Quark fragmentation functions in NJL-jet model
NASA Astrophysics Data System (ADS)
Bentz, Wolfgang; Matevosyan, Hrayr; Thomas, Anthony
2014-09-01
We report on our studies of quark fragmentation functions in the Nambu-Jona-Lasinio (NJL) - jet model. The results of Monte-Carlo simulations for the fragmentation functions to mesons and nucleons, as well as to pion and kaon pairs (dihadron fragmentation functions) are presented. The important role of intermediate vector meson resonances for those semi-inclusive deep inelastic production processes is emphasized. Our studies are very relevant for the extraction of transverse momentum dependent quark distribution functions from measured scattering cross sections. We report on our studies of quark fragmentation functions in the Nambu-Jona-Lasinio (NJL) - jet model. The results of Monte-Carlo simulations for the fragmentation functions to mesons and nucleons, as well as to pion and kaon pairs (dihadron fragmentation functions) are presented. The important role of intermediate vector meson resonances for those semi-inclusive deep inelastic production processes is emphasized. Our studies are very relevant for the extraction of transverse momentum dependent quark distribution functions from measured scattering cross sections. Supported by Grant in Aid for Scientific Research, Japanese Ministry of Education, Culture, Sports, Science and Technology, Project No. 20168769.
Angular distribution of scission neutrons studied with time-dependent Schrödinger equation
NASA Astrophysics Data System (ADS)
Wada, Takahiro; Asano, Tomomasa; Carjan, Nicolae
2018-03-01
We investigate the angular distribution of scission neutrons taking account of the effects of fission fragments. The time evolution of the wave function of the scission neutron is obtained by integrating the time-dependent Schrodinger equation numerically. The effects of the fission fragments are taken into account by means of the optical potentials. The angular distribution is strongly modified by the presence of the fragments. In the case of asymmetric fission, it is found that the heavy fragment has stronger effects. Dependence on the initial distribution and on the properties of fission fragments is discussed. We also discuss on the treatment of the boundary to avoid artificial reflections
Lutz, David; Wolters-Eisfeld, Gerrit; Joshi, Gunjan; Djogo, Nevena; Jakovcevski, Igor; Schachner, Melitta; Kleene, Ralf
2012-01-01
The functions of the cell adhesion molecule L1 in the developing and adult nervous system are triggered by homophilic and heterophilic interactions that stimulate signal transductions that activate cellular responses. Here, we show that stimulation of signaling by function-triggering L1 antibodies or L1-Fc leads to serine protease-dependent cleavage of full-length L1 at the plasma membrane and generation of a sumoylated transmembrane 70-kDa fragment comprising the intracellular and transmembrane domains and part of the extracellular domain. The 70-kDa transmembrane fragment is transported from the plasma membrane to a late endosomal compartment, released from endosomal membranes into the cytoplasm, and transferred from there into the nucleus by a pathway that depends on importin and chromatin-modifying protein 1. Mutation of the sumoylation site at Lys1172 or of the nuclear localization signal at Lys1147 abolished L1-stimulated generation or nuclear import of the 70-kDa fragment, respectively. Nuclear import of the 70-kDa fragment may activate cellular responses in parallel or in association with phosphorylation-dependent signaling pathways. Alterations in the levels of the 70-kDa fragment during development and in the adult after spinal cord injury or in a mouse model of Alzheimer disease suggest that this fragment is functionally implicated in development, regeneration, neurodegeneration, tumorigenesis, and possibly synaptic plasticity in the mature nervous system. PMID:22431726
NASA Astrophysics Data System (ADS)
König, Sara; Firle, Anouk-Letizia; Koehnke, Merlin; Banitz, Thomas; Frank, Karin
2017-04-01
In general ecology, there is an ongoing debate about the influence of fragmentation on extinction thresholds. Whether this influence is positive or negative depends on the considered type of fragmentation: whereas habitat fragmentation often has a negative influence on population extinction thresholds, spatially fragmented disturbances are observed to have mostly positive effects on the extinction probability. Besides preventing population extinction, in soil systems ecology we are interested in analyzing how ecosystem functions are maintained despite disturbance events. Here, we analyzed the influence of disturbance size and fragmentation on the functional resilience of a microbial soil ecosystem. As soil is a highly heterogeneous environment exposed to disturbances of different spatial configurations, the identification of critical disturbance characteristics for maintaining its functions is crucial. We used the numerical simulation model eColony considering bacterial growth, degradation and dispersal for analyzing the dynamic response of biodegradation examplary for an important microbial ecosystem service to disturbance events of different spatial configurations. We systematically varied the size and the degree of fragmentation of the affected area (disturbance pattern). We found that the influence of the disturbance size on functional recovery and biodegradation performance highly depends on the spatial fragmentation of the disturbance. Generally, biodegradation performance decreases with increasing clumpedness and increasing size of the affected area. After spatially correlated disturbance events, biodegradation performance decreases linear with increasing disturbance size. After spatially fragmented disturbance events, on the other hand, an increase in disturbance size has no influence on the biodegradation performance until a critical disturbance size is reached. Is the affected area bigger than this critical size, the functional performance decreases dramatically. Under recurrent disturbance events, this threshold is shifted to lower disturbance sizes. The more frequent disturbances are recurring, the lower is the critical disturbance size. Our simulation results indicate the importance of spatial characteristics of disturbance events for the functional resilience of microbial ecosystems. Critical values for disturbance size and fragmentation emerge from an interplay between both characteristics. In consequence, a precise definition of the specific disturbance regime is necessary for analysing functional resilience. With this study, we show that we need to consider the influence of fragmentation in terrestrial environments not only on population extincions but also on the resilience of ecosystem functions. Moreover, spatial disturbance characteristics - which are widely discussed on landscape scale - are an important factor on smaller scales, too.
Transverse momentum dependent fragmenting jet functions with applications to quarkonium production
Bain, Reggie; Makris, Yiannis; Mehen, Thomas
2016-11-23
We introduce the transverse momentum dependent fragmenting jet function (TMDFJF), which appears in factorization theorems for cross sections for jets with an identified hadron. These are functions of z, the hadron’s longitudinal momentum fraction, and transverse momentum, p ⊥, relative to the jet axis. In the framework of Soft-Collinear Effective Theory (SCET) we derive the TMDFJF from both a factorized SCET cross section and the TMD fragmentation function defined in the literature. The TMDFJFs are factorized into distinct collinear and soft-collinear modes by matching onto SCET +. As TMD calculations contain rapidity divergences, both the renormalization group (RG) and rapiditymore » renormalization group (RRG) must be used to provide resummed calculations with next-to-leading-logarithm prime (NLL’) accuracy. We apply our formalism to the production of J/ψ within jets initiated by gluons. In this case the TMDFJF can be calculated in terms of NRQCD (Non-relativistic quantum chromodynamics) fragmentation functions. We find that when the J/ψ carries a significant fraction of the jet energy, the p T and z distributions differ for different NRQCD production mechanisms. Another observable with discriminating power is the average angle that the J/ψ makes with the jet axis.« less
Jet axes and universal transverse-momentum-dependent fragmentation
NASA Astrophysics Data System (ADS)
Neill, Duff; Scimemi, Ignazio; Waalewijn, Wouter J.
2017-04-01
We study the transverse momentum spectrum of hadrons in jets. By measuring the transverse momentum with respect to a judiciously chosen axis, we find that this observable is insensitive to (the recoil of) soft radiation. Furthermore, for small transverse momenta we show that the effects of the jet boundary factorize, leading to a new transverse-momentum-dependent (TMD) fragmentation function. In contrast to the usual TMD fragmentation functions, it does not involve rapidity divergences and is universal in the sense that it is independent of the type of process and number of jets. These results directly apply to sub-jets instead of hadrons. We discuss potential applications, which include studying nuclear modification effects in heavy-ion collisions and identifying boosted heavy resonances.
