers the dinorbornen anchors containing alternating copolymers of maleic acid were selected as the most representative ligands (possessing the top anti-HIV activity in vitro in correlation with the highest binding energy in the docking). To verify the probability of binding of the polymers with the [HR1]3 in the sites defined via docking, various starting positions of polymer chains were tried. The MD simulations confirmed the main docking-predicted priority for binding sites, and possibilities for axial and belting modes of the ligands-target interactions. Some newly MD-discovered aspects of the ligand's backbone and anchor units dynamic cooperation in binding the viral target clarify mechanisms of the synthetic polymers anti-HIV activity and drug resistance prevention.
Ghosh, Dwaipayan; Febriansyah, Benny; Gupta, Disha; Ng, Leonard Kia-Sheun; Xi, Shibo; Du, Yonghua; Baikie, Tom; Dong, ZhiLi; Soo, Han Sen
2018-05-22
Catalyst deactivation is a persistent problem not only for the scientific community but also in industry. Isolated single-site heterogeneous catalysts have shown great promise to overcome these problems. Here, a versatile anchoring strategy for molecular complex immobilization on a broad range of semiconducting or insulating metal oxide ( e. g., titanium dioxide, mesoporous silica, cerium oxide, and tungsten oxide) nanoparticles to synthesize isolated single-site catalysts has been studied systematically. An oxidatively stable anchoring group, maleimide, is shown to form covalent linkages with surface hydroxyl functionalities of metal oxide nanoparticles by photoclick chemistry. The nanocomposites have been thoroughly characterized by techniques including UV-visible diffuse reflectance spectroscopy, high-resolution transmission electron microscopy, X-ray photoelectron spectroscopy, infrared spectroscopy, and X-ray absorption spectroscopy (XAS). The IR spectroscopic studies confirm the covalent linkages between the maleimide group and surface hydroxyl functionalities of the oxide nanoparticles. The hybrid nanomaterials function as highly efficient catalysts for essentially quantitative oxidations of terminal and internal alkenes and show molecular catalyst product selectivities even in more eco-friendly solvents. XAS studies verify the robustness of the catalysts after several catalytic cycles. We have applied the photoclick anchoring methodology to precisely control the deposition of a luminescent variant of our catalyst on the metal oxide nanoparticles. Overall, we demonstrate a general approach to use irradiation to anchor molecular complexes on oxide nanoparticles to create recyclable, hybrid, single-site catalysts that function with high selectivity in a broad range of solvents. We have achieved a facile, spatially and temporally controllable photoclick method that can potentially be extended to other ligands, catalysts, functional molecules, and surfaces.
Buch, Martin Sandberg; Edwards, Adrian; Eriksson, Tina
2009-01-01
The Maturity Matrix is a group-based formative self-evaluation tool aimed at assessing the degree of organisational development in general practice and providing a starting point for local quality improvement. Earlier studies of the Maturity Matrix have shown that participants find the method a useful way of assessing their practice's organisational development. However, little is known about participants' views on the resulting efforts to implement intended changes. To explore users' perspectives on the Maturity Matrix method, the facilitation process, and drivers and barriers for implementation of intended changes. Observation of two facilitated practice meetings, 17 semi-structured interviews with participating general practitioners (GPs) or their staff, and mapping of reasons for continuing or quitting the project. General practices in Denmark Main outcomes: Successful change was associated with: a clearly identified anchor person within the practice, a shared and regular meeting structure, and an external facilitator who provides support and counselling during the implementation process. Failure to implement change was associated with: a high patient-related workload, staff or GP turnover (that seemed to affect small practices more), no clearly identified anchor person or anchor persons who did not do anything, no continuous support from an external facilitator, and no formal commitment to working with agreed changes. Future attempts to improve the impact of the Maturity Matrix, and similar tools for quality improvement, could include: (a) attention to matters of variation caused by practice size, (b) systematic counselling on barriers to implementation and support to structure the change processes, (c) a commitment from participants that goes beyond participation in two-yearly assessments, and (d) an anchor person for each identified goal who takes on the responsibility for improvement in practice.
Ahangar Atashi, Mohammad Hossein; Sadr Haghighi, Amir Hooman; Nastarin, Parastou; Ahangar Atashi, Sina
2018-01-01
Background. Bracket base design is a factor influencing shear bond strength. High shear bond strength leads to enamel crack formation during debonding. The aim of this study was to compare enamel damage variations, including the number and length of enamel cracks after debonding of two different base designs. Methods. Eighty-eight extracted human premolars were randomly divided into2 groups (n=44). The teeth in each group were bonded by two types of brackets with different base designs: 80-gauge mesh design versus anchor pylon design with pylons for adhesive retention. The number and length of enamel cracks before bonding and after debonding were evaluated under an optical stereomicroscope ×40 in both groups. Mann-Whitney U test was used to compare the number of cracks between the two groups. ANCOVA was used for comparison of crack lengths after and before debonding in each group and between the two groups. Results. There was a significant increase in enamel crack length and numbers in each group after debonding. There was no significant difference in enamel crack numbers after debonding between the two groups, whereas the length of enamel cracks was significantly greater in anchor pylon base design after debonding. Conclusion. Bracket bases with pylon design for adhesive retention caused more iatrogenic debonding damage to enamel surface.
Blind-Anchor-Nut-Installation Fixture (BANIF)
NASA Technical Reports Server (NTRS)
Willey, Norman F., Jr.; Linker, James F.
1994-01-01
Blind-anchor-nut-installation fixture, BANIF, developed for replacing or installing anchor nuts in blind holes or other inaccessible places. Attachment of anchor nut to BANIF enables placement of anchor nut on blind side of component.
Constrained Active Learning for Anchor Link Prediction Across Multiple Heterogeneous Social Networks
Zhu, Junxing; Zhang, Jiawei; Wu, Quanyuan; Jia, Yan; Zhou, Bin; Wei, Xiaokai; Yu, Philip S.
2017-01-01
Nowadays, people are usually involved in multiple heterogeneous social networks simultaneously. Discovering the anchor links between the accounts owned by the same users across different social networks is crucial for many important inter-network applications, e.g., cross-network link transfer and cross-network recommendation. Many different supervised models have been proposed to predict anchor links so far, but they are effective only when the labeled anchor links are abundant. However, in real scenarios, such a requirement can hardly be met and most anchor links are unlabeled, since manually labeling the inter-network anchor links is quite costly and tedious. To overcome such a problem and utilize the numerous unlabeled anchor links in model building, in this paper, we introduce the active learning based anchor link prediction problem. Different from the traditional active learning problems, due to the one-to-one constraint on anchor links, if an unlabeled anchor link a=(u,v) is identified as positive (i.e., existing), all the other unlabeled anchor links incident to account u or account v will be negative (i.e., non-existing) automatically. Viewed in such a perspective, asking for the labels of potential positive anchor links in the unlabeled set will be rewarding in the active anchor link prediction problem. Various novel anchor link information gain measures are defined in this paper, based on which several constraint active anchor link prediction methods are introduced. Extensive experiments have been done on real-world social network datasets to compare the performance of these methods with state-of-art anchor link prediction methods. The experimental results show that the proposed Mean-entropy-based Constrained Active Learning (MC) method can outperform other methods with significant advantages. PMID:28771201
Zhu, Junxing; Zhang, Jiawei; Wu, Quanyuan; Jia, Yan; Zhou, Bin; Wei, Xiaokai; Yu, Philip S
2017-08-03
Nowadays, people are usually involved in multiple heterogeneous social networks simultaneously. Discovering the anchor links between the accounts owned by the same users across different social networks is crucial for many important inter-network applications, e.g., cross-network link transfer and cross-network recommendation. Many different supervised models have been proposed to predict anchor links so far, but they are effective only when the labeled anchor links are abundant. However, in real scenarios, such a requirement can hardly be met and most anchor links are unlabeled, since manually labeling the inter-network anchor links is quite costly and tedious. To overcome such a problem and utilize the numerous unlabeled anchor links in model building, in this paper, we introduce the active learning based anchor link prediction problem. Different from the traditional active learning problems, due to the one-to-one constraint on anchor links, if an unlabeled anchor link a = ( u , v ) is identified as positive (i.e., existing), all the other unlabeled anchor links incident to account u or account v will be negative (i.e., non-existing) automatically. Viewed in such a perspective, asking for the labels of potential positive anchor links in the unlabeled set will be rewarding in the active anchor link prediction problem. Various novel anchor link information gain measures are defined in this paper, based on which several constraint active anchor link prediction methods are introduced. Extensive experiments have been done on real-world social network datasets to compare the performance of these methods with state-of-art anchor link prediction methods. The experimental results show that the proposed Mean-entropy-based Constrained Active Learning (MC) method can outperform other methods with significant advantages.
Tejerina, Lara; Martínez-Díaz, M Victoria; Nazeeruddin, Mohammad Khaja; Torres, Tomas
2016-03-18
Phthalocyanines (Pcs) are used as sensitizers in dye-sensitized solar cells (DSSCs) because of their stability and intense absorption in the red and near-IR regions. Impressive progress has been made in photovoltaic efficiencies by introduction of bulky peripheral substituents to help suppress macrocycle aggregation. To reach benchmark efficiencies reported for other related dyes, new designs need to be explored. Single carboxy-ZnPc regioisomers substituted at the non-peripheral positions by rigid aryl groups have now been studied, which has shed light on the influence of steric hindrance and/or orientation of the substituent around the anchoring group on the photovoltaic response. The regioisomer bearing the aryl group far away from the anchoring group produces a more effective sensitization of the TiO2 films and higher short-circuit photocurrent density (Jsc). Taking advantage of the good photovoltaic performance in the near-IR region of this ZnPc, it was combined with another appropriate dye for panchromatic sensitization of the mesoporous photoelectrode and an increase of the overall device efficiency. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Surface dynamics of aerolysin on the plasma membrane of living cells.
Abrami, L; Fivaz, M; van der Goot, F G
2000-10-01
Aerolysin secreted by the human pathogen Aeromonas hydrophila belongs to a group of bacterial toxins that are hemolytic and form channels in biological membranes. The toxin is secreted as an inactive precursor proaerolysin that must be proteolytically processed at its C-terminus to become active. The toxin then polymerizes into a heptameric ring that is amphipathic and can insert into a lipid bilayer and form a pore. We have examined these various steps at the surface of target cells. The toxin binds to specific receptors. Various receptors have been identified, all of which are anchored to the plasma membrane via a glycosylphosphatidyl inositol (GPI)-anchored moiety. The GPI anchor confers to the protein that is linked to it two usual properties: (i) the protein has a higher lateral mobility in a phospholipid bilayer than its transmembrane counterpart, (ii) the protein has the capacity to transiently associate with cholesterol-glycosphingolipid-rich microdomains. We have shown that both these properties of GPI-anchored proteins are exploited by proaerolysin bound to its receptor. The high lateral mobility within the phosphoglyceride region of the plasma membrane favors the encounter of the protoxin with its converting enzyme furin. The ability to associate with microdomains on the other hand favors the oligomerization process presumably by concentrating the toxin locally.
Coons, David A; Barber, F Alan; Herbert, Morley A
2006-11-01
This study evaluated the strength and suture-tendon interface security of different suture configurations from triple-suture-loaded anchors. A juvenile bovine infraspinatus tendon was detached and repaired by use of 4 different suture combinations from 2 suture anchors: 3 simple sutures in each anchor (ThreeVo anchor; Linvatec, Largo, FL); 2 peripheral simple stitches and 1 central horizontal mattress suture passed deeper into the tendon, creating a larger footprint (bigfoot-print anchor); 2 peripheral simple stitches with 1 central horizontal mattress stitch passed through the same holes as the simple sutures (stitch-of-Burns); and 2 simple stitches (TwoVo anchor; Linvatec). The constructs were cyclically loaded between 10 N and 180 N for 3,500 cycles and then destructively tested. The number of cycles required to create a 5-mm gap and a 10-mm gap and the ultimate load to failure and failure mode were recorded. The ThreeVo anchor was strongest and most resistant to cyclic loading (P < .01). The TwoVo anchor was least resistant to cyclic loading. The stitch-of-Burns anchor was more resistant to cyclic loading than both the bigfoot-print anchor and the TwoVo anchor (P < .03). The ThreeVo, stitch-of-Burns, and TwoVo anchors were stronger than the bigfoot-print anchor (P < .05). Three simple sutures in an anchor hold better than two simple sutures. Three simple sutures provide superior suture-tendon security than combinations of one mattress and two simple stitches subjected to cyclic loading. A central mattress stitch placed more medially than two peripheral simple stitches (bigfoot-print anchor) configured to enlarge the tendon-suture footprint was not as resistant to cyclic loading or destructive testing as three simple stitches (ThreeVo anchor). Placing a central mattress stitch more medially than 2 peripheral simple stitches to enlarge the tendon-suture footprint was not as resistant to cyclic loading or destructive testing as 3 simple stitches.
Cosensitized Porphyrin System for High-Performance Solar Cells with TOF-SIMS Analysis.
Wu, Wenjun; Xiang, Huaide; Fan, Wei; Wang, Jinglin; Wang, Haifeng; Hua, Xin; Wang, Zhaohui; Long, Yitao; Tian, He; Zhu, Wei-Hong
2017-05-17
To date, development of organic sensitizers has been predominately focused on light harvesting, highest occupied molecular orbital and lowest unoccupied molecular orbital energy levels, and the electron transferring process. In contrast, their adsorption mode as well as the dynamic loading behavior onto nanoporous TiO 2 is rarely considered. Herein, we have employed the time-of-flight secondary ion mass spectrometry (TOF-SIMS) to gain insight into the competitive dye adsorption mode and kinetics in the cosensitized porphyrin system. Using novel porphyrin dye FW-1 and D-A-π-A featured dye WS-5, the different bond-breaking mode in TOF-SIMS and dynamic dye-loading amount during the coadsorption process are well-compared with two different anchoring groups, such as benzoic acid and cyanoacrylic acid. With the bombardment mode in TOF-SIMS spectra, we have speculated that the cyano group grafts onto nanoporous TiO 2 as tridentate binding for the common anchoring unit of cyanoacrylic acid and confirmed it through extensive first-principles density functional theory calculation by anchoring either the carboxyl or cyano group, which shows that the cyano group can efficiently participate in the adsorption of the WS-5 molecule onto the TiO 2 nanocrystal. The grafting reinforcement interaction between the cyano group and TiO 2 in WS-5 can well-explain the rapid adsorption characteristics. A strong coordinate bond between the lone pair of electrons on the nitrogen or oxygen atom and the Lewis acid sites of TiO 2 can increase electron injection efficiencies with respect to those from the bond between the benzoic acid group and the Brønsted acid sites of the TiO 2 surface. Upon optimization of the coadsorption process with dye WS-5, the photoelectric conversion efficiency based on porphyrin dye FW-1 is increased from 6.14 to 9.72%. The study on the adsorption dynamics of organic sensitizers with TOF-SIMS analysis might provide a new venue for improvement of cosensitized solar cells.
Wu, Kai; Lin, Jian; Huang, Jianhua; Wang, Qiugen
2018-04-13
The present prospective study examined the utility of the intraoperative tap test/technique for distal tibiofibular syndesmosis in the diagnosis of deltoid ligament rupture and compared the outcomes of transsyndesmotic fixation to deltoid ligament repair with suture anchor. This diagnostic technique was performed in 59 ankle fractures with suspected deltoid ligament injury. The width of the medial clear space of 59 cases was evaluated to assess the sensitivity and specificity. Those with deltoid ligament rupture were randomly assigned to 2 groups and treated with deltoid ligament repair with a suture anchor or with syndesmosis screw fixation. All the patients were assessed with the American Orthopaedic Foot and Ankle Society (AOFAS) ankle-hindfoot scale, short-form 36-item questionnaire (SF-36), and visual analog scale (VAS). The tap test was positive in 53 cases. However, surgical exploration demonstrated that 51 cases (86.4%) had a combined deltoid ligament injury and fracture. The sensitivity and specificity of the tap test was 100.0% and 75.0%, respectively. Finally, 26 cases (96.3%) in the syndesmosis screw group and 22 (91.7%) in the deltoid repair group were followed up. No statistically significant differences were found in the AOFAS ankle-hindfoot scale score, SF-36 score, or VAS score between the 2 groups. The malreduction rate in the syndesmosis screw group was 34.6% and that in the deltoid repair group was 9.09%. The tap test is an intraoperative diagnostic method to use to evaluate for deltoid ligament injury. Deltoid ligament repair with a suture anchor had good functional and radiologic outcomes comparable to those with syndesmotic screw fixation but has a lower malreduction rate. We did not encounter the issue of internal fixation failure or implant removal. Copyright © 2017 The American College of Foot and Ankle Surgeons. Published by Elsevier Inc. All rights reserved.
Barber, F Alan; Bava, Eric D; Spenciner, David B; Piccirillo, Justin
2013-06-01
The purpose of this study was to assess the mechanical performance of biocomposite knotless lateral row anchors based on both anchor design and the direction of pull. Two lateral row greater tuberosity insertion sites (anterior and posterior) were identified in matched pairs of fresh-frozen human cadaveric shoulders DEXA (dual energy X-ray absorptiometry) scanned to verify comparability. The humeri were stripped of all soft tissue and 3 different biocomposite knotless lateral row anchors: HEALIX Knotless BR (DePuy Mitek, Raynham MA), BioComposite PushLock (Arthrex, Naples, FL), and Bio-SwiveLock (Arthrex). Fifty-two anchors were distributed among the insertion locations and tested them with either an anatomic or axial pull. A fixed-gauge loop (15 mm) of 2 high-strength sutures from each anchor was created. After a 10-Nm preload, anchors were cycled from 10 to 45 Nm at 0.5 Hz for 200 cycles and tested to failure at 4.23 mm/second. The load to reach 3 mm and 5 mm displacement, ultimate failure load, displacement at ultimate failure, and failure mode were recorded. Threaded anchors (Bio-SwiveLock, P = .03; HEALIX Knotless, P = .014) showed less displacement with anatomic testing than did the nonthreaded anchor (BioComposite PushLock), and the HEALIX Knotless showed less overall displacement than did the other 2 anchors. The Bio-SwiveLock exhibited greater failure loads than did the other 2 anchors (P < .05). Comparison of axial and anatomic loading showed no maximum load differences for all anchors as a whole (P = .1084). Yet, anatomic pulling produced higher failure loads than did axial pulling for the Bio-SwiveLock but not for the BioComposite PushLock or the HEALIX Knotless. The nonthreaded anchor (BioComposite PushLock) displayed lower failure loads than did both threaded anchors with axial pulling. Threaded biocomposite anchors (HEALIX Knotless BR and Bio-SwiveLock) show less anatomic loading displacement and higher axial failure loads than do the nonthreaded (BioComposite PushLock) anchor. The HEALIX Knotless BR anchor showed less displacement than did the BioComposite PushLock and Bio-SwiveLock anchors. Neither axial nor anatomic loading had an effect on overall anchor displacement. Because of the strength profiles exhibited, this study supports the use of biocomposite anchors, which have definite advantages over polyetheretherketone (PEEK) and metal products. However, the nonthreaded BioComposite PushLock anchor cannot be recommended. Copyright © 2013 Arthroscopy Association of North America. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Alber, Orly; Noach, Ilit; Lamed, Raphael
2008-02-01
The cloning, expression, purification, crystallization and preliminary X-ray characterization of a novel class of cohesin module (type III) from the R. flavefaciens ScaE anchoring scaffoldin are described. Ruminococcus flavefaciens is an anaerobic bacterium that resides in the gastrointestinal tract of ruminants. It produces a highly organized multi-enzyme cellulosome complex that plays a key role in the degradation of plant cell walls. ScaE is one of the critical structural components of its cellulosome that serves to anchor the complex to the cell wall. The seleno-l-methionine-labelled derivative of the ScaE cohesin module has been cloned, expressed, purified and crystallized. The crystals belongmore » to space group C2, with unit-cell parameters a = 155.6, b = 69.3, c = 93.0 Å, β = 123.4°, and contain four molecules in the asymmetric unit. Diffraction data were phased to 1.95 Å using the anomalous signal from the Se atoms.« less
Density control of dodecamanganese clusters anchored on silicon(100).
Condorelli, Guglielmo G; Motta, Alessandro; Favazza, Maria; Nativo, Paola; Fragalà, Ignazio L; Gatteschi, Dante
2006-04-24
A synthetic strategy to control the density of Mn12 clusters anchored on silicon(100) was investigated. Diluted monolayers suitable for Mn12 anchoring were prepared by Si-grafting mixtures of the methyl 10-undecylenoate precursor ligand with 1-decene spectator spacers. Different ratios of these mixtures were tested. The grafted surfaces were hydrolyzed to reveal the carboxylic groups available for the subsequent exchange with the [Mn12O12(OAc)16(H2O)4]4 H2O2 AcOH cluster. Modified surfaces were analyzed by attenuated total reflection (ATR)-FTIR spectroscopy, X-ray photoemission spectroscopy (XPS), and AFM imaging. Results of XPS and ATR-FTIR spectroscopy show that the surface mole ratio between grafted ester and decene is higher than in the source solution. The surface density of the Mn12 cluster is, in turn, strictly proportional to the ester mole fraction. Well-resolved and isolated clusters were observed by AFM, using a diluted ester/decene 1:1 solution.
Dong, Kai; Ju, Enguo; Liu, Jianhua; Han, Xueli; Ren, Jinsong; Qu, Xiaogang
2014-10-21
Multimodal molecular imaging has recently attracted much attention on disease diagnostics by taking advantage of individual imaging modalities. Herein, we have demonstrated a new paradigm for multimodal bioimaging based on amino acids-anchored ultrasmall lanthanide-doped GdVO4 nanoprobes. On the merit of special metal-cation complexation and abundant functional groups, these amino acids-anchored nanoprobes showed high colloidal stability and excellent dispersibility. Additionally, due to typical paramagnetic behaviour, high X-ray mass absorption coefficient and strong fluorescence, these nanoprobes would provide a unique opportunity to develop multifunctional probes for MRI, CT and luminescence imaging. More importantly, the small size and biomolecular coatings endow the nanoprobes with effective metabolisability and high biocompatibility. With the superior stability, high biocompatibility, effective metabolisability and excellent contrast performance, amino acids-capped GdVO4:Eu(3+) nanocastings are a promising candidate as multimodal contrast agents and would bring more opportunities for biological and medical applications with further modifications.
Understanding the low uptake of bone-anchored hearing aids: a review.
Powell, R; Wearden, A; Pardesi, S M; Green, K
2017-03-01
Bone-anchored hearing aids improve hearing for patients for whom conventional behind-the-ear aids are problematic. However, uptake of bone-anchored hearing aids is low and it is important to understand why this is the case. A narrative review was conducted. Studies examining why people accept or decline bone-anchored hearing aids and satisfaction levels of people with bone-anchored hearing aids were reviewed. Reasons for declining bone-anchored hearing aids included limited perceived benefits, concerns about surgery, aesthetic concerns and treatment cost. No studies providing in-depth analysis of the reasons for declining or accepting bone-anchored hearing aids were identified. Studies of patient satisfaction showed that most participants reported benefits with bone-anchored hearing aids. However, most studies used cross-sectional and/or retrospective designs and only included people with bone-anchored hearing aids. Important avenues for further research are in-depth qualitative research designed to fully understand the decision-making process for bone-anchored hearing aids and rigorous quantitative research comparing satisfaction of people who receive bone-anchored hearing aids with those who receive alternative (or no) treatments.
Yesil, Fatma; Suwa, Masayori; Tsukahara, Satoshi
2018-01-09
We constructed the apparatus to observe the Fréedericksz transition of liquid crystal in contact with water. The Fréedericksz transition is a distortion of nematic liquid crystals (LCs) induced by external fields. In the present system, sweeping homogeneous magnetic field was applied to the sample, and the distortion of the LC was visualized with a polarized light microscope with the crossed Nichols configuration. The anchoring energy (W AQ/LC ) at the aqueous phase/LC interface was measured in the presence of surfactant from the threshold magnetic field of the Fréedericksz transition. We studied two cationic surfactants: dodecyltrimethylammonium bromide and tetradecyltrimethylammonium bromide. A nematic LC, 4-cyano-4'-pentylbiphenyl (5CB), was examined, which was confined in a copper grid on an octadecyltrichlorosilane-treated microscope glass plate. Measured W AQ/LC were reproducible and showed consistence with the reported region for the water/LC interface. Interfacial excess of surfactants was also measured by the pendant drop method, and the relationship between the obtained W AQ/LC and the interfacial excess was investigated. Experiments showed that an increase in the anchoring energy depends on the surfactant and its interfacial excess. The region of the interfacial coverage, at which W AQ/LC increases, varied with the chain length of the surfactant. The measurement of the anchoring energy will provide new fundamental information on aqueous phase/LC interface.
Reattachment of flexor digitorum profundus avulsion: biomechanical performance of 3 techniques.
Brar, Ravinder; Owen, John R; Melikian, Raymond; Gaston, R Glenn; Wayne, Jennifer S; Isaacs, Jonathan E
2014-11-01
To investigate whether inclusion of the volar plate in repair of flexor digitorum profundus avulsions increases the strength of the repair and resists gapping. Cadaveric fingers (n = 18) were divided into 3 equal groups. The first technique involved 2 micro-suture anchors only (A). The second used only volar plate repair (VP). The third group was a hybrid, combining a micro-suture anchor with volar plate augmentation (AVP). Specimens were loaded cyclically to simulate passive motion rehabilitation before being loaded to failure. Clinical failure was defined as 3 mm of gapping, and physical failure as the highest load associated with hardware failure, suture breakage, anchor pullout, or volar plate avulsion. Gapping throughout cycling was significantly greater for the A group than VP and AVP with no difference detected between VP and AVP groups. Gapping exceeded 3 mm during cycling of 3 A specimens, but in none of the VP or AVP specimens. Load at clinical and physical failure for A was significantly lower than for VP and AVP, whereas no difference was detected between VP and AVP. In this cadaveric model, incorporating the volar plate conferred a significant advantage in strength, increasing the mean load to physical failure by approximately 100 N. According to previous biomechanical studies, current reconstructive strategies for flexor digitorum profundus zone I avulsions are not strong enough to withstand active motion rehabilitation. We demonstrated the potential use of volar plate augmentation and the prospective advantageous increase in strength in this cadaveric model. In vivo performance and effects on digital motion are not known. Copyright © 2014 American Society for Surgery of the Hand. Published by Elsevier Inc. All rights reserved.
Root resorption of maxillary incisors retracted with and without skeletal anchorage.
Barros, Sérgio Estelita; Janson, Guilherme; Chiqueto, Kelly; Baldo, Vitor Oliveira; Baldo, Taiana Oliveira
2017-02-01
Our objective was to compare root resorption degree of the maxillary central incisors retracted with and without skeletal anchorage. This nonrandomized historical control study included 37 patients requiring maximum anterior retraction and treated with extraction of 2 maxillary premolars. Group 1 consisted of 22 patients (11 male, 11 female) in whom anterior retraction was performed without skeletal anchorage, and group 2 included 15 patients (3 male, 12 female) treated with skeletally anchored anterior retraction. Periapical radiographs were used to evaluate root resorption degree by a scoring system. The groups were compared regarding the resorption score and resorption degree distribution with the Mann-Whitney U test, chi-square test, and Z test on proportions. There was no statistically significant intergroup difference regarding root resorption, but the number of patients with severe and extreme root resorption degrees was significantly greater in group 2. Although the root resorption degree of the skeletal anchorage group was not significantly different from the group without skeletal anchorage, the number of patients with severe to extreme resorption in the first group was significantly greater. Therefore, careful clinical monitoring of skeletally anchored anterior retraction is needed, especially when there are known root resorption predisposing factors. Copyright © 2017 American Association of Orthodontists. Published by Elsevier Inc. All rights reserved.
Simmons, Joseph P; LeBoeuf, Robyn A; Nelson, Leif D
2010-12-01
Increasing accuracy motivation (e.g., by providing monetary incentives for accuracy) often fails to increase adjustment away from provided anchors, a result that has led researchers to conclude that people do not effortfully adjust away from such anchors. We challenge this conclusion. First, we show that people are typically uncertain about which way to adjust from provided anchors and that this uncertainty often causes people to believe that they have initially adjusted too far away from such anchors (Studies 1a and 1b). Then, we show that although accuracy motivation fails to increase the gap between anchors and final estimates when people are uncertain about the direction of adjustment, accuracy motivation does increase anchor-estimate gaps when people are certain about the direction of adjustment, and that this is true regardless of whether the anchors are provided or self-generated (Studies 2, 3a, 3b, and 5). These results suggest that people do effortfully adjust away from provided anchors but that uncertainty about the direction of adjustment makes that adjustment harder to detect than previously assumed. This conclusion has important theoretical implications, suggesting that currently emphasized distinctions between anchor types (self-generated vs. provided) are not fundamental and that ostensibly competing theories of anchoring (selective accessibility and anchoring-and-adjustment) are complementary. PsycINFO Database Record (c) 2010 APA, all rights reserved.
Seismic explosive charge loader and anchor
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mcreynolds, O.B.
1981-07-14
An improved seismic explosive charge loader and anchor for loading and anchoring explosives in cylindrical containers in bore holes is disclosed, which includes a snap in spring band shaped anchor which effectively anchors the loader in the well bore against upward movement, one aspect of the invention includes a snap lock threaded connection for securing an explosive container having interrupted threads to the loader and anchor, and the loader and anchor is constructed and arranged to maintain a detonator in place in the explosive container thereby assuring detonation of the explosive.
Bustamante, Jorge; Socolovsky, Mariano; Martins, Roberto S; Emmerich, Juan; Pennini, Maria Gabriela; Lausada, Natalia; Domitrovic, Luis
2011-01-01
Epineural stitches are a means to avoid tension in a nerve suture. We evaluate this technique, relative to interposed grafts and simple neurorraphy, in a rat model. Twenty rats were allocated to four groups. For Group 1, sectioning of the sciatic nerve was performed, a segment 4 mm long discarded, and epineural suture with distal anchoring stitches were placed resulting in slight tension neurorraphy. For Group 2, a simple neurorraphy was performed. For Group 3, a 4 mm long graft was employed and Group 4 served as control. Ninety days after, reoperation, latency of motor action potentials recording and axonal counts were performed. Inter-group comparison was done by means of ANOVA and the non-parametric Kruskal-Wallis test. The mean motor latency for the simple suture (2.27±0.77 ms) was lower than for the other two surgical groups, but lower than among controls (1.69±0.56 ms). Similar values were founding in both group 1 (2.66±0.71 ms) and group 3 (2.64±0.6 ms). When fibers diameters were compared a significant difference was identified between groups 2 and 3 (p=0.048). Good results can be obtained when suturing a nerve employ with epineural anchoring stitches. However, more studies are needed before extrapolating results to human nerve sutures.
