Sample records for dependent distribution function

  1. Preisach modeling of temperature-dependent ferroelectric response of piezoceramics at sub-switching regime

    NASA Astrophysics Data System (ADS)

    Ochoa, Diego Alejandro; García, Jose Eduardo

    2016-04-01

    The Preisach model is a classical method for describing nonlinear behavior in hysteretic systems. According to this model, a hysteretic system contains a collection of simple bistable units which are characterized by an internal field and a coercive field. This set of bistable units exhibits a statistical distribution that depends on these fields as parameters. Thus, nonlinear response depends on the specific distribution function associated with the material. This model is satisfactorily used in this work to describe the temperature-dependent ferroelectric response in PZT- and KNN-based piezoceramics. A distribution function expanded in Maclaurin series considering only the first terms in the internal field and the coercive field is proposed. Changes in coefficient relations of a single distribution function allow us to explain the complex temperature dependence of hard piezoceramic behavior. A similar analysis based on the same form of the distribution function shows that the KNL-NTS properties soften around its orthorhombic to tetragonal phase transition.

  2. TMDlib and TMDplotter: library and plotting tools for transverse-momentum-dependent parton distributions

    NASA Astrophysics Data System (ADS)

    Hautmann, F.; Jung, H.; Krämer, M.; Mulders, P. J.; Nocera, E. R.; Rogers, T. C.; Signori, A.

    2014-12-01

    Transverse-momentum-dependent distributions (TMDs) are extensions of collinear parton distributions and are important in high-energy physics from both theoretical and phenomenological points of view. In this manual we introduce the library , a tool to collect transverse-momentum-dependent parton distribution functions (TMD PDFs) and fragmentation functions (TMD FFs) together with an online plotting tool, TMDplotter. We provide a description of the program components and of the different physical frameworks the user can access via the available parameterisations.

  3. TMDlib and TMDplotter: library and plotting tools for transverse-momentum-dependent parton distributions.

    PubMed

    Hautmann, F; Jung, H; Krämer, M; Mulders, P J; Nocera, E R; Rogers, T C; Signori, A

    Transverse-momentum-dependent distributions (TMDs) are extensions of collinear parton distributions and are important in high-energy physics from both theoretical and phenomenological points of view. In this manual we introduce the library [Formula: see text], a tool to collect transverse-momentum-dependent parton distribution functions (TMD PDFs) and fragmentation functions (TMD FFs) together with an online plotting tool, TMDplotter. We provide a description of the program components and of the different physical frameworks the user can access via the available parameterisations.

  4. Dependence of Microlensing on Source Size and Lens Mass

    NASA Astrophysics Data System (ADS)

    Congdon, A. B.; Keeton, C. R.

    2007-11-01

    In gravitational lensed quasars, the magnification of an image depends on the configuration of stars in the lensing galaxy. We study the statistics of the magnification distribution for random star fields. The width of the distribution characterizes the amount by which the observed magnification is likely to differ from models in which the mass is smoothly distributed. We use numerical simulations to explore how the width of the magnification distribution depends on the mass function of stars, and on the size of the source quasar. We then propose a semi-analytic model to describe the distribution width for different source sizes and stellar mass functions.

  5. Application of a truncated normal failure distribution in reliability testing

    NASA Technical Reports Server (NTRS)

    Groves, C., Jr.

    1968-01-01

    Statistical truncated normal distribution function is applied as a time-to-failure distribution function in equipment reliability estimations. Age-dependent characteristics of the truncated function provide a basis for formulating a system of high-reliability testing that effectively merges statistical, engineering, and cost considerations.

  6. Potential energy distribution function and its application to the problem of evaporation

    NASA Astrophysics Data System (ADS)

    Gerasimov, D. N.; Yurin, E. I.

    2017-10-01

    Distribution function on potential energy in a strong correlated system can be calculated analytically. In an equilibrium system (for instance, in the bulk of the liquid) this distribution function depends only on temperature and mean potential energy, which can be found through the specific heat of vaporization. At the surface of the liquid this distribution function differs significantly, but its shape still satisfies analytical correlation. Distribution function on potential energy nearby the evaporation surface can be used instead of the work function of the atom of the liquid.

  7. An estimation of distribution method for infrared target detection based on Copulas

    NASA Astrophysics Data System (ADS)

    Wang, Shuo; Zhang, Yiqun

    2015-10-01

    Track-before-detect (TBD) based target detection involves a hypothesis test of merit functions which measure each track as a possible target track. Its accuracy depends on the precision of the distribution of merit functions, which determines the threshold for a test. Generally, merit functions are regarded Gaussian, and on this basis the distribution is estimated, which is true for most methods such as the multiple hypothesis tracking (MHT). However, merit functions for some other methods such as the dynamic programming algorithm (DPA) are non-Guassian and cross-correlated. Since existing methods cannot reasonably measure the correlation, the exact distribution can hardly be estimated. If merit functions are assumed Guassian and independent, the error between an actual distribution and its approximation may occasionally over 30 percent, and is divergent by propagation. Hence, in this paper, we propose a novel estimation of distribution method based on Copulas, by which the distribution can be estimated precisely, where the error is less than 1 percent without propagation. Moreover, the estimation merely depends on the form of merit functions and the structure of a tracking algorithm, and is invariant to measurements. Thus, the distribution can be estimated in advance, greatly reducing the demand for real-time calculation of distribution functions.

  8. A non-stationary cost-benefit based bivariate extreme flood estimation approach

    NASA Astrophysics Data System (ADS)

    Qi, Wei; Liu, Junguo

    2018-02-01

    Cost-benefit analysis and flood frequency analysis have been integrated into a comprehensive framework to estimate cost effective design values. However, previous cost-benefit based extreme flood estimation is based on stationary assumptions and analyze dependent flood variables separately. A Non-Stationary Cost-Benefit based bivariate design flood estimation (NSCOBE) approach is developed in this study to investigate influence of non-stationarities in both the dependence of flood variables and the marginal distributions on extreme flood estimation. The dependence is modeled utilizing copula functions. Previous design flood selection criteria are not suitable for NSCOBE since they ignore time changing dependence of flood variables. Therefore, a risk calculation approach is proposed based on non-stationarities in both marginal probability distributions and copula functions. A case study with 54-year observed data is utilized to illustrate the application of NSCOBE. Results show NSCOBE can effectively integrate non-stationarities in both copula functions and marginal distributions into cost-benefit based design flood estimation. It is also found that there is a trade-off between maximum probability of exceedance calculated from copula functions and marginal distributions. This study for the first time provides a new approach towards a better understanding of influence of non-stationarities in both copula functions and marginal distributions on extreme flood estimation, and could be beneficial to cost-benefit based non-stationary bivariate design flood estimation across the world.

  9. Wavelength dependence of the bidirectional reflectance distribution function (BRDF) of beach sands.

    PubMed

    Doctor, Katarina Z; Bachmann, Charles M; Gray, Deric J; Montes, Marcos J; Fusina, Robert A

    2015-11-01

    The wavelength dependence of the dominant directional reflective properties of beach sands was demonstrated using principal component analysis and the related correlation matrix. In general, we found that the hyperspectral bidirectional reflectance distribution function (BRDF) of beach sands has weak wavelength dependence. Its BRDF varies slightly in three broad wavelength regions. The variations are more evident in surfaces of greater visual roughness than in smooth surfaces. The weak wavelength dependence of the BRDF of beach sand can be captured using three broad wavelength regions instead of hundreds of individual wavelengths.

  10. Single-diffractive production of dijets within the kt-factorization approach

    NASA Astrophysics Data System (ADS)

    Łuszczak, Marta; Maciuła, Rafał; Szczurek, Antoni; Babiarz, Izabela

    2017-09-01

    We discuss single-diffractive production of dijets. The cross section is calculated within the resolved Pomeron picture, for the first time in the kt-factorization approach, neglecting transverse momentum of the Pomeron. We use Kimber-Martin-Ryskin unintegrated parton (gluon, quark, antiquark) distributions in both the proton as well as in the Pomeron or subleading Reggeon. The unintegrated parton distributions are calculated based on conventional mmht2014nlo parton distribution functions in the proton and H1 Collaboration diffractive parton distribution functions used previously in the analysis of diffractive structure function and dijets at HERA. For comparison, we present results of calculations performed within the collinear-factorization approach. Our results remain those obtained in the next-to-leading-order approach. The calculation is (must be) supplemented by the so-called gap survival factor, which may, in general, depend on kinematical variables. We try to describe the existing data from Tevatron and make detailed predictions for possible LHC measurements. Several differential distributions are calculated. The E¯T, η ¯ and xp ¯ distributions are compared with the Tevatron data. A reasonable agreement is obtained for the first two distributions. The last one requires introducing a gap survival factor which depends on kinematical variables. We discuss how the phenomenological dependence on one kinematical variable may influence dependence on other variables such as E¯T and η ¯. Several distributions for the LHC are shown.

  11. Scheme dependence and transverse momentum distribution interpretation of Collins-Soper-Sterman resummation

    DOE PAGES

    Prokudin, Alexei; Sun, Peng; Yuan, Feng

    2015-10-01

    Following an earlier derivation by Catani-de Florian-Grazzini (2000) on the scheme dependence in the Collins-Soper- Sterman (CSS) resummation formalism in hard scattering processes, we investigate the scheme dependence of the Transverse Momentum Distributions (TMDs) and their applications. By adopting a universal C-coefficient function associated with the integrated parton distributions, the difference between various TMD schemes can be attributed to a perturbative calculable function depending on the hard momentum scale. Thus, we further apply several TMD schemes to the Drell-Yan process of lepton pair production in hadronic collisions, and find that the constrained non-perturbative form factors in different schemes are remarkablymore » consistent with each other and with that of the standard CSS formalism.« less

  12. Scheme dependence and transverse momentum distribution interpretation of Collins-Soper-Sterman resummation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Prokudin, Alexei; Sun, Peng; Yuan, Feng

    Following an earlier derivation by Catani-de Florian-Grazzini (2000) on the scheme dependence in the Collins-Soper- Sterman (CSS) resummation formalism in hard scattering processes, we investigate the scheme dependence of the Transverse Momentum Distributions (TMDs) and their applications. By adopting a universal C-coefficient function associated with the integrated parton distributions, the difference between various TMD schemes can be attributed to a perturbative calculable function depending on the hard momentum scale. Thus, we further apply several TMD schemes to the Drell-Yan process of lepton pair production in hadronic collisions, and find that the constrained non-perturbative form factors in different schemes are remarkablymore » consistent with each other and with that of the standard CSS formalism.« less

  13. Scheme dependence and transverse momentum distribution interpretation of Collins-Soper-Sterman resummation

    NASA Astrophysics Data System (ADS)

    Prokudin, Alexei; Sun, Peng; Yuan, Feng

    2015-11-01

    Following an earlier derivation by Catani, de Florian and Grazzini (2000) on the scheme dependence in the Collins-Soper-Sterman (CSS) resummation formalism in hard scattering processes, we investigate the scheme dependence of the Transverse Momentum Distributions (TMDs) and their applications. By adopting a universal C-coefficient function associated with the integrated parton distributions, the difference between various TMD schemes can be attributed to a perturbative calculable function depending on the hard momentum scale. We further apply several TMD schemes to the Drell-Yan process of lepton pair production in hadronic collisions, and find that the constrained non-perturbative form factors in different schemes are consistent with each other and with that of the standard CSS formalism.

  14. LETTER TO THE EDITOR: Exact energy distribution function in a time-dependent harmonic oscillator

    NASA Astrophysics Data System (ADS)

    Robnik, Marko; Romanovski, Valery G.; Stöckmann, Hans-Jürgen

    2006-09-01

    Following a recent work by Robnik and Romanovski (2006 J. Phys. A: Math. Gen. 39 L35, 2006 Open Syst. Inf. Dyn. 13 197-222), we derive an explicit formula for the universal distribution function of the final energies in a time-dependent 1D harmonic oscillator, whose functional form does not depend on the details of the frequency ω(t) and is closely related to the conservation of the adiabatic invariant. The normalized distribution function is P(x) = \\pi^{-1} (2\\mu^2 - x^2)^{-\\frac{1}{2}} , where x=E_1- \\skew3\\bar{E}_1 ; E1 is the final energy, \\skew3\\bar{E}_1 is its average value and µ2 is the variance of E1. \\skew3\\bar{E}_1 and µ2 can be calculated exactly using the WKB approach to all orders.

  15. Effects of spatial grouping on the functional response of predators

    USGS Publications Warehouse

    Cosner, C.; DeAngelis, D.L.; Ault, J.S.; Olson, D.B.

    1999-01-01

    A unified mechanistic approach is given for the derivation of various forms of functional response in predator-prey models. The derivation is based on the principle-of-mass action but with the crucial refinement that the nature of the spatial distribution of predators and/or opportunities for predation are taken into account in an implicit way. If the predators are assumed to have a homogeneous spatial distribution, then the derived functional response is prey-dependent. If the predators are assumed to form a dense colony or school in a single (possibly moving) location, or if the region where predators can encounter prey is assumed to be of limited size, then the functional response depends on both predator and prey densities in a manner that reflects feeding interference between predators. Depending on the specific assumptions, the resulting functional response may be of Beddington-DeAngelis type, of Hassell-Varley type, or ratio-dependent.

  16. Studies of the Intrinsic Complexities of Magnetotail Ion Distributions: Theory and Observations

    NASA Technical Reports Server (NTRS)

    Ashour-Abdalla, Maha

    1998-01-01

    This year we have studied the relationship between the structure seen in measured distribution functions and the detailed magnetospheric configuration. Results from our recent studies using time-dependent large-scale kinetic (LSK) calculations are used to infer the sources of the ions in the velocity distribution functions measured by a single spacecraft (Geotail). Our results strongly indicate that the different ion sources and acceleration mechanisms producing a measured distribution function can explain this structure. Moreover, individual structures within distribution functions were traced back to single sources. We also confirmed the fractal nature of ion distributions.

  17. Extractions of polarized and unpolarized parton distribution functions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jimenez-Delgado, Pedro

    2014-01-01

    An overview of our ongoing extractions of parton distribution functions of the nucleon is given. First JAM results on the determination of spin-dependent parton distribution functions from world data on polarized deep-inelastic scattering are presented first, and followed by a short report on the status of the JR unpolarized parton distributions. Different aspects of PDF analysis are briefly discussed, including effects of the nuclear structure of targets, target-mass corrections and higher twist contributions to the structure functions.

  18. Analytical approaches to the determination of spin-dependent parton distribution functions at NNLO approximation

    NASA Astrophysics Data System (ADS)

    Salajegheh, Maral; Nejad, S. Mohammad Moosavi; Khanpour, Hamzeh; Tehrani, S. Atashbar

    2018-05-01

    In this paper, we present SMKA18 analysis, which is a first attempt to extract the set of next-to-next-leading-order (NNLO) spin-dependent parton distribution functions (spin-dependent PDFs) and their uncertainties determined through the Laplace transform technique and Jacobi polynomial approach. Using the Laplace transformations, we present an analytical solution for the spin-dependent Dokshitzer-Gribov-Lipatov-Altarelli-Parisi evolution equations at NNLO approximation. The results are extracted using a wide range of proton g1p(x ,Q2) , neutron g1n(x ,Q2) , and deuteron g1d(x ,Q2) spin-dependent structure functions data set including the most recent high-precision measurements from COMPASS16 experiments at CERN, which are playing an increasingly important role in global spin-dependent fits. The careful estimations of uncertainties have been done using the standard Hessian error propagation. We will compare our results with the available spin-dependent inclusive deep inelastic scattering data set and other results for the spin-dependent PDFs in literature. The results obtained for the spin-dependent PDFs as well as spin-dependent structure functions are clearly explained both in the small and large values of x .

  19. Equilibration in the time-dependent Hartree-Fock approach probed with the Wigner distribution function

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Loebl, N.; Maruhn, J. A.; Reinhard, P.-G.

    2011-09-15

    By calculating the Wigner distribution function in the reaction plane, we are able to probe the phase-space behavior in the time-dependent Hartree-Fock scheme during a heavy-ion collision in a consistent framework. Various expectation values of operators are calculated by evaluating the corresponding integrals over the Wigner function. In this approach, it is straightforward to define and analyze quantities even locally. We compare the Wigner distribution function with the smoothed Husimi distribution function. Different reaction scenarios are presented by analyzing central and noncentral {sup 16}O +{sup 16}O and {sup 96}Zr +{sup 132}Sn collisions. Although we observe strong dissipation in the timemore » evolution of global observables, there is no evidence for complete equilibration in the local analysis of the Wigner function. Because the initial phase-space volumes of the fragments barely merge and mean values of the observables are conserved in fusion reactions over thousands of fm/c, we conclude that the time-dependent Hartree-Fock method provides a good description of the early stage of a heavy-ion collision but does not provide a mechanism to change the phase-space structure in a dramatic way necessary to obtain complete equilibration.« less

  20. Exact probability distribution functions for Parrondo's games

    NASA Astrophysics Data System (ADS)

    Zadourian, Rubina; Saakian, David B.; Klümper, Andreas

    2016-12-01

    We study the discrete time dynamics of Brownian ratchet models and Parrondo's games. Using the Fourier transform, we calculate the exact probability distribution functions for both the capital dependent and history dependent Parrondo's games. In certain cases we find strong oscillations near the maximum of the probability distribution with two limiting distributions for odd and even number of rounds of the game. Indications of such oscillations first appeared in the analysis of real financial data, but now we have found this phenomenon in model systems and a theoretical understanding of the phenomenon. The method of our work can be applied to Brownian ratchets, molecular motors, and portfolio optimization.

  1. Exact probability distribution functions for Parrondo's games.

    PubMed

    Zadourian, Rubina; Saakian, David B; Klümper, Andreas

    2016-12-01

    We study the discrete time dynamics of Brownian ratchet models and Parrondo's games. Using the Fourier transform, we calculate the exact probability distribution functions for both the capital dependent and history dependent Parrondo's games. In certain cases we find strong oscillations near the maximum of the probability distribution with two limiting distributions for odd and even number of rounds of the game. Indications of such oscillations first appeared in the analysis of real financial data, but now we have found this phenomenon in model systems and a theoretical understanding of the phenomenon. The method of our work can be applied to Brownian ratchets, molecular motors, and portfolio optimization.

  2. Collisionless distribution function for the relativistic force-free Harris sheet

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stark, C. R.; Neukirch, T.

    A self-consistent collisionless distribution function for the relativistic analogue of the force-free Harris sheet is presented. This distribution function is the relativistic generalization of the distribution function for the non-relativistic collisionless force-free Harris sheet recently found by Harrison and Neukirch [Phys. Rev. Lett. 102, 135003 (2009)], as it has the same dependence on the particle energy and canonical momenta. We present a detailed calculation which shows that the proposed distribution function generates the required current density profile (and thus magnetic field profile) in a frame of reference in which the electric potential vanishes identically. The connection between the parameters ofmore » the distribution function and the macroscopic parameters such as the current sheet thickness is discussed.« less

  3. Collins-Soper equation for the energy evolution of transverse-momentum and spin dependent parton distributions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Idilbi, Ahmad; Ji Xiangdong; Yuan Feng

    The hadron-energy evolution (Collins and Soper) equation for all the leading-twist transverse-momentum and spin dependent parton distributions is derived in the impact parameter space. Based on this equation, we present a resummation formulas for the spin dependent structure functions of the semi-inclusive deep-inelastic scattering.

  4. Kappa and other nonequilibrium distributions from the Fokker-Planck equation and the relationship to Tsallis entropy.

    PubMed

    Shizgal, Bernie D

    2018-05-01

    This paper considers two nonequilibrium model systems described by linear Fokker-Planck equations for the time-dependent velocity distribution functions that yield steady state Kappa distributions for specific system parameters. The first system describes the time evolution of a charged test particle in a constant temperature heat bath of a second charged particle. The time dependence of the distribution function of the test particle is given by a Fokker-Planck equation with drift and diffusion coefficients for Coulomb collisions as well as a diffusion coefficient for wave-particle interactions. A second system involves the Fokker-Planck equation for electrons dilutely dispersed in a constant temperature heat bath of atoms or ions and subject to an external time-independent uniform electric field. The momentum transfer cross section for collisions between the two components is assumed to be a power law in reduced speed. The time-dependent Fokker-Planck equations for both model systems are solved with a numerical finite difference method and the approach to equilibrium is rationalized with the Kullback-Leibler relative entropy. For particular choices of the system parameters for both models, the steady distribution is found to be a Kappa distribution. Kappa distributions were introduced as an empirical fitting function that well describe the nonequilibrium features of the distribution functions of electrons and ions in space science as measured by satellite instruments. The calculation of the Kappa distribution from the Fokker-Planck equations provides a direct physically based dynamical approach in contrast to the nonextensive entropy formalism by Tsallis [J. Stat. Phys. 53, 479 (1988)JSTPBS0022-471510.1007/BF01016429].

  5. Kappa and other nonequilibrium distributions from the Fokker-Planck equation and the relationship to Tsallis entropy

    NASA Astrophysics Data System (ADS)

    Shizgal, Bernie D.

    2018-05-01

    This paper considers two nonequilibrium model systems described by linear Fokker-Planck equations for the time-dependent velocity distribution functions that yield steady state Kappa distributions for specific system parameters. The first system describes the time evolution of a charged test particle in a constant temperature heat bath of a second charged particle. The time dependence of the distribution function of the test particle is given by a Fokker-Planck equation with drift and diffusion coefficients for Coulomb collisions as well as a diffusion coefficient for wave-particle interactions. A second system involves the Fokker-Planck equation for electrons dilutely dispersed in a constant temperature heat bath of atoms or ions and subject to an external time-independent uniform electric field. The momentum transfer cross section for collisions between the two components is assumed to be a power law in reduced speed. The time-dependent Fokker-Planck equations for both model systems are solved with a numerical finite difference method and the approach to equilibrium is rationalized with the Kullback-Leibler relative entropy. For particular choices of the system parameters for both models, the steady distribution is found to be a Kappa distribution. Kappa distributions were introduced as an empirical fitting function that well describe the nonequilibrium features of the distribution functions of electrons and ions in space science as measured by satellite instruments. The calculation of the Kappa distribution from the Fokker-Planck equations provides a direct physically based dynamical approach in contrast to the nonextensive entropy formalism by Tsallis [J. Stat. Phys. 53, 479 (1988), 10.1007/BF01016429].

  6. First-Principles Momentum-Dependent Local Ansatz Wavefunction and Momentum Distribution Function Bands of Iron

    NASA Astrophysics Data System (ADS)

    Kakehashi, Yoshiro; Chandra, Sumal

    2016-04-01

    We have developed a first-principles local ansatz wavefunction approach with momentum-dependent variational parameters on the basis of the tight-binding LDA+U Hamiltonian. The theory goes beyond the first-principles Gutzwiller approach and quantitatively describes correlated electron systems. Using the theory, we find that the momentum distribution function (MDF) bands of paramagnetic bcc Fe along high-symmetry lines show a large deviation from the Fermi-Dirac function for the d electrons with eg symmetry and yield the momentum-dependent mass enhancement factors. The calculated average mass enhancement m*/m = 1.65 is consistent with low-temperature specific heat data as well as recent angle-resolved photoemission spectroscopy (ARPES) data.

  7. Geometry of the q-exponential distribution with dependent competing risks and accelerated life testing

    NASA Astrophysics Data System (ADS)

    Zhang, Fode; Shi, Yimin; Wang, Ruibing

    2017-02-01

    In the information geometry suggested by Amari (1985) and Amari et al. (1987), a parametric statistical model can be regarded as a differentiable manifold with the parameter space as a coordinate system. Note that the q-exponential distribution plays an important role in Tsallis statistics (see Tsallis, 2009), this paper investigates the geometry of the q-exponential distribution with dependent competing risks and accelerated life testing (ALT). A copula function based on the q-exponential function, which can be considered as the generalized Gumbel copula, is discussed to illustrate the structure of the dependent random variable. Employing two iterative algorithms, simulation results are given to compare the performance of estimations and levels of association under different hybrid progressively censoring schemes (HPCSs).

  8. Quasi-parton distribution functions, momentum distributions, and pseudo-parton distribution functions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Radyushkin, Anatoly V.

    Here, we show that quasi-PDFs may be treated as hybrids of PDFs and primordial rest-frame momentum distributions of partons. This results in a complicated convolution nature of quasi-PDFs that necessitates using large p 3≳ 3 GeV momenta to get reasonably close to the PDF limit. Furthemore, as an alternative approach, we propose to use pseudo-PDFs P(x, zmore » $$2\\atop{3}$$) that generalize the light-front PDFs onto spacelike intervals and are related to Ioffe-time distributions M (v, z$$2\\atop{3}$$), the functions of the Ioffe time v = p 3 z 3 and the distance parameter z$$2\\atop{3}$$ with respect to which it displays perturbative evolution for small z 3. In this form, one may divide out the z$$2\\atop{3}$$ dependence coming from the primordial rest-frame distribution and from the problematic factor due to lattice renormalization of the gauge link. The v-dependence remains intact and determines the shape of PDFs.« less

  9. Quasi-parton distribution functions, momentum distributions, and pseudo-parton distribution functions

    DOE PAGES

    Radyushkin, Anatoly V.

    2017-08-28

    Here, we show that quasi-PDFs may be treated as hybrids of PDFs and primordial rest-frame momentum distributions of partons. This results in a complicated convolution nature of quasi-PDFs that necessitates using large p 3≳ 3 GeV momenta to get reasonably close to the PDF limit. Furthemore, as an alternative approach, we propose to use pseudo-PDFs P(x, zmore » $$2\\atop{3}$$) that generalize the light-front PDFs onto spacelike intervals and are related to Ioffe-time distributions M (v, z$$2\\atop{3}$$), the functions of the Ioffe time v = p 3 z 3 and the distance parameter z$$2\\atop{3}$$ with respect to which it displays perturbative evolution for small z 3. In this form, one may divide out the z$$2\\atop{3}$$ dependence coming from the primordial rest-frame distribution and from the problematic factor due to lattice renormalization of the gauge link. The v-dependence remains intact and determines the shape of PDFs.« less

  10. Statistics of the relative velocity of particles in turbulent flows: Monodisperse particles.

    PubMed

    Bhatnagar, Akshay; Gustavsson, K; Mitra, Dhrubaditya

    2018-02-01

    We use direct numerical simulations to calculate the joint probability density function of the relative distance R and relative radial velocity component V_{R} for a pair of heavy inertial particles suspended in homogeneous and isotropic turbulent flows. At small scales the distribution is scale invariant, with a scaling exponent that is related to the particle-particle correlation dimension in phase space, D_{2}. It was argued [K. Gustavsson and B. Mehlig, Phys. Rev. E 84, 045304 (2011)PLEEE81539-375510.1103/PhysRevE.84.045304; J. Turbul. 15, 34 (2014)1468-524810.1080/14685248.2013.875188] that the scale invariant part of the distribution has two asymptotic regimes: (1) |V_{R}|≪R, where the distribution depends solely on R, and (2) |V_{R}|≫R, where the distribution is a function of |V_{R}| alone. The probability distributions in these two regimes are matched along a straight line: |V_{R}|=z^{*}R. Our simulations confirm that this is indeed correct. We further obtain D_{2} and z^{*} as a function of the Stokes number, St. The former depends nonmonotonically on St with a minimum at about St≈0.7 and the latter has only a weak dependence on St.

  11. Statistics of the relative velocity of particles in turbulent flows: Monodisperse particles

    NASA Astrophysics Data System (ADS)

    Bhatnagar, Akshay; Gustavsson, K.; Mitra, Dhrubaditya

    2018-02-01

    We use direct numerical simulations to calculate the joint probability density function of the relative distance R and relative radial velocity component VR for a pair of heavy inertial particles suspended in homogeneous and isotropic turbulent flows. At small scales the distribution is scale invariant, with a scaling exponent that is related to the particle-particle correlation dimension in phase space, D2. It was argued [K. Gustavsson and B. Mehlig, Phys. Rev. E 84, 045304 (2011), 10.1103/PhysRevE.84.045304; J. Turbul. 15, 34 (2014), 10.1080/14685248.2013.875188] that the scale invariant part of the distribution has two asymptotic regimes: (1) | VR|≪R , where the distribution depends solely on R , and (2) | VR|≫R , where the distribution is a function of | VR| alone. The probability distributions in these two regimes are matched along a straight line: | VR|= z*R . Our simulations confirm that this is indeed correct. We further obtain D2 and z* as a function of the Stokes number, St. The former depends nonmonotonically on St with a minimum at about St≈0.7 and the latter has only a weak dependence on St.

  12. First-Principles Momentum Dependent Local Ansatz Approach to the Momentum Distribution Function in Iron-Group Transition Metals

    NASA Astrophysics Data System (ADS)

    Kakehashi, Yoshiro; Chandra, Sumal

    2017-03-01

    The momentum distribution function (MDF) bands of iron-group transition metals from Sc to Cu have been investigated on the basis of the first-principles momentum dependent local ansatz wavefunction method. It is found that the MDF for d electrons show a strong momentum dependence and a large deviation from the Fermi-Dirac distribution function along high-symmetry lines of the first Brillouin zone, while the sp electrons behave as independent electrons. In particular, the deviation in bcc Fe (fcc Ni) is shown to be enhanced by the narrow eg (t2g) bands with flat dispersion in the vicinity of the Fermi level. Mass enhancement factors (MEF) calculated from the jump on the Fermi surface are also shown to be momentum dependent. Large mass enhancements of Mn and Fe are found to be caused by spin fluctuations due to d electrons, while that for Ni is mainly caused by charge fluctuations. Calculated MEF are consistent with electronic specific heat data as well as recent angle resolved photoemission spectroscopy data.

  13. Extended bidirectional reflectance distribution function for polarized light scattering from subsurface defects under a smooth surface.

    PubMed

    Shen, Jian; Deng, Degang; Kong, Weijin; Liu, Shijie; Shen, Zicai; Wei, Chaoyang; He, Hongbo; Shao, Jianda; Fan, Zhengxiu

    2006-11-01

    By introducing the scattering probability of a subsurface defect (SSD) and statistical distribution functions of SSD radius, refractive index, and position, we derive an extended bidirectional reflectance distribution function (BRDF) from the Jones scattering matrix. This function is applicable to the calculation for comparison with measurement of polarized light-scattering resulting from a SSD. A numerical calculation of the extended BRDF for the case of p-polarized incident light was performed by means of the Monte Carlo method. Our numerical results indicate that the extended BRDF strongly depends on the light incidence angle, the light scattering angle, and the out-of-plane azimuth angle. We observe a 180 degrees symmetry with respect to the azimuth angle. We further investigate the influence of the SSD density, the substrate refractive index, and the statistical distributions of the SSD radius and refractive index on the extended BRDF. For transparent substrates, we also find the dependence of the extended BRDF on the SSD positions.

  14. Beyond localized and distributed accounts of brain functions. Comment on “Understanding brain networks and brain organization” by Pessoa

    NASA Astrophysics Data System (ADS)

    Cauda, Franco; Costa, Tommaso; Tamietto, Marco

    2014-09-01

    Recent evidence in cognitive neuroscience lends support to the idea that network models of brain architecture provide a privileged access to the understanding of the relation between brain organization and cognitive processes [1]. The core perspective holds that cognitive processes depend on the interactions among distributed neuronal populations and brain structures, and that the impact of a given region on behavior largely depends on its pattern of anatomical and functional connectivity [2,3].

  15. The influence of non-Gaussian distribution functions on the time-dependent perpendicular transport of energetic particles

    NASA Astrophysics Data System (ADS)

    Lasuik, J.; Shalchi, A.

    2018-06-01

    In the current paper we explore the influence of the assumed particle statistics on the transport of energetic particles across a mean magnetic field. In previous work the assumption of a Gaussian distribution function was standard, although there have been known cases for which the transport is non-Gaussian. In the present work we combine a kappa distribution with the ordinary differential equation provided by the so-called unified non-linear transport theory. We then compute running perpendicular diffusion coefficients for different values of κ and turbulence configurations. We show that changing the parameter κ slightly increases or decreases the perpendicular diffusion coefficient depending on the considered turbulence configuration. Since these changes are small, we conclude that the assumed statistics is less significant in particle transport theory. The results obtained in the current paper support to use a Gaussian distribution function as usually done in particle transport theory.

  16. Representations and uses of light distribution functions

    NASA Astrophysics Data System (ADS)

    Lalonde, Paul Albert

    1998-11-01

    At their lowest level, all rendering algorithms depend on models of local illumination to define the interplay of light with the surfaces being rendered. These models depend both on the representations of light scattering at a surface due to reflection and to an equal extent on the representation of light sources and light fields. Both emission and reflection have in common that they describe how light leaves a surface as a function of direction. Reflection also depends on an incident light direction. Emission can depend on the position on the light source We call the functions representing emission and reflection light distribution functions (LDF's). There are some difficulties to using measured light distribution functions. The data sets are very large-the size of the data grows with the fourth power of the sampling resolution. For example, a bidirectional reflectance distribution function (BRDF) sampled at five degrees angular resolution, which is arguably insufficient to capture highlights and other high frequency effects in the reflection, can easily require one and a half million samples. Once acquired this data requires some form of interpolation to use them. Any compression method used must be efficient, both in space and in the time required to evaluate the function at a point or over a range of points. This dissertation examines a wavelet representation of light distribution functions that addresses these issues. A data structure is presented that allows efficient reconstruction of LDFs for a given set of parameters, making the wavelet representation feasible for rendering tasks. Texture mapping methods that take advantage of our LDF representations are examined, as well as techniques for filtering LDFs, and methods for using wavelet compressed bidirection reflectance distribution functions (BRDFs) and light sources with Monte Carlo path tracing algorithms. The wavelet representation effectively compresses BRDF and emission data while inducing only a small error in the reconstructed signal. The representation can be used to evaluate efficiently some integrals that appear in shading computation which allows fast, accurate computation of local shading. The representation can be used to represent light fields and is used to reconstruct views of environments interactively from a precomputed set of views. The representation of the BRDF also allows the efficient generation of reflected directions for Monte Carlo array tracing applications. The method can be integrated into many different global illumination algorithms, including ray tracers and wavelet radiosity systems.

  17. SU-F-18C-11: Diameter Dependency of the Radial Dose Distribution in a Long Polyethylene Cylinder

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bakalyar, D; McKenney, S; Feng, W

    Purpose: The radial dose distribution in the central plane of a long cylinder following a long CT scan depends upon the diameter and composition of the cylinder. An understanding of this behavior is required for determining the spatial average of the dose in the central plane. Polyethylene, the material for construction of the TG200/ICRU phantom (30 cm in diameter) was used for this study. Size effects are germane to the principles incorporated in size specific dose estimates (SSDE); thus diameter dependency was explored as well. Method: ssuming a uniform cylinder and cylindrically symmetric conditions of irradiation, the dose distribution canmore » be described using a radial function. This function must be an even function of the radial distance due to the conditions of symmetry. Two effects are accounted for: The direct beam makes its weakest contribution at the center while the contribution due to scatter is strongest at the center and drops off abruptly at the outer radius. An analytic function incorporating these features was fit to Monte Carlo results determined for infinite polyethylene cylinders of various diameters. A further feature of this function is that it is integrable. Results: Symmetry and continuity dictate a local extremum at the center which is a minimum for the larger sizes. The competing effects described above can Resultin an absolute maximum occurring between the center and outer edge of the cylinders. For the smallest cylinders, the maximum dose may occur at the center. Conclusion: An integrable, analytic function can be used to characterize the radial dependency of dose for cylindrical CT phantoms of various sizes. One use for this is to help determine average dose distribution over the central cylinder plane when equilibrium dose has been reached.« less

  18. Constraints on spin-dependent parton distributions at large x from global QCD analysis

    DOE PAGES

    Jimenez-Delgado, P.; Avakian, H.; Melnitchouk, W.

    2014-09-28

    This study investigate the behavior of spin-dependent parton distribution functions (PDFs) at large parton momentum fractions x in the context of global QCD analysis. We explore the constraints from existing deep-inelastic scattering data, and from theoretical expectations for the leading x → 1 behavior based on hard gluon exchange in perturbative QCD. Systematic uncertainties from the dependence of the PDFs on the choice of parametrization are studied by considering functional forms motivated by orbital angular momentum arguments. Finally, we quantify the reduction in the PDF uncertainties that may be expected from future high-x data from Jefferson Lab at 12 GeV.

  19. Second-order Boltzmann equation: gauge dependence and gauge invariance

    NASA Astrophysics Data System (ADS)

    Naruko, Atsushi; Pitrou, Cyril; Koyama, Kazuya; Sasaki, Misao

    2013-08-01

    In the context of cosmological perturbation theory, we derive the second-order Boltzmann equation describing the evolution of the distribution function of radiation without a specific gauge choice. The essential steps in deriving the Boltzmann equation are revisited and extended given this more general framework: (i) the polarization of light is incorporated in this formalism by using a tensor-valued distribution function; (ii) the importance of a choice of the tetrad field to define the local inertial frame in the description of the distribution function is emphasized; (iii) we perform a separation between temperature and spectral distortion, both for the intensity and polarization for the first time; (iv) the gauge dependence of all perturbed quantities that enter the Boltzmann equation is derived, and this enables us to check the correctness of the perturbed Boltzmann equation by explicitly showing its gauge-invariance for both intensity and polarization. We finally discuss several implications of the gauge dependence for the observed temperature.

  20. A Study of Transport in the Near-Earth Plasma Sheet During A Substorm Using Time-Dependent Large Scale Kinetics

    NASA Technical Reports Server (NTRS)

    El-Alaoui, M.; Ashour-Abdalla, M.; Raeder, J.; Frank, L. A.; Paterson, W. R.

    1998-01-01

    In this study we investigate the transport of H+ ions that made up the complex ion distribution function observed by the Geotail spacecraft at 0740 UT on November 24, 1996. This ion distribution function, observed by Geotail at approximately 20 R(sub E) downtail, was used to initialize a time-dependent large-scale kinetic (LSK) calculation of the trajectories of 75,000 ions forward in time. Time-dependent magnetic and electric fields were obtained from a global magnetohydrodynamic (MHD) simulation of the magnetosphere and its interaction with the solar wind and the interplanetary magnetic field (IMF) as observed during the interval of the observation of the distribution function. Our calculations indicate that the particles observed by Geotail were scattered across the equatorial plane by the multiple interactions with the current sheet and then convected sunward. They were energized by the dawn-dusk electric field during their transport from Geotail location and ultimately were lost at the ionospheric boundary or into the magnetopause.

  1. Effect of dust size distribution on ion-acoustic solitons in dusty plasmas with different dust grains

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gao, Dong-Ning; Yang, Yang; Yan, Qiang

    Theoretical studies are carried out for ion acoustic solitons in multicomponent nonuniform plasma considering the dust size distribution. The Korteweg−de Vries equation for ion acoustic solitons is given by using the reductive perturbation technique. Two special dust size distributions are considered. The dependences of the width and amplitude of solitons on dust size parameters are shown. It is found that the properties of a solitary wave depend on the shape of the size distribution function of dust grains.

  2. Light-front spin-dependent spectral function and nucleon momentum distributions for a three-body system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Del Dotto, Alessio; Pace, Emanuele; Salme, Giovanni

    Poincare covariant definitions for the spin-dependent spectral function and for the momentum distributions within the light-front Hamiltonian dynamics are proposed for a three-fermion bound system, starting from the light-front wave function of the system. The adopted approach is based on the Bakamjian–Thomas construction of the Poincaré generators, which allows one to easily import the familiar and wide knowledge on the nuclear interaction into a light-front framework. The proposed formalism can find useful applications in refined nuclear calculations, such as those needed for evaluating the European Muon Collaboration effect or the semi-inclusive deep inelastic cross sections with polarized nuclear targets, sincemore » remarkably the light-front unpolarized momentum distribution by definition fulfills both normalization and momentum sum rules. As a result, also shown is a straightforward generalization of the definition of the light-front spectral function to an A-nucleon system.« less

  3. Light-front spin-dependent spectral function and nucleon momentum distributions for a three-body system

    DOE PAGES

    Del Dotto, Alessio; Pace, Emanuele; Salme, Giovanni; ...

    2017-01-10

    Poincare covariant definitions for the spin-dependent spectral function and for the momentum distributions within the light-front Hamiltonian dynamics are proposed for a three-fermion bound system, starting from the light-front wave function of the system. The adopted approach is based on the Bakamjian–Thomas construction of the Poincaré generators, which allows one to easily import the familiar and wide knowledge on the nuclear interaction into a light-front framework. The proposed formalism can find useful applications in refined nuclear calculations, such as those needed for evaluating the European Muon Collaboration effect or the semi-inclusive deep inelastic cross sections with polarized nuclear targets, sincemore » remarkably the light-front unpolarized momentum distribution by definition fulfills both normalization and momentum sum rules. As a result, also shown is a straightforward generalization of the definition of the light-front spectral function to an A-nucleon system.« less

  4. Sivers asymmetry in the pion induced Drell-Yan process at COMPASS within transverse momentum dependent factorization

    NASA Astrophysics Data System (ADS)

    Wang, Xiaoyu; Lu, Zhun

    2018-03-01

    We investigate the Sivers asymmetry in the pion-induced single polarized Drell-Yan process in the theoretical framework of the transverse momentum dependent factorization up to next-to-leading logarithmic order of QCD. Within the TMD evolution formalism of parton distribution functions, the recently extracted nonperturbative Sudakov form factor for the pion distribution functions as well as the one for the Sivers function of the proton are applied to numerically estimate the Sivers asymmetry in the π-p Drell-Yan at the kinematics of the COMPASS at CERN. In the low b region, the Sivers function in b -space can be expressed as the convolution of the perturbatively calculable hard coefficients and the corresponding collinear correlation function, of which the Qiu-Sterman function is the most relevant one. The effect of the energy-scale dependence of the Qiu-Sterman function to the asymmetry is also studied. We find that our prediction on the Sivers asymmetries as functions of xp, xπ, xF and q⊥ is consistent with the recent COMPASS measurement.

  5. Evidence for a mass-dependent AGN Eddington ratio distribution via the flat relationship between SFR and AGN luminosity

    NASA Astrophysics Data System (ADS)

    Bernhard, E.; Mullaney, J. R.; Aird, J.; Hickox, R. C.; Jones, M. L.; Stanley, F.; Grimmett, L. P.; Daddi, E.

    2018-05-01

    The lack of a strong correlation between AGN X-ray luminosity (LX; a proxy for AGN power) and the star formation rate (SFR) of their host galaxies has recently been attributed to stochastic AGN variability. Studies using population synthesis models have incorporated this by assuming a broad, universal (i.e. does not depend on the host galaxy properties) probability distribution for AGN specific X-ray luminosities (i.e. the ratio of LX to host stellar mass; a common proxy for Eddington ratio). However, recent studies have demonstrated that this universal Eddington ratio distribution fails to reproduce the observed X-ray luminosity functions beyond z ˜ 1.2. Furthermore, empirical studies have recently shown that the Eddington ratio distribution may instead depend upon host galaxy properties, such as SFR and/or stellar mass. To investigate this further, we develop a population synthesis model in which the Eddington ratio distribution is different for star-forming and quiescent host galaxies. We show that, although this model is able to reproduce the observed X-ray luminosity functions out to z ˜ 2, it fails to simultaneously reproduce the observed flat relationship between SFR and X-ray luminosity. We can solve this, however, by incorporating a mass dependency in the AGN Eddington ratio distribution for star-forming host galaxies. Overall, our models indicate that a relative suppression of low Eddington ratios (λEdd ≲ 0.1) in lower mass galaxies (M* ≲ 1010 - 11 M⊙) is required to reproduce both the observed X-ray luminosity functions and the observed flat SFR/X-ray relationship.

  6. Studies of Transverse Momentum Dependent Parton Distributions and Bessel Weighting

    NASA Astrophysics Data System (ADS)

    Gamberg, Leonard

    2015-04-01

    We present a new technique for analysis of transverse momentum dependent parton distribution functions, based on the Bessel weighting formalism. Advantages of employing Bessel weighting are that transverse momentum weighted asymmetries provide a means to disentangle the convolutions in the cross section in a model independent way. The resulting compact expressions immediately connect to work on evolution equations for transverse momentum dependent parton distribution and fragmentation functions. As a test case, we apply the procedure to studies of the double longitudinal spin asymmetry in SIDIS using a dedicated Monte Carlo generator which includes quark intrinsic transverse momentum within the generalized parton model. Using a fully differential cross section for the process, the effect of four momentum conservation is analyzed using various input models for transverse momentum distributions and fragmentation functions. We observe a few percent systematic offset of the Bessel-weighted asymmetry obtained from Monte Carlo extraction compared to input model calculations. Bessel weighting provides a powerful and reliable tool to study the Fourier transform of TMDs with controlled systematics due to experimental acceptances and resolutions with different TMD model inputs. Work is supported by the U.S. Department of Energy under Contract No. DE-FG02-07ER41460.

  7. Studies of Transverse Momentum Dependent Parton Distributions and Bessel Weighting

    NASA Astrophysics Data System (ADS)

    Gamberg, Leonard

    2015-10-01

    We present a new technique for analysis of transverse momentum dependent parton distribution functions, based on the Bessel weighting formalism. Advantages of employing Bessel weighting are that transverse momentum weighted asymmetries provide a means to disentangle the convolutions in the cross section in a model independent way. The resulting compact expressions immediately connect to work on evolution equations for transverse momentum dependent parton distribution and fragmentation functions. As a test case, we apply the procedure to studies of the double longitudinal spin asymmetry in SIDIS using a dedicated Monte Carlo generator which includes quark intrinsic transverse momentum within the generalized parton model. Using a fully differential cross section for the process, the effect of four momentum conservation is analyzed using various input models for transverse momentum distributions and fragmentation functions. We observe a few percent systematic offset of the Bessel-weighted asymmetry obtained from Monte Carlo extraction compared to input model calculations. Bessel weighting provides a powerful and reliable tool to study the Fourier transform of TMDs with controlled systematics due to experimental acceptances and resolutions with different TMD model inputs. Work is supported by the U.S. Department of Energy under Contract No. DE-FG02-07ER41460.

  8. Bivariate extreme value distributions

    NASA Technical Reports Server (NTRS)

    Elshamy, M.

    1992-01-01

    In certain engineering applications, such as those occurring in the analyses of ascent structural loads for the Space Transportation System (STS), some of the load variables have a lower bound of zero. Thus, the need for practical models of bivariate extreme value probability distribution functions with lower limits was identified. We discuss the Gumbel models and present practical forms of bivariate extreme probability distributions of Weibull and Frechet types with two parameters. Bivariate extreme value probability distribution functions can be expressed in terms of the marginal extremel distributions and a 'dependence' function subject to certain analytical conditions. Properties of such bivariate extreme distributions, sums and differences of paired extremals, as well as the corresponding forms of conditional distributions, are discussed. Practical estimation techniques are also given.

  9. Metocean design parameter estimation for fixed platform based on copula functions

    NASA Astrophysics Data System (ADS)

    Zhai, Jinjin; Yin, Qilin; Dong, Sheng

    2017-08-01

    Considering the dependent relationship among wave height, wind speed, and current velocity, we construct novel trivariate joint probability distributions via Archimedean copula functions. Total 30-year data of wave height, wind speed, and current velocity in the Bohai Sea are hindcast and sampled for case study. Four kinds of distributions, namely, Gumbel distribution, lognormal distribution, Weibull distribution, and Pearson Type III distribution, are candidate models for marginal distributions of wave height, wind speed, and current velocity. The Pearson Type III distribution is selected as the optimal model. Bivariate and trivariate probability distributions of these environmental conditions are established based on four bivariate and trivariate Archimedean copulas, namely, Clayton, Frank, Gumbel-Hougaard, and Ali-Mikhail-Haq copulas. These joint probability models can maximize marginal information and the dependence among the three variables. The design return values of these three variables can be obtained by three methods: univariate probability, conditional probability, and joint probability. The joint return periods of different load combinations are estimated by the proposed models. Platform responses (including base shear, overturning moment, and deck displacement) are further calculated. For the same return period, the design values of wave height, wind speed, and current velocity obtained by the conditional and joint probability models are much smaller than those by univariate probability. Considering the dependence among variables, the multivariate probability distributions provide close design parameters to actual sea state for ocean platform design.

  10. Nonperturbative evolution of parton quasi-distributions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Radyushkin, A. V.

    2017-02-14

    Using the formalism of parton virtuality distribution functions (VDFs) we establish a connection between the transverse momentum dependent distributions (TMDs) F(x,k ⊥ 2) and quasi-distributions (PQDs) Q(y,p 3) introduced recently by X. Ji for lattice QCD extraction of parton distributions f(x). We build models for PQDs from the VDF-based models for soft TMDs, and analyze the p 3 dependence of the resulting PQDs. We observe a strong nonperturbative evolution of PQDs for small and moderately large values of p 3 reflecting the transverse momentum dependence of TMDs. Furthermore, the study of PQDs on the lattice in the domain of strongmore » nonperturbative effects opens a new perspective for investigation of the 3-dimensional hadron structure.« less

  11. Size and DNA distributions of electrophoretically separated cultured human kidney cells

    NASA Technical Reports Server (NTRS)

    Kunze, M. E.; Plank, L. D.; Todd, P. W.

    1985-01-01

    Electrophoretic purification of purifying cultured cells according to function presumes that the size of cycle phase of a cell is not an overriding determinant of its electrophoretic velocity in an electrophoretic separator. The size distributions and DNA distributions of fractions of cells purified by density gradient electrophoresis were determined. No systematic dependence of electrophoretic migration upward in a density gradient column upon either size or DNA content were found. It was found that human leukemia cell populations, which are more uniform function and found in all phases of the cell cycle during exponential growth, separated on a vertical sensity gradient electrophoresis column according to their size, which is shown to be strictly cell cycle dependent.

  12. Deformation dependence of proton decay rates and angular distributions in a time-dependent approach

    NASA Astrophysics Data System (ADS)

    Carjan, N.; Talou, P.; Strottman, D.

    1998-12-01

    A new, time-dependent, approach to proton decay from axially symmetric deformed nuclei is presented. The two-dimensional time-dependent Schrödinger equation for the interaction between the emitted proton and the rest of the nucleus is solved numerically for well defined initial quasi-stationary proton states. Applied to the hypothetical proton emission from excited states in deformed nuclei of 208Pb, this approach shows that the problem cannot be reduced to one dimension. There are in general more than one directions of emission with wide distributions around them, determined mainly by the quantum numbers of the initial wave function rather than by the potential landscape. The distribution of the "residual" angular momentum and its variation in time play a major role in the determination of the decay rate. In a couple of cases, no exponential decay was found during the calculated time evolution (2×10-21 sec) although more than half of the wave function escaped during that time.

  13. A survey of kernel-type estimators for copula and their applications

    NASA Astrophysics Data System (ADS)

    Sumarjaya, I. W.

    2017-10-01

    Copulas have been widely used to model nonlinear dependence structure. Main applications of copulas include areas such as finance, insurance, hydrology, rainfall to name but a few. The flexibility of copula allows researchers to model dependence structure beyond Gaussian distribution. Basically, a copula is a function that couples multivariate distribution functions to their one-dimensional marginal distribution functions. In general, there are three methods to estimate copula. These are parametric, nonparametric, and semiparametric method. In this article we survey kernel-type estimators for copula such as mirror reflection kernel, beta kernel, transformation method and local likelihood transformation method. Then, we apply these kernel methods to three stock indexes in Asia. The results of our analysis suggest that, albeit variation in information criterion values, the local likelihood transformation method performs better than the other kernel methods.

  14. Experimental results on TMDs

    DOE PAGES

    None, None

    2016-06-13

    QCD factorisation for semi-inclusive deep inelastic scattering at low transverse momentum in the current-fragmentation region has been established recently, providing a rigorous basis to study the Transverse Momentum Dependent distribution and fragmentation functions (TMDs) of partons from Semi-Inclusive DIS data using different spin-dependent and spin-independent observables. The main focus of the experiments were the measurements of various single- and double-spin asymmetries in hadron electro-production (ep{up-arrow} --> ehX ) with unpolarised, longitudinally and transversely polarised targets. The joint use of a longitudinally polarised beam and longitudinally and transversely polarised targets allowed to measure double-spin asymmetries (DSA) related to leading-twist distribution functionsmore » describing the transverse momentum distribution of longitudinally and transversely polarised quarks in a longitudinally and transversely polarised nucleons (helicity and worm-gear TMDs). Furthermore, the single-spin asymmetries (SSA) measured with transversely polarised targets, provided access to specific leading-twist parton distribution functions: the transversity, the Sivers function and the so-called 'pretzelosity' function. In this review we present the current status and some future measurements of TMDs worldwide.« less

  15. Unified halo-independent formalism from convex hulls for direct dark matter searches

    NASA Astrophysics Data System (ADS)

    Gelmini, Graciela B.; Huh, Ji-Haeng; Witte, Samuel J.

    2017-12-01

    Using the Fenchel-Eggleston theorem for convex hulls (an extension of the Caratheodory theorem), we prove that any likelihood can be maximized by either a dark matter 1- speed distribution F(v) in Earth's frame or 2- Galactic velocity distribution fgal(vec u), consisting of a sum of delta functions. The former case applies only to time-averaged rate measurements and the maximum number of delta functions is (Script N‑1), where Script N is the total number of data entries. The second case applies to any harmonic expansion coefficient of the time-dependent rate and the maximum number of terms is Script N. Using time-averaged rates, the aforementioned form of F(v) results in a piecewise constant unmodulated halo function tilde eta0BF(vmin) (which is an integral of the speed distribution) with at most (Script N-1) downward steps. The authors had previously proven this result for likelihoods comprised of at least one extended likelihood, and found the best-fit halo function to be unique. This uniqueness, however, cannot be guaranteed in the more general analysis applied to arbitrary likelihoods. Thus we introduce a method for determining whether there exists a unique best-fit halo function, and provide a procedure for constructing either a pointwise confidence band, if the best-fit halo function is unique, or a degeneracy band, if it is not. Using measurements of modulation amplitudes, the aforementioned form of fgal(vec u), which is a sum of Galactic streams, yields a periodic time-dependent halo function tilde etaBF(vmin, t) which at any fixed time is a piecewise constant function of vmin with at most Script N downward steps. In this case, we explain how to construct pointwise confidence and degeneracy bands from the time-averaged halo function. Finally, we show that requiring an isotropic Galactic velocity distribution leads to a Galactic speed distribution F(u) that is once again a sum of delta functions, and produces a time-dependent tilde etaBF(vmin, t) function (and a time-averaged tilde eta0BF(vmin)) that is piecewise linear, differing significantly from best-fit halo functions obtained without the assumption of isotropy.

  16. Numerical analysis of the unintegrated double gluon distribution

    NASA Astrophysics Data System (ADS)

    Elias, Edgar; Golec-Biernat, Krzysztof; Staśto, Anna M.

    2018-01-01

    We present detailed numerical analysis of the unintegrated double gluon distribution which includes the dependence on the transverse momenta of partons. The unintegrated double gluon distribution was obtained following the Kimber-Martin-Ryskin method as a convolution of the perturbative gluon splitting function with the collinear integrated double gluon distribution and the Sudakov form factors. We analyze the dependence on the transverse momenta, longitudinal momentum fractions and hard scales. We find that the unintegrated gluon distribution factorizes into a product of two single unintegrated gluon distributions in the region of small values of x, provided the splitting contribution is included and the momentum sum rule is satisfied.

  17. Angular distribution of scission neutrons studied with time-dependent Schrödinger equation

    NASA Astrophysics Data System (ADS)

    Wada, Takahiro; Asano, Tomomasa; Carjan, Nicolae

    2018-03-01

    We investigate the angular distribution of scission neutrons taking account of the effects of fission fragments. The time evolution of the wave function of the scission neutron is obtained by integrating the time-dependent Schrodinger equation numerically. The effects of the fission fragments are taken into account by means of the optical potentials. The angular distribution is strongly modified by the presence of the fragments. In the case of asymmetric fission, it is found that the heavy fragment has stronger effects. Dependence on the initial distribution and on the properties of fission fragments is discussed. We also discuss on the treatment of the boundary to avoid artificial reflections

  18. Inverse estimation of the spheroidal particle size distribution using Ant Colony Optimization algorithms in multispectral extinction technique

    NASA Astrophysics Data System (ADS)

    He, Zhenzong; Qi, Hong; Wang, Yuqing; Ruan, Liming

    2014-10-01

    Four improved Ant Colony Optimization (ACO) algorithms, i.e. the probability density function based ACO (PDF-ACO) algorithm, the Region ACO (RACO) algorithm, Stochastic ACO (SACO) algorithm and Homogeneous ACO (HACO) algorithm, are employed to estimate the particle size distribution (PSD) of the spheroidal particles. The direct problems are solved by the extended Anomalous Diffraction Approximation (ADA) and the Lambert-Beer law. Three commonly used monomodal distribution functions i.e. the Rosin-Rammer (R-R) distribution function, the normal (N-N) distribution function, and the logarithmic normal (L-N) distribution function are estimated under dependent model. The influence of random measurement errors on the inverse results is also investigated. All the results reveal that the PDF-ACO algorithm is more accurate than the other three ACO algorithms and can be used as an effective technique to investigate the PSD of the spheroidal particles. Furthermore, the Johnson's SB (J-SB) function and the modified beta (M-β) function are employed as the general distribution functions to retrieve the PSD of spheroidal particles using PDF-ACO algorithm. The investigation shows a reasonable agreement between the original distribution function and the general distribution function when only considering the variety of the length of the rotational semi-axis.

  19. Time-dependent transport of energetic particles in magnetic turbulence: computer simulations versus analytical theory

    NASA Astrophysics Data System (ADS)

    Arendt, V.; Shalchi, A.

    2018-06-01

    We explore numerically the transport of energetic particles in a turbulent magnetic field configuration. A test-particle code is employed to compute running diffusion coefficients as well as particle distribution functions in the different directions of space. Our numerical findings are compared with models commonly used in diffusion theory such as Gaussian distribution functions and solutions of the cosmic ray Fokker-Planck equation. Furthermore, we compare the running diffusion coefficients across the mean magnetic field with solutions obtained from the time-dependent version of the unified non-linear transport theory. In most cases we find that particle distribution functions are indeed of Gaussian form as long as a two-component turbulence model is employed. For turbulence setups with reduced dimensionality, however, the Gaussian distribution can no longer be obtained. It is also shown that the unified non-linear transport theory agrees with simulated perpendicular diffusion coefficients as long as the pure two-dimensional model is excluded.

  20. ATP-dependent chromatin assembly is functionally distinct from chromatin remodeling

    PubMed Central

    Torigoe, Sharon E; Patel, Ashok; Khuong, Mai T; Bowman, Gregory D; Kadonaga, James T

    2013-01-01

    Chromatin assembly involves the combined action of ATP-dependent motor proteins and histone chaperones. Because motor proteins in chromatin assembly also function as chromatin remodeling factors, we investigated the relationship between ATP-driven chromatin assembly and chromatin remodeling in the generation of periodic nucleosome arrays. We found that chromatin remodeling-defective Chd1 motor proteins are able to catalyze ATP-dependent chromatin assembly. The resulting nucleosomes are not, however, spaced in periodic arrays. Wild-type Chd1, but not chromatin remodeling-defective Chd1, can catalyze the conversion of randomly-distributed nucleosomes into periodic arrays. These results reveal a functional distinction between ATP-dependent nucleosome assembly and chromatin remodeling, and suggest a model for chromatin assembly in which randomly-distributed nucleosomes are formed by the nucleosome assembly function of Chd1, and then regularly-spaced nucleosome arrays are generated by the chromatin remodeling activity of Chd1. These findings uncover an unforeseen level of specificity in the role of motor proteins in chromatin assembly. DOI: http://dx.doi.org/10.7554/eLife.00863.001 PMID:23986862

  1. On the use of the KMR unintegrated parton distribution functions

    NASA Astrophysics Data System (ADS)

    Golec-Biernat, Krzysztof; Staśto, Anna M.

    2018-06-01

    We discuss the unintegrated parton distribution functions (UPDFs) introduced by Kimber, Martin and Ryskin (KMR), which are frequently used in phenomenological analyses of hard processes with transverse momenta of partons taken into account. We demonstrate numerically that the commonly used differential definition of the UPDFs leads to erroneous results for large transverse momenta. We identify the reason for that, being the use of the ordinary PDFs instead of the cutoff dependent distribution functions. We show that in phenomenological applications, the integral definition of the UPDFs with the ordinary PDFs can be used.

  2. An empirical analysis of the distribution of overshoots in a stationary Gaussian stochastic process

    NASA Technical Reports Server (NTRS)

    Carter, M. C.; Madison, M. W.

    1973-01-01

    The frequency distribution of overshoots in a stationary Gaussian stochastic process is analyzed. The primary processes involved in this analysis are computer simulation and statistical estimation. Computer simulation is used to simulate stationary Gaussian stochastic processes that have selected autocorrelation functions. An analysis of the simulation results reveals a frequency distribution for overshoots with a functional dependence on the mean and variance of the process. Statistical estimation is then used to estimate the mean and variance of a process. It is shown that for an autocorrelation function, the mean and the variance for the number of overshoots, a frequency distribution for overshoots can be estimated.

  3. Covariant extension of the GPD overlap representation at low Fock states

    DOE PAGES

    Chouika, N.; Mezrag, C.; Moutarde, H.; ...

    2017-12-26

    Here, we present a novel approach to compute generalized parton distributions within the lightfront wave function overlap framework. We show how to systematically extend generalized parton distributions computed within the DGLAP region to the ERBL one, fulfilling at the same time both the polynomiality and positivity conditions. We exemplify our method using pion lightfront wave functions inspired by recent results of non-perturbative continuum techniques and algebraic nucleon lightfront wave functions. We also test the robustness of our algorithm on reggeized phenomenological parameterizations. This approach paves the way to a better understanding of the nucleon structure from non-perturbative techniques and tomore » a unification of generalized parton distributions and transverse momentum dependent parton distribution functions phenomenology through lightfront wave functions.« less

  4. Determination of Distance Distribution Functions by Singlet-Singlet Energy Transfer

    PubMed Central

    Cantor, Charles R.; Pechukas, Philip

    1971-01-01

    The efficiency of energy transfer between two chromophores can be used to define an apparent donor-acceptor distance, which in flexible systems will depend on the R0 of the chromophores. If efficiency is measured as a function of R0, it will be possible to determine the actual distribution function of donor-acceptor distances. Numerical procedures are described for extracting this information from experimental data. They should be most useful for distribution functions with mean values from 20-30 Å (2-3 nm). This technique should provide considerably more detailed information on end-to-end distributions of oligomers than has hitherto been available. It should also be useful for describing, in detail, conformational flexibility in other large molecules. PMID:16591942

  5. The joint fit of the BHMF and ERDF for the BAT AGN Sample

    NASA Astrophysics Data System (ADS)

    Weigel, Anna K.; Koss, Michael; Ricci, Claudio; Trakhtenbrot, Benny; Oh, Kyuseok; Schawinski, Kevin; Lamperti, Isabella

    2018-01-01

    A natural product of an AGN survey is the AGN luminosity function. This statistical measure describes the distribution of directly measurable AGN luminosities. Intrinsically, the shape of the luminosity function depends on the distribution of black hole masses and Eddington ratios. To constrain these fundamental AGN properties, the luminosity function thus has to be disentangled into the black hole mass and Eddington ratio distribution function. The BASS survey is unique as it allows such a joint fit for a large number of local AGN, is unbiased in terms of obscuration in the X-rays and provides black hole masses for type-1 and type-2 AGN. The black hole mass function at z ~ 0 represents an essential baseline for simulations and black hole growth models. The normalization of the Eddington ratio distribution function directly constrains the AGN fraction. Together, the BASS AGN luminosity, black hole mass and Eddington ratio distribution functions thus provide a complete picture of the local black hole population.

  6. Soliton sustainable socio-economic distribution

    NASA Astrophysics Data System (ADS)

    Dresvyannikov, M. A.; Petrova, M. V.; Tshovrebov, A. M.

    2017-11-01

    In the work presented, from close positions, we consider: 1) the question of the stability of socio-economic distributions; 2) the question of the possible mechanism for the formation of fractional power-law dependences in the Cobb/Douglas production function; 3) the introduction of a fractional order derivative for a general analysis of a fractional power function; 4) bringing in a state of mutual matching of the interest rate and the production function of Cobb/Douglas.

  7. Transverse momentum dependent (TMD) parton distribution functions generated in the modified DGLAP formalism based on the valence-like distributions

    NASA Astrophysics Data System (ADS)

    Hosseinkhani, H.; Modarres, M.; Olanj, N.

    2017-07-01

    Transverse momentum dependent (TMD) parton distributions, also referred to as unintegrated parton distribution functions (UPDFs), are produced via the Kimber-Martin-Ryskin (KMR) prescription. The GJR08 set of parton distribution functions (PDFs) which are based on the valence-like distributions is used, at the leading order (LO) and the next-to-leading order (NLO) approximations, as inputs of the KMR formalism. The general and the relative behaviors of the generated TMD PDFs at LO and NLO and their ratios in a wide range of the transverse momentum values, i.e. kt2 = 10, 102, 104 and 108GeV2 are investigated. It is shown that the properties of the parent valence-like PDFs are imprinted on the daughter TMD PDFs. Imposing the angular ordering constraint (AOC) leads to the dynamical variable limits on the integrals which in turn increase the contributions from the lower scales at lower kt2. The results are compared with our previous studies based on the MSTW2008 input PDFs and it is shown that the present calculation gives flatter TMD PDFs. Finally, a comparison of longitudinal structure function (FL) is made by using the produced TMD PDFs and those that were generated through the MSTW2008-LO PDF from our previous work and the corresponding data from H1 and ZEUS collaborations and a reasonable agreement is found.

  8. Target mass effects in parton quasi-distributions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Radyushkin, A. V.

    We study the impact of non-zero (and apparently large) value of the nucleon mass M on the shape of parton quasi-distributions Q(y,p 3), in particular on its change with the change of the nucleon momentum p 3. We observe that the usual target-mass corrections induced by the M-dependence of the twist-2 operators are rather small. Moreover, we show that within the framework based on parametrizations by transverse momentum dependent distribution functions (TMDs) these corrections are canceled by higher-twist contributions. Lastly, we identify a novel source of kinematic target-mass dependence of TMDs and build models corrected for such dependence. We findmore » that resulting changes may be safely neglected for p 3≳2M.« less

  9. Target mass effects in parton quasi-distributions

    DOE PAGES

    Radyushkin, A. V.

    2017-05-11

    We study the impact of non-zero (and apparently large) value of the nucleon mass M on the shape of parton quasi-distributions Q(y,p 3), in particular on its change with the change of the nucleon momentum p 3. We observe that the usual target-mass corrections induced by the M-dependence of the twist-2 operators are rather small. Moreover, we show that within the framework based on parametrizations by transverse momentum dependent distribution functions (TMDs) these corrections are canceled by higher-twist contributions. Lastly, we identify a novel source of kinematic target-mass dependence of TMDs and build models corrected for such dependence. We findmore » that resulting changes may be safely neglected for p 3≳2M.« less

  10. Semi-inclusive Deep Inelastic Scattering at Small-x

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marquet, C.; Xiao, B.-W.; Yuan, Feng

    We study the semi-inclusive hadron production in deep inelastic scattering at small-x.A transverse momentum dependent factorization is found consistent with the resultscalculated in the color-dipole framework in the appropriate kinematic region. The transverse momentum dependent quark distribution can be studied in this processas a probe for the small-x saturation physics. Especially, the ratio of the quark distributions as functions of transverse momentum at different x demonstrates strong dependence on the saturation scale. The Q2 dependence of the same ratio is also studied by applying the Collins-Soper-Sterman resummation method.

  11. Idealized models of the joint probability distribution of wind speeds

    NASA Astrophysics Data System (ADS)

    Monahan, Adam H.

    2018-05-01

    The joint probability distribution of wind speeds at two separate locations in space or points in time completely characterizes the statistical dependence of these two quantities, providing more information than linear measures such as correlation. In this study, we consider two models of the joint distribution of wind speeds obtained from idealized models of the dependence structure of the horizontal wind velocity components. The bivariate Rice distribution follows from assuming that the wind components have Gaussian and isotropic fluctuations. The bivariate Weibull distribution arises from power law transformations of wind speeds corresponding to vector components with Gaussian, isotropic, mean-zero variability. Maximum likelihood estimates of these distributions are compared using wind speed data from the mid-troposphere, from different altitudes at the Cabauw tower in the Netherlands, and from scatterometer observations over the sea surface. While the bivariate Rice distribution is more flexible and can represent a broader class of dependence structures, the bivariate Weibull distribution is mathematically simpler and may be more convenient in many applications. The complexity of the mathematical expressions obtained for the joint distributions suggests that the development of explicit functional forms for multivariate speed distributions from distributions of the components will not be practical for more complicated dependence structure or more than two speed variables.

  12. Transfer function concept for ultrasonic characterization of material microstructures

    NASA Technical Reports Server (NTRS)

    Vary, A.; Kautz, H. E.

    1986-01-01

    The approach given depends on treating material microstructures as elastomechanical filters that have analytically definable transfer functions. These transfer functions can be defined in terms of the frequency dependence of the ultrasonic attenuation coefficient. The transfer function concept provides a basis for synthesizing expressions that characterize polycrystalline materials relative to microstructural factors such as mean grain size, grain-size distribution functions, and grain boundary energy transmission. Although the approach is nonrigorous, it leads to a rational basis for combining the previously mentioned diverse and fragmented equations for ultrasonic attenuation coefficients.