Johnson, A.R.; Allen, Craig R.; Simpson, K.A.N.; Kapustka, Lawrence; Biddinger, Gregory R.; Luxon, Matthew; Galbraith, Hector
2004-01-01
Habitat fragmentation is a major threat to the viability of wildlife populations and the maintenance of biodiversity. Fragmentation relates to the sub-division of habitat into disjunct patches. Usually coincident with fragmentation per se is loss of habitat, a reduction in the size of the remnant patches, and increasing distance between patches. Natural and anthropogenic processes leading to habitat fragmentation occur at many spatial scales, and their impacts on wildlife depend on the scales at which species interact with the landscape. The concept of functional connectivity captures this organism-based view of the relative ease of movement or degree of exchange between physically disjunct habitat patches. Functional connectivity of a given habitat arrangement for a given wildlife species depends on details of the organism's life history and behavioral ecology, but, for broad categories of species, quantities such as home range size and dispersal distance scale allometrically with body mass. These relationships can be incorporated into spatial analyses of functional connectivity, which can be quantified by indices or displayed graphically in maps. We review indices and GIS-based approaches to estimating functional connectivity, presenting examples from the literature and our own work on mammalian distributions. Such analyses can be readily incorporated within an ecological risk framework. Estimates of functional connectivity may be useful in a screening-level assessment of the impact of habitat fragmentation relative to other stressors, and may be crucial in detailed population modeling and viability analysis.
Emergence of energy dependence in the fragmentation of heterogeneous materials
NASA Astrophysics Data System (ADS)
Pál, Gergő; Varga, Imre; Kun, Ferenc
2014-12-01
The most important characteristics of the fragmentation of heterogeneous solids is that the mass (size) distribution of pieces is described by a power law functional form. The exponent of the distribution displays a high degree of universality depending mainly on the dimensionality and on the brittle-ductile mechanical response of the system. Recently, experiments and computer simulations have reported an energy dependence of the exponent increasing with the imparted energy. These novel findings question the phase transition picture of fragmentation phenomena, and have also practical importance for industrial applications. Based on large scale computer simulations here we uncover a robust mechanism which leads to the emergence of energy dependence in fragmentation processes resolving controversial issues on the problem: studying the impact induced breakup of platelike objects with varying thickness in three dimensions we show that energy dependence occurs when a lower dimensional fragmenting object is embedded into a higher dimensional space. The reason is an underlying transition between two distinct fragmentation mechanisms controlled by the impact velocity at low plate thicknesses, while it is hindered for three-dimensional bulk systems. The mass distributions of the subsets of fragments dominated by the two cracking mechanisms proved to have an astonishing robustness at all plate thicknesses, which implies that the nonuniversality of the complete mass distribution is the consequence of blending the contributions of universal partial processes.
Amide I vibrational circular dichroism of dipeptide: Conformation dependence and fragment analysis
NASA Astrophysics Data System (ADS)
Choi, Jun-Ho; Cho, Minhaeng
2004-03-01
The amide I vibrational circular dichroic response of alanine dipeptide analog (ADA) was theoretically investigated and the density functional theory calculation and fragment analysis results are presented. A variety of vibrational spectroscopic properties, local and normal mode frequencies, coupling constant, dipole, and rotational strengths, are calculated by varying two dihedral angles determining the three-dimensional ADA conformation. Considering two monopeptide fragments separately, we show that the amide I vibrational circular dichroism of the ADA can be quantitatively predicted. For several representative conformations of the model ADA, vibrational circular dichroism spectra are calculated by using both the density functional theory calculation and fragment analysis methods.
Extraction of quark transversity distribution and Collins fragmentation functions with QCD evolution
Kang, Zhong-Bo; Prokudin, Alexei; Sun, Peng; ...
2016-01-13
In this paper, we study the transverse momentum dependent (TMD) evolution of the Collins azimuthal asymmetries in e +e - annihilations and semi-inclusive hadron production in deep inelastic scattering (SIDIS) processes. All the relevant coefficients are calculated up to the next-to-leading logarithmic (NLL) order accuracy. By applying the TMD evolution at the approximate NLL order in the Collins- Soper-Sterman (CSS) formalism, we extract transversity distributions for u and d quarks and Collins fragmentation functions from current experimental data by a global analysis of the Collins asymmetries in back-to-back di-hadron productions in e +e - annihilations measured by BELLE and BABARmore » Collaborations and SIDIS data from HERMES, COMPASS, and JLab HALL A experiments. The impact of the evolution effects and the relevant theoretical uncertainties are discussed. We further discuss the TMD interpretation for our results, and illustrate the unpolarized quark distribution, transversity distribution, unpolarized quark fragmentation and Collins fragmentation functions depending on the transverse momentum and the hard momentum scale. Finally, we give predictions and discuss impact of future experiments.« less
Extraction of quark transversity distribution and Collins fragmentation functions with QCD evolution
NASA Astrophysics Data System (ADS)
Kang, Zhong-Bo; Prokudin, Alexei; Sun, Peng; Yuan, Feng
2016-01-01
We study the transverse-momentum-dependent (TMD) evolution of the Collins azimuthal asymmetries in e+e- annihilations and semi-inclusive hadron production in deep inelastic scattering processes. All the relevant coefficients are calculated up to the next-to-leading-logarithmic-order accuracy. By applying the TMD evolution at the approximate next-to-leading-logarithmic order in the Collins-Soper-Sterman formalism, we extract transversity distributions for u and d quarks and Collins fragmentation functions from current experimental data by a global analysis of the Collins asymmetries in back-to-back dihadron productions in e+e- annihilations measured by BELLE and BABAR collaborations and semi-inclusive hadron production in deep inelastic scattering data from HERMES, COMPASS, and JLab HALL A experiments. The impact of the evolution effects and the relevant theoretical uncertainties are discussed. We further discuss the TMD interpretation for our results and illustrate the unpolarized quark distribution, transversity distribution, unpolarized quark fragmentation, and Collins fragmentation functions depending on the transverse momentum and the hard momentum scale. We make detailed predictions for future experiments and discuss their impact.
Extraction of quark transversity distribution and Collins fragmentation functions with QCD evolution
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kang, Zhong-Bo; Prokudin, Alexei; Sun, Peng
In this paper, we study the transverse momentum dependent (TMD) evolution of the Collins azimuthal asymmetries in e +e - annihilations and semi-inclusive hadron production in deep inelastic scattering (SIDIS) processes. All the relevant coefficients are calculated up to the next-to-leading logarithmic (NLL) order accuracy. By applying the TMD evolution at the approximate NLL order in the Collins- Soper-Sterman (CSS) formalism, we extract transversity distributions for u and d quarks and Collins fragmentation functions from current experimental data by a global analysis of the Collins asymmetries in back-to-back di-hadron productions in e +e - annihilations measured by BELLE and BABARmore » Collaborations and SIDIS data from HERMES, COMPASS, and JLab HALL A experiments. The impact of the evolution effects and the relevant theoretical uncertainties are discussed. We further discuss the TMD interpretation for our results, and illustrate the unpolarized quark distribution, transversity distribution, unpolarized quark fragmentation and Collins fragmentation functions depending on the transverse momentum and the hard momentum scale. Finally, we give predictions and discuss impact of future experiments.« less
Postfragmentation density function for bacterial aggregates in laminar flow
Byrne, Erin; Dzul, Steve; Solomon, Michael; Younger, John
2014-01-01
The postfragmentation probability density of daughter flocs is one of the least well-understood aspects of modeling flocculation. We use three-dimensional positional data of Klebsiella pneumoniae bacterial flocs in suspension and the knowledge of hydrodynamic properties of a laminar flow field to construct a probability density function of floc volumes after a fragmentation event. We provide computational results which predict that the primary fragmentation mechanism for large flocs is erosion. The postfragmentation probability density function has a strong dependence on the size of the original floc and indicates that most fragmentation events result in clumps of one to three bacteria eroding from the original floc. We also provide numerical evidence that exhaustive fragmentation yields a limiting density inconsistent with the log-normal density predicted in the literature, most likely due to the heterogeneous nature of K. pneumoniae flocs. To support our conclusions, artificial flocs were generated and display similar postfragmentation density and exhaustive fragmentation. PMID:21599205
Global Forest Area Trends Underestimate Threats from Forest Fragmentation
Forest loss and fragmentation of the remainder threaten the ecological attributes and functions which depend upon forests1. Forest interior area is particularly valued because it is relatively remote from human influence2, 3, 4, 5. Recent global assessments report declines in t...
Mapping the core mass function to the initial mass function
NASA Astrophysics Data System (ADS)
Guszejnov, Dávid; Hopkins, Philip F.