ERIC Educational Resources Information Center
Liu, Jinghua; Zu, Jiyun; Curley, Edward; Carey, Jill
2014-01-01
The purpose of this study is to investigate the impact of discrete anchor items versus passage-based anchor items on observed score equating using empirical data.This study compares an "SAT"® critical reading anchor that contains more discrete items proportionally, compared to the total tests to be equated, to another anchor that…
The Conductance of Porphyrin-Based Molecular Nanowires Increases with Length.
Algethami, Norah; Sadeghi, Hatef; Sangtarash, Sara; Lambert, Colin J
2018-06-13
High electrical conductance molecular nanowires are highly desirable components for future molecular-scale circuitry, but typically molecular wires act as tunnel barriers and their conductance decays exponentially with length. Here, we demonstrate that the conductance of fused-oligo-porphyrin nanowires can be either length independent or increase with length at room temperature. We show that this negative attenuation is an intrinsic property of fused-oligo-porphyrin nanowires, but its manifestation depends on the electrode material or anchor groups. This highly desirable, nonclassical behavior signals the quantum nature of transport through such wires. It arises because with increasing length the tendency for electrical conductance to decay is compensated by a decrease in their highest occupied molecular orbital-lowest unoccupied molecular orbital gap. Our study reveals the potential of these molecular wires as interconnects in future molecular-scale circuitry.
NASA Astrophysics Data System (ADS)
van der Maas, M.; Vasnyov, S.; Hendriksen, B. L. M.; Shklyarevskii, O. I.; Speller, S.
2012-06-01
Physisorption of hydrogen molecules on the surface of gold and other coinage metals has been studied using distance tunneling spectroscopy. We have observed that the distance dependence of the tunnel current (resistance) displays a strong N-shaped deviation from exponential behavior. Such deviations are difficult to explain within the Tersoff-Hamann approximation. We suggest the scattering of tunneling electrons by H2 molecules as an origin for the observed effect. We have found that this phenomenon is also common for strongly adsorbed organic molecules with a single anchoring group. Pulling Au, Cu and Pt nanowires at 22 K in hydrogen environment shows that the break-junction electrodes are still connected through hydrogen-metal monoatomic chains down to very low conductance values of 10-4-10-6 G0.
NASA Astrophysics Data System (ADS)
Manakhov, Anton; Makhneva, Ekaterina; Skládal, Petr; Nečas, David; Čechal, Jan; Kalina, Lukáš; Eliáš, Marek; Zajíčková, Lenka
2016-01-01
The performance of immunosensing devices crucially depends on the methodology of antibody or antigen immobilization on the sensor surface. Hence, the stable intermediate layers capable of specific and reproducible binding of antibodies are required. Herein, we introduce the amine rich (NHx concentration of 6 at.%) layers prepared by pulsed plasma polymerization of cyclopropylamine (CPA) for functionalization of the quartz crystal microbalance (QCM) surface by the antibody specific to human serum albumin. In these layers the amine groups serve as anchor for the antibody binding. The sensitivity of QCM sensors prepared in this way surpasses the one for the previously reported sensors functionalized by the thiol-based self-assembled monolayers by the factor of 2. Our results thus show that CPA plasma polymers have a significant potential for further development of the active layers for biosensing applications.
Transport efficiency of membrane-anchored kinesin-1 motors depends on motor density and diffusivity
Grover, Rahul; Fischer, Janine; Schwarz, Friedrich W.; Walter, Wilhelm J.; Schwille, Petra; Diez, Stefan
2016-01-01
In eukaryotic cells, membranous vesicles and organelles are transported by ensembles of motor proteins. These motors, such as kinesin-1, have been well characterized in vitro as single molecules or as ensembles rigidly attached to nonbiological substrates. However, the collective transport by membrane-anchored motors, that is, motors attached to a fluid lipid bilayer, is poorly understood. Here, we investigate the influence of motors’ anchorage to a lipid bilayer on the collective transport characteristics. We reconstituted “membrane-anchored” gliding motility assays using truncated kinesin-1 motors with a streptavidin-binding peptide tag that can attach to streptavidin-loaded, supported lipid bilayers. We found that the diffusing kinesin-1 motors propelled the microtubules in the presence of ATP. Notably, we found the gliding velocity of the microtubules to be strongly dependent on the number of motors and their diffusivity in the lipid bilayer. The microtubule gliding velocity increased with increasing motor density and membrane viscosity, reaching up to the stepping velocity of single motors. This finding is in contrast to conventional gliding motility assays where the density of surface-immobilized kinesin-1 motors does not influence the microtubule velocity over a wide range. We reason that the transport efficiency of membrane-anchored motors is reduced because of their slippage in the lipid bilayer, an effect that we directly observed using single-molecule fluorescence microscopy. Our results illustrate the importance of motor–cargo coupling, which potentially provides cells with an additional means of regulating the efficiency of cargo transport. PMID:27803325
A Proposed Blueprint Model towards the Evaluation of Educational System in Iran
ERIC Educational Resources Information Center
Mehrafsha, S. Jahangir
2011-01-01
The pursuit of quality gave rise to the concept of Iran Universities as learning organizations. Iran Universities must have the capacity to learn if they are to survive the demands and requirements of the emerging times. This includes liberating traditional methodologies that are anchored on positivism and seemingly dependent on technical…
78 FR 45104 - Model Manufactured Home Installation Standards: Ground Anchor Installations
Federal Register 2010, 2011, 2012, 2013, 2014
2013-07-26
... test methods for establishing working load design values of ground anchor assemblies used for new... anchor installations and establish standardized test methods to determine ground anchor performance and... currently no national test method for rating and certifying ground anchor assemblies in different soil...
Charge transfer at organic-inorganic interfaces—Indoline layers on semiconductor substrates
NASA Astrophysics Data System (ADS)
Meyenburg, I.; Falgenhauer, J.; Rosemann, N. W.; Chatterjee, S.; Schlettwein, D.; Heimbrodt, W.
2016-12-01
We studied the electron transfer from excitons in adsorbed indoline dye layers across the organic-inorganic interface. The hybrids consist of indoline derivatives on the one hand and different inorganic substrates (TiO2, ZnO, SiO2(0001), fused silica) on the other. We reveal the electron transfer times from excitons in dye layers to the organic-inorganic interface by analyzing the photoluminescence transients of the dye layers after femtosecond excitation and applying kinetic model calculations. A correlation between the transfer times and four parameters have been found: (i) the number of anchoring groups, (ii) the distance between the dye and the organic-inorganic interface, which was varied by the alkyl-chain lengths between the carboxylate anchoring group and the dye, (iii) the thickness of the adsorbed dye layer, and (iv) the level alignment between the excited dye ( π* -level) and the conduction band minimum of the inorganic semiconductor.
Alternative function for the mitochondrial SAM complex in biogenesis of alpha-helical TOM proteins.
Stojanovski, Diana; Guiard, Bernard; Kozjak-Pavlovic, Vera; Pfanner, Nikolaus; Meisinger, Chris
2007-12-03
The mitochondrial outer membrane contains two preprotein translocases: the general translocase of outer membrane (TOM) and the beta-barrel-specific sorting and assembly machinery (SAM). TOM functions as the central entry gate for nuclear-encoded proteins. The channel-forming Tom40 is a beta-barrel protein, whereas all Tom receptors and small Tom proteins are membrane anchored by a transmembrane alpha-helical segment in their N- or C-terminal portion. Synthesis of Tom precursors takes place in the cytosol, and their import occurs via preexisting TOM complexes. The precursor of Tom40 is then transferred to SAM for membrane insertion and assembly. Unexpectedly, we find that the biogenesis of alpha-helical Tom proteins with a membrane anchor in the C-terminal portion is SAM dependent. Each SAM protein is necessary for efficient membrane integration of the receptor Tom22, whereas assembly of the small Tom proteins depends on Sam37. Thus, the substrate specificity of SAM is not restricted to beta-barrel proteins but also includes the majority of alpha-helical Tom proteins.
Chen, Yabin; Shen, Ziyong; Xu, Ziwei; Hu, Yue; Xu, Haitao; Wang, Sheng; Guo, Xiaolei; Zhang, Yanfeng; Peng, Lianmao; Ding, Feng; Liu, Zhongfan; Zhang, Jin
2013-01-01
Aligned single-walled carbon nanotube arrays provide a great potential for the carbon-based nanodevices and circuit integration. Aligning single-walled carbon nanotubes with selected helicities and identifying their helical structures remain a daunting issue. The widely used gas-directed and surface-directed growth modes generally suffer the drawbacks of mixed and unknown helicities of the aligned single-walled carbon nanotubes. Here we develop a rational approach to anchor the single-walled carbon nanotubes on graphite surfaces, on which the orientation of each single-walled carbon nanotube sensitively depends on its helical angle and handedness. This approach can be exploited to conveniently measure both the helical angle and handedness of the single-walled carbon nanotube simultaneously at a low cost. In addition, by combining with the resonant Raman spectroscopy, the (n,m) index of anchored single-walled carbon nanotube can be further determined from the (d,θ) plot, and the assigned (n,m) values by this approach are validated by both the electronic transition energy Eii measurement and nanodevice application. PMID:23892334
Hu, Jin-Tao; Lu, Jian-Wei; Fu, Li-Feng
2016-09-25
To compare the clinical effect of Endobutton plates combined with an anchor and clavicle hook plate in the treatment of acromioclavicular dislocation. From January 2012 to August 2014, 83 patients with Rockwood type III acromioclavicular dislocation underwent surgical treatments. Among them, 34 patients were treated with Endobutton plate and anchor repair(Endobutton group), including 23 males and 11 females, and the mean age was(39.0±6.3) years old (26 to 51 years old); the average time from injury to operation was(4.1±1.3) days(3 to 7 days);the injured side:14 left, 20 right; the dislocation in 28 patients dues to fall, 6 patients dues traffic accident. There were 49 patients treated with clavicular hook plate(hook plate group), including 33 males and 16 females;the mean age was(37.9±6.3) years old (27 to 53 years old); the average time from injury to operation was(4.1±1.1) days (2 to 7 days);the injured side: 18 left, 31 right;the dislication in 36 patients dues to fall, 13 patients dues traffic accidents. The indexes such as intraoperative bleeding volume, operation time, incision size, postoperative complication and postoperative coracoclavicular space, shoulder joint function, and life quality were compared between two groups. In the hook plate group with 49 patients, the plates in 43 patients were removed at the secondary operation, and 32 patients had shoulder pain or limited active range. Thirty four patients in the Endobutton group had no pain symptoms and limited active range. All the patients did not suffer acromioclavicular dislocation again. There was no significant difference between the two groups in operation time, and intraoperative bleeding volume( P >0.05). The incision length in the hook plate group was longer than that in Endobutton group( P <0.05). The coracoclavicular space of the uninjured and injured side in two groups respectively had no significant differences, and the coracoclavicular space in the injured side between two group had no significant difference( P >0.05). There were no significant differences of Constant score and SF-36 between two groups 2 months after operation( P >0.05). Sixteen months after operation, the Constant score in the injured side of both groups was higher than that in 2 months postoperative. But the Constant score in the injured side of hook plate group was higher than that in Endobutton group( P <0.05). The Constant score in the uninjured side had no significant differences between two group( P >0.05). In hook plate group, the Constant score in the uninjured side was higher than that in the injured side. In Endobutton group, there were no significant differences of Constant score between two sides. The 16 month postoperative SF-36 in the injured side of both groups was higher than the 2 month postoperative one, but 16 month postoperative SF-36 in hook plate group was lower than that in Endobutton group ( P <0.05). Endobutton plate combined with an anchor can effectively fix Rockwood type III or more acute acromioclavicular dislocation. The method has less complications, avoiding secondary removal of internal fixation.
Corticotomy-assisted retraction: an outcome assessment.
Sakthi, S Vijayashri; Vikraman, B; Shobana, V R; Iyer, S Kavitha; Krishnaswamy, N R
2014-01-01
To assess the efficiency and treatment outcome of patients treated with corticotomy-assisted en-masse orthodontic retraction as compared with the en-masse retraction without corticotomy. Forty adult patients with bimaxillary protrusion requiring correction of bidental proclination constituted the sample. The study group consisted of 22 patients (male 11, female 11) willing to undergo surgery to reduce the duration of their orthodontic treatment and 18 patients (male 9, female 9) desirous of undergoing conventional orthodontic treatment without surgical intervention constituted the control group. Comparison of rate of retraction and anchor loss between the study and the control group was assessed. Average rate of space closure of 1.8 mm/month in the maxilla and 1.57 mm/month in the mandible was observed in the study group compared to 1.02 mm/month in the maxilla and 0.87 mm/month in the mandible in the control group. The rate of retraction accelerated during the first 2 months of retraction. Molar anchor loss of approximately 0.6 mm occurred in the study group, and 1.8 mm occurred in the control group during the 4 months. The rate of retraction with study group was twice as faster when compared to the control group, accelerating during the first 2 months of retraction. There was better anchorage control with the undecorticated molar segment during the retraction period but was found to increase as time advanced.
Editorial Commentary: All-Suture Anchors, Foam Blocks, and Biomechanical Testing.
Brand, Jefferson C
2017-06-01
Barber's biomechanical work is well known to Arthroscopy's readers as thorough, comprehensive, and inclusive of new designs as they become available. In "All-Suture Anchors: Biomechanical Analysis of Pullout Strength, Displacement, and Failure Mode," the latest iteration, Barber and Herbert test all-suture anchors in both porcine femurs and biphasic foam. While we await in vivo clinical trials that compare all-suture anchors to currently used anchors, Barber and Herbert have provided data to inform anchor choice, and using their biomechanical data at time zero from all-suture anchor trials in an animal model, we can determine the anchors' feasibility for human clinical investigations. Copyright © 2017 Arthroscopy Association of North America. Published by Elsevier Inc. All rights reserved.
Influence of Anchoring on Burial Depth of Submarine Pipelines
Zhuang, Yuan; Li, Yang; Su, Wei
2016-01-01
Since the beginning of the twenty-first century, there has been widespread construction of submarine oil-gas transmission pipelines due to an increase in offshore oil exploration. Vessel anchoring operations are causing more damage to submarine pipelines due to shipping transportation also increasing. Therefore, it is essential that the influence of anchoring on the required burial depth of submarine pipelines is determined. In this paper, mathematical models for ordinary anchoring and emergency anchoring have been established to derive an anchor impact energy equation for each condition. The required effective burial depth for submarine pipelines has then been calculated via an energy absorption equation for the protection layer covering the submarine pipelines. Finally, the results of the model calculation have been verified by accident case analysis, and the impact of the anchoring height, anchoring water depth and the anchor weight on the required burial depth of submarine pipelines has been further analyzed. PMID:27166952
NASA Astrophysics Data System (ADS)
Zhou, Zhi; Zhang, Zhichun; Wang, Chuan; Ou, Jinping
2006-03-01
FRP ( Fiber Reinforced Polymer ) has become the popular material to alternate steel in civil engineering under harsh corrosion environment. But due to its low shear strength ability, the anchor for FRP is most important for its practical application. However, the strain state of the surface between FRP and anchor is not fully understood due to that there is no proper sensor to monitor the inner strain in the anchor by traditional method. In this paper, a new smart FBG-based FRP anchor is brought forward, and the inner strain distribution of FRP anchor has been monitored using FRP-OFBG sensors, a smart FBG-embedded FRP rebar, which is pre-embedded in the FRP rod and cast in the anchor. Based on the strain distribution information the bonding shear stress on the surface of FRP rod along the anchor can also be obtained. This method can supply important information for FRP anchor design and can also monitor the anchorage system, which is useful for the application of FRP in civil engineering. The experimental results also show that the smart FBG-based FRP anchor can give direct information of the load and damage of the FRP anchor.
Castillon, Guillaume Alain; Michon, Laetitia; Watanabe, Reika
2013-06-01
Most glycosylphosphatidylinositol-anchored proteins (GPI-APs) are located at the apical surface of epithelial cells. The apical delivery of GPI-APs is believed to result from their association with lipid rafts. We find that overexpression of C-terminally tagged PGAP3 caused predominant production of lysoGPI-APs, an intermediate precursor in the GPI lipid remodeling process in Madin-Darby canine kidney cells. In these cells, produced lysoGPI-APs are not incorporated into detergent-resistant membranes (DRMs) but still are delivered apically, suggesting that GPI-AP association with DRMs is not necessary for apical targeting. In contrast, apical transport of both fully remodeled and lyso forms of GPI-APs is dependent on N-glycosylation, confirming a general role of N-glycans in apical protein transport. We also find that depletion of cholesterol causes apical-to-basolateral retargeting not only of fully remodeled GPI-APs, but also of lysoGPI-APs, as well as endogenous soluble and transmembrane proteins that would normally be targeted to the apical membrane. These findings confirm the essential role for cholesterol in the apical protein targeting and further demonstrate that the mechanism of cholesterol-dependent apical sorting is not related to DRM association of GPI-APs.
Crimaldi, John P.; Thompson, Janet K.; Rosman, Johanna H.; Lowe, Ryan J.; Koseff, Jeffrey R.
2002-01-01
We describe a laboratory investigation into the effect of turbulent hydrodynamic stresses on clam larvae in the settlement phase of the recruitment process. A two-component laser-Doppler anemometer (LDA) was used to measure time histories of the instantaneous turbulence structure at potential recruitment sites within reconstructed beds of the adult Asian clam, Potamocorbula amurensis. Measurements were made for two flow speeds over beds with three different clam densities and two different clam heights. We analyze the statistical effect of the turbulence on the larval flux to the bed and on the probability of successful anchoring to the substrate. It is shown that the anchoring probability depends on the nature of the instantaneous stress events rather than on mean stresses. The instantaneous turbulence structure near the bed is altered by the flow rate and the spacing and height of adult clams living in the substrate. The ability to anchor quickly is therefore extremely important, since the time sequence of episodic turbulent stress events influences larval settlement success. The probability of successful larval settlement is predicted to decrease as the spacing between adults decreases, implying that the hydrodynamics impose negative feedback on clam bed aggregation dynamics.
The oblique effect is both allocentric and egocentric
Mikellidou, Kyriaki; Cicchini, Guido Marco; Thompson, Peter G.; Burr, David C.
2016-01-01
Despite continuous movements of the head, humans maintain a stable representation of the visual world, which seems to remain always upright. The mechanisms behind this stability are largely unknown. To gain some insight on how head tilt affects visual perception, we investigate whether a well-known orientation-dependent visual phenomenon, the oblique effect—superior performance for stimuli at cardinal orientations (0° and 90°) compared with oblique orientations (45°)—is anchored in egocentric or allocentric coordinates. To this aim, we measured orientation discrimination thresholds at various orientations for different head positions both in body upright and in supine positions. We report that, in the body upright position, the oblique effect remains anchored in allocentric coordinates irrespective of head position. When lying supine, gravitational effects in the plane orthogonal to gravity are discounted. Under these conditions, the oblique effect was less marked than when upright, and anchored in egocentric coordinates. The results are well explained by a simple “compulsory fusion” model in which the head-based and the gravity-based signals are combined with different weightings (30% and 70%, respectively), even when this leads to reduced sensitivity in orientation discrimination. PMID:26129862
Tran, Vy Anh; Lee, Sang-Wha
2018-01-15
This work demonstrated kinetically controlled release of model drugs (ibuprofen, FITC) from well-tailored mesoporous silica nanoparticles (MSNs) depending on the surface charges and molecular sizes of the drugs. The molecular interactions between entrapped drugs and the pore walls of MSNs controlled the release of the drugs through the pore channels of MSNs. Also, polydopamine (PDA) layer-coated MSNs (MSNs@PDA) was quite effective to retard the release of large FITC, in contrast to a slight retardation effect on relatively small Ibuprofen. Of all things, FITC (Fluorescein isothiocyanate)-labeled APTMS (3-aminopropyltrimethoxysilane) (APTMS-FITC conjugates) grafted onto the MSNs generate a pinch-effect on the pore channel (so-called a prominent anchoring effect), which was highly effective in trapping (or blocking) drug molecules at the pore mouth of the MSNs. The anchored APTMS-FITC conjugates provided not only tortuous pathways to the diffusing molecules, but also sustained release of the ibuprofen over a long period of time (∼7days). The fast release kinetics was predicted by an exponential equation based on Fick's law, while the slow release kinetics was predicted by Higuchi model. Copyright © 2017 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Sasikala, Arathyram Ramachandra Kurup; Ghavaminejad, Amin; Unnithan, Afeesh Rajan; Thomas, Reju George; Moon, Myeongju; Jeong, Yong Yeon; Park, Chan Hee; Kim, Cheol Sang
2015-10-01
We report the versatile design of a smart nanoplatform for thermo-chemotherapy treatment of cancer. For the first time in the literature, our design takes advantage of the outstanding properties of mussel-inspired multiple catecholic groups - presenting a unique copolymer poly(2-hydroxyethyl methacrylate-co-dopamine methacrylamide) p(HEMA-co-DMA) to surface functionalize the superparamagnetic iron oxide nanoparticles as well as to conjugate borate containing anticancer drug bortezomib (BTZ) in a pH-dependent manner for the synergistic anticancer treatment. The unique multiple anchoring groups can be used to substantially improve the affinity of the ligands to the surfaces of the nanoparticles to form ultrastable iron oxide nanoparticles with control over their hydrodynamic diameter and interfacial chemistry. Thus the BTZ-incorporated-bio-inspired-smart magnetic nanoplatform will act as a hyperthermic agent that delivers heat when an alternating magnetic field is applied while the BTZ-bound catechol moieties act as chemotherapeutic agents in a cancer environment by providing pH-dependent drug release for the synergistic thermo-chemotherapy application. The anticancer efficacy of these bio-inspired multifunctional smart magnetic nanoparticles was tested both in vitro and in vivo and found that these unique magnetic nanoplatforms can be established to endow for the next generation of nanomedicine for efficient and safe cancer therapy.We report the versatile design of a smart nanoplatform for thermo-chemotherapy treatment of cancer. For the first time in the literature, our design takes advantage of the outstanding properties of mussel-inspired multiple catecholic groups - presenting a unique copolymer poly(2-hydroxyethyl methacrylate-co-dopamine methacrylamide) p(HEMA-co-DMA) to surface functionalize the superparamagnetic iron oxide nanoparticles as well as to conjugate borate containing anticancer drug bortezomib (BTZ) in a pH-dependent manner for the synergistic anticancer treatment. The unique multiple anchoring groups can be used to substantially improve the affinity of the ligands to the surfaces of the nanoparticles to form ultrastable iron oxide nanoparticles with control over their hydrodynamic diameter and interfacial chemistry. Thus the BTZ-incorporated-bio-inspired-smart magnetic nanoplatform will act as a hyperthermic agent that delivers heat when an alternating magnetic field is applied while the BTZ-bound catechol moieties act as chemotherapeutic agents in a cancer environment by providing pH-dependent drug release for the synergistic thermo-chemotherapy application. The anticancer efficacy of these bio-inspired multifunctional smart magnetic nanoparticles was tested both in vitro and in vivo and found that these unique magnetic nanoplatforms can be established to endow for the next generation of nanomedicine for efficient and safe cancer therapy. Electronic supplementary information (ESI) available: Characterization of p(HEMA-co-DMA) abbreviated as (HEDO), XRD spectra of Fe3O4 & HEDO-Fe3O4, DLS of Fe3O4 & HEDO-Fe3O4, UV-VIS photospectroscopy of HEDO, BTZ and HEDO-BTZ. See DOI: 10.1039/C5NR05844A
Van der Bracht, Hans; Van den Langenbergh, Tom; Pouillon, Marc; Verhasselt, Skrallan; Verniers, Philippe; Stoffelen, Danny
2018-05-22
This study investigated the feasibility and safety of all-suture anchors in arthroscopic rotator cuff repair. All patients were diagnosed with a rotator cuff tear by ultrasound or magnetic resonance imaging (MRI). Patients with partial tears, massive tears, subscapularis tears, or previous shoulder surgery, were excluded. MRI and clinical outcome were investigated in all patients at 1.58 years (range, 1.0-2.0 years) after rotator cuff repair with all-suture anchors (prospective case series). Integrity of the cuff repair, cyst formation (encapsulated fluid signal around the anchor), ingrowth of the bone into the anchor, and integrity of the bone tunnel border were evaluated for 47 anchors. Clinical results were evaluated using the Constant-Murley score. An MRI evaluation was performed in 20 patients at 1.58 years (range, 1.0-2.0 years) after rotator cuff repair with all-suture anchors. MRI evaluation showed a very small rim of fluid around 10% of the anchors. None of the anchors showed cyst formation with fluid diameter more than twice the anchor diameter. In approximately 90% of the anchors, no fluid could be detected between the anchors and the edge of the bony tunnel. Full rotator cuff integrity was seen in 19 patients. Only 1 patient sustained a retear. Clinical results comparable with an arthroscopic rotator cuff repair using classic anchors were seen. This prospective clinical cohort study shows promising early radiographic and clinical results after arthroscopic rotator cuff repair using all-suture anchors. Copyright © 2018 Journal of Shoulder and Elbow Surgery Board of Trustees. Published by Elsevier Inc. All rights reserved.
Jahanbin, Arezoo; Kazemian, Mozhgan; Eslami, Neda; Pouya, Iman Saeedi
2016-07-01
Cleft lip and palate patients usually have deficient maxilla due to postsurgical scars. The aim this study was to compare the effectiveness of miniplates-anchored face-mask therapy versus intermaxillary elastics to miniplates for maxillary traction in cleft lip and palate patients. This clinical trial included 11 prepubertal patients with cleft lip and palate. Initially, a w-arch expander was cemented and activated 3 mm per month to overcorrect the crossbite. Then, the patients were divided into 2 groups: mini-plate-anchored face-mask (n = 5): 2 miniplates were placed in the maxilla and the patients were instructed to wear a face-mask for 12 to 14 hours/per day. Intermaxillary elastics to miniplates (n = 6): 2 miniplates were inserted in the maxilla; 1 on each side and 2 miniplates were placed in the anterior mandible on both sides. Intermaxillary elastics with a force of 250 g per side were attached to the hooks. Cephalometric parameters before treatment (T1) and after achieving positive overjet (T2) were compared between the 2 groups. Fisher exact, paired, and independent t tests were used for statistical comparison. At T1 or T2 there was not a significant difference between the 2 groups in the skeletal, dental, and soft tissue variables. According to results of our preliminary study, intermaxillary elastics to miniplates might have a promising effect as an alternative for face mask therapy in maxillary protraction of cleft lip and palate patients.
Schelté, P; Boeckler, C; Frisch, B; Schuber, F
2000-01-01
The comparative reactivity of maleimide and bromoacetyl groups with thiols (2-mercaptoethanol, free cysteine, and cysteine residues present at the N-terminus of peptides) was investigated in aqueous media. These studies were performed (i) with water-soluble functionalized model molecules, i.e., polyoxyethylene-based spacer arms that could also be coupled to lipophilic anchors destined to be incorporated into liposomes, and (ii) with small unilamellar liposomes carrying at their surface these thiol-reactive functions. Our results indicate that an important kinetic discrimination (2-3 orders of magnitude in terms of rate constants) can be achieved between the maleimide and bromoacetyl functions when the reactions with thiols are performed at pH 6.5. The bromoacetyl function which reacts at higher pH values (e.g., pH 9.0) retained a high chemoselectivity; i.e., under conditions where it reacted appreciably with the thiols of, e.g., HS-peptides, it did react with other nucleophilic functions such as alpha- and epsilon-amino groups or imidazole, which could also be present in peptides. This differential reactivity was applied to design chemically defined and highly immunogenic liposomal diepitope constructs as synthetic vaccines, i.e., vesicles carrying at their surface two different peptides conjugated each to a specific amphiphilic anchor. This was realized by coupling sequentially at pH 6.5 and 9.0 two HS-peptides to preformed vesicles containing lipophilic anchors functionalized with maleimide and bromoacetyl groups [Boeckler, C., et al. (1999) Eur. J. Immunol. 29, 2297-2308].
Pietschmann, Matthias F; Froehlich, Valerie; Ficklscherer, Andreas; Wegener, Bernd; Jansson, Volkmar; Müller, Peter E
2008-01-01
Various suture anchors are available for rotator cuff repair. For arthroscopic application, a knotless anchor was developed to simplify the intra-operative handling. We compared the new knotless anchor (BIOKNOTLESStrade mark RC; DePuy Mitek, Raynham, MA) with established absorbable and titanium suture anchors (UltraSorbtrade mark and Super Revo 5mmtrade mark; ConMed Linvatec, Utica, NY). Each anchor was tested on 6 human cadaveric shoulders. The anchors were inserted into the greater tuberosity. An incremental cyclic loading was performed. Ultimate failure loads, anchor displacement, and mode of failure were recorded. The anchor displacement of the BIOKNOTLESStrade mark RC (15.3 +/- 5.3 mm) after the first cycle with 75 N was significantly higher than with the two other anchors (Super Revo 2.1 +/- 1.6 mm, UltraSorb: 2.7 +/- 1.1 mm). There was no significant difference in the ultimate failure loads of the 3 anchors. Although the Bioknotlesstrade mark RC indicated comparable maximal pullout strength, it bares the risk of losing contact between the tendon-bone-interface due to a significantly higher system displacement. Therefore, gap formation between the bone and the soft tissue fixation jeopardizes the repair. Bioknotlesstrade mark RC should be used in the lateral row only when a double row technique for rotator cuff repair is performed, and is not appropriate for rotator cuff repair if used on its own.