  13. 137Cs distribution among annual rings of different tree species contaminated after the Chernobyl accident.

    PubMed

    Soukhova, N V; Fesenko, S V; Klein, D; Spiridonov, S I; Sanzharova, N I; Badot, P M

    2003-01-01

    The distributions of 137Cs among annual rings of Pinus sylvestris and Betula pendula at four experimental sites located in the most contaminated areas in the Russian territory after the Chernobyl accident in 1986 were studied. Trees of different ages were sampled from four forest sites with different tree compositions and soil properties. The data analysis shows that 137Cs is very mobile in wood and the 1986 rings do not show the highest contamination. The difference between pine and birch in the pattern of radial 137Cs distribution can be satisfactorily explained by the difference in radial ray composition. 137Cs radial distribution in the wood can be described as the sum of two exponential functions for both species. The function parameters are height, age and species dependent. The distribution of 137Cs in birch wood reveals much more pronounced dependence on site characteristics and/or the age of trees than pines. The data obtained can be used to assess 137Cs content in wood.

  14. Distributed Humidity Sensing in PMMA Optical Fibers at 500 nm and 650 nm Wavelengths.

    PubMed

    Liehr, Sascha; Breithaupt, Mathias; Krebber, Katerina

    2017-03-31

    Distributed measurement of humidity is a sought-after capability for various fields of application, especially in the civil engineering and structural health monitoring sectors. This article presents a method for distributed humidity sensing along polymethyl methacrylate (PMMA) polymer optical fibers (POFs) by analyzing wavelength-dependent Rayleigh backscattering and attenuation characteristics at 500 nm and 650 nm wavelengths. Spatially resolved humidity sensing is obtained from backscatter traces of a dual-wavelength optical time domain reflectometer (OTDR). Backscatter dependence, attenuation dependence as well as the fiber length change are characterized as functions of relative humidity. Cross-sensitivity effects are discussed and quantified. The evaluation of the humidity-dependent backscatter effects at the two wavelength measurements allows for distributed and unambiguous measurement of relative humidity. The technique can be readily employed with low-cost standard polymer optical fibers and commercial OTDR devices.

  15. On the synchrotron emission in kinetic simulations of runaway electrons in magnetic confinement fusion plasmas

    NASA Astrophysics Data System (ADS)

    Carbajal, L.; del-Castillo-Negrete, D.

    2017-12-01

    Developing avoidance or mitigation strategies of runaway electrons (REs) in magnetic confinement fusion (MCF) plasmas is of crucial importance for the safe operation of ITER. In order to develop these strategies, an accurate diagnostic capability that allows good estimates of the RE distribution function in these plasmas is needed. Synchrotron radiation (SR) of RE in MCF, besides of being one of the main damping mechanisms for RE in the high energy relativistic regime, is routinely used in current MCF experiments to infer the parameters of RE energy and pitch angle distribution functions. In the present paper we address the long standing question about what are the relationships between different REs distribution functions and their corresponding synchrotron emission simultaneously including: full-orbit effects, information of the spectral and angular distribution of SR of each electron, and basic geometric optics of a camera. We study the spatial distribution of the SR on the poloidal plane, and the statistical properties of the expected value of the synchrotron spectra of REs. We observe a strong dependence of the synchrotron emission measured by the camera on the pitch angle distribution of runaways, namely we find that crescent shapes of the spatial distribution of the SR as measured by the camera relate to RE distributions with small pitch angles, while ellipse shapes relate to distributions of runaways with larger the pitch angles. A weak dependence of the synchrotron emission measured by the camera with the RE energy, value of the q-profile at the edge, and the chosen range of wavelengths is observed. Furthermore, we find that oversimplifying the angular dependence of the SR changes the shape of the synchrotron spectra, and overestimates its amplitude by approximately 20 times for avalanching runaways and by approximately 60 times for mono-energetic distributions of runaways1.

  16. Universal noise and Efimov physics

    NASA Astrophysics Data System (ADS)

    Nicholson, Amy N.

    2016-03-01

    Probability distributions for correlation functions of particles interacting via random-valued fields are discussed as a novel tool for determining the spectrum of a theory. In particular, this method is used to determine the energies of universal N-body clusters tied to Efimov trimers, for even N, by investigating the distribution of a correlation function of two particles at unitarity. Using numerical evidence that this distribution is log-normal, an analytical prediction for the N-dependence of the N-body binding energies is made.

  17. Time-Frequency Distribution Analyses of Ku-Band Radar Doppler Echo Signals

    NASA Astrophysics Data System (ADS)

    Bujaković, Dimitrije; Andrić, Milenko; Bondžulić, Boban; Mitrović, Srđan; Simić, Slobodan

    2015-03-01

    Real radar echo signals of a pedestrian, vehicle and group of helicopters are analyzed in order to maximize signal energy around central Doppler frequency in time-frequency plane. An optimization, preserving this concentration, is suggested based on three well-known concentration measures. Various window functions and time-frequency distributions were optimization inputs. Conducted experiments on an analytic and three real signals have shown that energy concentration significantly depends on used time-frequency distribution and window function, for all three used criteria.

  18. Comparing T-odd and T-even spin sum rules

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Teryaev, O.V.

    2015-04-10

    Sum rules for T-even and T-odd structure functions and parton distributions are considered. The case of spin-dependent distributions related to energy-momentum tensor (EMT) is specifically addressed. The Burkardt sum rule for T-odd Sivers functions may be related to EMT provided the imaginary prescription for gluonic pole correlator is incorporated. The momentum sum rule for deuteron tensor spin structure function allows one to probe indirectly the gravity couplings to quarks and gluons.

  19. Using the Ab Initio Molecular Dynamics Method for Simulating the Peculiarities in the Temperature Dependence of Liquid Bismuth Properties

    NASA Astrophysics Data System (ADS)

    Yuryev, A. A.; Gelchinski, B. R.; Vatolin, N. A.

    2018-03-01

    The specific features pertinent to the temperature dependence of the electronic and atomic properties of liquid bismuth that have been observed in experiments are investigated according to the ab initio molecular dynamics method using the SIESTA open software package. The density of electronic states, the radial distribution function of atoms, and the self-diffusion coefficient are calculated for the temperature range from the melting point equal to 545 K to 1500 K. The calculated data are in good agreement with the experimental data. It is found that the position of the first peak in the radial distribution function of atoms and the self-diffusion coefficient are characterized by a nonmonotonic dependence under the conditions of superheating by approximately 150 K above the melting temperature. In the authors' opinion, this dependence feature is attributed to a change in the liquid short-range order structure.

  20. Extraction of quark transversity distribution and Collins fragmentation functions with QCD evolution

    DOE PAGES

    Kang, Zhong-Bo; Prokudin, Alexei; Sun, Peng; ...

    2016-01-13

    In this paper, we study the transverse momentum dependent (TMD) evolution of the Collins azimuthal asymmetries in e +e - annihilations and semi-inclusive hadron production in deep inelastic scattering (SIDIS) processes. All the relevant coefficients are calculated up to the next-to-leading logarithmic (NLL) order accuracy. By applying the TMD evolution at the approximate NLL order in the Collins- Soper-Sterman (CSS) formalism, we extract transversity distributions for u and d quarks and Collins fragmentation functions from current experimental data by a global analysis of the Collins asymmetries in back-to-back di-hadron productions in e +e - annihilations measured by BELLE and BABARmore » Collaborations and SIDIS data from HERMES, COMPASS, and JLab HALL A experiments. The impact of the evolution effects and the relevant theoretical uncertainties are discussed. We further discuss the TMD interpretation for our results, and illustrate the unpolarized quark distribution, transversity distribution, unpolarized quark fragmentation and Collins fragmentation functions depending on the transverse momentum and the hard momentum scale. Finally, we give predictions and discuss impact of future experiments.« less

  1. Extraction of quark transversity distribution and Collins fragmentation functions with QCD evolution

    NASA Astrophysics Data System (ADS)

    Kang, Zhong-Bo; Prokudin, Alexei; Sun, Peng; Yuan, Feng

    2016-01-01

    We study the transverse-momentum-dependent (TMD) evolution of the Collins azimuthal asymmetries in e+e- annihilations and semi-inclusive hadron production in deep inelastic scattering processes. All the relevant coefficients are calculated up to the next-to-leading-logarithmic-order accuracy. By applying the TMD evolution at the approximate next-to-leading-logarithmic order in the Collins-Soper-Sterman formalism, we extract transversity distributions for u and d quarks and Collins fragmentation functions from current experimental data by a global analysis of the Collins asymmetries in back-to-back dihadron productions in e+e- annihilations measured by BELLE and BABAR collaborations and semi-inclusive hadron production in deep inelastic scattering data from HERMES, COMPASS, and JLab HALL A experiments. The impact of the evolution effects and the relevant theoretical uncertainties are discussed. We further discuss the TMD interpretation for our results and illustrate the unpolarized quark distribution, transversity distribution, unpolarized quark fragmentation, and Collins fragmentation functions depending on the transverse momentum and the hard momentum scale. We make detailed predictions for future experiments and discuss their impact.

  2. Extraction of quark transversity distribution and Collins fragmentation functions with QCD evolution

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kang, Zhong-Bo; Prokudin, Alexei; Sun, Peng

    In this paper, we study the transverse momentum dependent (TMD) evolution of the Collins azimuthal asymmetries in e +e - annihilations and semi-inclusive hadron production in deep inelastic scattering (SIDIS) processes. All the relevant coefficients are calculated up to the next-to-leading logarithmic (NLL) order accuracy. By applying the TMD evolution at the approximate NLL order in the Collins- Soper-Sterman (CSS) formalism, we extract transversity distributions for u and d quarks and Collins fragmentation functions from current experimental data by a global analysis of the Collins asymmetries in back-to-back di-hadron productions in e +e - annihilations measured by BELLE and BABARmore » Collaborations and SIDIS data from HERMES, COMPASS, and JLab HALL A experiments. The impact of the evolution effects and the relevant theoretical uncertainties are discussed. We further discuss the TMD interpretation for our results, and illustrate the unpolarized quark distribution, transversity distribution, unpolarized quark fragmentation and Collins fragmentation functions depending on the transverse momentum and the hard momentum scale. Finally, we give predictions and discuss impact of future experiments.« less

  3. Transverse momentum dependent (TMD) parton distribution functions: Status and prospects*

    DOE PAGES

    Angeles-Martinez, R.; Bacchetta, A.; Balitsky, Ian I.; ...

    2015-01-01

    In this study, we review transverse momentum dependent (TMD) parton distribution functions, their application to topical issues in high-energy physics phenomenology, and their theoretical connections with QCD resummation, evolution and factorization theorems. We illustrate the use of TMDs via examples of multi-scale problems in hadronic collisions. These include transverse momentum q T spectra of Higgs and vector bosons for low q T, and azimuthal correlations in the production of multiple jets associated with heavy bosons at large jet masses. We discuss computational tools for TMDs, and present the application of a new tool, TMD LIB, to parton density fits andmore » parameterizations.« less

  4. [Study of inversion and classification of particle size distribution under dependent model algorithm].

    PubMed

    Sun, Xiao-Gang; Tang, Hong; Yuan, Gui-Bin

    2008-05-01

    For the total light scattering particle sizing technique, an inversion and classification method was proposed with the dependent model algorithm. The measured particle system was inversed simultaneously by different particle distribution functions whose mathematic model was known in advance, and then classified according to the inversion errors. The simulation experiments illustrated that it is feasible to use the inversion errors to determine the particle size distribution. The particle size distribution function was obtained accurately at only three wavelengths in the visible light range with the genetic algorithm, and the inversion results were steady and reliable, which decreased the number of multi wavelengths to the greatest extent and increased the selectivity of light source. The single peak distribution inversion error was less than 5% and the bimodal distribution inversion error was less than 10% when 5% stochastic noise was put in the transmission extinction measurement values at two wavelengths. The running time of this method was less than 2 s. The method has advantages of simplicity, rapidity, and suitability for on-line particle size measurement.

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brodsky, Stanley J.

    Light-Front Quantization – Dirac’s “Front Form” – provides a physical, frame-independent formalism for hadron dynamics and structure. Observables such as structure functions, transverse momentum distributions, and distribution amplitudes are defined from the hadronic LFWFs. One obtains new insights into the hadronic mass scale, the hadronic spectrum, and the functional form of the QCD running coupling in the nonperturbative domain using light-front holography. In addition, superconformal algebra leads to remarkable supersymmetric relations between mesons and baryons. I also discuss evidence that the antishadowing of nuclear structure functions is nonuniversal; i.e., flavor dependent, and why shadowing and antishadowing phenomena may be incompatiblemore » with the momentum and other sum rules for the nuclear parton distribution functions.« less

  6. Modeling the resilience of critical infrastructure: the role of network dependencies.

    PubMed

    Guidotti, Roberto; Chmielewski, Hana; Unnikrishnan, Vipin; Gardoni, Paolo; McAllister, Therese; van de Lindt, John

    2016-01-01

    Water and wastewater network, electric power network, transportation network, communication network, and information technology network are among the critical infrastructure in our communities; their disruption during and after hazard events greatly affects communities' well-being, economic security, social welfare, and public health. In addition, a disruption in one network may cause disruption to other networks and lead to their reduced functionality. This paper presents a unified theoretical methodology for the modeling of dependent/interdependent infrastructure networks and incorporates it in a six-step probabilistic procedure to assess their resilience. Both the methodology and the procedure are general, can be applied to any infrastructure network and hazard, and can model different types of dependencies between networks. As an illustration, the paper models the direct effects of seismic events on the functionality of a potable water distribution network and the cascading effects of the damage of the electric power network (EPN) on the potable water distribution network (WN). The results quantify the loss of functionality and delay in the recovery process due to dependency of the WN on the EPN. The results show the importance of capturing the dependency between networks in modeling the resilience of critical infrastructure.

  7. Modeling the resilience of critical infrastructure: the role of network dependencies

    PubMed Central

    Guidotti, Roberto; Chmielewski, Hana; Unnikrishnan, Vipin; Gardoni, Paolo; McAllister, Therese; van de Lindt, John

    2017-01-01

    Water and wastewater network, electric power network, transportation network, communication network, and information technology network are among the critical infrastructure in our communities; their disruption during and after hazard events greatly affects communities’ well-being, economic security, social welfare, and public health. In addition, a disruption in one network may cause disruption to other networks and lead to their reduced functionality. This paper presents a unified theoretical methodology for the modeling of dependent/interdependent infrastructure networks and incorporates it in a six-step probabilistic procedure to assess their resilience. Both the methodology and the procedure are general, can be applied to any infrastructure network and hazard, and can model different types of dependencies between networks. As an illustration, the paper models the direct effects of seismic events on the functionality of a potable water distribution network and the cascading effects of the damage of the electric power network (EPN) on the potable water distribution network (WN). The results quantify the loss of functionality and delay in the recovery process due to dependency of the WN on the EPN. The results show the importance of capturing the dependency between networks in modeling the resilience of critical infrastructure. PMID:28825037

  8. Computational models of O-LM cells are recruited by low or high theta frequency inputs depending on h-channel distributions

    PubMed Central

    Sekulić, Vladislav; Skinner, Frances K

    2017-01-01

    Although biophysical details of inhibitory neurons are becoming known, it is challenging to map these details onto function. Oriens-lacunosum/moleculare (O-LM) cells are inhibitory cells in the hippocampus that gate information flow, firing while phase-locked to theta rhythms. We build on our existing computational model database of O-LM cells to link model with function. We place our models in high-conductance states and modulate inhibitory inputs at a wide range of frequencies. We find preferred spiking recruitment of models at high (4–9 Hz) or low (2–5 Hz) theta depending on, respectively, the presence or absence of h-channels on their dendrites. This also depends on slow delayed-rectifier potassium channels, and preferred theta ranges shift when h-channels are potentiated by cyclic AMP. Our results suggest that O-LM cells can be differentially recruited by frequency-modulated inputs depending on specific channel types and distributions. This work exposes a strategy for understanding how biophysical characteristics contribute to function. DOI: http://dx.doi.org/10.7554/eLife.22962.001 PMID:28318488

  9. Quark fragmentation functions in NJL-jet model

    NASA Astrophysics Data System (ADS)

    Bentz, Wolfgang; Matevosyan, Hrayr; Thomas, Anthony

    2014-09-01

    We report on our studies of quark fragmentation functions in the Nambu-Jona-Lasinio (NJL) - jet model. The results of Monte-Carlo simulations for the fragmentation functions to mesons and nucleons, as well as to pion and kaon pairs (dihadron fragmentation functions) are presented. The important role of intermediate vector meson resonances for those semi-inclusive deep inelastic production processes is emphasized. Our studies are very relevant for the extraction of transverse momentum dependent quark distribution functions from measured scattering cross sections. We report on our studies of quark fragmentation functions in the Nambu-Jona-Lasinio (NJL) - jet model. The results of Monte-Carlo simulations for the fragmentation functions to mesons and nucleons, as well as to pion and kaon pairs (dihadron fragmentation functions) are presented. The important role of intermediate vector meson resonances for those semi-inclusive deep inelastic production processes is emphasized. Our studies are very relevant for the extraction of transverse momentum dependent quark distribution functions from measured scattering cross sections. Supported by Grant in Aid for Scientific Research, Japanese Ministry of Education, Culture, Sports, Science and Technology, Project No. 20168769.

  10. Exact collisional moments for plasma fluid theories

    NASA Astrophysics Data System (ADS)

    Pfefferlé, D.; Hirvijoki, E.; Lingam, M.

    2017-04-01

    The velocity-space moments of the often troublesome nonlinear Landau collision operator are expressed exactly in terms of multi-index Hermite-polynomial moments of distribution functions. The collisional moments are shown to be generated by derivatives of two well-known functions, namely, the Rosenbluth-MacDonald-Judd-Trubnikov potentials for a Gaussian distribution. The resulting formula has a nonlinear dependency on the relative mean flow of the colliding species normalised to the root-mean-square of the corresponding thermal velocities and a bilinear dependency on densities and higher-order velocity moments of the distribution functions, with no restriction on temperature, flow, or mass ratio of the species. The result can be applied to both the classic transport theory of plasmas that relies on the Chapman-Enskog method, as well as to derive collisional fluid equations that follow Grad's moment approach. As an illustrative example, we provide the collisional ten-moment equations with exact conservation laws for momentum- and energy-transfer rates.

  11. Exact collisional moments for plasma fluid theories

    NASA Astrophysics Data System (ADS)

    Pfefferle, David; Hirvijoki, Eero; Lingam, Manasvi

    2017-10-01

    The velocity-space moments of the often troublesome nonlinear Landau collision operator are expressed exactly in terms of multi-index Hermite-polynomial moments of the distribution functions. The collisional moments are shown to be generated by derivatives of two well-known functions, namely the Rosenbluth-MacDonald-Judd-Trubnikov potentials for a Gaussian distribution. The resulting formula has a nonlinear dependency on the relative mean flow of the colliding species normalised to the root-mean-square of the corresponding thermal velocities, and a bilinear dependency on densities and higher-order velocity moments of the distribution functions, with no restriction on temperature, flow or mass ratio of the species. The result can be applied to both the classic transport theory of plasmas, that relies on the Chapman-Enskog method, as well as to deriving collisional fluid equations that follow Grad's moment approach. As an illustrative example, we provide the collisional ten-moment equations with exact conservation laws for momentum- and energy-transfer rate.

  12. Exact collisional moments for plasma fluid theories

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pfefferlé, D.; Hirvijoki, E.; Lingam, M.

    The velocity-space moments of the often troublesome nonlinear Landau collision operator are expressed exactly in terms of multi-index Hermite-polynomial moments of distribution functions. The collisional moments are shown to be generated by derivatives of two well-known functions, namely, the Rosenbluth-MacDonald-Judd-Trubnikov potentials for a Gaussian distribution. The resulting formula has a nonlinear dependency on the relative mean flow of the colliding species normalised to the root-mean-square of the corresponding thermal velocities and a bilinear dependency on densities and higher-order velocity moments of the distribution functions, with no restriction on temperature, flow, or mass ratio of the species. The result can bemore » applied to both the classic transport theory of plasmas that relies on the Chapman-Enskog method, as well as to derive collisional fluid equations that follow Grad's moment approach. As an illustrative example, we provide the collisional ten-moment equations with exact conservation laws for momentum-and energy-transfer rates.« less

  13. Exact collisional moments for plasma fluid theories

    DOE PAGES

    Pfefferlé, D.; Hirvijoki, E.; Lingam, M.

    2017-04-01

    The velocity-space moments of the often troublesome nonlinear Landau collision operator are expressed exactly in terms of multi-index Hermite-polynomial moments of distribution functions. The collisional moments are shown to be generated by derivatives of two well-known functions, namely, the Rosenbluth-MacDonald-Judd-Trubnikov potentials for a Gaussian distribution. The resulting formula has a nonlinear dependency on the relative mean flow of the colliding species normalised to the root-mean-square of the corresponding thermal velocities and a bilinear dependency on densities and higher-order velocity moments of the distribution functions, with no restriction on temperature, flow, or mass ratio of the species. The result can bemore » applied to both the classic transport theory of plasmas that relies on the Chapman-Enskog method, as well as to derive collisional fluid equations that follow Grad's moment approach. As an illustrative example, we provide the collisional ten-moment equations with exact conservation laws for momentum-and energy-transfer rates.« less

  14. Intertime jump statistics of state-dependent Poisson processes.

    PubMed

    Daly, Edoardo; Porporato, Amilcare

    2007-01-01

    A method to obtain the probability distribution of the interarrival times of jump occurrences in systems driven by state-dependent Poisson noise is proposed. Such a method uses the survivor function obtained by a modified version of the master equation associated to the stochastic process under analysis. A model for the timing of human activities shows the capability of state-dependent Poisson noise to generate power-law distributions. The application of the method to a model for neuron dynamics and to a hydrological model accounting for land-atmosphere interaction elucidates the origin of characteristic recurrence intervals and possible persistence in state-dependent Poisson models.

  15. Functional K(ATP) channels in the rat retinal microvasculature: topographical distribution, redox regulation, spermine modulation and diabetic alteration.

    PubMed

    Ishizaki, Eisuke; Fukumoto, Masanori; Puro, Donald G

    2009-05-15

    The essential task of the circulatory system is to match blood flow to local metabolic demand. However, much remains to be learned about this process. To better understand how local perfusion is regulated, we focused on the functional organization of the retinal microvasculature, which is particularly well adapted for the local control of perfusion. Here, we assessed the distribution and regulation of functional K(ATP) channels whose activation mediates the hyperpolarization induced by adenosine. Using microvascular complexes freshly isolated from the rat retina, we found a topographical heterogeneity in the distribution of functional K(ATP) channels; capillaries generate most of the K(ATP) current. The initiation of K(ATP)-induced responses in the capillaries supports the concept that the regulation of retinal perfusion is highly decentralized. Additional study revealed that microvascular K(ATP) channels are redox sensitive, with oxidants increasing their activity. Furthermore, the oxidant-mediated activation of these channels is driven by the polyamine spermine, whose catabolism produces oxidants. In addition, our observation that spermine-dependent oxidation occurs predominately in the capillaries accounts for why they generate most of the K(ATP) current detected in retinal microvascular complexes. Here, we also analysed retinal microvessels of streptozotocin-injected rats. We found that soon after the onset of diabetes, an increase in spermine-dependent oxidation at proximal microvascular sites boosts their K(ATP) current and thereby virtually eliminates the topographical heterogeneity of functional K(ATP) channels. We conclude that spermine-dependent oxidation is a previously unrecognized mechanism by which this polyamine modulates ion channels; in addition to a physiological role, spermine-dependent oxidation may also contribute to microvascular dysfunction in the diabetic retina.

  16. Extra dimension searches at hadron colliders to next-to-leading order-QCD

    NASA Astrophysics Data System (ADS)

    Kumar, M. C.; Mathews, Prakash; Ravindran, V.

    2007-11-01

    The quantitative impact of NLO-QCD corrections for searches of large and warped extra dimensions at hadron colliders are investigated for the Drell-Yan process. The K-factor for various observables at hadron colliders are presented. Factorisation, renormalisation scale dependence and uncertainties due to various parton distribution functions are studied. Uncertainties arising from the error on experimental data are estimated using the MRST parton distribution functions.

  17. Particle-size distribution modified effective medium theory and validation by magneto-dielectric Co-Ti substituted BaM ferrite composites

    NASA Astrophysics Data System (ADS)

    Li, Qifan; Chen, Yajie; Harris, Vincent G.

    2018-05-01

    This letter reports an extended effective medium theory (EMT) including particle-size distribution functions to maximize the magnetic properties of magneto-dielectric composites. It is experimentally verified by Co-Ti substituted barium ferrite (BaCoxTixFe12-2xO19)/wax composites with specifically designed particle-size distributions. In the form of an integral equation, the extended EMT formula essentially takes the size-dependent parameters of magnetic particle fillers into account. It predicts the effective permeability of magneto-dielectric composites with various particle-size distributions, indicating an optimal distribution for a population of magnetic particles. The improvement of the optimized effective permeability is significant concerning magnetic particles whose properties are strongly size dependent.

  18. Void probability as a function of the void's shape and scale-invariant models. [in studies of spacial galactic distribution

    NASA Technical Reports Server (NTRS)

    Elizalde, E.; Gaztanaga, E.

    1992-01-01

    The dependence of counts in cells on the shape of the cell for the large scale galaxy distribution is studied. A very concrete prediction can be done concerning the void distribution for scale invariant models. The prediction is tested on a sample of the CfA catalog, and good agreement is found. It is observed that the probability of a cell to be occupied is bigger for some elongated cells. A phenomenological scale invariant model for the observed distribution of the counts in cells, an extension of the negative binomial distribution, is presented in order to illustrate how this dependence can be quantitatively determined. An original, intuitive derivation of this model is presented.

  19. First Renormalized Parton Distribution Functions from Lattice QCD

    NASA Astrophysics Data System (ADS)

    Lin, Huey-Wen; LP3 Collaboration

    2017-09-01

    We present the first lattice-QCD results on the nonperturbatively renormalized parton distribution functions (PDFs). Using X.D. Ji's large-momentum effective theory (LaMET) framework, lattice-QCD hadron structure calculations are able to overcome the longstanding problem of determining the Bjorken- x dependence of PDFs. This has led to numerous additional theoretical works and exciting progress. In this talk, we will address a recent development that implements a step missing from prior lattice-QCD calculations: renormalization, its effects on the nucleon matrix elements, and the resultant changes to the calculated distributions.

  20. Spectroscopic measurement of spin-dependent resonant tunneling through a 3D disorder: the case of MnAs/GaAs/MnAs junctions.

    PubMed

    Garcia, V; Jaffrès, H; George, J-M; Marangolo, M; Eddrief, M; Etgens, V H

    2006-12-15

    We propose an analytical model of spin-dependent resonant tunneling through a 3D assembly of localized states (spread out in energy and in space) in a barrier. An inhomogeneous distribution of localized states leads to resonant tunneling magnetoresistance inversion and asymmetric bias dependence as evidenced with a set of experiments with MnAs/GaAs(7-10 nm)/MnAs tunnel junctions. One of the key parameters of our theory is a dimensionless critical exponent beta scaling the typical extension of the localized states over the characteristic length scale of the spatial distribution function. Furthermore, we demonstrate, through experiments with localized states introduced preferentially in the middle of the barrier, the influence of an homogeneous distribution on the spin-dependent transport properties.

  1. On the Wigner law in dilute random matrices

    NASA Astrophysics Data System (ADS)

    Khorunzhy, A.; Rodgers, G. J.

    1998-12-01

    We consider ensembles of N × N symmetric matrices whose entries are weakly dependent random variables. We show that random dilution can change the limiting eigenvalue distribution of such matrices. We prove that under general and natural conditions the normalised eigenvalue counting function coincides with the semicircle (Wigner) distribution in the limit N → ∞. This can be explained by the observation that dilution (or more generally, random modulation) eliminates the weak dependence (or correlations) between random matrix entries. It also supports our earlier conjecture that the Wigner distribution is stable to random dilution and modulation.

  2. Electron transport in furfural: dependence of the electron ranges on the cross sections and the energy loss distribution functions

    NASA Astrophysics Data System (ADS)

    Ellis-Gibbings, L.; Krupa, K.; Colmenares, R.; Blanco, F.; Muńoz, A.; Mendes, M.; Ferreira da Silva, F.; Limá Vieira, P.; Jones, D. B.; Brunger, M. J.; García, G.

    2016-09-01

    Recent theoretical and experimental studies have provided a complete set of differential and integral electron scattering cross section data from furfural over a broad energy range. The energy loss distribution functions have been determined in this study by averaging electron energy loss spectra for different incident energies and scattering angles. All these data have been used as input parameters for an event by event Monte Carlo simulation procedure to obtain the electron energy deposition patterns and electron ranges in liquid furfural. The dependence of these results on the input cross sections is then analysed to determine the uncertainty of the simulated values.

  3. Far-infrared /FIR/ optical black bidirectional reflectance distribution function /BRDF/

    NASA Technical Reports Server (NTRS)

    Smith, S. M.

    1981-01-01

    A nonspecular reflectometer and its operation at far-infrared wavelengths are described. Large differences in nonspecular reflectance were found to exist between different optically black coatings. Normal incidence bidirectional reflectance distribution function /BRDF) measurements at wavelengths between 12 and 316 microns of three black coatings show that their mean BRDFs increase with wavelength. The specularity of two of these coatings also showed a strong wavelength dependence, while the specularity of one coating seemed independent of wavelength. The BRDF of one coating depended on the angle of incidence at 12 and 38 microns, but not at 316 microns. Beyond 200 microns, it was found necessary to correct the measurements for the beam spread of the instrument.

  4. Maximum Entropy Principle for Transportation

    NASA Astrophysics Data System (ADS)

    Bilich, F.; DaSilva, R.

    2008-11-01

    In this work we deal with modeling of the transportation phenomenon for use in the transportation planning process and policy-impact studies. The model developed is based on the dependence concept, i.e., the notion that the probability of a trip starting at origin i is dependent on the probability of a trip ending at destination j given that the factors (such as travel time, cost, etc.) which affect travel between origin i and destination j assume some specific values. The derivation of the solution of the model employs the maximum entropy principle combining a priori multinomial distribution with a trip utility concept. This model is utilized to forecast trip distributions under a variety of policy changes and scenarios. The dependence coefficients are obtained from a regression equation where the functional form is derived based on conditional probability and perception of factors from experimental psychology. The dependence coefficients encode all the information that was previously encoded in the form of constraints. In addition, the dependence coefficients encode information that cannot be expressed in the form of constraints for practical reasons, namely, computational tractability. The equivalence between the standard formulation (i.e., objective function with constraints) and the dependence formulation (i.e., without constraints) is demonstrated. The parameters of the dependence-based trip-distribution model are estimated, and the model is also validated using commercial air travel data in the U.S. In addition, policy impact analyses (such as allowance of supersonic flights inside the U.S. and user surcharge at noise-impacted airports) on air travel are performed.

  5. Beam energy dependence of pseudorapidity distributions of charged particles produced in relativistic heavy-ion collisions

    NASA Astrophysics Data System (ADS)

    Basu, Sumit; Nayak, Tapan K.; Datta, Kaustuv

    2016-06-01

    Heavy-ion collisions at the Relativistic Heavy Ion Collider at Brookhaven National Laboratory and the Large Hadron Collider at CERN probe matter at extreme conditions of temperature and energy density. Most of the global properties of the collisions can be extracted from the measurements of charged-particle multiplicity and pseudorapidity (η ) distributions. We have shown that the available experimental data on beam energy and centrality dependence of η distributions in heavy-ion (Au +Au or Pb +Pb ) collisions from √{sNN}=7.7 GeV to 2.76 TeV are reasonably well described by the AMPT model, which is used for further exploration. The nature of the η distributions has been described by a double Gaussian function using a set of fit parameters, which exhibit a regular pattern as a function of beam energy. By extrapolating the parameters to a higher energy of √{sNN}=5.02 TeV, we have obtained the charged-particle multiplicity densities, η distributions, and energy densities for various centralities. Incidentally, these results match well with some of the recently published data by the ALICE Collaboration.

  6. Potential and flux field landscape theory. I. Global stability and dynamics of spatially dependent non-equilibrium systems.

    PubMed

    Wu, Wei; Wang, Jin

    2013-09-28

    We established a potential and flux field landscape theory to quantify the global stability and dynamics of general spatially dependent non-equilibrium deterministic and stochastic systems. We extended our potential and flux landscape theory for spatially independent non-equilibrium stochastic systems described by Fokker-Planck equations to spatially dependent stochastic systems governed by general functional Fokker-Planck equations as well as functional Kramers-Moyal equations derived from master equations. Our general theory is applied to reaction-diffusion systems. For equilibrium spatially dependent systems with detailed balance, the potential field landscape alone, defined in terms of the steady state probability distribution functional, determines the global stability and dynamics of the system. The global stability of the system is closely related to the topography of the potential field landscape in terms of the basins of attraction and barrier heights in the field configuration state space. The effective driving force of the system is generated by the functional gradient of the potential field alone. For non-equilibrium spatially dependent systems, the curl probability flux field is indispensable in breaking detailed balance and creating non-equilibrium condition for the system. A complete characterization of the non-equilibrium dynamics of the spatially dependent system requires both the potential field and the curl probability flux field. While the non-equilibrium potential field landscape attracts the system down along the functional gradient similar to an electron moving in an electric field, the non-equilibrium flux field drives the system in a curly way similar to an electron moving in a magnetic field. In the small fluctuation limit, the intrinsic potential field as the small fluctuation limit of the potential field for spatially dependent non-equilibrium systems, which is closely related to the steady state probability distribution functional, is found to be a Lyapunov functional of the deterministic spatially dependent system. Therefore, the intrinsic potential landscape can characterize the global stability of the deterministic system. The relative entropy functional of the stochastic spatially dependent non-equilibrium system is found to be the Lyapunov functional of the stochastic dynamics of the system. Therefore, the relative entropy functional quantifies the global stability of the stochastic system with finite fluctuations. Our theory offers an alternative general approach to other field-theoretic techniques, to study the global stability and dynamics of spatially dependent non-equilibrium field systems. It can be applied to many physical, chemical, and biological spatially dependent non-equilibrium systems.

  7. Void probability as a function of the void's shape and scale-invariant models

    NASA Technical Reports Server (NTRS)

    Elizalde, E.; Gaztanaga, E.

    1991-01-01

    The dependence of counts in cells on the shape of the cell for the large scale galaxy distribution is studied. A very concrete prediction can be done concerning the void distribution for scale invariant models. The prediction is tested on a sample of the CfA catalog, and good agreement is found. It is observed that the probability of a cell to be occupied is bigger for some elongated cells. A phenomenological scale invariant model for the observed distribution of the counts in cells, an extension of the negative binomial distribution, is presented in order to illustrate how this dependence can be quantitatively determined. An original, intuitive derivation of this model is presented.

  8. New approach in the quantum statistical parton distribution

    NASA Astrophysics Data System (ADS)

    Sohaily, Sozha; Vaziri (Khamedi), Mohammad

    2017-12-01

    An attempt to find simple parton distribution functions (PDFs) based on quantum statistical approach is presented. The PDFs described by the statistical model have very interesting physical properties which help to understand the structure of partons. The longitudinal portion of distribution functions are given by applying the maximum entropy principle. An interesting and simple approach to determine the statistical variables exactly without fitting and fixing parameters is surveyed. Analytic expressions of the x-dependent PDFs are obtained in the whole x region [0, 1], and the computed distributions are consistent with the experimental observations. The agreement with experimental data, gives a robust confirm of our simple presented statistical model.

  9. Semi-inclusive deep inelastic scattering at small- x

    NASA Astrophysics Data System (ADS)

    Marquet, Cyrille; Xiao, Bo-Wen; Yuan, Feng

    2009-11-01

    We study the semi-inclusive hadron production in deep inelastic scattering at small-x. A transverse-momentum-dependent factorization is found consistent with the results calculated in the small-x approaches, such as the color-dipole framework and the color glass condensate, in the appropriate kinematic region at the lowest order. The transverse-momentum-dependent quark distribution can be studied in this process as a probe for the small-x saturation physics. Especially, the ratio of quark distributions as a function of transverse momentum at different x demonstrates strong dependence on the saturation scale. The Q2 dependence of the same ratio is also studied by applying the Collins-Soper-Sterman resummation method.

  10. The transverse momentum distribution of hadrons within jets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kang, Zhong -Bo; Liu, Xiaohui; Ringer, Felix

    We study the transverse momentum distribution of hadrons within jets, where the transverse momentum is defined with respect to the standard jet axis. We consider the case where the jet substructure measurement is performed for an inclusive jet sample pp → jet + X. We demonstrate that this observable provides new opportunities to study transverse momentum dependent fragmentation functions (TMDFFs) which are currently poorly constrained from data, especially for gluons. The factorization of the cross section is obtained within Soft Collinear Effective Theory (SCET), and we show that the relevant TMDFFs are the same as for the more traditional processesmore » semi-inclusive deep inelastic scattering (SIDIS) and electron-positron annihilation. Different than in SIDIS, the observable for the in-jet fragmentation does not depend on TMD parton distribution functions which allows for a cleaner and more direct probe of TMDFFs. We present numerical results and compare to available data from the LHC.« less

  11. Resistance distribution in the hopping percolation model.

    PubMed

    Strelniker, Yakov M; Havlin, Shlomo; Berkovits, Richard; Frydman, Aviad

    2005-07-01

    We study the distribution function P (rho) of the effective resistance rho in two- and three-dimensional random resistor networks of linear size L in the hopping percolation model. In this model each bond has a conductivity taken from an exponential form sigma proportional to exp (-kappar) , where kappa is a measure of disorder and r is a random number, 0< or = r < or =1 . We find that in both the usual strong-disorder regime L/ kappa(nu) >1 (not sensitive to removal of any single bond) and the extreme-disorder regime L/ kappa(nu) <1 (very sensitive to such a removal) the distribution depends only on L/kappa(nu) and can be well approximated by a log-normal function with dispersion b kappa(nu) /L , where b is a coefficient which depends on the type of lattice, and nu is the correlation critical exponent.

  12. The transverse momentum distribution of hadrons within jets

    DOE PAGES

    Kang, Zhong -Bo; Liu, Xiaohui; Ringer, Felix; ...

    2017-11-13

    We study the transverse momentum distribution of hadrons within jets, where the transverse momentum is defined with respect to the standard jet axis. We consider the case where the jet substructure measurement is performed for an inclusive jet sample pp → jet + X. We demonstrate that this observable provides new opportunities to study transverse momentum dependent fragmentation functions (TMDFFs) which are currently poorly constrained from data, especially for gluons. The factorization of the cross section is obtained within Soft Collinear Effective Theory (SCET), and we show that the relevant TMDFFs are the same as for the more traditional processesmore » semi-inclusive deep inelastic scattering (SIDIS) and electron-positron annihilation. Different than in SIDIS, the observable for the in-jet fragmentation does not depend on TMD parton distribution functions which allows for a cleaner and more direct probe of TMDFFs. We present numerical results and compare to available data from the LHC.« less

  13. Generalized time evolution of the homogeneous cooling state of a granular gas with positive and negative coefficient of normal restitution

    NASA Astrophysics Data System (ADS)

    Khalil, Nagi

    2018-04-01

    The homogeneous cooling state (HCS) of a granular gas described by the inelastic Boltzmann equation is reconsidered. As usual, particles are taken as inelastic hard disks or spheres, but now the coefficient of normal restitution α is allowed to take negative values , which is a simple way of modeling more complicated inelastic interactions. The distribution function of the HCS is studied at the long-time limit, as well as intermediate times. At the long-time limit, the relevant information of the HCS is given by a scaling distribution function , where the time dependence occurs through a dimensionless velocity c. For , remains close to the Gaussian distribution in the thermal region, its cumulants and exponential tails being well described by the first Sonine approximation. In contrast, for , the distribution function becomes multimodal, its maxima located at , and its observable tails algebraic. The latter is a consequence of an unbalanced relaxation–dissipation competition, and is analytically demonstrated for , thanks to a reduction of the Boltzmann equation to a Fokker–Plank-like equation. Finally, a generalized scaling solution to the Boltzmann equation is also found . Apart from the time dependence occurring through the dimensionless velocity, depends on time through a new parameter β measuring the departure of the HCS from its long-time limit. It is shown that describes the time evolution of the HCS for almost all times. The relevance of the new scaling is also discussed.

  14. Models of violently relaxed galaxies

    NASA Astrophysics Data System (ADS)

    Merritt, David; Tremaine, Scott; Johnstone, Doug

    1989-02-01

    The properties of spherical self-gravitating models derived from two distribution functions that incorporate, in a crude way, the physics of violent relaxation are investigated. The first distribution function is identical to the one discussed by Stiavelli and Bertin (1985) except for a change in the sign of the 'temperature', i.e., e exp(-aE) to e exp(+aE). It is shown that these 'negative temperature' models provide a much better description of the end-state of violent relaxation than 'positive temperature' models. The second distribution function is similar to the first except for a different dependence on angular momentum. Both distribution functions yield single-parameter families of models with surface density profiles very similar to the R exp 1/4 law. Furthermore, the central concentration of models in both families increases monotonically with the velocity anisotropy, as expected in systems that formed through cold collapse.

  15. Implication of observed cloud variability for parameterizations of microphysical and radiative transfer processes in climate models

    NASA Astrophysics Data System (ADS)

    Huang, D.; Liu, Y.

    2014-12-01

    The effects of subgrid cloud variability on grid-average microphysical rates and radiative fluxes are examined by use of long-term retrieval products at the Tropical West Pacific (TWP), Southern Great Plains (SGP), and North Slope of Alaska (NSA) sites of the Department of Energy's Atmospheric Radiation Measurement (ARM) Program. Four commonly used distribution functions, the truncated Gaussian, Gamma, lognormal, and Weibull distributions, are constrained to have the same mean and standard deviation as observed cloud liquid water content. The PDFs are then used to upscale relevant physical processes to obtain grid-average process rates. It is found that the truncated Gaussian representation results in up to 30% mean bias in autoconversion rate whereas the mean bias for the lognormal representation is about 10%. The Gamma and Weibull distribution function performs the best for the grid-average autoconversion rate with the mean relative bias less than 5%. For radiative fluxes, the lognormal and truncated Gaussian representations perform better than the Gamma and Weibull representations. The results show that the optimal choice of subgrid cloud distribution function depends on the nonlinearity of the process of interest and thus there is no single distribution function that works best for all parameterizations. Examination of the scale (window size) dependence of the mean bias indicates that the bias in grid-average process rates monotonically increases with increasing window sizes, suggesting the increasing importance of subgrid variability with increasing grid sizes.

  16. Free vibration of fully functionally graded carbon nanotube reinforced graphite/epoxy laminates

    NASA Astrophysics Data System (ADS)

    Kuo, Shih-Yao

    2018-03-01

    This study provides the first-known vibration analysis of fully functionally graded carbon nanotube reinforced hybrid composite (FFG-CNTRHC) laminates. CNTs are non-uniformly distributed to reinforce the graphite/epoxy laminates. Some CNT distribution functions in the plane and thickness directions are proposed to more efficiently increase the stiffening effect. The rule of mixtures is modified by considering the non-homogeneous material properties of FFG-CNTRHC laminates. The formulation of the location dependent stiffness matrix and mass matrix is derived. The effects of CNT volume fraction and distribution on the natural frequencies of FFG-CNTRHC laminates are discussed. The results reveal that the FFG layout may significantly increase the natural frequencies of FFG-CNTRHC laminate.

  17. Some rules for polydimensional squeezing

    NASA Technical Reports Server (NTRS)

    Manko, Vladimir I.

    1994-01-01

    The review of the following results is presented: For mixed state light of N-mode electromagnetic field described by Wigner function which has generic Gaussian form, the photon distribution function is obtained and expressed explicitly in terms of Hermite polynomials of 2N-variables. The momenta of this distribution are calculated and expressed as functions of matrix invariants of the dispersion matrix. The role of new uncertainty relation depending on photon state mixing parameter is elucidated. New sum rules for Hermite polynomials of several variables are found. The photon statistics of polymode even and odd coherent light and squeezed polymode Schroedinger cat light is given explicitly. Photon distribution for polymode squeezed number states expressed in terms of multivariable Hermite polynomials is discussed.

  18. Bonded-cell model for particle fracture.

    PubMed

    Nguyen, Duc-Hanh; Azéma, Emilien; Sornay, Philippe; Radjai, Farhang

    2015-02-01

    Particle degradation and fracture play an important role in natural granular flows and in many applications of granular materials. We analyze the fracture properties of two-dimensional disklike particles modeled as aggregates of rigid cells bonded along their sides by a cohesive Mohr-Coulomb law and simulated by the contact dynamics method. We show that the compressive strength scales with tensile strength between cells but depends also on the friction coefficient and a parameter describing cell shape distribution. The statistical scatter of compressive strength is well described by the Weibull distribution function with a shape parameter varying from 6 to 10 depending on cell shape distribution. We show that this distribution may be understood in terms of percolating critical intercellular contacts. We propose a random-walk model of critical contacts that leads to particle size dependence of the compressive strength in good agreement with our simulation data.

  19. Searching for the best thermoelectrics through the optimization of transport distribution function

    NASA Astrophysics Data System (ADS)

    Fan, Zheyong; Wang, Hui-Qiong; Zheng, Jin-Cheng

    2011-04-01

    The thermoelectric performance of materials is dependent on the interplay or competition among three key components, the electrical conductivity, thermopower, and thermal conductivity, which can be written as integrals of a single function, the transport distribution function (TDF). Mahan and Sofo [Proc. Natl. Acad. Sci. USA 93, 7436 (1996)] found that, mathematically, the thermoelectric properties could be maximized by a delta-shaped transport distribution, which was associated with a narrow distribution of the energy of the electrons participating in the transport process. In this work, we revisited the shape effect of TDF on thermoelectric figure of merit. It is confirmed both heuristically and numerically that among all the normalized TDF the Dirac delta function leads to the largest thermoelectric figure of merit. Whereas, for the case of TDF being bounded, a rectangular-shape distribution is instead found to be the most favorable one, which could be achieved through nanoroute. Our results also indicate that high thermoelectric figure of merit is associated with appropriate violations of the Wiedemann-Franz law.

  20. Application of Probabilistic Methods for the Determination of an Economically Robust HSCT Configuration

    NASA Technical Reports Server (NTRS)

    Mavris, Dimitri N.; Bandte, Oliver; Schrage, Daniel P.

    1996-01-01

    This paper outlines an approach for the determination of economically viable robust design solutions using the High Speed Civil Transport (HSCT) as a case study. Furthermore, the paper states the advantages of a probability based aircraft design over the traditional point design approach. It also proposes a new methodology called Robust Design Simulation (RDS) which treats customer satisfaction as the ultimate design objective. RDS is based on a probabilistic approach to aerospace systems design, which views the chosen objective as a distribution function introduced by so called noise or uncertainty variables. Since the designer has no control over these variables, a variability distribution is defined for each one of them. The cumulative effect of all these distributions causes the overall variability of the objective function. For cases where the selected objective function depends heavily on these noise variables, it may be desirable to obtain a design solution that minimizes this dependence. The paper outlines a step by step approach on how to achieve such a solution for the HSCT case study and introduces an evaluation criterion which guarantees the highest customer satisfaction. This customer satisfaction is expressed by the probability of achieving objective function values less than a desired target value.

  1. Drell-Yan production at small q T , transverse parton distributions and the collinear anomaly

    NASA Astrophysics Data System (ADS)

    Becher, Thomas; Neubert, Matthias

    2011-06-01

    Using methods from effective field theory, an exact all-order expression for the Drell-Yan cross section at small transverse momentum is derived directly in q T space, in which all large logarithms are resummed. The anomalous dimensions and matching coefficients necessary for resummation at NNLL order are given explicitly. The precise relation between our result and the Collins-Soper-Sterman formula is discussed, and as a by-product the previously unknown three-loop coefficient A (3) is obtained. The naive factorization of the cross section at small transverse momentum is broken by a collinear anomaly, which prevents a process-independent definition of x T -dependent parton distribution functions. A factorization theorem is derived for the product of two such functions, in which the dependence on the hard momentum transfer is separated out. The remainder factors into a product of two functions of longitudinal momentum variables and xT2, whose renormalization-group evolution is derived and solved in closed form. The matching of these functions at small x T onto standard parton distributions is calculated at O(αs), while their anomalous dimensions are known to three loops.

  2. Fourier-transform-based model for carrier transport in semiconductor heterostructures: Longitudinal optical phonon scattering

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lü, X.; Schrottke, L.; Grahn, H. T.

    We present scattering rates for electrons at longitudinal optical phonons within a model completely formulated in the Fourier domain. The total intersubband scattering rates are obtained by averaging over the intrasubband electron distributions. The rates consist of the Fourier components of the electron wave functions and a contribution depending only on the intersubband energies and the intrasubband carrier distributions. The energy-dependent part can be reproduced by a rational function, which allows for the separation of the scattering rates into a dipole-like contribution, an overlap-like contribution, and a contribution which can be neglected for low and intermediate carrier densities of themore » initial subband. For a balance between accuracy and computation time, the number of Fourier components can be adjusted. This approach facilitates an efficient design of complex heterostructures with realistic, temperature- and carrier density-dependent rates.« less

  3. Anomalous transport in fluid field with random waiting time depending on the preceding jump length

    NASA Astrophysics Data System (ADS)

    Zhang, Hong; Li, Guo-Hua

    2016-11-01

    Anomalous (or non-Fickian) transport behaviors of particles have been widely observed in complex porous media. To capture the energy-dependent characteristics of non-Fickian transport of a particle in flow fields, in the present paper a generalized continuous time random walk model whose waiting time probability distribution depends on the preceding jump length is introduced, and the corresponding master equation in Fourier-Laplace space for the distribution of particles is derived. As examples, two generalized advection-dispersion equations for Gaussian distribution and lévy flight with the probability density function of waiting time being quadratic dependent on the preceding jump length are obtained by applying the derived master equation. Project supported by the Foundation for Young Key Teachers of Chengdu University of Technology, China (Grant No. KYGG201414) and the Opening Foundation of Geomathematics Key Laboratory of Sichuan Province, China (Grant No. scsxdz2013009).

  4. Analytical thermal model for end-pumped solid-state lasers

    NASA Astrophysics Data System (ADS)

    Cini, L.; Mackenzie, J. I.

    2017-12-01

    Fundamentally power-limited by thermal effects, the design challenge for end-pumped "bulk" solid-state lasers depends upon knowledge of the temperature gradients within the gain medium. We have developed analytical expressions that can be used to model the temperature distribution and thermal-lens power in end-pumped solid-state lasers. Enabled by the inclusion of a temperature-dependent thermal conductivity, applicable from cryogenic to elevated temperatures, typical pumping distributions are explored and the results compared with accepted models. Key insights are gained through these analytical expressions, such as the dependence of the peak temperature rise in function of the boundary thermal conductance to the heat sink. Our generalized expressions provide simple and time-efficient tools for parametric optimization of the heat distribution in the gain medium based upon the material and pumping constraints.

  5. Peculiarities of the momentum distribution functions of strongly correlated charged fermions

    NASA Astrophysics Data System (ADS)

    Larkin, A. S.; Filinov, V. S.; Fortov, V. E.

    2018-01-01

    New numerical version of the Wigner approach to quantum thermodynamics of strongly coupled systems of particles has been developed for extreme conditions, when analytical approximations based on different kinds of perturbation theories cannot be applied. An explicit analytical expression of the Wigner function has been obtained in linear and harmonic approximations. Fermi statistical effects are accounted for by effective pair pseudopotential depending on coordinates, momenta and degeneracy parameter of particles and taking into account Pauli blocking of fermions. A new quantum Monte-Carlo method for calculations of average values of arbitrary quantum operators has been developed. Calculations of the momentum distribution functions and the pair correlation functions of degenerate ideal Fermi gas have been carried out for testing the developed approach. Comparison of the obtained momentum distribution functions of strongly correlated Coulomb systems with the Maxwell-Boltzmann and the Fermi distributions shows the significant influence of interparticle interaction both at small momenta and in high energy quantum ‘tails’.

  6. Linking age, survival, and transit time distributions

    NASA Astrophysics Data System (ADS)

    Calabrese, Salvatore; Porporato, Amilcare

    2015-10-01

    Although the concepts of age, survival, and transit time have been widely used in many fields, including population dynamics, chemical engineering, and hydrology, a comprehensive mathematical framework is still missing. Here we discuss several relationships among these quantities by starting from the evolution equation for the joint distribution of age and survival, from which the equations for age and survival time readily follow. It also becomes apparent how the statistical dependence between age and survival is directly related to either the age dependence of the loss function or the survival-time dependence of the input function. The solution of the joint distribution equation also allows us to obtain the relationships between the age at exit (or death) and the survival time at input (or birth), as well as to stress the symmetries of the various distributions under time reversal. The transit time is then obtained as a sum of the age and survival time, and its properties are discussed along with the general relationships between their mean values. The special case of steady state case is analyzed in detail. Some examples, inspired by hydrologic applications, are presented to illustrate the theory with the specific results. This article was corrected on 11 Nov 2015. See the end of the full text for details.

  7. Effect of Coulomb friction on orientational correlation and velocity distribution functions in a sheared dilute granular gas.

    PubMed

    Gayen, Bishakhdatta; Alam, Meheboob

    2011-08-01

    From particle simulations of a sheared frictional granular gas, we show that the Coulomb friction can have dramatic effects on orientational correlation as well as on both the translational and angular velocity distribution functions even in the Boltzmann (dilute) limit. The dependence of orientational correlation on friction coefficient (μ) is found to be nonmonotonic, and the Coulomb friction plays a dual role of enhancing or diminishing the orientational correlation, depending on the value of the tangential restitution coefficient (which characterizes the roughness of particles). From the sticking limit (i.e., with no sliding contact) of rough particles, decreasing the Coulomb friction is found to reduce the density and spatial velocity correlations which, together with diminished orientational correlation for small enough μ, are responsible for the transition from non-gaussian to gaussian distribution functions in the double limit of small friction (μ→0) and nearly elastic particles (e→1). This double limit in fact corresponds to perfectly smooth particles, and hence the maxwellian (gaussian) is indeed a solution of the Boltzmann equation for a frictional granular gas in the limit of elastic collisions and zero Coulomb friction at any roughness. The high-velocity tails of both distribution functions seem to follow stretched exponentials even in the presence of Coulomb friction, and the related velocity exponents deviate strongly from a gaussian with increasing friction.

  8. A complete analytical solution of the Fokker-Planck and balance equations for nucleation and growth of crystals

    NASA Astrophysics Data System (ADS)

    Makoveeva, Eugenya V.; Alexandrov, Dmitri V.

    2018-01-01

    This article is concerned with a new analytical description of nucleation and growth of crystals in a metastable mushy layer (supercooled liquid or supersaturated solution) at the intermediate stage of phase transition. The model under consideration consisting of the non-stationary integro-differential system of governing equations for the distribution function and metastability level is analytically solved by means of the saddle-point technique for the Laplace-type integral in the case of arbitrary nucleation kinetics and time-dependent heat or mass sources in the balance equation. We demonstrate that the time-dependent distribution function approaches the stationary profile in course of time. This article is part of the theme issue `From atomistic interfaces to dendritic patterns'.

  9. Time-dependent density functional theory (TD-DFT) coupled with reference interaction site model self-consistent field explicitly including spatial electron density distribution (RISM-SCF-SEDD)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yokogawa, D., E-mail: d.yokogawa@chem.nagoya-u.ac.jp; Institute of Transformative Bio-Molecules

    2016-09-07

    Theoretical approach to design bright bio-imaging molecules is one of the most progressing ones. However, because of the system size and computational accuracy, the number of theoretical studies is limited to our knowledge. To overcome the difficulties, we developed a new method based on reference interaction site model self-consistent field explicitly including spatial electron density distribution and time-dependent density functional theory. We applied it to the calculation of indole and 5-cyanoindole at ground and excited states in gas and solution phases. The changes in the optimized geometries were clearly explained with resonance structures and the Stokes shift was correctly reproduced.

  10. Numerically exact full counting statistics of the nonequilibrium Anderson impurity model

    NASA Astrophysics Data System (ADS)

    Ridley, Michael; Singh, Viveka N.; Gull, Emanuel; Cohen, Guy

    2018-03-01

    The time-dependent full counting statistics of charge transport through an interacting quantum junction is evaluated from its generating function, controllably computed with the inchworm Monte Carlo method. Exact noninteracting results are reproduced; then, we continue to explore the effect of electron-electron interactions on the time-dependent charge cumulants, first-passage time distributions, and n -electron transfer distributions. We observe a crossover in the noise from Coulomb blockade to Kondo-dominated physics as the temperature is decreased. In addition, we uncover long-tailed spin distributions in the Kondo regime and analyze queuing behavior caused by correlations between single-electron transfer events.

  11. Numerically exact full counting statistics of the nonequilibrium Anderson impurity model

    DOE PAGES

    Ridley, Michael; Singh, Viveka N.; Gull, Emanuel; ...

    2018-03-06

    The time-dependent full counting statistics of charge transport through an interacting quantum junction is evaluated from its generating function, controllably computed with the inchworm Monte Carlo method. Exact noninteracting results are reproduced; then, we continue to explore the effect of electron-electron interactions on the time-dependent charge cumulants, first-passage time distributions, and n-electron transfer distributions. We observe a crossover in the noise from Coulomb blockade to Kondo-dominated physics as the temperature is decreased. In addition, we uncover long-tailed spin distributions in the Kondo regime and analyze queuing behavior caused by correlations between single-electron transfer events

  12. Numerically exact full counting statistics of the nonequilibrium Anderson impurity model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ridley, Michael; Singh, Viveka N.; Gull, Emanuel

    The time-dependent full counting statistics of charge transport through an interacting quantum junction is evaluated from its generating function, controllably computed with the inchworm Monte Carlo method. Exact noninteracting results are reproduced; then, we continue to explore the effect of electron-electron interactions on the time-dependent charge cumulants, first-passage time distributions, and n-electron transfer distributions. We observe a crossover in the noise from Coulomb blockade to Kondo-dominated physics as the temperature is decreased. In addition, we uncover long-tailed spin distributions in the Kondo regime and analyze queuing behavior caused by correlations between single-electron transfer events

  13. Multielectron effects in the photoelectron momentum distribution of noble-gas atoms driven by visible-to-infrared-frequency laser pulses: A time-dependent density-functional-theory approach

    NASA Astrophysics Data System (ADS)

    Murakami, Mitsuko; Zhang, G. P.; Chu, Shih-I.

    2017-05-01

    We present the photoelectron momentum distributions (PMDs) of helium, neon, and argon atoms driven by a linearly polarized, visible (527-nm) or near-infrared (800-nm) laser pulse (20 optical cycles in duration) based on the time-dependent density-functional theory (TDDFT) under the local-density approximation with a self-interaction correction. A set of time-dependent Kohn-Sham equations for all electrons in an atom is numerically solved using the generalized pseudospectral method. An effect of the electron-electron interaction driven by a visible laser field is not recognizable in the helium and neon PMDs except for a reduction of the overall photoelectron yield, but there is a clear difference between the PMDs of an argon atom calculated with the frozen-core approximation and TDDFT, indicating an interference of its M -shell wave functions during the ionization. Furthermore, we find that the PMDs of degenerate p states are well separated in intensity when driven by a near-infrared laser field, so that the single-active-electron approximation can be adopted safely.

  14. Fraction number of trapped atoms and velocity distribution function in sub-recoil laser cooling scheme

    NASA Astrophysics Data System (ADS)

    Alekseev, V. A.; Krylova, D. D.

    1996-02-01

    The analytical investigation of Bloch equations is used to describe the main features of the 1D velocity selective coherent population trapping cooling scheme. For the initial stage of cooling the fraction of cooled atoms is derived in the case of a Gaussian initial velocity distribution. At very long times of interaction the fraction of cooled atoms and the velocity distribution function are described by simple analytical formulae and do not depend on the initial distribution. These results are in good agreement with those of Bardou, Bouchaud, Emile, Aspect and Cohen-Tannoudji based on statistical analysis in terms of Levy flights and with Monte-Carlo simulations of the process.

  15. Evidence for criticality in financial data

    NASA Astrophysics Data System (ADS)

    Ruiz, G.; de Marcos, A. F.

    2018-01-01

    We provide evidence that cumulative distributions of absolute normalized returns for the 100 American companies with the highest market capitalization, uncover a critical behavior for different time scales Δt. Such cumulative distributions, in accordance with a variety of complex - and financial - systems, can be modeled by the cumulative distribution functions of q-Gaussians, the distribution function that, in the context of nonextensive statistical mechanics, maximizes a non-Boltzmannian entropy. These q-Gaussians are characterized by two parameters, namely ( q, β), that are uniquely defined by Δt. From these dependencies, we find a monotonic relationship between q and β, which can be seen as evidence of criticality. We numerically determine the various exponents which characterize this criticality.

  16. Maximum entropy principal for transportation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bilich, F.; Da Silva, R.

    In this work we deal with modeling of the transportation phenomenon for use in the transportation planning process and policy-impact studies. The model developed is based on the dependence concept, i.e., the notion that the probability of a trip starting at origin i is dependent on the probability of a trip ending at destination j given that the factors (such as travel time, cost, etc.) which affect travel between origin i and destination j assume some specific values. The derivation of the solution of the model employs the maximum entropy principle combining a priori multinomial distribution with a trip utilitymore » concept. This model is utilized to forecast trip distributions under a variety of policy changes and scenarios. The dependence coefficients are obtained from a regression equation where the functional form is derived based on conditional probability and perception of factors from experimental psychology. The dependence coefficients encode all the information that was previously encoded in the form of constraints. In addition, the dependence coefficients encode information that cannot be expressed in the form of constraints for practical reasons, namely, computational tractability. The equivalence between the standard formulation (i.e., objective function with constraints) and the dependence formulation (i.e., without constraints) is demonstrated. The parameters of the dependence-based trip-distribution model are estimated, and the model is also validated using commercial air travel data in the U.S. In addition, policy impact analyses (such as allowance of supersonic flights inside the U.S. and user surcharge at noise-impacted airports) on air travel are performed.« less

  17. Stability versus neuronal specialization for STDP: long-tail weight distributions solve the dilemma.

    PubMed

    Gilson, Matthieu; Fukai, Tomoki

    2011-01-01

    Spike-timing-dependent plasticity (STDP) modifies the weight (or strength) of synaptic connections between neurons and is considered to be crucial for generating network structure. It has been observed in physiology that, in addition to spike timing, the weight update also depends on the current value of the weight. The functional implications of this feature are still largely unclear. Additive STDP gives rise to strong competition among synapses, but due to the absence of weight dependence, it requires hard boundaries to secure the stability of weight dynamics. Multiplicative STDP with linear weight dependence for depression ensures stability, but it lacks sufficiently strong competition required to obtain a clear synaptic specialization. A solution to this stability-versus-function dilemma can be found with an intermediate parametrization between additive and multiplicative STDP. Here we propose a novel solution to the dilemma, named log-STDP, whose key feature is a sublinear weight dependence for depression. Due to its specific weight dependence, this new model can produce significantly broad weight distributions with no hard upper bound, similar to those recently observed in experiments. Log-STDP induces graded competition between synapses, such that synapses receiving stronger input correlations are pushed further in the tail of (very) large weights. Strong weights are functionally important to enhance the neuronal response to synchronous spike volleys. Depending on the input configuration, multiple groups of correlated synaptic inputs exhibit either winner-share-all or winner-take-all behavior. When the configuration of input correlations changes, individual synapses quickly and robustly readapt to represent the new configuration. We also demonstrate the advantages of log-STDP for generating a stable structure of strong weights in a recurrently connected network. These properties of log-STDP are compared with those of previous models. Through long-tail weight distributions, log-STDP achieves both stable dynamics for and robust competition of synapses, which are crucial for spike-based information processing.

  18. Lattice QCD Studies of Transverse Momentum-Dependent Parton Distribution Functions

    NASA Astrophysics Data System (ADS)

    Engelhardt, M.; Musch, B.; Hägler, P.; Negele, J.; Schäfer, A.

    2015-09-01

    Transverse momentum-dependent parton distributions (TMDs) relevant for semi-inclusive deep inelastic scattering and the Drell-Yan process can be defined in terms of matrix elements of a quark bilocal operator containing a staple-shaped gauge link. Such a definition opens the possibility of evaluating TMDs within lattice QCD. By parametrizing the aforementioned matrix elements in terms of invariant amplitudes, the problem can be cast in a Lorentz frame suited for the lattice calculation. Results for selected TMD observables are presented, including a particular focus on their dependence on a Collins-Soper-type evolution parameter, which quantifies proximity of the staple-shaped gauge links to the light cone.

  19. Symmetric co-movement between Malaysia and Japan stock markets

    NASA Astrophysics Data System (ADS)

    Razak, Ruzanna Ab; Ismail, Noriszura

    2017-04-01

    The copula approach is a flexible tool known to capture linear, nonlinear, symmetric and asymmetric dependence between two or more random variables. It is often used as a co-movement measure between stock market returns. The information obtained from copulas such as the level of association of financial market during normal and bullish and bearish markets phases are useful for investment strategies and risk management. However, the study of co-movement between Malaysia and Japan markets are limited, especially using copulas. Hence, we aim to investigate the dependence structure between Malaysia and Japan capital markets for the period spanning from 2000 to 2012. In this study, we showed that the bivariate normal distribution is not suitable as the bivariate distribution or to present the dependence between Malaysia and Japan markets. Instead, Gaussian or normal copula was found a good fit to represent the dependence. From our findings, it can be concluded that simple distribution fitting such as bivariate normal distribution does not suit financial time series data, whose characteristics are often leptokurtic. The nature of the data is treated by ARMA-GARCH with heavy tail distributions and these can be associated with copula functions. Regarding the dependence structure between Malaysia and Japan markets, the findings suggest that both markets co-move concurrently during normal periods.

  20. Functional Brain Networks Are Dominated by Stable Group and Individual Factors, Not Cognitive or Daily Variation.

    PubMed

    Gratton, Caterina; Laumann, Timothy O; Nielsen, Ashley N; Greene, Deanna J; Gordon, Evan M; Gilmore, Adrian W; Nelson, Steven M; Coalson, Rebecca S; Snyder, Abraham Z; Schlaggar, Bradley L; Dosenbach, Nico U F; Petersen, Steven E

    2018-04-18

    The organization of human brain networks can be measured by capturing correlated brain activity with fMRI. There is considerable interest in understanding how brain networks vary across individuals or neuropsychiatric populations or are altered during the performance of specific behaviors. However, the plausibility and validity of such measurements is dependent on the extent to which functional networks are stable over time or are state dependent. We analyzed data from nine high-quality, highly sampled individuals to parse the magnitude and anatomical distribution of network variability across subjects, sessions, and tasks. Critically, we find that functional networks are dominated by common organizational principles and stable individual features, with substantially more modest contributions from task-state and day-to-day variability. Sources of variation were differentially distributed across the brain and differentially linked to intrinsic and task-evoked sources. We conclude that functional networks are suited to measuring stable individual characteristics, suggesting utility in personalized medicine. Copyright © 2018 Elsevier Inc. All rights reserved.

  1. Enhanced production of ψ (2 S ) mesons in heavy ion collisions

    NASA Astrophysics Data System (ADS)

    Cho, Sungtae

    2015-05-01

    I study the production of a ψ (2 S ) meson in heavy ion collisions. I evaluate Wigner functions for the ψ (2 S ) meson using both Gaussian and Coulomb wave functions, and investigate the wave function dependence in the ψ (2 S ) meson production by recombination of charm and anticharm quarks. The enhanced transverse momentum distribution of ψ (2 S ) mesons compared to that of J /ψ mesons, originated from wave function distributions of the ψ (2 S ) and J /ψ meson in momentum space, provides a plausible explanation for the recent measurement of the nuclear modification factor ratio between the ψ (2 S ) and J /ψ meson.

  2. Synaptic convergence regulates synchronization-dependent spike transfer in feedforward neural networks.

    PubMed

    Sailamul, Pachaya; Jang, Jaeson; Paik, Se-Bum

    2017-12-01

    Correlated neural activities such as synchronizations can significantly alter the characteristics of spike transfer between neural layers. However, it is not clear how this synchronization-dependent spike transfer can be affected by the structure of convergent feedforward wiring. To address this question, we implemented computer simulations of model neural networks: a source and a target layer connected with different types of convergent wiring rules. In the Gaussian-Gaussian (GG) model, both the connection probability and the strength are given as Gaussian distribution as a function of spatial distance. In the Uniform-Constant (UC) and Uniform-Exponential (UE) models, the connection probability density is a uniform constant within a certain range, but the connection strength is set as a constant value or an exponentially decaying function, respectively. Then we examined how the spike transfer function is modulated under these conditions, while static or synchronized input patterns were introduced to simulate different levels of feedforward spike synchronization. We observed that the synchronization-dependent modulation of the transfer function appeared noticeably different for each convergence condition. The modulation of the spike transfer function was largest in the UC model, and smallest in the UE model. Our analysis showed that this difference was induced by the different spike weight distributions that was generated from convergent synapses in each model. Our results suggest that, the structure of the feedforward convergence is a crucial factor for correlation-dependent spike control, thus must be considered important to understand the mechanism of information transfer in the brain.