2015-07-01
It has been shown that fragmentation within self-gravitating, turbulent molecular clouds (`turbulent fragmentation') can naturally explain the observed properties of protostellar cores, including the core mass function (CMF). Here, we extend recently developed analytic models for turbulent fragmentation to follow the time-dependent hierarchical fragmentation of self-gravitating cores, until they reach effectively infinite density (and form stars). We show that turbulent fragmentation robustly predicts two key features of the initial mass function (IMF). First, a high-mass power-law scaling very close to the Salpeter slope, which is a generic consequence of the scale-free nature of turbulence and self-gravity. We predict the IMF slope (-2.3) is slightly steeper than the CMF slope (-2.1), owing to the slower collapse and easier fragmentation of large cores. Secondly, a turnover mass, which is set by a combination of the CMF turnover mass (a couple solar masses, determined by the `sonic scale' of galactic turbulence, and so weakly dependent on galaxy properties), and the equation of state (EOS). A `soft' EOS with polytropic index γ < 1.0 predicts that the IMF slope becomes `shallow' below the sonic scale, but fails to produce the full turnover observed. An EOS, which becomes `stiff' at sufficiently low surface densities Σgas ˜ 5000 M⊙ pc-2, and/or models, where each collapsing core is able to heat and effectively stiffen the EOS of a modest mass (˜0.02 M⊙) of surrounding gas, are able to reproduce the observed turnover. Such features are likely a consequence of more detailed chemistry and radiative feedback.
Transverse radius dependence for transverse velocity and elliptic flow in intermediate energy HIC
NASA Astrophysics Data System (ADS)
Yan, Ting-Zhi; Li, Shan
2011-05-01
The mean transverse velocity and elliptic flow of light fragments (A <= 2) as a function of transverse radius are studied for 25 MeV/nucleon 64Cu+64Cu collisions with impact parameters 3-5 fm by the isospin-dependent quantum molecular dynamics model. By comparison between the in-plane and the out-of-plane transverse velocities, the elliptic flow dependence on the transverse radius can be understood qualitatively, and variation of the direction of the resultant force on the fragments can be investigated qualitatively.
Role of mTOR, Bad, and Survivin in RasGAP Fragment N-Mediated Cell Protection
Yang, Jiang-Yan; Widmann, Christian
2013-01-01
Partial cleavage of p120 RasGAP by caspase-3 in stressed cells generates an N-terminal fragment, called fragment N, which activates an anti-apoptotic Akt-dependent survival response. Akt regulates several effectors but which of these mediate fragment N-dependent cell protection has not been defined yet. Here we have investigated the role of mTORC1, Bad, and survivin in the capacity of fragment N to protect cells from apoptosis. Neither rapamycin, an inhibitor of mTORC1, nor silencing of raptor, a subunit of the mTORC1 complex, altered the ability of fragment N from inhibiting cisplatin- and Fas ligand-induced death. Cells lacking Bad, despite displaying a stronger resistance to apoptosis, were still protected by fragment N against cisplatin-induced death. Fragment N was also able to protect cells from Fas ligand-induced death in conditions where Bad plays no role in apoptosis regulation. Fragment N expression in cells did neither modulate survivin mRNA nor its protein expression. Moreover, the expression of cytoplasmic survivin, known to exert anti-apoptotic actions in cells, still occurred in UV-B-irradiated epidermis of mouse expressing a caspase-3-resistant RasGAP mutant that cannot produce fragment N. Additionally, survivin function in cell cycle progression was not affected by fragment N. These results indicate that, taken individually, mTOR, Bad, or Survivin are not required for fragment N to protect cells from cell death. We conclude that downstream targets of Akt other than mTORC1, Bad, or survivin mediate fragment N-induced protection or that several Akt effectors can compensate for each other to induce the pro-survival fragment N-dependent response. PMID:23826368
Postfragmentation density function for bacterial aggregates in laminar flow.
Byrne, Erin; Dzul, Steve; Solomon, Michael; Younger, John; Bortz, David M
2011-04-01
The postfragmentation probability density of daughter flocs is one of the least well-understood aspects of modeling flocculation. We use three-dimensional positional data of Klebsiella pneumoniae bacterial flocs in suspension and the knowledge of hydrodynamic properties of a laminar flow field to construct a probability density function of floc volumes after a fragmentation event. We provide computational results which predict that the primary fragmentation mechanism for large flocs is erosion. The postfragmentation probability density function has a strong dependence on the size of the original floc and indicates that most fragmentation events result in clumps of one to three bacteria eroding from the original floc. We also provide numerical evidence that exhaustive fragmentation yields a limiting density inconsistent with the log-normal density predicted in the literature, most likely due to the heterogeneous nature of K. pneumoniae flocs. To support our conclusions, artificial flocs were generated and display similar postfragmentation density and exhaustive fragmentation. ©2011 American Physical Society
Satellite disintegration dynamics
NASA Technical Reports Server (NTRS)
Dasenbrock, R. R.; Kaufman, B.; Heard, W. B.
1975-01-01
The subject of satellite disintegration is examined in detail. Elements of the orbits of individual fragments, determined by DOD space surveillance systems, are used to accurately predict the time and place of fragmentation. Dual time independent and time dependent analyses are performed for simulated and real breakups. Methods of statistical mechanics are used to study the evolution of the fragment clouds. The fragments are treated as an ensemble of non-interacting particles. A solution of Liouville's equation is obtained which enables the spatial density to be calculated as a function of position, time and initial velocity distribution.
Fast antibody fragment motion: flexible linkers act as entropic spring
Stingaciu, Laura R.; Ivanova, Oxana; Ohl, Michael; Biehl, Ralf; Richter, Dieter
2016-01-01
A flexible linker region between three fragments allows antibodies to adjust their binding sites to an antigen or receptor. Using Neutron Spin Echo Spectroscopy we observed fragment motion on a timescale of 7 ns with motional amplitudes of about 1 nm relative to each other. The mechanistic complexity of the linker region can be described by a spring model with Brownian motion of the fragments in a harmonic potential. Displacements, timescale, friction and force constant of the underlying dynamics are accessed. The force constant exhibits a similar strength to an entropic spring, with friction of the fragment matching the unbound state. The observed fast motions are fluctuations in pre-existing equilibrium configurations. The Brownian motion of domains in a harmonic potential is the appropriate model to examine functional hinge motions dependent on the structural topology and highlights the role of internal forces and friction to function. PMID:27020739
Fast antibody fragment motion: flexible linkers act as entropic spring
Stingaciu, Laura R.; Ivanova, Oxana; Ohl, Michael; ...
2016-03-29
A flexible linker region between three fragments allows antibodies to adjust their binding sites to an antigen or receptor. Using Neutron Spin Echo Spectroscopy we observed fragment motion on a timescale of 7 ns with motional amplitudes of about 1 nm relative to each other. The mechanistic complexity of the linker region can be described by a spring model with Brownian motion of the fragments in a harmonic potential. Displacements, timescale, friction and force constant of the underlying dynamics are accessed. The force constant exhibits a similar strength to an entropic spring, with friction of the fragment matching the unboundmore » state. The observed fast motions are fluctuations in pre-existing equilibrium configurations. In conclusion, the Brownian motion of domains in a harmonic potential is the appropriate model to examine functional hinge motions dependent on the structural topology and highlights the role of internal forces and friction to function.« less
Fast antibody fragment motion: flexible linkers act as entropic spring.
Stingaciu, Laura R; Ivanova, Oxana; Ohl, Michael; Biehl, Ralf; Richter, Dieter
2016-03-29
A flexible linker region between three fragments allows antibodies to adjust their binding sites to an antigen or receptor. Using Neutron Spin Echo Spectroscopy we observed fragment motion on a timescale of 7 ns with motional amplitudes of about 1 nm relative to each other. The mechanistic complexity of the linker region can be described by a spring model with Brownian motion of the fragments in a harmonic potential. Displacements, timescale, friction and force constant of the underlying dynamics are accessed. The force constant exhibits a similar strength to an entropic spring, with friction of the fragment matching the unbound state. The observed fast motions are fluctuations in pre-existing equilibrium configurations. The Brownian motion of domains in a harmonic potential is the appropriate model to examine functional hinge motions dependent on the structural topology and highlights the role of internal forces and friction to function.
On moments of the multiplicity events of slow target fragments in relativistic Sulfur-ion collisions
NASA Astrophysics Data System (ADS)
Abdelsalam, A.; Kamel, S.; Rashed, N.; Sabry, N.