Zhang, Qing-Song; Liu, Sen; Zhang, Qiuyang; Xue, Yun; Ge, Dongxia; O'Brien, Michael J.; Savoie, Felix H.; You, Zongbing
2012-01-01
Objectives. The objective of this study was to compare the damage to the rotator cuff tendons caused by four different anchor systems. Methods. 20 cadaveric human shoulder joints were used for transtendon insertion of four anchor systems. The Healix Peek, Fastin RC, Bio-Corkscrew Suture, and Healix Transtend anchors were inserted through the tendons using standard transtendon procedures. The areas of tendon damage were measured. Results. The areas of tendon damage (mean ± standard deviation, n = 7) were 29.1 ± 4.3 mm2 for the Healix Peek anchor, 20.4 ± 2.3 mm2 for the Fastin RC anchor, 23.4 ± 1.2 mm2 for the Bio-Corkscrew Suture anchor, 13.7 ± 3.2 mm2 for the Healix Transtend anchor inserted directly, and 9.1 ± 2.1 mm2 for the Healix Transtend anchor inserted through the Percannula system (P < 0.001 or P < 0.001, compared to other anchors). Conclusions. In a cadaver transtendon rotator cuff repair model, smaller anchors caused less damage to the tendon tissues. The Healix Transtend implant system caused the least damage to the tendon tissues. Our findings suggest that smaller anchors should be considered when performing transtendon procedures to repair partial rotator cuff tears. PMID:22811923
The Use of Comics-Based Cases in Anchored Instruction
ERIC Educational Resources Information Center
Kneller, Matthew F.
2009-01-01
The primary purpose of this research was to understand how comics fulfill the role of anchor in an anchored instruction learning environment. Anchored instruction addresses the inert knowledge problem through the use of realistic multimedia stories, or "anchors," that embed a problem and the necessary data to solve it within the narrative. In the…
Reinforcing mechanism of anchors in slopes: a numerical comparison of results of LEM and FEM
NASA Astrophysics Data System (ADS)
Cai, Fei; Ugai, Keizo
2003-06-01
This paper reports the limitation of the conventional Bishop's simplified method to calculate the safety factor of slopes stabilized with anchors, and proposes a new approach to considering the reinforcing effect of anchors on the safety factor. The reinforcing effect of anchors can be explained using an additional shearing resistance on the slip surface. A three-dimensional shear strength reduction finite element method (SSRFEM), where soil-anchor interactions were simulated by three-dimensional zero-thickness elasto-plastic interface elements, was used to calculate the safety factor of slopes stabilized with anchors to verify the reinforcing mechanism of anchors. The results of SSRFEM were compared with those of the conventional and proposed approaches for Bishop's simplified method for various orientations, positions, and spacings of anchors, and shear strengths of soil-grouted body interfaces. For the safety factor, the proposed approach compared better with SSRFEM than the conventional approach. The additional shearing resistance can explain the influence of the orientation, position, and spacing of anchors, and the shear strength of soil-grouted body interfaces on the safety factor of slopes stabilized with anchors.
Efird, Chad; Traub, Shaun; Baldini, Todd; Rioux-Forker, Dana; Spalazzi, Jeffrey P; Davisson, Twana; Hawkins, Monica; McCarty, Eric
2013-08-01
The purpose of this study was to compare the gap formation during cyclic loading, maximum repair strength, and failure mode of single-row full-thickness supraspinatus repairs performed using 2 knotless suture anchors with differing internal suture-retention mechanisms in a human cadaver model. Nine matched pairs of cadaver shoulders were used. Full-thickness tears were induced by detaching the supraspinatus tendon from the greater tuberosity. Single-row repairs were performed with either type I (Opus Magnum PI; ArthroCare, Austin, Texas) or type II (ReelX STT; Stryker, Mahwah, New Jersey) knotless suture anchors. The repaired tendon was cycled from 10 to 90 N for 500 cycles, followed by load to failure. Gap formation was measured at 5, 100, 200, 300, 400, and 500 cycles with a video digitizing system. Anchor type or location (anterior or posterior) had no effect on gap formation during cyclic loading regardless of position (anterior, P=.385; posterior, P=.389). Maximum load to failure was significantly greater (P=.018) for repairs performed with type II anchors (288±62 N) compared with type I anchors (179±39 N). Primary failure modes were anchor pullout and tendon tearing for type II anchors and suture slippage through the anchor for type I anchors. The internal ratcheting suture-retention mechanism of type II anchors may have helped this anchor outperform the suture-cinching mechanism of type I anchors by supporting significantly higher loads before failure and minimizing suture slippage, potentially leading to stronger repairs clinically. Copyright 2013, SLACK Incorporated.
Lou, Deshuai; Wang, Yue; Tan, Jun; Zhu, Liancai; Ji, Shunlin; Wang, Bochu
2017-10-01
Studies of the molecular determinants of coenzyme specificity help to reveal the structure-function relationship of enzymes, especially with regards to coenzyme specificity-determining sites (CSDSs) that usually mediate complex interactions. NADP(H)-dependent 7α-hydroxysteroid dehydrogenase from Clostridium absonum (CA 7α-HSDH), a member of the short-chain dehydrogenase/reductase superfamily (SDRs), possesses positively charged CSDSs that mainly contain T15, R16, R38, and R194, forming complicated polar interactions with the adenosine ribose C2 phosphate group of NADP(H). The R38 residue is crucial for coenzyme anchoring, but the influence of the other residues on coenzyme utilization is still not clear. Hence, we performed alanine scanning mutagenesis and molecular dynamic (MD) simulations. The results suggest that the natural CSDSs have the greatest NADP(H)-binding affinity, but not the best activity (k cat ) toward NADP + . Compared with the wild type and other mutants, the mutant R194A showed the highest catalytic efficiency (k cat /K m ), which was more than three-times that of the wild type. MD simulation and kinetics analysis suggested that the importance of the CSDSs of CA 7α-HSDH should be in accordance with the following order R38>T15>R16>R194, and S39 may have a supporting role in NADP(H) anchoring for mutants R16A/T194A and T15A/R16A/T194A. Copyright © 2017. Published by Elsevier Ltd.
Yersinia infection tools-characterization of structure and function of adhesins.
Mikula, Kornelia M; Kolodziejczyk, Robert; Goldman, Adrian
2012-01-01
Among the seventeen species of the Gram-negative genus Yersinia, three have been shown to be virulent and pathogenic to humans and animals-Y. enterocolitica, Y. pseudotuberculosis, and Y. pestis. In order to be so, they are armoured with various factors that help them adhere to tissues and organelles, cross the cellular barrier and escape the immune system during host invasion. The group of proteins that mediate pathogen-host interactions constitute adhesins. Invasin, Ail, YadA, YadB, YadC, Pla, and pH 6 antigen belong to the most prominent and best-known Yersinia adhesins. They act at different times and stages of infection complementing each other by their ability to bind a variety of host molecules such as collagen, fibronectin, laminin, β1 integrins, and complement regulators. All the proteins are anchored in the bacterial outer membrane (OM), often forming rod-like or fimbrial-like structures that protrude to the extracellular milieu. Structural studies have shown that the anchor region forms a β-barrel composed of 8, 10, or 12 antiparallel β-strands. Depending on the protein, the extracellular part can be composed of several domains belonging to the immunoglobulin fold superfamily, or form a coiled-coil structure with globular head domain at the end, or just constitute several loops connecting individual β-strands in the β-barrel. Those extracellular regions define the activity of each adhesin. This review focuses on the structure and function of these important molecules, and their role in pathogenesis.
Yersinia infection tools—characterization of structure and function of adhesins
Mikula, Kornelia M.; Kolodziejczyk, Robert; Goldman, Adrian
2013-01-01
Among the seventeen species of the Gram-negative genus Yersinia, three have been shown to be virulent and pathogenic to humans and animals—Y. enterocolitica, Y. pseudotuberculosis, and Y. pestis. In order to be so, they are armoured with various factors that help them adhere to tissues and organelles, cross the cellular barrier and escape the immune system during host invasion. The group of proteins that mediate pathogen–host interactions constitute adhesins. Invasin, Ail, YadA, YadB, YadC, Pla, and pH 6 antigen belong to the most prominent and best-known Yersinia adhesins. They act at different times and stages of infection complementing each other by their ability to bind a variety of host molecules such as collagen, fibronectin, laminin, β1 integrins, and complement regulators. All the proteins are anchored in the bacterial outer membrane (OM), often forming rod-like or fimbrial-like structures that protrude to the extracellular milieu. Structural studies have shown that the anchor region forms a β-barrel composed of 8, 10, or 12 antiparallel β-strands. Depending on the protein, the extracellular part can be composed of several domains belonging to the immunoglobulin fold superfamily, or form a coiled-coil structure with globular head domain at the end, or just constitute several loops connecting individual β-strands in the β-barrel. Those extracellular regions define the activity of each adhesin. This review focuses on the structure and function of these important molecules, and their role in pathogenesis. PMID:23316485
Yang, Seung Yeob; Choi, Seung Ah; Lee, Ji Yeoun; Park, Ae-Kyung; Wang, Kyu-Chang; Phi, Ji Hoon; Koh, Eun Jung; Park, Woong-Yang; Park, Sung-Hye; Hwang, Do Won; Jung, Hee Won; Kim, Seung-Ki
2015-12-22
The main cause of death in medulloblastoma is recurrence associated with leptomeningeal dissemination. During this process, the role of microRNAs (miRs) in the acquisition of metastatic phenotype remains poorly understood. This study aimed to identify the miR involved in leptomeningeal dissemination and to elucidate its biological functional mechanisms. We analyzed the miR expression profiles of 29 medulloblastomas according to the presence of cerebrospinal fluid (CSF) seeding. Differentially expressed miRs (DEmiRs) were validated in 29 medulloblastoma tissues and three medulloblastoma cell lines. The biological functions of the selected miRs were evaluated using in vitro and in vivo studies. A total of 12 DEmiRs were identified in medulloblastoma with seeding, including miR-192. The reduced expression of miR-192 was confirmed in the tumor seeding group and in the medulloblastoma cells. Overexpression of miR-192 inhibited cellular proliferation by binding DHFR. miR-192 decreased cellular anchoring via the repression of ITGAV, ITGB1, ITGB3, and CD47. Animals in the miR-192-treated group demonstrated a reduction of spinal seeding (P < 0.05) and a significant survival benefit (P < 0.05). Medulloblastoma with seeding showed specific DEmiRs compared with those without. miR-192 suppresses leptomeningeal dissemination of medulloblastoma by modulating cell proliferation and anchoring ability.
Pranatharthiharan, Sandhya; Patel, Mitesh D; Malshe, Vinod C; Pujari, Vaishali; Gorakshakar, Ajit; Madkaikar, Manisha; Ghosh, Kanjaksha; Devarajan, Padma V
2017-11-01
We report asialoglycoprotein receptor (ASGPR)-targeted doxorubicin hydrochloride (Dox) nanoparticles (NPs) for hepatocellular carcinoma (HCC). Polyethylene sebacate (PES)-Gantrez® AN 119 Dox NPs of average size 220 nm with PDI < 0.62 and ∼20% Dox loading were prepared by modified nanoprecipitation. ASGPR ligands, pullulan (Pul), arabinogalactan (AGn), and the combination (Pul-AGn), were anchored by adsorption. Ligand anchoring enabled high liver uptake with a remarkable hepatocyte:nonparenchymal cell ratio of 85:15. Furthermore, Pul-AGn NPs exhibited an additive effect implying incredibly high hepatocyte accumulation. Galactose-mediated competitive inhibition confirmed ASGPR-mediated uptake of ligand-anchored NPs in HepG2 cell lines. Subacute toxicity in rats confirmed the safety of the NP groups. However, histopathological evaluation suggested mild renal toxicity of AGn. Pul NPs revealed sustained reduction in tumor volume in PLC/PRF/5 liver tumor-bearing Nod/Scid mice up to 46 days. Extensive tumor necrosis, reduced collagen content, reduction in the HCC biomarker serum α-fetoprotein (p < 0.05), a mitotic index of 1.135 (day 46), and tumor treated/tumor control (T/C) values of <0.42 signified superior efficacy of Pul NPs. Furthermore, weight gain in the NP groups, and no histopathological alterations indicated that they were well tolerated by the mice. The high efficacy coupled with greater safety portrayed Pul Dox NPs as a promising nanocarrier for improved therapy of HCC.
A second-generation anchored genetic linkage map of the tammar wallaby (Macropus eugenii)
2011-01-01
Background The tammar wallaby, Macropus eugenii, a small kangaroo used for decades for studies of reproduction and metabolism, is the model Australian marsupial for genome sequencing and genetic investigations. The production of a more comprehensive cytogenetically-anchored genetic linkage map will significantly contribute to the deciphering of the tammar wallaby genome. It has great value as a resource to identify novel genes and for comparative studies, and is vital for the ongoing genome sequence assembly and gene ordering in this species. Results A second-generation anchored tammar wallaby genetic linkage map has been constructed based on a total of 148 loci. The linkage map contains the original 64 loci included in the first-generation map, plus an additional 84 microsatellite loci that were chosen specifically to increase coverage and assist with the anchoring and orientation of linkage groups to chromosomes. These additional loci were derived from (a) sequenced BAC clones that had been previously mapped to tammar wallaby chromosomes by fluorescence in situ hybridization (FISH), (b) End sequence from BACs subsequently FISH-mapped to tammar wallaby chromosomes, and (c) tammar wallaby genes orthologous to opossum genes predicted to fill gaps in the tammar wallaby linkage map as well as three X-linked markers from a published study. Based on these 148 loci, eight linkage groups were formed. These linkage groups were assigned (via FISH-mapped markers) to all seven autosomes and the X chromosome. The sex-pooled map size is 1402.4 cM, which is estimated to provide 82.6% total coverage of the genome, with an average interval distance of 10.9 cM between adjacent markers. The overall ratio of female/male map length is 0.84, which is comparable to the ratio of 0.78 obtained for the first-generation map. Conclusions Construction of this second-generation genetic linkage map is a significant step towards complete coverage of the tammar wallaby genome and considerably extends that of the first-generation map. It will be a valuable resource for ongoing tammar wallaby genetic research and assembling the genome sequence. The sex-pooled map is available online at http://compldb.angis.org.au/. PMID:21854616
A second-generation anchored genetic linkage map of the tammar wallaby (Macropus eugenii).
Wang, Chenwei; Webley, Lee; Wei, Ke-jun; Wakefield, Matthew J; Patel, Hardip R; Deakin, Janine E; Alsop, Amber; Marshall Graves, Jennifer A; Cooper, Desmond W; Nicholas, Frank W; Zenger, Kyall R
2011-08-19
The tammar wallaby, Macropus eugenii, a small kangaroo used for decades for studies of reproduction and metabolism, is the model Australian marsupial for genome sequencing and genetic investigations. The production of a more comprehensive cytogenetically-anchored genetic linkage map will significantly contribute to the deciphering of the tammar wallaby genome. It has great value as a resource to identify novel genes and for comparative studies, and is vital for the ongoing genome sequence assembly and gene ordering in this species. A second-generation anchored tammar wallaby genetic linkage map has been constructed based on a total of 148 loci. The linkage map contains the original 64 loci included in the first-generation map, plus an additional 84 microsatellite loci that were chosen specifically to increase coverage and assist with the anchoring and orientation of linkage groups to chromosomes. These additional loci were derived from (a) sequenced BAC clones that had been previously mapped to tammar wallaby chromosomes by fluorescence in situ hybridization (FISH), (b) End sequence from BACs subsequently FISH-mapped to tammar wallaby chromosomes, and (c) tammar wallaby genes orthologous to opossum genes predicted to fill gaps in the tammar wallaby linkage map as well as three X-linked markers from a published study. Based on these 148 loci, eight linkage groups were formed. These linkage groups were assigned (via FISH-mapped markers) to all seven autosomes and the X chromosome. The sex-pooled map size is 1402.4 cM, which is estimated to provide 82.6% total coverage of the genome, with an average interval distance of 10.9 cM between adjacent markers. The overall ratio of female/male map length is 0.84, which is comparable to the ratio of 0.78 obtained for the first-generation map. Construction of this second-generation genetic linkage map is a significant step towards complete coverage of the tammar wallaby genome and considerably extends that of the first-generation map. It will be a valuable resource for ongoing tammar wallaby genetic research and assembling the genome sequence. The sex-pooled map is available online at http://compldb.angis.org.au/.
Yan, H W; Li, L; Wang, R C; Yang, Y; Xie, Y; Tang, J; Shi, Z Y
2017-12-01
Comparison of clinical efficacies between coracoclavicular ligament reconstruction using autologous gracilis tendon with suture anchor and clavicular hook plate for the treatment of acute Neer type II distal clavicle fracture. Both coracoclavicular reconstruction with autologous gracilis tendon and clavicular hook plate could achieve satisfactory results for treating acute Neer type II distal clavicle fracture. Acute Neer type II distal clavicle fracture patients enrolled in this prospective randomized study were divided into the coracoclavicular ligament reconstruction group (using autologous gracilis tendon and suture anchor) and the hook plate group. Clinical outcomes were evaluated by shoulder X-ray, forward flexion, abduction and external rotation angle, Constant-Murley shoulder score and pain Visual Analogue Scale (VAS) at each follow-up for up to 24 months. The current study enrolled a total of 42 acute Neer type II distal clavicle fracture patients attended our hospital from March 2010 to December 2013. All patients had achieved complete healing and followed up for an average of 26 months (range, 24-38 months). At 3-month and 6-month follow-ups, Constant-Murley score in the ligament reconstruction group was significantly higher (93.8±2.6 vs. 88.7±8.7; 95.9±2.7 vs. 93.0±7.0, P<0.05), while VAS score was poorer than those in the hook plate group (1.6±0.8 vs. 2.5±1.9; 1.1±1.0 vs. 1.6±1.7, P<0.05). Reconstruction with autologous gracilis tendon improved VAS pain score in early postoperation follow-up; while Constant-Murley score and VAS score were significantly improved in the hook plate group after the implant was removed. These suggested that both coracoclavicular reconstruction with autologous gracilis tendon and clavicular hook plate could achieve satisfactory results. Level II, low-powered prospective randomized trial. Copyright © 2017 Elsevier Masson SAS. All rights reserved.
Further Study of the Choice of Anchor Tests in Equating
ERIC Educational Resources Information Center
Trierweiler, Tammy J.; Lewis, Charles; Smith, Robert L.
2016-01-01
In this study, we describe what factors influence the observed score correlation between an (external) anchor test and a total test. We show that the anchor to full-test observed score correlation is based on two components: the true score correlation between the anchor and total test, and the reliability of the anchor test. Findings using an…
An earth anchor system: installation and design guide.
R.L. Copstead; D.D. Studier
1990-01-01
A system for anchoring the guylines and skylines of cable yarding equipment is presented. A description of three types of tipping plate anchors is given. Descriptions of the installation equipment and methods specific to each type are given. Procedures for determining the correct number of anchors to install are included, as are guidelines for installing the anchors so...
46 CFR 28.235 - Anchors and radar reflectors.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 46 Shipping 1 2011-10-01 2011-10-01 false Anchors and radar reflectors. 28.235 Section 28.235....235 Anchors and radar reflectors. (a) Each vessel must be fitted with an anchor(s) and chain(s), cable... rigged with gear that provides a radar signature from a distance of 6 miles, each nonmetallic hull vessel...
46 CFR 28.235 - Anchors and radar reflectors.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 46 Shipping 1 2010-10-01 2010-10-01 false Anchors and radar reflectors. 28.235 Section 28.235....235 Anchors and radar reflectors. (a) Each vessel must be fitted with an anchor(s) and chain(s), cable... rigged with gear that provides a radar signature from a distance of 6 miles, each nonmetallic hull vessel...
46 CFR 28.235 - Anchors and radar reflectors.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 46 Shipping 1 2012-10-01 2012-10-01 false Anchors and radar reflectors. 28.235 Section 28.235....235 Anchors and radar reflectors. (a) Each vessel must be fitted with an anchor(s) and chain(s), cable... rigged with gear that provides a radar signature from a distance of 6 miles, each nonmetallic hull vessel...
46 CFR 28.235 - Anchors and radar reflectors.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 46 Shipping 1 2014-10-01 2014-10-01 false Anchors and radar reflectors. 28.235 Section 28.235....235 Anchors and radar reflectors. (a) Each vessel must be fitted with an anchor(s) and chain(s), cable... rigged with gear that provides a radar signature from a distance of 6 miles, each nonmetallic hull vessel...
46 CFR 28.235 - Anchors and radar reflectors.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 46 Shipping 1 2013-10-01 2013-10-01 false Anchors and radar reflectors. 28.235 Section 28.235....235 Anchors and radar reflectors. (a) Each vessel must be fitted with an anchor(s) and chain(s), cable... rigged with gear that provides a radar signature from a distance of 6 miles, each nonmetallic hull vessel...
Knudson, W E; Cerniglia, M W; Carro, A
1998-06-01
Many procedures performed by podiatric surgeons today require the use of a soft-tissue anchoring device. In recent years, many new anchoring devices have become available for use in the foot and ankle. The authors introduce a new soft-tissue anchoring device that has yet to be described in the podiatric literature and present two cases in which the new anchor was used.
Güleçyüz, Mehmet F; Kraus-Petersen, Michael; Schröder, Christian; Ficklscherer, Andreas; Wagenhäuser, Markus U; Braun, Christian; Müller, Peter E; Pietschmann, Matthias F
2018-02-01
The incidence of osteoporosis and rotator cuff tears increases with age. Cement augmentation of bones is an established method in orthopedic and trauma surgery. This study analyses if polymethylmethacrylate or bioabsorbable cement can improve the primary stability of a bioabsorbable suture anchor in vitro in comparison to a non-augmented suture anchor in osteoporotic human humeri. The trabecular bone mineral density was measured to ensure osteopenic human specimens. Then the poly-l-lactic acid Bio-Corkscrew® FT was implanted in the greater tuberosity footprint with polymethylmethacrylate Refobacin® cement augmentation ( n = 8), with Cerament™ Bone Void Filler augmentation ( n = 8) and without augmentation ( n = 8). Using a cyclic testing protocol, the failure loads, system displacement, and failure modes were recorded. The Cerament™ augmented Bio-Corkscrew® FT yielded the highest failure loads (206.7 N), followed by polymethylmethacrylate Refobacin® augmentation (206.1 N) and without augmentation (160.0 N). The system displacement was lowest for Cerament™ augmentation (0.72 mm), followed by polymethylmethacrylate (0.82 mm) and without augmentation (1.50 mm). Statistical analysis showed no significant differences regarding the maximum failure loads ( p = 0.1644) or system displacement ( p = 0.4199). The main mode of failure for all three groups was suture slippage. The primary stability of the Bio-Corkscrew® FT is not influenced by bone cement augmentation with polymethylmethacrylate Refobacin® or with bioabsorbable Cerament™ in comparison to the non-cemented anchors. The cement augmentation of rotator cuff suture anchors in osteoporotic bones remains questionable since biomechanical tests show no significant advantage.
Li, Feng; Pandey, Bipin; Ito, Takashi
2012-12-04
This paper reports the effects of linker length on electron propagation through ferrocene moieties covalently anchored onto insulator-based cylindrical nanopores derived from a cylinder-forming polystyrene-poly(methylmethacrylate) diblock copolymer. These nanopores (24 nm in diameter, 30 nm long) aligned perpendicular to an underlying gold electrode were modified via esterification of their surface COOH groups with OH-terminated ferrocene derivatives having different alkyl linkers (FcCO(CH(2))(n)OH; n = 2, 5, 15). Cyclic voltammograms were measured in 0.1 M NaBF(4) at different scan rates to assess the efficiency of electron propagation through the ferrocene moieties. The redox peaks of the anchored ferrocenes were observed at nanoporous films decorated with FcCO(CH(2))(15)OH and FcCO(CH(2))(5)OH, but not at those with FcCO(CH(2))(2)OH. Importantly, the higher electron propagation efficiency was observed in the use of the longer linker, as shown by the apparent diffusion coefficients (ca. 10(-12) cm(2)/s for n = 15; ca. 10(-13) cm(2)/s for n = 5; no electron propagation for n = 2). The observed electron propagation resulted from electron hopping across relatively large spacing that was controlled by the motion of anchored redox sites (bounded diffusion). The longer linker led to the larger physical displacement range of anchored ferrocene moieties, facilitating the approach of the adjacent ferrocene moieties within a distance required for electron self-exchange reaction. The linker-based control of redox-involved electron propagation on nanostructured, insulating surfaces will provide a means for designing novel molecular electronics and electrochemical sensors.
Corrosion of rock anchors in US coal mines
NASA Astrophysics Data System (ADS)
Bylapudi, Gopi
The mining industry is a major consumer of rock bolts in the United States. Due to the high humidity in the underground mining environment, the rock bolts corrode and loose their load bearing capacity which in turn reduces the life expectancy of the ground support and, thus, creates operational difficulties and number of safety concerns[1]. Research on rock anchor corrosion has not been adequately extensive in the past and the effects of several factors in the mine atmosphere and waters are not clearly understood. One of the probable reasons for this lack of research may be attributed to the time required for gathering meaningful data that makes the study of corrosion quite challenging. In this particular work underground water samples from different mines in the Illinois coal basin were collected and the major chemical content was analyzed and used for the laboratory testing. The corrosion performance of the different commercial rock anchors was investigated by techniques such as laboratory immersion tests in five different corrosion chambers, and potentiodynamic polarization tests in simulated ground waters based on the Illinois coal basin. The experiments were conducted with simulate underground mining conditions (corrosive). The tensile strengths were measured for the selected rock anchors taken every 3 months from the salt spray corrosion chambers maintained at different pH values and temperatures. The corrosion potential (Ecorr ), corrosion current (Icorr) and the corresponding corrosion rates (CR) of the selected commercial rock bolts: #5, #6, #6 epoxy coated and #7 forged head rebar steels, #6 and #7 threaded head rebar steels were measured at the solution pH values of 5 and 8 at room temperature. The open circuit potential (OCP) values of the different rock anchors were recorded in 3 selected underground coal mines (A, B & C) in the Illinois coal basin and the data compared with the laboratory electrochemical tests for analyzing the life of the rock anchors installed in the mines with respect to corrosion potential and corrosion current measured. The results of this research were statistically validated. This research will have direct consequence to the rock related safety. The results of this research indicate that certain corrosive conditions are commonly found in mines but uniform corrosion (around 0.01-0.03mm loss per year across the diameter) is generally not considered a serious issue. From this study, longer term research for longterm excavation support is recommended that could quantify the problem depending on the rock anchor used and specific strata conditions.
Arthroscopic knotless anchor repair of triangular fibrocartilage in distal radius fracture.
García-Ruano, Á A; Najarro-Cid, F; Jiménez-Martín, A; Gómez de los Infantes-Troncoso, J G; Sicre-González, M
2015-01-01
Lesions of triangular fibrocartilage (TFC) are associated with distal radioulnar joint instability. Arthroscopic treatment of these lesions improves functional outcome of affected patients. The aim of the present work is to evaluate functional and occupational outcome of TCF repair using an arthroscopic knotless anchor device in patients with associated distal radius fracture. An observational, descriptive study was carried out between November 2011 and January 2014 including 21 patients with distal radius fracture and Palmer 1B lesions of TCF (Atzei class 2 and 3) that were treated by arthroscopic knotless anchor (PopLok® 2,8mm, ConMed, USA). Mean follow-up was 18 months. Functional (Mayo Wrist Score) and occupational outcome results were analyzed. Mean age of the group was 43.0±8.8 years, with 19% of the patients being female. There was an associated scapholunate lesion in 5 cases. Functional results reached a mean of 83.4±16.1 points onMayo Wrist Score. Mean sick-leave time was 153.16±48.5 days. Complete occupational reintegration was reached in 89.5% of cases. There were no postoperative complications. Arthroscopic knotless anchor repair of 1B TFC tears is a minimally invasive method of treatment that improves tension of fixation, avoiding subsequent loosen, in our experience, with few complications and good functional and occupational results. Copyright © 2014 SECOT. Published by Elsevier Espana. All rights reserved.
Maheshwari, Aditya V; Walters, Jason A; Henshaw, Robert M
2012-05-01
We describe an extensile posterior approach to the ankle with detachment of the Achilles tendon for resection of extensive tumors involving the posterior ankle. To the best of our knowledge, this approach and its results have not been reported for oncologic indications. The surgical technique involved detachment of the Achilles tendon, tumor resection and reconstruction of the Achilles tendon with anchor sutures, and was used in six patients. The diagnosis was pigmented villonodular synovitis (5) and chondroblastoma (1). At a mean of 6 (range, 2 to 10) years followup, all patients were free from tumor. All patients could walk an unlimited amount without any support. There were no problems with Achilles incompetence. The mean Musculoskeletal Tumor Society score was 97 ± 4.2% (range, 90 to 100) and the mean Achilles Tendon Total Rupture Score was 95 ± 5.7 (range, 87 to 100). One patient with screwed suture anchors had backing out of two anchors along with deep infection, requiring surgical debridement and anchor removal. One other patient had a post-traumatic small wound dehiscence which responded to local wound care. Excellent exposure, tumor control and patient function were achieved by this approach in a select group of patients. The surgical technique described in this report offers another alternative for an extensile posterior approach to the ankle and/or subtalar joints.
Pullout strength of standard vs. cement-augmented rotator cuff repair anchors in cadaveric bone.
Aziz, Keith T; Shi, Brendan Y; Okafor, Louis C; Smalley, Jeremy; Belkoff, Stephen M; Srikumaran, Uma
2018-05-01
We evaluate a novel method of rotator cuff repair that uses arthroscopic equipment to inject bone cement into placed suture anchors. A cadaver model was used to assess the pullout strength of this technique versus anchors without augmentation. Six fresh-frozen matched pairs of upper extremities were screened to exclude those with prior operative procedures, fractures, or neoplasms. One side from each pair was randomized to undergo standard anchor fixation with the contralateral side to undergo anchor fixation augmented with bone cement. After anchor fixation, specimens were mounted on a servohydraulic testing system and suture anchors were pulled at 90° to the insertion to simulate the anatomic pull of the rotator cuff. Sutures were pulled at 1 mm/s until failure. The mean pullout strength was 540 N (95% confidence interval, 389 to 690 N) for augmented anchors and 202 N (95% confidence interval, 100 to 305 N) for standard anchors. The difference in pullout strength was statistically significant (P < 0.05). This study shows superior pullout strength of a novel augmented rotator cuff anchor technique. The described technique, which is achieved by extruding polymethylmethacrylate cement through a cannulated in situ suture anchor with fenestrations, significantly increased the ultimate failure load in cadaveric human humeri. This novel augmented fixation technique was simple and can be implemented with existing instrumentation. In osteoporotic bone, it may substantially reduce the rate of anchor failure. Copyright © 2018 Elsevier Ltd. All rights reserved.
