Sample records for dependent coupling constants

  1. Temperature dependence of (+)-catechin pyran ring proton coupling constants as measured by NMR and modeled using GMMX search methodology

    Treesearch

    Fred L. Tobiason; Stephen S. Kelley; M. Mark Midland; Richard W. Hemingway

    1997-01-01

    The pyran ring proton coupling constants for (+)-catechin have been experimentally determined in deuterated methanol over a temperature range of 213 K to 313 K. The experimental coupling constants were simulated to 0.04 Hz on the average at a 90 percent confidence limit using a LAOCOON method. The temperature dependence of the coupling constants was reproduced from the...

  2. Coupling time constants of striated and copper-plated coated conductors and the potential of striation to reduce shielding-current-induced fields in pancake coils

    NASA Astrophysics Data System (ADS)

    Amemiya, Naoyuki; Tominaga, Naoki; Toyomoto, Ryuki; Nishimoto, Takuma; Sogabe, Yusuke; Yamano, Satoshi; Sakamoto, Hisaki

    2018-07-01

    The shielding-current-induced field is a serious concern for the applications of coated conductors to magnets. The striation of the coated conductor is one of the countermeasures, but it is effective only after the decay of the coupling current, which is characterised with the coupling time constant. In a non-twisted striated coated conductor, the coupling time constant is determined primarily by its length and the transverse resistance between superconductor filaments, because the coupling current could flow along its entire length. We measured and numerically calculated the frequency dependences of magnetisation losses in striated and copper-plated coated conductors with various lengths and their stacks at 77 K and determined their coupling time constants. Stacked conductors simulate the turns of a conductor wound into a pancake coil. Coupling time constants are proportional to the square of the conductor length. Stacking striated coated conductors increases the coupling time constants because the coupling currents in stacked conductors are coupled to one another magnetically to increase the mutual inductances for the coupling current paths. We carried out the numerical electromagnetic field analysis of conductors wound into pancake coils and determined their coupling time constants. They can be explained by the length dependence and mutual coupling effect observed in stacked straight conductors. Even in pancake coils with practical numbers of turns, i.e. conductor lengths, the striation is effective to reduce the shielding-current-induced fields for some dc applications.

  3. Study of the charge dependence of the pion–nucleon coupling constant on the basis of data on low-energy nucleon–nucleon interactions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Babenko, V. A.; Petrov, N. M., E-mail: pet2@ukr.net

    2016-01-15

    The relation between quantities that characterize the pion–nucleon and nucleon–nucleon interactions is studied with allowance for the fact that, at low energies, nuclear forces in nucleon–nucleon systems are mediated predominantly by one-pion exchange. On the basis of the values currently recommended for the low-energy parameters of the proton–proton interaction, the charged pion–nucleon coupling constant is evaluated at g{sub π}{sup 2}±/4π = 14.55(13). This value is in perfect agreement with the experimental value of g{sub π}{sup 2}±/4π = 14.52(26) found by the Uppsala Neutron Research Group. At the same time, the value obtained for the charged pion–nucleon coupling constant differs sizablymore » from the value of the pion–nucleon coupling constant for neutral pions, which is g{sub π}{sup 2} 0/4π = 13.55(13). This is indicative of a substantial charge dependence of the coupling constant.« less

  4. Superradiance of cold atoms coupled to a superconducting circuit

    NASA Astrophysics Data System (ADS)

    Braun, Daniel; Hoffman, Jonathan; Tiesinga, Eite

    2011-06-01

    We investigate superradiance of an ensemble of atoms coupled to an integrated superconducting LC circuit. Particular attention is paid to the effect of inhomogeneous coupling constants. Combining perturbation theory in the inhomogeneity and numerical simulations, we show that inhomogeneous coupling constants can significantly affect the superradiant relaxation process. Incomplete relaxation terminating in “dark states” can occur, from which the only escape is through individual spontaneous emission on a much longer time scale. The relaxation dynamics can be significantly accelerated or retarded, depending on the distribution of the coupling constants. On the technical side, we also generalize the previously known propagator of superradiance for identical couplings in the completely symmetric sector to the full exponentially large Hilbert space.

  5. Diffusion of neon in white dwarf stars.

    PubMed

    Hughto, J; Schneider, A S; Horowitz, C J; Berry, D K

    2010-12-01

    Sedimentation of the neutron rich isotope 22Ne may be an important source of gravitational energy during the cooling of white dwarf stars. This depends on the diffusion constant for 22Ne in strongly coupled plasma mixtures. We calculate self-diffusion constants D(i) from molecular dynamics simulations of carbon, oxygen, and neon mixtures. We find that D(i) in a mixture does not differ greatly from earlier one component plasma results. For strong coupling (coulomb parameter Γ> few), D(i) has a modest dependence on the charge Z(i) of the ion species, D(i)∝Z(i)(-2/3). However, D(i) depends more strongly on Z(i) for weak coupling (smaller Γ). We conclude that the self-diffusion constant D(Ne) for 22Ne in carbon, oxygen, and neon plasma mixtures is accurately known so that uncertainties in D(Ne) should be unimportant for simulations of white dwarf cooling.

  6. The Coulomb based magneto-electric coupling in multiferroic tunnel junctions and granular multiferroics

    NASA Astrophysics Data System (ADS)

    Udalov, O. G.; Beloborodov, I. S.

    2018-05-01

    We study magneto-electric effect in two systems: i) multiferroic tunnel junction (MFTJ) - magnetic tunnel junction with ferroelectric barrier and ii) granular multiferroic (GMF) in which ferromagnetic (FM) metallic grains embedded into ferroelectric matrix. We show that the Coulomb interaction influences the magnetic state of the system in several ways: i) through the spin-dependent part of the Coulomb interaction; ii) due to the Coulomb blockade effect suppressing electron hopping and therefore reducing magnetic coupling; and iii) through image forces and polarization screening that modify the barrier for electrons in MFTJ and GMF. We show that in the absence of spin-orbit or strain-mediated coupling magneto-electric effect appears in GMF and MFTJ. The Coulomb interaction depends on the dielectric properties of the system. For GMF it depends on the dielectric constant of FE matrix and for MFTJ on the dielectric constant of the FE barrier. Applying external electric field one can tune the dielectric constant and the Coulomb interaction. Thus, one can control magnetic state with electric field.

  7. Ro-vibrational averaging of the isotropic hyperfine coupling constant for the methyl radical

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Adam, Ahmad Y.; Jensen, Per, E-mail: jensen@uni-wuppertal.de; Yachmenev, Andrey

    2015-12-28

    We present the first variational calculation of the isotropic hyperfine coupling constant of the carbon-13 atom in the CH{sub 3} radical for temperatures T = 0, 96, and 300 K. It is based on a newly calculated high level ab initio potential energy surface and hyperfine coupling constant surface of CH{sub 3} in the ground electronic state. The ro-vibrational energy levels, expectation values for the coupling constant, and its temperature dependence were calculated variationally by using the methods implemented in the computer program TROVE. Vibrational energies and vibrational and temperature effects for coupling constant are found to be in verymore » good agreement with the available experimental data. We found, in agreement with previous studies, that the vibrational effects constitute about 44% of the constant’s equilibrium value, originating mainly from the large amplitude out-of-plane bending motion and that the temperature effects play a minor role.« less

  8. Transient Dynamics of Double Quantum Dots Coupled to Two Reservoirs

    NASA Astrophysics Data System (ADS)

    Fukadai, Takahisa; Sasamoto, Tomohiro

    2018-05-01

    We study the time-dependent properties of double quantum dots coupled to two reservoirs using the nonequilibrium Green function method. For an arbitrary time-dependent bias, we derive an expression for the time-dependent electron density of a dot and several currents, including the current between the dots in the wide-band-limit approximation. For the special case of a constant bias, we calculate the electron density and the currents numerically. As a result, we find that these quantities oscillate and that the number of crests in a single period of the current from a dot changes with the bias voltage. We also obtain an analytical expression for the relaxation time, which expresses how fast the system converges to its steady state. From the expression, we find that the relaxation time becomes constant when the coupling strength between the dots is sufficiently large in comparison with the difference of coupling strength between the dots and the reservoirs.

  9. Adiabatic Coupling Constant of Nitrobenzene- n-Alkane Critical Mixtures. Evidence from Ultrasonic Spectra and Thermodynamic Data

    NASA Astrophysics Data System (ADS)

    Mirzaev, Sirojiddin Z.; Kaatze, Udo

    2016-09-01

    Ultrasonic spectra of mixtures of nitrobenzene with n-alkanes, from n-hexane to n-nonane, are analyzed. They feature up to two Debye-type relaxation terms with discrete relaxation times and, near the critical point, an additional relaxation term due to the fluctuations in the local concentration. The latter can be well represented by the dynamic scaling theory. Its amplitude parameter reveals the adiabatic coupling constant of the mixtures of critical composition. The dependence of this thermodynamic parameter upon the length of the n-alkanes corresponds to that of the slope in the pressure dependence of the critical temperature and is thus taken another confirmation of the dynamic scaling model. The change in the variation of the coupling constant and of several other mixture parameters with alkane length probably reflects a structural change in the nitrobenzene- n-alkane mixtures when the number of carbon atoms per alkane exceeds eight.

  10. Nuclear magnetic resonance spin-spin coupling constants from coupled perturbed density functional theory

    NASA Astrophysics Data System (ADS)

    Sychrovský, Vladimír; Gräfenstein, Jürgen; Cremer, Dieter

    2000-09-01

    For the first time, a complete implementation of coupled perturbed density functional theory (CPDFT) for the calculation of NMR spin-spin coupling constants (SSCCs) with pure and hybrid DFT is presented. By applying this method to several hydrides, hydrocarbons, and molecules with multiple bonds, the performance of DFT for the calculation of SSCCs is analyzed in dependence of the XC functional used. The importance of electron correlation effects is demonstrated and it is shown that the hybrid functional B3LYP leads to the best accuracy of calculated SSCCs. Also, CPDFT is compared with sum-over-states (SOS) DFT where it turns out that the former method is superior to the latter because it explicitly considers the dependence of the Kohn-Sham operator on the perturbed orbitals in DFT when calculating SSCCs. The four different coupling mechanisms contributing to the SSCC are discussed in connection with the electronic structure of the molecule.

  11. 1,2-Difluoroethane: the angular dependance on 1J(CF) coupling constants is independent of hyperconjugation.

    PubMed

    Freitas, Matheus P; Bühl, Michael; O'Hagan, David

    2012-02-28

    1,2-Difluoroethane is widely recognised to adopt a lower energy gauche rather than anti conformation; this gauche effect has its origin in hyperconjugation; however, surprisingly the (1)J(CF) coupling constant is not influenced by hyperconjugation; instead, its magnitude changes with the overall molecular dipole. This journal is © The Royal Society of Chemistry 2012

  12. Interstate vibronic coupling constants between electronic excited states for complex molecules

    NASA Astrophysics Data System (ADS)

    Fumanal, Maria; Plasser, Felix; Mai, Sebastian; Daniel, Chantal; Gindensperger, Etienne

    2018-03-01

    In the construction of diabatic vibronic Hamiltonians for quantum dynamics in the excited-state manifold of molecules, the coupling constants are often extracted solely from information on the excited-state energies. Here, a new protocol is applied to get access to the interstate vibronic coupling constants at the time-dependent density functional theory level through the overlap integrals between excited-state adiabatic auxiliary wavefunctions. We discuss the advantages of such method and its potential for future applications to address complex systems, in particular, those where multiple electronic states are energetically closely lying and interact. We apply the protocol to the study of prototype rhenium carbonyl complexes [Re(CO)3(N,N)(L)]n+ for which non-adiabatic quantum dynamics within the linear vibronic coupling model and including spin-orbit coupling have been reported recently.

  13. Zero-point corrections and temperature dependence of HD spin-spin coupling constants of heavy metal hydride and dihydrogen complexes calculated by vibrational averaging.

    PubMed

    Mort, Brendan C; Autschbach, Jochen

    2006-08-09

    Vibrational corrections (zero-point and temperature dependent) of the H-D spin-spin coupling constant J(HD) for six transition metal hydride and dihydrogen complexes have been computed from a vibrational average of J(HD) as a function of temperature. Effective (vibrationally averaged) H-D distances have also been determined. The very strong temperature dependence of J(HD) for one of the complexes, [Ir(dmpm)Cp*H2]2 + (dmpm = bis(dimethylphosphino)methane) can be modeled simply by the Boltzmann average of the zero-point vibrationally averaged JHD of two isomers. For this complex and four others, the vibrational corrections to JHD are shown to be highly significant and lead to improved agreement between theory and experiment in most cases. The zero-point vibrational correction is important for all complexes. Depending on the shape of the potential energy and J-coupling surfaces, for some of the complexes higher vibrationally excited states can also contribute to the vibrational corrections at temperatures above 0 K and lead to a temperature dependence. We identify different classes of complexes where a significant temperature dependence of J(HD) may or may not occur for different reasons. A method is outlined by which the temperature dependence of the HD spin-spin coupling constant can be determined with standard quantum chemistry software. Comparisons are made with experimental data and previously calculated values where applicable. We also discuss an example where a low-order expansion around the minimum of a complicated potential energy surface appears not to be sufficient for reproducing the experimentally observed temperature dependence.

  14. Phases of a fermionic model with chiral condensates and Cooper pairs in 1+1 dimensions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mihaila, Bogdan; Blagoev, Krastan B.; MIND Institute, Albuquerque, New Mexico 87131

    2006-01-01

    We study the phase structure of a 4-fermi model with three bare coupling constants, which potentially has three types of bound states. This model is a generalization of the model discussed previously by [A. Chodos, F. Cooper, W. Mao, H. Minakata, and A. Singh, Phys. Rev. D 61, 045011 (2000).], which contained both chiral condensates and Cooper pairs. For this generalization we find that there are two independent renormalized coupling constants which determine the phase structure at finite density and temperature. We find that the vacuum can be in one of three distinct phases depending on the value of thesemore » two renormalized coupling constants.« less

  15. Quantum-gravity predictions for the fine-structure constant

    NASA Astrophysics Data System (ADS)

    Eichhorn, Astrid; Held, Aaron; Wetterich, Christof

    2018-07-01

    Asymptotically safe quantum fluctuations of gravity can uniquely determine the value of the gauge coupling for a large class of grand unified models. In turn, this makes the electromagnetic fine-structure constant calculable. The balance of gravity and matter fluctuations results in a fixed point for the running of the gauge coupling. It is approached as the momentum scale is lowered in the transplanckian regime, leading to a uniquely predicted value of the gauge coupling at the Planck scale. The precise value of the predicted fine-structure constant depends on the matter content of the grand unified model. It is proportional to the gravitational fluctuation effects for which computational uncertainties remain to be settled.

  16. Greybody factors for a spherically symmetric Einstein-Gauss-Bonnet-de Sitter black hole

    NASA Astrophysics Data System (ADS)

    Zhang, Cheng-Yong; Li, Peng-Cheng; Chen, Bin

    2018-02-01

    We study the greybody factors of the scalar fields in spherically symmetric Einstein-Gauss-Bonnet-de Sitter black holes in higher dimensions. We derive the greybody factors analytically for both minimally and nonminimally coupled scalar fields. Moreover, we discuss the dependence of the greybody factor on various parameters including the angular momentum number, the nonminimally coupling constant, the spacetime dimension, the cosmological constant, and the Gauss-Bonnet coefficient in detail. We find that the nonminimal coupling may suppress the greybody factor and the Gauss-Bonnet coupling could enhance it, but they both suppress the energy emission rate of Hawking radiation.

  17. Spinor Field Nonlinearity and Space-Time Geometry

    NASA Astrophysics Data System (ADS)

    Saha, Bijan

    2018-03-01

    Within the scope of Bianchi type VI,VI0,V, III, I, LRSBI and FRW cosmological models we have studied the role of nonlinear spinor field on the evolution of the Universe and the spinor field itself. It was found that due to the presence of non-trivial non-diagonal components of the energy-momentum tensor of the spinor field in the anisotropic space-time, there occur some severe restrictions both on the metric functions and on the components of the spinor field. In this report we have considered a polynomial nonlinearity which is a function of invariants constructed from the bilinear spinor forms. It is found that in case of a Bianchi type-VI space-time, depending of the sign of self-coupling constants, the model allows either late time acceleration or oscillatory mode of evolution. In case of a Bianchi VI 0 type space-time due to the specific behavior of the spinor field we have two different scenarios. In one case the invariants constructed from bilinear spinor forms become trivial, thus giving rise to a massless and linear spinor field Lagrangian. This case is equivalent to the vacuum solution of the Bianchi VI 0 type space-time. The second case allows non-vanishing massive and nonlinear terms and depending on the sign of coupling constants gives rise to accelerating mode of expansion or the one that after obtaining some maximum value contracts and ends in big crunch, consequently generating space-time singularity. In case of a Bianchi type-V model there occur two possibilities. In one case we found that the metric functions are similar to each other. In this case the Universe expands with acceleration if the self-coupling constant is taken to be a positive one, whereas a negative coupling constant gives rise to a cyclic or periodic solution. In the second case the spinor mass and the spinor field nonlinearity vanish and the Universe expands linearly in time. In case of a Bianchi type-III model the space-time remains locally rotationally symmetric all the time, though the isotropy of space-time can be attained for a large proportionality constant. As far as evolution is concerned, depending on the sign of coupling constant the model allows both accelerated and oscillatory mode of expansion. A negative coupling constant leads to an oscillatory mode of expansion, whereas a positive coupling constant generates expanding Universe with late time acceleration. Both deceleration parameter and EoS parameter in this case vary with time and are in agreement with modern concept of space-time evolution. In case of a Bianchi type-I space-time the non-diagonal components lead to three different possibilities. In case of a full BI space-time we find that the spinor field nonlinearity and the massive term vanish, hence the spinor field Lagrangian becomes massless and linear. In two other cases the space-time evolves into either LRSBI or FRW Universe. If we consider a locally rotationally symmetric BI( LRSBI) model, neither the mass term nor the spinor field nonlinearity vanishes. In this case depending on the sign of coupling constant we have either late time accelerated mode of expansion or oscillatory mode of evolution. In this case for an expanding Universe we have asymptotical isotropization. Finally, in case of a FRW model neither the mass term nor the spinor field nonlinearity vanishes. Like in LRSBI case we have either late time acceleration or cyclic mode of evolution. These findings allow us to conclude that the spinor field is very sensitive to the gravitational one.

  18. Direct Determinations of the πNN Coupling Constants

    NASA Astrophysics Data System (ADS)

    Ericson, T. E. O.; Loiseau, B.

    1998-11-01

    A novel extrapolation method has been used to deduce directly the charged πN N coupling constant from backward np differential scattering cross sections. The extracted value, g2c = 14.52(0.26) is higher than the indirectly deduced values obtained in nucleon-nucleon energy-dependent partial-wave analyses. Our preliminary direct value from a reanalysis of the GMO sum-rule points to an intermediate value of g2c about 13.97(30).

  19. Vicinal fluorine-fluorine coupling constants: Fourier analysis.

    PubMed

    San Fabián, J; Westra Hoekzema, A J A

    2004-10-01

    Stereochemical dependences of vicinal fluorine-fluorine nuclear magnetic resonance coupling constants (3JFF) have been studied with the multiconfigurational self-consistent field in the restricted active space approach, with the second-order polarization propagator approximation (SOPPA), and with density functional theory. The SOPPA results show the best overall agreement with experimental couplings. The relationship with the dihedral angle between the coupled fluorines has been studied by Fourier analysis, the result is very different from that of proton-proton couplings. The Fourier coefficients do not resemble those of a typical Karplus equation. The four nonrelativistic contributions to the coupling constants of 1,2-difluoroethane configurations have been studied separately showing that up to six Fourier coefficients are required to reproduce the calculated values satisfactorily. Comparison with Fourier coefficients for matching hydrogen fluoride dimer configurations suggests that the higher order Fourier coefficients (Cn> or =3) originate mainly from through-space Fermi contact interaction. The through-space interaction is the main reason 3JFF do not follow the Karplus equation. (c) 2004 American Institute of Physics

  20. Vicinal fluorine-fluorine coupling constants: Fourier analysis

    NASA Astrophysics Data System (ADS)

    San Fabián, J.; Westra Hoekzema, A. J. A.

    2004-10-01

    Stereochemical dependences of vicinal fluorine-fluorine nuclear magnetic resonance coupling constants (3JFF) have been studied with the multiconfigurational self-consistent field in the restricted active space approach, with the second-order polarization propagator approximation (SOPPA), and with density functional theory. The SOPPA results show the best overall agreement with experimental couplings. The relationship with the dihedral angle between the coupled fluorines has been studied by Fourier analysis, the result is very different from that of proton-proton couplings. The Fourier coefficients do not resemble those of a typical Karplus equation. The four nonrelativistic contributions to the coupling constants of 1,2-difluoroethane configurations have been studied separately showing that up to six Fourier coefficients are required to reproduce the calculated values satisfactorily. Comparison with Fourier coefficients for matching hydrogen fluoride dimer configurations suggests that the higher order Fourier coefficients (Cn⩾3) originate mainly from through-space Fermi contact interaction. The through-space interaction is the main reason 3JFF do not follow the Karplus equation.

  1. Calculation of exchange coupling constants in triply-bridged dinuclear Cu(II) compounds based on spin-flip constricted variational density functional theory.

    PubMed

    Seidu, Issaka; Zhekova, Hristina R; Seth, Michael; Ziegler, Tom

    2012-03-08

    The performance of the second-order spin-flip constricted variational density functional theory (SF-CV(2)-DFT) for the calculation of the exchange coupling constant (J) is assessed by application to a series of triply bridged Cu(II) dinuclear complexes. A comparison of the J values based on SF-CV(2)-DFT with those obtained by the broken symmetry (BS) DFT method and experiment is provided. It is demonstrated that our methodology constitutes a viable alternative to the BS-DFT method. The strong dependence of the calculated exchange coupling constants on the applied functionals is demonstrated. Both SF-CV(2)-DFT and BS-DFT affords the best agreement with experiment for hybrid functionals.

  2. Pressure-induced increase of exciton-LO-phonon coupling in a ZnCdSe/ZnSe quantum well

    NASA Astrophysics Data System (ADS)

    Guo, Z. Z.; Liang, X. X.; Ban, S. L.

    2003-07-01

    The possibility of pressure-induced increase of exciton-LO-phonon coupling in ZnCdSe/ZnSe quantum wells is studied. The ground state binding energies of the heavy hole excitons are calculated using a variational method with consideration of the electron-phonon interaction and the pressure dependence of the parameters. The results show that for quantum wells with intermediate well width, the exciton binding energy and the LO-phonon energy may coincide in the course of pressure increasing, resulting in the increase of exciton-LO-phonon coupling. It is also found that among the pressure-dependent parameters, the influence of the lattice constant is the most important one. The changes of both the effective masses and the dielectric constants have obvious effects on the exciton binding energy, but their influences are counterbalanced.

  3. Conformist-contrarian interactions and amplitude dependence in the Kuramoto model

    NASA Astrophysics Data System (ADS)

    Lohe, M. A.

    2014-11-01

    We derive exact formulas for the frequency of synchronized oscillations in Kuramoto models with conformist-contrarian interactions, and determine necessary conditions for synchronization to occur. Numerical computations show that for certain parameters repulsive nodes behave as conformists, and that in other cases attractive nodes can display frustration, being neither conformist nor contrarian. The signs of repulsive couplings can be placed equivalently outside the sum, as proposed in Hong and Strogatz (2011 Phys. Rev. Lett. 106 054102), or inside the sum as in Hong and Strogatz (2012 Phys. Rev. E 85 056210), but the two models have different characteristics for small magnitudes of the coupling constants. In the latter case we show that the distributed coupling constants can be viewed as oscillator amplitudes which are constant in time, with the property that oscillators of small amplitude couple only weakly to connected nodes. Such models provide a means of investigating the effect of amplitude variations on synchronization properties.

  4. Ultrafast electronic relaxation in superheated bismuth

    NASA Astrophysics Data System (ADS)

    Gamaly, E. G.; Rode, A. V.

    2013-01-01

    Interaction of moving electrons with vibrating ions in the lattice forms the basis for many physical properties from electrical resistivity and electronic heat capacity to superconductivity. In ultrafast laser interaction with matter the electrons are heated much faster than the electron-ion energy equilibration, leading to a two-temperature state with electron temperature far above that of the lattice. The rate of temperature equilibration is governed by the strength of electron-phonon energy coupling, which is conventionally described by a coupling constant, neglecting the dependence on the electron and lattice temperature. The application of this constant to the observations of fast relaxation rate led to a controversial notion of ‘ultra-fast non-thermal melting’ under extreme electronic excitation. Here we provide theoretical grounds for a strong dependence of the electron-phonon relaxation time on the lattice temperature. We show, by taking proper account of temperature dependence, that the heating and restructuring of the lattice occurs much faster than were predicted on the assumption of a constant, temperature independent energy coupling. We applied the temperature-dependent momentum and energy transfer time to experiments on fs-laser excited bismuth to demonstrate that all the observed ultra-fast transformations of the transient state of bismuth are purely thermal in nature. The developed theory, when applied to ultrafast experiments on bismuth, provides interpretation of the whole variety of transient phase relaxation without the non-thermal melting conjecture.

  5. Gap solitons in PT-symmetric optical lattices with higher-order diffraction.

    PubMed

    Ge, Lijuan; Shen, Ming; Ma, Chunlan; Zang, Taocheng; Dai, Lu

    2014-12-01

    The existence and stability of gap solitons are investigated in the semi-infinite gap of a parity-time (PT)-symmetric periodic potential (optical lattice) with a higher-order diffraction. The Bloch bands and band gaps of this PT-symmetric optical lattice depend crucially on the coupling constant of the fourth-order diffraction, whereas the phase transition point of this PT optical lattice remains unchangeable. The fourth-order diffraction plays a significant role in destabilizing the propagation of dipole solitons. Specifically, when the fourth-order diffraction coupling constant increases, the stable region of the dipole solitons shrinks as new regions of instability appear. However, fundamental solitons are found to be always linearly stable with arbitrary positive value of the coupling constant. We also investigate nonlinear evolution of the PT solitons under perturbation.

  6. On the Angular Dependence of the Vicinal Fluorine-Fluorine Coupling Constant in 1,2-Difluoroethane:  Deviation from a Karplus-like Shape.

    PubMed

    Provasi, Patricio F; Sauer, Stephan P A

    2006-07-01

    The angular dependence of the vicinal fluorine-fluorine coupling constant, (3)JFF, for 1,2-difluoroethane has been investigated with several polarization propagator methods. (3)JFF and its four Ramsey contributions were calculated using the random phase approximation (RPA), its multiconfigurational generalization, and both second-order polarization propagator approximations (SOPPA and SOPPA(CCSD)), using locally dense basis sets. The geometries were optimized for each dihedral angle at the level of density functional theory using the B3LYP functional and fourth-order Møller-Plesset perturbation theory. The resulting coupling constant curves were fitted to a cosine series with 8 coefficients. Our results are compared with those obtained previously and values estimated from experiment. It is found that the inclusion of electron correlation in the calculation of (3)JFF reduces the absolute values. This is mainly due to changes in the FC contribution, which for dihedral angles around the trans conformation even changes its sign. This sign change is responsible for the breakdown of the Karplus-like curve.

  7. Coupling of order parameters, chirality, and interfacial structures in multiferroic materials.

    PubMed

    Conti, Sergio; Müller, Stefan; Poliakovsky, Arkady; Salje, Ekhard K H

    2011-04-13

    We study optimal interfacial structures in multiferroic materials with a biquadratic coupling between two order parameters. We discover a new duality relation between the strong coupling and the weak coupling regime for the case of isotropic gradient terms. We analyze the phase diagram depending on the coupling constant and anisotropy of the gradient term, and show that in a certain regime the secondary order parameter becomes activated only in the interfacial region.

  8. Phase-field study of ripening and rearrangement of precipitates under chemomechanical coupling

    NASA Astrophysics Data System (ADS)

    Schwarze, C.; Gupta, A.; Hickel, T.; Darvishi Kamachali, R.

    2017-05-01

    We investigate the evolution of large number of δ' coherent precipitates from a supersaturated Al-8 at.% Li alloy using large-scale phase-field simulations. A chemomechanical cross-coupling between mechanical relaxation and diffusion is taken into account by considering the dependence of elastic constants of the matrix phase onto the local concentration of solute atoms. The elastic constants as a function of solute concentration have been obtained using density functional theory calculations. As a result of the coupling, inverse ripening has been observed where the smaller precipitates grow at the expense of the larger ones. This is due to size-dependent concentration gradients existing around the precipitates. At the same time, precipitates rearrange themselves as a consequence of minimization of the total elastic energy of the system. It is found that the anisotropy of the chemomechanical coupling leads to the formation of new patterns of elasticity in the matrix thereby resulting in new alignments of the precipitates.

  9. Cosmological dynamics with non-minimally coupled scalar field and a constant potential function

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hrycyna, Orest; Szydłowski, Marek, E-mail: orest.hrycyna@ncbj.gov.pl, E-mail: marek.szydlowski@uj.edu.pl

    2015-11-01

    Dynamical systems methods are used to investigate global behaviour of the spatially flat Friedmann-Robertson-Walker cosmological model in gravitational theory with a non-minimally coupled scalar field and a constant potential function. We show that the system can be reduced to an autonomous three-dimensional dynamical system and additionally is equipped with an invariant manifold corresponding to an accelerated expansion of the universe. Using this invariant manifold we find an exact solution of the reduced dynamics. We investigate all solutions for all admissible initial conditions using theory of dynamical systems to obtain a classification of all evolutional paths. The right-hand sides of themore » dynamical system depend crucially on the value of the non-minimal coupling constant therefore we study bifurcation values of this parameter under which the structure of the phase space changes qualitatively. We found a special bifurcation value of the non-minimal coupling constant which is distinguished by dynamics of the model and may suggest some additional symmetry in matter sector of the theory.« less

  10. Phonon-drag magnetothermopower in Rashba spin-split two-dimensional electron systems.

    PubMed

    Biswas, Tutul; Ghosh, Tarun Kanti

    2013-10-16

    We study the phonon-drag contribution to the thermoelectric power in a quasi-two-dimensional electron system confined in GaAs/AlGaAs heterostructure in the presence of both Rashba spin-orbit interaction and perpendicular magnetic field at very low temperature. It is observed that the peaks in the phonon-drag thermopower split into two when the Rashba spin-orbit coupling constant is strong. This splitting is a direct consequence of the Rashba spin-orbit interaction. We show the dependence of phonon-drag thermopower on both magnetic field and temperature numerically. A power-law dependence of phonon-drag magnetothermopower on the temperature in the Bloch-Gruneisen regime is found. We also extract the exponent of the temperature dependence of phonon-drag thermopower for different parameters like electron density, magnetic field, and the spin-orbit coupling constant.

  11. Magnetoelastic couplings in the distorted diamond-chain compound azurite

    NASA Astrophysics Data System (ADS)

    Cong, Pham Thanh; Wolf, Bernd; Manna, Rudra Sekhar; Tutsch, Ulrich; de Souza, Mariano; Brühl, Andreas; Lang, Michael

    2014-05-01

    We present results of ultrasonic measurements on a single crystal of the distorted diamond-chain compound azurite Cu3(CO3)2(OH)2. Pronounced elastic anomalies are observed in the temperature dependence of the longitudinal elastic mode c22 which can be assigned to the relevant magnetic interactions in the system and their couplings to the lattice degrees of freedom. From a semiquantitative analysis of the magnetic contribution to c22 the magnetoelastic coupling G =∂J2/∂ɛb can be estimated, where J2 is the intradimer coupling constant and ɛb the strain along the intrachain b axis. We find an exceptionally large coupling constant of |G |˜ 3650 K highlighting an extraordinarily strong sensitivity of J2 against changes of the b-axis lattice parameter. These results are complemented by measurements of the hydrostatic pressure dependence of J2 by means of thermal expansion and magnetic susceptibility measurements performed both at ambient and finite hydrostatic pressure. We propose that a structural peculiarity of this compound, in which Cu2O6 dimer units are incorporated in an unusually stretched manner, is responsible for the anomalously large magnetoelastic coupling.

  12. Variable horizon in a peridynamic medium

    DOE PAGES

    Silling, Stewart A.; Littlewood, David J.; Seleson, Pablo

    2015-12-10

    Here, a notion of material homogeneity is proposed for peridynamic bodies with variable horizon but constant bulk properties. A relation is derived that scales the force state according to the position-dependent horizon while keeping the bulk properties unchanged. Using this scaling relation, if the horizon depends on position, artifacts called ghost forces may arise in a body under a homogeneous deformation. These artifacts depend on the second derivative of the horizon and can be reduced by employing a modified equilibrium equation using a new quantity called the partial stress. Bodies with piecewise constant horizon can be modeled without ghost forcesmore » by using a simpler technique called a splice. As a limiting case of zero horizon, both the partial stress and splice techniques can be used to achieve local-nonlocal coupling. Computational examples, including dynamic fracture in a one-dimensional model with local-nonlocal coupling, illustrate the methods.« less

  13. Antiferromagnetic Interlayer Exchange Coupling in All-Semiconducting EuS/PbS/EuS Trilayers

    NASA Technical Reports Server (NTRS)

    Smits, C. J. P.; Filip, A. T.; Swagten, H. J. M.; Koopmans, B.; deJonge, W. J. M.; Chernyshova, M.; Kowalczyk, L.; Grasza, K.; Szczerbakow, A.; Story, T.

    2003-01-01

    A comprehensive experimental study on the antiferromagnetic interlayer exchange coupling in high quality epitaxial all-semiconducting EuSPbSEuS trilayers is reported. The influence of substrates, the thickness of the non-magnetic PbS spacer layer, and of temperature, was investigated by means of SQUID magnetometry. In trilayers with a PbS thickness between 4 and 12 deg A the low temperature hysteresis loops showed the signature of antiferromagnetic coupling. The value of the interlayer exchange coupling energy was determined by simulating the data with a modified Stoner model, including Zeeman, anisotropy, and exchange coupling energies. An important observation was of a strong dependence of the interlayer exchange coupling energy on temperature, consistent with a power law dependence of the exchange coupling constant on the saturation magnetization of the EuS layers. While no theoretical description is readily available, we conjecture that the observed behavior is due to a dependence of the interlayer exchange coupling energy on the exchange splitting of the EuS conduction band.

  14. Possible evolution of a bouncing universe in cosmological models with non-minimally coupled scalar fields

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pozdeeva, Ekaterina O.; Vernov, Sergey Yu.; Skugoreva, Maria A.

    2016-12-01

    We explore dynamics of cosmological models with bounce solutions evolving on a spatially flat Friedmann-Lemaître-Robertson-Walker background. We consider cosmological models that contain the Hilbert-Einstein curvature term, the induced gravity term with a negative coupled constant, and even polynomial potentials of the scalar field. Bounce solutions with non-monotonic Hubble parameters have been obtained and analyzed. The case when the scalar field has the conformal coupling and the Higgs-like potential with an opposite sign is studied in detail. In this model the evolution of the Hubble parameter of the bounce solution essentially depends on the sign of the cosmological constant.

  15. On the truncation of the number of excited states in density functional theory sum-over-states calculations of indirect spin spin coupling constants

    NASA Astrophysics Data System (ADS)

    Zarycz, M. Natalia C.; Provasi, Patricio F.; Sauer, Stephan P. A.

    2015-12-01

    It is investigated, whether the number of excited (pseudo)states can be truncated in the sum-over-states expression for indirect spin-spin coupling constants (SSCCs), which is used in the Contributions from Localized Orbitals within the Polarization Propagator Approach and Inner Projections of the Polarization Propagator (IPPP-CLOPPA) approach to analyzing SSCCs in terms of localized orbitals. As a test set we have studied the nine simple compounds, CH4, NH3, H2O, SiH4, PH3, SH2, C2H2, C2H4, and C2H6. The excited (pseudo)states were obtained from time-dependent density functional theory (TD-DFT) calculations with the B3LYP exchange-correlation functional and the specialized core-property basis set, aug-cc-pVTZ-J. We investigated both how the calculated coupling constants depend on the number of (pseudo)states included in the summation and whether the summation can be truncated in a systematic way at a smaller number of states and extrapolated to the total number of (pseudo)states for the given one-electron basis set. We find that this is possible and that for some of the couplings it is sufficient to include only about 30% of the excited (pseudo)states.

  16. Scale-Dependent Rates of Uranyl Surface Complexation Reaction in Sediments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Chongxuan; Shang, Jianying; Kerisit, Sebastien N.

    Scale-dependency of uranyl[U(VI)] surface complexation rates was investigated in stirred flow-cell and column systems using a U(VI)-contaminated sediment from the US Department of Energy, Hanford site, WA. The experimental results were used to estimate the apparent rate of U(VI) surface complexation at the grain-scale and in porous media. Numerical simulations using molecular, pore-scale, and continuum models were performed to provide insights into and to estimate the rate constants of U(VI) surface complexation at the different scales. The results showed that the grain-scale rate constant of U(VI) surface complexation was over 3 to 10 orders of magnitude smaller, dependent on themore » temporal scale, than the rate constant calculated using the molecular simulations. The grain-scale rate was faster initially and slower with time, showing the temporal scale-dependency. The largest rate constant at the grain-scale decreased additional 2 orders of magnitude when the rate was scaled to the porous media in the column. The scaling effect from the grain-scale to the porous media became less important for the slower sorption sites. Pore-scale simulations revealed the importance of coupled mass transport and reactions in both intragranular and inter-granular domains, which caused both spatial and temporal dependence of U(VI) surface complexation rates in the sediment. Pore-scale simulations also revealed a new rate-limiting mechanism in the intragranular porous domains that the rate of coupled diffusion and surface complexation reaction was slower than either process alone. The results provided important implications for developing models to scale geochemical/biogeochemical reactions.« less

  17. High pressure study on layered nitride superconductors

    NASA Astrophysics Data System (ADS)

    Taguchi, Y.; Hisakabe, M.; Ohishi, Y.; Yamanaka, S.; Iwasa, Y.

    2004-03-01

    Pressure dependence of critical temperature, lattice constant, and phonon frequency has been investigated for layered nitride superconductors, Li_0.5(THF)_yHfNCl and ZrNCl_0.7. The data have been analyzed in terms of MacMillan's theory, and electron-phonon coupling constant λ (=1.3), Coulomb pseudopotential μ^* (=0.31), and relevant phonon frequency (=630 cm-1) have been extracted. The obtained value of λ exceeds 1 in contrast with previous experimental and theoretical results. The present result indicates that, if the superconductivity is within a MacMillan scheme, it is mediated by high frequency phonons in a strong coupling regime.

  18. Localization on Quantum Graphs with Random Vertex Couplings

    NASA Astrophysics Data System (ADS)

    Klopp, Frédéric; Pankrashkin, Konstantin

    2008-05-01

    We consider Schrödinger operators on a class of periodic quantum graphs with randomly distributed Kirchhoff coupling constants at all vertices. We obtain necessary conditions for localization on quantum graphs in terms of finite volume criteria for some energy-dependent discrete Hamiltonians. These conditions hold in the strong disorder limit and at the spectral edges.

  19. A novel solution for hydroxylated PAHs removal by oxidative coupling reaction using Mn oxide.

    PubMed

    Kang, Ki-Hoon; Lim, Dong-Min; Shin, Hyun-Sang

    2008-01-01

    In this study, removals of 1-naphthol by oxidative-coupling reaction using birnessite, one of the natural Mn oxides present in soil, was investigated in various experimental conditions (reaction time, Mn oxide loadings, pH). The removal efficiency of 1-naphthol by birnessite was high in all the experimental conditions, and UV-visible and mass spectrometric analyses on the supernatant after reaction confirmed that the reaction products were oligomers formed by oxidative-coupling reaction. Pseudo-first order rate constants, k, for the oxidative transformation of 1-naphthol by birnessite was derived from the kinetic experiments under various amounts of birnessite loadings, and using the observed pseudo-first order rate constants with respect to birnessite loadings, the surface area normalised specific rate constant, k(surf), was also determined to be 9.3 x 10(-4) (L/m(2).min) for 1-naphthol. In addition, the oxidative transformation of 1-naphthol was found to be dependent on solution pH, and the pseudo-first order rate constants were increased from 0.129 at pH 10 to 0.187 at pH 4. (c) IWA Publishing 2008.

  20. DIRECTIONAL COUPLERS

    DOEpatents

    Nigg, D.J.

    1961-12-01

    A directional coupler of small size is designed. Stripline conductors of non-rectilinear configuration, and separated from each other by a thin dielectric spacer. cross each other at least at two locations at right angles, thus providing practically pure capacitive coupling which substantially eliminates undesirable inductive coupling. The conductors are sandwiched between a pair of ground planes. The coupling factor is dependent only on the thickness and dielectric constant of the dielectric spacer at the point of conductor crossover. (AEC)

  1. Dependence of synchronization on frequency mismatch and network configuration in chemo-mechanical oscillators

    NASA Astrophysics Data System (ADS)

    Kumar, Pawan; Parmananda, P.

    2018-04-01

    In this paper, synchronization among the mercury beating heart (MBH) oscillators is studied. In the first set of experiments, two MBH oscillators were taken. Frequency of one oscillator is kept constant and that of the other is increased monotonically. These were then coupled using bidirectional and unidirectional coupling mechanisms separately. Dependence of synchronization on the frequency difference between the two oscillators is investigated. For the second set of experiments involving unidirectional coupling, an ensemble of fifteen oscillators was taken and different configurations of these oscillators were considered. These include an all-to-all network and fractionally distributed master slave configurations. The effect of both the extent of coupling and network configuration on synchronization among these oscillators was investigated.

  2. Vicinal 1H-1H NMR coupling constants from density functional theory as reliable tools for stereochemical analysis of highly flexible multichiral center molecules.

    PubMed

    López-Vallejo, Fabian; Fragoso-Serrano, Mabel; Suárez-Ortiz, Gloria Alejandra; Hernández-Rojas, Adriana C; Cerda-García-Rojas, Carlos M; Pereda-Miranda, Rogelio

    2011-08-05

    A protocol for stereochemical analysis, based on the systematic comparison between theoretical and experimental vicinal (1)H-(1)H NMR coupling constants, was developed and applied to a series of flexible compounds (1-8) derived from the 6-heptenyl-5,6-dihydro-2H-pyran-2-one framework. The method included a broad conformational search, followed by geometry optimization at the DFT B3LYP/DGDZVP level, calculation of the vibrational frequencies, thermochemical parameters, magnetic shielding tensors, and the total NMR spin-spin coupling constants. Three scaling factors, depending on the carbon atom hybridizations, were found for the (1)H-C-C-(1)H vicinal coupling constants: f((sp3)-(sp3)) = 0.910, f((sp3)-(sp2)) = 0.929, and f((sp2)-(sp2))= 0.977. A remarkable correlation between the theoretical (J(pre)) and experimental (1)H-(1)H NMR (J(exp)) coupling constants for spicigerolide (1), a cytotoxic natural product, and some of its synthetic stereoisomers (2-4) demonstrated the predictive value of this approach for the stereochemical assignment of highly flexible compounds containing multiple chiral centers. The stereochemistry of two natural 6-heptenyl-5,6-dihydro-2H-pyran-2-ones (14 and 15) containing diverse functional groups in the heptenyl side chain was also analyzed by application of this combined theoretical and experimental approach, confirming its reliability. Additionally, a geometrical analysis for the conformations of 1-8 revealed that weak hydrogen bonds substantially guide the conformational behavior of the tetraacyloxy-6-heptenyl-2H-pyran-2-ones.

  3. Flap-Lag-Torsion Stability in Forward Flight

    NASA Technical Reports Server (NTRS)

    Panda, B.; Chopra, I.

    1985-01-01

    An aeroelastic stability of three-degree flap-lag-torsion blade in forward flight is examined. Quasisteady aerodynamics with a dynamic inflow model is used. The nonlinear time dependent periodic blade response is calculated using an iterative procedure based on Floquet theory. The periodic perturbation equations are solved for stability using Floquet transition matrix theory as well as constant coefficient approximation in the fixed reference frame. Results are presented for both stiff-inplane and soft-inplane blade configurations. The effects of several parameters on blade stability are examined, including structural coupling, pitch-flap and pitch-lag coupling, torsion stiffness, steady inflow distribution, dynamic inflow, blade response solution and constant coefficient approximation.

  4. Multiferroic properties of Indian natural ilmenite

    NASA Astrophysics Data System (ADS)

    Acharya, Truptimayee; Choudhary, R. N. P.

    2017-03-01

    In this communication, the main results and analysis of extensive studies of electric and magnetic characteristics (relative dielectric constant, tangent loss, electric polarization, electric transport, impedance, magnetic polarization and magneto-electric coupling coefficient) of Indian natural ilmenite (NI) have been presented. Preliminary structural analysis was studied by Rietveld refinement of room temperature XRD data, which suggests the rhombohedral crystal system of NI. Maxwell-Wagner mechanism was used to explain the nature of the frequency dependence of the relative dielectric constant. The impedance analysis reveals that below 270 °C, only the bulk contributes, whereas at higher temperature, both grain boundary and the bulk contribute to the resistive characteristics of the material. The magnitude of the depression angles of the semicircles in the Nyquist plot has been estimated. The correlated barrier hopping model has been used to explain the frequency dependence of ac conductivity of the material. The activation energy of the compound has been estimated using the temperature dependence of dc conductivity plot. The obtained polarization hysteresis loops manifest improper ferroelectric behavior of NI. The existence M-H hysteresis loop supports anti-ferromagnetism in the studied material. The magneto-electric voltage coupling coefficient is found to be 0.7 mV/cm Oe. Hence, other than dielectric constant, electric polarization, magnetization and magneto-electric studies support the existence of multiferroic properties in NI.

  5. Dark energy and equivalence principle constraints from astrophysical tests of the stability of the fine-structure constant

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Martins, C.J.A.P.; Pinho, A.M.M.; Alves, R.F.C.

    2015-08-01

    Astrophysical tests of the stability of fundamental couplings, such as the fine-structure constant α, are becoming an increasingly powerful probe of new physics. Here we discuss how these measurements, combined with local atomic clock tests and Type Ia supernova and Hubble parameter data, constrain the simplest class of dynamical dark energy models where the same degree of freedom is assumed to provide both the dark energy and (through a dimensionless coupling, ζ, to the electromagnetic sector) the α variation. Specifically, current data tightly constrains a combination of ζ and the present dark energy equation of state w{sub 0}. Moreover, inmore » these models the new degree of freedom inevitably couples to nucleons (through the α dependence of their masses) and leads to violations of the Weak Equivalence Principle. We obtain indirect bounds on the Eötvös parameter η that are typically stronger than the current direct ones. We discuss the model-dependence of our results and briefly comment on how the forthcoming generation of high-resolution ultra-stable spectrographs will enable significantly tighter constraints.« less

  6. Theoretical rate constants of super-exchange hole transfer and thermally induced hopping in DNA.

    PubMed

    Shimazaki, Tomomi; Asai, Yoshihiro; Yamashita, Koichi

    2005-01-27

    Recently, the electronic properties of DNA have been extensively studied, because its conductivity is important not only to the study of fundamental biological problems, but also in the development of molecular-sized electronics and biosensors. We have studied theoretically the reorganization energies, the activation energies, the electronic coupling matrix elements, and the rate constants of hole transfer in B-form double-helix DNA in water. To accommodate the effects of DNA nuclear motions, a subset of reaction coordinates for hole transfer was extracted from classical molecular dynamics (MD) trajectories of DNA in water and then used for ab initio quantum chemical calculations of electron coupling constants based on the generalized Mulliken-Hush model. A molecular mechanics (MM) method was used to determine the nuclear Franck-Condon factor. The rate constants for two types of mechanisms of hole transfer-the thermally induced hopping (TIH) and the super-exchange mechanisms-were determined based on Marcus theory. We found that the calculated matrix elements are strongly dependent on the conformations of the nucleobase pairs of hole-transferable DNA and extend over a wide range of values for the "rise" base-step parameter but cluster around a particular value for the "twist" parameter. The calculated activation energies are in good agreement with experimental results. Whereas the rate constant for the TIH mechanism is not dependent on the number of A-T nucleobase pairs that act as a bridge, the rate constant for the super-exchange process rapidly decreases when the length of the bridge increases. These characteristic trends in the calculated rate constants effectively reproduce those in the experimental data of Giese et al. [Nature 2001, 412, 318]. The calculated rate constants were also compared with the experimental results of Lewis et al. [Nature 2000, 406, 51].

  7. Relationship between negative differential thermal resistance and asymmetry segment size

    NASA Astrophysics Data System (ADS)

    Kong, Peng; Hu, Tao; Hu, Ke; Jiang, Zhenhua; Tang, Yi

    2018-03-01

    Negative differential thermal resistance (NDTR) was investigated in a system consisting of two dissimilar anharmonic lattices exemplified by Frenkel-Kontorova (FK) lattices and Fremi-Pasta-Ulam (FPU) lattices (FK-FPU). The previous theoretical and numerical simulations show the dependence of NDTR are the coupling constant, interface and system size, but we find the segment size also to be an important element. It’s interesting that NDTR region depends on FK segment size rather than FPU segment size in this coupling FK-FPU model. Remarkably, we could observe that NDTR appears in the strong interface coupling strength case which is not NDTR in previous studies. The results are conducive to further developments in designing and fabricating thermal devices.

  8. Determination of the strong coupling constant \\varvec{α _s (m_Z)} in next-to-next-to-leading order QCD using H1 jet cross section measurements

    NASA Astrophysics Data System (ADS)

    Andreev, V.; Baghdasaryan, A.; Begzsuren, K.; Belousov, A.; Bertone, V.; Bolz, A.; Boudry, V.; Brandt, G.; Brisson, V.; Britzger, D.; Buniatyan, A.; Bylinkin, A.; Bystritskaya, L.; Campbell, A. J.; Cantun Avila, K. B.; Cerny, K.; Chekelian, V.; Contreras, J. G.; Cvach, J.; Currie, J.; Dainton, J. B.; Daum, K.; Diaconu, C.; Dobre, M.; Dodonov, V.; Eckerlin, G.; Egli, S.; Elsen, E.; Favart, L.; Fedotov, A.; Feltesse, J.; Fleischer, M.; Fomenko, A.; Gabathuler, E.; Gayler, J.; Gehrmann, T.; Ghazaryan, S.; Goerlich, L.; Gogitidze, N.; Gouzevitch, M.; Grab, C.; Grebenyuk, A.; Greenshaw, T.; Grindhammer, G.; Gwenlan, C.; Haidt, D.; Henderson, R. C. W.; Hladkỳ, J.; Hoffmann, D.; Horisberger, R.; Hreus, T.; Huber, F.; Huss, A.; Jacquet, M.; Janssen, X.; Jung, A. W.; Jung, H.; Kapichine, M.; Katzy, J.; Kiesling, C.; Klein, M.; Kleinwort, C.; Kogler, R.; Kostka, P.; Kretzschmar, J.; Krücker, D.; Krüger, K.; Landon, M. P. J.; Lange, W.; Laycock, P.; Lebedev, A.; Levonian, S.; Lipka, K.; List, B.; List, J.; Lobodzinski, B.; Malinovski, E.; Martyn, H.-U.; Maxfield, S. J.; Mehta, A.; Meyer, A. B.; Meyer, H.; Meyer, J.; Mikocki, S.; Morozov, A.; Müller, K.; Naumann, Th.; Newman, P. R.; Niebuhr, C.; Niehues, J.; Nowak, G.; Olsson, J. E.; Ozerov, D.; Pascaud, C.; Patel, G. D.; Perez, E.; Petrukhin, A.; Picuric, I.; Pirumov, H.; Pitzl, D.; Plačakytė, R.; Polifka, R.; Rabbertz, K.; Radescu, V.; Raicevic, N.; Ravdandorj, T.; Reimer, P.; Rizvi, E.; Robmann, P.; Roosen, R.; Rostovtsev, A.; Rotaru, M.; Šálek, D.; Sankey, D. P. C.; Sauter, M.; Sauvan, E.; Schmitt, S.; Schoeffel, L.; Schöning, A.; Sefkow, F.; Shushkevich, S.; Soloviev, Y.; Sopicki, P.; South, D.; Spaskov, V.; Specka, A.; Steder, M.; Stella, B.; Straumann, U.; Sutton, M. R.; Sykora, T.; Thompson, P. D.; Traynor, D.; Truöl, P.; Tsakov, I.; Tseepeldorj, B.; Valkárová, A.; Vallée, C.; Van Mechelen, P.; Vazdik, Y.; Wegener, D.; Wünsch, E.; Žáček, J.; Zhang, Z.; Žlebčík, R.; Zohrabyan, H.; Zomer, F.

    2017-11-01

    The strong coupling constant α _s is determined from inclusive jet and dijet cross sections in neutral-current deep-inelastic ep scattering (DIS) measured at HERA by the H1 collaboration using next-to-next-to-leading order (NNLO) QCD predictions. The dependence of the NNLO predictions and of the resulting value of α _s (m_Z) at the Z-boson mass m_Z are studied as a function of the choice of the renormalisation and factorisation scales. Using inclusive jet and dijet data together, the strong coupling constant is determined to be α _s (m_Z) =0.1157 (20)_exp (29)_th. Complementary, α _s (m_Z) is determined together with parton distribution functions of the proton (PDFs) from jet and inclusive DIS data measured by the H1 experiment. The value α _s (m_Z) =0.1142 (28)_tot obtained is consistent with the determination from jet data alone. The impact of the jet data on the PDFs is studied. The running of the strong coupling is tested at different values of the renormalisation scale and the results are found to be in agreement with expectations.

  9. Controllable Interfacial Coupling Effects on the Magnetic Dynamic Properties of Perpendicular [Co/Ni]5/Cu/TbCo Composite Thin Films.

    PubMed

    Tang, Minghong; Zhao, Bingcheng; Zhu, Weihua; Zhu, Zhendong; Jin, Q Y; Zhang, Zongzhi

    2018-02-07

    Dynamic magnetic properties in perpendicularly exchange-coupled [Co/Ni] 5 /Cu (t Cu = 0-2 nm)/TbCo structures show strong dependences on the interfacial antiferromagnetic strength J ex , which is controlled by the Cu interlayer thickness. The precession frequency f and effective damping constant α eff of a [Co/Ni] 5 multilayer differ distinctly for parallel (P) and antiparallel (AP) magnetization orientation states. For samples with a thin t Cu , f of the AP state is apparently higher, whereas α eff is lower than that in the P state, owing to the unidirectional exchange bias effect (H EB ) from the TbCo layer. The differences in f and α eff between the two states gradually decrease with increasing t Cu . By using a uniform precession model including an additional H EB term, the field-dependent frequency curves can be well-fitted, and the fitted H EB value is in good agreement with the experimental data. Moreover, the saturation damping constant α 0 displays a nearly linear correlation with J ex . It decreases significantly with J ex and eventually approaches a constant value of 0.027 at t Cu = 2 nm where J ex vanishes. These results provide a better understanding and effective control of magnetization dynamics in exchange-coupled composite structures for spintronic applications.

  10. Heat capacity and monogamy relations in the mixed-three-spin XXX Heisenberg model at low temperatures

    NASA Astrophysics Data System (ADS)

    Zad, Hamid Arian; Movahhedian, Hossein

    2016-08-01

    Heat capacity of a mixed-three-spin (1/2,1,1/2) antiferromagnetic XXX Heisenberg chain is precisely investigated by use of the partition function of the system for which, spins (1,1/2) have coupling constant J1 and spins (1/2,1/2) have coupling constant J2. We verify tripartite entanglement for the model by means of the convex roof extended negativity (CREN) and concurrence as functions of temperature T, homogeneous magnetic field B and the coupling constants J1 and J2. As shown in our previous work, [H. A. Zad, Chin. Phys. B 25 (2016) 030303.] the temperature, the magnetic field and the coupling constants dependences of the heat capacity for such spin system have different behaviors for the entangled and separable states, hence, we did some useful comparisons between this quantity and negativities of its organized bipartite (sub)systems at entangled and separable states. Here, we compare the heat capacity of the mixed-three-spin (1/2,1,1/2) system with the CREN and the tripartite concurrence (as measures of the tripartite entanglement) at low temperature. Ground state phase transitions, and also, transition from ground state to some excited states are explained in detail for this system at zero temperature. Finally, we investigate the heat capacity behavior around those critical points in which these quantum phase transitions occur.

  11. Magnetization switching behavior with competing anisotropies in epitaxial Co3FeN /MnN exchange-coupled bilayers

    NASA Astrophysics Data System (ADS)

    Hajiri, T.; Yoshida, T.; Jaiswal, S.; Filianina, M.; Borie, B.; Ando, H.; Asano, H.; Zabel, H.; Kläui, M.

    2016-11-01

    We report unusual magnetization switching processes and angular-dependent exchange bias effects in fully epitaxial Co3FeN /MnN bilayers, where magnetocrystalline anisotropy and exchange coupling compete, probed by longitudinal and transverse magneto-optic Kerr effect (MOKE) magnetometry. The MOKE loops show multistep jumps corresponding to the nucleation and propagation of 90∘ domain walls in as-grown bilayers. By inducing exchange coupling, we confirm changes of the magnetization switching process due to the unidirectional anisotropy field of the exchange coupling. Taking into account the experimentally obtained values of the fourfold magnetocrystalline anisotropy, the unidirectional anisotropy field, the exchange-coupling constant, and the uniaxial anisotropy including its direction, the calculated angular-dependent exchange bias reproduces the experimental results. These results demonstrate the essential role of the competition between magnetocrystalline anisotropy and exchange coupling for understanding and tailoring exchange-coupling phenomena usable for engineering switching in fully epitaxial bilayers made of tailored materials.

  12. Optical control of spin-dependent thermal transport in a quantum ring

    NASA Astrophysics Data System (ADS)

    Abdullah, Nzar Rauf

    2018-05-01

    We report on calculation of spin-dependent thermal transport through a quantum ring with the Rashba spin-orbit interaction. The quantum ring is connected to two electron reservoirs with different temperatures. Tuning the Rashba coupling constant, degenerate energy states are formed leading to a suppression of the heat and thermoelectric currents. In addition, the quantum ring is coupled to a photon cavity with a single photon mode and linearly polarized photon field. In a resonance regime, when the photon energy is approximately equal to the energy spacing between two lowest degenerate states of the ring, the polarized photon field can significantly control the heat and thermoelectric currents in the system. The roles of the number of photon initially in the cavity, and electron-photon coupling strength on spin-dependent heat and thermoelectric currents are presented.

  13. Perpendicular diffusion of a dilute beam of charged dust particles in a strongly coupled dusty plasma

    NASA Astrophysics Data System (ADS)

    Liu, Bin; Goree, J.

    2014-06-01

    The diffusion of projectiles drifting through a target of strongly coupled dusty plasma is investigated in a simulation. A projectile's drift is driven by a constant force F. We characterize the random walk of the projectiles in the direction perpendicular to their drift. The perpendicular diffusion coefficient Dp⊥ is obtained from the simulation data. The force dependence of Dp⊥ is found to be a power law in a high force regime, but a constant at low forces. A mean kinetic energy Wp for perpendicular motion is also obtained. The diffusion coefficient is found to increase with Wp with a linear trend at higher energies, but an exponential trend at lower energies.

  14. Experimental and theoretical investigation of the temperature dependent electronic quenching of O(1D) atoms in collisions with Kr

    NASA Astrophysics Data System (ADS)

    Nuñez-Reyes, Dianailys; Kłos, Jacek; Alexander, Millard H.; Dagdigian, Paul J.; Hickson, Kevin M.

    2018-03-01

    The kinetics and dynamics of the collisional electronic quenching of O(1D) atoms by Kr have been investigated in a joint experimental and theoretical study. The kinetics of quenching were measured over the temperature range 50-296 K using the Laval nozzle method. O(1D) atoms were prepared by 266 nm photolysis of ozone, and the decay of the O(1D) concentration was monitored through vacuum ultraviolet fluorescence at 115.215 nm, from which the rate constant was determined. To interpret the experiments, a quantum close-coupling treatment of the quenching transition from the 1D state to the 3Pj fine-structure levels in collisions with Kr, and also Ar and Xe, was carried out. The relevant potential energy curves and spin-orbit coupling matrix elements were obtained in electronic structure calculations. We find reasonable agreement between computed temperature-dependent O(1D)-Rg (Rg = Ar, Kr, Xe) quenching rate constants and the present measurements for Kr and earlier measurements. In particular, the temperature dependence is well described.

  15. Non-steady state mass action dynamics without rate constants: dynamics of coupled reactions using chemical potentials

    NASA Astrophysics Data System (ADS)

    Cannon, William R.; Baker, Scott E.

    2017-10-01

    Comprehensive and predictive simulation of coupled reaction networks has long been a goal of biology and other fields. Currently, metabolic network models that utilize enzyme mass action kinetics have predictive power but are limited in scope and application by the fact that the determination of enzyme rate constants is laborious and low throughput. We present a statistical thermodynamic formulation of the law of mass action for coupled reactions at both steady states and non-stationary states. The formulation uses chemical potentials instead of rate constants. When used to model deterministic systems, the method corresponds to a rescaling of the time dependent reactions in such a way that steady states can be reached on the same time scale but with significantly fewer computational steps. The relationships between reaction affinities, free energy changes and generalized detailed balance are central to the discussion. The significance for applications in systems biology are discussed as is the concept and assumption of maximum entropy production rate as a biological principle that links thermodynamics to natural selection.

  16. Dynamics of heterogeneous oscillator ensembles in terms of collective variables

    NASA Astrophysics Data System (ADS)

    Pikovsky, Arkady; Rosenblum, Michael

    2011-04-01

    We consider general heterogeneous ensembles of phase oscillators, sine coupled to arbitrary external fields. Starting with the infinitely large ensembles, we extend the Watanabe-Strogatz theory, valid for identical oscillators, to cover the case of an arbitrary parameter distribution. The obtained equations yield the description of the ensemble dynamics in terms of collective variables and constants of motion. As a particular case of the general setup we consider hierarchically organized ensembles, consisting of a finite number of subpopulations, whereas the number of elements in a subpopulation can be both finite or infinite. Next, we link the Watanabe-Strogatz and Ott-Antonsen theories and demonstrate that the latter one corresponds to a particular choice of constants of motion. The approach is applied to the standard Kuramoto-Sakaguchi model, to its extension for the case of nonlinear coupling, and to the description of two interacting subpopulations, exhibiting a chimera state. With these examples we illustrate that, although the asymptotic dynamics can be found within the framework of the Ott-Antonsen theory, the transients depend on the constants of motion. The most dramatic effect is the dependence of the basins of attraction of different synchronous regimes on the initial configuration of phases.

  17. SmB6 electron-phonon coupling constant from time- and angle-resolved photoelectron spectroscopy

    NASA Astrophysics Data System (ADS)

    Sterzi, A.; Crepaldi, A.; Cilento, F.; Manzoni, G.; Frantzeskakis, E.; Zacchigna, M.; van Heumen, E.; Huang, Y. K.; Golden, M. S.; Parmigiani, F.

    2016-08-01

    SmB6 is a mixed valence Kondo system resulting from the hybridization between localized f electrons and delocalized d electrons. We have investigated its out-of-equilibrium electron dynamics by means of time- and angle-resolved photoelectron spectroscopy. The transient electronic population above the Fermi level can be described by a time-dependent Fermi-Dirac distribution. By solving a two-temperature model that well reproduces the relaxation dynamics of the effective electronic temperature, we estimate the electron-phonon coupling constant λ to range from 0.13 ±0.03 to 0.04 ±0.01 . These extremes are obtained assuming a coupling of the electrons with either a phonon mode at 10 or 19 meV. A realistic value of the average phonon energy will give an actual value of λ within this range. Our results provide an experimental report on the material electron-phonon coupling, contributing to both the electronic transport and the macroscopic thermodynamic properties of SmB6.

  18. High modulation bandwidth of a light-emitting diode with surface plasmon coupling (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Lin, Chun-Han; Tu, Charng-Gan; Yao, Yu-Feng; Chen, Sheng-Hung; Su, Chia-Ying; Chen, Hao-Tsung; Kiang, Yean-Woei; Yang, Chih-Chung

    2017-02-01

    Besides lighting, LEDs can be used for indoor data transmission. Therefore, a large modulation bandwidth becomes an important target in the development of visible LED. In this regard, enhancing the radiative recombination rate of carriers in the quantum wells of an LED is a useful method since the modulation bandwidth of an LED is related to the carrier decay rate besides the device RC time constant To increase the carrier decay rate in an LED without sacrificing its output power, the technique of surface plasmon (SP) coupling in an LED is useful. In this paper, the increases of modulation bandwidth by reducing mesa size, decreasing active layer thickness, and inducing SP coupling in blue- and green-emitting LEDs are illustrated. The results are demonstrated by comparing three different LED surface structures, including bare p-type surface, GaZnO current spreading layer, and Ag nanoparticles (NPs) for inducing SP coupling. In a single-quantum-well, blue-emitting LED with a circular mesa of 10 microns in radius, SP coupling results in a modulation bandwidth of 528.8 MHz, which is believed to be the record-high level. A smaller RC time constant can lead to a higher modulation bandwidth. However, when the RC time constant is smaller than 0.2 ns, its effect on modulation bandwidth saturates. The dependencies of modulation bandwidth on injected current density and carrier decay time confirm that the modulation bandwidth is essentially inversely proportional to a time constant, which is inversely proportional to the square-root of carrier decay rate and injected current density.

  19. How Internally Coupled Ears Generate Temporal and Amplitude Cues for Sound Localization.

    PubMed

    Vedurmudi, A P; Goulet, J; Christensen-Dalsgaard, J; Young, B A; Williams, R; van Hemmen, J L

    2016-01-15

    In internally coupled ears, displacement of one eardrum creates pressure waves that propagate through air-filled passages in the skull and cause displacement of the opposing eardrum, and conversely. By modeling the membrane, passages, and propagating pressure waves, we show that internally coupled ears generate unique amplitude and temporal cues for sound localization. The magnitudes of both these cues are directionally dependent. The tympanic fundamental frequency segregates a low-frequency regime with constant time-difference magnification from a high-frequency domain with considerable amplitude magnification.

  20. Microscopic theory of the Coulomb based exchange coupling in magnetic tunnel junctions.

    PubMed

    Udalov, O G; Beloborodov, I S

    2017-05-04

    We study interlayer exchange coupling based on the many-body Coulomb interaction between conduction electrons in magnetic tunnel junction. This mechanism complements the known interaction between magnetic layers based on virtual electron hopping (or spin currents). We find that these two mechanisms have different behavior on system parameters. The Coulomb based coupling may exceed the hopping based exchange. We show that the Coulomb based exchange interaction, in contrast to the hopping based coupling, depends strongly on the dielectric constant of the insulating layer. The dependence of the interlayer exchange interaction on the dielectric properties of the insulating layer in magnetic tunnel junction is similar to magneto-electric effect where electric and magnetic degrees of freedom are coupled. We calculate the interlayer coupling as a function of temperature and electric field for magnetic tunnel junction with ferroelectric layer and show that the exchange interaction between magnetic leads has a sharp decrease in the vicinity of the ferroelectric phase transition and varies strongly with external electric field.

  1. Quantum entanglement at high temperatures? Bosonic systems in nonequilibrium steady state

    NASA Astrophysics Data System (ADS)

    Hsiang, Jen-Tsung; Hu, B. L.

    2015-11-01

    This is the second of a series of three papers examining how viable it is for entanglement to be sustained at high temperatures for quantum systems in thermal equilibrium (Case A), in nonequilibrium (Case B) and in nonequilibrium steady state (NESS) conditions (Case C). The system we analyze here consists of two coupled quantum harmonic oscillators each interacting with its own bath described by a scalar field, set at temperatures T 1 > T 2. For constant bilinear inter-oscillator coupling studied here (Case C1) owing to the Gaussian nature, the problem can be solved exactly at arbitrary temperatures even for strong coupling. We find that the valid entanglement criterion in general is not a function of the bath temperature difference, in contrast to thermal transport in the same NESS setting [1]. Thus lowering the temperature of one of the thermal baths does not necessarily help to safeguard the entanglement between the oscillators. Indeed, quantum entanglement will disappear if any one of the thermal baths has a temperature higher than the critical temperature T c, defined as the temperature above which quantum entanglement vanishes. With the Langevin equations derived we give a full display of how entanglement dynamics in this system depends on T 1, T 2, the inter-oscillator coupling and the system-bath coupling strengths. For weak oscillator-bath coupling the critical temperature T c is about the order of the inverse oscillator frequency, but for strong oscillator-bath coupling it will depend on the bath cutoff frequency. We conclude that in most realistic circumstances, for bosonic systems in NESS with constant bilinear coupling, `hot entanglement' is largely a fiction.

  2. Dynamics of entanglement and uncertainty relation in coupled harmonic oscillator system: exact results

    NASA Astrophysics Data System (ADS)

    Park, DaeKil

    2018-06-01

    The dynamics of entanglement and uncertainty relation is explored by solving the time-dependent Schrödinger equation for coupled harmonic oscillator system analytically when the angular frequencies and coupling constant are arbitrarily time dependent. We derive the spectral and Schmidt decompositions for vacuum solution. Using the decompositions, we derive the analytical expressions for von Neumann and Rényi entropies. Making use of Wigner distribution function defined in phase space, we derive the time dependence of position-momentum uncertainty relations. To show the dynamics of entanglement and uncertainty relation graphically, we introduce two toy models and one realistic quenched model. While the dynamics can be conjectured by simple consideration in the toy models, the dynamics in the realistic quenched model is somewhat different from that in the toy models. In particular, the dynamics of entanglement exhibits similar pattern to dynamics of uncertainty parameter in the realistic quenched model.

  3. 45° sign switching of effective exchange bias due to competing anisotropies in fully epitaxial Co3FeN/MnN bilayers.

    PubMed

    Hajiri, T; Yoshida, T; Filianina, M; Jaiswal, S; Borie, B; Asano, H; Zabel, H; Kläui, M

    2017-12-05

    We report an unusual angular-dependent exchange bias effect in ferromagnet/antiferromagnet bilayers, where both ferromagnet and antiferromagnet are epitaxially grown. Numerical model calculations predict an approximately 45° period for the sign switching of the exchange-bias field, depending on the ratio between magnetocrystalline anisotropy and exchange-coupling constant. The switching of the sign is indicative of a competition between a fourfold magnetocrystalline anisotropy of the ferromagnet and a unidirectional anisotropy field of the exchange coupling. This predicted unusual angular-dependent exchange bias and its magnetization switching process are confirmed by measurements on fully epitaxial Co 3 FeN/MnN bilayers by longitudinal and transverse magneto-optic Kerr effect magnetometry. These results provide a deeper understanding of the exchange coupling phenomena in fully epitaxial bilayers with tailored materials and open up a complex switching energy landscape engineering by anisotropies.

  4. 45° sign switching of effective exchange bias due to competing anisotropies in fully epitaxial Co3FeN/MnN bilayers

    NASA Astrophysics Data System (ADS)

    Hajiri, T.; Yoshida, T.; Filianina, M.; Jaiswal, S.; Borie, B.; Asano, H.; Zabel, H.; Kläui, M.

    2018-01-01

    We report an unusual angular-dependent exchange bias effect in ferromagnet/antiferromagnet bilayers, where both ferromagnet and antiferromagnet are epitaxially grown. Numerical model calculations predict an approximately 45° period for the sign switching of the exchange-bias field, depending on the ratio between magnetocrystalline anisotropy and exchange-coupling constant. The switching of the sign is indicative of a competition between a fourfold magnetocrystalline anisotropy of the ferromagnet and a unidirectional anisotropy field of the exchange coupling. This predicted unusual angular-dependent exchange bias and its magnetization switching process are confirmed by measurements on fully epitaxial Co3FeN/MnN bilayers by longitudinal and transverse magneto-optic Kerr effect magnetometry. These results provide a deeper understanding of the exchange coupling phenomena in fully epitaxial bilayers with tailored materials and open up a complex switching energy landscape engineering by anisotropies.

  5. Identification of parameters through which surface chemistry determines the lifetimes of hot electrons in small Au nanoparticles

    PubMed Central

    Aruda, Kenneth O.; Tagliazucchi, Mario; Sweeney, Christina M.; Hannah, Daniel C.; Schatz, George C.; Weiss, Emily A.

    2013-01-01

    This paper describes measurements of the dynamics of hot electron cooling in photoexcited gold nanoparticles (Au NPs) with diameters of ∼3.5 nm, and passivated with either a hexadecylamine or hexadecanethiolate adlayer, using ultrafast transient absorption spectroscopy. Fits of these dynamics with temperature-dependent Mie theory reveal that both the electronic heat capacity and the electron–phonon coupling constant are larger for the thiolated NPs than for the aminated NPs, by 40% and 30%, respectively. Density functional theory calculations on ligand-functionalized Au slabs show that the increase in these quantities is due to an increased electronic density of states near the Fermi level upon ligand exchange from amines to thiolates. The lifetime of hot electrons, which have thermalized from the initial plasmon excitation, increases with increasing electronic heat capacity, but decreases with increasing electron–phonon coupling, so the effects of changing surface chemistry on these two quantities partially cancel to yield a hot electron lifetime of thiolated NPs that is only 20% longer than that of aminated NPs. This analysis also reveals that incorporation of a temperature-dependent electron–phonon coupling constant is necessary to adequately fit the dynamics of electron cooling. PMID:23440215

  6. Green-Naghdi dynamics of surface wind waves in finite depth

    NASA Astrophysics Data System (ADS)

    Manna, M. A.; Latifi, A.; Kraenkel, R. A.

    2018-04-01

    The Miles’ quasi laminar theory of waves generation by wind in finite depth h is presented. In this context, the fully nonlinear Green-Naghdi model equation is derived for the first time. This model equation is obtained by the non perturbative Green-Naghdi approach, coupling a nonlinear evolution of water waves with the atmospheric dynamics which works as in the classic Miles’ theory. A depth-dependent and wind-dependent wave growth γ is drawn from the dispersion relation of the coupled Green-Naghdi model with the atmospheric dynamics. Different values of the dimensionless water depth parameter δ = gh/U 1, with g the gravity and U 1 a characteristic wind velocity, produce two families of growth rate γ in function of the dimensionless theoretical wave-age c 0: a family of γ with h constant and U 1 variable and another family of γ with U 1 constant and h variable. The allowed minimum and maximum values of γ in this model are exhibited.

  7. Simultaneous gauche and anomeric effects in α-substituted sulfoxides.

    PubMed

    Freitas, Matheus P

    2012-09-07

    α-Substituted sulfoxides can experience both gauche and anomeric effects, since these compounds have the geometric requirements and strong electron donor and acceptor orbitals which are essential to make operative the hyperconjugative nature of these effects. Indeed, the title effects were calculated to take place for 1,3-oxathiane 3-oxide in polar solution, where dipolar effects are absent or at least minimized, while only the gauche effect is present in 2-fluorothiane 1-oxide. Since the fluorine atom is a suitable probe for structural analysis using NMR, the (1)J(CF) dependence on the rotation around the F-C-S═O dihedral angle of (fluoromethyl)methyl sulfoxide was evaluated; differently from 1,2-difluoroethane and fluoro(methoxy)methane, this coupling constant is at least not exclusively dependent on dipolar interactions (or on hyperconjugation). Because of the nonmonotonic behavior of the (1)J(CF) rotational profile, this coupling constant does not appear to be of significant diagnostic value for probing the conformations of α-fluoro sulfoxides.

  8. Theoretical studies of alkyl radicals in the NaY and HY zeolites.

    PubMed

    Ghandi, Khashayar; Zahariev, Federico E; Wang, Yan Alexander

    2005-08-18

    Interplay of quantum mechanical calculations and experimental data on hyperfine coupling constants of ethyl radical in zeolites at several temperatures was engaged to study the geometries and binding energies and to predict the temperature dependence of hyperfine splitting of a series of alkyl radicals in zeolites for the first time. The main focus is on the hyperfine interaction of alkyl radicals in the NaY and HY zeolites. The hyperfine splitting for neutral free radicals and free radical cations is predicted for different zeolite environments. This information can be used to establish the nature of the muoniated alkyl radicals in the NaY and HY zeolites via muSR experiments. The muon hyperfine coupling constants of the ethane radical cation in these zeolites are very large with relatively little dependence on temperature. It was found that the intramolecular dynamics of alkyl free radicals are only weakly affected by their strong binding to zeolites. In contrast, the substrate binding has a significant effect on their intermolecular dynamics.

  9. Self-gravitating static non-critical black holes in 4 D Einstein-Klein-Gordon system with nonminimal derivative coupling

    NASA Astrophysics Data System (ADS)

    Gunara, Bobby Eka; Yaqin, Ainol

    2018-06-01

    We study static non-critical hairy black holes of four dimensional gravitational model with nonminimal derivative coupling and a scalar potential turned on. By taking an ansatz, namely, the first derivative of the scalar field is proportional to square root of a metric function, we reduce the Einstein field equation and the scalar field equation of motions into a single highly nonlinear differential equation. This setup implies that the hair is secondary-like since the scalar charge-like depends on the non-constant mass-like quantity in the asymptotic limit. Then, we show that near boundaries the solution is not the critical point of the scalar potential and the effective geometries become spaces of constant scalar curvature.

  10. Substitution and protonation effects on spin-spin coupling constants in prototypical aromatic rings: C6H6, C5H5N and C5H5P.

    PubMed

    Del Bene, Janet E; Elguero, José

    2006-08-01

    Ab initio equation-of-motion coupled cluster calculations have been carried out to evaluate one-, two-, and three-bond 13C-13C, 15N-13C, 31P-13C coupling constants in benzene, pyridine, pyridinium, phosphinine, and phosphininium. The introduction of N or P heteroatoms into the aromatic ring not only changes the magnitudes of the corresponding X-C coupling constants (J, for X = C, N, or P) but also the signs and magnitudes of corresponding reduced coupling constants (K). Protonation of the heteroatoms also produces dramatic changes in coupling constants and, by removing the lone pair of electrons from the sigma-electron framework, leads to the same signs for corresponding reduced coupling constants for benzene, pyridinium, and phosphininium. C-C coupling constants are rather insensitive to the presence of the heteroatoms and protonation. All terms that contribute to the total coupling constant (except for the diamagnetic spin-orbit (DSO) term) must be computed if good agreement with experimental data is to be obtained. Copyright 2006 John Wiley & Sons, Ltd.