2014-07-01
A detailed study on the multiplicity characteristics of the slow target fragments emitted in relativistic heavy-ion collisions has been carried out at ELab = 3.7A and 200A GeV using 32S projectile. The beam energy dependence of the black particles produced in the full phase space of 32S-emulsion (32S-Em) interactions on the target size in terms of their moments (mean, variance, skewness and kurtosis) is investigated. The various order moments of target fragments emitted in the interactions of 32S beams with the heavy (AgBr) target nuclei are estimated in the forward (FHS) and backward (BHS) hemispheres. The investigated values of ratio of variance to mean at both energies show that the multiplicity distributions (MDs) are not Poissonian and the strongly correlated emission of target fragments are in the forward directions. The degree of anisotropic fragment emission and nature of correlation among the emitted fragments are investigated. The energy dependence of entropy is examined in both hemispheres. The entropy values normalized to average multiplicity are found to be energy independent. Scaling of MD of black particles produced in these interactions has been studied to verify the validity of scaling hypothesis via two scaling (Koba-Nielsen-Olesen (KNO)-scaling and Hegyi-scaling) functions. A simplified universal function has been used in each scaling to display the experimental data.
NASA Astrophysics Data System (ADS)
Momota, S.; Kanazawa, M.; Kitagawa, A.; Sato, S.
2018-04-01
Longitudinal momentum (PL) distributions of projectilelike fragments produced at E =290 MeV /nucleon are investigated. PL distributions of fragments produced by Ar and Kr beams with a wide variety of targets (C, Al, Nb, Tb, and Au) were measured using the fragment separator at HIMAC. PL distributions observed for fragments with a wide range of mass losses Δ A (1-30 for Ar beam and 1-64 for Kr beam), show a slightly, but definitely asymmetric nature. The peak shift and width were obtained from the observed PL distributions. No significant target dependence was found in either the peak shift or width. For the practical application, the variation in momentum peak shift with fragment mass (AF) was represented by a parabolic function. The width on the high-PL side (σHigh) is well reproduced by the Goldhaber formula, which is obtained from the contribution of the Fermi momentum. The behavior of the reduced width, σ0, obtained from σHigh via the Goldhaber formulation, is consistent with the mass-dependent Fermi momentum of a nucleon. The width on the low-PL side (σLow) is markedly larger than σHigh and exhibits a clear AF dependence.
Fragmentation functions beyond fixed order accuracy
NASA Astrophysics Data System (ADS)
Anderle, Daniele P.; Kaufmann, Tom; Stratmann, Marco; Ringer, Felix
2017-03-01
We give a detailed account of the phenomenology of all-order resummations of logarithmically enhanced contributions at small momentum fraction of the observed hadron in semi-inclusive electron-positron annihilation and the timelike scale evolution of parton-to-hadron fragmentation functions. The formalism to perform resummations in Mellin moment space is briefly reviewed, and all relevant expressions up to next-to-next-to-leading logarithmic order are derived, including their explicit dependence on the factorization and renormalization scales. We discuss the details pertinent to a proper numerical implementation of the resummed results comprising an iterative solution to the timelike evolution equations, the matching to known fixed-order expressions, and the choice of the contour in the Mellin inverse transformation. First extractions of parton-to-pion fragmentation functions from semi-inclusive annihilation data are performed at different logarithmic orders of the resummations in order to estimate their phenomenological relevance. To this end, we compare our results to corresponding fits up to fixed, next-to-next-to-leading order accuracy and study the residual dependence on the factorization scale in each case.
NASA Astrophysics Data System (ADS)
Constantin, Paul
Two particle azimuthal correlation functions measured in pp and AuAu collisions at sNN = 200 GeV at midrapidity with the central arms of the PHENIX detector are analyzed in order to extract the properties of hadronic jets produced in QCD vacuum and highly excited QCD media, like the jet shape parameters jT and kT, the jet conditional yields (number of associated hadrons per high pT trigger hadron) and the jet fragmentation function. The analysis of pp data starts with the measurement of the vacuum fragmentation function from which the pT dependence of the mean fragmentation momentum fraction
Saeidian, Hamid; Babri, Mehran; Ramezani, Atefeh; Ashrafi, Davood; Sarabadani, Mansour; Naseri, Mohammad Taghi
2013-01-01
The electron ionization (EI) mass spectra of a series of O-alkyl O-2-(N,N-dialkylaminolethyl alkylphosphonites(phosphonates), which are precursors of nerve agents, were studied for Chemical Weapons Convention (CWC) verification. General El fragmentation pathways were constructed and discussed. Proposed fragment structures were confirmed through analyzing fragment ions of deuterated analogs and density functional theory (DFT) calculations. The observed fragment ions are due to different fragmentation pathways such as hydrogen and McLafferty+1 rearrangements, alkene, amine and alkoxy elimination by alpha- or beta-cleavage process. Fragment ions distinctly allow unequivocal identification of the interested compounds including those of isomeric compounds. The presence and abundance of fragment ions were found to depend on the size and structure of the alkyl group attached to nitrogen, phosphorus and oxygen atoms.
Kinematics of current region fragmentation in semi-inclusive deeply inelastic scattering
Boglione, M.; Collins, J.; Gamberg, L.; ...
2017-01-16
Different kinematical regions of semi-inclusive deeply inelastic scattering (SIDIS) processes correspond to different underlying partonic pictures, and it is important to understand the transition between them. We find criteria in semi-inclusive deeply inelastic scattering (SIDIS) for identifying the current fragmentation region — the kinematical region where a factorization picture with fragmentation functions is appropriate, especially for studies of transverse-momentum-dependent (TMD) functions. This region is distinguished from the central (soft) and target fragmentation regions. The basis of our argument is in the errors in approximations used in deriving factorization. As compared with previous work, we show that it is essential tomore » take account of the transverse momentum of the detected hadron, and we find a much more restricted range for genuine current fragmentation. As a result, we show that it is important to develop an extended factorization formulation to treat hadronization in the central region, as well as the current and target fragmentation regions, and to obtain a unified formalism spanning all rapidities for the detected hadron.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kaur, Amandeep; Deepshikha; Vinayak, Karan Singh
2016-07-15
We performed a theoretical investigation of different mass-asymmetric reactions to access the direct impact of the density-dependent part of symmetry energy on multifragmentation. The simulations are performed for a specific set of reactions having same system mass and N/Z content, using isospin-dependent quantum molecular dynamics model to estimate the quantitative dependence of fragment production on themass-asymmetry factor (τ) for various symmetry energy forms. The dynamics associated with different mass-asymmetric reactions is explored and the direct role of symmetry energy is checked. Also a comparison with the experimental data (asymmetric reaction) is presented for a different equation of states (symmetry energymore » forms).« less
Conservation of Fold and Topology of Functional Elements in Thiamin Pyrophosphate Enzymes
NASA Technical Reports Server (NTRS)
Dominiak, P.; Ciszak, E. M.
2005-01-01
Thiamin pyrophosphate (TPP)-dependent enzymes are a highly divergent family of proteins binding both TPP and metal ions. They perform decarboxylation-hydroxyaldehydes. Prior -ketoacids and of a common - (O=)C-C(OH)- fragment of to knowledge of three-dimensional structures of these enzmes, the GDGY25-30NN sequence was used to identify these enzymes. Subsequently, a number of structural studies on those enzymes revealed multi-subunit organization and the features of the two duplicate cofactor binding sites. Analyzing the structures of 44 structurally known enzymes, we found that the common structure of these enzymes is reduced to 180-220 amino acid long fragments of two PP and two PYR domains that form the [PP:PYR]2 binding center of two cofactor molecules. The structures of PP and PYR are arranged in a similar fold-sheet with triplets of helices on both sides.Dconsisting of a six-stranded Residues surrounding the cofactors are not strictly conserved, but they provide the same interatomic contacts required for the catalytic functions that these enzymes perform while maintaining interactive structural integrity. These structural and functional amino acids are topological counterparts located in the same positions of the conserved fold of sets of PP and PYR domains. Additional parallels include short fragments of sequences that link these amino acids to the fold and function. This report on the structural commonalities amongst TPP dependent enzymes is thought to contribute new approaches to annotation that may assist in advancing the functional proteomics of TPP dependent enzymes, and trace their complexity within evolutionary context.
Transfer function concept for ultrasonic characterization of material microstructures
NASA Technical Reports Server (NTRS)
Vary, A.; Kautz, H. E.
1986-01-01
The approach given depends on treating material microstructures as elastomechanical filters that have analytically definable transfer functions. These transfer functions can be defined in terms of the frequency dependence of the ultrasonic attenuation coefficient. The transfer function concept provides a basis for synthesizing expressions that characterize polycrystalline materials relative to microstructural factors such as mean grain size, grain-size distribution functions, and grain boundary energy transmission. Although the approach is nonrigorous, it leads to a rational basis for combining the previously mentioned diverse and fragmented equations for ultrasonic attenuation coefficients.