The Dynamics of Scaling: A Memory-Based Anchor Model of Category Rating and Absolute Identification
ERIC Educational Resources Information Center
Petrov, Alexander A.; Anderson, John R.
2005-01-01
A memory-based scaling model--ANCHOR--is proposed and tested. The perceived magnitude of the target stimulus is compared with a set of anchors in memory. Anchor selection is probabilistic and sensitive to similarity, base-level strength, and recency. The winning anchor provides a reference point near the target and thereby converts the global…
ERIC Educational Resources Information Center
Luetmer, Marianne T.; Cloud, Beth A.; Youdas, James W.; Pawlina, Wojciech; Lachman, Nirusha
2018-01-01
Quality of healthcare delivery is dependent on collaboration between professional disciplines. Integrating opportunities for interprofessional learning in health science education programs prepares future clinicians to function as effective members of a multi-disciplinary care team. This study aimed to create a modified team-based learning (TBL)…
Code of Federal Regulations, 2014 CFR
2014-07-01
... within the RNA must proceed as directed when hailed by a Coast Guard vessel by siren, radio, flashing.... This RNA will be enforced intermittently, depending on risks posed by the ongoing construction project... regulations, entry into, anchoring, or movement within the RNA, during periods of enforcement, is prohibited...
Anchor Selection Strategies for DIF Analysis: Review, Assessment, and New Approaches
ERIC Educational Resources Information Center
Kopf, Julia; Zeileis, Achim; Strobl, Carolin
2015-01-01
Differential item functioning (DIF) indicates the violation of the invariance assumption, for instance, in models based on item response theory (IRT). For item-wise DIF analysis using IRT, a common metric for the item parameters of the groups that are to be compared (e.g., for the reference and the focal group) is necessary. In the Rasch model,…
Cultures in Collision: Cosmology, Jurisprudence, and Religion in Tlingit Territory
ERIC Educational Resources Information Center
Russell, Caskey
2009-01-01
The term "first contact" usually conjures up an image of a group of European soldiers landing on a beach in the New World, their ship anchored just offshore, while a large group of Natives approaches the soldiers. On both sides there is caution but also curiosity. Beyond the physical collision of two different peoples there is also a…
A lunar/Martian anchor emplacement system
NASA Astrophysics Data System (ADS)
Clinton, Dustin; Holt, Andrew; Jantz, Erik; Kaufman, Teresa; Martin, James; Weber, Reed
On the Moon or Mars, it is necessary to have an anchor, or a stable, fixed point able to support the forces necessary to rescue a stuck vehicle, act as a stake for a tent in a Martian gale, act as a fulcrum in the erection of general construction poles, or support tent-like regolith shields. The anchor emplacement system must be highly autonomous. It must supply the energy and stability for anchor deployment. The goal of the anchor emplacement system project is to design and build a prototype anchor and to design a conceptual anchor emplacement system. Various anchors were tested in a 1.3 cubic meter test bed containing decomposed granite. A simulated lunar soil was created by adjusting the moisture and compaction characteristics of the soil. We conducted tests on emplacement torque, amount of force the anchor could withstand before failure, anchor pull out force at various angles, and soil disturbances caused by placing the anchor. A single helix auger anchor performed best in this test bed based on energy to emplace, and the ultimate holding capacity. The anchor was optimized for ultimate holding capacity, minimum emplacement torque, and minimum soil disturbance in sandy soils yielding the following dimensions: helix diameter (4.45 cm), pitch (1.27 cm), blade thickness (0.15 cm), total length (35.56 cm), shaft diameter (0.78 cm), and a weight of 212.62 g. The experimental results showed that smaller diameter, single-helix augers held more force than larger diameter augers for a given depth. The emplacement system consists of a flywheel and a motor for power, sealed in a protective box supported by four legs. The flywheel system was chosen over a gear system based on its increased reliability in the lunar environment.
Self-tapping ability of carbon fibre reinforced polyetheretherketone suture anchors.
Feerick, Emer M; Wilson, Joanne; Jarman-Smith, Marcus; Ó'Brádaigh, Conchur M; McGarry, J Patrick
2014-10-01
An experimental and computational investigation of the self-tapping ability of carbon fibre reinforced polyetheretherketone (CFR-PEEK) has been conducted. Six CFR-PEEK suture anchor designs were investigated using PEEK-OPTIMA® Reinforced, a medical grade of CFR-PEEK. Experimental tests were conducted to investigate the maximum axial force and torque required for self-taping insertion of each anchor design. Additional experimental tests were conducted for some anchor designs using pilot holes. Computational simulations were conducted to determine the maximum stress in each anchor design at various stages of insertion. Simulations also were performed to investigate the effect of wall thickness in the anchor head. The maximum axial force required to insert a self-tapping CFR-PEEK suture anchor did not exceed 150 N for any anchor design. The maximum torque required to insert a self-tapping CFR-PEEK suture anchor did not exceed 0.8 Nm. Computational simulations reveal significant stress concentrations in the region of the anchor tip, demonstrating that a re-design of the tip geometry should be performed to avoid fracture during self-tapping, as observed in the experimental component of this study. This study demonstrates the ability of PEEK-OPTIMA Reinforced suture anchors to self-tap polyurethane foam bone analogue. This provides motivation to further investigate the self-tapping ability of CFR-PEEK suture anchors in animal/cadaveric bone. An optimised design for CFR-PEEK suture anchors offers the advantages of radiolucency, and mechanical properties similar to bone with the ability to self-tap. This may have positive implications for reducing surgery times and the associated costs with the procedure. © The Author(s) 2014 Reprints and permissions: sagepub.co.uk/journalsPermissions.nav.
A lunar/Martian anchor emplacement system
NASA Technical Reports Server (NTRS)
Clinton, Dustin; Holt, Andrew; Jantz, Erik; Kaufman, Teresa; Martin, James; Weber, Reed
1993-01-01
On the Moon or Mars, it is necessary to have an anchor, or a stable, fixed point able to support the forces necessary to rescue a stuck vehicle, act as a stake for a tent in a Martian gale, act as a fulcrum in the erection of general construction poles, or support tent-like regolith shields. The anchor emplacement system must be highly autonomous. It must supply the energy and stability for anchor deployment. The goal of the anchor emplacement system project is to design and build a prototype anchor and to design a conceptual anchor emplacement system. Various anchors were tested in a 1.3 cubic meter test bed containing decomposed granite. A simulated lunar soil was created by adjusting the moisture and compaction characteristics of the soil. We conducted tests on emplacement torque, amount of force the anchor could withstand before failure, anchor pull out force at various angles, and soil disturbances caused by placing the anchor. A single helix auger anchor performed best in this test bed based on energy to emplace, and the ultimate holding capacity. The anchor was optimized for ultimate holding capacity, minimum emplacement torque, and minimum soil disturbance in sandy soils yielding the following dimensions: helix diameter (4.45 cm), pitch (1.27 cm), blade thickness (0.15 cm), total length (35.56 cm), shaft diameter (0.78 cm), and a weight of 212.62 g. The experimental results showed that smaller diameter, single-helix augers held more force than larger diameter augers for a given depth. The emplacement system consists of a flywheel and a motor for power, sealed in a protective box supported by four legs. The flywheel system was chosen over a gear system based on its increased reliability in the lunar environment.
Van der Vaart, J M; te Biesebeke, R; Chapman, J W; Toschka, H Y; Klis, F M; Verrips, C T
1997-01-01
The carboxyl-terminal regions of five cell wall proteins (Cwp1p, Cwp2p, Ag alpha 1p, Tip1p, and Flo1p) and three potential cell wall proteins (Sed1p, YCR89w, and Tir1p) all proved capable of immobilizing alpha-galactosidase in the cell wall of Saccharomyces cerevisiae. The fraction of the total amount of fusion protein that was localized to the cell wall varied depending on the anchor domain used. The highest proportion of cell wall incorporation was achieved with Cwp2p, Ag alpha 1p, or Sed1p as an anchor. Although 80% of these fusion proteins were incorporated in the cell wall, the total production of alpha-galactosidase-Ag alpha 1p was sixfold lower than that of alpha-galactosidase-Cwp2p and eightfold lower than that of alpha-galactosidase-Sed1p. Differences in mRNA levels were not responsible for this discrepancy, nor was an intracellular accumulation of alpha-galactosidase-Ag alpha 1p detectable. A lower translation efficiency of the alpha-galactosidase-AG alpha 1 fusion construct is most likely to be responsible for the low level of protein production. alpha-Galactosidase immobilized by the carboxyl-terminal 67 amino acids of Cwp2p was most effective in the hydrolysis of the high-molecular-weight substrate guar gum from Cyamopsis tetragonoloba. This indicates that the use of a large anchoring domain does not necessarily result in a better exposure of the immobilized enzyme to the exterior of the yeast cell. PMID:9023939
A study of planar anchor groups for graphene-based single-molecule electronics.
Bailey, Steven; Visontai, David; Lambert, Colin J; Bryce, Martin R; Frampton, Harry; Chappell, David
2014-02-07
To identify families of stable planar anchor groups for use in single molecule electronics, we report detailed results for the binding energies of two families of anthracene and pyrene derivatives adsorbed onto graphene. We find that all the selected derivatives functionalized with either electron donating or electron accepting substituents bind more strongly to graphene than the parent non-functionalized anthracene or pyrene. The binding energy is sensitive to the detailed atomic alignment of substituent groups over the graphene substrate leading to larger than expected binding energies for -OH and -CN derivatives. Furthermore, the ordering of the binding energies within the anthracene and pyrene series does not simply follow the electron affinities of the substituents. Energy barriers to rotation or displacement on the graphene surface are much lower than binding energies for adsorption and therefore at room temperature, although the molecules are bound to the graphene, they are almost free to move along the graphene surface. Binding energies can be increased by incorporating electrically inert side chains and are sensitive to the conformation of such chains.
A study of planar anchor groups for graphene-based single-molecule electronics
NASA Astrophysics Data System (ADS)
Bailey, Steven; Visontai, David; Lambert, Colin J.; Bryce, Martin R.; Frampton, Harry; Chappell, David
2014-02-01
To identify families of stable planar anchor groups for use in single molecule electronics, we report detailed results for the binding energies of two families of anthracene and pyrene derivatives adsorbed onto graphene. We find that all the selected derivatives functionalized with either electron donating or electron accepting substituents bind more strongly to graphene than the parent non-functionalized anthracene or pyrene. The binding energy is sensitive to the detailed atomic alignment of substituent groups over the graphene substrate leading to larger than expected binding energies for -OH and -CN derivatives. Furthermore, the ordering of the binding energies within the anthracene and pyrene series does not simply follow the electron affinities of the substituents. Energy barriers to rotation or displacement on the graphene surface are much lower than binding energies for adsorption and therefore at room temperature, although the molecules are bound to the graphene, they are almost free to move along the graphene surface. Binding energies can be increased by incorporating electrically inert side chains and are sensitive to the conformation of such chains.
Loukanov, Alexandre; Filipov, Chavdar; Lecheva, Marta; Emin, Saim
2015-11-01
The immobilization and stretching of randomly coiled DNA molecules on hydrophobic carbon film is a challenging microscopic technique, which possess various applications, especially for genome sequencing. In this report the pyrenyl nucleus is used as an anchor moiety to acquire higher affinity of double stranded DNA to the graphite surface. DNA and pyrene are joined through a linker composed of four aliphatic methylene groups. For the preparation of pyrene-terminated DNA a multifunctional phosphoramidite monomer compound was designed. It contains pyrenylbutoxy group as an anchor moiety for π-stacking attachment to the carbon film, 2-cyanoethyloxy, and diisopropylamino as coupling groups for conjugation to activated oligonucleotide chain or DNA molecule. This monomer derivative was suitable for incorporation into automated solid-phase DNA synthesis and was attached to the 5' terminus of the DNA chain through a phosphodiester linkage. The successful immobilization and stretching of pyrene-terminated DNA was demonstrated by conventional 100 kV transmission electron microscope. The microscopic analysis confirmed the stretched shape of the negatively charged nucleic acid pieces on the hydrophobic carbon film. © 2015 Wiley Periodicals, Inc.
Comparative Study on Different Slot Forms of Prestressed Anchor Blocks
NASA Astrophysics Data System (ADS)
Fan, Rong; Si, Jianhui; Jian, Zheng
2018-03-01
In this paper, two models of prestressed pier, rectangular cavity anchor block and arch hollow anchor block are established. The ABAQUS software was used to calculate the stress of the surface of the neck of the pier and the cavity of the anchor block, through comparative analysis. The results show that compared with the rectangular cavity anchor block, the stress of the pier and the cavity can be effectively reduced when the arch hole is used, and the amount of prestressed anchor can be reduced, so as to obtain obvious economic benefits.
2017-01-01
Background Uniportal video-assisted thoracoscopic surgery (VATS) is an alternative modality for treatment of primary spontaneous pneumothorax (PSP) with its less invasiveness and acceptable surgical outcomes. However, a few reports have been introduced for wound management to achieve better cosmetic wound healing and for placement of the chest tube in uniportal VATS. Thus, we aimed to evaluate the feasibility of our novel method for wound closure and concomitant tube placement using continuous barbed suture material in uniportal VATS for PSP. Methods Between July 2012 and December 2015, consecutive 31 patients (22 males) underwent uniportal VATS to treat PSP. Bilateral approaches were performed in four patients, thus total 35 cases were enrolled. We divided them into two groups with one group of 17 (48.5%) cases (group A), using barbed absorbable wound closure device for knotless continuous wound closure and subsequent chest tube anchoring, and the other group of 18 (51.4%) cases (group B), using conventional suture anchoring after skin closure using absorbable suture device. Postoperative surgical outcomes were compared to assess the feasibility of this technique. Results Demographic data demonstrate no significant difference in both groups. There was no significant difference in length of hospital stay (3.7±1.2 vs. 4.1±1.2 days, P=0.267) and in median chest tube indwelling time (2.4±0.9 vs. 3.1±1.2 days, P=0.066), respectively. Operation time in group A was shorter than in group B but there was no significant difference (41.7±11.8 vs. 45.6±16.0 minutes, P=0.415). There was neither conversion to two or three port VATS in all cases. In group A, all chest tubes were removed with concomitant sealing the tube removal site by pulling the thread. Residual knots do not exist that stitch out procedure is not required. There was no wound complication in both groups during the median follow-up period of 18 months. Conclusions Knotless, barbed suture material technique for continuous wound closure with concomitant chest tube placement achieved equivocal outcomes in comparison to the conventional suture anchoring method. We suggest this simple technique for wound closure and easy tube removal with cosmetic wound healing in uniportal VATS for PSP. PMID:28616277
ERIC Educational Resources Information Center
Liu, Jinghua; Sinharay, Sandip; Holland, Paul W.; Feigenbaum, Miriam; Curley, Edward
2009-01-01
This study explores the use of a different type of anchor, a "midi anchor", that has a smaller spread of item difficulties than the tests to be equated, and then contrasts its use with the use of a "mini anchor". The impact of different anchors on observed score equating were evaluated and compared with respect to systematic…
Photovoltaic solar concentrator
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nielson, Gregory N.; Cruz-Campa, Jose Luis; Okandan, Murat
A process including forming a photovoltaic solar cell on a substrate, the photovoltaic solar cell comprising an anchor positioned between the photovoltaic solar cell and the substrate to suspend the photovoltaic solar cell from the substrate. A surface of the photovoltaic solar cell opposite the substrate is attached to a receiving substrate. The receiving substrate may be bonded to the photovoltaic solar cell using an adhesive force or a metal connecting member. The photovoltaic solar cell is then detached from the substrate by lifting the receiving substrate having the photovoltaic solar cell attached thereto and severing the anchor connecting themore » photovoltaic solar cell to the substrate. Depending upon the type of receiving substrate used, the photovoltaic solar cell may be removed from the receiving substrate or remain on the receiving substrate for use in the final product.« less
The nucleoplasmin homolog NLP mediates centromere clustering and anchoring to the nucleolus.
Padeken, Jan; Mendiburo, María José; Chlamydas, Sarantis; Schwarz, Hans-Jürgen; Kremmer, Elisabeth; Heun, Patrick
2013-04-25
Centromere clustering during interphase is a phenomenon known to occur in many different organisms and cell types, yet neither the factors involved nor their physiological relevance is well understood. Using Drosophila tissue culture cells and flies, we identified a network of proteins, including the nucleoplasmin-like protein (NLP), the insulator protein CTCF, and the nucleolus protein Modulo, to be essential for the positioning of centromeres. Artificial targeting further demonstrated that NLP and CTCF are sufficient for clustering, while Modulo serves as the anchor to the nucleolus. Centromere clustering was found to depend on centric chromatin rather than specific DNA sequences. Moreover, unclustering of centromeres results in the spatial destabilization of pericentric heterochromatin organization, leading to partial defects in the silencing of repetitive elements, defects during chromosome segregation, and genome instability. Copyright © 2013 Elsevier Inc. All rights reserved.
Bowman, Shaun M; Piwowar, Amy; Al Dabbous, Mash'el; Vierula, John; Free, Stephen J
2006-03-01
Using mutational and proteomic approaches, we have demonstrated the importance of the glycosylphosphatidylinositol (GPI) anchor pathway for cell wall synthesis and integrity and for the overall morphology of the filamentous fungus Neurospora crassa. Mutants affected in the gpig-1, gpip-1, gpip-2, gpip-3, and gpit-1 genes, which encode components of the N. crassa GPI anchor biosynthetic pathway, have been characterized. GPI anchor mutants exhibit colonial morphologies, significantly reduced rates of growth, altered hyphal growth patterns, considerable cellular lysis, and an abnormal "cell-within-a-cell" phenotype. The mutants are deficient in the production of GPI-anchored proteins, verifying the requirement of each altered gene for the process of GPI-anchoring. The mutant cell walls are abnormally weak, contain reduced amounts of protein, and have an altered carbohydrate composition. The mutant cell walls lack a number of GPI-anchored proteins, putatively involved in cell wall biogenesis and remodeling. From these studies, we conclude that the GPI anchor pathway is critical for proper cell wall structure and function in N. crassa.
Anchoring of LPXTG-Like Proteins to the Gram-Positive Cell Wall Envelope.
Siegel, Sara D; Reardon, Melissa E; Ton-That, Hung
2017-01-01
In Gram-positive bacteria, protein precursors with a signal peptide and a cell wall sorting signal (CWSS)-which begins with an LPXTG motif, followed by a hydrophobic domain and a tail of positively charged residues-are targeted to the cell envelope by a transpeptidase enzyme call sortase. Evolution and selective pressure gave rise to six classes of sortase, i.e., SrtA-F. Only class C sortases are capable of polymerizing substrates harboring the pilin motif and CWSS into protein polymers known as pili or fimbriae, whereas the others perform cell wall anchoring functions. Regardless of the products generated from these sortases, the basic principle of sortase-catalyzed transpeptidation is the same. It begins with the cleavage of the LPXTG motif, followed by the cross-linking of this cleaved product at the threonine residue to a nucleophile, i.e., an active amino group of the peptidoglycan stem peptide or the lysine residue of the pilin motif. This chapter will summarize the efforts to identify and characterize sortases and their associated pathways with emphasis on the cell wall anchoring function.
Brouilly, Nicolas; Lecroisey, Claire; Martin, Edwige; Pierson, Laura; Mariol, Marie-Christine; Qadota, Hiroshi; Labouesse, Michel; Streichenberger, Nathalie; Mounier, Nicole; Gieseler, Kathrin
2015-11-15
Duchenne muscular dystrophy (DMD) is a genetic disease characterized by progressive muscle degeneration due to mutations in the dystrophin gene. In spite of great advances in the design of curative treatments, most patients currently receive palliative therapies with steroid molecules such as prednisone or deflazacort thought to act through their immunosuppressive properties. These molecules only slightly slow down the progression of the disease and lead to severe side effects. Fundamental research is still needed to reveal the mechanisms involved in the disease that could be exploited as therapeutic targets. By studying a Caenorhabditis elegans model for DMD, we show here that dystrophin-dependent muscle degeneration is likely to be cell autonomous and affects the muscle cells the most involved in locomotion. We demonstrate that muscle degeneration is dependent on exercise and force production. Exhaustive studies by electron microscopy allowed establishing for the first time the chronology of subcellular events occurring during the entire process of muscle degeneration. This chronology highlighted the crucial role for dystrophin in stabilizing sarcomeric anchoring structures and the sarcolemma. Our results suggest that the disruption of sarcomeric anchoring structures and sarcolemma integrity, observed at the onset of the muscle degeneration process, triggers subcellular consequences that lead to muscle cell death. An ultra-structural analysis of muscle biopsies from DMD patients suggested that the chronology of subcellular events established in C. elegans models the pathogenesis in human. Finally, we found that the loss of sarcolemma integrity was greatly reduced after prednisone treatment suggesting a role for this molecule in plasma membrane stabilization. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Lorbach, Olaf; Trennheuser, Christian; Kohn, Dieter; Anagnostakos, Konstantinos
2016-07-01
Biomechanical comparison of three different fixation techniques for a proximal biceps tenodesis. Eighteen human cadaver specimens were used for the testing. A tenodesis of the proximal biceps tendon was performed using a double-loaded suture anchor (5.5-mm Corkscrew, Arthrex), a knotless anchor (5.5-mm SwiveLock, Arthrex) or a forked knotless anchor (8-mm SwiveLock, Arthrex). Reconstructions were cyclically loaded for 50 cycles from 10-60 to 10-100 N. Cyclic displacement and ultimate failure loads were determined, and mode of failure was evaluated. Cyclic displacement at 60 N revealed a mean of 3.3 ± 1.1 mm for the Corkscrew, 5.4 ± 1.4 mm for the 5.5-mm SwiveLock and 2.9 ± 1.6 mm for the 8-mm forked SwiveLock. At 100 N, 5.1 ± 2.2 mm were seen for the Corkscrew anchor, 8.7 ± 2.5 mm for the 5.5-mm SwiveLock and 4.8 ± 3.3 mm for the 8-mm forked SwiveLock anchor. Significant lower cyclic displacement was seen for the Corkscrew anchor (p < 0.020) as well as the 8-mm SwiveLock anchor (p < 0.023) compared to the 5.5-mm SwiveLock anchor at 60 N. An ultimate load to failure of 109 ± 27 N was found for the Corkscrew anchor, 125 ± 25 N were measured for the 5.5-mm SwiveLock anchor, and 175 ± 42 N were found for the 8-mm forked SwiveLock anchor. Significant differences were seen between the 8-mm SwiveLock compared to the 5.5-mm SwiveLock (p < 0.044) as well as the Corkscrew anchor (p < 0.009). No significant differences were seen between the Corkscrew and the 5.5-mm SwiveLock anchor. The new 8-mm forked SwiveLock anchor significantly enhances construct stability compared to a 5.5-mm double-loaded Corkscrew anchor as well as the 5.5-mm SwiveLock suture anchor. However, a restrictive postoperative rehabilitation seems to be important in all tested reconstructions in order to avoid early failure of the construct.
Wang, Gunuk; Jeong, Hyunhak; Ku, Jamin; Na, Seok-In; Kang, Hungu; Ito, Eisuke; Jang, Yun Hee; Noh, Jaegeun; Lee, Takhee
2014-04-01
We investigated the interfacial electronic properties of self-assembled monolayers (SAM)-modified Au metal surface at elevated temperatures. We observed that the work functions of the Au metal surfaces modified with SAMs changed differently under elevated-temperature conditions based on the type of SAMs categorized by three different features based on chemical anchoring group, molecular backbone structure, and the direction of the dipole moment. The temperature-dependent work function of the SAM-modified Au metal could be explained in terms of the molecular binding energy and the thermal stability of the SAMs, which were investigated with thermal desorption spectroscopic measurements and were explained with molecular modeling. Our study will aid in understanding the electronic properties at the interface between SAMs and metals in organic electronic devices if an annealing treatment is applied. Copyright © 2013 Elsevier Inc. All rights reserved.
Rego, Sara; Heal, Timothy J.; Pidwill, Grace R.; Till, Marisa; Robson, Alice; Lamont, Richard J.; Sessions, Richard B.; Jenkinson, Howard F.; Race, Paul R.; Nobbs, Angela H.
2016-01-01
Streptococcus agalactiae (group B Streptococcus, GBS) is the predominant cause of early-onset infectious disease in neonates and is responsible for life-threatening infections in elderly and immunocompromised individuals. Clinical manifestations of GBS infection include sepsis, pneumonia, and meningitis. Here, we describe BspA, a deviant antigen I/II family polypeptide that confers adhesive properties linked to pathogenesis in GBS. Heterologous expression of BspA on the surface of the non-adherent bacterium Lactococcus lactis confers adherence to scavenger receptor gp340, human vaginal epithelium, and to the fungus Candida albicans. Complementary crystallographic and biophysical characterization of BspA reveal a novel β-sandwich adhesion domain and unique asparagine-dependent super-helical stalk. Collectively, these findings establish a new bacterial adhesin structure that has in effect been hijacked by a pathogenic Streptococcus species to provide competitive advantage in human mucosal infections. PMID:27311712
24 CFR 3280.302 - Definitions.
Code of Federal Regulations, 2010 CFR
2010-04-01
... any device or other means designed to transfer home anchoring loads to the ground. Anchoring equipment... means a specific anchoring assembly device designed to transfer home anchoring loads to the ground... DEVELOPMENT MANUFACTURED HOME CONSTRUCTION AND SAFETY STANDARDS Body and Frame Construction Requirements...
Measures for the Safe Operation of Anchoring in a Storm
NASA Astrophysics Data System (ADS)
Han, Tianding; Ai, Wanzheng
2018-01-01
The collision and stranding of ship other shipwreck accidents are mainly caused by the ship dragging. As the water is less in coastal areas, anchoring has less influence on cementing ship, so strong wind is the most important factor for ship anchoring. Therefore, it is very important to study the safety evaluation of mooring in strong wind. In this paper, the measures taken after the ship anchoring is come up with from the analysis on the typical accidents and causes of anchoring security. The safety measures at the time of anchoring are also studied.
NASA Astrophysics Data System (ADS)
Aldeek, Fadi; Muhammed, M. A. H.; Mattoussi, Hedi
2013-02-01
We describe the growth and characterization of a set of gold and silver nanoparticles (NPs) as well as fluorescent nanoclusters (NCs) using one-step reduction (in aqueous phase) of Au and Ag precursors in the presence of modular bifunctional ligands. These ligands are made of bidentate (lipoic acid) anchoring groups appended with poly(ethylene glycol) segment, LA-PEG. The particle size can be easily controlled by varying the metal-to-ligand molar ratio during growth. We found that while high metal-to-ligand molar ratios promote the formation of NPs, small size and highly fluorescent NCs are exclusively formed when molar excesses of ligands are used. Both sets of NCs emit in the red to near infrared (NIR) region of the optical spectrum, though the exact location of the emission depends on the material used. The growth strategy further permitted the in-situ functionalization of the NCs with reactive groups (e.g., carboxylic acid or amine), which opens up the opportunity to conjugate these materials to biomolecules using simple to implement coupling chemistries.
Controlling the rectification properties of molecular junctions through molecule–electrode coupling
Koepf, Matthieu; Koenigsmann, Christopher; Ding, Wendu; ...
2016-08-17
The development of molecular components functioning as switches, rectifiers or amplifiers is a great challenge in molecular electronics. A desirable property of such components is functional robustness, meaning that the intrinsic functionality of components must be preserved regardless of the strategy used to integrate them into the final assemblies. Here, this issue is investigated for molecular diodes based on N-phenylbenzamide (NPBA) backbones. The transport properties of molecular junctions derived from NPBA are characterized while varying the nature of the functional groups interfacing the backbone and the gold electrodes required for break-junction measurements. Furthermore, combining experimental and theoretical methods, it ismore » shown that at low bias (<0.85 V) transport is determined by the same frontier molecular orbital originating from the NPBA core, regardless of the anchoring group employed. The magnitude of rectification, however, is strongly dependent on the strength of the electronic coupling at the gold–NPBA interface and on the spatial distribution of the local density of states of the dominant transport channel of the molecular junction.« less
Controlling the rectification properties of molecular junctions through molecule–electrode coupling
DOE Office of Scientific and Technical Information (OSTI.GOV)
Koepf, Matthieu; Koenigsmann, Christopher; Ding, Wendu
The development of molecular components functioning as switches, rectifiers or amplifiers is a great challenge in molecular electronics. A desirable property of such components is functional robustness, meaning that the intrinsic functionality of components must be preserved regardless of the strategy used to integrate them into the final assemblies. Here, this issue is investigated for molecular diodes based on N-phenylbenzamide (NPBA) backbones. The transport properties of molecular junctions derived from NPBA are characterized while varying the nature of the functional groups interfacing the backbone and the gold electrodes required for break-junction measurements. Furthermore, combining experimental and theoretical methods, it ismore » shown that at low bias (<0.85 V) transport is determined by the same frontier molecular orbital originating from the NPBA core, regardless of the anchoring group employed. The magnitude of rectification, however, is strongly dependent on the strength of the electronic coupling at the gold–NPBA interface and on the spatial distribution of the local density of states of the dominant transport channel of the molecular junction.« less
Caliskan, S.; Laref, A.