  11. Signal dependence of inter-pixel capacitance in hybridized HgCdTe H2RG arrays for use in James Webb space telescope's NIRcam

    NASA Astrophysics Data System (ADS)

    Donlon, Kevan; Ninkov, Zoran; Baum, Stefi

    2016-08-01

    Interpixel capacitance (IPC) is a deterministic electronic coupling by which signal generated in one pixel is measured in neighboring pixels. Examination of dark frames from test NIRcam arrays corroborates earlier results and simulations illustrating a signal dependent coupling. When the signal on an individual pixel is larger, the fractional coupling to nearest neighbors is lesser than when the signal is lower. Frames from test arrays indicate a drop in average coupling from approximately 1.0% at low signals down to approximately 0.65% at high signals depending on the particular array in question. The photometric ramifications for this non-uniformity are not fully understood. This non-uniformity intro-duces a non-linearity in the current mathematical model for IPC coupling. IPC coupling has been mathematically formalized as convolution by a blur kernel. Signal dependence requires that the blur kernel be locally defined as a function of signal intensity. Through application of a signal dependent coupling kernel, the IPC coupling can be modeled computationally. This method allows for simultaneous knowledge of the intrinsic parameters of the image scene, the result of applying a constant IPC, and the result of a signal dependent IPC. In the age of sub-pixel precision in astronomy these effects must be properly understood and accounted for in order for the data to accurately represent the object of observation. Implementation of this method is done through python scripted processing of images. The introduction of IPC into simulated frames is accomplished through convolution of the image with a blur kernel whose parameters are themselves locally defined functions of the image. These techniques can be used to enhance the data processing pipeline for NIRcam.

  12. General expressions for the coupling coefficient, quality and filling factors for a cavity with an insert using energy coupled mode theory.

    PubMed

    Elnaggar, Sameh Y; Tervo, Richard; Mattar, Saba M

    2014-05-01

    A cavity (CV) with a dielectric resonator (DR) insert forms an excellent probe for the use in electron paramagnetic resonance (EPR) spectrometers. The probe's coupling coefficient, κ, the quality factor, Q, and the filling factor, η are vital in assessing the EPR spectrometer's performance. Coupled mode theory (CMT) is used to derive general expressions for these parameters. For large permittivity the dominating factor in κ is the ratio of the DR and CV cross sectional areas rather than the dielectric constant. Thus in some cases, resonators with low dielectric constant can couple much stronger with the cavity than do resonators with a high dielectric constant. When the DR and CV frequencies are degenerate, the coupled η is the average of the two uncoupled ones. In practical EPR probes the coupled η is approximately half of that of the DR. The Q of the coupled system generally depends on the eigenvectors, uncoupled frequencies (ω1,ω2) and the individual quality factors (Q1,Q2). It is calculated for different probe configurations and found to agree with the corresponding HFSS® simulations. Provided there is a large difference between the Q1, Q2 pair and the frequencies of DR and CV are degenerate, Q is approximately equal to double the minimum of Q1 and Q2. In general, the signal enhancement ratio, Iwithinsert/Iempty, is obtained from Q and η. For low loss DRs it only depends on η1/η2. However, when the DR has a low Q, the uncoupled Qs are also needed. In EPR spectroscopy it is desirable to excite only a single mode. The separation between the modes, Φ, is calculated as a function of κ and Q. It is found to be significantly greater than five times the average bandwidth. Thus for practical probes, it is possible to excite one of the coupled modes without exciting the other. The CMT expressions derived in this article are quite general and are in excellent agreement with the lumped circuit approach and finite numerical simulations. Hence they can also be applied to a loop-gap resonator in a cavity. For the design effective EPR probes, one needs to consider the κ, Q and η parameters. Copyright © 2014 Elsevier Inc. All rights reserved.

  13. General expressions for the coupling coefficient, quality and filling factors for a cavity with an insert using energy coupled mode theory

    NASA Astrophysics Data System (ADS)

    Elnaggar, Sameh Y.; Tervo, Richard; Mattar, Saba M.

    2014-05-01

    A cavity (CV) with a dielectric resonator (DR) insert forms an excellent probe for the use in electron paramagnetic resonance (EPR) spectrometers. The probe’s coupling coefficient, κ, the quality factor, Q, and the filling factor, η are vital in assessing the EPR spectrometer’s performance. Coupled mode theory (CMT) is used to derive general expressions for these parameters. For large permittivity the dominating factor in κ is the ratio of the DR and CV cross sectional areas rather than the dielectric constant. Thus in some cases, resonators with low dielectric constant can couple much stronger with the cavity than do resonators with a high dielectric constant. When the DR and CV frequencies are degenerate, the coupled η is the average of the two uncoupled ones. In practical EPR probes the coupled η is approximately half of that of the DR. The Q of the coupled system generally depends on the eigenvectors, uncoupled frequencies (ω1, ω2) and the individual quality factors (Q1, Q2). It is calculated for different probe configurations and found to agree with the corresponding HFSS® simulations. Provided there is a large difference between the Q1, Q2 pair and the frequencies of DR and CV are degenerate, Q is approximately equal to double the minimum of Q1 and Q2. In general, the signal enhancement ratio, I/Iempty, is obtained from Q and η. For low loss DRs it only depends on η1/η2. However, when the DR has a low Q, the uncoupled Qs are also needed. In EPR spectroscopy it is desirable to excite only a single mode. The separation between the modes, Φ, is calculated as a function of κ and Q. It is found to be significantly greater than five times the average bandwidth. Thus for practical probes, it is possible to excite one of the coupled modes without exciting the other. The CMT expressions derived in this article are quite general and are in excellent agreement with the lumped circuit approach and finite numerical simulations. Hence they can also be applied to a loop-gap resonator in a cavity. For the design effective EPR probes, one needs to consider the κ, Q and η parameters.

  14. Volatility dependence of Henry's law constants of condensable organics: Application to estimate depositional loss of secondary organic aerosols

    NASA Astrophysics Data System (ADS)

    Hodzic, A.; Aumont, B.; Knote, C.; Lee-Taylor, J.; Madronich, S.; Tyndall, G.

    2014-07-01

    The water solubility of oxidation intermediates of volatile organic compounds that can condense to form secondary organic aerosol (SOA) is largely unconstrained in current chemistry-climate models. We apply the Generator of Explicit Chemistry and Kinetics of Organics in the Atmosphere to calculate Henry's law constants for these intermediate species. Results show a strong negative correlation between Henry's law constants and saturation vapor pressures. Details depend on precursor species, extent of photochemical processing, and NOx levels. Henry's law constants as a function of volatility are made available over a wide range of vapor pressures for use in 3-D models. In an application using the Weather Research and Forecasting model coupled with Chemistry (WRF-Chem) over the U.S. in summer, we find that dry (and wet) deposition of condensable organic vapors leads to major reductions in SOA, decreasing surface concentrations by ~50% (10%) for biogenic and ~40% (6%) for short chain anthropogenic precursors under the considered volatility conditions.

  15. Asymptotic safety of higher derivative quantum gravity non-minimally coupled with a matter system

    NASA Astrophysics Data System (ADS)

    Hamada, Yuta; Yamada, Masatoshi

    2017-08-01

    We study asymptotic safety of models of the higher derivative quantum gravity with and without matter. The beta functions are derived by utilizing the functional renormalization group, and non-trivial fixed points are found. It turns out that all couplings in gravity sector, namely the cosmological constant, the Newton constant, and the R 2 and R μν 2 coupling constants, are relevant in case of higher derivative pure gravity. For the Higgs-Yukawa model non-minimal coupled with higher derivative gravity, we find a stable fixed point at which the scalar-quartic and the Yukawa coupling constants become relevant. The relevant Yukawa coupling is crucial to realize the finite value of the Yukawa coupling constants in the standard model.

  16. Investigation of two- and three-bond carbon-hydrogen coupling constants in cinnamic acid based compounds.

    PubMed

    Pierens, Gregory K; Venkatachalam, Taracad K; Reutens, David C

    2016-12-01

    Two- and three-bond coupling constants ( 2 J HC and 3 J HC ) were determined for a series of 12 substituted cinnamic acids using a selective 2D inphase/antiphase (IPAP)-single quantum multiple bond correlation (HSQMBC) and 1D proton coupled 13 C NMR experiments. The coupling constants from two methods were compared and found to give very similar values. The results showed coupling constant values ranging from 1.7 to 9.7 Hz and 1.0 to 9.6 Hz for the IPAP-HSQMBC and the direct 13 C NMR experiments, respectively. The experimental values of the coupling constants were compared with discrete density functional theory (DFT) calculated values and were found to be in good agreement for the 3 J HC . However, the DFT method under estimated the 2 J HC coupling constants. Knowing the limitations of the measurement and calculation of these multibond coupling constants will add confidence to the assignment of conformation or stereochemical aspects of complex molecules like natural products. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  17. Microwave Spectra of the Two Conformers of PROPENE-3-{d}_1 and a Semiexperimental Equilibrium Structure of Propene

    NASA Astrophysics Data System (ADS)

    Craig, Norman C.; Demaison, J.; Rudolph, Heinz Dieter; Gurusinghe, Ranil M.; Tubergen, Michael; Coudert, L. H.; Szalay, Peter; Császár, Attila

    2017-06-01

    FT microwave spectra have been observed and analyzed for the S (in-plane) and A (out-of-plane) conformers of propene-3-{d}_1 in the 10-22 GHz region. Both conformers display splittings due to deuterium quadrupole coupling; for the latter one only, a 19 MHz splitting due to internal rotation of the partially deuterated methyl group has been observed. In addition to rotational constants, the analysis yielded quadrupole coupling constants and parameters describing the tunneling splitting and its rotational dependence. Improved rotational constants for parent propene and the three ^{13}C_1 species are recently available. Use of vibration-rotation interaction constants computed at the MP2(FC)/cc-pVTZ level gave equilibrium rotational constants for these six species and for fourteen more deuterium isotopologues with diminished accuracy from early literature data. A semiexperimental equilibrium structure, r_e^{SE}, has been determined for propene by fitting fourteen structural parameters to the equilibrium rotational constants. The new r_e^{SE} structure compares well with an ab initio equilibrium structure computed with the all-electron CCSD(T)/cc-pV(Q,T)Z model and with a structure obtained using the mixed regression method with predicates and equilibrium rotational constants. N. C. Craig, P. Groner, A. R. Conrad, R. Gurusinghe, M. J. Tubergen J. Mol. Spectrosc. 248, 1-6 (2016).

  18. Scalar-tensor theory of gravitation with negative coupling constant

    NASA Technical Reports Server (NTRS)

    Smalley, L. L.; Eby, P. B.

    1976-01-01

    The possibility of a Brans-Dicke scalar-tensor gravitation theory with a negative coupling constant is considered. The admissibility of a negative-coupling theory is investigated, and a simplified cosmological solution is obtained which allows a negative derivative of the gravitation constant. It is concluded that a Brans-Dicke theory with a negative coupling constant can be a viable alternative to general relativity and that a large negative value for the coupling constant seems to bring the original scalar-tensor theory into close agreement with perihelion-precession results in view of recent observations of small solar oblateness.

  19. Current interactions from the one-form sector of nonlinear higher-spin equations

    NASA Astrophysics Data System (ADS)

    Gelfond, O. A.; Vasiliev, M. A.

    2018-06-01

    The form of higher-spin current interactions in the sector of one-forms is derived from the nonlinear higher-spin equations in AdS4. Quadratic corrections to higher-spin equations are shown to be independent of the phase of the parameter η = exp ⁡ iφ in the full nonlinear higher-spin equations. The current deformation resulting from the nonlinear higher-spin equations is represented in the canonical form with the minimal number of space-time derivatives. The non-zero spin-dependent coupling constants of the resulting currents are determined in terms of the higher-spin coupling constant η η bar . Our results confirm the conjecture that (anti-)self-dual nonlinear higher-spin equations result from the full system at (η = 0) η bar = 0.

  20. Modeling and characterization of dielectrophoretically structured piezoelectric composites using piezoceramic particle inclusions with high aspect ratios

    NASA Astrophysics Data System (ADS)

    van den Ende, D. A.; Maier, R. A.; van Neer, P. L. M. J.; van der Zwaag, S.; Randall, C. A.; Groen, W. A.

    2013-01-01

    In this work, the piezoelectric properties at high electric fields of dielectrophoretically aligned PZT—polymer composites containing high aspect ratio particles (such as short fibers) are presented. Polarization and strain as a function of electric field are evaluated. The properties of the composites are compared to those of PZT-polymer composites with equiaxed particles, continuous PZT fiber-polymer composites, and bulk PZT ceramics. From high-field polarization and strain measurements, the effective field dependent permittivity and piezoelectric charge constant in the poling direction are determined for dielectrophoresis structured PZT-polymer composites, continuous PZT fiber-polymer composites, and bulk PZT ceramics. The changes in dielectric properties of the inclusions and the matrix at high fields influence the dielectric and piezoelectric properties of the composites. It is found that the permittivity and piezoelectric charge constants increase towards a maximum at an applied field of around 2.5-5 kV/mm. The electric field at which the maximum occurs depends on the aspect ratio and degree of alignment of the inclusions. Experimental values of d33 at low and high applied fields are compared to a model describing the composites as a continuous polymer matrix containing PZT particles of various aspect ratios arranged into chains. Thickness mode coupling factors were determined from measured impedance data using fitted equivalent circuit model simulations. The relatively high piezoelectric strain constants, voltage constants, and thickness coupling factors indicate that such aligned short fiber composites could be useful as flexible large area transducers.

  1. A scenario for inflationary magnetogenesis without strong coupling problem

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tasinato, Gianmassimo; Institute of Cosmology and Gravitation, University of Portsmouth,Portsmouth, PO1 3FX

    2015-03-23

    Cosmological magnetic fields pervade the entire universe, from small to large scales. Since they apparently extend into the intergalactic medium, it is tantalizing to believe that they have a primordial origin, possibly being produced during inflation. However, finding consistent scenarios for inflationary magnetogenesis is a challenging theoretical problem. The requirements to avoid an excessive production of electromagnetic energy, and to avoid entering a strong coupling regime characterized by large values for the electromagnetic coupling constant, typically allow one to generate only a tiny amplitude of magnetic field during inflation. We propose a scenario for building gauge-invariant models of inflationary magnetogenesismore » potentially free from these issues. The idea is to derivatively couple a dynamical scalar, not necessarily the inflaton, to fermionic and electromagnetic fields during the inflationary era. Such couplings give additional freedom to control the time-dependence of the electromagnetic coupling constant during inflation. This fact allows us to find conditions to avoid the strong coupling problems that affect many of the existing models of magnetogenesis. We do not need to rely on a particular inflationary set-up for developing our scenario, that might be applied to different realizations of inflation. On the other hand, specific requirements have to be imposed on the dynamics of the scalar derivatively coupled to fermions and electromagnetism, that we are able to satisfy in an explicit realization of our proposal.« less

  2. A scenario for inflationary magnetogenesis without strong coupling problem

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tasinato, Gianmassimo, E-mail: gianmassimo.tasinato@port.ac.uk

    2015-03-01

    Cosmological magnetic fields pervade the entire universe, from small to large scales. Since they apparently extend into the intergalactic medium, it is tantalizing to believe that they have a primordial origin, possibly being produced during inflation. However, finding consistent scenarios for inflationary magnetogenesis is a challenging theoretical problem. The requirements to avoid an excessive production of electromagnetic energy, and to avoid entering a strong coupling regime characterized by large values for the electromagnetic coupling constant, typically allow one to generate only a tiny amplitude of magnetic field during inflation. We propose a scenario for building gauge-invariant models of inflationary magnetogenesismore » potentially free from these issues. The idea is to derivatively couple a dynamical scalar, not necessarily the inflaton, to fermionic and electromagnetic fields during the inflationary era. Such couplings give additional freedom to control the time-dependence of the electromagnetic coupling constant during inflation. This fact allows us to find conditions to avoid the strong coupling problems that affect many of the existing models of magnetogenesis. We do not need to rely on a particular inflationary set-up for developing our scenario, that might be applied to different realizations of inflation. On the other hand, specific requirements have to be imposed on the dynamics of the scalar derivatively coupled to fermions and electromagnetism, that we are able to satisfy in an explicit realization of our proposal.« less

  3. Noise-enhanced coupling between two oscillators with long-term plasticity

    NASA Astrophysics Data System (ADS)

    Lücken, Leonhard; Popovych, Oleksandr V.; Tass, Peter A.; Yanchuk, Serhiy

    2016-03-01

    Spike timing-dependent plasticity is a fundamental adaptation mechanism of the nervous system. It induces structural changes of synaptic connectivity by regulation of coupling strengths between individual cells depending on their spiking behavior. As a biophysical process its functioning is constantly subjected to natural fluctuations. We study theoretically the influence of noise on a microscopic level by considering only two coupled neurons. Adopting a phase description for the neurons we derive a two-dimensional system which describes the averaged dynamics of the coupling strengths. We show that a multistability of several coupling configurations is possible, where some configurations are not found in systems without noise. Intriguingly, it is possible that a strong bidirectional coupling, which is not present in the noise-free situation, can be stabilized by the noise. This means that increased noise, which is normally expected to desynchronize the neurons, can be the reason for an antagonistic response of the system, which organizes itself into a state of stronger coupling and counteracts the impact of noise. This mechanism, as well as a high potential for multistability, is also demonstrated numerically for a coupled pair of Hodgkin-Huxley neurons.

  4. Polarization rotation enhancement and scattering mechanisms in waveguide magnetophotonic crystals

    NASA Astrophysics Data System (ADS)

    Levy, Miguel; Li, Rong

    2006-09-01

    Intermodal coupling in photonic band gap optical channels in magnetic garnet films is found to leverage the nonreciprocal polarization rotation. Forward fundamental-mode to high-order mode backscattering yields the largest rotations. The underlying mechanism is traced to the dependence of the grating-coupling constant on the modal refractive index and profile of the propagating beam. Large changes in polarization near the band edges are observed in first and second orders. Extreme sensitivity to linear birefringence exists in second order.

  5. Rotational dependence of the predissociation linewidths of the Schumann-Runge bands of O2

    NASA Technical Reports Server (NTRS)

    Cheung, A. S.-C.; Mok, D. K.-W.; Jamieson, M. J.; Finch, M.; Yoshino, K.; Dalgarno, A.; Parkinson, W. H.

    1993-01-01

    The rotational coupling constant for the O2 molecule is estimated theoretically, and the predissociation linewidths of the Schumann-Runge bands of vibration levels v = 0-12 are calculated for (O-16)2, (O-16)(O-18), and (O-18)2 molecules in the B 3Sigma-u(-) state. Calculations accounted for both the spin-orbit and rotational couplings with rotational quantum number N up to 20. The theoretical linewidths are compared with experimental widths, showing satisfactory agreement.

  6. Control of amplitude chimeras by time delay in oscillator networks

    NASA Astrophysics Data System (ADS)

    Gjurchinovski, Aleksandar; Schöll, Eckehard; Zakharova, Anna

    2017-04-01

    We investigate the influence of time-delayed coupling in a ring network of nonlocally coupled Stuart-Landau oscillators upon chimera states, i.e., space-time patterns with coexisting partially coherent and partially incoherent domains. We focus on amplitude chimeras, which exhibit incoherent behavior with respect to the amplitude rather than the phase and are transient patterns, and we show that their lifetime can be significantly enhanced by coupling delay. To characterize their transition to phase-lag synchronization (coherent traveling waves) and other coherent structures, we generalize the Kuramoto order parameter. Contrasting the results for instantaneous coupling with those for constant coupling delay, for time-varying delay, and for distributed-delay coupling, we demonstrate that the lifetime of amplitude chimera states and related partially incoherent states can be controlled, i.e., deliberately reduced or increased, depending upon the type of coupling delay.

  7. On the room temperature multiferroic BiFeO3: magnetic, dielectric and thermal properties

    NASA Astrophysics Data System (ADS)

    Lu, J.; Günther, A.; Schrettle, F.; Mayr, F.; Krohns, S.; Lunkenheimer, P.; Pimenov, A.; Travkin, V. D.; Mukhin, A. A.; Loidl, A.

    2010-06-01

    Magnetic dc susceptibility between 1.5 and 800 K, ac susceptibility and magnetization, thermodynamic properties, temperature dependence of radio and audio-wave dielectric constants and conductivity, contact-free dielectric constants at mm-wavelengths, as well as ferroelectric polarization are reported for single crystalline BiFeO3. A well developed anomaly in the magnetic susceptibility signals the onset of antiferromagnetic order close to 635 K. Beside this anomaly no further indications of phase or glass transitions are indicated in the magnetic dc and ac susceptibilities down to the lowest temperatures. The heat capacity has been measured from 2 K up to room temperature and significant contributions from magnon excitations have been detected. From the low-temperature heat capacity an anisotropy gap of the magnon modes of the order of 6 meV has been determined. The dielectric constants measured in standard two-point configuration are dominated by Maxwell-Wagner like effects for temperatures T > 300 K and frequencies below 1 MHz. At lower temperatures the temperature dependence of the dielectric constant and loss reveals no anomalies outside the experimental errors, indicating neither phase transitions nor strong spin phonon coupling. The temperature dependence of the dielectric constant was measured contact free at microwave frequencies. At room temperature the dielectric constant has an intrinsic value of 53. The loss is substantial and strongly frequency dependent indicating the predominance of hopping conductivity. Finally, in small thin samples we were able to measure the ferroelectric polarization between 10 and 200 K. The saturation polarization is of the order of 40 μC/cm2, comparable to reports in literature.

  8. Properties of water along the liquid-vapor coexistence curve via molecular dynamics simulations using the polarizable TIP4P-QDP-LJ water model

    PubMed Central

    Bauer, Brad A.; Patel, Sandeep

    2009-01-01

    We present an extension of the TIP4P-QDP model, TIP4P-QDP-LJ, that is designed to couple changes in repulsive and dispersive nonbond interactions to changes in polarizability. Polarizability is intimately related to the dispersion component of classical force field models of interactions, and we explore the effect of incorporating this connection explicitly on properties along the liquid-vapor coexistence curve of pure water. Parametrized to reproduce condensed-phase liquid water properties at 298 K, the TIP4P-QDP-LJ model predicts density, enthalpy of vaporization, self-diffusion constant, and the dielectric constant at ambient conditions to about the same accuracy as TIP4P-QDP but shows remarkable improvement in reproducing the liquid-vapor coexistence curve. TIP4P-QDP-LJ predicts critical constants of Tc=623 K, ρc=0.351 g∕cm3, and Pc=250.9 atm, which are in good agreement with experimental values of Tc=647.1 K, ρc=0.322 g∕cm3, and Pc=218 atm, respectively. Applying a scaling factor correction (obtained by fitting the experimental vapor-liquid equilibrium data to the law of rectilinear diameters using a three-term Wegner expansion) the model predicts critical constants (Tc=631 K and ρc=0.308 g∕cm3). Dependence of enthalpy of vaporization, self-diffusion constant, surface tension, and dielectric constant on temperature are shown to reproduce experimental trends. We also explore the interfacial potential drop across the liquid-vapor interface for the temperatures studied. The interfacial potential demonstrates little temperature dependence at lower temperatures (300–450 K) and significantly enhanced (exponential) dependence at elevated temperatures. Terms arising from the decomposition of the interfacial potential into dipole and quadrupole contributions are shown to monotonically approach zero as the temperature approaches the critical temperature. Results of this study suggest that self-consistently treating the coupling of phase-dependent polarizability with dispersion interactions in classical water force fields may be an important effect for the extension of polarizable water force fields to reproduce properties along the liquid-vapor coexistence envelope as well as near critical conditions. More importantly, the present study demonstrates the rather remarkable transferability of a water model parametrized to a single state point to other thermodynamic states. Further studies are recommended. PMID:19725623

  9. Properties of water along the liquid-vapor coexistence curve via molecular dynamics simulations using the polarizable TIP4P-QDP-LJ water model.

    PubMed

    Bauer, Brad A; Patel, Sandeep

    2009-08-28

    We present an extension of the TIP4P-QDP model, TIP4P-QDP-LJ, that is designed to couple changes in repulsive and dispersive nonbond interactions to changes in polarizability. Polarizability is intimately related to the dispersion component of classical force field models of interactions, and we explore the effect of incorporating this connection explicitly on properties along the liquid-vapor coexistence curve of pure water. Parametrized to reproduce condensed-phase liquid water properties at 298 K, the TIP4P-QDP-LJ model predicts density, enthalpy of vaporization, self-diffusion constant, and the dielectric constant at ambient conditions to about the same accuracy as TIP4P-QDP but shows remarkable improvement in reproducing the liquid-vapor coexistence curve. TIP4P-QDP-LJ predicts critical constants of T(c)=623 K, rho(c)=0.351 g/cm(3), and P(c)=250.9 atm, which are in good agreement with experimental values of T(c)=647.1 K, rho(c)=0.322 g/cm(3), and P(c)=218 atm, respectively. Applying a scaling factor correction (obtained by fitting the experimental vapor-liquid equilibrium data to the law of rectilinear diameters using a three-term Wegner expansion) the model predicts critical constants (T(c)=631 K and rho(c)=0.308 g/cm(3)). Dependence of enthalpy of vaporization, self-diffusion constant, surface tension, and dielectric constant on temperature are shown to reproduce experimental trends. We also explore the interfacial potential drop across the liquid-vapor interface for the temperatures studied. The interfacial potential demonstrates little temperature dependence at lower temperatures (300-450 K) and significantly enhanced (exponential) dependence at elevated temperatures. Terms arising from the decomposition of the interfacial potential into dipole and quadrupole contributions are shown to monotonically approach zero as the temperature approaches the critical temperature. Results of this study suggest that self-consistently treating the coupling of phase-dependent polarizability with dispersion interactions in classical water force fields may be an important effect for the extension of polarizable water force fields to reproduce properties along the liquid-vapor coexistence envelope as well as near critical conditions. More importantly, the present study demonstrates the rather remarkable transferability of a water model parametrized to a single state point to other thermodynamic states. Further studies are recommended.

  10. 45 sign switching of effective exchange bias due to competing anisotropies in fully epitaxial Co3FeN/MnN bilayers.

    PubMed

    Hajiri, Tetsuya; Yoshida, Takuya; Filianina, Mariia; Jaiswal, Samridh; Borie, Benjamin; Asano, H; Zabel, Hartmut; Klaui, Mathias

    2017-11-20

    We report an unusual angular-dependent exchange bias effect in ferromagnet/antiferromagnet bilayers, where both ferromagnet and antiferromagnet are epitaxially grown. Numerical model calculations predict an approximately 45$^\\circ$ period for the sign switching of the exchange-bias field, depending on the ratio between magnetocrystalline anisotropy and exchange-coupling constant. The switching of the sign is indicative of a competition between a fourfold magnetocrystalline anisotropy of the ferromagnet and a unidirectional anisotropy field of the exchange coupling. This predicted unusual angular-dependent exchange bias and its magnetization switching process are confirmed by measurements on fully epitaxial Co$_3$FeN/MnN bilayers by longitudinal and transverse magneto-optic Kerr effect magnetometry. These results provide a deeper understanding of the exchange coupling phenomena in fully epitaxial bilayers with tailored materials and open up a complex switching energy landscape engineering by anisotropies. © 2017 IOP Publishing Ltd.

  11. Investigation of Saltwater Intrusion and Recirculation of Seawater for Henry Constant Dispersion and Velocity-Dependent Dispersion Problems and Field-Scale Problem

    NASA Astrophysics Data System (ADS)

    Motz, L. H.; Kalakan, C.

    2013-12-01

    Three problems regarding saltwater intrusion, namely the Henry constant dispersion and velocity-dependent dispersion problems and a larger, field-scale velocity-dependent dispersion problem, have been investigated to determine quantitatively how saltwater intrusion and the recirculation of seawater at a coastal boundary are related to the freshwater inflow and the density-driven buoyancy flux. Based on dimensional analysis, saltwater intrusion and the recirculation of seawater are dependent functions of the independent ratio of freshwater advective flux relative to the density-driven vertical buoyancy flux, defined as az (or a for an isotropic aquifer), and the aspect ratio of horizontal and vertical dimensions of the cross-section. For the Henry constant dispersion problem, in which the aquifer is isotropic, saltwater intrusion and recirculation are related to an additional independent dimensionless parameter that is the ratio of the constant dispersion coefficient treated as a scalar quantity, the porosity, and the freshwater advective flux, defined as b. For the Henry velocity-dependent dispersion problem, the ratio b is zero, and saltwater intrusion and recirculation are related to an additional independent dimensionless parameter that is the ratio of the vertical and horizontal dispersivities, or rα = αz/αx. For an anisotropic aquifer, saltwater intrusion and recirculation are also dependent on the ratio of vertical and horizontal hydraulic conductivities, or rK = Kz/Kx. For the field-scale velocity-dependent dispersion problem, saltwater intrusion and recirculation are dependent on the same independent ratios as the Henry velocity-dependent dispersion problem. In the two-dimensional cross-section for all three problems, freshwater inflow occurs at an upgradient boundary, and recirculated seawater outflow occurs at a downgradient coastal boundary. The upgradient boundary is a specified-flux boundary with zero freshwater concentration, and the downgradient boundary is a specified-head boundary with a specified concentration equal to seawater. Equivalent freshwater heads are specified at the downstream boundary to account for density differences between freshwater and saltwater at the downstream boundary. The three problems were solved using the numerical groundwater flow and transport code SEAWAT for two conditions, i.e., first for the uncoupled condition in which the fluid density is constant and thus the flow and transport equations are uncoupled in a constant-density flowfield, and then for the coupled condition in which the fluid density is a function of the total dissolved solids concentration and thus the flow and transport equations are coupled in a variable-density flowfield. A wide range of results for the landward extent of saltwater intrusion and the amount of recirculation of seawater at the coastal boundary was obtained by varying the independent dimensionless ratio az (or a in problem one) in all three problems. The dimensionless dispersion ratio b was also varied in problem one, and the dispersivity ratio rα and the hydraulic conductivity ratio rK were also varied in problems two and three.

  12. Magnetic black holes and monopoles in a nonminimal Einstein-Yang-Mills theory with a cosmological constant: Exact solutions

    NASA Astrophysics Data System (ADS)

    Balakin, Alexander B.; Lemos, José P. S.; Zayats, Alexei E.

    2016-04-01

    Alternative theories of gravity and their solutions are of considerable importance since, at some fundamental level, the world can reveal new features. Indeed, it is suspected that the gravitational field might be nonminimally coupled to the other fields at scales not yet probed, bringing into the forefront nonminimally coupled theories. In this mode, we consider a nonminimal Einstein-Yang-Mills theory with a cosmological constant. Imposing spherical symmetry and staticity for the spacetime and a magnetic Wu-Yang ansatz for the Yang-Mills field, we find expressions for the solutions of the theory. Further imposing constraints on the nonminimal parameters, we find a family of exact solutions of the theory depending on five parameters—two nonminimal parameters, the cosmological constant, the magnetic charge, and the mass. These solutions represent magnetic monopoles and black holes in magnetic monopoles with de Sitter, Minkowskian, and anti-de Sitter asymptotics, depending on the sign and value of the cosmological constant Λ . We classify completely the family of solutions with respect to the number and the type of horizons and show that the spacetime solutions can have, at most, four horizons. For particular sets of the parameters, these horizons can become double, triple, and quadruple. For instance, for a positive cosmological constant Λ , there is a critical Λc for which the solution admits a quadruple horizon, evocative of the Λc that appears for a given energy density in both the Einstein static and Eddington-Lemaître dynamical universes. As an example of our classification, we analyze solutions in the Drummond-Hathrell nonminimal theory that describe nonminimal black holes. Another application is with a set of regular black holes previously treated.

  13. Measurement of the magnetic anisotropy energy constants for magneto-optical recording media

    NASA Technical Reports Server (NTRS)

    Hajjar, R. A.; Wu, T. H.; Mansuripur, M.

    1992-01-01

    Measurement of the magneto-optical polar Kerr effect is performed on rare earth-transition metal (RE-TM) amorphous films using in-plane fields. From this measurement and the measurement of the saturation magnetization using a vibrating sample magnetometer (VSM), the magnetic anisotropy constants are determined. The temperature dependence is presented of the magnetic anisotropy in the range of -175 to 175 C. The results show a dip in the anisotropy near magnetic compensation. This anomaly is explained based on the finite exchange coupling between the rare earth and transition metal subnetworks.

  14. Polarized pressure dependence of the anisotropic dielectric functions of highly oriented poly(p-phenylene vinylene)

    NASA Astrophysics Data System (ADS)

    Morandi, V.; Galli, M.; Marabelli, F.; Comoretto, D.

    2010-04-01

    In this work, we combined an experimental technique and a detailed data analysis to investigate the influence of an applied pressure on the anisotropic dielectric functions of highly oriented poly(p-phenylene vinylene) (PPV). The dielectric constants were derived from polarized reflectance spectra recorded through a diamond anvil cell up to 50 kbar. The presence of the diamond anvils strongly affects measured spectra requiring the development in an optical model able to take all spurious effects into account. A parametric procedure was then applied to derive the complex dielectric constants for both polarizations as a function of pressure. A detailed analysis of their pressure dependence allows addressing the role of intermolecular interactions and electron-phonon coupling in highly oriented PPV.

  15. Theoretical study of orbital ordering induced structural phase transition in iron pnictides

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jena, Sushree Sangita, E-mail: sushree@iopb.res.in; Rout, G. C., E-mail: gcr@iopb.res.in; Panda, S. K., E-mail: skp@iopb.res.in

    2016-05-06

    We attribute the structural phase transition (SPT) in the parent compounds of the iron pnictides to orbital ordering. Due to anisotropy of the d{sub xz} and d{sub yz} orbitals in the xy plane, orbital ordering makes the orthorhombic structure more favorable and thus inducing the SPT. We consider a one band model Hamiltonian consisting of first and second-nearest-neighbor hopping of the electrons. We introduce Jahn-Tellar (JT) distortion in the system arising due to the orbital ordering present in this system. We calculate the electron Green’s function by using Zuvareb’s Green’s function technique and hence calculate an expression for the temperaturemore » dependent lattice strain which is computed numerically and self-consistently. The temperature dependent electron specific heat is calculated by minimizing the free energy of the system. The lattice strain is studied by varying the JT coupling and elastic constant of the system. The structural anomaly is studied through the electron occupation number and the specific heat by varying the physical parameters like JT coupling, lattice constant, chemical potential and hopping integrals of the system.« less

  16. On the Usage of Locally Dense Basis Sets in the Calculation of NMR Indirect Nuclear Spin-Spin Coupling Constants

    NASA Astrophysics Data System (ADS)

    Sanchez, Marina; Provasi, Patricio F.; Aucar, Gustavo A.; Sauer, Stephan P. A.

    Locally dense basis sets (

  17. MSW-resonant fermion mixing during reheating

    NASA Astrophysics Data System (ADS)

    Kanai, Tsuneto; Tsujikawa, Shinji

    2003-10-01

    We study the dynamics of reheating in which an inflaton field couples two flavor fermions through Yukawa-couplings. When two fermions have a mixing term with a constant coupling, we show that the Mikheyev-Smirnov-Wolfenstein (MSW)-type resonance emerges due to a time-dependent background in addition to the standard fermion creation via parametric resonance. This MSW resonance not only alters the number densities of fermions generated by a preheating process but also can lead to the larger energy transfer from the inflaton to fermions. Our mechanism can provide additional source terms for the creation of superheavy fermions which may be relevant for the leptogenesis scenario.

  18. Hamiltonian mean-field model: effect of temporal perturbation in coupling matrix

    NASA Astrophysics Data System (ADS)

    Bhadra, Nivedita; Patra, Soumen K.

    2018-05-01

    The Hamiltonian mean-field (HMF) model is a system of fully coupled rotators which exhibits a second-order phase transition at some critical energy in its canonical ensemble. We investigate the case where the interaction between the rotors is governed by a time-dependent coupling matrix. Our numerical study reveals a shift in the critical point due to the temporal modulation. The shift in the critical point is shown to be independent of the modulation frequency above some threshold value, whereas the impact of the amplitude of modulation is dominant. In the microcanonical ensemble, the system with constant coupling reaches a quasi-stationary state (QSS) at an energy near the critical point. Our result indicates that the QSS subsists in presence of such temporal modulation of the coupling parameter.

  19. Hyperfine coupling of the iodine {\\boldsymbol{D}}{0}_{{\\boldsymbol{u}}}^{+} and β1 g ion-pair states

    NASA Astrophysics Data System (ADS)

    Baturo, V. V.; Cherepanov, I. N.; Lukashov, S. S.; Petrov, A. N.; Poretsky, S. A.; Pravilov, A. M.

    2018-05-01

    Detailed studies of I2(β1 g , v β = 13, J β ∼ D{0}u+, v D = 12, J D and D, 48, J D ∼ β, 47, J β ) rovibronic state coupling have been carried out using two-step two-color, hν 1 + hν 2 and hν 1 + 2hν 2, optical–optical double resonance excitation schemes, respectively. The hyperfine interaction satisfying the | {{Δ }}J| = 0, 1 selection rules (magnetic-dipole interaction) has been observed. No electric-quadrupole hyperfine coupling (| {{Δ }}J| = 2) has been found. The dependences of ratios of luminescence intensities from the rovibronic states populated due to the hyperfine coupling to those from optically populated ones on energy gaps between these states have been experimentally determined. The matrix elements as well as the hyperfine structure constant have been obtained using these dependences. It is shown that they increase slightly with the vibrational quantum number of the states.

  20. Experimental determination of the effective strong coupling constant

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alexandre Deur; Volker Burkert; Jian-Ping Chen

    2007-07-01

    We extract an effective strong coupling constant from low Q{sup 2} data on the Bjorken sum. Using sum rules, we establish its Q{sup 2}-behavior over the complete Q{sup 2}-range. The result is compared to effective coupling constants extracted from different processes and to calculations based on Schwinger-Dyson equations, hadron spectroscopy or lattice QCD. Although the connection between the experimentally extracted effective coupling constant and the calculations is not clear, the results agree surprisingly well.

  1. Kny Coupling Constants and Form Factors from the Chiral Bag Model

    NASA Astrophysics Data System (ADS)

    Jeong, M. T.; Cheon, Il-T.

    2000-09-01

    The form factors and coupling constants for KNΛ and KNΣ interactions have been calculated in the framework of the Chiral Bag Model with vector mesons. Taking into account vector meson (ρ, ω, K*) field effects, we find -3.88 ≤ gKNΛ ≤ -3.67 and 1.15 ≤ gKNΣ ≤ 1.24, where the quark-meson coupling constants are determined by fitting the renormalized, πNN coupling constant, [gπNN(0)]2/4π = 14.3. It is shown that vector mesons make significant contributions to the coupling constants gKNΛ and gKNΣ. Our values are existing within the experimental limits compared to the phenomenological values extracted from the kaon photo production experiments.

  2. COSMOLOGY OF CHAMELEONS WITH POWER-LAW COUPLINGS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mota, David F.; Winther, Hans A.

    2011-05-20

    In chameleon field theories, a scalar field can couple to matter with gravitational strength and still evade local gravity constraints due to a combination of self-interactions and the couplings to matter. Originally, these theories were proposed with a constant coupling to matter; however, the chameleon mechanism also extends to the case where the coupling becomes field dependent. We study the cosmology of chameleon models with power-law couplings and power-law potentials. It is found that these generalized chameleons, when viable, have a background expansion very close to {Lambda}CDM, but can in some special cases enhance the growth of the linear perturbationsmore » at low redshifts. For the models we consider, it is found that this region of the parameter space is ruled out by local gravity constraints. Imposing a coupling to dark matter only, the local constraints are avoided, and it is possible to have observable signatures on the linear matter perturbations.« less

  3. Renormalization of Collective Modes in Large-Scale Neural Dynamics

    NASA Astrophysics Data System (ADS)

    Moirogiannis, Dimitrios; Piro, Oreste; Magnasco, Marcelo O.

    2017-05-01

    The bulk of studies of coupled oscillators use, as is appropriate in Physics, a global coupling constant controlling all individual interactions. However, because as the coupling is increased, the number of relevant degrees of freedom also increases, this setting conflates the strength of the coupling with the effective dimensionality of the resulting dynamics. We propose a coupling more appropriate to neural circuitry, where synaptic strengths are under biological, activity-dependent control and where the coupling strength and the dimensionality can be controlled separately. Here we study a set of N→ ∞ strongly- and nonsymmetrically-coupled, dissipative, powered, rotational dynamical systems, and derive the equations of motion of the reduced system for dimensions 2 and 4. Our setting highlights the statistical structure of the eigenvectors of the connectivity matrix as the fundamental determinant of collective behavior, inheriting from this structure symmetries and singularities absent from the original microscopic dynamics.

  4. Holographic constraints on Bjorken hydrodynamics at finite coupling

    NASA Astrophysics Data System (ADS)

    DiNunno, Brandon S.; Grozdanov, Sašo; Pedraza, Juan F.; Young, Steve

    2017-10-01

    In large- N c conformal field theories with classical holographic duals, inverse coupling constant corrections are obtained by considering higher-derivative terms in the corresponding gravity theory. In this work, we use type IIB supergravity and bottom-up Gauss-Bonnet gravity to study the dynamics of boost-invariant Bjorken hydrodynamics at finite coupling. We analyze the time-dependent decay properties of non-local observables (scalar two-point functions and Wilson loops) probing the different models of Bjorken flow and show that they can be expressed generically in terms of a few field theory parameters. In addition, our computations provide an analytically quantifiable probe of the coupling-dependent validity of hydrodynamics at early times in a simple model of heavy-ion collisions, which is an observable closely analogous to the hydrodynamization time of a quark-gluon plasma. We find that to third order in the hydrodynamic expansion, the convergence of hydrodynamics is improved and that generically, as expected from field theory considerations and recent holographic results, the applicability of hydrodynamics is delayed as the field theory coupling decreases.

  5. Measurement of the ratio of the inclusive 3-jet cross section to the inclusive 2-jet cross section in pp collisions at and first determination of the strong coupling constant in the TeV range

    NASA Astrophysics Data System (ADS)

    Chatrchyan, S.; Khachatryan, V.; Sirunyan, A. M.; Tumasyan, A.; Adam, W.; Bergauer, T.; Dragicevic, M.; Erö, J.; Fabjan, C.; Friedl, M.; Frühwirth, R.; Ghete, V. M.; Hörmann, N.; Hrubec, J.; Jeitler, M.; Kiesenhofer, W.; Knünz, V.; Krammer, M.; Krätschmer, I.; Liko, D.; Mikulec, I.; Rabady, D.; Rahbaran, B.; Rohringer, C.; Rohringer, H.; Schöfbeck, R.; Strauss, J.; Taurok, A.; Treberer-Treberspurg, W.; Waltenberger, W.; Wulz, C.-E.; Mossolov, V.; Shumeiko, N.; Suarez Gonzalez, J.; Alderweireldt, S.; Bansal, M.; Bansal, S.; Cornelis, T.; De Wolf, E. A.; Janssen, X.; Knutsson, A.; Luyckx, S.; Mucibello, L.; Ochesanu, S.; Roland, B.; Rougny, R.; Van Haevermaet, H.; Van Mechelen, P.; Van Remortel, N.; Van Spilbeeck, A.; Blekman, F.; Blyweert, S.; D'Hondt, J.; Kalogeropoulos, A.; Keaveney, J.; Maes, M.; Olbrechts, A.; Tavernier, S.; Van Doninck, W.; Van Mulders, P.; Van Onsem, G. P.; Villella, I.; Clerbaux, B.; De Lentdecker, G.; Favart, L.; Gay, A. P. R.; Hreus, T.; Léonard, A.; Marage, P. E.; Mohammadi, A.; Reis, T.; Thomas, L.; Vander Velde, C.; Vanlaer, P.; Wang, J.; Adler, V.; Beernaert, K.; Benucci, L.; Cimmino, A.; Costantini, S.; Dildick, S.; Garcia, G.; Klein, B.; Lellouch, J.; Marinov, A.; Mccartin, J.; Ocampo Rios, A. A.; Ryckbosch, D.; Sigamani, M.; Strobbe, N.; Thyssen, F.; Tytgat, M.; Walsh, S.; Yazgan, E.; Zaganidis, N.; Basegmez, S.; Beluffi, C.; Bruno, G.; Castello, R.; Caudron, A.; Ceard, L.; Delaere, C.; du Pree, T.; Favart, D.; Forthomme, L.; Giammanco, A.; Hollar, J.; Lemaitre, V.; Liao, J.; Militaru, O.; Nuttens, C.; Pagano, D.; Pin, A.; Piotrzkowski, K.; Popov, A.; Selvaggi, M.; Vizan Garcia, J. M.; Beliy, N.; Caebergs, T.; Daubie, E.; Hammad, G. H.; Alves, G. A.; Correa Martins Junior, M.; Martins, T.; Pol, M. E.; Souza, M. H. G.; Aldá Júnior, W. L.; Carvalho, W.; Chinellato, J.; Custódio, A.; Da Costa, E. M.; De Jesus Damiao, D.; De Oliveira Martins, C.; Fonseca De Souza, S.; Malbouisson, H.; Malek, M.; Matos Figueiredo, D.; Mundim, L.; Nogima, H.; Prado Da Silva, W. L.; Santoro, A.; Soares Jorge, L.; Sznajder, A.; Tonelli Manganote, E. J.; Vilela Pereira, A.; Anjos, T. S.; Bernardes, C. A.; Dias, F. A.; Fernandez Perez Tomei, T. R.; Gregores, E. M.; Lagana, C.; Marinho, F.; Mercadante, P. G.; Novaes, S. F.; Padula, Sandra S.; Genchev, V.; Iaydjiev, P.; Piperov, S.; Rodozov, M.; Stoykova, S.; Sultanov, G.; Tcholakov, V.; Trayanov, R.; Vutova, M.; Dimitrov, A.; Hadjiiska, R.; Kozhuharov, V.; Litov, L.; Pavlov, B.; Petkov, P.; Bian, J. G.; Chen, G. M.; Chen, H. S.; Jiang, C. H.; Liang, D.; Liang, S.; Meng, X.; Tao, J.; Wang, J.; Wang, X.; Wang, Z.; Xiao, H.; Xu, M.; Asawatangtrakuldee, C.; Ban, Y.; Guo, Y.; Li, Q.; Li, W.; Liu, S.; Mao, Y.; Qian, S. J.; Wang, D.; Zhang, L.; Zou, W.; Avila, C.; Carrillo Montoya, C. A.; Gomez, J. P.; Gomez Moreno, B.; Sanabria, J. C.; Godinovic, N.; Lelas, D.; Plestina, R.; Polic, D.; Puljak, I.; Antunovic, Z.; Kovac, M.; Brigljevic, V.; Duric, S.; Kadija, K.; Luetic, J.; Mekterovic, D.; Morovic, S.; Tikvica, L.; Attikis, A.; Mavromanolakis, G.; Mousa, J.; Nicolaou, C.; Ptochos, F.; Razis, P. A.; Finger, M.; Finger, M.; Assran, Y.; Ellithi Kamel, A.; Mahmoud, M. A.; Mahrous, A.; Radi, A.; Kadastik, M.; Müntel, M.; Murumaa, M.; Raidal, M.; Rebane, L.; Tiko, A.; Eerola, P.; Fedi, G.; Voutilainen, M.; Härkönen, J.; Karimäki, V.; Kinnunen, R.; Kortelainen, M. J.; Lampén, T.; Lassila-Perini, K.; Lehti, S.; Lindén, T.; Luukka, P.; Mäenpää, T.; Peltola, T.; Tuominen, E.; Tuominiemi, J.; Tuovinen, E.; Wendland, L.; Korpela, A.; Tuuva, T.; Besancon, M.; Choudhury, S.; Couderc, F.; Dejardin, M.; Denegri, D.; Fabbro, B.; Faure, J. L.; Ferri, F.; Ganjour, S.; Givernaud, A.; Gras, P.; Hamel de Monchenault, G.; Jarry, P.; Locci, E.; Malcles, J.; Millischer, L.; Nayak, A.; Rander, J.; Rosowsky, A.; Titov, M.; Baffioni, S.; Beaudette, F.; Benhabib, L.; Bianchini, L.; Bluj, M.; Busson, P.; Charlot, C.; Daci, N.; Dahms, T.; Dalchenko, M.; Dobrzynski, L.; Florent, A.; Granier de Cassagnac, R.; Haguenauer, M.; Miné, P.; Mironov, C.; Naranjo, I. N.; Nguyen, M.; Ochando, C.; Paganini, P.; Sabes, D.; Salerno, R.; Sirois, Y.; Veelken, C.; Zabi, A.; Agram, J.-L.; Andrea, J.; Bloch, D.; Bodin, D.; Brom, J.-M.; Chabert, E. C.; Collard, C.; Conte, E.; Drouhin, F.; Fontaine, J.-C.; Gelé, D.; Goerlach, U.; Goetzmann, C.; Juillot, P.; Le Bihan, A.-C.; Van Hove, P.; Beauceron, S.; Beaupere, N.; Boudoul, G.; Brochet, S.; Chasserat, J.; Chierici, R.; Contardo, D.; Depasse, P.; El Mamouni, H.; Fay, J.; Gascon, S.; Gouzevitch, M.; Ille, B.; Kurca, T.; Lethuillier, M.; Mirabito, L.; Perries, S.; Sgandurra, L.; Sordini, V.; Tschudi, Y.; Vander Donckt, M.; Verdier, P.; Viret, S.; Tsamalaidze, Z.; Autermann, C.; Beranek, S.; Calpas, B.; Edelhoff, M.; Feld, L.; Heracleous, N.; Hindrichs, O.; Klein, K.; Merz, J.; Ostapchuk, A.; Perieanu, A.; Raupach, F.; Sammet, J.; Schael, S.; Sprenger, D.; Weber, H.; Wittmer, B.; Zhukov, V.; Ata, M.; Caudron, J.; Dietz-Laursonn, E.; Duchardt, D.; Erdmann, M.; Fischer, R.; Güth, A.; Hebbeker, T.; Heidemann, C.; Hoepfner, K.; Klingebiel, D.; Kreuzer, P.; Merschmeyer, M.; Meyer, A.; Olschewski, M.; Padeken, K.; Papacz, P.; Pieta, H.; Reithler, H.; Schmitz, S. A.; Sonnenschein, L.; Steggemann, J.; Teyssier, D.; Thüer, S.; Weber, M.; Cherepanov, V.; Erdogan, Y.; Flügge, G.; Geenen, H.; Geisler, M.; Haj Ahmad, W.; Hoehle, F.; Kargoll, B.; Kress, T.; Kuessel, Y.; Lingemann, J.; Nowack, A.; Nugent, I. M.; Perchalla, L.; Pooth, O.; Stahl, A.; Aldaya Martin, M.; Asin, I.; Bartosik, N.; Behr, J.; Behrenhoff, W.; Behrens, U.; Bergholz, M.; Bethani, A.; Borras, K.; Burgmeier, A.; Cakir, A.; Calligaris, L.; Campbell, A.; Costanza, F.; Diez Pardos, C.; Dorland, T.; Eckerlin, G.; Eckstein, D.; Flucke, G.; Geiser, A.; Glushkov, I.; Gunnellini, P.; Habib, S.; Hauk, J.; Hellwig, G.; Jung, H.; Kasemann, M.; Katsas, P.; Kleinwort, C.; Kluge, H.; Krämer, M.; Krücker, D.; Kuznetsova, E.; Lange, W.; Leonard, J.; Lipka, K.; Lohmann, W.; Lutz, B.; Mankel, R.; Marfin, I.; Melzer-Pellmann, I.-A.; Meyer, A. B.; Mnich, J.; Mussgiller, A.; Naumann-Emme, S.; Novgorodova, O.; Nowak, F.; Olzem, J.; Perrey, H.; Petrukhin, A.; Pitzl, D.; Raspereza, A.; Ribeiro Cipriano, P. M.; Riedl, C.; Ron, E.; Salfeld-Nebgen, J.; Schmidt, R.; Schoerner-Sadenius, T.; Sen, N.; Stein, M.; Walsh, R.; Wissing, C.; Blobel, V.; Enderle, H.; Erfle, J.; Gebbert, U.; Görner, M.; Gosselink, M.; Haller, J.; Heine, K.; Höing, R. S.; Kaussen, G.; Kirschenmann, H.; Klanner, R.; Lange, J.; Peiffer, T.; Pietsch, N.; Rathjens, D.; Sander, C.; Schettler, H.; Schleper, P.; Schlieckau, E.; Schmidt, A.; Schröder, M.; Schum, T.; Seidel, M.; Sibille, J.; Sola, V.; Stadie, H.; Steinbrück, G.; Thomsen, J.; Vanelderen, L.; Barth, C.; Baus, C.; Berger, J.; Böser, C.; Chwalek, T.; De Boer, W.; Descroix, A.; Dierlamm, A.; Feindt, M.; Guthoff, M.; Hackstein, C.; Hartmann, F.; Hauth, T.; Heinrich, M.; Held, H.; Hoffmann, K. H.; Husemann, U.; Katkov, I.; Komaragiri, J. R.; Kornmayer, A.; Lobelle Pardo, P.; Martschei, D.; Mueller, S.; Müller, Th.; Niegel, M.; Nürnberg, A.; Oberst, O.; Ott, J.; Quast, G.; Rabbertz, K.; Ratnikov, F.; Ratnikova, N.; Röcker, S.; Schilling, F.-P.; Schott, G.; Simonis, H. J.; Stober, F. M.; Troendle, D.; Ulrich, R.; Wagner-Kuhr, J.; Wayand, S.; Weiler, T.; Zeise, M.; Anagnostou, G.; Daskalakis, G.; Geralis, T.; Kesisoglou, S.; Kyriakis, A.; Loukas, D.; Markou, A.; Markou, C.; Ntomari, E.; Gouskos, L.; Mertzimekis, T. J.; Panagiotou, A.; Saoulidou, N.; Stiliaris, E.; Aslanoglou, X.; Evangelou, I.; Flouris, G.; Foudas, C.; Kokkas, P.; Manthos, N.; Papadopoulos, I.; Paradas, E.; Bencze, G.; Hajdu, C.; Hidas, P.; Horvath, D.; Radics, B.; Sikler, F.; Veszpremi, V.; Vesztergombi, G.; Zsigmond, A. J.; Beni, N.; Czellar, S.; Molnar, J.; Palinkas, J.; Szillasi, Z.; Karancsi, J.; Raics, P.; Trocsanyi, Z. L.; Ujvari, B.; Beri, S. B.; Bhatnagar, V.; Dhingra, N.; Gupta, R.; Kaur, M.; Mehta, M. Z.; Mittal, M.; Nishu, N.; Saini, L. K.; Sharma, A.; Singh, J. B.; Kumar, Ashok; Kumar, Arun; Ahuja, S.; Bhardwaj, A.; Choudhary, B. C.; Malhotra, S.; Naimuddin, M.; Ranjan, K.; Saxena, P.; Sharma, V.; Shivpuri, R. K.; Banerjee, S.; Bhattacharya, S.; Chatterjee, K.; Dutta, S.; Gomber, B.; Jain, Sa.; Jain, Sh.; Khurana, R.; Modak, A.; Mukherjee, S.; Roy, D.; Sarkar, S.; Sharan, M.; Abdulsalam, A.; Dutta, D.; Kailas, S.; Kumar, V.; Mohanty, A. K.; Pant, L. M.; Shukla, P.; Topkar, A.; Aziz, T.; Chatterjee, R. M.; Ganguly, S.; Guchait, M.; Gurtu, A.; Maity, M.; Majumder, G.; Mazumdar, K.; Mohanty, G. B.; Parida, B.; Sudhakar, K.; Wickramage, N.; Banerjee, S.; Dugad, S.; Arfaei, H.; Bakhshiansohi, H.; Etesami, S. M.; Fahim, A.; Hesari, H.; Jafari, A.; Khakzad, M.; Mohammadi Najafabadi, M.; Paktinat Mehdiabadi, S.; Safarzadeh, B.; Zeinali, M.; Grunewald, M.; Abbrescia, M.; Barbone, L.; Calabria, C.; Chhibra, S. S.; Colaleo, A.; Creanza, D.; De Filippis, N.; De Palma, M.; Fiore, L.; Iaselli, G.; Maggi, G.; Maggi, M.; Marangelli, B.; My, S.; Nuzzo, S.; Pacifico, N.; Pompili, A.; Pugliese, G.; Selvaggi, G.; Silvestris, L.; Singh, G.; Venditti, R.; Verwilligen, P.; Zito, G.; Abbiendi, G.; Benvenuti, A. C.; Bonacorsi, D.; Braibant-Giacomelli, S.; Brigliadori, L.; Campanini, R.; Capiluppi, P.; Castro, A.; Cavallo, F. R.; Cuffiani, M.; Dallavalle, G. M.; Fabbri, F.; Fanfani, A.; Fasanella, D.; Giacomelli, P.; Grandi, C.; Guiducci, L.; Marcellini, S.; Masetti, G.; Meneghelli, M.; Montanari, A.; Navarria, F. L.; Odorici, F.; Perrotta, A.; Primavera, F.; Rossi, A. M.; Rovelli, T.; Siroli, G. P.; Tosi, N.; Travaglini, R.; Albergo, S.; Chiorboli, M.; Costa, S.; Potenza, R.; Tricomi, A.; Tuve, C.; Barbagli, G.; Ciulli, V.; Civinini, C.; D'Alessandro, R.; Focardi, E.; Frosali, S.; Gallo, E.; Gonzi, S.; Lenzi, P.; Meschini, M.; Paoletti, S.; Sguazzoni, G.; Tropiano, A.; Benussi, L.; Bianco, S.; Fabbri, F.; Piccolo, D.; Fabbricatore, P.; Musenich, R.; Tosi, S.; Benaglia, A.; De Guio, F.; Di Matteo, L.; Fiorendi, S.; Gennai, S.; Ghezzi, A.; Govoni, P.; Lucchini, M. T.; Malvezzi, S.; Manzoni, R. A.; Martelli, A.; Massironi, A.; Menasce, D.; Moroni, L.; Paganoni, M.; Pedrini, D.; Ragazzi, S.; Redaelli, N.; Tabarelli de Fatis, T.; Buontempo, S.; Cavallo, N.; De Cosa, A.; Fabozzi, F.; Iorio, A. O. M.; Lista, L.; Meola, S.; Merola, M.; Paolucci, P.; Azzi, P.; Bacchetta, N.; Bellan, P.; Biasotto, M.; Bisello, D.; Branca, A.; Carlin, R.; Checchia, P.; Dorigo, T.; Fanzago, F.; Galanti, M.; Gasparini, F.; Gasparini, U.; Giubilato, P.; Gonella, F.; Gozzelino, A.; Kanishchev, K.; Lacaprara, S.; Lazzizzera, I.; Margoni, M.; Meneguzzo, A. T.; Montecassiano, F.; Pazzini, J.; Pozzobon, N.; Ronchese, P.; Sgaravatto, M.; Simonetto, F.; Torassa, E.; Tosi, M.; Zotto, P.; Gabusi, M.; Ratti, S. P.; Riccardi, C.; Vitulo, P.; Biasini, M.; Bilei, G. M.; Fanò, L.; Lariccia, P.; Mantovani, G.; Menichelli, M.; Nappi, A.; Romeo, F.; Saha, A.; Santocchia, A.; Spiezia, A.; Androsov, K.; Azzurri, P.; Bagliesi, G.; Boccali, T.; Broccolo, G.; Castaldi, R.; D'Agnolo, R. T.; Dell'Orso, R.; Fiori, F.; Foà, L.; Giassi, A.; Kraan, A.; Ligabue, F.; Lomtadze, T.; Martini, L.; Messineo, A.; Palla, F.; Rizzi, A.; Serban, A. T.; Spagnolo, P.; Squillacioti, P.; Tenchini, R.; Tonelli, G.; Venturi, A.; Verdini, P. G.; Vernieri, C.; Barone, L.; Cavallari, F.; Del Re, D.; Diemoz, M.; Fanelli, C.; Grassi, M.; Longo, E.; Margaroli, F.; Meridiani, P.; Micheli, F.; Nourbakhsh, S.; Organtini, G.; Paramatti, R.; Rahatlou, S.; Soffi, L.; Amapane, N.; Arcidiacono, R.; Argiro, S.; Arneodo, M.; Biino, C.; Cartiglia, N.; Casasso, S.; Costa, M.; Dellacasa, G.; Demaria, N.; Mariotti, C.; Maselli, S.; Migliore, E.; Monaco, V.; Musich, M.; Obertino, M. M.; Pastrone, N.; Pelliccioni, M.; Potenza, A.; Romero, A.; Ruspa, M.; Sacchi, R.; Solano, A.; Staiano, A.; Tamponi, U.; Belforte, S.; Candelise, V.; Casarsa, M.; Cossutti, F.; Della Ricca, G.; Gobbo, B.; La Licata, C.; Marone, M.; Montanino, D.; Penzo, A.; Schizzi, A.; Zanetti, A.; Kim, T. Y.; Nam, S. K.; Chang, S.; Kim, D. H.; Kim, G. N.; Kim, J. E.; Kong, D. J.; Oh, Y. D.; Park, H.; Son, D. C.; Kim, J. Y.; Kim, Zero J.; Song, S.; Choi, S.; Gyun, D.; Hong, B.; Jo, M.; Kim, H.; Kim, T. J.; Lee, K. S.; Park, S. K.; Roh, Y.; Choi, M.; Kim, J. H.; Park, C.; Park, I. C.; Park, S.; Ryu, G.; Choi, Y.; Choi, Y. K.; Goh, J.; Kim, M. S.; Kwon, E.; Lee, B.; Lee, J.; Lee, S.; Seo, H.; Yu, I.; Grigelionis, I.; Juodagalvis, A.; Castilla-Valdez, H.; De La Cruz-Burelo, E.; Heredia-de La Cruz, I.; Lopez-Fernandez, R.; Martínez-Ortega, J.; Sanchez-Hernandez, A.; Villasenor-Cendejas, L. M.; Carrillo Moreno, S.; Vazquez Valencia, F.; Salazar Ibarguen, H. A.; Casimiro Linares, E.; Morelos Pineda, A.; Reyes-Santos, M. A.; Krofcheck, D.; Bell, A. J.; Butler, P. H.; Doesburg, R.; Reucroft, S.; Silverwood, H.; Ahmad, M.; Asghar, M. I.; Butt, J.; Hoorani, H. R.; Khalid, S.; Khan, W. A.; Khurshid, T.; Qazi, S.; Shah, M. A.; Shoaib, M.; Bialkowska, H.; Boimska, B.; Frueboes, T.; Górski, M.; Kazana, M.; Nawrocki, K.; Romanowska-Rybinska, K.; Szleper, M.; Wrochna, G.; Zalewski, P.; Brona, G.; Bunkowski, K.; Cwiok, M.; Dominik, W.; Doroba, K.; Kalinowski, A.; Konecki, M.; Krolikowski, J.; Misiura, M.; Wolszczak, W.; Almeida, N.; Bargassa, P.; David, A.; Faccioli, P.; Ferreira Parracho, P. G.; Gallinaro, M.; Rodrigues Antunes, J.; Seixas, J.; Varela, J.; Vischia, P.; Bunin, P.; Gavrilenko, M.; Golutvin, I.; Gorbunov, I.; Kamenev, A.; Karjavin, V.; Konoplyanikov, V.; Kozlov, G.; Lanev, A.; Malakhov, A.; Matveev, V.; Moisenz, P.; Palichik, V.; Perelygin, V.; Shmatov, S.; Skatchkov, N.; Smirnov, V.; Zarubin, A.; Evstyukhin, S.; Golovtsov, V.; Ivanov, Y.; Kim, V.; Levchenko, P.; Murzin, V.; Oreshkin, V.; Smirnov, I.; Sulimov, V.; Uvarov, L.; Vavilov, S.; Vorobyev, A.; Vorobyev, An.; Andreev, Yu.; Dermenev, A.; Gninenko, S.; Golubev, N.; Kirsanov, M.; Krasnikov, N.; Pashenkov, A.; Tlisov, D.; Toropin, A.; Epshteyn, V.; Erofeeva, M.; Gavrilov, V.; Lychkovskaya, N.; Popov, V.; Safronov, G.; Semenov, S.; Spiridonov, A.; Stolin, V.; Vlasov, E.; Zhokin, A.; Andreev, V.; Azarkin, M.; Dremin, I.; Kirakosyan, M.; Leonidov, A.; Mesyats, G.; Rusakov, S. V.; Vinogradov, A.; Belyaev, A.; Boos, E.; Dubinin, M.; Dudko, L.; Ershov, A.; Gribushin, A.; Klyukhin, V.; Kodolova, O.; Lokhtin, I.; Markina, A.; Obraztsov, S.; Petrushanko, S.; Savrin, V.; Snigirev, A.; Azhgirey, I.; Bayshev, I.; Bitioukov, S.; Kachanov, V.; Kalinin, A.; Konstantinov, D.; Krychkine, V.; Petrov, V.; Ryutin, R.; Sobol, A.; Tourtchanovitch, L.; Troshin, S.; Tyurin, N.; Uzunian, A.; Volkov, A.; Adzic, P.; Ekmedzic, M.; Krpic, D.; Milosevic, J.; Aguilar-Benitez, M.; Alcaraz Maestre, J.; Battilana, C.; Calvo, E.; Cerrada, M.; Chamizo Llatas, M.; Colino, N.; De La Cruz, B.; Delgado Peris, A.; Domínguez Vázquez, D.; Fernandez Bedoya, C.; Fernández Ramos, J. P.; Ferrando, A.; Flix, J.; Fouz, M. C.; Garcia-Abia, P.; Gonzalez Lopez, O.; Goy Lopez, S.; Hernandez, J. M.; Josa, M. I.; Merino, G.; Navarro De Martino, E.; Puerta Pelayo, J.; Quintario Olmeda, A.; Redondo, I.; Romero, L.; Santaolalla, J.; Soares, M. S.; Willmott, C.; Albajar, C.; de Trocóniz, J. F.; Brun, H.; Cuevas, J.; Fernandez Menendez, J.; Folgueras, S.; Gonzalez Caballero, I.; Lloret Iglesias, L.; Piedra Gomez, J.; Brochero Cifuentes, J. A.; Cabrillo, I. J.; Calderon, A.; Chuang, S. H.; Duarte Campderros, J.; Fernandez, M.; Gomez, G.; Gonzalez Sanchez, J.; Graziano, A.; Jorda, C.; Lopez Virto, A.; Marco, J.; Marco, R.; Martinez Rivero, C.; Matorras, F.; Munoz Sanchez, F. J.; Rodrigo, T.; Rodríguez-Marrero, A. Y.; Ruiz-Jimeno, A.; Scodellaro, L.; Vila, I.; Vilar Cortabitarte, R.; Abbaneo, D.; Auffray, E.; Auzinger, G.; Bachtis, M.; Baillon, P.; Ball, A. H.; Barney, D.; Bendavid, J.; Benitez, J. F.; Bernet, C.; Bianchi, G.; Bloch, P.; Bocci, A.; Bonato, A.; Bondu, O.; Botta, C.; Breuker, H.; Camporesi, T.; Cerminara, G.; Christiansen, T.; Coarasa Perez, J. A.; Colafranceschi, S.; d'Enterria, D.; Dabrowski, A.; De Roeck, A.; De Visscher, S.; Di Guida, S.; Dobson, M.; Dupont-Sagorin, N.; Elliott-Peisert, A.; Eugster, J.; Funk, W.; Georgiou, G.; Giffels, M.; Gigi, D.; Gill, K.; Giordano, D.; Girone, M.; Giunta, M.; Glege, F.; Gomez-Reino Garrido, R.; Gowdy, S.; Guida, R.; Hammer, J.; Hansen, M.; Harris, P.; Hartl, C.; Hegner, B.; Hinzmann, A.; Innocente, V.; Janot, P.; Kaadze, K.; Karavakis, E.; Kousouris, K.; Krajczar, K.; Lecoq, P.; Lee, Y.-J.; Lourenço, C.; Magini, N.; Malberti, M.; Malgeri, L.; Mannelli, M.; Masetti, L.; Meijers, F.; Mersi, S.; Meschi, E.; Moser, R.; Mulders, M.; Musella, P.; Nesvold, E.; Orsini, L.; Palencia Cortezon, E.; Perez, E.; Perrozzi, L.; Petrilli, A.; Pfeiffer, A.; Pierini, M.; Pimiä, M.; Piparo, D.; Polese, G.; Quertenmont, L.; Racz, A.; Reece, W.; Rojo, J.; Rolandi, G.; Rovelli, C.; Rovere, M.; Sakulin, H.; Santanastasio, F.; Schäfer, C.; Schwick, C.; Segoni, I.; Sekmen, S.; Sharma, A.; Siegrist, P.; Silva, P.; Simon, M.; Sphicas, P.; Spiga, D.; Stoye, M.; Tsirou, A.; Veres, G. I.; Vlimant, J. R.; Wöhri, H. K.; Worm, S. D.; Zeuner, W. D.; Bertl, W.; Deiters, K.; Erdmann, W.; Gabathuler, K.; Horisberger, R.; Ingram, Q.; Kaestli, H. C.; König, S.; Kotlinski, D.; Langenegger, U.; Meier, F.; Renker, D.; Rohe, T.; Bachmair, F.; Bäni, L.; Bortignon, P.; Buchmann, M. A.; Casal, B.; Chanon, N.; Deisher, A.; Dissertori, G.; Dittmar, M.; Donegà, M.; Dünser, M.; Eller, P.; Grab, C.; Hits, D.; Lecomte, P.; Lustermann, W.; Marini, A. C.; Martinez Ruiz del Arbol, P.; Mohr, N.; Moortgat, F.; Nägeli, C.; Nef, P.; Nessi-Tedaldi, F.; Pandolfi, F.; Pape, L.; Pauss, F.; Peruzzi, M.; Ronga, F. J.; Rossini, M.; Sala, L.; Sanchez, A. K.; Starodumov, A.; Stieger, B.; Takahashi, M.; Tauscher, L.; Thea, A.; Theofilatos, K.; Treille, D.; Urscheler, C.; Wallny, R.; Weber, H. A.; Amsler, C.; Chiochia, V.; Favaro, C.; Ivova Rikova, M.; Kilminster, B.; Millan Mejias, B.; Otiougova, P.; Robmann, P.; Snoek, H.; Taroni, S.; Tupputi, S.; Verzetti, M.; Cardaci, M.; Chen, K. H.; Ferro, C.; Kuo, C. M.; Li, S. W.; Lin, W.; Lu, Y. J.; Volpe, R.; Yu, S. S.; Bartalini, P.; Chang, P.; Chang, Y. H.; Chang, Y. W.; Chao, Y.; Chen, K. F.; Dietz, C.; Grundler, U.; Hou, W.-S.; Hsiung, Y.; Kao, K. Y.; Lei, Y. J.; Lu, R.-S.; Majumder, D.; Petrakou, E.; Shi, X.; Shiu, J. G.; Tzeng, Y. M.; Wang, M.; Asavapibhop, B.; Suwonjandee, N.; Adiguzel, A.; Bakirci, M. N.; Cerci, S.; Dozen, C.; Dumanoglu, I.; Eskut, E.; Girgis, S.; Gokbulut, G.; Gurpinar, E.; Hos, I.; Kangal, E. E.; Kayis Topaksu, A.; Onengut, G.; Ozdemir, K.; Ozturk, S.; Polatoz, A.; Sogut, K.; Sunar Cerci, D.; Tali, B.; Topakli, H.; Vergili, M.; Akin, I. V.; Aliev, T.; Bilin, B.; Bilmis, S.; Deniz, M.; Gamsizkan, H.; Guler, A. M.; Karapinar, G.; Ocalan, K.; Ozpineci, A.; Serin, M.; Sever, R.; Surat, U. E.; Yalvac, M.; Zeyrek, M.; Gülmez, E.; Isildak, B.; Kaya, M.; Kaya, O.; Ozkorucuklu, S.; Sonmez, N.; Bahtiyar, H.; Barlas, E.; Cankocak, K.; Günaydin, Y. O.; Vardarlı, F. I.; Yücel, M.; Levchuk, L.; Sorokin, P.; Brooke, J. J.; Clement, E.; Cussans, D.; Flacher, H.; Frazier, R.; Goldstein, J.; Grimes, M.; Heath, G. P.; Heath, H. F.; Kreczko, L.; Metson, S.; Newbold, D. M.; Nirunpong, K.; Poll, A.; Senkin, S.; Smith, V. J.; Williams, T.; Basso, L.; Bell, K. W.; Belyaev, A.; Brew, C.; Brown, R. M.; Cockerill, D. J. A.; Coughlan, J. A.; Harder, K.; Harper, S.; Jackson, J.; Olaiya, E.; Petyt, D.; Radburn-Smith, B. C.; Shepherd-Themistocleous, C. H.; Tomalin, I. R.; Womersley, W. J.; Bainbridge, R.; Buchmuller, O.; Burton, D.; Colling, D.; Cripps, N.; Cutajar, M.; Dauncey, P.; Davies, G.; Della Negra, M.; Ferguson, W.; Fulcher, J.; Futyan, D.; Gilbert, A.; Guneratne Bryer, A.; Hall, G.; Hatherell, Z.; Hays, J.; Iles, G.; Jarvis, M.; Karapostoli, G.; Kenzie, M.; Lane, R.; Lucas, R.; Lyons, L.; Magnan, A.-M.; Marrouche, J.; Mathias, B.; Nandi, R.; Nash, J.; Nikitenko, A.; Pela, J.; Pesaresi, M.; Petridis, K.; Pioppi, M.; Raymond, D. M.; Rogerson, S.; Rose, A.; Seez, C.; Sharp, P.; Sparrow, A.; Tapper, A.; Vazquez Acosta, M.; Virdee, T.; Wakefield, S.; Wardle, N.; Whyntie, T.; Chadwick, M.; Cole, J. E.; Hobson, P. R.; Khan, A.; Kyberd, P.; Leggat, D.; Leslie, D.; Martin, W.; Reid, I. D.; Symonds, P.; Teodorescu, L.; Turner, M.; Dittmann, J.; Hatakeyama, K.; Kasmi, A.; Liu, H.; Scarborough, T.; Charaf, O.; Cooper, S. I.; Henderson, C.; Rumerio, P.; Avetisyan, A.; Bose, T.; Fantasia, C.; Heister, A.; Lawson, P.; Lazic, D.; Rohlf, J.; Sperka, D.; John, J. St.; Sulak, L.; Alimena, J.; Bhattacharya, S.; Christopher, G.; Cutts, D.; Demiragli, Z.; Ferapontov, A.; Garabedian, A.; Heintz, U.; Kukartsev, G.; Laird, E.; Landsberg, G.; Luk, M.; Narain, M.; Segala, M.; Sinthuprasith, T.; Speer, T.; Breedon, R.; Breto, G.; Calderon De La Barca Sanchez, M.; Chauhan, S.; Chertok, M.; Conway, J.; Conway, R.; Cox, P. T.; Erbacher, R.; Gardner, M.; Houtz, R.; Ko, W.; Kopecky, A.; Lander, R.; Mall, O.; Miceli, T.; Nelson, R.; Pellett, D.; Ricci-Tam, F.; Rutherford, B.; Searle, M.; Smith, J.; Squires, M.; Tripathi, M.; Wilbur, S.; Yohay, R.; Andreev, V.; Cline, D.; Cousins, R.; Erhan, S.; Everaerts, P.; Farrell, C.; Felcini, M.; Hauser, J.; Ignatenko, M.; Jarvis, C.; Rakness, G.; Schlein, P.; Takasugi, E.; Traczyk, P.; Valuev, V.; Weber, M.; Babb, J.; Clare, R.; Dinardo, M. E.; Ellison, J.; Gary, J. W.; Giordano, F.; Hanson, G.; Liu, H.; Long, O. R.; Luthra, A.; Nguyen, H.; Paramesvaran, S.; Sturdy, J.; Sumowidagdo, S.; Wilken, R.; Wimpenny, S.; Andrews, W.; Branson, J. G.; Cerati, G. B.; Cittolin, S.; Evans, D.; Holzner, A.; Kelley, R.; Lebourgeois, M.; Letts, J.; Macneill, I.; Mangano, B.; Padhi, S.; Palmer, C.; Petrucciani, G.; Pieri, M.; Sani, M.; Sharma, V.; Simon, S.; Sudano, E.; Tadel, M.; Tu, Y.; Vartak, A.; Wasserbaech, S.; Würthwein, F.; Yagil, A.; Yoo, J.; Barge, D.; Bellan, R.; Campagnari, C.; D'Alfonso, M.; Danielson, T.; Flowers, K.; Geffert, P.; George, C.; Golf, F.; Incandela, J.; Justus, C.; Kalavase, P.; Kovalskyi, D.; Krutelyov, V.; Lowette, S.; Magaña Villalba, R.; Mccoll, N.; Pavlunin, V.; Ribnik, J.; Richman, J.; Rossin, R.; Stuart, D.; To, W.; West, C.; Apresyan, A.; Bornheim, A.; Bunn, J.; Chen, Y.; Di Marco, E.; Duarte, J.; Kcira, D.; Ma, Y.; Mott, A.; Newman, H. B.; Rogan, C.; Spiropulu, M.; Timciuc, V.; Veverka, J.; Wilkinson, R.; Xie, S.; Yang, Y.; Zhu, R. Y.; Azzolini, V.; Calamba, A.; Carroll, R.; Ferguson, T.; Iiyama, Y.; Jang, D. W.; Liu, Y. F.; Paulini, M.; Russ, J.; Vogel, H.; Vorobiev, I.; Cumalat, J. P.; Drell, B. R.; Ford, W. T.; Gaz, A.; Luiggi Lopez, E.; Nauenberg, U.; Smith, J. G.; Stenson, K.; Ulmer, K. A.; Wagner, S. R.; Alexander, J.; Chatterjee, A.; Eggert, N.; Gibbons, L. K.; Hopkins, W.; Khukhunaishvili, A.; Kreis, B.; Mirman, N.; Nicolas Kaufman, G.; Patterson, J. R.; Ryd, A.; Salvati, E.; Sun, W.; Teo, W. D.; Thom, J.; Thompson, J.; Tucker, J.; Weng, Y.; Winstrom, L.; Wittich, P.; Winn, D.; Abdullin, S.; Albrow, M.; Anderson, J.; Apollinari, G.; Bauerdick, L. A. T.; Beretvas, A.; Berryhill, J.; Bhat, P. C.; Burkett, K.; Butler, J. N.; Chetluru, V.; Cheung, H. W. K.; Chlebana, F.; Cihangir, S.; Elvira, V. D.; Fisk, I.; Freeman, J.; Gao, Y.; Gottschalk, E.; Gray, L.; Green, D.; Gutsche, O.; Harris, R. M.; Hirschauer, J.; Hooberman, B.; Jindariani, S.; Johnson, M.; Joshi, U.; Klima, B.; Kunori, S.; Kwan, S.; Linacre, J.; Lincoln, D.; Lipton, R.; Lykken, J.; Maeshima, K.; Marraffino, J. M.; Martinez Outschoorn, V. I.; Maruyama, S.; Mason, D.; McBride, P.; Mishra, K.; Mrenna, S.; Musienko, Y.; Newman-Holmes, C.; O'Dell, V.; Prokofyev, O.; Sexton-Kennedy, E.; Sharma, S.; Spalding, W. J.; Spiegel, L.; Taylor, L.; Tkaczyk, S.; Tran, N. V.; Uplegger, L.; Vaandering, E. W.; Vidal, R.; Whitmore, J.; Wu, W.; Yang, F.; Yun, J. C.; Acosta, D.; Avery, P.; Bourilkov, D.; Chen, M.; Cheng, T.; Das, S.; De Gruttola, M.; Di Giovanni, G. P.; Dobur, D.; Drozdetskiy, A.; Field, R. D.; Fisher, M.; Fu, Y.; Furic, I. K.; Hugon, J.; Kim, B.; Konigsberg, J.; Korytov, A.; Kropivnitskaya, A.; Kypreos, T.; Low, J. F.; Matchev, K.; Milenovic, P.; Mitselmakher, G.; Muniz, L.; Remington, R.; Rinkevicius, A.; Skhirtladze, N.; Snowball, M.; Yelton, J.; Zakaria, M.; Gaultney, V.; Hewamanage, S.; Lebolo, L. M.; Linn, S.; Markowitz, P.; Martinez, G.; Rodriguez, J. L.; Adams, T.; Askew, A.; Bochenek, J.; Chen, J.; Diamond, B.; Gleyzer, S. V.; Haas, J.; Hagopian, S.; Hagopian, V.; Johnson, K. F.; Prosper, H.; Veeraraghavan, V.; Weinberg, M.; Baarmand, M. M.; Dorney, B.; Hohlmann, M.; Kalakhety, H.; Yumiceva, F.; Adams, M. R.; Apanasevich, L.; Bazterra, V. E.; Betts, R. R.; Bucinskaite, I.; Callner, J.; Cavanaugh, R.; Evdokimov, O.; Gauthier, L.; Gerber, C. E.; Hofman, D. J.; Khalatyan, S.; Kurt, P.; Lacroix, F.; Moon, D. H.; O'Brien, C.; Silkworth, C.; Strom, D.; Turner, P.; Varelas, N.; Akgun, U.; Albayrak, E. A.; Bilki, B.; Clarida, W.; Dilsiz, K.; Duru, F.; Griffiths, S.; Merlo, J.-P.; Mermerkaya, H.; Mestvirishvili, A.; Moeller, A.; Nachtman, J.; Newsom, C. R.; Ogul, H.; Onel, Y.; Ozok, F.; Sen, S.; Tan, P.; Tiras, E.; Wetzel, J.; Yetkin, T.; Yi, K.; Barnett, B. A.; Blumenfeld, B.; Bolognesi, S.; Fehling, D.; Giurgiu, G.; Gritsan, A. V.; Hu, G.; Maksimovic, P.; Swartz, M.; Whitbeck, A.; Baringer, P.; Bean, A.; Benelli, G.; Kenny, R. P., III; Murray, M.; Noonan, D.; Sanders, S.; Stringer, R.; Wood, J. S.; Barfuss, A. F.; Chakaberia, I.; Ivanov, A.; Khalil, S.; Makouski, M.; Maravin, Y.; Shrestha, S.; Svintradze, I.; Gronberg, J.; Lange, D.; Rebassoo, F.; Wright, D.; Baden, A.; Calvert, B.; Eno, S. C.; Gomez, J. A.; Hadley, N. J.; Kellogg, R. G.; Kolberg, T.; Lu, Y.; Marionneau, M.; Mignerey, A. C.; Pedro, K.; Peterman, A.; Skuja, A.; Temple, J.; Tonjes, M. B.; Tonwar, S. C.; Apyan, A.; Bauer, G.; Busza, W.; Butz, E.; Cali, I. A.; Chan, M.; Dutta, V.; Gomez Ceballos, G.; Goncharov, M.; Kim, Y.; Klute, M.; Lai, Y. S.; Levin, A.; Luckey, P. D.; Ma, T.; Nahn, S.; Paus, C.; Ralph, D.; Roland, C.; Roland, G.; Stephans, G. S. F.; Stöckli, F.; Sumorok, K.; Sung, K.; Velicanu, D.; Wolf, R.; Wyslouch, B.; Yang, M.; Yilmaz, Y.; Yoon, A. S.; Zanetti, M.; Zhukova, V.; Dahmes, B.; De Benedetti, A.; Franzoni, G.; Gude, A.; Haupt, J.; Kao, S. C.; Klapoetke, K.; Kubota, Y.; Mans, J.; Pastika, N.; Rusack, R.; Sasseville, M.; Singovsky, A.; Tambe, N.; Turkewitz, J.; Cremaldi, L. M.; Kroeger, R.; Perera, L.; Rahmat, R.; Sanders, D. A.; Summers, D.; Avdeeva, E.; Bloom, K.; Bose, S.; Claes, D. R.; Dominguez, A.; Eads, M.; Gonzalez Suarez, R.; Keller, J.; Kravchenko, I.; Lazo-Flores, J.; Malik, S.; Snow, G. R.; Dolen, J.; Godshalk, A.; Iashvili, I.; Jain, S.; Kharchilava, A.; Kumar, A.; Rappoccio, S.; Wan, Z.; Alverson, G.; Barberis, E.; Baumgartel, D.; Chasco, M.; Haley, J.; Nash, D.; Orimoto, T.; Trocino, D.; Wood, D.; Zhang, J.; Anastassov, A.; Hahn, K. A.; Kubik, A.; Lusito, L.; Mucia, N.; Odell, N.; Pollack, B.; Pozdnyakov, A.; Schmitt, M.; Stoynev, S.; Velasco, M.; Won, S.; Berry, D.; Brinkerhoff, A.; Chan, K. M.; Hildreth, M.; Jessop, C.; Karmgard, D. J.; Kolb, J.; Lannon, K.; Luo, W.; Lynch, S.; Marinelli, N.; Morse, D. M.; Pearson, T.; Planer, M.; Ruchti, R.; Slaunwhite, J.; Valls, N.; Wayne, M.; Wolf, M.; Antonelli, L.; Bylsma, B.; Durkin, L. S.; Hill, C.; Hughes, R.; Kotov, K.; Ling, T. Y.; Puigh, D.; Rodenburg, M.; Smith, G.; Vuosalo, C.; Williams, G.; Winer, B. L.; Wolfe, H.; Berry, E.; Elmer, P.; Halyo, V.; Hebda, P.; Hegeman, J.; Hunt, A.; Jindal, P.; Koay, S. A.; Lopes Pegna, D.; Lujan, P.; Marlow, D.; Medvedeva, T.; Mooney, M.; Olsen, J.; Piroué, P.; Quan, X.; Raval, A.; Saka, H.; Stickland, D.; Tully, C.; Werner, J. S.; Zenz, S. C.; Zuranski, A.; Brownson, E.; Lopez, A.; Mendez, H.; Ramirez Vargas, J. E.; Alagoz, E.; Benedetti, D.; Bolla, G.; Bortoletto, D.; De Mattia, M.; Everett, A.; Hu, Z.; Jones, M.; Jung, K.; Koybasi, O.; Kress, M.; Leonardo, N.; Maroussov, V.; Merkel, P.; Miller, D. H.; Neumeister, N.; Shipsey, I.; Silvers, D.; Svyatkovskiy, A.; Vidal Marono, M.; Wang, F.; Xu, L.; Yoo, H. D.; Zablocki, J.; Zheng, Y.; Guragain, S.; Parashar, N.; Adair, A.; Akgun, B.; Ecklund, K. M.; Geurts, F. J. M.; Li, W.; Padley, B. P.; Redjimi, R.; Roberts, J.; Zabel, J.; Betchart, B.; Bodek, A.; Covarelli, R.; de Barbaro, P.; Demina, R.; Eshaq, Y.; Ferbel, T.; Garcia-Bellido, A.; Goldenzweig, P.; Han, J.; Harel, A.; Miner, D. C.; Petrillo, G.; Vishnevskiy, D.; Zielinski, M.; Bhatti, A.; Ciesielski, R.; Demortier, L.; Goulianos, K.; Lungu, G.; Malik, S.; Mesropian, C.; Arora, S.; Barker, A.; Chou, J. P.; Contreras-Campana, C.; Contreras-Campana, E.; Duggan, D.; Ferencek, D.; Gershtein, Y.; Gray, R.; Halkiadakis, E.; Hidas, D.; Lath, A.; Panwalkar, S.; Park, M.; Patel, R.; Rekovic, V.; Robles, J.; Rose, K.; Salur, S.; Schnetzer, S.; Seitz, C.; Somalwar, S.; Stone, R.; Thomas, S.; Walker, M.; Cerizza, G.; Hollingsworth, M.; Spanier, S.; Yang, Z. C.; York, A.; Eusebi, R.; Flanagan, W.; Gilmore, J.; Kamon, T.; Khotilovich, V.; Montalvo, R.; Osipenkov, I.; Pakhotin, Y.; Perloff, A.; Roe, J.; Safonov, A.; Sakuma, T.; Suarez, I.; Tatarinov, A.; Toback, D.; Akchurin, N.; Damgov, J.; Dragoiu, C.; Dudero, P. R.; Jeong, C.; Kovitanggoon, K.; Lee, S. W.; Libeiro, T.; Volobouev, I.; Appelt, E.; Delannoy, A. G.; Greene, S.; Gurrola, A.; Johns, W.; Maguire, C.; Mao, Y.; Melo, A.; Sharma, M.; Sheldon, P.; Snook, B.; Tuo, S.; Velkovska, J.; Arenton, M. W.; Boutle, S.; Cox, B.; Francis, B.; Goodell, J.; Hirosky, R.; Ledovskoy, A.; Lin, C.; Neu, C.; Wood, J.; Gollapinni, S.; Harr, R.; Karchin, P. E.; Kottachchi Kankanamge Don, C.; Lamichhane, P.; Sakharov, A.; Anderson, M.; Belknap, D. A.; Borrello, L.; Carlsmith, D.; Cepeda, M.; Dasu, S.; Friis, E.; Grogg, K. S.; Grothe, M.; Hall-Wilton, R.; Herndon, M.; Hervé, A.; Klabbers, P.; Klukas, J.; Lanaro, A.; Lazaridis, C.; Loveless, R.; Mohapatra, A.; Mozer, M. U.; Ojalvo, I.; Pierro, G. A.; Ross, I.; Savin, A.; Smith, W. H.; Swanson, J.