Verhage, Samuel Marinus; Hoogendoorn, Jochem Maarten; Krijnen, Pieta; Schipper, Inger Birgitta
2018-05-12
Whether or not and how to fixate the posterior malleolus fracture seems to depend on the fracture fragment size and its amount of dislocation, but clear guidelines for daily practice are lacking. In this review, we summarize the literature on preferred treatment of the posterior fragment in trimalleolar fractures. A systematic review of publications between January 1995 and April 30 2017 on this topic in the PubMed, Embase, and Cochrane databases was performed according to the PRISMA statement. Seventeen (2 prospective and 15 retrospective) of the 180 identified studies were included. Six studies report on indications for fixation of posterior malleolus fracture fragments. Eleven studies compare different fixation approaches and techniques for the posterior fragment. Meta-analysis was not possible due to varying fixation criteria and outcomes. There was no clear association between posterior fragment size and functional outcome or development of osteoarthritis. The non-anatomical reduction of the fragment was of more influence on outcome. Radiological and functional outcome was better after open reduction and internal fixation via the posterolateral approach than after percutaneous anterior-to-posterior screw fixation. The posterior fragment size is not a clear indication for its fixation. A step-off, however, seems an important indicator for developing posttraumatic osteoarthritis and worse functional outcome. Posterior fragments involving the intra-articular surface need to be reduced and fixated to prevent postoperative persisting step-off. Furthermore, fixation of the posterior malleolus via an open posterolateral approach seems superior to percutaneous anterior-to-posterior fixation. However, these results need to be confirmed in a prospective comparative trial. Therapeutic level II.
Flores-Rentería, Dulce; Curiel Yuste, Jorge; Rincón, Ana; Brearley, Francis Q; García-Gil, Juan Carlos; Valladares, Fernando
2015-05-01
Ecological transformations derived from habitat fragmentation have led to increased threats to above-ground biodiversity. However, the impacts of forest fragmentation on soils and their microbial communities are not well understood. We examined the effects of contrasting fragment sizes on the structure and functioning of soil microbial communities from holm oak forest patches in two bioclimatically different regions of Spain. We used a microcosm approach to simulate the annual summer drought cycle and first autumn rainfall (rewetting), evaluating the functional response of a plant-soil-microbial system. Forest fragment size had a significant effect on physicochemical characteristics and microbial functioning of soils, although the diversity and structure of microbial communities were not affected. The response of our plant-soil-microbial systems to drought was strongly modulated by the bioclimatic conditions and the fragment size from where the soils were obtained. Decreasing fragment size modulated the effects of drought by improving local environmental conditions with higher water and nutrient availability. However, this modulation was stronger for plant-soil-microbial systems built with soils from the northern region (colder and wetter) than for those built with soils from the southern region (warmer and drier) suggesting that the responsiveness of the soil-plant-microbial system to habitat fragmentation was strongly dependent on both the physicochemical characteristics of soils and the historical adaptation of soil microbial communities to specific bioclimatic conditions. This interaction challenges our understanding of future global change scenarios in Mediterranean ecosystems involving drier conditions and increased frequency of forest fragmentation.
Isotopic dependence of the fragments' internal temperatures determined from multifragment emission
NASA Astrophysics Data System (ADS)
Souza, S. R.; Donangelo, R.
2018-05-01
The internal temperatures of fragments produced by an excited nuclear source are investigated by using the microcanonical version of the statistical multifragmentation model, with discrete energy. We focus on the fragments' properties at the breakup stage, before they have time to deexcite by particle emission. Since the adopted model provides the excitation energy distribution of these primordial fragments, it allows one to calculate the temperatures of different isotope families and to make inferences about the sensitivity to their isospin composition. It is found that, due to the functional form of the nuclear density of states and the excitation energy distribution of the fragments, proton-rich isotopes are hotter than neutron-rich isotopes. This property has been taken to be an indication of earlier emission of the former from a source that cools down as it expands and emits fragments. Although this scenario is incompatible with the prompt breakup of a thermally equilibrated source, our results reveal that the latter framework also provides the same qualitative features just mentioned. Therefore they suggest that this property cannot be taken as evidence for nonequilibrium emission. We also found that this sensitivity to the isotopic composition of the fragments depends on the isospin composition of the source, and that it is weakened as the excitation energy of the source increases.
Fragment emission from the mass-symmetric reactions 58Fe,58Ni +58Fe,58Ni at Ebeam=30 MeV/nucleon
NASA Astrophysics Data System (ADS)
Ramakrishnan, E.; Johnston, H.; Gimeno-Nogues, F.; Rowland, D. J.; Laforest, R.; Lui, Y.-W.; Ferro, S.; Vasal, S.; Yennello, S. J.
1998-04-01
The mass-symmetric reactions 58Fe,58Ni +58Fe,58Ni were studied at a beam energy of Ebeam=30 MeV/nucleon in order to investigate the isospin dependence of fragment emission. Ratios of inclusive yields of isotopic fragments from hydrogen through nitrogen were extracted as a function of laboratory angle. A moving source analysis of the data indicates that at laboratory angles around 40° the yield of intermediate mass fragments (IMF's) beyond Z=3 is predominantly from a midrapidity source. The angular dependence of the relative yields of isotopes beyond Z=3 indicates that the IMF's at more central angles originate from a source which is more neutron deficient than the source responsible for fragments emitted at forward angles. The charge distributions and kinetic energy spectra of the IMF's at various laboratory angles were well reproduced by calculations employing a quantum molecular-dynamics code followed by a statistical multifragmentation model for generating fragments. The calculations indicate that the measured IMF's originate mainly from a single source. The isotopic composition of the emitted fragments is, however, not reproduced by the same calculation. The measured isotopic and isobaric ratios indicate an emitting source that is more neutron rich in comparison to the source predicted by model calculations.
NASA Astrophysics Data System (ADS)
Hautmann, F.; Jung, H.; Krämer, M.; Mulders, P. J.; Nocera, E. R.; Rogers, T. C.; Signori, A.
2014-12-01
Transverse-momentum-dependent distributions (TMDs) are extensions of collinear parton distributions and are important in high-energy physics from both theoretical and phenomenological points of view. In this manual we introduce the library , a tool to collect transverse-momentum-dependent parton distribution functions (TMD PDFs) and fragmentation functions (TMD FFs) together with an online plotting tool, TMDplotter. We provide a description of the program components and of the different physical frameworks the user can access via the available parameterisations.
Hautmann, F; Jung, H; Krämer, M; Mulders, P J; Nocera, E R; Rogers, T C; Signori, A
Transverse-momentum-dependent distributions (TMDs) are extensions of collinear parton distributions and are important in high-energy physics from both theoretical and phenomenological points of view. In this manual we introduce the library [Formula: see text], a tool to collect transverse-momentum-dependent parton distribution functions (TMD PDFs) and fragmentation functions (TMD FFs) together with an online plotting tool, TMDplotter. We provide a description of the program components and of the different physical frameworks the user can access via the available parameterisations.
Spin Polarization of Mg-23 in Mg-24 + Au, Cu and Al Collisions at 91 A MeV
NASA Technical Reports Server (NTRS)
Matsuta, K.; Fukuda, S.; Izumikawa, T.; Tanigaki, M.; Fukuda, M.; Nakazato, M.; Mihara, M.; Onishi, T.; Yamaguchi, T.; Miyake, T.
1994-01-01
Spin polarization of beta-emitting fragment Mg-23(I(sup pi) = 3/2(sup +), T(sub 1/2 = l1.3 s) produced through the projectile fragmentation process in Mg-24 + Au, Cu and Al collisions has been observed at 91 AMeV. General trend in the observed momentum dependence of polarization is reproduced well qualitatively by a simple fragmentation model based on the participant-spectator picture, for heavy and light targets. However the polarization behavior differs from this model in tern of zero crossing momentum, which become prominent in the case of Cu target, where the polarization is not monotone function of the fragment momentum.
Influence of primary fragment excitation energy and spin distributions on fission observables
NASA Astrophysics Data System (ADS)
Litaize, Olivier; Thulliez, Loïc; Serot, Olivier; Chebboubi, Abdelaziz; Tamagno, Pierre
2018-03-01
Fission observables in the case of 252Cf(sf) are investigated by exploring several models involved in the excitation energy sharing and spin-parity assignment between primary fission fragments. In a first step the parameters used in the FIFRELIN Monte Carlo code "reference route" are presented: two parameters for the mass dependent temperature ratio law and two constant spin cut-off parameters for light and heavy fragment groups respectively. These parameters determine the initial fragment entry zone in excitation energy and spin-parity (E*, Jπ). They are chosen to reproduce the light and heavy average prompt neutron multiplicities. When these target observables are achieved all other fission observables can be predicted. We show here the influence of input parameters on the saw-tooth curve and we discuss the influence of a mass and energy-dependent spin cut-off model on gamma-rays related fission observables. The part of the model involving level densities, neutron transmission coefficients or photon strength functions remains unchanged.