  3. ON CONTINUOUS-REVIEW (S-1,S) INVENTORY POLICIES WITH STATE-DEPENDENT LEADTIMES,

    DTIC Science & Technology

    INVENTORY CONTROL, *REPLACEMENT THEORY), MATHEMATICAL MODELS, LEAD TIME , MANAGEMENT ENGINEERING, DISTRIBUTION FUNCTIONS, PROBABILITY, QUEUEING THEORY, COSTS, OPTIMIZATION, STATISTICAL PROCESSES, DIFFERENCE EQUATIONS

  4. Bivariate Rainfall and Runoff Analysis Using Shannon Entropy Theory

    NASA Astrophysics Data System (ADS)

    Rahimi, A.; Zhang, L.

    2012-12-01

    Rainfall-Runoff analysis is the key component for many hydrological and hydraulic designs in which the dependence of rainfall and runoff needs to be studied. It is known that the convenient bivariate distribution are often unable to model the rainfall-runoff variables due to that they either have constraints on the range of the dependence or fixed form for the marginal distributions. Thus, this paper presents an approach to derive the entropy-based joint rainfall-runoff distribution using Shannon entropy theory. The distribution derived can model the full range of dependence and allow different specified marginals. The modeling and estimation can be proceeded as: (i) univariate analysis of marginal distributions which includes two steps, (a) using the nonparametric statistics approach to detect modes and underlying probability density, and (b) fitting the appropriate parametric probability density functions; (ii) define the constraints based on the univariate analysis and the dependence structure; (iii) derive and validate the entropy-based joint distribution. As to validate the method, the rainfall-runoff data are collected from the small agricultural experimental watersheds located in semi-arid region near Riesel (Waco), Texas, maintained by the USDA. The results of unviariate analysis show that the rainfall variables follow the gamma distribution, whereas the runoff variables have mixed structure and follow the mixed-gamma distribution. With this information, the entropy-based joint distribution is derived using the first moments, the first moments of logarithm transformed rainfall and runoff, and the covariance between rainfall and runoff. The results of entropy-based joint distribution indicate: (1) the joint distribution derived successfully preserves the dependence between rainfall and runoff, and (2) the K-S goodness of fit statistical tests confirm the marginal distributions re-derived reveal the underlying univariate probability densities which further assure that the entropy-based joint rainfall-runoff distribution are satisfactorily derived. Overall, the study shows the Shannon entropy theory can be satisfactorily applied to model the dependence between rainfall and runoff. The study also shows that the entropy-based joint distribution is an appropriate approach to capture the dependence structure that cannot be captured by the convenient bivariate joint distributions. Joint Rainfall-Runoff Entropy Based PDF, and Corresponding Marginal PDF and Histogram for W12 Watershed The K-S Test Result and RMSE on Univariate Distributions Derived from the Maximum Entropy Based Joint Probability Distribution;

  5. Time Dependent Density Functional Theory Calculations of Large Compact PAH Cations: Implications for the Diffuse Interstellar Bands

    NASA Technical Reports Server (NTRS)

    Weisman, Jennifer L.; Lee, Timothy J.; Salama, Farid; Gordon-Head, Martin; Kwak, Dochan (Technical Monitor)

    2002-01-01

    We investigate the electronic absorption spectra of several maximally pericondensed polycyclic aromatic hydrocarbon radical cations with time dependent density functional theory calculations. We find interesting trends in the vertical excitation energies and oscillator strengths for this series containing pyrene through circumcoronene, the largest species containing more than 50 carbon atoms. We discuss the implications of these new results for the size and structure distribution of the diffuse interstellar band carriers.

  6. Analysis of underwater radiance observations: Apparent optical properties and analytic functions describing the angular radiance distribution

    NASA Astrophysics Data System (ADS)

    Aas, Eyvind; HøJerslev, Niels K.

    1999-04-01

    A primary data set consisting of 70 series of angular radiance distributions observed in clear blue western Mediterranean water and a secondary set of 12 series from the more green and turbid Lake Pend Oreille, Idaho, have been analyzed. The results demonstrate that the main variation of the shape of the downward radiance distribution occurs within the Snell cone. Outside the cone the variation of the shape decreases with increasing zenith angle. The most important shape changes of the upward radiance appear within the zenith angle range 90°-130°. The variation in shape reaches its minimum around nadir, where an almost constant upward radiance distribution implies that a flat sea surface acts like a Lambert emitter within ±8% in the zenith angle interval 140°-180° in air. The ratio Q of upward irradiance and nadir radiance, as well as the average cosines μd and μu for downward and upward radiance, respectively, have rather small standard deviations, ≤10%, within the local water type. In contrast, the irradiance reflectance R has been observed to change up to 400% with depth in the western Mediterranean, while the maximum observed change of Q with depth is only 40%. The dependence of Q on the solar elevation for blue light at 5 m depth in the Mediterranean coincides with observations from the central Atlantic as well as with model computations. The corresponding dependence of μd shows that diffuse light may have a significant influence on its value. Two simple functions describing the observed angular radiance distributions are proposed, and both functions can be determined by two field observations as input parameters. The ɛ function approximates the azimuthal means of downward radiance with an average error ≤7% and of upward radiance with an error of ˜1%. The α function describes the zenith angle dependence of the azimuthal means of upward radiance with an average error ≤7% in clear ocean water, increasing to ≤20% in turbid lake water. The a function suggests that the range of variation for μu falls between 0 and 1/2, and for Q it is between π and 2π. The limits of both ranges are confirmed by observations. By combining the ɛ and α functions, a complete angular description of the upward radiance field is achieved.

  7. Characteristics of ion distribution functions in dipolarizing flux bundles: Event studies

    NASA Astrophysics Data System (ADS)

    Runov, A.; Angelopoulos, V.; Artemyev, A.; Birn, J.; Pritchett, P. L.; Zhou, X.-Z.

    2017-06-01

    Taking advantage of multipoint observations from a repeating configuration of the five Time History of Events and Macroscale Interactions during Substorms (THEMIS) probes separated by 1 to 2 Earth radii (RE) along X, Y, and Z in the geocentric solar magnetospheric system (GSM), we study ion distribution functions collected by the probes during three dipolarizing flux bundle (DFB) events observed at geocentric distances 9 < R < 14 RE. By comparing these probes' observations, we characterize changes in the ion distribution functions with respect to probe separation along the X and Y GSM directions and |Bx| levels, which characterize the distance from the neutral sheet. We found that the characteristics of the ion distribution functions strongly depended on the |Bx| level, whereas changes with respect to X and Y were minor. In all three events, ion distribution functions f(v) observed inside DFBs were organized by magnetic and electric fields. The probes near the magnetic equator observed perpendicular anisotropy of the phase space density in the range between thermal energy and twice the thermal energy, although the distribution in the ambient plasma sheet was isotropic. The anisotropic ion distribution in DFBs injected toward the inner magnetosphere may provide the free energy for waves and instabilities, which are important elements of particle energization.

  8. Power-law distributions for a trapped ion interacting with a classical buffer gas.

    PubMed

    DeVoe, Ralph G

    2009-02-13

    Classical collisions with an ideal gas generate non-Maxwellian distribution functions for a single ion in a radio frequency ion trap. The distributions have power-law tails whose exponent depends on the ratio of buffer gas to ion mass. This provides a statistical explanation for the previously observed transition from cooling to heating. Monte Carlo results approximate a Tsallis distribution over a wide range of parameters and have ab initio agreement with experiment.

  9. Directional solidification of a planar interface in the presence of a time-dependent electric current

    NASA Technical Reports Server (NTRS)

    Brush, L. N.; Coriell, S. R.; Mcfadden, G. B.

    1990-01-01

    Directional solidification of pure materials and binary alloys with a planar crystal-metal interface in the presence of a time-dependent electric current is considered. For a variety of time-dependent currents, the temperature fields and the interface velocity as functions of time are presented for indium antimonide and bismuth and for the binary alloys germanium-gallium and tin-bismuth. For the alloys, the solid composition is calculated as a function of position. Quantitative predictions are made of the effect of an electrical pulse on the solute distribution in the solidified material.

  10. The force distribution probability function for simple fluids by density functional theory.

    PubMed

    Rickayzen, G; Heyes, D M

    2013-02-28

    Classical density functional theory (DFT) is used to derive a formula for the probability density distribution function, P(F), and probability distribution function, W(F), for simple fluids, where F is the net force on a particle. The final formula for P(F) ∝ exp(-AF(2)), where A depends on the fluid density, the temperature, and the Fourier transform of the pair potential. The form of the DFT theory used is only applicable to bounded potential fluids. When combined with the hypernetted chain closure of the Ornstein-Zernike equation, the DFT theory for W(F) agrees with molecular dynamics computer simulations for the Gaussian and bounded soft sphere at high density. The Gaussian form for P(F) is still accurate at lower densities (but not too low density) for the two potentials, but with a smaller value for the constant, A, than that predicted by the DFT theory.

  11. On the estimation of spread rate for a biological population

    Treesearch

    Jim Clark; Lajos Horváth; Mark Lewis

    2001-01-01

    We propose a nonparametric estimator for the rate of spread of an introduced population. We prove that the limit distribution of the estimator is normal or stable, depending on the behavior of the moment generating function. We show that resampling methods can also be used to approximate the distribution of the estimators.

  12. Price sensitive demand with random sales price - a newsboy problem

    NASA Astrophysics Data System (ADS)

    Sankar Sana, Shib

    2012-03-01

    Up to now, many newsboy problems have been considered in the stochastic inventory literature. Some assume that stochastic demand is independent of selling price (p) and others consider the demand as a function of stochastic shock factor and deterministic sales price. This article introduces a price-dependent demand with stochastic selling price into the classical Newsboy problem. The proposed model analyses the expected average profit for a general distribution function of p and obtains an optimal order size. Finally, the model is discussed for various appropriate distribution functions of p and illustrated with numerical examples.

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kanazawa, Koichi; Pitonyak, Daniel; Koike, Yuji

    We investigate the behavior under Lorentz transformations of perturbative coefficient functions in a collinear twist-3 formalism relevant for high-energy observables including transverse polarization of hadrons. We argue that those perturbative coefficient functions can, a priori, acquire quite different yet Lorentz-invariant forms in various frames. This somewhat surprising difference can be traced back to a general dependence of the perturbative coefficient functions on light cone vectors which are introduced by the twist-3 factorization formulas and which are frame-dependent. One can remove this spurious frame dependence by invoking so-called Lorentz invariance relations (LIRs) between twist-3 parton correlation functions. Some of those relationsmore » for twist-3 distribution functions were discussed in the literature before. In this paper we derive the corresponding LIRs for twist-3 fragmentation functions. We explicitly demonstrate that these LIRs remove the light cone vector dependence by considering transverse spin observables in the single-inclusive production of hadrons in lepton-nucleon collisions, ℓN→hX. Furthermore, with the LIRs in hand, we also show that twist-3 observables in general can be written solely in terms of three-parton correlation functions.« less

  14. Resting-state blood oxygen level-dependent functional magnetic resonance imaging for presurgical planning.

    PubMed

    Kamran, Mudassar; Hacker, Carl D; Allen, Monica G; Mitchell, Timothy J; Leuthardt, Eric C; Snyder, Abraham Z; Shimony, Joshua S

    2014-11-01

    Resting-state functional MR imaging (rsfMR imaging) measures spontaneous fluctuations in the blood oxygen level-dependent (BOLD) signal and can be used to elucidate the brain's functional organization. It is used to simultaneously assess multiple distributed resting-state networks. Unlike task-based functional MR imaging, rsfMR imaging does not require task performance. This article presents a brief introduction of rsfMR imaging processing methods followed by a detailed discussion on the use of rsfMR imaging in presurgical planning. Example cases are provided to highlight the strengths and limitations of the technique. Copyright © 2014 Elsevier Inc. All rights reserved.

  15. Radial dependence of lineal energy distribution of 290-MeV/u carbon and 500-MeV/u iron ion beams using a wall-less tissue-equivalent proportional counter

    PubMed Central

    Tsuda, Shuichi; Sato, Tatsuhiko; Watanabe, Ritsuko; Takada, Masashi

    2015-01-01

    Using a wall-less tissue-equivalent proportional counter for a 0.72-μm site in tissue, we measured the radial dependence of the lineal energy distribution, yf(y), of 290-MeV/u carbon ions and 500-MeV/u iron ion beams. The measured yf(y) distributions and the dose-mean of y, y¯D, were compared with calculations performed with the track structure simulation code TRACION and the microdosimetric function of the Particle and Heavy Ion Transport code System (PHITS). The values of the measured y¯D were consistent with calculated results within an error of 2%, but differences in the shape of yf(y) were observed for iron ion irradiation. This result indicates that further improvement of the calculation model for yf(y) distribution in PHITS is needed for the analytical function that describes energy deposition by delta rays, particularly for primary ions having linear energy transfer in excess of a few hundred keV μm−1. PMID:25210053

  16. Validation of MCDS by comparison of predicted with experimental velocity distribution functions in rarefied normal shocks

    NASA Technical Reports Server (NTRS)

    Pham-Van-diep, Gerald C.; Erwin, Daniel A.

    1989-01-01

    Velocity distribution functions in normal shock waves in argon and helium are calculated using Monte Carlo direct simulation. These are compared with experimental results for argon at M = 7.18 and for helium at M = 1.59 and 20. For both argon and helium, the variable-hard-sphere (VHS) model is used for the elastic scattering cross section, with the velocity dependence derived from a viscosity-temperature power-law relationship in the way normally used by Bird (1976).

  17. Studies of air showers produced by primaries 10(16) eV using a combined scintillation and water-Cerenkov array

    NASA Technical Reports Server (NTRS)

    Brooke, G.; Perrett, J. C.; Watson, A. A.

    1986-01-01

    An array of 8 x 1.0 sq m plastic scintillation counters and 13 water-Cerenkov detectors (1 to 13.5 sq m) were operated at the center of the Haverah Park array to study some features of air showers produced by 10(16) eV primaries. Measurements of the scintillator lateral distribution function, the water-Cerenkov lateral distribution function, and of the distance dependence of the Cerenkov/scintillator ratio are described.

  18. A catalogue of normalized intensity functions and polarization from a cloud of particles with a size distribution of alpha to the minus 4th power

    NASA Technical Reports Server (NTRS)

    Craven, P. D.; Gary, G. A.

    1972-01-01

    The Mie theory of light scattering by spheres was used to calculate the scattered intensity functions resulting from single scattering in a polydispersed collection of spheres. The distribution used behaves according to the inverse fourth power law; graphs and tables for the angular dependence of the intensity and polarization for this law are given. The effects of the particle size range and the integration increment are investigated.

  19. Foundationalism and Neuroscience; Silence and Language

    ERIC Educational Resources Information Center

    Keestra, Machiel; Cowley, Stephen J.

    2009-01-01

    Neuroscience offers more than new empirical evidence about the details of cognitive functions such as language, perception and action. Since it also shows many functions to be highly distributed, interconnected and dependent on mechanisms at different levels of processing, it challenges concepts that are traditionally used to describe these…

  20. Element enrichment factor calculation using grain-size distribution and functional data regression.

    PubMed

    Sierra, C; Ordóñez, C; Saavedra, A; Gallego, J R

    2015-01-01

    In environmental geochemistry studies it is common practice to normalize element concentrations in order to remove the effect of grain size. Linear regression with respect to a particular grain size or conservative element is a widely used method of normalization. In this paper, the utility of functional linear regression, in which the grain-size curve is the independent variable and the concentration of pollutant the dependent variable, is analyzed and applied to detrital sediment. After implementing functional linear regression and classical linear regression models to normalize and calculate enrichment factors, we concluded that the former regression technique has some advantages over the latter. First, functional linear regression directly considers the grain-size distribution of the samples as the explanatory variable. Second, as the regression coefficients are not constant values but functions depending on the grain size, it is easier to comprehend the relationship between grain size and pollutant concentration. Third, regularization can be introduced into the model in order to establish equilibrium between reliability of the data and smoothness of the solutions. Copyright © 2014 Elsevier Ltd. All rights reserved.

  1. Transverse-momentum-dependent quark distribution functions of spin-one targets: Formalism and covariant calculations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ninomiya, Yu; Bentz, Wolfgang; Cloet, Ian C.

    In this paper, we present a covariant formulation and model calculations of the leading-twist time-reversal even transverse-momentum-dependent quark distribution functions (TMDs) for a spin-one target. Emphasis is placed on a description of these three-dimensional distribution functions which is independent of any constraints on the spin quantization axis. We apply our covariant spin description to all nine leading-twist time-reversal even ρ meson TMDs in the framework provided by the Nambu–Jona-Lasinio model, incorporating important aspects of quark confinement via the infrared cutoff in the proper-time regularization scheme. In particular, the behaviors of the three-dimensional TMDs in a tensor polarized spin-one hadron aremore » illustrated. Sum rules and positivity constraints are discussed in detail. Our results do not exhibit the familiar Gaussian behavior in the transverse momentum, and other results of interest include the finding that the tensor polarized TMDs—associated with spin-one hadrons—are very sensitive to quark orbital angular momentum, and that the TMDs associated with the quark operator γ +γ Tγ 5 would vanish were it not for dynamical chiral symmetry breaking. In addition, we find that 44% of the ρ meson's spin is carried by the orbital angular momentum of the quarks, and that the magnitude of the tensor polarized quark distribution function is about 30% of the unpolarized quark distribution. Finally, a qualitative comparison between our results for the tensor structure of a quark-antiquark bound state is made to existing experimental and theoretical results for the two-nucleon (deuteron) bound state.« less

  2. A seismological model for earthquakes induced by fluid extraction from a subsurface reservoir

    NASA Astrophysics Data System (ADS)

    Bourne, S. J.; Oates, S. J.; van Elk, J.; Doornhof, D.

    2014-12-01

    A seismological model is developed for earthquakes induced by subsurface reservoir volume changes. The approach is based on the work of Kostrov () and McGarr () linking total strain to the summed seismic moment in an earthquake catalog. We refer to the fraction of the total strain expressed as seismic moment as the strain partitioning function, α. A probability distribution for total seismic moment as a function of time is derived from an evolving earthquake catalog. The moment distribution is taken to be a Pareto Sum Distribution with confidence bounds estimated using approximations given by Zaliapin et al. (). In this way available seismic moment is expressed in terms of reservoir volume change and hence compaction in the case of a depleting reservoir. The Pareto Sum Distribution for moment and the Pareto Distribution underpinning the Gutenberg-Richter Law are sampled using Monte Carlo methods to simulate synthetic earthquake catalogs for subsequent estimation of seismic ground motion hazard. We demonstrate the method by applying it to the Groningen gas field. A compaction model for the field calibrated using various geodetic data allows reservoir strain due to gas extraction to be expressed as a function of both spatial position and time since the start of production. Fitting with a generalized logistic function gives an empirical expression for the dependence of α on reservoir compaction. Probability density maps for earthquake event locations can then be calculated from the compaction maps. Predicted seismic moment is shown to be strongly dependent on planned gas production.

  3. Transverse-momentum-dependent quark distribution functions of spin-one targets: Formalism and covariant calculations

    DOE PAGES

    Ninomiya, Yu; Bentz, Wolfgang; Cloet, Ian C.

    2017-10-24

    In this paper, we present a covariant formulation and model calculations of the leading-twist time-reversal even transverse-momentum-dependent quark distribution functions (TMDs) for a spin-one target. Emphasis is placed on a description of these three-dimensional distribution functions which is independent of any constraints on the spin quantization axis. We apply our covariant spin description to all nine leading-twist time-reversal even ρ meson TMDs in the framework provided by the Nambu–Jona-Lasinio model, incorporating important aspects of quark confinement via the infrared cutoff in the proper-time regularization scheme. In particular, the behaviors of the three-dimensional TMDs in a tensor polarized spin-one hadron aremore » illustrated. Sum rules and positivity constraints are discussed in detail. Our results do not exhibit the familiar Gaussian behavior in the transverse momentum, and other results of interest include the finding that the tensor polarized TMDs—associated with spin-one hadrons—are very sensitive to quark orbital angular momentum, and that the TMDs associated with the quark operator γ +γ Tγ 5 would vanish were it not for dynamical chiral symmetry breaking. In addition, we find that 44% of the ρ meson's spin is carried by the orbital angular momentum of the quarks, and that the magnitude of the tensor polarized quark distribution function is about 30% of the unpolarized quark distribution. Finally, a qualitative comparison between our results for the tensor structure of a quark-antiquark bound state is made to existing experimental and theoretical results for the two-nucleon (deuteron) bound state.« less

  4. Description of atomic burials in compact globular proteins by Fermi-Dirac probability distributions.

    PubMed

    Gomes, Antonio L C; de Rezende, Júlia R; Pereira de Araújo, Antônio F; Shakhnovich, Eugene I

    2007-02-01

    We perform a statistical analysis of atomic distributions as a function of the distance R from the molecular geometrical center in a nonredundant set of compact globular proteins. The number of atoms increases quadratically for small R, indicating a constant average density inside the core, reaches a maximum at a size-dependent distance R(max), and falls rapidly for larger R. The empirical curves turn out to be consistent with the volume increase of spherical concentric solid shells and a Fermi-Dirac distribution in which the distance R plays the role of an effective atomic energy epsilon(R) = R. The effective chemical potential mu governing the distribution increases with the number of residues, reflecting the size of the protein globule, while the temperature parameter beta decreases. Interestingly, betamu is not as strongly dependent on protein size and appears to be tuned to maintain approximately half of the atoms in the high density interior and the other half in the exterior region of rapidly decreasing density. A normalized size-independent distribution was obtained for the atomic probability as a function of the reduced distance, r = R/R(g), where R(g) is the radius of gyration. The global normalized Fermi distribution, F(r), can be reasonably decomposed in Fermi-like subdistributions for different atomic types tau, F(tau)(r), with Sigma(tau)F(tau)(r) = F(r), which depend on two additional parameters mu(tau) and h(tau). The chemical potential mu(tau) affects a scaling prefactor and depends on the overall frequency of the corresponding atomic type, while the maximum position of the subdistribution is determined by h(tau), which appears in a type-dependent atomic effective energy, epsilon(tau)(r) = h(tau)r, and is strongly correlated to available hydrophobicity scales. Better adjustments are obtained when the effective energy is not assumed to be necessarily linear, or epsilon(tau)*(r) = h(tau)*r(alpha,), in which case a correlation with hydrophobicity scales is found for the product alpha(tau)h(tau)*. These results indicate that compact globular proteins are consistent with a thermodynamic system governed by hydrophobic-like energy functions, with reduced distances from the geometrical center, reflecting atomic burials, and provide a conceptual framework for the eventual prediction from sequence of a few parameters from which whole atomic probability distributions and potentials of mean force can be reconstructed. Copyright 2006 Wiley-Liss, Inc.

  5. Incremental Parallelization of Non-Data-Parallel Programs Using the Charon Message-Passing Library

    NASA Technical Reports Server (NTRS)

    VanderWijngaart, Rob F.

    2000-01-01

    Message passing is among the most popular techniques for parallelizing scientific programs on distributed-memory architectures. The reasons for its success are wide availability (MPI), efficiency, and full tuning control provided to the programmer. A major drawback, however, is that incremental parallelization, as offered by compiler directives, is not generally possible, because all data structures have to be changed throughout the program simultaneously. Charon remedies this situation through mappings between distributed and non-distributed data. It allows breaking up the parallelization into small steps, guaranteeing correctness at every stage. Several tools are available to help convert legacy codes into high-performance message-passing programs. They usually target data-parallel applications, whose loops carrying most of the work can be distributed among all processors without much dependency analysis. Others do a full dependency analysis and then convert the code virtually automatically. Even more toolkits are available that aid construction from scratch of message passing programs. None, however, allows piecemeal translation of codes with complex data dependencies (i.e. non-data-parallel programs) into message passing codes. The Charon library (available in both C and Fortran) provides incremental parallelization capabilities by linking legacy code arrays with distributed arrays. During the conversion process, non-distributed and distributed arrays exist side by side, and simple mapping functions allow the programmer to switch between the two in any location in the program. Charon also provides wrapper functions that leave the structure of the legacy code intact, but that allow execution on truly distributed data. Finally, the library provides a rich set of communication functions that support virtually all patterns of remote data demands in realistic structured grid scientific programs, including transposition, nearest-neighbor communication, pipelining, gather/scatter, and redistribution. At the end of the conversion process most intermediate Charon function calls will have been removed, the non-distributed arrays will have been deleted, and virtually the only remaining Charon functions calls are the high-level, highly optimized communications. Distribution of the data is under complete control of the programmer, although a wide range of useful distributions is easily available through predefined functions. A crucial aspect of the library is that it does not allocate space for distributed arrays, but accepts programmer-specified memory. This has two major consequences. First, codes parallelized using Charon do not suffer from encapsulation; user data is always directly accessible. This provides high efficiency, and also retains the possibility of using message passing directly for highly irregular communications. Second, non-distributed arrays can be interpreted as (trivial) distributions in the Charon sense, which allows them to be mapped to truly distributed arrays, and vice versa. This is the mechanism that enables incremental parallelization. In this paper we provide a brief introduction of the library and then focus on the actual steps in the parallelization process, using some representative examples from, among others, the NAS Parallel Benchmarks. We show how a complicated two-dimensional pipeline-the prototypical non-data-parallel algorithm- can be constructed with ease. To demonstrate the flexibility of the library, we give examples of the stepwise, efficient parallel implementation of nonlocal boundary conditions common in aircraft simulations, as well as the construction of the sequence of grids required for multigrid.

  6. Neutron-skin effect in direct-photon and charged-hadron production in Pb+Pb collisions at the LHC

    NASA Astrophysics Data System (ADS)

    Helenius, Ilkka; Paukkunen, Hannu; Eskola, Kari J.

    2017-03-01

    A well-established observation in nuclear physics is that in neutron-rich spherical nuclei the distribution of neutrons extends farther than the distribution of protons. In this work, we scrutinize the influence of this so called neutron-skin effect on the centrality dependence of high-p_T direct-photon and charged-hadron production. We find that due to the estimated spatial dependence of the nuclear parton distribution functions, it will be demanding to unambiguously expose the neutron-skin effect with direct photons. However, when taking a ratio between the cross sections for negatively and positively charged high-p_T hadrons, even centrality-dependent nuclear-PDF effects cancel, making this observable a better handle on the neutron skin. Up to 10% effects can be expected for the most peripheral collisions in the measurable region.

  7. Dependence of Strain Distribution on In Content in InGaN/GaN Quantum Wires and Spherical Quantum Dots

    NASA Astrophysics Data System (ADS)

    Sharma, Akant Sagar; Dhar, S.

    2018-02-01

    The distribution of strain, developed in zero-dimensional quantum spherical dots and one-dimensional cylindrical quantum wires of an InGaN/GaN system is calculated as functions of radius of the structure and indium mole fraction. The strain shows strong dependence on indium mole fraction at small distances from the center. The strain associated with both the structures is found to decrease exponentially with the increase in dot or cylinder radius and increases linearly with indium content.

  8. Hadron mass corrections in semi-inclusive deep-inelastic scattering

    DOE PAGES

    Guerrero Teran, Juan Vicente; Ethier, James J.; Accardi, Alberto; ...

    2015-09-24

    We found that the spin-dependent cross sections for semi-inclusive lepton-nucleon scattering are derived in the framework of collinear factorization, including the effects of masses of the target and produced hadron at finite Q 2. At leading order the cross sections factorize into products of parton distribution and fragmentation functions evaluated in terms of new, mass-dependent scaling variables. Furthermore, the size of the hadron mass corrections is estimated at kinematics relevant for current and future experiments, and the implications for the extraction of parton distributions from semi-inclusive measurements are discussed.

  9. cos ( 4 φ ) azimuthal anisotropy in small- x DIS dijet production beyond the leading power TMD limit

    DOE PAGES

    Dumitru, Adrian; Skokov, Vladimir

    2016-07-25

    Here we determine the first correction to the quadrupole operator in high-energy QCD beyond the transverse momentum dependent (TMD) limit of Weizsäcker-Williams and linearly polarized gluon distributions. These functions give rise to isotropic, respectively, ~cos2more » $$\\phi$$ angular distributions in deep inelastic scattering (DIS) dijet production. On the other hand, the correction produces a ~cos4$$\\phi$$ angular dependence which is suppressed by one additional power of the dijet transverse momentum scale (squared) P 2.« less

  10. Locally Dependent Latent Trait Model and the Dutch Identity Revisited.

    ERIC Educational Resources Information Center

    Ip, Edward H.

    2002-01-01

    Proposes a class of locally dependent latent trait models for responses to psychological and educational tests. Focuses on models based on a family of conditional distributions, or kernel, that describes joint multiple item responses as a function of student latent trait, not assuming conditional independence. Also proposes an EM algorithm for…

  11. Multiscale statistics of trajectories with applications to fluid particles in turbulence and football players

    NASA Astrophysics Data System (ADS)

    Schneider, Kai; Kadoch, Benjamin; Bos, Wouter

    2017-11-01

    The angle between two subsequent particle displacement increments is evaluated as a function of the time lag. The directional change of particles can thus be quantified at different scales and multiscale statistics can be performed. Flow dependent and geometry dependent features can be distinguished. The mean angle satisfies scaling behaviors for short time lags based on the smoothness of the trajectories. For intermediate time lags a power law behavior can be observed for some turbulent flows, which can be related to Kolmogorov scaling. The long time behavior depends on the confinement geometry of the flow. We show that the shape of the probability distribution function of the directional change can be well described by a Fischer distribution. Results for two-dimensional (direct and inverse cascade) and three-dimensional turbulence with and without confinement, illustrate the properties of the proposed multiscale statistics. The presented Monte-Carlo simulations allow disentangling geometry dependent and flow independent features. Finally, we also analyze trajectories of football players, which are, in general, not randomly spaced on a field.

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Oberkampf, William Louis; Tucker, W. Troy; Zhang, Jianzhong

    This report summarizes methods to incorporate information (or lack of information) about inter-variable dependence into risk assessments that use Dempster-Shafer theory or probability bounds analysis to address epistemic and aleatory uncertainty. The report reviews techniques for simulating correlated variates for a given correlation measure and dependence model, computation of bounds on distribution functions under a specified dependence model, formulation of parametric and empirical dependence models, and bounding approaches that can be used when information about the intervariable dependence is incomplete. The report also reviews several of the most pervasive and dangerous myths among risk analysts about dependence in probabilistic models.

  13. The Angular Three-Point Correlation Function in the Quasi-linear Regime

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Buchalter, Ari; Kamionkowski, Marc; Jaffe, Andrew H.

    2000-02-10

    We calculate the normalized angular three-point correlation function (3PCF), q, as well as the normalized angular skewness, s{sub 3}, assuming the small-angle approximation, for a biased mass distribution in flat and open cold dark matter (CDM) models with Gaussian initial conditions. The leading-order perturbative results incorporate the explicit dependence on the cosmological parameters, the shape of the CDM transfer function, the linear evolution of the power spectrum, the form of the assumed redshift distribution function, and linear and nonlinear biasing, which may be evolving. Results are presented for different redshift distributions, including that appropriate for the APM Galaxy Survey, asmore » well as for a survey with a mean redshift of z{approx_equal}1 (such as the VLA FIRST Survey). Qualitatively, many of the results found for s{sub 3} and q are similar to those obtained in a related treatment of the spatial skewness and 3PCF, such as a leading-order correction to the standard result for s{sub 3} in the case of nonlinear bias (as defined for unsmoothed density fields), and the sensitivity of the configuration dependence of q to both cosmological and biasing models. We show that since angular correlation functions (CFs) are sensitive to clustering over a range of redshifts, the various evolutionary dependences included in our predictions imply that measurements of q in a deep survey might better discriminate between models with different histories, such as evolving versus nonevolving bias, that can have similar spatial CFs at low redshift. Our calculations employ a derived equation, valid for open, closed, and flat models, to obtain the angular bispectrum from the spatial bispectrum in the small-angle approximation. (c) (c) 2000. The American Astronomical Society.« less

  14. Temperature dependence of the magneto-controllable first-order phase transition in dilute magnetic fluids

    NASA Astrophysics Data System (ADS)

    Ivanov, A. S.

    2017-11-01

    Experimental study was carried out to investigate the influence of particle size distribution function on the temperature dependent magneto-controllable first-order phase transition of the "gas-liquid" type in magnetic fluids. The study resolves one crisis situation in ferrohydrodynamic experiment made by several research groups in the 1980-1990s. It is shown that due to polydispersity magnetic fluids exhibit phase diagrams which are divided into three regions by vaporus and liquidus curves. Granulometric data states the primary role of the width of the particle size distribution function in the process of spinodal decomposition. New modified Langevin parameter is introduced for unification of liquidus curves of different ferrofluids despite the significant difference between the curves (one order of magnitude) in (H, T) coordinates.

  15. Compounding approach for univariate time series with nonstationary variances

    NASA Astrophysics Data System (ADS)

    Schäfer, Rudi; Barkhofen, Sonja; Guhr, Thomas; Stöckmann, Hans-Jürgen; Kuhl, Ulrich

    2015-12-01

    A defining feature of nonstationary systems is the time dependence of their statistical parameters. Measured time series may exhibit Gaussian statistics on short time horizons, due to the central limit theorem. The sample statistics for long time horizons, however, averages over the time-dependent variances. To model the long-term statistical behavior, we compound the local distribution with the distribution of its parameters. Here, we consider two concrete, but diverse, examples of such nonstationary systems: the turbulent air flow of a fan and a time series of foreign exchange rates. Our main focus is to empirically determine the appropriate parameter distribution for the compounding approach. To this end, we extract the relevant time scales by decomposing the time signals into windows and determine the distribution function of the thus obtained local variances.

  16. Compounding approach for univariate time series with nonstationary variances.

    PubMed

    Schäfer, Rudi; Barkhofen, Sonja; Guhr, Thomas; Stöckmann, Hans-Jürgen; Kuhl, Ulrich

    2015-12-01

    A defining feature of nonstationary systems is the time dependence of their statistical parameters. Measured time series may exhibit Gaussian statistics on short time horizons, due to the central limit theorem. The sample statistics for long time horizons, however, averages over the time-dependent variances. To model the long-term statistical behavior, we compound the local distribution with the distribution of its parameters. Here, we consider two concrete, but diverse, examples of such nonstationary systems: the turbulent air flow of a fan and a time series of foreign exchange rates. Our main focus is to empirically determine the appropriate parameter distribution for the compounding approach. To this end, we extract the relevant time scales by decomposing the time signals into windows and determine the distribution function of the thus obtained local variances.

  17. A Model Based on Environmental Factors for Diameter Distribution in Black Wattle in Brazil

    PubMed Central

    Sanquetta, Carlos Roberto; Behling, Alexandre; Dalla Corte, Ana Paula; Péllico Netto, Sylvio; Rodrigues, Aurelio Lourenço; Simon, Augusto Arlindo

    2014-01-01

    This article discusses the dynamics of a diameter distribution in stands of black wattle throughout its growth cycle using the Weibull probability density function. Moreover, the parameters of this distribution were related to environmental variables from meteorological data and surface soil horizon with the aim of finding a model for diameter distribution which their coefficients were related to the environmental variables. We found that the diameter distribution of the stand changes only slightly over time and that the estimators of the Weibull function are correlated with various environmental variables, with accumulated rainfall foremost among them. Thus, a model was obtained in which the estimators of the Weibull function are dependent on rainfall. Such a function can have important applications, such as in simulating growth potential in regions where historical growth data is lacking, as well as the behavior of the stand under different environmental conditions. The model can also be used to project growth in diameter, based on the rainfall affecting the forest over a certain time period. PMID:24932909

  18. A theory of local and global processes which affect solar wind electrons. 1: The origin of typical 1 AU velocity distribution functions: Steady state theory

    NASA Technical Reports Server (NTRS)

    Scudder, J. D.

    1978-01-01

    A detailed first principle kinetic theory for electrons which is neither a classical fluid treatment nor an exospheric calculation is presented. This theory illustrates the global and local properties of the solar wind expansion that shape the observed features of the electron distribution function, such as its bifurcation, its skewness and the differential temperatures of the thermal and suprathermal subpopulations. Coulomb collisions are substantial mediators of the interplanetary electron velocity distribution function and they place a zone for a bifurcation of the electron distribution function deep in the corona. The local cause and effect precept which permeates the physics of denser media is modified for electrons in the solar wind. The local form of transport laws and equations of state which apply to collision dominated plasmas are replaced with global relations that explicitly depend on the relative position of the observer to the boundaries of the system.

  19. Studies of transverse momentum dependent parton distributions and Bessel weighting

    DOE PAGES

    Aghasyan, M.; Avakian, H.; De Sanctis, E.; ...

    2015-03-01

    In this paper we present a new technique for analysis of transverse momentum dependent parton distribution functions, based on the Bessel weighting formalism. The procedure is applied to studies of the double longitudinal spin asymmetry in semi-inclusive deep inelastic scattering using a new dedicated Monte Carlo generator which includes quark intrinsic transverse momentum within the generalized parton model. Using a fully differential cross section for the process, the effect of four momentum conservation is analyzed using various input models for transverse momentum distributions and fragmentation functions. We observe a few percent systematic offset of the Bessel-weighted asymmetry obtained from Montemore » Carlo extraction compared to input model calculations, which is due to the limitations imposed by the energy and momentum conservation at the given energy/Q2. We find that the Bessel weighting technique provides a powerful and reliable tool to study the Fourier transform of TMDs with controlled systematics due to experimental acceptances and resolutions with different TMD model inputs.« less

  20. Theory of Random Copolymer Fractionation in Columns

    NASA Astrophysics Data System (ADS)

    Enders, Sabine

    Random copolymers show polydispersity both with respect to molecular weight and with respect to chemical composition, where the physical and chemical properties depend on both polydispersities. For special applications, the two-dimensional distribution function must adjusted to the application purpose. The adjustment can be achieved by polymer fractionation. From the thermodynamic point of view, the distribution function can be adjusted by the successive establishment of liquid-liquid equilibria (LLE) for suitable solutions of the polymer to be fractionated. The fractionation column is divided into theoretical stages. Assuming an LLE on each theoretical stage, the polymer fractionation can be modeled using phase equilibrium thermodynamics. As examples, simulations of stepwise fractionation in one direction, cross-fractionation in two directions, and two different column fractionations (Baker-Williams fractionation and continuous polymer fractionation) have been investigated. The simulation delivers the distribution according the molecular weight and chemical composition in every obtained fraction, depending on the operative properties, and is able to optimize the fractionation effectively.

  1. Studies of transverse momentum dependent parton distributions and Bessel weighting

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aghasyan, M.; Avakian, H.; De Sanctis, E.

    In this paper we present a new technique for analysis of transverse momentum dependent parton distribution functions, based on the Bessel weighting formalism. The procedure is applied to studies of the double longitudinal spin asymmetry in semi-inclusive deep inelastic scattering using a new dedicated Monte Carlo generator which includes quark intrinsic transverse momentum within the generalized parton model. Using a fully differential cross section for the process, the effect of four momentum conservation is analyzed using various input models for transverse momentum distributions and fragmentation functions. We observe a few percent systematic offset of the Bessel-weighted asymmetry obtained from Montemore » Carlo extraction compared to input model calculations, which is due to the limitations imposed by the energy and momentum conservation at the given energy/Q2. We find that the Bessel weighting technique provides a powerful and reliable tool to study the Fourier transform of TMDs with controlled systematics due to experimental acceptances and resolutions with different TMD model inputs.« less

  2. How learning might strengthen existing visual object representations in human object-selective cortex.

    PubMed

    Brants, Marijke; Bulthé, Jessica; Daniels, Nicky; Wagemans, Johan; Op de Beeck, Hans P

    2016-02-15

    Visual object perception is an important function in primates which can be fine-tuned by experience, even in adults. Which factors determine the regions and the neurons that are modified by learning is still unclear. Recently, it was proposed that the exact cortical focus and distribution of learning effects might depend upon the pre-learning mapping of relevant functional properties and how this mapping determines the informativeness of neural units for the stimuli and the task to be learned. From this hypothesis we would expect that visual experience would strengthen the pre-learning distributed functional map of the relevant distinctive object properties. Here we present a first test of this prediction in twelve human subjects who were trained in object categorization and differentiation, preceded and followed by a functional magnetic resonance imaging session. Specifically, training increased the distributed multi-voxel pattern information for trained object distinctions in object-selective cortex, resulting in a generalization from pre-training multi-voxel activity patterns to after-training activity patterns. Simulations show that the increased selectivity combined with the inter-session generalization is consistent with a training-induced strengthening of a pre-existing selectivity map. No training-related neural changes were detected in other regions. In sum, training to categorize or individuate objects strengthened pre-existing representations in human object-selective cortex, providing a first indication that the neuroanatomical distribution of learning effects depends upon the pre-learning mapping of visual object properties. Copyright © 2015 Elsevier Inc. All rights reserved.

  3. A temperature-dependent coarse-grained model for the thermoresponsive polymer poly(N-isopropylacrylamide).

    PubMed

    Abbott, Lauren J; Stevens, Mark J

    2015-12-28

    A coarse-grained (CG) model is developed for the thermoresponsive polymer poly(N-isopropylacrylamide) (PNIPAM), using a hybrid top-down and bottom-up approach. Nonbonded parameters are fit to experimental thermodynamic data following the procedures of the SDK (Shinoda, DeVane, and Klein) CG force field, with minor adjustments to provide better agreement with radial distribution functions from atomistic simulations. Bonded parameters are fit to probability distributions from atomistic simulations using multi-centered Gaussian-based potentials. The temperature-dependent potentials derived for the PNIPAM CG model in this work properly capture the coil-globule transition of PNIPAM single chains and yield a chain-length dependence consistent with atomistic simulations.

  4. Solar Wind Five

    NASA Technical Reports Server (NTRS)

    Neugebauer, M. (Editor)

    1983-01-01

    Topics of discussion were: solar corona, MHD waves and turbulence, acceleration of the solar wind, stellar coronae and winds, long term variations, energetic particles, plasma distribution functions and waves, spatial dependences, and minor ions.

  5. Frequency distributions from birth, death, and creation processes.

    PubMed

    Bartley, David L; Ogden, Trevor; Song, Ruiguang

    2002-01-01

    The time-dependent frequency distribution of groups of individuals versus group size was investigated within a continuum approximation, assuming a simplified individual growth, death and creation model. The analogy of the system to a physical fluid exhibiting both convection and diffusion was exploited in obtaining various solutions to the distribution equation. A general solution was approximated through the application of a Green's function. More specific exact solutions were also found to be useful. The solutions were continually checked against the continuum approximation through extensive simulation of the discrete system. Over limited ranges of group size, the frequency distributions were shown to closely exhibit a power-law dependence on group size, as found in many realizations of this type of system, ranging from colonies of mutated bacteria to the distribution of surnames in a given population. As an example, the modeled distributions were successfully fit to the distribution of surnames in several countries by adjusting the parameters specifying growth, death and creation rates.

  6. Constraints on the near-Earth asteroid obliquity distribution from the Yarkovsky effect

    NASA Astrophysics Data System (ADS)

    Tardioli, C.; Farnocchia, D.; Rozitis, B.; Cotto-Figueroa, D.; Chesley, S. R.; Statler, T. S.; Vasile, M.

    2017-12-01

    Aims: From light curve and radar data we know the spin axis of only 43 near-Earth asteroids. In this paper we attempt to constrain the spin axis obliquity distribution of near-Earth asteroids by leveraging the Yarkovsky effect and its dependence on an asteroid's obliquity. Methods: By modeling the physical parameters driving the Yarkovsky effect, we solve an inverse problem where we test different simple parametric obliquity distributions. Each distribution results in a predicted Yarkovsky effect distribution that we compare with a χ2 test to a dataset of 125 Yarkovsky estimates. Results: We find different obliquity distributions that are statistically satisfactory. In particular, among the considered models, the best-fit solution is a quadratic function, which only depends on two parameters, favors extreme obliquities consistent with the expected outcomes from the YORP effect, has a 2:1 ratio between retrograde and direct rotators, which is in agreement with theoretical predictions, and is statistically consistent with the distribution of known spin axes of near-Earth asteroids.

  7. Polarization-dependent bi-functional metasurface for directive radiation and diffusion-like scattering

    NASA Astrophysics Data System (ADS)

    Cui, Li; Wang, Wenjun; Ding, Guowen; Chen, Ke; Zhao, Junming; Jiang, Tian; Zhu, Bo; Feng, Yijun

    2017-11-01

    In this paper, we design a bi-functional metasurface with different spatial distribution of reflection phase responses depending on the incident polarization. The metasurface with a thickness of only 0.067 λ0 (λ0 is the working wavelength) is constructed by unit cells composing two orthogonal I-shaped metallic structures, and the reflection phase for x- and y-linearly polarized incidence can be independently controlled by the geometric parameters. The metasurface can work as a flat parabolic reflector antenna with a maximum gain reaching about 22 dBi around 9.5 GHz, when it is illuminated by the x-polarized feed source of an offset open-ended waveguide antenna. Meanwhile, designed with randomly distributed reflection phases, the proposed metasurface can behave as an electromagnetic (EM) diffusion-like surface, which is capable of suppressing the backward scattering in a broadband from 8.5 GHz to 14 GHz for y-polarized incidence. By this strategy of EM functionality integration, a metasurface reflector antenna equipped with stealth technique to achieve simultaneously high gain and low backward scattering is obtained. Finally, experiments have been carried out to demonstrate this design principle, which agree with the simulation results. The proposed metasurface could offer a promising route for designing EM devices with polarization-dependent multi-functionalities.

  8. Subtle Change in the Charge Distribution of Surface Residues May Affect the Secondary Functions of Cytochrome c*

    PubMed Central

    Paul, Simanta Sarani; Sil, Pallabi; Haldar, Shubhasis; Mitra, Samaresh; Chattopadhyay, Krishnananda

    2015-01-01

    Although the primary function of cytochrome c (cyt c) is electron transfer, the protein caries out an additional secondary function involving its interaction with membrane cardiolipin (CDL), its peroxidase activity, and the initiation of apoptosis. Whereas the primary function of cyt c is essentially conserved, its secondary function varies depending on the source of the protein. We report here a detailed experimental and computational study, which aims to understand, at the molecular level, the difference in the secondary functions of cyt c obtained from horse heart (mammalian) and Saccharomyces cerevisiae (yeast). The conformational landscape of cyt c has been found to be heterogeneous, consisting of an equilibrium between the compact and extended conformers as well as the oligomeric species. Because the determination of relative populations of these conformers is difficult to obtain by ensemble measurements, we used fluorescence correlation spectroscopy (FCS), a method that offers single-molecule resolution. The population of different species is found to depend on multiple factors, including the protein source, the presence of CDL and urea, and their concentrations. The complex interplay between the conformational distribution and oligomerization plays a crucial role in the variation of the pre-apoptotic regulation of cyt c observed from different sources. Finally, computational studies reveal that the variation in the charge distribution at the surface and the charge reversal sites may be the key determinant of the conformational stability of cyt c. PMID:25873393

  9. Forward J / ψ production at high energy: Centrality dependence and mean transverse momentum

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ducloué, B.; Lappi, T.; Mäntysaari, H.

    2016-10-21

    Forward rapidity J/more » $$\\psi$$ meson production in proton-nucleus collisions can be an important constraint of descriptions of the small- x nuclear wave function. In an earlier work we studied this process using a dipole cross section satisfying the Balitsky-Kovchegov equation, fit to HERA inclusive data and consistently extrapolated to the nuclear case using a standard Woods-Saxon distribution. In this paper we present further calculations of these cross sections, studying the mean transverse momentum of the meson and the dependence on collision centrality. We also extend the calculation to backward rapidities using nuclear parton distribution functions. Here, we show that the parametrization is overall rather consistent with the available experimental data. However, there is a tendency towards a too strong centrality dependence. This can be traced back to the rather small transverse area occupied by small- x gluons in the nucleon that is seen in the HERA data, compared to the total inelastic nucleon-nucleon cross section.« less

  10. Operator constraints for twist-3 functions and Lorentz invariance properties of twist-3 observables

    DOE PAGES

    Kanazawa, Koichi; Pitonyak, Daniel; Koike, Yuji; ...

    2016-03-14

    We investigate the behavior under Lorentz transformations of perturbative coefficient functions in a collinear twist-3 formalism relevant for high-energy observables including transverse polarization of hadrons. We argue that those perturbative coefficient functions can, a priori, acquire quite different yet Lorentz-invariant forms in various frames. This somewhat surprising difference can be traced back to a general dependence of the perturbative coefficient functions on light cone vectors which are introduced by the twist-3 factorization formulas and which are frame-dependent. One can remove this spurious frame dependence by invoking so-called Lorentz invariance relations (LIRs) between twist-3 parton correlation functions. Some of those relationsmore » for twist-3 distribution functions were discussed in the literature before. In this paper we derive the corresponding LIRs for twist-3 fragmentation functions. We explicitly demonstrate that these LIRs remove the light cone vector dependence by considering transverse spin observables in the single-inclusive production of hadrons in lepton-nucleon collisions, ℓN→hX. Furthermore, with the LIRs in hand, we also show that twist-3 observables in general can be written solely in terms of three-parton correlation functions.« less

  11. 3D glasma initial state for relativistic heavy ion collisions

    DOE PAGES

    Schenke, Björn; Schlichting, Sören

    2016-10-13

    We extend the impact-parameter-dependent Glasma model to three dimensions using explicit small-x evolution of the two incoming nuclear gluon distributions. We compute rapidity distributions of produced gluons and the early-time energy momentum tensor as a function of space-time rapidity and transverse coordinates. Finally, we study rapidity correlations and fluctuations of the initial geometry and multiplicity distributions and make comparisons to existing models for the three-dimensional initial state.

  12. Evolution of association between renal and liver functions while awaiting heart transplant: An application using a bivariate multiphase nonlinear mixed effects model.

    PubMed

    Rajeswaran, Jeevanantham; Blackstone, Eugene H; Barnard, John

    2018-07-01

    In many longitudinal follow-up studies, we observe more than one longitudinal outcome. Impaired renal and liver functions are indicators of poor clinical outcomes for patients who are on mechanical circulatory support and awaiting heart transplant. Hence, monitoring organ functions while waiting for heart transplant is an integral part of patient management. Longitudinal measurements of bilirubin can be used as a marker for liver function and glomerular filtration rate for renal function. We derive an approximation to evolution of association between these two organ functions using a bivariate nonlinear mixed effects model for continuous longitudinal measurements, where the two submodels are linked by a common distribution of time-dependent latent variables and a common distribution of measurement errors.

  13. Nuclear parton distributions and the Drell-Yan process

    NASA Astrophysics Data System (ADS)

    Kulagin, S. A.; Petti, R.

    2014-10-01

    We study the nuclear parton distribution functions on the basis of our recently developed semimicroscopic model, which takes into account a number of nuclear effects including nuclear shadowing, Fermi motion and nuclear binding, nuclear meson-exchange currents, and off-shell corrections to bound nucleon distributions. We discuss in detail the dependencies of nuclear effects on the type of parton distribution (nuclear sea vs valence), as well as on the parton flavor (isospin). We apply the resulting nuclear parton distributions to calculate ratios of cross sections for proton-induced Drell-Yan production off different nuclear targets. We obtain a good agreement on the magnitude, target and projectile x, and the dimuon mass dependence of proton-nucleus Drell-Yan process data from the E772 and E866 experiments at Fermilab. We also provide nuclear corrections for the Drell-Yan data from the E605 experiment.

  14. Flavor dependence of the pion and kaon form factors and parton distribution functions

    DOE PAGES

    Hutauruk, Parada T. P.; Cloët, Ian C.; Thomas, Anthony W.

    2016-09-01

    The separate quark flavor contributions to the pion and kaon valence quark distribution functions are studied, along with the corresponding electromagnetic form factors in the space-like region. The calculations are made using the solution of the Bethe-Salpeter equation for the model of Nambu and Jona-Lasinio with proper-time regularization. Both the pion and kaon form factors and the valence quark distribution functions reproduce many features of the available empirical data. The larger mass of the strange quark naturally explains the empirical fact that the ratio u(K) + (x)/u(pi) + (x) drops below unity at large x, with a value of approximately Mmore » $$2\\atop{u}$$/Ms$$2\\atop{s}$$ as x → 1. With regard to the elastic form factors we report a large flavor dependence, with the u-quark contribution to the kaon form factor being an order of magnitude smaller than that of the s-quark at large Q 2, which may be a sensitive measure of confinement effects in QCD. Surprisingly though, the total K + and π + form factors differ by only 10%. Lastly, in general we find that flavor breaking effects are typically around 20%.« less

  15. Flavor dependence of the pion and kaon form factors and parton distribution functions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hutauruk, Parada T. P.; Cloët, Ian C.; Thomas, Anthony W.

    The separate quark flavor contributions to the pion and kaon valence quark distribution functions are studied, along with the corresponding electromagnetic form factors in the space-like region. The calculations are made using the solution of the Bethe-Salpeter equation for the model of Nambu and Jona-Lasinio with proper-time regularization. Both the pion and kaon form factors and the valence quark distribution functions reproduce many features of the available empirical data. The larger mass of the strange quark naturally explains the empirical fact that the ratio u(K) + (x)/u(pi) + (x) drops below unity at large x, with a value of approximately Mmore » $$2\\atop{u}$$/Ms$$2\\atop{s}$$ as x → 1. With regard to the elastic form factors we report a large flavor dependence, with the u-quark contribution to the kaon form factor being an order of magnitude smaller than that of the s-quark at large Q 2, which may be a sensitive measure of confinement effects in QCD. Surprisingly though, the total K + and π + form factors differ by only 10%. Lastly, in general we find that flavor breaking effects are typically around 20%.« less

  16. Time-sliced perturbation theory for large scale structure I: general formalism

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Blas, Diego; Garny, Mathias; Sibiryakov, Sergey

    2016-07-01

    We present a new analytic approach to describe large scale structure formation in the mildly non-linear regime. The central object of the method is the time-dependent probability distribution function generating correlators of the cosmological observables at a given moment of time. Expanding the distribution function around the Gaussian weight we formulate a perturbative technique to calculate non-linear corrections to cosmological correlators, similar to the diagrammatic expansion in a three-dimensional Euclidean quantum field theory, with time playing the role of an external parameter. For the physically relevant case of cold dark matter in an Einstein-de Sitter universe, the time evolution ofmore » the distribution function can be found exactly and is encapsulated by a time-dependent coupling constant controlling the perturbative expansion. We show that all building blocks of the expansion are free from spurious infrared enhanced contributions that plague the standard cosmological perturbation theory. This paves the way towards the systematic resummation of infrared effects in large scale structure formation. We also argue that the approach proposed here provides a natural framework to account for the influence of short-scale dynamics on larger scales along the lines of effective field theory.« less

  17. A dynamic re-partitioning strategy based on the distribution of key in Spark

    NASA Astrophysics Data System (ADS)

    Zhang, Tianyu; Lian, Xin

    2018-05-01

    Spark is a memory-based distributed data processing framework, has the ability of processing massive data and becomes a focus in Big Data. But the performance of Spark Shuffle depends on the distribution of data. The naive Hash partition function of Spark can not guarantee load balancing when data is skewed. The time of job is affected by the node which has more data to process. In order to handle this problem, dynamic sampling is used. In the process of task execution, histogram is used to count the key frequency distribution of each node, and then generate the global key frequency distribution. After analyzing the distribution of key, load balance of data partition is achieved. Results show that the Dynamic Re-Partitioning function is better than the default Hash partition, Fine Partition and the Balanced-Schedule strategy, it can reduce the execution time of the task and improve the efficiency of the whole cluster.

  18. Measurement of myocardial blood flow by cardiovascular magnetic resonance perfusion: comparison of distributed parameter and Fermi models with single and dual bolus.

    PubMed

    Papanastasiou, Giorgos; Williams, Michelle C; Kershaw, Lucy E; Dweck, Marc R; Alam, Shirjel; Mirsadraee, Saeed; Connell, Martin; Gray, Calum; MacGillivray, Tom; Newby, David E; Semple, Scott Ik

    2015-02-17

    Mathematical modeling of cardiovascular magnetic resonance perfusion data allows absolute quantification of myocardial blood flow. Saturation of left ventricle signal during standard contrast administration can compromise the input function used when applying these models. This saturation effect is evident during application of standard Fermi models in single bolus perfusion data. Dual bolus injection protocols have been suggested to eliminate saturation but are much less practical in the clinical setting. The distributed parameter model can also be used for absolute quantification but has not been applied in patients with coronary artery disease. We assessed whether distributed parameter modeling might be less dependent on arterial input function saturation than Fermi modeling in healthy volunteers. We validated the accuracy of each model in detecting reduced myocardial blood flow in stenotic vessels versus gold-standard invasive methods. Eight healthy subjects were scanned using a dual bolus cardiac perfusion protocol at 3T. We performed both single and dual bolus analysis of these data using the distributed parameter and Fermi models. For the dual bolus analysis, a scaled pre-bolus arterial input function was used. In single bolus analysis, the arterial input function was extracted from the main bolus. We also performed analysis using both models of single bolus data obtained from five patients with coronary artery disease and findings were compared against independent invasive coronary angiography and fractional flow reserve. Statistical significance was defined as two-sided P value < 0.05. Fermi models overestimated myocardial blood flow in healthy volunteers due to arterial input function saturation in single bolus analysis compared to dual bolus analysis (P < 0.05). No difference was observed in these volunteers when applying distributed parameter-myocardial blood flow between single and dual bolus analysis. In patients, distributed parameter modeling was able to detect reduced myocardial blood flow at stress (<2.5 mL/min/mL of tissue) in all 12 stenotic vessels compared to only 9 for Fermi modeling. Comparison of single bolus versus dual bolus values suggests that distributed parameter modeling is less dependent on arterial input function saturation than Fermi modeling. Distributed parameter modeling showed excellent accuracy in detecting reduced myocardial blood flow in all stenotic vessels.

  19. Modeling of particle radiative properties in coal combustion depending on burnout

    NASA Astrophysics Data System (ADS)

    Gronarz, Tim; Habermehl, Martin; Kneer, Reinhold

    2017-04-01

    In the present study, absorption and scattering efficiencies as well as the scattering phase function of a cloud of coal particles are described as function of the particle combustion progress. Mie theory for coated particles is applied as mathematical model. The scattering and absorption properties are determined by several parameters: size distribution, spectral distribution of incident radiation and spectral index of refraction of the particles. A study to determine the influence of each parameter is performed, finding that the largest effect is due to the refractive index, followed by the effect of size distribution. The influence of the incident radiation profile is negligible. As a part of this study, the possibility of applying a constant index of refraction is investigated. Finally, scattering and absorption efficiencies as well as the phase function are presented as a function of burnout with the presented model and the results are discussed.

  20. Fast-ion distributions from third harmonic ICRF heating studied with neutron emission spectroscopy

    NASA Astrophysics Data System (ADS)

    Hellesen, C.; Gatu Johnson, M.; Andersson Sundén, E.; Conroy, S.; Ericsson, G.; Eriksson, J.; Sjöstrand, H.; Weiszflog, M.; Johnson, T.; Gorini, G.; Nocente, M.; Tardocchi, M.; Kiptily, V. G.; Pinches, S. D.; Sharapov, S. E.; EFDA Contributors, JET

    2013-11-01

    The fast-ion distribution from third harmonic ion cyclotron resonance frequency (ICRF) heating on the Joint European Torus is studied using neutron emission spectroscopy with the time-of-flight spectrometer TOFOR. The energy dependence of the fast deuteron distribution function is inferred from the measured spectrum of neutrons born in DD fusion reactions, and the inferred distribution is compared with theoretical models for ICRF heating. Good agreements between modelling and measurements are seen with clear features in the fast-ion distribution function, that are due to the finite Larmor radius of the resonating ions, replicated. Strong synergetic effects between ICRF and neutral beam injection heating were also seen. The total energy content of the fast-ion population derived from TOFOR data was in good agreement with magnetic measurements for values below 350 kJ.

  1. Neutron-skin effect in direct-photon and charged-hadron production in Pb+Pb collisions at the LHC.

    PubMed

    Helenius, Ilkka; Paukkunen, Hannu; Eskola, Kari J

    2017-01-01

    A well-established observation in nuclear physics is that in neutron-rich spherical nuclei the distribution of neutrons extends farther than the distribution of protons. In this work, we scrutinize the influence of this so called neutron-skin effect on the centrality dependence of high-[Formula: see text] direct-photon and charged-hadron production. We find that due to the estimated spatial dependence of the nuclear parton distribution functions, it will be demanding to unambiguously expose the neutron-skin effect with direct photons. However, when taking a ratio between the cross sections for negatively and positively charged high-[Formula: see text] hadrons, even centrality-dependent nuclear-PDF effects cancel, making this observable a better handle on the neutron skin. Up to 10% effects can be expected for the most peripheral collisions in the measurable region.

  2. Network dysfunction predicts speech production after left hemisphere stroke.

    PubMed

    Geranmayeh, Fatemeh; Leech, Robert; Wise, Richard J S

    2016-03-09

    To investigate the role of multiple distributed brain networks, including the default mode, fronto-temporo-parietal, and cingulo-opercular networks, which mediate domain-general and task-specific processes during speech production after aphasic stroke. We conducted an observational functional MRI study to investigate the effects of a previous left hemisphere stroke on functional connectivity within and between distributed networks as patients described pictures. Study design included various baseline tasks, and we compared results to those of age-matched healthy participants performing the same tasks. We used independent component and psychophysiological interaction analyses. Although activity within individual networks was not predictive of speech production, relative activity between networks was a predictor of both within-scanner and out-of-scanner language performance, over and above that predicted from lesion volume, age, sex, and years of education. Specifically, robust functional imaging predictors were the differential activity between the default mode network and both the left and right fronto-temporo-parietal networks, respectively activated and deactivated during speech. We also observed altered between-network functional connectivity of these networks in patients during speech production. Speech production is dependent on complex interactions among widely distributed brain networks, indicating that residual speech production after stroke depends on more than the restoration of local domain-specific functions. Our understanding of the recovery of function following focal lesions is not adequately captured by consideration of ipsilesional or contralesional brain regions taking over lost domain-specific functions, but is perhaps best considered as the interaction between what remains of domain-specific networks and domain-general systems that regulate behavior. © 2016 American Academy of Neurology.

  3. Network dysfunction predicts speech production after left hemisphere stroke

    PubMed Central

    Leech, Robert; Wise, Richard J.S.

    2016-01-01

    Objective: To investigate the role of multiple distributed brain networks, including the default mode, fronto-temporo-parietal, and cingulo-opercular networks, which mediate domain-general and task-specific processes during speech production after aphasic stroke. Methods: We conducted an observational functional MRI study to investigate the effects of a previous left hemisphere stroke on functional connectivity within and between distributed networks as patients described pictures. Study design included various baseline tasks, and we compared results to those of age-matched healthy participants performing the same tasks. We used independent component and psychophysiological interaction analyses. Results: Although activity within individual networks was not predictive of speech production, relative activity between networks was a predictor of both within-scanner and out-of-scanner language performance, over and above that predicted from lesion volume, age, sex, and years of education. Specifically, robust functional imaging predictors were the differential activity between the default mode network and both the left and right fronto-temporo-parietal networks, respectively activated and deactivated during speech. We also observed altered between-network functional connectivity of these networks in patients during speech production. Conclusions: Speech production is dependent on complex interactions among widely distributed brain networks, indicating that residual speech production after stroke depends on more than the restoration of local domain-specific functions. Our understanding of the recovery of function following focal lesions is not adequately captured by consideration of ipsilesional or contralesional brain regions taking over lost domain-specific functions, but is perhaps best considered as the interaction between what remains of domain-specific networks and domain-general systems that regulate behavior. PMID:26962070

  4. Electron-phonon relaxation and excited electron distribution in gallium nitride

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhukov, V. P.; Donostia International Physics Center; Tyuterev, V. G., E-mail: valtyut00@mail.ru

    2016-08-28

    We develop a theory of energy relaxation in semiconductors and insulators highly excited by the long-acting external irradiation. We derive the equation for the non-equilibrium distribution function of excited electrons. The solution for this function breaks up into the sum of two contributions. The low-energy contribution is concentrated in a narrow range near the bottom of the conduction band. It has the typical form of a Fermi distribution with an effective temperature and chemical potential. The effective temperature and chemical potential in this low-energy term are determined by the intensity of carriers' generation, the speed of electron-phonon relaxation, rates ofmore » inter-band recombination, and electron capture on the defects. In addition, there is a substantial high-energy correction. This high-energy “tail” largely covers the conduction band. The shape of the high-energy “tail” strongly depends on the rate of electron-phonon relaxation but does not depend on the rates of recombination and trapping. We apply the theory to the calculation of a non-equilibrium distribution of electrons in an irradiated GaN. Probabilities of optical excitations from the valence to conduction band and electron-phonon coupling probabilities in GaN were calculated by the density functional perturbation theory. Our calculation of both parts of distribution function in gallium nitride shows that when the speed of the electron-phonon scattering is comparable with the rate of recombination and trapping then the contribution of the non-Fermi “tail” is comparable with that of the low-energy Fermi-like component. So the high-energy contribution can essentially affect the charge transport in the irradiated and highly doped semiconductors.« less

  5. A composite likelihood approach for spatially correlated survival data

    PubMed Central

    Paik, Jane; Ying, Zhiliang

    2013-01-01

    The aim of this paper is to provide a composite likelihood approach to handle spatially correlated survival data using pairwise joint distributions. With e-commerce data, a recent question of interest in marketing research has been to describe spatially clustered purchasing behavior and to assess whether geographic distance is the appropriate metric to describe purchasing dependence. We present a model for the dependence structure of time-to-event data subject to spatial dependence to characterize purchasing behavior from the motivating example from e-commerce data. We assume the Farlie-Gumbel-Morgenstern (FGM) distribution and then model the dependence parameter as a function of geographic and demographic pairwise distances. For estimation of the dependence parameters, we present pairwise composite likelihood equations. We prove that the resulting estimators exhibit key properties of consistency and asymptotic normality under certain regularity conditions in the increasing-domain framework of spatial asymptotic theory. PMID:24223450

  6. A composite likelihood approach for spatially correlated survival data.

    PubMed

    Paik, Jane; Ying, Zhiliang

    2013-01-01

    The aim of this paper is to provide a composite likelihood approach to handle spatially correlated survival data using pairwise joint distributions. With e-commerce data, a recent question of interest in marketing research has been to describe spatially clustered purchasing behavior and to assess whether geographic distance is the appropriate metric to describe purchasing dependence. We present a model for the dependence structure of time-to-event data subject to spatial dependence to characterize purchasing behavior from the motivating example from e-commerce data. We assume the Farlie-Gumbel-Morgenstern (FGM) distribution and then model the dependence parameter as a function of geographic and demographic pairwise distances. For estimation of the dependence parameters, we present pairwise composite likelihood equations. We prove that the resulting estimators exhibit key properties of consistency and asymptotic normality under certain regularity conditions in the increasing-domain framework of spatial asymptotic theory.

  7. Interpretation of heavy rainfall spatial distribution in mountain watersheds by copula functions

    NASA Astrophysics Data System (ADS)

    Grossi, Giovanna; Balistrocchi, Matteo

    2016-04-01

    The spatial distribution of heavy rainfalls can strongly influence flood dynamics in mountain watersheds, depending on their geomorphologic features, namely orography, slope, land covers and soil types. Unfortunately, the direct observation of rainfall fields by meteorological radar is very difficult in this situation, so that interpolation of rain gauge observations or downscaling of meteorological predictions must be adopted to derive spatial rainfall distributions. To do so, various stochastic and physically based approaches are already available, even though the first one is the most familiar in hydrology. Indeed, Kriging interpolation procedures represent very popular techniques to face this problem by means of a stochastic approach. A certain number of restrictive assumptions and parameter uncertainties however affects Kriging. Many alternative formulations and additional procedures were therefore developed during the last decades. More recently, copula functions (Joe, 1997; Nelsen, 2006; Salvadori et al. 2007) were suggested to provide a more straightforward solution to carry out spatial interpolations of hydrologic variables (Bardossy & Pegram; 2009). Main advantages lie in the possibility of i) assessing the dependence structure relating to rainfall variables independently of marginal distributions, ii) expressing the association degree through rank correlation coefficients, iii) implementing marginal distributions and copula functions belonging to different models to develop complex joint distribution functions, iv) verifying the model reliability by effective statistical tests (Genest et al., 2009). A suitable case study to verify these potentialities is provided by the Taro River, a right-bank tributary of the Po River (northern Italy), whose contributing area amounts to about 2˙000 km2. The mountain catchment area is divided into two similar watersheds, so that spatial distribution is crucial in extreme flood event generation. A quite well diffused hydro-meteorological network, consisting of about 30 rain gauges and 10 hydrometers, monitors this medium-size watershed. A decade of rainfall-runoff event observations are available. Severe rainfall events were identified with reference to a main raingauge station, by using an interevent time definition and a depth threshold. Rainfall depths were thus derived and the spatial variability of their association degree was represented by using the Kendall coefficient. A unique copula model based on Gumbel copula function was finally found to be suitable to represent the dependence structure relating to rainfall depths observed in distinct raingauges. Bardossy A., Pegram G. (2009), Copula based multisite model for daily precipitation simulation, Hydrol. Earth Syst. Sci., 13, 2299-2314. Genest C., Rémilland B., Beaudoin D. (2009), Goodness-of-fit tests for copulas: a review and a power study, Insur. Math. Econ., 44(2), 199-213. Joe H. (1997), Multivariate models and dependence concepts, Chapman and Hall, London. Nelsen R. B. (2006), An introduction to copulas, second ed., Springer, New York. Salvadori G., De Michele C., Kottegoda N. T., Rosso R. (2007), Extremes in nature: an approach using copulas, Springer, Dordrecht, The Nederlands.