    2013-10-01

    A measurement is presented of the ratio of the inclusive 3-jet cross section to the inclusive 2-jet cross section as a function of the average transverse momentum, , of the two leading jets in the event. The data sample was collected during 2011 at a proton-proton centre-of-mass energy of 7 TeV with the CMS detector at the LHC, corresponding to an integrated luminosity of 5.0 fb-1. The strong coupling constant at the scale of the Z boson mass is determined to be α S ( M Z)=0.1148±0.0014 (exp.)±0.0018 (PDF)±0.0050(theory), by comparing the ratio in the range to the predictions of perturbative QCD at next-to-leading order. This is the first determination of α S ( M Z) from measurements at momentum scales beyond 0.6 TeV. The predicted ratio depends only indirectly on the evolution of the parton distribution functions of the proton such that this measurement also serves as a test of the evolution of the strong coupling constant. No deviation from the expected behaviour is observed.

  6. Hyperfine coupling constants of the nitrogen and phosphorus atoms: A challenge for exact-exchange density-functional and post-Hartree-Fock methods

    NASA Astrophysics Data System (ADS)

    Kaupp, Martin; Arbuznikov, Alexei V.; Heßelmann, Andreas; Görling, Andreas

    2010-05-01

    The isotropic hyperfine coupling constants of the free N(S4) and P(S4) atoms have been evaluated with high-level post-Hartree-Fock and density-functional methods. The phosphorus hyperfine coupling presents a significant challenge to both types of methods. With large basis sets, MP2 and coupled-cluster singles and doubles calculations give much too small values for the phosphorus atom. Triple excitations are needed in coupled-cluster calculations to achieve reasonable agreement with experiment. None of the standard density functionals reproduce even the correct sign of this hyperfine coupling. Similarly, the computed hyperfine couplings depend crucially on the self-consistent treatment in exact-exchange density-functional theory within the optimized effective potential (OEP) method. Well-balanced auxiliary and orbital basis sets are needed for basis-expansion exact-exchange-only OEP approaches to come close to Hartree-Fock or numerical OEP data. Results from the localized Hartree-Fock and Krieger-Li-Iafrate approximations deviate notably from exact OEP data in spite of very similar total energies. Of the functionals tested, only full exact-exchange methods augmented by a correlation functional gave at least the correct sign of the P(S4) hyperfine coupling but with too low absolute values. The subtle interplay between the spin-polarization contributions of the different core shells has been analyzed, and the influence of even very small changes in the exchange-correlation potential could be identified.

  7. Effects of ionic concentration gradient on electroosmotic flow mixing in a microchannel.

    PubMed

    Peng, Ran; Li, Dongqing

    2015-02-15

    Effects of ionic concentration gradient on electroosmotic flow (EOF) mixing of one stream of a high concentration electrolyte solution with a stream of a low concentration electrolyte solution in a microchannel are investigated numerically. The concentration field, flow field and electric field are strongly coupled via concentration dependent zeta potential, dielectric constant and electric conductivity. The results show that the electric field and the flow velocity are non-uniform when the concentration dependence of these parameters is taken into consideration. It is also found that when the ionic concentration of the electrolyte solution is higher than 1M, the electrolyte solution essentially cannot enter the channel due to the extremely low electroosmotic flow mobility. The effects of the concentration dependence of zeta potential, dielectric constant and electric conductivity on electroosmotic flow mixing are studied. Copyright © 2014 Elsevier Inc. All rights reserved.

  8. Theoretical study of the vibrational relaxation of the methyl radical in collisions with helium

    NASA Astrophysics Data System (ADS)

    Ma, Qianli; Dagdigian, Paul J.; Alexander, Millard H.

    2013-03-01

    We report a theoretical investigation of the relaxation of the umbrella vibrational mode (the ν2 mode) of the CH3 molecule in its ground tilde{X}^2A_2^' ' } electronic state in collisions with helium. We have calculated a four-dimensional potential energy surface (PES) for the interaction between CH3 with different umbrella displacements and a helium atom, using a restricted open-shell coupled-cluster method with inclusion of all single, double, and (perturbatively) triple excitations [RCCSD(T)]. With this PES we carried out full close-coupling scattering calculations including all CH3 umbrella-rotational levels with v2 ⩽ 3. To our knowledge, this work represents the first fully quantum calculations of ro-vibrational relaxation of a polyatomic. In more detail, we investigate propensities in the calculated ro-vibrational cross sections and the dependence on initial rotational excitation, as well as determining thermal rate constants. Overall, ro-vibrational relaxation is nearly two orders of magnitude less efficient than pure-rotational relaxation, with a noticeable dependence on the initial rotational level. We predict the room temperature v2 = 1 vibrational relaxation rate constant to be 5.4 × 10-12 cm3 molecule-1 s-1, compared to the rate constants for pure-rotational relaxation of the lower rotational levels (˜2.0 × 10-10 cm3 molecule-1 s-1).

  9. Mechanical behavior of bioactive composite cements consisting of resin and glass-ceramic powder in a simulated body fluid: effect of silane coupling agent.

    PubMed

    Miyata, N; Matsuura, W; Kokubo, T; Nakamura, T

    2004-09-01

    Time-dependent strength behavior was investigated for bisphenol-a-glycidyl methacrylate/triethylene glycol dimethacrylate (Bis-GMA/TEGDMA) resin cements combined with glass-ceramic A-W filler treated with various kinds of silane coupling agents. The fracture strength of the composite resin cements was measured by three-point bending as a function of stressing rate in a simulated body fluid (SBF), and thereby the stress-corrosion susceptibility constant was evaluated. The fracture strength was found to depend on the kind of coupling agent used. For the present Bis-GMA/TEGDMA resin, the silane coupling agents without hydrophilic amine groups can be used to obtain good adhesion between resin and A-W filler owing to their nature of co-polymerizing with the resin. On the other hand, all the composite resin cements showed nearly the same degree of stress-corrosion susceptibility whether the A-W fillers were treated or untreated with silane coupling agents. This means that the stress-corrosion susceptibility of the present composite cements is predominantly affected by that of the matrix resin. Thus, the microcrack formation and growth at the resin matrix near particle - resin interface were thought to determine overall time-dependent strength behavior of the composite cements.

  10. Longitudinal Relaxation of Ferromagnetic Grains

    NASA Astrophysics Data System (ADS)

    Würger, Alois

    1998-07-01

    We study the activated longitudinal dynamics of a small single-domain magnet with uniaxial anisotropy, coupled to quantum noise. The smallest finite eigenvalue λ1 = γ0e-EB/kBT of the relaxation matrix is evaluated in a controlled approximation. For white noise we find γ0~T-1 at moderate temperatures and γ0 = const at very low T. Coupling to elastic waves leads to a prefactor that is linear in T or constant, depending on temperature. At very low T, the discreteness of the energy spectrum is crucial.

  11. Oceanic lithosphere and asthenosphere - Thermal and mechanical structure

    NASA Technical Reports Server (NTRS)

    Schubert, G.; Yuen, D. A.; Froidevaux, C.

    1976-01-01

    A coupled thermomechanical subsolidus model of the oceanic lithosphere and asthenosphere is developed which includes vertical heat conduction, a temperature-dependent thermal conductivity, heat advection by a horizontal and vertical mass flow that depends on depth and age, contributions of viscous dissipation or shear heating, a linear or nonlinear deformation law relating shear stress and strain rate, as well as a temperature- and pressure-dependent viscosity. The model requires a constant horizontal velocity and temperature at the surface, but zero horizontal velocity and constant temperature at great depths. The depth- and age-dependent temperature, horizontal and vertical velocities, and viscosity structure of the lithosphere and asthenosphere are determined along with the age-dependent shear stress in those two zones. The ocean-floor topography, oceanic heat flow, and lithosphere thickness are deduced as functions of ocean-floor age; seismic velocity profiles which exhibit a marked low-velocity zone are constructed from the age-dependent geotherms and assumed values of the elastic parameters. It is found that simple boundary-layer cooling determines the thermal structure at young ages, while effects of viscous dissipation become more important at older ages.

  12. A nonlinear coupled soil moisture-vegetation model

    NASA Astrophysics Data System (ADS)

    Liu, Shikuo; Liu, Shida; Fu, Zuntao; Sun, Lan

    2005-06-01

    Based on the physical analysis that the soil moisture and vegetation depend mainly on the precipitation and evaporation as well as the growth, decay and consumption of vegetation a nonlinear dynamic coupled system of soil moisture-vegetation is established. Using this model, the stabilities of the steady states of vegetation are analyzed. This paper focuses on the research of the vegetation catastrophe point which represents the transition between aridness and wetness to a great extent. It is shown that the catastrophe point of steady states of vegetation depends mainly on the rainfall P and saturation value v0, which is selected to balance the growth and decay of vegetation. In addition, when the consumption of vegetation remains constant, the analytic solution of the vegetation equation is obtained.

  13. Numerical integration of KPZ equation with restrictions

    NASA Astrophysics Data System (ADS)

    Torres, M. F.; Buceta, R. C.

    2018-03-01

    In this paper, we introduce a novel integration method of Kardar–Parisi–Zhang (KPZ) equation. It is known that if during the discrete integration of the KPZ equation the nearest-neighbor height-difference exceeds a critical value, instabilities appear and the integration diverges. One way to avoid these instabilities is to replace the KPZ nonlinear-term by a function of the same term that depends on a single adjustable parameter which is able to control pillars or grooves growing on the interface. Here, we propose a different integration method which consists of directly limiting the value taken by the KPZ nonlinearity, thereby imposing a restriction rule that is applied in each integration time-step, as if it were the growth rule of a restricted discrete model, e.g. restricted-solid-on-solid (RSOS). Taking the discrete KPZ equation with restrictions to its dimensionless version, the integration depends on three parameters: the coupling constant g, the inverse of the time-step k, and the restriction constant ε which is chosen to eliminate divergences while keeping all the properties of the continuous KPZ equation. We study in detail the conditions in the parameters’ space that avoid divergences in the 1-dimensional integration and reproduce the scaling properties of the continuous KPZ with a particular parameter set. We apply the tested methodology to the d-dimensional case (d = 3, 4 ) with the purpose of obtaining the growth exponent β, by establishing the conditions of the coupling constant g under which we recover known values reached by other authors, particularly for the RSOS model. This method allows us to infer that d  =  4 is not the critical dimension of the KPZ universality class, where the strong-coupling phase disappears.

  14. Superconductivity induced by flexural modes in non-σh-symmetric Dirac-like two-dimensional materials: A theoretical study for silicene and germanene

    NASA Astrophysics Data System (ADS)

    Fischetti, Massimo V.; Polley, Arup

    2018-04-01

    In two-dimensional crystals that lack symmetry under reflections on the horizontal plane of the lattice (non-σh-symmetric), electrons can couple to flexural modes (ZA phonons) at first order. We show that in materials of this type that also exhibit a Dirac-like electron dispersion, the strong coupling can result in electron pairing mediated by these phonons, as long as the flexural modes are not damped or suppressed by additional interactions with a supporting substrate or gate insulator. We consider several models: The weak-coupling limit, which is applicable only in the case of gapped and parabolic materials, like stanene and HfSe2, thanks to the weak coupling; the full gap-equation, solved using the constant-gap approximation and considering statically screened interactions; its extensions to energy-dependent gap and to dynamic screening. We argue that in the case of silicene and germanene superconductivity mediated by this process can exhibit a critical temperature of a few degrees K, or even a few tens of degrees K when accounting for the effect of a high-dielectric-constant environment. We conclude that the electron/flexural-modes coupling should be included in studies of possible superconductivity in non-σh-symmetric two-dimensional crystals, even if alternative forms of coupling are considered.

  15. Theoretical Discussion of Electron Transport Rate Constant at TCNQ / Ge and TiO2 System

    NASA Astrophysics Data System (ADS)

    Al-agealy, Hadi J. M.; Alshafaay, B.; Hassooni, Mohsin A.; Ashwiekh, Ahmed M.; Sadoon, Abbas K.; Majeed, Raad H.; Ghadhban, Rawnaq Q.; Mahdi, Shatha H.

    2018-05-01

    We have been studying and estimation the electronic transport constant at TCNQ / Ge and Tio2 interface by means of tunneling potential (TP), transport energy reorientation (TER), driving transition energy DTE and coupling coefficient constant. A simple quantum model for the transition processes was adapted to estimation and analysis depending on the quantum state for donor state |α D > and acceptor stated |α A > and assuming continuum levels of the system. Evaluation results were performed for the surfaces of Ge and Tio2 as best as for multilayer TCNQ. The results show an electronic transfer feature for electronic TCNQ density of states and a semiconductor behavior. The electronic rate constant result for both systems shows a good tool to election system in applied devices. All these results indicate the

  16. Third-order Douglas-Kroll Relativistic Coupled-Cluster Theory through Connected Single, Double, Triple, and Quadruple Substitutions: Applications to Diatomic and Triatomic Hydrides

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hirata, So; Yanai, Takeshi; De Jong, Wibe A.

    Coupled-cluster methods including through and up to the connected single, double, triple, and quadruple substitutions (CCSD, CCSDT, and CCSDTQ) have been automatically derived and implemented for sequential and parallel executions for use in conjunction with a one-component third-order Douglas-Kroll (DK3) approximation for relativistic corrections. A combination of the converging electron-correlation methods, the accurate relativistic reference wave functions, and the use of systematic basis sets tailored to the relativistic approximation has been shown to predict the experimental singlet-triplet separations within 0.02 eV (0.5 kcal/mol) for five triatomic hydrides (CH2, NH2+, SiH2, PH2+, and AsH2+), the experimental bond lengths within 0.002 angstroms,more » rotational constants within 0.02 cm-1, vibration-rotation constants within 0.01 cm-1, centrifugal distortion constants within 2 %, harmonic vibration frequencies within 9 cm-1 (0.4 %), anharmonic vibrational constants within 2 cm-1, and dissociation energies within 0.03 eV (0.8 kcal/mol) for twenty diatomic hydrides (BH, CH, NH, OH, FH, AlH, SiH, PH, SH, ClH, GaH, GeH, AsH, SeH, BrH, InH, SnH, SbH, TeH, and IH) containing main-group elements across the second through fifth periods of the periodic table. In these calculations, spin-orbit effects on dissociation energies, which were assumed to be additive, were estimated from the measured spin-orbit coupling constants of atoms and diatomic molecules, and an electronic energy in the complete-basis-set, complete-electron-correlation limit has been extrapolated by the formula which was in turn based on the exponential-Gaussian extrapolation formula of the basis set dependence.« less

  17. An equivalent dipole analysis of PZT ceramics and lead-free piezoelectric single crystals

    NASA Astrophysics Data System (ADS)

    Bell, Andrew J.

    2016-04-01

    The recently proposed Equivalent Dipole Model for describing the electromechanical properties of ionic solids in terms of 3 ions and 2 bonds has been applied to PZT ceramics and lead-free single crystal piezoelectric materials, providing analysis in terms of an effective ionic charge and the asymmetry of the interatomic force constants. For PZT it is shown that, as a function of composition across the morphotropic phase boundary, the dominant bond compliance peaks at 52% ZrO2. The stiffer of the two bonds shows little composition dependence with no anomaly at the phase boundary. The effective charge has a maximum value at 50% ZrO2, decreasing across the phase boundary region, but becoming constant in the rhombohedral phase. The single crystals confirm that both the asymmetry in the force constants and the magnitude of effective charge are equally important in determining the values of the piezoelectric charge coefficient and the electromechanical coupling coefficient. Both are apparently temperature dependent, increasing markedly on approaching the Curie temperature.

  18. Atomistic simulation of CO2 solubility in poly(ethylene oxide) oligomers

    NASA Astrophysics Data System (ADS)

    Hong, Bingbing; Panagiotopoulos, Athanassios Z.

    2014-06-01

    We have performed atomistic molecular dynamics simulations coupled with thermodynamic integration to obtain the excess chemical potential and pressure-composition phase diagrams for CO2 in poly(ethylene oxide) oligomers. Poly(ethylene oxide) dimethyl ether, CH3O(CH2CH2O)nCH3 (PEO for short) is a widely applied physical solvent that forms the major organic constituent of a class of novel nanoparticle-based absorbents. Good predictions were obtained for pressure-composition-density relations for CO2 + PEO oligomers (2 ≤ n ≤ 12), using the Potoff force field for PEO [J. Chem. Phys. 136, 044514 (2012)] together with the TraPPE model for CO2 [AIChE J. 47, 1676 (2001)]. Water effects on Henry's constant of CO2 in PEO have also been investigated. Addition of modest amounts of water in PEO produces a relatively small increase in Henry's constant. Dependence of the calculated Henry's constant on the weight percentage of water falls on a temperature-dependent master curve, irrespective of PEO chain length.

  19. Phase modulation in dipolar-coupled A 2 spin systems: effect of maximum state mixing in 1H NMR in vivo

    NASA Astrophysics Data System (ADS)

    Schröder, Leif; Schmitz, Christian; Bachert, Peter

    2004-12-01

    Coupling constants of nuclear spin systems can be determined from phase modulation of multiplet resonances. Strongly coupled systems such as citrate in prostatic tissue exhibit a more complex modulation than AX connectivities, because of substantial mixing of quantum states. An extreme limit is the coupling of n isochronous spins (A n system). It is observable only for directly connected spins like the methylene protons of creatine and phosphocreatine which experience residual dipolar coupling in intact muscle tissue in vivo. We will demonstrate that phase modulation of this "pseudo-strong" system is quite simple compared to those of AB systems. Theory predicts that the spin-echo experiment yields conditions as in the case of weak interactions, in particular, the phase modulation depends linearly on the line splitting and the echo time.

  20. High-pressure study of layered nitride superconductors

    NASA Astrophysics Data System (ADS)

    Taguchi, Y.; Hisakabe, M.; Ohishi, Y.; Yamanaka, S.; Iwasa, Y.

    2004-09-01

    Pressure dependence of critical temperature, lattice constant, and phonon frequency has been investigated for layered nitride superconductors, ZrNCl0.7 and Li0.5(THF)yHfNCl . The analysis of the data in terms of MacMillan’s theory indicated that the relevant phonon frequencies are low ( ≈50 and 100cm-1 , respectively), and that the electron-phonon coupling constant λ is larger than 3 in both compounds in sharp contrast with previous experimental and theoretical results. This result may suggest a possibility that other bosonic excitation than phonon additionally contributes to the pairing interaction in these materials.

  1. Short range ferromagnetic, magneto-electric, and magneto-dielectric effect in ceramic Co{sub 3}TeO{sub 6}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Singh, Harishchandra, E-mail: singh85harish@gmail.com, E-mail: singh85harish@rrcat.gov.in; Ghosh, Haranath; Indus Synchrotrons Utilization Division, Raja Ramanna Center for Advanced Technology, Indore 452013

    2016-01-28

    We report observation of magneto-electric and magneto-dielectric couplings along with short range ferromagnetic order in ceramic Cobalt Tellurate (Co{sub 3}TeO{sub 6}, CTO) using magnetic, structural, dielectric, pyroelectric, and polarization studies. DC magnetization along with dielectric constant measurements indicate a coupling between magnetic order and electrical polarization. A strong anomaly in the dielectric constant at ∼17.4 K in zero magnetic field indicates spontaneous electric polarization, consistent with a recent neutron diffraction study. Observation of weak short range ferromagnetic order at lower temperatures is attributed to the Griffiths-like ferromagnetism. Furthermore, magnetic field dependence of the ferroelectric transition follows earlier theoretical predictions, applicable tomore » single crystal CTO. Finally, combined dielectric, pyroelectric, and polarization measurements suggest that the ground state of CTO may possess spontaneous symmetry breaking in the absence of magnetic field.« less

  2. Nonadiabatic rate constants for proton transfer and proton-coupled electron transfer reactions in solution: Effects of quadratic term in the vibronic coupling expansion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Soudackov, Alexander V.; Hammes-Schiffer, Sharon

    2015-11-21

    Rate constant expressions for vibronically nonadiabatic proton transfer and proton-coupled electron transfer reactions are presented and analyzed. The regimes covered include electronically adiabatic and nonadiabatic reactions, as well as high-frequency and low-frequency proton donor-acceptor vibrational modes. These rate constants differ from previous rate constants derived with the cumulant expansion approach in that the logarithmic expansion of the vibronic coupling in terms of the proton donor-acceptor distance includes a quadratic as well as a linear term. The analysis illustrates that inclusion of this quadratic term in the framework of the cumulant expansion framework may significantly impact the rate constants at highmore » temperatures for proton transfer interfaces with soft proton donor-acceptor modes that are associated with small force constants and weak hydrogen bonds. The effects of the quadratic term may also become significant in these regimes when using the vibronic coupling expansion in conjunction with a thermal averaging procedure for calculating the rate constant. In this case, however, the expansion of the coupling can be avoided entirely by calculating the couplings explicitly for the range of proton donor-acceptor distances sampled. The effects of the quadratic term for weak hydrogen-bonding systems are less significant for more physically realistic models that prevent the sampling of unphysical short proton donor-acceptor distances. Additionally, the rigorous relation between the cumulant expansion and thermal averaging approaches is clarified. In particular, the cumulant expansion rate constant includes effects from dynamical interference between the proton donor-acceptor and solvent motions and becomes equivalent to the thermally averaged rate constant when these dynamical effects are neglected. This analysis identifies the regimes in which each rate constant expression is valid and thus will be important for future applications to proton transfer and proton-coupled electron transfer in chemical and biological processes.« less

  3. Improved two-temperature model including electron density of states effects for Au during femtosecond laser pulses

    NASA Astrophysics Data System (ADS)

    Fang, Ranran; Wei, Hua; Li, Zhihua; Zhang, Duanming

    2012-01-01

    The electron temperature dependences of the electron-phonon coupling factor and electron heat capacity based on the electron density of states are investigated for precious metal Au under femtosecond laser irradiation. The thermal excitation of d band electrons is found to result in large deviations from the commonly used approximations of linear temperature dependence of the electron heat capacity, and the constant electron-phonon coupling factor. Results of the simulations performed with the two-temperature model demonstrate that the electron-phonon relaxation time becomes short for high fluence laser for Au. The satisfactory agreement between our numerical results and experimental data of threshold fluence indicates that the electron temperature dependence of the thermophysical parameters accounting for the thermal excitation of d band electrons should not be neglected under the condition that electron temperature is higher than 10 4 K.

  4. Low energy determination of the QCD strong coupling constant on the lattice

    DOE PAGES

    Maezawa, Yu; Petreczky, Peter

    2016-09-28

    Here we present a determination of the strong coupling constant from lattice QCD using the moments of pseudo-scalar charmonium correlators calculated using highly improved staggerered quark action. We obtain a value α s( μ = mc) = 0.3397(56), which is the lowest energy determination of the strong coupling constant so far.

  5. The study for the incipient solvation process of NaCl in water: the observation of the NaCl-(H2O)n (n = 1, 2, and 3) complexes using Fourier-transform microwave spectroscopy.

    PubMed

    Mizoguchi, Asao; Ohshima, Yasuhiro; Endo, Yasuki

    2011-08-14

    Pure rotational spectra of the sodium chloride-water complexes, NaCl-(H(2)O)(n) (n = 1, 2, and 3), in the vibronic ground state have been observed by a Fourier- transform microwave spectrometer coupled with a laser ablation source. The (37)Cl-isotopic species and a few deuterated species have also been observed. From the analyses of the spectra, the rotational constants, the centrifugal distortion constants, and the nuclear quadrupole coupling constants of the Na and Cl nuclei were determined precisely for all the species. The molecular structures of NaCl-(H(2)O)(n) were determined using the rotational constants and the molecular symmetry. The charge distributions around Na and Cl nuclei in NaCl are dramatically changed by the complex formation with H(2)O. Prominent dependences of the bond lengths r(Na-Cl) on the number of H(2)O were also observed. By a comparison with results of theoretical studies, it is shown that the structure of NaCl-(H(2)O)(3) is approaching to that of the contact ion-pair, which is considered to be an intermediate species in the incipient solvation process.

  6. Understanding temperature and magnetic-field actuated magnetization polarity reversal in the Prussian blue analogue Cu 0.73 Mn 0.77 [Fe(CN) 6 ]. z H 2 O, using XMCD

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lahiri, Debdutta; Choi, Yongseong; Yusuf, S. M.

    2016-02-23

    We have investigated the microscopic origin of temperature and magnetic-field actuated magnetization reversal in Cu0.73Mn0.77[Fe(CN)(6)]center dot zH(2)O, using XMCD. Our results show a fair deviation from the mean-field-theory in the form of different ordering temperatures of Fe and Mn sublattices. A preferential sign reversal of Mn spin under magnetic field and different spin cant angles for the two sublattices have also been observed. An antiferromagnetic coupling between the Fe and Mn sublattices along with different ordering temperatures (sublattice decoupling) for these sublattices explain the temperature-dependent magnetization reversal. Whereas, Mn spin reversal alone (under external magnetic field) is responsible for themore » observed field-dependent magnetization reversal. The dissimilar magnetic behavior of Fe and Mn sublattices in this cubic 3d-orbital system has been understood by invoking disparity and competition among inter-sublattice magnetic control parameters, viz. magnetic Zeeman energy, exchange coupling constant and magnetic anisotropy constant. Our results have significant design implications for future magnetic switches, by optimizing the competition among these magnetic control parameters.« less

  7. Theory for rates, equilibrium constants, and Brønsted slopes in F1-ATPase single molecule imaging experiments

    PubMed Central

    Volkán-Kacsó, Sándor; Marcus, Rudolph A.

    2015-01-01

    A theoretical model of elastically coupled reactions is proposed for single molecule imaging and rotor manipulation experiments on F1-ATPase. Stalling experiments are considered in which rates of individual ligand binding, ligand release, and chemical reaction steps have an exponential dependence on rotor angle. These data are treated in terms of the effect of thermodynamic driving forces on reaction rates, and lead to equations relating rate constants and free energies to the stalling angle. These relations, in turn, are modeled using a formalism originally developed to treat electron and other transfer reactions. During stalling the free energy profile of the enzymatic steps is altered by a work term due to elastic structural twisting. Using biochemical and single molecule data, the dependence of the rate constant and equilibrium constant on the stall angle, as well as the Børnsted slope are predicted and compared with experiment. Reasonable agreement is found with stalling experiments for ATP and GTP binding. The model can be applied to other torque-generating steps of reversible ligand binding, such as ADP and Pi release, when sufficient data become available. PMID:26483483

  8. Model for temperature-dependent magnetization of nanocrystalline materials

    NASA Astrophysics Data System (ADS)

    Bian, Q.; Niewczas, M.

    2015-01-01

    A magnetization model of nanocrystalline materials incorporating intragrain anisotropies, intergrain interactions, and texture effects has been extended to include the thermal fluctuations. The method relies on the stochastic Landau-Lifshitz-Gilbert theory of magnetization dynamics and permits to study the magnetic properties of nanocrystalline materials at arbitrary temperature below the Currie temperature. The model has been used to determine the intergrain exchange constant and grain boundary anisotropy constant of nanocrystalline Ni at 100 K and 298 K. It is found that the thermal fluctuations suppress the strength of the intergrain exchange coupling and also reduce the grain boundary anisotropy. In comparison with its value at 2 K, the interparticle exchange constant decreases by 16% and 42% and the grain boundary anisotropy constant decreases by 28% and 40% at 100 K and 298 K, respectively. An application of the model to study the grain size-dependent magnetization indicates that when the thermal activation energy is comparable to the free energy of grains, the decrease in the grain size leads to the decrease in the magnetic permeability and saturation magnetization. The mechanism by which the grain size influences the magnetic properties of nc-Ni is discussed.

  9. High-Q enhancement of attractive and repulsive optical forces between coupled whispering-gallery- mode resonators.

    PubMed

    Povinelli, Michelle; Johnson, Steven; Lonèar, Marko; Ibanescu, Mihai; Smythe, Elizabeth; Capasso, Federico; Joannopoulos, J

    2005-10-03

    We have calculated the optically-induced force between coupled high-Q whispering gallery modes of microsphere resonators. Attractive and repulsive forces are found, depending whether the bi-sphere mode is symmetric or antisymmetric. The magnitude of the force is linearly proportional to the total power in the spheres and consequently linearly enhanced by Q. Forces on the order of 100 nN are found for Q=108, large enough to cause displacements in the range of 1mum when the sphere is attached to a fiber stem with spring constant 0.004 N/m.

  10. Calibration of the fine-structure constant of graphene by time-dependent density-functional theory

    NASA Astrophysics Data System (ADS)

    Sindona, A.; Pisarra, M.; Vacacela Gomez, C.; Riccardi, P.; Falcone, G.; Bellucci, S.

    2017-11-01

    One of the amazing properties of graphene is the ultrarelativistic behavior of its loosely bound electrons, mimicking massless fermions that move with a constant velocity, inversely proportional to a fine-structure constant αg of the order of unity. The effective interaction between these quasiparticles is, however, better controlled by the coupling parameter αg*=αg/ɛ , which accounts for the dynamic screening due to the complex permittivity ɛ of the many-valence electron system. This concept was introduced in a couple of previous studies [Reed et al., Science 330, 805 (2010) and Gan et al., Phys. Rev. B 93, 195150 (2016)], where inelastic x-ray scattering measurements on crystal graphite were converted into an experimentally derived form of αg* for graphene, over an energy-momentum region on the eV Å -1 scale. Here, an accurate theoretical framework is provided for αg*, using time-dependent density-functional theory in the random-phase approximation, with a cutoff in the interaction between excited electrons in graphene, which translates to an effective interlayer interaction in graphite. The predictions of the approach are in excellent agreement with the above-mentioned measurements, suggesting a calibration method to substantially improve the experimental derivation of αg*, which tends to a static limiting value of ˜0.14 . Thus, the ab initio calibration procedure outlined demonstrates the accuracy of perturbation expansion treatments for the two-dimensional gas of massless Dirac fermions in graphene, in parallel with quantum electrodynamics.

  11. Chimera States in Neural Oscillators

    NASA Astrophysics Data System (ADS)

    Bahar, Sonya; Glaze, Tera

    2014-03-01

    Chimera states have recently been explored both theoretically and experimentally, in various coupled nonlinear oscillators, ranging from phase-oscillator models to coupled chemical reactions. In a chimera state, both coherent and incoherent (or synchronized and desynchronized) states occur simultaneously in populations of identical oscillators. We investigate chimera behavior in a population of neural oscillators using the Huber-Braun model, a Hodgkin-Huxley-like model originally developed to characterize the temperature-dependent bursting behavior of mammalian cold receptors. One population of neurons is allowed to synchronize, with each neuron receiving input from all the others in its group (global within-group coupling). Subsequently, a second population of identical neurons is placed under an identical global within-group coupling, and the two populations are also coupled to each other (between-group coupling). For certain values of the coupling constants, the neurons in the two populations exhibit radically different synchronization behavior. We will discuss the range of chimera activity in the model, and discuss its implications for actual neural activity, such as unihemispheric sleep.

  12. Inverse engineering for fast transport and spin control of spin-orbit-coupled Bose-Einstein condensates in moving harmonic traps

    NASA Astrophysics Data System (ADS)

    Chen, Xi; Jiang, Ruan-Lei; Li, Jing; Ban, Yue; Sherman, E. Ya.

    2018-01-01

    We investigate fast transport and spin manipulation of tunable spin-orbit-coupled Bose-Einstein condensates in a moving harmonic trap. Motivated by the concept of shortcuts to adiabaticity, we design inversely the time-dependent trap position and spin-orbit-coupling strength. By choosing appropriate boundary conditions we obtain fast transport and spin flip simultaneously. The nonadiabatic transport and relevant spin dynamics are illustrated with numerical examples and compared with the adiabatic transport with constant spin-orbit-coupling strength and velocity. Moreover, the influence of nonlinearity induced by interatomic interaction is discussed in terms of the Gross-Pitaevskii approach, showing the robustness of the proposed protocols. With the state-of-the-art experiments, such an inverse engineering technique paves the way for coherent control of spin-orbit-coupled Bose-Einstein condensates in harmonic traps.

  13. Force field refinement from NMR scalar couplings

    NASA Astrophysics Data System (ADS)

    Huang, Jing; Meuwly, Markus

    2012-03-01

    NMR observables contain valuable information about the protein dynamics sampling a high-dimensional potential energy surface. Depending on the observable, the dynamics is sensitive to different time-windows. Scalar coupling constants hJ reflect the pico- to nanosecond motions associated with the intermolecular hydrogen bond network. Including an explicit H-bond in the molecular mechanics with proton transfer (MMPT) potential allows us to reproduce experimentally determined hJ couplings to within 0.02 Hz at best for ubiquitin and protein G. This is based on taking account of the chemically changing environment by grouping the H-bonds into up to seven classes. However, grouping them into two classes already reduces the RMSD between computed and observed hJ couplings by almost 50%. Thus, using ensemble-averaged data with two classes of H-bonds leads to substantially improved scalar couplings from simulations with accurate force fields.

  14. Optical measurement of damping in nanomagnet arrays using magnetoelastically driven resonances

    NASA Astrophysics Data System (ADS)

    Yahagi, Y.; Berk, C.; Hebler, B.; Dhuey, S.; Cabrini, S.; Albrecht, M.; Schmidt, H.

    2017-05-01

    Surface acoustic waves (SAWs) are optically excited in periodic nanomagnet arrays and drive the magnetization precession via magnetoelastic coupling. The frequency of this mechanically induced magnetic response is pinned at the SAW frequency over an extended range of applied fields. First, we show by experimental and numerical investigation of materials with different combinations of damping and magnetoelastic coupling strengths that the field-dependent width of this pinned resonance depends only on the effective damping α eff. Second, we derive an analytical expression for determining α eff from the Lorentzian lineshape of the field-dependent Fourier amplitude of this resonance. We show that the intrinsic Gilbert damping can be determined in the high field limit by analyzing multiple pinned resonances at different applied fields. This demonstrates that intrinsic damping can be extracted all-optically, despite interactions with nonmagnetic degrees of freedom. We find damping values of 0.027, 0.028 and 0.25 for Ni, Co and TbFe respectively. Finally, the validity of the experimental results is verified by excellent agreement with micromagnetic simulations incorporating the magnetoelastic coupling, which shows that the pinning width is unaffected by the magnetoelastic coupling constant over three orders of magnitude. This finding has implications for the rational design of spintronic devices that involve magnetoelastic effects.

  15. Nodeless vibrational amplitudes and quantum nonadiabatic dynamics in the nested funnel for a pseudo Jahn-Teller molecule or homodimer

    NASA Astrophysics Data System (ADS)

    Peters, William K.; Tiwari, Vivek; Jonas, David M.

    2017-11-01

    The nonadiabatic states and dynamics are investigated for a linear vibronic coupling Hamiltonian with a static electronic splitting and weak off-diagonal Jahn-Teller coupling through a single vibration with a vibrational-electronic resonance. With a transformation of the electronic basis, this Hamiltonian is also applicable to the anti-correlated vibration in a symmetric homodimer with marginally strong constant off-diagonal coupling, where the non-adiabatic states and dynamics model electronic excitation energy transfer or self-exchange electron transfer. For parameters modeling a free-base naphthalocyanine, the nonadiabatic couplings are deeply quantum mechanical and depend on wavepacket width; scalar couplings are as important as the derivative couplings that are usually interpreted to depend on vibrational velocity in semiclassical curve crossing or surface hopping theories. A colored visualization scheme that fully characterizes the non-adiabatic states using the exact factorization is developed. The nonadiabatic states in this nested funnel have nodeless vibrational factors with strongly avoided zeroes in their vibrational probability densities. Vibronic dynamics are visualized through the vibrational coordinate dependent density of the time-dependent dipole moment in free induction decay. Vibrational motion is amplified by the nonadiabatic couplings, with asymmetric and anisotropic motions that depend upon the excitation polarization in the molecular frame and can be reversed by a change in polarization. This generates a vibrational quantum beat anisotropy in excess of 2/5. The amplitude of vibrational motion can be larger than that on the uncoupled potentials, and the electronic population transfer is maximized within one vibrational period. Most of these dynamics are missed by the adiabatic approximation, and some electronic and vibrational motions are completely suppressed by the Condon approximation of a coordinate-independent transition dipole between adiabatic states. For all initial conditions investigated, the initial nonadiabatic electronic motion is driven towards the lower adiabatic state, and criteria for this directed motion are discussed.

  16. Nodeless vibrational amplitudes and quantum nonadiabatic dynamics in the nested funnel for a pseudo Jahn-Teller molecule or homodimer.

    PubMed

    Peters, William K; Tiwari, Vivek; Jonas, David M

    2017-11-21

    The nonadiabatic states and dynamics are investigated for a linear vibronic coupling Hamiltonian with a static electronic splitting and weak off-diagonal Jahn-Teller coupling through a single vibration with a vibrational-electronic resonance. With a transformation of the electronic basis, this Hamiltonian is also applicable to the anti-correlated vibration in a symmetric homodimer with marginally strong constant off-diagonal coupling, where the non-adiabatic states and dynamics model electronic excitation energy transfer or self-exchange electron transfer. For parameters modeling a free-base naphthalocyanine, the nonadiabatic couplings are deeply quantum mechanical and depend on wavepacket width; scalar couplings are as important as the derivative couplings that are usually interpreted to depend on vibrational velocity in semiclassical curve crossing or surface hopping theories. A colored visualization scheme that fully characterizes the non-adiabatic states using the exact factorization is developed. The nonadiabatic states in this nested funnel have nodeless vibrational factors with strongly avoided zeroes in their vibrational probability densities. Vibronic dynamics are visualized through the vibrational coordinate dependent density of the time-dependent dipole moment in free induction decay. Vibrational motion is amplified by the nonadiabatic couplings, with asymmetric and anisotropic motions that depend upon the excitation polarization in the molecular frame and can be reversed by a change in polarization. This generates a vibrational quantum beat anisotropy in excess of 2/5. The amplitude of vibrational motion can be larger than that on the uncoupled potentials, and the electronic population transfer is maximized within one vibrational period. Most of these dynamics are missed by the adiabatic approximation, and some electronic and vibrational motions are completely suppressed by the Condon approximation of a coordinate-independent transition dipole between adiabatic states. For all initial conditions investigated, the initial nonadiabatic electronic motion is driven towards the lower adiabatic state, and criteria for this directed motion are discussed.

  17. Solar wind-magnetosphere coupling during intense magnetic storms (1978-1979)

    NASA Technical Reports Server (NTRS)

    Gonzalez, Walter D.; Gonzalez, Alicia L. C.; Tsurutani, Bruce T.; Smith, Edward J.; Tang, Frances

    1989-01-01

    The solar wind-magnetosphere coupling problem during intense magnetic storms was investigated for ten intense magnetic storm events occurring between August 16, 1978 to December 28, 1979. Particular attention was given to the dependence of the ring current energization on the ISEE-measured solar-wind parameters and the evolution of the ring current during the main phase of the intense storms. Several coupling functions were tested as energy input, and several sets of the ring current decay time-constant were searched for the best correlation with the Dst response. Results indicate that a large-scale magnetopause reconnection operates during an intense storm event and that the solar wind ram pressure plays an important role in the energization of the ring current.

  18. Oceanic lithosphere and asthenosphere: The thermal and mechanical structure

    NASA Technical Reports Server (NTRS)

    Schubert, G.; Froidevaux, C.; Yuen, D. A.

    1976-01-01

    A coupled thermal and mechanical solid state model of the oceanic lithosphere and asthenosphere is presented. The model includes vertical conduction of heat with a temperature dependent thermal conductivity, horizontal and vertical advection of heat, viscous dissipation or shear heating, and linear or nonlinear deformation mechanisms with temperature and pressure dependent constitutive relations between shear stress and strain rate. A constant horizontal velocity u sub 0 and temperature t sub 0 at the surface and zero horizontal velocity and constant temperature t sub infinity at great depth are required. In addition to numerical values of the thermal and mechanical properties of the medium, only the values of u sub 0, t sub 0 and t sub infinity are specified. The model determines the depth and age dependent temperature horizontal and vertical velocity, and viscosity structures of the lithosphere and asthenosphere. In particular, ocean floor topography, oceanic heat flow, and lithosphere thickness are deduced as functions of the age of the ocean floor.

  19. The parity-violating asymmetry in the 3He(n,p)3H reaction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    M. Viviani, R. Schiavilla, L. Girlanda, A. Kievsky, L.E. Marcucci

    2010-10-01

    The longitudinal asymmetry induced by parity-violating (PV) components in the nucleon-nucleon potential is studied in the charge-exchange reaction 3He(n,p)3H at vanishing incident neutron energies. An expression for the PV observable is derived in terms of T-matrix elements for transitions from the {2S+1}L_J=1S_0 and 3S_1 states in the incoming n-3He channel to states with J=0 and 1 in the outgoing p-3H channel. The T-matrix elements involving PV transitions are obtained in first-order perturbation theory in the hadronic weak-interaction potential, while those connecting states of the same parity are derived from solutions of the strong-interaction Hamiltonian with the hyperspherical-harmonics method. The coupled-channelmore » nature of the scattering problem is fully accounted for. Results are obtained corresponding to realistic or chiral two- and three-nucleon strong-interaction potentials in combination with either the DDH or pionless EFT model for the weak-interaction potential. The asymmetries, predicted with PV pion and vector-meson coupling constants corresponding (essentially) to the DDH "best values" set, range from -9.44 to -2.48 in units of 10^{-8}, depending on the input strong-interaction Hamiltonian. This large model dependence is a consequence of cancellations between long-range (pion) and short-range (vector-meson) contributions, and is of course sensitive to the assumed values for the PV coupling constants.« less

  20. Measure synchronization in a Huygens's non-dissipative two-pendulum clocks system

    NASA Astrophysics Data System (ADS)

    Tian, Jing; Chen, ZiChen; Qiu, HaiBo; Xi, XiaoQiang

    2018-01-01

    In this paper, we characterize measure synchronization (MS) in a four-degrees-of-freedom Huygens's two-pendulum clocks system. The two-pendulum clocks are connected by a massless spring with stiffness constant k. We find that with the stiffness constant k increasing, the coupled pendulums system achieves MS above a threshold value of k c . The energy characteristics of measure synchronization have been discussed, it is found that averaged energy of each pendulum system provide us an easy way to characterize MS transition. Furthermore, we discuss the dependence of the critical value for MS transition on initial conditions and the characteristic parameters of the system.

  1. Investigation of multiferroic behavior on flakes-like BiFeO{sub 3}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sheikh, Javed R.; Gaikwad, Vishwajit M.; Acharya, Smita A., E-mail: saha275@yahoo.com

    2016-05-23

    In present work, multiferroic BiFeO{sub 3} was synthesized by hydrothermal route. The rhombohedral structure was confirmed X-ray diffraction pattern and data fitted with Reitveld refinement using Full-Prof software suite. SEM micrograph shows flake like morphology. Frequency and temperature dependence of dielectric constant and dielectric loss were studied and detected enhancement in dielectric constant. The magnetic measurement indicates antiferromagnetic nature of BFO. P-E curve shows ferroelectic hysteresis loop with remanent polarization (2Pr) 0.3518 µC/cm{sup 2}. The dielectric anomaly observed near T{sub N} can be assigned to magnetoelectric coupling which is useful in device application.

  2. Holographic RG flows from Quasi-Topological Gravity

    NASA Astrophysics Data System (ADS)

    Camara da Silva, U.; Sotkov, G. M.

    2013-09-01

    We investigate the holographic Renormalization Group (RG) flows and the critical phenomena that take place in the QFT's dual to the d-dimensional cubic Quasi-Topological Gravity coupled to scalar matter. The knowledge of the corresponding flat Domain Walls (DW's) solutions allows us to derive the explicit form of the QFT's β-functions, as well as of the trace anomalies a(l) and c(l), in terms of the matter superpotential. As a consequence we are able to determine the complete set of CFT data characterizing the universality classes of the UV and IR critical points and to follow the particular RG evolution of this data. We further analyse the dependence of the critical properties of such dual QFT's on the values of the Lovelock couplings and on the shape of the superpotential. For odd values of d, the explicit form of the "a and c-central charges" as functions of the running coupling constant, enable us to establish the conditions under which the a&c-Theorems for their decreasing are valid. The restrictions imposed on the massless holographic RG flows by the requirements of the positivity of the energy fluxes are derived. The particular case of quartic Higgs-like superpotential is studied in detail. It provides an example of unitary dual QFT's having few c≠a-critical points representing second or infinite order phase transitions. Depending on the range of the values of the coupling constant they exhibit massive and massless phases, described by a chain of distinct DW's solutions sharing common boundaries. Remember that the definition of the new maximal "h-scale" in the case of negative h<0 is given by fh=L2/(.

  3. Modulational instability in a PT-symmetric vector nonlinear Schrödinger system

    NASA Astrophysics Data System (ADS)

    Cole, J. T.; Makris, K. G.; Musslimani, Z. H.; Christodoulides, D. N.; Rotter, S.

    2016-12-01

    A class of exact multi-component constant intensity solutions to a vector nonlinear Schrödinger (NLS) system in the presence of an external PT-symmetric complex potential is constructed. This type of uniform wave pattern displays a non-trivial phase whose spatial dependence is induced by the lattice structure. In this regard, light can propagate without scattering while retaining its original form despite the presence of inhomogeneous gain and loss. These constant-intensity continuous waves are then used to perform a modulational instability analysis in the presence of both non-hermitian media and cubic nonlinearity. A linear stability eigenvalue problem is formulated that governs the dynamical evolution of the periodic perturbation and its spectrum is numerically determined using Fourier-Floquet-Bloch theory. In the self-focusing case, we identify an intensity threshold above which the constant-intensity modes are modulationally unstable for any Floquet-Bloch momentum belonging to the first Brillouin zone. The picture in the self-defocusing case is different. Contrary to the bulk vector case, where instability develops only when the waves are strongly coupled, here an instability occurs in the strong and weak coupling regimes. The linear stability results are supplemented with direct (nonlinear) numerical simulations.

  4. Indirect NMR spin-spin coupling constants in diatomic alkali halides

    NASA Astrophysics Data System (ADS)

    Jaszuński, Michał; Antušek, Andrej; Demissie, Taye B.; Komorovsky, Stanislav; Repisky, Michal; Ruud, Kenneth

    2016-12-01

    We report the Nuclear Magnetic Resonance (NMR) spin-spin coupling constants for diatomic alkali halides MX, where M = Li, Na, K, Rb, or Cs and X = F, Cl, Br, or I. The coupling constants are determined by supplementing the non-relativistic coupled-cluster singles-and-doubles (CCSD) values with relativistic corrections evaluated at the four-component density-functional theory (DFT) level. These corrections are calculated as the differences between relativistic and non-relativistic values determined using the PBE0 functional with 50% exact-exchange admixture. The total coupling constants obtained in this approach are in much better agreement with experiment than the standard relativistic DFT values with 25% exact-exchange, and are also noticeably better than the relativistic PBE0 results obtained with 50% exact-exchange. Further improvement is achieved by adding rovibrational corrections, estimated using literature data.

  5. Bi-quadratic interlayer exchange coupling in Co{sub 2}MnSi/Ag/Co{sub 2}MnSi pseudo spin-valve

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Goripati, Hari S.; Hono, K.; Graduate School of Pure and Applied Sciences, University of Tsukuba, Tsukuba 305-0047

    2011-12-15

    Bi-quadratic interlayer exchange coupling is found below 100 K in a Co{sub 2}MnSi/Ag/Co{sub 2}MnSi current-perpendicular-to-plane pseudo spin valves. The bi-quadratic coupling constant J{sub 2} was estimated to be {approx}-0.30 erg/cm{sup 2} at 5 K and the strong temperature dependence of the coupling strength points its likely origin to the ''loose spin'' model. Application of current of {approx}2 x 10{sup 7} A/cm{sup 2} below 100 K leads to an increase in the magnetoresistance (MR), indicating current induced antiparallel alignment of the two magnetic layers. These results strongly suggest that the presence of the bi-quadratic interlayer exchange coupling causes the reduction ofmore » the magnetoresistance at low temperature and illustrates the importance of understanding the influence of interlayer exchange coupling on magnetization configuration in magnetic nanostructures.« less

  6. Vibrational-vibrational coupling in air at low humidities

    NASA Technical Reports Server (NTRS)

    Zuckerwar, Allan J.; Miller, Keith W.

    1988-01-01

    Calculations of sound absorption in air are traditionally based on the assumption that molecular relaxations in N2 and O2 are independent. In binary mixtures of these two gases, however, they are not independent; rather, molecular relaxation is known to be controlled by a very strong vibrational-vibrational (V-V) coupling, which influences both the relaxation frequencies and the relaxation strengths. This article shows that small concentrations of the air constituents CO2 and H2O, which themselves possess a strong V-V coupling to N2 and O2, serve to decouple the N2 and O2 relaxations. To characterize the N2-O2 coupling a coupling strength is derived which depends upon the constituent concentrations and the related reaction rate constants. It is found that the molecular relaxations associated with N2 and O2 in air experience a gradual transition from strong to weak coupling as the humidity increases beyond approximately 0.001 mole percent.

  7. Continuous transition between weak and ultrastrong coupling through exceptional points in carbon nanotube microcavity exciton-polaritons

    NASA Astrophysics Data System (ADS)

    Gao, Weilu; Li, Xinwei; Bamba, Motoaki; Kono, Junichiro

    2018-06-01

    Non-perturbative coupling of photons and excitons produces hybrid particles, exciton-polaritons, which have exhibited a variety of many-body phenomena in various microcavity systems. However, the vacuum Rabi splitting (VRS), which defines the strength of photon-exciton coupling, is usually a single constant for a given system. Here, we have developed a unique architecture in which excitons in an aligned single-chirality carbon nanotube film interact with cavity photons in polarization-dependent manners. The system reveals ultrastrong coupling (VRS up to 329 meV or a coupling-strength-to-transition-energy ratio of 13.3%) for polarization parallel to the nanotube axis, whereas VRS is absent for perpendicular polarization. Between these two extremes, VRS is continuously tunable through polarization rotation with exceptional points separating crossing and anticrossing. The points between exceptional points form equienergy arcs onto which the upper and lower polaritons coalesce. The demonstrated on-demand ultrastrong coupling provides ways to explore topological properties of polaritons and quantum technology applications.

  8. Magnitude of finite-nucleus-size effects in relativistic density functional computations of indirect NMR nuclear spin-spin coupling constants.

    PubMed

    Autschbach, Jochen

    2009-09-14

    A spherical Gaussian nuclear charge distribution model has been implemented for spin-free (scalar) and two-component (spin-orbit) relativistic density functional calculations of indirect NMR nuclear spin-spin coupling (J-coupling) constants. The finite nuclear volume effects on the hyperfine integrals are quite pronounced and as a consequence they noticeably alter coupling constants involving heavy NMR nuclei such as W, Pt, Hg, Tl, and Pb. Typically, the isotropic J-couplings are reduced in magnitude by about 10 to 15 % for couplings between one of the heaviest NMR nuclei and a light atomic ligand, and even more so for couplings between two heavy atoms. For a subset of the systems studied, viz. the Hg atom, Hg(2) (2+), and Tl--X where X=Br, I, the basis set convergence of the hyperfine integrals and the coupling constants was monitored. For the Hg atom, numerical and basis set calculations of the electron density and the 1s and 6s orbital hyperfine integrals are directly compared. The coupling anisotropies of TlBr and TlI increase by about 2 % due to finite-nucleus effects.

  9. Reply to “Comment on ‘Axion induced oscillating electric dipole moments’”

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hill, Christopher T.

    A recent paper of Flambaum, Roberts and Stadnik, [1], claims there is no induced oscillating electric dipole moment (OEDM), eg, for the electron, arising from the oscillating cosmic axion background via the anomaly. This claim is based upon the assumption that electric dipoles always be defined by their coupling to static (constant in time) electric fields. The relevant Feynman diagram, as computed by [1], then becomes a total divergence, and vanishes in momentum space. However, an OEDM does arise from the anomaly, coupled to time dependent electric fields. It shares the decoupling properties with the anomaly. The full action, inmore » an arbitrary gauge, was computed in [2], [3]. It is nonvanishing with a time dependent outgoing photon, and yields physics, eg, electric dipole radiation of an electron immersed in a cosmic axion field.« less

  10. Towards a global model of spin-orbit coupling in the halocarbenes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nyambo, Silver; Karshenas, Cyrus; Reid, Scott A., E-mail: scott.reid@marquette.edu, E-mail: dawesr@mst.edu

    We report a global analysis of spin-orbit coupling in the mono-halocarbenes, CH(D)X, where X = Cl, Br, and I. These are model systems for examining carbene singlet-triplet energy gaps and spin-orbit coupling. Over the past decade, rich data sets collected using single vibronic level emission spectroscopy and stimulated emission pumping spectroscopy have yielded much information on the ground vibrational level structure and clearly demonstrated the presence of perturbations involving the low-lying triplet state. To model these interactions globally, we compare two approaches. First, we employ a diabatic treatment of the spin-orbit coupling, where the coupling matrix elements are written inmore » terms of a purely electronic spin-orbit matrix element which is independent of nuclear coordinates, and an integral representing the overlap of the singlet and triplet vibrational wavefunctions. In this way, the structures, harmonic frequencies, and normal mode displacements from ab initio calculations were used to calculate the vibrational overlaps of the singlet and triplet state levels, including the full effects of Duschinsky mixing. These calculations have allowed many new assignments to be made, particularly for CHI, and provided spin-orbit coupling parameters and values for the singlet-triplet gaps. In a second approach, we have computed and fit full geometry dependent spin-orbit coupling surfaces and used them to compute matrix elements without the product form approximation. Those matrix elements were used in similar fits varying the anharmonic constants and singlet-triplet gap to reproduce the experimental levels. The derived spin-orbit parameters for carbenes CHX (X = Cl, Br, and I) show an excellent linear correlation with the atomic spin-orbit constant of the corresponding halogen, indicating that the spin-orbit coupling in the carbenes is consistently around 14% of the atomic value.« less

  11. Spin polarization transfer mechanisms of SABRE: A magnetic field dependent study.

    PubMed

    Pravdivtsev, Andrey N; Ivanov, Konstantin L; Yurkovskaya, Alexandra V; Petrov, Pavel A; Limbach, Hans-Heinrich; Kaptein, Robert; Vieth, Hans-Martin

    2015-12-01

    We have investigated the magnetic field dependence of Signal Amplification By Reversible Exchange (SABRE) arising from binding of para-hydrogen (p-H2) and a substrate to a suitable transition metal complex. The magnetic field dependence of the amplification of the (1)H Nuclear Magnetic Resonance (NMR) signals of the released substrates and dihydrogen, and the transient transition metal dihydride species shows characteristic patterns, which is explained using the theory presented here. The generation of SABRE is most efficient at low magnetic fields due to coherent spin mixing at nuclear spin Level Anti-Crossings (LACs) in the SABRE complexes. We studied two Ir-complexes and have shown that the presence of a (31)P atom in the SABRE complex doubles the number of LACs and, consequently, the number of peaks in the SABRE field dependence. Interestingly, the polarization of SABRE substrates is always accompanied by the para-to-ortho conversion in dihydride species that results in enhancement of the NMR signal of free (H2) and catalyst-bound H2 (Ir-HH). The field dependences of hyperpolarized H2 and Ir-HH by means of SABRE are studied here, for the first time, in detail. The field dependences depend on the chemical shifts and coupling constants of Ir-HH, in which the polarization transfer takes place. A negative coupling constant of -7Hz between the two chemically equivalent but magnetically inequivalent hydride nuclei is determined, which indicates that Ir-HH is a dihydride with an HH distance larger than 2Å. Finally, the field dependence of SABRE at high fields as found earlier has been investigated and attributed to polarization transfer to the substrate by cross-relaxation. The present study provides further evidence for the key role of LACs in the formation of SABRE-derived polarization. Understanding the spin dynamics behind the SABRE method opens the way to optimizing its performance and overcoming the main limitation of NMR, its notoriously low sensitivity. Copyright © 2015 Elsevier Inc. All rights reserved.

  12. Spin polarization transfer mechanisms of SABRE: A magnetic field dependent study

    NASA Astrophysics Data System (ADS)

    Pravdivtsev, Andrey N.; Ivanov, Konstantin L.; Yurkovskaya, Alexandra V.; Petrov, Pavel A.; Limbach, Hans-Heinrich; Kaptein, Robert; Vieth, Hans-Martin

    2015-12-01

    We have investigated the magnetic field dependence of Signal Amplification By Reversible Exchange (SABRE) arising from binding of para-hydrogen (p-H2) and a substrate to a suitable transition metal complex. The magnetic field dependence of the amplification of the 1H Nuclear Magnetic Resonance (NMR) signals of the released substrates and dihydrogen, and the transient transition metal dihydride species shows characteristic patterns, which is explained using the theory presented here. The generation of SABRE is most efficient at low magnetic fields due to coherent spin mixing at nuclear spin Level Anti-Crossings (LACs) in the SABRE complexes. We studied two Ir-complexes and have shown that the presence of a 31P atom in the SABRE complex doubles the number of LACs and, consequently, the number of peaks in the SABRE field dependence. Interestingly, the polarization of SABRE substrates is always accompanied by the para-to-ortho conversion in dihydride species that results in enhancement of the NMR signal of free (H2) and catalyst-bound H2 (Ir-HH). The field dependences of hyperpolarized H2 and Ir-HH by means of SABRE are studied here, for the first time, in detail. The field dependences depend on the chemical shifts and coupling constants of Ir-HH, in which the polarization transfer takes place. A negative coupling constant of -7 Hz between the two chemically equivalent but magnetically inequivalent hydride nuclei is determined, which indicates that Ir-HH is a dihydride with an HH distance larger than 2 Å. Finally, the field dependence of SABRE at high fields as found earlier has been investigated and attributed to polarization transfer to the substrate by cross-relaxation. The present study provides further evidence for the key role of LACs in the formation of SABRE-derived polarization. Understanding the spin dynamics behind the SABRE method opens the way to optimizing its performance and overcoming the main limitation of NMR, its notoriously low sensitivity.

  13. Spin polarization transfer by the radical pair mechanism

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zarea, Mehdi, E-mail: m-zarea@northwestern.edu; Ratner, Mark A.; Wasielewski, Michael R.

    2015-08-07

    In a three-site representation, we study a spin polarization transfer from radical pair spins to a nearby electron or nuclear spin. The quantum dynamics of the radical pair spins is governed by a constant exchange interaction between the radical pair spins which have different Zeeman frequencies. Radical pair spins can recombine to the singlet ground state or to lower energy triplet states. It is then shown that the coherent dynamics of the radical pair induces spin polarization on the nearby third spin in the presence of a magnetic field. The spin polarization transfer depends on the difference between Zeeman frequencies,more » the singlet and triplet recombination rates, and on the exchange and dipole-dipole interactions between the different spins. In particular, the sign of the polarization depends on the exchange coupling between radical pair spins and also on the difference between singlet and triplet recombination rate constants.« less

  14. High-energy effective theory for matter on close Randall-Sundrum branes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rham, Claudia de; Webster, Samuel

    2005-09-15

    Extending the analysis of C. de Rham and S. Webster [Phys. Rev. D 71, 124025 (2005)], we obtain a formal expression for the coupling between brane matter and the radion in a Randall-Sundrum braneworld. This effective theory is correct to all orders in derivatives of the radion in the limit of small brane separation, and, in particular, contains no higher than second derivatives. In the case of cosmological symmetry the theory can be obtained in closed form and reproduces the five-dimensional behavior. Perturbations in the tensor and scalar sectors are then studied. When the branes are moving, the effective Newtonianmore » constant on the brane is shown to depend both on the distance between the branes and on their velocity. In the small-distance limit, we compute the exact dependence between the four-dimensional and the five-dimensional Newtonian constants.« less

  15. A finite parallel zone model to interpret and extend Giddings' coupling theory for the eddy-dispersion in porous chromatographic media.

    PubMed

    Desmet, Gert

    2013-11-01

    The finite length parallel zone (FPZ)-model is proposed as an alternative model for the axial- or eddy-dispersion caused by the occurrence of local velocity biases or flow heterogeneities in porous media such as those used in liquid chromatography columns. The mathematical plate height expression evolving from the model shows that the A- and C-term band broadening effects that can originate from a given velocity bias should be coupled in an exponentially decaying way instead of harmonically as proposed in Giddings' coupling theory. In the low and high velocity limit both models converge, while a 12% difference can be observed in the (practically most relevant) intermediate range of reduced velocities. Explicit expressions for the A- and C-constants appearing in the exponential decay-based plate height expression have been derived for each of the different possible velocity bias levels (single through-pore and particle level, multi-particle level and trans-column level). These expressions allow to directly relate the band broadening originating from these different levels to the local fundamental transport parameters, hence offering the possibility to include a velocity-dependent and, if, needed retention factor-dependent transversal dispersion coefficient. Having developed the mathematics for the general case wherein a difference in retention equilibrium establishes between the two parallel zones, the effect of any possible local variations in packing density and/or retention capacity on the eddy-dispersion can be explicitly accounted for as well. It is furthermore also shown that, whereas the lumped transport parameter model used in the basic variant of the FPZ-model only provides a first approximation of the true decay constant, the model can be extended by introducing a constant correction factor to correctly account for the continuous transversal dispersion transport in the velocity bias zones. Copyright © 2013 Elsevier B.V. All rights reserved.

  16. The Adler D-function for N = 1 SQCD regularized by higher covariant derivatives in the three-loop approximation

    NASA Astrophysics Data System (ADS)

    Kataev, A. L.; Kazantsev, A. E.; Stepanyantz, K. V.

    2018-01-01

    We calculate the Adler D-function for N = 1 SQCD in the three-loop approximation using the higher covariant derivative regularization and the NSVZ-like subtraction scheme. The recently formulated all-order relation between the Adler function and the anomalous dimension of the matter superfields defined in terms of the bare coupling constant is first considered and generalized to the case of an arbitrary representation for the chiral matter superfields. The correctness of this all-order relation is explicitly verified at the three-loop level. The special renormalization scheme in which this all-order relation remains valid for the D-function and the anomalous dimension defined in terms of the renormalized coupling constant is constructed in the case of using the higher derivative regularization. The analytic expression for the Adler function for N = 1 SQCD is found in this scheme to the order O (αs2). The problem of scheme-dependence of the D-function and the NSVZ-like equation is briefly discussed.

  17. Phase transitions and magnetoelectric coupling in BiFe1-xZnxO3 multiferroics

    NASA Astrophysics Data System (ADS)

    Amirov, Abdulkarim A.; Chaudhari, Yogesh A.; Bendre, Subhash T.; Chichay, Ksenia A.; Rodionova, Valeria V.; Yusupov, Dibir M.; Omarov, Zairbek M.

    2018-04-01

    Multiferroic BiFe1-xZnxO3 ceramics were prepared by solution combustion method. Their structure, magnetoelectric, dielectric, magnetic, thermal characteristics were studied. The magnetic M(T) and heat capacity Cp(T) measurements demonstrate an antiferromagnetic to paramagnetic phase transition (TN) around 635 K. The anomaly on the temperature dependence of the dielectric constant near TN was observed, which could be induced by the magnetoelectric coupling between electric and magnetic ordering. The magnetoelectric behavior was also confirmed by the linear relation between Δɛ and M2, which is in the agreement of the Ginzburg-Landau theory for the second-order phase transition.

  18. The influence of gravitoinertial force level on oculomotor and perceptual responses to Coriolis, cross-coupling stimulation

    NASA Technical Reports Server (NTRS)

    Dizio, Paul; Lackner, James R.; Evanoff, John N.

    1987-01-01

    The goal of the present experiment was to determine whether gravitoinertial force magnitude influences oculomotor and perceptual responses to Coriolis cross-coupling stimulation. Blindfolded subjects who were rotating at constant velocity were asked to make standardized head movements during the free-fall and high-force phases of parabolic flight, and the characteristics of their horizontal nystagmus and the magnitude of their experienced self-motion were measured. Both responses were less intense in the free-fall periods than in the high-force periods. These findings suggest that the response to semicircular canal stimulation depends on the background level of gravitoinertial force.

  19. Modeling of Internet Influence on Group Emotion

    NASA Astrophysics Data System (ADS)

    Czaplicka, Agnieszka; Hołyst, Janusz A.

    Long-range interactions are introduced to a two-dimensional model of agents with time-dependent internal variables ei = 0, ±1 corresponding to valencies of agent emotions. Effects of spontaneous emotion emergence and emotional relaxation processes are taken into account. The valence of agent i depends on valencies of its four nearest neighbors but it is also influenced by long-range interactions corresponding to social relations developed for example by Internet contacts to a randomly chosen community. Two types of such interactions are considered. In the first model the community emotional influence depends only on the sign of its temporary emotion. When the coupling parameter approaches a critical value a phase transition takes place and as result for larger coupling constants the mean group emotion of all agents is nonzero over long time periods. In the second model the community influence is proportional to magnitude of community average emotion. The ordered emotional phase was here observed for a narrow set of system parameters.

  20. Accelerating universe with time variation of G and Λ

    NASA Astrophysics Data System (ADS)

    Darabi, F.

    2012-03-01

    We study a gravitational model in which scale transformations play the key role in obtaining dynamical G and Λ. We take a non-scale invariant gravitational action with a cosmological constant and a gravitational coupling constant. Then, by a scale transformation, through a dilaton field, we obtain a new action containing cosmological and gravitational coupling terms which are dynamically dependent on the dilaton field with Higgs type potential. The vacuum expectation value of this dilaton field, through spontaneous symmetry breaking on the basis of anthropic principle, determines the time variations of G and Λ. The relevance of these time variations to the current acceleration of the universe, coincidence problem, Mach's cosmological coincidence and those problems of standard cosmology addressed by inflationary models, are discussed. The current acceleration of the universe is shown to be a result of phase transition from radiation toward matter dominated eras. No real coincidence problem between matter and vacuum energy densities exists in this model and this apparent coincidence together with Mach's cosmological coincidence are shown to be simple consequences of a new kind of scale factor dependence of the energy momentum density as ρ˜ a -4. This model also provides the possibility for a super fast expansion of the scale factor at very early universe by introducing exotic type matter like cosmic strings.

  1. Electron-nuclear coherent spin oscillations probed by spin-dependent recombination

    NASA Astrophysics Data System (ADS)

    Azaizia, S.; Carrère, H.; Sandoval-Santana, J. C.; Ibarra-Sierra, V. G.; Kalevich, V. K.; Ivchenko, E. L.; Bakaleinikov, L. A.; Marie, X.; Amand, T.; Kunold, A.; Balocchi, A.