Fragmentation cross sections and binding energies of neutron-rich nuclei
NASA Astrophysics Data System (ADS)
Tsang, M. B.; Lynch, W. G.; Friedman, W. A.; Mocko, M.; Sun, Z. Y.; Aoi, N.; Cook, J. M.; Delaunay, F.; Famiano, M. A.; Hui, H.; Imai, N.; Iwasaki, H.; Motobayashi, T.; Niikura, M.; Onishi, T.; Rogers, A. M.; Sakurai, H.; Suzuki, H.; Takeshita, E.; Takeuchi, S.; Wallace, M. S.
2007-10-01
An exponential dependence of the fragmentation cross section on the average binding energy is observed and reproduced with a statistical model. The observed functional dependence is robust and allows the extraction of binding energies from measured cross sections. From the systematics of Cu isotope cross sections, the binding energies of Cu76,77,78,79 have been extracted. They are 636.94±0.4,647.1±0.4,651.6±0.4, and 657.8±0.5 MeV, respectively. Specifically, the uncertainty of the binding energy of Cu75 is reduced from 980 keV, as listed in the 2003 mass table of Audi, Wapstra, and Thibault to 400 keV. The predicted cross sections of two near drip-line nuclei, Na39 and Mg40 from the fragmentation of Ca48 are discussed.
van Niel, Guillaume; Charrin, Stéphanie; Simoes, Sabrina; Romao, Maryse; Rochin, Leila; Saftig, Paul; Marks, Michael S.; Rubinstein, Eric; Raposo, Graça
2011-01-01
Summary Cargo sorting to intraluminal vesicles (ILVs) of multivesicular endosomes is required for numerous physiological processes including lysosome-related organelle (LRO) biogenesis. PMEL – a component of melanocyte LROs (melanosomes) – is sorted to ILVs in an ESCRT-independent manner, where it is proteolytically processed and assembled into functional amyloid fibrils during melanosome maturation. Here we show that the tetraspanin CD63 directly participates in ESCRT-independent sorting of the PMEL luminal domain, but not of traditional ESCRT-dependent cargoes, to ILVs. Inactivating CD63 in cell culture or in mice impairs amyloidogenesis and downstream melanosome morphogenesis. Whereas CD63 is required for normal PMEL luminal domain sorting, the disposal of the remaining PMEL transmembrane fragment requires functional ESCRTs but not CD63. In the absence of CD63, the PMEL luminal domain follows this fragment and is targeted for ESCRT-dependent degradation. Our data thus reveal a tight interplay regulated by CD63 between two distinct endosomal ILV sorting processes for a single cargo during LRO biogenesis. PMID:21962903
Durdevic, Zeljko; Mobin, Mehrpouya Balaghy; Hanna, Katharina; Lyko, Frank; Schaefer, Matthias
2013-09-12
Transfer RNA (tRNA) fragmentation in response to stress conditions has been described in many organisms. tRNA fragments have been found in association with small interfering RNA (siRNA) components, but the biological role of these interactions remains unclear. We report here that the tRNA methyltransferase Dnmt2 is essential for efficient Dicer-2 (Dcr-2) function in Drosophila. Using small RNA (sRNA) sequencing, we confirmed that Dnmt2 limits the extent of tRNA fragmentation during the heat-shock response. tRNAs as well as tRNA fragments serve as Dcr-2 substrates, and Dcr-2 degrades tRNA-derived sequences, especially under heat-shock conditions. tRNA-derived RNAs are able to inhibit Dcr-2 activity on long double-stranded RNAs (dsRNAs). Consequently, heat-shocked Dnmt2 mutant animals accumulate dsRNAs, produce fewer siRNAs, and show misregulation of siRNA pathway-dependent genes. These results reveal the impact of tRNA fragmentation on siRNA pathways and implicate tRNA modifications in the regulation of sRNA homeostasis during the heat-shock response. Copyright © 2013 The Authors. Published by Elsevier Inc. All rights reserved.
Harris, Julia M; Nguyen, Phil P; Patel, Milan J; Sporn, Zachary A; Hines, Justin K
2014-07-01
Yeast prions are heritable amyloid aggregates of functional yeast proteins; their propagation to subsequent cell generations is dependent upon fragmentation of prion protein aggregates by molecular chaperone proteins. Mounting evidence indicates the J-protein Sis1 may act as an amyloid specificity factor, recognizing prion and other amyloid aggregates and enabling Ssa and Hsp104 to act in prion fragmentation. Chaperone interactions with prions, however, can be affected by variations in amyloid-core structure resulting in distinct prion variants or 'strains'. Our genetic analysis revealed that Sis1 domain requirements by distinct variants of [PSI+] are strongly dependent upon overall variant stability. Notably, multiple strong [PSI+] variants can be maintained by a minimal construct of Sis1 consisting of only the J-domain and glycine/phenylalanine-rich (G/F) region that was previously shown to be sufficient for cell viability and [RNQ+] prion propagation. In contrast, weak [PSI+] variants are lost under the same conditions but maintained by the expression of an Sis1 construct that lacks only the G/F region and cannot support [RNQ+] propagation, revealing mutually exclusive requirements for Sis1 function between these two prions. Prion loss is not due to [PSI+]-dependent toxicity or dependent upon a particular yeast genetic background. These observations necessitate that Sis1 must have at least two distinct functional roles that individual prions differentially require for propagation and which are localized to the glycine-rich domains of the Sis1. Based on these distinctions, Sis1 plasmid-shuffling in a [PSI+]/[RNQ+] strain permitted J-protein-dependent prion selection for either prion. We also found that, despite an initial report to the contrary, the human homolog of Sis1, Hdj1, is capable of [PSI+] prion propagation in place of Sis1. This conservation of function is also prion-variant dependent, indicating that only one of the two Sis1-prion functions may have been maintained in eukaryotic chaperone evolution.
Patel, Milan J.; Sporn, Zachary A.; Hines, Justin K.
2014-01-01
Yeast prions are heritable amyloid aggregates of functional yeast proteins; their propagation to subsequent cell generations is dependent upon fragmentation of prion protein aggregates by molecular chaperone proteins. Mounting evidence indicates the J-protein Sis1 may act as an amyloid specificity factor, recognizing prion and other amyloid aggregates and enabling Ssa and Hsp104 to act in prion fragmentation. Chaperone interactions with prions, however, can be affected by variations in amyloid-core structure resulting in distinct prion variants or ‘strains’. Our genetic analysis revealed that Sis1 domain requirements by distinct variants of [PSI +] are strongly dependent upon overall variant stability. Notably, multiple strong [PSI +] variants can be maintained by a minimal construct of Sis1 consisting of only the J-domain and glycine/phenylalanine-rich (G/F) region that was previously shown to be sufficient for cell viability and [RNQ +] prion propagation. In contrast, weak [PSI +] variants are lost under the same conditions but maintained by the expression of an Sis1 construct that lacks only the G/F region and cannot support [RNQ +] propagation, revealing mutually exclusive requirements for Sis1 function between these two prions. Prion loss is not due to [PSI +]-dependent toxicity or dependent upon a particular yeast genetic background. These observations necessitate that Sis1 must have at least two distinct functional roles that individual prions differentially require for propagation and which are localized to the glycine-rich domains of the Sis1. Based on these distinctions, Sis1 plasmid-shuffling in a [PSI +]/[RNQ +] strain permitted J-protein-dependent prion selection for either prion. We also found that, despite an initial report to the contrary, the human homolog of Sis1, Hdj1, is capable of [PSI +] prion propagation in place of Sis1. This conservation of function is also prion-variant dependent, indicating that only one of the two Sis1-prion functions may have been maintained in eukaryotic chaperone evolution. PMID:25058638
Fragmentation cross sections and binding energies of neutron-rich nuclei
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tsang, M. B.; Lynch, W. G.; Mocko, M.