  8. Concentration-dependent and configuration-dependent interactions of monovalent ions with an RNA tetraloop

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miner, Jacob Carlson; Garcia, Angel Enrique

    Monovalent salt solutions have strongly coupled interactions with biopolymers, from large polyelectrolytes to small RNA oligomers. High salt concentrations have been known to induce transitions in the structure of RNA, producing non-canonical configurations and even driving RNA to precipitate out of solution. Using all-atom molecular dynamics simulations, we model a monovalent salt species (KCL) at high concentrations (0.1–3m) and calculate the equilibrium distributions of water and ions around a small tetraloop-forming RNA oligomer in a variety of structural arrangements: folded A-RNA (canonical) and Z-RNA (non-canonical) tetraloops and unfolded configurations. From these data, we calculate the ion preferential binding coefficients andmore » Donnan coefficients for the RNA oligomer as a function of concentration and structure. We find that cation accumulation is highest around non-canonical Z-RNA configurations at concentrations below 0.5m, while unfolded configurations accumulate the most co-ions in all concentrations. By contrast, canonical A-RNA structures consistently show the lowest accumulations for all ion species. Water distributions vary markedly with RNA configuration but show little dependency on KCL concentration. Based on Donnan coefficient calculations, the net charge of the solution at the surface of the RNA decreases linearly as a function of salt concentration and becomes net-neutral near 2.5–3m KCL for folded configurations, while unfolded configurations still show a positive solution charge. Our findings show that all-atom molecular dynamics can describe the equilibrium distributions of monovalent salt in the presence of small RNA oligomers at KCL concentrations where ion correlation effects become important. Furthermore, these results provide valuable insights into the distributions of water and ions near the RNA oligomer surface as a function of structural configuration.« less

  9. Concentration-dependent and configuration-dependent interactions of monovalent ions with an RNA tetraloop

    DOE PAGES

    Miner, Jacob Carlson; Garcia, Angel Enrique

    2018-05-29

    Monovalent salt solutions have strongly coupled interactions with biopolymers, from large polyelectrolytes to small RNA oligomers. High salt concentrations have been known to induce transitions in the structure of RNA, producing non-canonical configurations and even driving RNA to precipitate out of solution. Using all-atom molecular dynamics simulations, we model a monovalent salt species (KCL) at high concentrations (0.1–3m) and calculate the equilibrium distributions of water and ions around a small tetraloop-forming RNA oligomer in a variety of structural arrangements: folded A-RNA (canonical) and Z-RNA (non-canonical) tetraloops and unfolded configurations. From these data, we calculate the ion preferential binding coefficients andmore » Donnan coefficients for the RNA oligomer as a function of concentration and structure. We find that cation accumulation is highest around non-canonical Z-RNA configurations at concentrations below 0.5m, while unfolded configurations accumulate the most co-ions in all concentrations. By contrast, canonical A-RNA structures consistently show the lowest accumulations for all ion species. Water distributions vary markedly with RNA configuration but show little dependency on KCL concentration. Based on Donnan coefficient calculations, the net charge of the solution at the surface of the RNA decreases linearly as a function of salt concentration and becomes net-neutral near 2.5–3m KCL for folded configurations, while unfolded configurations still show a positive solution charge. Our findings show that all-atom molecular dynamics can describe the equilibrium distributions of monovalent salt in the presence of small RNA oligomers at KCL concentrations where ion correlation effects become important. Furthermore, these results provide valuable insights into the distributions of water and ions near the RNA oligomer surface as a function of structural configuration.« less

  10. Concentration-dependent and configuration-dependent interactions of monovalent ions with an RNA tetraloop

    NASA Astrophysics Data System (ADS)

    Miner, Jacob Carlson; García, Angel Enrique

    2018-06-01

    Monovalent salt solutions have strongly coupled interactions with biopolymers, from large polyelectrolytes to small RNA oligomers. High salt concentrations have been known to induce transitions in the structure of RNA, producing non-canonical configurations and even driving RNA to precipitate out of solution. Using all-atom molecular dynamics simulations, we model a monovalent salt species (KCL) at high concentrations (0.1-3m) and calculate the equilibrium distributions of water and ions around a small tetraloop-forming RNA oligomer in a variety of structural arrangements: folded A-RNA (canonical) and Z-RNA (non-canonical) tetraloops and unfolded configurations. From these data, we calculate the ion preferential binding coefficients and Donnan coefficients for the RNA oligomer as a function of concentration and structure. We find that cation accumulation is highest around non-canonical Z-RNA configurations at concentrations below 0.5m, while unfolded configurations accumulate the most co-ions in all concentrations. By contrast, canonical A-RNA structures consistently show the lowest accumulations for all ion species. Water distributions vary markedly with RNA configuration but show little dependency on KCL concentration. Based on Donnan coefficient calculations, the net charge of the solution at the surface of the RNA decreases linearly as a function of salt concentration and becomes net-neutral near 2.5-3m KCL for folded configurations, while unfolded configurations still show a positive solution charge. Our findings show that all-atom molecular dynamics can describe the equilibrium distributions of monovalent salt in the presence of small RNA oligomers at KCL concentrations where ion correlation effects become important. Furthermore, these results provide valuable insights into the distributions of water and ions near the RNA oligomer surface as a function of structural configuration.

  11. Measurement of distributions of temperature and wavelength-dependent emissivity of a laminar diffusion flame using hyper-spectral imaging technique

    NASA Astrophysics Data System (ADS)

    Liu, Huawei; Zheng, Shu; Zhou, Huaichun; Qi, Chaobo

    2016-02-01

    A generalized method to estimate a two-dimensional (2D) distribution of temperature and wavelength-dependent emissivity in a sooty flame with spectroscopic radiation intensities is proposed in this paper. The method adopts a Newton-type iterative method to solve the unknown coefficients in the polynomial relationship between the emissivity and the wavelength, as well as the unknown temperature. Polynomial functions with increasing order are examined, and final results are determined as the result converges. Numerical simulation on a fictitious flame with wavelength-dependent absorption coefficients shows a good performance with relative errors less than 0.5% in the average temperature. What’s more, a hyper-spectral imaging device is introduced to measure an ethylene/air laminar diffusion flame with the proposed method. The proper order for the polynomial function is selected to be 2, because every one order increase in the polynomial function will only bring in a temperature variation smaller than 20 K. For the ethylene laminar diffusion flame with 194 ml min-1 C2H4 and 284 L min-1 air studied in this paper, the 2D distribution of average temperature estimated along the line of sight is similar to, but smoother than that of the local temperature given in references, and the 2D distribution of emissivity shows a cumulative effect of the absorption coefficient along the line of sight. It also shows that emissivity of the flame decreases as the wavelength increases. The emissivity under wavelength 400 nm is about 2.5 times as much as that under wavelength 1000 nm for a typical line-of-sight in the flame, with the same trend for the absorption coefficient of soot varied with the wavelength.

  12. Concentration-dependent and configuration-dependent interactions of monovalent ions with an RNA tetraloop.

    PubMed

    Miner, Jacob Carlson; García, Angel Enrique

    2018-06-14

    Monovalent salt solutions have strongly coupled interactions with biopolymers, from large polyelectrolytes to small RNA oligomers. High salt concentrations have been known to induce transitions in the structure of RNA, producing non-canonical configurations and even driving RNA to precipitate out of solution. Using all-atom molecular dynamics simulations, we model a monovalent salt species (KCL) at high concentrations (0.1-3m) and calculate the equilibrium distributions of water and ions around a small tetraloop-forming RNA oligomer in a variety of structural arrangements: folded A-RNA (canonical) and Z-RNA (non-canonical) tetraloops and unfolded configurations. From these data, we calculate the ion preferential binding coefficients and Donnan coefficients for the RNA oligomer as a function of concentration and structure. We find that cation accumulation is highest around non-canonical Z-RNA configurations at concentrations below 0.5m, while unfolded configurations accumulate the most co-ions in all concentrations. By contrast, canonical A-RNA structures consistently show the lowest accumulations for all ion species. Water distributions vary markedly with RNA configuration but show little dependency on KCL concentration. Based on Donnan coefficient calculations, the net charge of the solution at the surface of the RNA decreases linearly as a function of salt concentration and becomes net-neutral near 2.5-3m KCL for folded configurations, while unfolded configurations still show a positive solution charge. Our findings show that all-atom molecular dynamics can describe the equilibrium distributions of monovalent salt in the presence of small RNA oligomers at KCL concentrations where ion correlation effects become important. Furthermore, these results provide valuable insights into the distributions of water and ions near the RNA oligomer surface as a function of structural configuration.

  13. An effective inversion algorithm for retrieving bimodal aerosol particle size distribution from spectral extinction data

    NASA Astrophysics Data System (ADS)

    He, Zhenzong; Qi, Hong; Yao, Yuchen; Ruan, Liming

    2014-12-01

    The Ant Colony Optimization algorithm based on the probability density function (PDF-ACO) is applied to estimate the bimodal aerosol particle size distribution (PSD). The direct problem is solved by the modified Anomalous Diffraction Approximation (ADA, as an approximation for optically large and soft spheres, i.e., χ⪢1 and |m-1|⪡1) and the Beer-Lambert law. First, a popular bimodal aerosol PSD and three other bimodal PSDs are retrieved in the dependent model by the multi-wavelength extinction technique. All the results reveal that the PDF-ACO algorithm can be used as an effective technique to investigate the bimodal PSD. Then, the Johnson's SB (J-SB) function and the modified beta (M-β) function are employed as the general distribution function to retrieve the bimodal PSDs under the independent model. Finally, the J-SB and M-β functions are applied to recover actual measurement aerosol PSDs over Beijing and Shanghai obtained from the aerosol robotic network (AERONET). The numerical simulation and experimental results demonstrate that these two general functions, especially the J-SB function, can be used as a versatile distribution function to retrieve the bimodal aerosol PSD when no priori information about the PSD is available.

  14. SU-E-I-44: Some Preliminary Analysis of Angular Distribution of X-Ray Scattered On Soft Tissues

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ganezer, K; Krmar, M; Cvejic, Z

    2015-06-15

    Purpose: The angular distribution of x-radiation scattered at small angles (up to 16 degrees) from several different animal soft tissue (skin, fat, muscle, retina, etc) were measured using standard equipment devoted to study of crystal structure which provides excellent geometry conditions of measurements. showed measurable differences for different tissues. In the simplest possible case when measured samples do not differ in structure (different concentration solutions) it can be seen that intensity of scattered radiation is decreasing function of the concentration and the peak of the maximum of scattering distribution depends on the concentration as well. Methods: An x-ray scattering profilemore » usually consists of sharp diffraction peak; however some properties of the spatial profiles of scattered radiation as intensity, the peak position, height, area, FWHM, the ratio of peak heights, etc. Results: The data contained measurable differences for different tissues. In the simplest possible case when measured samples do not differ in structure (different concentration solutions) it can be seen that intensity of scattered radiation is decreasing function of the concentration and the peak of the maximum of scattering distribution depends on the concentration as well. Measurements of different samples in the very preliminary phase showed that simple biological material used in study showed slightly different scattering pattern, especially at higher angles (around 10degrees). Intensity of radiation scattered from same tissue type is very dependent on water content and several more parameters. Conclusion: This preliminary study using animal soft tissues on the angular distributions of scattered x-rays suggests that angular distributions of X-rays scattered off of soft tissues might be useful in distinguishing healthy tissue from malignant soft tissue.« less

  15. An exactly solvable model of polymerization

    NASA Astrophysics Data System (ADS)

    Lushnikov, A. A.

    2017-08-01

    This paper considers the evolution of a polydisperse polymerizing system comprising g1,g2 … - mers carrying ϕ1,ϕ2 … functional groups reacting with one another and binding the g-mers together. In addition, the g-mers are assumed to be added at random by one at a time with a known rate depending on their mass g and functionality ϕ . Assuming that the rate of binding of two g-mers is proportional to the product of the numbers of nonreacted functional groups the kinetic equation for the distribution of clusters (g-mers) over their mass and functionalities is formulated and then solved by applying the generating function method. In contrast to existing approaches this kinetic equation operates with the efficiencies proportional to the product of the numbers of active functional groups in the clusters rather than to the product of their masses. The evolution process is shown to reveal a phase transition: the emergence of a giant linked cluster (the gel) whose mass is comparable to the total mass of the whole polymerizing system. The time dependence of the moments of the distribution of linked components over their masses and functionalities is investigated. The polymerization process terminates by forming a residual spectrum of sol particles in addition to the gel.

  16. Contact-metal dependent current injection in pentacene thin-film transistors

    NASA Astrophysics Data System (ADS)

    Wang, S. D.; Minari, T.; Miyadera, T.; Tsukagoshi, K.; Aoyagi, Y.

    2007-11-01

    Contact-metal dependent current injection in top-contact pentacene thin-film transistors is analyzed, and the local mobility in the contact region was found to follow the Meyer-Neldel rule. An exponential trap distribution, rather than the metal/organic hole injection barrier, is proposed to be the dominant factor of the contact resistance in pentacene thin-film transistors. The variable temperature measurements revealed a much narrower trap distribution in the copper contact compared with the corresponding gold contact, and this is the origin of the smaller contact resistance for copper despite a lower work function.

  17. LASER BIOLOGY AND MEDICINE: Light scattering study of rheumatoid arthritis

    NASA Astrophysics Data System (ADS)

    Beuthan, J.; Netz, U.; Minet, O.; Klose, Annerose D.; Hielscher, A. H.; Scheel, A.; Henniger, J.; Müller, G.

    2002-11-01

    The distribution of light scattered by finger joints is studied in the near-IR region. It is shown that variations in the optical parameters of the tissue (scattering coefficient μs, absorption coefficient μa, and anisotropy factor g) depend on the presence of the rheumatoid arthritis (RA). At the first stage, the distribution of scattered light was measured in diaphanoscopic experiments. The convolution of a Gaussian error function with the scattering phase function proved to be a good approximation of the data obtained. Then, a new method was developed for the reconstruction of distribution of optical parameters in the finger cross section. Model tests of the quality of this reconstruction method show good results.

  18. A cross-correlation-based estimate of the galaxy luminosity function

    NASA Astrophysics Data System (ADS)

    van Daalen, Marcel P.; White, Martin

    2018-06-01

    We extend existing methods for using cross-correlations to derive redshift distributions for photometric galaxies, without using photometric redshifts. The model presented in this paper simultaneously yields highly accurate and unbiased redshift distributions and, for the first time, redshift-dependent luminosity functions, using only clustering information and the apparent magnitudes of the galaxies as input. In contrast to many existing techniques for recovering unbiased redshift distributions, the output of our method is not degenerate with the galaxy bias b(z), which is achieved by modelling the shape of the luminosity bias. We successfully apply our method to a mock galaxy survey and discuss improvements to be made before applying our model to real data.

  19. A kinetic study of solar wind electrons in the transition region from collision dominated to collisionless flow

    NASA Technical Reports Server (NTRS)

    Lie-Svendsen, O.; Leer, E.

    1995-01-01

    We have studied the evolution of the velocity distribution function of a test population of electrons in the solar corona and inner solar wind region, using a recently developed kinetic model. The model solves the time dependent, linear transport equation, with a Fokker-Planck collision operator to describe Coulomb collisions between the 'test population' and a thermal background of charged particles, using a finite differencing scheme. The model provides information on how non-Maxwellian features develop in the distribution function in the transition region from collision dominated to collisionless flow. By taking moments of the distribution the evolution of higher order moments, such as the heat flow, can be studied.

  20. The effective magnetoelectric coefficients of polycrystalline Cr2O3 annealed in perpendicular electric and magnetic fields

    NASA Astrophysics Data System (ADS)

    Liu, Y. Y.; Xie, S. H.; Jin, G.; Li, J. Y.

    2009-04-01

    Magnetoelectric annealing is necessary to remove antiferromagnetic domains and induce macroscopic magnetoelectric effect in polycrystalline magnetoelectric materials, and in this paper, we study the effective magnetoelectric properties of perpendicularly annealed polycrystalline Cr2O3 using effective medium approximation. The effect of temperatures, grain aspect ratios, and two different types of orientation distribution function have been analyzed, and unusual material symmetry is observed when the orientation distribution function only depends on Euler angle ψ. Optimal grain aspect ratio and texture coefficient are also identified. The approach can be applied to analyze the microstructural field distribution and macroscopic properties of a wide range of magnetoelectric polycrystals.

  1. SU-E-I-16: Scan Length Dependency of the Radial Dose Distribution in a Long Polyethylene Cylinder

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bakalyar, D; McKenney, S; Feng, W

    Purpose: The area-averaged dose in the central plane of a long cylinder following a CT scan depends upon the radial dose distribution and the length of the scan. The ICRU/TG200 phantom, a polyethylene cylinder 30 cm in diameter and 60 cm long, was the subject of this study. The purpose was to develop an analytic function that could determine the dose for a scan length L at any point in the central plane of this phantom. Methods: Monte Carlo calculations were performed on a simulated ICRU/TG200 phantom under conditions of cylindrically symmetric conditions of irradiation. Thus, the radial dose distributionmore » function must be an even function that accounts for two competing effects: The direct beam makes its weakest contribution at the center while the scatter begins abruptly at the outer radius and grows as the center is approached. The scatter contribution also increases with scan length with the increase approaching its limiting value at the periphery faster than along the central axis. An analytic function was developed that fit the data and possessed these features. Results: Symmetry and continuity dictate a local extremum at the center which is a minimum for the ICRU/TG200 phantom. The relative depth of the minimum decreases as the scan length grows and an absolute maximum can occur between the center and outer edge of the cylinders. As the scan length grows, the relative dip in the center decreases so that for very long scan lengths, the dose profile is relatively flat. Conclusion: An analytic function characterizes the radial and scan length dependency of dose for long cylindrical phantoms. The function can be integrated with the results expressed in closed form. One use for this is to help determine average dose distribution over the central cylinder plane for any scan length.« less

  2. Does Data Distribution Change as a Function of Motor Skill Practice?

    ERIC Educational Resources Information Center

    Yan, Jin H.; Rodriguez, Ward A.; Thomas, Jerry R.

    2005-01-01

    The purpose of this study was to determine whether data distribution changes as a result of motor skill practice or learning. The data on three dependent measures (movement time; MT), percentage of movement time in primary submovement (PSB), and movement jerk (JEK) were collected at baseline and practice Blocks 1 to 5. Sixty 6-year-olds,…

  3. Radial dependence of lineal energy distribution of 290-MeV/u carbon and 500-MeV/u iron ion beams using a wall-less tissue-equivalent proportional counter.

    PubMed

    Tsuda, Shuichi; Sato, Tatsuhiko; Watanabe, Ritsuko; Takada, Masashi

    2015-01-01

    Using a wall-less tissue-equivalent proportional counter for a 0.72-μm site in tissue, we measured the radial dependence of the lineal energy distribution, yf(y), of 290-MeV/u carbon ions and 500-MeV/u iron ion beams. The measured yf(y) distributions and the dose-mean of y, [Formula: see text], were compared with calculations performed with the track structure simulation code TRACION and the microdosimetric function of the Particle and Heavy Ion Transport code System (PHITS). The values of the measured [Formula: see text] were consistent with calculated results within an error of 2%, but differences in the shape of yf(y) were observed for iron ion irradiation. This result indicates that further improvement of the calculation model for yf(y) distribution in PHITS is needed for the analytical function that describes energy deposition by delta rays, particularly for primary ions having linear energy transfer in excess of a few hundred keV μm(-1). © The Author 2014. Published by Oxford University Press on behalf of The Japan Radiation Research Society and Japanese Society for Radiation Oncology.

  4. Spatial dynamics of SIRT1 and the subnuclear distribution of NADH species

    PubMed Central

    Aguilar-Arnal, Lorena; Ranjit, Suman; Stringari, Chiara; Orozco-Solis, Ricardo; Gratton, Enrico; Sassone-Corsi, Paolo

    2016-01-01

    Sirtuin 1 (SIRT1) is an NAD+-dependent deacetylase that functions as metabolic sensor of cellular energy and modulates biochemical pathways in the adaptation to changes in the environment. SIRT1 substrates include histones and proteins related to enhancement of mitochondrial function as well as antioxidant protection. Fluctuations in intracellular NAD+ levels regulate SIRT1 activity, but how SIRT1 enzymatic activity impacts on NAD+ levels and its intracellular distribution remains unclear. Here, we show that SIRT1 determines the nuclear organization of protein-bound NADH. Using multiphoton microscopy in live cells, we show that free and bound NADH are compartmentalized inside of the nucleus, and its subnuclear distribution depends on SIRT1. Importantly, SIRT6, a chromatin-bound deacetylase of the same class, does not influence NADH nuclear localization. In addition, using fluorescence fluctuation spectroscopy in single living cells, we reveal that NAD+ metabolism in the nucleus is linked to subnuclear dynamics of active SIRT1. These results reveal a connection between NAD+ metabolism, NADH distribution, and SIRT1 activity in the nucleus of live cells and pave the way to decipher links between nuclear organization and metabolism. PMID:27791113

  5. Determine Neuronal Tuning Curves by Exploring Optimum Firing Rate Distribution for Information Efficiency

    PubMed Central

    Han, Fang; Wang, Zhijie; Fan, Hong

    2017-01-01

    This paper proposed a new method to determine the neuronal tuning curves for maximum information efficiency by computing the optimum firing rate distribution. Firstly, we proposed a general definition for the information efficiency, which is relevant to mutual information and neuronal energy consumption. The energy consumption is composed of two parts: neuronal basic energy consumption and neuronal spike emission energy consumption. A parameter to model the relative importance of energy consumption is introduced in the definition of the information efficiency. Then, we designed a combination of exponential functions to describe the optimum firing rate distribution based on the analysis of the dependency of the mutual information and the energy consumption on the shape of the functions of the firing rate distributions. Furthermore, we developed a rapid algorithm to search the parameter values of the optimum firing rate distribution function. Finally, we found with the rapid algorithm that a combination of two different exponential functions with two free parameters can describe the optimum firing rate distribution accurately. We also found that if the energy consumption is relatively unimportant (important) compared to the mutual information or the neuronal basic energy consumption is relatively large (small), the curve of the optimum firing rate distribution will be relatively flat (steep), and the corresponding optimum tuning curve exhibits a form of sigmoid if the stimuli distribution is normal. PMID:28270760

  6. Functional transient receptor potential vanilloid 1 and transient receptor potential vanilloid 4 channels along different segments of the renal vasculature.

    PubMed

    Chen, L; Kaßmann, M; Sendeski, M; Tsvetkov, D; Marko, L; Michalick, L; Riehle, M; Liedtke, W B; Kuebler, W M; Harteneck, C; Tepel, M; Patzak, A; Gollasch, M

    2015-02-01

    Transient receptor potential vanilloid 1 (TRPV1) and vanilloid 4 (TRPV4) cation channels have been recently identified to promote endothelium-dependent relaxation of mouse mesenteric arteries. However, the role of TRPV1 and TRPV4 in the renal vasculature is largely unknown. We hypothesized that TRPV1/4 plays a role in endothelium-dependent vasodilation of renal blood vessels. We studied the distribution of functional TRPV1/4 along different segments of the renal vasculature. Mesenteric arteries were studied as control vessels. The TRPV1 agonist capsaicin relaxed mouse mesenteric arteries with an EC50 of 25 nm, but large mouse renal arteries or rat descending vasa recta only at >100-fold higher concentrations. The vasodilatory effect of capsaicin in the low-nanomolar concentration range was endothelium-dependent and absent in vessels of Trpv1 -/- mice. The TRPV4 agonist GSK1016790A relaxed large conducting renal arteries, mesenteric arteries and vasa recta with EC50 of 18, 63 nm and ~10 nm respectively. These effects were endothelium-dependent and inhibited by a TRPV4 antagonist, AB159908 (10 μm). Capsaicin and GSK1016790A produced vascular dilation in isolated mouse perfused kidneys with EC50 of 23 and 3 nm respectively. The capsaicin effects were largely reduced in Trpv1 -/- kidneys, and the effects of GSK1016790A were inhibited in Trpv4 -/- kidneys. Our results demonstrate that two TRPV channels have unique sites of vasoregulatory function in the kidney with functional TRPV1 having a narrow, discrete distribution in the resistance vasculature and TRPV4 having more universal, widespread distribution along different vascular segments. We suggest that TRPV1/4 channels are potent therapeutic targets for site-specific vasodilation in the kidney. © 2014 Scandinavian Physiological Society. Published by John Wiley & Sons Ltd.

  7. Analysis of crackling noise using the maximum-likelihood method: Power-law mixing and exponential damping.

    PubMed

    Salje, Ekhard K H; Planes, Antoni; Vives, Eduard

    2017-10-01

    Crackling noise can be initiated by competing or coexisting mechanisms. These mechanisms can combine to generate an approximate scale invariant distribution that contains two or more contributions. The overall distribution function can be analyzed, to a good approximation, using maximum-likelihood methods and assuming that it follows a power law although with nonuniversal exponents depending on a varying lower cutoff. We propose that such distributions are rather common and originate from a simple superposition of crackling noise distributions or exponential damping.

  8. Nonparametric Bayesian inference for mean residual life functions in survival analysis.

    PubMed

    Poynor, Valerie; Kottas, Athanasios

    2018-01-19

    Modeling and inference for survival analysis problems typically revolves around different functions related to the survival distribution. Here, we focus on the mean residual life (MRL) function, which provides the expected remaining lifetime given that a subject has survived (i.e. is event-free) up to a particular time. This function is of direct interest in reliability, medical, and actuarial fields. In addition to its practical interpretation, the MRL function characterizes the survival distribution. We develop general Bayesian nonparametric inference for MRL functions built from a Dirichlet process mixture model for the associated survival distribution. The resulting model for the MRL function admits a representation as a mixture of the kernel MRL functions with time-dependent mixture weights. This model structure allows for a wide range of shapes for the MRL function. Particular emphasis is placed on the selection of the mixture kernel, taken to be a gamma distribution, to obtain desirable properties for the MRL function arising from the mixture model. The inference method is illustrated with a data set of two experimental groups and a data set involving right censoring. The supplementary material available at Biostatistics online provides further results on empirical performance of the model, using simulated data examples. © The Author 2018. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  9. Time-dependent shock acceleration of particles. Effect of the time-dependent injection, with application to supernova remnants

    NASA Astrophysics Data System (ADS)

    Petruk, O.; Kopytko, B.

    2016-11-01

    Three approaches are considered to solve the equation which describes the time-dependent diffusive shock acceleration of test particles at the non-relativistic shocks. At first, the solution of Drury for the particle distribution function at the shock is generalized to any relation between the acceleration time-scales upstream and downstream and for the time-dependent injection efficiency. Three alternative solutions for the spatial dependence of the distribution function are derived. Then, the two other approaches to solve the time-dependent equation are presented, one of which does not require the Laplace transform. At the end, our more general solution is discussed, with a particular attention to the time-dependent injection in supernova remnants. It is shown that, comparing to the case with the dominant upstream acceleration time-scale, the maximum momentum of accelerated particles shifts towards the smaller momenta with increase of the downstream acceleration time-scale. The time-dependent injection affects the shape of the particle spectrum. In particular, (I) the power-law index is not solely determined by the shock compression, in contrast to the stationary solution; (II) the larger the injection efficiency during the first decades after the supernova explosion, the harder the particle spectrum around the high-energy cutoff at the later times. This is important, in particular, for interpretation of the radio and gamma-ray observations of supernova remnants, as demonstrated on a number of examples.

  10. Directed networks' different link formation mechanisms causing degree distribution distinction

    NASA Astrophysics Data System (ADS)

    Behfar, Stefan Kambiz; Turkina, Ekaterina; Cohendet, Patrick; Burger-Helmchen, Thierry

    2016-11-01

    Within undirected networks, scientists have shown much interest in presenting power-law features. For instance, Barabási and Albert (1999) claimed that a common property of many large networks is that vertex connectivity follows scale-free power-law distribution, and in another study Barabási et al. (2002) showed power law evolution in the social network of scientific collaboration. At the same time, Jiang et al. (2011) discussed deviation from power-law distribution; others indicated that size effect (Bagrow et al., 2008), information filtering mechanism (Mossa et al., 2002), and birth and death process (Shi et al., 2005) could account for this deviation. Within directed networks, many authors have considered that outlinks follow a similar mechanism of creation as inlinks' (Faloutsos et al., 1999; Krapivsky et al., 2001; Tanimoto, 2009) with link creation rate being the linear function of node degree, resulting in a power-law shape for both indegree and outdegree distribution. Some other authors have made an assumption that directed networks, such as scientific collaboration or citation, behave as undirected, resulting in a power-law degree distribution accordingly (Barabási et al., 2002). At the same time, we claim (1) Outlinks feature different degree distributions than inlinks; where different link formation mechanisms cause the distribution distinctions, (2) in/outdegree distribution distinction holds for different levels of system decomposition; therefore this distribution distinction is a property of directed networks. First, we emphasize in/outlink formation mechanisms as causal factors for distinction between indegree and outdegree distributions (where this distinction has already been noticed in Barker et al. (2010) and Baxter et al. (2006)) within a sample network of OSS projects as well as Java software corpus as a network. Second, we analyze whether this distribution distinction holds for different levels of system decomposition: open-source-software (OSS) project-project dependency within a cluster, package-package dependency within a project and class-class dependency within a package. We conclude that indegree and outdegree dependencies do not lead to similar type of degree distributions, implying that indegree dependencies follow overall power-law distribution (or power-law with flat-top or exponential cut-off in some cases), while outdegree dependencies do not follow heavy-tailed distribution.

  11. A temperature-dependent coarse-grained model for the thermoresponsive polymer poly(N-isopropylacrylamide)

    DOE PAGES

    Abbott, Lauren J.; Stevens, Mark J.

    2015-12-22

    In this study, a coarse-grained (CG) model is developed for the thermoresponsive polymer poly(N-isopropylacrylamide) (PNIPAM), using a hybrid top-down and bottom-up approach. Nonbonded parameters are fit to experimental thermodynamic data following the procedures of the SDK (Shinoda, DeVane, and Klein) CG force field, with minor adjustments to provide better agreement with radial distribution functions from atomistic simulations. Bonded parameters are fit to probability distributions from atomistic simulations using multi-centered Gaussian-based potentials. The temperature-dependent potentials derived for the PNIPAM CG model in this work properly capture the coil–globule transition of PNIPAM single chains and yield a chain-length dependence consistent with atomisticmore » simulations.« less

  12. Comparison of multiplicity distributions to the negative binomial distribution in muon-proton scattering

    NASA Astrophysics Data System (ADS)

    Arneodo, M.; Arvidson, A.; Aubert, J. J.; Badełek, B.; Beaufays, J.; Bee, C. P.; Benchouk, C.; Berghoff, G.; Bird, I.; Blum, D.; Böhm, E.; de Bouard, X.; Brasse, F. W.; Braun, H.; Broll, C.; Brown, S.; Brück, H.; Calen, H.; Chima, J. S.; Ciborowski, J.; Clifft, R.; Coignet, G.; Combley, F.; Coughlan, J.; D'Agostini, G.; Dahlgren, S.; Dengler, F.; Derado, I.; Dreyer, T.; Drees, J.; Düren, M.; Eckardt, V.; Edwards, A.; Edwards, M.; Ernst, T.; Eszes, G.; Favier, J.; Ferrero, M. I.; Figiel, J.; Flauger, W.; Foster, J.; Ftáčnik, J.; Gabathuler, E.; Gajewski, J.; Gamet, R.; Gayler, J.; Geddes, N.; Grafström, P.; Grard, F.; Haas, J.; Hagberg, E.; Hasert, F. J.; Hayman, P.; Heusse, P.; Jaffré, M.; Jachołkowska, A.; Janata, F.; Jancsó, G.; Johnson, A. S.; Kabuss, E. M.; Kellner, G.; Korbel, V.; Krüger, J.; Kullander, S.; Landgraf, U.; Lanske, D.; Loken, J.; Long, K.; Maire, M.; Malecki, P.; Manz, A.; Maselli, S.; Mohr, W.; Montanet, F.; Montgomery, H. E.; Nagy, E.; Nassalski, J.; Norton, P. R.; Oakham, F. G.; Osborne, A. M.; Pascaud, C.; Pawlik, B.; Payre, P.; Peroni, C.; Peschel, H.; Pessard, H.; Pettinghale, J.; Pietrzyk, B.; Pietrzyk, U.; Pönsgen, B.; Pötsch, M.; Renton, P.; Ribarics, P.; Rith, K.; Rondio, E.; Sandacz, A.; Scheer, M.; Schlagböhmer, A.; Schiemann, H.; Schmitz, N.; Schneegans, M.; Schneider, A.; Scholz, M.; Schröder, T.; Schultze, K.; Sloan, T.; Stier, H. E.; Studt, M.; Taylor, G. N.; Thénard, J. M.; Thompson, J. C.; de La Torre, A.; Toth, J.; Urban, L.; Urban, L.; Wallucks, W.; Whalley, M.; Wheeler, S.; Williams, W. S. C.; Wimpenny, S. J.; Windmolders, R.; Wolf, G.

    1987-09-01

    The multiplicity distributions of charged hadrons produced in the deep inelastic muon-proton scattering at 280 GeV are analysed in various rapidity intervals, as a function of the total hadronic centre of mass energy W ranging from 4 20 GeV. Multiplicity distributions for the backward and forward hemispheres are also analysed separately. The data can be well parameterized by binomial distributions, extending their range of applicability to the case of lepton-proton scattering. The energy and the rapidity dependence of the parameters is presented and a smooth transition from the negative binomial distribution via Poissonian to the ordinary binomial is observed.

  13. Principal Components Analysis on the spectral Bidirectional Reflectance Distribution Function of ceramic colour standards.

    PubMed

    Ferrero, A; Campos, J; Rabal, A M; Pons, A; Hernanz, M L; Corróns, A

    2011-09-26

    The Bidirectional Reflectance Distribution Function (BRDF) is essential to characterize an object's reflectance properties. This function depends both on the various illumination-observation geometries as well as on the wavelength. As a result, the comprehensive interpretation of the data becomes rather complex. In this work we assess the use of the multivariable analysis technique of Principal Components Analysis (PCA) applied to the experimental BRDF data of a ceramic colour standard. It will be shown that the result may be linked to the various reflection processes occurring on the surface, assuming that the incoming spectral distribution is affected by each one of these processes in a specific manner. Moreover, this procedure facilitates the task of interpolating a series of BRDF measurements obtained for a particular sample. © 2011 Optical Society of America

  14. Heparin induced alterations in clearance and distribution of blood-borne microparticles following operative trauma.

    PubMed

    Saba, T M; Antikatzides, T G

    1979-04-01

    The influence of systemic heparin administration on the vascular clearance and tissue distribution of blood-borne microparticles was evaluated in normal rats and rats after operation (laparotomy plus intestinal manipulation) utilizing an (131)I- colloid which is phagocytized by the reticuloendothelial system (RES). Intravenous heparin administration (100 USP/100g body weight) into normal animals three minutes prior to colloid injection (50 mg/lOOg) induced a significant increase in pulmonary localization of the microparticles as compared to nonheparinized control rats, while hepatic and splenic uptake were decreased. Surgical trauma decreased hepatic RE uptake and increased pulmonary localization of the microparticles when injected systemically at 60 minutes postsurgery. Heparin administration 60 minutes after surgery and three minutes prior to colloid injection, magnified the increased pulmonary localization response with an associated further depression of the RES. The ability of heparin to alter both RE clearance function and lung localization of microparticles was dose dependent and a function of the interval between heparin administration and systemic particulate infusion. Thus, low dose heparin administration was capable of stimulating RE activity while heparin in doses of excess of 50 USP units/lOOg body weight decreased RE function. These findings suggest that the functional state of the hepatic RE system can be greatly affected in a dose-dependent manner by systemic heparin administration which may influence distribution of blood-borne microparticles.

  15. Fault tolerant computer control for a Maglev transportation system

    NASA Technical Reports Server (NTRS)

    Lala, Jaynarayan H.; Nagle, Gail A.; Anagnostopoulos, George

    1994-01-01

    Magnetically levitated (Maglev) vehicles operating on dedicated guideways at speeds of 500 km/hr are an emerging transportation alternative to short-haul air and high-speed rail. They have the potential to offer a service significantly more dependable than air and with less operating cost than both air and high-speed rail. Maglev transportation derives these benefits by using magnetic forces to suspend a vehicle 8 to 200 mm above the guideway. Magnetic forces are also used for propulsion and guidance. The combination of high speed, short headways, stringent ride quality requirements, and a distributed offboard propulsion system necessitates high levels of automation for the Maglev control and operation. Very high levels of safety and availability will be required for the Maglev control system. This paper describes the mission scenario, functional requirements, and dependability and performance requirements of the Maglev command, control, and communications system. A distributed hierarchical architecture consisting of vehicle on-board computers, wayside zone computers, a central computer facility, and communication links between these entities was synthesized to meet the functional and dependability requirements on the maglev. Two variations of the basic architecture are described: the Smart Vehicle Architecture (SVA) and the Zone Control Architecture (ZCA). Preliminary dependability modeling results are also presented.

  16. Spatiotemporal Dependency of Age-Related Changes in Brain Signal Variability

    PubMed Central

    McIntosh, A. R.; Vakorin, V.; Kovacevic, N.; Wang, H.; Diaconescu, A.; Protzner, A. B.

    2014-01-01

    Recent theoretical and empirical work has focused on the variability of network dynamics in maturation. Such variability seems to reflect the spontaneous formation and dissolution of different functional networks. We sought to extend these observations into healthy aging. Two different data sets, one EEG (total n = 48, ages 18–72) and one magnetoencephalography (n = 31, ages 20–75) were analyzed for such spatiotemporal dependency using multiscale entropy (MSE) from regional brain sources. In both data sets, the changes in MSE were timescale dependent, with higher entropy at fine scales and lower at more coarse scales with greater age. The signals were parsed further into local entropy, related to information processed within a regional source, and distributed entropy (information shared between two sources, i.e., functional connectivity). Local entropy increased for most regions, whereas the dominant change in distributed entropy was age-related reductions across hemispheres. These data further the understanding of changes in brain signal variability across the lifespan, suggesting an inverted U-shaped curve, but with an important qualifier. Unlike earlier in maturation, where the changes are more widespread, changes in adulthood show strong spatiotemporal dependence. PMID:23395850

  17. Dependence in probabilistic modeling Dempster-Shafer theory and probability bounds analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ferson, Scott; Nelsen, Roger B.; Hajagos, Janos

    2015-05-01

    This report summarizes methods to incorporate information (or lack of information) about inter-variable dependence into risk assessments that use Dempster-Shafer theory or probability bounds analysis to address epistemic and aleatory uncertainty. The report reviews techniques for simulating correlated variates for a given correlation measure and dependence model, computation of bounds on distribution functions under a specified dependence model, formulation of parametric and empirical dependence models, and bounding approaches that can be used when information about the intervariable dependence is incomplete. The report also reviews several of the most pervasive and dangerous myths among risk analysts about dependence in probabilistic models.

  18. The precise time-dependent solution of the Fokker–Planck equation with anomalous diffusion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guo, Ran; Du, Jiulin, E-mail: jiulindu@aliyun.com

    2015-08-15

    We study the time behavior of the Fokker–Planck equation in Zwanzig’s rule (the backward-Ito’s rule) based on the Langevin equation of Brownian motion with an anomalous diffusion in a complex medium. The diffusion coefficient is a function in momentum space and follows a generalized fluctuation–dissipation relation. We obtain the precise time-dependent analytical solution of the Fokker–Planck equation and at long time the solution approaches to a stationary power-law distribution in nonextensive statistics. As a test, numerically we have demonstrated the accuracy and validity of the time-dependent solution. - Highlights: • The precise time-dependent solution of the Fokker–Planck equation with anomalousmore » diffusion is found. • The anomalous diffusion satisfies a generalized fluctuation–dissipation relation. • At long time the time-dependent solution approaches to a power-law distribution in nonextensive statistics. • Numerically we have demonstrated the accuracy and validity of the time-dependent solution.« less

  19. Electron distribution functions in electric field environments

    NASA Technical Reports Server (NTRS)

    Rudolph, Terence H.

    1991-01-01

    The amount of current carried by an electric discharge in its early stages of growth is strongly dependent on its geometrical shape. Discharges with a large number of branches, each funnelling current to a common stem, tend to carry more current than those with fewer branches. The fractal character of typical discharges was simulated using stochastic models based on solutions of the Laplace equation. Extension of these models requires the use of electron distribution functions to describe the behavior of electrons in the undisturbed medium ahead of the discharge. These electrons, interacting with the electric field, determine the propagation of branches in the discharge and the way in which further branching occurs. The first phase in the extension of the referenced models , the calculation of simple electron distribution functions in an air/electric field medium, is discussed. Two techniques are investigated: (1) the solution of the Boltzmann equation in homogeneous, steady state environments, and (2) the use of Monte Carlo simulations. Distribution functions calculated from both techniques are illustrated. Advantages and disadvantages of each technique are discussed.

  20. Effects of system size and cooling rate on the structure and properties of sodium borosilicate glasses from molecular dynamics simulations.

    PubMed

    Deng, Lu; Du, Jincheng

    2018-01-14

    Borosilicate glasses form an important glass forming system in both glass science and technologies. The structure and property changes of borosilicate glasses as a function of thermal history in terms of cooling rate during glass formation and simulation system sizes used in classical molecular dynamics (MD) simulation were investigated with recently developed composition dependent partial charge potentials. Short and medium range structural features such as boron coordination, Si and B Q n distributions, and ring size distributions were analyzed to elucidate the effects of cooling rate and simulation system size on these structure features and selected glass properties such as glass transition temperature, vibration density of states, and mechanical properties. Neutron structure factors, neutron broadened pair distribution functions, and vibrational density of states were calculated and compared with results from experiments as well as ab initio calculations to validate the structure models. The results clearly indicate that both cooling rate and system size play an important role on the structures of these glasses, mainly by affecting the 3 B and 4 B distributions and consequently properties of the glasses. It was also found that different structure features and properties converge at different sizes or cooling rates; thus convergence tests are needed in simulations of the borosilicate glasses depending on the targeted properties. The results also shed light on the complex thermal history dependence on structure and properties in borosilicate glasses and the protocols in MD simulations of these and other glass materials.

  1. Effects of system size and cooling rate on the structure and properties of sodium borosilicate glasses from molecular dynamics simulations

    NASA Astrophysics Data System (ADS)

    Deng, Lu; Du, Jincheng

    2018-01-01

    Borosilicate glasses form an important glass forming system in both glass science and technologies. The structure and property changes of borosilicate glasses as a function of thermal history in terms of cooling rate during glass formation and simulation system sizes used in classical molecular dynamics (MD) simulation were investigated with recently developed composition dependent partial charge potentials. Short and medium range structural features such as boron coordination, Si and B Qn distributions, and ring size distributions were analyzed to elucidate the effects of cooling rate and simulation system size on these structure features and selected glass properties such as glass transition temperature, vibration density of states, and mechanical properties. Neutron structure factors, neutron broadened pair distribution functions, and vibrational density of states were calculated and compared with results from experiments as well as ab initio calculations to validate the structure models. The results clearly indicate that both cooling rate and system size play an important role on the structures of these glasses, mainly by affecting the 3B and 4B distributions and consequently properties of the glasses. It was also found that different structure features and properties converge at different sizes or cooling rates; thus convergence tests are needed in simulations of the borosilicate glasses depending on the targeted properties. The results also shed light on the complex thermal history dependence on structure and properties in borosilicate glasses and the protocols in MD simulations of these and other glass materials.

  2. A mathematical model for the occurrence of historical events

    NASA Astrophysics Data System (ADS)

    Ohnishi, Teruaki

    2017-12-01

    A mathematical model was proposed for the frequency distribution of historical inter-event time τ. A basic ingredient was constructed by assuming the significance of a newly occurring historical event depending on the magnitude of a preceding event, the decrease of its significance by oblivion during the successive events, and an independent Poisson process for the occurrence of the event. The frequency distribution of τ was derived by integrating the basic ingredient with respect to all social fields and to all stake holders. The function of such a distribution was revealed as the forms of an exponential type, a power law type or an exponential-with-a-tail type depending on the values of constants appearing in the ingredient. The validity of this model was studied by applying it to the two cases of Modern China and Northern Ireland Troubles, where the τ-distribution varies depending on the different countries interacting with China and on the different stage of history of the Troubles, respectively. This indicates that history is consisted from many components with such different types of τ-distribution, which are the similar situation to the cases of other general human activities.

  3. Transformation of two and three-dimensional regions by elliptic systems

    NASA Technical Reports Server (NTRS)

    Mastin, C. Wayne

    1991-01-01

    A reliable linear system is presented for grid generation in 2-D and 3-D. The method is robust in the sense that convergence is guaranteed but is not as reliable as other nonlinear elliptic methods in generating nonfolding grids. The construction of nonfolding grids depends on having reasonable approximations of cell aspect ratios and an appropriate distribution of grid points on the boundary of the region. Some guidelines are included on approximating the aspect ratios, but little help is offered on setting up the boundary grid other than to say that in 2-D the boundary correspondence should be close to that generated by a conformal mapping. It is assumed that the functions which control the grid distribution depend only on the computational variables and not on the physical variables. Whether this is actually the case depends on how the grid is constructed. In a dynamic adaptive procedure where the grid is constructed in the process of solving a fluid flow problem, the grid is usually updated at fixed iteration counts using the current value of the control function. Since the control function is not being updated during the iteration of the grid equations, the grid construction is a linear procedure. However, in the case of a static adaptive procedure where a trial solution is computed and used to construct an adaptive grid, the control functions may be recomputed at every step of the grid iteration.

  4. Evaluation of the reproducibility of lung motion probability distribution function (PDF) using dynamic MRI.

    PubMed

    Cai, Jing; Read, Paul W; Altes, Talissa A; Molloy, Janelle A; Brookeman, James R; Sheng, Ke

    2007-01-21

    Treatment planning based on probability distribution function (PDF) of patient geometries has been shown a potential off-line strategy to incorporate organ motion, but the application of such approach highly depends upon the reproducibility of the PDF. In this paper, we investigated the dependences of the PDF reproducibility on the imaging acquisition parameters, specifically the scan time and the frame rate. Three healthy subjects underwent a continuous 5 min magnetic resonance (MR) scan in the sagittal plane with a frame rate of approximately 10 f s-1, and the experiments were repeated with an interval of 2 to 3 weeks. A total of nine pulmonary vessels from different lung regions (upper, middle and lower) were tracked and the dependences of their displacement PDF reproducibility were evaluated as a function of scan time and frame rate. As results, the PDF reproducibility error decreased with prolonged scans and appeared to approach equilibrium state in subjects 2 and 3 within the 5 min scan. The PDF accuracy increased in the power function with the increase of frame rate; however, the PDF reproducibility showed less sensitivity to frame rate presumably due to the randomness of breathing which dominates the effects. As the key component of the PDF-based treatment planning, the reproducibility of the PDF affects the dosimetric accuracy substantially. This study provides a reference for acquiring MR-based PDF of structures in the lung.

  5. Chapman Enskog-maximum entropy method on time-dependent neutron transport equation

    NASA Astrophysics Data System (ADS)

    Abdou, M. A.

    2006-09-01

    The time-dependent neutron transport equation in semi and infinite medium with linear anisotropic and Rayleigh scattering is proposed. The problem is solved by means of the flux-limited, Chapman Enskog-maximum entropy for obtaining the solution of the time-dependent neutron transport. The solution gives the neutron distribution density function which is used to compute numerically the radiant energy density E(x,t), net flux F(x,t) and reflectivity Rf. The behaviour of the approximate flux-limited maximum entropy neutron density function are compared with those found by other theories. Numerical calculations for the radiant energy, net flux and reflectivity of the proposed medium are calculated at different time and space.

  6. Impact of geometrical properties on permeability and fluid phase distribution in porous media

    NASA Astrophysics Data System (ADS)

    Lehmann, P.; Berchtold, M.; Ahrenholz, B.; Tölke, J.; Kaestner, A.; Krafczyk, M.; Flühler, H.; Künsch, H. R.

    2008-09-01

    To predict fluid phase distribution in porous media, the effect of geometric properties on flow processes must be understood. In this study, we analyze the effect of volume, surface, curvature and connectivity (the four Minkowski functionals) on the hydraulic conductivity and the water retention curve. For that purpose, we generated 12 artificial structures with 800 3 voxels (the units of a 3D image) and compared them with a scanned sand sample of the same size. The structures were generated with a Boolean model based on a random distribution of overlapping ellipsoids whose size and shape were chosen to fulfill the criteria of the measured functionals. The pore structure of sand material was mapped with X-rays from synchrotrons. To analyze the effect of geometry on water flow and fluid distribution we carried out three types of analysis: Firstly, we computed geometrical properties like chord length, distance from the solids, pore size distribution and the Minkowski functionals as a function of pore size. Secondly, the fluid phase distribution as a function of the applied pressure was calculated with a morphological pore network model. Thirdly, the permeability was determined using a state-of-the-art lattice-Boltzmann method. For the simulated structure with the true Minkowski functionals the pores were larger and the computed air-entry value of the artificial medium was reduced to 85% of the value obtained from the scanned sample. The computed permeability for the geometry with the four fitted Minkowski functionals was equal to the permeability of the scanned image. The permeability was much more sensitive to the volume and surface than to curvature and connectivity of the medium. We conclude that the Minkowski functionals are not sufficient to characterize the geometrical properties of a porous structure that are relevant for the distribution of two fluid phases. Depending on the procedure to generate artificial structures with predefined Minkowski functionals, structures differing in pore size distribution can be obtained.

  7. Velocity Gradient Power Functional for Brownian Dynamics.

    PubMed

    de Las Heras, Daniel; Schmidt, Matthias

    2018-01-12

    We present an explicit and simple approximation for the superadiabatic excess (over ideal gas) free power functional, admitting the study of the nonequilibrium dynamics of overdamped Brownian many-body systems. The functional depends on the local velocity gradient and is systematically obtained from treating the microscopic stress distribution as a conjugate field. The resulting superadiabatic forces are beyond dynamical density functional theory and are of a viscous nature. Their high accuracy is demonstrated by comparison to simulation results.

  8. Velocity Gradient Power Functional for Brownian Dynamics

    NASA Astrophysics Data System (ADS)

    de las Heras, Daniel; Schmidt, Matthias

    2018-01-01

    We present an explicit and simple approximation for the superadiabatic excess (over ideal gas) free power functional, admitting the study of the nonequilibrium dynamics of overdamped Brownian many-body systems. The functional depends on the local velocity gradient and is systematically obtained from treating the microscopic stress distribution as a conjugate field. The resulting superadiabatic forces are beyond dynamical density functional theory and are of a viscous nature. Their high accuracy is demonstrated by comparison to simulation results.

  9. Numerical Solutions for Laminar Boundary Layer Behind Blast Waves.

    DTIC Science & Technology

    1980-05-01

    DISTRIBUTION STATEMENT (of thle Report) Approved for public release; distribution unlimited. 17 . DISTRIBUTION STATEMENT (of the abstract entered in Block 20...Reference I ............. 41 5. Boundary-Layer Functions for Case A, B, C, and D ......... 98 3 NOMENCLATURE A constant, Eqs. (10) and ( 17 ) B...the constant A was chosen as follows to simplify the coefficients of f and g1 A = 2mF CZ(a+i) OPO/pCO ( The ( 17 ) The explicit dependence of the flow

  10. Effects of the pion-nucleon potential in 197Au+197Au collisions at 1.5 GeV/nucleon

    NASA Astrophysics Data System (ADS)

    Xie, Wen-Jie; Su, Jun; Zhu, Long; Zhang, Feng-Shou

    2018-06-01

    The influence of the pion-nucleon potential on the pion dynamics in 197Au+197Au collisions at 1.5 GeV/nucleon for different centrality intervals is investigated in the framework of the isospin-dependent quantum molecular dynamics model. It is found that the observables related to pions, such as the rapidity distributions, the rapidity dependencies of the directed flow and the elliptic flow, the centrality dependencies of the directed flow and the elliptic flow, and the transverse momentum distribution of the strength function of the azimuthal anisotropy are sensitive to the pion-nucleon potential. The pion multiplicity and the polar-angle distributions of pions are less affected by the pion-nucleon potential. The comparisons to the experimental data, in particular to the rapidity distributions of the directed flow and the elliptic flow, favor the stronger pion-nucleon potential derived from the phenomenological ansatz proposed by Gale and Kapusta [C. Gale and J. Kapusta, Phys. Rev. C 35, 2107 (1987), 10.1103/PhysRevC.35.2107].

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shi, J.; Xue, X.

    A comprehensive 3D CFD model is developed for a bi-electrode supported cell (BSC) SOFC. The model includes complicated transport phenomena of mass/heat transfer, charge (electron and ion) migration, and electrochemical reaction. The uniqueness of the modeling study is that functionally graded porous electrode property is taken into account, including not only linear but nonlinear porosity distributions. Extensive numerical analysis is performed to elucidate the effects of both porous microstructure distributions and operating condition on cell performance. Results indicate that cell performance is strongly dependent on both operating conditions and porous microstructure distributions of electrodes. Using the proposed fuel/gas feeding design,more » the uniform hydrogen distribution within porous anode is achieved; the oxygen distribution within the cathode is dependent on porous microstructure distributions as well as pressure loss conditions. Simulation results show that fairly uniform temperature distribution can be obtained with the proposed fuel/gas feeding design. The modeling results can be employed to guide experimental design of BSC test and provide pre-experimental analysis, as a result, to circumvent high cost associated with try-and-error experimental design and setup.« less

  12. A Heuristic Probabilistic Approach to Estimating Size-Dependent Mobility of Nonuniform Sediment

    NASA Astrophysics Data System (ADS)

    Woldegiorgis, B. T.; Wu, F. C.; van Griensven, A.; Bauwens, W.

    2017-12-01

    Simulating the mechanism of bed sediment mobility is essential for modelling sediment dynamics. Despite the fact that many studies are carried out on this subject, they use complex mathematical formulations that are computationally expensive, and are often not easy for implementation. In order to present a simple and computationally efficient complement to detailed sediment mobility models, we developed a heuristic probabilistic approach to estimating the size-dependent mobilities of nonuniform sediment based on the pre- and post-entrainment particle size distributions (PSDs), assuming that the PSDs are lognormally distributed. The approach fits a lognormal probability density function (PDF) to the pre-entrainment PSD of bed sediment and uses the threshold particle size of incipient motion and the concept of sediment mixture to estimate the PSDs of the entrained sediment and post-entrainment bed sediment. The new approach is simple in physical sense and significantly reduces the complexity and computation time and resource required by detailed sediment mobility models. It is calibrated and validated with laboratory and field data by comparing to the size-dependent mobilities predicted with the existing empirical lognormal cumulative distribution function (CDF) approach. The novel features of the current approach are: (1) separating the entrained and non-entrained sediments by a threshold particle size, which is a modified critical particle size of incipient motion by accounting for the mixed-size effects, and (2) using the mixture-based pre- and post-entrainment PSDs to provide a continuous estimate of the size-dependent sediment mobility.

  13. Experimental triplet and quadruplet fluctuation densities and spatial distribution function integrals for pure liquids.

    PubMed

    Ploetz, Elizabeth A; Karunaweera, Sadish; Smith, Paul E

    2015-01-28

    Fluctuation solution theory has provided an alternative view of many liquid mixture properties in terms of particle number fluctuations. The particle number fluctuations can also be related to integrals of the corresponding two body distribution functions between molecular pairs in order to provide a more physical picture of solution behavior and molecule affinities. Here, we extend this type of approach to provide expressions for higher order triplet and quadruplet fluctuations, and thereby integrals over the corresponding distribution functions, all of which can be obtained from available experimental thermodynamic data. The fluctuations and integrals are then determined using the International Association for the Properties of Water and Steam Formulation 1995 (IAPWS-95) equation of state for the liquid phase of pure water. The results indicate small, but significant, deviations from a Gaussian distribution for the molecules in this system. The pressure and temperature dependence of the fluctuations and integrals, as well as the limiting behavior as one approaches both the triple point and the critical point, are also examined.

  14. Experimental triplet and quadruplet fluctuation densities and spatial distribution function integrals for pure liquids

    NASA Astrophysics Data System (ADS)

    Ploetz, Elizabeth A.; Karunaweera, Sadish; Smith, Paul E.

    2015-01-01

    Fluctuation solution theory has provided an alternative view of many liquid mixture properties in terms of particle number fluctuations. The particle number fluctuations can also be related to integrals of the corresponding two body distribution functions between molecular pairs in order to provide a more physical picture of solution behavior and molecule affinities. Here, we extend this type of approach to provide expressions for higher order triplet and quadruplet fluctuations, and thereby integrals over the corresponding distribution functions, all of which can be obtained from available experimental thermodynamic data. The fluctuations and integrals are then determined using the International Association for the Properties of Water and Steam Formulation 1995 (IAPWS-95) equation of state for the liquid phase of pure water. The results indicate small, but significant, deviations from a Gaussian distribution for the molecules in this system. The pressure and temperature dependence of the fluctuations and integrals, as well as the limiting behavior as one approaches both the triple point and the critical point, are also examined.

  15. Random walk to a nonergodic equilibrium concept

    NASA Astrophysics Data System (ADS)

    Bel, G.; Barkai, E.

    2006-01-01

    Random walk models, such as the trap model, continuous time random walks, and comb models, exhibit weak ergodicity breaking, when the average waiting time is infinite. The open question is, what statistical mechanical theory replaces the canonical Boltzmann-Gibbs theory for such systems? In this paper a nonergodic equilibrium concept is investigated, for a continuous time random walk model in a potential field. In particular we show that in the nonergodic phase the distribution of the occupation time of the particle in a finite region of space approaches U- or W-shaped distributions related to the arcsine law. We show that when conditions of detailed balance are applied, these distributions depend on the partition function of the problem, thus establishing a relation between the nonergodic dynamics and canonical statistical mechanics. In the ergodic phase the distribution function of the occupation times approaches a δ function centered on the value predicted based on standard Boltzmann-Gibbs statistics. The relation of our work to single-molecule experiments is briefly discussed.

  16. Modeling Magnetotail Ion Distributions with Global Magnetohydrodynamic and Ion Trajectory Calculations

    NASA Technical Reports Server (NTRS)

    El-Alaoui, M.; Ashour-Abdalla, M.; Raeder, J.; Peroomian, V.; Frank, L. A.; Paterson, W. R.; Bosqued, J. M.

    1998-01-01

    On February 9, 1995, the Comprehensive Plasma Instrumentation (CPI) on the Geotail spacecraft observed a complex, structured ion distribution function near the magnetotail midplane at x approximately -30 R(sub E). On this same day the Wind spacecraft observed a quiet solar wind and an interplanetary magnetic field (IMF) that was northward for more than five hours, and an IMF B(sub y) component with a magnitude comparable to that of the RAF B(sub z) component. In this study, we determined the sources of the ions in this distribution function by following approximately 90,000 ion trajectories backward in time, using the time-dependent electric and magnetic fields obtained from a global MHD simulation. The Wind observations were used as input for the MHD model. The ion distribution function observed by Geotail at 1347 UT was found to consist primarily of particles from the dawn side low latitude boundary layer (LLBL) and from the dusk side LLBL; fewer than 2% of the particles originated in the ionosphere.

  17. Transverse momentum dependent parton distribution and fragmentation functions with QCD evolution

    NASA Astrophysics Data System (ADS)

    Aybat, S. Mert; Rogers, Ted C.

    2011-06-01

    We assess the current phenomenological status of transverse momentum dependent (TMD) parton distribution functions (PDFs) and fragmentation functions (FFs) and study the effect of consistently including perturbative QCD (pQCD) evolution. Our goal is to initiate the process of establishing reliable, QCD-evolved parametrizations for the TMD PDFs and TMD FFs that can be used both to test TMD factorization and to search for evidence of the breakdown of TMD factorization that is expected for certain processes. In this article, we focus on spin-independent processes because they provide the simplest illustration of the basic steps and can already be used in direct tests of TMD factorization. Our calculations are based on the Collins-Soper-Sterman (CSS) formalism, supplemented by recent theoretical developments which have clarified the precise definitions of the TMD PDFs and TMD FFs needed for a valid TMD-factorization theorem. Starting with these definitions, we numerically generate evolved TMD PDFs and TMD FFs using as input existing parametrizations for the collinear PDFs, collinear FFs, nonperturbative factors in the CSS factorization formalism, and recent fixed-scale fits. We confirm that evolution has important consequences, both qualitatively and quantitatively, and argue that it should be included in future phenomenological studies of TMD functions. Our analysis is also suggestive of extensions to processes that involve spin-dependent functions such as the Boer-Mulders, Sivers, or Collins functions, which we intend to pursue in future publications. At our website [http://projects.hepforge.org/tmd/], we have made available the tables and calculations needed to obtain the TMD parametrizations presented herein.

  18. Optimization of design and operating parameters of a space-based optical-electronic system with a distributed aperture.

    PubMed

    Tcherniavski, Iouri; Kahrizi, Mojtaba

    2008-11-20

    Using a gradient optimization method with objective functions formulated in terms of a signal-to-noise ratio (SNR) calculated at given values of the prescribed spatial ground resolution, optimization problems of geometrical parameters of a distributed optical system and a charge-coupled device of a space-based optical-electronic system are solved for samples of the optical systems consisting of two and three annular subapertures. The modulation transfer function (MTF) of the distributed aperture is expressed in terms of an average MTF taking residual image alignment (IA) and optical path difference (OPD) errors into account. The results show optimal solutions of the optimization problems depending on diverse variable parameters. The information on the magnitudes of the SNR can be used to determine the number of the subapertures and their sizes, while the information on the SNR decrease depending on the IA and OPD errors can be useful in design of a beam combination control system to produce the necessary requirements to its accuracy on the basis of the permissible deterioration in the image quality.

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aaboud, M.; Aad, G.; Abbott, B.

    The distributions of transverse momentum and longitudinal momentum fraction of charged particles in jets are measured in Pb+Pb and pp collisions with the ATLAS detector at the LHC. The distributions are measured as a function of jet transverse momentum and rapidity. The analysis utilises an integrated luminosity of 0.14 nb -1 of Pb+Pb data and 4.0 pb -1 of pp data collected in 2011 and 2013, respectively, at the same centre-of-mass energy of 2.76 TeV per colliding nucleon pair. The distributions measured in pp collisions are used as a reference for those measured in Pb+Pb collisions in order to evaluatemore » the impact on the internal structure of jets from the jet energy loss of fast partons propagating through the hot, dense medium created in heavy-ion collisions. Modest but significant centrality-dependent modifications of fragmentation functions in Pb+Pb collisions with respect to those in pp collisions are seen. Finally, no significant dependence of modifications on jet p T and rapidity selections is observed except for the fragments with the highest transverse momenta for which some reduction of yields is observed for more forward jets.« less

  20. A size-structured model of bacterial growth and reproduction.

    PubMed

    Ellermeyer, S F; Pilyugin, S S

    2012-01-01

    We consider a size-structured bacterial population model in which the rate of cell growth is both size- and time-dependent and the average per capita reproduction rate is specified as a model parameter. It is shown that the model admits classical solutions. The population-level and distribution-level behaviours of these solutions are then determined in terms of the model parameters. The distribution-level behaviour is found to be different from that found in similar models of bacterial population dynamics. Rather than convergence to a stable size distribution, we find that size distributions repeat in cycles. This phenomenon is observed in similar models only under special assumptions on the functional form of the size-dependent growth rate factor. Our main results are illustrated with examples, and we also provide an introductory study of the bacterial growth in a chemostat within the framework of our model.

  1. Time-dependent Hartree-Fock approach to nuclear ``pasta'' at finite temperature

    NASA Astrophysics Data System (ADS)

    Schuetrumpf, B.; Klatt, M. A.; Iida, K.; Maruhn, J. A.; Mecke, K.; Reinhard, P.-G.

    2013-05-01

    We present simulations of neutron-rich matter at subnuclear densities, like supernova matter, with the time-dependent Hartree-Fock approximation at temperatures of several MeV. The initial state consists of α particles randomly distributed in space that have a Maxwell-Boltzmann distribution in momentum space. Adding a neutron background initialized with Fermi distributed plane waves the calculations reflect a reasonable approximation of astrophysical matter. This matter evolves into spherical, rod-like, and slab-like shapes and mixtures thereof. The simulations employ a full Skyrme interaction in a periodic three-dimensional grid. By an improved morphological analysis based on Minkowski functionals, all eight pasta shapes can be uniquely identified by the sign of only two valuations, namely the Euler characteristic and the integral mean curvature. In addition, we propose the variance in the cell density distribution as a measure to distinguish pasta matter from uniform matter.

  2. Hospital Variation in Functional Recovery After Stroke.

    PubMed

    Bettger, Janet Prvu; Thomas, Laine; Liang, Li; Xian, Ying; Bushnell, Cheryl D; Saver, Jeffrey L; Fonarow, Gregg C; Peterson, Eric D

    2017-01-01

    Functional status is a key patient-centric outcome, but there are little data on whether functional recovery post-stroke varies among hospitals. This study examined the distribution of functional status 3 months after stroke, determined whether these outcomes vary among hospitals, and identified hospital characteristics associated with better (or worse) functional outcomes. Observational analysis of the AVAIL study (Adherence Evaluation After Ischemic Stroke-Longitudinal) included 2083 ischemic stroke patients enrolled from 82 US hospitals participating in Get With The Guidelines-Stroke and AVAIL. The primary outcome was dependence or death at 3 months (modified Rankin Scale [mRS] score of 3-6). Secondary outcomes included functional dependence (mRS score of 3-5), disabled (mRS score of 2-5), and mRS evaluated as a continuous score. By 3 months post-discharge, 36.5% of patients were functionally dependent or dead. Rates of dependence or death varied widely by discharging hospitals (range: 0%-67%). After risk adjustment, patients had lower rates of 3-month dependence or death when treated at teaching hospitals (odds ratio, 0.72; 95% confidence interval, 0.54-0.96) and certified primary stroke centers (odds ratio, 0.69; 95% confidence interval, 0.53-0.91). In contrast, a composite measure of hospital-level adherence to acute stroke care performance metrics, stroke volume, and bed size was not associated with downstream patient functional status. Findings were robust across mRS end points and sensitivity analyses. One third of acute ischemic stroke patients were functionally dependent or dead 3 months postacute stroke; functional recovery rates varied considerably among hospitals, supporting the need to better determine which care processes can maximize functional outcomes. © 2017 American Heart Association, Inc.

  3. lsjk—a C++ library for arbitrary-precision numeric evaluation of the generalized log-sine functions

    NASA Astrophysics Data System (ADS)

    Kalmykov, M. Yu.; Sheplyakov, A.

    2005-10-01

    Generalized log-sine functions Lsj(k)(θ) appear in higher order ɛ-expansion of different Feynman diagrams. We present an algorithm for the numerical evaluation of these functions for real arguments. This algorithm is implemented as a C++ library with arbitrary-precision arithmetics for integer 0⩽k⩽9 and j⩾2. Some new relations and representations of the generalized log-sine functions are given. Program summaryTitle of program:lsjk Catalogue number:ADVS Program summary URL:http://cpc.cs.qub.ac.uk/summaries/ADVS Program obtained from: CPC Program Library, Queen's University of Belfast, N. Ireland Licensing terms: GNU General Public License Computers:all Operating systems:POSIX Programming language:C++ Memory required to execute:Depending on the complexity of the problem, at least 32 MB RAM recommended No. of lines in distributed program, including testing data, etc.:41 975 No. of bytes in distributed program, including testing data, etc.:309 156 Distribution format:tar.gz Other programs called:The CLN library for arbitrary-precision arithmetics is required at version 1.1.5 or greater External files needed:none Nature of the physical problem:Numerical evaluation of the generalized log-sine functions for real argument in the region 0<θ<π. These functions appear in Feynman integrals Method of solution:Series representation for the real argument in the region 0<θ<π Restriction on the complexity of the problem:Limited up to Lsj(9)(θ), and j is an arbitrary integer number. Thus, all function up to the weight 12 in the region 0<θ<π can be evaluated. The algorithm can be extended up to higher values of k(k>9) without modification Typical running time:Depending on the complexity of problem. See text below.

  4. Regularities of Filamentary Channels Formation During Formation of Nanostructured Non-Metallic Inorganic Coatings in Microplasma Galvanostatic Mode in Solutions

    NASA Astrophysics Data System (ADS)

    Mamaev, A. I.; Mamaeva, V. A.; Kolenchin, N. F.; Chubenko, A. K.; Kovalskaya, Ya. B.; Konstantinova, T. A.; Dolgova, Yu. N.; Beletskaya, E. Yu.

    2016-04-01

    This paper presents the theoretical models describing the growth of filamentary channels of nanostructured non-metallic coatings formed by anodizing and microplasma oxidation. The authors identified dependences of the number of pores on the coating thickness. The paper presents graphic dependences of the number of filamentary channels on the process time and the coating thickness. These dependences allow calculating through and surface porosity, and in cases, when the pores are filled with functional material, they allow calculating the concentration distribution of this functional material throughout the coating thickness. The theoretical models enhance our understanding of the nature of anode processes and can be used to describe and forecast the growth and filling of porous coatings, so they can also be used to create functional and bioactive materials.