    2018-04-01

    We demonstrate the triggering and detection of coherent electron-nuclear spin oscillations related to the hyperfine interaction in Ga deep paramagnetic centers in GaAsN by band-to-band photoluminescence without an external magnetic field. In contrast to other point defects such as Cr4 + in SiC, Ce3 + in yttrium aluminum garnet crystals, nitrogen-vacancy centers in diamond, and P atoms in silicon, the bound-electron spin in Ga centers is not directly coupled to the electromagnetic field via the spin-orbit interaction. However, this apparent drawback can be turned into an advantage by exploiting the spin-selective capture of conduction band electrons to the Ga centers. On the basis of a pump-probe photoluminescence experiment we measure directly in the temporal domain the hyperfine constant of an electron coupled to a gallium defect in GaAsN by tracing the dynamical behavior of the conduction electron spin-dependent recombination to the defect site. The hyperfine constants and the relative abundance of the nuclei isotopes involved can be determined without the need of an electron spin resonance technique and in the absence of any magnetic field. Information on the nuclear and electron spin relaxation damping parameters can also be estimated from the oscillation amplitude decay and the long-time-delay behavior.

  2. On N = 1 partition functions without R-symmetry

    DOE PAGES

    Knodel, Gino; Liu, James T.; Zayas, Leopoldo A. Pando

    2015-03-25

    Here, we examine the dependence of four-dimensional Euclidean N = 1 partition functions on coupling constants. In particular, we focus on backgrounds without R-symmetry, which arise in the rigid limit of old minimal supergravity. Backgrounds preserving a single supercharge may be classified as having either trivial or SU(2) structure, with the former including S 4. We show that, in the absence of additional symmetries, the partition function depends non-trivially on all couplings in the trivial structure case, and (anti)-holomorphically on couplings in the SU(2) structure case. In both cases, this allows for ambiguities in the form of finite counterterms, whichmore » in principle render the partition function unphysical. However, we argue that on dimensional grounds, ambiguities are restricted to finite powers in relevant couplings, and can therefore be kept under control. On the other hand, for backgrounds preserving supercharges of opposite chiralities, the partition function is completely independent of all couplings. In this case, the background admits an R-symmetry, and the partition function is physical, in agreement with the results obtained in the rigid limit of new minimal supergravity. Based on a systematic analysis of supersymmetric invariants, we also demonstrate that N = 1 localization is not possible for backgrounds without R-symmetry.« less

  3. Magnetization-induced dynamics of a Josephson junction coupled to a nanomagnet

    NASA Astrophysics Data System (ADS)

    Ghosh, Roopayan; Maiti, Moitri; Shukrinov, Yury M.; Sengupta, K.

    2017-11-01

    We study the superconducting current of a Josephson junction (JJ) coupled to an external nanomagnet driven by a time-dependent magnetic field both without and in the presence of an external ac drive. We provide an analytic, albeit perturbative, solution for the Landau-Lifshitz (LL) equations governing the coupled JJ-nanomagnet system in the presence of a magnetic field with arbitrary time dependence oriented along the easy axis of the nanomagnet's magnetization and in the limit of weak dimensionless coupling ɛ0 between the JJ and the nanomagnet. We show the existence of Shapiro-type steps in the I -V characteristics of the JJ subjected to a voltage bias for a constant or periodically varying magnetic field and explore the effect of rotation of the magnetic field and the presence of an external ac drive on these steps. We support our analytic results with exact numerical solution of the LL equations. We also extend our results to dissipative nanomagnets by providing a perturbative solution to the Landau-Lifshitz-Gilbert (LLG) equations for weak dissipation. We study the fate of magnetization-induced Shapiro steps in the presence of dissipation both from our analytical results and via numerical solution of the coupled LLG equations. We discuss experiments which can test our theory.

  4. S U (2 ) Chern-Simons theory coupled to competing scalars

    NASA Astrophysics Data System (ADS)

    Pérez Ipiña, J. M.; Schaposnik, F. A.; Tallarita, G.

    2018-06-01

    We study a spontaneously broken S U (2 ) Chern-Simons-Higgs model coupled though a Higgs portal to an uncharged triplet scalar with a vacuum state competing with the Higgs one. We find vortexlike solutions to the field equations in different parameter space regions. Depending on the scalar coupling constants, we find a parameter region in which the competing order creates a halo about the Chern-Simons-Higgs vortex core, together with two other regions, one where no vortex solutions exist and the other where ordinary Chern-Simons-Higgs vortices can be found. We derive the low-energy theory for the moduli fields on the vortex world sheet and also discuss the connection of our results with those found in studies of competing orders in high-temperature superconductors.

  5. Review of Slow-Wave Structures

    NASA Technical Reports Server (NTRS)

    Wallett, Thomas M.; Qureshi, A. Haq

    1994-01-01

    The majority of recent theoretical and experimental reports published in the literature dealing with helical slow-wave structures focus on the dispersion characteristics and their effects due to the finite helix wire thickness and attenuation, dielectric loading, metal loading, and the introduction of plasma. In many papers, an effective dielectric constant is used to take into account helix wire dimensions and conductivity losses, while the propagation constant of the signal and the interaction impedance of the structure are found to depend on the surface resistivity of the helix. Also, various dielectric supporting rods are simulated by one or several uniform cylinders having an effective dielectric constant, while metal vane loading and plasma effects are incorporated in the effective dielectric constant. The papers dealing with coupled cavities and folded or loaded wave guides describe equivalent circuit models, efficiency enhancement, and the prediction of instabilities for these structures. Equivalent circuit models of various structures are found using computer software programs SUPERFISH and TOUCHSTONE. Efficiency enhancement in tubes is achieved through dynamic velocity and phase adjusted tapers using computer techniques. The stability threshold of unwanted antisymmetric and higher order modes is predicted using SOS and MAGIC codes and the dependence of higher order modes on beam conductance, section length, and effective Q of a cavity is shown.

  6. Torque-coupled thermodynamic model for FoF1 -ATPase

    NASA Astrophysics Data System (ADS)

    Ai, Guangkuo; Liu, Pengfei; Ge, Hao

    2017-05-01

    FoF1 -ATPase is a motor protein complex that utilizes transmembrane ion flow to drive the synthesis of adenosine triphosphate (ATP) from adenosine diphosphate (ADP) and phosphate (Pi). While many theoretical models have been proposed to account for its rotary activity, most of them focus on the Fo or F1 portions separately rather than the complex as a whole. Here, we propose a simple but new torque-coupled thermodynamic model of FoF1 -ATPase. Solving this model at steady state, we find that the monotonic variation of each portion's efficiency becomes much more robust over a wide range of parameters when the Fo and F1 portions are coupled together, as compared to cases when they are considered separately. Furthermore, the coupled model predicts the dependence of each portion's kinetic behavior on the parameters of the other. Specifically, the power and efficiency of the F1 portion are quite sensitive to the proton gradient across the membrane, while those of the Fo portion as well as the related Michaelis constants for proton concentrations respond insensitively to concentration changes in the reactants of ATP synthesis. The physiological proton gradient across the membrane in the Fo portion is also shown to be optimal for the Michaelis constants of ADP and phosphate in the F1 portion during ATP synthesis. Together, our coupled model is able to predict key dynamic and thermodynamic features of the FoF1 -ATPase in vivo semiquantitatively, and suggests that such coupling approach could be further applied to other biophysical systems.

  7. Time-varying coupling functions: Dynamical inference and cause of synchronization transitions

    NASA Astrophysics Data System (ADS)

    Stankovski, Tomislav

    2017-02-01

    Interactions in nature can be described by their coupling strength, direction of coupling, and coupling function. The coupling strength and directionality are relatively well understood and studied, at least for two interacting systems; however, there can be a complexity in the interactions uniquely dependent on the coupling functions. Such a special case is studied here: synchronization transition occurs only due to the time variability of the coupling functions, while the net coupling strength is constant throughout the observation time. To motivate the investigation, an example is used to present an analysis of cross-frequency coupling functions between delta and alpha brain waves extracted from the electroencephalography recording of a healthy human subject in a free-running resting state. The results indicate that time-varying coupling functions are a reality for biological interactions. A model of phase oscillators is used to demonstrate and detect the synchronization transition caused by the varying coupling functions during an invariant coupling strength. The ability to detect this phenomenon is discussed with the method of dynamical Bayesian inference, which was able to infer the time-varying coupling functions. The form of the coupling function acts as an additional dimension for the interactions, and it should be taken into account when detecting biological or other interactions from data.

  8. Gauge theories with time dependent couplings and their cosmological duals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Awad, Adel; Center for Theoretical Physics, British University of Egypt, Sherouk City 11837, P.O. Box 43; Das, Sumit R.

    2009-02-15

    We consider the N=4 super Yang-Mills theory in flat 3+1-dimensional space-time with a time dependent coupling constant which vanishes at t=0, like g{sub YM}{sup 2}=t{sup p}. In an analogous quantum mechanics toy model we find that the response is singular. The energy diverges at t=0, for a generic state. In addition, if p>1 the phase of the wave function has a wildly oscillating behavior, which does not allow it to be continued past t=0. A similar effect would make the gauge theory singular as well, though nontrivial effects of renormalization could tame this singularity and allow a smooth continuation beyondmore » t=0. The gravity dual in some cases is known to be a time dependent cosmology which exhibits a spacelike singularity at t=0. Our results, if applicable in the gauge theory for the case of the vanishing coupling, imply that the singularity is a genuine sickness and does not admit a meaningful continuation. When the coupling remains nonzero and becomes small at t=0, the curvature in the bulk becomes of order string scale. The gauge theory now admits a time evolution beyond this point. In this case, a finite amount of energy is produced which possibly thermalizes and leads to a black hole in the bulk.« less

  9. Susceptibility of a Magnetic Impurity in Weakly Localized Regime

    NASA Astrophysics Data System (ADS)

    Suga, Seiichiro; Kasai, Hideaki; Okiji, Ayao

    1987-12-01

    Interplay between the randomness and the s-d exchange interaction is investigated theoretically in the weakly localized regime through the temperature dependence of the susceptibility. In the first half the analytic calculations are performed perturbatively in terms of the s-d exchange coupling constant. It is shown that the quantum corrections to the susceptibility construct geometric series and can be summed up as simple formulae within the framework of the most divergent approximation. In the second half the numerical calculations are performed with the use of the self-consistent ladder approximation. It is shown that the effective Curie constant decreases more rapidly with decreasing the temperature than that in the usual Kondo systems.

  10. Aspects of the color flavor locking phase of QCD in the Nambu Jona-Lasinio approximation

    NASA Astrophysics Data System (ADS)

    Casalbuoni, R.; Gatto, R.; Nardulli, G.; Ruggieri, M.

    2003-08-01

    We study two aspects of the color flavor locked phase of QCD in the Nambu Jona-Lasinio approximation. The first one is the issue of the dependence on μ of the ultraviolet cutoff in the gap equation, which is solved by allowing for a running coupling constant. The second one is the dependence of the gap on the strange quark mass; using high density effective theory we perform an expansion in the parameter (ms/μ)2 after checking that its numerical validity is already very good at first order.

  11. An investigation of the optical constants and band gap of chromium disilicide

    NASA Technical Reports Server (NTRS)

    Bost, M. C.; Mahan, John E.

    1988-01-01

    Optical properties of polycrystalline thin films of CrSi2 grown by the diffusion couple method on silicon substrates were investigated. An analysis of the energy dependence of the absorption coefficient indicates that the material is an indirect forbidden gap semiconductor with a band-gap value of slightly less than 0.35 eV. This result was confirmed by measurements of the temperature dependence of the intrinsic conductivity. The value of the bandgap corresponds well to an important window of transparency in the earth's atmosphere (3-5 microns), which makes the material of potential interest for IR detector applications.

  12. Interdependence of different symmetry energy elements

    NASA Astrophysics Data System (ADS)

    Mondal, C.; Agrawal, B. K.; De, J. N.; Samaddar, S. K.; Centelles, M.; Viñas, X.

    2017-08-01

    Relations between the nuclear symmetry energy coefficient and its density derivatives are derived. The relations hold for a class of interactions with quadratic momentum dependence and a power-law density dependence. The structural connection between the different symmetry energy elements as obtained seems to be followed by almost all reasonable nuclear energy density functionals, both relativistic and nonrelativistic, suggesting a universality in the correlation structure. This, coupled with known values of some well-accepted constants related to nuclear matter, helps in constraining values of different density derivatives of the nuclear symmetry energy, shedding light on the isovector part of the nuclear interaction.

  13. Nonadiabatic rate constants for proton transfer and proton-coupled electron transfer reactions in solution: Effects of quadratic term in the vibronic coupling expansion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Soudackov, Alexander; Hammes-Schiffer, Sharon

    2015-11-17

    Rate constant expressions for vibronically nonadiabatic proton transfer and proton-coupled electron transfer reactions are presented and analyzed. The regimes covered include electronically adiabatic and nonadiabatic reactions, as well as high-frequency and low-frequency regimes for the proton donor-acceptor vibrational mode. These rate constants differ from previous rate constants derived with the cumulant expansion approach in that the logarithmic expansion of the vibronic coupling in terms of the proton donor-acceptor distance includes a quadratic as well as a linear term. The analysis illustrates that inclusion of this quadratic term does not significantly impact the rate constants derived using the cumulant expansion approachmore » in any of the regimes studied. The effects of the quadratic term may become significant when using the vibronic coupling expansion in conjunction with a thermal averaging procedure for calculating the rate constant, however, particularly at high temperatures and for proton transfer interfaces with extremely soft proton donor-acceptor modes that are associated with extraordinarily weak hydrogen bonds. Even with the thermal averaging procedure, the effects of the quadratic term for weak hydrogen-bonding systems are less significant for more physically realistic models that prevent the sampling of unphysical short proton donor-acceptor distances, and the expansion of the coupling can be avoided entirely by calculating the couplings explicitly for the range of proton donor-acceptor distances. This analysis identifies the regimes in which each rate constant expression is valid and thus will be important for future applications to proton transfer and proton-coupled electron transfer in chemical and biological processes. We are grateful for support from National Institutes of Health Grant GM056207 (applications to enzymes) and the Center for Molecular Electrocatalysis, an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, Basic Energy Sciences (applications to molecular electrocatalysts).« less

  14. Fine structure constant defines visual transparency of graphene.

    PubMed

    Nair, R R; Blake, P; Grigorenko, A N; Novoselov, K S; Booth, T J; Stauber, T; Peres, N M R; Geim, A K

    2008-06-06

    There are few phenomena in condensed matter physics that are defined only by the fundamental constants and do not depend on material parameters. Examples are the resistivity quantum, h/e2 (h is Planck's constant and e the electron charge), that appears in a variety of transport experiments and the magnetic flux quantum, h/e, playing an important role in the physics of superconductivity. By and large, sophisticated facilities and special measurement conditions are required to observe any of these phenomena. We show that the opacity of suspended graphene is defined solely by the fine structure constant, a = e2/hc feminine 1/137 (where c is the speed of light), the parameter that describes coupling between light and relativistic electrons and that is traditionally associated with quantum electrodynamics rather than materials science. Despite being only one atom thick, graphene is found to absorb a significant (pa = 2.3%) fraction of incident white light, a consequence of graphene's unique electronic structure.

  15. A density functional theory study of the magnetic exchange coupling in dinuclear manganese(II) inverse crown structures.

    PubMed

    Vélez, Ederley; Alberola, Antonio; Polo, Víctor

    2009-12-17

    The magnetic exchange coupling constants between two Mn(II) centers for a set of five inverse crown structures have been investigated by means of a methodology based on broken-symmetry unrestricted density functional theory. These novel and highly unstable compounds present superexchange interactions between two Mn centers, each one with S = 5/2 through anionic "guests" such as oxygen, benzene, or hydrides or through the cationic ring formed by amide ligands and alkali metals (Na, Li). Magnetic exchange couplings calculated at B3LYP/6-31G(d,p) level yield strong antiferromagnetic couplings for compounds linked via an oxygen atom or hydride and very small antiferromagnetic couplings for those linked via a benzene molecule, deprotonated in either 1,4- or 1,3- positions. Analysis of the magnetic orbitals and spin polarization maps provide an understanding of the exchange mechanism between the Mn centers. The dependence of J with respect to 10 different density functional theory potentials employed and the basis set has been analyzed.

  16. Phase separation and long-wavelength charge instabilities in spin-orbit coupled systems

    NASA Astrophysics Data System (ADS)

    Seibold, G.; Bucheli, D.; Caprara, S.; Grilli, M.

    2015-01-01

    We investigate a two-dimensional electron model with Rashba spin-orbit interaction where the coupling constant g=g(n) depends on the electronic density. It is shown that this dependence may drive the system unstable towards a long-wavelength charge density wave (CDW) where the associated second-order instability occurs in close vicinity to global phase separation. For very low electron densities the CDW instability is nesting-induced and the modulation follows the Fermi momentum kF. At higher density the instability criterion becomes independent of kF and the system may become unstable in a broad momentum range. Finally, upon filling the upper spin-orbit split band, finite momentum instabilities disappear in favor of phase separation alone. We discuss our results with regard to the inhomogeneous phases observed at the LaAlO3/SrTiO3 or LaTiO3/SrTiO3 interfaces.

  17. New Quantum Diffusion Monte Carlo Method for strong field time dependent problems

    NASA Astrophysics Data System (ADS)

    Kalinski, Matt

    2017-04-01

    We have recently formulated the Quantum Diffusion Quantum Monte Carlo (QDMC) method for the solution of the time-dependent Schrödinger equation when it is equivalent to the reaction-diffusion system coupled by the highly nonlinear potentials of the type of Shay. Here we formulate a new Time Dependent QDMC method free of the nonlinearities described by the constant stochastic process of the coupled diffusion with transmutation. As before two kinds of diffusing particles (color walkers) are considered but which can further also transmute one into the other. Each of the species undergoes the hypothetical Einstein random walk progression with transmutation. The progressed particles transmute into the particles of the other kind before contributing to or annihilating the other particles density. This fully emulates the Time Dependent Schrödinger equation for any number of quantum particles. The negative sign of the real and the imaginary parts of the wave function is handled by the ``spinor'' densities carrying the sign as the degree of freedom. We apply the method for the exact time-dependent observation of our discovered two-electron Langmuir configurations in the magnetic and circularly polarized fields.

  18. First example of a high-level correlated calculation of the indirect spin-spin coupling constants involving tellurium: tellurophene and divinyl telluride.

    PubMed

    Rusakov, Yury Yu; Krivdin, Leonid B; Østerstrøm, Freja F; Sauer, Stephan P A; Potapov, Vladimir A; Amosova, Svetlana V

    2013-08-21

    This paper documents the very first example of a high-level correlated calculation of spin-spin coupling constants involving tellurium taking into account relativistic effects, vibrational corrections and solvent effects for medium sized organotellurium molecules. The (125)Te-(1)H spin-spin coupling constants of tellurophene and divinyl telluride were calculated at the SOPPA and DFT levels, in good agreement with experimental data. A new full-electron basis set, av3z-J, for tellurium derived from the "relativistic" Dyall's basis set, dyall.av3z, and specifically optimized for the correlated calculations of spin-spin coupling constants involving tellurium was developed. The SOPPA method shows a much better performance compared to DFT, if relativistic effects calculated within the ZORA scheme are taken into account. Vibrational and solvent corrections are next to negligible, while conformational averaging is of prime importance in the calculation of (125)Te-(1)H spin-spin couplings. Based on the performed calculations at the SOPPA(CCSD) level, a marked stereospecificity of geminal and vicinal (125)Te-(1)H spin-spin coupling constants originating in the orientational lone pair effect of tellurium has been established, which opens a new guideline in organotellurium stereochemistry.

  19. Non-minimal derivative coupling gravity in cosmology

    NASA Astrophysics Data System (ADS)

    Gumjudpai, Burin; Rangdee, Phongsaphat

    2015-11-01

    We give a brief review of the non-minimal derivative coupling (NMDC) scalar field theory in which there is non-minimal coupling between the scalar field derivative term and the Einstein tensor. We assume that the expansion is of power-law type or super-acceleration type for small redshift. The Lagrangian includes the NMDC term, a free kinetic term, a cosmological constant term and a barotropic matter term. For a value of the coupling constant that is compatible with inflation, we use the combined WMAP9 (WMAP9 + eCMB + BAO + H_0) dataset, the PLANCK + WP dataset, and the PLANCK TT, TE, EE + lowP + Lensing + ext datasets to find the value of the cosmological constant in the model. Modeling the expansion with power-law gives a negative cosmological constants while the phantom power-law (super-acceleration) expansion gives positive cosmological constant with large error bar. The value obtained is of the same order as in the Λ CDM model, since at late times the NMDC effect is tiny due to small curvature.

  20. The isospin strange asymmetry from the chiral effective theory

    NASA Astrophysics Data System (ADS)

    Trevisan, Luis Augusto; Mirez, Carlos

    2018-05-01

    The proposal of the present work is to study the difference between the strange quark-antiquark amount in the proton and neutron. For this purpose, the possible nucleon-hyperon-kaon fluctuations are analyzed with the effective chiral theory. The small difference of particle masses is shown to be in the origin of this isospin asymmetry. The dependence of the results on the mass cutoff parameter and with the coupling constants is analyzed.

  1. On the R-Dependence of the Spin-Orbit Coupling Constant: Potential Energy Functions of Xe2+ by High-Resolution Photoelectron Spectroscopy and ab initio Quantum Chemistry

    DTIC Science & Technology

    2008-01-01

    ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION REPORT NUMBER Air Force Research Laboratory /RVBXR AFRL-RV-HA-TR-2008-1053 29 Randolph...the umn 2 in Table I) features a very similiar behavior of a(R) g states so that the asymptotic value of a(R) exactly coffe - although these a(R) curves

  2. Generalized analytical solutions to multispecies transport equations with scale-dependent dispersion coefficients subject to time-dependent boundary conditions

    NASA Astrophysics Data System (ADS)

    Chen, J. S.; Chiang, S. Y.; Liang, C. P.

    2017-12-01

    It is essential to develop multispecies transport analytical models based on a set of advection-dispersion equations (ADEs) coupled with sequential first-order decay reactions for the synchronous prediction of plume migrations of both parent and its daughter species of decaying contaminants such as radionuclides, dissolved chlorinated organic compounds, pesticides and nitrogen. Although several analytical models for multispecies transport have already been reported, those currently available in the literature have primarily been derived based on ADEs with constant dispersion coefficients. However, there have been a number of studies demonstrating that the dispersion coefficients increase with the solute travel distance as a consequence of variation in the hydraulic properties of the porous media. This study presents novel analytical models for multispecies transport with distance-dependent dispersion coefficients. The correctness of the derived analytical models is confirmed by comparing them against the numerical models. Results show perfect agreement between the analytical and numerical models. Comparison of our new analytical model for multispecies transport with scale-dependent dispersion to an analytical model with constant dispersion is made to illustrate the effects of the dispersion coefficients on the multispecies transport of decaying contaminants.

  3. Paramagnetic species on catalytic surfaces--DFT investigations into structure sensitivity of the hyperfine coupling constants.

    PubMed

    Sojka, Zbigniew; Pietrzyk, Piotr

    2004-05-01

    Structure sensitivity of the hyperfine coupling constants was investigated by means of DFT calculations for selected surface paramagnetic species. A *CH2OH radical trapped on silica and intrazeolite copper nitrosyl adducts encaged in ZSM-5 were taken as the examples. The surface of amorphous silica was modeled with a [Si5O8H10] cluster, whereas the zeolite hosting sites were epitomized by [Si4AlO5(OH)10]- cluster. Three different coordination modes of the *CH2OH radical were considered and the isotropic 13C and 1H hyperfine constants of the resultant van der Waals complexes, calculated with B3LYP/6-311G(d), were discussed in terms of the angular deformations caused by hydrogen bonds with the cluster. The magnetic parameters of the eta1-N[CuNO]11 and eta1-O[CuNO]11 linkage isomers were calculated at the BPW91/LanL2DZ and 6-311G(df) level. For the most stable eta1-N adduct a clear dependence of the spin density distribution within the Cu-NO moiety on changes in the Cu-N-O angle and the Cu-N bond distance was observed and accounted for by varying spin polarization and delocalization contributions.

  4. Electrical switching and oscillations in vanadium dioxide

    NASA Astrophysics Data System (ADS)

    Pergament, Alexander; Velichko, Andrey; Belyaev, Maksim; Putrolaynen, Vadim

    2018-05-01

    We have studied electrical switching with S-shaped I-V characteristics in two-terminal MOM devices based on vanadium dioxide thin films. The switching effect is associated with the metal-insulator phase transition. Relaxation oscillations are observed in circuits with VO2-based switches. Dependences of the oscillator critical frequency Fmax, threshold power and voltage, as well as the time of current rise, on the switching structure size are obtained by numerical simulation. The empirical dependence of the threshold voltage on the switching region dimensions and film thickness is found. It is shown that, for the VO2 channel sizes of 10 × 10 nm, Fmax can reach the value of 300 MHz at a film thickness of 20 nm. Next, it is shown that oscillatory neural networks can be implemented on the basis of coupled VO2 oscillators. For the weak capacitive coupling, we revealed the dependence of the phase difference upon synchronization on the coupling capacitance value. When the switches are scaled down, the limiting time of synchronization is reduced to Ts 13 μs, and the number of oscillation periods for the entering to the synchronization mode remains constant, Ns 17. In the case of weak thermal coupling in the synchronization mode, we observe in-phase behavior of oscillators, and there is a certain range of parameters of the supply current, in which the synchronization effect becomes possible. With a decrease in dimensions, a decrease in the thermal coupling action radius is observed, which can vary in the range from 0.5 to 50 μm for structures with characteristic dimensions of 0.1-5 μm, respectively. Thermal coupling may have a promising effect for realization of a 3D integrated oscillatory neural network.

  5. A cyclic universe approach to fine tuning

    DOE PAGES

    Alexander, Stephon; Cormack, Sam; Gleiser, Marcelo

    2016-04-05

    We present a closed bouncing universe model where the value of coupling constants is set by the dynamics of a ghost-like dilatonic scalar field. We show that adding a periodic potential for the scalar field leads to a cyclic Friedmann universe where the values of the couplings vary randomly from one cycle to the next. While the shuffling of values for the couplings happens during the bounce, within each cycle their time-dependence remains safely within present observational bounds for physically-motivated values of the model parameters. Our model presents an alternative to solutions of the fine tuning problem based on stringmore » landscape scenarios. (C) 2016 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP(3).« less

  6. A cyclic universe approach to fine tuning

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alexander, Stephon; Cormack, Sam; Gleiser, Marcelo

    We present a closed bouncing universe model where the value of coupling constants is set by the dynamics of a ghost-like dilatonic scalar field. We show that adding a periodic potential for the scalar field leads to a cyclic Friedmann universe where the values of the couplings vary randomly from one cycle to the next. While the shuffling of values for the couplings happens during the bounce, within each cycle their time-dependence remains safely within present observational bounds for physically-motivated values of the model parameters. Our model presents an alternative to solutions of the fine tuning problem based on stringmore » landscape scenarios. (C) 2016 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP(3).« less

  7. Invariants of electromechanical coupling coefficients in piezoceramics.

    PubMed

    Mezheritsky, Alex V

    2003-12-01

    The relationships between coefficients of electromechanical coupling (CEMC) of various types of piezoceramic resonator (PR) vibrations are considered. Being constant for a given piezoceramic state, the range of variation of piezoceramics dielectric permittivity from a mechanically "free" condition at relatively low frequencies up to an "overall clamped" condition at high frequencies is determined by a consecutive "clamping", caused by a complex of CEMCs of various particular vibrational modes peculiar to the resonator. As the difference between "free" and "overall clamped" permittivities is always determined by the maximal piezomaterial ki3 coupling coefficient, the difference does not depend on the path that was gone through the low-high frequency range, which includes all the vibrational modes possible for a particular PR. The influence of the piezoelectric and elastic anisotropy of lead-zirconate-titanate (PZT) piezoceramic materials on relative CEMC variations was experimentally investigated.

  8. Coherent motion of chaotic attractors

    NASA Astrophysics Data System (ADS)

    Louodop, Patrick; Saha, Suman; Tchitnga, Robert; Muruganandam, Paulsamy; Dana, Syamal K.; Cerdeira, Hilda A.

    2017-10-01

    We report a simple model of two drive-response-type coupled chaotic oscillators, where the response system copies the nonlinearity of the driver system. It leads to a coherent motion of the trajectories of the coupled systems that establishes a constant separating distance in time between the driver and the response attractors, and their distance depends upon the initial state. The coupled system responds to external obstacles, modeled by short-duration pulses acting either on the driver or the response system, by a coherent shifting of the distance, and it is able to readjust their distance as and when necessary via mutual exchange of feedback information. We confirm these behaviors with examples of a jerk system, the paradigmatic Rössler system, a tunnel diode system and a Josephson junction-based jerk system, analytically, to an extent, and mostly numerically.

  9. Morphological control of conductive polymers utilized electrolysis polymerization technique: trial of fabricating biocircuit.

    PubMed

    Onoda, Mitsuyoshi

    2014-10-01

    Conductive polymers are a strong contender for making electronic circuits. The growth pattern in conductive polymer synthesis by the electrolysis polymerization method was examined. The growth pattern is deeply related to the coupling reaction of the radical cation and the deprotonation reaction following it and changes suddenly depending on the kind and concentration of the supporting electrolyte and the solvent used. That is, when the electrophilic substitution coupling reaction becomes predominant, the three-dimensional growth form is observed, and when the radical coupling reaction becomes predominant, the two-dimensional growth morphology is observed. In addition, the growth pattern can be comparatively easily controlled by changing the value of the polymerization constant current, and it is considered that the indicator and development for biocircuit research with neuron-type devices made of conjugated polymers was obtained.

  10. Analytical solution of the Poisson-Nernst-Planck equations for an electrochemical system close to electroneutrality

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pabst, M., E-mail: M.Pabst@fz-juelich.de

    2014-06-14

    Single charge densities and the potential are used to describe models of electrochemical systems. These quantities can be calculated by solving a system of time dependent nonlinear coupled partial differential equations, the Poisson-Nernst-Planck equations. Assuming small deviations from the electroneutral equilibrium, the linearized and decoupled equations are solved for a radial symmetric geometry, which represents the interface between a cell and a sensor device. The densities and the potential are expressed by Fourier-Bessels series. The system considered has a ratio between the Debye-length and its geometric dimension on the order of 10{sup −4} so the Fourier-Bessel series can be approximatedmore » by elementary functions. The time development of the system is characterized by two time constants, τ{sub c} and τ{sub g}. The constant τ{sub c} describes the approach to the stationary state of the total charge and the potential. τ{sub c} is several orders of magnitude smaller than the geometry-dependent constant τ{sub g}, which is on the order of 10 ms characterizing the transition to the stationary state of the single ion densities.« less

  11. Relativistic force field: parametric computations of proton-proton coupling constants in (1)H NMR spectra.

    PubMed

    Kutateladze, Andrei G; Mukhina, Olga A

    2014-09-05

    Spin-spin coupling constants in (1)H NMR carry a wealth of structural information and offer a powerful tool for deciphering molecular structures. However, accurate ab initio or DFT calculations of spin-spin coupling constants have been very challenging and expensive. Scaling of (easy) Fermi contacts, fc, especially in the context of recent findings by Bally and Rablen (Bally, T.; Rablen, P. R. J. Org. Chem. 2011, 76, 4818), offers a framework for achieving practical evaluation of spin-spin coupling constants. We report a faster and more precise parametrization approach utilizing a new basis set for hydrogen atoms optimized in conjunction with (i) inexpensive B3LYP/6-31G(d) molecular geometries, (ii) inexpensive 4-31G basis set for carbon atoms in fc calculations, and (iii) individual parametrization for different atom types/hybridizations, not unlike a force field in molecular mechanics, but designed for the fc's. With the training set of 608 experimental constants we achieved rmsd <0.19 Hz. The methodology performs very well as we illustrate with a set of complex organic natural products, including strychnine (rmsd 0.19 Hz), morphine (rmsd 0.24 Hz), etc. This precision is achieved with much shorter computational times: accurate spin-spin coupling constants for the two conformers of strychnine were computed in parallel on two 16-core nodes of a Linux cluster within 10 min.

  12. Free vibration analysis of embedded magneto-electro-thermo-elastic cylindrical nanoshell based on the modified couple stress theory

    NASA Astrophysics Data System (ADS)

    Ghadiri, Majid; Safarpour, Hamed

    2016-09-01

    In this paper, size-dependent effect of an embedded magneto-electro-elastic (MEE) nanoshell subjected to thermo-electro-magnetic loadings on free vibration behavior is investigated. Also, the surrounding elastic medium has been considered as the model of Winkler characterized by the spring. The size-dependent MEE nanoshell is investigated on the basis of the modified couple stress theory. Taking attention to the first-order shear deformation theory (FSDT), the modeled nanoshell and its equations of motion are derived using principle of minimum potential energy. The accuracy of the presented model is validated with some cases in the literature. Finally, using the Navier-type method, an analytical solution of governing equations for vibration behavior of simply supported MEE cylindrical nanoshell under combined loadings is presented and the effects of material length scale parameter, temperature changes, external electric potential, external magnetic potential, circumferential wave numbers, constant of spring, shear correction factor and length-to-radius ratio of the nanoshell on natural frequency are identified. Since there has been no research about size-dependent analysis MEE cylindrical nanoshell under combined loadings based on FSDT, numerical results are presented to be served as benchmarks for future analysis of MEE nanoshells using the modified couple stress theory.

  13. Effects of mucosal loading on vocal fold vibration.

    PubMed

    Tao, Chao; Jiang, Jack J

    2009-06-01

    A chain model was proposed in this study to examine the effects of mucosal loading on vocal fold vibration. Mucosal loading was defined as the loading caused by the interaction between the vocal folds and the surrounding tissue. In the proposed model, the vocal folds and the surrounding tissue were represented by a series of oscillators connected by a coupling spring. The lumped masses, springs, and dampers of the oscillators modeled the tissue properties of mass, stiffness, and viscosity, respectively. The coupling spring exemplified the tissue interactions. By numerically solving this chain model, the effects of mucosal loading on the phonation threshold pressure, phonation instability pressure, and energy distribution in a voice production system were studied. It was found that when mucosal loading is small, phonation threshold pressure increases with the damping constant R(r), the mass constant R(m), and the coupling constant R(mu) of mucosal loading but decreases with the stiffness constant R(k). Phonation instability pressure is also related to mucosal loading. It was found that phonation instability pressure increases with the coupling constant R(mu) but decreases with the stiffness constant R(k) of mucosal loading. Therefore, it was concluded that mucosal loading directly affects voice production.

  14. Effects of mucosal loading on vocal fold vibration

    NASA Astrophysics Data System (ADS)

    Tao, Chao; Jiang, Jack J.

    2009-06-01

    A chain model was proposed in this study to examine the effects of mucosal loading on vocal fold vibration. Mucosal loading was defined as the loading caused by the interaction between the vocal folds and the surrounding tissue. In the proposed model, the vocal folds and the surrounding tissue were represented by a series of oscillators connected by a coupling spring. The lumped masses, springs, and dampers of the oscillators modeled the tissue properties of mass, stiffness, and viscosity, respectively. The coupling spring exemplified the tissue interactions. By numerically solving this chain model, the effects of mucosal loading on the phonation threshold pressure, phonation instability pressure, and energy distribution in a voice production system were studied. It was found that when mucosal loading is small, phonation threshold pressure increases with the damping constant Rr, the mass constant Rm, and the coupling constant Rμ of mucosal loading but decreases with the stiffness constant Rk. Phonation instability pressure is also related to mucosal loading. It was found that phonation instability pressure increases with the coupling constant Rμ but decreases with the stiffness constant Rk of mucosal loading. Therefore, it was concluded that mucosal loading directly affects voice production.

  15. The dependence of α-tocopheroxyl radical reduction by hydroxy-2,3-diarylxanthones on structure and micro-environment.

    PubMed

    Morlière, Patrice; Patterson, Larry K; Santos, Clementina M M; Silva, Artur M S; Mazière, Jean-Claude; Filipe, Paulo; Gomes, Ana; Fernandes, Eduarda; Garcia, M Beatriz Q; Santus, René

    2012-03-14

    The flavonoid quercetin is known to reduce the α-tocopheroxyl radical (˙TocO) and reconstitute α-tocopherol (TocOH). Structurally related polyphenolic compounds, hydroxy-2,3-diarylxanthones (XH), exhibit antioxidant activity which exceeds that of quercetin in biological systems. In the present study repair of ˙TocO by a series of these XH has been evaluated using pulse radiolysis. It has been shown that, among the studied XH, only 2,3-bis(3,4-dihydroxyphenyl)-9H-xanthen-9-one (XH9) reduces ˙TocO, though repair depends strongly on the micro-environment. In cationic cetyltrimethylammonium bromide (CTAB) micelles, 30% of ˙TocO radicals are repaired at a rate constant of ~7.4 × 10(6) M(-1) s(-1) by XH9 compared to 1.7 × 10(7) M(-1) s(-1) by ascorbate. Water-soluble Trolox (TrOH) radicals (˙TrO) are restored by XH9 in CTAB (rate constant ~3 × 10(4) M(-1) s(-1)) but not in neutral TX100 micelles where only 15% of ˙TocO are repaired (rate constant ~4.5 × 10(5) M(-1) s(-1)). In basic aqueous solutions ˙TrO is readily reduced by deprotonated XH9 species leading to ionized XH9 radical species (radical pK(a) ~10). An equilibrium is observed (K = 130) yielding an estimate of 130 mV for the reduction potential of the [˙X9,H(+)/XH9] couple at pH 11, lower than the 250 mV for the [˙TrO,H(+)/TrOH] couple. A comparable value (100 mV) has been determined by cyclic voltammetry measurements.

  16. Grain boundary-dominated electrical conduction and anomalous optical-phonon behaviour near the Neel temperature in YFeO3 ceramics

    NASA Astrophysics Data System (ADS)

    Raut, Subhajit; Babu, P. D.; Sharma, R. K.; Pattanayak, Ranjit; Panigrahi, Simanchalo

    2018-05-01

    We investigated the anomalous behaviour in the dielectric properties, occurring nearly at room temperature and at elevated temperatures (near the Neel temperature TN) of the polycrystalline samples of YFeO3 (YFO) ceramics. On the prepared YFO ceramics, the magnetic measurements showed the Neel temperature of YFO to be 650 K, below which the compound exhibited the weak ferromagnetic behaviour. X-ray photoelectron spectroscopy (XPS) shows the presence of Fe ions (Fe2+ and Fe3+ states) and also revealed the formation of the oxygen vacancies. The frequency dependence of the complex dielectric constant within the frequency domain of 100 Hz-1 MHz shows the presence of grain dominated dielectric relaxation over the thermal window of 300-373 K. The activation energy Eact.ɛ=0.611 eV extracted from the imaginary permittivity spectrum indicates the involvement of oxygen vacancies in the relaxation process. Above 493 K, the ac conductivity, complex impedance, and modulus studies revealed appreciable conduction and relaxation processes occurring in YFO ceramics with respective activation energies Eac t . σ=1.362 eV and Eac t . Z=1.345 eV , which suggests that the oxygen vacancies are also involved for the anomalous behaviour of the dielectric constant at elevated temperatures. The temperature dependent Raman spectroscopic measurements within the thermal window of 298-698 K showed anomalous variations of the line widths and frequencies of several Raman active modes above 473 K up to the vicinity of TN pointing towards the presence of admixtures of the electron-phonon and spin-phonon coupling in the system. A further study on the thermal variation of the B2g(4) mode frequency with [M(T)/MS]2 shows the occurrence of strong spin-phonon (s-p) coupling, while the line shape shows the presence of the Fano asymmetry, suggesting spin dependent electron-phonon (e-p) coupling in the system below TN.

  17. Coupled intertwiner dynamics: A toy model for coupling matter to spin foam models

    NASA Astrophysics Data System (ADS)

    Steinhaus, Sebastian

    2015-09-01

    The universal coupling of matter and gravity is one of the most important features of general relativity. In quantum gravity, in particular spin foams, matter couplings have been defined in the past, yet the mutual dynamics, in particular if matter and gravity are strongly coupled, are hardly explored, which is related to the definition of both matter and gravitational degrees of freedom on the discretization. However, extracting these mutual dynamics is crucial in testing the viability of the spin foam approach and also establishing connections to other discrete approaches such as lattice gauge theories. Therefore, we introduce a simple two-dimensional toy model for Yang-Mills coupled to spin foams, namely an Ising model coupled to so-called intertwiner models defined for SU (2 )k. The two systems are coupled by choosing the Ising coupling constant to depend on spin labels of the background, as these are interpreted as the edge lengths of the discretization. We coarse grain this toy model via tensor network renormalization and uncover an interesting dynamics: the Ising phase transition temperature turns out to be sensitive to the background configurations and conversely, the Ising model can induce phase transitions in the background. Moreover, we observe a strong coupling of both systems if close to both phase transitions.

  18. Self-acceleration in scalar-bimetric theories

    NASA Astrophysics Data System (ADS)

    Brax, Philippe; Valageas, Patrick

    2018-05-01

    We describe scalar-bimetric theories where the dynamics of the Universe are governed by two separate metrics, each with an Einstein-Hilbert term. In this setting, the baryonic and dark matter components of the Universe couple to metrics which are constructed as functions of these two gravitational metrics. More precisely, the two metrics coupled to matter are obtained by a linear combination of their vierbeins, with scalar-dependent coefficients. The scalar field, contrary to dark-energy models, does not have a potential of which the role is to mimic a late-time cosmological constant. The late-time acceleration of the expansion of the Universe can be easily obtained at the background level in these models by appropriately choosing the coupling functions appearing in the decomposition of the vierbeins for the baryonic and dark matter metrics. We explicitly show how the concordance model can be retrieved with negligible scalar kinetic energy. This requires the scalar coupling functions to show variations of order unity during the accelerated expansion era. This leads in turn to deviations of order unity for the effective Newton constants and a fifth force that is of the same order as Newtonian gravity, with peculiar features. The baryonic and dark matter self-gravities are amplified although the gravitational force between baryons and dark matter is reduced and even becomes repulsive at low redshift. This slows down the growth of baryonic density perturbations on cosmological scales, while dark matter perturbations are enhanced. These scalar-bimetric theories have a perturbative cutoff scale of the order of 1 AU, which prevents a precise comparison with Solar System data. On the other hand, we can deduce strong requirements on putative UV completions by analyzing the stringent constraints in the Solar System. Hence, in our local environment, the upper bound on the time evolution of Newton's constant requires an efficient screening mechanism that both damps the fifth force on small scales and decouples the local value of Newton constant from its cosmological value. This cannot be achieved by a quasistatic chameleon mechanism and requires going beyond the quasistatic regime and probably using derivative screenings, such as Kmouflage or Vainshtein screening, on small scales.

  19. Spiky strings and single trace operators in gauge theories

    NASA Astrophysics Data System (ADS)

    Kruczenski, Martin

    2005-08-01

    We consider single trace operators of the form Script Ol1...ln = Tr D+l1F...D+lnF which are common to all gauge theories. We argue that, when all li are equal and large, they have a dual description as strings with cusps, or spikes, one for each field F. In the case of Script N = 4 SYM, we compute the energy as a function of angular momentum by finding the corresponding solutions in AdS5 and compare with a 1-loop calculation of the anomalous dimension. As in the case of two spikes (twist two operators), there is agreement in the functional form but not in the coupling constant dependence. After that, we analyze the system in more detail and find an effective classical mechanics describing the motion of the spikes. In the appropriate limit, it is the same (up to the coupling constant dependence) as the coherent state description of linear combinations of the operators Script Ol1...ln such that all li are equal on average. This agreement provides a map between the operators in the boundary and the position of the spikes in the bulk. We further suggest that moving the spikes in other directions should describe operators with derivatives other than D+ indicating that these ideas are quite generic and should help in unraveling the string description of the large-N limit of gauge theories.

  20. Comparison of calculation and experiment implicates significant electrostatic contributions to the binding stability of barnase and barstar.

    PubMed

    Dong, Feng; Vijayakumar, M; Zhou, Huan-Xiang

    2003-07-01

    The contributions of electrostatic interactions to the binding stability of barnase and barstar were studied by the Poisson-Boltzmann model with three different protocols: a), the dielectric boundary specified as the van der Waals (vdW) surface of the protein along with a protein dielectric constant (epsilon (p)) of 4; b), the dielectric boundary specified as the molecular (i.e., solvent-exclusion (SE)) surface along with epsilon (p) = 4; and c), "SE + epsilon (p) = 20." The "vdW + epsilon (p) = 4" and "SE + epsilon (p) = 20" protocols predicted an overall electrostatic stabilization whereas the "SE + epsilon (p) = 4" protocol predicted an overall electrostatic destabilization. The "vdW + epsilon (p) = 4" protocol was most consistent with experiment. It quantitatively reproduced the observed effects of 17 mutations neutralizing charged residues lining the binding interface and the measured coupling energies of six charge pairs across the interface and reasonably rationalized the experimental ionic strength and pH dependences of the binding constant. In contrast, the "SE + epsilon (p) = 4" protocol predicted significantly larger coupling energies of charge pairs whereas the "SE + epsilon (p) = 20" protocol did not predict any pH dependence. This study calls for further scrutiny of the different Poisson-Boltzmann protocols and demonstrates potential danger in drawing conclusions on electrostatic contributions based on a particular calculation protocol.

  1. Improved description of the 2 ν β β -decay and a possibility to determine the effective axial-vector coupling constant

    NASA Astrophysics Data System (ADS)

    Šimkovic, Fedor; Dvornický, Rastislav; Štefánik, Dušan; Faessler, Amand

    2018-03-01

    An improved formalism of the two-neutrino double-beta decay (2 ν β β -decay) rate is presented, which takes into account the dependence of energy denominators on lepton energies via the Taylor expansion. Until now, only the leading term in this expansion has been considered. The revised 2 ν β β -decay rate and differential characteristics depend on additional phase-space factors weighted by the ratios of 2 ν β β -decay nuclear matrix elements with different powers of the energy denominator. For nuclei of experimental interest all phase-space factors are calculated by using exact Dirac wave functions with finite nuclear size and electron screening. For isotopes with measured 2 ν β β -decay half-life the involved nuclear matrix elements are determined within the quasiparticle random-phase approximation with partial isospin restoration. The importance of correction terms to the 2 ν β β -decay rate due to Taylor expansion is established and the modification of shape of single and summed electron energy distributions is discussed. It is found that the improved calculation of the 2 ν β β -decay predicts slightly suppressed 2 ν β β -decay background to the neutrinoless double-beta decay signal. Furthermore, an approach to determine the value of effective weak-coupling constant in nuclear medium gAeff is proposed.

  2. New look at the Badger-Bauer rule: Correlations of spectroscopic IR and NMR parameters with hydrogen bond energy and geometry. FHF complexes

    NASA Astrophysics Data System (ADS)

    Tupikina, E. Yu.; Denisov, G. S.; Melikova, S. M.; Kucherov, S. Yu.; Tolstoy, P. M.

    2018-07-01

    In this work correlation dependencies between hydrogen bond energy ΔE for complexes with Fsbnd H⋯F hydrogen bond and their spectroscopic characteristics of the IR and NMR spectra are presented. We considered 26 complexes in a wide hydrogen bond energy range 0.2-47 kcal/mol. For each complex we calculated complexation energy (MP2/6-311++G(d,p)), IR spectroscopic parameters (FH stretching frequency ν, FH stretching frequency in local mode approximation νLM at MP2/6-311++G(d,p) level) and NMR parameters (chemical shift of hydrogen δH and fluorine nuclei δF, Nuclear Independent Chemical Shielding and spin-spin coupling constants 1JFH, 1hJH...F, 2hJFF at B3LYP/pcSseg-2 level). It was shown that changes of parameters upon complexation, i.e. changes of the stretching frequency in local mode approximation ΔνLM, change of the proton chemical shift ΔδH and change of the absolute value of spin-spin coupling constant 1JFH could be used for estimation of corresponding hydrogen bond strength. Furthermore, we build correlation dependencies between abovementioned spectroscopic characteristics and geometric ones, such as the asymmetry of bridging proton position q1 = 0.5·(rFH - rH…F).

  3. On the null trajectories in conformal Weyl gravity

    NASA Astrophysics Data System (ADS)

    Villanueva, J. R.; Olivares, Marco

    2013-06-01

    In this work we find analytical solutions to the null geodesics around a black hole in the conformal Weyl gravity. Exact expressions for the horizons are found, and they depend on the cosmological constant and the coupling constants of the conformal Weyl gravity. Then, we study the radial motion from the point of view of the proper and coordinate frames, and compare it with that found in spacetimes of general relativity. The angular motion is also examined qualitatively by means of an effective potential; quantitatively, the equation of motion is solved in terms of wp-Weierstrass elliptic function. Thus, we find the deflection angle for photons without using any approximation, which is a novel result for this kind of gravity.

  4. Underlying thermodynamics of pH-dependent allostery.

    PubMed

    Di Russo, Natali V; Martí, Marcelo A; Roitberg, Adrian E

    2014-11-13

    Understanding the effects of coupling protein protonation and conformational states is critical to the development of drugs targeting pH sensors and to the rational engineering of pH switches. In this work, we address this issue by performing a comprehensive study of the pH-regulated switch from the closed to the open conformation in nitrophorin 4 (NP4) that determines its pH-dependent activity. Our calculations show that D30 is the only amino acid that has two significantly different pKas in the open and closed conformations, confirming its critical role in regulating pH-dependent behavior. In addition, we describe the free-energy landscape of the conformational change as a function of pH, obtaining accurate estimations of free-energy barriers and equilibrium constants using different methods. The underlying thermodynamic model of the switch workings suggests the possibility of tuning the observed pKa only through the conformational equilibria, keeping the same conformation-specific pKas, as evidenced by the proposed K125L mutant. Moreover, coupling between the protonation and conformational equilibria results in efficient regulation and pH-sensing around physiological pH values only for some combinations of protonation and conformational equilibrium constants, placing constraints on their possible values and leaving a narrow space for protein molecular evolution. The calculations and analysis presented here are of general applicability and provide a guide as to how more complex systems can be studied, offering insight into how pH-regulated allostery works of great value for designing drugs that target pH sensors and for rational engineering of pH switches beyond the common histidine trigger.

  5. Relativistic effects on the NMR parameters of Si, Ge, Sn, and Pb alkynyl compounds: Scalar versus spin-orbit effects

    NASA Astrophysics Data System (ADS)

    Demissie, Taye B.

    2017-11-01

    The NMR chemical shifts and indirect spin-spin coupling constants of 12 molecules containing 29Si, 73Ge, 119Sn, and 207Pb [X(CCMe)4, Me2X(CCMe)2, and Me3XCCH] are presented. The results are obtained from non-relativistic as well as two- and four-component relativistic density functional theory (DFT) calculations. The scalar and spin-orbit relativistic contributions as well as the total relativistic corrections are determined. The main relativistic effect in these molecules is not due to spin-orbit coupling but rather to the scalar relativistic contraction of the s-shells. The correlation between the calculated and experimental indirect spin-spin coupling constants showed that the four-component relativistic density functional theory (DFT) approach using the Perdew's hybrid scheme exchange-correlation functional (PBE0; using the Perdew-Burke-Ernzerhof exchange and correlation functionals) gives results in good agreement with experimental values. The indirect spin-spin coupling constants calculated using the spin-orbit zeroth order regular approximation together with the hybrid PBE0 functional and the specially designed J-coupling (JCPL) basis sets are in good agreement with the results obtained from the four-component relativistic calculations. For the coupling constants involving the heavy atoms, the relativistic corrections are of the same order of magnitude compared to the non-relativistically calculated results. Based on the comparisons of the calculated results with available experimental values, the best results for all the chemical shifts and non-existing indirect spin-spin coupling constants for all the molecules are reported, hoping that these accurate results will be used to benchmark future DFT calculations. The present study also demonstrates that the four-component relativistic DFT method has reached a level of maturity that makes it a convenient and accurate tool to calculate indirect spin-spin coupling constants of "large" molecular systems involving heavy atoms.

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    San Fabián, J.; Omar, S.; García de la Vega, J. M., E-mail: garcia.delavega@uam.es

    The effect of a fraction of Hartree-Fock exchange on the calculated spin-spin coupling constants involving fluorine through a hydrogen bond is analyzed in detail. Coupling constants calculated using wavefunction methods are revisited in order to get high-level calculations using the same basis set. Accurate MCSCF results are obtained using an additive approach. These constants and their contributions are used as a reference for density functional calculations. Within the density functional theory, the Hartree-Fock exchange functional is split in short- and long-range using a modified version of the Coulomb-attenuating method with the SLYP functional as well as with the original B3LYP.more » Results support the difficulties for calculating hydrogen bond coupling constants using density functional methods when fluorine nuclei are involved. Coupling constants are very sensitive to the Hartree-Fock exchange and it seems that, contrary to other properties, it is important to include this exchange for short-range interactions. Best functionals are tested in two different groups of complexes: those related with anionic clusters of type [F(HF){sub n}]{sup −} and those formed by difluoroacetylene and either one or two hydrogen fluoride molecules.« less

  7. Solvent induced temperature dependencies of NMR parameters of hydrogen bonded anionic clusters

    NASA Astrophysics Data System (ADS)

    Golubev, Nikolai S.; Shenderovich, Ilja G.; Tolstoy, Peter M.; Shchepkin, Dmitry N.

    2004-07-01

    The solvent induced temperature dependence of NMR parameters (proton and fluorine chemical shifts, the two-bond scalar spin coupling constant across the hydrogen bridge, 2hJFF) for dihydrogen trifluoride anion, (FH) 2F -, in a polar aprotic solvent, CDF 3/CDF 2Cl, is reported and discussed. The results are interpreted in terms of a simple electrostatic model, accounting a decrease of electrostatic repulsion of two negatively charged fluorine atoms on placing into a dielectric medium. The conclusion is drawn that polar medium causes some contraction of hydrogen bonds in ionic clusters combined with a decrease of hydrogen bond asymmetry.

  8. Variational transition state theory for multidimensional activated rate processes in the presence of anisotropic friction

    NASA Astrophysics Data System (ADS)

    Berezhkovskii, Alexander M.; Frishman, Anatoli M.; Pollak, Eli

    1994-09-01

    Variational transition state theory (VTST) is applied to the study of the activated escape of a particle trapped in a multidimensional potential well and coupled to a heat bath. Special attention is given to the dependence of the rate constant on the friction coefficients in the case of anisotropic friction. It is demonstrated explicitly that both the traditional as well as the nontraditional scenarios for the particle escape are recovered uniformly within the framework of VTST. Effects such as saddle point avoidance and friction dependence of the activation energy are derived from VTST using optimized planar dividing surfaces.

  9. Antiferromagnetic resonance excited by oscillating electric currents

    NASA Astrophysics Data System (ADS)

    Sluka, Volker

    2017-12-01

    In antiferromagnetic materials the order parameter exhibits resonant modes at frequencies that can be in the terahertz range, making them interesting components for spintronic devices. Here, it is shown that antiferromagnetic resonance can be excited using the inverse spin-Hall effect in a system consisting of an antiferromagnetic insulator coupled to a normal-metal waveguide. The time-dependent interplay between spin torque, ac spin accumulation, and magnetic degrees of freedom is studied. It is found that the dynamics of the antiferromagnet affects the frequency-dependent conductivity of the normal metal. Further, a comparison is made between spin-current-induced and Oersted-field-induced excitation under the condition of constant power injection.

  10. Temperature-Dependent Function of the Glutamine Phosphoribosylpyrophosphate Amidotransferase Ammonia Channel and Coupling with Glycinamide Ribonucleotide Synthetase in a Hyperthermophile†

    PubMed Central

    Bera, Aloke Kumar; Chen, Sihong; Smith, Janet L.; Zalkin, Howard

    2000-01-01

    Genes encoding glutamine phosphoribosylpyrophosphate amidotransferase (GPAT) and glycinamide ribonucleotide synthetase (GARS) from Aquifex aeolicus were expressed in Escherichia coli, and the enzymes were purified to near homogeneity. Both enzymes were maximally active at a temperature of at least 90°C, with half-lives of 65 min for GPAT and 60 h for GARS at 80°C. GPAT activity is known to depend upon channeling of NH3 from a site in an N-terminal glutaminase domain to a distal phosphoribosylpyrophosphate site in a C-terminal domain where synthesis of phosphoribosylamine (PRA) takes place. The efficiency of channeling of NH3 for synthesis of PRA was found to increase from 34% at 37°C to a maximum of 84% at 80°C. The mechanism for transfer of PRA to GARS is not established, but diffusion between enzymes as a free intermediate appears unlikely based on a calculated PRA half-life of approximately 0.6 s at 90°C. Evidence was obtained for coupling between GPAT and GARS for PRA transfer. The coupling was temperature dependent, exhibiting a transition between 37 and 50°C, and remained relatively constant up to 90°C. The calculated PRA chemical half-life, however, decreased by a factor of 20 over this temperature range. These results provide evidence that coupling involves direct PRA transfer through GPAT-GARS interaction rather than free diffusion. PMID:10850988

  11. Temperature-dependent function of the glutamine phosphoribosylpyrophosphate amidotransferase ammonia channel and coupling with glycinamide ribonucleotide synthetase in a hyperthermophile.

    PubMed

    Bera, A K; Chen, S; Smith, J L; Zalkin, H

    2000-07-01

    Genes encoding glutamine phosphoribosylpyrophosphate amidotransferase (GPAT) and glycinamide ribonucleotide synthetase (GARS) from Aquifex aeolicus were expressed in Escherichia coli, and the enzymes were purified to near homogeneity. Both enzymes were maximally active at a temperature of at least 90 degrees C, with half-lives of 65 min for GPAT and 60 h for GARS at 80 degrees C. GPAT activity is known to depend upon channeling of NH(3) from a site in an N-terminal glutaminase domain to a distal phosphoribosylpyrophosphate site in a C-terminal domain where synthesis of phosphoribosylamine (PRA) takes place. The efficiency of channeling of NH(3) for synthesis of PRA was found to increase from 34% at 37 degrees C to a maximum of 84% at 80 degrees C. The mechanism for transfer of PRA to GARS is not established, but diffusion between enzymes as a free intermediate appears unlikely based on a calculated PRA half-life of approximately 0.6 s at 90 degrees C. Evidence was obtained for coupling between GPAT and GARS for PRA transfer. The coupling was temperature dependent, exhibiting a transition between 37 and 50 degrees C, and remained relatively constant up to 90 degrees C. The calculated PRA chemical half-life, however, decreased by a factor of 20 over this temperature range. These results provide evidence that coupling involves direct PRA transfer through GPAT-GARS interaction rather than free diffusion.

  12. Collision cross sections of N2 by H+ impact at keV energies within time-dependent density-functional theory

    NASA Astrophysics Data System (ADS)

    Yu, W.; Gao, C.-Z.; Zhang, Y.; Zhang, F. S.; Hutton, R.; Zou, Y.; Wei, B.

    2018-03-01

    We calculate electron capture and ionization cross sections of N2 impacted by the H+ projectile at keV energies. To this end, we employ the time-dependent density-functional theory coupled nonadiabatically to molecular dynamics. To avoid the explicit treatment of the complex density matrix in the calculation of cross sections, we propose an approximate method based on the assumption of constant ionization rate over the period of the projectile passing the absorbing boundary. Our results agree reasonably well with experimental data and semi-empirical results within the measurement uncertainties in the considered energy range. The discrepancies are mainly attributed to the inadequate description of exchange-correlation functional and the crude approximation for constant ionization rate. Although the present approach does not predict the experiments quantitatively for collision energies below 10 keV, it is still helpful to calculate total cross sections of ion-molecule collisions within a certain energy range.

  13. Surface-dependent chemical equilibrium constants and capacitances for bare and 3-cyanopropyldimethylchlorosilane coated silica nanochannels.

    PubMed

    Andersen, Mathias Bækbo; Frey, Jared; Pennathur, Sumita; Bruus, Henrik

    2011-01-01

    We present a combined theoretical and experimental analysis of the solid-liquid interface of fused-silica nanofabricated channels with and without a hydrophilic 3-cyanopropyldimethylchlorosilane (cyanosilane) coating. We develop a model that relaxes the assumption that the surface parameters C(1), C(2), and pK(+) are constant and independent of surface composition. Our theoretical model consists of three parts: (i) a chemical equilibrium model of the bare or coated wall, (ii) a chemical equilibrium model of the buffered bulk electrolyte, and (iii) a self-consistent Gouy-Chapman-Stern triple-layer model of the electrochemical double layer coupling these two equilibrium models. To validate our model, we used both pH-sensitive dye-based capillary filling experiments as well as electro-osmotic current-monitoring measurements. Using our model we predict the dependence of ζ potential, surface charge density, and capillary filling length ratio on ionic strength for different surface compositions, which can be difficult to achieve otherwise. Copyright © 2010 Elsevier Inc. All rights reserved.

  14. Moiré-pattern interlayer potentials in van der Waals materials in the random-phase approximation

    NASA Astrophysics Data System (ADS)

    Leconte, Nicolas; Jung, Jeil; Lebègue, Sébastien; Gould, Tim

    2017-11-01

    Stacking-dependent interlayer interactions are important for understanding the structural and electronic properties in incommensurable two-dimensional material assemblies where long-range moiré patterns arise due to small lattice constant mismatch or twist angles. Here we study the stacking-dependent interlayer coupling energies between graphene (G) and hexagonal boron nitride (BN) homo- and heterostructures using high-level random-phase approximation (RPA) ab initio calculations. Our results show that although total binding energies within LDA and RPA differ substantially by a factor of 200%-400%, the energy differences as a function of stacking configuration yield nearly constant values with variations smaller than 20%, meaning that LDA estimates are quite reliable. We produce phenomenological fits to these energy differences, which allows us to calculate various properties of interest including interlayer spacing, sliding energetics, pressure gradients, and elastic coefficients to high accuracy. The importance of long-range interactions (captured by RPA but not LDA) on various properties is also discussed. Parametrizations for all fits are provided.

  15. Pressure effects on enzyme-catalyzed quantum tunneling events arise from protein-specific structural and dynamic changes.

    PubMed

    Hay, Sam; Johannissen, Linus O; Hothi, Parvinder; Sutcliffe, Michael J; Scrutton, Nigel S

    2012-06-13

    The rate and kinetic isotope effect (KIE) on proton transfer during the aromatic amine dehydrogenase-catalyzed reaction with phenylethylamine shows complex pressure and temperature dependences. We are able to rationalize these effects within an environmentally coupled tunneling model based on constant pressure molecular dynamics (MD) simulations. As pressure appears to act anisotropically on the enzyme, perturbation of the reaction coordinate (donor-acceptor compression) is, in this case, marginal. Therefore, while we have previously demonstrated that pressure and temperature dependences can be used to infer H-tunneling and the involvement of promoting vibrations, these effects should not be used in the absence of atomistic insight, as they can vary greatly for different enzymes. We show that a pressure-dependent KIE is not a definitive hallmark of quantum mechanical H-tunneling during an enzyme-catalyzed reaction and that pressure-independent KIEs cannot be used to exclude tunneling contributions or a role for promoting vibrations in the enzyme-catalyzed reaction. We conclude that coupling of MD calculations with experimental rate and KIE studies is required to provide atomistic understanding of pressure effects in enzyme-catalyzed reactions.

  16. Enhancement of exchange bias in ferromagnetic/antiferromagnetic core-shell nanoparticles through ferromagnetic domain wall formation

    NASA Astrophysics Data System (ADS)

    Wu, Rui; Ding, Shilei; Lai, Youfang; Tian, Guang; Yang, Jinbo

    2018-01-01

    The spin configuration in the ferromagnetic part during the magnetization reversal plays a crucial role in the exchange bias effect. Through Monte Carlo simulation, the exchange bias effect in ferromagnetic-antiferromagnetic core-shell nanoparticles is investigated. Magnetization reversals in the ferromagnetic core were controlled between the coherent rotation and the domain wall motion by modulating the ferromagnetic domain wall width with parameters of uniaxial anisotropy constant and exchange coupling strength. An anomalous monotonic dependence of exchange bias on the uniaxial anisotropy constant is found in systems with small exchange coupling, showing an obvious violation of classic Meiklejohn-Bean model, while domain walls are found to form close to the interface and propagate in the ferromagnetic core with larger uniaxial anisotropy in both branches of the hysteresis. The asymmetric magnetization reversal with the formation of a spherical domain wall dramatically reduces the coercive field in the ascending branch, leading to the enhancement of the exchange bias. The results provide another degree of freedom to optimize the magnetic properties of magnetic nanoparticles for applications.

  17. Coherent generation of symmetry-forbidden phonons by light-induced electron-phonon interactions in magnetite

    NASA Astrophysics Data System (ADS)

    Borroni, S.; Baldini, E.; Katukuri, V. M.; Mann, A.; Parlinski, K.; Legut, D.; Arrell, C.; van Mourik, F.; Teyssier, J.; Kozlowski, A.; Piekarz, P.; Yazyev, O. V.; Oleś, A. M.; Lorenzana, J.; Carbone, F.

    2017-09-01

    Symmetry breaking across phase transitions often causes changes in selection rules and emergence of optical modes which can be detected via spectroscopic techniques or generated coherently in pump-probe experiments. In second-order or weakly first-order transitions, fluctuations of the ordering field are present above the ordering temperature, giving rise to intriguing precursor phenomena, such as critical opalescence. Here, we demonstrate that in magnetite (Fe3O4 ) light excitation couples to the critical fluctuations of the charge order and coherently generates structural modes of the ordered phase above the critical temperature of the Verwey transition. Our findings are obtained by detecting coherent oscillations of the optical constants through ultrafast broadband spectroscopy and analyzing their dependence on temperature. To unveil the coupling between the structural modes and the electronic excitations, at the origin of the Verwey transition, we combine our results from pump-probe experiments with spontaneous Raman scattering data and theoretical calculations of both the phonon dispersion curves and the optical constants. Our methodology represents an effective tool to study the real-time dynamics of critical fluctuations across phase transitions.

  18. Predicting heterocyclic ring coupling constants through a conformational search of tetra-O-methyl-(+)-catechin

    Treesearch

    Fred L. Tobiason; Richard W. Hemingway

    1994-01-01

    A GMMX conformational search routine gives a family of conformations that reflects the Boltzmann-averaged heterocyclic ring conformation as evidenced by accurate prediction of all three coupling constants observed for tetra-O-methyl-(+)-catechin.

  19. Predicting heterocyclic ring coupling constants through a conformational search of tetra-o-methyl-(+)-catechin

    Treesearch

    Fred L. Tobiason; Richard w. Hemingway

    1994-01-01

    A GMMXe conformational search routine gives a family a conformations that reflects the boltzmann-averaged heterocyclic ring conformation as evidence by accurate prediction of all three coupling constants observed for tetra-O-methyl-(+)-catechin.

  20. Computational Studies of Magnetically Doped Semiconductor Nanoclusters

    NASA Astrophysics Data System (ADS)

    Gutsev, Lavrenty Gennady

    Spin-polarized unrestricted density functional theory is used to calculate the molecular properties of magnetic semiconductor quantum dots doped with 3d-metal atoms. We calculate total energies of the low spin antiferromagnetically coupled states using a spin-flipping algorithm leading to the broken-symmetry states. Given the novel nature of the materials studied, we simulate experimental observables such as hyperfine couplings, ionization/ energies, electron affinities, first and second order polarizabilities, band gaps and exchange coupling constants. Specifically, we begin our investigation with pure clusters of (CdSe )16 and demonstrate the dependence of molecular observables on geometrical structures. We also show that the many isomers of this cluster are energetically quite closely spaced, and thus it would be necessary to employ a battery of tests to experimentally distinguish them. Next, we discuss Mn-doping into the cage (CdSe)9 cluster as well as the zinc-blende stacking type cluster (CdSe)36. We show that the local exchange coupling mechanism is ligand-mediated superexchange and simulate the isotropic hyperfine constants. Finally, we discuss a novel study where (CdSe)9 is doped with Mn or Fe up to a full replacement of all the Cd's and discuss the transition points for the magnetic behavior and specifically the greatly differing band-gap shifts. We also outline an unexpected pattern in the polarizability of the material as metals are added and compare our results with the results from theoretical studies of the bulk material.

  1. Kinetics of photoinduced electron transfer between DNA bases and triplet 3,3',4,4'-benzophenone tetracarboxylic acid in aqueous solution of different pH's: proton-coupled electron transfer?

    PubMed

    Nguyen, Truong X; Kattnig, Daniel; Mansha, Asim; Grampp, Günter; Yurkovskaya, Alexandra V; Lukzen, Nikita

    2012-11-08

    The kinetics of triplet state quenching of 3,3',4,4'-benzophenone tetracarboxylic acid (BPTC) by DNA bases adenine, adenosine, thymine, and thymidine has been investigated in aqueous solution using time-resolved laser flash photolysis. The observation of the BPTC ketyl radical anion at λ(max) = 630 nm indicates that one electron transfer is involved in the quenching reactions. The pH-dependence of the quenching rate constants is measured in detail. As a result, the chemical reactivity of the reactants is assigned. The bimolecular rate constants of the quenching reactions between triplet BPTC and adenine, adenosine, thymine, and thymidine are k(q) = 2.3 × 10(9) (4.7 < pH < 9.9), k(q) = 4.0 × 10(9) (3.5 < pH < 4.7), k(q) = 1.0 × 10(9) (4.7 < pH < 9.9), and k(q) = 4.0 × 10(8) M(-1) s(-1) (4.7 < pH < 9.8), respectively. Moreover, it reveals that in strong basic medium (pH = 12.0) a keto-enol tautomerism of thymine inhibits its reaction with triplet BPTC. Such a behavior is not possible for thymidine because of its deoxyribose group. In addition, the pH-dependence of the apparent electrochemical standard potential of thymine in aqueous solution was investigated by cyclic voltammetry. The ΔE/ΔpH ≈ -59 mV/pH result is characteristic of proton-coupled electron transfer. This behavior, together with the kinetic analysis, leads to the conclusion that the quenching reactions between triplet BPTC and thymine involve one proton-coupled electron transfer.

  2. Kinetics of Photoinduced Electron Transfer between DNA Bases and Triplet 3,3′,4,4′-Benzophenone Tetracarboxylic Acid in Aqueous Solution of Different pH's: Proton-Coupled Electron Transfer?

    PubMed Central

    2012-01-01

    The kinetics of triplet state quenching of 3,3′,4,4′-benzophenone tetracarboxylic acid (BPTC) by DNA bases adenine, adenosine, thymine, and thymidine has been investigated in aqueous solution using time-resolved laser flash photolysis. The observation of the BPTC ketyl radical anion at λmax = 630 nm indicates that one electron transfer is involved in the quenching reactions. The pH-dependence of the quenching rate constants is measured in detail. As a result, the chemical reactivity of the reactants is assigned. The bimolecular rate constants of the quenching reactions between triplet BPTC and adenine, adenosine, thymine, and thymidine are kq = 2.3 × 109 (4.7 < pH < 9.9), kq = 4.0 × 109 (3.5 < pH < 4.7), kq = 1.0 × 109 (4.7 < pH < 9.9), and kq = 4.0 × 108 M–1 s–1 (4.7 < pH < 9.8), respectively. Moreover, it reveals that in strong basic medium (pH = 12.0) a keto–enol tautomerism of thymine inhibits its reaction with triplet BPTC. Such a behavior is not possible for thymidine because of its deoxyribose group. In addition, the pH-dependence of the apparent electrochemical standard potential of thymine in aqueous solution was investigated by cyclic voltammetry. The ΔE/ΔpH ≈ −59 mV/pH result is characteristic of proton-coupled electron transfer. This behavior, together with the kinetic analysis, leads to the conclusion that the quenching reactions between triplet BPTC and thymine involve one proton-coupled electron transfer. PMID:23038981

  3. Bare soil respiration in a temperate climate: multiyear evaluation of a coupled CO2 transport and carbon turnover model

    NASA Astrophysics Data System (ADS)

    Herbst, M.; Hellebrand, H. J.; Bauer, J.; Vanderborght, J.; Vereecken, H.

    2006-12-01

    The modelling of soil respiration plays an important role in the prediction of climate change. Soil respiration is usually divided in autotrophic and heterotrophic fractions orginating from root respiration and microbial decomposition of soil organic carbon, respectively. We report on the coupling of a one dimensional water, heat and CO2 flux model (SOILCO2) with a model of carbon turnover (RothC) for the prediction of soil heterotrophic respiration. The coupled model was tested using soil temperature, soil moisture, and CO2 flux measurements in a bare soil experimental plot located in Bornim, Germany. A seven year record of soil and CO2 measurements covering a broad range of atmospheric and soil conditions was availabe to evaluate the model performance. After calibrating the decomposition rate constant of the humic fraction pool, the overall model performance on CO2 efflux prediction was acceptable. The root mean square error for the CO2 efflux prediction was 0.12 cm ³/cm ²/d. During the severe summer draught of 2003 very high CO2 efluxes were measured, which could not be explained by the model. Those high fluxes were attributed to a pressure pumping effect. The soil temperature dependency of CO2 production was well described by th e model, whereas the biggest opportunity for improvement is seen in a better description of the soil moisture dependency of CO2 production. The calibration of the humus decomposition rate constant revealed a value of 0.09 1/d, which is higher than the original value suggested by the RothC model developers but within the range of literature values.

  4. Effect of electronic coupling of Watson-Crick hopping in DNA poly(dA)-poly(dT)

    NASA Astrophysics Data System (ADS)

    Risqi, A. M.; Yudiarsah, E.

    2017-07-01

    Charge transport properties of poly(dA)-poly(dT) DNA has been studied by using thigh binding Hamiltonian approach. Molecule DNA that we use consist of 32 base pair of adenine (A) and thymine (T) and backbone is consist of phosphate and sugar. The molecule DNA is contacted electrode at both ends. Charge transport in molecule DNA depend on the environment, we studied the effect of electronic coupling of Watson-Crick hopping in poly(dA)-poly(dT) DNA to transmission probability and characteristic I-V. The electronic coupling constant influence charge transport between adenine-thymine base pairs at the same site. Transmission probability is studied by using transfer matrix and scattering matrix method, and the result of transmission probability is used to calculate the characteristic I-V by using formula Landauer Buttiker. The result shows that when the electronic coupling increase then transmission probability and characteristic I-V increase slightly.

  5. Magnetic and metal-insulator transitions in coupled spin-fermion systems

    DOE PAGES

    Mondaini, R.; Paiva, T.; Scalettar, R. T.

    2014-10-14

    We use quantum Monte Carlo to determine the magnetic and transport properties of coupled square lattice spin and fermionic planes as a model for a metal-insulator interface. Specifically, layers of Ising spins with an intra-layer exchange constant J interact with the electronic spins of several adjoining metallic sheets via a coupling JH. When the chemical potential cuts across the band center, that is, at half-filling, the Neel temperature of antiferromagnetic (J > 0) Ising spins is enhanced by the coupling to the metal, while in the ferromagnetic case (J < 0) the metallic degrees of freedom reduce the ordering temperature.more » In the former case, a gap opens in the fermionic spectrum, driving insulating behavior, and the electron spins also order. This induced antiferromagnetism penetrates more weakly as the distance from the interface increases, and also exhibits a non-monotonic dependence on JH. For doped lattices an interesting charge disproportionation occurs where electrons move to the interface layer to maintain half-filling there.« less

  6. Collective behavior of coupled nonuniform stochastic oscillators

    NASA Astrophysics Data System (ADS)

    Assis, Vladimir R. V.; Copelli, Mauro

    2012-02-01

    Theoretical studies of synchronization are usually based on models of coupled phase oscillators which, when isolated, have constant angular frequency. Stochastic discrete versions of these uniform oscillators have also appeared in the literature, with equal transition rates among the states. Here we start from the model recently introduced by Wood et al. [K. Wood, C. Van den Broeck, R. Kawai, K. Lindenberg, Universality of synchrony: critical behavior in a discrete model of stochastic phase-coupled oscillators, Phys. Rev. Lett. 96 (2006) 145701], which has a collectively synchronized phase, and parametrically modify the phase-coupled oscillators to render them (stochastically) nonuniform. We show that, depending on the nonuniformity parameter 0≤α≤1, a mean field analysis predicts the occurrence of several phase transitions. In particular, the phase with collective oscillations is stable for the complete graph only for α≤α‧<1. At α=1 the oscillators become excitable elements and the system has an absorbing state. In the excitable regime, no collective oscillations were found in the model.

  7. Surface Plasmon Waves on Thin Metal Films.

    NASA Astrophysics Data System (ADS)

    Craig, Alan Ellsworth

    Surface-plasmon polaritons propagating on thin metal films bounded by dielectrics of nearly equal refractive indexes comprise two bound modes. Calculations indicate that, while the modes are degenerate on thick films, both the real and the imaginary components of the propagation constants for the modes split into two branches on successively thinner films. Considering these non-degenerate modes, the mode exhibiting a symmetric (antisymmetric) transverse profile of the longitudinally polarized electric field component, has propagation constant components both of which increase (decrease) with decreasing film thickness. Theoretical propagation constant eigenvalue (PCE) curves have been plotted which delineate this dependence of both propagation constant components on film thickness. By means of a retroreflecting, hemispherical glass coupler in an attenuated total reflection (ATR) configuration, light of wavelength 632.8 nm coupled to the modes of thin silver films deposited on polished glass substrates. Lorentzian lineshape dips in the plots of reflectance vs. angle of incidence indicate the presence of the plasmon modes. The real and imaginary components of the propagation constraints (i.e., the propagation constant and loss coefficient) were calculated from the angular positions and widths of the ATR resonances recorded. Films of several thicknesses were probed. Results which support the theoretically predicted curves were reported.

  8. Born-Oppenheimer and Renner-Teller coupled-channel quantum reaction dynamics of O((3)P) + H2(+)(X(2)Σg(+)) collisions.