An exponential dependence of the fragmentation cross section on the average binding energy is observed and reproduced with a statistical model. The observed functional dependence is robust and allows the extraction of binding energies from measured cross sections. From the systematics of Cu isotope cross sections, the binding energies of {sup 76,77,78,79}Cu have been extracted. They are 636.94{+-}0.4,647.1{+-}0.4,651.6{+-}0.4, and 657.8{+-}0.5 MeV, respectively. Specifically, the uncertainty of the binding energy of {sup 75}Cu is reduced from 980 keV, as listed in the 2003 mass table of Audi, Wapstra, and Thibault to 400 keV. The predicted cross sections of two near drip-linemore » nuclei, {sup 39}Na and {sup 40}Mg from the fragmentation of {sup 48}Ca are discussed.« less
Like-sign dimuon charge asymmetry at the Tevatron: Corrections from B meson fragmentation
NASA Astrophysics Data System (ADS)
Mitov, Alexander
2011-07-01
The existing predictions for the like-sign dimuon charge asymmetry at the Tevatron are expressed in terms of parameters related to B mesons’ mixing and inclusive production fractions. We show that in the realistic case when phase-space cuts are applied, the asymmetry depends also on the details of the production mechanism for the B mesons. In particular, it is sensitive to the difference in the fragmentation functions of Bd0 and Bs0 mesons. We estimate these fragmentation effects and find that they shift the theory prediction for this observable by approximately 10%. We also point out the approximately 20% sensitivity of the asymmetry depending on which set of values for the B meson production fractions is used: as measured at the Z pole or at the Tevatron. The impact of these effects on the extraction of ASLs from the D0 measurement is presented.
Collioud, A; Clémence, J F; Sänger, M; Sigrist, H
1993-01-01
Light-dependent oriented and covalent immobilization of target molecules has been achieved by combining two modification procedures: light-dependent coupling of target molecules to inert surfaces and thiol-selective reactions occurring at macromolecule or substrate surfaces. For immobilization purposes the heterobifunctional reagent N-[m-[3-(trifluoromethyl)diazirin-3-yl]phenyl]-4-maleimidobutyr amide was synthesized and chemically characterized. The photosensitivity of the carbene-generating reagent and its reactivity toward thiols were ascertained. Light-induced cross-linking properties of the reagent were documented (i) by reacting first the maleimide function with a thiolated surface, followed by carbene insertion into applied target molecules, (ii) by photochemical coupling of the reagent to an inert support followed by thermochemical reactions with thiol functions, and (iii) by thermochemical modification of target molecules prior to carbene-mediated insertion into surface materials. Procedures mentioned led to light-dependent covalent immobilization of target molecules including amino acids, a synthetic peptide, and antibody-derived F(ab') fragments. Topically selective, light-dependent immobilization was attained with the bifunctional reagent by irradiation of coated surfaces through patterned masks. Glass and polystyrene served as substrates. Molecular orientation is asserted by inherently available or selectively introduced terminal thiol functions in F(ab') fragments and synthetic polypeptides, respectively.
Route to three-dimensional fragments using diversity-oriented synthesis
Hung, Alvin W.; Ramek, Alex; Wang, Yikai; Kaya, Taner; Wilson, J. Anthony; Clemons, Paul A.; Young, Damian W.
2011-01-01
Fragment-based drug discovery (FBDD) has proven to be an effective means of producing high-quality chemical ligands as starting points for drug-discovery pursuits. The increasing number of clinical candidate drugs developed using FBDD approaches is a testament of the efficacy of this approach. The success of fragment-based methods is highly dependent on the identity of the fragment library used for screening. The vast majority of FBDD has centered on the use of sp2-rich aromatic compounds. An expanded set of fragments that possess more 3D character would provide access to a larger chemical space of fragments than those currently used. Diversity-oriented synthesis (DOS) aims to efficiently generate a set of molecules diverse in skeletal and stereochemical properties. Molecules derived from DOS have also displayed significant success in the modulation of function of various “difficult” targets. Herein, we describe the application of DOS toward the construction of a unique set of fragments containing highly sp3-rich skeletons for fragment-based screening. Using cheminformatic analysis, we quantified the shapes and physical properties of the new 3D fragments and compared them with a database containing known fragment-like molecules. PMID:21482811
Route to three-dimensional fragments using diversity-oriented synthesis.
Hung, Alvin W; Ramek, Alex; Wang, Yikai; Kaya, Taner; Wilson, J Anthony; Clemons, Paul A; Young, Damian W
2011-04-26
Fragment-based drug discovery (FBDD) has proven to be an effective means of producing high-quality chemical ligands as starting points for drug-discovery pursuits. The increasing number of clinical candidate drugs developed using FBDD approaches is a testament of the efficacy of this approach. The success of fragment-based methods is highly dependent on the identity of the fragment library used for screening. The vast majority of FBDD has centered on the use of sp(2)-rich aromatic compounds. An expanded set of fragments that possess more 3D character would provide access to a larger chemical space of fragments than those currently used. Diversity-oriented synthesis (DOS) aims to efficiently generate a set of molecules diverse in skeletal and stereochemical properties. Molecules derived from DOS have also displayed significant success in the modulation of function of various "difficult" targets. Herein, we describe the application of DOS toward the construction of a unique set of fragments containing highly sp(3)-rich skeletons for fragment-based screening. Using cheminformatic analysis, we quantified the shapes and physical properties of the new 3D fragments and compared them with a database containing known fragment-like molecules.
Alver, B.; Back, B. B.; Baker, M. D.; ...
2016-08-02
Specmore » tator fragments resulting from relativistic heavy ion collisions, consisting of single protons and neutrons along with groups of stable nuclear fragments up to nitrogen (Z = 7), are measured in PHOBOS. These fragments are observed in Au+Au ( s N N = 19.6 GeV) and Cu+Cu (22.4 GeV) collisions at high pseudorapidity (η). The dominant multiply-charged fragment is the tightly bound helium (α), with lithium, beryllium, and boron all clearly seen as a function of collision centrality and pseudorapidity. In this paper, we observe that in Cu+Cu collisions, it becomes much more favorable for the α fragments to be released than lithium. The yields of fragments approximately scale with the number of spectator nucleons, independent of the colliding ion. The shapes of the pseudorapidity distributions of fragments indicate that the average deflection of the fragments away from the beam direction increases for more central collisions. Finally, a detailed comparison of the shapes for α and lithium fragments indicates that the centrality dependence of the deflections favors a scaling with the number of participants in the collision.« less
NASA Astrophysics Data System (ADS)
Alver, B.; Back, B. B.; Baker, M. D.; Ballintijn, M.; Barton, D. S.; Betts, R. R.; Bickley, A. A.; Bindel, R.; Budzanowski, A.; Busza, W.; Carroll, A.; Chai, Z.; Chetluru, V.; Decowski, M. P.; García, E.; Gburek, T.; George, N.; Gulbrandsen, K.; Gushue, S.; Halliwell, C.; Hamblen, J.; Harnarine, I.; Heintzelman, G. A.; Henderson, C.; Hofman, D. J.; Hollis, R. S.; Hołyński, R.; Holzman, B.; Iordanova, A.; Johnson, E.; Kane, J. L.; Katzy, J.; Khan, N.; Kucewicz, W.; Kulinich, P.; Kuo, C. M.; Li, W.; Lin, W. T.; Loizides, C.; Manly, S.; McLeod, D.; Mignerey, A. C.; Nouicer, R.; Olszewski, A.; Pak, R.; Park, I. C.; Pernegger, H.; Reed, C.; Remsberg, L. P.; Reuter, M.; Richardson, E.; Roland, C.; Roland, G.; Rosenberg, L.; Sagerer, J.; Sarin, P.; Sawicki, P.; Sedykh, I.; Skulski, W.; Smith, C. E.; Stankiewicz, M. A.; Steinberg, P.; Stephans, G. S. F.; Sukhanov, A.; Szostak, A.; Tang, J.-L.; Tonjes, M. B.; Trzupek, A.; Vale, C.; van Nieuwenhuizen, G. J.; Vaurynovich, S. S.; Verdier, R.; Veres, G. I.; Walters, P.; Wenger, E.; Willhelm, D.; Wolfs, F. L. H.; Wosiek, B.; Woźniak, K.; Wuosmaa, A. H.; Wyngaardt, S.; Wysłouch, B.; Phobos Collaboration
2016-08-01
Spectator fragments resulting from relativistic heavy ion collisions, consisting of single protons and neutrons along with groups of stable nuclear fragments up to nitrogen (Z =7 ), are measured in PHOBOS. These fragments are observed in Au+Au (√{sNN}=19.6 GeV ) and Cu+Cu (22.4 GeV) collisions at high pseudorapidity (η ). The dominant multiply-charged fragment is the tightly bound helium (α ), with lithium, beryllium, and boron all clearly seen as a function of collision centrality and pseudorapidity. We observe that in Cu+Cu collisions, it becomes much more favorable for the α fragments to be released than lithium. The yields of fragments approximately scale with the number of spectator nucleons, independent of the colliding ion. The shapes of the pseudorapidity distributions of fragments indicate that the average deflection of the fragments away from the beam direction increases for more central collisions. A detailed comparison of the shapes for α and lithium fragments indicates that the centrality dependence of the deflections favors a scaling with the number of participants in the collision.