2014-01-01
Using non-equilibrium Green function formalism in conjunction with density functional theory, we explore the spin-polarized transport characteristics of several planar n-acene molecules suspended between two semi-infinite Ni electrodes via the thiol group. We examine the spin-dependence transport on Ni-n-acenes-Ni junctions, while the number of fused benzene rings varies between 1 and 15. Intriguingly, the induced magnetic moments of small acene molecules are higher than that of longer acene rings. The augmentation of fused benzene rings affects both the magnetic and transport features, such as the transmission function and conductance owing to their coupling to the Ni surface contacts via the anchoring group. The interplay between the spin-polarized transport properties, structural configuration and molecular electronic is a fortiori essential in these attractive molecular devices. Thus, this can conduct to the engineering of the electron spin transport in atomistic and molecular junctions. These prominent molecules convincingly infer that the molecular spin valves can conduct to thriving molecular devices. PMID:25482076
Kirchhoff, Chlodwig; Braunstein, Volker; Milz, Stefan; Sprecher, Christoph M; Fischer, Florian; Tami, Andrea; Ahrens, Philipp; Imhoff, Andreas B; Hinterwimmer, Stefan
2010-03-01
Tears of the rotator cuff are highly prevalent in patients older than 60 years, thereby presenting a population also suffering from osteopenia or osteoporosis. Suture fixation in the bone depends on the holding strength of the anchoring technique, whether a bone tunnel or suture anchor is selected. Because of osteopenic or osteoporotic bone changes, suture anchors in the older patient might pull out, resulting in failure of repair. The aim of our study was to analyze the bone quality within the tuberosities of the osteoporotic humeral head using high-resolution quantitative computed tomography (HR-pQCT). Descriptive laboratory study. Thirty-six human cadaveric shoulders were analyzed using HR-pQCT. The mean bone volume to total volume (BV/TV) as well as trabecular bone mineral densities (trabBMDs) of the greater tuberosity (GT) and the lesser tuberosity (LT) were determined. Within the GT, 6 volumes of interest (VOIs) within the LT, and 2 VOIs and 1 control volume within the subchondral area beyond the articular surface were set. Comparing BV/TV of the medial and the lateral row, significantly higher values were found medially (P < .001). The highest BV/TV, 0.030% + or - 0.027%, was found in the posteromedial portion of the GT (P < .05). Regarding the analysis of the LT, no difference was found comparing the superior (BV/TV: 0.024% + or - 0.022%) and the inferior (BV/TV: 0.019% + or - 0.016%) portion. Analyzing trabBMD, equal proportions were found. An inverse correlation with a correlation coefficient of -0.68 was found regarding BV/TV of the posterior portion of the GT and age (P < .05). Significant regional differences of trabecular microarchitecture were found in our HR-pQCT study. The volume of highest bone quality resulted for the posteromedial aspect of the GT. Moreover, a significant correlation of bone quality within the GT and age was found, while the bone quality within the LT seems to be independent from it. The shape of the rotator cuff tear largely determines the bony site of tendon reattachment, although the surgeon has distinct options to modify anchor positioning. According to our results, placement of suture anchors in a medialized way at the border to the articular surface might guarantee a better structural bone stock.
MASH test 3-37 of the TxDOT 31-inch W-beam downstream anchor terminal.
DOT National Transportation Integrated Search
2011-12-01
The objective of this study was to develop a suitable replacement for the downstream turndown : guardrail anchor system. The turndown guardrail anchor system does not meet mandated test requirements : under MASH for upstream anchor applic...
Application and research of recyclable cables in foundation pit support engineering
NASA Astrophysics Data System (ADS)
Zheng, Suping
2018-05-01
Anchoring cables are widely used in the construction of foundation pit as a temporary support structure. After the construction is completed, the anchor cables left in the ground will not only cause environmental pollution but also cause a great waste of resources. The emergence of recyclable cable technology, to avoid such problems, to achieve the secondary use of the anchor cable, excavation in the excavation project is more and more widely used. Combined with the design and construction of recoverable anchor cable in engineering practice, the application effect of recoverable anchor cable in foundation pit support is analyzed, and the conclusion that the support effect of recoverable anchor cable is stable and safe can be obtained Recyclable anchor cable in the future support projects to provide a reference.
Corroded Anchor Structure Stability/Reliability (CAS_Stab-R) Software for Hydraulic Structures
2017-12-01
This report describes software that provides a probabilistic estimate of time -to-failure for a corroding anchor strand system. These anchor...stability to the structure. A series of unique pull-test experiments conducted by Ebeling et al. (2016) at the U.S. Army Engineer Research and...Reliability (CAS_Stab-R) produces probabilistic Remaining Anchor Life time estimates for anchor cables based upon the direct corrosion rate for the
ERIC Educational Resources Information Center
Choi, Sae Il
2009-01-01
This study used simulation (a) to compare the kernel equating method to traditional equipercentile equating methods under the equivalent-groups (EG) design and the nonequivalent-groups with anchor test (NEAT) design and (b) to apply the parametric bootstrap method for estimating standard errors of equating. A two-parameter logistic item response…
ERIC Educational Resources Information Center
Paek, Insu; Park, Hyun-Jeong; Cai, Li; Chi, Eunlim
2014-01-01
Typically a longitudinal growth modeling based on item response theory (IRT) requires repeated measures data from a single group with the same test design. If operational or item exposure problems are present, the same test may not be employed to collect data for longitudinal analyses and tests at multiple time points are constructed with unique…
Madsen, Wes; Yaseen, Zaneb; LaFrance, Russell; Chen, Tony; Awad, Hani; Maloney, Michael; Voloshin, Ilya
2013-06-01
The purpose of this study was to determine the effect of coracoclavicular (CC) fixation on biomechanical stability in type IIB distal clavicle fractures fixed with plate and screws. Twelve fresh-frozen matched cadaveric specimens were used to create type IIB distal clavicle fractures. Dual-energy x-ray absorptiometry (DEXA) scans ensured similar bone quality. Group 1 (6 specimens) was stabilized with a superior precontoured distal clavicle locking plate and supplemental suture anchor CC fixation. Group 2 (6 specimens) followed the same construct without CC fixation. Each specimen was cyclically loaded in the coronal plane at 40 to 80 N for 17,500 cycles. Load-to-failure testing was performed on the specimens that did not fail cyclic loading. Outcome measures included mode of failure and the number of cycles or load required to create 10 mm of displacement in the construct. All specimens (12 of 12) completed cyclic testing without failure and underwent load-to-failure testing. Group 1 specimens failed at a mean of 808.5 N (range, 635.4 to 952.3 N), whereas group 2 specimens failed at a mean of 401.3 N (range, 283.6 to 656.0 N) (P = .005). Group 1 specimens failed by anchor pullout without coracoid fracture (4 of 6) and distal clavicle fracture fragment fragmentation (1 of 6); one specimen did not fail at the maximal load the materials testing machine was capable of exerting (1,000 N). Group 2 specimens failed by distal clavicle fracture fragment fragmentation (3 of 6) and acromioclavicular (AC) joint displacement (1 of 6); 2 specimens did not fail at the maximal load of the materials testing machine. During cyclic loading, type IIB distal clavicle fractures with and without CC fixation remain stable. CC fixation adds stability to type IIB distal clavicle fractures fixed with plate and screws when loaded to failure. CC fixation for distal clavicle fractures is a useful adjunct to plate-and-screw fixation to augment stability of the fracture. Copyright © 2013 Arthroscopy Association of North America. Published by Elsevier Inc. All rights reserved.
Higashino, Tomohiro; Kawamoto, Kyosuke; Sugiura, Kenichi; Fujimori, Yamato; Tsuji, Yukihiro; Kurotobi, Kei; Ito, Seigo; Imahori, Hiroshi
2016-06-22
To evaluate the effects of substituent bulkiness around a porphyrin core on the photovoltaic properties of porphyrin-sensitized solar cells, long alkoxy groups were introduced at the meso-phenyl group (ZnPBAT-o-C8) and the anchoring group (ZnPBAT-o-C8Cn, n = 4, 8) of an asymmetrically substituted push-pull porphyrin with double electron-donating diarylamino groups and a single electron-withdrawing carboxyphenylethynyl anchoring group. The spectroscopic and electrochemical properties of ZnPBAT-o-C8 and ZnPBAT-o-C8Cn were found to be superior to those of a push-pull porphyrin reference (YD2-o-C8), demonstrating their excellent light-harvesting and redox properties for dye-sensitized solar cells. A power conversion efficiency (η) of the ZnPBAT-o-C8-sensitized solar cell (η = 9.1%) is higher than that of the YD2-o-C8-sensitized solar cell (η = 8.6%) using iodine-based electrolyte due to the enhanced light-harvesting ability of ZnPBAT-o-C8. In contrast, the solar cells based on ZnPBAT-o-C8Cn, possessing the additional alkoxy chains in the anchoring group, revealed the lower η values of 7.3% (n = 4) and 7.0% (n = 8). Although ZnPBAT-o-C8Cn exhibited higher resistance at the TiO2-dye-electrolyte interface by virtue of the extra alkoxy chains, the reduced amount of the porphyrins on TiO2 by excessive addition of coadsorbent chenodeoxycholic acid (CDCA) for mitigating the aggregation on TiO2 resulted in the low η values. Meanwhile, the ZnPBAT-o-C8-sensitized solar cell showed the lower η value of 8.1% than the YD2-o-C8-sensitized solar cell (η = 9.8%) using cobalt-based electrolyte. The smaller η value of the ZnPBAT-o-C8-sensitized solar cell may be attributed to the insufficient blocking effect of the bulky substituents of ZnPBAT-o-C8 under the cobalt-based electrolyte conditions. Overall, the alkoxy chain length and substitution position around the porphyrin core are important factors to affect the cell performance.
Lenis, Vasileios Panagiotis E; Swain, Martin; Larkin, Denis M
2018-05-01
Cross-species whole-genome sequence alignment is a critical first step for genome comparative analyses, ranging from the detection of sequence variants to studies of chromosome evolution. Animal genomes are large and complex, and whole-genome alignment is a computationally intense process, requiring expensive high-performance computing systems due to the need to explore extensive local alignments. With hundreds of sequenced animal genomes available from multiple projects, there is an increasing demand for genome comparative analyses. Here, we introduce G-Anchor, a new, fast, and efficient pipeline that uses a strictly limited but highly effective set of local sequence alignments to anchor (or map) an animal genome to another species' reference genome. G-Anchor makes novel use of a databank of highly conserved DNA sequence elements. We demonstrate how these elements may be aligned to a pair of genomes, creating anchors. These anchors enable the rapid mapping of scaffolds from a de novo assembled genome to chromosome assemblies of a reference species. Our results demonstrate that G-Anchor can successfully anchor a vertebrate genome onto a phylogenetically related reference species genome using a desktop or laptop computer within a few hours and with comparable accuracy to that achieved by a highly accurate whole-genome alignment tool such as LASTZ. G-Anchor thus makes whole-genome comparisons accessible to researchers with limited computational resources. G-Anchor is a ready-to-use tool for anchoring a pair of vertebrate genomes. It may be used with large genomes that contain a significant fraction of evolutionally conserved DNA sequences and that are not highly repetitive, polypoid, or excessively fragmented. G-Anchor is not a substitute for whole-genome aligning software but can be used for fast and accurate initial genome comparisons. G-Anchor is freely available and a ready-to-use tool for the pairwise comparison of two genomes.
AnchorDock: Blind and Flexible Anchor-Driven Peptide Docking.
Ben-Shimon, Avraham; Niv, Masha Y
2015-05-05
The huge conformational space stemming from the inherent flexibility of peptides is among the main obstacles to successful and efficient computational modeling of protein-peptide interactions. Current peptide docking methods typically overcome this challenge using prior knowledge from the structure of the complex. Here we introduce AnchorDock, a peptide docking approach, which automatically targets the docking search to the most relevant parts of the conformational space. This is done by precomputing the free peptide's structure and by computationally identifying anchoring spots on the protein surface. Next, a free peptide conformation undergoes anchor-driven simulated annealing molecular dynamics simulations around the predicted anchoring spots. In the challenging task of a completely blind docking test, AnchorDock produced exceptionally good results (backbone root-mean-square deviation ≤ 2.2Å, rank ≤15) for 10 of 13 unbound cases tested. The impressive performance of AnchorDock supports a molecular recognition pathway that is driven via pre-existing local structural elements. Copyright © 2015 Elsevier Ltd. All rights reserved.
Research on discrete element simulation of anchor frame beam reinforcement in bedding shale slope
NASA Astrophysics Data System (ADS)
Zhang, Xiao yong; Xie, Xiao ting
2017-11-01
The anchor frame beam is a new type of composite support method, which is a kind of slope protection structure considering the interaction between the anchors and the slope. Based on the reinforcement project of a bedding shale slope in Chengzhang highway, the reinforced effect of anchor frame beam is studied by discrete element method. Firstly, the mesoscopic parameters of the rock mass are obtained by calibration while that of anchor frame beam are obtained by calculation. Then the slope model with the reinforcement of anchor frame beam is established by particle flow software PFC2D. Afterwards, the statement of slope can be analyzed and the reinforcement effect of anchor frame beam can be predicted. Results show that: there is no instability in the slope after reinforcement, and the sliding of slope can be effectively prevented by anchor frame beam. The simulation results can provide reference for the design and construction of the project.
NASA Astrophysics Data System (ADS)
Basu, Rajratan
2017-07-01
A small quantity of monolayer graphene flakes is doped in a nematic liquid crystal (LC), and the effective polar anchoring strength coefficient between the LC and the alignment substrate is found to increase by an order of magnitude. The hexagonal pattern of graphene can interact with the LC's benzene rings via π -π electron stacking, enabling the LC to anchor to the graphene surface homogeneously (i.e., planar anchoring). When the LC cell is filled with the graphene-doped LC, some graphene flakes are preferentially attached to the alignment layer and modify the substrate's anchoring property. These spontaneously deposited graphene flakes promote planar anchoring at the substrate and the polar anchoring energy at alignment layer is enhanced significantly. The enhanced anchoring energy is found to impact favorably on the electro-optic response of the LC. Additional studies reveal that the nematic electro-optic switching is significantly faster in the LC-graphene hybrid than that of the pure LC.
Ono, Y.; Woodmass, J. M.; Nelson, A. A.; Boorman, R. S.; Thornton, G. M.
2016-01-01
Objectives This study evaluated the mechanical performance, under low-load cyclic loading, of two different knotless suture anchor designs: sutures completely internal to the anchor body (SpeedScrew) and sutures external to the anchor body and adjacent to bone (MultiFIX P). Methods Using standard suture loops pulled in-line with the rotator cuff (approximately 60°), anchors were tested in cadaveric bone and foam blocks representing normal to osteopenic bone. Mechanical testing included preloading to 10 N and cyclic loading for 500 cycles from 10 N to 60 N at 60 mm/min. The parameters evaluated were initial displacement, cyclic displacement and number of cycles and load at 3 mm displacement relative to preload. Video recording throughout testing documented the predominant source of suture displacement and the distance of ‘suture cutting through bone’. Results In cadaveric bone and foam blocks, MultiFIX P anchors had significantly greater initial displacement, and lower number of cycles and lower load at 3 mm displacement than SpeedScrew anchors. Video analysis revealed ‘suture cutting through bone’ as the predominant source of suture displacement in cadaveric bone (qualitative) and greater ‘suture cutting through bone’ comparing MultiFIX P with SpeedScrew anchors in foam blocks (quantitative). The greater suture displacement in MultiFIX P anchors was predominantly from suture cutting through bone, which was enhanced in an osteopenic bone model. Conclusions Anchors with sutures external to the anchor body are at risk for suture cutting through bone since the suture eyelet is at the distal tip of the implant and the suture directly abrades against the bone edge during cyclic loading. Suture cutting through bone may be a significant source of fixation failure, particularly in osteopenic bone. Cite this article: Y. Ono, J. M. Woodmass, A. A. Nelson, R. S. Boorman, G. M. Thornton, I. K. Y. Lo. Knotless anchors with sutures external to the anchor body may be at risk for suture cutting through osteopenic bone. Bone Joint Res 2016;5:269–275. DOI: 10.1302/2046-3758.56.2000535. PMID:27357383
Ono, Y; Woodmass, J M; Nelson, A A; Boorman, R S; Thornton, G M; Lo, I K Y
2016-06-01
This study evaluated the mechanical performance, under low-load cyclic loading, of two different knotless suture anchor designs: sutures completely internal to the anchor body (SpeedScrew) and sutures external to the anchor body and adjacent to bone (MultiFIX P). Using standard suture loops pulled in-line with the rotator cuff (approximately 60°), anchors were tested in cadaveric bone and foam blocks representing normal to osteopenic bone. Mechanical testing included preloading to 10 N and cyclic loading for 500 cycles from 10 N to 60 N at 60 mm/min. The parameters evaluated were initial displacement, cyclic displacement and number of cycles and load at 3 mm displacement relative to preload. Video recording throughout testing documented the predominant source of suture displacement and the distance of 'suture cutting through bone'. In cadaveric bone and foam blocks, MultiFIX P anchors had significantly greater initial displacement, and lower number of cycles and lower load at 3 mm displacement than SpeedScrew anchors. Video analysis revealed 'suture cutting through bone' as the predominant source of suture displacement in cadaveric bone (qualitative) and greater 'suture cutting through bone' comparing MultiFIX P with SpeedScrew anchors in foam blocks (quantitative). The greater suture displacement in MultiFIX P anchors was predominantly from suture cutting through bone, which was enhanced in an osteopenic bone model. Anchors with sutures external to the anchor body are at risk for suture cutting through bone since the suture eyelet is at the distal tip of the implant and the suture directly abrades against the bone edge during cyclic loading. Suture cutting through bone may be a significant source of fixation failure, particularly in osteopenic bone.Cite this article: Y. Ono, J. M. Woodmass, A. A. Nelson, R. S. Boorman, G. M. Thornton, I. K. Y. Lo. Knotless anchors with sutures external to the anchor body may be at risk for suture cutting through osteopenic bone. Bone Joint Res 2016;5:269-275. DOI: 10.1302/2046-3758.56.2000535. © 2016 Lo et al.
Sasikala, Arathyram Ramachandra Kurup; GhavamiNejad, Amin; Unnithan, Afeesh Rajan; Thomas, Reju George; Moon, Myeongju; Jeong, Yong Yeon; Park, Chan Hee; Kim, Cheol Sang
2015-11-21
We report the versatile design of a smart nanoplatform for thermo-chemotherapy treatment of cancer. For the first time in the literature, our design takes advantage of the outstanding properties of mussel-inspired multiple catecholic groups - presenting a unique copolymer poly(2-hydroxyethyl methacrylate-co-dopamine methacrylamide) p(HEMA-co-DMA) to surface functionalize the superparamagnetic iron oxide nanoparticles as well as to conjugate borate containing anticancer drug bortezomib (BTZ) in a pH-dependent manner for the synergistic anticancer treatment. The unique multiple anchoring groups can be used to substantially improve the affinity of the ligands to the surfaces of the nanoparticles to form ultrastable iron oxide nanoparticles with control over their hydrodynamic diameter and interfacial chemistry. Thus the BTZ-incorporated-bio-inspired-smart magnetic nanoplatform will act as a hyperthermic agent that delivers heat when an alternating magnetic field is applied while the BTZ-bound catechol moieties act as chemotherapeutic agents in a cancer environment by providing pH-dependent drug release for the synergistic thermo-chemotherapy application. The anticancer efficacy of these bio-inspired multifunctional smart magnetic nanoparticles was tested both in vitro and in vivo and found that these unique magnetic nanoplatforms can be established to endow for the next generation of nanomedicine for efficient and safe cancer therapy.
Model test of anchoring effect on zonal disintegration in deep surrounding rock masses.
Chen, Xu-Guang; Zhang, Qiang-Yong; Wang, Yuan; Liu, De-Jun; Zhang, Ning
2013-01-01
The deep rock masses show a different mechanical behavior compared with the shallow rock masses. They are classified into alternating fractured and intact zones during the excavation, which is known as zonal disintegration. Such phenomenon is a great disaster and will induce the different excavation and anchoring methodology. In this study, a 3D geomechanics model test was conducted to research the anchoring effect of zonal disintegration. The model was constructed with anchoring in a half and nonanchoring in the other half, to compare with each other. The optical extensometer and optical sensor were adopted to measure the displacement and strain changing law in the model test. The displacement laws of the deep surrounding rocks were obtained and found to be nonmonotonic versus the distance to the periphery. Zonal disintegration occurs in the area without anchoring and did not occur in the model under anchoring condition. By contrasting the phenomenon, the anchor effect of restraining zonal disintegration was revealed. And the formation condition of zonal disintegration was decided. In the procedure of tunnel excavation, the anchor strain was found to be alternation in tension and compression. It indicates that anchor will show the nonmonotonic law during suppressing the zonal disintegration.
Model Test of Anchoring Effect on Zonal Disintegration in Deep Surrounding Rock Masses
Chen, Xu-Guang; Zhang, Qiang-Yong; Wang, Yuan; Liu, De-Jun; Zhang, Ning
2013-01-01
The deep rock masses show a different mechanical behavior compared with the shallow rock masses. They are classified into alternating fractured and intact zones during the excavation, which is known as zonal disintegration. Such phenomenon is a great disaster and will induce the different excavation and anchoring methodology. In this study, a 3D geomechanics model test was conducted to research the anchoring effect of zonal disintegration. The model was constructed with anchoring in a half and nonanchoring in the other half, to compare with each other. The optical extensometer and optical sensor were adopted to measure the displacement and strain changing law in the model test. The displacement laws of the deep surrounding rocks were obtained and found to be nonmonotonic versus the distance to the periphery. Zonal disintegration occurs in the area without anchoring and did not occur in the model under anchoring condition. By contrasting the phenomenon, the anchor effect of restraining zonal disintegration was revealed. And the formation condition of zonal disintegration was decided. In the procedure of tunnel excavation, the anchor strain was found to be alternation in tension and compression. It indicates that anchor will show the nonmonotonic law during suppressing the zonal disintegration. PMID:23997683
Weiss, William M; Saucedo, Ramon P; Robinson, John D; Lo, Chung-Chieh Jason; Morris, Randal P; Panchbhavi, Vinod K
2017-10-01
Refractory cases of Achilles tendinopathy amenable to surgery may include reattachment of the tendon using suture anchors. However, there is paucity of information describing the optimal insertion angle to maximize the tendon footprint and anchor stability in the calcaneus. The purpose of this investigation is to compare the fixation strength of suture anchors inserted at 90° and 45° (the Deadman's angle) relative to the primary compressive trabeculae of the calcaneus. A total of 12 matched pairs of adult cadaveric calcanei were excised and potted to approximate their alignment in vivo. Each pair was implanted with 5.5-mm bioabsorbable suture anchors placed either perpendicular (90°) or oblique (45°) to the primary compressive trabeculae. A tensile load was applied until failure of anchor fixation. Differences in failure load and stiffness between anchor fixation angles were determined by paired t-tests. No significant differences were detected between perpendicular and oblique suture anchor insertion relative to primary compressive trabeculae in terms of load to failure or stiffness. This investigation suggests that the fixation strength of suture anchors inserted perpendicular to the primary compression trabeculae and at the Deadman's angle are possibly comparable. Biomechanical comparison study.
A comparison of lateral ankle ligament suture anchor strength.
Barber, F Alan; Herbert, Morley A; Crates, John M
2013-06-01
Lateral ankle ligament repairs increasingly use suture anchors instead of bone tunnels. Our purpose was to compare the biomechanical properties of a knotted and knotless suture anchor appropriate for a lateral ankle ligament reconstruction. In porcine distal fibulae, 10 samples of 2 different PEEK anchors were inserted. The attached sutures were cyclically loaded between 10N and 60N for 200 cycles. A destructive pull was performed and failure loads, cyclic displacement, stiffness, and failure mode recorded. PushLock 2.5 anchors failed before 200 cycles. PushLock 100 cycle displacement was less than Morphix 2.5 displacement (p<0.001). Ultimate failure load for anchors completing 200 cycles was 86.5N (PushLock) and 252.1N (Morphix) (p<0.05). The failure mode was suture breaking for all PushLocks while the Morphix failed equally by anchor breaking and suture breakage. The knotted Morphix demonstrated more displacement and greater failure strength than the knotless PushLock. The PushLock failed consistently with suture breaking. The Morphix anchor failed both by anchor breaking and by suture breaking. Copyright © 2012 European Foot and Ankle Society. Published by Elsevier Ltd. All rights reserved.
Bowman, Shaun M.; Piwowar, Amy; Al Dabbous, Mash'el; Vierula, John; Free, Stephen J.
2006-01-01
Using mutational and proteomic approaches, we have demonstrated the importance of the glycosylphosphatidylinositol (GPI) anchor pathway for cell wall synthesis and integrity and for the overall morphology of the filamentous fungus Neurospora crassa. Mutants affected in the gpig-1, gpip-1, gpip-2, gpip-3, and gpit-1 genes, which encode components of the N. crassa GPI anchor biosynthetic pathway, have been characterized. GPI anchor mutants exhibit colonial morphologies, significantly reduced rates of growth, altered hyphal growth patterns, considerable cellular lysis, and an abnormal “cell-within-a-cell” phenotype. The mutants are deficient in the production of GPI-anchored proteins, verifying the requirement of each altered gene for the process of GPI-anchoring. The mutant cell walls are abnormally weak, contain reduced amounts of protein, and have an altered carbohydrate composition. The mutant cell walls lack a number of GPI-anchored proteins, putatively involved in cell wall biogenesis and remodeling. From these studies, we conclude that the GPI anchor pathway is critical for proper cell wall structure and function in N. crassa. PMID:16524913
Moraes, Renato; Bedo, Bruno L. S.; Santos, Luciana O.; Batistela, Rosangela A.; Santiago, Paulo R. P.; Mauerberg-deCastro, Eliane
2018-01-01
This study investigated the effect of adding haptic information to the control of posture, as well as comparing the effect of both the “light touch” (LT) and “anchor system” (AS) paradigms on postural sway. Additionally, it compared the effect of location and number of points of contact to the control of posture in young adults. The location consisted of using the anchors tied to the finger and held by the hands, and, for LT, the fingertip. For the number of points of contact, participants used two hands, and then separately the dominant hand, and the non-dominant hand, for both anchor and LT paradigms. Participants stood upright with feet-together and in tandem position while performing tasks that combined the use of anchors and LT, points of contact (hand grip and finger), and number of points of contact (two hands and one hand). In this study, the anchors consist of holding in each hand a flexible cable with the other end attached to the ground. The LT consists of slightly touching a rigid surface with the tip of the index finger. The results showed, first, that the anchors improved postural control less than did the LT. Second, they revealed that holding the anchors with the hands or with them tied to the fingertip resulted in a similar reduction in postural sway only in the tandem position. For the feet-together position, the anchors tied to the fingertip were ineffective. Similarly, the use of one or two hands did not affect the contribution of the anchors. However, using two hands in the LT condition was more effective than was one hand. Third, our results showed the presence of a temporal delay between force and center-of-pressure (COP) for the anchors, only in the AP direction with feet-together. In conclusion, overall, the anchors were less effective in reducing postural sway than was the LT. The anchors attached to fingertips were as effective as the hand-held anchors in the tandem position, yet ineffective during foot-together standing. Force-COP timing explains reduced postural sway with LT but not for the anchor; hence, exploratory and supra-postural components may be involved. PMID:29922122
Conformation Effects on the Photoluminescence Behavior of Anchored MEH-PPV Pancakes and Brushes
NASA Astrophysics Data System (ADS)
Shih, Kuo Sheng; Chen, Po-Tsun; Yang, Arnold C.-M.
2012-02-01
Single molecular layer of poly[2-methoxy-5-(2'-ethylhexyl)oxy)-1,4- phenylenevinylene] (MEH-PPV) grafted on primed silicon wafer were synthesized, forming brushes (chain spacing 0.54 nm via graft-from) or pancakes (˜ 7nm to 34 nm via graft-to). For the tight-packed brushes, the PL emission peak, residing in the range from 434 nm to 550 nm depending on the chain length, was generally unchanged when transferring between the dry and solvent immersion states. However, for the pancakes, the emission peak blue-shifted dramatically (up to 100 nm) when dried in the air relative to that in the solvent. These shifts were fully reversible in the dry-wet cycles. The large blue shifts of the anchored pancakes were attributed to the mechanical stretching of entangled MEH-PPV segments in contact with substrate upon solvent loss. In contrast, the blue shifts disappeared and small red shifts emerged instead for extremely slowly drying (24 hrs drying time), revealing the stress-relaxation pathways in the equilibrium conditions. The drying-induced blue shift was also observed in the un-anchored drop-casting samples but the reversibility vanished. Finally, a large enhancement of PL intensity was accompanied with the blue shifts, manifesting the effect of the molecular constraints.
Sutterwala, Shaheen S.; Creswell, Caleb H.; Sanyal, Sumana; Menon, Anant K.; Bangs, James D.
2007-01-01
De novo sphingolipid synthesis is required for the exit of glycosylphosphatidylinositol (GPI)-anchored membrane proteins from the endoplasmic reticulum in yeast. Using a pharmacological approach, we test the generality of this phenomenon by analyzing the transport of GPI-anchored cargo in widely divergent eukaryotic systems represented by African trypanosomes and HeLa cells. Myriocin, which blocks the first step of sphingolipid synthesis (serine + palmitate → 3-ketodihydrosphingosine), inhibited the growth of cultured bloodstream parasites, and growth was rescued with exogenous 3-ketodihydrosphingosine. Myriocin also blocked metabolic incorporation of [3H]serine into base-resistant sphingolipids. Biochemical analyses indicate that the radiolabeled lipids are not sphingomyelin or inositol phosphorylceramide, suggesting that bloodstream trypanosomes synthesize novel sphingolipids. Inhibition of de novo sphingolipid synthesis with myriocin had no adverse effect on either general secretory trafficking or GPI-dependent trafficking in trypanosomes, and similar results were obtained with HeLa cells. A mild effect on endocytosis was seen for bloodstream trypanosomes after prolonged incubation with myriocin. These results indicate that de novo synthesis of sphingolipids is not a general requirement for secretory trafficking in eukaryotic cells. However, in contrast to the closely related kinetoplastid Leishmania major, de novo sphingolipid synthesis is essential for the viability of bloodstream-stage African trypanosomes. PMID:17220466
Lin, Lin; Sun, Wei; Kung, Faith; Dell'Acqua, Mark L; Hoffman, Dax A
2011-01-26
Kv4.2, as the primary α-subunit of rapidly inactivating, A-type voltage-gated K(+) (Kv) channels expressed in hippocampal CA1 pyramidal dendrites, plays a critical role in regulating their excitability. Activity-dependent trafficking of Kv4.2 relies on C-terminal protein kinase A (PKA) phosphorylation. A-kinase-anchoring proteins (AKAPs) target PKA to glutamate receptor and ion channel complexes to allow for discrete, local signaling. As part of a previous study, we showed that AKAP79/150 interacts with Kv4.2 complexes and that the two proteins colocalize in hippocampal neurons. However, the nature and functional consequence of their interaction has not been previously explored. Here, we report that the C-terminal domain of Kv4.2 interacts with an internal region of AKAP79/150 that overlaps with its MAGUK (membrane-associated guanylate kinase)-binding domain. We show that AKAP79/150-anchored PKA activity controls Kv4.2 surface expression in heterologous cells and hippocampal neurons. Consistent with these findings, disrupting PKA anchoring led to a decrease in neuronal excitability, while preventing dephosphorylation by the phosphatase calcineurin resulted in increased excitability. These results demonstrate that AKAP79/150 provides a platform for dynamic PKA regulation of Kv4.2 expression, fundamentally impacting CA1 excitability.