    PubMed

    Gamallo, Pablo; Defazio, Paolo; González, Miguel; Paniagua, Miguel; Petrongolo, Carlo

    2015-09-28

    We present Born-Oppenheimer (BO) and Renner-Teller (RT) time dependent quantum dynamics studies of the reactions O((3)P) + H2(+)(X(2)Σg(+)) → OH(+)(X(3)Σ(-)) + H((2)S) and OH(X(2)Π) + H(+). We consider the OH2(+) X[combining tilde](2)A'' and Ã(2)A' electronic states that correlate with a linear (2)Π species. The electronic angular momenta operators L[combining circumflex] and L[combining circumflex](2) are considered in nonadiabatic coupled-channel calculations, where the associated RT effects are due to diagonal V(RT) potentials that add up to the PESs and to off-diagonal C(RT) couplings between the potential energy surfaces (PESs). Initial-state-resolved reaction probabilities PI, integral cross sections σI, and rate constants kI are obtained using recent ab initio PESs and couplings and the real wavepacket formalism. Because the PESs are strongly attractive, PI have no threshold energy and are large, σI decrease with collision energy, and kI depend little on the temperature. The X[combining tilde](2)A'' PES is up to three times more reactive than the Ã(2)A' PES and H2(+) rotational effects (j0 = 0, 1) are negligible. The diagonal V(RT) potentials are strongly repulsive at the collinearity and nearly halve all low-energy observables with respect to the BO ones. The off-diagonal C(RT) couplings are important at low partial waves, where they mix the X[combining tilde](2)A'' and Ã(2)A' states up to ∼20%. However, V(RT) effects predominate over the C(RT) ones that change at most by ∼19% the BO values of σI and kI. The reaction O((3)P) + H2(+)(X(2)Σg(+)) → OH(+)(X(3)Σ(-)) + H((2)S) is probably one of the most reactive atom + diatom collisions because its RT rate constant at room temperature is equal to 2.26 × 10(-10) cm(3) s(-1). Within the BO approximation, the present results agree rather well with recent quasiclassical and centrifugal-sudden data using the same PESs.

  9. Boson mapping techniques applied to constant gauge fields in QCD

    NASA Technical Reports Server (NTRS)

    Hess, Peter Otto; Lopez, J. C.

    1995-01-01

    Pairs of coordinates and derivatives of the constant gluon modes are mapped to new gluon-pair fields and their derivatives. Applying this mapping to the Hamiltonian of constant gluon fields results for large coupling constants into an effective Hamiltonian which separates into one describing a scalar field and another one for a field with spin two. The ground state is dominated by pairs of gluons coupled to color and spin zero with slight admixtures of color zero and spin two pairs. As color group we used SU(2).

  10. Magnetic and structural studies of trivalent Co-substituted Cd-Mn ferrites

    NASA Astrophysics Data System (ADS)

    Amer, M. A.; Meaz, T. M.; El-Kestawy, M.; Ghoneim, A. I.

    2016-05-01

    Series of polycrystalline Cd0.4Mn0.6CoxFe2-xO4 ferrites, 0≤x≤1, were prepared by solid state reaction method. The samples were characterized by inductive coupling plasma, X-ray diffraction, scanning electron microscopy, Fourier-transform infrared spectra and vibrating sample magnetometry. This study proved that all samples have single-phase cubic spinel structure. The true lattice constant, saturation magnetization, magnetic moment and trend of grain size and IR band νA showed decrease against x, whereas the trend of crystallite size, threshold frequency, Debye temperature, IR bands ν1 and ν2 and force constants F1 and F2, coercivity, anisotropy constant and residual magnetization showed increase. The IR analysis proved existence of Fe2+, Co2+, Fe4+, Co4+ and/or Mn4+ ions amongst the crystal sublattices. The characteristic bands ν1 and ν2 and force constants F1 and F2 showed decrease versus the tetrahedral- and octahedral-site bond length, respectively. The strain, specific surface area, refractive index, velocity, jump rate and remnant magnetization proved dependence on Co3+ ion content x.

  11. Properties of the new high Tc materials - An analysis based on fermiology

    NASA Astrophysics Data System (ADS)

    Kresin, V. Z.; Deutscher, G.; Wolf, S. A.

    1989-03-01

    A small value of the Fermi energy, E(f), in the new Tc oxides and its consequences are the subject of this study. It is shown that the small value of Ef allows separation of the electronic contribution to the heat capacity in the high-temperature region between E(f)kB and theta(D) to determine the value of the electron-phonon coupling constant lambda. The linear temperature dependence of the normal resistance is mainly due to a large anisotropy of the system. A small value of E(f) allows the lattice contribution to the thermal conductivity to play a dominant role. A strong electron-phonon coupling is manifested in the increase of the thermal conductivity in the region T lower than Tc, and the appearance of such coupling is also connected with a small value of E(f).

  12. Weyl corrections to diffusion and chaos in holography

    NASA Astrophysics Data System (ADS)

    Li, Wei-Jia; Liu, Peng; Wu, Jian-Pin

    2018-04-01

    Using holographic methods in the Einstein-Maxwell-dilaton-axion (EMDA) theory, it was conjectured that the thermal diffusion in a strongly coupled metal without quasi-particles saturates an universal lower bound that is associated with the chaotic property of the system at infrared (IR) fixed points [1]. In this paper, we investigate the thermal transport and quantum chaos in the EMDA theory with a small Weyl coupling term. It is found that the Weyl coupling correct the thermal diffusion constant D Q and butterfly velocity v B in different ways, hence resulting in a modified relation between the two at IR fixed points. Unlike that in the EMDA case, our results show that the ratio D Q /( v B 2 τ L ) always contains a non-universal Weyl correction which depends also on the bulk fields as long as the U(1) current is marginally relevant in the IR.

  13. Hydride Transfer in DHFR by Transition Path Sampling, Kinetic Isotope Effects, and Heavy Enzyme Studies

    PubMed Central

    Wang, Zhen; Antoniou, Dimitri; Schwartz, Steven D.; Schramm, Vern L.

    2016-01-01

    Escherichia coli dihydrofolate reductase (ecDHFR) is used to study fundamental principles of enzyme catalysis. It remains controversial whether fast protein motions are coupled to the hydride transfer catalyzed by ecDHFR. Previous studies with heavy ecDHFR proteins labeled with 13C, 15N, and nonexchangeable 2H reported enzyme mass-dependent hydride transfer kinetics for ecDHFR. Here, we report refined experimental and computational studies to establish that hydride transfer is independent of protein mass. Instead, we found the rate constant for substrate dissociation to be faster for heavy DHFR. Previously reported kinetic differences between light and heavy DHFRs likely arise from kinetic steps other than the chemical step. This study confirms that fast (femtosecond to picosecond) protein motions in ecDHFR are not coupled to hydride transfer and provides an integrative computational and experimental approach to resolve fast dynamics coupled to chemical steps in enzyme catalysis. PMID:26652185

  14. Enhancement of piezoelectric constants induced by cation-substitution and two-dimensional strain effects on ZnO predicted by density functional perturbation theory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nakamura, Kaoru, E-mail: n-kaoru@criepi.denken.or.jp; Higuchi, Sadao; Ohnuma, Toshiharu

    2016-03-21

    Using density functional perturbation theory, we investigated the effect of various substitutional dopant elements and in-plane strain on the piezoelectric properties of ZnO. The piezoelectric stress constant e{sub 33} of doped ZnO was found to depend on the formal charge of the substitutional dopant. By decomposing the piezoelectric stress constant e{sub 33} into the individual atomic contributions, the change in the piezoelectric properties was found to originate from a change in the coupling between the atomic displacement and the strain. Furthermore, we found that in-plane tensile strain along the a axis, which is specific to the thin film, can enhancemore » the piezoelectric constant of ZnO. A phase transition from wurtzite to h-BN-type structure was found to occur with increasing in-plane tensile. The piezoelectric strain constant d{sub 33} was predicted to reach ∼200 pC/N for 2.78 at. % V-substituted ZnO at 5.5% in-plane strain, just before the phase transition. These theoretical results suggest that the piezoelectric constant of ZnO can be enhanced by controlling the in-plane strain via selection of the substrate material and dopant element.« less

  15. On bound-states of the Gross Neveu model with massive fundamental fermions

    NASA Astrophysics Data System (ADS)

    Frishman, Yitzhak; Sonnenschein, Jacob

    2018-01-01

    In the search for QFT's that admit boundstates, we reinvestigate the two dimensional Gross-Neveu model, but with massive fermions. By computing the self-energy for the auxiliary boundstate field and the effective potential, we show that there are no bound states around the lowest minimum, but there is a meta-stable bound state around the other minimum, a local one. The latter decays by tunneling. We determine the dependence of its lifetime on the fermion mass and coupling constant.

  16. Quark masses and strong coupling constant in 2+1 flavor QCD

    DOE PAGES

    Maezawa, Y.; Petreczky, P.

    2016-08-30

    We present a determination of the strange, charm and bottom quark masses as well as the strong coupling constant in 2+1 flavor lattice QCD simulations using highly improved staggered quark action. The ratios of the charm quark mass to the strange quark mass and the bottom quark mass to the charm quark mass are obtained from the meson masses calculated on the lattice and found to be mc/ms = 11.877(91) and mb/mc = 4.528(57) in the continuum limit. We also determine the strong coupling constant and the charm quark mass using the moments of pseudoscalar charmonium correlators: α s(μ =more » m c) = 0.3697(85) and mc(μ = mc) = 1.267(12) GeV. Our result for αs corresponds to the determination of the strong coupling constant at the lowest energy scale so far and is translated to the value α s(μ = M Z, n f = 5) = 0.11622(84).« less

  17. Van’t Hoff global analyses of variable temperature isothermal titration calorimetry data

    PubMed Central

    Freiburger, Lee A.; Auclair, Karine; Mittermaier, Anthony K.

    2016-01-01

    Isothermal titration calorimetry (ITC) can provide detailed information on the thermodynamics of biomolecular interactions in the form of equilibrium constants, KA, and enthalpy changes, ΔHA. A powerful application of this technique involves analyzing the temperature dependences of ITC-derived KA and ΔHA values to gain insight into thermodynamic linkage between binding and additional equilibria, such as protein folding. We recently developed a general method for global analysis of variable temperature ITC data that significantly improves the accuracy of extracted thermodynamic parameters and requires no prior knowledge of the coupled equilibria. Here we report detailed validation of this method using Monte Carlo simulations and an application to study coupled folding and binding in an aminoglycoside acetyltransferase enzyme. PMID:28018008

  18. Effect of hydro mechanical coupling on natural fracture network formation in sedimentary basins

    NASA Astrophysics Data System (ADS)

    Ouraga, Zady; Guy, Nicolas; Pouya, Amade

    2018-05-01

    In sedimentary basin context, numerous phenomena, depending on the geological time span, can result in natural fracture network formation. In this paper, fracture network and dynamic fracture spacing triggered by significant sedimentation rate are studied considering mode I fracture propagation using a coupled hydro-mechanical numerical methods. The focus is put on synthetic geological structure under a constant sedimentation rate on its top. This model contains vertical fracture network initially closed and homogeneously distributed. The fractures are modelled with cohesive zone model undergoing damage and the flow is described by Poiseuille's law. The effect of the behaviour of the rock is studied and the analysis leads to a pattern of fracture network and fracture spacing in the geological layer.

  19. Quantification of Stereochemical Communication in Metal-Organic Assemblies.

    PubMed

    Castilla, Ana M; Miller, Mark A; Nitschke, Jonathan R; Smulders, Maarten M J

    2016-08-26

    The derivation and application of a statistical mechanical model to quantify stereochemical communication in metal-organic assemblies is reported. The factors affecting the stereochemical communication within and between the metal stereocenters of the assemblies were experimentally studied by optical spectroscopy and analyzed in terms of a free energy penalty per "incorrect" amine enantiomer incorporated, and a free energy of coupling between stereocenters. These intra- and inter-vertex coupling constants are used to track the degree of stereochemical communication across a range of metal-organic assemblies (employing different ligands, peripheral amines, and metals); temperature-dependent equilibria between diastereomeric cages are also quantified. The model thus provides a unified understanding of the factors that shape the chirotopic void spaces enclosed by metal-organic container molecules.

  20. Characterization of hot dense plasma with plasma parameters

    NASA Astrophysics Data System (ADS)

    Singh, Narendra; Goyal, Arun; Chaurasia, S.

    2018-05-01

    Characterization of hot dense plasma (HDP) with its parameters temperature, electron density, skin depth, plasma frequency is demonstrated in this work. The dependence of HDP parameters on temperature and electron density is discussed. The ratio of the intensities of spectral lines within HDP is calculated as a function of electron temperature. The condition of weakly coupled for HDP is verified by calculating coupling constant. Additionally, atomic data such as transition wavelength, excitation energies, line strength, etc. are obtained for Be-like ions on the basis of MCDHF method. In atomic data calculations configuration interaction and relativistic effects QED and Breit corrections are newly included for HDP characterization and this is first result of HDP parameters from extreme ultraviolet (EUV) radiations.

  1. Electron transfer precedes ATP hydrolysis during nitrogenase catalysis

    PubMed Central

    Duval, Simon; Danyal, Karamatullah; Shaw, Sudipta; Lytle, Anna K.; Dean, Dennis R.; Hoffman, Brian M.; Antony, Edwin; Seefeldt, Lance C.

    2013-01-01

    The biological reduction of N2 to NH3 catalyzed by Mo-dependent nitrogenase requires at least eight rounds of a complex cycle of events associated with ATP-driven electron transfer (ET) from the Fe protein to the catalytic MoFe protein, with each ET coupled to the hydrolysis of two ATP molecules. Although steps within this cycle have been studied for decades, the nature of the coupling between ATP hydrolysis and ET, in particular the order of ET and ATP hydrolysis, has been elusive. Here, we have measured first-order rate constants for each key step in the reaction sequence, including direct measurement of the ATP hydrolysis rate constant: kATP = 70 s−1, 25 °C. Comparison of the rate constants establishes that the reaction sequence involves four sequential steps: (i) conformationally gated ET (kET = 140 s−1, 25 °C), (ii) ATP hydrolysis (kATP = 70 s−1, 25 °C), (iii) Phosphate release (kPi = 16 s−1, 25 °C), and (iv) Fe protein dissociation from the MoFe protein (kdiss = 6 s−1, 25 °C). These findings allow completion of the thermodynamic cycle undergone by the Fe protein, showing that the energy of ATP binding and protein–protein association drive ET, with subsequent ATP hydrolysis and Pi release causing dissociation of the complex between the Feox(ADP)2 protein and the reduced MoFe protein. PMID:24062462

  2. Electron spectra in forbidden β decays and the quenching of the weak axial-vector coupling constant gA

    NASA Astrophysics Data System (ADS)

    Kostensalo, Joel; Haaranen, Mikko; Suhonen, Jouni

    2017-04-01

    Evolution of the electron spectra with the effective value of the weak axial-vector coupling constant gA was followed for 26 first-, second-, third-, fourth- and fifth-forbidden β- decays of odd-A nuclei by calculating the involved nuclear matrix elements (NMEs) in the framework of the microscopic quasiparticle-phonon model (MQPM). The next-to-leading-order terms were included in the β -decay shape factor of the electron spectra. The spectrum shapes of third- and fourth-forbidden nonunique decays were found to depend strongly on the value of gA, while first- and second-forbidden decays were mostly unaffected by the tuning of gA. The gA-driven evolution of the normalized β spectra was found to be quite universal, largely insensitive to the small changes in the nuclear mean field and the adopted residual many-body Hamiltonian producing the excitation spectra of the MQPM. This makes the comparison of experimental and theoretical electron spectra, coined "the spectrum-shape method" (SSM), a robust tool for extracting information on the effective values of the weak coupling constants. In this exploratory work two new experimentally interesting decays for the SSM treatment were discovered: the ground-state-to-ground-state decays of 99Tc and 87Rb. Comparing the experimental and theoretical spectra of these decays could shed light on the effective values of gA and gV for second- and third-forbidden nonunique decays. The measurable decay transitions of 135Cs and 137Cs, in turn, can be used to test the SSM in different many-body formalisms. The present work can also be considered as a (modest) step towards solving the gA problem of the neutrinoless double beta decay.

  3. NMR experiments for the rapid identification of P=O···H-X type hydrogen bonds in nucleic acids.

    PubMed

    Duchardt-Ferner, Elke; Wöhnert, Jens

    2017-10-01

    Hydrogen bonds involving the backbone phosphate groups occur with high frequency in functional RNA molecules. They are often found in well-characterized tertiary structural motifs presenting powerful probes for the rapid identification of these motifs for structure elucidation purposes. We have shown recently that stable hydrogen bonds to the phosphate backbone can in principle be detected by relatively simple NMR-experiments, providing the identity of both the donor hydrogen and the acceptor phosphorous within the same experiment (Duchardt-Ferner et al., Angew Chem Int Ed Engl 50:7927-7930, 2011). However, for imino and hydroxyl hydrogen bond donor groups rapidly exchanging with the solvent as well as amino groups broadened by conformational exchange experimental sensitivity is severely hampered by extensive line broadening. Here, we present improved methods for the rapid identification of hydrogen bonds to phosphate groups in nucleic acids by NMR. The introduction of the SOFAST technique into 1 H, 31 P-correlation experiments as well as a BEST-HNP experiment exploiting 3h J N,P rather than 2h J H,P coupling constants enables the rapid and sensitive identification of these hydrogen bonds in RNA. The experiments are applicable for larger RNAs (up to ~ 100-nt), for donor groups influenced by conformational exchange processes such as amino groups and for hydrogen bonds with rather labile hydrogens such as 2'-OH groups as well as for moderate sample concentrations. Interestingly, the size of the through-hydrogen bond scalar coupling constants depends not only on the type of the donor group but also on the structural context. The largest coupling constants were measured for hydrogen bonds involving the imino groups of protonated cytosine nucleotides as donors.

  4. Spin-orbit coupled potential energy surfaces and properties using effective relativistic coupling by asymptotic representation.

    PubMed

    Ndome, Hameth; Eisfeld, Wolfgang

    2012-08-14

    A new method has been reported recently [H. Ndome, R. Welsch, and W. Eisfeld, J. Chem. Phys. 136, 034103 (2012)] that allows the efficient generation of fully coupled potential energy surfaces (PESs) including derivative and spin-orbit (SO) coupling. The method is based on the diabatic asymptotic representation of the molecular fine structure states and an effective relativistic coupling operator and therefore is called effective relativistic coupling by asymptotic representation (ERCAR). The resulting diabatic spin-orbit coupling matrix is constant and the geometry dependence of the coupling between the eigenstates is accounted for by the diabatization. This approach allows to generate an analytical model for the fully coupled PESs without performing any ab initio SO calculations (except perhaps for the atoms) and thus is very efficient. In the present work, we study the performance of this new method for the example of hydrogen iodide as a well-established test case. Details of the diabatization and the accuracy of the results are investigated in comparison to reference ab initio calculations. The energies of the adiabatic fine structure states are reproduced in excellent agreement with reference ab initio data. It is shown that the accuracy of the ERCAR approach mainly depends on the quality of the underlying ab initio data. This is also the case for dissociation and vibrational level energies, which are influenced by the SO coupling. A method is presented how one-electron operators and the corresponding properties can be evaluated in the framework of the ERCAR approach. This allows the computation of dipole and transition moments of the fine structure states in good agreement with ab initio data. The new method is shown to be very promising for the construction of fully coupled PESs for more complex polyatomic systems to be used in quantum dynamics studies.

  5. Predicting a contact's sensitivity to initial conditions using metrics of frictional coupling

    DOE PAGES

    Flicek, Robert C.; Hills, David A.; Brake, Matthew Robert W.

    2016-09-29

    This paper presents a method for predicting how sensitive a frictional contact’s steady-state behavior is to its initial conditions. Previous research has proven that if a contact is uncoupled, i.e. if slip displacements do not influence the contact pressure distribution, then its steady-state response is independent of initial conditions, but if the contact is coupled, the steady-state response depends on initial conditions. In this paper, two metrics for quantifying coupling in discrete frictional systems are examined. These metrics suggest that coupling is dominated by material dissimilarity due to Dundurs’ composite material parameter β when β ≥ 0.2, but geometric mismatchmore » becomes the dominant source of coupling for smaller values of β. Based on a large set of numerical simulations with different contact geometries, material combinations, and friction coefficients, a contact’s sensitivity to initial conditions is found to be correlated with the product of the coupling metric and the friction coefficient. For cyclic shear loading, this correlation is maintained for simulations with different contact geometries, material combinations, and friction coefficients. Furthermore, for cyclic bulk loading, the correlation is only maintained when the contact edge angle is held constant.« less

  6. Predicting a contact's sensitivity to initial conditions using metrics of frictional coupling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Flicek, Robert C.; Hills, David A.; Brake, Matthew Robert W.

    This paper presents a method for predicting how sensitive a frictional contact’s steady-state behavior is to its initial conditions. Previous research has proven that if a contact is uncoupled, i.e. if slip displacements do not influence the contact pressure distribution, then its steady-state response is independent of initial conditions, but if the contact is coupled, the steady-state response depends on initial conditions. In this paper, two metrics for quantifying coupling in discrete frictional systems are examined. These metrics suggest that coupling is dominated by material dissimilarity due to Dundurs’ composite material parameter β when β ≥ 0.2, but geometric mismatchmore » becomes the dominant source of coupling for smaller values of β. Based on a large set of numerical simulations with different contact geometries, material combinations, and friction coefficients, a contact’s sensitivity to initial conditions is found to be correlated with the product of the coupling metric and the friction coefficient. For cyclic shear loading, this correlation is maintained for simulations with different contact geometries, material combinations, and friction coefficients. Furthermore, for cyclic bulk loading, the correlation is only maintained when the contact edge angle is held constant.« less

  7. First-Principles Study on the Gilbert Damping Constants of Transition Metal Alloys, Fe--Ni and Fe--Pt Systems

    NASA Astrophysics Data System (ADS)

    Sakuma, Akimasa

    2012-08-01

    We adapt the tight-binding linear muffin-tin orbital (TB-LMTO) method to the torque-correlation model for the Gilbert damping constant α and perform the first-principles calculation for disordered transition metal alloys, Fe--Ni and Fe--Pt systems, within the framework of the CPA. Quantitatively, the calculated α values are about one-half of the experimental values, whereas the variations in the Fermi level dependence of α are much larger than these discrepancies. As expected, we confirm in the (Fe--Ni)1-XPtX and FePt systems that Pt atoms certainly enhance α owing to their large spin--orbit coupling. For the disordered alloys, we find that α decreases with increasing chemical degree of order in a wide range.

  8. Neutron star dynamics under time dependent external torques

    NASA Astrophysics Data System (ADS)

    Alpar, M. A.; Gügercinoğlu, E.

    2017-12-01

    The two component model of neutron star dynamics describing the behaviour of the observed crust coupled to the superfluid interior has so far been applied to radio pulsars for which the external torques are constant on dynamical timescales. We recently solved this problem under arbitrary time dependent external torques. Our solutions pertain to internal torques that are linear in the rotation rates, as well as to the extremely non-linear internal torques of the vortex creep model. Two-component models with linear or nonlinear internal torques can now be applied to magnetars and to neutron stars in binary systems, with strong variability and timing noise. Time dependent external torques can be obtained from the observed spin-down (or spin-up) time series, \\dot Ω ≤ft( t \\right).

  9. Barrierless association of CF2 and dissociation of C2F4 by variational transition-state theory and system-specific quantum Rice–Ramsperger–Kassel theory

    PubMed Central

    Bao, Junwei Lucas; Zhang, Xin

    2016-01-01

    Bond dissociation is a fundamental chemical reaction, and the first principles modeling of the kinetics of dissociation reactions with a monotonically increasing potential energy along the dissociation coordinate presents a challenge not only for modern electronic structure methods but also for kinetics theory. In this work, we use multifaceted variable-reaction-coordinate variational transition-state theory (VRC-VTST) to compute the high-pressure limit dissociation rate constant of tetrafluoroethylene (C2F4), in which the potential energies are computed by direct dynamics with the M08-HX exchange correlation functional. To treat the pressure dependence of the unimolecular rate constants, we use the recently developed system-specific quantum Rice–Ramsperger–Kassel theory. The calculations are carried out by direct dynamics using an exchange correlation functional validated against calculations that go beyond coupled-cluster theory with single, double, and triple excitations. Our computed dissociation rate constants agree well with the recent experimental measurements. PMID:27834727

  10. Barrierless association of CF2 and dissociation of C2F4 by variational transition-state theory and system-specific quantum Rice-Ramsperger-Kassel theory.

    PubMed

    Bao, Junwei Lucas; Zhang, Xin; Truhlar, Donald G

    2016-11-29

    Bond dissociation is a fundamental chemical reaction, and the first principles modeling of the kinetics of dissociation reactions with a monotonically increasing potential energy along the dissociation coordinate presents a challenge not only for modern electronic structure methods but also for kinetics theory. In this work, we use multifaceted variable-reaction-coordinate variational transition-state theory (VRC-VTST) to compute the high-pressure limit dissociation rate constant of tetrafluoroethylene (C 2 F 4 ), in which the potential energies are computed by direct dynamics with the M08-HX exchange correlation functional. To treat the pressure dependence of the unimolecular rate constants, we use the recently developed system-specific quantum Rice-Ramsperger-Kassel theory. The calculations are carried out by direct dynamics using an exchange correlation functional validated against calculations that go beyond coupled-cluster theory with single, double, and triple excitations. Our computed dissociation rate constants agree well with the recent experimental measurements.

  11. Wall of fundamental constants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Olive, Keith A.; School of Physics and Astronomy, University of Minnesota, Minneapolis, Minnesota, 55455; Peloso, Marco

    2011-02-15

    We consider the signatures of a domain wall produced in the spontaneous symmetry breaking involving a dilatonlike scalar field coupled to electromagnetism. Domains on either side of the wall exhibit slight differences in their respective values of the fine-structure constant, {alpha}. If such a wall is present within our Hubble volume, absorption spectra at large redshifts may or may not provide a variation in {alpha} relative to the terrestrial value, depending on our relative position with respect to the wall. This wall could resolve the contradiction between claims of a variation of {alpha} based on Keck/Hires data and of themore » constancy of {alpha} based on Very Large Telescope data. We derive the properties of the wall and the parameters of the underlying microscopic model required to reproduce the possible spatial variation of {alpha}. We discuss the constraints on the existence of the low-energy domain wall and describe its observational implications concerning the variation of the fundamental constants.« less

  12. Continuous quantum error correction for non-Markovian decoherence

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Oreshkov, Ognyan; Brun, Todd A.; Communication Sciences Institute, University of Southern California, Los Angeles, California 90089

    2007-08-15

    We study the effect of continuous quantum error correction in the case where each qubit in a codeword is subject to a general Hamiltonian interaction with an independent bath. We first consider the scheme in the case of a trivial single-qubit code, which provides useful insights into the workings of continuous error correction and the difference between Markovian and non-Markovian decoherence. We then study the model of a bit-flip code with each qubit coupled to an independent bath qubit and subject to continuous correction, and find its solution. We show that for sufficiently large error-correction rates, the encoded state approximatelymore » follows an evolution of the type of a single decohering qubit, but with an effectively decreased coupling constant. The factor by which the coupling constant is decreased scales quadratically with the error-correction rate. This is compared to the case of Markovian noise, where the decoherence rate is effectively decreased by a factor which scales only linearly with the rate of error correction. The quadratic enhancement depends on the existence of a Zeno regime in the Hamiltonian evolution which is absent in purely Markovian dynamics. We analyze the range of validity of this result and identify two relevant time scales. Finally, we extend the result to more general codes and argue that the performance of continuous error correction will exhibit the same qualitative characteristics.« less

  13. Finite-Size Effects in Non-neutral Two-Dimensional Coulomb Fluids

    NASA Astrophysics Data System (ADS)

    Šamaj, Ladislav

    2017-07-01

    Thermodynamic potential of a neutral two-dimensional (2D) Coulomb fluid, confined to a large domain with a smooth boundary, exhibits at any (inverse) temperature β a logarithmic finite-size correction term whose universal prefactor depends only on the Euler number of the domain and the conformal anomaly number c=-1. A minimal free boson conformal field theory, which is equivalent to the 2D symmetric two-component plasma of elementary ± e charges at coupling constant Γ =β e^2, was studied in the past. It was shown that creating a non-neutrality by spreading out a charge Qe at infinity modifies the anomaly number to c(Q,Γ ) = - 1 + 3Γ Q^2. Here, we study the effect of non-neutrality on the finite-size expansion of the free energy for another Coulomb fluid, namely the 2D one-component plasma (jellium) composed of identical pointlike e-charges in a homogeneous background surface charge density. For the disk geometry of the confining domain we find that the non-neutrality induces the same change of the anomaly number in the finite-size expansion. We derive this result first at the free-fermion coupling Γ ≡ β e^2=2 and then, by using a mapping of the 2D one-component plasma onto an anticommuting field theory formulated on a chain, for an arbitrary even coupling constant.

  14. High temperature coercive field behavior of Fe-Zr powder

    NASA Astrophysics Data System (ADS)

    Mishra, Debabrata; Perumal, A.; Srinivasan, A.

    2009-04-01

    We report the investigation of high temperature coercive field behavior of Fe80Zr20 nanocrystalline alloy powder having two-phase microstructure prepared by mechanical alloying process. Thermomagnetization measurement shows the presence of two different magnetic phase transitions corresponding to the amorphous matrix and nonequilibrium Fe(Zr) solid solution. Temperature dependent coercivity exhibits a sharp increase in its value close to the Curie temperature of the amorphous matrix. This feature is attributed to the loss of intergranular ferromagnetic exchange coupling between the nanocrystallites due to the paramagnetic nature of the amorphous matrix. The temperature dependent coercive field behavior is ascribed to the variations in both the effective anisotropy and the exchange stiffness constant with temperature.

  15. Low-dimensional ordering and fluctuations in methanol-{beta}-hydroquinone clathrate studied by x-ray and neutron diffraction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rheinstaedter, Maikel C.; Enderle, Mechthild; Kloepperpieper, Axel

    2005-01-01

    Methanol-{beta}-hydroquinone clathrate has been established as a model system for dielectric ordering and fluctuations and is conceptually close to magnetic spin systems. In x-ray and neutron diffraction experiments, we investigated the ordered structure, the one-dimensional (1D) and the three-dimensional critical scattering in the paraelectric phase, and the temperature dependence of the lattice constants. Our results can be explained by microscopic models of the methanol pseudospin in the hydroquinone cage network, in consistency with previous dielectric investigations. A coupling of the 1D fluctuations to local strains leads to an anomalous temperature dependence of the 1D lattice parameter in the paraelectric regime.

  16. Quantum dynamics of the reaction H((2)S) + HeH(+)(X(1)Σ(+)) → H2(+)(X(2)Σg(+)) + He((1)S) from cold to hyperthermal energies: time-dependent wavepacket study and comparison with time-independent calculations.

    PubMed

    Gamallo, Pablo; Akpinar, Sinan; Defazio, Paolo; Petrongolo, Carlo

    2014-08-21

    We present the adiabatic quantum dynamics of the proton-transfer reaction H((2)S) + HeH(+)(X(1)Σ(+)) → H2(+)(X(2)Σg(+)) + He((1)S) on the HeH2(+) X̃(2)Σ(+) RMRCI6 (M = 6) PES of C. N. Ramachandran et al. ( Chem. Phys. Lett. 2009, 469, 26). We consider the HeH(+) molecule in the ground vibrational–rotational state and obtain initial-state-resolved reaction probabilities and the ground-state cross section σ0 and rate constant k0 by propagating time-dependent, coupled-channel, real wavepackets (RWPs) and performing a flux analysis. Three different wavepackets are propagated to describe the wide range of energies explored, from cold (0.0001 meV) to hyperthermal (1000 meV) collision energies, and in a temperature range from 0.01 to 2000 K. We compare our time-dependent results with the time-independent ones by D. De Fazio and S. Bovino et al., where De Fazio carried out benchmark coupled-channel calculations whereas Bovino et al. employed the negative imaginary potential and the centrifugal-sudden approximations. The RWP cross section is in good agreement with that by De Fazio, except at the lowest collision energies below ∼0.01 meV, where the former is larger than the latter. However, neither the RWP and De Fazio results possess the huge resonance in probability and cross section at 0.01 meV, found by Bovino et al., who also obtained a too low σ0 at high energies. Therefore, the RWP and De Fazio rate constants compare quite well, whereas that by Bovino et al. is in general lower.

  17. Analysis and design of ferroelectric-based smart antenna structures

    NASA Astrophysics Data System (ADS)

    Ramesh, Prashanth; Washington, Gregory N.

    2009-03-01

    Ferroelectrics in microwave antenna systems offer benefits of electronic tunability, compact size and light weight, speed of operation, high power-handling, low dc power consumption, and potential for low loss and cost. Ferroelectrics allow for the tuning of microwave devices by virtue of the nonlinear dependence of their dielectric permittivity on an applied electric field. Experiments on the field-polarization dependence of ferroelectric thin films show variation in dielectric permittivity of up to 50%. This is in contrast to the conventional dielectric materials used in electrical devices which have a relatively constant permittivity, indicative of the linear field-polarization curve. Ferroelectrics, with their variable dielectric constant introduce greater flexibility in correction and control of beam shapes and beam direction of antenna structures. The motivation behind this research is applying ferroelectrics to mechanical load bearing antenna structures, but in order to develop such structures, we need to understand not just the field-permittivity dependence, but also the coupled electro-thermo-mechanical behavior of ferroelectrics. In this paper, two models are discussed: a nonlinear phenomenological model relating the applied fields, strains and temperature to the dielectric permittivity based on the Devonshire thermodynamic framework, and a phenomenological model relating applied fields and temperature to the dielectric loss tangent. The models attempt to integrate the observed field-permittivity, strain-permittivity and temperature-permittivity behavior into one single unified model and extend the resulting model to better fit experimental data. Promising matches with experimental data are obtained. These relations, coupled with the expression for operating frequency vs. the permittivity are then used to understand the bias field vs. frequency behavior of the antenna. Finally, the effect of the macroscopic variables on the antenna radiation efficiency is discussed.

  18. Comparison of Calculation and Experiment Implicates Significant Electrostatic Contributions to the Binding Stability of Barnase and Barstar

    PubMed Central

    Dong, Feng; Vijayakumar, M.; Zhou, Huan-Xiang

    2003-01-01

    The contributions of electrostatic interactions to the binding stability of barnase and barstar were studied by the Poisson-Boltzmann model with three different protocols: a), the dielectric boundary specified as the van der Waals (vdW) surface of the protein along with a protein dielectric constant (ɛp) of 4; b), the dielectric boundary specified as the molecular (i.e., solvent-exclusion (SE)) surface along with ɛp = 4; and c), “SE + ɛp = 20.” The “vdW + ɛp = 4” and “SE + ɛp = 20” protocols predicted an overall electrostatic stabilization whereas the “SE + ɛp = 4” protocol predicted an overall electrostatic destabilization. The “vdW + ɛp = 4” protocol was most consistent with experiment. It quantitatively reproduced the observed effects of 17 mutations neutralizing charged residues lining the binding interface and the measured coupling energies of six charge pairs across the interface and reasonably rationalized the experimental ionic strength and pH dependences of the binding constant. In contrast, the “SE + ɛp = 4” protocol predicted significantly larger coupling energies of charge pairs whereas the “SE + ɛp = 20” protocol did not predict any pH dependence. This study calls for further scrutiny of the different Poisson-Boltzmann protocols and demonstrates potential danger in drawing conclusions on electrostatic contributions based on a particular calculation protocol. PMID:12829463

  19. Fisher information of a single qubit interacts with a spin-qubit in the presence of a magnetic field

    NASA Astrophysics Data System (ADS)

    Metwally, N.

    2018-06-01

    In this contribution, quantum Fisher information is utilized to estimate the parameters of a central qubit interacting with a single-spin qubit. The effect of the longitudinal, transverse and the rotating strengths of the magnetic field on the estimation degree is discussed. It is shown that, in the resonance case, the number of peaks and consequently the size of the estimation regions increase as the rotating magnetic field strength increases. The precision estimation of the central qubit parameters depends on the initial state settings of the central and the spin-qubit, either encode classical or quantum information. It is displayed that, the upper bounds of the estimation degree are large if the two qubits encode classical information. In the non-resonance case, the estimation degree depends on which of the longitudinal/transverse strength is larger. The coupling constant between the central qubit and the spin-qubit has a different effect on the estimation degree of the weight and the phase parameters, where the possibility of estimating the weight parameter decreases as the coupling constant increases, while it increases for the phase parameter. For large number of spin-particles, namely, we have a spin-bath particles, the upper bounds of the Fisher information with respect to the weight parameter of the central qubit decreases as the number of the spin particle increases. As the interaction time increases, the upper bounds appear at different initial values of the weight parameter.

  20. Sensing of Double-Stranded DNA/RNA Secondary Structures by Water Soluble Homochiral Perylene Bisimide Dyes.

    PubMed

    Gershberg, Jana; Radić Stojković, Marijana; Škugor, Marko; Tomić, Sanja; Rehm, Thomas H; Rehm, Stefanie; Saha-Möller, Chantu R; Piantanida, Ivo; Würthner, Frank

    2015-05-18

    A broad series of homochiral perylene bisimide (PBI) dyes were synthesized that are appended with amino acids and cationic side chains at the imide positions. Self-assembly behavior of these ionic PBIs has been studied in aqueous media by UV/Vis spectroscopy, revealing formation of excitonically coupled H-type aggregates. The interactions of these ionic PBIs with different ds-DNA and ds-RNA have been explored by thermal denaturation, fluorimetric titration and circular dichroism (CD) experiments. These PBIs strongly stabilized ds-DNA/RNA against thermal denaturation as revealed by high melting temperatures of the formed PBI/polynucleotide complexes. Fluorimetric titrations showed that these PBIs bind to ds-DNA/RNA with high binding constants depending on the number of the positive charges in the side chains. Thus, spermine-containing PBIs with six positive charges each showed higher binding constants (logKs =9.2-9.8) than their dioxa analogues (logKs =6.5-7.9) having two positive charges each. Induced circular dichroism (ICD) of PBI assemblies created within DNA/RNA grooves was observed. These ICD profiles are strongly dependent on the steric demand of the chiral substituents of the amino acid units and the secondary structure of the DNA or RNA. The observed ICD effects can be explained by non-covalent binding of excitonically coupled PBI dimer aggregates into the minor groove of DNA and major groove of RNA which is further supported by molecular modeling studies. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. The loss of a shared lifetime: a qualitative study exploring spouses' experiences of losing couplehood with their partner with dementia living in institutional care.

    PubMed

    Førsund, Linn Hege; Skovdahl, Kirsti; Kiik, Riina; Ytrehus, Siri

    2015-01-01

    To explore and describe spouses' experiences of losing couplehood with their dementia-afflicted partner living in institutional care. Despite the losses and experiences of discontinuity due to the cognitive decline caused by dementia, the feelings of belonging and reciprocity in close relationships are still crucial to many couples. However, these experiences of spouses with partners living in institutional care are not well documented and are thus the focus of this study. A constructivist grounded theory approach was used to capture the relational processes described by the spouses. Conversational interviews were conducted with n = 10 spouses of dementia-afflicted persons living in institutional care. Data were analysed using the constant comparative method. The spouses' experiences of losing couplehood were primarily connected to separation from the partner and the sense of being alone. They were also related to the loss of the shared past and future. However, these experiences did not seem to be constant; short glimpses of connectedness, reciprocity and interdependence contributed to a feeling of couplehood, although these were only momentary. The spouses' experiences of losing couplehood were dynamic and were related to the couple's entire life. The spouses wavered between senses of loss and belonging to couplehood, depending on the conditions characterising the moment. Healthcare personnel must recognise the severity of some spouses' experiences of losing couplehood and be aware of how these experiences can fluctuate and be situation dependent. © 2014 John Wiley & Sons Ltd.

  2. A rodent model for artificial gravity: VOR adaptation and Fos expression.

    PubMed

    Kaufman, Galen; Weng, Tianxiang; Ruttley, Tara

    2005-01-01

    Vestibulo-ocular reflex (VOR) adaptation and brainstem Fos expression as a result of short radius cross-coupling stimuli were investigated to find neural correlates of the inherent Coriolis force asymmetry from an artificial gravity (AG) environment. Head-fixed gerbils (Meriones unguiculatus, N=79) were exposed, in the dark, to 60--90 minutes of cross-coupled rotations, combinations of pitch (or roll) and yaw rotation, while binocular horizontal, vertical, and torsional eye position were determined using infrared video-oculography. Centripetal acceleration in combination with angular cross-coupling was also studied. Simultaneous sinusoidal rotations in two planes (yaw with roll or pitch) provided a net symmetrical stimulus for the right and left labyrinths. In contrast, a constant velocity yaw rotation during sinusoidal roll or pitch provided the asymmetric stimulus model for AG. We found orthogonally oriented half-cycle VOR gain changes. The results depended on the direction of horizontal rotation during asymmetrical cross-coupling, and other aspects of the stimulus, including the phase relationship between the two rotational inputs, the symmetry of the stimulus, and training. Fos expression also revealed laterality differences in the prepositus and inferior olivary C subnucleus. In contrast the inferior olivary beta and ventrolateral outgrowth were labeled bilaterally. Additional cross-coupling dependent labeling was found in the flocculus, hippocampus, and several cortical regions, including the perirhinal and temporal association cortices. Analyses showed significant differences across the brain regions for several factors (symmetry, rotation velocity and direction, the presence of centripetal acceleration or a visual surround, and training). Finally, animals compensating from a unilateral surgical labyrinthectomy who received multiple cross-coupling training sessions had improved half-cycle VOR gain in the ipsilateral eye with head rotation toward the intact side. We hypothesize that cross-coupling vestibular training can benefit aspects of motor recovery or performance.

  3. Electrical Coupling Between Glial Cells in the Rat Retina

    PubMed Central

    Ceelen, Paul W.; Lockridge, Amber; Newman, Eric A.

    2008-01-01

    The strength of electrical coupling between retinal glial cells was quantified with simultaneous whole-cell current-clamp recordings from astrocyte–astrocyte, astrocyte–Müller cell, and Müller cell–Müller cell pairs in the acutely isolated rat retina. Experimental results were fit and space constants determined using a resistive model of the glial cell network that assumed a homogeneous two-dimensional glial syncytium. The effective space constant (the distance from the point of stimulation to where the voltage falls to 1/e) equaled 12.9, 6.2, and 3.7 µm, respectively for astrocyte–astrocyte, astrocyte–Müller cell, and Müller cell–Müller cell coupling. The addition of 1 mM Ba2+ had little effect on network space constants, while 0.5 mM octanol shortened the space constants to 4.7, 4.4, and 2.6 µm for the three types of coupling. For a given distance separating cell pairs, the strength of coupling showed considerable variability. This variability in coupling strength was reproduced accurately by a second resistive model of the glial cell network (incorporating discrete astrocytes spaced at varying distances from each other), demonstrating that the variability was an intrinsic property of the glial cell network. Coupling between glial cells in the retina may permit the intercellular spread of ions and small molecules, including messengers mediating Ca2+ wave propagation, but it is too weak to carry significant K+ spatial buffer currents. PMID:11424187

  4. Constraints on the {omega}- and {sigma}-meson coupling constants with dibaryons

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Faessler, A.; Buchmann, A.J.; Krivoruchenko, M.I.

    The effect of narrow dibaryon resonances on basic nuclear matter properties and on the structure of neutron stars is investigated in mean-field theory and in relativistic Hartree approximation. The existence of massive neutron stars imposes constraints on the coupling constants of the {omega} and {sigma} mesons with dibaryons. In the allowed region of the parameter space of the coupling constants, a Bose condensate of the light dibaryon candidates d{sub 1}(1920) and d{sup {prime}}(2060) is stable against compression. This proves the stability of the ground state of heterophase nuclear matter with a Bose condensate of light dibaryons. {copyright} {ital 1997} {italmore » The American Physical Society}« less

  5. A novel constant-force scanning probe incorporating mechanical-magnetic coupled structures.

    PubMed

    Wang, Hongxi; Zhao, Jian; Gao, Renjing; Yang, Yintang

    2011-07-01

    A one-dimensional scanning probe with constant measuring force is designed and fabricated by utilizing the negative stiffness of the magnetic coupled structure, which mainly consists of the magnetic structure, the parallel guidance mechanism, and the pre-stressed spring. Based on the theory of material mechanics and the equivalent surface current model for computing the magnetic force, the analytical model of the scanning probe subjected to multi-forces is established, and the nonlinear relationship between the measuring force and the probe displacement is obtained. The practicability of introducing magnetic coupled structure in the constant-force probe is validated by the consistency of the results in numerical simulation and experiments.

  6. Reverberant acoustic energy in auditoria that comprise systems of coupled rooms

    NASA Astrophysics Data System (ADS)

    Summers, Jason E.

    2003-11-01

    A frequency-dependent model for reverberant energy in coupled rooms is developed and compared with measurements for a 1:10 scale model and for Bass Hall, Ft. Worth, TX. At high frequencies, prior statistical-acoustics models are improved by geometrical-acoustics corrections for decay within sub-rooms and for energy transfer between sub-rooms. Comparisons of computational geometrical acoustics predictions based on beam-axis tracing with scale model measurements indicate errors resulting from tail-correction assuming constant quadratic growth of reflection density. Using ray tracing in the late part corrects this error. For mid-frequencies, the models are modified to account for wave effects at coupling apertures by including power transmission coefficients. Similarly, statical-acoustics models are improved through more accurate estimates of power transmission measurements. Scale model measurements are in accord with the predicted behavior. The edge-diffraction model is adapted to study transmission through apertures. Multiple-order scattering is theoretically and experimentally shown inaccurate due to neglect of slope diffraction. At low frequencies, perturbation models qualitatively explain scale model measurements. Measurements confirm relation of coupling strength to unperturbed pressure distribution on coupling surfaces. Measurements in Bass Hall exhibit effects of the coupled stage house. High frequency predictions of statistical acoustics and geometrical acoustics models and predictions of coupling apertures all agree with measurements.

  7. Quantum and spectral properties of the Labyrinth model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Takahashi, Yuki, E-mail: takahasy@math.uci.edu

    2016-06-15

    We consider the Labyrinth model, which is a two-dimensional quasicrystal model. We show that the spectrum of this model, which is known to be a product of two Cantor sets, is an interval for small values of the coupling constant. We also consider the density of states measure of the Labyrinth model and show that it is absolutely continuous with respect to Lebesgue measure for almost all values of coupling constants in the small coupling regime.

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    AlHallak, M.; Chamoun, N.; Physikalisches Institut der Universität Bonn,Nußalle 12, D-53115 Bonn

    We present a model of power law inflation generated by variation of the strong coupling constant. We then extend the model to two varying coupling constants which leads to a potential consisting of a linear combination of exponential terms. Some variants of the latter may be self-consistent and can accommodate the experimental data of the Planck 2015 and other recent experiments.

  9. Epoxidation with Possibilities: Discovering Stereochemistry in Organic Chemistry via Coupling Constants

    ERIC Educational Resources Information Center

    Treadwell, Edward M.; Yan, Zhiqing; Xiao, Xiao

    2017-01-01

    A one-day laboratory epoxidation experiment, requiring no purification, is described, wherein the students are given an "unknown" stereoisomer of 3-hexen-1-ol, and use [superscript 1]H NMR coupling constants to determine the stereochemistry of their product. From this they work backward to determine the stereochemistry of their starting…

  10. Communication: Localized molecular orbital analysis of the effect of electron correlation on the anomalous isotope effect in the NMR spin-spin coupling constant in methane

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zarycz, M. Natalia C., E-mail: mnzarycz@gmail.com; Provasi, Patricio F., E-mail: patricio@unne.edu.ar; Sauer, Stephan P. A., E-mail: sauer@kiku.dk

    2014-10-21

    We discuss the effect of electron correlation on the unexpected differential sensitivity (UDS) in the {sup 1}J(C–H) coupling constant of CH{sub 4} using a decomposition into contributions from localized molecular orbitals and compare with the {sup 1}J(N–H) coupling constant in NH{sub 3}. In particular, we discuss the well known fact that uncorrelated coupled Hartree-Fock (CHF) calculations are not able to reproduce the UDS in methane. For this purpose we have implemented for the first time a localized molecular orbital analysis for the second order polarization propagator approximation with coupled cluster singles and doubles amplitudes—SOPPA(CCSD) in the DALTON program. Comparing themore » changes in the localized orbital contributions at the correlated SOPPA and SOPPA(CCSD) levels and at the uncorrelated CHF level, we find that the latter overestimates the effect of stretching the bond between the coupled atoms on the contribution to the coupling from the localized bonding orbital between these atoms. This disturbs the subtle balance between the molecular orbital contributions, which lead to the UDS in methane.« less

  11. Rotational Spectra and Nuclear Quadrupole Coupling Constants of Iodoimidazoles

    NASA Astrophysics Data System (ADS)

    Cooper, Graham A.; Anderson, Cara J.; Medcraft, Chris; Legon, Anthony; Walker, Nick

    2017-06-01

    The microwave spectra of two isomers of iodoimidazole have been recorded and assigned with resolution of their nuclear quadrupole coupling constants. These constants have been analysed in terms of the conjugation between the lone pairs on the iodine atom and the aromatic π-bonding system, and the effect of this conjugation on the distribution of π-electron density in the ring. A comparison of these properties has been made between iodoimidazole and other 5- and 6-membered aromatic rings bonded to halogen atoms.

  12. Pulse echo and combined resonance techniques: a full set of LGT acoustic wave constants and temperature coefficients.

    PubMed

    Sturtevant, Blake T; Davulis, Peter M; da Cunha, Mauricio Pereira

    2009-04-01

    This work reports on the determination of langatate elastic and piezoelectric constants and their associated temperature coefficients employing 2 independent methods, the pulse echo overlap (PEO) and a combined resonance technique (CRT) to measure bulk acoustic wave (BAW) phase velocities. Details on the measurement techniques are provided and discussed, including the analysis of the couplant material in the PEO technique used to couple signal to the sample, which showed to be an order of magnitude more relevant than the experimental errors involved in the data extraction. At room temperature, elastic and piezoelectric constants were extracted by the PEO and the CRT methods and showed results consistent to within a few percent for the elastic constants. Both raw acquired data and optimized constants, based on minimization routines applied to all the modes involved in the measurements, are provided and discussed. Comparison between the elastic constants and their temperature behavior with the literature reveals the recent efforts toward the consistent growth and characterization of LGT, in spite of significant variations (between 1 and 30%) among the constants extracted by different groups at room temperature. The density, dielectric permittivity constants, and respective temperature coefficients used in this work have also been independently determined based on samples from the same crystal boule. The temperature behavior of the BAW modes was extracted using the CRT technique, which has the advantage of not relying on temperature dependent acoustic couplants. Finally, the extracted temperature coefficients for the elastic and piezoelectric constants between room temperature and 120 degrees C are reported and discussed in this work.

  13. Computer simulation of two electrophoretic columns coupled for isoelectric focusing in simple buffers

    NASA Technical Reports Server (NTRS)

    Tsai, Amos; Mosher, Richard A.; Bier, Milan

    1986-01-01

    Computer simulation is used to analyze a system of two electrophoretic columns coupled by mixing the anolyte of one with the catholyte of the other. A mathematical model is presented which is used to predict the pH gradients formed by monovalent buffers in this system, when the currents in the columns are unequal. In the column with the higher current a pH gradient is created which increases from anode to cathode and is potentially useful for isoelectric focusing. The breadth of this gradient is dependent upon the ratio of the currents. The function of the second column is the compensation of buffer migration which occurs in the first column, thereby maintaining constant electrolyte composition. The effects of buffer pKs and mobilities are evaluated.

  14. DC thermal microscopy: study of the thermal exchange between a probe and a sample

    NASA Astrophysics Data System (ADS)

    Gomès, Séverine; Trannoy, Nathalie; Grossel, Philippe

    1999-09-01

    The Scanning Thermal Microscopic (SThM) probe, a thin Pt resistance wire, is used in the constant force mode of an Atomic Force Microscope (AFM). Thermal signal-distance curves for differing degrees of relative humidity and different surrounding gases demonstrate how heat is transferred from the heated probe to the sample. It is known that water affects atomic force microscopy and thermal measurements; we report here on the variation of the water interaction on the thermal coupling versus the probe temperature. Measurements were taken for several solid materials and show that the predominant heat transfer mechanisms taking part in thermal coupling are dependent on the thermal conductivity of the sample. The results have important implications for any quantitative interpretation of thermal images made in air.

  15. Investigations of thickness-shear mode elastic constant and damping of shunted piezoelectric materials with a coupling resonator

    NASA Astrophysics Data System (ADS)

    Hu, Ji-Ying; Li, Zhao-Hui; Sun, Yang; Li, Qi-Hu

    2016-12-01

    Shear-mode piezoelectric materials have been widely used to shunt the damping of vibrations where utilizing surface or interface shear stresses. The thick-shear mode (TSM) elastic constant and the mechanical loss factor can change correspondingly when piezoelectric materials are shunted to different electrical circuits. This phenomenon makes it possible to control the performance of a shear-mode piezoelectric damping system through designing the shunt circuit. However, due to the difficulties in directly measuring the TSM elastic constant and the mechanical loss factor of piezoelectric materials, the relationships between those parameters and the shunt circuits have rarely been investigated. In this paper, a coupling TSM electro-mechanical resonant system is proposed to indirectly measure the variations of the TSM elastic constant and the mechanical loss factor of piezoelectric materials. The main idea is to transform the variations of the TSM elastic constant and the mechanical loss factor into the changes of the easily observed resonant frequency and electrical quality factor of the coupling electro-mechanical resonator. Based on this model, the formular relationships are set up theoretically with Mason equivalent circuit method and they are validated with finite element (FE) analyses. Finally, a prototype of the coupling electro-mechanical resonator is fabricated with two shear-mode PZT5A plates to investigate the TSM elastic constants and the mechanical loss factors of different circuit-shunted cases of the piezoelectric plate. Both the resonant frequency shifts and the bandwidth changes observed in experiments are in good consistence with the theoretical and FE analyses under the same shunt conditions. The proposed coupling resonator and the obtained relationships are validated with but not limited to PZT5A. Project supported by the National Defense Foundation of China (Grant No. 9149A12050414JW02180).

  16. l-Tryptophan Radical Cation Electron Spin Resonance Studies: Connecting Solution-derived Hyperfine Coupling Constants with Protein Spectral Interpretations

    PubMed Central

    Connor, Henry D.; Sturgeon, Bradley E.; Mottley, Carolyn; Sipe, Herbert J.; Mason, Ronald P.

    2009-01-01

    Fast-flow electron spin resonance (ESR) spectroscopy has been used to detect a free radical formed from the reaction of l-tryptophan with Ce4+ in an acidic aqueous environment. Computer simulations of the ESR spectra from l-tryptophan and several isotopically modified forms strongly support the conclusion that the l-tryptophan radical cation has been detected by ESR for the first time. The hyperfine coupling constants (HFCs) determined from the well-resolved isotropic ESR spectra support experimental and computational efforts to understand l-tryptophan's role in protein catalysis of oxidation-reduction processes. l-tryptophan HFCs facilitated the simulation of fast-flow ESR spectra of free radicals from two related compounds, tryptamine and 3-methylindole. Analysis of these three compounds' β-methylene hydrogen HFC data along with equivalent l-tyrosine data has led to a new computational method that can distinguish between these two amino acid free radicals in proteins without dependence on isotope labeling, electron nuclear double resonance or high-field ESR. This approach also produces geometric parameters (dihedral angles for the β-methylene hydrogens) which should facilitate protein site assignment of observed l-tryptophan radicals as has been done for l-tyrosine radicals. PMID:18433127

  17. Structural, electrical and multiferroic characteristics of thermo-mechanically fabricated BiFeO3-(BaSr)TiO3 solid solutions

    NASA Astrophysics Data System (ADS)

    Behera, C.; Choudhary, R. N. P.; Das, Piyush R.

    2018-05-01

    A solid solution consisting of two perovskite compounds (BiFeO3 and (BaSr)TiO3) of chemical composition (Bi1/2Ba1/4Sr1/4)(Fe1/2Ti1/2)O3 has been fabricated in the low dimensional regime by thermo-mechanical (ball milling and heating) approach. The effect of particle size on the structural, micro-structural, relative permittivity, switching (ferroelectric and magnetic) and conduction phenomena of the material has been studied using various experimental techniques such as x-rays diffraction, transmission and scanning electron microscopy, ferroelectric and magnetic hysteresis, dynamic magneto-electric coupling measurement and impedance spectroscopy techniques. All the above extracted properties are found to be particle size dependent. The first order magneto-electric coupling constant is found to be 2.56, 6.6 and 8.7 mV cm‑1.Oe for 30, 60 and 90 h milled calcined (hmc) sample respectively. As the above micro/nano-material with different particle size, has a high relative dielectric constant and low tangent loss, it can be used for some multifunctional devices including capacity energy storage device in nano-electronics.

  18. Vibration-rotation interactions and ring-puckering in 3,3-dimethyl oxetane by microwave spectroscopy

    NASA Astrophysics Data System (ADS)

    López, Juan C.; Lesarri, Alberto G.; Villamañán, Rosa M.; Alonso, Josél.

    1990-06-01

    Ring puckering in 3,3-dimethyl oxetane has been investigated using microwave spectroscopy. Microwave spectra of the ground state, the first six ring-puckering excited states, and nine excited states of the methyl groups' deformation vibrations have been observed. The μa electric dipole moment component has been determined as 2.03(3) D from Stark-effect measurements. The vibrational dependence of the rotational constants is consistent with the ring-puckering potential function derived by Duckett et al. ( J. Mol. Spectrosc.69, 159-165 (1978)). Coriolis coupling interactions have been observed and are satisfactorily accounted for with a quartic centrifugal distortion Hamiltonian. The vibrational dependence of the centrifugal distortion constants has been analyzed using the theory developed by Creswell and Mills. In order to reproduce the experimental value of the vibration-rotation interaction parameter, {δμ ab}/{δQ}, a dynamical model allowing the rocking of the CH 3CCH 3 group should be used. The equilibrium ring puckering angle calculated with this model and the ring-puckering potential function is 17.5°.

  19. Tetragonal (K, Na)NbO3 based lead-free single crystal: Growth, full tensor properties, and their orientation dependence

    NASA Astrophysics Data System (ADS)

    Zheng, Limei; Wang, Junjun; Liu, Xuedong; Yang, Liya; Lu, Xiaoyan; Li, Yanran; Huo, Da; Lü, Weiming; Yang, Bin; Cao, Wenwu

    2017-10-01

    A Li and Ta modified (K, Na)NbO3 lead-free single crystal with a large size (13 × 10 × 20 mm3) has been grown by using the top-seeded solution growth method. The large size allows us to carry out an extensive study on this tetragonal crystal. We have measured a complete set of elastic, dielectric, and piezoelectric constants for the [001]C poled crystal with the single domain state. The crystal exhibits high shear piezoelectricity with d15 = 518 pC/N and k15 = 0.733, showing excellent potential in shear electro-sonic energy transformation devices. It is found that the high shear piezoelectricity originates from the vicinity of orthorhombic-tetragonal phase transition, which favors polarization rotation greatly. The orientation dependence of longitudinal dielectric, piezoelectric, and elastic constants and electromechanical coupling factor in the 3-dimentional space were calculated based on the single domain dataset. We believe that this work is of great importance for both fundamental studies and device designs for lead-free materials.

  20. Computational IR spectroscopy of water: OH stretch frequencies, transition dipoles, and intermolecular vibrational coupling constants

    NASA Astrophysics Data System (ADS)

    Choi, Jun-Ho; Cho, Minhaeng

    2013-05-01

    The Hessian matrix reconstruction method initially developed to extract the basis mode frequencies, vibrational coupling constants, and transition dipoles of the delocalized amide I, II, and III vibrations of polypeptides and proteins from quantum chemistry calculation results is used to obtain those properties of delocalized O-H stretch modes in liquid water. Considering the water symmetric and asymmetric O-H stretch modes as basis modes, we here develop theoretical models relating vibrational frequencies, transition dipoles, and coupling constants of basis modes to local water configuration and solvent electric potential. Molecular dynamics simulation was performed to generate an ensemble of water configurations that was in turn used to construct vibrational Hamiltonian matrices. Obtaining the eigenvalues and eigenvectors of the matrices and using the time-averaging approximation method, which was developed by the Skinner group, to calculating the vibrational spectra of coupled oscillator systems, we could numerically simulate the O-H stretch IR spectrum of liquid water. The asymmetric line shape and weak shoulder bands were quantitatively reproduced by the present computational procedure based on vibrational exciton model, where the polarization effects on basis mode transition dipoles and inter-mode coupling constants were found to be crucial in quantitatively simulating the vibrational spectra of hydrogen-bond networking liquid water.

  1. Chimeras in leaky integrate-and-fire neural networks: effects of reflecting connectivities

    NASA Astrophysics Data System (ADS)

    Tsigkri-DeSmedt, Nefeli Dimitra; Hizanidis, Johanne; Schöll, Eckehard; Hövel, Philipp; Provata, Astero

    2017-07-01

    The effects of attracting-nonlocal and reflecting connectivity are investigated in coupled Leaky Integrate-and-Fire (LIF) elements, which model the exchange of electrical signals between neurons. Earlier investigations have demonstrated that repulsive-nonlocal and hierarchical network connectivity can induce complex synchronization patterns and chimera states in systems of coupled oscillators. In the LIF system we show that if the elements are nonlocally linked with positive diffusive coupling on a ring network, the system splits into a number of alternating domains. Half of these domains contain elements whose potential stays near the threshold and they are interrupted by active domains where the elements perform regular LIF oscillations. The active domains travel along the ring with constant velocity, depending on the system parameters. When we introduce reflecting coupling in LIF networks unexpected complex spatio-temporal structures arise. For relatively extensive ranges of parameter values, the system splits into two coexisting domains: one where all elements stay near the threshold and one where incoherent states develop, characterized by multi-leveled mean phase velocity profiles.

  2. Dynamics of two-dimensional monolayer water confined in hydrophobic and charged environments.

    PubMed

    Kumar, Pradeep; Han, Sungho

    2012-09-21

    We perform molecular dynamics simulations to study the effect of charged surfaces on the intermediate and long time dynamics of water in nanoconfinements. Here, we use the transferable interaction potential with five points (TIP5P) model of a water molecule confined in both hydrophobic and charged surfaces. For a single molecular layer of water between the surfaces, we find that the temperature dependence of the lateral diffusion constant of water up to very high temperatures remains Arrhenius with a high activation energy. In case of charged surfaces, however, the dynamics of water in the intermediate time regime is drastically modified presumably due to the transient coupling of dipoles of water molecules with electric field fluctuations induced by charges on the confining surfaces. Specifically, the lateral mean square displacements display a distinct super-diffusive behavior at intermediate time scale, defined as the time scale between ballistic and diffusive regimes. This change in the intermediate time-scale dynamics in the charged confinement leads to the enhancement of long-time dynamics as reflected in increasing diffusion constant. We introduce a simple model for a possible explanation of the super-diffusive behavior and find it to be in good agreement with our simulation results. Furthermore, we find that confinement and the surface polarity enhance the low frequency vibration in confinement compared to bulk water. By introducing a new effective length scale of coupling between translational and orientational motions, we find that the length scale increases with the increasing strength of the surface polarity. Further, we calculate the correlation between the diffusion constant and the excess entropy and find a disordering effect of polar surfaces on the structure of water. Finally, we find that the empirical relation between the diffusion constant and the excess entropy holds for a monolayer of water in nanoconfinement.

  3. Changes in solar wind-magnetosphere coupling with solar cycle, season, and time relative to stream interfaces

    NASA Astrophysics Data System (ADS)

    McPherron, Robert L.; Baker, Daniel N.; Pulkkinen, T. I.; Hsu, T.-S.; Kissinger, J.; Chu, X.

    2013-07-01

    Geomagnetic activity depends on a variety of factors including solar zenith angle, solar UV, strength of the interplanetary magnetic field, speed and density of the solar wind, orientation of the Earth’s dipole, distance of the Earth from Sun, occurrence of CMEs and CIRs, and possibly other parameters. We have investigated some of these using state-dependant linear prediction filters. For a given state a prediction filter transforms a coupling function such as rectified solar wind electric field (VBs) to an output like the auroral electrojet index (AL). The area of this filter calculated from the sum of the filter coefficients measures the strength of the coupling. When the input and output are steady for a time longer than the duration of the filter the ratio of output to input is equal to this area. We find coupling strength defined in this way for Es=VBs to AL (and AU) is weakest at solar maximum and strongest at solar minimum. AL coupling displays a semiannual variation being weakest at the solstices and strongest at the equinoxes. AU coupling has only an annual variation being strongest at summer solstice. AL and AU coupling also vary with time relative to a stream interface. Es coupling is weaker after the interface, but ULF coupling is stronger. Total prediction efficiency remains about constant at the interface. The change in coupling strength with the solar cycle can be explained as an effect of more frequent saturation of the polar cap potential causing a smaller ratio of AL to Es. Stronger AL coupling at the equinoxes possibly indicates some process that makes magnetic reconnection less efficient when the dipole axis is tilted along the Earth-Sun line. Strong AU coupling at summer solstice is likely due to high conductivity in northern summer. Coupling changes at a stream interface are correlated with the presence of strong wave activity in ground and satellite measurements and may be an artifact of the method by which solar wind data are propagated.

  4. Warm ''pasta'' phase in the Thomas-Fermi approximation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Avancini, Sidney S.; Menezes, Debora P.; Chiacchiera, Silvia

    In the present article, the 'pasta' phase is studied at finite temperatures within a Thomas-Fermi (TF) approach. Relativistic mean-field models, both with constant and density-dependent couplings, are used to describe this frustrated system. We compare the present results with previous ones obtained within a phase-coexistence description and conclude that the TF approximation gives rise to a richer inner ''pasta'' phase structure and the homogeneous matter appears at higher densities. Finally, the transition density calculated within TF is compared with the results for this quantity obtained with other methods.

  5. Chameleon induced atomic afterglow

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brax, Philippe; Burrage, Clare

    2010-11-01

    The chameleon is a scalar field whose mass depends on the density of its environment. Chameleons are necessarily coupled to matter particles and will excite transitions between atomic energy levels in an analogous manner to photons. When created inside an optical cavity by passing a laser beam through a constant magnetic field, chameleons are trapped between the cavity walls and form a standing wave. This effect will lead to an afterglow phenomenon even when the laser beam and the magnetic field have been turned off, and could be used to probe the interactions of the chameleon field with matter.

  6. Effective Mass Calculations for Two-dimensional Gas of Dipolar Fermions

    NASA Astrophysics Data System (ADS)

    Seydi, I.; Abedinpour, S. H.; Tanatar, B.

    2017-06-01

    We consider a two-dimensional system of ultracold dipolar fermions with dipole moments aligned in the perpendicular direction. We use the static structure factor information from Fermi-Hypernetted-Chain calculations to obtain the effective many-body dipole-dipole interaction and calculate the many-body effective mass of the system within the G0W approximation to the self-energy. A large cancellation between different contributions to the self-energy results in a weak dependence of the effective mass on the interaction strength over a large range of coupling constants.

  7. A study of the piezoelectric resonance in metal organic NLO single crystals: Sodium D-isoascorbate monohydrate and Lithium L-ascorbate dihydrate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Saripalli, Ravi Kiran, E-mail: rksaripalli@physics.iisc.ernet.in; Sanath Kumar, R.; Elizabeth, Suja

    2016-05-06

    Large single crystals of Sodium D-isoacsorbate monohydrate and Lithium L-ascorbate dehydrate were grown using solution growth technique. Dielectric constant and dielectric loss were monitored as a function of frequency at different temperatures. These are typically characterized by strong resonance peaks. The piezoelectric coefficients d{sub 31}, elastic coefficient (S{sub 11}) and electromechanical coupling coefficient (k{sub 31}) were estimated by resonance-antiresonance method. The temperature dependence of the resonance-peaks frequencies was studied.

  8. Anthropics of aluminum-26 decay and biological homochirality

    NASA Astrophysics Data System (ADS)

    Sandora, McCullen

    2017-11-01

    Results of recent experiment reinstate feasibility to the hypothesis that biomolecular homochirality originates from beta decay. Coupled with hints that this process occurred extraterrestrially suggests aluminum-26 as the most likely source. If true, then its appropriateness is highly dependent on the half-life and energy of this decay. Demanding that this mechanism hold places new constraints on the anthropically allowed range for multiple parameters, including the electron mass, difference between up and down quark masses, the fine structure constant, and the electroweak scale. These new constraints on particle masses are tighter than those previously found. However, one edge of the allowed region is nearly degenerate with an existing bound, which, using what is termed here as `the principle of noncoincident peril', is argued to be a strong indicator that the fine structure constant must be an environmental parameter in the multiverse.

  9. Nano-scale Stripe Structures on FeTe Observed by Low-temperature STM/STS

    NASA Astrophysics Data System (ADS)

    Sugimoto, A.; Ukita, R.; Ekino, T.

    We have investigated the nano-scale stripe structures on a parent compound of the iron chalcogenide superconductor Fe1+dTe (d=0.033) by using low-temperature scanning tunneling microscopy (STM). The STM topographies and the dI/dV maps show clear stripe structures with the period of twice as large as the Te-Te atomic displacement (~0.76 nm = 2a0, a0 is lattice constant), in addition to weak modulation with the same period of lattice constant (~0.38 nm). The bias-voltage dependence of both STM topographies and dI/dV maps show the several kinds of the stripe structures. The 2a0 modulations are similar to the bicollinear spin order of the parent compound FeTe, indicating the possibility of the coupling with spin density wave and electronic structures.

  10. Inflation from higher dimensions

    NASA Astrophysics Data System (ADS)

    Nakada, Hiroshi; Ketov, Sergei V.

    2017-12-01

    We derive the scalar potential in four spacetime dimensions from an eight-dimensional (R +γ R4-2 Λ -F42) gravity model in the presence of the 4-form F4, with the (modified gravity) coupling constant γ and the cosmological constant Λ , by using the flux compactification of four extra dimensions on a 4-sphere with the warp factor. The scalar potential depends upon two scalar fields: the scalaron and the 4-sphere volume modulus. We demonstrate that it gives rise to a viable description of cosmological inflation in the early universe, with the scalaron playing the role of inflaton and the volume modulus to be (almost) stabilized at its minimum. We also speculate about a possibility of embedding our model in eight dimensions into a modified eight-dimensional supergavity that, in its turn, arises from a modified eleven-dimensional supergravity.

  11. Model-independent determination of the triple Higgs coupling at e + e – colliders

    DOE PAGES

    Barklow, Tim; Fujii, Keisuke; Jung, Sunghoon; ...

    2018-03-20

    Here, the observation of Higgs pair production at high-energy colliders can give evidence for the presence of a triple Higgs coupling. However, the actual determination of the value of this coupling is more difficult. In the context of general models for new physics, double Higgs production processes can receive contributions from many possible beyond-Standard-Model effects. This dependence must be understood if one is to make a definite statement about the deviation of the Higgs field potential from the Standard Model. In this paper, we study the extraction of the triple Higgs coupling from the process e +e –→Zhh. We showmore » that, by combining the measurement of this process with other measurements available at a 500 GeV e +e – collider, it is possible to quote model-independent limits on the effective field theory parameter c 6 that parametrizes modifications of the Higgs potential. We present precise error estimates based on the anticipated International Linear Collider physics program, studied with full simulation. Our analysis also gives new insight into the model-independent extraction of the Higgs boson coupling constants and total width from e +e – data.« less

  12. Model-independent determination of the triple Higgs coupling at e + e – colliders

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barklow, Tim; Fujii, Keisuke; Jung, Sunghoon

    Here, the observation of Higgs pair production at high-energy colliders can give evidence for the presence of a triple Higgs coupling. However, the actual determination of the value of this coupling is more difficult. In the context of general models for new physics, double Higgs production processes can receive contributions from many possible beyond-Standard-Model effects. This dependence must be understood if one is to make a definite statement about the deviation of the Higgs field potential from the Standard Model. In this paper, we study the extraction of the triple Higgs coupling from the process e +e –→Zhh. We showmore » that, by combining the measurement of this process with other measurements available at a 500 GeV e +e – collider, it is possible to quote model-independent limits on the effective field theory parameter c 6 that parametrizes modifications of the Higgs potential. We present precise error estimates based on the anticipated International Linear Collider physics program, studied with full simulation. Our analysis also gives new insight into the model-independent extraction of the Higgs boson coupling constants and total width from e +e – data.« less

  13. Model-independent determination of the triple Higgs coupling at e+e- colliders

    NASA Astrophysics Data System (ADS)

    Barklow, Tim; Fujii, Keisuke; Jung, Sunghoon; Peskin, Michael E.; Tian, Junping

    2018-03-01

    The observation of Higgs pair production at high-energy colliders can give evidence for the presence of a triple Higgs coupling. However, the actual determination of the value of this coupling is more difficult. In the context of general models for new physics, double Higgs production processes can receive contributions from many possible beyond-Standard-Model effects. This dependence must be understood if one is to make a definite statement about the deviation of the Higgs field potential from the Standard Model. In this paper, we study the extraction of the triple Higgs coupling from the process e+e-→Z h h . We show that, by combining the measurement of this process with other measurements available at a 500 GeV e+e- collider, it is possible to quote model-independent limits on the effective field theory parameter c6 that parametrizes modifications of the Higgs potential. We present precise error estimates based on the anticipated International Linear Collider physics program, studied with full simulation. Our analysis also gives new insight into the model-independent extraction of the Higgs boson coupling constants and total width from e+e- data.

  14. Decay constants and radiative decays of heavy mesons in light-front quark model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Choi, Ho-Meoyng

    2007-04-01

    We investigate the magnetic dipole decays V{yields}P{gamma} of various heavy-flavored mesons such as (D,D*,D{sub s},D{sub s}*,{eta}{sub c},J/{psi}) and (B,B*,B{sub s},B{sub s}*,{eta}{sub b},{upsilon}) using the light-front quark model constrained by the variational principle for the QCD-motivated effective Hamiltonian. The momentum dependent form factors F{sub VP}(q{sup 2}) for V{yields}P{gamma}* decays are obtained in the q{sup +}=0 frame and then analytically continued to the timelike region by changing q{sub perpendicular} to iq{sub perpendicular} in the form factors. The coupling constant g{sub VP{gamma}} for real photon case is then obtained in the limit as q{sup 2}{yields}0, i.e. g{sub VP{gamma}}=F{sub VP}(q{sup 2}=0). The weak decaymore » constants of heavy pseudoscalar and vector mesons are also calculated. Our numerical results for the decay constants and radiative decay widths for the heavy-flavored mesons are overall in good agreement with the available experimental data as well as other theoretical model calculations.« less

  15. Analysis of the vibronic fine structure in circularly polarized emission spectra from chiral molecular aggregates.

    PubMed

    Spano, Frank C; Zhao, Zhen; Meskers, Stefan C J

    2004-06-08

    Using a Frenkel-exciton model, the degree of circular polarization of the luminescence (g(lum)) from one-dimensional, helical aggregates of chromophoric molecules is investigated theoretically. The coupling between the electronic excitation and a local, intramolecular vibrational mode is taken into account. Analytical expressions for the fluorescence band shape and g(lum) are presented for the case of strong and weak electronic coupling between the chromophoric units. Results are compared to those from numerical calculations obtained using the three particle approximation. g(lum) for the 0-0 vibronic band is found to be independent of the relative strength of electronic coupling between chromophores and excitation-vibration coupling. It depends solely on the number of coherently coupled molecules. In contrast, for the higher vibronic transitions[g(lum)] decreases with decreasing strength of the electronic coupling. In the limit of strong electronic coupling, [g(lum)] is almost constant throughout the series of vibronic transitions but for weak coupling [g(lum)] becomes vanishingly small for all vibronic transitions except for the 0-0 transition. The results are interpreted in terms of dynamic localization of the excitation during the zero point vibrational motion in the excited state of the aggregate. It is concluded that circular polarization measurements provide an independent way to determine the coherence size and bandwidth of the lowest exciton state for chiral aggregates. (c) 2004 American Institute of Physics.

  16. Calculation of nuclear spin-spin coupling constants using frozen density embedding

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Götz, Andreas W., E-mail: agoetz@sdsc.edu; Autschbach, Jochen; Visscher, Lucas, E-mail: visscher@chem.vu.nl

    2014-03-14

    We present a method for a subsystem-based calculation of indirect nuclear spin-spin coupling tensors within the framework of current-spin-density-functional theory. Our approach is based on the frozen-density embedding scheme within density-functional theory and extends a previously reported subsystem-based approach for the calculation of nuclear magnetic resonance shielding tensors to magnetic fields which couple not only to orbital but also spin degrees of freedom. This leads to a formulation in which the electron density, the induced paramagnetic current, and the induced spin-magnetization density are calculated separately for the individual subsystems. This is particularly useful for the inclusion of environmental effects inmore » the calculation of nuclear spin-spin coupling constants. Neglecting the induced paramagnetic current and spin-magnetization density in the environment due to the magnetic moments of the coupled nuclei leads to a very efficient method in which the computationally expensive response calculation has to be performed only for the subsystem of interest. We show that this approach leads to very good results for the calculation of solvent-induced shifts of nuclear spin-spin coupling constants in hydrogen-bonded systems. Also for systems with stronger interactions, frozen-density embedding performs remarkably well, given the approximate nature of currently available functionals for the non-additive kinetic energy. As an example we show results for methylmercury halides which exhibit an exceptionally large shift of the one-bond coupling constants between {sup 199}Hg and {sup 13}C upon coordination of dimethylsulfoxide solvent molecules.« less

  17. The effect of realistic heavy particle induced secondary electron emission coefficients on the electron power absorption dynamics in single- and dual-frequency capacitively coupled plasmas

    NASA Astrophysics Data System (ADS)

    Daksha, M.; Derzsi, A.; Wilczek, S.; Trieschmann, J.; Mussenbrock, T.; Awakowicz, P.; Donkó, Z.; Schulze, J.