  5. An estimator of the survival function based on the semi-Markov model under dependent censorship.

    PubMed

    Lee, Seung-Yeoun; Tsai, Wei-Yann

    2005-06-01

    Lee and Wolfe (Biometrics vol. 54 pp. 1176-1178, 1998) proposed the two-stage sampling design for testing the assumption of independent censoring, which involves further follow-up of a subset of lost-to-follow-up censored subjects. They also proposed an adjusted estimator for the survivor function for a proportional hazards model under the dependent censoring model. In this paper, a new estimator for the survivor function is proposed for the semi-Markov model under the dependent censorship on the basis of the two-stage sampling data. The consistency and the asymptotic distribution of the proposed estimator are derived. The estimation procedure is illustrated with an example of lung cancer clinical trial and simulation results are reported of the mean squared errors of estimators under a proportional hazards and two different nonproportional hazards models.

  6. Single Spin Asymmetries in l p(transv. pol.) --> h X processes and transverse momentum dependent factorization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anselmino, Mauro; Mariaelena, Boglione; D'Alesio, Umberto

    2014-06-01

    Some estimates for the transverse Single Spin Asymmetry, A_N, in the inclusive processes l p(transv. Pol.) --> h X, given in a previous paper, are expanded and compared with new experimental data. The predictions are based on the Sivers distributions and the Collins fragmentation functions which fit the azimuthal asymmetries measured in Semi-Inclusive Deep Inelastic Scattering (SIDIS) processes (l p(transv. Pol.) --> l' h X). The factorisation in terms of Transverse Momentum Dependent distribution and fragmentation functions (TMD factorisation) -- i.e., the theoretical framework in which SIDIS azimuthal asymmetries are analysed -- is assumed to hold also for the inclusivemore » process l p --> h X at large P_T. The values of A_N thus obtained agree in sign and shape with the data. Some predictions are given for future experiments.« less

  7. Time-dependent landslide probability mapping

    USGS Publications Warehouse

    Campbell, Russell H.; Bernknopf, Richard L.; ,

    1993-01-01

    Case studies where time of failure is known for rainfall-triggered debris flows can be used to estimate the parameters of a hazard model in which the probability of failure is a function of time. As an example, a time-dependent function for the conditional probability of a soil slip is estimated from independent variables representing hillside morphology, approximations of material properties, and the duration and rate of rainfall. If probabilities are calculated in a GIS (geomorphic information system ) environment, the spatial distribution of the result for any given hour can be displayed on a map. Although the probability levels in this example are uncalibrated, the method offers a potential for evaluating different physical models and different earth-science variables by comparing the map distribution of predicted probabilities with inventory maps for different areas and different storms. If linked with spatial and temporal socio-economic variables, this method could be used for short-term risk assessment.

  8. Pseudoscalar Meson Electroproduction and Transversity

    NASA Astrophysics Data System (ADS)

    Goldstein, Gary R.; Liuti, Simonetta

    2011-02-01

    Exclusive meson leptoproduction from nucleons in the deeply virtual exchanged boson limit can be described by generalized parton distributions (GPDs). Including spin dependence in the description requires 8 independent quark-parton and gluon-parton functions. The chiral even subset of 4 quark-nucleon GPDs are related to nucleon form factors and to parton distribution functions. The chiral odd set of 4 quark-nucleon GPDs are related to transversity, the tensor charge, and other quantities related to transversity. Different meson or photon production processes access different combinations of GPDs. This is analyzed in terms of t-channel exchange quantum numbers, JPC and it is shown that pseudoscalar production can isolate chiral odd GPDs. There is a sensitive dependence in various cross sections and asymmetries on the tensor charge of the nucleon and other transversity parameters. In a second section, analyticity and completeness are shown to limit the partonic interpret ation of the GPDs in the ERBL region.

  9. First-principles calculation of the polarization-dependent force driving the Eg mode in bismuth under optical excitation.

    NASA Astrophysics Data System (ADS)

    Murray, Eamonn; Fahy, Stephen

    2014-03-01

    Using first principles electronic structure methods, we calculate the induced force on the Eg (zone centre transverse optical) phonon mode in bismuth immediately after absorption of polarized light. When radiation with polarization perpendicular to the c-axis is absorbed in bismuth, the distribution of excited electrons and holes breaks the three-fold rotational symmetry and leads to a net force on the atoms in the direction perpendicular to the axis. We calculate the initial excited electronic distribution as a function of photon energy and polarization and find the resulting transverse and longitudinal forces experienced by the atoms. Using the measured, temperature-dependent rate of decay of the transverse force[2], we predict the approximate amplitude of induced atomic motion in the Eg mode as a function of temperature and optical fluence. This work is supported by Science Foundation Ireland and a Marie Curie International Incoming Fellowship.

  10. Cytosol-dependent membrane fusion in ER, nuclear envelope and nuclear pore assembly: biological implications.

    PubMed

    Rafikova, Elvira R; Melikov, Kamran; Chernomordik, Leonid V

    2010-01-01

    Endoplasmic reticulum and nuclear envelope rearrangements after mitosis are often studied in the reconstitution system based on Xenopus egg extract. In our recent work we partially replaced the membrane vesicles in the reconstitution mix with protein-free liposomes to explore the relative contributions of cytosolic and transmembrane proteins. Here we discuss our finding that cytosolic proteins mediate fusion between membranes lacking functional transmembrane proteins and the role of membrane fusion in endoplasmic reticulum and nuclear envelope reorganization. Cytosol-dependent liposome fusion has allowed us to restore, without adding transmembrane nucleoporins, functionality of nuclear pores, their spatial distribution and chromatin decondensation in nuclei formed at insufficient amounts of membrane material and characterized by only partial decondensation of chromatin and lack of nuclear transport. Both the mechanisms and the biological implications of the discovered coupling between spatial distribution of nuclear pores, chromatin decondensation and nuclear transport are discussed.

  11. Activity-Dependent Subcellular Cotrafficking of the Small GTPase Rem2 and Ca2+/CaM-Dependent Protein Kinase IIα

    PubMed Central

    Flynn, Robyn; Labrie-Dion, Etienne; Bernier, Nikolas; Colicos, Michael A.; De Koninck, Paul; Zamponi, Gerald W.

    2012-01-01

    Background Rem2 is a small monomeric GTP-binding protein of the RGK family, whose known functions are modulation of calcium channel currents and alterations of cytoskeletal architecture. Rem2 is the only RGK protein found predominantly in the brain, where it has been linked to synaptic development. We wished to determine the effect of neuronal activity on the subcellular distribution of Rem2 and its interacting partners. Results We show that Rem2 undergoes activity-and N-Methyl-D-Aspartate Receptor (NMDAR)-dependent translocation in rat hippocampal neurons. This redistribution of Rem2, from a diffuse pattern to one that is highly punctate, is dependent on Ca2+ influx, on binding to calmodulin (CaM), and also involves an auto-inhibitory domain within the Rem2 distal C-terminus region. We found that Rem2 can bind to Ca2+/CaM-dependent protein kinase IIα (CaMKII) a in Ca2+/CaM-dependent manner. Furthermore, our data reveal a spatial and temporal correlation between NMDAR-dependent clustering of Rem2 and CaMKII in neurons, indicating co-assembly and co-trafficking in neurons. Finally, we show that inhibiting CaMKII aggregation in neurons and HEK cells reduces Rem2 clustering, and that Rem2 affects the baseline distribution of CaMKII in HEK cells. Conclusions Our data suggest a novel function for Rem2 in co-trafficking with CaMKII, and thus potentially expose a role in neuronal plasticity. PMID:22815963

  12. Significance tests for functional data with complex dependence structure.

    PubMed

    Staicu, Ana-Maria; Lahiri, Soumen N; Carroll, Raymond J

    2015-01-01

    We propose an L 2 -norm based global testing procedure for the null hypothesis that multiple group mean functions are equal, for functional data with complex dependence structure. Specifically, we consider the setting of functional data with a multilevel structure of the form groups-clusters or subjects-units, where the unit-level profiles are spatially correlated within the cluster, and the cluster-level data are independent. Orthogonal series expansions are used to approximate the group mean functions and the test statistic is estimated using the basis coefficients. The asymptotic null distribution of the test statistic is developed, under mild regularity conditions. To our knowledge this is the first work that studies hypothesis testing, when data have such complex multilevel functional and spatial structure. Two small-sample alternatives, including a novel block bootstrap for functional data, are proposed, and their performance is examined in simulation studies. The paper concludes with an illustration of a motivating experiment.

  13. Are fractal dimensions of the spatial distribution of mineral deposits meaningful?

    USGS Publications Warehouse

    Raines, G.L.

    2008-01-01

    It has been proposed that the spatial distribution of mineral deposits is bifractal. An implication of this property is that the number of deposits in a permissive area is a function of the shape of the area. This is because the fractal density functions of deposits are dependent on the distance from known deposits. A long thin permissive area with most of the deposits in one end, such as the Alaskan porphyry permissive area, has a major portion of the area far from known deposits and consequently a low density of deposits associated with most of the permissive area. On the other hand, a more equi-dimensioned permissive area, such as the Arizona porphyry permissive area, has a more uniform density of deposits. Another implication of the fractal distribution is that the Poisson assumption typically used for estimating deposit numbers is invalid. Based on datasets of mineral deposits classified by type as inputs, the distributions of many different deposit types are found to have characteristically two fractal dimensions over separate non-overlapping spatial scales in the range of 5-1000 km. In particular, one typically observes a local dimension at spatial scales less than 30-60 km, and a regional dimension at larger spatial scales. The deposit type, geologic setting, and sample size influence the fractal dimensions. The consequence of the geologic setting can be diminished by using deposits classified by type. The crossover point between the two fractal domains is proportional to the median size of the deposit type. A plot of the crossover points for porphyry copper deposits from different geologic domains against median deposit sizes defines linear relationships and identifies regions that are significantly underexplored. Plots of the fractal dimension can also be used to define density functions from which the number of undiscovered deposits can be estimated. This density function is only dependent on the distribution of deposits and is independent of the definition of the permissive area. Density functions for porphyry copper deposits appear to be significantly different for regions in the Andes, Mexico, United States, and western Canada. Consequently, depending on which regional density function is used, quite different estimates of numbers of undiscovered deposits can be obtained. These fractal properties suggest that geologic studies based on mapping at scales of 1:24,000 to 1:100,000 may not recognize processes that are important in the formation of mineral deposits at scales larger than the crossover points at 30-60 km. ?? 2008 International Association for Mathematical Geology.

  14. Simulation of perturbation produced by an absorbing spherical body in collisionless plasma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Krasovsky, V. L., E-mail: vkrasov@iki.rssi.ru; Kiselyov, A. A., E-mail: alexander.kiselyov@stonehenge-3.net.ru; Dolgonosov, M. S.

    2017-01-15

    A steady plasma state reached in the course of charging of an absorbing spherical body is found using computational methods. Numerical simulations provide complete information on this process, thereby allowing one to find the spatiotemporal dependences of the physical quantities and observe the kinetic phenomena accompanying the formation of stable electron and ion distributions in phase space. The distribution function of trapped ions is obtained, and their contribution to the screening of the charged sphere is determined. The sphere charge and the charge of the trapped-ion cloud are determined as functions of the unperturbed plasma parameters.

  15. Time behavior of solar flare particles to 5 AU

    NASA Technical Reports Server (NTRS)

    Haffner, J. W.

    1972-01-01

    A simple model of solar flare radiation event particle transport is developed to permit the calculation of fluxes and related quantities as a function of distance from the sun (R). This model assumes the particles spiral around the solar magnetic field lines with a constant pitch angle. The particle angular distributions and onset plus arrival times as functions of energy at 1 AU agree with observations if the pitch angle distribution peaks near 90 deg. As a consequence the time dependence factor is essentially proportional to R/1.7, (R in AU), and the event flux is proportional to R/2.

  16. An empirical analysis of the distribution of the duration of overshoots in a stationary gaussian stochastic process

    NASA Technical Reports Server (NTRS)

    Parrish, R. S.; Carter, M. C.

    1974-01-01

    This analysis utilizes computer simulation and statistical estimation. Realizations of stationary gaussian stochastic processes with selected autocorrelation functions are computer simulated. Analysis of the simulated data revealed that the mean and the variance of a process were functionally dependent upon the autocorrelation parameter and crossing level. Using predicted values for the mean and standard deviation, by the method of moments, the distribution parameters was estimated. Thus, given the autocorrelation parameter, crossing level, mean, and standard deviation of a process, the probability of exceeding the crossing level for a particular length of time was calculated.

  17. Energy Dependence of Electron-Scale Currents and Dissipation During Magnetopause Reconnection

    NASA Astrophysics Data System (ADS)

    Shuster, J. R.; Gershman, D. J.; Giles, B. L.; Dorelli, J.; Avanov, L. A.; Chen, L. J.; Wang, S.; Bessho, N.; Torbert, R. B.; Farrugia, C. J.; Argall, M. R.; Strangeway, R. J.; Schwartz, S. J.

    2017-12-01

    We investigate the electron-scale physics of reconnecting current structures observed at the magnetopause during Phase 1B of the Magnetospheric Multiscale (MMS) mission when the spacecraft separation was less than 10 km. Using single-spacecraft measurements of the current density vector Jplasma = en(vi - ve) enabled by the accuracy of the Fast Plasma Investigation (FPI) electron moments as demonstrated by Phan et al. [2016], we consider perpendicular (J⊥1 and J⊥2) and parallel (J//) currents and their corresponding kinetic electron signatures. These currents can correspond to a variety of structures in the electron velocity distribution functions measured by FPI, including perpendicular and parallel crescents like those first reported by Burch et al. [2016], parallel electron beams, counter-streaming electron populations, or sometimes simply a bulk velocity shift. By integrating the distribution function over only its angular dimensions, we compute energy-dependent 'partial' moments and employ them to characterize the energy dependence of velocities, currents, and dissipation associated with magnetic reconnection diffusion regions caught by MMS. Our technique aids in visualizing and elucidating the plasma energization mechanisms that operate during collisionless reconnection.

  18. The temperature dependence of intermediate range oxygen-oxygen correlations in liquid water

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schlesinger, Daniel; Pettersson, Lars G. M., E-mail: Lars.Pettersson@fysik.su.se; Wikfeldt, K. Thor

    We analyze the recent temperature dependent oxygen-oxygen pair-distribution functions from experimental high-precision x-ray diffraction data of bulk water by Skinner et al. [J. Chem. Phys. 141, 214507 (2014)] with particular focus on the intermediate range where small, but significant, correlations are found out to 17 Å. The second peak in the pair-distribution function at 4.5 Å is connected to tetrahedral coordination and was shown by Skinner et al. to change behavior with temperature below the temperature of minimum isothermal compressibility. Here we show that this is associated also with a peak growing at 11 Å which strongly indicates a collectivemore » character of fluctuations leading to the enhanced compressibility at lower temperatures. We note that the peak at ∼13.2 Å exhibits a temperature dependence similar to that of the density with a maximum close to 277 K or 4 °C. We analyze simulations of the TIP4P/2005 water model in the same manner and find excellent agreement between simulations and experiment albeit with a temperature shift of ∼20 K.« less

  19. The temperature dependence of intermediate range oxygen-oxygen correlations in liquid water

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schlesinger, Daniel; Wikfeldt, K. Thor; Skinner, Lawrie B.

    Here, we analyze the recent temperature dependent oxygen-oxygen pair-distribution functions from experimental high-precision x-ray diffraction data of bulk water by Skinner et al. [J. Chem. Phys. 141, 214507 (2014)] with particular focus on the intermediate range where small, but significant, correlations are found out to 17 Å. The second peak in the pair-distribution function at 4.5 Å is connected to tetrahedral coordination and was shown by Skinner et al. to change behavior with temperature below the temperature of minimum isothermal compressibility. Here we show that this is associated also with a peak growing at 11 Å which strongly indicates amore » collective character of fluctuations leading to the enhanced compressibility at lower temperatures. We note that the peak at ~13.2 Å exhibits a temperature dependence similar to that of the density with a maximum close to 277 K or 4 °C. We analyze simulations of the TIP4P/2005 water model in the same manner and find excellent agreement between simulations and experiment albeit with a temperature shift of ~20 K.« less

  20. The temperature dependence of intermediate range oxygen-oxygen correlations in liquid water

    NASA Astrophysics Data System (ADS)

    Schlesinger, Daniel; Wikfeldt, K. Thor; Skinner, Lawrie B.; Benmore, Chris J.; Nilsson, Anders; Pettersson, Lars G. M.

    2016-08-01

    We analyze the recent temperature dependent oxygen-oxygen pair-distribution functions from experimental high-precision x-ray diffraction data of bulk water by Skinner et al. [J. Chem. Phys. 141, 214507 (2014)] with particular focus on the intermediate range where small, but significant, correlations are found out to 17 Å. The second peak in the pair-distribution function at 4.5 Å is connected to tetrahedral coordination and was shown by Skinner et al. to change behavior with temperature below the temperature of minimum isothermal compressibility. Here we show that this is associated also with a peak growing at 11 Å which strongly indicates a collective character of fluctuations leading to the enhanced compressibility at lower temperatures. We note that the peak at ˜13.2 Å exhibits a temperature dependence similar to that of the density with a maximum close to 277 K or 4 °C. We analyze simulations of the TIP4P/2005 water model in the same manner and find excellent agreement between simulations and experiment albeit with a temperature shift of ˜20 K.

  1. The temperature dependence of intermediate range oxygen-oxygen correlations in liquid water

    DOE PAGES

    Schlesinger, Daniel; Wikfeldt, K. Thor; Skinner, Lawrie B.; ...

    2016-08-25

    Here, we analyze the recent temperature dependent oxygen-oxygen pair-distribution functions from experimental high-precision x-ray diffraction data of bulk water by Skinner et al. [J. Chem. Phys. 141, 214507 (2014)] with particular focus on the intermediate range where small, but significant, correlations are found out to 17 Å. The second peak in the pair-distribution function at 4.5 Å is connected to tetrahedral coordination and was shown by Skinner et al. to change behavior with temperature below the temperature of minimum isothermal compressibility. Here we show that this is associated also with a peak growing at 11 Å which strongly indicates amore » collective character of fluctuations leading to the enhanced compressibility at lower temperatures. We note that the peak at ~13.2 Å exhibits a temperature dependence similar to that of the density with a maximum close to 277 K or 4 °C. We analyze simulations of the TIP4P/2005 water model in the same manner and find excellent agreement between simulations and experiment albeit with a temperature shift of ~20 K.« less

  2. Time-Dependent Hartree-Fock Approach to Nuclear Pasta at Finite Temperature

    NASA Astrophysics Data System (ADS)

    Schuetrumpf, B.; Klatt, M. A.; Iida, K.; Maruhn, J. A.; Mecke, K.; Reinhard, P.-G.

    2013-03-01

    We present simulations of neutron-rich matter at subnuclear densities, like supernova matter, with the time-dependent Hartree-Fock approximation at temperatures of several MeV. The initial state consists of α particles randomly distributed in space that have a Maxwell-Boltzmann distribution in momentum space. Adding a neutron background initialized with Fermi distributed plane waves the calculations reflect a reasonable approximation of astrophysical matter. This matter evolves into spherical, rod-like, and slab-like shapes and mixtures thereof. The simulations employ a full Skyrme interaction in a periodic three-dimensional grid. By an improved morphological analysis based on Minkowski functionals, all eight pasta shapes can be uniquely identified by the sign of only two valuations, namely the Euler characteristic and the integral mean curvature.

  3. Emergence of energy dependence in the fragmentation of heterogeneous materials

    NASA Astrophysics Data System (ADS)

    Pál, Gergő; Varga, Imre; Kun, Ferenc

    2014-12-01

    The most important characteristics of the fragmentation of heterogeneous solids is that the mass (size) distribution of pieces is described by a power law functional form. The exponent of the distribution displays a high degree of universality depending mainly on the dimensionality and on the brittle-ductile mechanical response of the system. Recently, experiments and computer simulations have reported an energy dependence of the exponent increasing with the imparted energy. These novel findings question the phase transition picture of fragmentation phenomena, and have also practical importance for industrial applications. Based on large scale computer simulations here we uncover a robust mechanism which leads to the emergence of energy dependence in fragmentation processes resolving controversial issues on the problem: studying the impact induced breakup of platelike objects with varying thickness in three dimensions we show that energy dependence occurs when a lower dimensional fragmenting object is embedded into a higher dimensional space. The reason is an underlying transition between two distinct fragmentation mechanisms controlled by the impact velocity at low plate thicknesses, while it is hindered for three-dimensional bulk systems. The mass distributions of the subsets of fragments dominated by the two cracking mechanisms proved to have an astonishing robustness at all plate thicknesses, which implies that the nonuniversality of the complete mass distribution is the consequence of blending the contributions of universal partial processes.

  4. A new temperature- and humidity-dependent surface site density approach for deposition ice nucleation

    NASA Astrophysics Data System (ADS)

    Steinke, I.; Hoose, C.; Möhler, O.; Connolly, P.; Leisner, T.

    2015-04-01

    Deposition nucleation experiments with Arizona Test Dust (ATD) as a surrogate for mineral dusts were conducted at the AIDA cloud chamber at temperatures between 220 and 250 K. The influence of the aerosol size distribution and the cooling rate on the ice nucleation efficiencies was investigated. Ice nucleation active surface site (INAS) densities were calculated to quantify the ice nucleation efficiency as a function of temperature, humidity and the aerosol surface area concentration. Additionally, a contact angle parameterization according to classical nucleation theory was fitted to the experimental data in order to relate the ice nucleation efficiencies to contact angle distributions. From this study it can be concluded that the INAS density formulation is a very useful tool to describe the temperature- and humidity-dependent ice nucleation efficiency of ATD particles. Deposition nucleation on ATD particles can be described by a temperature- and relative-humidity-dependent INAS density function ns(T, Sice) with ns(xtherm) = 1.88 ×105 · exp(0.2659 · xtherm) [m-2] , (1) where the temperature- and saturation-dependent function xtherm is defined as xtherm = -(T-273.2)+(Sice-1) ×100, (2) with the saturation ratio with respect to ice Sice >1 and within a temperature range between 226 and 250 K. For lower temperatures, xtherm deviates from a linear behavior with temperature and relative humidity over ice. Also, two different approaches for describing the time dependence of deposition nucleation initiated by ATD particles are proposed. Box model estimates suggest that the time-dependent contribution is only relevant for small cooling rates and low number fractions of ice-active particles.

  5. Nonequilibrium approach regarding metals from a linearised kappa distribution

    NASA Astrophysics Data System (ADS)

    Domenech-Garret, J. L.

    2017-10-01

    The widely used kappa distribution functions develop high-energy tails through an adjustable kappa parameter. The aim of this work is to show that such a parameter can itself be regarded as a function, which entangles information about the sources of disequilibrium. We first derive and analyse an expanded Fermi-Dirac kappa distribution. Later, we use this expanded form to obtain an explicit analytical expression for the kappa parameter of a heated metal on which an external electric field is applied. We show that such a kappa index causes departures from equilibrium depending on the physical magnitudes. Finally, we study the role of temperature and electric field on such a parameter, which characterises the electron population of a metal out of equilibrium.

  6. Light scattering study of rheumatoid arthritis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Beuthan, J; Netz, U; Minet, O

    The distribution of light scattered by finger joints is studied in the near-IR region. It is shown that variations in the optical parameters of the tissue (scattering coefficient {mu}{sub s}, absorption coefficient {mu}{sub a}, and anisotropy factor g) depend on the presence of the rheumatoid arthritis (RA). At the first stage, the distribution of scattered light was measured in diaphanoscopic experiments. The convolution of a Gaussian error function with the scattering phase function proved to be a good approximation of the data obtained. Then, a new method was developed for the reconstruction of distribution of optical parameters in the fingermore » cross section. Model tests of the quality of this reconstruction method show good results. (laser biology and medicine)« less

  7. INTERSTELLAR SONIC AND ALFVENIC MACH NUMBERS AND THE TSALLIS DISTRIBUTION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tofflemire, Benjamin M.; Burkhart, Blakesley; Lazarian, A.

    2011-07-20

    In an effort to characterize the Mach numbers of interstellar medium (ISM) magnetohydrodynamic (MHD) turbulence, we study the probability distribution functions (PDFs) of spatial increments of density, velocity, and magnetic field for 14 ideal isothermal MHD simulations at a resolution of 512{sup 3}. In particular, we fit the PDFs using the Tsallis function and study the dependency of the fit parameters on the compressibility and magnetization of the gas. We find that the Tsallis function fits PDFs of MHD turbulence well, with fit parameters showing sensitivities to the sonic and Alfven Mach numbers. For three-dimensional density, column density, and Position-Position-Velocitymore » data, we find that the amplitude and width of the PDFs show a dependency on the sonic Mach number. We also find that the width of the PDF is sensitive to the global Alfvenic Mach number especially in cases where the sonic number is high. These dependencies are also found for mock observational cases, where cloud-like boundary conditions, smoothing, and noise are introduced. The ability of Tsallis statistics to characterize the sonic and Alfvenic Mach numbers of simulated ISM turbulence points to it being a useful tool in the analysis of the observed ISM, especially when used simultaneously with other statistical techniques.« less

  8. Correlation functions in first-order phase transitions

    NASA Astrophysics Data System (ADS)

    Garrido, V.; Crespo, D.

    1997-09-01

    Most of the physical properties of systems underlying first-order phase transitions can be obtained from the spatial correlation functions. In this paper, we obtain expressions that allow us to calculate all the correlation functions from the droplet size distribution. Nucleation and growth kinetics is considered, and exact solutions are obtained for the case of isotropic growth by using self-similarity properties. The calculation is performed by using the particle size distribution obtained by a recently developed model (populational Kolmogorov-Johnson-Mehl-Avrami model). Since this model is less restrictive than that used in previously existing theories, the result is that the correlation functions can be obtained for any dependence of the kinetic parameters. The validity of the method is tested by comparison with the exact correlation functions, which had been obtained in the available cases by the time-cone method. Finally, the correlation functions corresponding to the microstructure developed in partitioning transformations are obtained.

  9. Method and device for landing aircraft dependent on runway occupancy time

    NASA Technical Reports Server (NTRS)

    Ghalebsaz Jeddi, Babak (Inventor)

    2012-01-01

    A technique for landing aircraft using an aircraft landing accident avoidance device is disclosed. The technique includes determining at least two probability distribution functions; determining a safe lower limit on a separation between a lead aircraft and a trail aircraft on a glide slope to the runway; determining a maximum sustainable safe attempt-to-land rate on the runway based on the safe lower limit and the probability distribution functions; directing the trail aircraft to enter the glide slope with a target separation from the lead aircraft corresponding to the maximum sustainable safe attempt-to-land rate; while the trail aircraft is in the glide slope, determining an actual separation between the lead aircraft and the trail aircraft; and directing the trail aircraft to execute a go-around maneuver if the actual separation approaches the safe lower limit. Probability distribution functions include runway occupancy time, and landing time interval and/or inter-arrival distance.

  10. Algebraic Functions of H-Functions with Specific Dependency Structure.

    DTIC Science & Technology

    1984-05-01

    a study of its characteristic function. Such analysis is reproduced in books by Springer (17), Anderson (23), Feller (34,35), Mood and Graybill (52...following linearity property for expectations of jointly distributed random variables is derived. r 1 Theorem 1.1: If X and Y are real random variables...appear in American Journal of Mathematical and Management Science. 13. Mathai, A.M., and R.K. Saxena, "On linear combinations of stochastic variables

  11. Wealth distribution on complex networks

    NASA Astrophysics Data System (ADS)

    Ichinomiya, Takashi

    2012-12-01

    We study the wealth distribution of the Bouchaud-Mézard model on complex networks. It is known from numerical simulations that this distribution depends on the topology of the network; however, no one has succeeded in explaining it. Using “adiabatic” and “independent” assumptions along with the central-limit theorem, we derive equations that determine the probability distribution function. The results are compared to those of simulations for various networks. We find good agreement between our theory and the simulations, except for the case of Watts-Strogatz networks with a low rewiring rate due to the breakdown of independent assumption.

  12. Predictability and Quantification of Complex Groundwater Table Dynamics Driven by Irregular Surface Water Fluctuations

    NASA Astrophysics Data System (ADS)

    Xin, Pei; Wang, Shen S. J.; Shen, Chengji; Zhang, Zeyu; Lu, Chunhui; Li, Ling

    2018-03-01

    Shallow groundwater interacts strongly with surface water across a quarter of global land area, affecting significantly the terrestrial eco-hydrology and biogeochemistry. We examined groundwater behavior subjected to unimodal impulse and irregular surface water fluctuations, combining physical experiments, numerical simulations, and functional data analysis. Both the experiments and numerical simulations demonstrated a damped and delayed response of groundwater table to surface water fluctuations. To quantify this hysteretic shallow groundwater behavior, we developed a regression model with the Gamma distribution functions adopted to account for the dependence of groundwater behavior on antecedent surface water conditions. The regression model fits and predicts well the groundwater table oscillations resulting from propagation of irregular surface water fluctuations in both laboratory and large-scale aquifers. The coefficients of the Gamma distribution function vary spatially, reflecting the hysteresis effect associated with increased amplitude damping and delay as the fluctuation propagates. The regression model, in a relatively simple functional form, has demonstrated its capacity of reproducing high-order nonlinear effects that underpin the surface water and groundwater interactions. The finding has important implications for understanding and predicting shallow groundwater behavior and associated biogeochemical processes, and will contribute broadly to studies of groundwater-dependent ecology and biogeochemistry.

  13. Optimal steering for kinematic vehicles with applications to spatially distributed agents

    NASA Astrophysics Data System (ADS)

    Brown, Scott; Praeger, Cheryl E.; Giudici, Michael

    While there is no universal method to address control problems involving networks of autonomous vehicles, there exist a few promising schemes that apply to different specific classes of problems, which have attracted the attention of many researchers from different fields. In particular, one way to extend techniques that address problems involving a single autonomous vehicle to those involving teams of autonomous vehicles is to use the concept of Voronoi diagram. The Voronoi diagram provides a spatial partition of the environment the team of vehicles operate in, where each element of this partition is associated with a unique vehicle from the team. The partition induces a graph abstraction of the operating space that is in an one-to-one correspondence with the network abstraction of the team of autonomous vehicles; a fact that can provide both conceptual and analytical advantages during mission planning and execution. In this dissertation, we propose the use of a new class of Voronoi-like partitioning schemes with respect to state-dependent proximity (pseudo-) metrics rather than the Euclidean distance or other generalized distance functions, which are typically used in the literature. An important nuance here is that, in contrast to the Euclidean distance, state-dependent metrics can succinctly capture system theoretic features of each vehicle from the team (e.g., vehicle kinematics), as well as the environment-vehicle interactions, which are induced, for example, by local winds/currents. We subsequently illustrate how the proposed concept of state-dependent Voronoi-like partition can induce local control schemes for problems involving networks of spatially distributed autonomous vehicles by examining a sequential pursuit problem of a maneuvering target by a group of pursuers distributed in the plane. The construction of generalized Voronoi diagrams with respect to state-dependent metrics poses some significant challenges. First, the generalized distance metric may be a function of the direction of motion of the vehicle (anisotropic pseudo-distance function) and/or may not be expressible in closed form. Second, such problems fall under the general class of partitioning problems for which the vehicles' dynamics must be taken into account. The topology of the vehicle's configuration space may be non-Euclidean, for example, it may be a manifold embedded in a Euclidean space. In other words, these problems may not be reducible to generalized Voronoi diagram problems for which efficient construction schemes, analytical and/or computational, exist in the literature. This research effort pursues three main objectives. First, we present the complete solution of different steering problems involving a single vehicle in the presence of motion constraints imposed by the maneuverability envelope of the vehicle and/or the presence of a drift field induced by winds/currents in its vicinity. The analysis of each steering problem involving a single vehicle provides us with a state-dependent generalized metric, such as the minimum time-to-go/come. We subsequently use these state-dependent generalized distance functions as the proximity metrics in the formulation of generalized Voronoi-like partitioning problems. The characterization of the solutions of these state-dependent Voronoi-like partitioning problems using either analytical or computational techniques constitutes the second main objective of this dissertation. The third objective of this research effort is to illustrate the use of the proposed concept of state-dependent Voronoi-like partition as a means for passing from control techniques that apply to problems involving a single vehicle to problems involving networks of spatially distributed autonomous vehicles. To this aim, we formulate the problem of sequential/relay pursuit of a maneuvering target by a group of spatially distributed pursuers and subsequently propose a distributed group pursuit strategy that directly derives from the solution of a state-dependent Voronoi-like partitioning problem. (Abstract shortened by UMI.)

  14. A Method for Evaluating Tuning Functions of Single Neurons based on Mutual Information Maximization

    NASA Astrophysics Data System (ADS)

    Brostek, Lukas; Eggert, Thomas; Ono, Seiji; Mustari, Michael J.; Büttner, Ulrich; Glasauer, Stefan

    2011-03-01

    We introduce a novel approach for evaluation of neuronal tuning functions, which can be expressed by the conditional probability of observing a spike given any combination of independent variables. This probability can be estimated out of experimentally available data. By maximizing the mutual information between the probability distribution of the spike occurrence and that of the variables, the dependence of the spike on the input variables is maximized as well. We used this method to analyze the dependence of neuronal activity in cortical area MSTd on signals related to movement of the eye and retinal image movement.

  15. Orbit Tomography: A Method for Determining the Population of Individual Fast-ion Orbits from Experimental Measurements

    NASA Astrophysics Data System (ADS)

    Stagner, L.; Heidbrink, W. W.

    2017-10-01

    Due to the complicated nature of the fast-ion distribution function, diagnostic velocity-space weight functions are used to analyze experimental data. In a technique known as Velocity-space Tomography (VST), velocity-space weight functions are combined with experimental measurements to create a system of linear equations that can be solved. However, VST (which by definition ignores spatial dependencies) is restricted, both by the accuracy of its forward model and also by the availability of spatially overlapping diagnostics. In this work we extend velocity-space weight functions to a full 6D generalized coordinate system and then show how to reduce them to a 3D orbit-space without loss of generality using an action-angle formulation. Furthermore, we show how diagnostic orbit-weight functions can be used to infer the full fast-ion distribution function, i.e. Orbit Tomography. Examples of orbit weights functions for different diagnostics and reconstructions of fast-ion distributions are shown for DIII-D experiments. This work was supported by the U.S. Department of Energy under DE-AC02-09CH11466 and DE-FC02-04ER54698.

  16. Investigation on the effects of temperature dependency of material parameters on a thermoelastic loading problem

    NASA Astrophysics Data System (ADS)

    Kumar, Anil; Mukhopadhyay, Santwana

    2017-08-01

    The present work is concerned with the investigation of thermoelastic interactions inside a spherical shell with temperature-dependent material parameters. We employ the heat conduction model with a single delay term. The problem is studied by considering three different kinds of time-dependent temperature and stress distributions applied at the inner and outer surfaces of the shell. The problem is formulated by considering that the thermal properties vary as linear function of temperature that yield nonlinear governing equations. The problem is solved by applying Kirchhoff transformation along with integral transform technique. The numerical results of the field variables are shown in the different graphs to study the influence of temperature-dependent thermal parameters in various cases. It has been shown that the temperature-dependent effect is more prominent in case of stress distribution as compared to other fields and also the effect is significant in case of thermal shock applied at the two boundary surfaces of the spherical shell.

  17. Spatially-Dependent Modelling of Pulsar Wind Nebula G0.9+0.1

    NASA Astrophysics Data System (ADS)

    van Rensburg, C.; Krüger, P. P.; Venter, C.

    2018-03-01

    We present results from a leptonic emission code that models the spectral energy distribution of a pulsar wind nebula by solving a Fokker-Planck-type transport equation and calculating inverse Compton and synchrotron emissivities. We have created this time-dependent, multi-zone model to investigate changes in the particle spectrum as they traverse the pulsar wind nebula, by considering a time and spatially-dependent B-field, spatially-dependent bulk particle speed implying convection and adiabatic losses, diffusion, as well as radiative losses. Our code predicts the radiation spectrum at different positions in the nebula, yielding the surface brightness versus radius and the nebular size as function of energy. We compare our new model against more basic models using the observed spectrum of pulsar wind nebula G0.9+0.1, incorporating data from H.E.S.S. as well as radio and X-ray experiments. We show that simultaneously fitting the spectral energy distribution and the energy-dependent source size leads to more stringent constraints on several model parameters.

  18. Spatially dependent modelling of pulsar wind nebula G0.9+0.1

    NASA Astrophysics Data System (ADS)

    van Rensburg, C.; Krüger, P. P.; Venter, C.

    2018-07-01

    We present results from a leptonic emission code that models the spectral energy distribution of a pulsar wind nebula by solving a Fokker-Planck-type transport equation and calculating inverse Compton and synchrotron emissivities. We have created this time-dependent, multizone model to investigate changes in the particle spectrum as they traverse the pulsar wind nebula, by considering a time and spatially dependent B-field, spatially dependent bulk particle speed implying convection and adiabatic losses, diffusion, as well as radiative losses. Our code predicts the radiation spectrum at different positions in the nebula, yielding the surface brightness versus radius and the nebular size as function of energy. We compare our new model against more basic models using the observed spectrum of pulsar wind nebula G0.9+0.1, incorporating data from H.E.S.S. as well as radio and X-ray experiments. We show that simultaneously fitting the spectral energy distribution and the energy-dependent source size leads to more stringent constraints on several model parameters.

  19. Cell-size distribution in epithelial tissue formation and homeostasis

    PubMed Central

    Primo, Luca; Celani, Antonio

    2017-01-01

    How cell growth and proliferation are orchestrated in living tissues to achieve a given biological function is a central problem in biology. During development, tissue regeneration and homeostasis, cell proliferation must be coordinated by spatial cues in order for cells to attain the correct size and shape. Biological tissues also feature a notable homogeneity of cell size, which, in specific cases, represents a physiological need. Here, we study the temporal evolution of the cell-size distribution by applying the theory of kinetic fragmentation to tissue development and homeostasis. Our theory predicts self-similar probability density function (PDF) of cell size and explains how division times and redistribution ensure cell size homogeneity across the tissue. Theoretical predictions and numerical simulations of confluent non-homeostatic tissue cultures show that cell size distribution is self-similar. Our experimental data confirm predictions and reveal that, as assumed in the theory, cell division times scale like a power-law of the cell size. We find that in homeostatic conditions there is a stationary distribution with lognormal tails, consistently with our experimental data. Our theoretical predictions and numerical simulations show that the shape of the PDF depends on how the space inherited by apoptotic cells is redistributed and that apoptotic cell rates might also depend on size. PMID:28330988

  20. Cell-size distribution in epithelial tissue formation and homeostasis.

    PubMed

    Puliafito, Alberto; Primo, Luca; Celani, Antonio

    2017-03-01

    How cell growth and proliferation are orchestrated in living tissues to achieve a given biological function is a central problem in biology. During development, tissue regeneration and homeostasis, cell proliferation must be coordinated by spatial cues in order for cells to attain the correct size and shape. Biological tissues also feature a notable homogeneity of cell size, which, in specific cases, represents a physiological need. Here, we study the temporal evolution of the cell-size distribution by applying the theory of kinetic fragmentation to tissue development and homeostasis. Our theory predicts self-similar probability density function (PDF) of cell size and explains how division times and redistribution ensure cell size homogeneity across the tissue. Theoretical predictions and numerical simulations of confluent non-homeostatic tissue cultures show that cell size distribution is self-similar. Our experimental data confirm predictions and reveal that, as assumed in the theory, cell division times scale like a power-law of the cell size. We find that in homeostatic conditions there is a stationary distribution with lognormal tails, consistently with our experimental data. Our theoretical predictions and numerical simulations show that the shape of the PDF depends on how the space inherited by apoptotic cells is redistributed and that apoptotic cell rates might also depend on size. © 2017 The Author(s).

  1. Effects of payoff functions and preference distributions in an adaptive population

    NASA Astrophysics Data System (ADS)

    Yang, H. M.; Ting, Y. S.; Wong, K. Y. Michael

    2008-03-01

    Adaptive populations such as those in financial markets and distributed control can be modeled by the Minority Game. We consider how their dynamics depends on the agents’ initial preferences of strategies, when the agents use linear or quadratic payoff functions to evaluate their strategies. We find that the fluctuations of the population making certain decisions (the volatility) depends on the diversity of the distribution of the initial preferences of strategies. When the diversity decreases, more agents tend to adapt their strategies together. In systems with linear payoffs, this results in dynamical transitions from vanishing volatility to a nonvanishing one. For low signal dimensions, the dynamical transitions for the different signals do not take place at the same critical diversity. Rather, a cascade of dynamical transitions takes place when the diversity is reduced. In contrast, no phase transitions are found in systems with the quadratic payoffs. Instead, a basin boundary of attraction separates two groups of samples in the space of the agents’ decisions. Initial states inside this boundary converge to small volatility, while those outside diverge to a large one. Furthermore, when the preference distribution becomes more polarized, the dynamics becomes more erratic. All the above results are supported by good agreement between simulations and theory.

  2. Particle size distribution of rice flour affecting the starch enzymatic hydrolysis and hydration properties.

    PubMed

    de la Hera, Esther; Gomez, Manuel; Rosell, Cristina M

    2013-10-15

    Rice flour is becoming very attractive as raw material, but there is lack of information about the influence of particle size on its functional properties and starch digestibility. This study evaluates the degree of dependence of the rice flour functional properties, mainly derived from starch behavior, with the particle size distribution. Hydration properties of flours and gels and starch enzymatic hydrolysis of individual fractions were assessed. Particle size heterogeneity on rice flour significantly affected functional properties and starch features, at room temperature and also after gelatinization; and the extent of that effect was grain type dependent. Particle size heterogeneity on rice flour induces different pattern in starch enzymatic hydrolysis, with the long grain having slower hydrolysis as indicated the rate constant (k). No correlation between starch digestibility and hydration properties or the protein content was observed. It seems that in intact granules interactions with other grain components must be taken into account. Overall, particle size fractionation of rice flour might be advisable for selecting specific physico-chemical properties. Copyright © 2013. Published by Elsevier Ltd.

  3. Raman Spectroscopy Reveals New Insights into the Zonal Organization of Native and Tissue-Engineered Articular Cartilage

    PubMed Central

    2016-01-01

    Tissue architecture is intimately linked with its functions, and loss of tissue organization is often associated with pathologies. The intricate depth-dependent extracellular matrix (ECM) arrangement in articular cartilage is critical to its biomechanical functions. In this study, we developed a Raman spectroscopic imaging approach to gain new insight into the depth-dependent arrangement of native and tissue-engineered articular cartilage using bovine tissues and cells. Our results revealed previously unreported tissue complexity into at least six zones above the tidemark based on a principal component analysis and k-means clustering analysis of the distribution and orientation of the main ECM components. Correlation of nanoindentation and Raman spectroscopic data suggested that the biomechanics across the tissue depth are influenced by ECM microstructure rather than composition. Further, Raman spectroscopy together with multivariate analysis revealed changes in the collagen, glycosaminoglycan, and water distributions in tissue-engineered constructs over time. These changes were assessed using simple metrics that promise to instruct efforts toward the regeneration of a broad range of tissues with native zonal complexity and functional performance. PMID:28058277

  4. Branch and bound algorithm for accurate estimation of analytical isotropic bidirectional reflectance distribution function models.

    PubMed

    Yu, Chanki; Lee, Sang Wook

    2016-05-20

    We present a reliable and accurate global optimization framework for estimating parameters of isotropic analytical bidirectional reflectance distribution function (BRDF) models. This approach is based on a branch and bound strategy with linear programming and interval analysis. Conventional local optimization is often very inefficient for BRDF estimation since its fitting quality is highly dependent on initial guesses due to the nonlinearity of analytical BRDF models. The algorithm presented in this paper employs L1-norm error minimization to estimate BRDF parameters in a globally optimal way and interval arithmetic to derive our feasibility problem and lower bounding function. Our method is developed for the Cook-Torrance model but with several normal distribution functions such as the Beckmann, Berry, and GGX functions. Experiments have been carried out to validate the presented method using 100 isotropic materials from the MERL BRDF database, and our experimental results demonstrate that the L1-norm minimization provides a more accurate and reliable solution than the L2-norm minimization.

  5. Proton structure functions at small x

    DOE PAGES

    Hentschinski, Martin

    2015-11-03

    Proton structure functions are measured in electron-proton collision through inelastic scattering of virtual photons with virtuality Q on protons; x denotes the momentum fraction carried by the struck parton. Proton structure functions are currently described with excellent accuracy in terms of scale dependent parton distribution functions, defined in terms of collinear factorization and DGLAP evolution in Q. With decreasing x however, parton densities increase and are ultimately expected to saturate. In this regime DGLAP evolution will finally break down and non-linear evolution equations w.r.t x are expected to take over. In the first part of the talk we present recentmore » result on an implementation of physical DGLAP evolution. Unlike the conventional description in terms of parton distribution functions, the former describes directly the Q dependence of the measured structure functions. It is therefore physical insensitive to factorization scheme and scale ambiguities. It therefore provides a more stringent test of DGLAP evolution and eases the manifestation of (non-linear) small x effects. It however requires a precise measurement of both structure functions F 2 and F L, which will be only possible at future facilities, such as an Electron Ion Collider. In the second part we present a recent analysis of the small x region of the combined HERA data on the structure function F 2. We demonstrate that (linear) next-to-leading order BFKL evolution describes the effective Pomeron intercept, determined from the combined HERA data, once a resummation of collinear enhanced terms is included and the renormalization scale is fixed using the BLM optimal scale setting procedure. We also provide a detailed description of the Q and x dependence of the full structure functions F 2 in the small x region, as measured at HERA. As a result, predictions for the structure function F L are found to be in agreement with the existing HERA data.« less

  6. Hydration-Dependent Dynamical Modes in Xyloglucan from Molecular Dynamics Simulation of 13C NMR Relaxation Times and Their Distributions.

    PubMed

    Chen, Pan; Terenzi, Camilla; Furó, István; Berglund, Lars A; Wohlert, Jakob

    2018-05-15

    Macromolecular dynamics in biological systems, which play a crucial role for biomolecular function and activity at ambient temperature, depend strongly on moisture content. Yet, a generally accepted quantitative model of hydration-dependent phenomena based on local relaxation and diffusive dynamics of both polymer and its adsorbed water is still missing. In this work, atomistic-scale spatial distributions of motional modes are calculated using molecular dynamics simulations of hydrated xyloglucan (XG). These are shown to reproduce experimental hydration-dependent 13 C NMR longitudinal relaxation times ( T 1 ) at room temperature, and relevant features of their broad distributions, which are indicative of locally heterogeneous polymer reorientational dynamics. At low hydration, the self-diffusion behavior of water shows that water molecules are confined to particular locations in the randomly aggregated XG network while the average polymer segmental mobility remains low. Upon increasing water content, the hydration network becomes mobile and fully accessible for individual water molecules, and the motion of hydrated XG segments becomes faster. Yet, the polymer network retains a heterogeneous gel-like structure even at the highest level of hydration. We show that the observed distribution of relaxations times arises from the spatial heterogeneity of chain mobility that in turn is a result of heterogeneous distribution of water-chain and chain-chain interactions. Our findings contribute to the picture of hydration-dependent dynamics in other macromolecules such as proteins, DNA, and synthetic polymers, and hold important implications for the mechanical properties of polysaccharide matrixes in plants and plant-based materials.

  7. A realistic analysis of the phonon growth characteristics in a degenerate semiconductor using a simplified model of Fermi-Dirac distribution

    NASA Astrophysics Data System (ADS)

    Basu, A.; Das, B.; Middya, T. R.; Bhattacharya, D. P.

    2017-01-01

    The phonon growth characteristic in a degenerate semiconductor has been calculated under the condition of low temperature. If the lattice temperature is high, the energy of the intravalley acoustic phonon is negligibly small compared to the average thermal energy of the electrons. Hence one can traditionally assume the electron-phonon collisions to be elastic and approximate the Bose-Einstein (B.E.) distribution for the phonons by the simple equipartition law. However, in the present analysis at the low lattice temperatures, the interaction of the non equilibrium electrons with the acoustic phonons becomes inelastic and the simple equipartition law for the phonon distribution is not valid. Hence the analysis is made taking into account the inelastic collisions and the complete form of the B.E. distribution. The high-field distribution function of the carriers given by Fermi-Dirac (F.D.) function at the field dependent carrier temperature, has been approximated by a well tested model that apparently overcomes the intrinsic problem of correct evaluation of the integrals involving the product and powers of the Fermi function. Hence the results thus obtained are more reliable compared to the rough estimation that one may obtain from using the exact F.D. function, but taking recourse to some over simplified approximations.

  8. A New Approach in Generating Meteorological Forecasts for Ensemble Streamflow Forecasting using Multivariate Functions

    NASA Astrophysics Data System (ADS)

    Khajehei, S.; Madadgar, S.; Moradkhani, H.

    2014-12-01

    The reliability and accuracy of hydrological predictions are subject to various sources of uncertainty, including meteorological forcing, initial conditions, model parameters and model structure. To reduce the total uncertainty in hydrological applications, one approach is to reduce the uncertainty in meteorological forcing by using the statistical methods based on the conditional probability density functions (pdf). However, one of the requirements for current methods is to assume the Gaussian distribution for the marginal distribution of the observed and modeled meteorology. Here we propose a Bayesian approach based on Copula functions to develop the conditional distribution of precipitation forecast needed in deriving a hydrologic model for a sub-basin in the Columbia River Basin. Copula functions are introduced as an alternative approach in capturing the uncertainties related to meteorological forcing. Copulas are multivariate joint distribution of univariate marginal distributions, which are capable to model the joint behavior of variables with any level of correlation and dependency. The method is applied to the monthly forecast of CPC with 0.25x0.25 degree resolution to reproduce the PRISM dataset over 1970-2000. Results are compared with Ensemble Pre-Processor approach as a common procedure used by National Weather Service River forecast centers in reproducing observed climatology during a ten-year verification period (2000-2010).

  9. Global exponential stability of bidirectional associative memory neural networks with distributed delays

    NASA Astrophysics Data System (ADS)

    Song, Qiankun; Cao, Jinde

    2007-05-01

    A bidirectional associative memory neural network model with distributed delays is considered. By constructing a new Lyapunov functional, employing the homeomorphism theory, M-matrix theory and the inequality (a[greater-or-equal, slanted]0,bk[greater-or-equal, slanted]0,qk>0 with , and r>1), a sufficient condition is obtained to ensure the existence, uniqueness and global exponential stability of the equilibrium point for the model. Moreover, the exponential converging velocity index is estimated, which depends on the delay kernel functions and the system parameters. The results generalize and improve the earlier publications, and remove the usual assumption that the activation functions are bounded . Two numerical examples are given to show the effectiveness of the obtained results.

  10. Effects of dust polarity and nonextensive electrons on the dust-ion acoustic solitons and double layers in earth atmosphere

    NASA Astrophysics Data System (ADS)

    Ghobakhloo, Marzieh; Zomorrodian, Mohammad Ebrahim; Javidan, Kurosh

    2018-05-01

    Propagation of dustion acoustic solitary waves (DIASWs) and double layers is discussed in earth atmosphere, using the Sagdeev potential method. The best model for distribution function of electrons in earth atmosphere is found by fitting available data on different distribution functions. The nonextensive function with parameter q = 0.58 provides the best fit on observations. Thus we analyze the propagation of localized waves in an unmagnetized plasma containing nonextensive electrons, inertial ions, and negatively/positively charged stationary dust. It is found that both compressive and rarefactive solitons as well as double layers exist depending on the sign (and the value) of dust polarity. Characters of propagated waves are described using the presented model.

  11. A dynamic model of the marriage market-part 1: matching algorithm based on age preference and availability.

    PubMed

    Matthews, A P; Garenne, M L

    2013-09-01

    The matching algorithm in a dynamic marriage market model is described in this first of two companion papers. Iterative Proportional Fitting is used to find a marriage function (an age distribution of new marriages for both sexes), in a stable reference population, that is consistent with the one-sex age distributions of new marriages, and includes age preference. The one-sex age distributions (which are the marginals of the two-sex distribution) are based on the Picrate model, and age preference on a normal distribution, both of which may be adjusted by choice of parameter values. For a population that is perturbed from the reference state, the total number of new marriages is found as the harmonic mean of target totals for men and women obtained by applying reference population marriage rates to the perturbed population. The marriage function uses the age preference function, assumed to be the same for the reference and the perturbed populations, to distribute the total number of new marriages. The marriage function also has an availability factor that varies as the population changes with time, where availability depends on the supply of unmarried men and women. To simplify exposition, only first marriage is treated, and the algorithm is illustrated by application to Zambia. In the second paper, remarriage and dissolution are included. Copyright © 2013 Elsevier Inc. All rights reserved.

  12. The effect of lung deformation on the spatial distribution of pulmonary blood flow.

    PubMed

    Arai, Tatsuya J; Theilmann, Rebecca J; Sá, Rui Carlos; Villongco, Michael T; Hopkins, Susan R

    2016-11-01

    Pulmonary perfusion measurement using magnetic resonance imaging combined with deformable image registration enabled us to quantify the change in the spatial distribution of pulmonary perfusion at different lung volumes. The current study elucidated the effects of tidal volume lung inflation [functional residual capacity (FRC) + 500 ml and FRC + 1 litre] on the change in pulmonary perfusion distribution. Changes in hydrostatic pressure distribution as well as transmural pressure distribution due to the change in lung height with tidal volume inflation are probably bigger contributors to the redistribution of pulmonary perfusion than the changes in pulmonary vasculature resistance caused by lung tissue stretch. Tidal volume lung inflation results in structural changes in the pulmonary circulation, potentially affecting pulmonary perfusion. We hypothesized that perfusion is recruited to regions receiving the greatest deformation from a tidal breath, thus ensuring ventilation-perfusion matching. Density-normalized perfusion (DNP) magnetic resonance imaging data were obtained in healthy subjects (n = 7) in the right lung at functional residual capacity (FRC), FRC+500 ml, and FRC+1.0 l. Using deformable image registration, the displacement of a sagittal lung slice acquired at FRC to the larger volumes was calculated. Registered DNP images were normalized by the mean to estimate perfusion redistribution (nDNP). Data were evaluated across gravitational regions (dependent, middle, non-dependent) and by lobes (upper, RUL; middle, RML; lower, RLL). Lung inflation did not alter mean DNP within the slice (P = 0.10). The greatest expansion was seen in the dependent region (P < 0.0001: dependent vs non-dependent, P < 0.0001: dependent vs middle) and RLL (P = 0.0015: RLL vs RUL, P < 0.0001: RLL vs RML). Neither nDNP recruitment to RLL [+500 ml = -0.047(0.145), +1 litre = 0.018(0.096)] nor to dependent lung [+500 ml = -0.058(0.126), +1 litre = -0.023(0.106)] were found. Instead, redistribution was seen in decreased nDNP in the non-dependent [+500 ml = -0.075(0.152), +1 litre = -0.137(0.167)) and increased nDNP in the gravitational middle lung [+500 ml = 0.098(0.058), +1 litre = 0.093(0.081)] (P = 0.01). However, there was no significant lobar redistribution (P < 0.89). Contrary to our hypothesis, based on the comparison between gravitational and lobar perfusion data, perfusion was not redistributed to the regions of the most inflation. This suggests that either changes in hydrostatic pressure or transmural pressure distribution in the gravitational direction are implicated in the redistribution of perfusion away from the non-dependent lung. © 2016 The Authors. The Journal of Physiology © 2016 The Physiological Society.

  13. The effect of lung deformation on the spatial distribution of pulmonary blood flow

    PubMed Central

    Arai, Tatsuya J.; Theilmann, Rebecca J.; Sá, Rui Carlos; Villongco, Michael T.

    2016-01-01

    Key points Pulmonary perfusion measurement using magnetic resonance imaging combined with deformable image registration enabled us to quantify the change in the spatial distribution of pulmonary perfusion at different lung volumes.The current study elucidated the effects of tidal volume lung inflation [functional residual capacity (FRC) + 500 ml and FRC + 1 litre] on the change in pulmonary perfusion distribution.Changes in hydrostatic pressure distribution as well as transmural pressure distribution due to the change in lung height with tidal volume inflation are probably bigger contributors to the redistribution of pulmonary perfusion than the changes in pulmonary vasculature resistance caused by lung tissue stretch. Abstract Tidal volume lung inflation results in structural changes in the pulmonary circulation, potentially affecting pulmonary perfusion. We hypothesized that perfusion is recruited to regions receiving the greatest deformation from a tidal breath, thus ensuring ventilation–perfusion matching. Density‐normalized perfusion (DNP) magnetic resonance imaging data were obtained in healthy subjects (n = 7) in the right lung at functional residual capacity (FRC), FRC+500 ml, and FRC+1.0 l. Using deformable image registration, the displacement of a sagittal lung slice acquired at FRC to the larger volumes was calculated. Registered DNP images were normalized by the mean to estimate perfusion redistribution (nDNP). Data were evaluated across gravitational regions (dependent, middle, non‐dependent) and by lobes (upper, RUL; middle, RML; lower, RLL). Lung inflation did not alter mean DNP within the slice (P = 0.10). The greatest expansion was seen in the dependent region (P < 0.0001: dependent vs non‐dependent, P < 0.0001: dependent vs middle) and RLL (P = 0.0015: RLL vs RUL, P < 0.0001: RLL vs RML). Neither nDNP recruitment to RLL [+500 ml = −0.047(0.145), +1 litre = 0.018(0.096)] nor to dependent lung [+500 ml = −0.058(0.126), +1 litre = −0.023(0.106)] were found. Instead, redistribution was seen in decreased nDNP in the non‐dependent [+500 ml = −0.075(0.152), +1 litre = −0.137(0.167)) and increased nDNP in the gravitational middle lung [+500 ml = 0.098(0.058), +1 litre = 0.093(0.081)] (P = 0.01). However, there was no significant lobar redistribution (P < 0.89). Contrary to our hypothesis, based on the comparison between gravitational and lobar perfusion data, perfusion was not redistributed to the regions of the most inflation. This suggests that either changes in hydrostatic pressure or transmural pressure distribution in the gravitational direction are implicated in the redistribution of perfusion away from the non‐dependent lung. PMID:27273807

  14. What are the Shapes of Response Time Distributions in Visual Search?

    PubMed Central

    Palmer, Evan M.; Horowitz, Todd S.; Torralba, Antonio; Wolfe, Jeremy M.

    2011-01-01

    Many visual search experiments measure reaction time (RT) as their primary dependent variable. Analyses typically focus on mean (or median) RT. However, given enough data, the RT distribution can be a rich source of information. For this paper, we collected about 500 trials per cell per observer for both target-present and target-absent displays in each of three classic search tasks: feature search, with the target defined by color; conjunction search, with the target defined by both color and orientation; and spatial configuration search for a 2 among distractor 5s. This large data set allows us to characterize the RT distributions in detail. We present the raw RT distributions and fit several psychologically motivated functions (ex-Gaussian, ex-Wald, Gamma, and Weibull) to the data. We analyze and interpret parameter trends from these four functions within the context of theories of visual search. PMID:21090905

  15. A new method for analyzing IRAS data to determine the dust temperature distribution

    NASA Technical Reports Server (NTRS)

    Xie, Taoling; Goldsmith, Paul F.; Zhou, Weimin

    1991-01-01

    In attempting to analyze the four-band IRAS images of interstellar dust emission, it is found that an inversion theorem recently developed by Chen (1990) enables distribution of the dust to be determined as a function of temperature and thus the total dust column density, for each line of sight. The method and its application to a hypothetical IRAS data set created by assuming a power-law dust temperature distribution, which is characteristic of the actual IRAS data for the Monoceros R2 cloud, are reported. To use the method, the wavelength dependence of the dust emissivity is assumed and a simple function is fitted to the four intensity-wavelength data points. The method is shown to be very successful at retrieving the dust temperature distribution in this case and is expected to have wide applicability to astronomical problems of this type.

  16. Modelling Spatial Dependence Structures Between Climate Variables by Combining Mixture Models with Copula Models

    NASA Astrophysics Data System (ADS)

    Khan, F.; Pilz, J.; Spöck, G.

    2017-12-01

    Spatio-temporal dependence structures play a pivotal role in understanding the meteorological characteristics of a basin or sub-basin. This further affects the hydrological conditions and consequently will provide misleading results if these structures are not taken into account properly. In this study we modeled the spatial dependence structure between climate variables including maximum, minimum temperature and precipitation in the Monsoon dominated region of Pakistan. For temperature, six, and for precipitation four meteorological stations have been considered. For modelling the dependence structure between temperature and precipitation at multiple sites, we utilized C-Vine, D-Vine and Student t-copula models. For temperature, multivariate mixture normal distributions and for precipitation gamma distributions have been used as marginals under the copula models. A comparison was made between C-Vine, D-Vine and Student t-copula by observational and simulated spatial dependence structure to choose an appropriate model for the climate data. The results show that all copula models performed well, however, there are subtle differences in their performances. The copula models captured the patterns of spatial dependence structures between climate variables at multiple meteorological sites, however, the t-copula showed poor performance in reproducing the dependence structure with respect to magnitude. It was observed that important statistics of observed data have been closely approximated except of maximum values for temperature and minimum values for minimum temperature. Probability density functions of simulated data closely follow the probability density functions of observational data for all variables. C and D-Vines are better tools when it comes to modelling the dependence between variables, however, Student t-copulas compete closely for precipitation. Keywords: Copula model, C-Vine, D-Vine, Spatial dependence structure, Monsoon dominated region of Pakistan, Mixture models, EM algorithm.

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Avakian, Harut

    Studies of the 3D structure of the nucleon encoded in Transverse Momentum Dependent distribution and fragmentation functions of partons and Generalized Parton Distributions are among the key objectives of the JLab 12 GeV upgrade and the Electron Ion Collider. Main challenges in extracting 3D partonic distributions from precision measurements of hard scattering processes include clear understanding of leading twist QCD fundamentals, higher twist effects, and also correlations of hadron production in target and current fragmentation regions. In this contribution we discuss some ongoing studies and future measurements of spin-orbit correlations at Jefferson Lab.

  18. Momentum peak shift and width of longitudinal momentum distribution of projectilelike fragments produced at E =290 MeV /nucleon

    NASA Astrophysics Data System (ADS)

    Momota, S.; Kanazawa, M.; Kitagawa, A.; Sato, S.

    2018-04-01

    Longitudinal momentum (PL) distributions of projectilelike fragments produced at E =290 MeV /nucleon are investigated. PL distributions of fragments produced by Ar and Kr beams with a wide variety of targets (C, Al, Nb, Tb, and Au) were measured using the fragment separator at HIMAC. PL distributions observed for fragments with a wide range of mass losses Δ A (1-30 for Ar beam and 1-64 for Kr beam), show a slightly, but definitely asymmetric nature. The peak shift and width were obtained from the observed PL distributions. No significant target dependence was found in either the peak shift or width. For the practical application, the variation in momentum peak shift with fragment mass (AF) was represented by a parabolic function. The width on the high-PL side (σHigh) is well reproduced by the Goldhaber formula, which is obtained from the contribution of the Fermi momentum. The behavior of the reduced width, σ0, obtained from σHigh via the Goldhaber formulation, is consistent with the mass-dependent Fermi momentum of a nucleon. The width on the low-PL side (σLow) is markedly larger than σHigh and exhibits a clear AF dependence.

  19. The main types of electron energy distribution determined by model fitting to optical emissions during HF wave ionospheric modification experiments

    NASA Astrophysics Data System (ADS)

    Vlasov, M. N.; Kelley, M. C.; Hysell, D. L.

    2013-06-01

    Enhanced optical emissions observed during HF pumping are induced by electrons accelerated by high-power electromagnetic waves. Using measured emission intensities, the energy distribution of accelerated electrons can be inferred. Energy loss from the excitation of molecular nitrogen vibrational levels (the vibrational barrier) strongly influences the electron energy distribution (EED). In airglow calculations, compensation for electron depletion within the 2-3 eV energy range, induced by the vibrational barrier, can be achieved via electrons with an EED similar to a Gaussian distribution and energies higher than 3 eV. This EED has a peak within the 5-10 eV energy range. We show that the main EED features depend strongly on altitude and solar activity. An EED similar to a power law distribution can occur above 270-300 km altitude. Below 270 km altitude, a Gaussian distribution for energies between 3 eV and 10 eV, together with a power law distribution for energies higher than 10 eV, is indicated. A Gaussian distribution combined with an exponential function is needed below 230 km altitude. The transition altitude from Gaussian to power law distribution depends strongly on solar activity, increasing for high solar activity. Electrons accelerated during the initial collisionless stage can inhibit the depletion of fast electrons within the vibrational barrier range, an effect that strongly depends on altitude and solar activity. The approach, based on the effective root square electric field, enables EED calculation, providing the observed red-line intensities for low and high solar activities.

  20. Decentralized Online Social Networks

    NASA Astrophysics Data System (ADS)

    Datta, Anwitaman; Buchegger, Sonja; Vu, Le-Hung; Strufe, Thorsten; Rzadca, Krzysztof

    Current Online social networks (OSN) are web services run on logically centralized infrastructure. Large OSN sites use content distribution networks and thus distribute some of the load by caching for performance reasons, nevertheless there is a central repository for user and application data. This centralized nature of OSNs has several drawbacks including scalability, privacy, dependence on a provider, need for being online for every transaction, and a lack of locality. There have thus been several efforts toward decentralizing OSNs while retaining the functionalities offered by centralized OSNs. A decentralized online social network (DOSN) is a distributed system for social networking with no or limited dependency on any dedicated central infrastructure. In this chapter we explore the various motivations of a decentralized approach to online social networking, discuss several concrete proposals and types of DOSN as well as challenges and opportunities associated with decentralization.

  1. Influence of grain boundaries on the distribution of components in binary alloys

    NASA Astrophysics Data System (ADS)

    L'vov, P. E.; Svetukhin, V. V.

    2017-12-01

    Based on the free-energy density functional method (the Cahn-Hilliard equation), a phenomenological model that describes the influence of grain boundaries on the distribution of components in binary alloys has been developed. The model is built on the assumption of the difference between the interaction parameters of solid solution components in the bulk and at the grain boundary. The difference scheme based on the spectral method is proposed to solve the Cahn-Hilliard equation with interaction parameters depending on coordinates. Depending on the ratio between the interaction parameters in the bulk and at the grain boundary, temperature, and alloy composition, the model can give rise to different types of distribution of a dissolved component, namely, either depletion or enrichment of the grain-boundary area, preferential grainboundary precipitation, competitive precipitation in the bulk and at the grain boundary, etc.

  2. Effect of formal and informal likelihood functions on uncertainty assessment in a single event rainfall-runoff model

    NASA Astrophysics Data System (ADS)

    Nourali, Mahrouz; Ghahraman, Bijan; Pourreza-Bilondi, Mohsen; Davary, Kamran

    2016-09-01

    In the present study, DREAM(ZS), Differential Evolution Adaptive Metropolis combined with both formal and informal likelihood functions, is used to investigate uncertainty of parameters of the HEC-HMS model in Tamar watershed, Golestan province, Iran. In order to assess the uncertainty of 24 parameters used in HMS, three flood events were used to calibrate and one flood event was used to validate the posterior distributions. Moreover, performance of seven different likelihood functions (L1-L7) was assessed by means of DREAM(ZS)approach. Four likelihood functions, L1-L4, Nash-Sutcliffe (NS) efficiency, Normalized absolute error (NAE), Index of agreement (IOA), and Chiew-McMahon efficiency (CM), is considered as informal, whereas remaining (L5-L7) is represented in formal category. L5 focuses on the relationship between the traditional least squares fitting and the Bayesian inference, and L6, is a hetereoscedastic maximum likelihood error (HMLE) estimator. Finally, in likelihood function L7, serial dependence of residual errors is accounted using a first-order autoregressive (AR) model of the residuals. According to the results, sensitivities of the parameters strongly depend on the likelihood function, and vary for different likelihood functions. Most of the parameters were better defined by formal likelihood functions L5 and L7 and showed a high sensitivity to model performance. Posterior cumulative distributions corresponding to the informal likelihood functions L1, L2, L3, L4 and the formal likelihood function L6 are approximately the same for most of the sub-basins, and these likelihood functions depict almost a similar effect on sensitivity of parameters. 95% total prediction uncertainty bounds bracketed most of the observed data. Considering all the statistical indicators and criteria of uncertainty assessment, including RMSE, KGE, NS, P-factor and R-factor, results showed that DREAM(ZS) algorithm performed better under formal likelihood functions L5 and L7, but likelihood function L5 may result in biased and unreliable estimation of parameters due to violation of the residualerror assumptions. Thus, likelihood function L7 provides posterior distribution of model parameters credibly and therefore can be employed for further applications.

  3. Time-dependent solutions for a stochastic model of gene expression with molecule production in the form of a compound Poisson process.

    PubMed

    Jędrak, Jakub; Ochab-Marcinek, Anna

    2016-09-01

    We study a stochastic model of gene expression, in which protein production has a form of random bursts whose size distribution is arbitrary, whereas protein decay is a first-order reaction. We find exact analytical expressions for the time evolution of the cumulant-generating function for the most general case when both the burst size probability distribution and the model parameters depend on time in an arbitrary (e.g., oscillatory) manner, and for arbitrary initial conditions. We show that in the case of periodic external activation and constant protein degradation rate, the response of the gene is analogous to the resistor-capacitor low-pass filter, where slow oscillations of the external driving have a greater effect on gene expression than the fast ones. We also demonstrate that the nth cumulant of the protein number distribution depends on the nth moment of the burst size distribution. We use these results to show that different measures of noise (coefficient of variation, Fano factor, fractional change of variance) may vary in time in a different manner. Therefore, any biological hypothesis of evolutionary optimization based on the nonmonotonic dependence of a chosen measure of noise on time must justify why it assumes that biological evolution quantifies noise in that particular way. Finally, we show that not only for exponentially distributed burst sizes but also for a wider class of burst size distributions (e.g., Dirac delta and gamma) the control of gene expression level by burst frequency modulation gives rise to proportional scaling of variance of the protein number distribution to its mean, whereas the control by amplitude modulation implies proportionality of protein number variance to the mean squared.