Cross-Border Delivery in Nigeria and Quality Assurance Issues
ERIC Educational Resources Information Center
Idogho, Philipa Omamhe; Eshiotse, Sunday Gabriel
2012-01-01
Access to educational opportunities has witnessed significant facilitation, especially in developing economies where ethnic minorities and other disadvantaged groups abound. The global initiative anchored by COL (commonwealth of learning) in collaboration with institutions and agencies is helping to further reinforce the "global image"…
De Clerck, H. J.; Cevidanes, L. H.; Franchi, L.
2011-01-01
The aim of the present morphometric investigation was to evaluate the effects of bone-anchored maxillary protraction (BAMP) in the treatment of growing patients with Class III malocclusion. The shape and size changes in the craniofacial configuration of a sample of 26 children with Class III malocclusions consecutively treated with the BAMP protocol were compared with a matched sample of 15 children with untreated Class III malocclusions. All subjects in the two groups were at a prepubertal stage of skeletal development at time of first observation. Average duration of treatment was 14 months. Significant treatment-induced modifications involved both the maxilla and the mandible. The most evident deformation consisted of marked forward displacement of the maxillary complex with more moderate favourable effects in the mandible. Deformations in the vertical dimension were not detected. The significant deformations were associated with significant differences in size in the group treated with the BAMP protocol. PMID:21187527
Selective oxidation of aliphatic C-H bonds in alkylphenols by a chemomimetic biocatalytic system.
Du, Lei; Dong, Sheng; Zhang, Xingwang; Jiang, Chengying; Chen, Jingfei; Yao, Lishan; Wang, Xiao; Wan, Xiaobo; Liu, Xi; Wang, Xinquan; Huang, Shaohua; Cui, Qiu; Feng, Yingang; Liu, Shuang-Jiang; Li, Shengying
2017-06-27
Selective oxidation of aliphatic C-H bonds in alkylphenols serves significant roles not only in generation of functionalized intermediates that can be used to synthesize diverse downstream chemical products, but also in biological degradation of these environmentally hazardous compounds. Chemo-, regio-, and stereoselectivity; controllability; and environmental impact represent the major challenges for chemical oxidation of alkylphenols. Here, we report the development of a unique chemomimetic biocatalytic system originated from the Gram-positive bacterium Corynebacterium glutamicum The system consisting of CreHI (for installation of a phosphate directing/anchoring group), CreJEF/CreG/CreC (for oxidation of alkylphenols), and CreD (for directing/anchoring group offloading) is able to selectively oxidize the aliphatic C-H bonds of p - and m -alkylated phenols in a controllable manner. Moreover, the crystal structures of the central P450 biocatalyst CreJ in complex with two representative substrates provide significant structural insights into its substrate flexibility and reaction selectivity.
Selective oxidation of aliphatic C–H bonds in alkylphenols by a chemomimetic biocatalytic system
Du, Lei; Dong, Sheng; Zhang, Xingwang; Jiang, Chengying; Chen, Jingfei; Yao, Lishan; Wang, Xiao; Wan, Xiaobo; Liu, Xi; Wang, Xinquan; Huang, Shaohua; Cui, Qiu; Liu, Shuang-Jiang; Li, Shengying
2017-01-01
Selective oxidation of aliphatic C–H bonds in alkylphenols serves significant roles not only in generation of functionalized intermediates that can be used to synthesize diverse downstream chemical products, but also in biological degradation of these environmentally hazardous compounds. Chemo-, regio-, and stereoselectivity; controllability; and environmental impact represent the major challenges for chemical oxidation of alkylphenols. Here, we report the development of a unique chemomimetic biocatalytic system originated from the Gram-positive bacterium Corynebacterium glutamicum. The system consisting of CreHI (for installation of a phosphate directing/anchoring group), CreJEF/CreG/CreC (for oxidation of alkylphenols), and CreD (for directing/anchoring group offloading) is able to selectively oxidize the aliphatic C–H bonds of p- and m-alkylated phenols in a controllable manner. Moreover, the crystal structures of the central P450 biocatalyst CreJ in complex with two representative substrates provide significant structural insights into its substrate flexibility and reaction selectivity. PMID:28607077
Conventional Anchor Test Results at San Diego and Indian Island
1980-07-01
operational practicality of using the Stockless anchor with welded open flukes, since tests have indicated higher capac- ities for the anchor with...Tests (Ref 1) of the Stockless anchor in mud with flukes free-swinging and with flukes welded open show significant increase.s in efficiency for the...latter condition, 4 versus 2, indicating that the anchor flukes did not open completely or at all for the free swinging (usual) condition. Towne (Ref 1
HKUST-1 Membranes Anchored on Porous Substrate by Hetero MIL-110 Nanorod Array Seeds.
Mao, Yiyin; Cao, Wei; Li, Junwei; Sun, Luwei; Peng, Xinsheng
2013-09-02
Great anchors and seeds: Hetero-seeding growth processes and anchored nanorod arrays were successfully utilized in the synthesis of HKUST-1 membranes. These arrays were firmly anchored on porous substrates by using a MIL-110 nanorod array as both the anchor and seed. The resulting HKUST-1 membranes demonstrated good separation factors for binary gases exceeding the Knudson selectivity. Copyright © 2013 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim.
Career anchors of dentist leaders.
Tuononen, Tiina; Lammintakanen, Johanna; Suominen, Anna Liisa
2016-08-01
The work of a health care leader is demanding; in order to cope, leaders need motivation and support. The occurrence of intrinsic factors called career anchors (combination of one's competence, motives and values) could be a contributing factor in dentist leaders' career decisions. The aim of our study was to identify dentist leaders' career anchors and their association to dentist leaders' retention or turnover of the leadership position. Materials were gathered in 2014 via an electronic questionnaire from 156 current (Leaders) or former (Leavers) Finnish dentist leaders. Career anchor evaluation was conducted by the questionnaire and scoring-table taken from Edgar Schein's Career Anchors Self-Assessment. Both the most and the least important career anchors were detected by the highest and lowest scores and their occurrence reported as percentages. Associations between career anchor scores and tendency to stay were analyzed with logistic regression. 'Technical/Functional Competence' and 'Lifestyle' were most frequently reported as the most important and 'Entrepreneurial Creativity' and 'General Managerial Competence' as the least important career anchors. However, a higher level of 'General Managerial Competence' anchor was most significantly associated with staying in a leadership position. Instead, 'Pure Challenge' and 'Lifestyle' decreased the odds to stay. The knowledge of the important and essential career anchors of dentist leaders' and individuals' could perform crucial part in career choices and also in planning education, work opportunities and human resource policies promoting retention of dentist leaders and probably also other health care leaders.
Lee, Ji Yeoun; Park, Ae-Kyung; Wang, Kyu-Chang; Phi, Ji Hoon; Koh, Eun Jung; Park, Woong-Yang; Park, Sung-Hye; Hwang, Do Won; Jung, Hee Won; Kim, Seung-Ki
2015-01-01
Background The main cause of death in medulloblastoma is recurrence associated with leptomeningeal dissemination. During this process, the role of microRNAs (miRs) in the acquisition of metastatic phenotype remains poorly understood. This study aimed to identify the miR involved in leptomeningeal dissemination and to elucidate its biological functional mechanisms. Materials and methods We analyzed the miR expression profiles of 29 medulloblastomas according to the presence of cerebrospinal fluid (CSF) seeding. Differentially expressed miRs (DEmiRs) were validated in 29 medulloblastoma tissues and three medulloblastoma cell lines. The biological functions of the selected miRs were evaluated using in vitro and in vivo studies. Results A total of 12 DEmiRs were identified in medulloblastoma with seeding, including miR-192. The reduced expression of miR-192 was confirmed in the tumor seeding group and in the medulloblastoma cells. Overexpression of miR-192 inhibited cellular proliferation by binding DHFR. miR-192 decreased cellular anchoring via the repression of ITGAV, ITGB1, ITGB3, and CD47. Animals in the miR-192-treated group demonstrated a reduction of spinal seeding (P < 0.05) and a significant survival benefit (P < 0.05). Conclusions Medulloblastoma with seeding showed specific DEmiRs compared with those without. miR-192 suppresses leptomeningeal dissemination of medulloblastoma by modulating cell proliferation and anchoring ability. PMID:26506238
ERIC Educational Resources Information Center
Ramakrishna, Hindupur V.; Potosky, Denise
2003-01-01
Information systems professionals (n=163) completed measures of career anchors and outcomes (career/job satisfaction, job performance, perceived advancement prospects); 46% had multiple dominant anchors and these individuals did not have significantly different career outcomes than those with single dominant anchors. (Contains 26 references.) (SK)
Career Paths, Images and Anchors: A Study with Brazilian Professionals
ERIC Educational Resources Information Center
Kilimnik, Zelia Miranda; de Oliveira, Luiz Claudio Vieira; Sant'anna, Anderson De Souza; Barros, Delba Teixeira Rodrigues
2011-01-01
This article analyses career anchors changes associated to images and professionals trajectories. Its main question: Do anchors careers change through time? We conducted twelve interviews involving professionals from the Administration Area, applying Schein's Career Anchors Inventory (1993). We did the same two years later. In both of them, the…
Mapping contacts between gRNA and mRNA in trypanosome RNA editing.
Leung, S S; Koslowsky, D J
1999-02-01
All guide RNAs (gRNAs) identified to date have defined 5' anchor sequences, guiding sequences and a non-encoded 3' uridylate tail. The 5' anchor is required for in vitro editing and is thought to be responsible for selection and binding to the pre-edited mRNA. Little is known, however, about how the gRNAs are used to direct RNA editing. Utilizing the photo-reactive crosslinking agent, azidophenacyl (APA), attached to the 5'- or 3'-terminus of the gRNA, we have begun to map the structural relationships between the different defined regions of the gRNA with the pre-edited mRNA. Analyses of crosslinked conjugates produced with a 5'-terminal APA group confirm that the anchor of the gRNA is correctly positioning the interacting molecules. 3' Crosslinks (X-linker placed at the 3'-end of a U10tail) have also been mapped for three different gRNA/mRNA pairs. In all cases, analyses indicate that the U-tail can interact with a range of nucleotides located upstream of the first edited site. It appears that the U-tail prefers purine-rich sites, close to the first few editing sites. These results suggest that the U-tail may act in concert with the anchor to melt out secondary structure in the mRNA in the immediate editing domain, possibly increasing the accessibility of the editing complex to the proper editing sites.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kruus, K.; Wu, J.H.D.; Lua, A.C.
1995-09-26
Enzymatic cellulose degradation is a heterogeneous reaction requiring binding of soluble cellulase molecules to the solid substrate. Based on our studies of the cellulase complex of Clostridium thermocellum (the cellulosome), we have previously proposed that such binding can be brought about by a special {open_quotes}anchorage subunit.{close_quotes} In this {open_quotes}anchor-enzyme{close_quotes} model, CipA (a major subunit of the cellulosome) enhances the activity of CelS (the most abundant catalytic subunit of the cellulosome) by anchoring it to the cellulose surface. We have subsequently reported that CelS contains a conserved duplicated sequence at its C terminus and the CipA contains nine repeated sequences withmore » a cellulose binding domain (CBD) in between the second and third repeats. In this work, we reexamined the anchor-enzyme mechanism by using recombinant CelS (rCelS) and various CipA domains, CBD, R3 (the repeat next to CBD), and CBD/R3, expressed in Escherichia coli. As analyzed by non-denaturing gel electrophoresis, rCelS, through its conserved duplicated sequence, formed a stable complex with R3 or CBD/R3 but not with CBD. Although R3 or CBD alone did not affect the binding of rCelS to cellulose, such binding was dependent on CBD/R3, indicating the anchorage role of CBD/R3. Such anchorage apparently increased the rCelS activity toward crystalline cellulose. These results substantiate the proposed anchor-enzyme model and the expected roles of individual CipA domains and the conserved duplicated sequence of CelS.« less
Yang, Lei; Jiang, Weihua; Qiu, Lipeng; Jiang, Xuewei; Zuo, Daiying; Wang, Dongkai; Yang, Li
2015-04-14
Strong blue fluorescent polyethylene glycol (PEG) anchored carbon nitride dots (CDs@PEG) with a high quantum yield (QY) of 75.8% have been synthesized by a one step hydrothermal treatment. CDs with a diameter of ca. 6 nm are well dispersed in water and present a graphite-like structure. Photoluminescence (PL) studies reveal that CDs display excitation-dependent behavior and are stable under various test conditions. Based on the as-prepared CDs, we designed novel cell nucleus targeting imaging carbon dots functionalized with a nuclear localization signal (NLS) peptide. The favourable biocompatibilities of CDs and NLS modified CDs (NLS-CDs) are confirmed by in vitro cytotoxicity assays. Importantly, intracellular localization experiments in MCF7 and A549 cells demonstrate that NLS-CDs could be internalized in the nucleus and show blue light, which indicates that CDs may serve as cell nucleus imaging probes.
Weakly sheared active suspensions: hydrodynamics, stability, and rheology.
Cui, Zhenlu
2011-03-01
We present a kinetic model for flowing active suspensions and analyze the behavior of a suspension subjected to a weak steady shear. Asymptotic solutions are sought in Deborah number expansions. At the leading order, we explore the steady states and perform their stability analysis. We predict the rheology of active systems including an activity thickening or thinning behavior of the apparent viscosity and a negative apparent viscosity depending on the particle type, flow alignment, and the anchoring conditions, which can be tested on bacterial suspensions. We find remarkable dualities that show that flow-aligning rodlike contractile (extensile) particles are dynamically and rheologically equivalent to flow-aligning discoid extensile (contractile) particles for both tangential and homeotropic anchoring conditions. Another key prediction of this work is the role of the concentration of active suspensions in controlling the rheological behavior: the apparent viscosity may decrease with the increase of the concentration.
Li, Feng-Qian; Fei, Yi-Bo; Chen, Xu; Qin, Xian-Ju; Liu, Ji-Yong; Zhu, Quan-Gang; Hu, Jin-Hong
2009-10-01
Focused on the natural biodegradable material of chitosan (CS), this investigation concerned its spray-dried nanoparticles-in-microparticles (NiMPs) modified with ulex europaeus agglutinin (UEA). Chitosan nanoparticles were obtained by ionotropic gelation process with pentasodium tripolyphosphate as gelatinizer. Then UEA lectin was bound onto the CS nanoparticles activated by glutaraldehyde. The conjugated spherical UEA-CS-NiMPs, prepared by spray drying method, exhibited 12-85% coupling efficiency of UEA depending upon the amount of activator glutaraldehyde. And the UEA-grafted particles showed additional higher binding tendency with bovine submaxillary gland mucin as compared to the plain chitosan microparticles. Furthermore, the activity and intrinsic fucose-specificity of UEA were still maintained after the covalent modification. It is thus evident that the UEA anchored CS-NiMPs might be used as a potential drug delivery system targeted to the specific regions of gastrointestinal tract.
[Effects of frame of reference on the judgments of whole-body vibration intensity].
Suzuki, H
1997-02-01
Although the concept of the term 'riding comfort' is ambiguous, in the present paper it means a perceptual experience derived from the vibrational factors of a running railway vehicle. When we regard riding comfort evaluation as a perceptual judgment process, we must consider that what is perceived is dependent not only on the physical properties of the stimuli, but also on the frame of reference. The purpose of the present study is to examine the effect of the frame on the judgments of vibration intensity in the anchoring effect paradigm. Using the four-axis vibration apparatus, we conducted experiments for eighty subjects, in which frequencies and lateral accelerations of vibrations were changed. As the result, we found a clear anchoring effect. This suggests that we must take into consideration effects of frame of reference in terms of riding comfort criterion of railway vehicles.
Molecular mobility of nematic E7 confined to molecular sieves with a low filling degree.
Brás, A R; Frunza, S; Guerreiro, L; Fonseca, I M; Corma, A; Frunza, L; Dionísio, M; Schönhals, A
2010-06-14
The nematic liquid crystalline mixture E7 was confined with similar filling degrees to molecular sieves with constant composition but different pore diameters (from 2.8 to 6.8 nm). Fourier transform infrared analysis proved that the E7 molecules interact via the cyanogroup with the pore walls of the molecular sieves. The molecular dynamics of the system was investigated by broadband dielectric spectroscopy (10(-2)-10(9) Hz) covering a wide temperature range of approximately 200 K from temperatures well above the isotropic-nematic transition down to the glass transition of bulk E7. A variety of relaxation processes is observed including two modes that are located close to the bulk behavior in its temperature dependence. For all confined samples, two relaxation processes, at frequencies lower than the processes observed for the bulk, were detected. At lower temperatures, their relaxation rates have different temperature dependencies whereas at higher temperatures, they seem to collapse into one chart. The temperature dependence of the slowest process (S-process) obeys the Vogel-Fulcher-Tammann law indicating a glassy dynamics of the E7 molecules anchored to the pore surface. The pore size dependence of both the Vogel temperature and fragility revealed a steplike transition around 4 nm pore size, which indicates a transition from a strong to a fragile behavior. The process with a relaxation rate in between the bulklike and the S-process (I-process) shows no dependence on the pore size. The agreement of the I-process with the behavior of a 5CB surface layer adsorbed on nonporous silica leads to the assignment of E7 molecules anchored at the outer surface of the microcrystals of the molecular sieves.
Students' Anchoring Predisposition: An Illustration from Spring Training Baseball
ERIC Educational Resources Information Center
Mohrweis, Lawrence C.
2014-01-01
The anchoring tendency results when decision makers anchor on initial values and then make final assessments that are adjusted insufficiently away from the initial values. The professional literature recognizes that auditors often risk falling into the judgment trap of anchoring and adjusting (Ranzilla et al., 2011). Students may also be unaware…
46 CFR 108.705 - Anchors, chains, wire rope, and hawsers.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 46 Shipping 4 2010-10-01 2010-10-01 false Anchors, chains, wire rope, and hawsers. 108.705 Section... UNITS DESIGN AND EQUIPMENT Miscellaneous Equipment § 108.705 Anchors, chains, wire rope, and hawsers. (a) Each unit must be fitted with anchors, chains, wire rope, and hawsers in agreement with the standards...
46 CFR 108.705 - Anchors, chains, wire rope, and hawsers.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 46 Shipping 4 2011-10-01 2011-10-01 false Anchors, chains, wire rope, and hawsers. 108.705 Section... UNITS DESIGN AND EQUIPMENT Miscellaneous Equipment § 108.705 Anchors, chains, wire rope, and hawsers. (a) Each unit must be fitted with anchors, chains, wire rope, and hawsers in agreement with the standards...
Anchoring effects in the judgment of confidence: semantic or numeric priming?
Carroll, Steven R; Petrusic, William M; Leth-Steensen, Craig
2009-02-01
Over the last decade, researchers have debated whether anchoring effects are the result of semantic or numeric priming. The present study tested both hypotheses. In four experiments involving a sensory detection task, participants first made a relative confidence judgment by deciding whether they were more or less confident than an anchor value in the correctness of their decision. Subsequently, they expressed an absolute level of confidence. In two of these experiments, the relative confidence anchor values represented the midpoints between the absolute confidence scale values, which were either explicitly numeric or semantic, nonnumeric representations of magnitude. In two other experiments, the anchor values were drawn from a scale modally different from that used to express the absolute confidence (i.e., nonnumeric and numeric, respectively, or vice versa). Regardless of the nature of the anchors, the mean confidence ratings revealed anchoring effects only when the relative and absolute confidence values were drawn from identical scales. Together, the results of these four experiments limit the conditions under which both numeric and semantic priming would be expected to lead to anchoring effects.
Zhang, Tao; Wan, Chun-you; Ma, Bao-tong; Xu, Wei-guo; Mei, Xiao-long; Jia, Peng; Liu, Lei
2016-05-01
To compare clinical outcomes between two suturing methods using non absorbable materials through drilling the bone and suturing anchors for the treatment of complete rupture of the deltoid ligament. From January 2009 to January 2013, 58 hospitalized patients with ankle fracture combined with complete rupture of the deltoid ligament were treated with suturing using non absorbable materials through drilling the bone or suturing anchors. There were 29 patients who received suturing treatments using non absorbable materials through drilling the bone (Group A), including 18 males and 11 females, with an average age of (39.76 +/- 11.81) years old. According to the Lauge-Hansen classification, 12 patients had supination external rotation (SER) injuries with IV degree, 5 patients had pronation external rotation (PER) injuries with III degree, 10 patients had PER injuries with IV degrss, and 2 patients had pronation abduction injuries with III degree. There were 29 patients who received treatments with suturing using anchors (Group B), including 14 males and 15 females, with an average age of (41.79 +/- 13.28) years old. According to the Lauge-Hansen classification,9 patients had SER injuries with IV degree, 6 patients had PER injuries with III degree,13 patients had PER injuries with IV degree, and 1 patient had pronation abduction injuries with III degree. All the patients were treated with open reduction and internal fixation, as well as reconstruction of deltoid ligaments to restore the stability of the medial ankle structures. The clinical examination, imaging evaluation, American society for ankle surgery (AOFAS) ankle-hindfoot score and visual analogue scale (VAS) were used to evaluate the clinical results after operation, and the results of the two groups were compared and analyzed statistically. The follow-up duration of the 58 patients ranged from 23 to 40 months,with an average of 27.3 months. All the patients had fracture union, and the mean healing time was 12.3 weeks (ranged, 10 to 17 weeks). There were no incision complications and ankle instability. There were no significant differences between two groups in AOFAS (P=0.666) and the VAS (P=0.905). Treatments of complete rupture of the deltiod ligaments with the two suturing methods get similar good clinical effects, but the suturing using non absorbable materials through drilling the bone has several advantages such as reducing the financial burden of patients, saving social medical resources and avoiding the shortcoming in difficult removal of anchor suture.
Lee, Shang-Hsuan; Sato, Yusuke; Hyodo, Mamoru; Harashima, Hideyoshi
2016-01-01
The surface topology of ligands on liposomes is an important factor in active targeting in drug delivery systems. Accurately evaluating the density of anchors and bioactive functional ligands on a liposomal surface is critical for ensuring the efficient delivery of liposomes. For evaluating surface ligand density, it is necessary to clarify that on the ligand-modified liposomal surfaces, some anchors are attached to ligands but some are not. To distinguish between these situations, a key parameter, surface anchor density, was introduced to specify amount of total anchors on the liposomal surface. Second, the parameter reaction yield was introduced to identify the amount of ligand-attached anchors among total anchors, since the conjugation efficiency is not always the same nor 100%. Combining these independent parameters, we derived: incorporation ratio=surface anchor density×reaction yield. The term incorporation ratio defines the surface ligand density. Since the surface anchor density represents the density of polyethylene glycol (PEG) on the surfaces in most cases, it also determines liposomal function. It is possible to accurately characterize various PEG and ligand densities and to define the surface topologies. In conclusion, this quantitative methodology can standardize the liposome preparation process and qualify the modified liposomal surfaces.
Rodríguez-González, Abril; Sarabeev, Volodimir; Balbuena, Juan Antonio
2017-01-01
The search for phylogenetic signal in morphological traits using geometric morphometrics represents a powerful approach to estimate the relative weights of convergence and shared evolutionary history in shaping organismal form. We assessed phylogenetic signal in the form of ventral and dorsal haptoral anchors of 14 species of Ligophorus occurring on grey mullets (Osteichthyes: Mugilidae) from the Mediterranean, the Black Sea and the Sea of Azov. The phylogenetic relationships among these species were mapped onto the morphospaces of shape and size of dorsal and ventral anchors and two different tests were applied to establish whether the spatial positions in the morphospace were dictated by chance. Overall significant phylogenetic signal was found in the data. Allometric effects on anchor shape were moderate or non-significant in the case of evolutionary allometry. Relatively phylogenetically distant species occurring on the same host differed markedly in anchor morphology indicating little influence of host species on anchor form. Our results suggest that common descent and shared evolutionary history play a major role in determining the shape and, to a lesser degree in the size of haptoral anchors in Ligophorus spp. The present approach allowed tracing paths of morphological evolution in anchor shape. Species with narrow anchors and long shafts were associated predominately with Liza saliens. This morphology was considered to be ancestral relative to anchors of species occurring on Liza haematocheila and M. cephalus possessing shorter shafts and longer roots. Evidence for phylogenetic signal was more compelling for the ventral anchors, than for the dorsal ones, which could reflect different functional roles in attachment to the gills. Although phylogeny and homoplasy may act differently in other monogeneans, the present study delivers a common framework to address effectively the relationships among morphology, phylogeny and other traits, such as host specificity or niche occupancy.
Bodine, Trevor P; Wolford, Larry M; Araujo, Eustaquio; Oliver, Donald R; Buschang, Peter H
2016-01-01
The aim of this study was to better understand how surgical repositioning and stabilization of anteriorly displaced articular discs using the Mitek mini-anchor technique affects condylar growth in growing patients with adolescent internal condylar resorption (AICR). Twenty-two adolescent patients diagnosed with AICR and anterior temporomandibular disc displacement were compared to untreated control subjects without AICR matched for age, sex, and Angle classification. Pre-surgical (T1 and T2) and post-surgical (T3 and T4) mandibular tracings were superimposed on natural stable structures to evaluate the horizontal, vertical, and total changes in the position of condylion. The treated group showed an overall decrease in condylar height pre-surgically and statistically significant changes in condylar growth direction between the pre- and post-surgical observation periods. Pre-surgically, the treated group showed significantly more posterior condylar growth than the control group; they also showed inferior condylar growth, while the controls showed superior growth. Controls and patients in the treated group showed no significant differences in condylar growth post-surgically. Adolescent patients diagnosed with AICR and anterior disc displacement treated with mandibular ramus and maxillary osteotomies, along with Mitek anchors to reposition internally deranged discs, showed post-surgical normalization of condylar growth.
Cariogenic properties of Streptococcus mutans clinical isolates with sortase defects.
Lapirattanakul, Jinthana; Takashima, Yukiko; Tantivitayakul, Pornpen; Maudcheingka, Thaniya; Leelataweewud, Pattarawadee; Nakano, Kazuhiko; Matsumoto-Nakano, Michiyo
2017-09-01
In Streptococcus mutans, a Gram-positive pathogen of dental caries, several surface proteins are anchored by the activity of sortase enzyme. Although various reports have shown that constructed S. mutans mutants deficient of sortase as well as laboratory reference strains with a sortase gene mutation have low cariogenic potential, no known studies have investigated clinical isolates with sortase defects. Here, we examined the cariogenic properties of S. mutans clinical isolates with sortase defects as well as caries status in humans harboring such defective isolates. Sortase-defective clinical isolates were evaluated for biofilm formation, sucrose-dependent adhesion, stress-induced dextran-dependent aggregation, acid production, and acid tolerance. Additionally, caries indices of subjects possessing such defective isolates were determined. Our in vitro results indicated that biofilm with a lower quantity was formed by sortase-defective as compared to non-defective isolates. Moreover, impairments of sucrose-dependent adhesion and stress-induced dextran-dependent aggregation were found among the isolates with defects, whereas no alterations were seen in regard to acid production or tolerance. Furthermore, glucan-binding protein C, a surface protein anchored by sortase activity, was predominantly detected in culture supernatants of all sortase-defective S. mutans isolates. Although the sortase-defective isolates showed lower cariogenic potential because of a reduction in some cariogenic properties, deft/DMFT indices revealed that all subjects harboring those isolates had caries experience. Our findings suggest the impairment of cariogenic properties in S. mutans clinical isolates with sortase defects, though the detection of these defective isolates seemed not to imply low caries risk in the subjects harboring them. Copyright © 2017 Elsevier Ltd. All rights reserved.
Fujimori, Takahito; Okuda, Shinya; Iwasaki, Motoki; Yamasaki, Ryoji; Maeno, Takafumi; Yamashita, Tomoya; Matsumoto, Tomiya; Wada, Eiji; Oda, Takenori
2016-06-01
The Japanese Orthopaedic Association (JOA) scoring system is a physician-based outcome that has been used to evaluate treatment effectiveness after lumbar surgery. However, patient-centered evaluation becomes increasingly important. There is no study that has examined the relationship between the JOA scoring system and patients' self-reported improvement. The purpose of the present study was to validate the JOA scoring system for assessment of patient-reported improvement after lumbar surgery. This is a retrospective review of prospectively collected data. The patient sample included 273 mail-in responders of the 466 consecutive patients who underwent posterior lumbar interbody fusion for spondylolisthesis between 1996 and 2008 in a single hospital. The outcome measures were the JOA scoring system and patients' self-reported improvement. Two hundred seventy three patients were divided into five anchoring groups based on self-reported improvement from "Much better" to "Much worse." Outcomes (ie, recovery rate, amount of change from preoperative condition, and postoperative score) based on the JOA scoring system were compared among groups. Using the patient's self-reported improvement scale as an anchor, the association among each of the outcomes was examined. The cutoff point and the area under the curve (AUC) that differentiated "Improved" from "Neither improved nor worse" was calculated using receiver operating characteristic (ROC) curve analysis. The recovery rate and postoperative score were significantly different in 9 of 10 pairs of anchoring groups. The amount of change was significantly different in six pairs. Spearman correlation coefficient for the 5-point scale anchors of patients' self-reported improvement was 0.20 (p=.001) for the baseline score, 0.31 (p<.001) for the amount of change, 0.55 (p<.001) for the recovery rate, and 0.56 (p<.001) for the postoperative score. According to ROC analysis, the best cutoff points and AUCs were 13 points and 0.69, respectively, for the amount of change, 67% and 0.73, respectively, for recovery rate, and 23 points and 0.72, respectively, for postoperative score. The JOA scoring system is a valid method for assessment of patients' self-reported improvement. Patients' self-reported improvement is more likely to be associated with the final condition, such as postoperative score or recovery rate, rather than the change from the preoperative condition. Copyright © 2016 Elsevier Inc. All rights reserved.