    2017-08-01

    In particle-in-cell/Monte Carlo collisions (PIC/MCC) simulations of capacitively coupled plasmas (CCPs), the plasma-surface interaction is generally described by a simple model in which a constant secondary electron emission coefficient (SEEC) is assumed for ions bombarding the electrodes. In most PIC/MCC studies of CCPs, this coefficient is set to γ = 0.1, independent of the energy of the incident particle, the electrode material, and the surface conditions. Here, the effects of implementing energy-dependent secondary electron yields for ions, fast neutrals, and taking surface conditions into account in PIC/MCC simulations is investigated. Simulations are performed using self-consistently calculated effective SEECs, {γ }* , for ‘clean’ (e.g., heavily sputtered) and ‘dirty’ (e.g., oxidized) metal surfaces in single- and dual-frequency discharges in argon and the results are compared to those obtained by assuming a constant secondary electron yield of γ =0.1 for ions. In single-frequency (13.56 MHz) discharges operated under conditions of low heavy particle energies at the electrodes, the pressure and voltage at which the transition between the α- and γ-mode electron power absorption occurs are found to strongly depend on the surface conditions. For ‘dirty’ surfaces, the discharge operates in α-mode for all conditions investigated due to a low effective SEEC. In classical dual-frequency (1.937 MHz + 27.12 MHz) discharges {γ }* significantly increases with increasing low-frequency voltage amplitude, {V}{LF}, for dirty surfaces. This is due to the effect of {V}{LF} on the heavy particle energies at the electrodes, which negatively influences the quality of the separate control of ion properties at the electrodes. The new results on the separate control of ion properties in such discharges indicate significant differences compared to previous results obtained with different constant values of γ.

  18. Correlating structural dynamics and catalytic activity of AgAu nanoparticles with ultrafast spectroscopy and all-atom molecular dynamics simulations.

    PubMed

    Ferbonink, G F; Rodrigues, T S; Dos Santos, D P; Camargo, P H C; Albuquerque, R Q; Nome, R A

    2018-05-29

    In this study, we investigated hollow AgAu nanoparticles with the goal of improving our understanding of the composition-dependent catalytic activity of these nanoparticles. AgAu nanoparticles were synthesized via the galvanic replacement method with controlled size and nanoparticle compositions. We studied extinction spectra with UV-Vis spectroscopy and simulations based on Mie theory and the boundary element method, and ultrafast spectroscopy measurements to characterize decay constants and the overall energy transfer dynamics as a function of AgAu composition. Electron-phonon coupling times for each composition were obtained from pump-power dependent pump-probe transients. These spectroscopic studies showed how nanoscale surface segregation, hollow interiors and porosity affect the surface plasmon resonance wavelength and fundamental electron-phonon coupling times. Analysis of the spectroscopic data was used to correlate electron-phonon coupling times to AgAu composition, and thus to surface segregation and catalytic activity. We have performed all-atom molecular dynamics simulations of model hollow AgAu core-shell nanoparticles to characterize nanoparticle stability and equilibrium structures, besides providing atomic level views of nanoparticle surface segregation. Overall, the basic atomistic and electron-lattice dynamics of core-shell AgAu nanoparticles characterized here thus aid the mechanistic understanding and performance optimization of AgAu nanoparticle catalysts.

  19. Interface thermal conductance of van der Waals monolayers on amorphous substrates

    NASA Astrophysics Data System (ADS)

    Correa, Gabriela C.; Foss, Cameron J.; Aksamija, Zlatan

    2017-03-01

    Heterostructures based on atomic monolayers are emerging as leading materials for future energy efficient and multifunctional electronics. Due to the single atom thickness of monolayers, their properties are strongly affected by interactions with the external environment. We develop a model for interface thermal conductance (ITC) in an atomic monolayer van der Waals bonded to a disordered substrate. Graphene on SiO2 is initially used in our model and contrasted against available experimental data; the model is then applied to monolayer molybdenum disulfide (MoS2) on SiO2 substrate. Our findings show the dominant carrier of heat in both graphene and MoS2 in the cross-plane direction is the flexural (ZA) phonon mode, owing to the large overlap between graphene ZA and substrate vibrational density of states. The rate of phonon transfer across the interface depends quadratically on the substrate coupling constant K a , but this interaction also causes a lifting of the lowest flexural phonon modes. As a result, ITC depends roughly linearly on the strength of the coupling between a monolayer and its substrate. We conclude that, in both graphene and MoS2 on SiO2, substrate adhesion plays a strong role in determining ITC, requiring further study of substrate coupling in TMDCs.

  20. Interfacial Coupling-Induced Ferromagnetic Insulator Phase in Manganite Film

    DOE PAGES

    Zhang, Bangmin; Wu, Lijun; Yin, Wei-Guo; ...

    2016-06-08

    Interfaces with subtle differences in atomic and electronic structures in perovskite ABO 3 heterostructures often yield intriguingly different properties, yet their exact roles remain elusive. Here, we report an integrated study of unusual transport, magnetic, and structural properties of Pr 0.67Sr 0.33MnO 3 film on SrTiO 3 substrate. The variations in the out-of-plane lattice constant and BO 6 octahedral rotation across the Pr 0.67Sr 0.33MnO 3/SrTiO 3 interface strongly depend on the thickness of the Pr 0.67Sr 0.33MnO 3 film. In the 12-nm film, a new interface-sensitive ferromagnetic polaronic insulator (FI') phase is formed during the cubic-to-tetragonal phase transition ofmore » SrTiO 3, apparently due to the enhanced electron–phonon interaction and atomic disorder in the film. The transport properties of the FI' phase in the 30-nm film are masked because of the reduced interfacial coupling and smaller interface-to-volume ratio. In conclusion, this work demonstrates how thickness-dependent interfacial coupling leads to the formation of a theoretically predicted ferromagnetic–polaronic insulator, as illustrated in a new phase diagram, that is otherwise ferromagnetic metal (FM) in bulk form.« less

  1. Interfacial Coupling-Induced Ferromagnetic Insulator Phase in Manganite Film

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Bangmin; Wu, Lijun; Yin, Wei-Guo

    Interfaces with subtle differences in atomic and electronic structures in perovskite ABO 3 heterostructures often yield intriguingly different properties, yet their exact roles remain elusive. Here, we report an integrated study of unusual transport, magnetic, and structural properties of Pr 0.67Sr 0.33MnO 3 film on SrTiO 3 substrate. The variations in the out-of-plane lattice constant and BO 6 octahedral rotation across the Pr 0.67Sr 0.33MnO 3/SrTiO 3 interface strongly depend on the thickness of the Pr 0.67Sr 0.33MnO 3 film. In the 12-nm film, a new interface-sensitive ferromagnetic polaronic insulator (FI') phase is formed during the cubic-to-tetragonal phase transition ofmore » SrTiO 3, apparently due to the enhanced electron–phonon interaction and atomic disorder in the film. The transport properties of the FI' phase in the 30-nm film are masked because of the reduced interfacial coupling and smaller interface-to-volume ratio. In conclusion, this work demonstrates how thickness-dependent interfacial coupling leads to the formation of a theoretically predicted ferromagnetic–polaronic insulator, as illustrated in a new phase diagram, that is otherwise ferromagnetic metal (FM) in bulk form.« less

  2. Analysis of the Temporal Response of Coupled Asymmetrical Zero-Power Subcritical Bare Metal Reactor Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Klain, Kimberly L.

    The behavior of symmetrical coupled-core systems has been extensively studied, yet there is a dearth of research on asymmetrical systems due to the increased complexity of the analysis of such systems. In this research, the multipoint kinetics method is applied to asymmetrical zeropower, subcritical, bare metal reactor systems. Existing research on asymmetrical reactor systems assumes symmetry in the neutronic coupling; however, it will be shown that this cannot always be assumed. Deep subcriticality adds another layer of complexity and requires modification of the multipoint kinetics equations to account for the effect of the external neutron source. A modified set ofmore » multipoint kinetics equations is derived with this in mind. Subsequently, the Rossi-alpha equations are derived for a two-region asymmetrical reactor system. The predictive capabilities of the radiation transport code MCNP6 for neutron noise experiments are shown in a comparison to the results of a series of Rossi-alpha measurements performed by J. Mihalczo utilizing a coupled set of symmetrical bare highly-enriched uranium (HEU) cylinders. The ptrac option within MCNP6 can generate time-tagged counts in a cell (list-mode data). The list-mode data can then be processed similarly to measured data to obtain values for system parameters such as the dual prompt neutron decay constants observable in a coupled system. The results from the ptrac simulations agree well with the historical measured values. A series of case studies are conducted to study the effects of geometrical asymmetry in the coupling between two bare metal HEU cylinders. While the coupling behavior of symmetrical systems has been reported on extensively, that of asymmetrical systems remains sparse. In particular, it appears that there has been no previous research in obtaining the coupling time constants for asymmetrically-coupled systems. The difficulty in observing such systems is due in part to the inability to determine the individual coupling coefficients from measurement: unlike the symmetrical cases, only the product of the values can be obtained. A method is proposed utilizing MCNP6 tally ratios to separate the coupling coefficients for such systems. This work provides insight into the behavior of asymmetrically-coupled systems as the separation distance between the two cores is changed and also as the asymmetry is increased. As the asymmetry increases, both the slower and the faster observable prompt neutron decay constants increase in magnitude. The coupling time constants are determined from the measured decay constants. As the separation distance increases, both coupling coefficients decrease as expected. Based on these findings, an effective computational method utilizing MCNP6 and the Rossialpha technique can be applied to the prediction of asymmetrical coupled system measurements.« less

  3. Length-dependence of intramolecular electron transfer in σ-bonded rigid molecular rods: an ab initio molecular orbital study

    NASA Astrophysics Data System (ADS)

    Pati, Ranjit; Karna, Shashi P.

    2002-01-01

    The dependence of electron transfer (ET) coupling element, VAB, on the length of rigid-rod-like systems consisting of bicyclo[1.1.1]pentane (BCP), cubane (CUB), and bicyclo[2.2.2]octane (BCO) monomers, has been investigated with the use of ab initio Hartree-Fock (HF) method employing Marcus-Hush two-state (TS) model. The value of VAB decreases exponentially with increase in the number of the cage units of the σ-bonded molecules. The calculated decay constant, β, shows good agreement with previously reported data. For molecular length⩾15 Å, the value of VAB becomes negligibly small, suggesting complete suppression of the through bond direct tunneling contribution to ET process.

  4. Schwarzian derivative treatment of the quantum second-order supersymmetry anomaly, and coupling-constant metamorphosis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Plyushchay, Mikhail S., E-mail: mikhail.plyushchay@usach.cl

    A canonical quantization scheme applied to a classical supersymmetric system with quadratic in momentum supercharges gives rise to a quantum anomaly problem described by a specific term to be quadratic in Planck constant. We reveal a close relationship between the anomaly and the Schwarzian derivative, and specify a quantization prescription which generates the anomaly-free supersymmetric quantum system with second order supercharges. We also discuss the phenomenon of a coupling-constant metamorphosis that associates quantum systems with the first-order supersymmetry to the systems with the second-order supercharges.

  5. Black-hole solutions with scalar hair in Einstein-scalar-Gauss-Bonnet theories

    NASA Astrophysics Data System (ADS)

    Antoniou, G.; Bakopoulos, A.; Kanti, P.

    2018-04-01

    In the context of the Einstein-scalar-Gauss-Bonnet theory, with a general coupling function between the scalar field and the quadratic Gauss-Bonnet term, we investigate the existence of regular black-hole solutions with scalar hair. Based on a previous theoretical analysis, which studied the evasion of the old and novel no-hair theorems, we consider a variety of forms for the coupling function (exponential, even and odd polynomial, inverse polynomial, and logarithmic) that, in conjunction with the profile of the scalar field, satisfy a basic constraint. Our numerical analysis then always leads to families of regular, asymptotically flat black-hole solutions with nontrivial scalar hair. The solution for the scalar field and the profile of the corresponding energy-momentum tensor, depending on the value of the coupling constant, may exhibit a nonmonotonic behavior, an unusual feature that highlights the limitations of the existing no-hair theorems. We also determine and study in detail the scalar charge, horizon area, and entropy of our solutions.

  6. Collective signaling behavior in a networked-oscillator model

    NASA Astrophysics Data System (ADS)

    Liu, Z.-H.; Hui, P. M.

    2007-09-01

    We propose and study the collective behavior of a model of networked signaling objects that incorporates several ingredients of real-life systems. These ingredients include spatial inhomogeneity with grouping of signaling objects, signal attenuation with distance, and delayed and impulsive coupling between non-identical signaling objects. Depending on the coupling strength and/or time-delay effect, the model exhibits completely, partially, and locally collective signaling behavior. In particular, a correlated signaling (CS) behavior is observed in which there exist time durations when nearly a constant fraction of oscillators in the system are in the signaling state. These time durations are much longer than the duration of a spike when a single oscillator signals, and they are separated by regular intervals in which nearly all oscillators are silent. Such CS behavior is similar to that observed in biological systems such as fireflies, cicadas, crickets, and frogs. The robustness of the CS behavior against noise is also studied. It is found that properly adjusting the coupling strength and noise level could enhance the correlated behavior.

  7. Tunable Fano Resonance and Plasmon-Exciton Coupling in Single Au Nanotriangles on Monolayer WS2 at Room Temperature.

    PubMed

    Wang, Mingsong; Krasnok, Alex; Zhang, Tianyi; Scarabelli, Leonardo; Liu, He; Wu, Zilong; Liz-Marzán, Luis M; Terrones, Mauricio; Alù, Andrea; Zheng, Yuebing

    2018-05-01

    Tunable Fano resonances and plasmon-exciton coupling are demonstrated at room temperature in hybrid systems consisting of single plasmonic nanoparticles deposited on top of the transition metal dichalcogenide monolayers. By using single Au nanotriangles (AuNTs) on monolayer WS 2 as model systems, Fano resonances are observed from the interference between a discrete exciton band of monolayer WS 2 and a broadband plasmonic mode of single AuNTs. The Fano lineshape depends on the exciton binding energy and the localized surface plasmon resonance strength, which can be tuned by the dielectric constant of surrounding solvents and AuNT size, respectively. Moreover, a transition from weak to strong plasmon-exciton coupling with Rabi splitting energies of 100-340 meV is observed by rationally changing the surrounding solvents. With their tunable plasmon-exciton interactions, the proposed WS 2 -AuNT hybrids can open new pathways to develop active nanophotonic devices. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. 14N Quadrupole Coupling in the Microwave Spectra of N-Vinylformamide

    NASA Astrophysics Data System (ADS)

    Kannengießer, Raphaela; Stahl, Wolfgang; Nguyen, Ha Vinh Lam; Bailey, William C.

    2016-06-01

    The microwave spectra of two conformers, trans and cis, of the title compound were recorded using two molecular beam Fourier transform microwave spectrometers operating in the frequency range 2 GHz to 40 GHz, and aimed at analysis of their 14N quadrupole hyperfine structures. Rotational constants, centrifugal distortion constants, and nuclear quadrupole coupling constants (NQCCs) χaa and χbb - χcc, were all determined with very high accuracy. Two fits including 176 and 117 hyperfine transitions were performed for the trans and cis conformers, respectively. Standard deviations of both fits are close to the measurement accuracy of 2 kHz. The NQCCs of the two conformers are almost exactly the same, and are compared with values found for other saturated and unsaturated formamides. Complementary quantum chemical calculations - MP2/6-311++G(d,p) rotational constants, MP2/cc-pVTZ centrifugal distortion constants, and B3PW91/6-311+G(d,p)//MP2/6-311++G(d,p) nuclear quadrupole coupling constants - give spectroscopic parameters in excellent agreement with the experimental parameters. B3PW91/6-311+G(d,p) calculated electric field gradients, in conjunction with eQ/h = 4.599(12) MHz/a.u., yields more reliable NQCCs for formamides possessing conjugated π-electron systems than does the B3PW91/6-311+G(df,pd) model recommended in Ref., whereas this latter performs better for aliphatic formamides. We conclude from this that f-polarization functions on heavy atoms hinder rather than help with modeling of conjugated π-electron systems. W. C. Bailey, Chem. Phys., 2000, 252, 57 W. C. Bailey, Calculation of Nuclear Quadrupole Coupling Constants in Gaseous State Molecules, http://nqcc.wcbailey.net/index.html.

  9. Spinel-olivine-pryoxene equilibrium iron isotopic fractionation and applications to natural peridotites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Roskosz, Mathieu; Sio, Corliss K. I.; Dauphas, Nicolas

    2015-11-15

    Eight spinel-group minerals were synthesized by a flux-growth method producing spinels with varying composition and Fe3+/Fe-tot ratios. The mean force constants of iron bonds in these minerals were determined by synchrotron nuclear resonant inelastic X-ray scattering (NRIXS) in order to determine the reduced isotopic partition function ratios (beta-factors) of these spinels. The mean force constants are strongly dependent on the Fe3+/Fe-tot of the spinel but are independent, or weakly dependent on other structural and compositional parameters. From our spectroscopic data, it is found that a single redox-dependent calibration line accounts for the effects of Fe3+/Fe-tot on the beta-factors of spinels.more » This calibration successfully describes the equilibrium Fe isotopes fractionation factors between spinels and silicates (olivine and pyroxenes). Our predictions are in excellent agreement with independent determinations for the equilibrium Fe isotopic fractionations for the magnetite- fayalite and the magnetite-hedenbergite couples. Our calibration applies to the entire range of Fe3+/Fe-tot ratios found in natural spinels and provides a basis for interpreting iron isotopic variations documented in mantle peridotites. Except for a few exceptions, most of the samples measured so far are in isotopic disequilibrium, reflecting metasomatism and partial melting processes.« less

  10. Nonminimal kinetic coupled gravity: Inflation on the warped DGP brane

    NASA Astrophysics Data System (ADS)

    Darabi, F.; Parsiya, A.; Atazadeh, K.

    2016-03-01

    We consider the nonminimally kinetic coupled version of DGP brane model, where the kinetic term of the scalar field is coupled to the metric and Einstein tensor on the brane by a coupling constant ζ. We obtain the corresponding field equations, using the Friedmann-Robertson-Walker metric and the perfect fluid, and study the inflationary scenario to confront the numerical analysis of six typical scalar field potentials with the current observational results. We find that among the suggested potentials and coupling constants, subject to the e-folding N = 60, the potentials V (ϕ) = σϕ, V (ϕ) = σϕ2 and V (ϕ) = σϕ3 provide the best fits with both Planck+WP+highL data and Planck+WP+highL+BICEP2 data.

  11. An almost trivial gauge theory in the limit of infinite gauge coupling constant.

    NASA Astrophysics Data System (ADS)

    Kaptanoglu, S.

    A local SU(2) gauge theory with one multiplet of scalars in the adjoint representation is considered. In the limit of infinite gauge coupling constant Yang-Mills fields become auxiliary and the action possesses a larger invariance than the usual gauge invariance; hence, the system develops a richer structure of constraints. The constraint analysis is carried out.

  12. Single crystal substrates for surface acoustic wave devices

    NASA Astrophysics Data System (ADS)

    Barsch, G. R.; Spear, K. E.

    1981-01-01

    In order to search for new temperature compensated materials for surface acoustic wave (SAW) devices with low ultrasonic attenuation and high electromechanical coupling, the following experimental and theoretical investigations were carried out: (1) Crystal growth research centered around: designing, constructing, and writing the software for a computer controlled constant-diameter attachment for our Czochralski crystal pullers; a major experimental effort on the growth of lead potassium niobate (PKN); Pb2KNb5O15, and lead bismuth niobate (PBN) PbBi2Nb2O9, and a minor experimental effort on the growth of lithium metasilicate, Li2SiO3; and bismuth molybdate, Bi2MoO6. (2) The dielectric constants and the associated loss tangents of alpha-berlinite were measured at eleven frequencies from 100 to 10,000 Hz between -150 and 200 C. The temperature dependence of the dielectric constants and the relaxation behavior are similar to the results obtained earlier, but the absolute values are 20 to 30 percent smaller than reported previously. (3) The temperature dependence of the two shear modes propagating in (001) has been measured from 10 to 315K for Bi4Ti3O12. A monotonical decrease of the associated shear moduli has been found. (4) Considerable effort was devoted to specimen preparation of lead bismuth niobate which was hampered by the easy cleavage of this material perpendicular to 001 .

  13. Measurements of the microwave spectrum, Re-H bond length, and Re quadrupole coupling for HRe(CO)5

    NASA Astrophysics Data System (ADS)

    Kukolich, Stephen G.; Sickafoose, Shane M.

    1993-11-01

    Rotational transition frequencies for rhenium pentacarbonyl hydride were measured in the 4-10 GHz range using a Flygare-Balle type microwave spectrometer. The rotational constants and Re nuclear quadrupole coupling constants for the four isotopomers, (1) H187Re(CO)5, (2) H185Re(CO)5, (3) D187Re(CO)5, and (4) D185Re(CO)5, were obtained from the spectra. For the most common isotopomer, B(1)=818.5464(2) MHz and eq Q(187Re)=-900.13(3) MHz. The Re-H bond length (r0) determined by fitting the rotational constants is 1.80(1) Å. Although the Re atom is located at a site of near-octahedral symmetry, the quadrupole coupling is large due to the large Re nuclear moments. A 2.7% increase in Re quadrupole coupling was observed for D-substituted isotopomers, giving a rather large isotope effect on the quadrupole coupling. The Cax-Re-Ceq angle is 96(1)°, when all Re-C-O angles are constrained to 180°.

  14. Performance of wave function and density functional methods for water hydrogen bond spin-spin coupling constants.

    PubMed

    García de la Vega, J M; Omar, S; San Fabián, J

    2017-04-01

    Spin-spin coupling constants in water monomer and dimer have been calculated using several wave function and density functional-based methods. CCSD, MCSCF, and SOPPA wave functions methods yield similar results, specially when an additive approach is used with the MCSCF. Several functionals have been used to analyze their performance with the Jacob's ladder and a set of functionals with different HF exchange were tested. Functionals with large HF exchange appropriately predict 1 J O H , 2 J H H and 2h J O O couplings, while 1h J O H is better calculated with functionals that include a reduced fraction of HF exchange. Accurate functionals for 1 J O H and 2 J H H have been tested in a tetramer water model. The hydrogen bond effects on these intramolecular couplings are additive when they are calculated by SOPPA(CCSD) wave function and DFT methods. Graphical Abstract Evaluation of the additive effect of the hydrogen bond on spin-spin coupling constants of water using WF and DFT methods.

  15. The variation of the fine-structure constant from disformal couplings

    NASA Astrophysics Data System (ADS)

    van de Bruck, Carsten; Mifsud, Jurgen; Nunes, Nelson J.

    2015-12-01

    We study a theory in which the electromagnetic field is disformally coupled to a scalar field, in addition to a usual non-minimal electromagnetic coupling. We show that disformal couplings modify the expression for the fine-structure constant, α. As a result, the theory we consider can explain the non-zero reported variation in the evolution of α by purely considering disformal couplings. We also find that if matter and photons are coupled in the same way to the scalar field, disformal couplings itself do not lead to a variation of the fine-structure constant. A number of scenarios are discussed consistent with the current astrophysical, geochemical, laboratory and the cosmic microwave background radiation constraints on the cosmological evolution of α. The models presented are also consistent with the current type Ia supernovae constraints on the effective dark energy equation of state. We find that the Oklo bound in particular puts strong constraints on the model parameters. From our numerical results, we find that the introduction of a non-minimal electromagnetic coupling enhances the cosmological variation in α. Better constrained data is expected to be reported by ALMA and with the forthcoming generation of high-resolution ultra-stable spectrographs such as PEPSI, ESPRESSO, and ELT-HIRES. Furthermore, an expected increase in the sensitivity of molecular and nuclear clocks will put a more stringent constraint on the theory.

  16. The variation of the fine-structure constant from disformal couplings

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    De Bruck, Carsten van; Mifsud, Jurgen; Nunes, Nelson J., E-mail: c.vandebruck@sheffield.ac.uk, E-mail: jmifsud1@sheffield.ac.uk, E-mail: njnunes@fc.ul.pt

    2015-12-01

    We study a theory in which the electromagnetic field is disformally coupled to a scalar field, in addition to a usual non-minimal electromagnetic coupling. We show that disformal couplings modify the expression for the fine-structure constant, α. As a result, the theory we consider can explain the non-zero reported variation in the evolution of α by purely considering disformal couplings. We also find that if matter and photons are coupled in the same way to the scalar field, disformal couplings itself do not lead to a variation of the fine-structure constant. A number of scenarios are discussed consistent with themore » current astrophysical, geochemical, laboratory and the cosmic microwave background radiation constraints on the cosmological evolution of α. The models presented are also consistent with the current type Ia supernovae constraints on the effective dark energy equation of state. We find that the Oklo bound in particular puts strong constraints on the model parameters. From our numerical results, we find that the introduction of a non-minimal electromagnetic coupling enhances the cosmological variation in α. Better constrained data is expected to be reported by ALMA and with the forthcoming generation of high-resolution ultra-stable spectrographs such as PEPSI, ESPRESSO, and ELT-HIRES. Furthermore, an expected increase in the sensitivity of molecular and nuclear clocks will put a more stringent constraint on the theory.« less

  17. All-optical measurement of interlayer exchange coupling in Fe/Pt/FePt thin films

    NASA Astrophysics Data System (ADS)

    Berk, C.; Ganss, F.; Jaris, M.; Albrecht, M.; Schmidt, H.

    2018-01-01

    Time Resolved Magneto Optic Kerr Effect spectroscopy was used to all-optically study the dynamics in exchange coupled Fe(10 nm)/Pt(x = 0-5 nm)/FePt (10 nm) thin films. As the Pt spacer decreases, the effective magnetization of the layers is seen to evolve towards the strong coupling limit where the two films can be described by a single effective magnetization. The coupling begins at x = 1.5 nm and reaches a maximum exchange coupling constant of 2.89 erg/cm2 at x = 0 nm. The films are ferromagnetically coupled at all Pt thicknesses in the exchange coupled regime (x ≤ 1.5 nm). A procedure for extracting the interlayer exchange constant by measuring the magnetic precession frequencies at multiple applied fields and angles is outlined. The dynamics are well reproduced using micromagnetic simulations.

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mota, D. F.; Salzano, V.; Capozziello, S.

    We investigate whether there is any cosmological evidence for a scalar field with a mass and coupling to matter which change accordingly to the properties of the astrophysical system it ''lives in,'' without directly focusing on the underlying mechanism that drives the scalar field scale-dependent-properties. We assume a Yukawa type of coupling between the field and matter and also that the scalar-field mass grows with density, in order to overcome all gravity constraints within the Solar System. We analyze three different gravitational systems assumed as ''cosmological indicators'': supernovae type Ia, low surface brightness spiral galaxies and clusters of galaxies. Resultsmore » show (i) a quite good fit to the rotation curves of low surface brightness galaxies only using visible stellar and gas-mass components is obtained; (ii) a scalar field can fairly well reproduce the matter profile in clusters of galaxies, estimated by x-ray observations and without the need of any additional dark matter; and (iii) there is an intrinsic difficulty in extracting information about the possibility of a scale-dependent massive scalar field (or more generally about a varying gravitational constant) from supernovae type Ia.« less

  19. Fabrication of directional sound sensor by silicon micromachining

    NASA Astrophysics Data System (ADS)

    Touse, Michael; Catterlin, Jeffrey; Sinibaldi, Jose; Karunasiri, Gamani

    2009-03-01

    A directional sound sensor based on the operational principle of the Ormia ochracea fly's hearing organism [1] was fabricated using micro-electromechanical system (MEMS) technology. The fly uses coupled bars hinged at the center to achieve directional sound sensing by monitoring the difference in their vibration amplitudes. The MEMS design employed in this work consisted of a 1x2 square millimeter polysilicon membrane hinged at the center and positioned about 1 micrometer above the substrate using a sacrificial silicon dioxide layer. Finite element analysis of the device shows two primary vibrational mode frequencies, one corresponding to a rocking mode which is highly dependent on angle of incidence, and the other to a bending motion which remains constant through all angles. Using a laser vibrometer to measure response, rocking and bending modes were observed at driving frequencies of 3.0 and 11.4 kHz, respectively, and angular dependence was in close agreement with modeling. [1] R.N. Miles, R. Robert, and R. R. Hoy, ``Mechanically coupled ears for directional hearing in the parasitoid fly Ormia ochracea,'' J. Acoust. Soc. Am., 98 (6), Dec. 1995

  20. Interfacial Coupling-Induced Ferromagnetic Insulator Phase in Manganite Film

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Bangmin; Wu, Lijun; Yin, Wei-Guo

    Interfaces with subtle difference in atomic and electronic structures in perovskite ABO3 heterostructures often yield intriguingly different properties, yet their exact roles remain elusive. Here, we report an integrated study of unusual transport, magnetic, and structural properties of Pr0.67Sr0.33MnO3 (PSMO) film on SrTiO3 (STO) substrate. The variations in out-of-plane lattice constant and BO6 octahedral rotation across the PSMO/STO interface strongly depend on the thickness of PSMO films. In the 12-nm film, a new interface-sensitive ferromagnetic polaronic insulator (FI’) phase is formed during the cubic-to-tetragonal phase transition of STO, apparently due to enhanced electron-phonon interaction and atomic disorder in the film.more » The transport properties of the FI’ phase in the 30-nm film are masked because of the reduced interfacial effect and smaller interface-to-volume ratio. This work demonstrates how thickness-dependent interfacial coupling leads to formation of the theoretically predicted novel ferromagnetic-polaronic insulator in systems, as illustrated in a new phase diagram, that are otherwise ferromagnetic metals (FM) in bulk form.« less

  1. Constant current loop impedance measuring system that is immune to the effects of parasitic impedances

    NASA Technical Reports Server (NTRS)

    Anderson, Karl F. (Inventor)

    1994-01-01

    A constant current loop measuring system is provided for measuring a characteristic of an environment. The system comprises a first impedance positionable in the environment, a second impedance coupled in series with said first impedance and a parasitic impedance electrically coupled to the first and second impedances. A current generating device, electrically coupled in series with the first and second impedances, provides a constant current through the first and second impedances to produce first and second voltages across the first and second impedances, respectively, and a parasitic voltage across the parasitic impedance. A high impedance voltage measuring device measures a voltage difference between the first and second voltages independent of the parasitic voltage to produce a characteristic voltage representative of the characteristic of the environment.

  2. Renner-Teller quantum dynamics of NH(a(1)Delta) + H reactions on the NH(2) A(2)A(1) and X(2)B(1) coupled surfaces.

    PubMed

    Defazio, P; Gamallo, P; González, M; Petrongolo, C

    2010-09-16

    Four reactions NH(a1Delta) + H′(2S) are investigated by the quantum mechanical real wavepacket method, taking into account nonadiabatic Renner-Teller (RT) and rovibronic Coriolis couplings between the involved states. We consider depletion (d) to N(2D) + H2(X1Sigmag+), exchange (e) to NH′(a1Delta) + H(2S), quenching (q) to NH(X3Sigma-) + H′(2S), and exchange-quenching (eq) to NH′(X3Sigma-) + H(2S). We extend our RT theory to a general AB + C collision using a geometry-dependent but very simple and empirical RT matrix element. Reaction probabilities, cross sections, and rate constants are presented, and RT results are compared with Born-Oppenheimer (BO), experimental, and semiclassical data. The nonadiabatic couplings open two new channels, (q) and (eq), and increase the (d) and (e) reactivity with respect to the BO one, when NH(a1Delta) is rotationally excited. In this case, the quantum cross sections are larger than the semiclassical ones at low collision energies. The calculated rate constants at 300 K are k(d) = 3.06, k(e) = 3.32, k(q) = 1.44, and k(eq) = 1.70 in 10(-11) cm3 s(-1) compared with the measured values k(d) = (3.2 =/- 1.7), k(q + eq) = (1.7 +/- 0.3), and k(total) = (4.8 +/- 1.7). The theoretical depletion rate is thus in good agreement with the experimental value, but the quenching and total rates are overestimated, because the present RT couplings are too large. This discrepancy is probably due to our simple and empirical RT matrix element.

  3. Evolution of the Carter constant for inspirals into a black hole: Effect of the black hole quadrupole

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Flanagan, Eanna E.; Laboratory for Elementary Particle Physics, Cornell University, Ithaca, New York 14853; Hinderer, Tanja

    2007-06-15

    We analyze the effect of gravitational radiation reaction on generic orbits around a body with an axisymmetric mass quadrupole moment Q to linear order in Q, to the leading post-Newtonian order, and to linear order in the mass ratio. This system admits three constants of the motion in absence of radiation reaction: energy, angular momentum along the symmetry axis, and a third constant analogous to the Carter constant. We compute instantaneous and time-averaged rates of change of these three constants. For a point particle orbiting a black hole, Ryan has computed the leading order evolution of the orbit's Carter constant,more » which is linear in the spin. Our result, when combined with an interaction quadratic in the spin (the coupling of the black hole's spin to its own radiation reaction field), gives the next to leading order evolution. The effect of the quadrupole, like that of the linear spin term, is to circularize eccentric orbits and to drive the orbital plane towards antialignment with the symmetry axis. In addition we consider a system of two point masses where one body has a single mass multipole or current multipole of order l. To linear order in the mass ratio, to linear order in the multipole, and to the leading post-Newtonian order, we show that there does not exist an analog of the Carter constant for such a system (except for the cases of an l=1 current moment and an l=2 mass moment). Thus, the existence of the Carter constant in Kerr depends on interaction effects between the different multipoles. With mild additional assumptions, this result falsifies the conjecture that all vacuum, axisymmetric spacetimes possess a third constant of the motion for geodesic motion.« less

  4. Lowest energy Frenkel and charge transfer exciton intermixing in one-dimensional copper phthalocyanine molecular lattice

    NASA Astrophysics Data System (ADS)

    Bondarev, I. V.; Popescu, A.; Younts, R. A.; Hoffman, B.; McAfee, T.; Dougherty, D. B.; Gundogdu, K.; Ade, H. W.

    2016-11-01

    We report the results of the combined experimental and theoretical studies of the low-lying exciton states in crystalline copper phthalocyanine. We derive the eigen energy spectrum for the two lowest intramolecular Frenkel excitons coupled to the intermolecular charge transfer exciton state and compare it with temperature dependent optical absorption spectra measured experimentally, to obtain the parameters of the Frenkel-charge-transfer exciton intermixing. The two Frenkel exciton states are spaced apart by 0.26 eV, and the charge transfer exciton state is 50 meV above the lowest Frenkel exciton. Both Frenkel excitons are strongly mixed with the charge transfer exciton, showing the coupling constant 0.17 eV which agrees with earlier experimental measurements. These results can be used for the proper interpretation of the physical properties of crystalline phthalocyanines.

  5. Comments on the Misunderstandings of Relativity and Theoretical Interpretation of the Kreuzer Experiment

    NASA Astrophysics Data System (ADS)

    Lo, C. Y.

    1997-03-01

    In 1966, the Kreuzer experiment set an upper limit on the difference in the ratio of active to passive mass between fluorine and bromine, and an interesting interpretation was given by Thorne et al. However, in 1976 Will, with his new parameterized post-Newtonian (PPN) approach, interpreted this experiment as providing an upper limit on his parameter combination related to electromagnetism. We show that, from the viewpoint of general relativity, Will's approach remains to be justified. Moreover, his result originates from his unphysical nuclear model, which ignores the isospin-dependent nuclear forces and is actually inconsistent with general relativity. It seems that to determine the constraint on the gravitational coupling to electromagnetism is beyond the valid application of the PPN formalism. As a further step, experimental measurement for the coupling constant to electromagnetism is recommended.

  6. The effective intensity of Coriolis, cross-coupling stimulation is gravitoinertial force dependent - Implications for space motion sickness

    NASA Technical Reports Server (NTRS)

    Lackner, J. R.; Graybiel, A.

    1986-01-01

    The effect of gravity on the severity of the Coriolis-induced motion sickness was investigated in ten individuals subjected to high and low G-force phases of parabolic flight maneuvers using constant level Coriolis, cross-coupled angular acceleration stimulation. Using seven levels of severity in the diagnosis of motion sickness, it was found that the subjects were less susceptible at 0 G than at +2 Gz, and that the perceived intensity and provocativeness of Coriolis stimulation decreased in 0 G and increased in +2 Gz relative to the +1 Gz baseline values. The changes in the apparent intensity of Coriolis stimulation occur virtually immediately when the background gravitatioinertial force level is varied. These findings explain why the Skylab astronauts were refractory to motion sickness during Coriolis stimulation in-flight.

  7. Quantification of Stereochemical Communication in Metal-Organic Assemblies.

    PubMed

    Castilla, Ana M; Miller, Mark A; Nitschke, Jonathan R; Smulders, Maarten M J

    2016-08-26

    The derivation and application of a statistical mechanical model to quantify stereochemical communication in metal-organic assemblies is reported. The factors affecting the stereochemical communication within and between the metal stereocenters of the assemblies were experimentally studied by optical spectroscopy and analyzed in terms of a free energy penalty per "incorrect" amine enantiomer incorporated, and a free energy of coupling between stereocenters. These intra- and inter-vertex coupling constants are used to track the degree of stereochemical communication across a range of metal-organic assemblies (employing different ligands, peripheral amines, and metals); temperature-dependent equilibria between diastereomeric cages are also quantified. The model thus provides a unified understanding of the factors that shape the chirotopic void spaces enclosed by metal-organic container molecules. © 2016 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA.

  8. Phantom energy mediates a long-range repulsive force.

    PubMed

    Amendola, Luca

    2004-10-29

    Scalar field models with nonstandard kinetic terms have been proposed in the context of k inflation, of Born-Infeld Lagrangians, of phantom energy and, more in general, of low-energy string theory. In general, scalar fields are expected to couple to matter inducing a new interaction. In this Letter I derive the cosmological perturbation equations and the Yukawa correction to gravity for such general models. I find three interesting results: first, when the field behaves as phantom energy (equation of state less than -1), then the coupling strength is negative, inducing a long-range repulsive force; second, the dark-energy field might cluster on astrophysical scales; third, applying the formalism to a Brans-Dicke theory with a general kinetic term it is shown that its Newtonian effects depend on a single parameter that generalizes the Brans-Dicke constant.

  9. Communication: On the isotope anomaly of nuclear quadrupole coupling in molecules

    NASA Astrophysics Data System (ADS)

    Filatov, Michael; Zou, Wenli; Cremer, Dieter

    2012-10-01

    The dependence of the nuclear quadrupole coupling constants (NQCC) on the interaction between electrons and a nucleus of finite size is theoretically analyzed. A deviation of the ratio of the NQCCs obtained from two different isotopomers of a molecule from the ratio of the corresponding bare nuclear electric quadrupole moments, known as quadrupole anomaly, is interpreted in terms of the logarithmic derivatives of the electric field gradient at the nuclear site with respect to the nuclear charge radius. Quantum chemical calculations based on a Dirac-exact relativistic methodology suggest that the effect of the changing size of the Au nucleus in different isotopomers can be observed for Au-containing molecules, for which the predicted quadrupole anomaly reaches values of the order of 0.1%. This is experimentally detectable and provides an insight into the charge distribution of non-spherical nuclei.

  10. The general form of the coupled Horndeski Lagrangian that allows cosmological scaling solutions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gomes, Adalto R.; Amendola, Luca, E-mail: argomes.ufma@gmail.com, E-mail: l.amendola@thphys.uni-heidelberg.de

    We consider the general scalar field Horndeski Lagrangian coupled to dark matter. Within this class of models, we present two results that are independent of the particular form of the model. First, we show that in a Friedmann-Robertson-Walker metric the Horndeski Lagrangian coincides with the pressure of the scalar field. Second, we employ the previous result to identify the most general form of the Lagrangian that allows for cosmological scaling solutions, i.e. solutions where the ratio of dark matter to field density and the equation of state remain constant. Scaling solutions of this kind may help solving the coincidence problemmore » since in this case the presently observed ratio of matter to dark energy does not depend on initial conditions, but rather on the theoretical parameters.« less

  11. Do the Constants of Nature Couple to Strong Gravitational Fields?

    NASA Astrophysics Data System (ADS)

    Preval, Simon P.; Barstow, Martin A.; Holberg, Jay B.; Barrow, John; Berengut, Julian; Webb, John; Dougan, Darren; Hu, Jiting

    2015-06-01

    Recently, white dwarf stars have found a new use in the fundamental physics community. Many prospective theories of the fundamental interactions of Nature allow traditional constants, like the fine structure constant α, to vary in some way. A study by Berengut et al. (2013) used the Fe/Ni v line measurements made by Preval et al. (2013) from the hot DA white dwarf G191-B2B, in an attempt to detect any variation in α. It was found that the Fe v lines indicated an increasing alpha, whereas the Ni v lines indicated a decreasing alpha. Possible explanations for this could be misidentification of the lines, inaccurate atomic data, or wavelength dependent distortion in the spectrum. We examine the first two cases by using a high S/N reference spectrum from the hot sdO BD+28°4211 to calibrate the Fe/Ni v atomic data. With this new data, we re-evaluate the work of Berengut et al. (2013) to derive a new constraint on the variation of alpha in a gravitational field.

  12. Coupled Viscous Fluid Flow and Joint Deformation Analysis for Grout Injection in a Rock Joint

    NASA Astrophysics Data System (ADS)

    Kim, Hyung-Mok; Lee, Jong-Won; Yazdani, Mahmoud; Tohidi, Elham; Nejati, Hamid Reza; Park, Eui-Seob

    2018-02-01

    Fluid flow modeling is a major area of interest within the field of rock mechanics. The main objective of this study is to gain insight into the performance of grout injection inside jointed rock masses by numerical modeling of grout flow through a single rock joint. Grout flow has been widely simulated using non-Newtonian Bingham fluid characterized by two main parameters of dynamic viscosity and shear yield strength both of which are time dependent. The increasing value of these properties with injection time will apparently affect the parameters representing the grouting performance including grout penetration length and volumetric injection rate. In addition, through hydromechanical coupling a mutual influence between the injection pressure from the one side and the joint opening/closing behavior and the aperture profile variation on the other side is anticipated. This is capable of producing a considerable impact on grout spread within the rock joints. In this study based on the Bingham fluid model, a series of numerical analysis has been conducted using UDEC to simulate the flow of viscous grout in a single rock joint with smooth parallel surfaces. In these analyses, the time-dependent evolution of the grout fluid properties and the hydromechanical coupling have been considered to investigate their impact on grouting performance. In order to verify the validity of these simulations, the results of analyses including the grout penetration length and the injection flow rate were compared with a well-known analytical solution which is available for the simple case of constant grout properties and non-coupled hydraulic analysis. The comparison demonstrated that the grout penetration length can be overestimated when the time-dependent hardening of grout material is not considered. Moreover, due to the HM coupling, it was shown that the joint opening induced by injection pressure may have a considerable increasing impression on the values of penetration length and injected grout volume.

  13. Hyperfine field, electric field gradient, quadrupole coupling constant and magnetic properties of challenging actinide digallide

    NASA Astrophysics Data System (ADS)

    Khan, Sajid; Yazdani-Kachoei, M.; Jalali-Asadabadi, S.; Ahmad, Iftikhar

    2017-12-01

    In this paper, we explore the structural and magnetic properties as well as electric field gradient (EFG), hyperfine field (HFF) and quadrupole coupling constant in actinide digallide AcGa2 (Ac = U, Np, Pu) using LDA, GGA, LDA+U, GGA+U and hybrid functional with Wu-Cohen Generalized Gradient approximation HF-WC. Relativistic effects of the electrons are considered by including spin-orbit coupling. The comparison of the calculated structural parameters and magnetic properties with the available experimental results confirms the consistency and hence effectiveness of our theoretical tools. The calculated magnetic moments demonstrate that UGa2 and NpGa2 are ferromagnetic while PuGa2 is antiferromagnetic in nature. The EFG of AcGa2 is reported for the first time. The HFF, EFG and quadrupole coupling constant in AcGa2 (Ac = U, Np, Pu) are mainly originated from f-f and p-p contributions of Ac atom and p-p contribution of Ga atom.

  14. Conformational analysis of a condensed macrocyclic β-lactam by NMR and molecular dynamics calculations

    NASA Astrophysics Data System (ADS)

    Keserű, György M.; Vásárhelyi, Helga; Makara, Gergely

    1994-09-01

    The conformation of the new macrocyclic β-lactam ( 1) was investigated by NMR and molecular dynamics (MD) calculations. Restraints obtained from NOESY and ROESY experiments were introduced into MD simulations which led to well-defined conformations. The preference for the calculated minimum energy conformation was confirmed by the analysis of vicinal coupling constants. Experimental coupling constants agreed with computed values.

  15. Advanced Oxidation of Tartrazine and Brilliant Blue with Pulsed Ultraviolet Light Emitting Diodes

    PubMed Central

    Scott, Robert; Mudimbi, Patrick; Miller, Michael E.; Magnuson, Matthew; Willison, Stuart; Phillips, Rebecca; Harper, Willie F.

    2018-01-01

    This study investigated the effect of ultraviolet light-emitting diodes (UVLEDs) coupled with hydrogen peroxide as an advanced oxidation process (AOP) for the degradation of two test chemicals. Brilliant Blue FCF consistently exhibited greater degradation than tartrazine, with 83% degradation after 300 minutes at the 100% duty cycle compared with only 17% degradation of tartrazine under the same conditions. These differences are attributable to the structural properties of the compounds. Duty cycle was positively correlated with the first-order rate constants (k) for both chemicals but, interestingly, negatively correlated with the normalized first-order rate constants (k/duty cycle). Synergistic effects of both hydraulic mixing and LED duty cycle were manifested as novel oscillations in the effluent contaminant concentration. Further, LED output and efficiency were dependent upon duty cycle and less efficient over time perhaps due to heating effects on semiconductor performance. PMID:28236826

  16. Method and apparatus for controlling pitch and flap angles of a wind turbine

    DOEpatents

    Deering, Kenneth J [Seattle, WA; Wohlwend, Keith P [Issaquah, WA

    2009-05-12

    A wind turbine with improved response to wind conditions is provided. Blade flap angle motion is accompanied by a change in pitch angle by an amount defining a pitch/flap coupling ratio. The coupling ratio is non-constant as a function of a flap angle and is preferably a substantially continuous, non-linear function of flap angle. The non-constant coupling ratio can be provided by mechanical systems such as a series of linkages or by configuring electronic or other control systems and/or angle sensors. A link with a movable proximal end advantageously is part of the mechanical system. The system can provide relatively large coupling ratios and relatively large rates of coupling ratio changes especially for near-feather pitches and low flap angles.

  17. Oxytrex: an oxycodone and ultra-low-dose naltrexone formulation.

    PubMed

    Webster, Lynn R

    2007-08-01

    Oxytrex (Pain Therapeutics, Inc.) is an oral opioid that combines a therapeutic amount of oxycodone with an ultra-low dose of the antagonist naltrexone. Animal data indicate that this combination minimizes the development of physical dependence and analgesic tolerance while prolonging analgesia. Oxytrex is in late-stage clinical development by Pain Therapeutics for the treatment of moderate-to-severe chronic pain. To evaluate the safety and efficacy of the oxycodone/naltrexone combination, three clinical studies have been conducted, one in healthy volunteers and the other two in patients with chronic pain. The putative mechanism of ultra-low-dose naltrexone is to prevent an alteration in G-protein coupling by opioid receptors that is associated with opioid tolerance and dependence. Opioid agonists are initially inhibitory but become excitatory through constant opioid receptor activity. The agonist/antagonist combination of Oxytrex may reduce the conversion from an inhibitory to an excitatory receptor, thereby decreasing the development of tolerance and physical dependence.

  18. Theory of absorption integrated optical sensor of gaseous materials

    NASA Astrophysics Data System (ADS)

    Egorov, A. A.

    2010-10-01

    The eigen and noneigen (leaky) modes of a three-layer planar integrated optical waveguide are described. The dispersion relation of a three-layer planar waveguide and other dependences are derived, and the cutoff conditions are analyzed. The diagram of propagation constants of the guided and radiation modes of an irregular asymmetric three-layer waveguide and the dependence of the electric field amplitudes of radiation modes of substrate on vertical coordinate in a tantalum integrated optical waveguide are presented. The operating principles of an absorption integrated optical waveguide sensor are investigated. The dependences of sensitivity of an integrated optical waveguide sensor on the sensory cell length, the coupling efficiency of the laser radiation into the waveguide, the absorption cross-section of the studied material, and the level of additive statistical noise are investigated. Some of the prospective areas of application of integrated-optical waveguide sensors are outlined.

  19. Rotating Hele-Shaw cell with a time-dependent angular velocity

    NASA Astrophysics Data System (ADS)

    Anjos, Pedro H. A.; Alvarez, Victor M. M.; Dias, Eduardo O.; Miranda, José A.

    2017-12-01

    Despite the large number of existing studies of viscous flows in rotating Hele-Shaw cells, most investigations analyze rotational motion with a constant angular velocity, under vanishing Reynolds number conditions in which inertial effects can be neglected. In this work, we examine the linear and weakly nonlinear dynamics of the interface between two immiscible fluids in a rotating Hele-Shaw cell, considering the action of a time-dependent angular velocity, and taking into account the contribution of inertia. By using a generalized Darcy's law, we derive a second-order mode-coupling equation which describes the time evolution of the interfacial perturbation amplitudes. For arbitrary values of viscosity and density ratios, and for a range of values of a rotational Reynolds number, we investigate how the time-dependent angular velocity and inertia affect the important finger competition events that traditionally arise in rotating Hele-Shaw flows.

  20. Full four-component relativistic calculations of the one-bond 77Se-13C spin-spin coupling constants in the series of selenium heterocycles and their parent open-chain selenides.

    PubMed

    Rusakov, Yury Yu; Rusakova, Irina L; Krivdin, Leonid B

    2014-05-01

    Four-component relativistic calculations of (77)Se-(13)C spin-spin coupling constants have been performed in the series of selenium heterocycles and their parent open-chain selenides. It has been found that relativistic effects play an essential role in the selenium-carbon coupling mechanism and could result in a contribution of as much as 15-25% of the total values of the one-bond selenium-carbon spin-spin coupling constants. In the overall contribution of the relativistic effects to the total values of (1)J(Se,C), the scalar relativistic corrections (negative in sign) by far dominate over the spin-orbit ones (positive in sign), the latter being of less than 5%, as compared to the former (ca 20%). A combination of nonrelativistic second-order polarization propagator approach (CC2) with the four-component relativistic density functional theory scheme is recommended as a versatile tool for the calculation of (1)J(Se,C). Solvent effects in the values of (1)J(Se,C) calculated within the polarizable continuum model for the solvents with different dielectric constants (ε 2.2-78.4) are next to negligible decreasing negative (1)J(Se,C) in absolute value by only about 1 Hz. The use of the locally dense basis set approach applied herewith for the calculation of (77)Se-(13)C spin-spin coupling constants is fully justified resulting in a dramatic decrease in computational cost with only 0.1-0.2-Hz loss of accuracy. Copyright © 2014 John Wiley & Sons, Ltd.

  1. Interpretation of current-voltage relationships for "active" ion transport systems: I. Steady-state reaction-kinetic analysis of class-I mechanisms.

    PubMed

    Hansen, U P; Gradmann, D; Sanders, D; Slayman, C L

    1981-01-01

    This paper develops a simple reaction-kinetic model to describe electrogenic pumping and co- (or counter-) transport of ions. It uses the standard steady-state approach for cyclic enzyme- or carrier-mediated transport, but does not assume rate-limitation by any particular reaction step. Voltage-dependence is introduced, after the suggestion of Läuger and Stark (Biochim. Biophys. Acta 211:458-466, 1970), via a symmetric Eyring barrier, in which the charge-transit reaction constants are written as k12 = ko12 exp(zF delta psi/2RT) and k21 = ko21 exp(-zF delta psi/2RT). For interpretation of current-voltage relationships, all voltage-independent reaction steps are lumped together, so the model in its simplest form can be described as a pseudo-2-state model. It is characterized by the two voltage-dependent reaction constants, two lumped voltage-independent reaction constants (k12, k21), and two reserve factors (ri, ro) which formally take account of carrier states that are indistinguishable in the current-voltage (I-V) analysis. The model generates a wide range of I-V relationships, depending on the relative magnitudes of the four reaction constants, sufficient to describe essentially all I-V datas now available on "active" ion-transport systems. Algebraic and numerical analysis of the reserve factors, by means of expanded pseudo-3-, 4-, and 5-state models, shows them to be bounded and not large for most combinations of reaction constants in the lumped pathway. The most important exception to this rule occurs when carrier decharging immediately follows charge transit of the membrane and is very fast relative to other constituent voltage-independent reactions. Such a circumstance generates kinetic equivalence of chemical and electrical gradients, thus providing a consistent definition of ion-motive forces (e.g., proton-motive force, PMF). With appropriate restrictions, it also yields both linear and log-linear relationships between net transport velocity and either membrane potential or PMF. The model thus accommodates many known properties of proton-transport systems, particularly as observed in "chemiosmotic" or energy-coupling membranes.

  2. Toward designed singlet fission: solution photophysics of two indirectly coupled covalent dimers of 1,3-diphenylisobenzofuran.

    PubMed

    Johnson, Justin C; Akdag, Akin; Zamadar, Matibur; Chen, Xudong; Schwerin, Andrew F; Paci, Irina; Smith, Millicent B; Havlas, Zdeněk; Miller, John R; Ratner, Mark A; Nozik, Arthur J; Michl, Josef

    2013-04-25

    In order to identify optimal conditions for singlet fission, we are examining the photophysics of 1,3-diphenylisobenzofuran (1) dimers covalently coupled in various ways. In the two dimers studied presently, the coupling is weak. The subunits are linked via the para position of one of the phenyl substituents, in one case (2) through a CH2 linker and in the other (3) directly, but with methyl substituents in ortho positions forcing a nearly perpendicular twist between the two joint phenyl rings. The measurements are accompanied with density functional theory (DFT) and time-dependent DFT (TD-DFT) calculations. Although in neat solid state, 1 undergoes singlet fission with a rate constant higher than 10(11) s(-1); in nonpolar solutions of 2 and 3, the triplet formation rate constant is less than 10(6) s(-1) and fluorescence is the only significant event following electronic excitation. In polar solvents, fluorescence is weaker because the initial excited singlet state S1 equilibrates by sub-nanosecond charge transfer with a nonemissive dipolar species in which a radical cation of 1 is attached to a radical anion of 1. Most of this charge transfer species decays to S0, and some is converted into triplet T1 with a rate constant near 10(8) s(-1). Experimental uncertainties prevent an accurate determination of the number of T1 excitations that result when a single S1 excitation changes into triplet excitation. It would be one if the charge-transfer species undergoes ordinary intersystem crossing and two if it undergoes the second step of two-step singlet fission. The triplet yield maximizes below room temperature to a value of roughly 9% for 3 and 4% for 2. Above ∼360 K, some of the S1 molecules of 3 are converted into an isomeric charge-transfer species with a shorter lifetime, possibly with a twisted intramolecular charge transfer (TICT) structure. This is not observed in 2.

  3. Exchange coupling transformations in Cu (II) heterospin complexes of “breathing crystals” under structural phase transitions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Morozov, Vitaly A.; Petrova, Marina V.; Lukzen, Nikita N., E-mail: luk@tomo.nsc.ru

    2015-08-15

    Family of “breathing crystals” is the polymer-chain complexes of Cu(hfac){sub 2} with nitroxides. The polymer chains consist of one-, two- or three-spin clusters. The “breathing crystals” experience simultaneous magnetic and Jahn-Teller type structural phase transitions with change of total cluster spin and drastic change of bond lengths (ca. 10-12%). For the first time the intra-cluster magnetic couplings in ”breathing crystals” have been calculated both by band structure methods GGA + U and hybrid DFT (B3LYP and PBE0) for the isolated exchange clusters. The temperature dependence of the magnetic coupling constant was calculated for two polymer-chain compounds of the “breathing crystal”more » family - C{sub 21}H{sub 19}CuF{sub 12}N{sub 4}O{sub 6} with the chains containing two-spin clusters and C{sub 22}H{sub 21}CuF{sub 12}N{sub 4}O{sub 6} with the chains of alternating three-spin clusters and one-spin sites. It was found that adding a Hubbard-like parameter not only to the copper 3d electrons but also to the oxygen 2p electrons (GGA + U{sub d} + U{sub p} approach) results in an improved description of exchange coupling in the “breathing crystal” compounds. At the same time treatment of the isolated clusters by a large basis hybrid DFT with high computational cost provides a similar quality fit of the experimental magneto-chemical data as that for the GGA + U{sub d} + U{sub p} band structure calculation scheme. Our calculations also showed that in spite of the abrupt transformation of the magnetic coupling constant under the phase transition, the band gap in the “breathing crystals” remains about the same value with temperature decrease.« less

  4. Numerical simulations of piecewise deterministic Markov processes with an application to the stochastic Hodgkin-Huxley model.

    PubMed

    Ding, Shaojie; Qian, Min; Qian, Hong; Zhang, Xuejuan

    2016-12-28

    The stochastic Hodgkin-Huxley model is one of the best-known examples of piecewise deterministic Markov processes (PDMPs), in which the electrical potential across a cell membrane, V(t), is coupled with a mesoscopic Markov jump process representing the stochastic opening and closing of ion channels embedded in the membrane. The rates of the channel kinetics, in turn, are voltage-dependent. Due to this interdependence, an accurate and efficient sampling of the time evolution of the hybrid stochastic systems has been challenging. The current exact simulation methods require solving a voltage-dependent hitting time problem for multiple path-dependent intensity functions with random thresholds. This paper proposes a simulation algorithm that approximates an alternative representation of the exact solution by fitting the log-survival function of the inter-jump dwell time, H(t), with a piecewise linear one. The latter uses interpolation points that are chosen according to the time evolution of the H(t), as the numerical solution to the coupled ordinary differential equations of V(t) and H(t). This computational method can be applied to all PDMPs. Pathwise convergence of the approximated sample trajectories to the exact solution is proven, and error estimates are provided. Comparison with a previous algorithm that is based on piecewise constant approximation is also presented.

  5. Cosmological abundance of the QCD axion coupled to hidden photons

    NASA Astrophysics Data System (ADS)

    Kitajima, Naoya; Sekiguchi, Toyokazu; Takahashi, Fuminobu

    2018-06-01

    We study the cosmological evolution of the QCD axion coupled to hidden photons. For a moderately strong coupling, the motion of the axion field leads to an explosive production of hidden photons by tachyonic instability. We use lattice simulations to evaluate the cosmological abundance of the QCD axion. In doing so, we incorporate the backreaction of the produced hidden photons on the axion dynamics, which becomes significant in the non-linear regime. We find that the axion abundance is suppressed by at most O (102) for the decay constant fa =1016GeV, compared to the case without the coupling. For a sufficiently large coupling, the motion of the QCD axion becomes strongly damped, and as a result, the axion abundance is enhanced. Our results show that the cosmological upper bound on the axion decay constant can be relaxed by a few hundred for a certain range of the coupling to hidden photons.

  6. A Probabilistic Graphical Model to Detect Chromosomal Domains

    NASA Astrophysics Data System (ADS)

    Heermann, Dieter; Hofmann, Andreas; Weber, Eva

    To understand the nature of a cell, one needs to understand the structure of its genome. For this purpose, experimental techniques such as Hi-C detecting chromosomal contacts are used to probe the three-dimensional genomic structure. These experiments yield topological information, consistently showing a hierarchical subdivision of the genome into self-interacting domains across many organisms. Current methods for detecting these domains using the Hi-C contact matrix, i.e. a doubly-stochastic matrix, are mostly based on the assumption that the domains are distinct, thus non-overlapping. For overcoming this simplification and for being able to unravel a possible nested domain structure, we developed a probabilistic graphical model that makes no a priori assumptions on the domain structure. Within this approach, the Hi-C contact matrix is analyzed using an Ising like probabilistic graphical model whose coupling constant is proportional to each lattice point (entry in the contact matrix). The results show clear boundaries between identified domains and the background. These domain boundaries are dependent on the coupling constant, so that one matrix yields several clusters of different sizes, which show the self-interaction of the genome on different scales. This work was supported by a Grant from the International Human Frontier Science Program Organization (RGP0014/2014).

  7. The mathematical modeling of the experiment on the determination of correlation coefficients in neutron beta-decay

    NASA Astrophysics Data System (ADS)

    Serebrov, A. P.; Zherebtsov, O. M.; Klyushnikov, G. N.

    2018-05-01

    An experiment on the measurement of the ratio of the axial coupling constant to the vector one is under development. The main idea of the experiment is to measure the values of A and B in the same setup. An additional measurement of the polarization is not necessary. The accuracy achieved to date in measuring λ is 2 × 10-3. It is expected that in the experiment the accuracy will be of the order of 10-4. Some particular problems of mathematical modeling concerning the experiment on the measurement of the ratio of the axial coupling constant to the vector one are considered. The force lines for the given tabular field of a magnetic trap are studied. The dependences of the longitudinal and transverse field non-uniformity coefficients on the coordinates are regarded. A special computational algorithm based on the law of a charged particle motion along a local magnetic force line is performed for the calculation of the electrons and protons motion time as well as for the evaluation of the total number of electrons colliding with the detector surface. The average values of the cosines of the angles with the coefficients of a, A and B have been estimated.

  8. What Mutagenesis Can and Cannot Reveal About Allostery.

    PubMed

    Carlson, Gerald M; Fenton, Aron W

    2016-05-10

    Allosteric regulation of protein function is recognized to be widespread throughout biology; however, knowledge of allosteric mechanisms, the molecular changes within a protein that couple one binding site to another, is limited. Although mutagenesis is often used to probe allosteric mechanisms, we consider herein what the outcome of a mutagenesis study truly reveals about an allosteric mechanism. Arguably, the best way to evaluate the effects of a mutation on allostery is to monitor the allosteric coupling constant (Qax), a ratio of the substrate binding constants in the absence versus presence of an allosteric effector. A range of substitutions at a given residue position in a protein can reveal when a particular substitution causes gain-of-function, which addresses a key challenge in interpreting mutation-dependent changes in the magnitude of Qax. Thus, whole-protein mutagenesis studies offer an acceptable means of identifying residues that contribute to an allosteric mechanism. With this focus on monitoring Qax, and keeping in mind the equilibrium nature of allostery, we consider alternative possibilities for what an allosteric mechanism might be. We conclude that different possible mechanisms (rotation-of-solid-domains, movement of secondary structure, side-chain repacking, changes in dynamics, etc.) will result in different findings in whole-protein mutagenesis studies. Copyright © 2016 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  9. Conjugate gradient coupled with multigrid for an indefinite problem

    NASA Technical Reports Server (NTRS)

    Gozani, J.; Nachshon, A.; Turkel, E.

    1984-01-01

    An iterative algorithm for the Helmholtz equation is presented. This scheme was based on the preconditioned conjugate gradient method for the normal equations. The preconditioning is one cycle of a multigrid method for the discrete Laplacian. The smoothing algorithm is red-black Gauss-Seidel and is constructed so it is a symmetric operator. The total number of iterations needed by the algorithm is independent of h. By varying the number of grids, the number of iterations depends only weakly on k when k(3)h(2) is constant. Comparisons with a SSOR preconditioner are presented.

  10. Radiation of partially ionized atomic hydrogen

    NASA Technical Reports Server (NTRS)

    Soon, W. H.; Kunc, J. A.

    1990-01-01

    A nonlinear collisional-radiative model for determination of production of electrons, positive and negative ions, excited atoms, and spectral and continuum line intensities in stationary partially ionized atomic hydrogen is presented. Transport of radiation is included by coupling the rate equations for production of the electrons, ions, and excited atoms with the radiation escape factors, which are not constant but depend on plasma conditions. It is found that the contribution of the negative ion emission to the total continuum emission can be important. Comparison of the calculated total continuum emission coefficient, including the negative ion emission, is in good agreement with experimental results.

  11. Collisional-radiative nonequilibrium in partially ionized atomic nitrogen

    NASA Technical Reports Server (NTRS)

    Kunc, J. A.; Soon, W. H.

    1989-01-01

    A nonlinear collisional-radiative model for determination of nonequilibrium production of electrons, excited atoms, and bound-bound, dielectronic and continuum line intensities in stationary partially ionized atomic nitrogen is presented. Populations of 14 atomic levels and line intensities are calculated in plasma with T(e) = 8000-15,000 K and N(t) = 10 to the 12th - 10 to the 18th/cu cm. Transport of radiation is included by coupling the rate equations of production of the electrons and excited atoms with the radiation escape factors, which are not constant but depend on plasma conditions.

  12. Self-dual monopoles and toda molecules

    NASA Astrophysics Data System (ADS)

    Ganoulis, N.; Goddard, P.; Olive, D.

    1982-07-01

    Stable static solutions to a gauge field theory with a Higgs field in the adjoint representation and with vanishing self-coupling are self-dual in the sense of Bogomolny. Leznov and Saveliev showed that a specific form of spherical symmetry reduces these equations to a modified form of the Toda molecule equations associated with the overall gauge symmetry G. Values of the constants of integration are found in terms of the distant Higgs field, guaranteeing regularity of the solution at the origin. The expressions hold for any simple Lie group G, depending on G via its root system.

  13. Three-dimensional ordering of cold ion beams in a storage ring: A molecular-dynamics simulation study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yuri, Yosuke, E-mail: yuri.yosuke@jaea.go.jp

    Three-dimensional (3D) ordering of a charged-particle beams circulating in a storage ring is systematically studied with a molecular-dynamics simulation code. An ion beam can exhibit a 3D ordered configuration at ultralow temperature as a result of powerful 3D laser cooling. Various unique characteristics of the ordered beams, different from those of crystalline beams, are revealed in detail, such as the single-particle motion in the transverse and longitudinal directions, and the dependence of the tune depression and the Coulomb coupling constant on the operating points.

  14. LASER APPLICATIONS AND OTHER TOPICS IN QUANTUM ELECTRONICS: Analysis of the absorption spectra and spectral hole burning in zero-phonon lines of F+3 and N1 colour centres in LiF crystals

    NASA Astrophysics Data System (ADS)

    Fedorov, A. V.; Martyshkin, D. V.; Fedorov, V. V.

    2010-09-01

    The temperature dependences and mechanisms of broadening of zero-phonon lines of F+3 (488 nm) and N1 (523 nm) colour centres in LiF crystals are investigated. The results obtained make it possible to determine the quadratic electronic—vibrational coupling constant for N1 colour centres. The experimental data on the spectral hole burning in zero-phonon lines of F+3 and N1 colour centres indicate that the latter are positively charged.

  15. Thermodynamics of Einstein-Born-Infeld black holes with negative cosmological constant

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miskovic, Olivera; Olea, Rodrigo; INFN, Sezione di Milano, Via Celoria 16, I-20133, Milano

    2008-06-15

    We study the thermodynamics associated to topological black hole solutions of AdS gravity coupled to nonlinear electrodynamics (Born-Infeld) in any dimension, using a background-independent regularization prescription for the Euclidean action given by boundary terms, which explicitly depend on the extrinsic curvature (Kounterterms series). A finite action principle leads to the correct definition of thermodynamic variables as Noether charges, which satisfy a Smarr-like relation. In particular, for the odd-dimensional case, a consistent thermodynamic description is achieved if the internal energy of the system includes the vacuum energy for AdS spacetime.

  16. Phase transitions in neutron star equation of state induced by the delta resonances matter

    NASA Astrophysics Data System (ADS)

    T, Oliveira J. C.; Rodrigues, H.; Duarte, S. B.

    2016-04-01

    In the present work we determine the equation of state and the population of baryons and leptons, and also we discuss the implication of changes in the baryon-meson coupling constants to the formation of delta matter in the stellar medium. And also in this work the phase transition is explored with respect to the domain of the delta-mesons coupling constants.

  17. Constant DI pacing suppresses cardiac alternans formation in numerical cable models

    NASA Astrophysics Data System (ADS)

    Zlochiver, S.; Johnson, C.; Tolkacheva, E. G.

    2017-09-01

    Cardiac repolarization alternans describe the sequential alternation of the action potential duration (APD) and can develop during rapid pacing. In the ventricles, such alternans may rapidly turn into life risking arrhythmias under conditions of spatial heterogeneity. Thus, suppression of alternans by artificial pacing protocols, or alternans control, has been the subject of numerous theoretical, numerical, and experimental studies. Yet, previous attempts that were inspired by chaos control theories were successful only for a short spatial extent (<2 cm) from the pacing electrode. Previously, we demonstrated in a single cell model that pacing with a constant diastolic interval (DI) can suppress the formation of alternans at high rates of activation. We attributed this effect to the elimination of feedback between the pacing cycle length and the last APD, effectively preventing restitution-dependent alternans from developing. Here, we extend this idea into cable models to study the extent by which constant DI pacing can control alternans during wave propagation conditions. Constant DI pacing was applied to ventricular cable models of up to 5 cm, using human kinetics. Our results show that constant DI pacing significantly shifts the onset of both cardiac alternans and conduction blocks to higher pacing rates in comparison to pacing with constant cycle length. We also demonstrate that constant DI pacing reduces the propensity of spatially discordant alternans, a precursor of wavebreaks. We finally found that the protective effect of constant DI pacing is stronger for increased electrotonic coupling along the fiber in the sense that the onset of alternans is further shifted to higher activation rates. Overall, these results support the potential clinical applicability of such type of pacing in improving protocols of implanted pacemakers, in order to reduce the risk of life-threatening arrhythmias. Future research should be conducted in order to experimentally validate these promising results.

  18. Ferroelectric, elastic, piezoelectric, and dielectric properties of Ba(Ti0.7Zr0.3)O3-x(Ba0.82Ca0.18)TiO3 Pb-free ceramics

    NASA Astrophysics Data System (ADS)

    Yuan, Ruihao; Xue, Deqing; Zhou, Yumei; Ding, Xiangdong; Sun, Jun; Xue, Dezhen

    2017-07-01

    We designed and synthesized a pseudo-binary Pb-free system, Ba(Ti0.7Zr0.3)O3-x(Ba0.82Ca0.18)TiO3, by combining a rhombohedral end (with only cubic to rhombohedral ferroelectric phase transition) and a tetragonal end (with only cubic to tetragonal ferroelectric phase transition). The established composition-temperature phase diagram is characterized by a tricritical point type morphotropic phase boundary (MPB), and the MPB composition has better ferroelectric, piezoelectric, and dielectric properties than the compositions deviating from MPB. Moreover, a full set of material constants (including elastic stiffness constants, elastic compliance constants, piezoelectric constants, dielectric constants, and electromechanical coupling factors) of the MPB composition are determined using a resonance method. The good piezoelectric performance of the MPB composition can be ascribed to the high dielectric constants, elastic softening, and large electromechanical coupling factor.

  19. A study of the conformational isomerism of 1-iodobutane by high resolution rotational spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Arsenault, Eric A.; Obenchain, Daniel A.; Blake, Thomas A.

    2017-05-01

    The first microwave study of 1-iodobutane, performed by Steinmetz et al.in 1977) led to the determination of the B + C parameter for the anti-anti­and gauche-anti-conformers. Nearly 40 years later, this reinvestigation of 1- iodobutane, by high-resolution microwave spectroscopy, led to the determina­tion of rotational constants, centrifugal distortion constants, nuclear quadrupole coupling constants (NQCCs), and nuclear-sp rotation constants belonging to both of the two previously mentioned conformers, in addition to the gauche­ gauche-conformer, which was observed in this frequency regime for the first time. Comparisons between the three conformers of 1-iodobutanc and other iodo- and bromoalkanes are made, specifically throughmore » an analysis of the nuclear quadrupole coupling constants belonging to the iodine and bromine atoms in the respective chemical environments.« less

  20. Wormholes and the cosmological constant problem.

    NASA Astrophysics Data System (ADS)

    Klebanov, I.

    The author reviews the cosmological constant problem and the recently proposed wormhole mechanism for its solution. Summation over wormholes in the Euclidean path integral for gravity turns all the coupling parameters into dynamical variables, sampled from a probability distribution. A formal saddle point analysis results in a distribution with a sharp peak at the cosmological constant equal to zero, which appears to solve the cosmological constant problem. He discusses the instabilities of the gravitational Euclidean path integral and the difficulties with its interpretation. He presents an alternate formalism for baby universes, based on the "third quantization" of the Wheeler-De Witt equation. This approach is analyzed in a minisuperspace model for quantum gravity, where it reduces to simple quantum mechanics. Once again, the coupling parameters become dynamical. Unfortunately, the a priori probability distribution for the cosmological constant and other parameters is typically a smooth function, with no sharp peaks.

  1. A study of the conformational isomerism of 1-iodobutane by high resolution rotational spectroscopy

    DOE PAGES

    Arsenault, Eric A.; Obenchain, Daniel A.; Blake, Thomas A.; ...

    2017-05-01

    The first microwave study of 1-iodobutane, performed by Steinmetz et al. in 1977, led to the determination of the B+C parameter for the anti-anti- and gauche-anti-conformers. Nearly 40 years later, in this paper this reinvestigation of 1-iodobutane, by high-resolution microwave spectroscopy, led to the determination of rotational constants, centrifugal distortion constants, nuclear quadrupole coupling constants (NQCCs), and nuclear-spin rotation constants belonging to both of the two previously mentioned conformers, in addition to the gauche-gauche-conformer, which was observed in this frequency regime for the first time. Finally, comparisons between the three conformers of 1-iodobutane and other iodo- and bromoalkanes are made,more » specifically through an analysis of the nuclear quadrupole coupling constants belonging to the iodine and bromine atoms in the respective chemical environments.« less

  2. Gauged baby Skyrme model with a Chern-Simons term

    NASA Astrophysics Data System (ADS)

    Samoilenka, A.; Shnir, Ya.

    2017-02-01

    The properties of the multisoliton solutions of the (2 +1 )-dimensional Maxwell-Chern-Simons-Skyrme model are investigated numerically. Coupling to the Chern-Simons term allows for existence of the electrically charge solitons which may also carry magnetic fluxes. Two particular choices of the potential term is considered: (i) the weakly bounded potential and (ii) the double vacuum potential. In the absence of gauge interaction in the former case the individual constituents of the multisoliton configuration are well separated, while in the latter case the rotational invariance of the configuration remains unbroken. It is shown that coupling of the planar multi-Skyrmions to the electric and magnetic field strongly affects the pattern of interaction between the constituents. We analyze the dependency of the structure of the solutions, the energies, angular momenta, electric and magnetic fields of the configurations on the gauge coupling constant g , and the electric potential. It is found that, generically, the coupling to the Chern-Simons term strongly affects the usual pattern of interaction between the skyrmions, in particular the electric repulsion between the solitons may break the multisoliton configuration into partons. We show that as the gauge coupling becomes strong, both the magnetic flux and the electric charge of the solutions become quantized although they are not topological numbers.

  3. 17O nuclear quadrupole coupling constants of water bound to a metal ion: A gadolinium(III) case study

    NASA Astrophysics Data System (ADS)

    Yazyev, Oleg V.; Helm, Lothar

    2006-08-01

    Rotational correlation times of metal ion aqua complexes can be determined from O17 NMR relaxation rates if the quadrupole coupling constant of the bound water oxygen-17 nucleus is known. The rotational correlation time is an important parameter for the efficiency of Gd3+ complexes as magnetic resonance imaging contrast agents. Using a combination of density functional theory with classical and Car-Parrinello molecular dynamics simulations we performed a computational study of the O17 quadrupole coupling constants in model aqua ions and the [Gd(DOTA)(H2O)]- complex used in clinical diagnostics. For the inner sphere water molecule in the [Gd(DOTA)(H2O)]- complex the determined quadrupole coupling parameter χ√1+η2/3 of 8.7MHz is very similar to that of the liquid water (9.0MHz ). Very close values were also predicted for the the homoleptic aqua ions of Gd3+ and Ca2+. We conclude that the O17 quadrupole coupling parameters of water molecules coordinated to closed shell and lanthanide metal ions are similar to water molecules in the liquid state.

  4. Linear perturbations in spherically symmetric dust cosmologies including a cosmological constant

    NASA Astrophysics Data System (ADS)

    Meyer, Sven; Bartelmann, Matthias

    2017-12-01

    We study the dynamical behaviour of gauge-invariant linear perturbations in spherically symmetric dust cosmologies including a cosmological constant. In contrast to spatially homogeneous FLRW models, the reduced degree of spatial symmetry causes a non-trivial dynamical coupling of gauge-invariant quantities already at first order perturbation theory and the strength and influence of this coupling on the spacetime evolution is investigated here. We present results on the underlying dynamical equations augmented by a cosmological constant and integrate them numerically. We also present a method to derive cosmologically relevant initial variables for this setup. Estimates of angular power spectra for each metric variable are computed and evaluated on the central observer's past null cone. By comparing the full evolution to the freely evolved initial profiles, the coupling strength will be determined for a best fit radially inhomogeneous patch obtained in previous works (see [1]). We find that coupling effects are not noticeable within the cosmic variance limit and can therefore safely be neglected for a relevant cosmological scenario. On the contrary, we find very strong coupling effects in a best fit spherical void model matching the distance redshift relation of SNe which is in accordance with previous findings using parametric void models.

  5. A Green's function method for simulation of time-dependent solute transport and reaction in realistic microvascular geometries

    PubMed Central

    Secomb, Timothy W.

    2016-01-01

    A novel theoretical method is presented for simulating the spatially resolved convective and diffusive transport of reacting solutes between microvascular networks and the surrounding tissues. The method allows for efficient computational solution of problems involving convection and non-linear binding of solutes in blood flowing through microvascular networks with realistic 3D geometries, coupled with transvascular exchange and diffusion and reaction in the surrounding tissue space. The method is based on a Green's function approach, in which the solute concentration distribution in the tissue is expressed as a sum of fields generated by time-varying distributions of discrete sources and sinks. As an example of the application of the method, the washout of an inert diffusible tracer substance from a tissue region perfused by a network of microvessels is simulated, showing its dependence on the solute's transvascular permeability and tissue diffusivity. Exponential decay of the washout concentration is predicted, with rate constants that are about 10–30% lower than the rate constants for a tissue cylinder model with the same vessel length, vessel surface area and blood flow rate per tissue volume. PMID:26443811

  6. Dual of the Janus solution: An interface conformal field theory

    NASA Astrophysics Data System (ADS)

    Clark, A. B.; Freedman, D. Z.; Karch, A.; Schnabl, M.

    2005-03-01

    We propose and study a specific gauge theory dual of the smooth, nonsupersymmetric (and apparently stable) Janus solution of Type IIB supergravity found in Bak et al. [J. High Energy Phys., JHEPFG, 1029-8479 05 (2003) 072]. The dual field theory is N=4 SYM theory on two half-spaces separated by a planar interface with different coupling constants in each half-space. We assume that the position dependent coupling multiplies the operator L' which is the fourth descendent of the primary TrX{IXJ} and closely related to the N=4 Lagrangian density. At the classical level supersymmetry is broken explicitly, but SO(3,2) conformal symmetry is preserved. We use conformal perturbation theory to study various correlation functions to first and second order in the discontinuity of g2YM, confirming quantum level conformal symmetry. Certain quantities such as the vacuum expectation value are protected to all orders in g2YMN, and we find perfect agreement between the weak coupling value in the gauge theory and the strong coupling gravity result. SO(3,2) symmetry requires vanishing vacuum energy, =0, and this is confirmed in first order in the discontinuity.