  4. Multiple Scattering Effects on Pulse Propagation in Optically Turbid Media.

    NASA Astrophysics Data System (ADS)

    Joelson, Bradley David

    The effects of multiple scattering in a optically turbid media is examined for an impulse solution to the radiative transfer equation for a variety of geometries and phase functions. In regions where the complexities of the phase function proved too cumbersome for analytic methods Monte Carlo techniques were developed to describe the entire scalar radiance distribution. The determination of a general spread function is strongly dependent on geometry and particular regions where limits can be placed on the variables of the problem. Hence, the general spread function is first simplified by considering optical regions which reduce the complexity of the variable dependence. First, in the small-angle limit we calculate some contracted spread functions along with their moments and then use Monte Carlo techniques to establish the limitations imposed by the small-angle approximation in planar geometry. The point spread function (PSF) for a spherical geometry is calculated for the full angular spread in the forward direction of ocean waters using Monte Carlo methods in the optically thin and moderate depths and analytic methods in the diffusion domain. The angular dependence of the PSF for various ocean waters is examined for a range of optical parameters. The analytic method used in the diffusion calculation is justified by examining the angular dependence of the radiance of a impulse solution in a planar geometry for a prolongated Henyey-Greenstein phase function of asymmetry factor approximately equal to that of the ocean phase functions. The Legendre moments of the radiance are examined in order to examine the viability of the diffusion approximation which assumes a linearly anisotropic angular distribution for the radiance. A realistic lidar calculation is performed for a variety of ocean waters to determine the effects of multiple scattering on the determination of the speed of sound by using the range gated frequency spectrum of the lidar signal. It is shown that the optical properties of the ocean help to ensure single scatter form for the frequency spectra of the lidar signal. This spectra can then be used to compute the speed of sound and backscatter probability.

  5. A General Class of Signed Rank Tests for Clustered Data when the Cluster Size is Potentially Informative

    PubMed Central

    Datta, Somnath; Nevalainen, Jaakko; Oja, Hannu

    2012-01-01

    SUMMARY Rank based tests are alternatives to likelihood based tests popularized by their relative robustness and underlying elegant mathematical theory. There has been a serge in research activities in this area in recent years since a number of researchers are working to develop and extend rank based procedures to clustered dependent data which include situations with known correlation structures (e.g., as in mixed effects models) as well as more general form of dependence. The purpose of this paper is to test the symmetry of a marginal distribution under clustered data. However, unlike most other papers in the area, we consider the possibility that the cluster size is a random variable whose distribution is dependent on the distribution of the variable of interest within a cluster. This situation typically arises when the clusters are defined in a natural way (e.g., not controlled by the experimenter or statistician) and in which the size of the cluster may carry information about the distribution of data values within a cluster. Under the scenario of an informative cluster size, attempts to use some form of variance adjusted sign or signed rank tests would fail since they would not maintain the correct size under the distribution of marginal symmetry. To overcome this difficulty Datta and Satten (2008; Biometrics, 64, 501–507) proposed a Wilcoxon type signed rank test based on the principle of within cluster resampling. In this paper we study this problem in more generality by introducing a class of valid tests employing a general score function. Asymptotic null distribution of these tests is obtained. A simulation study shows that a more general choice of the score function can sometimes result in greater power than the Datta and Satten test; furthermore, this development offers the user a wider choice. We illustrate our tests using a real data example on spinal cord injury patients. PMID:23074359

  6. A General Class of Signed Rank Tests for Clustered Data when the Cluster Size is Potentially Informative.

    PubMed

    Datta, Somnath; Nevalainen, Jaakko; Oja, Hannu

    2012-09-01

    Rank based tests are alternatives to likelihood based tests popularized by their relative robustness and underlying elegant mathematical theory. There has been a serge in research activities in this area in recent years since a number of researchers are working to develop and extend rank based procedures to clustered dependent data which include situations with known correlation structures (e.g., as in mixed effects models) as well as more general form of dependence.The purpose of this paper is to test the symmetry of a marginal distribution under clustered data. However, unlike most other papers in the area, we consider the possibility that the cluster size is a random variable whose distribution is dependent on the distribution of the variable of interest within a cluster. This situation typically arises when the clusters are defined in a natural way (e.g., not controlled by the experimenter or statistician) and in which the size of the cluster may carry information about the distribution of data values within a cluster.Under the scenario of an informative cluster size, attempts to use some form of variance adjusted sign or signed rank tests would fail since they would not maintain the correct size under the distribution of marginal symmetry. To overcome this difficulty Datta and Satten (2008; Biometrics, 64, 501-507) proposed a Wilcoxon type signed rank test based on the principle of within cluster resampling. In this paper we study this problem in more generality by introducing a class of valid tests employing a general score function. Asymptotic null distribution of these tests is obtained. A simulation study shows that a more general choice of the score function can sometimes result in greater power than the Datta and Satten test; furthermore, this development offers the user a wider choice. We illustrate our tests using a real data example on spinal cord injury patients.

  7. Stochastic transformation of points in polygons according to the Voronoi tessellation: microstructural description.

    PubMed

    Di Vito, Alessia; Fanfoni, Massimo; Tomellini, Massimo

    2010-12-01

    Starting from a stochastic two-dimensional process we studied the transformation of points in disks and squares following a protocol according to which at any step the island size increases proportionally to the corresponding Voronoi tessera. Two interaction mechanisms among islands have been dealt with: coalescence and impingement. We studied the evolution of the island density and of the island size distribution functions, in dependence on island collision mechanisms for both Poissonian and correlated spatial distributions of points. The island size distribution functions have been found to be invariant with the fraction of transformed phase for a given stochastic process. The n(Θ) curve describing the island decay has been found to be independent of the shape (apart from high correlation degrees) and interaction mechanism.

  8. Maximally Informative Stimuli and Tuning Curves for Sigmoidal Rate-Coding Neurons and Populations

    NASA Astrophysics Data System (ADS)

    McDonnell, Mark D.; Stocks, Nigel G.

    2008-08-01

    A general method for deriving maximally informative sigmoidal tuning curves for neural systems with small normalized variability is presented. The optimal tuning curve is a nonlinear function of the cumulative distribution function of the stimulus and depends on the mean-variance relationship of the neural system. The derivation is based on a known relationship between Shannon’s mutual information and Fisher information, and the optimality of Jeffrey’s prior. It relies on the existence of closed-form solutions to the converse problem of optimizing the stimulus distribution for a given tuning curve. It is shown that maximum mutual information corresponds to constant Fisher information only if the stimulus is uniformly distributed. As an example, the case of sub-Poisson binomial firing statistics is analyzed in detail.

  9. Fusion cross sections for reactions involving medium and heavy nucleus-nucleus systems

    NASA Astrophysics Data System (ADS)

    Atta, Debasis; Basu, D. N.

    2014-12-01

    Existing data on near-barrier fusion excitation functions of medium and heavy nucleus-nucleus systems have been analyzed by using a simple diffused-barrier formula derived assuming the Gaussian shape of the barrier-height distributions. The fusion cross section is obtained by folding the Gaussian barrier distribution with the classical expression for the fusion cross section for a fixed barrier. The energy dependence of the fusion cross section, thus obtained, provides good description to the existing data on near-barrier fusion and capture excitation functions for medium and heavy nucleus-nucleus systems. The theoretical values for the parameters of the barrier distribution are estimated which can be used for fusion or capture cross-section predictions that are especially important for planning experiments for synthesizing new superheavy elements.

  10. Space station communications and tracking equipment management/control system

    NASA Technical Reports Server (NTRS)

    Kapell, M. H.; Seyl, J. W.

    1982-01-01

    Design details of a communications and tracking (C and T) local area network and the distribution system requirements for the prospective space station are described. The hardware will be constructed of LRUs, including those for baseband, RF, and antenna subsystems. It is noted that the C and T equipment must be routed throughout the station to accommodate growth of the station. Configurations of the C and T modules will therefore be dependent on the function of the space station module where they are located. A block diagram is provided of a sample C and T hardware distribution configuration. A topology and protocol will be needed to accommodate new terminals, wide bandwidths, bidirectional message transmission, and distributed functioning. Consideration will be given to collisions occurring in the data transmission channels.

  11. Phenomenology of TMDs

    NASA Astrophysics Data System (ADS)

    Melis, Stefano

    2015-01-01

    We present a review of current Transverse Momentum Dependent (TMD) phenomenology focusing our attention on the unpolarized TMD parton distribution function and the Sivers function. The paper introduces and comments about the new Collins-Soper-Sterman (CSS) TMD evolution formalism [1]. We make use of a selection of results obtained by several groups to illustrate the achievements and the failures of the simple Gaussian approach and the TMD CSS evolution formalism.

  12. Estimates of the information content and dimensionality of natural scenes from proximity distributions

    NASA Astrophysics Data System (ADS)

    Chandler, Damon M.; Field, David J.

    2007-04-01

    Natural scenes, like most all natural data sets, show considerable redundancy. Although many forms of redundancy have been investigated (e.g., pixel distributions, power spectra, contour relationships, etc.), estimates of the true entropy of natural scenes have been largely considered intractable. We describe a technique for estimating the entropy and relative dimensionality of image patches based on a function we call the proximity distribution (a nearest-neighbor technique). The advantage of this function over simple statistics such as the power spectrum is that the proximity distribution is dependent on all forms of redundancy. We demonstrate that this function can be used to estimate the entropy (redundancy) of 3×3 patches of known entropy as well as 8×8 patches of Gaussian white noise, natural scenes, and noise with the same power spectrum as natural scenes. The techniques are based on assumptions regarding the intrinsic dimensionality of the data, and although the estimates depend on an extrapolation model for images larger than 3×3, we argue that this approach provides the best current estimates of the entropy and compressibility of natural-scene patches and that it provides insights into the efficiency of any coding strategy that aims to reduce redundancy. We show that the sample of 8×8 patches of natural scenes used in this study has less than half the entropy of 8×8 white noise and less than 60% of the entropy of noise with the same power spectrum. In addition, given a finite number of samples (<220) drawn randomly from the space of 8×8 patches, the subspace of 8×8 natural-scene patches shows a dimensionality that depends on the sampling density and that for low densities is significantly lower dimensional than the space of 8×8 patches of white noise and noise with the same power spectrum.

  13. Feast and Famine: regulation of black hole growth in low-redshift galaxies

    NASA Astrophysics Data System (ADS)

    Kauffmann, Guinevere; Heckman, Timothy M.

    2009-07-01

    We analyse the observed distribution of Eddington ratios (L/LEdd) as a function of supermassive black hole mass for a large sample of nearby galaxies drawn from the Sloan Digital Sky Survey. We demonstrate that there are two distinct regimes of black hole growth in nearby galaxies. The first is associated with galaxies with significant star formation [M*/starformationrate (SFR) ~ a Hubble time] in their central kiloparsec regions, and is characterized by a broad lognormal distribution of accretion rates peaked at a few per cent of the Eddington limit. In this regime, the Eddington ratio distribution is independent of the mass of the black hole and shows little dependence on the central stellar population of the galaxy. The second regime is associated with galaxies with old central stellar populations (M*/SFR >> a Hubble time), and is characterized by a power-law distribution function of Eddington ratios. In this regime, the time-averaged mass accretion rate on to black holes is proportional to the mass of stars in the galaxy bulge, with a constant of proportionality that depends on the mean stellar age of the stars. This result is once again independent of black hole mass. We show that both the slope of the power law and the decrease in the accretion rate on to black holes in old galaxies are consistent with population synthesis model predictions of the decline in stellar mass loss rates as a function of mean stellar age. Our results lead to a very simple picture of black hole growth in the local Universe. If the supply of cold gas in a galaxy bulge is plentiful, the black hole regulates its own growth at a rate that does not further depend on the properties of the interstellar medium. Once the gas runs out, black hole growth is regulated by the rate at which evolved stars lose their mass.

  14. Reference hypernetted chain theory for ferrofluid bilayer: Distribution functions compared with Monte Carlo

    NASA Astrophysics Data System (ADS)

    Polyakov, Evgeny A.; Vorontsov-Velyaminov, Pavel N.

    2014-08-01

    Properties of ferrofluid bilayer (modeled as a system of two planar layers separated by a distance h and each layer carrying a soft sphere dipolar liquid) are calculated in the framework of inhomogeneous Ornstein-Zernike equations with reference hypernetted chain closure (RHNC). The bridge functions are taken from a soft sphere (1/r12) reference system in the pressure-consistent closure approximation. In order to make the RHNC problem tractable, the angular dependence of the correlation functions is expanded into special orthogonal polynomials according to Lado. The resulting equations are solved using the Newton-GRMES algorithm as implemented in the public-domain solver NITSOL. Orientational densities and pair distribution functions of dipoles are compared with Monte Carlo simulation results. A numerical algorithm for the Fourier-Hankel transform of any positive integer order on a uniform grid is presented.

  15. AB INITIO Molecular Dynamics Simulations on Local Structure and Electronic Properties in Liquid MgxBi1-x Alloys

    NASA Astrophysics Data System (ADS)

    Hao, Qing-Hai; You, Yu-Wei; Kong, Xiang-Shan; Liu, C. S.

    2013-03-01

    The microscopic structure and dynamics of liquid MgxBi1-x(x = 0.5, 0.6, 0.7) alloys together with pure liquid Mg and Bi metals were investigated by means of ab initio molecular dynamics simulations. We present results of structure properties including pair correlation function, structural factor, bond-angle distribution function and bond order parameter, and their composition dependence. The dynamical and electronic properties have also been studied. The structure factor and pair correlation function are in agreement with the available experimental data. The calculated bond-angle distribution function and bond order parameter suggest that the stoichiometric composition Mg3Bi2 exhibits a different local structure order compared with other concentrations, which help us understand the appearance of the minimum electronic conductivity at this composition observed in previous experiments.

  16. Temperature dependence of the size distribution function of InAs quantum dots on GaAs(001)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Arciprete, F.; Fanfoni, M.; Patella, F.

    2010-04-15

    We present a detailed atomic-force-microscopy study of the effect of annealing on InAs/GaAs(001) quantum dots grown by molecular-beam epitaxy. Samples were grown at a low growth rate at 500 deg. C with an InAs coverage slightly greater than critical thickness and subsequently annealed at several temperatures. We find that immediately quenched samples exhibit a bimodal size distribution with a high density of small dots (<50 nm{sup 3}) while annealing at temperatures greater than 420 deg. C leads to a unimodal size distribution. This result indicates a coarsening process governing the evolution of the island size distribution function which is limitedmore » by the attachment-detachment of the adatoms at the island boundary. At higher temperatures one cannot ascribe a single rate-determining step for coarsening because of the increased role of adatom diffusion. However, for long annealing times at 500 deg. C the island size distribution is strongly affected by In desorption.« less

  17. Non-Maxwellian effects in magnetosonic solitons

    NASA Astrophysics Data System (ADS)

    Pokhotelov, O. A.; Balikhin, M. A.; Onishchenko, O. G.; Walker, S. N.

    2007-12-01

    The role of non-Maxwellian effects on magnetosonic (MS) solitons propagating perpendicular to the external magnetic field in high- β plasmas is analysed. It is shown that they can exist in the form of either humps or holes in the magnetic field in which the field is either increased or decreased relative to the background magnetic field. The shape of the solitary structure depends upon both the form of the ion velocity distribution function and the wave dispersion. A nonlinear equation describing the propagation of MS solitons in high- β plasmas with an arbitrary particle velocity distribution function is derived. It is shown that for Maxwellian and bi-Maxwellian plasmas MS solitons can only exist in the form of the magnetic humps. The same is true for plasmas possessing either a kappa distribution or Kennel-Ashour-Abdalla equilibria. However, plasmas with a ring type ion velocity distribution or a Dory-Guest-Harris distribution with large loss-cone index can support the formation of magnetic holes. The theoretical results obtained are then compared with recent satellite observations.

  18. Geometry-dependent distributed polarizability models for the water molecule

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Loboda, Oleksandr; Ingrosso, Francesca; Ruiz-López, Manuel F.

    2016-01-21

    Geometry-dependent distributed polarizability models have been constructed by fits to ab initio calculations at the coupled cluster level of theory with up to noniterative triple excitations in an augmented triple-zeta quality basis set for the water molecule in the field of a point charge. The investigated models include (i) charge-flow polarizabilities between chemically bonded atoms, (ii) isotropic or anisotropic dipolar polarizabilities on oxygen atom or on all atoms, and (iii) combinations of models (i) and (ii). For each model, the polarizability parameters have been optimized to reproduce the induction energy of a water molecule polarized by a point charge successivelymore » occupying a grid of points surrounding the molecule. The quality of the models is ascertained by examining their ability to reproduce these induction energies as well as the molecular dipolar and quadrupolar polarizabilities. The geometry dependence of the distributed polarizability models has been explored by changing bond lengths and HOH angle to generate 125 molecular structures (reduced to 75 symmetry-unique ones). For each considered model, the distributed polarizability components have been fitted as a function of the geometry by a Taylor expansion in monomer coordinate displacements up to the sum of powers equal to 4.« less

  19. Disappearance of Anisotropic Intermittency in Large-amplitude MHD Turbulence and Its Comparison with Small-amplitude MHD Turbulence

    NASA Astrophysics Data System (ADS)

    Yang, Liping; Zhang, Lei; He, Jiansen; Tu, Chuanyi; Li, Shengtai; Wang, Xin; Wang, Linghua

    2018-03-01

    Multi-order structure functions in the solar wind are reported to display a monofractal scaling when sampled parallel to the local magnetic field and a multifractal scaling when measured perpendicularly. Whether and to what extent will the scaling anisotropy be weakened by the enhancement of turbulence amplitude relative to the background magnetic strength? In this study, based on two runs of the magnetohydrodynamic (MHD) turbulence simulation with different relative levels of turbulence amplitude, we investigate and compare the scaling of multi-order magnetic structure functions and magnetic probability distribution functions (PDFs) as well as their dependence on the direction of the local field. The numerical results show that for the case of large-amplitude MHD turbulence, the multi-order structure functions display a multifractal scaling at all angles to the local magnetic field, with PDFs deviating significantly from the Gaussian distribution and a flatness larger than 3 at all angles. In contrast, for the case of small-amplitude MHD turbulence, the multi-order structure functions and PDFs have different features in the quasi-parallel and quasi-perpendicular directions: a monofractal scaling and Gaussian-like distribution in the former, and a conversion of a monofractal scaling and Gaussian-like distribution into a multifractal scaling and non-Gaussian tail distribution in the latter. These results hint that when intermittencies are abundant and intense, the multifractal scaling in the structure functions can appear even if it is in the quasi-parallel direction; otherwise, the monofractal scaling in the structure functions remains even if it is in the quasi-perpendicular direction.

  20. Examination of the low-energy enhancement of the γ -ray strength function of Fe 56

    DOE PAGES

    Jones, M. D.; Macchiavelli, A. O.; Wiedeking, M.; ...

    2018-02-22

    A model-independent technique was used to determine the γ-ray strength function (γSF) of 56Fe down to γ-ray energies less than 1 MeV for the first time with GRETINA using the (p,p') reaction at 16 MeV. No difference was observed in the energy dependence of the γSF built on 2 + and 4 + final states, supporting the Brink hypothesis. In addition, angular distribution and polarization measurements were performed. The angular distributions are consistent with dipole radiation. In conclusion, the polarization results show a small bias towards magnetic character in the region of the enhancement.

  1. Examination of the low-energy enhancement of the γ -ray strength function of 56Fe

    NASA Astrophysics Data System (ADS)

    Jones, M. D.; Macchiavelli, A. O.; Wiedeking, M.; Bernstein, L. A.; Crawford, H. L.; Campbell, C. M.; Clark, R. M.; Cromaz, M.; Fallon, P.; Lee, I. Y.; Salathe, M.; Wiens, A.; Ayangeakaa, A. D.; Bleuel, D. L.; Bottoni, S.; Carpenter, M. P.; Davids, H. M.; Elson, J.; Görgen, A.; Guttormsen, M.; Janssens, R. V. F.; Kinnison, J. E.; Kirsch, L.; Larsen, A. C.; Lauritsen, T.; Reviol, W.; Sarantites, D. G.; Siem, S.; Voinov, A. V.; Zhu, S.

    2018-02-01

    A model-independent technique was used to determine the γ -ray strength function (γ SF ) of 56Fe down to γ -ray energies less than 1 MeV for the first time with GRETINA using the (p ,p') reaction at 16 MeV. No difference was observed in the energy dependence of the γ SF built on 2+ and 4+ final states, supporting the Brink hypothesis. In addition, angular distribution and polarization measurements were performed. The angular distributions are consistent with dipole radiation. The polarization results show a small bias towards magnetic character in the region of the enhancement.

  2. Examination of the low-energy enhancement of the γ -ray strength function of Fe 56

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jones, M. D.; Macchiavelli, A. O.; Wiedeking, M.

    A model-independent technique was used to determine the γ-ray strength function (γSF) of 56Fe down to γ-ray energies less than 1 MeV for the first time with GRETINA using the (p,p') reaction at 16 MeV. No difference was observed in the energy dependence of the γSF built on 2 + and 4 + final states, supporting the Brink hypothesis. In addition, angular distribution and polarization measurements were performed. The angular distributions are consistent with dipole radiation. In conclusion, the polarization results show a small bias towards magnetic character in the region of the enhancement.

  3. Definition and Evolution of Transverse Momentum Distributions

    NASA Astrophysics Data System (ADS)

    Echevarría, Miguel G.; Idilbi, Ahmad; Scimemi, Ignazio

    We consider the definition of unpolarized transverse-momentum-dependent parton distribution functions while staying on-the-light-cone. By imposing a requirement of identical treatment of two collinear sectors, our approach, compatible with a generic factorization theorem with the soft function included, is valid for all non-ultra-violet regulators (as it should), an issue which causes much confusion in the whole field. We explain how large logarithms can be resummed in a way which can be considered as an alternative to the use of Collins-Soper evolution equation. The evolution properties are also discussed and the gauge-invariance, in both classes of gauges, regular and singular, is emphasized.

  4. Transverse momentum-dependent parton distribution functions from lattice QCD

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Michael Engelhardt, Philipp Haegler, Bernhard Musch, John Negele, Andreas Schaefer

    Transverse momentum-dependent parton distributions (TMDs) relevant for semi-inclusive deep inelastic scattering (SIDIS) and the Drell-Yan process can be defined in terms of matrix elements of a quark bilocal operator containing a staple-shaped Wilson connection. Starting from such a definition, a scheme to determine TMDs in lattice QCD is developed and explored. Parametrizing the aforementioned matrix elements in terms of invariant amplitudes permits a simple transformation of the problem to a Lorentz frame suited for the lattice calculation. Results for the Sivers and Boer-Mulders transverse momentum shifts are obtained using ensembles at the pion masses 369MeV and 518MeV, focusing in particularmore » on the dependence of these shifts on the staple extent and a Collins-Soper-type evolution parameter quantifying proximity of the staples to the light cone.« less

  5. ON A POSSIBLE SIZE/COLOR RELATIONSHIP IN THE KUIPER BELT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pike, R. E.; Kavelaars, J. J., E-mail: repike@uvic.ca

    2013-10-01

    Color measurements and albedo distributions introduce non-intuitive observational biases in size-color relationships among Kuiper Belt Objects (KBOs) that cannot be disentangled without a well characterized sample population with systematic photometry. Peixinho et al. report that the form of the KBO color distribution varies with absolute magnitude, H. However, Tegler et al. find that KBO color distributions are a property of object classification. We construct synthetic models of observed KBO colors based on two B-R color distribution scenarios: color distribution dependent on H magnitude (H-Model) and color distribution based on object classification (Class-Model). These synthetic B-R color distributions were modified tomore » account for observational flux biases. We compare our synthetic B-R distributions to the observed ''Hot'' and ''Cold'' detected objects from the Canada-France Ecliptic Plane Survey and the Meudon Multicolor Survey. For both surveys, the Hot population color distribution rejects the H-Model, but is well described by the Class-Model. The Cold objects reject the H-Model, but the Class-Model (while not statistically rejected) also does not provide a compelling match for data. Although we formally reject models where the structure of the color distribution is a strong function of H magnitude, we also do not find that a simple dependence of color distribution on orbit classification is sufficient to describe the color distribution of classical KBOs.« less

  6. Extraction of partonic transverse momentum distributions from semi-inclusive deep inelastic scattering and Drell-Yan data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pisano, Cristian; Bacchetta, Alessandro; Delcarro, Filippo

    We present a first attempt at a global fit of unpolarized quark transverse momentum dependent distribution and fragmentation functions from available data on semi-inclusive deep-inelastic scattering, Drell-Yan and $Z$ boson production processes. This analysis is performed in the low transverse momentum region, at leading order in perturbative QCD and with the inclusion of energy scale evolution effects at the next-to-leading logarithmic accuracy.

  7. HYPERDIRE-HYPERgeometric functions DIfferential REduction: Mathematica-based packages for the differential reduction of generalized hypergeometric functions: Lauricella function FC of three variables

    NASA Astrophysics Data System (ADS)

    Bytev, Vladimir V.; Kniehl, Bernd A.

    2016-09-01

    We present a further extension of the HYPERDIRE project, which is devoted to the creation of a set of Mathematica-based program packages for manipulations with Horn-type hypergeometric functions on the basis of differential equations. Specifically, we present the implementation of the differential reduction for the Lauricella function FC of three variables. Catalogue identifier: AEPP_v4_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEPP_v4_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: GNU General Public License, version 3 No. of lines in distributed program, including test data, etc.: 243461 No. of bytes in distributed program, including test data, etc.: 61610782 Distribution format: tar.gz Programming language: Mathematica. Computer: All computers running Mathematica. Operating system: Operating systems running Mathematica. Classification: 4.4. Does the new version supersede the previous version?: No, it significantly extends the previous version. Nature of problem: Reduction of hypergeometric function FC of three variables to a set of basis functions. Solution method: Differential reduction. Reasons for new version: The extension package allows the user to handle the Lauricella function FC of three variables. Summary of revisions: The previous version goes unchanged. Running time: Depends on the complexity of the problem.

  8. nth-Nearest-neighbor distribution functions of an interacting fluid from the pair correlation function: a hierarchical approach.

    PubMed

    Bhattacharjee, Biplab

    2003-04-01

    The paper presents a general formalism for the nth-nearest-neighbor distribution (NND) of identical interacting particles in a fluid confined in a nu-dimensional space. The nth-NND functions, W(n,r) (for n=1,2,3, em leader) in a fluid are obtained hierarchically in terms of the pair correlation function and W(n-1,r) alone. The radial distribution function (RDF) profiles obtained from the molecular dynamics (MD) simulation of Lennard-Jones (LJ) fluid is used to illustrate the results. It is demonstrated that the collective structural information contained in the maxima and minima of the RDF profiles being resolved in terms of individual NND functions may provide more insights about the microscopic neighborhood structure around a reference particle in a fluid. Representative comparison between the results obtained from the formalism and the MD simulation data shows good agreement. Apart from the quantities such as nth-NND functions and nth-nearest-neighbor distances, the average neighbor population number is defined. These quantities are evaluated for the LJ model system and interesting density dependence of the microscopic neighborhood shell structures are discussed in terms of them. The relevance of the NND functions in various phenomena is also pointed out.

  9. nth-nearest-neighbor distribution functions of an interacting fluid from the pair correlation function: A hierarchical approach

    NASA Astrophysics Data System (ADS)

    Bhattacharjee, Biplab

    2003-04-01

    The paper presents a general formalism for the nth-nearest-neighbor distribution (NND) of identical interacting particles in a fluid confined in a ν-dimensional space. The nth-NND functions, W(n,r¯) (for n=1,2,3,…) in a fluid are obtained hierarchically in terms of the pair correlation function and W(n-1,r¯) alone. The radial distribution function (RDF) profiles obtained from the molecular dynamics (MD) simulation of Lennard-Jones (LJ) fluid is used to illustrate the results. It is demonstrated that the collective structural information contained in the maxima and minima of the RDF profiles being resolved in terms of individual NND functions may provide more insights about the microscopic neighborhood structure around a reference particle in a fluid. Representative comparison between the results obtained from the formalism and the MD simulation data shows good agreement. Apart from the quantities such as nth-NND functions and nth-nearest-neighbor distances, the average neighbor population number is defined. These quantities are evaluated for the LJ model system and interesting density dependence of the microscopic neighborhood shell structures are discussed in terms of them. The relevance of the NND functions in various phenomena is also pointed out.

  10. Stochastic transfer of polarized radiation in finite cloudy atmospheric media with reflective boundaries

    NASA Astrophysics Data System (ADS)

    Sallah, M.

    2014-03-01

    The problem of monoenergetic radiative transfer in a finite planar stochastic atmospheric medium with polarized (vector) Rayleigh scattering is proposed. The solution is presented for an arbitrary absorption and scattering cross sections. The extinction function of the medium is assumed to be a continuous random function of position, with fluctuations about the mean taken as Gaussian distributed. The joint probability distribution function of these Gaussian random variables is used to calculate the ensemble-averaged quantities, such as reflectivity and transmissivity, for an arbitrary correlation function. A modified Gaussian probability distribution function is also used to average the solution in order to exclude the probable negative values of the optical variable. Pomraning-Eddington approximation is used, at first, to obtain the deterministic analytical solution for both the total intensity and the difference function used to describe the polarized radiation. The problem is treated with specular reflecting boundaries and angular-dependent externally incident flux upon the medium from one side and with no flux from the other side. For the sake of comparison, two different forms of the weight function, which introduced to force the boundary conditions to be fulfilled, are used. Numerical results of the average reflectivity and average transmissivity are obtained for both Gaussian and modified Gaussian probability density functions at the different degrees of polarization.

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Seljak, Uroš; McDonald, Patrick, E-mail: useljak@berkeley.edu, E-mail: pvmcdonald@lbl.gov

    We develop a phase space distribution function approach to redshift space distortions (RSD), in which the redshift space density can be written as a sum over velocity moments of the distribution function. These moments are density weighted and have well defined physical interpretation: their lowest orders are density, momentum density, and stress energy density. The series expansion is convergent if kμu/aH < 1, where k is the wavevector, H the Hubble parameter, u the typical gravitational velocity and μ = cos θ, with θ being the angle between the Fourier mode and the line of sight. We perform an expansionmore » of these velocity moments into helicity modes, which are eigenmodes under rotation around the axis of Fourier mode direction, generalizing the scalar, vector, tensor decomposition of perturbations to an arbitrary order. We show that only equal helicity moments correlate and derive the angular dependence of the individual contributions to the redshift space power spectrum. We show that the dominant term of μ{sup 2} dependence on large scales is the cross-correlation between the density and scalar part of momentum density, which can be related to the time derivative of the matter power spectrum. Additional terms contributing to μ{sup 2} and dominating on small scales are the vector part of momentum density-momentum density correlations, the energy density-density correlations, and the scalar part of anisotropic stress density-density correlations. The second term is what is usually associated with the small scale Fingers-of-God damping and always suppresses power, but the first term comes with the opposite sign and always adds power. Similarly, we identify 7 terms contributing to μ{sup 4} dependence. Some of the advantages of the distribution function approach are that the series expansion converges on large scales and remains valid in multi-stream situations. We finish with a brief discussion of implications for RSD in galaxies relative to dark matter, highlighting the issue of scale dependent bias of velocity moments correlators.« less

  12. EXAMINING SOCIOECONOMIC HEALTH DISPARITIES USING A RANK-DEPENDENT RÉNYI INDEX.

    PubMed

    Talih, Makram

    2015-06-01

    The Rényi index (RI) is a one-parameter class of indices that summarize health disparities among population groups by measuring divergence between the distributions of disease burden and population shares of these groups. The rank-dependent RI introduced in this paper is a two-parameter class of health disparity indices that also accounts for the association between socioeconomic rank and health; it may be derived from a rank-dependent social welfare function. Two competing classes are discussed and the rank-dependent RI is shown to be more robust to changes in the distribution of either socioeconomic rank or health. The standard error and sampling distribution of the rank-dependent RI are evaluated using linearization and re-sampling techniques, and the methodology is illustrated using health survey data from the U.S. National Health and Nutrition Examination Survey and registry data from the U.S. Surveillance, Epidemiology and End Results Program. Such data underlie many population-based objectives within the U.S. Healthy People 2020 initiative. The rank-dependent RI provides a unified mathematical framework for eliciting various societal positions with regards to the policies that are tied to such wide-reaching public health initiatives. For example, if population groups with lower socioeconomic position were ascertained to be more likely to utilize costly public programs, then the parameters of the RI could be selected to reflect prioritizing those population groups for intervention or treatment.

  13. EXAMINING SOCIOECONOMIC HEALTH DISPARITIES USING A RANK-DEPENDENT RÉNYI INDEX

    PubMed Central

    Talih, Makram

    2015-01-01

    The Rényi index (RI) is a one-parameter class of indices that summarize health disparities among population groups by measuring divergence between the distributions of disease burden and population shares of these groups. The rank-dependent RI introduced in this paper is a two-parameter class of health disparity indices that also accounts for the association between socioeconomic rank and health; it may be derived from a rank-dependent social welfare function. Two competing classes are discussed and the rank-dependent RI is shown to be more robust to changes in the distribution of either socioeconomic rank or health. The standard error and sampling distribution of the rank-dependent RI are evaluated using linearization and re-sampling techniques, and the methodology is illustrated using health survey data from the U.S. National Health and Nutrition Examination Survey and registry data from the U.S. Surveillance, Epidemiology and End Results Program. Such data underlie many population-based objectives within the U.S. Healthy People 2020 initiative. The rank-dependent RI provides a unified mathematical framework for eliciting various societal positions with regards to the policies that are tied to such wide-reaching public health initiatives. For example, if population groups with lower socioeconomic position were ascertained to be more likely to utilize costly public programs, then the parameters of the RI could be selected to reflect prioritizing those population groups for intervention or treatment. PMID:26566419

  14. Increasing Accuracy of Tissue Shear Modulus Reconstruction Using Ultrasonic Strain Tensor Measurement

    NASA Astrophysics Data System (ADS)

    Sumi, C.

    Previously, we developed three displacement vector measurement methods, i.e., the multidimensional cross-spectrum phase gradient method (MCSPGM), the multidimensional autocorrelation method (MAM), and the multidimensional Doppler method (MDM). To increase the accuracies and stabilities of lateral and elevational displacement measurements, we also developed spatially variant, displacement component-dependent regularization. In particular, the regularization of only the lateral/elevational displacements is advantageous for the lateral unmodulated case. The demonstrated measurements of the displacement vector distributions in experiments using an inhomogeneous shear modulus agar phantom confirm that displacement-component-dependent regularization enables more stable shear modulus reconstruction. In this report, we also review our developed lateral modulation methods that use Parabolic functions, Hanning windows, and Gaussian functions in the apodization function and the optimized apodization function that realizes the designed point spread function (PSF). The modulations significantly increase the accuracy of the strain tensor measurement and shear modulus reconstruction (demonstrated using an agar phantom).

  15. Methods to Determine Recommended Feeder-Wide Advanced Inverter Settings for Improving Distribution System Performance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rylander, Matthew; Reno, Matthew J.; Quiroz, Jimmy E.

    This paper describes methods that a distribution engineer could use to determine advanced inverter settings to improve distribution system performance. These settings are for fixed power factor, volt-var, and volt-watt functionality. Depending on the level of detail that is desired, different methods are proposed to determine single settings applicable for all advanced inverters on a feeder or unique settings for each individual inverter. Seven distinctly different utility distribution feeders are analyzed to simulate the potential benefit in terms of hosting capacity, system losses, and reactive power attained with each method to determine the advanced inverter settings.

  16. The null distribution of the heterogeneity lod score does depend on the assumed genetic model for the trait.

    PubMed

    Huang, J; Vieland, V J

    2001-01-01

    It is well known that the asymptotic null distribution of the homogeneity lod score (LOD) does not depend on the genetic model specified in the analysis. When appropriately rescaled, the LOD is asymptotically distributed as 0.5 chi(2)(0) + 0.5 chi(2)(1), regardless of the assumed trait model. However, because locus heterogeneity is a common phenomenon, the heterogeneity lod score (HLOD), rather than the LOD itself, is often used in gene mapping studies. We show here that, in contrast with the LOD, the asymptotic null distribution of the HLOD does depend upon the genetic model assumed in the analysis. In affected sib pair (ASP) data, this distribution can be worked out explicitly as (0.5 - c)chi(2)(0) + 0.5chi(2)(1) + cchi(2)(2), where c depends on the assumed trait model. E.g., for a simple dominant model (HLOD/D), c is a function of the disease allele frequency p: for p = 0.01, c = 0.0006; while for p = 0.1, c = 0.059. For a simple recessive model (HLOD/R), c = 0.098 independently of p. This latter (recessive) distribution turns out to be the same as the asymptotic distribution of the MLS statistic under the possible triangle constraint, which is asymptotically equivalent to the HLOD/R. The null distribution of the HLOD/D is close to that of the LOD, because the weight c on the chi(2)(2) component is small. These results mean that the cutoff value for a test of size alpha will tend to be smaller for the HLOD/D than the HLOD/R. For example, the alpha = 0.0001 cutoff (on the lod scale) for the HLOD/D with p = 0.05 is 3.01, while for the LOD it is 3.00, and for the HLOD/R it is 3.27. For general pedigrees, explicit analytical expression of the null HLOD distribution does not appear possible, but it will still depend on the assumed genetic model. Copyright 2001 S. Karger AG, Basel

  17. Income distribution dependence of poverty measure: A theoretical analysis

    NASA Astrophysics Data System (ADS)

    Chattopadhyay, Amit K.; Mallick, Sushanta K.

    2007-04-01

    Using a modified deprivation (or poverty) function, in this paper, we theoretically study the changes in poverty with respect to the ‘global’ mean and variance of the income distribution using Indian survey data. We show that when the income obeys a log-normal distribution, a rising mean income generally indicates a reduction in poverty while an increase in the variance of the income distribution increases poverty. This altruistic view for a developing economy, however, is not tenable anymore once the poverty index is found to follow a pareto distribution. Here although a rising mean income indicates a reduction in poverty, due to the presence of an inflexion point in the poverty function, there is a critical value of the variance below which poverty decreases with increasing variance while beyond this value, poverty undergoes a steep increase followed by a decrease with respect to higher variance. Identifying this inflexion point as the poverty line, we show that the pareto poverty function satisfies all three standard axioms of a poverty index [N.C. Kakwani, Econometrica 43 (1980) 437; A.K. Sen, Econometrica 44 (1976) 219] whereas the log-normal distribution falls short of this requisite. Following these results, we make quantitative predictions to correlate a developing with a developed economy.

  18. Theoretical study of the dependence of single impurity Anderson model on various parameters within distributional exact diagonalization method

    NASA Astrophysics Data System (ADS)

    Syaina, L. P.; Majidi, M. A.

    2018-04-01

    Single impurity Anderson model describes a system consisting of non-interacting conduction electrons coupled with a localized orbital having strongly interacting electrons at a particular site. This model has been proven successful to explain the phenomenon of metal-insulator transition through Anderson localization. Despite the well-understood behaviors of the model, little has been explored theoretically on how the model properties gradually evolve as functions of hybridization parameter, interaction energy, impurity concentration, and temperature. Here, we propose to do a theoretical study on those aspects of a single impurity Anderson model using the distributional exact diagonalization method. We solve the model Hamiltonian by randomly generating sampling distribution of some conducting electron energy levels with various number of occupying electrons. The resulting eigenvalues and eigenstates are then used to define the local single-particle Green function for each sampled electron energy distribution using Lehmann representation. Later, we extract the corresponding self-energy of each distribution, then average over all the distributions and construct the local Green function of the system to calculate the density of states. We repeat this procedure for various values of those controllable parameters, and discuss our results in connection with the criteria of the occurrence of metal-insulator transition in this system.

  19. A generalization of the power law distribution with nonlinear exponent

    NASA Astrophysics Data System (ADS)

    Prieto, Faustino; Sarabia, José María

    2017-01-01

    The power law distribution is usually used to fit data in the upper tail of the distribution. However, commonly it is not valid to model data in all the range. In this paper, we present a new family of distributions, the so-called Generalized Power Law (GPL), which can be useful for modeling data in all the range and possess power law tails. To do that, we model the exponent of the power law using a non-linear function which depends on data and two parameters. Then, we provide some basic properties and some specific models of that new family of distributions. After that, we study a relevant model of the family, with special emphasis on the quantile and hazard functions, and the corresponding estimation and testing methods. Finally, as an empirical evidence, we study how the debt is distributed across municipalities in Spain. We check that power law model is only valid in the upper tail; we show analytically and graphically the competence of the new model with municipal debt data in the whole range; and we compare the new distribution with other well-known distributions including the Lognormal, the Generalized Pareto, the Fisk, the Burr type XII and the Dagum models.

  20. The effects of plasma inhomogeneity on the nanoparticle coating in a low pressure plasma reactor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pourali, N.; Foroutan, G.

    2015-10-15

    A self-consistent model is used to study the surface coating of a collection of charged nanoparticles trapped in the sheath region of a low pressure plasma reactor. The model consists of multi-fluid plasma sheath module, including nanoparticle dynamics, as well as the surface deposition and particle heating modules. The simulation results show that the mean particle radius increases with time and the nanoparticle size distribution is broadened. The mean radius is a linear function of time, while the variance exhibits a quadratic dependence. The broadening in size distribution is attributed to the spatial inhomogeneity of the deposition rate which inmore » turn depends on the plasma inhomogeneity. The spatial inhomogeneity of the ions has strong impact on the broadening of the size distribution, as the ions contribute both in the nanoparticle charging and in direct film deposition. The distribution width also increases with increasing of the pressure, gas temperature, and the ambient temperature gradient.« less

  1. Coupling of Charged Particles Via Coulombic Interactions: Numerical Simulations and Resultant Kappa-Like Velocity Space Distribution Functions

    NASA Technical Reports Server (NTRS)

    Randol, Brent M.; Christian, Eric R.

    2016-01-01

    A parametric study is performed using the electrostatic simulations of Randol and Christian (2014) in which the number density, n, and initial thermal speed, theta, are varied. The range of parameters covers an extremely broad plasma regime, all the way from the very weak coupling of space plasmas to the very strong coupling of solid plasmas. The first result is that simulations at the same Lambda(sub D), where Lambda(sub D) is the plasma coupling parameter, but at different combinations of n and theta, behave exactly the same. As a function of Lambda(sub D), the form of p(v), the velocity distribution function of v, the magnitude of v, the velocity vector, is studied. For intermediate to high D, heating is observed in p(v) that obeys conservation of energy, and a suprathermal tail is formed, with a spectral index that depends on Lambda(sub D). For strong coupling (Lambda(sub D) much > 1), the form of the tail is v5, consistent with the findings of Randol and Christian (2014). For weak coupling (Lambda(sub D much <1), no acceleration or heating occurs, as there is no free energy. The dependence on N, the number of particles in the simulation, is also explored. There is a subtle dependence in the index of the tail, such that v5 appears to be the N approaches infinity limit.

  2. Coupling of charged particles via Coulombic interactions: Numerical simulations and resultant kappa-like velocity space distribution functions

    NASA Astrophysics Data System (ADS)

    Randol, Brent M.; Christian, Eric R.

    2016-03-01

    A parametric study is performed using the electrostatic simulations of Randol and Christian in which the number density, n, and initial thermal speed, θ, are varied. The range of parameters covers an extremely broad plasma regime, all the way from the very weak coupling of space plasmas to the very strong coupling of solid plasmas. The first result is that simulations at the same ΓD, where ΓD (∝ n1/3θ-2) is the plasma coupling parameter, but at different combinations of n and θ, behave exactly the same. As a function of ΓD, the form of p(v), the velocity distribution function of v, the magnitude of v, the velocity vector, is studied. For intermediate to high ΓD, heating is observed in p(v) that obeys conservation of energy, and a suprathermal tail is formed, with a spectral index that depends on ΓD. For strong coupling (ΓD≫1), the form of the tail is v-5, consistent with the findings of Randol and Christian). For weak coupling (ΓD≪1), no acceleration or heating occurs, as there is no free energy. The dependence on N, the number of particles in the simulation, is also explored. There is a subtle dependence in the index of the tail, such that v-5 appears to be the N→∞ limit.

  3. Magnetosonic Solitons in Non-Maxwellian Space Plasmas

    NASA Astrophysics Data System (ADS)

    Pokhotelov, O. A.; Balikhin, M.; Onishchenko, O. G.

    2006-12-01

    The nonlinear theory of large-amplitude magnetosonic (MS) waves in high-beta space plasmas is developed. It is shown that solitary waves can exist in the form of magnetic humps and holes in which the magnetic field is increased or decreased relative to the background magnetic field. This depends on the shape of the equilibrium ion velocity distribution function. The basic parameter that controls the nonlinear structure is the wave dispersion which can be either positive or negative. A general dispersion relation for MS waves propagating perpendicularly to the external magnetic field in a plasma with an arbitrary velocity distribution function is derived. It takes into account general plasma equilibria such as the Dory-Guest-Harris or Kennel- Ashour-Abdalla loss cone equilibria, as well as distributions with a power law velocity dependence that can be modelled by kappa-distributions. It is shown that in Maxwellian and bi-Maxwellian plasmas the dispersion is negative, i.e. the phase velocity decreases with an increase of the wave number. This means that the solitary solution in this case has the form of a magnetic hump with the magnetic field increased. On the contrary, in some non-Maxwellian plasmas such as those with ring-type ion distributions or DGH plasmas, the solitary solution may have the form of a magnetic hole. The results of similar investigations based on nonlinear Hall-MHD equations are reviewed. The relevance of our theoretical results to experimental observations is outlined

  4. Bayesian explorations of fault slip evolution over the earthquake cycle

    NASA Astrophysics Data System (ADS)

    Duputel, Z.; Jolivet, R.; Benoit, A.; Gombert, B.

    2017-12-01

    The ever-increasing amount of geophysical data continuously opens new perspectives on fundamental aspects of the seismogenic behavior of active faults. In this context, the recent fleet of SAR satellites including Sentinel-1 and COSMO-SkyMED permits the use of InSAR for time-dependent slip modeling with unprecedented resolution in time and space. However, existing time-dependent slip models rely on spatial smoothing regularization schemes, which can produce unrealistically smooth slip distributions. In addition, these models usually do not include uncertainty estimates thereby reducing the utility of such estimates. Here, we develop an entirely new approach to derive probabilistic time-dependent slip models. This Markov-Chain Monte Carlo method involves a series of transitional steps to predict and update posterior Probability Density Functions (PDFs) of slip as a function of time. We assess the viability of our approach using various slow-slip event scenarios. Using a dense set of SAR images, we also use this method to quantify the spatial distribution and temporal evolution of slip along a creeping segment of the North Anatolian Fault. This allows us to track a shallow aseismic slip transient lasting for about a month with a maximum slip of about 2 cm.

  5. Bayesian Computation Emerges in Generic Cortical Microcircuits through Spike-Timing-Dependent Plasticity

    PubMed Central

    Nessler, Bernhard; Pfeiffer, Michael; Buesing, Lars; Maass, Wolfgang

    2013-01-01

    The principles by which networks of neurons compute, and how spike-timing dependent plasticity (STDP) of synaptic weights generates and maintains their computational function, are unknown. Preceding work has shown that soft winner-take-all (WTA) circuits, where pyramidal neurons inhibit each other via interneurons, are a common motif of cortical microcircuits. We show through theoretical analysis and computer simulations that Bayesian computation is induced in these network motifs through STDP in combination with activity-dependent changes in the excitability of neurons. The fundamental components of this emergent Bayesian computation are priors that result from adaptation of neuronal excitability and implicit generative models for hidden causes that are created in the synaptic weights through STDP. In fact, a surprising result is that STDP is able to approximate a powerful principle for fitting such implicit generative models to high-dimensional spike inputs: Expectation Maximization. Our results suggest that the experimentally observed spontaneous activity and trial-to-trial variability of cortical neurons are essential features of their information processing capability, since their functional role is to represent probability distributions rather than static neural codes. Furthermore it suggests networks of Bayesian computation modules as a new model for distributed information processing in the cortex. PMID:23633941

  6. Wounded-quark emission function at the top energy available at the BNL Relativistic Heavy Ion Collider

    NASA Astrophysics Data System (ADS)

    Barej, Michał; Bzdak, Adam; Gutowski, Paweł

    2018-03-01

    The wounded nucleon and quark emission functions are extracted for different centralities in d +Au collisions at √{s }=200 GeV using Monte Carlo simulations and experimental data. The shape of the emission function depends on centrality in the wounded nucleon model, whereas it is practically universal (within uncertainties) in the wounded quark model. Predictions for d Nc h/d η distributions in p +Au and 3He+Au collisions are presented.

  7. Fundamental Design based on Current Distribution in Coaxial Multi-Layer Cable-in-Conduit Conductor

    NASA Astrophysics Data System (ADS)

    Hamajima, Takataro; Tsuda, Makoto; Yagai, Tsuyoshi; Takahata, Kazuya; Imagawa, Shinsaku

    An imbalanced current distribution is often observed in cable-in-conduit (CIC) superconductors which are composed of multi-staged, triplet type sub-cables, and hence deteriorates the performance of the coils. Therefore, since it is very important to obtain a homogeneous current distribution in the superconducting strands, we propose a coaxial multi-layer type CIC conductor. We use a circuit model for all layers in the coaxial multi-layer CIC conductor, and derive a generalized formula governing the current distribution as explicit functions of the superconductor construction parameters, such as twist pitch, twist direction, radius of each layer, and number of superconducting (SC) strands and copper (Cu) strands. We apply the formula to design the coaxial multi-layer CIC which has the same number of SC strands and Cu strands of the CIC for Central Solenoid of ITER. We can design three kinds of the coaxial multi-layer CIC depending on distribution of SC and Cu strands on all layers. It is shown that the SC strand volume should be optimized as a function of SC and Cu strand distribution on the layers.

  8. Lensing corrections to features in the angular two-point correlation function and power spectrum

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    LoVerde, Marilena; Department of Physics, Columbia University, New York, New York 10027; Hui, Lam

    2008-01-15

    It is well known that magnification bias, the modulation of galaxy or quasar source counts by gravitational lensing, can change the observed angular correlation function. We investigate magnification-induced changes to the shape of the observed correlation function w({theta}), and the angular power spectrum C{sub l}, paying special attention to the matter-radiation equality peak and the baryon wiggles. Lensing effectively mixes the correlation function of the source galaxies with that of the matter correlation at the lower redshifts of the lenses distorting the observed correlation function. We quantify how the lensing corrections depend on the width of the selection function, themore » galaxy bias b, and the number count slope s. The lensing correction increases with redshift and larger corrections are present for sources with steep number count slopes and/or broad redshift distributions. The most drastic changes to C{sub l} occur for measurements at high redshifts (z > or approx. 1.5) and low multipole moment (l < or approx. 100). For the source distributions we consider, magnification bias can shift the location of the matter-radiation equality scale by 1%-6% at z{approx}1.5 and by z{approx}3.5 the shift can be as large as 30%. The baryon bump in {theta}{sup 2}w({theta}) is shifted by < or approx. 1% and the width is typically increased by {approx}10%. Shifts of > or approx. 0.5% and broadening > or approx. 20% occur only for very broad selection functions and/or galaxies with (5s-2)/b > or approx. 2. However, near the baryon bump the magnification correction is not constant but is a gently varying function which depends on the source population. Depending on how the w({theta}) data is fitted, this correction may need to be accounted for when using the baryon acoustic scale for precision cosmology.« less

  9. Filtering Non-Linear Transfer Functions on Surfaces.

    PubMed

    Heitz, Eric; Nowrouzezahrai, Derek; Poulin, Pierre; Neyret, Fabrice

    2014-07-01

    Applying non-linear transfer functions and look-up tables to procedural functions (such as noise), surface attributes, or even surface geometry are common strategies used to enhance visual detail. Their simplicity and ability to mimic a wide range of realistic appearances have led to their adoption in many rendering problems. As with any textured or geometric detail, proper filtering is needed to reduce aliasing when viewed across a range of distances, but accurate and efficient transfer function filtering remains an open problem for several reasons: transfer functions are complex and non-linear, especially when mapped through procedural noise and/or geometry-dependent functions, and the effects of perspective and masking further complicate the filtering over a pixel's footprint. We accurately solve this problem by computing and sampling from specialized filtering distributions on the fly, yielding very fast performance. We investigate the case where the transfer function to filter is a color map applied to (macroscale) surface textures (like noise), as well as color maps applied according to (microscale) geometric details. We introduce a novel representation of a (potentially modulated) color map's distribution over pixel footprints using Gaussian statistics and, in the more complex case of high-resolution color mapped microsurface details, our filtering is view- and light-dependent, and capable of correctly handling masking and occlusion effects. Our approach can be generalized to filter other physical-based rendering quantities. We propose an application to shading with irradiance environment maps over large terrains. Our framework is also compatible with the case of transfer functions used to warp surface geometry, as long as the transformations can be represented with Gaussian statistics, leading to proper view- and light-dependent filtering results. Our results match ground truth and our solution is well suited to real-time applications, requires only a few lines of shader code (provided in supplemental material, which can be found on the Computer Society Digital Library at http://doi.ieeecomputersociety.org/10.1109/TVCG.2013.102), is high performance, and has a negligible memory footprint.

  10. Underestimating extreme events in power-law behavior due to machine-dependent cutoffs

    NASA Astrophysics Data System (ADS)

    Radicchi, Filippo

    2014-11-01

    Power-law distributions are typical macroscopic features occurring in almost all complex systems observable in nature. As a result, researchers in quantitative analyses must often generate random synthetic variates obeying power-law distributions. The task is usually performed through standard methods that map uniform random variates into the desired probability space. Whereas all these algorithms are theoretically solid, in this paper we show that they are subject to severe machine-dependent limitations. As a result, two dramatic consequences arise: (i) the sampling in the tail of the distribution is not random but deterministic; (ii) the moments of the sample distribution, which are theoretically expected to diverge as functions of the sample sizes, converge instead to finite values. We provide quantitative indications for the range of distribution parameters that can be safely handled by standard libraries used in computational analyses. Whereas our findings indicate possible reinterpretations of numerical results obtained through flawed sampling methodologies, they also pave the way for the search for a concrete solution to this central issue shared by all quantitative sciences dealing with complexity.

  11. Exact Scheffé-type confidence intervals for output from groundwater flow models: 2. Combined use of hydrogeologic information and calibration data

    USGS Publications Warehouse

    Cooley, Richard L.

    1993-01-01

    Calibration data (observed values corresponding to model-computed values of dependent variables) are incorporated into a general method of computing exact Scheffé-type confidence intervals analogous to the confidence intervals developed in part 1 (Cooley, this issue) for a function of parameters derived from a groundwater flow model. Parameter uncertainty is specified by a distribution of parameters conditioned on the calibration data. This distribution was obtained as a posterior distribution by applying Bayes' theorem to the hydrogeologically derived prior distribution of parameters from part 1 and a distribution of differences between the calibration data and corresponding model-computed dependent variables. Tests show that the new confidence intervals can be much smaller than the intervals of part 1 because the prior parameter variance-covariance structure is altered so that combinations of parameters that give poor model fit to the data are unlikely. The confidence intervals of part 1 and the new confidence intervals can be effectively employed in a sequential method of model construction whereby new information is used to reduce confidence interval widths at each stage.

  12. THE PROPERTIES OF DYNAMICALLY EJECTED RUNAWAY AND HYPER-RUNAWAY STARS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Perets, Hagai B.; Subr, Ladislav

    2012-06-01

    Runaway stars are stars observed to have large peculiar velocities. Two mechanisms are thought to contribute to the ejection of runaway stars, both of which involve binarity (or higher multiplicity). In the binary supernova scenario, a runaway star receives its velocity when its binary massive companion explodes as a supernova (SN). In the alternative dynamical ejection scenario, runaway stars are formed through gravitational interactions between stars and binaries in dense, compact clusters or cluster cores. Here we study the ejection scenario. We make use of extensive N-body simulations of massive clusters, as well as analytic arguments, in order to characterizemore » the expected ejection velocity distribution of runaway stars. We find that the ejection velocity distribution of the fastest runaways (v {approx}> 80 km s{sup -1}) depends on the binary distribution in the cluster, consistent with our analytic toy model, whereas the distribution of lower velocity runaways appears independent of the binaries' properties. For a realistic log constant distribution of binary separations, we find the velocity distribution to follow a simple power law: {Gamma}(v){proportional_to}v{sup -8/3} for the high-velocity runaways and v{sup -3/2} for the low-velocity ones. We calculate the total expected ejection rates of runaway stars from our simulated massive clusters and explore their mass function and their binarity. The mass function of runaway stars is biased toward high masses and strongly depends on their velocity. The binarity of runaways is a decreasing function of their ejection velocity, with no binaries expected to be ejected with v > 150 km s{sup -1}. We also find that hyper-runaways with velocities of hundreds of km s{sup -1} can be dynamically ejected from stellar clusters, but only at very low rates, which cannot account for a significant fraction of the observed population of hyper-velocity stars in the Galactic halo.« less

  13. Extracting Useful Semantic Information from Large Scale Corpora of Text

    ERIC Educational Resources Information Center

    Mendoza, Ray Padilla, Jr.

    2012-01-01

    Extracting and representing semantic information from large scale corpora is at the crux of computer-assisted knowledge generation. Semantic information depends on collocation extraction methods, mathematical models used to represent distributional information, and weighting functions which transform the space. This dissertation provides a…

  14. A THREE-DIMENSIONAL AIR FLOW MODEL FOR SOIL VENTING: SUPERPOSITION OF ANLAYTICAL FUNCTIONS

    EPA Science Inventory

    A three-dimensional computer model was developed for the simulation of the soil-air pressure distribution at steady state and specific discharge vectors during soil venting with multiple wells in unsaturated soil. The Kirchhoff transformation of dependent variables and coordinate...

  15. Electronic structure, dielectric response, and surface charge distribution of RGD (1FUV) peptide.

    PubMed

    Adhikari, Puja; Wen, Amy M; French, Roger H; Parsegian, V Adrian; Steinmetz, Nicole F; Podgornik, Rudolf; Ching, Wai-Yim

    2014-07-08

    Long and short range molecular interactions govern molecular recognition and self-assembly of biological macromolecules. Microscopic parameters in the theories of these molecular interactions are either phenomenological or need to be calculated within a microscopic theory. We report a unified methodology for the ab initio quantum mechanical (QM) calculation that yields all the microscopic parameters, namely the partial charges as well as the frequency-dependent dielectric response function, that can then be taken as input for macroscopic theories of electrostatic, polar, and van der Waals-London dispersion intermolecular forces. We apply this methodology to obtain the electronic structure of the cyclic tripeptide RGD-4C (1FUV). This ab initio unified methodology yields the relevant parameters entering the long range interactions of biological macromolecules, providing accurate data for the partial charge distribution and the frequency-dependent dielectric response function of this peptide. These microscopic parameters determine the range and strength of the intricate intermolecular interactions between potential docking sites of the RGD-4C ligand and its integrin receptor.

  16. Investigation of the W and Q 2 dependence of charged pion distributions in μ p scattering

    NASA Astrophysics Data System (ADS)

    Arneodo, M.; Arvidson, A.; Aubert, J. J.; Badelek, B.; Beaufays, J.; Bee, C. P.; Benchouk, C.; Berghoff, G.; Bird, I.; Blum, D.; Böhm, E.; de Bouard, X.; Brasse, F. W.; Braun, H.; Broll, C.; Brown, S.; Brück, H.; Calen, H.; Chima, J. S.; Ciborowski, J.; Clifft, R.; Coignet, G.; Combley, F.; Coughlan, J.; D'Agostini, G.; Dahlgren, S.; Dengler, F.; Derado, I.; Dreyer, T.; Drees, J.; Düren, M.; Eckardt, V.; Edwards, A.; Ernst, T.; Eszes, G.; Favier, J.; Ferrero, M. I.; Figiel, J.; Flauger, W.; Foster, J.; Gabathuler, E.; Gajewski, J.; Gamet, R.; Gayler, J.; Geddes, N.; Giubellino, P.; Grafström, P.; Grard, F.; Haas, J.; Hagberg, E.; Hasert, F. J.; Hayman, P.; Heusse, P.; Hoppe, C.; Jaffré, M.; Jacholkowska, A.; Janata, F.; Jancso, G.; Johnson, A. S.; Kabuss, E. M.; Kellner, G.; Korbel, V.; Krüger, J.; Kullander, S.; Landgraf, U.; Lanske, D.; Loken, J.; Long, K.; Maire, M.; Malecki, P.; Manz, A.; Maselli, S.; Mohr, W.; Montanet, F.; Montgomery, H. E.; Nagy, E.; Nassalski, J.; Norton, P. R.; Oakham, F. G.; Osborne, A. M.; Pascaud, C.; Pawlik, B.; Payre, P.; Peroni, C.; Pessard, H.; Pettingale, J.; Pietrzyk, B.; Pönsgen, B.; Pötsch, M.; Renton, P.; Ribarics, P.; Rith, K.; Rondio, E.; Scheer, M.; Schlagböhmer, A.; Schiemann, H.; Schmitz, N.; Schneegans, M.; Scholz, M.; Schröder, T.; Schouten, M.; Schultze, K.; Sloan, T.; Stier, H. E.; Studt, M.; Taylor, G. N.; Thénard, J. M.; Thompson, J. C.; de La Torre, A.; Toth, J.; Urban, L.; Wallucks, W.; Whalley, M.; Wheeler, S.; Williams, W. S. C.; Wimpenny, S. J.; Windmolders, R.; Wolf, G.

    1986-03-01

    The W and Q 2 dependence of the fragmentation functions and of the average multiplicity of charged pions is investigated, using data from the NA9 experiment at the CERN SPS on muon-proton scattering at 280 GeV. A significant increase of pion production with increasing W is observed at fixed Q 2, leading to a rise of the average charged pion multiplicity, linear in ln W 2, and of the pion fragmentation function in the central region, i.e. at small | x F |. This increase can be understood from the kinematic widening of the cms rapidity range proportional to ln W 2 and the observed W independent height of the rapidity distribution. At fixed W, a rise of the average charged pion multiplicity with Q 2 is observed. This rise appears to be weaker than that observed for all charged hadrons implying a stronger rise with Q 2 for kaons and protons.

  17. Phase space explorations in time dependent density functional theory

    NASA Astrophysics Data System (ADS)

    Rajam, Aruna K.

    Time dependent density functional theory (TDDFT) is one of the useful tools for the study of the dynamic behavior of correlated electronic systems under the influence of external potentials. The success of this formally exact theory practically relies on approximations for the exchange-correlation potential which is a complicated functional of the co-ordinate density, non-local in space and time. Adiabatic approximations (such as ALDA), which are local in time, are most commonly used in the increasing applications of the field. Going beyond ALDA, has been proved difficult leading to mathematical inconsistencies. We explore the regions where the theory faces challenges, and try to answer some of them via the insights from two electron model systems. In this thesis work we propose a phase-space extension of the TDDFT. We want to answer the challenges the theory is facing currently by exploring the one-body phase-space. We give a general introduction to this theory and its mathematical background in the first chapter. In second chapter, we carryout a detailed study of instantaneous phase-space densities and argue that the functionals of distributions can be a better alternative to the nonlocality issue of the exchange-correlation potentials. For this we study in detail the interacting and the non-interacting phase-space distributions for Hookes atom model. The applicability of ALDA-based TDDFT for the dynamics in strongfields can become severely problematic due to the failure of single-Slater determinant picture.. In the third chapter, we analyze how the phase-space distributions can shine some light into this problem. We do a comparative study of Kohn-Sham and interacting phase-space and momentum distributions for single ionization and double ionization systems. Using a simple model of two-electron systems, we have showed that the momentum distribution computed directly from the exact KS system contains spurious oscillations: a non-classical description of the essentially classical two-electron dynamics. In Time dependent density matrix functional theory (TDDMFT), the evolution scheme of the 1RDM (first order reduced density matrix) contains second-order reduced density matrix (2RDM), which has to be expressed in terms of 1RDMs. Any non-correlated approximations (Hartree-Fock) for 2RDM would fail to capture the natural occupations of the system. In our fourth chapter, we show that by applying the quasi-classical and semi-classical approximations one can capture the natural occupations of the excited systems. We study a time-dependent Moshinsky atom model for this. The fifth chapter contains a comparative work on the existing non-local exchange-correlation kernels that are based on current density response frame work and the co-moving frame work. We show that the two approaches though coinciding with each other in linear response regime, actually turn out to be different in non-linear regime.

  18. [Hazard function and life table: an introduction to the failure time analysis].

    PubMed

    Matsushita, K; Inaba, H

    1987-04-01

    Failure time analysis has become popular in demographic studies. It can be viewed as a part of regression analysis with limited dependent variables as well as a special case of event history analysis and multistate demography. The idea of hazard function and failure time analysis, however, has not been properly introduced to nor commonly discussed by demographers in Japan. The concept of hazard function in comparison with life tables is briefly described, where the force of mortality is interchangeable with the hazard rate. The basic idea of failure time analysis is summarized for the cases of exponential distribution, normal distribution, and proportional hazard models. The multiple decrement life table is also introduced as an example of lifetime data analysis with cause-specific hazard rates.

  19. TMD parton distributions based on three-body decay functions in NLL order of QCD

    NASA Astrophysics Data System (ADS)

    Tanaka, Hidekazu

    2015-04-01

    Three-body decay functions in space-like parton branches are implemented to evaluate transverse-momentum-dependent (TMD) parton distribution functions in the next-to-leading logarithmic (NLL) order of quantum chromodynamics (QCD). Interference contributions due to the next-to-leading-order terms are taken into account for the evaluation of the transverse momenta in initial state parton radiations. Some properties of the decay functions are also examined. As an example, the calculated results are compared with those evaluated by an algorithm proposed in [M. A. Kimber, A. D. Martin, and M. G. Ryskin, Eur. Phys. J. C 12, 655 (2000)], [M. A. Kimber, A. D. Martin, and M. G. Ryskin, Phys. Rev. D 63, 11402 (2001)], [G. Watt, A. D. Martin, and M. G. Ryskin, Eur. Phys. J. C 31, 73 (2003)], and [A. D. Martin, M. G. Ryskin, and G. Watt, Eur. Phys. J. C 66, 167 (2010)], in which the TMD parton distributions are defined based on the k_t-factorization method with angular ordering conditions due to interference effects.

  20. Scale-dependent coupling of hysteretic capillary pressure, trapping, and fluid mobilities

    NASA Astrophysics Data System (ADS)

    Doster, F.; Celia, M. A.; Nordbotten, J. M.

    2012-12-01

    Many applications of multiphase flow in porous media, including CO2-storage and enhanced oil recovery, require mathematical models that span a large range of length scales. In the context of numerical simulations, practical grid sizes are often on the order of tens of meters, thereby de facto defining a coarse model scale. Under particular conditions, it is possible to approximate the sub-grid-scale distribution of the fluid saturation within a grid cell; that reconstructed saturation can then be used to compute effective properties at the coarse scale. If both the density difference between the fluids and the vertical extend of the grid cell are large, and buoyant segregation within the cell on a sufficiently shorte time scale, then the phase pressure distributions are essentially hydrostatic and the saturation profile can be reconstructed from the inferred capillary pressures. However, the saturation reconstruction may not be unique because the parameters and parameter functions of classical formulations of two-phase flow in porous media - the relative permeability functions, the capillary pressure -saturation relationship, and the residual saturations - show path dependence, i.e. their values depend not only on the state variables but also on their drainage and imbibition histories. In this study we focus on capillary pressure hysteresis and trapping and show that the contribution of hysteresis to effective quantities is dependent on the vertical length scale. By studying the transition from the two extreme cases - the homogeneous saturation distribution for small vertical extents and the completely segregated distribution for large extents - we identify how hysteretic capillary pressure at the local scale induces hysteresis in all coarse-scale quantities for medium vertical extents and finally vanishes for large vertical extents. Our results allow for more accurate vertically integrated modeling while improving our understanding of the coupling of capillary pressure and relative permeabilities over larger length scales.

  1. Numerical study of the shape parameter dependence of the local radial point interpolation method in linear elasticity.

    PubMed

    Moussaoui, Ahmed; Bouziane, Touria

    2016-01-01

    The method LRPIM is a Meshless method with properties of simple implementation of the essential boundary conditions and less costly than the moving least squares (MLS) methods. This method is proposed to overcome the singularity associated to polynomial basis by using radial basis functions. In this paper, we will present a study of a 2D problem of an elastic homogenous rectangular plate by using the method LRPIM. Our numerical investigations will concern the influence of different shape parameters on the domain of convergence,accuracy and using the radial basis function of the thin plate spline. It also will presents a comparison between numerical results for different materials and the convergence domain by precising maximum and minimum values as a function of distribution nodes number. The analytical solution of the deflection confirms the numerical results. The essential points in the method are: •The LRPIM is derived from the local weak form of the equilibrium equations for solving a thin elastic plate.•The convergence of the LRPIM method depends on number of parameters derived from local weak form and sub-domains.•The effect of distributions nodes number by varying nature of material and the radial basis function (TPS).