Chen, Wei-Chieh; Nachimuthu, Santhanamoorthi; Jiang, Jyh-Chiang
2017-07-10
Determining an ideal adsorption configuration for a dye on the semiconductor surface is an important task in improving the overall efficiency of dye-sensitized solar cells. Here, we present a detailed investigation of different adsorption configurations of designed model dyes on TiO 2 anatase (101) surface using first principles methods. Particularly, we aimed to investigate the influence of cyano group in the anchoring part of dye on its adsorption stability and the overall photovoltaic properties such as open circuit voltage, electron injection ability to the surface. Our results indicate that the inclusion of cyano group increases the stability of adsorption only when it adsorbs via CN with the surface and it decreases the photovoltaic properties when it does not involve in binding. In addition, we also considered full dyes based on the results of model dyes and investigated the different strength of acceptor abilities on stability and electron injection ability. Among the various adsorption configurations considered here, the bidentate bridging mode (A3) is more appropriate one which has higher electron injection ability, larger V OC value and more importantly it has higher dye loading on the surface.
Beagle, Brandon; Mi, Kaihong; Johnson, Gail V W
2009-11-01
The canonical Wnt/beta-catenin signaling pathway plays a critical role in numerous physiological and pathological processes. LRP6 is an essential co-receptor for Wnt/beta-catenin signaling; as transduction of the Wnt signal is strongly dependent upon GSK3beta-mediated phosphorylation of multiple PPP(S/T)P motifs within the membrane-anchored LRP6 intracellular domain. Previously, we showed that the free LRP6 intracellular domain (LRP6-ICD) can activate the Wnt/beta-catenin pathway in a beta-catenin and TCF/LEF-1 dependent manner, as well as interact with and attenuate GSK3beta activity. However, it is unknown if the ability of LRP6-ICD to attenuate GSK3beta activity and modulate activation of the Wnt/beta-catenin pathway requires phosphorylation of the LRP6-ICD PPP(S/T)P motifs, in a manner similar to the membrane-anchored LRP6 intracellular domain. Here we provide evidence that the LRP6-ICD does not have to be phosphorylated at its PPP(S/T)P motif by GSK3beta to stabilize endogenous cytosolic beta-catenin resulting in activation of TCF/LEF-1 and the Wnt/beta-catenin pathway. LRP6-ICD and a mutant in which all 5 PPP(S/T)P motifs were changed to PPP(A)P motifs equivalently interacted with and attenuated GSK3beta activity in vitro, and both constructs inhibited the in situ GSK3beta-mediated phosphorylation of beta-catenin and tau to the same extent. These data indicate that the LRP6-ICD attenuates GSK3beta activity similar to other GSK3beta binding proteins, and is not a result of it being a GSK3beta substrate. Our findings suggest the functional and regulatory mechanisms governing the free LRP6-ICD may be distinct from membrane-anchored LRP6, and that release of the LRP6-ICD may provide a complimentary signaling cascade capable of modulating Wnt-dependent gene expression. (c) 2009 Wiley-Liss, Inc.
A comprehensive study on rotation reversal in KSTAR: experimental observations and modelling
NASA Astrophysics Data System (ADS)
Na, D. H.; Na, Yong-Su; Angioni, C.; Yang, S. M.; Kwon, J. M.; Jhang, Hogun; Camenen, Y.; Lee, S. G.; Shi, Y. J.; Ko, W. H.; Lee, J. A.; Hahm, T. S.; KSTAR Team
2017-12-01
Dedicated experiments have been performed in KSTAR Ohmic plasmas to investigate the detailed physics of the rotation reversal phenomena. Here we adapt the more general definition of rotation reversal, a large change of the intrinsic toroidal rotation gradient produced by minor changes in the control parameters (Camenen et al 2017 Plasma Phys. Control. Fusion 59 034001), which is commonly observed in KSTAR regardless of the operating conditions. The two main phenomenological features of the rotation reversal are the normalized toroidal rotation gradient ({{u}\\prime} ) change in the gradient region and the existence of an anchor point. For the KSTAR Ohmic plasma database including the experiment results up to the 2016 experimental campaign, both features were investigated. First, the observations show that the locations of the gradient and the anchor point region are dependent on {{q}95} . Second, a strong dependence of {{u}\\prime} on {νeff} is clearly observed in the gradient region, whereas the dependence on R/{{L}{{Ti}}} , R/{{L}{{Te}}} , and R/{{L}{{ne}}} is unclear considering the usual variation of the normalized gradient length in KSTAR. The experimental observations were compared against several theoretical models. The rotation reversal might not occur due to the transition of the dominant turbulence from the trapped electron mode to the ion temperature gradient mode or the neoclassical equilibrium effect in KSTAR. Instead, it seems that the profile shearing effects associated with a finite ballooning tilting well reproduce the experimental observations of both the gradient region and the anchor point; the difference seems to be related to the magnetic shear and the q value. Further analysis implies that the increase of {{u}\\prime} in the gradient region with the increase of the collisionality would occur when the reduction of the momentum diffusivity is comparatively larger than the reduction of the residual stress. It is supported by the perturbative analysis of the experiments and the nonlinear gyrokinetic simulations. The absence of the sign change of {{u}\\prime} even when a much lower collisionality is produced by additional electron cyclotron heating brings further experimental support to this interpretation.
Seppel, Gernot; Saier, Tim; Martetschläger, Frank; Plath, Johannes E; Guevara-Alvarez, Alberto; Henschel, Julia; Winkler, Martin; Augat, Peter; Imhoff, Andreas B; Buchmann, Stefan
2017-12-01
Fractures of the humeral greater tuberosity (GT) are a frequent injury progressively treated with arthroscopic suture anchor repair. Yet, no biomechanical study has been performed comparing fixation strength of arthroscopic single- (SR) vs. double row (DR) fixation. Standardized fractures of the greater tuberosity were created in 12 fresh frozen proximal humeri. After random assignation to the SR or DR group the fixed humeri were tested applying cyclic loading to the supraspinatus and infraspinatus tendon. Load to failure and fragment displacement were assessed by means of an electrodynamic material testing machine using an optical tracking system. Load to failure values were higher in the DR group (649 N; ±176) than in the SR group (490 N; ±145) however without statistical significance (p = .12). In greater tuberosity displacement of 3-5 mm surgical treatment is recommended. The fixing constructs in this study did not reach displacement landmarks of 3 or 5 mm before construct failure as shown in previous studies. Thus the applied traction force (N) at 1 mm displacement was analyzed. In the SR group the load at 1 mm displacement was 277 N; ±46 compared to 260 N; ±62 in the DR group (p = .65). The results suggest that both techniques are viable options for refixation of greater tuberosity fractures. Laboratory study.
Kuntz, Jessica R; Karl, Jenni M; Doan, Jon B; Whishaw, Ian Q
2018-04-01
Reach-to-grasp movements feature the integration of a reach directed by the extrinsic (location) features of a target and a grasp directed by the intrinsic (size, shape) features of a target. The action-perception theory suggests that integration and scaling of a reach-to-grasp movement, including its trajectory and the concurrent digit shaping, are features that depend upon online action pathways of the dorsal visuomotor stream. Scaling is much less accurate for a pantomime reach-to-grasp movement, a pretend reach with the target object absent. Thus, the action-perception theory proposes that pantomime movement is mediated by perceptual pathways of the ventral visuomotor stream. A distinguishing visual feature of a real reach-to-grasp movement is gaze anchoring, in which a participant visually fixates the target throughout the reach and disengages, often by blinking or looking away/averting the head, at about the time that the target is grasped. The present study examined whether gaze anchoring is associated with pantomime reaching. The eye and hand movements of participants were recorded as they reached for a ball of one of three sizes, located on a pedestal at arms' length, or pantomimed the same reach with the ball and pedestal absent. The kinematic measures for real reach-to-grasp movements were coupled to the location and size of the target, whereas the kinematic measures for pantomime reach-to-grasp, although grossly reflecting target features, were significantly altered. Gaze anchoring was also tightly coupled to the target for real reach-to-grasp movements, but there was no systematic focus for gaze, either in relation with the virtual target, the previous location of the target, or the participant's reaching hand, for pantomime reach-to-grasp. The presence of gaze anchoring during real vs. its absence in pantomime reach-to-grasp supports the action-perception theory that real, but not pantomime, reaches are online visuomotor actions and is discussed in relation with the neural control of real and pantomime reach-to-grasp movements.
Devji, Tahira; Guyatt, Gordon H; Lytvyn, Lyubov; Brignardello-Petersen, Romina; Foroutan, Farid; Sadeghirad, Behnam; Buchbinder, Rachelle; Poolman, Rudolf W; Harris, Ian A; Carrasco-Labra, Alonso; Siemieniuk, Reed A C; Vandvik, Per O
2017-05-11
To identify the most credible anchor-based minimal important differences (MIDs) for patient important outcomes in patients with degenerative knee disease, and to inform BMJ Rapid Recommendations for arthroscopic surgery versus conservative management DESIGN: Systematic review. Estimates of anchor-based MIDs, and their credibility, for knee symptoms and health-related quality of life (HRQoL). MEDLINE, EMBASE and PsycINFO. We included original studies documenting the development of anchor-based MIDs for patient-reported outcomes (PROs) reported in randomised controlled trials included in the linked systematic review and meta-analysis and judged by the parallel BMJ Rapid Recommendations panel as critically important for informing their recommendation: measures of pain, function and HRQoL. 13 studies reported 95 empirically estimated anchor-based MIDs for 8 PRO instruments and/or their subdomains that measure knee pain, function or HRQoL. All studies used a transition rating (global rating of change) as the anchor to ascertain the MID. Among PROs with more than 1 estimated MID, we found wide variation in MID values. Many studies suffered from serious methodological limitations. We identified the following most credible MIDs: Western Ontario and McMaster University Osteoarthritis Index (WOMAC; pain: 12, function: 13), Knee injury and Osteoarthritis Outcome Score (KOOS; pain: 12, activities of daily living: 8) and EuroQol five dimensions Questionnaire (EQ-5D; 0.15). We were able to distinguish between more and less credible MID estimates and provide best estimates for key instruments that informed evidence presentation in the associated systematic review and judgements made by the Rapid Recommendation panel. CRD42016047912. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/.
Mathias, Susan D; Gao, Sue K; Rutstein, Mark; Snyder, Claire F; Wu, Albert W; Cella, David
2009-02-01
Interpretation of data from health-related quality of life (HRQoL) questionnaires can be enhanced with the availability of minimally important difference (MID) estimates. This information will aid clinicians in interpreting HRQoL differences within patients over time and between treatment groups. The Immune Thrombocytopenic Purpura (ITP)-Patient Assessment Questionnaire (PAQ) is the only comprehensive HRQoL questionnaire available for adults with ITP. Forty centers from within the US and Europe enrolled ITP patients into one of two multicenter, randomized, placebo-controlled, double-blind, 6-month, phase III clinical trials of romiplostim. Patients enrolled in these studies self-administered the ITP-PAQ and two items assessing global change (anchors) at baseline and weeks 4, 12, and 24. Using data from the ITP-PAQ and these two anchors, an anchor-based estimate was computed and combined with the standard error of measurement and standard deviation to compute a distribution-based estimate in order to provide an MID range for each of the 11 scales of the ITP-PAQ. A total of 125 patients participated in these clinical trials and provided data for use in these analyses. Combining results from anchor- and distribution-based approaches, MID values were computed for 9 of the 11 scales. MIDs ranged from 8 to 12 points for Symptoms, Bother, Psychological, Overall QOL, Social Activity, Menstrual Symptoms, and Fertility, while the range was 10 to 15 points for the Fatigue and Activity scales of the ITP-PAQ. These estimates, while slightly higher than other published MID estimates, were consistent with moderate effect sizes. These MID estimates will serve as a useful tool to researchers and clinicians using the ITP-PAQ, providing guidance for interpretation of baseline scores as well as changes in ITP-PAQ scores over time. Additional work should be done to finalize these initial estimates using more appropriate anchors that correlate more highly with the ITP-PAQ scales.
Integrating Reform-Oriented Math Instruction in Special Education Settings
ERIC Educational Resources Information Center
Bottge, Brian A.; Rueda, Enrique; LaRoque, Perry T.; Serlin, Ronald C.; Kwon, Jungmin
2007-01-01
This mixed-methods study assessed the effects of Enhanced Anchored Instruction (EAI) on the math performance of adolescents with learning disabilities in math (MLD). A quasi-experimental pretest-posttest control group design with switching replications was used to measure students' computation and problem-solving skills on EAI compared to control…
O'Connor, Christopher R.; Hiebel, Fanny; Chen, Wei; ...
2018-01-01
The relative stability of carboxylates on Au(110) was investigated as part of a comprehensive study of adsorbate binding on Group IB metals that can be used to predict and understand how to control reactivity in heterogeneous catalysis.
Pedagogical Encounters, Graduate Teaching Assistants, and Decolonial Feminist Commitments
ERIC Educational Resources Information Center
Madden, Meredith
2014-01-01
This study examines the pedagogical experiences of fourteen graduate teaching assistants (GTAs) across academic disciplines at a large private university in the Northeastern US. The participants in this study represent a small, focused group of GTAs who hold progressive social justice commitments and share pedagogical philosophies anchored in…
150. Photographic copy of original construction drawing dated July 29, ...
150. Photographic copy of original construction drawing dated July 29, 1930 (from Record Group 115, Denver Branch of the National Archives, Denver). 60 x 12 SPILLWAY RING GATE; CONTROL AND PIPING INSTALLATION AND ANCHOR BOLT LOCATION (SHEET 3 OF 8). - Owyhee Dam, Across Owyhee River, Nyssa, Malheur County, OR
Müller, Günter
2011-04-01
Glycosylphosphatidylinositol (GPI)-anchored proteins have been regarded as typical cell surface proteins found in most eukaryotic cells from yeast to man. They are embedded in the outer plasma membrane leaflet via a carboxy-terminally linked complex glycolipid GPI structure. The amphiphilic nature of the GPI anchor, its compatibility with the function of the attached protein moiety and the capability of GPI-anchored proteins for spontaneous insertion into and transfer between artificial and cellular membranes initially suggested their potential for biotechnological applications. However, these expectations have been hardly fulfilled so far. Recent developments fuel novel hopes with regard to: (i) Automated online expression, extraction and purification of therapeutic proteins as GPI-anchored proteins based on their preferred accumulation in plasma membrane lipid rafts, (ii) multiplex custom-made protein chips based on GPI-anchored cell wall proteins in yeast, (iii) biomaterials and biosensors with films consisting of sets of distinct GPI-anchored binding-proteins or enzymes for sequential or combinatorial catalysis, and (iv) transport of therapeutic proteins across or into relevant tissue cells, e.g., enterocytes or adipocytes. Latter expectations are based on the demonstrated translocation of GPI-anchored proteins from plasma membrane lipid rafts to cytoplasmic lipid droplets and eventually further into microvesicles which upon release from donor cells transfer their GPI-anchored proteins to acceptor cells. The value of these technologies, which are all based on the interaction of GPI-anchored proteins with membranes and surfaces, for the engineering, production and targeted delivery of biomolecules for a huge variety of therapeutic and biotechnological purposes should become apparent in the near future.
Retention of internal anchor tags by juvenile striped bass
Van Den Avyle, M.J.; Wallin, J.E.
2001-01-01
We marked hatchery-reared striped bass Morone saxatilis (145-265 mm total length) with internal anchor tags and monitored retention for 28 months after stocking in the Savannah River, Georgia and South Carolina. Anchor tags (with an 18-mm, T-shaped anchor and 42-mm streamer) were surgically implanted ventrally, and coded wire tags (1 mm long and 0.25 mm in diameter) were placed into the cheek muscle to help identify subsequent recaptures. The estimated probability of retention (SD) of anchor tags was 0.94 (0.05) at 4 months, 0.64 (0.13) at 16 months, and 0.33 (0.19) at 28 months. Of 10 fish recaptured with only coded wire tags, 5 showed an externally visible wound or scar near the point of anchor tag insertion. The incidence of wounds or scars, which we interpreted as evidence of tag shedding, increased to 50% in recaptures taken at 28 months (three of six fish). Our estimates for retention of anchor tags were generally lower than those in other studies of striped bass, possibly because of differences in the style of anchor or sizes of fish used. Because of its low rate of retention, the type of anchor tag we used may not be suitable for long-term assessments of stock enhancement programs that use striped bass of the sizes we evaluated.
Postl, L K; Ahrens, P; Beirer, M; Crönlein, M; Imhoff, A B; Foehr, P; Burgkart, R; Braun, C; Kirchhoff, Chlodwig
2016-08-01
Osteoporosis is a highly focused issue in current scientific research and clinical treatment. Especially in rotator cuff repair, the low bone quality of patients suffering from osteoporosis is an important issue. In this context, non-biological solutions using PMMA for anchor augmentation have been developed in the recent past. The aim of this study was to evaluate whether augmentation of suture anchors using bio-absorbable osteoconductive fiber-reinforced calcium phosphate results in improved failure load of suture anchors as well. Altogether 24 suture anchors (Corkscrew FT 1 Suture Anchors, Arthrex, Naples, FL, USA) were evaluated by applying traction until pullout in 12 paired fresh frozen human cadaver humeri using a servo-hydraulic testing machine. Inclusion criteria were an age of more than 64 years, a macroscopically intact RC and an intact bone. The anchors were evaluated at the anterolateral and posteromedial aspect of the greater tuberosity. 12 suture anchors were augmented and 12 suture anchors were conventionally inserted. The failure load was significantly enhanced by 66.8 % by the augmentation method. The fiber-reinforced calcium phosphate could be easily injected and applied. The bio-absorbable cement in this study could be a promising augmentation material for RC reconstructions, but further research is necessary-the material has to be evaluated in vivo.
33 CFR 150.905 - Why are safety zones, no anchoring areas, and areas to be avoided established?
Code of Federal Regulations, 2010 CFR
2010-07-01
... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false Why are safety zones, no...: OPERATIONS Safety Zones, No Anchoring Areas, and Areas To Be Avoided § 150.905 Why are safety zones, no anchoring areas, and areas to be avoided established? (a) Safety zones, no anchoring areas (NAAs) and areas...
ERIC Educational Resources Information Center
Wang, Wen-Chung
2004-01-01
Scale indeterminacy in analysis of differential item functioning (DIF) within the framework of item response theory can be resolved by imposing 3 anchor item methods: the equal-mean-difficulty method, the all-other anchor item method, and the constant anchor item method. In this article, applicability and limitations of these 3 methods are…
Engineered photosynthetic bacteria, method of manufacture of biofuels
Laible, Philip D.; Snyder, Seth W.
2016-09-13
The invention provides for a novel type of biofuel; a method for cleaving anchors from photosynthetic organisms; and a method for producing biofuels using photosynthetic organisms, the method comprising identifying photosynthesis co-factors and their anchors in the organisms; modifying the organisms to increase production of the anchors; accumulating biomass of the organisms in growth media; and harvesting the anchors.
Plant glycosylphosphatidylinositol (GPI) anchored proteins at the plasma membrane-cell wall nexus.
Yeats, Trevor H; Bacic, Antony; Johnson, Kim L
2018-04-18
Approximately 1% of plant proteins are predicted to be post-translationally modified with a glycosylphosphatidylinositol (GPI) anchor that tethers the polypeptide to the outer leaflet of the plasma membrane. While the synthesis and structure of GPI anchors is largely conserved across eukaryotes, the repertoire of functional domains present in the GPI-anchored proteome has diverged substantially. In plants, this includes a large fraction of the GPI-anchored proteome being further modified with plant-specific arabinogalactan (AG) O-glycans. The importance of the GPI-anchored proteome to plant development is underscored by the fact that GPI biosynthetic null mutants exhibit embryo lethality. Mutations in genes encoding specific GPI-anchored proteins (GAPs) further supports their contribution to diverse biological processes occurring at the interface of the plasma membrane and cell wall, including signaling, cell wall metabolism, cell wall polymer cross-linking, and plasmodesmatal transport. Here, we review the literature concerning plant GPI-anchored proteins in the context of their potential to act as molecular hubs that mediate interactions between the plasma membrane and the cell wall and their potential to transduce the signal into the protoplast and thereby activate signal transduction pathways. This article is protected by copyright. All rights reserved.
Suzuki, Yasutomo; Saito, Yuka; Ogushi, Satoko; Kimura, Go; Kondo, Yukihiro
2012-10-01
Herein we describe our experience with a bone-anchored sling using a suture anchor and polypropylene mesh for the treatment of post-radical prostatectomy urinary incontinence. Eight patients with urinary incontinence as a result of intrinsic sphincter deficiency after radical prostatectomy were included in the analysis. The procedure involved piercing the pubic bone with a bone drill, inserting the suture anchor and fixing a soft or rigid polypropylene mesh to press firmly on the bulbar urethra. Urinary incontinence was significantly improved according to changes in the daily number of pads used at 1, 3 and 6 months postoperatively in comparison with preoperatively. However, no meaningful improvement at 6 months postoperatively was seen with the soft mesh. Complications included perineal pain in four cases, but pain control was achieved using non-steroidal anti-inflammatory drugs. The bone-anchored sling with a suture anchor and polypropylene mesh appears to be safe and effective for the treatment of post-radical prostatectomy urinary incontinence. Soft mesh appears inappropriate as material for the bone-anchored sling because of the progressive likelihood of worsened urinary incontinence. © 2012 The Japanese Urological Association.
Improving performance by anchoring movement and "nerves".
Iso-Ahola, Seppo E; Dotson, Charles O; Jagodinsky, Adam E; Clark, Lily C; Smallwood, Lorraine L; Wilburn, Christopher; Weimar, Wendi H; Miller, Matthew W
2016-10-01
Golf's governing bodies' recent decision to ban all putting styles "anchoring one end of the club against the body" bridges an important practical problem with psychological theory. We report the first experiment testing whether anchoring provides technical and/or psychological advantage in competitive performance. Many "greats" of professional golf from Arnold Palmer and Jack Nicklaus to Tiger Woods have argued against anchoring, believing that it takes "nerves" out of competitive performance and therefore artificially levels the playing field. To shed more light on the issue, we tested participants' performance with anchored and unanchored putters under low and high pressure when controlling for the putter length. We found no statistically significant evidence for a technical advantage due to anchoring but a clear psychological advantage: participants who anchored their putters significantly outperformed unanchored counterparts under high, but not low, pressure. Results provide tentative evidence for the ban's justification from a competitive standpoint. However, before any definite conclusions can be made, more research is needed when using high-level golfers. Copyright © 2016 Elsevier B.V. All rights reserved.
Zúñiga-Navarrete, Fernando; Gómez, Isabel; Peña, Guadalupe; Bravo, Alejandra; Soberón, Mario
2013-03-01
Bacillus thuringiensis Cry toxins recognizes their target cells in part by the binding to glycosyl-phosphatidyl-inositol (GPI) anchored proteins such as aminopeptidase-N (APN) or alkaline phosphatases (ALP). Treatment of Tenebrio molitor brush border membrane vesicles (BBMV) with phospholipase C that cleaves out GPI-anchored proteins from the membranes, showed that GPI-anchored proteins are involved in binding of Cry3Aa toxin to BBMV. A 68 kDa GPI-anchored ALP was shown to bind Cry3Aa by toxin overlay assays. The 68 kDa GPI-anchored ALP was preferentially expressed in early instar larvae in comparison to late instar larvae. Our work shows for the first time that GPI-anchored ALP is important for Cry3Aa binding to T. molitor BBMV suggesting that the mode of action of Cry toxins is conserved in different insect orders. Copyright © 2012 Elsevier Inc. All rights reserved.
Metz, C N; Thomas, P; Davitz, M A
1992-06-01
A large number of eukaryotic proteins have been shown to be anchored to the cell membrane by glycosylphosphatidylinositol (GPI). This glycolipid anchor can serve as a substrate for anchor-specific phospholipases that convert the GPI-anchored membrane proteins into soluble forms. Soluble forms of many GPI anchored proteins have been identified in vivo in connective tissue, plasma, and urine. The authors have discovered that mammalian plasma contains a GPI-specific phospholipase D (GPI-PLD). Because it recognizes a portion of the conserved glycan core structure, all GPI-anchored proteins are potential substrates. The authors report the development of a murine monoclonal antibody specific for one form of the human GPI-PLD and the immunohistochemical localization of this enzyme to mast cells.
Comparison between single-row and double-row rotator cuff repair: a biomechanical study.
Milano, Giuseppe; Grasso, Andrea; Zarelli, Donatella; Deriu, Laura; Cillo, Mario; Fabbriciani, Carlo
2008-01-01
The aim of this study was to compare the mechanical behavior under cyclic loading test of single-row and double-row rotator cuff repair with suture anchors in an ex-vivo animal model. For the present study, 50 fresh porcine shoulders were used. On each shoulder, a crescent-shaped full-thickness tear of the infraspinatus was performed. Width of the tendon tear was 2 cm. The lesion was repaired using metal suture anchors. Shoulders were divided in four groups, according the type of repair: single-row tension-free repair (Group 1); single-row tension repair (Group 2); double-row tension-free repair (Group 3); double-row tension repair (Group 4); and a control group. Specimens were subjected to a cyclic loading test. Number of cycles at 5 mm of elongation and at failure, and total elongation were calculated. Single-row tension repair showed significantly poorest results for all the variables considered, when compared with the other groups. Regarding the mean number of cycles at 5 mm of elongation and at failure, there was a nonsignificant difference between Groups 3 and 4, and both of them were significantly greater than Group 1. For mean total elongation, the difference between Groups 1, 3, and 4 was not significant, but all of them were significantly lower than the control group. A single-row repair is particularly weak when performed under tension. Double-row repair is significantly more resistant to cyclic displacement than single-row repair in both tension-free and tension repair. Double-row repair technique can be primarily considered for large, unstable rotator cuff tears to improve mechanical strength of primary fixation of tendons to bone.
Schuh, R; Benca, E; Willegger, M; Hirtler, L; Zandieh, S; Holinka, J; Windhager, R
2016-04-01
Recently, tape augmentation for Broström repair has been introduced in order to improve the primary stability of the reconstructed anterior talofibular ligament (ATFL). The biomechanical effect of tape augmentation suture anchor (SA) repair is not known yet. The aim of the present study was to compare construct stability of the traditional Broström (TB) repair compared with a stand alone SA repair (SutureTak, Arthrex) and SA repair combined with tape augmentation (InternalBrace, Arthrex) internal brace (IB) of the ATFL. Eighteen fresh-frozen human anatomic lower leg specimens were randomly assigned to three different groups: TB group, SA group, and IB augmentation group. In vivo torsion conditions in ankle sprain were carried out quasi-statically (0.5°/s). Torque (Nm) required to resist as well as the rotary displacement (°) of the load frame was recorded. Intergroup differences for age, bone mineral density (BMD), angle at failure, and torque at failure were analysed using ANOVA. In the TB group, ATFL reconstruction failed at an angle of 24.1°, in the SA group failure occurred at 35.5°, and in the IB group it failed at 46.9° (p = 0.02). Torque at failure reached 5.7 Nm for the TB repair, 8.0 Nm for the SA repair, and 11.2 Nm for the IB group (p = 0.04). There was no correlation between angle at ATFL failure, torque at failure, and BMD for the SA or IB groups. The present biomechanical study reveals statistically superior performance in terms of angle at failure as well as failure torque for the IB group compared to the other reconstruction methods. BMD did not influence the construct stability in the SA repair groups.
Alaee, Farhang; Apostolakos, John; Singh, Hardeep; Holwein, Christian; Diermeier, Theresa; Cote, Mark P; Beitzel, Knut; Imhoff, Andreas B; Mazzocca, Augustus D; Voss, Andreas
2017-07-01
To investigate the biomechanical performance of four different methods used for coracoclavicular (CC) ligament reconstruction in a lateral clavicle fracture repair. Native displacement, translation, and rotation at the acromioclavicular joint of 24 fresh-frozen cadaveric shoulders were tested. A reproducible fracture in the lateral third of the clavicle was created by dissecting both CC ligaments. Each specimen was then repaired with plate fixation of the fracture and the following CC repair technique: (1) Cortical button. (2) Suture anchor and plate button. (3) Suture anchor no plate button, and (4) Suture around coracoid. All reconstructed specimens were then re-tested for displacement, translation, and load to failure, and compared to their native results. Groups 1 and 3 were investigated for rotational load. There was no difference in load to failure between the repaired groups (p: ns). Group 1 showed less superior and anterior translations (p < 0.05). Group 2 showed significantly less superior translation (p = 0.003), but no significance with anterior and posterior translations to the native joint. Group 3 showed less superior and posterior translations (p = 0.005 and p = 0.039). Anterior and posterior translations were increased in group 4 (p < 0.05). The biomechanical analyses did not show any significance in load to failure or displacement after cyclic loading among the study groups. All repairs were effective in preventing superior translation. Groups 1 and 2 demonstrated increased horizontal stability compared to the native state. All 4 methods are clinically viable options for CC ligament repair.
Sequestration of GPI-anchored proteins in caveolae triggered by cross-linking.
Mayor, S; Rothberg, K G; Maxfield, F R
1994-06-24
Glycosyl-phosphatidylinositol (GPI)-anchored proteins have been reported to reside in clusters collected over small membrane invaginations called caveolae. The detection of different GPI-anchored proteins with fluorescently labeled monoclonal antibodies showed that these proteins are not constitutively concentrated in caveolae; they enter these structures independently after cross-linking with polyclonal secondary antibodies. Analysis of the cell surface distribution of the GPI-anchored folate receptor by electron microscopy confirms these observations. Thus, multimerization of GPI-anchored proteins regulates their sequestration in caveolae, but in the absence of agents that promote clustering they are diffusely distributed over the plasma membrane.