  7. The effect of medium viscosity on kinetics of ATP hydrolysis by the chloroplast coupling factor CF1.

    PubMed

    Malyan, Alexander N

    2016-05-01

    The coupling factor CF1 is a catalytic part of chloroplast ATP synthase which is exposed to stroma whose viscosity is many-fold higher than that of reaction mixtures commonly used to measure kinetics of CF1-catalyzed ATP hydrolysis. This study is focused on the effect of medium viscosity modulated by sucrose or bovine serum albumin (BSA) on kinetics of Ca(2+)- and Mg(2+)-dependent ATP hydrolysis by CF1. These agents were shown to reduce the maximal rate of Ca(2+)-dependent ATPase without changing the apparent Michaelis constant (К m), thus supporting the hypothesis on viscosity dependence of CF1 activity. For the sulfite- and ethanol-stimulated Mg(2+)-dependent reaction, the presence of sucrose increased К m without changing the maximal rate that is many-fold as high as that of Ca(2+)-dependent hydrolysis. The hydrolysis reaction was shown to be stimulated by low concentrations of BSA and inhibited by its higher concentrations, with the increasing maximal reaction rate estimated by extrapolation. Sucrose- or BSA-induced inhibition of the Mg(2+)-dependent ATPase reaction is believed to result from diffusion-caused deceleration, while its BSA-induced stimulation is probably caused by optimization of the enzyme structure. Molecular mechanisms of the inhibitory effect of viscosity are discussed. Taking into account high protein concentrations in the chloroplast stroma, it was suggested that kinetic parameters of ATP hydrolysis, and probably those of ATP synthesis in vivo as well, must be quite different from measurements taken at a viscosity level close to that of water.

  8. Application of the compensated Arrhenius formalism to explain the dielectric constant dependence of rates for Menschutkin reactions.

    PubMed

    Petrowsky, Matt; Glatzhofer, Daniel T; Frech, Roger

    2013-11-21

    The dependence of the reaction rate on solvent dielectric constant is examined for the reaction of trihexylamine with 1-bromohexane in a series of 2-ketones over the temperature range 25-80 °C. The rate constant data are analyzed using the compensated Arrhenius formalism (CAF), where the rate constant assumes an Arrhenius-like equation that also contains a dielectric constant dependence in the exponential prefactor. The CAF activation energies are substantially higher than those obtained using the simple Arrhenius equation. A master curve of the data is observed by plotting the prefactors against the solvent dielectric constant. The master curve shows that the reaction rate has a weak dependence on dielectric constant for values approximately less than 10 and increases more rapidly for dielectric constant values greater than 10.

  9. Combination of poroelasticity theory and constant strain rate test in modelling land subsidence due to groundwater extraction

    NASA Astrophysics Data System (ADS)

    Pham, Tien Hung; Rühaak, Wolfram; Sass, Ingo

    2017-04-01

    Extensive groundwater extraction leads to a drawdown of the ground water table. Consequently, soil effective stress increases and can cause land subsidence. Analysis of land subsidence generally requires a numerical model based on poroelasticity theory, which was first proposed by Biot (1941). In the review of regional land subsidence accompanying groundwater extraction, Galloway and Burbey (2011) stated that more research and application is needed in coupling of stress-dependent land subsidence process. In geotechnical field, the constant rate of strain tests (CRS) was first introduced in 1969 (Smith and Wahls 1969) and was standardized in 1982 through the designation D4186-82 by American Society for Testing and Materials. From the reading values of CRS tests, the stress-dependent parameters of poroelasticity model can be calculated. So far, there is no research to link poroelasticity theory with CRS tests in modelling land subsidence due to groundwater extraction. One dimensional CRS tests using conventional compression cell and three dimension CRS tests using Rowe cell were performed. The tests were also modelled by using finite element method with mixed elements. Back analysis technique is used to find the suitable values of hydraulic conductivity and bulk modulus that depend on the stress or void ratio. Finally, the obtained results are used in land subsidence models. Biot, M. A. (1941). "General theory of three-dimensional consolidation." Journal of applied physics 12(2): 155-164. Galloway, D. L. and T. J. Burbey (2011). "Review: Regional land subsidence accompanying groundwater extraction." Hydrogeology Journal 19(8): 1459-1486. Smith, R. E. and H. E. Wahls (1969). "Consolidation under constant rates of strain." Journal of Soil Mechanics & Foundations Div.

  10. Finite element approximation of the radiative transport equation in a medium with piece-wise constant refractive index

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lehtikangas, O., E-mail: Ossi.Lehtikangas@uef.fi; Tarvainen, T.; Department of Computer Science, University College London, Gower Street, London WC1E 6BT

    2015-02-01

    The radiative transport equation can be used as a light transport model in a medium with scattering particles, such as biological tissues. In the radiative transport equation, the refractive index is assumed to be constant within the medium. However, in biomedical media, changes in the refractive index can occur between different tissue types. In this work, light propagation in a medium with piece-wise constant refractive index is considered. Light propagation in each sub-domain with a constant refractive index is modeled using the radiative transport equation and the equations are coupled using boundary conditions describing Fresnel reflection and refraction phenomena onmore » the interfaces between the sub-domains. The resulting coupled system of radiative transport equations is numerically solved using a finite element method. The approach is tested with simulations. The results show that this coupled system describes light propagation accurately through comparison with the Monte Carlo method. It is also shown that neglecting the internal changes of the refractive index can lead to erroneous boundary measurements of scattered light.« less

  11. Non-minimally coupled varying constants quantum cosmologies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Balcerzak, Adam, E-mail: abalcerz@wmf.univ.szczecin.pl

    We consider gravity theory with varying speed of light and varying gravitational constant. Both constants are represented by non-minimally coupled scalar fields. We examine the cosmological evolution in the near curvature singularity regime. We find that at the curvature singularity the speed of light goes to infinity while the gravitational constant vanishes. This corresponds to the Newton's Mechanics limit represented by one of the vertex of the Bronshtein-Zelmanov-Okun cube [1,2]. The cosmological evolution includes both the pre-big-bang and post-big-bang phases separated by the curvature singularity. We also investigate the quantum counterpart of the considered theory and find the probability ofmore » transition of the universe from the collapsing pre-big-bang phase to the expanding post-big-bang phase.« less

  12. Fluid-structure coupling for an oscillating hydrofoil

    NASA Astrophysics Data System (ADS)

    Münch, C.; Ausoni, P.; Braun, O.; Farhat, M.; Avellan, F.

    2010-08-01

    Fluid-structure investigations in hydraulic machines using coupled simulations are particularly time-consuming. In this study, an alternative method is presented that linearizes the hydrodynamic load of a rigid, oscillating hydrofoil. The hydrofoil, which is surrounded by incompressible, turbulent flow, is modeled with forced and free pitching motions, where the mean incidence angle is 0° with a maximum angle amplitude of 2°. Unsteady simulations of the flow, performed with ANSYS CFX, are presented and validated with experiments which were carried out in the EPFL High-Speed Cavitation Tunnel. First, forced motion is investigated for reduced frequencies ranging from 0.02 to 100. The hydrodynamic load is modeled as a simple combination of inertia, damping and stiffness effects. As expected, the potential flow analysis showed the added moment of inertia is constant, while the fluid damping and the fluid stiffness coefficients depend on the reduced frequency of the oscillation motion. Behavioral patterns were observed and two cases were identified depending on if vortices did or did not develop in the hydrofoil wake. Using the coefficients identified in the forced motion case, the time history of the profile incidence is then predicted analytically for the free motion case and excellent agreement is found for the results from coupled fluid-structure simulations. The model is validated and may be extended to more complex cases, such as blade grids in hydraulic machinery.

  13. Predicted NMR properties of noble gas hydride cations RgH +

    NASA Astrophysics Data System (ADS)

    Cukras, Janusz; Sadlej, Joanna

    2008-12-01

    The NMR shielding constants and, for the first time, the spin-spin coupling constants of Rg and H in RgH + compounds for Rg = Ne, Ar, Kr, Xe have been investigated by non-relativistic Hartree-Fock (HF) and relativistic Dirac-Hartree-Fock (DHF) methods. Electron-correlation effects have been furthermore calculated using SOPPA and CCSD at the non-relativistic level. The correlation effects are large on both parameters and opposite to the relativistic effects. The results indicate that both the relativistic and correlation effects need to be taken into account in a quantitative computations, especially in the case of the spin-spin coupling constants.

  14. Verification of the electron/proton coupled mechanism for phenolic H-atom transfer using a triplet π,π ∗ carbonyl

    NASA Astrophysics Data System (ADS)

    Yamaji, Minoru; Oshima, Juro; Hidaka, Motohiko

    2009-06-01

    Evidence for the coupled electron/proton transfer mechanism of the phenolic H-atom transfer between triplet π,π ∗ 3,3'-carbonylbis(7-diethylaminocoumarin) and phenol derivatives is obtained by using laser photolysis techniques. It was confirmed that the quenching rate constants of triplet CBC by phenols having positive Hammett constants do not follow the Rehm-Weller equation for electron transfer while those by phenols with negative Hammett constants do it. From the viewpoint of thermodynamic parameters for electron transfer, the crucial factors for phenolic H-atom transfer to π,π ∗ triplet are discussed.

  15. Robust synchronization in fiber laser arrays.

    PubMed

    Peles, Slaven; Rogers, Jeffrey L; Wiesenfeld, Kurt

    2006-02-01

    Synchronization of coupled fiber lasers has been reported in recent experiments [Bruesselbach, Opt. Lett. 30, 1339 (2005); Minden, Proc. SPIE 5335, 89 (2004)]. While these results may lead to dramatic advances in laser technology, the mechanism by which these lasers synchronize is not understood. We analyze a recently proposed [Rogers, IEEE J. Quantum Electron. 41, 767 (2005)] iterated map model of fiber laser arrays to explore this phenomenon. In particular, we look at synchronous solutions of the maps when the gain fields are constant. Determining the stability of these solutions is analytically tractable for a number of different coupling schemes. We find that in the most symmetric physical configurations the most symmetric solution is either unstable or stable over insufficient parameter range to be practical. In contrast, a lower symmetry configuration yields surprisingly robust coherence. This coherence persists beyond the pumping threshold for which the gain fields become time dependent.

  16. Nanosize effect: Enhanced compensation temperature and existence of magnetodielectric coupling in SmFe O3

    NASA Astrophysics Data System (ADS)

    Chaturvedi, Smita; Shyam, Priyank; Bag, Rabindranath; Shirolkar, Mandar M.; Kumar, Jitender; Kaur, Harleen; Singh, Surjeet; Awasthi, A. M.; Kulkarni, Sulabha

    2017-07-01

    In transition metal oxides, quantum confinement arising from a large surface to volume ratio often gives rise to novel physicochemical properties at nanoscale. Their size-dependent properties have potential applications in diverse areas, including therapeutics, imaging, electronic devices, communication systems, sensors, and catalysis. We have analyzed the structural, magnetic, dielectric, and thermal properties of weakly ferromagnetic SmFe O3 nanoparticles of sizes of about 55 and 500 nm. The nanometer-size particles exhibit several distinct features that are neither observed in their larger-size variants nor reported previously for the single crystals. In particular, for the 55-nm particle, we observe a sixfold enhancement of compensation temperature, an unusual rise in susceptibility in the temperature range 550 to 630 K due to spin pinning, and a coupled antiferromagnetic-ferroelectric transition, directly observed in the dielectric constant.

  17. π0 pole mass calculation in a strong magnetic field and lattice constraints

    NASA Astrophysics Data System (ADS)

    Avancini, Sidney S.; Farias, Ricardo L. S.; Benghi Pinto, Marcus; Tavares, William R.; Timóteo, Varese S.

    2017-04-01

    The π0 neutral meson pole mass is calculated in a strongly magnetized medium using the SU(2) Nambu-Jona-Lasinio model within the random phase approximation (RPA) at zero temperature and zero baryonic density. We employ a magnetic field dependent coupling, G (eB), fitted to reproduce lattice QCD results for the quark condensates. Divergent quantities are handled with a magnetic field independent regularization scheme in order to avoid unphysical oscillations. A comparison between the running and the fixed couplings reveals that the former produces results much closer to the predictions from recent lattice calculations. In particular, we find that the π0 meson mass systematically decreases when the magnetic field increases while the scalar mass remains almost constant. We also investigate how the magnetic background influences other mesonic properties such as fπ0 and gπ0qq.

  18. Confinement and Diffusion Effects in Dynamical Nuclear Polarization in Low Dimensional Nanostructures

    NASA Astrophysics Data System (ADS)

    Henriksen, Dan; Tifrea, Ionel

    2012-02-01

    We investigate the dynamic nuclear polarization as it results from the hyperfine coupling between nonequilibrium electronic spins and nuclear spins in semiconductor nanostructures. The natural confinement provided by low dimensional nanostructures is responsible for an efficient nuclear spin - electron spin hyperfine coupling [1] and for a reduced value of the nuclear spin diffusion constant [2]. In the case of optical pumping, the induced nuclear spin polarization is position dependent even in the presence of nuclear spin diffusion. This effect should be measurable via optically induced nuclear magnetic resonance or time-resolved Faraday rotation experiments. We discuss the implications of our calculations for the case of GaAs quantum well structures.[4pt] [1] I. Tifrea and M. E. Flatt'e, Phys. Rev. B 84, 155319 (2011).[0pt] [2] A. Malinowski and R. T. Harley, Solid State Commun. 114, 419 (2000).

  19. First determination of ground state electromagnetic moments of Fe 53

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miller, A. J.; Minamisono, K.; Rossi, D. M.

    Here, the hyperfine coupling constants of neutron deficient 53Fe were deduced from the atomic hyperfine spectrum measured using the bunched-beam collinear laser spectroscopy technique. The low-energy 53Fe beam was produced by projectile-fragmentation reactions followed by gas stopping, and used for the first time for laser spectroscopy. Ground state magnetic-dipole and electric-quadrupole moments were determined as μ= –0.65(1)μ N and Q=+35(15)e 2fm 2, respectively. The multiconfiguration Dirac-Fock method was used to calculate the electric field gradient to deduce Q from the quadrupole hyperfine coupling constant, since the quadrupole coupling constant has not been determined for any Fe isotopes. Both experimental valuesmore » agree well with nuclear shell model calculations using the GXPF1A effective interaction performed in a full fp shell model space, which support the soft nature of the 56Ni nucleus.« less

  20. First determination of ground state electromagnetic moments of Fe 53

    DOE PAGES

    Miller, A. J.; Minamisono, K.; Rossi, D. M.; ...

    2017-11-16

    Here, the hyperfine coupling constants of neutron deficient 53Fe were deduced from the atomic hyperfine spectrum measured using the bunched-beam collinear laser spectroscopy technique. The low-energy 53Fe beam was produced by projectile-fragmentation reactions followed by gas stopping, and used for the first time for laser spectroscopy. Ground state magnetic-dipole and electric-quadrupole moments were determined as μ= –0.65(1)μ N and Q=+35(15)e 2fm 2, respectively. The multiconfiguration Dirac-Fock method was used to calculate the electric field gradient to deduce Q from the quadrupole hyperfine coupling constant, since the quadrupole coupling constant has not been determined for any Fe isotopes. Both experimental valuesmore » agree well with nuclear shell model calculations using the GXPF1A effective interaction performed in a full fp shell model space, which support the soft nature of the 56Ni nucleus.« less

  1. 2JHH-resolved HSQC: Exclusive determination of geminal proton-proton coupling constants

    NASA Astrophysics Data System (ADS)

    Marcó, Núria; Nolis, Pau; Gil, Roberto R.; Parella, Teodor

    2017-09-01

    The measurement of two-bond proton-proton coupling constants (2JHH) in prochiral CH2 groups from the F2 dimension of 2D spectra is not easy due to the usual presence of complex multiplet J patterns, line broadening effects and strong coupling artifacts. These drawbacks are particularly pronounced and frequent in AB spin systems, as those normally exhibited by the pair of diastereotopic CH2 protons. Here, a novel 2JHH-resolved HSQC experiment for the exclusive and accurate determination of the magnitude of 2JHH from the doublet displayed along the highly-resolved indirect F1 dimension is described. A pragmatic 2JHH NMR profile affords a fast overview of the full range of existing 2JHH values. In addition, a 2JHH/δ(13C)-scaled version proves to be an efficient solution when severe signal overlapping complicate a rigorous analysis. The performance of the method is compared with other current techniques and illustrated by the determination of challenging residual dipolar 2DHH coupling constants of small molecules dissolved in weakly orienting media.

  2. Is there a connection between “dark” and “light” physics?

    NASA Astrophysics Data System (ADS)

    Lake, Matthew J.

    2017-08-01

    In the early-mid 20th century Dirac and Zel’dovich were among the first scientists to suggest an intimate connection between cosmology and atomic physics. Though a revolutionary proposal for its time, Dirac’s Large Number Hypothesis (1937) adopted a standard assumption of the day, namely, the non-existence of the cosmological constant term (Λ = 0). As a result, its implementation necessitated extreme violence to the theory of general relativity - something few physicists were prepared to sacrifice in favour of ‘numerology’ - requiring a time-dependent gravitational coupling of the form G(t) ˜ 1/t. Zel’dovich’s insight (1968) was to realise that a small but nonzero cosmological term (Λ > 0) allowed the present day radius of the Universe to be identified with the de Sitter radius, {r}{{U}}≃ {l}{{dS}}≃ 1/\\sqrt{{{Λ }}}, which removed the need for time-dependence in the fundamental couplings. Thus, he obtained the formula Λ ≃ m 6 G 2/ℏ4, where m is a mass scale characterising the relative strengths of the gravitational and electromagnetic interactions, which he identified with the proton mass m p. In this paper, we review a number of recent arguments which, instead, suggest the identification m = m e/α e, where m e is the electron mass and α e = e 2/ℏc ≃ 1/137 is the usual fine structure constant. We note that these are of a physical nature and, therefore, represent an attempt to lift previous arguments à la Dirac from the realm of numerology into the realm of empirical science. If valid, such arguments suggest an intimate connection, not only between the macroscopic and microscopic worlds, but, perhaps even more surprisingly, between the very essence of “dark” and “light” physics.

  3. Monitoring Temperatures of Tires Using Luminescent Materials

    NASA Technical Reports Server (NTRS)

    Bencic, Timothy J

    2006-01-01

    A method of noncontact, optical monitoring of the surface temperature of a tire has been devised to enable the use of local temperature rise as an indication of potential or impending failures. The method involves the use of temperature-sensitive paint (or filler): Temperature-sensitive luminescent dye molecules or other luminescent particles are incorporated into a thin, flexible material coating the tire surface of interest. (Alternatively, in principle, the luminescent material could be incorporated directly into the tire rubber, though this approach has not yet been tested.) The coated surface is illuminated with shorter-wavelength light to excite longer-wavelength luminescence, which is observed by use of a charge-coupled-device camera or a photodetector (see Figure 1). If temporally constant illumination is used, then the temperature can be deduced from the known temperature dependence of the intensity response of the luminescence. If pulsed illumination is used, then the temperature can be deduced from the known temperature dependence of the time or frequency response of the luminescence. If sinusoidally varying illumination is used, then the temperature can be deduced from the known temperature dependence of the phase response of the luminescence. Unlike a prior method of monitoring the temperature at a fixed spot on a tire by use of a thermocouple, this method is not restricted to one spot and can, therefore, yield information on the spatial distribution of temperature: in particular, it enables the discovery of newly forming hot spots where damage may be starting. Also unlike in the thermocouple method, the measurements in this method are not vulnerable to breakage of wires in repeated flexing of the tire. Moreover, unlike in another method in which infrared radiation is monitored as an indication of surface temperature, the luminescence measurements in this method are not significantly affected by changes in infrared emissivity. This method has been demonstrated in application to the outside surface of a tire (see Figure 2), using both constant and pulsed light sources for illumination and cooled, slow-scan, gated CCD cameras for detection. For observing the temperature of the inside surface of a tire (this has not yet been done), it would probably be necessary to use fiber optics and/or windows for coupling excitation light into, and coupling luminescence out of, the interior volume.

  4. Effect of observed micropolar motions on wave propagation in deep Earth minerals

    NASA Astrophysics Data System (ADS)

    Abreu, Rafael; Thomas, Christine; Durand, Stephanie

    2018-03-01

    We provide a method to compute the Cosserat couple modulus for a bridgmanite (MgSiO3 silicate perovskite) solid from frequency gaps observed in Raman experiments. To this aim, we apply micropolar theory which is a generalization of the classical linear elastic theory, where each particle has an intrinsic rotational degree of freedom, called micro-rotation and/or spin, and which depends on the so-called Cosserat couple modulus μc that characterizes the micropolar medium. We investigate both wave propagation and dispersion. The wave propagation simulations in both potassium nitrate (KNO3) and bridgmanite crystal leads to a faster elastic wave propagation as well as to an independent rotational field of motion, called optic mode, which is smaller in amplitude compared to the conventional rotational field. The dispersion analysis predicts that the optic mode only appears above a cutoff frequency, ωr , which has been observed in Raman experiments done at high pressures and temperatures on bridgmanite crystal. The comparison of the cutoff frequency observed in experiments and the micropolar theory enables us to compute for the first time the temperature and pressure dependency of the Cosserat couple modulus μc of bridgmanite. This study thus shows that the micropolar theory can explain particle motions observed in laboratory experiments that were before neglected and that can now be used to constrain the micropolar elastic constants of Earth's mantle like material. This pioneer work aims at encouraging the use of micropolar theory in future works on deep Earth's mantle material by providing Cosserat couple modulus that were not available before.

  5. Effects of a neutrino-dark energy coupling on oscillations of high-energy neutrinos

    NASA Astrophysics Data System (ADS)

    Klop, Niki; Ando, Shin'ichiro

    2018-03-01

    If dark energy (DE) is a dynamical field rather than a cosmological constant, an interaction between DE and the neutrino sector could exist, modifying the neutrino oscillation phenomenology and causing C P and apparent Lorentz violating effects. The terms in the Hamiltonian for flavor propagation induced by the DE-neutrino coupling do not depend on the neutrino energy, while the ordinary components decrease as Δ m2/Eν. Therefore, the DE-induced effects are absent at lower neutrino energies, but become significant at higher energies, allowing to be searched for by neutrino observatories. We explore the impact of the DE-neutrino coupling on the oscillation probability and the flavor transition in the three-flavor framework, and investigate the C P -violating and apparent Lorentz violating effects. We find that DE-induced effects become observable for Eνmeff˜10-20 GeV2, where meff is the effective mass parameter in the DE-induced oscillation probability, and C P is violated over a wide energy range. We also show that current and future experiments have the sensitivity to detect anomalous effects induced by a DE-neutrino coupling and probe the new mixing parameters. The DE-induced effects on neutrino oscillation can be distinguished from other new physics possibilities with similar effects, through the detection of the directional dependence of the interaction, which is specific to this interaction with DE. However, current experiments will not yet be able to measure the small changes of ˜0.03 % in the flavor composition due to this directional effect.

  6. Sparse short-distance connections enhance calcium wave propagation in a 3D model of astrocyte networks

    PubMed Central

    Lallouette, Jules; De Pittà, Maurizio; Ben-Jacob, Eshel; Berry, Hugues

    2014-01-01

    Traditionally, astrocytes have been considered to couple via gap-junctions into a syncytium with only rudimentary spatial organization. However, this view is challenged by growing experimental evidence that astrocytes organize as a proper gap-junction mediated network with more complex region-dependent properties. On the other hand, the propagation range of intercellular calcium waves (ICW) within astrocyte populations is as well highly variable, depending on the brain region considered. This suggests that the variability of the topology of gap-junction couplings could play a role in the variability of the ICW propagation range. Since this hypothesis is very difficult to investigate with current experimental approaches, we explore it here using a biophysically realistic model of three-dimensional astrocyte networks in which we varied the topology of the astrocyte network, while keeping intracellular properties and spatial cell distribution and density constant. Computer simulations of the model suggest that changing the topology of the network is indeed sufficient to reproduce the distinct ranges of ICW propagation reported experimentally. Unexpectedly, our simulations also predict that sparse connectivity and restriction of gap-junction couplings to short distances should favor propagation while long–distance or dense connectivity should impair it. Altogether, our results provide support to recent experimental findings that point toward a significant functional role of the organization of gap-junction couplings into proper astroglial networks. Dynamic control of this topology by neurons and signaling molecules could thus constitute a new type of regulation of neuron-glia and glia-glia interactions. PMID:24795613

  7. Ground-state magnetization of the Ising spin glass: A recursive numerical method and Chen-Ma scaling

    NASA Astrophysics Data System (ADS)

    Sepehrinia, Reza; Chalangari, Fartash

    2018-03-01

    The ground-state properties of quasi-one-dimensional (Q1D) Ising spin glass are investigated using an exact numerical approach and analytical arguments. A set of coupled recursive equations for the ground-state energy are introduced and solved numerically. For various types of coupling distribution, we obtain accurate results for magnetization, particularly in the presence of a weak external magnetic field. We show that in the weak magnetic field limit, similar to the 1D model, magnetization exhibits a singular power-law behavior with divergent susceptibility. Remarkably, the spectrum of magnetic exponents is markedly different from that of the 1D system even in the case of two coupled chains. The magnetic exponent makes a crossover from being dependent on a distribution function to a constant value independent of distribution. We provide an analytic theory for these observations by extending the Chen-Ma argument to the Q1D case. We derive an analytical formula for the exponent which is in perfect agreement with the numerical results.

  8. Infrared spectroscopic study of CaFe0.7Co0.3O3

    NASA Astrophysics Data System (ADS)

    Zhang, C. X.; Xia, H. L.; Dai, Y. M.; Qiu, Z. Y.; Sui, Q. T.; Long, Y. W.; Qiu, X. G.

    2017-08-01

    Temperature-dependent infrared spectroscopy has been investigated for CaFe0.7Co0.3O3 which undergoes a ferromagnetic transition at TC≈177 K . It is observed that the spectral weight is transferred from ˜4800 -14 000 cm-1 to ˜0 -4800 cm-1 as the temperature is lowered around TC. Such a large-range spectral weight transfer is attributed to the Hund's interaction. The phonons in CaFe0.7Co0.3O3 show minor asymmetric line shapes, implying relatively weak electron-phonon coupling compared with the parent compound CaFeO3. The optical conductivity also reveals a broad peak structure in the range of ˜700 -1500 cm-1. Fit by the model of single-polaron absorption, the broad peak is interpreted by the excitation of polarons. From the fitting parameters of the polaron peak, we estimate the electron-phonon coupling constant α ˜ 0.4 -0.5 , implying that CaFe0.7Co0.3O3 falls into the weak-coupling regime.

  9. A glucose bio-battery prototype based on a GDH/poly(methylene blue) bioanode and a graphite cathode with an iodide/tri-iodide redox couple.

    PubMed

    Wang, Jen-Yuan; Nien, Po-Chin; Chen, Chien-Hsiao; Chen, Lin-Chi; Ho, Kuo-Chuan

    2012-07-01

    A glucose bio-battery prototype independent of oxygen is proposed based on a glucose dehydrogenase (GDH) bioanode and a graphite cathode with an iodide/tri-iodide redox couple. At the bioanode, a NADH electrocatalyst, poly(methylene blue) (PMB), which can be easily grown on the electrode (screen-printed carbon paste electrode, SPCE) by electrodeposition, is harnessed and engineered. We find that carboxylated multi-walled carbon nanotubes (MWCNTs) are capable of significantly increasing the deposition amount of PMB and thus enhancing the PMB's electrocatalysis of NADH oxidation and the glucose bio-battery's performance. The choice of the iodide/tri-iodide redox couple eliminates the dependence of oxygen for this bio-battery, thus enabling the bio-battery with a constant current-output feature similar to that of the solar cells. The present glucose bio-battery prototype can attain a maximum power density of 2.4 μW/cm(2) at 25 °C. Crown Copyright © 2012. Published by Elsevier Ltd. All rights reserved.

  10. Synthesis of coupled resonator optical waveguides by cavity aggregation.

    PubMed

    Muñoz, Pascual; Doménech, José David; Capmany, José

    2010-01-18

    In this paper, the layer aggregation method is applied to coupled resonator optical waveguides. Starting from the frequency transfer function, the method yields the coupling constants between the resonators. The convergence of the algorithm developed is examined and the related parameters discussed.

  11. Application of the compensated arrhenius formalism to dielectric relaxation.

    PubMed

    Petrowsky, Matt; Frech, Roger

    2009-12-17

    The temperature dependence of the dielectric rate constant, defined as the reciprocal of the dielectric relaxation time, is examined for several groups of organic solvents. Early studies of linear alcohols using a simple Arrhenius equation found that the activation energy was dependent on the chain length of the alcohol. This paper re-examines the earlier data using a compensated Arrhenius formalism that assumes the presence of a temperature-dependent static dielectric constant in the exponential prefactor. Scaling temperature-dependent rate constants to isothermal rate constants so that the dielectric constant dependence is removed results in calculated energies of activation E(a) in which there is a small increase with chain length. These energies of activation are very similar to those calculated from ionic conductivity data using compensated Arrhenius formalism. This treatment is then extended to dielectic relaxation data for n-alkyl bromides, n-nitriles, and n-acetates. The exponential prefactor is determined by dividing the temperature-dependent rate constants by the Boltzmann term exp(-E(a)/RT). Plotting the prefactors versus the static dielectric constant places the data on a single master curve for each group of solvents.

  12. S-duality constraint on higher-derivative couplings

    NASA Astrophysics Data System (ADS)

    Garousi, Mohammad R.

    2014-05-01

    The Riemann curvature correction to the type II supergravity at eightderivative level in string frame is given as . For constant dilaton, it has been extended in the literature to the S-duality invariant form by extending the dilaton factor in the Einstein frame to the non-holomorphic Eisenstein series. For non-constant dilaton, however, there are various couplings in the Einstein frame which are not consistent with the S-duality. By constructing the tensors t 2 n from Born-Infeld action, we include the appropriate Ricci and scalar curvatures as well as the dilaton couplings to make the above action to be consistent with the S-duality.

  13. Metastability in the Spin-1 Blume-Emery-Griffiths Model within Constant Coupling Approximation

    NASA Astrophysics Data System (ADS)

    Ekiz, C.

    2017-02-01

    In this paper, the equilibrium properties of spin-1 Blume-Emery-Griffiths model are studied by using constant-coupling approximation. The dipolar and quadrupolar order parameters, the stable, metastable and unstable states and free energy of the model are investigated. The states are defined in terms of local minima of the free energy of system. The numerical calculations are presented for several values of exchange interactions on the simple cubic lattice with q = 6.

  14. Directional abnormalities of vestibular and optokinetic responses in cerebellar disease

    NASA Technical Reports Server (NTRS)

    Walker, M. F.; Zee, D. S.; Shelhamer, M. J. (Principal Investigator)

    1999-01-01

    Directional abnormalities of vestibular and optokinetic responses in patients with cerebellar degeneration are reported. Three-axis magnetic search-coil recordings of the eye and head were performed in eight cerebellar patients. Among these patients, examples of directional cross-coupling were found during (1) high-frequency, high-acceleration head thrusts; (2) constant-velocity chair rotations with the head fixed; (3) constant-velocity optokinetic stimulation; and (4) following repetitive head shaking. Cross-coupling during horizontal head thrusts consisted of an inappropriate upward eye-velocity component. In some patients, sustained constant-velocity yaw-axis chair rotations produced a mixed horizontal-torsional nystagmus and/or an increase in the baseline vertical slow-phase velocity. Following horizontal head shaking, some patients showed an increase in the slow-phase velocity of their downbeat nystagmus. These various forms of cross-coupling did not necessarily occur to the same degree in a given patient; this suggests that different mechanisms may be responsible. It is suggested that cross-coupling during head thrusts may reflect a loss of calibration of brainstem connections involved in the direct vestibular pathways, perhaps due to dysfunction of the flocculus. Cross-coupling during constant-velocity rotations and following head shaking may result from a misorientation of the angular eye-velocity vector in the velocity-storage system. Finally, responses to horizontal optokinetic stimulation included an inappropriate torsional component in some patients. This suggests that the underlying organization of horizontal optokinetic tracking is in labyrinthine coordinates. The findings are also consistent with prior animal-lesion studies that have shown a role for the vestibulocerebellum in the control of the direction of the VOR.

  15. Dark energy and doubly coupled bigravity

    NASA Astrophysics Data System (ADS)

    Brax, Philippe; Davis, Anne-Christine; Noller, Johannes

    2017-05-01

    We analyse the late time cosmology and the gravitational properties of doubly coupled bigravity in the constrained vielbein formalism (equivalent to the metric formalism) when the mass of the massive graviton is of the order of the present Hubble rate. We focus on one of the two branches of background cosmology where the ratio between the scale factors of the two metrics is algebraically determined. We find that the late time physics depends on the mass of the graviton, which dictates the future asymptotic cosmological constant. The Universe evolves from a matter dominated epoch to a dark energy dominated era where the equation of state of dark energy can always be made close to  -1 now by appropriately tuning the graviton mass. We also analyse the perturbative spectrum of the theory in the quasi-static approximation, well below the strong coupling scale where no instability is present, and we show that there are five scalar degrees of freedom, two vectors and two gravitons. In Minkowski space, where the four Newtonian potentials vanish, the theory manifestly reduces to one massive and one massless graviton. In a cosmological FRW background for both metrics, four of the five scalars are Newtonian potentials which lead to a modification of gravity on large scales. The fifth one gives rise to a ghost which decouples from pressure-less matter in the quasi-static approximation. In this scalar sector, gravity is modified with effects on both the growth of structure and the lensing potential. In particular, we find that the Σ parameter governing the Poisson equation of the weak lensing potential can differ from one in the recent past of the Universe. Overall, the nature of the modification of gravity at low energy, which reveals itself in the growth of structure and the lensing potential, is intrinsically dependent on the couplings to matter and the potential term of the vielbeins. We also find that the time variation of Newton’s constant in the Jordan frame can easily satisfy the bound from solar system tests of gravity. Finally we show that the two gravitons present in the spectrum have a non-trivial mass matrix whose origin follows from the potential term of bigravity. This mixing leads to gravitational birefringence.

  16. Anatomy of the magnetic catalysis by renormalization-group method

    NASA Astrophysics Data System (ADS)

    Hattori, Koichi; Itakura, Kazunori; Ozaki, Sho

    2017-12-01

    We first examine the scaling argument for a renormalization-group (RG) analysis applied to a system subject to the dimensional reduction in strong magnetic fields, and discuss the fact that a four-Fermi operator of the low-energy excitations is marginal irrespective of the strength of the coupling constant in underlying theories. We then construct a scale-dependent effective four-Fermi interaction as a result of screened photon exchanges at weak coupling, and establish the RG method appropriately including the screening effect, in which the RG evolution from ultraviolet to infrared scales is separated into two stages by the screening-mass scale. Based on a precise agreement between the dynamical mass gaps obtained from the solutions of the RG and Schwinger-Dyson equations, we discuss an equivalence between these two approaches. Focusing on QED and Nambu-Jona-Lasinio model, we clarify how the properties of the interactions manifest themselves in the mass gap, and point out an importance of respecting the intrinsic energy-scale dependences in underlying theories for the determination of the mass gap. These studies are expected to be useful for a diagnosis of the magnetic catalysis in QCD.

  17. Dynamics and relaxation of charge carriers in poly(methylmethacrylate)-lithium salt based polymer electrolytes plasticized with ethylene carbonate

    NASA Astrophysics Data System (ADS)

    Pal, P.; Ghosh, A.

    2016-07-01

    In this paper, we have studied the dynamics and relaxation of charge carriers in poly(methylmethacrylate)-lithium salt based polymer electrolytes plasticized with ethylene carbonate. Structural and thermal properties have been examined using X-ray diffraction and differential scanning calorimetry, respectively. We have analyzed the complex conductivity spectra by using power law model coupled with the contribution of electrode polarization at low frequencies and high temperatures. The temperature dependence of the ionic conductivity and crossover frequency exhibits Vogel-Tammann-Fulcher type behavior indicating a strong coupling between the ionic and the polymer chain segmental motions. The scaling of the ac conductivity indicates that relaxation dynamics of charge carriers follows a common mechanism for all temperatures and ethylene carbonate concentrations. The analysis of the ac conductivity also shows the existence of a nearly constant loss in these polymer electrolytes at low temperatures and high frequencies. The fraction of free anions and ion pairs in polymer electrolyte have been obtained from the analysis of Fourier transform infrared spectra. It is observed that these quantities influence the behavior of the composition dependence of the ionic conductivity.

  18. Dynamics and relaxation of charge carriers in poly(methylmethacrylate)-lithium salt based polymer electrolytes plasticized with ethylene carbonate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pal, P.; Ghosh, A., E-mail: sspag@iacs.res.in

    2016-07-28

    In this paper, we have studied the dynamics and relaxation of charge carriers in poly(methylmethacrylate)-lithium salt based polymer electrolytes plasticized with ethylene carbonate. Structural and thermal properties have been examined using X-ray diffraction and differential scanning calorimetry, respectively. We have analyzed the complex conductivity spectra by using power law model coupled with the contribution of electrode polarization at low frequencies and high temperatures. The temperature dependence of the ionic conductivity and crossover frequency exhibits Vogel-Tammann-Fulcher type behavior indicating a strong coupling between the ionic and the polymer chain segmental motions. The scaling of the ac conductivity indicates that relaxation dynamicsmore » of charge carriers follows a common mechanism for all temperatures and ethylene carbonate concentrations. The analysis of the ac conductivity also shows the existence of a nearly constant loss in these polymer electrolytes at low temperatures and high frequencies. The fraction of free anions and ion pairs in polymer electrolyte have been obtained from the analysis of Fourier transform infrared spectra. It is observed that these quantities influence the behavior of the composition dependence of the ionic conductivity.« less

  19. Structural and magnetic investigations of single-crystalline neodymium zirconate pyrochlore Nd2Zr2O7

    NASA Astrophysics Data System (ADS)

    Hatnean, M. Ciomaga; Lees, M. R.; Petrenko, O. A.; Keeble, D. S.; Balakrishnan, G.; Gutmann, M. J.; Klekovkina, V. V.; Malkin, B. Z.

    2015-05-01

    We report structural and magnetic properties studies of large high-quality single crystals of the frustrated magnet Nd2Zr2O7 . Powder x-ray diffraction analysis confirms that Nd2Zr2O7 adopts the pyrochlore structure. Room-temperature x-ray diffraction and time-of-flight neutron-scattering experiments show that the crystals are stoichiometric in composition with no measurable site disorder. The temperature dependence of the magnetic susceptibility shows no magnetic ordering at temperatures down to 0.5 K. Fits to the magnetic susceptibility data using a Curie-Weiss law reveal a ferromagnetic coupling between the Nd moments. Magnetization versus field measurements show a local Ising anisotropy along the <111 > axes of the Nd3 + ions in the ground state. Specific heat versus temperature measurements in zero applied magnetic field indicate the presence of a thermal anomaly below T ˜7 K, but no evidence of magnetic ordering is observed down to 0.5 K. The experimental temperature dependence of the single-crystal bulk dc susceptibility and isothermal magnetization are analyzed using crystal field theory and the crystal field parameters and exchange coupling constants determined.

  20. A DFT based ligand field model for magnetic exchange coupling in transition metal dimer complexes:. (ii) application to magnetic systems with more than one unpaired electron per site

    NASA Astrophysics Data System (ADS)

    Atanasov, M.; Daul, C. A.

    2003-11-01

    The DFT based ligand field model for magnetic exchange coupling proposed recently, has been extended to systems containing more than one unpaired electron per site. The guidelines for this extension are described using a model example - the complex (NH 3) 3Cr III(OH) 3Cr III (NH 3) 33+. The exchange Hamiltonian, H ex=-J 12S1S2 has been simplified using symmetry principles, i.e. utilizing the D 3h(C 3v) Cr III - dimer(site) symmetry. Both antiferro- and ferromagnetic exchange coupling constants are found to yield important contributions to the value of the (negative, antiferromagnetic) exchange coupling constant in good agreement with experiment.

  1. Flux Renormalization in Constant Power Burnup Calculations

    DOE PAGES

    Isotalo, Aarno E.; Aalto Univ., Otaniemi; Davidson, Gregory G.; ...

    2016-06-15

    To more accurately represent the desired power in a constant power burnup calculation, the depletion steps of the calculation can be divided into substeps and the neutron flux renormalized on each substep to match the desired power. Here, this paper explores how such renormalization should be performed, how large a difference it makes, and whether using renormalization affects results regarding the relative performance of different neutronics–depletion coupling schemes. When used with older coupling schemes, renormalization can provide a considerable improvement in overall accuracy. With previously published higher order coupling schemes, which are more accurate to begin with, renormalization has amore » much smaller effect. Finally, while renormalization narrows the differences in the accuracies of different coupling schemes, their order of accuracy is not affected.« less

  2. Constant-roll (quasi-)linear inflation

    NASA Astrophysics Data System (ADS)

    Karam, A.; Marzola, L.; Pappas, T.; Racioppi, A.; Tamvakis, K.

    2018-05-01

    In constant-roll inflation, the scalar field that drives the accelerated expansion of the Universe is rolling down its potential at a constant rate. Within this framework, we highlight the relations between the Hubble slow-roll parameters and the potential ones, studying in detail the case of a single-field Coleman-Weinberg model characterised by a non-minimal coupling of the inflaton to gravity. With respect to the exact constant-roll predictions, we find that assuming an approximate slow-roll behaviour yields a difference of Δ r = 0.001 in the tensor-to-scalar ratio prediction. Such a discrepancy is in principle testable by future satellite missions. As for the scalar spectral index ns, we find that the existing 2-σ bound constrains the value of the non-minimal coupling to ξphi ~ 0.29–0.31 in the model under consideration.

  3. The microwave spectrum of a triplet carbene: HCCN in the X 3Sigma - state

    NASA Astrophysics Data System (ADS)

    Saito, Shuji; Endo, Yasuki; Hirota, Eizi

    1984-02-01

    A simple carbene, the HCCN radical, has been identified in the gas phase using a microwave spectroscopic method. The HCCN molecule was generated in a free space absorption cell by the reaction of CH3CN with the microwave discharge products of CF4. Five rotational transitions, each split into three fine structure components, were observed in the region of 110 to 198 GHz. No hyperfine structure was resolved, although some of the observed lines showed broadening. The rotational constant, the centrifugal distortion constant, the spin-spin coupling constant, and the spin-rotation coupling constant were determined with good precision. The observed spectrum is completely consistent with that expected for a linear molecule in a 3Σ state, in agreement with an earlier matrix EPR study of Bernheim et al. [J. Chem. Phys. 43, 196 (1965)].

  4. Length divergence of the lattice thermal conductivity in suspended graphene nanoribbons

    NASA Astrophysics Data System (ADS)

    Majee, Arnab K.; Aksamija, Zlatan

    2016-06-01

    Thermal properties of graphene have attracted much attention, culminating in a recent measurement of its length dependence in ribbons up to 9 μ m long. In this paper, we use the improved Callaway model to solve the phonon Boltzmann transport equation while capturing both the resistive (umklapp, isotope, and edge roughness) and nonresistive (normal) contributions. We show that for lengths smaller than 100 μ m , scaling the ribbon length while keeping the width constant leads to a logarithmic divergence of thermal conductivity. The length dependence is driven primarily by a ballistic-to-diffusive transition in the in-plane (LA and TA) branches, while in the hydrodynamic regime when 10 μ m 100 μ m due to the coupling between in-plane and flexural modes. This coupling leads to renormalization of ZA phonon dispersion in the long-wavelength range, preventing further divergence of thermal conductivity. We also uncover a strong dependence on sample width, which we attribute to the interplay between nonresistive normal and diffusive edge scattering in the Poisseuille flow regime. We conclude that normal processes play a crucial role in the length and width dependence of thermal transport in graphene in the hydrodynamic regime and dictate the relative in-plane (LA+TA) to out-of-plane (ZA) contribution to transport.

  5. The temperature dependence of the hydroxyl deuterium quadrupole coupling parameter and the rotational correlation time of the OD internuclear vector in neat ethanol-d

    NASA Astrophysics Data System (ADS)

    Ferris, Thomas D.; Farrar, Thomas C.

    The temperature dependence of the hydroxyl proton chemical shift and deuterium quadrupolar relaxation time of neat ethanol were measured over the temperature range 190-350 K. The proton isotropic chemical shift varies from 6.2 ppm at 190 K to 4.7 ppm at 350 K. The deuterium NMR relaxation time in ethanol- d 1 varies from 6.2 ms to 309 ms over the same range. Ab initio calculations performed on various ethanol clusters ranging in size from monomer to hexamer show a linear correlation ( R 2 = 0.99) between ≤D, the deuterium quadrupole coupling parameter, and δH, the isotropic proton chemical shift in ppm relative to TMS: ≤D(kHz) = 297.60 - 15.28 δH. The temperature dependence of ≤D ranges from 199.5 kHz at 190 K to 221.4 kHz at 350 K. Using the values for ≤D and the relaxation time data, the temperature dependence of the OD rotational correlation time was found to vary from 282 ps at 190 K to 4.5 ps near the boiling point (350 K). Using these correlation times and bulk viscosity data, the Gierer-Wirtz model predicts a supramolecular cluster volume of about 317 A 3 , the approximate volume of a cyclic pentamer cluter of ethanol molecules. The cluster volume was nearly constant from 340 K to about 290 K.

  6. Experimental Beetle Metapopulations Respond Positively to Dynamic Landscapes and Reduced Connectivity

    PubMed Central

    Govindan, Byju N.; Swihart, Robert K.

    2012-01-01

    Interactive effects of multiple environmental factors on metapopulation dynamics have received scant attention. We designed a laboratory study to test hypotheses regarding interactive effects of factors affecting the metapopulation dynamics of red flour beetle, Tribolium castaneum. Within a four-patch landscape we modified resource level (constant and diminishing), patch connectivity (high and low) and patch configuration (static and dynamic) to conduct a 23 factorial experiment, consisting of 8 metapopulations, each with 3 replicates. For comparison, two control populations consisting of isolated and static subpopulations were provided with resources at constant or diminishing levels. Longitudinal data from 22 tri-weekly counts of beetle abundance were analyzed using Bayesian Poisson generalized linear mixed models to estimate additive and interactive effects of factors affecting abundance. Constant resource levels, low connectivity and dynamic patches yielded greater levels of adult beetle abundance. For a given resource level, frequency of colonization exceeded extinction in landscapes with dynamic patches when connectivity was low, thereby promoting greater patch occupancy. Negative density dependence of pupae on adults occurred and was stronger in landscapes with low connectivity and constant resources; these metapopulations also demonstrated greatest stability. Metapopulations in control landscapes went extinct quickly, denoting lower persistence than comparable landscapes with low connectivity. When landscape carrying capacity was constant, habitat destruction coupled with low connectivity created asynchronous local dynamics and refugia within which cannibalism of pupae was reduced. Increasing connectivity may be counter-productive and habitat destruction/recreation may be beneficial to species in some contexts. PMID:22509314

  7. Causality Analysis: Identifying the Leading Element in a Coupled Dynamical System

    PubMed Central

    BozorgMagham, Amir E.; Motesharrei, Safa; Penny, Stephen G.; Kalnay, Eugenia

    2015-01-01

    Physical systems with time-varying internal couplings are abundant in nature. While the full governing equations of these systems are typically unknown due to insufficient understanding of their internal mechanisms, there is often interest in determining the leading element. Here, the leading element is defined as the sub-system with the largest coupling coefficient averaged over a selected time span. Previously, the Convergent Cross Mapping (CCM) method has been employed to determine causality and dominant component in weakly coupled systems with constant coupling coefficients. In this study, CCM is applied to a pair of coupled Lorenz systems with time-varying coupling coefficients, exhibiting switching between dominant sub-systems in different periods. Four sets of numerical experiments are carried out. The first three cases consist of different coupling coefficient schemes: I) Periodic–constant, II) Normal, and III) Mixed Normal/Non-normal. In case IV, numerical experiment of cases II and III are repeated with imposed temporal uncertainties as well as additive normal noise. Our results show that, through detecting directional interactions, CCM identifies the leading sub-system in all cases except when the average coupling coefficients are approximately equal, i.e., when the dominant sub-system is not well defined. PMID:26125157

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Karabacak, Özkan, E-mail: ozkan2917@gmail.com; Department of Electronic Systems, Aalborg University, 9220 Aalborg East; Alikoç, Baran, E-mail: alikoc@itu.edu.tr

    Motivated by the chaos suppression methods based on stabilizing an unstable periodic orbit, we study the stability of synchronized periodic orbits of coupled map systems when the period of the orbit is the same as the delay in the information transmission between coupled units. We show that the stability region of a synchronized periodic orbit is determined by the Floquet multiplier of the periodic orbit for the uncoupled map, the coupling constant, the smallest and the largest Laplacian eigenvalue of the adjacency matrix. We prove that the stabilization of an unstable τ-periodic orbit via coupling with delay τ is possiblemore » only when the Floquet multiplier of the orbit is negative and the connection structure is not bipartite. For a given coupling structure, it is possible to find the values of the coupling strength that stabilizes unstable periodic orbits. The most suitable connection topology for stabilization is found to be the all-to-all coupling. On the other hand, a negative coupling constant may lead to destabilization of τ-periodic orbits that are stable for the uncoupled map. We provide examples of coupled logistic maps demonstrating the stabilization and destabilization of synchronized τ-periodic orbits as well as chaos suppression via stabilization of a synchronized τ-periodic orbit.« less

  9. Temperature and size-dependent Hamaker constants for metal nanoparticles

    NASA Astrophysics Data System (ADS)

    Jiang, K.; Pinchuk, P.

    2016-08-01

    Theoretical values of the Hamaker constant have been calculated for metal nanoparticles using Lifshitz theory. The theory describes the Hamaker constant in terms of the permittivity of the interacting bodies. Metal nanoparticles exhibit an internal size effect that alters the dielectric permittivity of the particle when its size falls below the mean free path of the conducting electrons. This size dependence of the permittivity leads to size-dependence of the Hamaker constant for metal nanoparticles. Additionally, the electron damping and the plasma frequency used to model the permittivity of the particle exhibit temperature-dependence, which lead to temperature dependence of the Hamaker constant. In this work, both the size and temperature dependence for gold, silver, copper, and aluminum nanoparticles is demonstrated. The results of this study might be of interest for studying the colloidal stability of nanoparticles in solution.

  10. Temperature and size-dependent Hamaker constants for metal nanoparticles.

    PubMed

    Jiang, K; Pinchuk, P

    2016-08-26

    Theoretical values of the Hamaker constant have been calculated for metal nanoparticles using Lifshitz theory. The theory describes the Hamaker constant in terms of the permittivity of the interacting bodies. Metal nanoparticles exhibit an internal size effect that alters the dielectric permittivity of the particle when its size falls below the mean free path of the conducting electrons. This size dependence of the permittivity leads to size-dependence of the Hamaker constant for metal nanoparticles. Additionally, the electron damping and the plasma frequency used to model the permittivity of the particle exhibit temperature-dependence, which lead to temperature dependence of the Hamaker constant. In this work, both the size and temperature dependence for gold, silver, copper, and aluminum nanoparticles is demonstrated. The results of this study might be of interest for studying the colloidal stability of nanoparticles in solution.

  11. A physical model of the infrared-to-radio correlation in galaxies

    NASA Technical Reports Server (NTRS)

    Helou, G.; Bicay, M. D.

    1993-01-01

    We explore the implications of the IR-radio correlation in star-forming galaxies, using a simple physical model constrained by the constant global ratio q of IR to radio emission and by the radial falloff of this ratio in disks of galaxies. The modeling takes into account the diffusion, radiative decay, and escape of cosmic-ray electrons responsible for the synchrotron emission, and the full range of optical depths to dust-heating photons. We introduce two assumptions: that dust-heating photons and radio-emitting cosmic-ray electrons are created in constant proportion to each other as part of the star formation activity, and that gas and magnetic field are well coupled locally, expressed as B proportional to n exp beta, with beta between 1/3 and 2/3. We conclude that disk galaxies would maintain the observed constant ratio q under these assumptions if the disk scale height h(0) and the escape scale length l(esc) for cosmic-ray electrons followed a relation of the form l(esc) proportional to h(0) exp 1/2; the IR-to-radio ratio will then depend very weakly on interstellar density, and, therefore, on magnetic field strength or mean optical depth.

  12. The cosmological Higgstory of the vacuum instability

    DOE PAGES

    Espinosa, José R.; Giudice, Gian F.; Morgante, Enrico; ...

    2015-09-24

    We report that the Standard Model Higgs potential becomes unstable at large field values. After clarifying the issue of gauge dependence of the effective potential, we study the cosmological evolution of the Higgs field in presence of this instability throughout inflation, reheating and the present epoch. We conclude that anti-de Sitter patches in which the Higgs field lies at its true vacuum are lethal for our universe. From this result, we derive upper bounds on the Hubble constant during inflation, which depend on the reheating temperature and on the Higgs coupling to the scalar curvature or to the inflaton. Finallymore » we study how a speculative link between Higgs meta-stability and consistence of quantum gravity leads to a sharp prediction for the Higgs and top masses, which is consistent with measured values.« less

  13. Simultaneous characterization of lateral lipid and prothrombin diffusion coefficients by z-scan fluorescence correlation spectroscopy.

    PubMed

    Stefl, Martin; Kułakowska, Anna; Hof, Martin

    2009-08-05

    A new (to our knowledge) robust approach for the determination of lateral diffusion coefficients of weakly bound proteins is applied for the phosphatidylserine specific membrane interaction of bovine prothrombin. It is shown that z-scan fluorescence correlation spectroscopy in combination with pulsed interleaved dual excitation allows simultaneous monitoring of the lateral diffusion of labeled protein and phospholipids. Moreover, from the dependencies of the particle numbers on the axial sample positions at different protein concentrations phosphatidylserine-dependent equilibrium dissociation constants are derived confirming literature values. Increasing the amount of membrane-bound prothrombin retards the lateral protein and lipid diffusion, indicating coupling of both processes. The lateral diffusion coefficients of labeled lipids are considerably larger than the simultaneously determined lateral diffusion coefficients of prothrombin, which contradicts findings reported for the isolated N-terminus of prothrombin.

  14. Fault stability under conditions of variable normal stress

    USGS Publications Warehouse

    Dieterich, J.H.; Linker, M.F.

    1992-01-01

    The stability of fault slip under conditions of varying normal stress is modelled as a spring and slider system with rate- and state-dependent friction. Coupling of normal stress to shear stress is achieved by inclining the spring at an angle, ??, to the sliding surface. Linear analysis yields two conditions for unstable slip. The first, of a type previously identified for constant normal stress systems, results in instability if stiffness is below a critical value. Critical stiffness depends on normal stress, constitutive parameters, characteristic sliding distance and the spring angle. Instability of the first type is possible only for velocity-weakening friction. The second condition yields instability if spring angle ?? <-cot-1??ss, where ??ss is steady-state sliding friction. The second condition can arise under conditions of velocity strengthening or weakening. Stability fields for finite perturbations are investigated by numerical simulation. -Authors

  15. The Dependence of the Spring Constant in the Linear Range on Spring Parameters

    ERIC Educational Resources Information Center

    Khotimah, Siti Nurul; Viridi, Sparisoma; Widayani; Khairurrijal

    2011-01-01

    In basic physics laboratories, springs are normally used to determine both spring constants and the Earth's gravitational acceleration. Students generally do not notice that the spring constant is not a universal constant, but depends on the spring parameters. This paper shows and verifies that the spring constant in the linear range is inversely…

  16. Wideband tunable wavelength-selective coupling in asymmetric side-polished fiber coupler with dispersive interlayer.

    PubMed

    Chen, Nan-Kuang; Lee, Cheng-Ling; Chi, Sien

    2007-12-24

    We demonstrate tunable highly wavelength-selective filter based on a 2 x 2 asymmetric side-polished fiber coupler with dispersive interlayer in one of the coupling arms. The asymmetric fiber coupler is made of two side-polished fibers using identical single-mode fibers and one of the polished fibers is further chemically etched at the central evanescent coupling region to gain closer to the core. An optical liquid with different dispersion characteristics than that of silica fiber is used to fill up the etched hollow and therefore the propagation constant for the polished fiber with dispersive liquid becomes more dispersive and crosses with that of another untreated polished fiber. The location of the cross point and the cross angle between two propagation constant curves determine the coupling wavelength and coupling bandwidth as well as channel wavelength separation, respectively. The coupling wavelength can be tuned at least wider than 84 nm (1.326-1.410 microm) under index variation of 0.004 and with coupling ratios of higher than 30 dB.

  17. Varying electric charge in multiscale spacetimes

    NASA Astrophysics Data System (ADS)

    Calcagni, Gianluca; Magueijo, João; Fernández, David Rodríguez

    2014-01-01

    We derive the covariant equations of motion for Maxwell field theory and electrodynamics in multiscale spacetimes with weighted Laplacian. An effective spacetime-dependent electric charge of geometric origin naturally emerges from the theory, thus giving rise to a varying fine-structure constant. The theory is compared with other varying-coupling models, such as those with a varying electric charge or varying speed of light. The theory is also confronted with cosmological observations, which can place constraints on the characteristic scales in the multifractional measure. We note that the model considered here is fundamentally different from those previously proposed in the literature, either of the varying-e or varying-c persuasion.

  18. Holographic cosmology and phase transitions of SYM theory

    NASA Astrophysics Data System (ADS)

    Ghoroku, Kazuo; Meyer, René; Toyoda, Fumihiko

    2017-10-01

    We study the time development of strongly coupled N =4 supersymmetric Yang Mills (SYM) theory on cosmological Friedmann-Robertson-Walker (FRW) backgrounds via the AdS/CFT correspondence. We implement the cosmological background as a boundary metric fulfilling the Friedmann equation with a four-dimensional cosmological constant and a dark radiation term. We analyze the dual bulk solution of the type IIB supergravity and find that the time dependence of the FRW background strongly influences the dynamical properties of the SYM theory. We in particular find a phase transition between a confined and a deconfined phase. We also argue that some cosmological solutions could be related to the inflationary scenario.

  19. Phenomenological analysis of thermal hysteresis in Ni-Mn-Ga Heusler alloys

    NASA Astrophysics Data System (ADS)

    Zagrebin, M. A.; Sokolovskiy, V. V.; Buchelnikov, V. D.

    2018-05-01

    The manipulation of thermal hysteresis in Ni-Mn-Ga Heusler alloys with coupled magnetostructural phase transition is studied theoretically using the Landau theory, including magnetic, elastic and crystal lattice modulation order parameters as well as an external magnetic field. It is shown that for the assigned combination of phenomenological parameters, in the phase diagrams, the Austenite-Martensite first-order phase transition has a finite (critical) point in which the thermal hysteresis is disappeared. Moreover, this point depends on the relation between modulation and elastic constants as well as on the magnetic field. Obtained results have been compared with other theoretical end experimental data.

  20. Amide I vibrational circular dichroism of dipeptide: Conformation dependence and fragment analysis

    NASA Astrophysics Data System (ADS)

    Choi, Jun-Ho; Cho, Minhaeng

    2004-03-01

    The amide I vibrational circular dichroic response of alanine dipeptide analog (ADA) was theoretically investigated and the density functional theory calculation and fragment analysis results are presented. A variety of vibrational spectroscopic properties, local and normal mode frequencies, coupling constant, dipole, and rotational strengths, are calculated by varying two dihedral angles determining the three-dimensional ADA conformation. Considering two monopeptide fragments separately, we show that the amide I vibrational circular dichroism of the ADA can be quantitatively predicted. For several representative conformations of the model ADA, vibrational circular dichroism spectra are calculated by using both the density functional theory calculation and fragment analysis methods.

  1. Posterior quantum dynamics for a continuous diffusion observation of a coherent channel

    NASA Astrophysics Data System (ADS)

    Dąbrowska, Anita; Staszewski, Przemysław

    2012-11-01

    We present the Belavkin filtering equation for the intense balanced heterodyne detection in a unitary model of an indirect observation. The measuring apparatus modelled by a Bose field is initially prepared in a coherent state and the observed process is a diffusion one. We prove that this filtering equation is relaxing: any initial square-integrable function tends asymptotically to a coherent state with an amplitude depending on the coupling constant and the initial state of the apparatus. The time-development of a squeezed coherent state is studied and compared with the previous results obtained for the measuring apparatus prepared initially in the vacuum state.

  2. A Study of the Irradiance- and Temperature-Dependence of Mid-Wave-Infrared (MWIR) Absorption in Indium Antimonide (InSb)

    DTIC Science & Technology

    2008-08-01

    Direct valence to conduction band transitions (constant k vector ), (B) Indirect valence to conduction band transitions aided by photon/phonon coupling...feilddt g g dk dk dE dxdk qE dt dt v d v dt→ = = = − h h 1 (2.7) and g dx v dt = , which means that feild dk qE dt = −h . In order to find the...x B k xΨ = + where A and B are variables that are solved, kx is the wave vector and x is the distance. For a realistic solution, the wave function

  3. Static magnetic susceptibility, crystal field and exchange interactions in rare earth titanate pyrochlores.

    PubMed

    Malkin, B Z; Lummen, T T A; van Loosdrecht, P H M; Dhalenne, G; Zakirov, A R

    2010-07-14

    The experimental temperature dependence (T = 2-300 K) of single crystal bulk and site susceptibilities of rare earth titanate pyrochlores R(2)Ti(2)O(7) (R = Sm, Eu, Gd, Tb, Dy, Ho, Er, Yb) is analyzed in the framework of crystal field theory and a mean field approximation. Analytical expressions for the site and bulk susceptibilities of the pyrochlore lattice are derived taking into account long range dipole-dipole interactions and anisotropic exchange interactions between the nearest neighbor rare earth ions. The sets of crystal field parameters and anisotropic exchange coupling constants have been determined and their variations along the lanthanide series are discussed.

  4. Critical behavior and phase transition of dilaton black holes with nonlinear electrodynamics

    NASA Astrophysics Data System (ADS)

    Dayyani, Z.; Sheykhi, A.; Dehghani, M. H.; Hajkhalili, S.

    2018-02-01

    In this paper, we take into account the dilaton black hole solutions of Einstein gravity in the presence of logarithmic and exponential forms of nonlinear electrodynamics. First of all, we consider the cosmological constant and nonlinear parameter as thermodynamic quantities which can vary. We obtain thermodynamic quantities of the system such as pressure, temperature and Gibbs free energy in an extended phase space. We complete the analogy of the nonlinear dilaton black holes with the Van der Waals liquid-gas system. We work in the canonical ensemble and hence we treat the charge of the black hole as an external fixed parameter. Moreover, we calculate the critical values of temperature, volume and pressure and show that they depend on the dilaton coupling constant as well as on the nonlinear parameter. We also investigate the critical exponents and find that they are universal and independent of the dilaton and nonlinear parameters, which is an expected result. Finally, we explore the phase transition of nonlinear dilaton black holes by studying the Gibbs free energy of the system. We find that in the case of T>T_c, we have no phase transition. When T=T_c, the system admits a second-order phase transition, while for T=T_f

  5. Proof of factorization of χ _{cJ} production in non-equilibrium QCD at RHIC and LHC in color singlet mechanism

    NASA Astrophysics Data System (ADS)

    Nayak, Gouranga C.

    2017-12-01

    Recently we have proved the factorization of NRQCD S-wave heavy quarkonium production at all orders in coupling constant. In this paper we extend this to prove the factorization of infrared divergences in χ _{cJ} production from color singlet c{\\bar{c}} pair in non-equilibrium QCD at RHIC and LHC at all orders in coupling constant. This can be relevant to study the quark-gluon plasma at RHIC and LHC.

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pribram-Jones, A.; Burke, K.

    We show that the adiabatic connection formula of ground-state density functional theory relates the correlation energy to a coupling-constant integral over a purely potential contribution, and is widely used to understand and improve approximations. The corresponding formula for thermal density functional theory is cast as an integral over temperatures instead, ranging upward from the system's physical temperature. We also show how to relate different correlation components to each other, either in terms of temperature or coupling-constant integrations. Lastly, we illustrate our results on the uniform electron gas.

  7. Coupling constant for N*(1535)N{rho}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xie Jujun; Graduate University of Chinese Academy of Sciences, Beijing 100049; Wilkin, Colin

    2008-05-15

    The value of the N*(1535)N{rho} coupling constant g{sub N*N{rho}} derived from the N*(1535){yields}N{rho}{yields}N{pi}{pi} decay is compared with that deduced from the radiative decay N*(1535){yields}N{gamma} using the vector-meson-dominance model. On the basis of an effective Lagrangian approach, we show that the values of g{sub N*N{rho}} extracted from the available experimental data on the two decays are consistent, though the error bars are rather large.

  8. The functional dependence of canopy conductance on water vapor pressure deficit revisited

    NASA Astrophysics Data System (ADS)

    Fuchs, Marcel; Stanghellini, Cecilia

    2018-03-01

    Current research seeking to relate between ambient water vapor deficit (D) and foliage conductance (g F ) derives a canopy conductance (g W ) from measured transpiration by inverting the coupled transpiration model to yield g W = m - n ln(D) where m and n are fitting parameters. In contrast, this paper demonstrates that the relation between coupled g W and D is g W = AP/D + B, where P is the barometric pressure, A is the radiative term, and B is the convective term coefficient of the Penman-Monteith equation. A and B are functions of g F and of meteorological parameters but are mathematically independent of D. Keeping A and B constant implies constancy of g F . With these premises, the derived g W is a hyperbolic function of D resembling the logarithmic expression, in contradiction with the pre-set constancy of g F . Calculations with random inputs that ensure independence between g F and D reproduce published experimental scatter plots that display a dependence between g W and D in contradiction with the premises. For this reason, the dependence of g W on D is a computational artifact unrelated to any real effect of ambient humidity on stomatal aperture and closure. Data collected in a maize field confirm the inadequacy of the logarithmic function to quantify the relation between canopy conductance and vapor pressure deficit.

  9. Dynamics of a spherically symmetric inhomogeneous coupled dark energy model with coupling term proportional to non relatvistic matter

    NASA Astrophysics Data System (ADS)

    Izquierdo, Germán; Blanquet-Jaramillo, Roberto C.; Sussman, Roberto A.

    2018-01-01

    The quasi-local scalar variables approach is applied to a spherically symmetric inhomogeneous Lemaître-Tolman-Bondi metric containing a mixture of non-relativistic cold dark matter and coupled dark energy with constant equation of state. The quasi-local coupling term considered is proportional to the quasi-local cold dark matter energy density and a quasi-local Hubble factor-like scalar via a coupling constant α . The autonomous numerical system obtained from the evolution equations is classified for different choices of the free parameters: the adiabatic constant of the dark energy w and α . The presence of a past attractor in a non-physical region of the energy densities phase-space of the system makes the coupling term non physical when the energy flows from the matter to the dark energy in order to avoid negative values of the dark energy density in the past. On the other hand, if the energy flux goes from dark energy to dark matter, the past attractor lies in a physical region. The system is also numerically solved for some interesting initial profiles leading to different configurations: an ever expanding mixture, a scenario where the dark energy is completely consumed by the non-relativistic matter by means of the coupling term, a scenario where the dark energy disappears in the inner layers while the outer layers expand as a mixture of both sources, and, finally, a structure formation toy model scenario, where the inner shells containing the mixture collapse while the outer shells expand.

  10. Illustrated study of the semiholographic nonperturbative framework

    NASA Astrophysics Data System (ADS)

    Banerjee, Souvik; Gaddam, Nava; Mukhopadhyay, Ayan

    2017-03-01

    Semiholography has been proposed as an effective nonperturbative framework which can consistently combine perturbative and nonperturbative effects for theories like QCD. It is postulated that the strongly coupled nonperturbative sector has a holographic dual in the form of a classical gravity theory in the large N limit, and the perturbative fields determine the gravitational boundary conditions. In this work, we pursue a fundamental derivation of this framework particularly showing how perturbative physics by itself can determine the holographic dual of the infrared, and also the interactions between the perturbative and the holographic sectors. We firstly demonstrate that the interactions between the two sectors can be constrained through the existence of a conserved local energy-momentum tensor for the full system up to hard-soft coupling constants. As an illustration, we set up a biholographic toy theory where both the UV and IR sectors are strongly coupled and holographic with distinct classical gravity duals. In this construction, the requirement that an appropriate gluing can cure the singularities (geodetic incompleteness) of the respective geometries leads us to determine the parameters of the IR theory and the hard-soft couplings in terms of those of the UV theory. The high energy scale behavior of the hard-soft couplings is state-independent but their runnings turn out to be state-dependent. We discuss how our approach can be adapted to the construction of the semiholographic framework for QCD.

  11. Investigation on laser forming of stainless steel sheets under coupling mechanism

    NASA Astrophysics Data System (ADS)

    Chakraborty, Shitanshu S.; Maji, Kuntal; Racherla, Vikranth; Nath, Ashish K.

    2015-08-01

    In laser forming of three dimensional surfaces simultaneous bending and thickening of the sheet being formed are often required. Laser forming by the coupling mechanism has the capability to generate both of them. However, literature is scarce on the study of laser forming under coupling mechanism. A part of this work investigates the effect of Fourier number and laser spot diameter on bending angle and thickness increment induced by laser scans promoting coupling mechanism. Peak surface temperature was maintained nearly constant. It was chosen so as to avoid surface melting and sensitization at the scan track on top surface. The required laser parameters were determined with the help of an analytical model for temperature estimation. The experimental results showed that while the bending angle reduced with the increase of Fourier number, the thickness increment increased. And, with the increase of laser spot diameter both bending angle and thickness increased. Finite element simulations were carried out using ABAQUS software on a three dimensional model for developing a better understanding of the deformation behaviour. Multimode intensity distribution of the laser beam and temperature dependant material properties were considered in the simulations. Finite element analysis and microstructure study showed that chances of sensitization are rare with the current laser parameter combinations. Based on temperature gradient and coupling mechanisms a different laser scanning strategy has been proposed for laser forming of deep pillow shaped surfaces retaining symmetry.

  12. Slowly-rotating neutron stars in massive bigravity

    NASA Astrophysics Data System (ADS)

    Sullivan, A.; Yunes, N.

    2018-02-01

    We study slowly-rotating neutron stars in ghost-free massive bigravity. This theory modifies general relativity by introducing a second, auxiliary but dynamical tensor field that couples to matter through the physical metric tensor through non-linear interactions. We expand the field equations to linear order in slow rotation and numerically construct solutions in the interior and exterior of the star with a set of realistic equations of state. We calculate the physical mass function with respect to observer radius and find that, unlike in general relativity, this function does not remain constant outside the star; rather, it asymptotes to a constant a distance away from the surface, whose magnitude is controlled by the ratio of gravitational constants. The Vainshtein-like radius at which the physical and auxiliary mass functions asymptote to a constant is controlled by the graviton mass scaling parameter, and outside this radius, bigravity modifications are suppressed. We also calculate the frame-dragging metric function and find that bigravity modifications are typically small in the entire range of coupling parameters explored. We finally calculate both the mass-radius and the moment of inertia-mass relations for a wide range of coupling parameters and find that both the graviton mass scaling parameter and the ratio of the gravitational constants introduce large modifications to both. These results could be used to place future constraints on bigravity with electromagnetic and gravitational-wave observations of isolated and binary neutron stars.

  13. First-principles method for calculating the rate constants of internal-conversion and intersystem-crossing transitions.

    PubMed

    Valiev, R R; Cherepanov, V N; Baryshnikov, G V; Sundholm, D

    2018-02-28

    A method for calculating the rate constants for internal-conversion (k IC ) and intersystem-crossing (k ISC ) processes within the adiabatic and Franck-Condon (FC) approximations is proposed. The applicability of the method is demonstrated by calculation of k IC and k ISC for a set of organic and organometallic compounds with experimentally known spectroscopic properties. The studied molecules were pyrromethene-567 dye, psoralene, hetero[8]circulenes, free-base porphyrin, naphthalene, and larger polyacenes. We also studied fac-Alq 3 and fac-Ir(ppy) 3 , which are important molecules in organic light emitting diodes (OLEDs). The excitation energies were calculated at the multi-configuration quasi-degenerate second-order perturbation theory (XMC-QDPT2) level, which is found to yield excitation energies in good agreement with experimental data. Spin-orbit coupling matrix elements, non-adiabatic coupling matrix elements, Huang-Rhys factors, and vibrational energies were calculated at the time-dependent density functional theory (TDDFT) and complete active space self-consistent field (CASSCF) levels. The computed fluorescence quantum yields for the pyrromethene-567 dye, psoralene, hetero[8]circulenes, fac-Alq 3 and fac-Ir(ppy) 3 agree well with experimental data, whereas for the free-base porphyrin, naphthalene, and the polyacenes, the obtained quantum yields significantly differ from the experimental values, because the FC and adiabatic approximations are not accurate for these molecules.

  14. Influence of Proton Acceptors on the Proton-Coupled Electron Transfer Reaction Kinetics of a Ruthenium-Tyrosine Complex.

    PubMed

    Lennox, J Christian; Dempsey, Jillian L

    2017-11-22

    A polypyridyl ruthenium complex with fluorinated bipyridine ligands and a covalently bound tyrosine moiety was synthesized, and its photo-induced proton-coupled electron transfer (PCET) reactivity in acetonitrile was investigated with transient absorption spectroscopy. Using flash-quench methodology with methyl viologen as an oxidative quencher, a Ru 3+ species is generated that is capable of initiating the intramolecular PCET oxidation of the tyrosine moiety. Using a series of substituted pyridine bases, the reaction kinetics were found to vary as a function of proton acceptor concentration and identity, with no significant H/D kinetic isotope effect. Through analysis of the kinetics traces and comparison to a control complex without the tyrosine moiety, PCET reactivity was found to proceed through an equilibrium electron transfer followed by proton transfer (ET-PT) pathway in which irreversible deprotonation of the tyrosine radical cation shifts the ET equilibrium, conferring a base dependence on the reaction. Comprehensive kinetics modeling allowed for deconvolution of complex kinetics and determination of rate constants for each elementary step. Across the five pyridine bases explored, spanning a range of 4.2 pK a units, a linear free-energy relationship was found for the proton transfer rate constant with a slope of 0.32. These findings highlight the influence that proton transfer driving force exerts on PCET reaction kinetics.

  15. A coarse-grained generalized second law for holographic conformal field theories

    NASA Astrophysics Data System (ADS)

    Bunting, William; Fu, Zicao; Marolf, Donald

    2016-03-01

    We consider the universal sector of a d\\gt 2 dimensional large-N strongly interacting holographic CFT on a black hole spacetime background B. When our CFT d is coupled to dynamical Einstein-Hilbert gravity with Newton constant G d , the combined system can be shown to satisfy a version of the thermodynamic generalized second law (GSL) at leading order in G d . The quantity {S}{CFT}+\\frac{A({H}B,{perturbed})}{4{G}d} is non-decreasing, where A({H}B,{perturbed}) is the (time-dependent) area of the new event horizon in the coupled theory. Our S CFT is the notion of (coarse-grained) CFT entropy outside the black hole given by causal holographic information—a quantity in turn defined in the AdS{}d+1 dual by the renormalized area {A}{ren}({H}{{bulk}}) of a corresponding bulk causal horizon. A corollary is that the fine-grained GSL must hold for finite processes taken as a whole, though local decreases of the fine-grained generalized entropy are not obviously forbidden. Another corollary, given by setting {G}d=0, states that no finite process taken as a whole can increase the renormalized free energy F={E}{out}-{{TS}}{CFT}-{{Ω }}J, with T,{{Ω }} constants set by {H}B. This latter corollary constitutes a 2nd law for appropriate non-compact AdS event horizons.

  16. High-resolution molecular-beam spectroscopy of NaCN and Na 13CN

    NASA Astrophysics Data System (ADS)

    van Vaals, J. J.; Meerts, W. Leo; Dymanus, A.

    The sodium cyanide molecule was studied by molecular-beam electric-resonance spectroscopy in the microwave region. We used the seeded-beam technique to produce a supersonic beam with strong translational, rotational and vibrational cooling. In the frequency range 9.5-40 GHz we observed and identified for NaCN 186 and for Na 13CN 107 hyperfine transitions in 20 and 16 rotational transitions, respectively, all in the ground vibrational state. The rotational, the five quartic and three sextic centrifugal distortion constants of NaCN are: A″ = 57921.954(7) MHz; B″ = 8369.312(2) MHz, C″ = 7272.712(2) MHz. All quadrupole and several spin-rotation coupling constants for the hyperfine interaction were evaluated. The quadrupole coupling constants (in MHz) for NaCN are: eQq12(Na) = -5.344(5), eQq12 = 2.397(7). eQq12(N) = 2.148(4), eQq12(N) = -4.142(5). From these constants and those of Na 13CN we have determined the principal components of the quadrupole coupling tensor for potassium and nitrogen. The structure of sodium cyanide evaluated from the rotational constants of NaCN and Na 13CN was found to be T shaped, similar to the structure of KCN but completely different from the linear isocyanide configuration of LiNC. The effective structural parameters for sodium cyanide in the ground vibrational state are: rCN = 1.170(4) Å, rNaC = 2.379(15) Å, rN12N = 2.233(15) Å, in gratifying agreement with ab initio calculations. Both the geometrical structure and the hyperfine coupling justify the conclusion that the CN group in gaseous sodium cyanide approximately can be considered as a free CN - ion.

  17. Quantum Discord Preservation for Two Quantum-Correlated Qubits in Two Independent Reserviors

    NASA Astrophysics Data System (ADS)

    Xu, Lan

    2018-03-01

    We investigate the dynamics of quantum discord using an exactly solvable model where two qubits coupled to independent thermal environments. The quantum discord is employed as a non-classical correlation quantifier. By studying the quantum discord of a class of initial states, we find discord remains preserve for a finite time. The effects of the temperature, initial-state parameter, system-reservoir coupling constant and temperature difference parameter of the two independent reserviors are also investigated. We discover that the quantum nature loses faster in high temperature, however, one can extend the time of quantum nature by choosing smaller system-reservoir coupling constant, larger certain initial-state parameter and larger temperature difference parameter.