  2. Measures of dependence for multivariate Lévy distributions

    NASA Astrophysics Data System (ADS)

    Boland, J.; Hurd, T. R.; Pivato, M.; Seco, L.

    2001-02-01

    Recent statistical analysis of a number of financial databases is summarized. Increasing agreement is found that logarithmic equity returns show a certain type of asymptotic behavior of the largest events, namely that the probability density functions have power law tails with an exponent α≈3.0. This behavior does not vary much over different stock exchanges or over time, despite large variations in trading environments. The present paper proposes a class of multivariate distributions which generalizes the observed qualities of univariate time series. A new consequence of the proposed class is the "spectral measure" which completely characterizes the multivariate dependences of the extreme tails of the distribution. This measure on the unit sphere in M-dimensions, in principle completely general, can be determined empirically by looking at extreme events. If it can be observed and determined, it will prove to be of importance for scenario generation in portfolio risk management.

  3. Rapid Temporal Changes of Midtropospheric Winds

    NASA Technical Reports Server (NTRS)

    Merceret, Francis J.

    1997-01-01

    The statistical distribution of the magnitude of the vector wind change over 0.25-, 1-, 2-. and 4-h periods based on data from October 1995 through March 1996 over central Florida is presented. The wind changes at altitudes from 6 to 17 km were measured using the Kennedy Space Center 50-MHz Doppler radar wind profiler. Quality controlled profiles were produced every 5 min for 112 gates, each representing 150 m in altitude. Gates 28 through 100 were selected for analysis because of their significance to ascending space launch vehicles. The distribution was found to be lognormal. The parameters of the lognormal distribution depend systematically on the time interval. This dependence is consistent with the behavior of structure functions in the f(exp 5/3) spectral regime. There is a small difference between the 1995 data and the 1996 data, which may represent a weak seasonal effect.

  4. A unified Bayesian semiparametric approach to assess discrimination ability in survival analysis

    PubMed Central

    Zhao, Lili; Feng, Dai; Chen, Guoan; Taylor, Jeremy M.G.

    2015-01-01

    Summary The discriminatory ability of a marker for censored survival data is routinely assessed by the time-dependent ROC curve and the c-index. The time-dependent ROC curve evaluates the ability of a biomarker to predict whether a patient lives past a particular time t. The c-index measures the global concordance of the marker and the survival time regardless of the time point. We propose a Bayesian semiparametric approach to estimate these two measures. The proposed estimators are based on the conditional distribution of the survival time given the biomarker and the empirical biomarker distribution. The conditional distribution is estimated by a linear dependent Dirichlet process mixture model. The resulting ROC curve is smooth as it is estimated by a mixture of parametric functions. The proposed c-index estimator is shown to be more efficient than the commonly used Harrell's c-index since it uses all pairs of data rather than only informative pairs. The proposed estimators are evaluated through simulations and illustrated using a lung cancer dataset. PMID:26676324

  5. Frequency-selective fading statistics of shallow-water acoustic communication channel with a few multipaths

    NASA Astrophysics Data System (ADS)

    Bae, Minja; Park, Jihyun; Kim, Jongju; Xue, Dandan; Park, Kyu-Chil; Yoon, Jong Rak

    2016-07-01

    The bit error rate of an underwater acoustic communication system is related to multipath fading statistics, which determine the signal-to-noise ratio. The amplitude and delay of each path depend on sea surface roughness, propagation medium properties, and source-to-receiver range as a function of frequency. Therefore, received signals will show frequency-dependent fading. A shallow-water acoustic communication channel generally shows a few strong multipaths that interfere with each other and the resulting interference affects the fading statistics model. In this study, frequency-selective fading statistics are modeled on the basis of the phasor representation of the complex path amplitude. The fading statistics distribution is parameterized by the frequency-dependent constructive or destructive interference of multipaths. At a 16 m depth with a muddy bottom, a wave height of 0.2 m, and source-to-receiver ranges of 100 and 400 m, fading statistics tend to show a Rayleigh distribution at a destructive interference frequency, but a Rice distribution at a constructive interference frequency. The theoretical fading statistics well matched the experimental ones.

  6. Dynamic data driven bidirectional reflectance distribution function measurement system

    NASA Astrophysics Data System (ADS)

    Nauyoks, Stephen E.; Freda, Sam; Marciniak, Michael A.

    2014-09-01

    The bidirectional reflectance distribution function (BRDF) is a fitted distribution function that defines the scatter of light off of a surface. The BRDF is dependent on the directions of both the incident and scattered light. Because of the vastness of the measurement space of all possible incident and reflected directions, the calculation of BRDF is usually performed using a minimal amount of measured data. This may lead to poor fits and uncertainty in certain regions of incidence or reflection. A dynamic data driven application system (DDDAS) is a concept that uses an algorithm on collected data to influence the collection space of future data acquisition. The authors propose a DDD-BRDF algorithm that fits BRDF data as it is being acquired and uses on-the-fly fittings of various BRDF models to adjust the potential measurement space. In doing so, it is hoped to find the best model to fit a surface and the best global fit of the BRDF with a minimum amount of collection space.

  7. Statistical approach to partial equilibrium analysis

    NASA Astrophysics Data System (ADS)

    Wang, Yougui; Stanley, H. E.

    2009-04-01

    A statistical approach to market equilibrium and efficiency analysis is proposed in this paper. One factor that governs the exchange decisions of traders in a market, named willingness price, is highlighted and constitutes the whole theory. The supply and demand functions are formulated as the distributions of corresponding willing exchange over the willingness price. The laws of supply and demand can be derived directly from these distributions. The characteristics of excess demand function are analyzed and the necessary conditions for the existence and uniqueness of equilibrium point of the market are specified. The rationing rates of buyers and sellers are introduced to describe the ratio of realized exchange to willing exchange, and their dependence on the market price is studied in the cases of shortage and surplus. The realized market surplus, which is the criterion of market efficiency, can be written as a function of the distributions of willing exchange and the rationing rates. With this approach we can strictly prove that a market is efficient in the state of equilibrium.

  8. The Halo Occupation Distribution of Active Galactic Nuclei

    NASA Astrophysics Data System (ADS)

    Chatterjee, Suchetana; Nagai, D.; Richardson, J.; Zheng, Z.; Degraf, C.; DiMatteo, T.

    2011-05-01

    We investigate the halo occupation distribution of active galactic nuclei (AGN) using a state-of-the-art cosmological hydrodynamic simulation that self-consistently incorporates the growth and feedback of supermassive black holes and the physics of galaxy formation (DiMatteo et al. 2008). We show that the mean occupation function can be modeled as a softened step function for central AGN and a power law for the satellite population. The satellite occupation is consistent with weak redshift evolution and a power law index of unity. The number of satellite black holes at a given halo mass follows a Poisson distribution. We show that at low redshifts (z=1.0) feedback from AGN is responsible for higher suppression of black hole growth in higher mass halos. This effect introduces a bias in the correlation between instantaneous AGN luminosity and the host halo mass, making AGN clustering depend weakly on luminosity at low redshifts. We show that the radial distribution of AGN follows a power law which is fundamentally different from those of galaxies and dark matter. The best-fit power law index is -2.26 ± 0.23. The power law exponent do not show any evolution with redshift, host halo mass and AGN luminosity within statistical limits. Incorporating the environmental dependence of supermassive black hole accretion and feedback, our formalism provides the most complete theoretical tool for interpreting current and future measurements of AGN clustering.

  9. Imaging Metals in Brain Tissue by Laser Ablation - Inductively Coupled Plasma - Mass Spectrometry (LA-ICP-MS)

    PubMed Central

    Hare, Dominic J.; Kysenius, Kai; Paul, Bence; Knauer, Beate; Hutchinson, Robert W.; O'Connor, Ciaran; Fryer, Fred; Hennessey, Tom P.; Bush, Ashley I.; Crouch, Peter J.; Doble, Philip A.

    2017-01-01

    Metals are found ubiquitously throughout an organism, with their biological role dictated by both their chemical reactivity and abundance within a specific anatomical region. Within the brain, metals have a highly compartmentalized distribution, depending on the primary function they play within the central nervous system. Imaging the spatial distribution of metals has provided unique insight into the biochemical architecture of the brain, allowing direct correlation between neuroanatomical regions and their known function with regard to metal-dependent processes. In addition, several age-related neurological disorders feature disrupted metal homeostasis, which is often confined to small regions of the brain that are otherwise difficult to analyze. Here, we describe a comprehensive method for quantitatively imaging metals in the mouse brain, using laser ablation - inductively coupled plasma - mass spectrometry (LA-ICP-MS) and specially designed image processing software. Focusing on iron, copper and zinc, which are three of the most abundant and disease-relevant metals within the brain, we describe the essential steps in sample preparation, analysis, quantitative measurements and image processing to produce maps of metal distribution within the low micrometer resolution range. This technique, applicable to any cut tissue section, is capable of demonstrating the highly variable distribution of metals within an organ or system, and can be used to identify changes in metal homeostasis and absolute levels within fine anatomical structures. PMID:28190025

  10. VizieR Online Data Catalog: Tracers of the Milky Way mass (Bratek+, 2014)

    NASA Astrophysics Data System (ADS)

    Bratek, L.; Sikora, S.; Jalocha, J.; Kutschera, M.

    2013-11-01

    We model the phase-space distribution of the kinematic tracers using general, smooth distribution functions to derive a conservative lower bound on the total mass within ~~150-200kpc. By approximating the potential as Keplerian, the phase-space distribution can be simplified to that of a smooth distribution of energies and eccentricities. Our approach naturally allows for calculating moments of the distribution function, such as the radial profile of the orbital anisotropy. We systematically construct a family of phase-space functions with the resulting radial velocity dispersion overlapping with the one obtained using data on radial motions of distant kinematic tracers, while making no assumptions about the density of the tracers and the velocity anisotropy parameter β regarded as a function of the radial variable. While there is no apparent upper bound for the Milky Way mass, at least as long as only the radial motions are concerned, we find a sharp lower bound for the mass that is small. In particular, a mass value of 2.4x1011M⊙, obtained in the past for lower and intermediate radii, is still consistent with the dispersion profile at larger radii. Compared with much greater mass values in the literature, this result shows that determining the Milky Way mass is strongly model-dependent. We expect a similar reduction of mass estimates in models assuming more realistic mass profiles. (1 data file).

  11. Analysis of the static magnetic field-dependent optical transmission of Ni nanorod colloidal suspensions

    NASA Astrophysics Data System (ADS)

    Krämer, Florian; Gratz, Micha; Tschöpe, Andreas

    2016-07-01

    The magnetic field-dependent optical transmission of dilute Ni nanorod aqueous suspensions was investigated. A series of four samples of nanorods were synthesized using the AAO template method and processed to stable colloids. The distributions of their length and diameter were characterized by analysis of TEM images and revealed average diameters of ˜25 nm and different lengths in the range of 60 nm-1100 nm. The collinear magnetic and optical anisotropy was studied by static field-dependent transmission measurements of linearly polarized light parallel and perpendicular to the magnetic field direction. The experimental results were modelled assuming the field-dependent orientation distribution function of a superparamagnetic ensemble for the uniaxial ferromagnetic nanorods in liquid dispersion and extinction cross sections for longitudinal and transversal optical polarization derived from different approaches, including the electrostatic approximation and the separation of variables method, both applied to spheroidal particles, as well as finite element method simulations of spheroids and capped cylindrical particles. The extinction cross sections were compared to reveal the differences associated with the approximations of homogeneous polarization and/or particle shape. The consequences of these approximations for the quantitative analysis of magnetic field-dependent optical transmission measurements were investigated and a reliable protocol derived. Furthermore, the changes in optical cross sections induced by electromagnetic interaction between two nanorods in parallel end-to-end and side-by-side configuration as a function of their separation were studied.

  12. Molecular dynamics study on glycolic acid in the physiological salt solution

    NASA Astrophysics Data System (ADS)

    Matsunaga, S.

    2018-05-01

    Molecular dynamics (MD) study on glycolic acid in the physiological salt solution has been performed, which is a model of a biofuel cell. The structure and charge distribution of glycolic acid in aqueous solution used in MD is beforehand optimized by Gaussian09 utilizing the density functional theory. MD is performed in the NTV constant condition, i.e. the number of particles, temperature, and volume of MD cell are definite. The structure difference of the glycolic acid and oxalic acid is detected by the water distribution around the molecules using the pair distribution functions, gij(r), and the frequency dependent diffusion coefficients, Di(ν). The anomalous dielectric constant of the solution, i.e. about 12 times larger than that of water, has been obtained, which may be attributed to the ion pair formation in the solution.

  13. Gravitational lensing, time delay, and gamma-ray bursts

    NASA Technical Reports Server (NTRS)

    Mao, Shude

    1992-01-01

    The probability distributions of time delay in gravitational lensing by point masses and isolated galaxies (modeled as singular isothermal spheres) are studied. For point lenses (all with the same mass) the probability distribution is broad, and with a peak at delta(t) of about 50 S; for singular isothermal spheres, the probability distribution is a rapidly decreasing function with increasing time delay, with a median delta(t) equals about 1/h month, and its behavior depends sensitively on the luminosity function of galaxies. The present simplified calculation is particularly relevant to the gamma-ray bursts if they are of cosmological origin. The frequency of 'recurrent' bursts due to gravitational lensing by galaxies is probably between 0.05 and 0.4 percent. Gravitational lensing can be used as a test of the cosmological origin of gamma-ray bursts.

  14. An adaptive grid scheme using the boundary element method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Munipalli, R.; Anderson, D.A.

    1996-09-01

    A technique to solve the Poisson grid generation equations by Green`s function related methods has been proposed, with the source terms being purely position dependent. The use of distributed singularities in the flow domain coupled with the boundary element method (BEM) formulation is presented in this paper as a natural extension of the Green`s function method. This scheme greatly simplifies the adaption process. The BEM reduces the dimensionality of the given problem by one. Internal grid-point placement can be achieved for a given boundary distribution by adding continuous and discrete source terms in the BEM formulation. A distribution of vortexmore » doublets is suggested as a means of controlling grid-point placement and grid-line orientation. Examples for sample adaption problems are presented and discussed. 15 refs., 20 figs.« less

  15. Condensate statistics and thermodynamics of weakly interacting Bose gas: Recursion relation approach

    NASA Astrophysics Data System (ADS)

    Dorfman, K. E.; Kim, M.; Svidzinsky, A. A.

    2011-03-01

    We study condensate statistics and thermodynamics of weakly interacting Bose gas with a fixed total number N of particles in a cubic box. We find the exact recursion relation for the canonical ensemble partition function. Using this relation, we calculate the distribution function of condensate particles for N=200. We also calculate the distribution function based on multinomial expansion of the characteristic function. Similar to the ideal gas, both approaches give exact statistical moments for all temperatures in the framework of Bogoliubov model. We compare them with the results of unconstraint canonical ensemble quasiparticle formalism and the hybrid master equation approach. The present recursion relation can be used for any external potential and boundary conditions. We investigate the temperature dependence of the first few statistical moments of condensate fluctuations as well as thermodynamic potentials and heat capacity analytically and numerically in the whole temperature range.

  16. Theoretical Calculation of the Power Spectra of the Rolling and Yawing Moments on a Wing in Random Turbulence

    NASA Technical Reports Server (NTRS)

    Eggleston, John M; Diederich, Franklin W

    1957-01-01

    The correlation functions and power spectra of the rolling and yawing moments on an airplane wing due to the three components of continuous random turbulence are calculated. The rolling moments to the longitudinal (horizontal) and normal (vertical) components depend on the spanwise distributions of instantaneous gust intensity, which are taken into account by using the inherent properties of symmetry of isotropic turbulence. The results consist of expressions for correlation functions or spectra of the rolling moment in terms of the point correlation functions of the two components of turbulence. Specific numerical calculations are made for a pair of correlation functions given by simple analytic expressions which fit available experimental data quite well. Calculations are made for four lift distributions. Comparison is made with the results of previous analyses which assumed random turbulence along the flight path and linear variations of gust velocity across the span.

  17. Unified solution of the Boltzmann equation for electron and ion velocity distribution functions and transport coefficients in weakly ionized plasmas

    NASA Astrophysics Data System (ADS)

    Konovalov, Dmitry A.; Cocks, Daniel G.; White, Ronald D.

    2017-10-01

    The velocity distribution function and transport coefficients for charged particles in weakly ionized plasmas are calculated via a multi-term solution of Boltzmann's equation and benchmarked using a Monte-Carlo simulation. A unified framework for the solution of the original full Boltzmann's equation is presented which is valid for ions and electrons, avoiding any recourse to approximate forms of the collision operator in various limiting mass ratio cases. This direct method using Lebedev quadratures over the velocity and scattering angles avoids the need to represent the ion mass dependence in the collision operator through an expansion in terms of the charged particle to neutral mass ratio. For the two-temperature Burnett function method considered in this study, this amounts to avoiding the need for the complex Talmi-transformation methods and associated mass-ratio expansions. More generally, we highlight the deficiencies in the two-temperature Burnett function method for heavy ions at high electric fields to calculate the ion velocity distribution function, even though the transport coefficients have converged. Contribution to the Topical Issue "Physics of Ionized Gases (SPIG 2016)", edited by Goran Poparic, Bratislav Obradovic, Dragana Maric and Aleksandar Milosavljevic.

  18. Time-dependent vibrational spectral analysis of first principles trajectory of methylamine with wavelet transform.

    PubMed

    Biswas, Sohag; Mallik, Bhabani S

    2017-04-12

    The fluctuation dynamics of amine stretching frequencies, hydrogen bonds, dangling N-D bonds, and the orientation profile of the amine group of methylamine (MA) were investigated under ambient conditions by means of dispersion-corrected density functional theory-based first principles molecular dynamics (FPMD) simulations. Along with the dynamical properties, various equilibrium properties such as radial distribution function, spatial distribution function, combined radial and angular distribution functions and hydrogen bonding were also calculated. The instantaneous stretching frequencies of amine groups were obtained by wavelet transform of the trajectory obtained from FPMD simulations. The frequency-structure correlation reveals that the amine stretching frequency is weakly correlated with the nearest nitrogen-deuterium distance. The frequency-frequency correlation function has a short time scale of around 110 fs and a longer time scale of about 1.15 ps. It was found that the short time scale originates from the underdamped motion of intact hydrogen bonds of MA pairs. However, the long time scale of the vibrational spectral diffusion of N-D modes is determined by the overall dynamics of hydrogen bonds as well as the dangling ND groups and the inertial rotation of the amine group of the molecule.

  19. Interpolating Non-Parametric Distributions of Hourly Rainfall Intensities Using Random Mixing

    NASA Astrophysics Data System (ADS)

    Mosthaf, Tobias; Bárdossy, András; Hörning, Sebastian

    2015-04-01

    The correct spatial interpolation of hourly rainfall intensity distributions is of great importance for stochastical rainfall models. Poorly interpolated distributions may lead to over- or underestimation of rainfall and consequently to wrong estimates of following applications, like hydrological or hydraulic models. By analyzing the spatial relation of empirical rainfall distribution functions, a persistent order of the quantile values over a wide range of non-exceedance probabilities is observed. As the order remains similar, the interpolation weights of quantile values for one certain non-exceedance probability can be applied to the other probabilities. This assumption enables the use of kernel smoothed distribution functions for interpolation purposes. Comparing the order of hourly quantile values over different gauges with the order of their daily quantile values for equal probabilities, results in high correlations. The hourly quantile values also show high correlations with elevation. The incorporation of these two covariates into the interpolation is therefore tested. As only positive interpolation weights for the quantile values assure a monotonically increasing distribution function, the use of geostatistical methods like kriging is problematic. Employing kriging with external drift to incorporate secondary information is not applicable. Nonetheless, it would be fruitful to make use of covariates. To overcome this shortcoming, a new random mixing approach of spatial random fields is applied. Within the mixing process hourly quantile values are considered as equality constraints and correlations with elevation values are included as relationship constraints. To profit from the dependence of daily quantile values, distribution functions of daily gauges are used to set up lower equal and greater equal constraints at their locations. In this way the denser daily gauge network can be included in the interpolation of the hourly distribution functions. The applicability of this new interpolation procedure will be shown for around 250 hourly rainfall gauges in the German federal state of Baden-Württemberg. The performance of the random mixing technique within the interpolation is compared to applicable kriging methods. Additionally, the interpolation of kernel smoothed distribution functions is compared with the interpolation of fitted parametric distributions.

  20. Maximum likelihood estimation for life distributions with competing failure modes

    NASA Technical Reports Server (NTRS)

    Sidik, S. M.

    1979-01-01

    Systems which are placed on test at time zero, function for a period and die at some random time were studied. Failure may be due to one of several causes or modes. The parameters of the life distribution may depend upon the levels of various stress variables the item is subject to. Maximum likelihood estimation methods are discussed. Specific methods are reported for the smallest extreme-value distributions of life. Monte-Carlo results indicate the methods to be promising. Under appropriate conditions, the location parameters are nearly unbiased, the scale parameter is slight biased, and the asymptotic covariances are rapidly approached.

  1. Lactate racemase is a nickel-dependent enzyme activated by a widespread maturation system

    PubMed Central

    Desguin, Benoît; Goffin, Philippe; Viaene, Eric; Kleerebezem, Michiel; Martin-Diaconescu, Vlad; Maroney, Michael J; Declercq, Jean-Paul; Soumillion, Patrice; Hols, Pascal

    2014-01-01

    Racemases catalyze the inversion of stereochemistry in biological molecules, giving the organism the ability to use both isomers. Among them, lactate racemase remains unexplored due to its intrinsic instability and lack of molecular characterization. Here we determine the genetic basis of lactate racemization in Lactobacillus plantarum. We show that, unexpectedly, the racemase is a nickel-dependent enzyme with a novel α/β fold. In addition, we decipher the process leading to an active enzyme, which involves the activation of the apo-enzyme by a single nickel-containing maturation protein that requires preactivation by two other accessory proteins. Genomic investigations reveal the wide distribution of the lactate racemase system among prokaryotes, showing the high significance of both lactate enantiomers in carbon metabolism. The even broader distribution of the nickel-based maturation system suggests a function beyond activation of the lactate racemase and possibly linked with other undiscovered nickel-dependent enzymes. PMID:24710389

  2. Statistical time-dependent model for the interstellar gas

    NASA Technical Reports Server (NTRS)

    Gerola, H.; Kafatos, M.; Mccray, R.

    1974-01-01

    We present models for temperature and ionization structure of low, uniform-density (approximately 0.3 per cu cm) interstellar gas in a galactic disk which is exposed to soft X rays from supernova outbursts occurring randomly in space and time. The structure was calculated by computing the time record of temperature and ionization at a given point by Monte Carlo simulation. The calculation yields probability distribution functions for ionized fraction, temperature, and their various observable moments. These time-dependent models predict a bimodal temperature distribution of the gas that agrees with various observations. Cold regions in the low-density gas may have the appearance of clouds in 21-cm absorption. The time-dependent model, in contrast to the steady-state model, predicts large fluctuations in ionization rate and the existence of cold (approximately 30 K), ionized (ionized fraction equal to about 0.1) regions.

  3. Temperature and composition dependence of short-range order and entropy, and statistics of bond length: the semiconductor alloy (GaN)(1-x)(ZnO)(x).

    PubMed

    Liu, Jian; Pedroza, Luana S; Misch, Carissa; Fernández-Serra, Maria V; Allen, Philip B

    2014-07-09

    We present total energy and force calculations for the (GaN)1-x(ZnO)x alloy. Site-occupancy configurations are generated from Monte Carlo (MC) simulations, on the basis of a cluster expansion model proposed in a previous study. Local atomic coordinate relaxations of surprisingly large magnitude are found via density-functional calculations using a 432-atom periodic supercell, for three representative configurations at x = 0.5. These are used to generate bond-length distributions. The configurationally averaged composition- and temperature-dependent short-range order (SRO) parameters of the alloys are discussed. The entropy is approximated in terms of pair distribution statistics and thus related to SRO parameters. This approximate entropy is compared with accurate numerical values from MC simulations. An empirical model for the dependence of the bond length on the local chemical environments is proposed.

  4. A model-free characterization of recurrences in stationary time series

    NASA Astrophysics Data System (ADS)

    Chicheportiche, Rémy; Chakraborti, Anirban

    2017-05-01

    Study of recurrences in earthquakes, climate, financial time-series, etc. is crucial to better forecast disasters and limit their consequences. Most of the previous phenomenological studies of recurrences have involved only a long-ranged autocorrelation function, and ignored the multi-scaling properties induced by potential higher order dependencies. We argue that copulas is a natural model-free framework to study non-linear dependencies in time series and related concepts like recurrences. Consequently, we arrive at the facts that (i) non-linear dependences do impact both the statistics and dynamics of recurrence times, and (ii) the scaling arguments for the unconditional distribution may not be applicable. Hence, fitting and/or simulating the intertemporal distribution of recurrence intervals is very much system specific, and cannot actually benefit from universal features, in contrast to the previous claims. This has important implications in epilepsy prognosis and financial risk management applications.

  5. THE DEPENDENCE OF PRESTELLAR CORE MASS DISTRIBUTIONS ON THE STRUCTURE OF THE PARENTAL CLOUD

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Parravano, Antonio; Sanchez, Nestor; Alfaro, Emilio J.

    2012-08-01

    The mass distribution of prestellar cores is obtained for clouds with arbitrary internal mass distributions using a selection criterion based on the thermal and turbulent Jeans mass and applied hierarchically from small to large scales. We have checked this methodology by comparing our results for a log-normal density probability distribution function with the theoretical core mass function (CMF) derived by Hennebelle and Chabrier, namely a power law at large scales and a log-normal cutoff at low scales, but our method can be applied to any mass distributions representing a star-forming cloud. This methodology enables us to connect the parental cloudmore » structure with the mass distribution of the cores and their spatial distribution, providing an efficient tool for investigating the physical properties of the molecular clouds that give rise to the prestellar core distributions observed. Simulated fractional Brownian motion (fBm) clouds with the Hurst exponent close to the value H = 1/3 give the best agreement with the theoretical CMF derived by Hennebelle and Chabrier and Chabrier's system initial mass function. Likewise, the spatial distribution of the cores derived from our methodology shows a surface density of companions compatible with those observed in Trapezium and Ophiucus star-forming regions. This method also allows us to analyze the properties of the mass distribution of cores for different realizations. We found that the variations in the number of cores formed in different realizations of fBm clouds (with the same Hurst exponent) are much larger than the expected root N statistical fluctuations, increasing with H.« less

  6. The Dependence of Prestellar Core Mass Distributions on the Structure of the Parental Cloud

    NASA Astrophysics Data System (ADS)

    Parravano, Antonio; Sánchez, Néstor; Alfaro, Emilio J.

    2012-08-01

    The mass distribution of prestellar cores is obtained for clouds with arbitrary internal mass distributions using a selection criterion based on the thermal and turbulent Jeans mass and applied hierarchically from small to large scales. We have checked this methodology by comparing our results for a log-normal density probability distribution function with the theoretical core mass function (CMF) derived by Hennebelle & Chabrier, namely a power law at large scales and a log-normal cutoff at low scales, but our method can be applied to any mass distributions representing a star-forming cloud. This methodology enables us to connect the parental cloud structure with the mass distribution of the cores and their spatial distribution, providing an efficient tool for investigating the physical properties of the molecular clouds that give rise to the prestellar core distributions observed. Simulated fractional Brownian motion (fBm) clouds with the Hurst exponent close to the value H = 1/3 give the best agreement with the theoretical CMF derived by Hennebelle & Chabrier and Chabrier's system initial mass function. Likewise, the spatial distribution of the cores derived from our methodology shows a surface density of companions compatible with those observed in Trapezium and Ophiucus star-forming regions. This method also allows us to analyze the properties of the mass distribution of cores for different realizations. We found that the variations in the number of cores formed in different realizations of fBm clouds (with the same Hurst exponent) are much larger than the expected root {\\cal N} statistical fluctuations, increasing with H.

  7. chroma: Chromatic effects for LSST weak lensing

    NASA Astrophysics Data System (ADS)

    Meyers, Joshua E.; Burchat, Patricia R.

    2018-04-01

    Chroma investigates biases originating from two chromatic effects in the atmosphere: differential chromatic refraction (DCR), and wavelength dependence of seeing. These biases arise when using the point spread function (PSF) measured with stars to estimate the shapes of galaxies with different spectral energy distributions (SEDs) than the stars.

  8. The respiratory system under weightlessness

    NASA Technical Reports Server (NTRS)

    Paiva, M.; Engel, L. A.; Hughes, J. M. B.; Guy, H. J.; Prisk, G. K.; West, J. B.

    1987-01-01

    Studies of pulmonary functions at rest to be studied on Spacelab mission D-2 are introduced. Gravity dependence of the distribution of ventilation (single breath washout, multibreath washout-washin); chest wall shape and motion; and the vascular compartment (lung blood flow, capillary volume, liquid content, diffusive capacity) are discussed.

  9. Monte Carlo modeling of single-molecule cytoplasmic dynein.

    PubMed

    Singh, Manoranjan P; Mallik, Roop; Gross, Steven P; Yu, Clare C

    2005-08-23

    Molecular motors are responsible for active transport and organization in the cell, underlying an enormous number of crucial biological processes. Dynein is more complicated in its structure and function than other motors. Recent experiments have found that, unlike other motors, dynein can take different size steps along microtubules depending on load and ATP concentration. We use Monte Carlo simulations to model the molecular motor function of cytoplasmic dynein at the single-molecule level. The theory relates dynein's enzymatic properties to its mechanical force production. Our simulations reproduce the main features of recent single-molecule experiments that found a discrete distribution of dynein step sizes, depending on load and ATP concentration. The model reproduces the large steps found experimentally under high ATP and no load by assuming that the ATP binding affinities at the secondary sites decrease as the number of ATP bound to these sites increases. Additionally, to capture the essential features of the step-size distribution at very low ATP concentration and no load, the ATP hydrolysis of the primary site must be dramatically reduced when none of the secondary sites have ATP bound to them. We make testable predictions that should guide future experiments related to dynein function.

  10. The ALMA software architecture

    NASA Astrophysics Data System (ADS)

    Schwarz, Joseph; Farris, Allen; Sommer, Heiko

    2004-09-01

    The software for the Atacama Large Millimeter Array (ALMA) is being developed by many institutes on two continents. The software itself will function in a distributed environment, from the 0.5-14 kmbaselines that separate antennas to the larger distances that separate the array site at the Llano de Chajnantor in Chile from the operations and user support facilities in Chile, North America and Europe. Distributed development demands 1) interfaces that allow separated groups to work with minimal dependence on their counterparts at other locations; and 2) a common architecture to minimize duplication and ensure that developers can always perform similar tasks in a similar way. The Container/Component model provides a blueprint for the separation of functional from technical concerns: application developers concentrate on implementing functionality in Components, which depend on Containers to provide them with services such as access to remote resources, transparent serialization of entity objects to XML, logging, error handling and security. Early system integrations have verified that this architecture is sound and that developers can successfully exploit its features. The Containers and their services are provided by a system-orienteddevelopment team as part of the ALMA Common Software (ACS), middleware that is based on CORBA.

  11. Anatomical and functional assemblies of brain BOLD oscillations

    PubMed Central

    Baria, Alexis T.; Baliki, Marwan N.; Parrish, Todd; Apkarian, A. Vania

    2011-01-01

    Brain oscillatory activity has long been thought to have spatial properties, the details of which are unresolved. Here we examine spatial organizational rules for the human brain oscillatory activity as measured by blood oxygen level-dependent (BOLD). Resting state BOLD signal was transformed into frequency space (Welch’s method), averaged across subjects, and its spatial distribution studied as a function of four frequency bands, spanning the full bandwidth of BOLD. The brain showed anatomically constrained distribution of power for each frequency band. This result was replicated on a repository dataset of 195 subjects. Next, we examined larger-scale organization by parceling the neocortex into regions approximating Brodmann Areas (BAs). This indicated that BAs of simple function/connectivity (unimodal), vs. complex properties (transmodal), are dominated by low frequency BOLD oscillations, and within the visual ventral stream we observe a graded shift of power to higher frequency bands for BAs further removed from the primary visual cortex (increased complexity), linking frequency properties of BOLD to hodology. Additionally, BOLD oscillation properties for the default mode network demonstrated that it is composed of distinct frequency dependent regions. When the same analysis was performed on a visual-motor task, frequency-dependent global and voxel-wise shifts in BOLD oscillations could be detected at brain sites mostly outside those identified with general linear modeling. Thus, analysis of BOLD oscillations in full bandwidth uncovers novel brain organizational rules, linking anatomical structures and functional networks to characteristic BOLD oscillations. The approach also identifies changes in brain intrinsic properties in relation to responses to external inputs. PMID:21613505

  12. Self-equilibration of the radius distribution in self-catalyzed GaAs nanowires

    NASA Astrophysics Data System (ADS)

    Leshchenko, E. D.; Turchina, M. A.; Dubrovskii, V. G.

    2016-08-01

    This work addresses the evolution of radius distribution function in self-catalyzed vapor-liquid-solid growth of GaAs nanowires from Ga droplets. Different growth regimes are analyzed depending on the V/III flux ratio. In particular, we find a very unusual selfequilibration regime in which the radius distribution narrows up to a certain stationary radius regardless of the initial size distribution of Ga droplets. This requires that the arsenic vapor flux is larger than the gallium one and that the V/III influx imbalance is compensated by a diffusion flux of gallium adatoms. Approximate analytical solution is compared to the numerical radius distribution obtained by solving the corresponding Fokker-Planck equation by the implicit difference scheme.

  13. A simulation of orientation dependent, global changes in camera sensitivity in ECT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bieszk, J.A.; Hawman, E.G.; Malmin, R.E.

    1984-01-01

    ECT promises the abilities to: 1) observe radioisotope distributions in a patient without the summation of overlying activity to reduce contrast, and 2) measure quantitatively these distributions to further and more accurately assess organ function. Ideally, camera-based ECT systems should have a performance that is independent of camera orientation or gantry angle. This study is concerned with ECT quantitation errors that can arise from angle-dependent variations of camera sensitivity. Using simulated phantoms representative of heart and liver sections, the effects of sensitivity changes on reconstructed images were assessed both visually and quantitatively based on ROI sums. The sinogram for eachmore » test image was simulated with 128 linear digitization and 180 angular views. The global orientation-dependent sensitivity was modelled by applying an angular sensitivity dependence to the sinograms of the test images. Four sensitivity variations were studied. Amplitudes of 0% (as a reference), 5%, 10%, and 25% with a costheta dependence were studied as well as a cos2theta dependence with a 5% amplitude. Simulations were done with and without Poisson noise to: 1) determine trends in the quantitative effects as a function of the magnitude of the variation, and 2) to see how these effects are manifested in studies having statistics comparable to clinical cases. For the most realistic sensitivity variation (costheta, 5% ampl.), the ROIs chosen in the present work indicated changes of <0.5% in the noiseless case and <5% for the case with Poisson noise. The effects of statistics appear to dominate any effects due to global, sinusoidal, orientation-dependent sensitivity changes in the cases studied.« less

  14. Radial dependence of self-organized criticality behavior in TCABR tokamak

    NASA Astrophysics Data System (ADS)

    dos Santos Lima, G. Z.; Iarosz, K. C.; Batista, A. M.; Guimarães-Filho, Z. O.; Caldas, I. L.; Kuznetsov, Y. K.; Nascimento, I. C.; Viana, R. L.; Lopes, S. R.

    2011-03-01

    In this work we present evidence of the self-organized criticality behavior of the plasma edge electrostatic turbulence in the tokamak TCABR. Analyzing fluctuation data measured by Langmuir probes, we verify the radial dependence of self-organized criticality behavior at the plasma edge and scrape-off layer. We identify evidence of this radial criticality in statistical properties of the laminar period distribution function, power spectral density, autocorrelation, and Hurst parameter for the analyzed fluctuations.

  15. First Simultaneous Extraction of Spin-Dependent Parton Distributions and Fragmentation Functions from a Global QCD Analysis.

    PubMed

    Ethier, J J; Sato, N; Melnitchouk, W

    2017-09-29

    We perform the first global QCD analysis of polarized inclusive and semi-inclusive deep-inelastic scattering and single-inclusive e^{+}e^{-} annihilation data, simultaneously fitting the parton distribution and fragmentation functions using the iterative Monte Carlo method. Without imposing SU(3) symmetry relations, we find the strange polarization to be very small, consistent with zero for both inclusive and semi-inclusive data, which provides a resolution to the strange quark polarization puzzle. The combined analysis also allows the direct extraction from data of the isovector and octet axial charges, and is consistent with a small SU(2) flavor asymmetry in the polarized sea.

  16. Theory after experiment on sensing mechanism of a newly developed sensor molecule: Converging or diverging?

    NASA Astrophysics Data System (ADS)

    Paul, Suvendu; Karar, Monaj; Das, Biswajit; Mallick, Arabinda; Majumdar, Tapas

    2017-12-01

    Fluoride ion sensing mechanism of 3,3‧-bis(indolyl)-4-chlorophenylmethane has been analyzed with density functional and time-dependent density functional theories. Extensive theoretical calculations on molecular geometry & energy, charge distribution, orbital energies & electronic distribution, minima on potential energy surface confirmed strong hydrogen bonded sensor-anion complex with incomplete proton transfer in S0. In S1, strong hydrogen bonding extended towards complete ESDPT. The distinct and single minima on the PES of the sensor-anion complex for both ground and first singlet excited states confirmed the concerted proton transfer mechanism. Present study well reproduced the experimental spectroscopic data and provided ESDPT as probable fluoride sensing mechanism.

  17. Wigner distribution function and kurtosis parameter of vortex beams propagating through turbulent atmosphere

    NASA Astrophysics Data System (ADS)

    Suo, Qiangbo; Han, Yiping; Cui, Zhiwei

    2017-09-01

    Based on the extended Huygens-Fresnel integral, the analytical expressions for the Wigner distribution function (WDF) and kurtosis parameter of partially coherent flat-topped vortex (PCFTV) beams propagating through atmospheric turbulence and free space are derived. The WDF and kurtosis parameter of PCFTV beams through turbulent atmosphere are discussed with numerical examples. The numerical results show that the beam quality depends on the structure constants, the inner scale turbulence, the outer scale turbulence, the spatial correlation length, the wave length and the beam order. PCFTV beams are less affected by turbulence than partially flat-topped coherent (PCFT) beams under the same conditions, and will be useful in free-space optical communications.

  18. Theory for solubility in static systems

    NASA Astrophysics Data System (ADS)

    Gusev, Andrei A.; Suter, Ulrich W.

    1991-06-01

    A theory for the solubility of small particles in static structures has been developed. The distribution function of the solute in a frozen solid has been derived in analytical form for the quantum and the quasiclassical cases. The solubility at infinitesimal gas pressure (Henry's constant) as well as the pressure dependence of the solute concentration at elevated pressures has been found from the statistical equilibrium between the solute in the static matrix and the ideal-gas phase. The distribution function of a solute containing different particles has been evaluated in closed form. An application of the theory to the sorption of methane in the computed structures of glassy polycarbonate has resulted in a satisfactory agreement with experimental data.

  19. First Simultaneous Extraction of Spin-Dependent Parton Distributions and Fragmentation Functions from a Global QCD Analysis

    DOE PAGES

    Ethier, Jacob J.; Sato, Nobuo; Melnitchouk, Wally

    2017-09-26

    In this paper, we perform the first global QCD analysis of polarized inclusive and semi-inclusive deep-inelastic scattering and single-inclusive $e^+e^-$ annihilation data, simultaneously fitting the parton distribution and fragmentation functions using the iterative Monte Carlo method. Without imposing SU(3) symmetry relations, we find the strange polarization to be very small, consistent with zero for both inclusive and semi-inclusive data, which provides a resolution to the strange quark polarization puzzle. Finally, the combined analysis also allows the direct extraction from data of the isovector and octet axial charges, and is consistent with a small SU(2) flavor asymmetry in the polarized sea.

  20. The investigation of the lateral interaction effect's on traffic flow behavior under open boundaries

    NASA Astrophysics Data System (ADS)

    Bouadi, M.; Jetto, K.; Benyoussef, A.; El Kenz, A.

    2017-11-01

    In this paper, an open boundaries traffic flow system is studied by taking into account the lateral interaction with spatial defects. For a random defects distribution, if the vehicles velocities are weakly correlated, the traffic phases can be predicted by considering the corresponding inflow and outflow functions. Conversely, if the vehicles velocities are strongly correlated, a phase segregation appears inside the system's bulk which induces the maximum current appearance. Such velocity correlation depends mainly on the defects densities and the probabilities of lateral deceleration. However, for a compact defects distribution, the traffic phases are predictable by using the inflow in the system beginning, the inflow entering the defects zone and the outflow function.

  1. Scale-Dependence of Processes Structuring Dung Beetle Metacommunities Using Functional Diversity and Community Deconstruction Approaches

    PubMed Central

    da Silva, Pedro Giovâni; Hernández, Malva Isabel Medina

    2015-01-01

    Community structure is driven by mechanisms linked to environmental, spatial and temporal processes, which have been successfully addressed using metacommunity framework. The relative importance of processes shaping community structure can be identified using several different approaches. Two approaches that are increasingly being used are functional diversity and community deconstruction. Functional diversity is measured using various indices that incorporate distinct community attributes. Community deconstruction is a way to disentangle species responses to ecological processes by grouping species with similar traits. We used these two approaches to determine whether they are improvements over traditional measures (e.g., species composition, abundance, biomass) for identification of the main processes driving dung beetle (Scarabaeinae) community structure in a fragmented mainland-island landscape in southern Brazilian Atlantic Forest. We sampled five sites in each of four large forest areas, two on the mainland and two on the island. Sampling was performed in 2012 and 2013. We collected abundance and biomass data from 100 sampling points distributed over 20 sampling sites. We studied environmental, spatial and temporal effects on dung beetle community across three spatial scales, i.e., between sites, between areas and mainland-island. The γ-diversity based on species abundance was mainly attributed to β-diversity as a consequence of the increase in mean α- and β-diversity between areas. Variation partitioning on abundance, biomass and functional diversity showed scale-dependence of processes structuring dung beetle metacommunities. We identified two major groups of responses among 17 functional groups. In general, environmental filters were important at both local and regional scales. Spatial factors were important at the intermediate scale. Our study supports the notion of scale-dependence of environmental, spatial and temporal processes in the distribution and functional organization of Scarabaeinae beetles. We conclude that functional diversity may be used as a complementary approach to traditional measures, and that community deconstruction allows sufficient disentangling of responses of different trait-based groups. PMID:25822150

  2. Implications of Atmospheric Test Fallout Data for Nuclear Winter.

    NASA Astrophysics Data System (ADS)

    Baker, George Harold, III

    1987-09-01

    Atmospheric test fallout data have been used to determine admissable dust particle size distributions for nuclear winter studies. The research was originally motivated by extreme differences noted in the magnitude and longevity of dust effects predicted by particle size distributions routinely used in fallout predictions versus those used for nuclear winter studies. Three different sets of historical data have been analyzed: (1) Stratospheric burden of Strontium -90 and Tungsten-185, 1954-1967 (92 contributing events); (2) Continental U.S. Strontium-90 fallout through 1958 (75 contributing events); (3) Local Fallout from selected Nevada tests (16 events). The contribution of dust to possible long term climate effects following a nuclear exchange depends strongly on the particle size distribution. The distribution affects both the atmospheric residence time and optical depth. One dimensional models of stratospheric/tropospheric fallout removal were developed and used to identify optimum particle distributions. Results indicate that particle distributions which properly predict bulk stratospheric activity transfer tend to be somewhat smaller than number size distributions used in initial nuclear winter studies. In addition, both ^{90}Sr and ^ {185}W fallout behavior is better predicted by the lognormal distribution function than the prevalent power law hybrid function. It is shown that the power law behavior of particle samples may well be an aberration of gravitational cloud stratification. Results support the possible existence of two independent particle size distributions in clouds generated by surface or near surface bursts. One distribution governs late time stratospheric fallout, the other governs early time fallout. A bimodal lognormal distribution is proposed to describe the cloud particle population. The distribution predicts higher initial sunlight attenuation and lower late time attenuation than the power law hybrid function used in initial nuclear winter studies.

  3. Inner Magnetospheric Superthermal Electron Transport: Photoelectron and Plasma Sheet Electron Sources

    NASA Technical Reports Server (NTRS)

    Khazanov, G. V.; Liemohn, M. W.; Kozyra, J. U.; Moore, T. E.

    1998-01-01

    Two time-dependent kinetic models of superthermal electron transport are combined to conduct global calculations of the nonthermal electron distribution function throughout the inner magnetosphere. It is shown that the energy range of validity for this combined model extends down to the superthermal-thermal intersection at a few eV, allowing for the calculation of the en- tire distribution function and thus an accurate heating rate to the thermal plasma. Because of the linearity of the formulas, the source terms are separated to calculate the distributions from the various populations, namely photoelectrons (PEs) and plasma sheet electrons (PSEs). These distributions are discussed in detail, examining the processes responsible for their formation in the various regions of the inner magnetosphere. It is shown that convection, corotation, and Coulomb collisions are the dominant processes in the formation of the PE distribution function and that PSEs are dominated by the interplay between the drift terms. Of note is that the PEs propagate around the nightside in a narrow channel at the edge of the plasmasphere as Coulomb collisions reduce the fluxes inside of this and convection compresses the flux tubes inward. These distributions are then recombined to show the development of the total superthermal electron distribution function in the inner magnetosphere and their influence on the thermal plasma. PEs usually dominate the dayside heating, with integral energy fluxes to the ionosphere reaching 10(exp 10) eV/sq cm/s in the plasmasphere, while heating from the PSEs typically does not exceed 10(exp 8) eV/sq cm/s. On the nightside, the inner plasmasphere is usually unheated by superthermal electrons. A feature of these combined spectra is that the distribution often has upward slopes with energy, particularly at the crossover from PE to PSE dominance, indicating that instabilities are possible.

  4. Empirical Green's functions from small earthquakes: A waveform study of locally recorded aftershocks of the 1971 San Fernando earthquake

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hutchings, L.; Wu, F.

    1990-02-10

    Seismograms from 52 aftershocks of the 1971 San Fernando earthquake recorded at 25 stations distributed across the San Fernando Valley are examined to identify empirical Green's functions, and characterize the dependence of their waveforms on moment, focal mechanism, source and recording site spatial variations, recording site geology, and recorded frequency band. Recording distances ranged from 3.0 to 33.0 km, hypocentral separations ranged from 0.22 to 28.4 km, and recording site separations ranged from 0.185 to 24.2 km. The recording site geologies are diorite gneiss, marine and nonmarine sediments, and alluvium of varying thicknesses. Waveforms of events with moment below aboutmore » 1.5 {times} 10{sup 21} dyn cm are independent of the source-time function and are termed empirical Green's functions. Waveforms recorded at a particular station from events located within 1.0 to 3.0 km of each other, depending upon site geology, with very similar focal mechanism solutions are nearly identical for frequencies up to 10 Hz. There is no correlation to waveforms between recording sites at least 1.2 km apart, and waveforms are clearly distinctive for two sites 0.185 km apart. The geologic conditions of the recording site dominate the character of empirical Green's functions. Even for source separations of up to 20.0 km, the empirical Green's functions at a particular site are consistent in frequency content, amplification, and energy distribution. Therefore, it is shown that empirical Green's functions can be used to obtain site response functions. The observations of empirical Green's functions are used as a basis for developing the theory for using empirical Green's functions in deconvolution for source pulses and synthesis of seismograms of larger earthquakes.« less

  5. Wave propagation in embedded inhomogeneous nanoscale plates incorporating thermal effects

    NASA Astrophysics Data System (ADS)

    Ebrahimi, Farzad; Barati, Mohammad Reza; Dabbagh, Ali

    2018-04-01

    In this article, an analytical approach is developed to study the effects of thermal loading on the wave propagation characteristics of an embedded functionally graded (FG) nanoplate based on refined four-variable plate theory. The heat conduction equation is solved to derive the nonlinear temperature distribution across the thickness. Temperature-dependent material properties of nanoplate are graded using Mori-Tanaka model. The nonlocal elasticity theory of Eringen is introduced to consider small-scale effects. The governing equations are derived by the means of Hamilton's principle. Obtained frequencies are validated with those of previously published works. Effects of different parameters such as temperature distribution, foundation parameters, nonlocal parameter, and gradient index on the wave propagation response of size-dependent FG nanoplates have been investigated.

  6. On a two-phase Hele-Shaw problem with a time-dependent gap and distributions of sinks and sources

    NASA Astrophysics Data System (ADS)

    Savina, Tatiana; Akinyemi, Lanre; Savin, Avital

    2018-01-01

    A two-phase Hele-Shaw problem with a time-dependent gap describes the evolution of the interface, which separates two fluids sandwiched between two plates. The fluids have different viscosities. In addition to the change in the gap width of the Hele-Shaw cell, the interface is driven by the presence of some special distributions of sinks and sources located in both the interior and exterior domains. The effect of surface tension is neglected. Using the Schwarz function approach, we give examples of exact solutions when the interface belongs to a certain family of algebraic curves and the curves do not form cusps. The family of curves are defined by the initial shape of the free boundary.

  7. Analytical solution of the transient temperature profile in gain medium of passively Q-switched microchip laser.

    PubMed

    Han, Xiahui; Li, Jianlang

    2014-11-01

    The transient temperature evolution in the gain medium of a continuous wave (CW) end-pumped passively Q-switched microchip (PQSM) laser is analyzed. By approximating the time-dependent population inversion density as a sawtooth function of time and treating the time-dependent pump absorption of a CW end-pumped PQSM laser as the superposition of an infinite series of short pumping pulses, the analytical expressions of transient temperature evolution and distribution in the gain medium for four- and three-level laser systems, respectively, are given. These analytical solutions are applied to evaluate the transient temperature evolution and distribution in the gain medium of CW end-pumped PQSM Nd:YAG and Yb:YAG lasers.

  8. Timelike naked singularity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Goswami, Rituparno; Joshi, Pankaj S.; Vaz, Cenalo

    We construct a class of spherically symmetric collapse models in which a naked singularity may develop as the end state of collapse. The matter distribution considered has negative radial and tangential pressures, but the weak energy condition is obeyed throughout. The singularity forms at the center of the collapsing cloud and continues to be visible for a finite time. The duration of visibility depends on the nature of energy distribution. Hence the causal structure of the resulting singularity depends on the nature of the mass function chosen for the cloud. We present a general model in which the naked singularitymore » formed is timelike, neither pointlike nor null. Our work represents a step toward clarifying the necessary conditions for the validity of the Cosmic Censorship Conjecture.« less

  9. Characterization of the influence of polarization orientation on bulk damage in KDP crystals at different wavelengths

    NASA Astrophysics Data System (ADS)

    Zheng, YinBo; Ding, Lei; Zhou, XinDa; Ba, RongSheng; Yuan, Jing; Xu, HongLei; Na, Jin; Li, YaJun; Yang, XiaoYu; Chai, Liqun; Chen, Bo; Zheng, WanGuo

    2016-08-01

    The investigation of polarization orientation on damage performance of type I doubler KDP crystals under different wavelengths pulses irradiation is presented in this work. Pinpoints densities (PPD) and the size distribution of pinpoints are extracted through light scattering pictures captured by microscope. The obtained results indicate that the measured PPD as a function of the fluence is both wavelength and polarization dependent, although neither fluence nor polarization have impact on the size distribution of pinpoints. We also find that the damage performances can separate into three groups depending on the wavelength, which suggests the existence of different categories of precursors and different mechanisms responsible for bulk damage initiation in SHG KDP crystals.

  10. The local matrix distribution and the functional development of tissue engineered cartilage, a finite element study.

    PubMed

    Sengers, B G; Van Donkelaar, C C; Oomens, C W J; Baaijens, F P T

    2004-12-01

    Assessment of the functionality of tissue engineered cartilage constructs is hampered by the lack of correlation between global measurements of extra cellular matrix constituents and the global mechanical properties. Based on patterns of matrix deposition around individual cells, it has been hypothesized previously, that mechanical functionality arises when contact occurs between zones of matrix associated with individual cells. The objective of this study is to determine whether the local distribution of newly synthesized extracellular matrix components contributes to the evolution of the mechanical properties of tissue engineered cartilage constructs. A computational homogenization approach was adopted, based on the concept of a periodic representative volume element. Local transport and immobilization of newly synthesized matrix components were described. Mechanical properties were taken dependent on the local matrix concentration and subsequently the global aggregate modulus and hydraulic permeability were derived. The transport parameters were varied to assess the effect of the evolving matrix distribution during culture. The results indicate that the overall stiffness and permeability are to a large extent insensitive to differences in local matrix distribution. This emphasizes the need for caution in the visual interpretation of tissue functionality from histology and underlines the importance of complementary measurements of the matrix's intrinsic molecular organization.

  11. Coherent distributions for the rigid rotator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Grigorescu, Marius

    2016-06-15

    Coherent solutions of the classical Liouville equation for the rigid rotator are presented as positive phase-space distributions localized on the Lagrangian submanifolds of Hamilton-Jacobi theory. These solutions become Wigner-type quasiprobability distributions by a formal discretization of the left-invariant vector fields from their Fourier transform in angular momentum. The results are consistent with the usual quantization of the anisotropic rotator, but the expected value of the Hamiltonian contains a finite “zero point” energy term. It is shown that during the time when a quasiprobability distribution evolves according to the Liouville equation, the related quantum wave function should satisfy the time-dependent Schrödingermore » equation.« less

  12. Novel formulation of the ℳ model through the Generalized-K distribution for atmospheric optical channels.

    PubMed

    Garrido-Balsells, José María; Jurado-Navas, Antonio; Paris, José Francisco; Castillo-Vazquez, Miguel; Puerta-Notario, Antonio

    2015-03-09

    In this paper, a novel and deeper physical interpretation on the recently published Málaga or ℳ statistical distribution is provided. This distribution, which is having a wide acceptance by the scientific community, models the optical irradiance scintillation induced by the atmospheric turbulence. Here, the analytical expressions previously published are modified in order to express them by a mixture of the known Generalized-K and discrete Binomial and Negative Binomial distributions. In particular, the probability density function (pdf) of the ℳ model is now obtained as a linear combination of these Generalized-K pdf, in which the coefficients depend directly on the parameters of the ℳ distribution. In this way, the Málaga model can be physically interpreted as a superposition of different optical sub-channels each of them described by the corresponding Generalized-K fading model and weighted by the ℳ dependent coefficients. The expressions here proposed are simpler than the equations of the original ℳ model and are validated by means of numerical simulations by generating ℳ -distributed random sequences and their associated histogram. This novel interpretation of the Málaga statistical distribution provides a valuable tool for analyzing the performance of atmospheric optical channels for every turbulence condition.

  13. I-mfa domain proteins specifically interact with HTLV-1 Tax and repress its transactivating functions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kusano, Shuichi, E-mail: skusano@m2.kufm.kagoshima-u.ac.jp; Yoshimitsu, Makoto; Hachiman, Miho

    The I-mfa domain proteins HIC (also known as MDFIC) and I-mfa (also known as MDFI) are candidate tumor suppressor genes that are involved in cellular and viral transcriptional regulation. Here, we show that HIC and I-mfa directly interact with human T-cell leukemia virus type-1 (HTLV-1) Tax protein in vitro. In addition, HIC and I-mfa repress Tax-dependent transactivation of an HTLV-1 long terminal repeat (LTR) reporter construct in COS-1, Jurkat and high-Tax-producing HTLV-1-infected T cells. HIC also interacts with Tax through its I-mfa domain in vivo and represses Tax-dependent transactivation of HTLV-1 LTR and NF-κB reporter constructs in an interaction-dependent manner.more » Furthermore, we show that HIC decreases the nuclear distribution and stimulates the proteasomal degradation of Tax. These data reveal that HIC specifically interacts with HTLV-1 Tax and negatively regulates Tax transactivational activity by altering its subcellular distribution and stability. - Highlights: • I-mfa domain proteins, HIC and I-mfa, specifically interact with HTLV-1 Tax. • HIC and I-mfa repress the Tax-dependent transactivation of HTLV-1 LTR. • HIC represses the Tax-dependent transactivation of NF-κΒ. • HIC decreases the nuclear distribution of Tax. • HIC stimulates the proteasomal degradation of Tax.« less

  14. Neuroanatomical distribution of five semantic components of verbs: evidence from fMRI.

    PubMed

    Kemmerer, David; Castillo, Javier Gonzalez; Talavage, Thomas; Patterson, Stephanie; Wiley, Cynthia

    2008-10-01

    The Simulation Framework, also known as the Embodied Cognition Framework, maintains that conceptual knowledge is grounded in sensorimotor systems. To test several predictions that this theory makes about the neural substrates of verb meanings, we used functional magnetic resonance imaging (fMRI) to scan subjects' brains while they made semantic judgments involving five classes of verbs-specifically, Running verbs (e.g., run, jog, walk), Speaking verbs (e.g., shout, mumble, whisper), Hitting verbs (e.g., hit, poke, jab), Cutting verbs (e.g., cut, slice, hack), and Change of State verbs (e.g., shatter, smash, crack). These classes were selected because they vary with respect to the presence or absence of five distinct semantic components-specifically, ACTION, MOTION, CONTACT, CHANGE OF STATE, and TOOL USE. Based on the Simulation Framework, we hypothesized that the ACTION component depends on the primary motor and premotor cortices, that the MOTION component depends on the posterolateral temporal cortex, that the CONTACT component depends on the intraparietal sulcus and inferior parietal lobule, that the CHANGE OF STATE component depends on the ventral temporal cortex, and that the TOOL USE component depends on a distributed network of temporal, parietal, and frontal regions. Virtually all of the predictions were confirmed. Taken together, these findings support the Simulation Framework and extend our understanding of the neuroanatomical distribution of different aspects of verb meaning.

  15. Functional response of osteoblasts in functionally gradient titanium alloy mesh arrays processed by 3D additive manufacturing.

    PubMed

    Nune, K C; Kumar, A; Misra, R D K; Li, S J; Hao, Y L; Yang, R

    2017-02-01

    We elucidate here the osteoblasts functions and cellular activity in 3D printed interconnected porous architecture of functionally gradient Ti-6Al-4V alloy mesh structures in terms of cell proliferation and growth, distribution of cell nuclei, synthesis of proteins (actin, vinculin, and fibronectin), and calcium deposition. Cell culture studies with pre-osteoblasts indicated that the interconnected porous architecture of functionally gradient mesh arrays was conducive to osteoblast functions. However, there were statistically significant differences in the cellular response depending on the pore size in the functionally gradient structure. The interconnected porous architecture contributed to the distribution of cells from the large pore size (G1) to the small pore size (G3), with consequent synthesis of extracellular matrix and calcium precipitation. The gradient mesh structure significantly impacted cell adhesion and influenced the proliferation stage, such that there was high distribution of cells on struts of the gradient mesh structure. Actin and vinculin showed a significant difference in normalized expression level of protein per cell, which was absent in the case of fibronectin. Osteoblasts present on mesh struts formed a confluent sheet, bridging the pores through numerous cytoplasmic extensions. The gradient mesh structure fabricated by electron beam melting was explored to obtain fundamental insights on cellular activity with respect to osteoblast functions. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. Set of new observables in the process e+e-→Z H H

    NASA Astrophysics Data System (ADS)

    Nakamura, Junya

    2018-01-01

    Consequences of nonstandard Higgs couplings in the final-state distributions of the process e+e-→Z H H are studied. We derive an analytic expression for the differential cross section, which has in the most general case nine nonzero functions. These functions are the coefficients of nine angular terms, depend on the Higgs couplings, and can be experimentally measured as observables. Symmetry properties of these nine functions are carefully discussed, and they are divided into four categories under C P and C P T ˜. The relations between our observables and the observables which exist in the literature are also clarified. We numerically study the dependence of our observables on the parameters in an effective Lagrangian for the Higgs couplings. It is shown that these new observables depend on most of the effective Lagrangian parameters in different ways from the total cross section. A benefit from longitudinally polarized e+e- beams is also discussed.

  17. Analytical Description of the H/D Exchange Kinetic of Macromolecule.

    PubMed

    Kostyukevich, Yury; Kononikhin, Alexey; Popov, Igor; Nikolaev, Eugene

    2018-04-17

    We present the accurate analytical solution obtained for the system of rate equations describing the isotope exchange process for molecules containing an arbitrary number of equivalent labile atoms. The exact solution was obtained using Mathematica 7.0 software, and this solution has the form of the time-dependent Gaussian distribution. For the case when forward exchange considerably overlaps the back exchange, it is possible to estimate the activation energy of the reaction by obtaining a temperature dependence of the reaction degree. Using a previously developed approach for performing H/D exchange directly in the ESI source, we have estimated the activation energies for ions with different functional groups and they were found to be in a range 0.04-0.3 eV. Since the value of the activation energy depends on the type of functional group, the developed approach can have potential analytical applications for determining types of functional groups in complex mixtures, such as petroleum, humic substances, bio-oil, and so on.

  18. Risk Perception as the Quantitative Parameter of Ethics and Responsibility in Disaster Study

    NASA Astrophysics Data System (ADS)

    Kostyuchenko, Yuriy; Movchan, Dmytro

    2014-05-01

    Intensity of impacts of natural disasters is increasing with climate and ecological changes spread. Frequency of disasters is increasing, and recurrence of catastrophes characterizing by essential spatial heterogeneity. Distribution of losses is fundamentally non-linear and reflects complex interrelation of natural, social and environmental factor in the changing world on multi scale range. We faced with new types of risks, which require a comprehensive security concept. Modern understanding of complex security, and complex risk management require analysis of all natural and social phenomena, involvement of all available data, constructing of advanced analytical tools, and transformation of our perception of risk and security issues. Traditional deterministic models used for risk analysis are difficult applicable for analysis of social issues, as well as for analysis of multi scale multi-physics phenomena quantification. Also parametric methods are not absolutely effective because the system analyzed is essentially non-ergodic. The stochastic models of risk analysis are applicable for quantitative analysis of human behavior and risk perception. In framework of risk analysis models the risk perception issues were described. Risk is presented as the superposition of distribution (f(x,y)) and damage functions (p(x,y)): P →δΣ x,yf(x,y)p(x,y). As it was shown risk perception essentially influents to the damage function. Basing on the prospect theory and decision making under uncertainty on cognitive bias and handling of risk, modification of damage function is proposed: p(x,y|α(t)). Modified damage function includes an awareness function α(t), which is the system of risk perception function (rp) and function of education and log-term experience (c) as: α(t) → (c - rp). Education function c(t) describes the trend of education and experience. Risk perception function rp reflects security concept of human behavior, is the basis for prediction of socio-economic and socio-ecological processes. Also there is important positive feedback of risk perception function to distribution function. Risk perception is essentially depends of short-term recent events impact in multi agent media. This is managed function. The generalized view of awareness function is proposed: α(t) = δΣ ic - rpi. Using this form separate parameters has been calculated. For example, risk perception function is about 15-55% of awareness function depends of education, age and social status of people. Also it was estimated that fraction of awareness function in damage function, and so in function of risk is about 15-20%. It means that no less than 8-12% of direct losses depend of short-term responsible behavior of 'information agents': social activity of experts, scientists, correct discussions on ethical issues in geo-sciences and media. Other 6-9% of losses are connected with level of public and professional education. This area is also should be field of responsibility of geo-scientists.

  19. Modelling spatiotemporal distribution patterns of earthworms in order to indicate hydrological soil processes

    NASA Astrophysics Data System (ADS)

    Palm, Juliane; Klaus, Julian; van Schaik, Loes; Zehe, Erwin; Schröder, Boris

    2010-05-01

    Soils provide central ecosystem functions in recycling nutrients, detoxifying harmful chemicals as well as regulating microclimate and local hydrological processes. The internal regulation of these functions and therefore the development of healthy and fertile soils mainly depend on the functional diversity of plants and animals. Soil organisms drive essential processes such as litter decomposition, nutrient cycling, water dynamics, and soil structure formation. Disturbances by different soil management practices (e.g., soil tillage, fertilization, pesticide application) affect the distribution and abundance of soil organisms and hence influence regulating processes. The strong relationship between environmental conditions and soil organisms gives us the opportunity to link spatiotemporal distribution patterns of indicator species with the potential provision of essential soil processes on different scales. Earthworms are key organisms for soil function and affect, among other things, water dynamics and solute transport in soils. Through their burrowing activity, earthworms increase the number of macropores by building semi-permanent burrow systems. In the unsaturated zone, earthworm burrows act as preferential flow pathways and affect water infiltration, surface-, subsurface- and matrix flow as well as the transport of water and solutes into deeper soil layers. Thereby different ecological earthworm types have different importance. Deep burrowing anecic earthworm species (e.g., Lumbricus terrestris) affect the vertical flow and thus increase the risk of potential contamination of ground water with agrochemicals. In contrast, horizontal burrowing endogeic (e.g., Aporrectodea caliginosa) and epigeic species (e.g., Lumbricus rubellus) increase water conductivity and the diffuse distribution of water and solutes in the upper soil layers. The question which processes are more relevant is pivotal for soil management and risk assessment. Thus, finding relevant environmental predictors which explain the distribution and dynamics of different ecological earthworm types can help us to understand where or when these processes are relevant in the landscape. Therefore, we develop species distribution models which are a useful tool to predict spatiotemporal distributions of earthworm occurrence and abundance under changing environmental conditions. On field scale, geostatistical distribution maps have shown that the spatial distribution of earthworms depends on soil parameters such as food supply, soil moisture, bulk density but with different patterns for earthworm stages (adult, juvenile) and ecological types (anecic, endogeic, epigeic). On landscape scales, earthworm distribution seems to be strongly controlled by management/disturbance-related factors. Our study shows different modelling approaches for predicting distribution patterns of earthworms in the Weiherbach area, an agricultural site in Kraichtal (Baden-Württemberg, Germany). We carried out field studies on arable fields differing in soil management practices (conventional, conservational), soil properties (organic matter content, texture, soil moisture), and topography (slope, elevation) in order to identify predictors for earthworm occurrence, abundance and biomass. Our earthworm distribution models consider all ecological groups as well as different life stages, accounting for the fact that the activity of juveniles is sometimes different from those of adults. Within our BIOPORE-project it is our final goal to couple our distribution models with population dynamic models and a preferential flow model to an integrated ecohydrological model to analyse feedbacks between earthworm engineering and transport characteristics affecting the functioning of (agro-) ecosystems.

  20. Spatiotemporal Evolution of Runaway Electron Momentum Distributions in Tokamaks

    DOE PAGES

    Paz-Soldan, Carlos; Cooper, Christopher M.; Aleynikov, Pavel; ...

    2017-06-22

    Novel spatial, temporal, and energetically resolved measurements of bremsstrahlung hard-x-ray (HXR) emission from runaway electron (RE) populations in tokamaks reveal nonmonotonic RE distribution functions whose properties depend on the interplay of electric field acceleration with collisional and synchrotron damping. Measurements are consistent with theoretical predictions of momentum-space attractors that accumulate runaway electrons. RE distribution functions are measured to shift to a higher energy when the synchrotron force is reduced by decreasing the toroidal magnetic field strength. Increasing the collisional damping by increasing the electron density (at a fixed magnetic and electric field) reduces the energy of the nonmonotonic feature andmore » reduces the HXR growth rate at all energies. Higher-energy HXR growth rates extrapolate to zero at the expected threshold electric field for RE sustainment, while low-energy REs are anomalously lost. The compilation ofHXR emission from different sight lines into the plasma yields energy and pitch-angle-resolved RE distributions and demonstrates increasing pitch-angle and radial gradients with energy.« less

  1. The asymptotic behaviour of parton distributions at small and large x.

    PubMed

    Ball, Richard D; Nocera, Emanuele R; Rojo, Juan

    2016-01-01

    It has been argued from the earliest days of quantum chromodynamics that at asymptotically small values of x the parton distribution functions (PDFs) of the proton behave as [Formula: see text], where the values of [Formula: see text] can be deduced from Regge theory, while at asymptotically large values of x the PDFs behave as [Formula: see text], where the values of [Formula: see text] can be deduced from the Brodsky-Farrar quark counting rules. We critically examine these claims by extracting the exponents [Formula: see text] and [Formula: see text] from various global fits of parton distributions, analysing their scale dependence, and comparing their values to the naive expectations. We find that for valence distributions both Regge theory and counting rules are confirmed, at least within uncertainties, while for sea quarks and gluons the results are less conclusive. We also compare results from various PDF fits for the structure function ratio [Formula: see text] at large x , and caution against unrealistic uncertainty estimates due to overconstrained parametrisations.

  2. Fires, ecological effects of

    Treesearch

    W. J. Bond; Robert Keane

    2017-01-01

    Fire is both a natural and anthropogenic disturbance influencing the distribution, structure, and functioning of terrestrial ecosystems around the world. Many plants and animals depend on fire for their continued existence. Others species, such as rainforest plants species, are extremely intolerant of burning and need protection from fire. The properties of a fire...

  3. Micromagnetic study of equilibrium states in nano hemispheroidal shells

    NASA Astrophysics Data System (ADS)

    Schultz, Keren; Schultz, Moty

    2017-11-01

    We present results of micromagnetic simulations of thin ferromagnetic nano hemispheroidal shells with sizes ranging from 5 to 50 nm (inside dimensions). Depending on the geometrical and magnetic parameters of the hemispheroidal shell, there exist three different magnetic phases: easy axis, onion and vortex. The profile for the vortex magnetization distribution is analyzed and the limitations and applicability of different vortex ansatzes are discussed. In addition, we investigate the total energy density for each of the magnetic distributions as a function of the hemispheroidal shell dimensions.