Eun, Sang Soo; Lee, Sang Ho; Sabal, Luigi Andrew
2016-08-01
There are numerous methods for repairing posterior root tears of the medial meniscus (PRTMM). Repair techniques using suture anchors through a high posteromedial portal have been reported. The present study found that using a knotless suture anchor instead of suture anchor seemed easier and faster because it avoided passing the sutures through the meniscus and tying a knot in a small space. This study describes a knotless suture anchor technique through a high posteromedial portal, and its clinical results. Copyright © 2016 Elsevier B.V. All rights reserved.
Locomotion in a liquid crystal near a wall
NASA Astrophysics Data System (ADS)
Powers, Thomas; Krieger, Madison; Spagnolie, Saverio
2015-11-01
Recent observations of bacteria swimming in nematic liquid crystal solution motivate the theoretical study of how swimming speed depends on liquid crystal properties. We consider the Taylor sheet near a wall, in which propulsion is achieved by the propagation of traveling waves along the length of the swimmer. Using the lubrication approximation, we determine how swimming speed depends on the Ericksen number, which is the ratio of elastic to viscous stresses. We also study the effect of anchoring strength, at the surface of the swimmer and the surface of the wall. Supported by NSF-CBET 1437195.
Nine unanswered questions about cytokinesis
2017-01-01
Experiments on model systems have revealed that cytokinesis in cells with contractile rings (amoebas, fungi, and animals) depends on shared molecular mechanisms in spite of some differences that emerged during a billion years of divergent evolution. Understanding these fundamental mechanisms depends on identifying the participating proteins and characterizing the mechanisms that position the furrow, assemble the contractile ring, anchor the ring to the plasma membrane, trigger ring constriction, produce force to form a furrow, disassemble the ring, expand the plasma membrane in the furrow, and separate the daughter cell membranes. This review reveals that fascinating questions remain about each step. PMID:28807993
Nine unanswered questions about cytokinesis.
Pollard, Thomas D
2017-10-02
Experiments on model systems have revealed that cytokinesis in cells with contractile rings (amoebas, fungi, and animals) depends on shared molecular mechanisms in spite of some differences that emerged during a billion years of divergent evolution. Understanding these fundamental mechanisms depends on identifying the participating proteins and characterizing the mechanisms that position the furrow, assemble the contractile ring, anchor the ring to the plasma membrane, trigger ring constriction, produce force to form a furrow, disassemble the ring, expand the plasma membrane in the furrow, and separate the daughter cell membranes. This review reveals that fascinating questions remain about each step. © 2017 Pollard.
The Place of White in a World of Grays: A Double-Anchoring Theory of Lightness Perception
ERIC Educational Resources Information Center
Bressan, Paola
2006-01-01
The specific gray shades in a visual scene can be derived from relative luminance values only when an anchoring rule is followed. The double-anchoring theory I propose in this article, as a development of the anchoring theory of Gilchrist et al. (1999), assumes that any given region (a) belongs to one or more frameworks, created by Gestalt…
ERIC Educational Resources Information Center
Wiberg, Marie; von Davier, Alina A.
2017-01-01
We propose a comprehensive procedure for the implementation of a quality control process of anchor tests for a college admissions test with multiple consecutive administrations. We propose to examine the anchor tests and their items in connection with covariates to investigate if there was any unusual behavior in the anchor test results over time…
An anchoring system for fish habitat structures: field technique, evaluation, and application.
Barbara L. Fontaine; Thomas D. Merritt
1988-01-01
Steel cable can be used to bind rocks and logs together to construct fish habitat structures in streams. Cables must be securely anchored if structures are to withstand floods. This paper describes a way to anchor cables into bedrock or ballast boulders. Anchor tensile strength ranged from 7,500 to 36,500 pounds and was related to type of resin and embedment depth....
Lie, Désirée; May, Win; Richter-Lagha, Regina; Forest, Christopher; Banzali, Yvonne; Lohenry, Kevin
2015-01-01
Current scales for interprofessional team performance do not provide adequate behavioral anchors for performance evaluation. The Team Observed Structured Clinical Encounter (TOSCE) provides an opportunity to adapt and develop an existing scale for this purpose. We aimed to test the feasibility of using a retooled scale to rate performance in a standardized patient encounter and to assess faculty ability to accurately rate both individual students and teams. The 9-point McMaster-Ottawa Scale developed for a TOSCE was converted to a 3-point scale with behavioral anchors. Students from four professions were trained a priori to perform in teams of four at three different levels as individuals and teams. Blinded faculty raters were trained to use the scale to evaluate individual and team performances. G-theory was used to analyze ability of faculty to accurately rate individual students and teams using the retooled scale. Sixteen faculty, in groups of four, rated four student teams, each participating in the same TOSCE station. Faculty expressed comfort rating up to four students in a team within a 35-min timeframe. Accuracy of faculty raters varied (38-81% individuals, 50-100% teams), with errors in the direction of over-rating individual, but not team performance. There was no consistent pattern of error for raters. The TOSCE can be administered as an evaluation method for interprofessional teams. However, faculty demonstrate a 'leniency error' in rating students, even with prior training using behavioral anchors. To improve consistency, we recommend two trained faculty raters per station.
Archaeometallurgical investigation of the iron anchor from the Tantura F shipwreck
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aronson, A.; Ashkenazi, D., E-mail: dana@eng.tau.ac.il; Barkai, O.
2013-04-15
The Tantura F shipwreck was a coaster or a fishing vessel about 15.7 m long, discovered in the Dor/Tantura lagoon, Israel in 1995. It was dated to between the mid-7th and the end of the 8th centuries CE. Among the finds excavated were two T-shaped type iron anchors. Of the two anchors, one (anchor A) was thoroughly studied by archaeometallurgical methods in order to identify forge-welding lines, to determine the welding quality and to understand the manufacturing technology. The examinations included X-ray radiography, XRF analysis, optical microscopy, SEM/EDS observation and analysis, OES analysis and microhardness tests. The investigation included characterizationmore » of the composition, microstructure, thermal treatments, forge-welding junctions and slag analysis. The results revealed a heterogeneous microstructure, rich in glassy, fayalite and wüstite slag. Iron based phases included ferrite, pearlite, cementite and Widmanstätten plates, all typical to wrought iron. The forge-welds of Anchor A were located. Each arm was made of one piece, weighing about 2.5–3 kg and the shank was made of a few 1.5–2 kg pieces. The second anchor (anchor B) was only briefly examined visually and with a few radiographs, which support the results from anchor A. The research results revealed significant information about T-shaped anchors and their manufacturing process, including hot-working processes without any additional heat treatments, and folding techniques. The microstructure was similar to other ancient simple tools such as saws, sickles, axes and mortise chisels, and though the technology to make complicated structures and objects, such as swords, existed at that time, the anchors did not require this sophistication; thus simpler techniques were used, presumably because they were more cost-effective. - Highlights: ► Tantura F was a coaster dated to mid-7th–end-8th centuries. ► Two iron anchors were discovered at the Tantura F shipwreck-site. ► Anchor A was manufactured from heterogeneous wrought iron blooms. ► Forge-welding lines were detected using archaeometallurgical methods.« less
NASA Astrophysics Data System (ADS)
Tsvetkov, Vladimir B.; Serbin, Alexander V.
2014-06-01
In previous works we reported the design, synthesis and in vitro evaluations of synthetic anionic polymers modified by alicyclic pendant groups (hydrophobic anchors), as a novel class of inhibitors of the human immunodeficiency virus type 1 ( HIV-1) entry into human cells. Recently, these synthetic polymers interactions with key mediator of HIV-1 entry-fusion, the tri-helix core of the first heptad repeat regions [ HR1]3 of viral envelope protein gp41, were pre-studied via docking in terms of newly formulated algorithm for stepwise approximation from fragments of polymeric backbone and side-group models toward real polymeric chains. In the present article the docking results were verified under molecular dynamics ( MD) modeling. In contrast with limited capabilities of the docking, the MD allowed of using much more large models of the polymeric ligands, considering flexibility of both ligand and target simultaneously. Among the synthesized polymers the dinorbornen anchors containing alternating copolymers of maleic acid were selected as the most representative ligands (possessing the top anti-HIV activity in vitro in correlation with the highest binding energy in the docking). To verify the probability of binding of the polymers with the [HR1]3 in the sites defined via docking, various starting positions of polymer chains were tried. The MD simulations confirmed the main docking-predicted priority for binding sites, and possibilities for axial and belting modes of the ligands-target interactions. Some newly MD-discovered aspects of the ligand's backbone and anchor units dynamic cooperation in binding the viral target clarify mechanisms of the synthetic polymers anti-HIV activity and drug resistance prevention.
Response of GWALP Transmembrane Peptides to Changes in the Tryptophan Anchor Positions†
Vostrikov, Vitaly V.; Koeppe, Roger E.
2011-01-01
While the interfacial partitioning of charged or aromatic anchor residues may determine the preferred orientations of transmembrane peptide helices, the dependence of helix orientation on anchor residue position is not well understood. When anchor residue locations are changed systematically, some adaptations of the peptide-lipid interactions may be required to compensate the altered interfacial interactions. Recently we have developed a novel transmembrane peptide, termed GW5,19ALP23 (acetyl-GGALW5LALALALALALALW19LAGA-ethanolamide), which proves to be a well behaved sequence for an orderly investigation of protein-lipid interactions. Its roughly symmetric nature allows for shifting the anchoring Trp residues by one Leu-Ala pair inward (GW7,17ALP23) or outward (GW3,21ALP23), thus providing fine adjustments of the formal distance between the tryptophan residues. With no other obvious anchoring features present, we postulate that the inter-Trp distance may be crucial for aspects of the peptide-lipid interaction. Importantly, the amino acid composition is identical for each of the resulting related GWALP23 sequences, and the radial separation between the pairs of Trp residues on each side of the transmembrane α-helix remains similar. Here we address the adaptation of the aforementioned peptides to the varying Trp locations by means of solid-state 2H NMR experiments in varying lipid bilayer membrane environments. All of the GWx,yALP23 sequence isomers adopt transmembrane orientations in DOPC, DMPC and DLPC environments, even when the Trp residues are quite closely spaced, in GW7,17ALP23. Furthermore, the dynamics for each peptide isomer are less extensive than for peptides possessing additional interfacial Trp residues. The helical secondary structure is maintained more strongly within the Trp-flanked core region than outside of the Trp boundaries. Deuterium labeled tryptophan indole rings in the GWx,yALP23 peptides provide additional insights into the behavior of the Trp side chains. A Trp side chain near the C-terminus adopts a different orientation and undergoes somewhat faster dynamics than a corresponding Trp side chain located an equivalent distance from the N-terminus. In contrast, as the inter-Trp distance changes, the variations among the average orientations of the Trp indole rings at either terminus are systematic yet fairly small. We conclude that subtle adjustments to the peptide tilt, and to the N- and C-terminal Trp side-chain torsion angles, permit the GWx,yALP23 peptides to maintain preferred transmembrane orientations while adapting to lipid bilayers of differing hydrophobic thickness. PMID:21800919
Rodríguez-González, Abril; Sarabeev, Volodimir; Balbuena, Juan Antonio
2017-01-01
The search for phylogenetic signal in morphological traits using geometric morphometrics represents a powerful approach to estimate the relative weights of convergence and shared evolutionary history in shaping organismal form. We assessed phylogenetic signal in the form of ventral and dorsal haptoral anchors of 14 species of Ligophorus occurring on grey mullets (Osteichthyes: Mugilidae) from the Mediterranean, the Black Sea and the Sea of Azov. The phylogenetic relationships among these species were mapped onto the morphospaces of shape and size of dorsal and ventral anchors and two different tests were applied to establish whether the spatial positions in the morphospace were dictated by chance. Overall significant phylogenetic signal was found in the data. Allometric effects on anchor shape were moderate or non-significant in the case of evolutionary allometry. Relatively phylogenetically distant species occurring on the same host differed markedly in anchor morphology indicating little influence of host species on anchor form. Our results suggest that common descent and shared evolutionary history play a major role in determining the shape and, to a lesser degree in the size of haptoral anchors in Ligophorus spp. The present approach allowed tracing paths of morphological evolution in anchor shape. Species with narrow anchors and long shafts were associated predominately with Liza saliens. This morphology was considered to be ancestral relative to anchors of species occurring on Liza haematocheila and M. cephalus possessing shorter shafts and longer roots. Evidence for phylogenetic signal was more compelling for the ventral anchors, than for the dorsal ones, which could reflect different functional roles in attachment to the gills. Although phylogeny and homoplasy may act differently in other monogeneans, the present study delivers a common framework to address effectively the relationships among morphology, phylogeny and other traits, such as host specificity or niche occupancy. PMID:28542570
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kloc, Malgorzata; Bilinski, Szczepan; Dougherty, Matthew T.
2007-05-01
Recent studies discovered a novel structural role of RNA in maintaining the integrity of the mitotic spindle and cellular cytoskeleton. In Xenopus laevis, non-coding Xlsirts and coding VegT RNAs play a structural role in anchoring localized RNAs, maintaining the organization of the cytokeratin cytoskeleton and germinal granules in the oocyte vegetal cortex and in subsequent development of the germline in the embryo. We studied the ultrastructural effects of antisense oligonucleotide driven ablation of Xlsirts and VegT RNAs on the organization of the cytokeratin, germ plasm and other components of the vegetal cortex. We developed a novel method to immunolabel andmore » visualize cytokeratin at the electron microscopy level, which allowed us to reconstruct the ultrastructural organization of the cytokeratin network relative to the components of the vegetal cortex in Xenopus oocytes. The removal of Xlsirts and VegT RNAs not only disrupts the cytokeratin cytoskeleton but also has a profound transcript-specific effect on the anchoring and distribution of germ plasm islands and their germinal granules and the arrangement of yolk platelets within the vegetal cortex. We suggest that the cytokeratin cytoskeleton plays a role in anchoring of germ plasm islands within the vegetal cortex and germinal granules within the germ plasm islands.« less
Wu, Chenggang; Huang, I-Hsiu; Chang, Chungyu; Reardon-Robinson, Melissa Elizabeth; Das, Asis; Ton-That, Hung
2014-01-01
Sortase, a cysteine-transpeptidase conserved in Gram-positive bacteria, anchors on the cell wall many surface proteins that facilitate bacterial pathogenesis and fitness. Genetic disruption of the housekeeping sortase in several Gram-positive pathogens reported thus far attenuates virulence, but not bacterial growth. Paradoxically, we discovered that depletion of the housekeeping sortase SrtA was lethal for Actinomyces oris; yet, all of its predicted cell wall-anchored protein substrates (AcaA-N) were individually dispensable for cell viability. Using Tn5-transposon mutagenesis to identify factors that upend lethality of srtA deletion, we uncovered a set of genetic suppressors harboring transposon insertions within genes of a locus encoding AcaC and a LytR-CpsA-Psr (LCP)-like protein. AcaC was shown to be highly glycosylated and dependent on LCP for its glycosylation. Upon SrtA depletion, the glycosylated form of AcaC, hereby renamed GspA, was accumulated in the membrane. Overexpression of GspA in a mutant lacking gspA and srtA was lethal; conversely, cells overexpressing a GspA mutant missing a membrane-localization domain were viable. The results reveal a unique glycosylation pathway in A. oris that is coupled to cell wall anchoring catalyzed by sortase SrtA. Significantly, this novel phenomenon of glyco-stress provides convenient cell-based assays for developing a new class of inhibitors against Gram-positive pathogens. PMID:25230351
Xiong, Guanxing; Wang, X. T.; Li, Aimei
2018-01-01
Within a risky choice framework, we examine how multiple reference points and anchors regulate pay perception and turnover intentions in real organizational contexts with actual employees. We hypothesize that the salary range is psychologically demarcated by three reference points into four regions, the minimum requirement (MR), the status quo (SQ), and the goal (G). Three studies were conducted: Study 1 analyzed the relationship between turnover intention and the subjective likelihood of falling into each of four expected salary regions; Study 2 tested the mediating effect of pay satisfaction on salary reference point-dependent turnover intention; and Study 3 explored the anchoring effect of estimated peer salaries. The results show that turnover intention was higher in the region below MR or between SQ and G but lower in the region above G or between MR and SQ. That is, turnover intention can be high even in situations of salary raise, if the raise is below a salary goal (i.e., leaving for a lack of opportunity) and low even in situations of salary loss, if the expected salary is still above the MR (i.e., staying for security). In addition, turnover intention was regulated by pay satisfaction and peer salaries. In conclusion, turnover intention can be viewed as a risky choice adapted to salary reference points. PMID:29872409
Grouping and Segregation of Sensory Events by Actions in Temporal Audio-Visual Recalibration.
Ikumi, Nara; Soto-Faraco, Salvador
2016-01-01
Perception in multi-sensory environments involves both grouping and segregation of events across sensory modalities. Temporal coincidence between events is considered a strong cue to resolve multisensory perception. However, differences in physical transmission and neural processing times amongst modalities complicate this picture. This is illustrated by cross-modal recalibration, whereby adaptation to audio-visual asynchrony produces shifts in perceived simultaneity. Here, we examined whether voluntary actions might serve as a temporal anchor to cross-modal recalibration in time. Participants were tested on an audio-visual simultaneity judgment task after an adaptation phase where they had to synchronize voluntary actions with audio-visual pairs presented at a fixed asynchrony (vision leading or vision lagging). Our analysis focused on the magnitude of cross-modal recalibration to the adapted audio-visual asynchrony as a function of the nature of the actions during adaptation, putatively fostering cross-modal grouping or, segregation. We found larger temporal adjustments when actions promoted grouping than segregation of sensory events. However, a control experiment suggested that additional factors, such as attention to planning/execution of actions, could have an impact on recalibration effects. Contrary to the view that cross-modal temporal organization is mainly driven by external factors related to the stimulus or environment, our findings add supporting evidence for the idea that perceptual adjustments strongly depend on the observer's inner states induced by motor and cognitive demands.
Grouping and Segregation of Sensory Events by Actions in Temporal Audio-Visual Recalibration
Ikumi, Nara; Soto-Faraco, Salvador
2017-01-01
Perception in multi-sensory environments involves both grouping and segregation of events across sensory modalities. Temporal coincidence between events is considered a strong cue to resolve multisensory perception. However, differences in physical transmission and neural processing times amongst modalities complicate this picture. This is illustrated by cross-modal recalibration, whereby adaptation to audio-visual asynchrony produces shifts in perceived simultaneity. Here, we examined whether voluntary actions might serve as a temporal anchor to cross-modal recalibration in time. Participants were tested on an audio-visual simultaneity judgment task after an adaptation phase where they had to synchronize voluntary actions with audio-visual pairs presented at a fixed asynchrony (vision leading or vision lagging). Our analysis focused on the magnitude of cross-modal recalibration to the adapted audio-visual asynchrony as a function of the nature of the actions during adaptation, putatively fostering cross-modal grouping or, segregation. We found larger temporal adjustments when actions promoted grouping than segregation of sensory events. However, a control experiment suggested that additional factors, such as attention to planning/execution of actions, could have an impact on recalibration effects. Contrary to the view that cross-modal temporal organization is mainly driven by external factors related to the stimulus or environment, our findings add supporting evidence for the idea that perceptual adjustments strongly depend on the observer's inner states induced by motor and cognitive demands. PMID:28154529
Synergistic anti-tumor effect of glycosylphosphatidylinositol-anchored IL-2 and IL-12.
Ji, Jianfei; Li, Jinhua; Holmes, Lillia M; Burgin, Kelly E; Yu, Xianzhong; Wagner, Thomas E; Wei, Yanzhang
2004-07-01
Preclinical and clinical studies have demonstrated that interleukin 2 (IL-2), interleukin 12 (IL-12), and some other cytokines, play important roles in activating host immune responses against tumor growth. However, severe side effects caused by systemic high-dose administration of these cytokines limit their clinical application. In our previous study, local high doses of IL-2 were achieved by a GPI-anchoring technology; therefore, it will be interesting to know if this technology works for other cytokines. A fusion gene containing murine IL-12 and the glycosylphosphatidylinositol (GPI) anchor signal sequence was generated and transfected into the murine melanoma tumor cell line B16F0 either alone or together with a vector encoding GPI-anchored IL-2. The GPI-anchored cytokine expression of the selected stable clones was assayed in vitro by ELISA and their anti-tumor effects were analyzed in vivo by tumor lymphocyte infiltration and tumor growth studies. GPI-anchored IL-12 was successfully expressed on the cell surface as indicated by FACS analysis and IL-12 ELISA assay. The GPI-anchored IL-12 enhanced lymphocyte infiltration and significantly inhibited tumor growth. More importantly, when GPI-anchored IL-12 and GPI-anchored IL-2 were co-delivered, a synergistic anti-tumor effect was observed in both subcutaneous and intravenous tumor models. GPI anchorage of cytokines represents a new approach to locally deliver high doses of cytokines without the severe adverse effects normally accompanied with systematic high-dose administration of these cytokines. Copyright 2004 John Wiley & Sons, Ltd.
Complete phase diagram of DNA unzipping: eye, Y fork, and triple point.
Kapri, Rajeev; Bhattacharjee, Somendra M; Seno, Flavio
2004-12-10
We study the unzipping of double stranded DNA by applying a pulling force at a fraction s (0< or =s < or =1) from the anchored end. From exact analytical and numerical results, the complete phase diagram is presented. The phase diagram shows a strong ensemble dependence for various values of s. In addition, we show the existence of an eye phase and a triple point.
Negative gravitropism in plant roots.
Ge, Liangfa; Chen, Rujin
2016-10-17
Plants are capable of orienting their root growth towards gravity in a process termed gravitropism, which is necessary for roots to grow into soil, for water and nutrient acquisition and to anchor plants. Here we show that root gravitropism depends on the novel protein, NEGATIVE GRAVITROPIC RESPONSE OF ROOTS (NGR). In both Medicago truncatula and Arabidopsis thaliana, loss of NGR reverses the direction of root gravitropism, resulting in roots growing upward.
Marenduzzo, D; Orlandini, E; Cates, M E; Yeomans, J M
2007-09-01
We report hybrid lattice Boltzmann (HLB) simulations of the hydrodynamics of an active nematic liquid crystal sandwiched between confining walls with various anchoring conditions. We confirm the existence of a transition between a passive phase and an active phase, in which there is spontaneous flow in the steady state. This transition is attained for sufficiently "extensile" rods, in the case of flow-aligning liquid crystals, and for sufficiently "contractile" ones for flow-tumbling materials. In a quasi-one-dimensional geometry, deep in the active phase of flow-aligning materials, our simulations give evidence of hysteresis and history-dependent steady states, as well as of spontaneous banded flow. Flow-tumbling materials, in contrast, rearrange themselves so that only the two boundary layers flow in steady state. Two-dimensional simulations, with periodic boundary conditions, show additional instabilities, with the spontaneous flow appearing as patterns made up of "convection rolls." These results demonstrate a remarkable richness (including dependence on anchoring conditions) in the steady-state phase behavior of active materials, even in the absence of external forcing; they have no counterpart for passive nematics. Our HLB methodology, which combines lattice Boltzmann for momentum transport with a finite difference scheme for the order parameter dynamics, offers a robust and efficient method for probing the complex hydrodynamic behavior of active nematics.
Acylation-dependent protein export in Leishmania.
Denny, P W; Gokool, S; Russell, D G; Field, M C; Smith, D F
2000-04-14
The surface of the protozoan parasite Leishmania is unusual in that it consists predominantly of glycosylphosphatidylinositol-anchored glycoconjugates and proteins. Additionally, a family of hydrophilic acylated surface proteins (HASPs) has been localized to the extracellular face of the plasma membrane in infective parasite stages. These surface polypeptides lack a recognizable endoplasmic reticulum secretory signal sequence, transmembrane spanning domain, or glycosylphosphatidylinositol-anchor consensus sequence, indicating that novel mechanisms are involved in their transport and localization. Here, we show that the N-terminal domain of HASPB contains primary structural information that directs both N-myristoylation and palmitoylation and is essential for correct localization of the protein to the plasma membrane. Furthermore, the N-terminal 18 amino acids of HASPB, encoding the dual acylation site, are sufficient to target the heterologous Aequorea victoria green fluorescent protein to the cell surface of Leishmania. Mutagenesis of the predicted acylated residues confirms that modification by both myristate and palmitate is required for correct trafficking. These data suggest that HASPB is a representative of a novel class of proteins whose translocation onto the surface of eukaryotic cells is dependent upon a "non-classical" pathway involving N-myristoylation/palmitoylation. Significantly, HASPB is also translocated on to the extracellular face of the plasma membrane of transfected mammalian cells, indicating that the export signal for HASPB is recognized by a higher eukaryotic export mechanism.
Orthodontic skeletal anchorage using a palatal external plate.
Kobayashi, Masaru; Fushima, Kenji
2014-03-01
We have developed the Anchor-Lock external plate system, which is fitted on the palate for the purpose of orthodontic skeletal anchorage. The aim of this study was to introduce the Anchor-Lock and assess its success rate. The Anchor-Lock is composed of titanium screws of 2·0-mm diameter and a titanium plate of 1·0-mm thickness. The external plate is rigidly interlocked with the heads of the screws, which are implanted trans-mucosally into palatal bone. Three types of Anchor-Lock are available. These were applied to 137 orthodontic patients (104 females and 33 males) aged 10-54 years. Two types of plate were used, a straight-shaped plate applied to the hard palate and to the anterior palate and a double-Y-shaped plate applied after tooth-borne rapid maxillary expansion. Success rate of the Anchor-Lock was 92·0% overall. No significant difference in success rate was found by age or sex of patients. Type or screw length of the Anchor-Lock did not affect success rate significantly. Success rate was significantly increased by the use of the surgical stent. The Anchor-Lock was effectively applied to distalize and/or intrude the upper molars. The Anchor-Lock system appears suitable for clinical use as an alternative to conventional screw- and plate-type orthodontic implants.
Stability Calculation Method of Slope Reinforced by Prestressed Anchor in Process of Excavation
Li, Zhong; Wei, Jia; Yang, Jun
2014-01-01
This paper takes the effect of supporting structure and anchor on the slope stability of the excavation process into consideration; the stability calculation model is presented for the slope reinforced by prestressed anchor and grillage beam, and the dynamic search model of the critical slip surface also is put forward. The calculation model of the optimal stability solution of each anchor tension of the whole process is also given out, through which the real-time analysis and checking of slope stability in the process of excavation can be realized. The calculation examples indicate that the slope stability is changed with the dynamic change of the design parameters of anchor and grillage beam. So it is relatively more accurate and reasonable by using dynamic search model to determine the critical slip surface of the slope reinforced by prestressed anchor and grillage beam. Through the relationships of each anchor layout and the slope height of various stages of excavation, and the optimal stability solution of prestressed bolt tension design value in various excavation stages can be obtained. The arrangement of its prestressed anchor force reflects that the layout of the lower part of bolt and the calculation of slope reinforcement is in line with the actual. These indicate that the method is reasonable and practical. PMID:24683319
Stability calculation method of slope reinforced by prestressed anchor in process of excavation.
Li, Zhong; Wei, Jia; Yang, Jun
2014-01-01
This paper takes the effect of supporting structure and anchor on the slope stability of the excavation process into consideration; the stability calculation model is presented for the slope reinforced by prestressed anchor and grillage beam, and the dynamic search model of the critical slip surface also is put forward. The calculation model of the optimal stability solution of each anchor tension of the whole process is also given out, through which the real-time analysis and checking of slope stability in the process of excavation can be realized. The calculation examples indicate that the slope stability is changed with the dynamic change of the design parameters of anchor and grillage beam. So it is relatively more accurate and reasonable by using dynamic search model to determine the critical slip surface of the slope reinforced by prestressed anchor and grillage beam. Through the relationships of each anchor layout and the slope height of various stages of excavation, and the optimal stability solution of prestressed bolt tension design value in various excavation stages can be obtained. The arrangement of its prestressed anchor force reflects that the layout of the lower part of bolt and the calculation of slope reinforcement is in line with the actual. These indicate that the method is reasonable and practical.
Granular Simulation of NEO Anchoring
NASA Technical Reports Server (NTRS)
Mazhar, Hammad
2011-01-01
NASA is interested in designing a spacecraft capable of visiting a Near Earth Object (NEO), performing experiments, and then returning safely. Certain periods of this mission will require the spacecraft to remain stationary relative to the NEO. Such situations require an anchoring mechanism that is compact, easy to deploy and upon mission completion, easily removed. The design philosophy used in the project relies on the simulation capability of a multibody dynamics physics engine. On Earth it is difficult to create low gravity conditions and testing in low gravity environments, whether artificial or in space is costly and therefore not feasible. Through simulation, gravity can be controlled with great accuracy, making it ideally suited to analyze the problem at hand. Using Chrono::Engine [1], a simulation package capable of utilizing massively parallel GPU hardware, several validation experiments will be performed. Once there is sufficient confidence, modeling of the NEO regolith interaction will begin after which the anchor tests will be performed and analyzed. The outcome of this task is a study with an analysis of several different anchor designs, along with a recommendation on which anchor is better suited to the task of anchoring. With the anchors tested against a range of parameters relating to soil, environment and anchor penetration angles/velocities on a NEO.
Development and Assessment of a New CFRP Rod Anchor System for Prestressed Concrete
NASA Astrophysics Data System (ADS)
Al-Mayah, A.; Soudki, K.; Plumtree, A.
2006-09-01
Design concepts and experimental assessment of a new wedge anchor system for prestressing CFRP rods are presented. This compact and reusable anchor consists of an outer cylinder (barrel), a number of wedges, and a soft metal sleeve. The contacting surfaces of the wedges and barrel have a circular profile along the length of the anchor. Tensile testing using different presetting loads, geometric configurations, and rod sizes was carried out. The relationship of the tensile load and displacement of the rod was established. Presetting was found unnecessary since the anchor system was found to be capable of carrying the full design strength of the rods.