  18. Non-destructive tests for railway evaluation: Detection of fouling and joint interpretation of GPR and track geometric parameters - COST Action TU1208

    NASA Astrophysics Data System (ADS)

    Solla, Mercedes; Fontul, Simona; Marecos, Vânia; Loizos, Andreas

    2016-04-01

    During the last years high-performance railway lines have increased both their number and capabilities. As all types of infrastructures, railways have to maintain a proper behaviour during the entire life cycle. This work is focused on the analysis of the GPR method and its capabilities to detect defects in both infra and superstructure in railways. Different GPR systems and frequency antennas (air-coupled with antennas of 1.0 and 1.8 GHz, and ground-coupled with antennas of 1.0 and 2.3 GHz) were compared to establish the best procedures. For the assessment of the ground conditions, both GPR systems were used in combination with Falling Weight Deflectometer (FWD) load tests, in order to evaluate the bearing capacity of the subgrade. Moreover, Light Falling Weight Deflectometer (LFWD) measures were performed for the validation of the interpretation of the damaged areas identified from GPR and FWD tests. Finally, to corroborate the joint interpretation of GPR and FWD-LFWD, drill cores were extracted in the damaged areas identified based on the field data. Comparing all the data, a good agreement was obtained between the methods, when identifying both anomalous deflections and reflections. It was also demonstrated that ground-coupled systems have clear advantages compared to air-coupled systems since these antennas provide both better signal penetration and vertical resolution to detect fine details like cracking. Regarding the assessment of the thickness, three different high-speed track infrastructure solutions were constructed in a physical model, using asphalt as subballast layer. Four different antennas were used, two ground- and two air-coupled systems. Two different methodologies were assumed to calibrate the velocity of wave propagation: coring and metal plate. Comparing the results obtained, it was observed that the ground-coupled system provided higher values of wave velocity than the air-coupled system. The velocity values were also obtained by the amplitude or metal plate method with the air-coupled system. These velocities values were similar to those values obtained with the ground-coupled system, when using the coring method. Some laboratory tests were also developed in this work aiming to evaluate the dielectric constants for different levels of ballast fouling (0, 7.5 and 15%). The effect of the water presence on the dielectric constant was also evaluated by simulating different water contents: 5.5, 10 and 14%. Different GPR systems and configuration were used. The results have demonstrated that dielectric values increase with the increasing of fouling conditions. The dielectric constants also increase with the increasing of water content. However, the analysis of all the results obtained has revealed that values are more sensitive to the fouling level rather than to the water content variation. The dielectric constants obtained with a frequency of 1.0 GHz were slightly lower than those obtained with higher frequencies of 1.8 and 2.3 GHz. Additionally, the dielectric constants obtained for all the measurements, increasing fouling conditions and water contents, with a frequency of 1.0 GHz, were also different. Thus, the dielectric constant values obtained with the ground-coupled antenna were slightly lower than those obtained with the air-coupled antenna.

  19. Electronic properties with and without electron-phonon coupling

    NASA Astrophysics Data System (ADS)

    Allen, Philip

    To decent approximation, electronic properties P of solids have a temperature dependence of the type ΔP(T) = Σ (dP/dωi) [ni(T) +1/2], where ωi is the frequency of the ith vibrational normal mode, and ni is the Bose-Einstein equilibrium occupation of the mode. The coupling constant (dP/dωi) comes from electron-phonon interactions. At T =0, the ``1/2'' gives the zero-point electron-phonon renormalization of the property P, and at T>ΘD, the total shift ΔP becomes linear in T, extrapolating toward ΔP =0 at T =0. This form of T-dependence arises from the adiabatic or Born-Oppenheimer approximation, where electrons essentially ``don't notice'' the time-dependence of thermal lattice fluctuations. In other words, the leading order theory for P is ΔP(T) = Σ (d2P/duiduj), responding to the thermal average mean square lattice displacement, as if it were static. There are two situations where non-adiabatic effects alter things. (1) In metals at low T, the thermal smearing kBT of the sharp Fermi edge gets small (ωi <

  20. Influence of orographic precipitation on the incision within a mountain-piedmont system

    NASA Astrophysics Data System (ADS)

    Zavala, Valeria; Carretier, Sébastien; Bonnet, Stephane

    2017-04-01

    The geomorphological evolution of a mountain-piedmont system depends both on tectonics and climate, as well as on couplings between the mountain and its piedmont. Although the interactions between climate and tectonics are a fundamental point for understanding the landscape evolution, the erosion of a mountain range and the sediment deposition at the mountain front, or piedmont, have been poorly studied as a coupled system. Here we focus on the conditions driving an incision within such a system. Classically, it is thought that incision results from a change in climate or uplift rates. However, it is not clear which are the specific conditions that favor the occurrence of river incision in the piedmont. In particular, studies have shown that the presence of a piedmont can modify the incision patterns, and even drive autogenic incision, without any change in external forcings. This is a crucial issue in order to interpret natural incisions in terms of uplift or climatic modifications. Such a problem is further complicated by the modification of local precipitations and temperatures during uplift, because the progressive effect of climate change may superimpose to uplift. In this work we explore the hypothesis that a mountain-piedmont coupled system may develop incision in its piedmont as a result of enhanced orographic precipitations during surface uplift. We use a landscape evolution model, Cidre, in order to explore the response of a mountain-piemont system in which the mountain is continuously uplifted but in which precipitation rates depend on elevations. Thus precipitation amounts change during the mountain uplift. We test different peaks and amplitudes of the orographic precipitation pattern, maintaining the other conditions constant. Preliminary results show that elevation-dependent precipitations drive temporary but pronounced incisions of the main rivers within the piedmont, contrary to experiments without orographic precipitations.

  1. A Study of 2-Iodobutane by Rotational Spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Arsenault, Eric A.; Obenchain, Daniel A.; Choi, Yoon Jeong

    2016-09-15

    The rotational transitions belonging to 2-iodobutane (sec-butyl-iodide, CH3CHICH2CH3) have been measured over the frequency range 5.5-16.5 GHz via jet-pulsed Fourier transform microwave (FTMW) spectroscopy. The complete nuclear quadrupole coupling tensor of iodine, ¬, has been obtained for the gauche (g)-, anti (a)-, and gauche0 (g0)-conformers, as well as the four 13C isotopologues of the gauche species. Rotational constants, centrifugal distortion constants, quadrupole coupling constants, and nuclear spin-rotation constants were determined for each species. Changes in the ¬ of the iodine nucleus, resulting from conformational and isotopic dierences, will be discussed. Isotopic substitution of g-2-iodobutane allowed for a rs structure tomore » be determined for the carbon backbone. Additionally, isotopic substitution, in conjunction with an ab initio structure, allowed for a t of various r0 structural parameters belonging to g-2-iodobutane.« less

  2. Vehicle trajectory linearisation to enable efficient optimisation of the constant speed racing line

    NASA Astrophysics Data System (ADS)

    Timings, Julian P.; Cole, David J.

    2012-06-01

    A driver model is presented capable of optimising the trajectory of a simple dynamic nonlinear vehicle, at constant forward speed, so that progression along a predefined track is maximised as a function of time. In doing so, the model is able to continually operate a vehicle at its lateral-handling limit, maximising vehicle performance. The technique used forms a part of the solution to the motor racing objective of minimising lap time. A new approach of formulating the minimum lap time problem is motivated by the need for a more computationally efficient and robust tool-set for understanding on-the-limit driving behaviour. This has been achieved through set point-dependent linearisation of the vehicle model and coupling the vehicle-track system using an intrinsic coordinate description. Through this, the geometric vehicle trajectory had been linearised relative to the track reference, leading to new path optimisation algorithm which can be formed as a computationally efficient convex quadratic programming problem.

  3. Adsorption of asymmetric rigid rods or heteronuclear diatomic moleculeson homogeneous surfaces

    NASA Astrophysics Data System (ADS)

    Engl, W.; Courbin, L.; Panizza, P.

    2004-10-01

    We treat the adsorption on homogeneous surfaces of asymmetric rigid rods (like for instance heteronuclear diatomic molecules). We show that the n→0 vector spin formalism is well suited to describe such a problem. We establish an isomorphism between the coupling constants of the magnetic Hamiltonian and the adsorption parameters of the rigid rods. By solving this Hamiltonian within a mean-field approximation, we obtain analytical expressions for the densities of the different rod’s configurations, both isotherm and isobar adsorptions curves. The most probable configurations of the molecules (normal or parallel to the surface) which depends on temperature and energy parameters are summarized in a diagram. We derive that the variation of Qv , the heat of adsorption at constant volume, with the temperature is a direct signature of the adsorbed molecules configuration change. We show that this formalism can be generalized to more complicated problems such as for instance the adsorption of symmetric and asymmetric rigid rods mixtures in the presence or not of interactions.

  4. Thermodynamics and kinetics of cyanidin 3-glucoside and caffeine copigments.

    PubMed

    Limón, Piedad M; Gavara, Raquel; Pina, Fernando

    2013-06-05

    The multiequilibrium system of reactions of cyanidin 3-glucoside at acidic and mildly acidic pH values was studied in the presence of caffeine as a copigment. The thermodynamic and kinetic constants were determined using the so-called direct and reverse pH jump experiments that were followed by conventional UV-vis spectroscopy or stopped flow coupled to a UV-vis detector, depending on the rate of the monitored process. Compared with that of free anthocyanin, the copigmentation with caffeine extends the domain of the flavylium cation up to less acidic pH values, while in a moderately acidic medium, the quinoidal base becomes more stabilized. As a consequence, the hydration to give the colorless hemiketal is difficult over the entire range of pH values. At pH 1, two adducts were found for the flavylium cation-caffeine interaction, with stoichiometries of 1:1 and 1:2 and association constants of 161 M⁻¹ (K₁) and 21 M⁻¹ (K₂), respectively.

  5. A Galerkin method for linear PDE systems in circular geometries with structural acoustic applications

    NASA Technical Reports Server (NTRS)

    Smith, Ralph C.

    1994-01-01

    A Galerkin method for systems of PDE's in circular geometries is presented with motivating problems being drawn from structural, acoustic, and structural acoustic applications. Depending upon the application under consideration, piecewise splines or Legendre polynomials are used when approximating the system dynamics with modifications included to incorporate the analytic solution decay near the coordinate singularity. This provides an efficient method which retains its accuracy throughout the circular domain without degradation at singularity. Because the problems under consideration are linear or weakly nonlinear with constant or piecewise constant coefficients, transform methods for the problems are not investigated. While the specific method is developed for the two dimensional wave equations on a circular domain and the equation of transverse motion for a thin circular plate, examples demonstrating the extension of the techniques to a fully coupled structural acoustic system are used to illustrate the flexibility of the method when approximating the dynamics of more complex systems.

  6. Evolution of magnetization due to asymmetric dimerization: theoretical considerations and application to aberrant oligomers formed by apoSOD1(2SH).

    PubMed

    Sekhar, Ashok; Bain, Alex D; Rumfeldt, Jessica A O; Meiering, Elizabeth M; Kay, Lewis E

    2016-02-17

    A set of coupled differential equations is presented describing the evolution of magnetization due to an exchange reaction whereby a pair of identical monomers form an asymmetric dimer. In their most general form the equations describe a three-site exchange process that reduces to two-site exchange under certain limiting conditions that are discussed. An application to the study of sparsely populated, transiently formed sets of aberrant dimers, symmetric and asymmetric, of superoxide dismutase is presented. Fits of concentration dependent CPMG relaxation dispersion profiles provide measures of the dimer dissociation constants and both on- and off-rates. Dissociation constants on the order of 70 mM are extracted from fits of the data, with dimeric populations of ∼2% and lifetimes of ∼6 and ∼2 ms for the symmetric and asymmetric complexes, respectively. This work emphasizes the important role that NMR relaxation experiments can play in characterizing very weak molecular complexes that remain invisible to most biophysical approaches.

  7. Method and apparatus for determining minority carrier diffusion length in semiconductors

    DOEpatents

    Goldstein, Bernard; Dresner, Joseph; Szostak, Daniel J.

    1983-07-12

    Method and apparatus are provided for determining the diffusion length of minority carriers in semiconductor material, particularly amorphous silicon which has a significantly small minority carrier diffusion length using the constant-magnitude surface-photovoltage (SPV) method. An unmodulated illumination provides the light excitation on the surface of the material to generate the SPV. A manually controlled or automatic servo system maintains a constant predetermined value of the SPV. A vibrating Kelvin method-type probe electrode couples the SPV to a measurement system. The operating optical wavelength of an adjustable monochromator to compensate for the wavelength dependent sensitivity of a photodetector is selected to measure the illumination intensity (photon flux) on the silicon. Measurements of the relative photon flux for a plurality of wavelengths are plotted against the reciprocal of the optical absorption coefficient of the material. A linear plot of the data points is extrapolated to zero intensity. The negative intercept value on the reciprocal optical coefficient axis of the extrapolated linear plot is the diffusion length of the minority carriers.

  8. Bounds imposed on the sheath velocity of a dense plasma focus by conservation laws and ionization stability condition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Auluck, S. K. H., E-mail: skhauluck@gmail.com, E-mail: skauluck@barc.gov.in

    2014-09-15

    Experimental data compiled over five decades of dense plasma focus research are consistent with the snowplow model of sheath propagation, based on the hypothetical balance between magnetic pressure driving the plasma into neutral gas ahead and “wind pressure” resisting its motion. The resulting sheath velocity, or the numerically proportional “drive parameter,” is known to be approximately constant for devices optimized for neutron production over 8 decades of capacitor bank energy. This paper shows that the validity of the snowplow hypothesis, with some correction, as well as the non-dependence of sheath velocity on device parameters, have their roots in local conservationmore » laws for mass, momentum, and energy coupled with the ionization stability condition. Both upper and lower bounds on sheath velocity are shown to be related to material constants of the working gas and independent of the device geometry and capacitor bank impedance.« less

  9. Ultrafast structural dynamics of boron nitride nanotubes studied using transmitted electrons.

    PubMed

    Li, Zhongwen; Sun, Shuaishuai; Li, Zi-An; Zhang, Ming; Cao, Gaolong; Tian, Huanfang; Yang, Huaixin; Li, Jianqi

    2017-09-14

    We investigate the ultrafast structural dynamics of multi-walled boron nitride nanotubes (BNNTs) upon femtosecond optical excitation using ultrafast electron diffraction in a transmission electron microscope. Analysis of the time-resolved (100) and (002) diffraction profiles reveals highly anisotropic lattice dynamics of BNNTs, which can be attributed to the distinct nature of the chemical bonds in the tubular structure. Moreover, the changes in (002) diffraction positions and intensities suggest that the lattice response of BNNTs to the femtosecond laser excitation involves a fast and a slow lattice dynamic process. The fast process with a time constant of about 8 picoseconds can be understood to be a result of electron-phonon coupling, while the slow process with a time constant of about 100 to 300 picoseconds depending on pump laser fluence is tentatively associated with an Auger recombination effect. In addition, we discuss the power-law relationship of a three-photon absorption process in the BNNT nanoscale system.

  10. Probing deconfinement in a chiral effective model with Polyakov loop at imaginary chemical potential

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Morita, Kenji; Yukawa Institute for Theoretical Physics, Kyoto University, Kyoto 606-8502; Skokov, Vladimir

    2011-10-01

    The phase structure of the two-flavor Polyakov-loop extended Nambu-Jona-Lashinio model is explored at finite temperature and imaginary chemical potential with a particular emphasis on the confinement-deconfinement transition. We point out that the confined phase is characterized by a cos3{mu}{sub I}/T dependence of the chiral condensate on the imaginary chemical potential while in the deconfined phase this dependence is given by cos{mu}{sub I}/T and accompanied by a cusp structure induced by the Z(3) transition. We demonstrate that the phase structure of the model strongly depends on the choice of the Polyakov loop potential U. Furthermore, we find that by changing themore » four fermion coupling constant G{sub s}, the location of the critical end point of the deconfinement transition can be moved into the real chemical potential region. We propose a new parameter characterizing the confinement-deconfinement transition.« less

  11. Possible extinction of Berezinskii-Kosterlitz-Thouless transition by diagonal interactions in the checkerboard lattice

    NASA Astrophysics Data System (ADS)

    Lopes, R. J. C.; Moura, A. R.

    2018-06-01

    We study the thermodynamics of the classical anisotropic antiferromagnetic Heisenberg model in a checkerboard lattice. The checkerboard lattice is distinguished from the antiferromagnetic square lattice (with coupling constant J) by the presence of a diagonal crossing (coupling constant J‧) in half of the sites. This lattice model is the direct analog of the three-dimensional pyrochlore lattice on a two-dimensional surface. Besides, we considered a single-ion anisotropy D that breaks the O (3) symmetry and contributes to planar spin fields. Since the model is two-dimensional endowed with an O (2) symmetry, a Berezinskii-Kosterlitz-Thouless (BKT) transition is expected to take place. We also investigated the BKT temperature as a function of the coupling constants J‧ and D. The problem is developed through a continuous representation given by the O (3) Nonlinear Sigma Model (NLSM). Computer simulations were also carried out, and the results were in accordance with the analytical model.

  12. First determination of ground state electromagnetic moments of 53Fe

    NASA Astrophysics Data System (ADS)

    Miller, A. J.; Minamisono, K.; Rossi, D. M.; Beerwerth, R.; Brown, B. A.; Fritzsche, S.; Garand, D.; Klose, A.; Liu, Y.; Maaß, B.; Mantica, P. F.; Müller, P.; Nörtershäuser, W.; Pearson, M. R.; Sumithrarachchi, C.

    2017-11-01

    The hyperfine coupling constants of neutron deficient 53Fe were deduced from the atomic hyperfine spectrum of the 3 d64 s25D4↔3 d64 s 4 p 5F5 transition, measured using the bunched-beam collinear laser spectroscopy technique. The low-energy 53Fe beam was produced by projectile-fragmentation reactions followed by gas stopping, and used for the first time for laser spectroscopy. Ground state magnetic-dipole and electric-quadrupole moments were determined as μ =-0.65 (1 ) μN and Q =+35 (15 ) e2fm2 , respectively. The multiconfiguration Dirac-Fock method was used to calculate the electric field gradient to deduce Q from the quadrupole hyperfine coupling constant, since the quadrupole coupling constant has not been determined for any Fe isotopes. Both experimental values agree well with nuclear shell model calculations using the GXPF1A effective interaction performed in a full f p shell model space, which support the soft nature of the 56Ni nucleus.

  13. Spin-orbit coupling manipulating composite topological spin textures in atomic-molecular Bose-Einstein condensates

    NASA Astrophysics Data System (ADS)

    Liu, Chao-Fei; Juzeliūnas, Gediminas; Liu, W. M.

    2017-02-01

    Atomic-molecular Bose-Einstein condensates (BECs) offer brand new opportunities to revolutionize quantum gases and probe the variation of fundamental constants with unprecedented sensitivity. The recent realization of spin-orbit coupling (SOC) in BECs provides a new platform for exploring completely new phenomena unrealizable elsewhere. In this study, we find a way of creating a Rashba-Dresselhaus SOC in atomic-molecular BECs by combining the spin-dependent photoassociation and Raman coupling, which can control the formation and distribution of a different type of topological excitation—carbon-dioxide-like skyrmion. This skyrmion is formed by two half-skyrmions of molecular BECs coupling with one skyrmion of atomic BECs, where the two half-skyrmions locate at both sides of one skyrmion. Carbon-dioxide-like skyrmion can be detected by measuring the vortices structures using the time-of-flight absorption imaging technique in real experiments. Furthermore, we find that SOC can effectively change the occurrence of the Chern number in k space, which causes the creation of topological spin textures from some separated carbon-dioxide-like monomers each with topological charge -2 to a polymer chain of the skyrmions. This work helps in creating dual SOC atomic-molecular BECs and opens avenues to manipulate topological excitations.

  14. Dual of the Janus solution: An interface conformal field theory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Clark, A.B.; Karch, A.; Freedman, D.Z.

    2005-03-15

    We propose and study a specific gauge theory dual of the smooth, nonsupersymmetric (and apparently stable) Janus solution of Type IIB supergravity found in Bak et al. [J. High Energy Phys. 05 (2003) 072]. The dual field theory is N=4 SYM theory on two half-spaces separated by a planar interface with different coupling constants in each half-space. We assume that the position dependent coupling multiplies the operator L{sup '} which is the fourth descendent of the primary TrX{sup {l_brace}}{sup I}X{sup J{r_brace}} and closely related to the N=4 Lagrangian density. At the classical level supersymmetry is broken explicitly, but SO(3,2) conformalmore » symmetry is preserved. We use conformal perturbation theory to study various correlation functions to first and second order in the discontinuity of g{sub YM}{sup 2}, confirming quantum level conformal symmetry. Certain quantities such as the vacuum expectation value are protected to all orders in g{sub YM}{sup 2}N, and we find perfect agreement between the weak coupling value in the gauge theory and the strong coupling gravity result. SO(3,2) symmetry requires vanishing vacuum energy, =0, and this is confirmed in first order in the discontinuity.« less

  15. Chemical waste disposal in space by plasma discharge

    NASA Technical Reports Server (NTRS)

    Baird, James K.

    1991-01-01

    An inductively coupled plasma discharge apparatus operating at 13.56 MHz and with electrical power up to 2.5 kW was constructed. The efficiency of this device to destroy various gases expected to be carried aboard the Space Station was tested. By expressing the efficiency of the device in terms of G-value (the number of molecules decomposed per 100 eV of energy absorbed), the results are compared with known efficiencies of ionizing radiation to destroy these same gases. In the case of ammonia, it was found that in the inductively coupled device, the destruction efficiency, G(-NH3) varied from 6.0 to 32.0 molecules/100 eV, depending on conditions. It was also found that capacitatively coupled discharges were less efficient in destroying NH2 than the inductively coupled discharge. In the case NH2 destruction, it was found that the G(-NH3) was a qualitative guide to the efficiencies of plasmas. The plasma device was also used to destroy nitrous oxide and methane. It is shown how the G-value for the destruction of any gas can be computed theoretically from a knowledge of the electron velocity distribution, the various electron molecule scattering cross sections, and the rate constants for the reactions of secondary species.

  16. Extended Analytic Device Optimization Employing Asymptotic Expansion

    NASA Technical Reports Server (NTRS)

    Mackey, Jonathan; Sehirlioglu, Alp; Dynsys, Fred

    2013-01-01

    Analytic optimization of a thermoelectric junction often introduces several simplifying assumptionsincluding constant material properties, fixed known hot and cold shoe temperatures, and thermallyinsulated leg sides. In fact all of these simplifications will have an effect on device performance,ranging from negligible to significant depending on conditions. Numerical methods, such as FiniteElement Analysis or iterative techniques, are often used to perform more detailed analysis andaccount for these simplifications. While numerical methods may stand as a suitable solution scheme,they are weak in gaining physical understanding and only serve to optimize through iterativesearching techniques. Analytic and asymptotic expansion techniques can be used to solve thegoverning system of thermoelectric differential equations with fewer or less severe assumptionsthan the classic case. Analytic methods can provide meaningful closed form solutions and generatebetter physical understanding of the conditions for when simplifying assumptions may be valid.In obtaining the analytic solutions a set of dimensionless parameters, which characterize allthermoelectric couples, is formulated and provide the limiting cases for validating assumptions.Presentation includes optimization of both classic rectangular couples as well as practically andtheoretically interesting cylindrical couples using optimization parameters physically meaningful toa cylindrical couple. Solutions incorporate the physical behavior for i) thermal resistance of hot andcold shoes, ii) variable material properties with temperature, and iii) lateral heat transfer through legsides.

  17. Spin-lattice relaxation-rate anomaly at structural phase transitions

    NASA Astrophysics Data System (ADS)

    Levanyuk, A. P.; Minyukov, S. A.; Etrillard, J.; Toudic, B.

    1997-12-01

    The theory of spin-lattice relaxation (SLR)-rate anomaly at structural phase transitions proposed about 30 years ago is reconsidered taking into account that knowledge about the relevant lattice response functions has changed considerably. We use both the results of previous authors and perform original calculations of the response functions when it is necessary. We consider displacive systems and use the perturbation theory to treat the lattice anharmonicities in a broad temperature region whenever possible. Some comments about the order-disorder systems are made as well. The possibility of linear coupling of the order parameter and the resonance frequency is always assumed. It is found that in the symmetrical phase the anomaly is due to the one-phonon processes, the anomalous part being proportional to either (T-Tc)-1 or (T-Tc)-1/2 depending on some condition on the soft-mode dispersion. In both cases the value of the SLR rate at the boundary of applicabity of the theory (close to the phase transition) is estimated to be 102-103 times more than the typical value of the SLR rate in an ideal crystal. An essential specific feature of the nonsymmetrical phase is appearance of third-order anharmonicities that are well known to lead to a low-frequency dispersion of the order-parameter damping constant. We have found that this constant exhibits, in addition, a strong wave-vector dispersion, so that the damping constant determing the SLR rate is quite different from that at zero wave vector. In the case of two-component order parameter the damping constant for the component with nonzero equilibrium value is different from that for the other component, the difference is of the same order of magnitude as the damping constants themselves. In the case of the incommensurate phase a part of the mentioned third-order anharmonicity is responsible for longitudinal-transversal interaction that is well known to influence the static longitudinal response function. We calculate as well the dynamic response function to find that for the SLR calculations the imaginary part is of main importance. Due to this interaction the longitudinal SLR rate acquires a dependence on the Larmor frequency. This dependence is however, fairly weak: a logarithmic one. The implications of the obtained results for interpretation of the experimental data on SLR in incommensurate phase are discussed as well.

  18. A Green's function method for simulation of time-dependent solute transport and reaction in realistic microvascular geometries.

    PubMed

    Secomb, Timothy W

    2016-12-01

    A novel theoretical method is presented for simulating the spatially resolved convective and diffusive transport of reacting solutes between microvascular networks and the surrounding tissues. The method allows for efficient computational solution of problems involving convection and non-linear binding of solutes in blood flowing through microvascular networks with realistic 3D geometries, coupled with transvascular exchange and diffusion and reaction in the surrounding tissue space. The method is based on a Green's function approach, in which the solute concentration distribution in the tissue is expressed as a sum of fields generated by time-varying distributions of discrete sources and sinks. As an example of the application of the method, the washout of an inert diffusible tracer substance from a tissue region perfused by a network of microvessels is simulated, showing its dependence on the solute's transvascular permeability and tissue diffusivity. Exponential decay of the washout concentration is predicted, with rate constants that are about 10-30% lower than the rate constants for a tissue cylinder model with the same vessel length, vessel surface area and blood flow rate per tissue volume. © The authors 2015. Published by Oxford University Press on behalf of the Institute of Mathematics and its Applications. All rights reserved.

  19. Microscopic model with temperature-dependent interactions for the free molecule and for the trigonal phase of benzil

    NASA Astrophysics Data System (ADS)

    Zieliński, P.; More, M.; Cochon, E.; Lefebvre, J.

    1996-03-01

    The molecule of benzil (diphenylethanedione, C14H10O2) has been approximated by a system of rigid segments to model the lowest-frequency part of its vibrational spectrum. The interactions of internal degrees of freedom have been described with the use of phenomenological force constants. The structure of the trigonal (P3121) phase has then been modelled by means of a temperature-dependent atom-atom potential based on thermal motions of atoms. The potential gives the correct account of the softening of an E-symmetry, zone-center mode which underlies the phase transition to the low-temperature monoclinic phase (P21). The low-frequency modes at the zone center, supposed until now to be difference overtones, have been shown to result from a coupling between internal and external degrees of freedom. A low-frequency soft mode at the point M of the zone border has been found, which explains the behavior of observed peaks in diffuse x-ray scattering experiments. The values and the temperature evolution of the effective elastic constants calculated within the model are in a very good agreement with the results of ultrasonic and Brillouin scattering data. The model has been shown insufficient in the description of dielectric and piezoelectric properties of benzil.

  20. Pushing the limit of NMR-based distance measurements - retrieving dipolar couplings to spins with extensively large quadrupolar frequencies.

    PubMed

    Makrinich, M; Nimerovsky, E; Goldbourt, A

    2018-04-14

    Dipolar recoupling under magic-angle spinning allows to measure accurate inter-nuclear distances provided that the two interacting spins can be efficiently and uniformly excited. Alexander (Lex) Vega has shown that adiabatic transfers of populations in quadrupolar spins during the application of constant-wave (cw) radio-frequency pulses lead to efficient and quantifiable dipolar recoupling curves. Accurate distance determination within and beyond the adiabatic regime using cw pulses is limited by the size of the quadrupolar coupling constant. Here we show that using the approach of long-pulse phase modulation, dipolar recoupling and accurate distances can be obtained for nuclei having extensively large quadrupolar frequencies of 5-10 MHz. We demonstrate such results by obtaining a 31 P- 79/81 Br distance in a compound for which bromine-79 (spin-3/2) has a quadrupolar coupling constant of 11.3 MHz, and a 13 C- 209 Bi distance where the bismuth (spin-9/2) has a quadrupolar coupling constant of 256 MHz, equaling a quadrupolar frequency of 10.7 MHz. For Bromine, we demonstrate that an analytical curve based on the assumption of complete spin saturation fits the data. In the case of bismuth acetate, a C-Bi 3 spin system must be used in order to match the correct saturation recoupling curve, and results are in agreement with the crystallographic structure. Copyright © 2018 Elsevier Inc. All rights reserved.

  1. Succinimidyl Ester Surface Chemistry: Implications of the Competition between Aminolysis and Hydrolysis on Covalent Protein Immobilization

    PubMed Central

    2015-01-01

    N-Hydroxysuccinimide (NHS) ester terminal groups are commonly used to covalently couple amine-containing biomolecules (e.g., proteins and peptides) to surfaces via amide linkages. This one-step aminolysis is often performed in buffered aqueous solutions near physiological pH (pH 6 to pH 9). Under these conditions, the hydrolysis of the ester group competes with the amidization process, potentially degrading the efficiency of the coupling chemistry. The work herein examines the efficiency of covalent protein immobilization in borate buffer (50 mM, pH 8.50) using the thiolate monolayer formed by the chemisorption of dithiobis (succinimidyl propionate) (DSP) on gold films. The structure and reactivity of these adlayers are assessed via infrared spectroscopy (IR), X-ray photoelectron spectroscopy (XPS), electrochemical reductive desorption, and contact angle measurements. The hydrolysis of the DSP-based monolayer is proposed to follow a reaction mechanism with an initial nucleation step, in contrast to a simple pseudo first-order reaction rate law for the entire reaction, indicating a strong dependence of the interfacial reaction on the packing and presence of defects in the adlayer. This interpretation is used in the subsequent analysis of IR-ERS kinetic plots which give a heterogeneous aminolysis rate constant, ka, that is over 3 orders of magnitude lower than that of the heterogeneous hydrolysis rate constant, kh. More importantly, a projection of these heterogeneous kinetic rates to protein immobilization suggests that under coupling conditions in which low protein concentrations and buffers of near physiological pH are used, proteins are more likely physically adsorbed rather than covalently linked. This result is paramount for biosensors that use NHS chemistry for protein immobilization due to effects that may arise from noncovalently linked proteins. PMID:25317495

  2. Theoretical prediction of nuclear magnetic shieldings and indirect spin-spin coupling constants in 1,1-, cis-, and trans-1,2-difluoroethylenes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nozirov, Farhod, E-mail: teobaldk@gmail.com, E-mail: farhod.nozirov@gmail.com; Stachów, Michał, E-mail: michal.stachow@gmail.com; Kupka, Teobald, E-mail: teobaldk@gmail.com, E-mail: farhod.nozirov@gmail.com

    2014-04-14

    A theoretical prediction of nuclear magnetic shieldings and indirect spin-spin coupling constants in 1,1-, cis- and trans-1,2-difluoroethylenes is reported. The results obtained using density functional theory (DFT) combined with large basis sets and gauge-independent atomic orbital calculations were critically compared with experiment and conventional, higher level correlated electronic structure methods. Accurate structural, vibrational, and NMR parameters of difluoroethylenes were obtained using several density functionals combined with dedicated basis sets. B3LYP/6-311++G(3df,2pd) optimized structures of difluoroethylenes closely reproduced experimental geometries and earlier reported benchmark coupled cluster results, while BLYP/6-311++G(3df,2pd) produced accurate harmonic vibrational frequencies. The most accurate vibrations were obtained using B3LYP/6-311++G(3df,2pd)more » with correction for anharmonicity. Becke half and half (BHandH) density functional predicted more accurate {sup 19}F isotropic shieldings and van Voorhis and Scuseria's τ-dependent gradient-corrected correlation functional yielded better carbon shieldings than B3LYP. A surprisingly good performance of Hartree-Fock (HF) method in predicting nuclear shieldings in these molecules was observed. Inclusion of zero-point vibrational correction markedly improved agreement with experiment for nuclear shieldings calculated by HF, MP2, CCSD, and CCSD(T) methods but worsened the DFT results. The threefold improvement in accuracy when predicting {sup 2}J(FF) in 1,1-difluoroethylene for BHandH density functional compared to B3LYP was observed (the deviations from experiment were −46 vs. −115 Hz)« less

  3. Signature of quantum entanglement in NH{sub 4}CuPO{sub 4}·H{sub 2}O

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chakraborty, Tanmoy, E-mail: tanmoy@iiserkol.ac.in; Singh, Harkirat; Mitra, Chiranjib, E-mail: chiranjib@iiserkol.ac.in

    2014-01-21

    Entangled solid state systems have gained a great deal of attention due to their fruitful applications in modern quantum technologies. Herein, detection of entanglement content from experimental magnetic susceptibility and specific heat data is reported for NH{sub 4}CuPO{sub 4}·H{sub 2}O in its solid state crystalline form. NH{sub 4}CuPO{sub 4}·H{sub 2}O is a prototype of Heisenberg spin 1/2 dimer system. Temperature dependent magnetic susceptibility and specific data are fitted to an isolated dimer model and the exchange coupling constant is determined. Field dependent magnetization isotherms taken at different temperatures are plotted in a three dimensional plot. Subsequently, entanglement is detected bothmore » from susceptibility and specific heat through two different entanglement measures; entanglement witness and entanglement of formation. The temperature evolution of entanglement is studied and the critical temperature is determined up to which entanglement exists. Temperature dependent nature of entanglement extracted from susceptibility and specific heat shows good consistency with each other. Moreover, the field dependent entanglement is also investigated.« less

  4. Magnetic and dielectric study of Fe-doped CdSe nanoparticles

    NASA Astrophysics Data System (ADS)

    Das, Sayantani; Banerjee, Sourish; Bandyopadhyay, Sudipta; Sinha, Tripurari Prasad

    2018-01-01

    Nanoparticles of cadmium selenide (CdSe) and Fe (5% and 10%) doped CdSe have been synthesized by soft chemical route and found to have cubic structure. The magnetic field dependent magnetization measurement of the doped samples indicates the presence of anti-ferromagnetic order. The temperature dependent magnetization (M-T) measurement under zero field cooled and field cooled conditions has also ruled out the presence of ferromagnetic component in the samples at room temperature as well as low temperature. In order to estimate the anti-ferromagnetic coupling among the doped Fe atoms, an M-T measurement at 500 Oe has been carried out, and the Curie-Weiss temperature θ of the samples has been estimated from the inverse of susceptibility versus temperature plots. The dielectric relaxation peaks are observed in the spectra of imaginary part of dielectric constant. The temperature dependent relaxation time is found to obey the Arrhenius law having activation energy 0.4 eV for Fe doped samples. The frequency dependent conductivity spectra are found to obey the power law. [Figure not available: see fulltext.

  5. Temperature dependence of internal friction in enzyme reactions.

    PubMed

    Rauscher, Anna Á; Simon, Zoltán; Szöllosi, Gergely J; Gráf, László; Derényi, Imre; Malnasi-Csizmadia, Andras

    2011-08-01

    Our aim was to elucidate the physical background of internal friction of enzyme reactions by investigating the temperature dependence of internal viscosity. By rapid transient kinetic methods, we directly measured the rate constant of trypsin 4 activation, which is an interdomain conformational rearrangement, as a function of temperature and solvent viscosity. We found that the apparent internal viscosity shows an Arrhenius-like temperature dependence, which can be characterized by the activation energy of internal friction. Glycine and alanine mutations were introduced at a single position of the hinge of the interdomain region to evaluate how the flexibility of the hinge affects internal friction. We found that the apparent activation energies of the conformational change and the internal friction are interconvertible parameters depending on the protein flexibility. The more flexible a protein was, the greater proportion of the total activation energy of the reaction was observed as the apparent activation energy of internal friction. Based on the coupling of the internal and external movements of the protein during its conformational change, we constructed a model that quantitatively relates activation energy, internal friction, and protein flexibility.

  6. New Rapid Evaluation for Long-Term Behavior in Deep Geological Repository by Geotechnical Centrifuge—Part 2: Numerical Simulation of Model Tests in Isothermal Condition

    NASA Astrophysics Data System (ADS)

    Sawada, Masataka; Nishimoto, Soshi; Okada, Tetsuji

    2017-01-01

    In high-level radioactive waste disposal repositories, there are long-term complex thermal, hydraulic, and mechanical (T-H-M) phenomena that involve the generation of heat from the waste, the infiltration of ground water, and swelling of the bentonite buffer. The ability to model such coupled phenomena is of particular importance to the repository design and assessments of its safety. We have developed a T-H-M-coupled analysis program that evaluates the long-term behavior around the repository (called "near-field"). We have also conducted centrifugal model tests that model the long-term T-H-M-coupled behavior in the near-field. In this study, we conduct H-M-coupled numerical simulations of the centrifugal near-field model tests. We compare numerical results with each other and with results obtained from the centrifugal model tests. From the comparison, we deduce that: (1) in the numerical simulation, water infiltration in the rock mass was in agreement with the experimental observation. (2) The constant-stress boundary condition in the centrifugal model tests may cause a larger expansion of the rock mass than in the in situ condition, but the mechanical boundary condition did not affect the buffer behavior in the deposition hole. (3) The numerical simulation broadly reproduced the measured bentonite pressure and the overpack displacement, but did not reproduce the decreasing trend of the bentonite pressure after 100 equivalent years. This indicates the effect of the time-dependent characteristics of the surrounding rock mass. Further investigations are needed to determine the effect of initial heterogeneity in the deposition hole and the time-dependent behavior of the surrounding rock mass.

  7. Spectral editing of weakly coupled spins using variable flip angles in PRESS constant echo time difference spectroscopy: Application to GABA

    NASA Astrophysics Data System (ADS)

    Snyder, Jeff; Hanstock, Chris C.; Wilman, Alan H.

    2009-10-01

    A general in vivo magnetic resonance spectroscopy editing technique is presented to detect weakly coupled spin systems through subtraction, while preserving singlets through addition, and is applied to the specific brain metabolite γ-aminobutyric acid (GABA) at 4.7 T. The new method uses double spin echo localization (PRESS) and is based on a constant echo time difference spectroscopy approach employing subtraction of two asymmetric echo timings, which is normally only applicable to strongly coupled spin systems. By utilizing flip angle reduction of one of the two refocusing pulses in the PRESS sequence, we demonstrate that this difference method may be extended to weakly coupled systems, thereby providing a very simple yet effective editing process. The difference method is first illustrated analytically using a simple two spin weakly coupled spin system. The technique was then demonstrated for the 3.01 ppm resonance of GABA, which is obscured by the strong singlet peak of creatine in vivo. Full numerical simulations, as well as phantom and in vivo experiments were performed. The difference method used two asymmetric PRESS timings with a constant total echo time of 131 ms and a reduced 120° final pulse, providing 25% GABA yield upon subtraction compared to two short echo standard PRESS experiments. Phantom and in vivo results from human brain demonstrate efficacy of this method in agreement with numerical simulations.

  8. Dirac Hamiltonian and Reissner-Nordström metric: Coulomb interaction in curved space-time

    NASA Astrophysics Data System (ADS)

    Noble, J. H.; Jentschura, U. D.

    2016-03-01

    We investigate the spin-1 /2 relativistic quantum dynamics in the curved space-time generated by a central massive charged object (black hole). This necessitates a study of the coupling of a Dirac particle to the Reissner-Nordström space-time geometry and the simultaneous covariant coupling to the central electrostatic field. The relativistic Dirac Hamiltonian for the Reissner-Nordström geometry is derived. A Foldy-Wouthuysen transformation reveals the presence of gravitational and electrogravitational spin-orbit coupling terms which generalize the Fokker precession terms found for the Dirac-Schwarzschild Hamiltonian, and other electrogravitational correction terms to the potential proportional to αnG , where α is the fine-structure constant and G is the gravitational coupling constant. The particle-antiparticle symmetry found for the Dirac-Schwarzschild geometry (and for other geometries which do not include electromagnetic interactions) is shown to be explicitly broken due to the electrostatic coupling. The resulting spectrum of radially symmetric, electrostatically bound systems (with gravitational corrections) is evaluated for example cases.

  9. Determining the folding and unfolding rate constants of nucleic acids by biosensor. Application to telomere G-quadruplex.

    PubMed

    Zhao, Yong; Kan, Zhong-yuan; Zeng, Zhi-xiong; Hao, Yu-hua; Chen, Hua; Tan, Zheng

    2004-10-20

    Nucleic acid molecules may fold into secondary structures, and the formation of such structures is involved in many biological processes and technical applications. The folding and unfolding rate constants define the kinetics of conformation interconversion and the stability of these structures and is important in realizing their functions. We developed a method to determine these kinetic parameters using an optical biosensor based on surface plasmon resonance. The folding and unfolding of a nucleic acid is coupled with a hybridization reaction by immobilization of the target nucleic acid on a sensor chip surface and injection of a complementary probe nucleic acid over the sensor chip surface. By monitoring the time course of duplex formation, both the folding and unfolding rate constants for the target nucleic acid and the association and dissociation rate constants for the target-probe duplex can all be derived from the same measurement. We applied this method to determine the folding and unfolding rate constants of the G-quadruplex of human telomere sequence (TTAGGG)(4) and its association and dissociation rate constants with the complementary strand (CCCTAA)(4). The results show that both the folding and unfolding occur on the time scale of minutes at physiological concentration of K(+). We speculate that this property might be important for telomere elongation. A complete set of the kinetic parameters for both of the structures allows us to study the competition between the formation of the quadruplex and the duplex. Calculations indicate that the formation of both the quadruplex and the duplex is strand concentration-dependent, and the quadruplex can be efficiently formed at low strand concentration. This property may provide the basis for the formation of the quadruplex in vivo in the presence of a complementary strand.

  10. Relativistic coupled-cluster calculations of the 173Yb nuclear quadrupole coupling constant for the YbF molecule

    NASA Astrophysics Data System (ADS)

    Pašteka, L. F.; Mawhorter, R. J.; Schwerdtfeger, P.

    2016-04-01

    We report calculations on the q(Yb) electric field gradient (EFG) for the X2Σ+ and A2Π1/2 electronic states of the ytterbium monofluoride (YbF) molecule at the molecular mean-field Dirac-Coulomb-Gaunt as well as scalar-relativistic coupled-cluster levels of theory using large uncontracted basis sets. Vibrational contributions are included in the final results. Our estimated nuclear quadrupole coupling constants of -3386(78) MHz and -2083(153) MHz for the X2Σ+ and A2Π1/2 states of 173YbF are in stark contrast to the only available experimental results (-2050(170) MHz and -1090(160) MHz) respectively, where the only similarity is the difference between the two values. Perturbative triple contributions in the coupled cluster treatment are significant and point towards the necessity to go to higher order in the coupled-cluster treatment in future calculations. We also present density functional calculations which show rather large variations for the Yb EFG with different functionals used; the best result was obtained using the CAM-B3LYP* functional.

  11. Clausius inequality beyond the weak-coupling limit: the quantum Brownian oscillator.

    PubMed

    Kim, Ilki; Mahler, Günter

    2010-01-01

    We consider a quantum linear oscillator coupled at an arbitrary strength to a bath at an arbitrary temperature. We find an exact closed expression for the oscillator density operator. This state is noncanonical but can be shown to be equivalent to that of an uncoupled linear oscillator at an effective temperature T*(eff) with an effective mass and an effective spring constant. We derive an effective Clausius inequality deltaQ*(eff)< or =T*(eff)dS , where deltaQ*(eff) is the heat exchanged between the effective (weakly coupled) oscillator and the bath, and S represents a thermal entropy of the effective oscillator, being identical to the von-Neumann entropy of the coupled oscillator. Using this inequality (for a cyclic process in terms of a variation of the coupling strength) we confirm the validity of the second law. For a fixed coupling strength this inequality can also be tested for a process in terms of a variation of either the oscillator mass or its spring constant. Then it is never violated. The properly defined Clausius inequality is thus more robust than assumed previously.

  12. Communication: Spin densities within a unitary group based spin-adapted open-shell coupled-cluster theory: Analytic evaluation of isotropic hyperfine-coupling constants for the combinatoric open-shell coupled-cluster scheme

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Datta, Dipayan, E-mail: datta.dipayan@gmail.com; Gauss, Jürgen, E-mail: gauss@uni-mainz.de

    We report analytical calculations of isotropic hyperfine-coupling constants in radicals using a spin-adapted open-shell coupled-cluster theory, namely, the unitary group based combinatoric open-shell coupled-cluster (COSCC) approach within the singles and doubles approximation. A scheme for the evaluation of the one-particle spin-density matrix required in these calculations is outlined within the spin-free formulation of the COSCC approach. In this scheme, the one-particle spin-density matrix for an open-shell state with spin S and M{sub S} = + S is expressed in terms of the one- and two-particle spin-free (charge) density matrices obtained from the Lagrangian formulation that is used for calculating themore » analytic first derivatives of the energy. Benchmark calculations are presented for NO, NCO, CH{sub 2}CN, and two conjugated π-radicals, viz., allyl and 1-pyrrolyl in order to demonstrate the performance of the proposed scheme.« less

  13. Parametrization of a nonlocal chiral quark model in the instantaneous three-flavor case. Basic formulas and tables

    NASA Astrophysics Data System (ADS)

    Grigorian, H.

    2007-05-01

    We describe the basic formulation of the parametrization scheme for the instantaneous nonlocal chiral quark model in the three-flavor case. We choose to discuss the Gaussian, Lorentzian-type, Woods-Saxon, and sharp cutoff (NJL) functional forms of the momentum dependence for the form factor of the separable interaction. The four parameters, light and strange quark masses and coupling strength (G S) and range of the interaction (Λ), have been fixed by the same phenomenological inputs: pion and kaon masses and the pion decay constant and light quark mass in vacuum. The Woods-Saxon and Lorentzian-type form factors are suitable for an interpolation between sharp cutoff and soft momentum dependence. Results are tabulated for applications in models of hadron structure and quark matter at finite temperatures and chemical potentials, where separable models have been proven successfully.

  14. Peristalsis of nonconstant viscosity Jeffrey fluid with nanoparticles

    NASA Astrophysics Data System (ADS)

    Alvi, N.; Latif, T.; Hussain, Q.; Asghar, S.

    Mixed convective peristaltic activity of variable viscosity nanofluids is addressed. Unlike the conventional consideration of constant viscosity; the viscosity is taken as temperature dependent. Constitutive relations for linear viscoelastic Jeffrey fluid are employed and uniform magnetic field is applied in the transverse direction. For nanofluids, the formulation is completed in presence of Brownian motion, thermophoresis, viscous dissipation and Joule heating. Consideration of temperature dependence of viscosity is not a choice but the realistic requirement of the wall temperature and the heat generated due to the viscous dissipation. Well established large wavelength and small Reynolds number approximations are invoked. Non-linear coupled system is analytically solved for the convergent series solutions identifying the interval of convergence explicitly. A comparative study between analytical and numerical solution is made for certainty. Influence of the parameters undertaken for the description of the problem is pointed out and its physics explained.

  15. Time-dependent local potential in a Tomonaga-Luttinger liquid

    NASA Astrophysics Data System (ADS)

    Kamar, Naushad Ahmad; Giamarchi, Thierry

    2017-12-01

    We study the energy deposition in a one-dimensional interacting quantum system with a pointlike potential modulated in amplitude. The pointlike potential at position x =0 has a constant part and a small oscillation in time with a frequency ω . We use bosonization, renormalization group, and linear response theory to calculate the corresponding energy deposition. It exhibits a power law behavior as a function of the frequency that reflects the Tomonaga-Luttinger liquid (TLL) nature of the system. Depending on the interactions in the system, characterized by the TLL parameter K of the system, a crossover between weak and strong coupling for the backscattering due to the potential is possible. We compute the frequency scale ω*, at which such crossover exists. We find that the energy deposition due to the backscattering shows different exponents for K >1 and K <1 . We discuss possible experimental consequences, in the context of cold atomic gases, of our theoretical results.

  16. Quintessential inflation from a variable cosmological constant in a 5D vacuum

    NASA Astrophysics Data System (ADS)

    Membiela, Agustin; Bellini, Mauricio

    2006-10-01

    We explore an effective 4D cosmological model for the universe where the variable cosmological constant governs its evolution and the pressure remains negative along all the expansion. This model is introduced from a 5D vacuum state where the (space-like) extra coordinate is considered as noncompact. The expansion is produced by the inflaton field, which is considered as nonminimally coupled to gravity. We conclude from experimental data that the coupling of the inflaton with gravity should be weak, but variable in different epochs of the evolution of the universe.

  17. Connection formulas for thermal density functional theory

    DOE PAGES

    Pribram-Jones, A.; Burke, K.

    2016-05-23

    We show that the adiabatic connection formula of ground-state density functional theory relates the correlation energy to a coupling-constant integral over a purely potential contribution, and is widely used to understand and improve approximations. The corresponding formula for thermal density functional theory is cast as an integral over temperatures instead, ranging upward from the system's physical temperature. We also show how to relate different correlation components to each other, either in terms of temperature or coupling-constant integrations. Lastly, we illustrate our results on the uniform electron gas.

  18. Infrared modification of gravity from conformal symmetry

    NASA Astrophysics Data System (ADS)

    Gegenberg, Jack; Rahmati, Shohreh; Seahra, Sanjeev S.

    2016-03-01

    We reconsider a gauge theory of gravity in which the gauge group is the conformal group SO(4,2), and the action is of the Yang-Mills form, quadratic in the curvature. The resulting gravitational theory exhibits local conformal symmetry and reduces to Weyl-squared gravity under certain conditions. When the theory is linearized about flat spacetime, we find that matter which couples to the generators of special conformal transformations reproduces Newton's inverse square law. Conversely, matter which couples to generators of translations induces a constant and possibly repulsive force far from the source, which may be relevant for explaining the late-time acceleration of the Universe. The coupling constant of the theory is dimensionless, which means that it is potentially renormalizable.

  19. Giant voltage-induced deformation of a dielectric elastomer under a constant pressure

    NASA Astrophysics Data System (ADS)

    Godaba, Hareesh; Foo, Choon Chiang; Zhang, Zhi Qian; Khoo, Boo Cheong; Zhu, Jian

    2014-09-01

    Dielectric elastomer actuators coupled with liquid have recently been developed as soft pumps, soft lenses, Braille displays, etc. In this paper, we investigate the performance of a dielectric elastomer actuator, which is coupled with water. The experiments demonstrate that the membrane of a dielectric elastomer can achieve a giant voltage-induced area strain of 1165%, when subject to a constant pressure. Both theory and experiment show that the pressure plays an important role in determining the electromechanical behaviour. The experiments also suggest that the dielectric elastomer actuators, when coupled with liquid, may suffer mechanical instability and collapse after a large amount of liquid is enclosed by the membrane. This failure mode needs to be taken into account in designing soft actuators.

  20. Unitaxial constant velocity microactuator

    DOEpatents

    McIntyre, Timothy J.

    1994-01-01

    A uniaxial drive system or microactuator capable of operating in an ultra-high vacuum environment. The mechanism includes a flexible coupling having a bore therethrough, and two clamp/pusher assemblies mounted in axial ends of the coupling. The clamp/pusher assemblies are energized by voltage-operated piezoelectrics therewithin to operatively engage the shaft and coupling causing the shaft to move along its rotational axis through the bore. The microactuator is capable of repeatably positioning to sub-manometer accuracy while affording a scan range in excess of 5 centimeters. Moreover, the microactuator generates smooth, constant velocity motion profiles while producing a drive thrust of greater than 10 pounds. The system is remotely controlled and piezoelectrically driven, hence minimal thermal loading, vibrational excitation, or outgassing is introduced to the operating environment.

  1. CAL3JHH: a Java program to calculate the vicinal coupling constants (3J H,H) of organic molecules.

    PubMed

    Aguirre-Valderrama, Alonso; Dobado, José A

    2008-12-01

    Here, we present a free web-accessible application, developed in the JAVA programming language for the calculation of vicinal coupling constant (3J(H,H)) of organic molecules with the H-Csp3-Csp3-H fragment. This JAVA applet is oriented to assist chemists in structural and conformational analyses, allowing the user to calculate the averaged 3J(H,H) values among conformers, according to its Boltzmann populations. Thus, the CAL3JHH program uses the Haasnoot-Leeuw-Altona equation, and, by reading the molecule geometry from a protein data bank (PDB) file format or from multiple pdb files, automatically detects all the coupled hydrogens, evaluating the data needed for this equation. Moreover, a "Graphical viewer" menu allows the display of the results on the 3D molecule structure, as well as the plotting of the Newman projection for the couplings.

  2. The covalent interaction between dihydrogen and gold: A rotational spectroscopic study of H2-AuCl

    NASA Astrophysics Data System (ADS)

    Obenchain, Daniel A.; Frank, Derek S.; Grubbs, G. S.; Pickett, Herbert M.; Novick, Stewart E.

    2017-05-01

    The pure rotational transitions of H2-AuCl have been measured using a pulsed-jet cavity Fourier transform microwave spectrometer equipped with a laser ablation source. The structure was found to be T-shaped, with the H-H bond interacting with the gold atom. Both 35Cl and 37Cl isotopologues have been measured for both ortho and para states of H2. Rotational constants, quartic centrifugal distortion constants, and nuclear quadrupole coupling constants for gold and chlorine have been determined. The use of the nuclear spin-nuclear spin interaction terms Daa, Dbb, and Dcc for H2 were required to fit the ortho state of hydrogen, as well as a nuclear-spin rotation constant Caa. The values of the nuclear quadrupole coupling constant of gold are χa a=-817.9929 (35 ) MHz, χb b=504.0 (27 ) MHz, and χc c=314.0 (27 ) . This is large compared to the eQq of AuCl, 9.63 312(13) MHz, which indicates a strong, covalent interaction between gold and dihydrogen.

  3. Constitutive Modelling of Resins in the Compliance Domain

    NASA Astrophysics Data System (ADS)

    Klasztorny, M.

    2004-07-01

    A rheological HWKK/H model for resins is developed taking into consideration the up-to-date analyses of experimental results. Constitutive compliance equations of linear are formulated for this model in the shear/bulk form, which describes, among other things, the first-rank reversible isothermal creep. The shear (distorsional) deformations are simulated with three independent stress history functions of fractional and normal exponential types. The volume deformations are simulated as perfectly elastic. The model is described by two elastic and six viscoelastic constants, namely three long-term creep coefficients and three retardation times. The constitutive compliance equations of viscoealsticity for resins are also formulated in the coupled form. Formulae for converting the constants of shear/bulk (uncoupled) viscoelasticity into the constants of coupled viscoelasticity are given too. An algorithm for identifying the material constants, based on the creep of uniaxially tensioned bar samples, is formulated in a way that gives unique results. The material constants are fiund for Epidian 53 epoxy and Polimal 109 polyester resins. The creep processes, simulated based on the experimental data, are presented graphically for both the resins examined.

  4. Exchange field and Hc dependence on the ferromagnetic material in exchange couples with CoO (abstract)

    NASA Astrophysics Data System (ADS)

    Takano, Kentaro; Berkowitz, A. E.

    1997-04-01

    As recording density increases, magnetoresistive (MR) sensors are becoming increasingly important in read heads. NixCo(1-x)O is receiving technological attention for biasing magnetoresistive sensors as a robust alternative to FeMn. The interfacial exchange coupling between a ferromagnetic (FM) layer and an antiferromagnetic (AFM) is observed as an exchange field and an enhanced coercive field of the FM layer. The AFM/FM coupling is sensitive to the interfacial structure and the AFM and FM magnetic parameters. In this work, we deposited various FM layers on similar 300 Å CoO base layers to study the dependence of the FM exchange integral parameter J on the exchange HE and coercive HC fields. CoO was selected as the AFM material because (i) its simple spin and crystal structures facilitate the structural characterization and modeling of its magnetic properties, and (ii) it's modest Néel temperature of 300 K facilitates the use of a superconducting quantum interference device for the magnetic measurements at temperatures ranging from 5 to 400 K. The 300 Å CoO films were reactively sputtered on silicon substrates and capped with various 300 Å FM films, Ni, Co, Fe, and permalloy (Ni81Fe19). The 300 Å CoO base layer films were polycrystalline with columnar grains. The CoO deposition conditions were reproduced to ensure similar structural and magnetic interfacial AF environments. The observed HE temperature dependence cannot be explained by current theoretical models. The temperature dependence of the exchange fields have the common features (i) a blocking temperature Tb=300 K, which corresponds to the bulk Néel temperature of CoO, (ii) a rise in the exchange field with decreasing temperature, (iii) an intermediate temperature region of constant HE (plateau value), and (iv) a second region of linearly increasing HE with decreasing temperatures down to 0 K. The plateau value of the HE decreased inversely with increasing FM magnetization as predicted by theory. The low-temperature increase of HE is more significant in the FM with higher exchange integral J values. The crossover temperature from the plateau to the low-temperature rise in HE appears to be dependent on FM's J value. The increase in the interfacial coupling strength could suggest the magnetic ordering of a secondary phase localized at the interfacial atoms. The temperature dependence of HC enhancement does not share the nonlinear temperature behavior of HE. For T<300 K, HC increases linearly with decreasing temperatures down to 10 K. Although the HC enhancement may have magnetoelastic contributions, the disappearance of the linear enhancement at 300 K, the Néel temperature of CoO, indicates that the dominant mechanism is the interfacial magnetic coupling.

  5. Binding constants of membrane-anchored receptors and ligands depend strongly on the nanoscale roughness of membranes.

    PubMed

    Hu, Jinglei; Lipowsky, Reinhard; Weikl, Thomas R

    2013-09-17

    Cell adhesion and the adhesion of vesicles to the membranes of cells or organelles are pivotal for immune responses, tissue formation, and cell signaling. The adhesion processes depend sensitively on the binding constant of the membrane-anchored receptor and ligand proteins that mediate adhesion, but this constant is difficult to measure in experiments. We have investigated the binding of membrane-anchored receptor and ligand proteins with molecular dynamics simulations. We find that the binding constant of the anchored proteins strongly decreases with the membrane roughness caused by thermally excited membrane shape fluctuations on nanoscales. We present a theory that explains the roughness dependence of the binding constant for the anchored proteins from membrane confinement and that relates this constant to the binding constant of soluble proteins without membrane anchors. Because the binding constant of soluble proteins is readily accessible in experiments, our results provide a useful route to compute the binding constant of membrane-anchored receptor and ligand proteins.

  6. Surface wave effects on water temperature in the Baltic Sea: simulations with the coupled NEMO-WAM model

    NASA Astrophysics Data System (ADS)

    Alari, Victor; Staneva, Joanna; Breivik, Øyvind; Bidlot, Jean-Raymond; Mogensen, Kristian; Janssen, Peter

    2016-08-01

    Coupled circulation (NEMO) and wave model (WAM) system was used to study the effects of surface ocean waves on water temperature distribution and heat exchange at regional scale (the Baltic Sea). Four scenarios—including Stokes-Coriolis force, sea-state dependent energy flux (additional turbulent kinetic energy due to breaking waves), sea-state dependent momentum flux and the combination these forcings—were simulated to test the impact of different terms on simulated temperature distribution. The scenario simulations were compared to a control simulation, which included a constant wave-breaking coefficient, but otherwise was without any wave effects. The results indicate a pronounced effect of waves on surface temperature, on the distribution of vertical temperature and on upwelling's. Overall, when all three wave effects were accounted for, did the estimates of temperature improve compared to control simulation. During the summer, the wave-induced water temperature changes were up to 1 °C. In northern parts of the Baltic Sea, a warming of the surface layer occurs in the wave included simulations in summer months. This in turn reduces the cold bias between simulated and measured data, e.g. the control simulation was too cold compared to measurements. The warming is related to sea-state dependent energy flux. This implies that a spatio-temporally varying wave-breaking coefficient is necessary, because it depends on actual sea state. Wave-induced cooling is mostly observed in near-coastal areas and is the result of intensified upwelling in the scenario, when Stokes-Coriolis forcing is accounted for. Accounting for sea-state dependent momentum flux results in modified heat exchange at the water-air boundary which consequently leads to warming of surface water compared to control simulation.

  7. Monitoring dediazoniation product formation by high-performance liquid chromatography after derivatization.

    PubMed

    Bravo-Díaz, Carlos; González-Romero, Elisa

    2003-03-14

    A derivatization protocol that exploits the rapid reaction between arenediazonium ions and a suitable coupling agent followed by high-performance liquid chromatography analyses of the reaction mixture was employed to determine the product distribution, the rate constants for product formation and the association constant of 4-nitrobenzenediazonium, PNBD, ion with beta-cyclodextrin, beta-CD. The derivatization of PNBD with the coupling agent leads to the formation of a stable azo dye that prevents by-side reactions of PNBD with the solvents of the mobile phase, including water, or the metallic parts of the chromatographic system that would eventually lead to erroneous identification and quantification of dediazoniation products. The results show that in the presence of beta-CD, nitrobenzene is formed at the expense of 4-nitrophenol, which is the major product in its absence. The observed rate constants for the interaction between PNBD and beta-CD increase upon increasing [beta-CD] showing a saturation profile indicative of the formation of an inclusion complex between PNBD and beta-CD. By fitting the experimental data to a simplified Lineaweaver-Burk equation, the corresponding association constant and the maximum acceleration rate of beta-CD towards PNBD were estimated. The protocol is applicable under a variety of experimental conditions provided that the rate of the coupling reaction is much faster than that of dediazoniation.

  8. The effect of interacting dark energy on local measurements of the Hubble constant

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Odderskov, Io; Baldi, Marco; Amendola, Luca, E-mail: isho07@phys.au.dk, E-mail: marco.baldi5@unibo.it, E-mail: l.amendola@thphys.uni-heidelberg.de

    2016-05-01

    In the current state of cosmology, where cosmological parameters are being measured to percent accuracy, it is essential to understand all sources of error to high precision. In this paper we present the results of a study of the local variations in the Hubble constant measured at the distance scale of the Coma Cluster, and test the validity of correcting for the peculiar velocities predicted by gravitational instability theory. The study is based on N-body simulations, and includes models featuring a coupling between dark energy and dark matter, as well as two ΛCDM simulations with different values of σ{sub 8}.more » It is found that the variance in the local flows is significantly larger in the coupled models, which increases the uncertainty in the local measurements of the Hubble constant in these scenarios. By comparing the results from the different simulations, it is found that most of the effect is caused by the higher value of σ{sub 8} in the coupled cosmologies, though this cannot account for all of the additional variance. Given the discrepancy between different estimates of the Hubble constant in the universe today, cosmological models causing a greater cosmic variance is something that we should be aware of.« less

  9. Ab initio study of dynamical E × e Jahn-Teller and spin-orbit coupling effects in the transition-metal trifluorides TiF3, CrF3, and NiF3

    NASA Astrophysics Data System (ADS)

    Mondal, Padmabati; Opalka, Daniel; Poluyanov, Leonid V.; Domcke, Wolfgang

    2012-02-01

    Multiconfiguration ab initio methods have been employed to study the effects of Jahn-Teller (JT) and spin-orbit (SO) coupling in the transition-metal trifluorides TiF3, CrF3, and NiF3, which possess spatially doubly degenerate excited states (ME) of even spin multiplicities (M = 2 or 4). The ground states of TiF3, CrF3, and NiF3 are nondegenerate and exhibit minima of D3h symmetry. Potential-energy surfaces of spatially degenerate excited states have been calculated using the state-averaged complete-active-space self-consistent-field method. SO coupling is described by the matrix elements of the Breit-Pauli operator. Linear and higher order JT coupling constants for the JT-active bending and stretching modes as well as SO-coupling constants have been determined. Vibronic spectra of JT-active excited electronic states have been calculated, using JT Hamiltonians for trigonal systems with inclusion of SO coupling. The effect of higher order (up to sixth order) JT couplings on the vibronic spectra has been investigated for selected electronic states and vibrational modes with particularly strong JT couplings. While the weak SO couplings in TiF3 and CrF3 are almost completely quenched by the strong JT couplings, the stronger SO coupling in NiF3 is only partially quenched by JT coupling.

  10. Thermodynamics of anisotropic antiferromagnetic Heisenberg chain in the presence of longitudinal magnetic field

    NASA Astrophysics Data System (ADS)

    Rezania, H.

    2018-07-01

    We have addressed the specific heat and magnetization of one dimensional spin-1/2 anisotropic antiferromagnetic Heisenberg chain at finite magnetic field. We have investigated the thermodynamic properties by means of excitation spectrum in terms of a hard core Bosonic representation. The effect of in-plane anisotropy thermodynamic properties has also been studied via the Bosonic model by Green's function approach. This anisotropy is considered for exchange constants that couple spin components perpendicular to magnetic field direction. We have found the temperature dependence of the specific heat and longitudinal magnetization in the gapped field induced spin-polarized phase for various magnetic fields and anisotropy parameters. Furthermore we have studied the magnetic field dependence of specific heat and magnetization for various anisotropy parameters. Our results show temperature dependence of specific heat includes a peak so that its temperature position goes to higher temperature with increase of magnetic field. We have found the magnetic field dependence of specific heat shows a monotonic decreasing behavior for various magnetic fields due to increase of energy gap in the excitation spectrum. Also we have studied the temperature dependence of magnetization for different magnetic fields and various anisotropy parameters.

  11. Exploring the effect of hole localization on the charge-phonon dynamics of hole doped delafossite

    NASA Astrophysics Data System (ADS)

    Mazumder, Nilesh; Mandal, Prasanta; Roy, Rajarshi; Ghorai, Uttam Kumar; Saha, Subhajit; Chattopadhyay, Kalyan Kumar

    2017-09-01

    For weak or moderate doping, electrical measurement is not suitable for detecting changes in the charge localization inside a semiconductor. Here, to investigate the nature of charge-phonon coupling in the presence of gradually delocalized holes within a weak doping regime (~1016 cm-3), we examine the temperature dependent Raman spectra (303-817 K) of prototype hole doped delafossite CuC{{r}1-x}M{{g}x}{{O}2-y}{{S}y} (x  =  0/0.03, y  =  0/0.01). For both {{E}g} and {{A}1g} phonons, negative lineshape asymmetry and relative thermal hardening are distinctly observed upon SO× and (MgCr\\bullet+SO×) doping. Using Allen formalism, charge density of states at the Fermi level per spin and molecule, and charge delocalization associated to a - b plane, are estimated to increase appreciably upon codoping compared to the c -axis. We delineate the interdependence between charge-phonon coupling constant (λ ) and anharmonic phonon lifetime ({τanh} ), and deduce that excitation of delocalized holes weakly coupled with phonons of larger {τanh} is the governing feature of observed Fano asymmetry (q ) reversal.

  12. Electron–phonon coupling in hybrid lead halide perovskites

    PubMed Central

    Wright, Adam D.; Verdi, Carla; Milot, Rebecca L.; Eperon, Giles E.; Pérez-Osorio, Miguel A.; Snaith, Henry J.; Giustino, Feliciano; Johnston, Michael B.; Herz, Laura M.

    2016-01-01

    Phonon scattering limits charge-carrier mobilities and governs emission line broadening in hybrid metal halide perovskites. Establishing how charge carriers interact with phonons in these materials is therefore essential for the development of high-efficiency perovskite photovoltaics and low-cost lasers. Here we investigate the temperature dependence of emission line broadening in the four commonly studied formamidinium and methylammonium perovskites, HC(NH2)2PbI3, HC(NH2)2PbBr3, CH3NH3PbI3 and CH3NH3PbBr3, and discover that scattering from longitudinal optical phonons via the Fröhlich interaction is the dominant source of electron–phonon coupling near room temperature, with scattering off acoustic phonons negligible. We determine energies for the interacting longitudinal optical phonon modes to be 11.5 and 15.3 meV, and Fröhlich coupling constants of ∼40 and 60 meV for the lead iodide and bromide perovskites, respectively. Our findings correlate well with first-principles calculations based on many-body perturbation theory, which underlines the suitability of an electronic band-structure picture for describing charge carriers in hybrid perovskites. PMID:27225329

  13. Ultrafast fluorescence quenching dynamics of Atto655 in the presence of N-acetyltyrosine and N-acetyltryptophan in aqueous solution: proton-coupled electron transfer versus electron transfer.

    PubMed

    Zhang, Ying; Yuan, Shuwei; Lu, Rong; Yu, Anchi

    2013-06-20

    We studied the ultrafast fluorescence quenching dynamics of Atto655 in the presence of N-acetyltyrosine (AcTyr) and N-acetyltryptophan (AcTrp) in aqueous solution with femtosecond transient absorption spectroscopy. We found that the charge-transfer rate between Atto655 and AcTyr is about 240 times smaller than that between Atto655 and AcTrp. The pH value and D2O dependences of the excited-state decay kinetics of Atto655 in the presence of AcTyr and AcTrp reveal that the quenching of Atto655 fluorescence by AcTyr in aqueous solution is via a proton-coupled electron-transfer (PCET) process and that the quenching of Atto655 fluorescence by AcTrp in aqueous solution is via an electron-transfer process. With the version of the semiclassical Marcus ET theory, we derived that the electronic coupling constant for the PCET reaction between Atto655 and AcTyr in aqueous solution is 8.3 cm(-1), indicating that the PCET reaction between Atto655 and AcTyr in aqueous solution is nonadiabatic.

  14. Generation of dark hollow femtosecond pulsed beam by phase-only liquid crystal spatial light modulator

    NASA Astrophysics Data System (ADS)

    Nie, Yongming; Ma, Haotong; Li, Xiujian; Hu, Wenhua; Yang, Jiankun

    2011-07-01

    Based on the refractive laser beam shaping system, the dark hollow femtosecond pulse beam shaping technique with a phase-only liquid crystal spatial light modulator (LC-SLM) is demonstrated. The phase distribution of the LC-SLM is derived by the energy conservation and constant optical path principle. The effects of the shaping system on the temporal properties, including spectral phase distribution and bandwidth of the femtosecond pulse, are analyzed in detail. Experimental results show that the hollow intensity distribution of the output pulsed beam can be maintained much at more than 1200mm. The spectral phase of the pulse is changed, and the pulse width is expanded from 199 to 230fs, which is caused by the spatial--temporal coupling effect. The coupling effect mainly depends on the phase-only LC-SLM itself, not on its loaded phase distribution. The experimental results indicate that the proposed shaping setup can generate a dark hollow femtosecond pulsed beam effectively, because the temporal Gaussian waveform is unchanged.

  15. Transient many-body instability in driven Dirac materials

    NASA Astrophysics Data System (ADS)

    Pertsova, Anna; Triola, Christopher; Balatsky, Alexander

    The defining feature of a Dirac material (DM) is the presence of nodes in the low-energy excitation spectrum leading to a strong energy dependence of the density of states (DOS). The vanishing of the DOS at the nodal point implies a very low effective coupling constant which leads to stability of the node against electron-electron interactions. Non-equilibrium or driven DM, in which the DOS and hence the effective coupling can be controlled by external drive, offer a new platform for investigating collective instabilities. In this work, we discuss the possibility of realizing transient collective states in driven DMs. Motivated by recent pump-probe experiments which demonstrate the existence of long-lived photo-excited states in DMs, we consider an example of a transient excitonic instability in an optically-pumped DM. We identify experimental signatures of the transient excitonic condensate and provide estimates of the critical temperatures and lifetimes of these states for few important examples of DMs, such as single-layer graphene and topological-insulator surfaces.

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Novascone, Stephen Rhead; Peterson, John William

    Abstract This report documents the progress of simulating pore migration in ceramic (UO 2 and mixed oxide or MOX) fuel using BISON. The porosity field is treated as a function of space and time whose evolution is governed by a custom convection-diffusion-reaction equation (described here) which is coupled to the heat transfer equation via the temperature field. The porosity is initialized to a constant value at every point in the domain, and as the temperature (and its gradient) are increased by application of a heat source, the pores move up the thermal gradient and accumulate at the center of themore » fuel in a time-frame that is consistent with observations from experiments. There is an inverse dependence of the fuel’s thermal conductivity on porosity (increasing porosity decreases thermal conductivity, and vice-versa) which is also accounted for, allowing the porosity equation to couple back into the heat transfer equation. Results from an example simulation are shown to demonstrate the new capability.« less

  17. Density functional perturbational orbital theory of spin polarization in electronic systems. II. Transition metal dimer complexes.

    PubMed

    Seo, Dong-Kyun

    2007-11-14

    We present a theoretical scheme for a semiquantitative analysis of electronic structures of magnetic transition metal dimer complexes within spin density functional theory (DFT). Based on the spin polarization perturbational orbital theory [D.-K. Seo, J. Chem. Phys. 125, 154105 (2006)], explicit spin-dependent expressions of the spin orbital energies and coefficients are derived, which allows to understand how spin orbitals form and change their energies and shapes when two magnetic sites are coupled either ferromagnetically or antiferromagnetically. Upon employment of the concept of magnetic orbitals in the active-electron approximation, a general mathematical formula is obtained for the magnetic coupling constant J from the analytical expression for the electronic energy difference between low-spin broken-symmetry and high-spin states. The origin of the potential exchange and kinetic exchange terms based on the one-electron picture is also elucidated. In addition, we provide a general account of the DFT analysis of the magnetic exchange interactions in compounds for which the active-electron approximation is not appropriate.

  18. Determination of size and sign of hetero-nuclear coupling constants from 2D 19F-13C correlation spectra.

    PubMed

    Ampt, Kirsten A M; Aspers, Ruud L E G; Dvortsak, Peter; van der Werf, Ramon M; Wijmenga, Sybren S; Jaeger, Martin

    2012-02-01

    Fluorinated organic compounds have become increasingly important within the polymer and the pharmaceutical industry as well as for clinical applications. For the structural elucidation of such compounds, NMR experiments with fluorine detection are of great value due to the favorable NMR properties of the fluorine nucleus. For the investigation of three fluorinated compounds, triple resonance 2D HSQC and HMBC experiments were adopted to fluorine detection with carbon and/or proton decoupling to yield F-C, F-C{H}, F-C{C(acq)} and F-C{H,C(acq)} variants. Analysis of E.COSY type cross-peak patterns in the F-C correlation spectra led, apart from the chemical shift assignments, to determination of size and signs of the J(CH), J(CF), and J(HF) coupling constants. In addition, the fully coupled F-C HMQC spectrum of steroid 1 was interpreted in terms of E.COSY type patterns. This example shows how coupling constants due to different nuclei can be determined together with their relative signs from a single spectrum. The analysis of cross-peak patterns, as presented here, not only provides relatively straightforward routes to the determination of size and sign of hetero-nuclear J-couplings in fluorinated compounds, it also provides new and easy ways for the determination of residual dipolar couplings and thus for structure elucidation. The examples and results presented in this study may contribute to a better interpretation and understanding of various F-C correlation experiments and thereby stimulate their utilization. Copyright © 2011 Elsevier Inc. All rights reserved.

  19. Subcritical crack propagation due to chemical rock weakening: macroscale chemo-plasticity and chemo-elasticity modeling

    NASA Astrophysics Data System (ADS)

    Hueckel, T.; Hu, M.

    2015-12-01

    Crack propagation in a subcritically stressed rock subject to chemically aggressive environment is analyzed and numerically simulated. Chemically induced weakening is often encountered in hydraulic fracturing of low-permeability oil/gas reservoirs and heat reservoirs, during storage of CO2 and nuclear waste corroding canisters, and other circumstances when rock matrix acidizing is involved. Upon acidizing, mineral mass dissolution is substantially enhanced weakening the rock and causing crack propagation and eventually permeability changes in the medium. The crack process zone is modeled mathematically via a chemo-plastic coupling and chemo-elastic coupling model. In plasticity a two-way coupling is postulated between mineral dissolution and a yield limit of rock matrix. The rate of dissolution is described by a rate law, but the mineral mass removal per unit volume is also a function of a variable internal specific surface area, which is in turn affected by the micro-cracking (treated as a plastic strain). The behavior of the rock matrix is modeled as rigid-plastic adding a chemical softening capacity to Cam-Clay model. Adopting the Extended Johnson's approximation of processes around the crack tip, the evolution of the stress field and deformation as a function of the chemically enhanced rock damage is modeled in a simplified way. In addition, chemical reactive transport is made dependent on plastic strain representing micro-cracking. Depending on mechanical and chemical boundary conditions, the area of enhanced chemical softening is near or somewhat away from the crack tip.In elasticity, chemo-mechanical effect is postulated via a chemical volumetric shrinkage strain proportional to mass removal variable, conceived analogously to thermal expansion. Two versions are considered: of constant coefficient of shrinkage and a variable one, coupled to deviatoric strain. Airy Potential approach used for linear elasticity is extended considering an extra term, which is uncoupled or coupled to strain. The later case requires iterations with solution of reactive transport equation. A decrease of stress intensity factor with time of reaction is well reproduced.

  20. Scalar field coupling to Einstein tensor in regular black hole spacetime

    NASA Astrophysics Data System (ADS)

    Zhang, Chi; Wu, Chen

    2018-02-01

    In this paper, we study the perturbation property of a scalar field coupling to Einstein's tensor in the background of the regular black hole spacetimes. Our calculations show that the the coupling constant η imprints in the wave equation of a scalar perturbation. We calculated the quasinormal modes of scalar field coupling to Einstein's tensor in the regular black hole spacetimes by the 3rd order WKB method.

Top