  4. Distributed optimization system and method

    DOEpatents

    Hurtado, John E.; Dohrmann, Clark R.; Robinett, III, Rush D.

    2003-06-10

    A search system and method for controlling multiple agents to optimize an objective using distributed sensing and cooperative control. The search agent can be one or more physical agents, such as a robot, and can be software agents for searching cyberspace. The objective can be: chemical sources, temperature sources, radiation sources, light sources, evaders, trespassers, explosive sources, time dependent sources, time independent sources, function surfaces, maximization points, minimization points, and optimal control of a system such as a communication system, an economy, a crane, and a multi-processor computer.

  5. Distributed Optimization System

    DOEpatents

    Hurtado, John E.; Dohrmann, Clark R.; Robinett, III, Rush D.

    2004-11-30

    A search system and method for controlling multiple agents to optimize an objective using distributed sensing and cooperative control. The search agent can be one or more physical agents, such as a robot, and can be software agents for searching cyberspace. The objective can be: chemical sources, temperature sources, radiation sources, light sources, evaders, trespassers, explosive sources, time dependent sources, time independent sources, function surfaces, maximization points, minimization points, and optimal control of a system such as a communication system, an economy, a crane, and a multi-processor computer.

  6. The Boer-Mulders Transverse Momentum Distribution in the Pion and its Evolution in Lattice QCD

    NASA Astrophysics Data System (ADS)

    Engelhardt, M.; Musch, B.; Hägler, P.; Schäfer, A.; Negele, J.

    2015-02-01

    Starting from a definition of transverse momentum-dependent parton distributions (TMDs) in terms of hadronic matrix elements of a quark bilocal operator containing a staple-shaped gauge link, selected TMD observables can be evaluated within Lattice QCD. A TMD ratio describing the Boer-Mulders effect in the pion is investigated, with a particular emphasis on its evolution as a function of a Collins-Soper-type parameter which quantifies the proximity of the staple-shaped gauge links to the light cone.

  7. BRDF-dependent accuracy of array-projection-based 3D sensors.

    PubMed

    Heist, Stefan; Kühmstedt, Peter; Tünnermann, Andreas; Notni, Gunther

    2017-03-10

    In order to perform high-speed three-dimensional (3D) shape measurements with structured light systems, high-speed projectors are required. One possibility is an array projector, which allows pattern projection at several tens of kilohertz by switching on and off the LEDs of various slide projectors. The different projection centers require a separate analysis, as the intensity received by the cameras depends on the projection direction and the object's bidirectional reflectance distribution function (BRDF). In this contribution, we investigate the BRDF-dependent errors of array-projection-based 3D sensors and propose an error compensation process.

  8. Power law scaling in synchronization of brain signals depends on cognitive load.

    PubMed

    Tinker, Jesse; Velazquez, Jose Luis Perez

    2014-01-01

    As it has several features that optimize information processing, it has been proposed that criticality governs the dynamics of nervous system activity. Indications of such dynamics have been reported for a variety of in vitro and in vivo recordings, ranging from in vitro slice electrophysiology to human functional magnetic resonance imaging. However, there still remains considerable debate as to whether the brain actually operates close to criticality or in another governing state such as stochastic or oscillatory dynamics. A tool used to investigate the criticality of nervous system data is the inspection of power-law distributions. Although the findings are controversial, such power-law scaling has been found in different types of recordings. Here, we studied whether there is a power law scaling in the distribution of the phase synchronization derived from magnetoencephalographic recordings during executive function tasks performed by children with and without autism. Characterizing the brain dynamics that is different between autistic and non-autistic individuals is important in order to find differences that could either aid diagnosis or provide insights as to possible therapeutic interventions in autism. We report in this study that power law scaling in the distributions of a phase synchrony index is not very common and its frequency of occurrence is similar in the control and the autism group. In addition, power law scaling tends to diminish with increased cognitive load (difficulty or engagement in the task). There were indications of changes in the probability distribution functions for the phase synchrony that were associated with a transition from power law scaling to lack of power law (or vice versa), which suggests the presence of phenomenological bifurcations in brain dynamics associated with cognitive load. Hence, brain dynamics may fluctuate between criticality and other regimes depending upon context and behaviors.

  9. Water Contact Angle Dependence with Hydroxyl Functional Groups on Silica Surfaces under CO2 Sequestration Conditions.

    PubMed

    Chen, Cong; Zhang, Ning; Li, Weizhong; Song, Yongchen

    2015-12-15

    Functional groups on silica surfaces under CO2 sequestration conditions are complex due to reactions among supercritical CO2, brine and silica. Molecular dynamics simulations have been performed to investigate the effects of hydroxyl functional groups on wettability. It has been found that wettability shows a strong dependence on functional groups on silica surfaces: silanol number density, space distribution, and deprotonation/protonation degree. For neutral silica surfaces with crystalline structure (Q(3), Q(3)/Q(4), Q(4)), as silanol number density decreases, contact angle increases from 33.5° to 146.7° at 10.5 MPa and 318 K. When Q(3) surface changes to an amorphous structure, water contact angle increases 20°. Water contact angle decreases about 12° when 9% of silanol groups on Q(3) surface are deprotonated. When the deprotonation degree increases to 50%, water contact angle decreases to 0. The dependence of wettability on silica surface functional groups was used to analyze contact angle measurement ambiguity in literature. The composition of silica surfaces is complicated under CO2 sequestration conditions, the results found in this study may help to better understand wettability of CO2/brine/silica system.

  10. - XSUMMER- Transcendental functions and symbolic summation in FORM

    NASA Astrophysics Data System (ADS)

    Moch, S.; Uwer, P.

    2006-05-01

    Harmonic sums and their generalizations are extremely useful in the evaluation of higher-order perturbative corrections in quantum field theory. Of particular interest have been the so-called nested sums, where the harmonic sums and their generalizations appear as building blocks, originating for example, from the expansion of generalized hypergeometric functions around integer values of the parameters. In this paper we discuss the implementation of several algorithms to solve these sums by algebraic means, using the computer algebra system FORM. Program summaryTitle of program:XSUMMER Catalogue identifier:ADXQ_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/ADXQ_v1_0 Program obtainable from:CPC Program Library, Queen's University of Belfast, N. Ireland License:GNU Public License and FORM License Computers:all Operating system:all Program language:FORM Memory required to execute:Depending on the complexity of the problem, recommended at least 64 MB RAM No. of lines in distributed program, including test data, etc.:9854 No. of bytes in distributed program, including test data, etc.:126 551 Distribution format:tar.gz Other programs called:none External files needed:none Nature of the physical problem:Systematic expansion of higher transcendental functions in a small parameter. The expansions arise in the calculation of loop integrals in perturbative quantum field theory. Method of solution:Algebraic manipulations of nested sums. Restrictions on complexity of the problem:Usually limited only by the available disk space. Typical running time:Dependent on the complexity of the problem.

  11. Dependence of the Contact Resistance on the Design of Stranded Conductors

    PubMed Central

    Zeroukhi, Youcef; Napieralska-Juszczak, Ewa; Vega, Guillaume; Komeza, Krzysztof; Morganti, Fabrice; Wiak, Slawomir

    2014-01-01

    During the manufacturing process multi-strand conductors are subject to compressive force and rotation moments. The current distribution in the multi-strand conductors is not uniform and is controlled by the transverse resistivity. This is mainly determined by the contact resistance at the strand crossovers and inter-strand contact resistance. The surface layer properties, and in particular the crystalline structure and degree of oxidation, are key parameters in determining the transverse resistivity. The experimental set-ups made it possible to find the dependence of contact resistivity as a function of continuous working stresses and cable design. A study based on measurements and numerical simulation is made to identify the contact resistivity functions. PMID:25196112

  12. Redistribution of Cav2.1 channels and calcium ions in nerve terminals following end-to-side neurorrhaphy: ionic imaging analysis by TOF-SIMS.

    PubMed

    Liu, Chiung-Hui; Chang, Hung-Ming; Tseng, To-Jung; Lan, Chyn-Tair; Chen, Li-You; Youn, Su-Chung; Lee, Jian-Jr; Mai, Fu-Der; Chou, Jui-Feng; Liao, Wen-Chieh

    2016-11-01

    The P/Q-type voltage-dependent calcium channel (Cav2.1) in the presynaptic membranes of motor nerve terminals plays an important role in regulating Ca 2+ transport, resulting in transmitter release within the nervous system. The recovery of Ca 2+ -dependent signal transduction on motor end plates (MEPs) and innervated muscle may directly reflect nerve regeneration following peripheral nerve injury. Although the functional significance of calcium channels and the levels of Ca 2+ signalling in nerve regeneration are well documented, little is known about calcium channel expression and its relation with the dynamic Ca 2+ ion distribution at regenerating MEPs. In the present study, end-to-side neurorrhaphy (ESN) was performed as an in vivo model of peripheral nerve injury. The distribution of Ca 2+ at regenerating MEPs following ESN was first detected by time-of-flight secondary ion mass spectrometry, and the specific localization and expression of Cav2.1 channels were examined by confocal microscopy and western blotting. Compared with other fundamental ions, such as Na + and K + , dramatic changes in the Ca 2+ distribution were detected along with the progression of MEP regeneration. The re-establishment of Ca 2+ distribution and intensity were correlated with the functional recovery of muscle in ESN rats. Furthermore, the re-clustering of Cav2.1 channels after ESN at the nerve terminals corresponded with changes in the Ca 2+ distribution. These results indicated that renewal of the Cav2.1 distribution within the presynaptic nerve terminals may be necessary for initiating a proper Ca 2+ influx and shortening the latency of muscle contraction during nerve regeneration.

  13. Interpreting the concordance statistic of a logistic regression model: relation to the variance and odds ratio of a continuous explanatory variable.

    PubMed

    Austin, Peter C; Steyerberg, Ewout W

    2012-06-20

    When outcomes are binary, the c-statistic (equivalent to the area under the Receiver Operating Characteristic curve) is a standard measure of the predictive accuracy of a logistic regression model. An analytical expression was derived under the assumption that a continuous explanatory variable follows a normal distribution in those with and without the condition. We then conducted an extensive set of Monte Carlo simulations to examine whether the expressions derived under the assumption of binormality allowed for accurate prediction of the empirical c-statistic when the explanatory variable followed a normal distribution in the combined sample of those with and without the condition. We also examine the accuracy of the predicted c-statistic when the explanatory variable followed a gamma, log-normal or uniform distribution in combined sample of those with and without the condition. Under the assumption of binormality with equality of variances, the c-statistic follows a standard normal cumulative distribution function with dependence on the product of the standard deviation of the normal components (reflecting more heterogeneity) and the log-odds ratio (reflecting larger effects). Under the assumption of binormality with unequal variances, the c-statistic follows a standard normal cumulative distribution function with dependence on the standardized difference of the explanatory variable in those with and without the condition. In our Monte Carlo simulations, we found that these expressions allowed for reasonably accurate prediction of the empirical c-statistic when the distribution of the explanatory variable was normal, gamma, log-normal, and uniform in the entire sample of those with and without the condition. The discriminative ability of a continuous explanatory variable cannot be judged by its odds ratio alone, but always needs to be considered in relation to the heterogeneity of the population.

  14. Analyzing signal attenuation in PFG anomalous diffusion via a non-Gaussian phase distribution approximation approach by fractional derivatives.

    PubMed

    Lin, Guoxing

    2016-11-21

    Anomalous diffusion exists widely in polymer and biological systems. Pulsed-field gradient (PFG) techniques have been increasingly used to study anomalous diffusion in nuclear magnetic resonance and magnetic resonance imaging. However, the interpretation of PFG anomalous diffusion is complicated. Moreover, the exact signal attenuation expression including the finite gradient pulse width effect has not been obtained based on fractional derivatives for PFG anomalous diffusion. In this paper, a new method, a Mainardi-Luchko-Pagnini (MLP) phase distribution approximation, is proposed to describe PFG fractional diffusion. MLP phase distribution is a non-Gaussian phase distribution. From the fractional derivative model, both the probability density function (PDF) of a spin in real space and the PDF of the spin's accumulating phase shift in virtual phase space are MLP distributions. The MLP phase distribution leads to a Mittag-Leffler function based PFG signal attenuation, which differs significantly from the exponential attenuation for normal diffusion and from the stretched exponential attenuation for fractional diffusion based on the fractal derivative model. A complete signal attenuation expression E α (-D f b α,β * ) including the finite gradient pulse width effect was obtained and it can handle all three types of PFG fractional diffusions. The result was also extended in a straightforward way to give a signal attenuation expression of fractional diffusion in PFG intramolecular multiple quantum coherence experiments, which has an n β dependence upon the order of coherence which is different from the familiar n 2 dependence in normal diffusion. The results obtained in this study are in agreement with the results from the literature. The results in this paper provide a set of new, convenient approximation formalisms to interpret complex PFG fractional diffusion experiments.

  15. Influence of Scale-dependent Processes on Capelin (Mallotus villosus) Distributions in the Gulf of Alaska

    NASA Astrophysics Data System (ADS)

    McGowan, D. W.; Horne, J. K.

    2016-02-01

    As part of the Gulf of Alaska (GOA) Integrated Ecosystem Research Program (GOAIERP), scale-dependent relationships of capelin (Mallotus villosus) densities were quantified as a function of oceanographic gradients, zooplankton prey fields, predators, and a potential competitor (age-0 walleye pollock, Gadus chalcogrammus). Within GOA food webs, capelin occupy an intermediate trophic position as planktivores where they function as both predator and prey; facilitating energy transfer from secondary producers to higher trophic level piscivores. Variability in the distribution of capelin in the GOA has previously been attributed to physical and biological processes that operate across a range of spatial and temporal scales. Capelin distributions were quantified during an acoustic-trawl survey conducted in the summer and fall of 2011 and 2013. Densities were significantly higher in 2013 and primarily concentrated along the edges of shallow submarine banks over the continental shelf east of Kodiak in both years. Wavelet analysis was used to identify scales that maximize variability in capelin distributions. Wavelets decompose a data series in the frequency domain to identify periods that account for variance in the series while retaining nonstationary features that may be biologically meaningful. Variance peaks in capelin densities were identified along most transects at fine- (0.44 to 0.72 km) and coarse- (32.6 to 52.9 km) scales, likely corresponding to aggregation size and the width of banks. Linear and nonlinear models were used to identify factors and interactions that influence capelin distributions at the scale of a predator-prey interaction and at coarser environmental scales. Cross-wavelets measured coherence between capelin and individual factors across a range of scales. Preliminary results indicate that capelin distributions may be influenced by intrusions of cold, nutrient-rich water from the GOA basin on to the shelf.

  16. Transient difference solutions of the inhomogeneous wave equation - Simulation of the Green's function

    NASA Technical Reports Server (NTRS)

    Baumeister, K. J.

    1983-01-01

    A time-dependent finite difference formulation to the inhomogeneous wave equation is derived for plane wave propagation with harmonic noise sources. The difference equation and boundary conditions are developed along with the techniques to simulate the Dirac delta function associated with a concentrated noise source. Example calculations are presented for the Green's function and distributed noise sources. For the example considered, the desired Fourier transformed acoustic pressures are determined from the transient pressures by use of a ramping function and an integration technique, both of which eliminates the nonharmonic pressure associated with the initial transient.

  17. Transient difference solutions of the inhomogeneous wave equation: Simulation of the Green's function

    NASA Technical Reports Server (NTRS)

    Baumeiste, K. J.

    1983-01-01

    A time-dependent finite difference formulation to the inhomogeneous wave equation is derived for plane wave propagation with harmonic noise sources. The difference equation and boundary conditions are developed along with the techniques to simulate the Dirac delta function associated with a concentrated noise source. Example calculations are presented for the Green's function and distributed noise sources. For the example considered, the desired Fourier transformed acoustic pressures are determined from the transient pressures by use of a ramping function and an integration technique, both of which eliminates the nonharmonic pressure associated with the initial transient.

  18. Bessel functions in mass action modeling of memories and remembrances

    NASA Astrophysics Data System (ADS)

    Freeman, Walter J.; Capolupo, Antonio; Kozma, Robert; Olivares del Campo, Andrés; Vitiello, Giuseppe

    2015-10-01

    Data from experimental observations of a class of neurological processes (Freeman K-sets) present functional distribution reproducing Bessel function behavior. We model such processes with couples of damped/amplified oscillators which provide time dependent representation of Bessel equation. The root loci of poles and zeros conform to solutions of K-sets. Some light is shed on the problem of filling the gap between the cellular level dynamics and the brain functional activity. Breakdown of time-reversal symmetry is related with the cortex thermodynamic features. This provides a possible mechanism to deduce lifetime of recorded memory.

  19. A lower bound on the Milky Way mass from general phase-space distribution function models

    NASA Astrophysics Data System (ADS)

    Bratek, Łukasz; Sikora, Szymon; Jałocha, Joanna; Kutschera, Marek

    2014-02-01

    We model the phase-space distribution of the kinematic tracers using general, smooth distribution functions to derive a conservative lower bound on the total mass within ≈150-200 kpc. By approximating the potential as Keplerian, the phase-space distribution can be simplified to that of a smooth distribution of energies and eccentricities. Our approach naturally allows for calculating moments of the distribution function, such as the radial profile of the orbital anisotropy. We systematically construct a family of phase-space functions with the resulting radial velocity dispersion overlapping with the one obtained using data on radial motions of distant kinematic tracers, while making no assumptions about the density of the tracers and the velocity anisotropy parameter β regarded as a function of the radial variable. While there is no apparent upper bound for the Milky Way mass, at least as long as only the radial motions are concerned, we find a sharp lower bound for the mass that is small. In particular, a mass value of 2.4 × 1011 M⊙, obtained in the past for lower and intermediate radii, is still consistent with the dispersion profile at larger radii. Compared with much greater mass values in the literature, this result shows that determining the Milky Way mass is strongly model-dependent. We expect a similar reduction of mass estimates in models assuming more realistic mass profiles. Full Table 1 is only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/562/A134

  20. On the existence of a scaling relation in the evolution of cellular systems

    NASA Astrophysics Data System (ADS)

    Fortes, M. A.

    1994-05-01

    A mean field approximation is used to analyze the evolution of the distribution of sizes in systems formed by individual 'cells,' each of which grows or shrinks, in such a way that the total number of cells decreases (e.g. polycrystals, soap froths, precipitate particles in a matrix). The rate of change of the size of a cell is defined by a growth function that depends on the size (x) of the cell and on moments of the size distribution, such as the average size (bar-x). Evolutionary equations for the distribution of sizes and of reduced sizes (i.e. x/bar-x) are established. The stationary (or steady state) solutions of the equations are obtained for various particular forms of the growth function. A steady state of the reduced size distribution is equivalent to a scaling behavior. It is found that there are an infinity of steady state solutions which form a (continuous) one-parameter family of functions, but they are not, in general, reached from an arbitrary initial state. These properties are at variance from those that can be derived from models based on von Neumann-Mullins equation.

  1. Mechanistic simulation of normal-tissue damage in radiotherapy—implications for dose-volume analyses

    NASA Astrophysics Data System (ADS)

    Rutkowska, Eva; Baker, Colin; Nahum, Alan

    2010-04-01

    A radiobiologically based 3D model of normal tissue has been developed in which complications are generated when 'irradiated'. The aim is to provide insight into the connection between dose-distribution characteristics, different organ architectures and complication rates beyond that obtainable with simple DVH-based analytical NTCP models. In this model the organ consists of a large number of functional subunits (FSUs), populated by stem cells which are killed according to the LQ model. A complication is triggered if the density of FSUs in any 'critical functioning volume' (CFV) falls below some threshold. The (fractional) CFV determines the organ architecture and can be varied continuously from small (series-like behaviour) to large (parallel-like). A key feature of the model is its ability to account for the spatial dependence of dose distributions. Simulations were carried out to investigate correlations between dose-volume parameters and the incidence of 'complications' using different pseudo-clinical dose distributions. Correlations between dose-volume parameters and outcome depended on characteristics of the dose distributions and on organ architecture. As anticipated, the mean dose and V20 correlated most strongly with outcome for a parallel organ, and the maximum dose for a serial organ. Interestingly better correlation was obtained between the 3D computer model and the LKB model with dose distributions typical for serial organs than with those typical for parallel organs. This work links the results of dose-volume analyses to dataset characteristics typical for serial and parallel organs and it may help investigators interpret the results from clinical studies.

  2. Is a top-heavy initial mass function needed to reproduce the submillimetre galaxy number counts?

    NASA Astrophysics Data System (ADS)

    Safarzadeh, Mohammadtaher; Lu, Yu; Hayward, Christopher C.

    2017-12-01

    Matching the number counts and redshift distribution of submillimetre galaxies (SMGs) without invoking modifications to the initial mass ffunction (IMF) has proved challenging for semi-analytic models (SAMs) of galaxy formation. We adopt a previously developed SAM that is constrained to match the z = 0 galaxy stellar mass function and makes various predictions which agree well with observational constraints; we do not recalibrate the SAM for this work. We implement three prescriptions to predict the submillimetre flux densities of the model galaxies; two depend solely on star formation rate, whereas the other also depends on the dust mass. By comparing the predictions of the models, we find that taking into account the dust mass, which affects the dust temperature and thus influences the far-infrared spectral energy distribution, is crucial for matching the number counts and redshift distribution of SMGs. Moreover, despite using a standard IMF, our model can match the observed SMG number counts and redshift distribution reasonably well, which contradicts the conclusions of some previous studies that a top-heavy IMF, in addition to taking into account the effect of dust mass, is needed to match these observations. Although we have not identified the key ingredient that is responsible for our model matching the observed SMG number counts and redshift distribution without IMF variation - which is challenging given the different prescriptions for physical processes employed in the SAMs of interest - our results demonstrate that in SAMs, IMF variation is degenerate with other physical processes, such as stellar feedback.

  3. Log-normal distribution of the trace element data results from a mixture of stocahstic input and deterministic internal dynamics.

    PubMed

    Usuda, Kan; Kono, Koichi; Dote, Tomotaro; Shimizu, Hiroyasu; Tominaga, Mika; Koizumi, Chisato; Nakase, Emiko; Toshina, Yumi; Iwai, Junko; Kawasaki, Takashi; Akashi, Mitsuya

    2002-04-01

    In previous article, we showed a log-normal distribution of boron and lithium in human urine. This type of distribution is common in both biological and nonbiological applications. It can be observed when the effects of many independent variables are combined, each of which having any underlying distribution. Although elemental excretion depends on many variables, the one-compartment open model following a first-order process can be used to explain the elimination of elements. The rate of excretion is proportional to the amount present of any given element; that is, the same percentage of an existing element is eliminated per unit time, and the element concentration is represented by a deterministic negative power function of time in the elimination time-course. Sampling is of a stochastic nature, so the dataset of time variables in the elimination phase when the sample was obtained is expected to show Normal distribution. The time variable appears as an exponent of the power function, so a concentration histogram is that of an exponential transformation of Normally distributed time. This is the reason why the element concentration shows a log-normal distribution. The distribution is determined not by the element concentration itself, but by the time variable that defines the pharmacokinetic equation.

  4. Time-dependent resilience assessment and improvement of urban infrastructure systems

    NASA Astrophysics Data System (ADS)

    Ouyang, Min; Dueñas-Osorio, Leonardo

    2012-09-01

    This paper introduces an approach to assess and improve the time-dependent resilience of urban infrastructure systems, where resilience is defined as the systems' ability to resist various possible hazards, absorb the initial damage from hazards, and recover to normal operation one or multiple times during a time period T. For different values of T and its position relative to current time, there are three forms of resilience: previous resilience, current potential resilience, and future potential resilience. This paper mainly discusses the third form that takes into account the systems' future evolving processes. Taking the power transmission grid in Harris County, Texas, USA as an example, the time-dependent features of resilience and the effectiveness of some resilience-inspired strategies, including enhancement of situational awareness, management of consumer demand, and integration of distributed generators, are all simulated and discussed. Results show a nonlinear nature of resilience as a function of T, which may exhibit a transition from an increasing function to a decreasing function at either a threshold of post-blackout improvement rate, a threshold of load profile with consumer demand management, or a threshold number of integrated distributed generators. These results are further confirmed by studying a typical benchmark system such as the IEEE RTS-96. Such common trends indicate that some resilience strategies may enhance infrastructure system resilience in the short term, but if not managed well, they may compromise practical utility system resilience in the long run.

  5. Time-dependent resilience assessment and improvement of urban infrastructure systems.

    PubMed

    Ouyang, Min; Dueñas-Osorio, Leonardo

    2012-09-01

    This paper introduces an approach to assess and improve the time-dependent resilience of urban infrastructure systems, where resilience is defined as the systems' ability to resist various possible hazards, absorb the initial damage from hazards, and recover to normal operation one or multiple times during a time period T. For different values of T and its position relative to current time, there are three forms of resilience: previous resilience, current potential resilience, and future potential resilience. This paper mainly discusses the third form that takes into account the systems' future evolving processes. Taking the power transmission grid in Harris County, Texas, USA as an example, the time-dependent features of resilience and the effectiveness of some resilience-inspired strategies, including enhancement of situational awareness, management of consumer demand, and integration of distributed generators, are all simulated and discussed. Results show a nonlinear nature of resilience as a function of T, which may exhibit a transition from an increasing function to a decreasing function at either a threshold of post-blackout improvement rate, a threshold of load profile with consumer demand management, or a threshold number of integrated distributed generators. These results are further confirmed by studying a typical benchmark system such as the IEEE RTS-96. Such common trends indicate that some resilience strategies may enhance infrastructure system resilience in the short term, but if not managed well, they may compromise practical utility system resilience in the long run.

  6. Interaction of notochord-derived fibrinogen-like protein with Notch regulates the patterning of the central nervous system of Ciona intestinalis embryos.

    PubMed

    Yamada, Shigehiro; Hotta, Kohji; Yamamoto, Takamasa S; Ueno, Naoto; Satoh, Nori; Takahashi, Hiroki

    2009-04-01

    The midline organ the notochord and its overlying dorsal neural tube are the most prominent features of the chordate body plan. Although the molecular mechanisms involved in the formation of the central nervous system (CNS) have been studied extensively in vertebrate embryos, none of the genes that are expressed exclusively in notochord cells has been shown to function in this process. Here, we report a gene in the urochordate Ciona intestinalis encoding a fibrinogen-like protein that plays a pivotal role in the notochord-dependent positioning of neuronal cells. While this gene (Ci-fibrn) is expressed exclusively in notochord cells, its protein product is not confined to these cells but is distributed underneath the CNS as fibril-like protrusions. We demonstrated that Ci-fibrn interacts physically and functionally with Ci-Notch that is expressed in the central nervous system, and that the correct distribution of Ci-fibrn protein is dependent on Notch signaling. Disturbance of the Ci-fibrn distribution caused an abnormal positioning of neuronal cells and an abnormal track of axon extension. Therefore, it is highly likely that the interaction between the notochord-based fibrinogen-like protein and the neural tube-based Notch signaling plays an essential role in the proper patterning of CNS.

  7. Measurement of jet fragmentation in Pb+Pb and pp collisions at $$\\sqrt{s}$$$_ {NN}$$ = 2.76 TeV with the ATLAS detector at the LHC

    DOE PAGES

    Aaboud, M.; Aad, G.; Abbott, B.; ...

    2017-06-08

    The distributions of transverse momentum and longitudinal momentum fraction of charged particles in jets are measured in Pb+Pb and pp collisions with the ATLAS detector at the LHC. The distributions are measured as a function of jet transverse momentum and rapidity. The analysis utilises an integrated luminosity of 0.14 nb -1 of Pb+Pb data and 4.0 pb -1 of pp data collected in 2011 and 2013, respectively, at the same centre-of-mass energy of 2.76 TeV per colliding nucleon pair. The distributions measured in pp collisions are used as a reference for those measured in Pb+Pb collisions in order to evaluatemore » the impact on the internal structure of jets from the jet energy loss of fast partons propagating through the hot, dense medium created in heavy-ion collisions. Modest but significant centrality-dependent modifications of fragmentation functions in Pb+Pb collisions with respect to those in pp collisions are seen. Finally, no significant dependence of modifications on jet p T and rapidity selections is observed except for the fragments with the highest transverse momenta for which some reduction of yields is observed for more forward jets.« less

  8. Ambient Noise Interferometry and Surface Wave Array Tomography: Promises and Problems

    NASA Astrophysics Data System (ADS)

    van der Hilst, R. D.; Yao, H.; de Hoop, M. V.; Campman, X.; Solna, K.

    2008-12-01

    In the late 1990ies most seismologists would have frowned at the possibility of doing high-resolution surface wave tomography with noise instead of with signal associated with ballistic source-receiver propagation. Some may still do, but surface wave tomography with Green's functions estimated through ambient noise interferometry ('sourceless tomography') has transformed from a curiosity into one of the (almost) standard tools for analysis of data from dense seismograph arrays. Indeed, spectacular applications of ambient noise surface wave tomography have recently been published. For example, application to data from arrays in SE Tibet revealed structures in the crust beneath the Tibetan plateau that could not be resolved by traditional tomography (Yao et al., GJI, 2006, 2008). While the approach is conceptually simple, in application the proverbial devil is in the detail. Full reconstruction of the Green's function requires that the wavefields used are diffusive and that ambient noise energy is evenly distributed in the spatial dimensions of interest. In the field, these conditions are not usually met, and (frequency dependent) non-uniformity of the noise sources may lead to incomplete reconstruction of the Green's function. Furthermore, ambient noise distributions can be time-dependent, and seasonal variations have been documented. Naive use of empirical Green's functions may produce (unknown) bias in the tomographic models. The degrading effect on EGFs of the directionality of noise distribution forms particular challenges for applications beyond isotropic surface wave inversions, such as inversions for (azimuthal) anisotropy and attempts to use higher modes (or body waves). Incomplete Green's function reconstruction can (probably) not be prevented, but it may be possible to reduce the problem and - at least - understand the degree of incomplete reconstruction and prevent it from degrading the tomographic model. We will present examples of Rayleigh wave inversions and discuss strategies to mitigate effects of incomplete Green's function reconstruction on tomographic images.

  9. Econometric model for age- and population-dependent radiation exposures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sandquist, G.M.; Slaughter, D.M.; Rogers, V.C.

    1991-01-01

    The economic impact associated with ionizing radiation exposures in a given human population depends on numerous factors including the individual's mean economic status as a function age, the age distribution of the population, the future life expectancy at each age, and the latency period for the occurrence of radiation-induced health effects. A simple mathematical model has been developed that provides an analytical methodology for estimating the societal econometrics associated with radiation effects are to be assessed and compared for economic evaluation.

  10. Processor-Based Strong Physical Unclonable Functions with Aging-Based Response Tuning (Preprint)

    DTIC Science & Technology

    2013-01-01

    NUMBER OF PAGES 19a. NAME OF RESPONSIBLE PERSON GARRET S. ROSE a. REPORT U b . ABSTRACT U c. THIS PAGE U 19b. TELEPHONE NUMBER (Include area code...generated by quad-tree process variation model [1]. The number in the right side of the figures means Z value of Gaussian distribution. B . Delay model To...and B are technology dependent constants. As shown in Equation 2, the Vth shift heavily depends on temperature (T ) and stress time (t). By applying

  11. Bounds on quantum confinement effects in metal nanoparticles

    NASA Astrophysics Data System (ADS)

    Blackman, G. Neal; Genov, Dentcho A.

    2018-03-01

    Quantum size effects on the permittivity of metal nanoparticles are investigated using the quantum box model. Explicit upper and lower bounds are derived for the permittivity and relaxation rates due to quantum confinement effects. These bounds are verified numerically, and the size dependence and frequency dependence of the empirical Drude size parameter is extracted from the model. Results suggest that the common practice of empirically modifying the dielectric function can lead to inaccurate predictions for highly uniform distributions of finite-sized particles.

  12. Lithiated imines: solvent-dependent aggregate structures and mechanisms of alkylation.

    PubMed

    Zuend, Stephan J; Ramirez, Antonio; Lobkovsky, Emil; Collum, David B

    2006-05-03

    We describe efforts to understand the structure and reactivity of lithiated cyclohexanone N-cyclohexylimine. The lithioimine affords complex solvent-dependent distributions of monomers, dimers, and trimers in a number of ethereal solvents. Careful selection of solvent provides exclusively monosolvated dimers. Rate studies on the C-alkylations reveal chronic mixtures of monomer- and dimer-based pathways. We explore the factors influencing reactants and alkylation transition structures and the marked differences between lithioimines and isostructural lithium dialkylamides with the aid of density functional theory calculations.

  13. Settling Efficiency of Urban Particulate Matter Transported by Stormwater Runoff.

    PubMed

    Carbone, Marco; Penna, Nadia; Piro, Patrizia

    2015-09-01

    The main purpose of control measures in urban areas is to retain particulate matter washed out by stormwater over impermeable surfaces. In stormwater control measures, particulate matter removal typically occurs via sedimentation. Settling column tests were performed to examine the settling efficiency of such units using monodisperse and heterodisperse particulate matter (for which the particle size distributions were measured and modelled by the cumulative gamma distribution). To investigate the dependence of settling efficiency from the particulate matter, a variant of the evolutionary polynomial regression (EPR), a Microsoft Excel function based on multi-objective EPR technique (EPR-MOGA), called EPR MOGA XL, was used as a data-mining strategy. The results from this study have shown that settling efficiency is a function of the initial total suspended solids (TSS) concentration and of the median diameter (d50 index), obtained from the particle size distributions (PSDs) of the samples.

  14. Anisotropic distribution function of minority tail ions generated by strong ion-cyclotron resonance heating

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chang, C.S.; Colestock, P.

    1989-05-01

    The highly anisotropic particle distribution function of minority tail ions driven by ion-cyclotron resonance heating at the fundamental harmonic is calculated in a two-dimensional velocity space. It is assumed that the heating is strong enough to drive most of the resonant ions above the in-electron critical slowing-down energy. Simple analytic expressions for the tail distribution are obtained fro the case when the Doppler effect is sufficiently large to flatten the sharp pitch angle dependence in the bounce averaged qualilinear heating coefficient, D/sub b/, and for the case when D/sub b/ is assumed to be constant in pitch angle and energy.more » It is found that a simple constant-D/sub b/ solution can be used instead of the more complicated sharp-D/sub b/ solution for many analytic purposes. 4 refs., 4 figs.« less

  15. Full-thickness small intestine necrosis with midgut volvulus, distributed in a patchy fashion, is reversible with moderate blood flow: resumption of normal function to non-viable intestine.

    PubMed

    Amano, Hizuru; Uchida, Hiroo; Kawashima, Hiroshi; Tanaka, Yujiro; Kishimoto, Hiroshi

    2014-08-01

    Midgut volvulus is a highly life-threatening condition that carries a high risk of short gut syndrome. We report a case of catastrophic neonatal midgut volvulus in which second-look laparotomy revealed apparently non-viable remnant small intestine but with a moderate blood supply. Full-thickness small intestine necrosis was distributed in a patchy fashion, with non-viable and necrotic areas distributed so widely that no portion of the intestine could be resected. A section of full-thickness necrotic intestine preserved at surgery was able to regenerate, and normal function was restored over a period of 1 month. This case indicated that intestinal resumption may be dependent on blood flow. Even when intestinal viability is questionable, preservation enables the chance of regeneration if moderate blood flow is present.

  16. The dappled nature of causes of psychiatric illness: replacing the organic-functional/hardware-software dichotomy with empirically based pluralism.

    PubMed

    Kendler, K S

    2012-04-01

    Our tendency to see the world of psychiatric illness in dichotomous and opposing terms has three major sources: the philosophy of Descartes, the state of neuropathology in late nineteenth century Europe (when disorders were divided into those with and without demonstrable pathology and labeled, respectively, organic and functional), and the influential concept of computer functionalism wherein the computer is viewed as a model for the human mind-brain system (brain=hardware, mind=software). These mutually re-enforcing dichotomies, which have had a pernicious influence on our field, make a clear prediction about how 'difference-makers' (aka causal risk factors) for psychiatric disorders should be distributed in nature. In particular, are psychiatric disorders like our laptops, which when they dysfunction, can be cleanly divided into those with software versus hardware problems? I propose 11 categories of difference-makers for psychiatric illness from molecular genetics through culture and review their distribution in schizophrenia, major depression and alcohol dependence. In no case do these distributions resemble that predicted by the organic-functional/hardware-software dichotomy. Instead, the causes of psychiatric illness are dappled, distributed widely across multiple categories. We should abandon Cartesian and computer-functionalism-based dichotomies as scientifically inadequate and an impediment to our ability to integrate the diverse information about psychiatric illness our research has produced. Empirically based pluralism provides a rigorous but dappled view of the etiology of psychiatric illness. Critically, it is based not on how we wish the world to be but how the difference-makers for psychiatric illness are in fact distributed.

  17. Capillary electrophoresis of covalently functionalized single-chirality carbon nanotubes.

    PubMed

    He, Pingli; Meany, Brendan; Wang, Chunyan; Piao, Yanmei; Kwon, Hyejin; Deng, Shunliu; Wang, YuHuang

    2017-07-01

    We demonstrate the separation of chirality-enriched single-walled carbon nanotubes (SWCNTs) by degree of surface functionalization using high-performance CE. Controlled amounts of negatively charged and positively charged functional groups were attached to the sidewall of chirality-enriched SWCNTs through covalent functionalization using 4-carboxybenzenediazonium tetrafluoroborate or 4-diazo-N,N-diethylaniline tetrafluoroborate, respectively. Surfactant- and pH-dependent studies confirmed that under conditions that minimized ionic screening effects, separation of these functionalized SWCNTs was strongly dependent on the surface charge density introduced through covalent surface chemistry. For both heterogeneous mixtures and single-chirality-enriched samples, covalently functionalized SWCNTs showed substantially increased peak width in electropherogram spectra compared to nonfunctionalized SWCNTs, which can be attributed to a distribution of surface charges along the functionalized nanotubes. Successful separation of functionalized single-chirality SWCNTs by functional density was confirmed with UV-Vis-NIR absorption and Raman scattering spectroscopies of fraction collected samples. These results suggest a high degree of structural heterogeneity in covalently functionalized SWCNTs, even for chirality-enriched samples, and show the feasibility of applying CE for high-performance separation of nanomaterials based on differences in surface functional density. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Sediment-stabilizing and Destabilizing Ecoengineering Species from River to Estuary: the Case of the Scheldt System

    NASA Astrophysics Data System (ADS)

    Selakovic, S.; Cozzoli, F.; Leuven, J.; Van Braeckel, A.; Speybroeck, J.; Kleinhans, M. G.; Bouma, T.

    2017-12-01

    Interactions between organisms and landscape forming processes play an important role in evolution of coastal landscapes. In particular, biota has a strong potential to interact with important geomorphological processes such as sediment dynamics. Although many studies worked towards quantifying the impact of different species groups on sediment dynamics, information has been gathered on an ad hoc base. Depending on species' traits and distribution, functional groups of ecoengineering species may have differential effects on sediment deposition and erosion. We hypothesize that the spatial distributions of sediment-stabilizing and destabilizing species across the channel and along the whole salinity gradient of an estuary partly determine the planform shape and channel-shoal morphology of estuaries. To test this hypothesis, we analyze vegetation and macrobenthic data taking the Scheldt river-estuarine continuum as model ecosystem. We identify species traits with important effects on sediment dynamics and use them to form functional groups. By using linearized mixed modelling, we are able to accurately describe the distributions of the different functional groups. We observe a clear distinction of dominant ecosystem engineering functional groups and their potential effects on the sediment in the river-estuarine continuum. The first results of longitudinal cross section show the highest effects of stabilizing plant species in riverine and sediment bioturbators in weak polyhaline part of continuum. The distribution of functional groups in transverse cross sections shows dominant stabilizing effect in supratidal zone compared to dominant destabilizing effect in the lower intertidal zone. This analysis offers a new and more general conceptualization of distributions of sediment stabilizing and destabilizing functional groups and their potential impacts on sediment dynamics, shoal patterns, and planform shapes in river-estuarine continuum. We intend to test this in future modelling and experiments.

  19. Symplectic evolution of Wigner functions in Markovian open systems.

    PubMed

    Brodier, O; Almeida, A M Ozorio de

    2004-01-01

    The Wigner function is known to evolve classically under the exclusive action of a quadratic Hamiltonian. If the system also interacts with the environment through Lindblad operators that are complex linear functions of position and momentum, then the general evolution is the convolution of a non-Hamiltonian classical propagation of the Wigner function with a phase space Gaussian that broadens in time. We analyze the consequences of this in the three generic cases of elliptic, hyperbolic, and parabolic Hamiltonians. The Wigner function always becomes positive in a definite time, which does not depend on the initial pure state. We observe the influence of classical dynamics and dissipation upon this threshold. We also derive an exact formula for the evolving linear entropy as the average of a narrowing Gaussian taken over a probability distribution that depends only on the initial state. This leads to a long time asymptotic formula for the growth of linear entropy. We finally discuss the possibility of recovering the initial state.

  20. Incorporation of a spatial source distribution and a spatial sensor sensitivity in a laser ultrasound propagation model using a streamlined Huygens' principle.

    PubMed

    Laloš, Jernej; Babnik, Aleš; Možina, Janez; Požar, Tomaž

    2016-03-01

    The near-field, surface-displacement waveforms in plates are modeled using interwoven concepts of Green's function formalism and streamlined Huygens' principle. Green's functions resemble the building blocks of the sought displacement waveform, superimposed and weighted according to the simplified distribution. The approach incorporates an arbitrary circular spatial source distribution and an arbitrary circular spatial sensitivity in the area probed by the sensor. The displacement histories for uniform, Gaussian and annular normal-force source distributions and the uniform spatial sensor sensitivity are calculated, and the corresponding weight distributions are compared. To demonstrate the applicability of the developed scheme, measurements of laser ultrasound induced solely by the radiation pressure are compared with the calculated waveforms. The ultrasound is induced by laser pulse reflection from the mirror-surface of a glass plate. The measurements show excellent agreement not only with respect to various wave-arrivals but also in the shape of each arrival. Their shape depends on the beam profile of the excitation laser pulse and its corresponding spatial normal-force distribution. Copyright © 2015 Elsevier B.V. All rights reserved.

  1. On the Validity of the Streaming Model for the Redshift-Space Correlation Function in the Linear Regime

    NASA Astrophysics Data System (ADS)

    Fisher, Karl B.

    1995-08-01

    The relation between the galaxy correlation functions in real-space and redshift-space is derived in the linear regime by an appropriate averaging of the joint probability distribution of density and velocity. The derivation recovers the familiar linear theory result on large scales but has the advantage of clearly revealing the dependence of the redshift distortions on the underlying peculiar velocity field; streaming motions give rise to distortions of θ(Ω0.6/b) while variations in the anisotropic velocity dispersion yield terms of order θ(Ω1.2/b2). This probabilistic derivation of the redshift-space correlation function is similar in spirit to the derivation of the commonly used "streaming" model, in which the distortions are given by a convolution of the real-space correlation function with a velocity distribution function. The streaming model is often used to model the redshift-space correlation function on small, highly nonlinear, scales. There have been claims in the literature, however, that the streaming model is not valid in the linear regime. Our analysis confirms this claim, but we show that the streaming model can be made consistent with linear theory provided that the model for the streaming has the functional form predicted by linear theory and that the velocity distribution is chosen to be a Gaussian with the correct linear theory dispersion.

  2. Burst wait time simulation of CALIBAN reactor at delayed super-critical state

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Humbert, P.; Authier, N.; Richard, B.

    2012-07-01

    In the past, the super prompt critical wait time probability distribution was measured on CALIBAN fast burst reactor [4]. Afterwards, these experiments were simulated with a very good agreement by solving the non-extinction probability equation [5]. Recently, the burst wait time probability distribution has been measured at CEA-Valduc on CALIBAN at different delayed super-critical states [6]. However, in the delayed super-critical case the non-extinction probability does not give access to the wait time distribution. In this case it is necessary to compute the time dependent evolution of the full neutron count number probability distribution. In this paper we present themore » point model deterministic method used to calculate the probability distribution of the wait time before a prescribed count level taking into account prompt neutrons and delayed neutron precursors. This method is based on the solution of the time dependent adjoint Kolmogorov master equations for the number of detections using the generating function methodology [8,9,10] and inverse discrete Fourier transforms. The obtained results are then compared to the measurements and Monte-Carlo calculations based on the algorithm presented in [7]. (authors)« less

  3. The two-sample problem with induced dependent censorship.

    PubMed

    Huang, Y

    1999-12-01

    Induced dependent censorship is a general phenomenon in health service evaluation studies in which a measure such as quality-adjusted survival time or lifetime medical cost is of interest. We investigate the two-sample problem and propose two classes of nonparametric tests. Based on consistent estimation of the survival function for each sample, the two classes of test statistics examine the cumulative weighted difference in hazard functions and in survival functions. We derive a unified asymptotic null distribution theory and inference procedure. The tests are applied to trial V of the International Breast Cancer Study Group and show that long duration chemotherapy significantly improves time without symptoms of disease and toxicity of treatment as compared with the short duration treatment. Simulation studies demonstrate that the proposed tests, with a wide range of weight choices, perform well under moderate sample sizes.

  4. Temperature dependence of the distribution of the thermally activated energy barriers in Tl2Ba2CaCu2O8 film

    NASA Astrophysics Data System (ADS)

    Ren, C.; Lin, F. Y.; Ding, S. Y.; Li, Z. M.; Aruna, S. A.; Qiu, L.; Yao, X. X.; Yan, S. L.; Si, M. S.

    1999-06-01

    The effects of frequency and ac amplitude on ac susceptibility have been measured for a thin Tl2Ba2CaCu2O8 film in the range 100 Hz-100 kHz in magnetic field 0.52 T. A phenomenological equation with an asymmetrical distribution of thermally activated energy barriers has been used to analyse these frequency and amplitude dependences of the ac susceptibility icons/Journals/Common/chi" ALT="chi" ALIGN="TOP"/>(icons/Journals/Common/omega" ALT="omega" ALIGN="TOP"/>,hac) in the vicinity of the peak temperature of icons/Journals/Common/chi" ALT="chi" ALIGN="TOP"/>´´. We obtain the effective energy barrier U against amplitude hac (current density j): Uicons/Journals/Common/propto" ALT="propto" ALIGN="TOP"/> hac-0.38. This U(j) relationship shows that the flux lines are in the 3D collective creep regime. Therefore, we conclude that the effective energy barrier is in fact an average of the barrier's distribution, and the distribution function is a distinguished asymmetrical one in this 3D collective creep regime.

  5. Charged-particle multiplicity and pseudorapidity distributions measured with the PHOBOS detector in Au+Au, Cu+Cu, d+Au, and p+p collisions at ultrarelativistic energies

    NASA Astrophysics Data System (ADS)

    Alver, B.; Back, B. B.; Baker, M. D.; Ballintijn, M.; Barton, D. S.; Betts, R. R.; Bickley, A. A.; Bindel, R.; Budzanowski, A.; Busza, W.; Carroll, A.; Chai, Z.; Chetluru, V.; Decowski, M. P.; García, E.; Gburek, T.; George, N.; Gulbrandsen, K.; Gushue, S.; Halliwell, C.; Hamblen, J.; Heintzelman, G. A.; Henderson, C.; Hofman, D. J.; Hollis, R. S.; Hołyński, R.; Holzman, B.; Iordanova, A.; Johnson, E.; Kane, J. L.; Katzy, J.; Khan, N.; Kotuła, J.; Kucewicz, W.; Kulinich, P.; Kuo, C. M.; Li, W.; Lin, W. T.; Loizides, C.; Manly, S.; McLeod, D.; Michałowski, J.; Mignerey, A. C.; Nouicer, R.; Olszewski, A.; Pak, R.; Park, I. C.; Pernegger, H.; Reed, C.; Remsberg, L. P.; Reuter, M.; Roland, C.; Roland, G.; Rosenberg, L.; Sagerer, J.; Sarin, P.; Sawicki, P.; Sedykh, I.; Skulski, W.; Smith, C. E.; Steadman, S. G.; Steinberg, P.; Stephans, G. S. F.; Stodulski, M.; Sukhanov, A.; Tonjes, M. B.; Trzupek, A.; Vale, C.; van Nieuwenhuizen, G. J.; Vaurynovich, S. S.; Verdier, R.; Veres, G. I.; Wadsworth, B.; Walters, P.; Wenger, E.; Wolfs, F. L. H.; Wosiek, B.; Woźniak, K.; Wuosmaa, A. H.; Wysłouch, B.

    2011-02-01

    Pseudorapidity distributions of charged particles emitted in Au+Au, Cu+Cu, d+Au, and p+p collisions over a wide energy range have been measured using the PHOBOS detector at the BNL Relativistic Heavy-Ion Collider (RHIC). The centrality dependence of both the charged particle distributions and the multiplicity at midrapidity were measured. Pseudorapidity distributions of charged particles emitted with |η|<5.4, which account for between 95% and 99% of the total charged-particle emission associated with collision participants, are presented for different collision centralities. Both the midrapidity density dNch/dη and the total charged-particle multiplicity Nch are found to factorize into a product of independent functions of collision energy, sNN, and centrality given in terms of the number of nucleons participating in the collision, Npart. The total charged particle multiplicity, observed in these experiments and those at lower energies, assumes a linear dependence of (lnsNN)2 over the full range of collision energy of sNN=2.7-200 GeV.

  6. Hydrogen-bonded ring closing and opening of protonated methanol clusters H(+)(CH3OH)(n) (n = 4-8) with the inert gas tagging.

    PubMed

    Li, Ying-Cheng; Hamashima, Toru; Yamazaki, Ryoko; Kobayashi, Tomohiro; Suzuki, Yuta; Mizuse, Kenta; Fujii, Asuka; Kuo, Jer-Lai

    2015-09-14

    The preferential hydrogen bond (H-bond) structures of protonated methanol clusters, H(+)(MeOH)n, in the size range of n = 4-8, were studied by size-selective infrared (IR) spectroscopy in conjunction with density functional theory calculations. The IR spectra of bare clusters were compared with those with the inert gas tagging by Ar, Ne, and N2, and remarkable changes in the isomer distribution with the tagging were found for clusters with n≥ 5. The temperature dependence of the isomer distribution of the clusters was calculated by the quantum harmonic superposition approach. The observed spectral changes with the tagging were well interpreted by the fall of the cluster temperature with the tagging, which causes the transfer of the isomer distribution from the open and flexible H-bond network types to the closed and rigid ones. Anomalous isomer distribution with the tagging, which has been recently found for protonated water clusters, was also found for H(+)(MeOH)5. The origin of the anomaly was examined by the experiments on its carrier gas dependence.

  7. Host trait combinations drive abundance and canopy distribution of atmospheric bromeliad assemblages

    PubMed Central

    Chaves, Cleber Juliano Neves; Dyonisio, Júlio César; Rossatto, Davi Rodrigo

    2016-01-01

    Epiphytes are strongly dependent on the conditions created by their host's traits and a certain degree of specificity is expected between them, even if these species are largely abundant in a series of tree hosts of a given environment, as in the case of atmospheric bromeliads. Despite their considerable abundance in these environments, we hypothesize that stochasticity alone cannot explain the presence and abundance of atmospheric bromeliads on host trees, since host traits could have a greater influence on the establishment of these bromeliads. We used secondary and reforested seasonal forests and three distinct silvicultures to test whether species richness, phylogenetic diversity and functional diversity of trees can predict the differential presence, abundance and distribution of atmospheric bromeliads on hosts. We compared the observed parameters of their assemblage with null models and performed successive variance hierarchic partitions of abundance and distribution of the assemblage to detect the influence of multiple traits of the tree hosts. Our results do not indicate direct relationships between the abundance of atmospheric bromeliads and phylogenetic or functional diversity of trees, but instead indicate that bromeliads occurred on fewer tree species than expected by chance. We distinguished functional tree patterns that can improve or reduce the abundance of atmospheric bromeliads, and change their distribution on branches and trunk. While individual tree traits are related to increased abundance, species traits are related to the canopy distribution of atmospheric bromeliad assemblages. A balance among these tree functional patterns drives the atmospheric bromeliad assemblage of the forest patches. PMID:26888951

  8. Implementation and testing of the gridded Vienna Mapping Function 1 (VMF1)

    NASA Astrophysics Data System (ADS)

    Kouba, J.

    2008-04-01

    The new gridded Vienna Mapping Function (VMF1) was implemented and compared to the well-established site-dependent VMF1, directly and by using precise point positioning (PPP) with International GNSS Service (IGS) Final orbits/clocks for a 1.5-year GPS data set of 11 globally distributed IGS stations. The gridded VMF1 data can be interpolated for any location and for any time after 1994, whereas the site-dependent VMF1 data are only available at selected IGS stations and only after 2004. Both gridded and site-dependent VMF1 PPP solutions agree within 1 and 2 mm for the horizontal and vertical position components, respectively, provided that respective VMF1 hydrostatic zenith path delays (ZPD) are used for hydrostatic ZPD mapping to slant delays. The total ZPD of the gridded and site-dependent VMF1 data agree with PPP ZPD solutions with RMS of 1.5 and 1.8 cm, respectively. Such precise total ZPDs could provide useful initial a priori ZPD estimates for kinematic PPP and regional static GPS solutions. The hydrostatic ZPDs of the gridded VMF1 compare with the site-dependent VMF1 ZPDs with RMS of 0.3 cm, subject to some biases and discontinuities of up to 4 cm, which are likely due to different strategies used in the generation of the site-dependent VMF1 data. The precision of gridded hydrostatic ZPD should be sufficient for accurate a priori hydrostatic ZPD mapping in all precise GPS and very long baseline interferometry (VLBI) solutions. Conversely, precise and globally distributed geodetic solutions of total ZPDs, which need to be linked to VLBI to control biases and stability, should also provide a consistent and stable reference frame for long-term and state-of-the-art numerical weather modeling.

  9. Nucleon form factors in generalized parton distributions at high momentum transfers

    NASA Astrophysics Data System (ADS)

    Sattary Nikkhoo, Negin; Shojaei, Mohammad Reza

    2018-05-01

    This paper aims at calculating the elastic form factors for a nucleon by considering the extended Regge and modified Gaussian ansatzes based on the generalized parton distributions. To reach this goal, we have considered three different parton distribution functions (PDFs) and have compared the obtained results among them for high momentum transfer ranges. Minimum free parameters have been applied in our parametrization. After achieving the form factors, we calculate the electric radius and the transversely unpolarized and polarized densities for the nucleon. Furthermore, we obtain the impact-parameter-dependent PDFs. Finally, we compare our obtained data with the results of previous studies.

  10. Three Dimensional Imaging of the Nucleon

    NASA Astrophysics Data System (ADS)

    More, Jai; Mukherjee, Asmita; Nair, Sreeraj

    2018-05-01

    We study the Wigner distributions of quarks and gluons in light-front dressed quark model using the overlap of light front wave functions (LFWFs). We take the target to be a dressed quark, this is a composite spin -1/2 state of quark dressed with a gluon. This state allows us to calculate the quark and gluon Wigner distributions analytically in terms of LFWFs using Hamiltonian perturbation theory. We analyze numerically the Wigner distributions of quark and gluon and report their nature in the contour plots. We use an improved numerical technique to remove the cutoff dependence of the Fourier transformed integral over \\varvec{Δ}_\\perp.

  11. Vibrational energy distribution in aniline scattered from surfaces covered with organized organic monolayers

    NASA Astrophysics Data System (ADS)

    Paz, Y.; Naaman, R.

    1990-08-01

    Energy distribution in aniline molecules scattered from organized organic monolayers was investigated using a resonance-enhanced two-photon ionization technique. Two type of monolayers were used, one exposing a floppy unsubstituted aliphatic chain (OTS, n-octadecyltrichlorosilane), and the second having a perfluorinated tail (PFDA, perfluorodecanoic acid). The dependence of the internal and translational energy of the scattered aniline is monitored as a function of collision energy and surface properties. The data reveal an unusually high propensity for excitation of the NH 2 inversion mode in aniline. Vibrationally excited molecules are scattered with a narrower time-of-flight (TOF) distribution than those in the ground vibrational state.

  12. Evaluation of Denoising Strategies to Address Motion-Correlated Artifacts in Resting-State Functional Magnetic Resonance Imaging Data from the Human Connectome Project

    PubMed Central

    Kandala, Sridhar; Nolan, Dan; Laumann, Timothy O.; Power, Jonathan D.; Adeyemo, Babatunde; Harms, Michael P.; Petersen, Steven E.; Barch, Deanna M.

    2016-01-01

    Abstract Like all resting-state functional connectivity data, the data from the Human Connectome Project (HCP) are adversely affected by structured noise artifacts arising from head motion and physiological processes. Functional connectivity estimates (Pearson's correlation coefficients) were inflated for high-motion time points and for high-motion participants. This inflation occurred across the brain, suggesting the presence of globally distributed artifacts. The degree of inflation was further increased for connections between nearby regions compared with distant regions, suggesting the presence of distance-dependent spatially specific artifacts. We evaluated several denoising methods: censoring high-motion time points, motion regression, the FMRIB independent component analysis-based X-noiseifier (FIX), and mean grayordinate time series regression (MGTR; as a proxy for global signal regression). The results suggest that FIX denoising reduced both types of artifacts, but left substantial global artifacts behind. MGTR significantly reduced global artifacts, but left substantial spatially specific artifacts behind. Censoring high-motion time points resulted in a small reduction of distance-dependent and global artifacts, eliminating neither type. All denoising strategies left differences between high- and low-motion participants, but only MGTR substantially reduced those differences. Ultimately, functional connectivity estimates from HCP data showed spatially specific and globally distributed artifacts, and the most effective approach to address both types of motion-correlated artifacts was a combination of FIX and MGTR. PMID:27571276

  13. On the role of structure-dynamic relationship in determining the excess entropy of mixing and chemical ordering in binary square-well liquid alloys

    NASA Astrophysics Data System (ADS)

    Lalneihpuii, R.; Shrivastava, Ruchi; Mishra, Raj Kumar

    2018-05-01

    Using statistical mechanical model with square-well (SW) interatomic potential within the frame work of mean spherical approximation, we determine the composition dependent microscopic correlation functions, interdiffusion coefficients, surface tension and chemical ordering in Ag-Cu melts. Further Dzugutov universal scaling law of normalized diffusion is verified with SW potential in binary mixtures. We find that the excess entropy scaling law is valid for SW binary melts. The partial and total structure factors in the attractive and repulsive regions of the interacting potential are evaluated and then Fourier transformed to get partial and total radial distribution functions. A good agreement between theoretical and experimental values for total structure factor and the reduced radial distribution function are observed, which consolidates our model calculations. The well-known Bhatia-Thornton correlation functions are also computed for Ag-Cu melts. The concentration-concentration correlations in the long wavelength limit in liquid Ag-Cu alloys have been analytically derived through the long wavelength limit of partial correlation functions and apply it to demonstrate the chemical ordering and interdiffusion coefficients in binary liquid alloys. We also investigate the concentration dependent viscosity coefficients and surface tension using the computed diffusion data in these alloys. Our computed results for structure, transport and surface properties of liquid Ag-Cu alloys obtained with square-well interatomic interaction are fully consistent with their corresponding experimental values.

  14. A new temperature and humidity dependent surface site density approach for deposition ice nucleation

    NASA Astrophysics Data System (ADS)

    Steinke, I.; Hoose, C.; Möhler, O.; Connolly, P.; Leisner, T.

    2014-07-01

    Deposition nucleation experiments with Arizona Test Dust (ATD) as a surrogate for mineral dusts were conducted at the AIDA cloud chamber at temperatures between 220 and 250 K. The influence of the aerosol size distribution and the cooling rate on the ice nucleation efficiencies was investigated. Ice nucleation active surface site (INAS) densities were calculated to quantify the ice nucleation efficiency as a function of temperature, humidity and the aerosol surface area concentration. Additionally, a contact angle parameterization according to classical nucleation theory was fitted to the experimental data in order to relate the ice nucleation efficiencies to contact angle distributions. From this study it can be concluded that the INAS density formulation is a very useful tool to decribe the temperature and humidity dependent ice nucleation efficiency of ATD particles. Deposition nucleation on ATD particles can be described by a temperature and relative humidity dependent INAS density function ns(T, Sice) with ns(xtherm) = 1.88 × 105 \\centerdot exp(0.2659 \\centerdot xtherm) [m-2] (1) where the thermodynamic variable xtherm is defined as xtherm = -(T - 273.2) + (Sice-1) × 100 (2) with Sice>1 and within a temperature range between 226 and 250 K. For lower temperatures, xtherm deviates from a linear behavior with temperature and relative humidity over ice. Two different approaches for describing the time dependence of deposition nucleation initiated by ATD particles are proposed. Box model estimates suggest that the time dependent contribution is only relevant for small cooling rates and low number fractions of ice-active particles.

  15. Unraveling sterol-dependent membrane phenotypes by analysis of protein abundance-ratio distributions in different membrane fractions under biochemical and endogenous sterol depletion.

    PubMed

    Zauber, Henrik; Szymanski, Witold; Schulze, Waltraud X

    2013-12-01

    During the last decade, research on plasma membrane focused increasingly on the analysis of so-called microdomains. It has been shown that function of many membrane-associated proteins involved in signaling and transport depends on their conditional segregation within sterol-enriched membrane domains. High throughput proteomic analysis of sterol-protein interactions are often based on analyzing detergent resistant membrane fraction enriched in sterols and associated proteins, which also contain proteins from these microdomain structures. Most studies so far focused exclusively on the characterization of detergent resistant membrane protein composition and abundances. This approach has received some criticism because of its unspecificity and many co-purifying proteins. In this study, by a label-free quantitation approach, we extended the characterization of membrane microdomains by particularly studying distributions of each protein between detergent resistant membrane and detergent-soluble fractions (DSF). This approach allows a more stringent definition of dynamic processes between different membrane phases and provides a means of identification of co-purifying proteins. We developed a random sampling algorithm, called Unicorn, allowing for robust statistical testing of alterations in the protein distribution ratios of the two different fractions. Unicorn was validated on proteomic data from methyl-β-cyclodextrin treated plasma membranes and the sterol biosynthesis mutant smt1. Both, chemical treatment and sterol-biosynthesis mutation affected similar protein classes in their membrane phase distribution and particularly proteins with signaling and transport functions.

  16. Unraveling Sterol-dependent Membrane Phenotypes by Analysis of Protein Abundance-ratio Distributions in Different Membrane Fractions Under Biochemical and Endogenous Sterol Depletion*

    PubMed Central

    Zauber, Henrik; Szymanski, Witold; Schulze, Waltraud X.

    2013-01-01

    During the last decade, research on plasma membrane focused increasingly on the analysis of so-called microdomains. It has been shown that function of many membrane-associated proteins involved in signaling and transport depends on their conditional segregation within sterol-enriched membrane domains. High throughput proteomic analysis of sterol-protein interactions are often based on analyzing detergent resistant membrane fraction enriched in sterols and associated proteins, which also contain proteins from these microdomain structures. Most studies so far focused exclusively on the characterization of detergent resistant membrane protein composition and abundances. This approach has received some criticism because of its unspecificity and many co-purifying proteins. In this study, by a label-free quantitation approach, we extended the characterization of membrane microdomains by particularly studying distributions of each protein between detergent resistant membrane and detergent-soluble fractions (DSF). This approach allows a more stringent definition of dynamic processes between different membrane phases and provides a means of identification of co-purifying proteins. We developed a random sampling algorithm, called Unicorn, allowing for robust statistical testing of alterations in the protein distribution ratios of the two different fractions. Unicorn was validated on proteomic data from methyl-β-cyclodextrin treated plasma membranes and the sterol biosynthesis mutant smt1. Both, chemical treatment and sterol-biosynthesis mutation affected similar protein classes in their membrane phase distribution and particularly proteins with signaling and transport functions. PMID:24030099

  17. Magnetosonic solitons in space plasmas: dark or bright solitons?

    NASA Astrophysics Data System (ADS)

    Pokhotelov, O. A.; Onishchenko, O. G.; Balikhin, M. A.; Stenflo, L.; Shukla, P. K.

    2007-12-01

    The nonlinear theory of large-amplitude magnetosonic (MS) waves in highβ space plasmas is revisited. It is shown that solitary waves can exist in the form of `bright' or `dark' solitons in which the magnetic field is increased or decreased relative to the background magnetic field. This depends on the shape of the equilibrium ion distribution function. The basic parameter that controls the nonlinear structure is the wave dispersion, which can be either positive or negative. A general dispersion relation for MS waves propagating perpendicularly to the external magnetic field in a plasma with an arbitrary velocity distribution function is derived.It takes into account general plasma equilibria, such as the Dory-Guest-Harris (DGH) or Kennel-Ashour-Abdalla (KA) loss-cone equilibria, as well as distributions with a power-law velocity dependence that can be modelled by κdistributions. It is shown that in a bi-Maxwellian plasma the dispersion is negative, i.e. the phase velocity decreases with an increase of the wavenumber. This means that the solitary solution in this case has the form of a `bright' soliton with the magnetic field increased. On the contrary, in some non-Maxwellian plasmas, such as those with ring-type ion distributions or DGH plasmas, the solitary solution may have the form of a magnetic hole. The results of similar investigations based on nonlinear Hall-MHD equations are reviewed. The relevance of our theoretical results to existing satellite wave observations is outlined.

  18. Monte Carlo Method for Determining Earthquake Recurrence Parameters from Short Paleoseismic Catalogs: Example Calculations for California

    USGS Publications Warehouse

    Parsons, Tom

    2008-01-01

    Paleoearthquake observations often lack enough events at a given site to directly define a probability density function (PDF) for earthquake recurrence. Sites with fewer than 10-15 intervals do not provide enough information to reliably determine the shape of the PDF using standard maximum-likelihood techniques [e.g., Ellsworth et al., 1999]. In this paper I present a method that attempts to fit wide ranges of distribution parameters to short paleoseismic series. From repeated Monte Carlo draws, it becomes possible to quantitatively estimate most likely recurrence PDF parameters, and a ranked distribution of parameters is returned that can be used to assess uncertainties in hazard calculations. In tests on short synthetic earthquake series, the method gives results that cluster around the mean of the input distribution, whereas maximum likelihood methods return the sample means [e.g., NIST/SEMATECH, 2006]. For short series (fewer than 10 intervals), sample means tend to reflect the median of an asymmetric recurrence distribution, possibly leading to an overestimate of the hazard should they be used in probability calculations. Therefore a Monte Carlo approach may be useful for assessing recurrence from limited paleoearthquake records. Further, the degree of functional dependence among parameters like mean recurrence interval and coefficient of variation can be established. The method is described for use with time-independent and time-dependent PDF?s, and results from 19 paleoseismic sequences on strike-slip faults throughout the state of California are given.

  19. Monte Carlo method for determining earthquake recurrence parameters from short paleoseismic catalogs: Example calculations for California

    USGS Publications Warehouse

    Parsons, T.

    2008-01-01

    Paleoearthquake observations often lack enough events at a given site to directly define a probability density function (PDF) for earthquake recurrence. Sites with fewer than 10-15 intervals do not provide enough information to reliably determine the shape of the PDF using standard maximum-likelihood techniques (e.g., Ellsworth et al., 1999). In this paper I present a method that attempts to fit wide ranges of distribution parameters to short paleoseismic series. From repeated Monte Carlo draws, it becomes possible to quantitatively estimate most likely recurrence PDF parameters, and a ranked distribution of parameters is returned that can be used to assess uncertainties in hazard calculations. In tests on short synthetic earthquake series, the method gives results that cluster around the mean of the input distribution, whereas maximum likelihood methods return the sample means (e.g., NIST/SEMATECH, 2006). For short series (fewer than 10 intervals), sample means tend to reflect the median of an asymmetric recurrence distribution, possibly leading to an overestimate of the hazard should they be used in probability calculations. Therefore a Monte Carlo approach may be useful for assessing recurrence from limited paleoearthquake records. Further, the degree of functional dependence among parameters like mean recurrence interval and coefficient of variation can be established. The method is described for use with time-independent and time-dependent PDFs, and results from 19 paleoseismic sequences on strike-slip faults throughout the state of California are given.

  20. Milky Way Mass Models and MOND

    NASA Astrophysics Data System (ADS)

    McGaugh, Stacy S.

    2008-08-01

    Using the Tuorla-Heidelberg model for the mass distribution of the Milky Way, I determine the rotation curve predicted by MOND (modified Newtonian dynamics). The result is in good agreement with the observed terminal velocities interior to the solar radius and with estimates of the Galaxy's rotation curve exterior thereto. There are no fit parameters: given the mass distribution, MOND provides a good match to the rotation curve. The Tuorla-Heidelberg model does allow for a variety of exponential scale lengths; MOND prefers short scale lengths in the range 2.0 kpc lesssim Rdlesssim 2.5 kpc. The favored value of Rd depends somewhat on the choice of interpolation function. There is some preference for the "simple" interpolation function as found by Famaey & Binney. I introduce an interpolation function that shares the advantages of the simple function on galaxy scales while having a much smaller impact in the solar system. I also solve the inverse problem, inferring the surface mass density distribution of the Milky Way from the terminal velocities. The result is a Galaxy with "bumps and wiggles" in both its luminosity profile and rotation curve that are reminiscent of those frequently observed in external galaxies.

Top