None, None
2016-06-13
QCD factorisation for semi-inclusive deep inelastic scattering at low transverse momentum in the current-fragmentation region has been established recently, providing a rigorous basis to study the Transverse Momentum Dependent distribution and fragmentation functions (TMDs) of partons from Semi-Inclusive DIS data using different spin-dependent and spin-independent observables. The main focus of the experiments were the measurements of various single- and double-spin asymmetries in hadron electro-production (ep{up-arrow} --> ehX ) with unpolarised, longitudinally and transversely polarised targets. The joint use of a longitudinally polarised beam and longitudinally and transversely polarised targets allowed to measure double-spin asymmetries (DSA) related to leading-twist distribution functionsmore » describing the transverse momentum distribution of longitudinally and transversely polarised quarks in a longitudinally and transversely polarised nucleons (helicity and worm-gear TMDs). Furthermore, the single-spin asymmetries (SSA) measured with transversely polarised targets, provided access to specific leading-twist parton distribution functions: the transversity, the Sivers function and the so-called 'pretzelosity' function. In this review we present the current status and some future measurements of TMDs worldwide.« less
The Thick Level-Set model for dynamic fragmentation
Stershic, Andrew J.; Dolbow, John E.; Moës, Nicolas
2017-01-04
The Thick Level-Set (TLS) model is implemented to simulate brittle media undergoing dynamic fragmentation. This non-local model is discretized by the finite element method with damage represented as a continuous field over the domain. A level-set function defines the extent and severity of damage, and a length scale is introduced to limit the damage gradient. Numerical studies in one dimension demonstrate that the proposed method reproduces the rate-dependent energy dissipation and fragment length observations from analytical, numerical, and experimental approaches. In conclusion, additional studies emphasize the importance of appropriate bulk constitutive models and sufficient spatial resolution of the length scale.
NASA Astrophysics Data System (ADS)
Yamagaki, Tohru; Sugahara, Kohtaro; Watanabe, Takehiro
2014-01-01
To elucidate the influence of amino (-NH2) and acetamide (-NHCOCH3, -NAc) groups in sugar chains on their ionization and fragmentation, cycloamyloses (cyclodextrins, CyDs) and lacto-oligosaccharide are analyzed by MALDI TOF/TOF and ESI Q-TOF mass spectrometry. CyD derivatives substituted by amino or acetamide groups are ideal analytes to extract the function group effects, which are amino-CyD with one hexosamine (HexNH2) and acetamide-CyD with one N-acetyl hexosamine (HexNAc). Interestingly, the relative ion intensities and isotope-like patterns in their product ion spectra depend on the functional groups and ion forms of sugar chains. Consequently, the results indicate that a proton (H+) localizes on the amino group of the amino sugar, and that the proton (H+) induces their fragmentation. Sodium cation (Na+) attachment is independent from amino group and exerts no influence on their fragmentation patterns in amino group except for mono- and disaccharide fragment ions because there is the possibility of the reducing end effect. In contrast, a sodium cation localizes much more frequently on the acetamide group in acetamide-CyDs because the chemical species with HexNAc are stable. Thus, their ions with HexNAc are abundant. These results are consistent with the fragmentation of lacto-neo- N-tetraose and maltotetraose, suggesting that a sodium cation generally localizes much more frequently on the acetamide group in sugar chains.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Anselmino, Mauro; Mariaelena, Boglione; D'Alesio, Umberto
2014-06-01
Some estimates for the transverse Single Spin Asymmetry, A_N, in the inclusive processes l p(transv. Pol.) --> h X, given in a previous paper, are expanded and compared with new experimental data. The predictions are based on the Sivers distributions and the Collins fragmentation functions which fit the azimuthal asymmetries measured in Semi-Inclusive Deep Inelastic Scattering (SIDIS) processes (l p(transv. Pol.) --> l' h X). The factorisation in terms of Transverse Momentum Dependent distribution and fragmentation functions (TMD factorisation) -- i.e., the theoretical framework in which SIDIS azimuthal asymmetries are analysed -- is assumed to hold also for the inclusivemore » process l p --> h X at large P_T. The values of A_N thus obtained agree in sign and shape with the data. Some predictions are given for future experiments.« less
The transverse momentum distribution of hadrons within jets
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kang, Zhong -Bo; Liu, Xiaohui; Ringer, Felix
We study the transverse momentum distribution of hadrons within jets, where the transverse momentum is defined with respect to the standard jet axis. We consider the case where the jet substructure measurement is performed for an inclusive jet sample pp → jet + X. We demonstrate that this observable provides new opportunities to study transverse momentum dependent fragmentation functions (TMDFFs) which are currently poorly constrained from data, especially for gluons. The factorization of the cross section is obtained within Soft Collinear Effective Theory (SCET), and we show that the relevant TMDFFs are the same as for the more traditional processesmore » semi-inclusive deep inelastic scattering (SIDIS) and electron-positron annihilation. Different than in SIDIS, the observable for the in-jet fragmentation does not depend on TMD parton distribution functions which allows for a cleaner and more direct probe of TMDFFs. We present numerical results and compare to available data from the LHC.« less
The transverse momentum distribution of hadrons within jets
Kang, Zhong -Bo; Liu, Xiaohui; Ringer, Felix; ...
2017-11-13
We study the transverse momentum distribution of hadrons within jets, where the transverse momentum is defined with respect to the standard jet axis. We consider the case where the jet substructure measurement is performed for an inclusive jet sample pp → jet + X. We demonstrate that this observable provides new opportunities to study transverse momentum dependent fragmentation functions (TMDFFs) which are currently poorly constrained from data, especially for gluons. The factorization of the cross section is obtained within Soft Collinear Effective Theory (SCET), and we show that the relevant TMDFFs are the same as for the more traditional processesmore » semi-inclusive deep inelastic scattering (SIDIS) and electron-positron annihilation. Different than in SIDIS, the observable for the in-jet fragmentation does not depend on TMD parton distribution functions which allows for a cleaner and more direct probe of TMDFFs. We present numerical results and compare to available data from the LHC.« less
Studies of Transverse Momentum Dependent Parton Distributions and Bessel Weighting
NASA Astrophysics Data System (ADS)
Gamberg, Leonard
2015-04-01
We present a new technique for analysis of transverse momentum dependent parton distribution functions, based on the Bessel weighting formalism. Advantages of employing Bessel weighting are that transverse momentum weighted asymmetries provide a means to disentangle the convolutions in the cross section in a model independent way. The resulting compact expressions immediately connect to work on evolution equations for transverse momentum dependent parton distribution and fragmentation functions. As a test case, we apply the procedure to studies of the double longitudinal spin asymmetry in SIDIS using a dedicated Monte Carlo generator which includes quark intrinsic transverse momentum within the generalized parton model. Using a fully differential cross section for the process, the effect of four momentum conservation is analyzed using various input models for transverse momentum distributions and fragmentation functions. We observe a few percent systematic offset of the Bessel-weighted asymmetry obtained from Monte Carlo extraction compared to input model calculations. Bessel weighting provides a powerful and reliable tool to study the Fourier transform of TMDs with controlled systematics due to experimental acceptances and resolutions with different TMD model inputs. Work is supported by the U.S. Department of Energy under Contract No. DE-FG02-07ER41460.
Studies of Transverse Momentum Dependent Parton Distributions and Bessel Weighting
NASA Astrophysics Data System (ADS)
Gamberg, Leonard
2015-10-01
We present a new technique for analysis of transverse momentum dependent parton distribution functions, based on the Bessel weighting formalism. Advantages of employing Bessel weighting are that transverse momentum weighted asymmetries provide a means to disentangle the convolutions in the cross section in a model independent way. The resulting compact expressions immediately connect to work on evolution equations for transverse momentum dependent parton distribution and fragmentation functions. As a test case, we apply the procedure to studies of the double longitudinal spin asymmetry in SIDIS using a dedicated Monte Carlo generator which includes quark intrinsic transverse momentum within the generalized parton model. Using a fully differential cross section for the process, the effect of four momentum conservation is analyzed using various input models for transverse momentum distributions and fragmentation functions. We observe a few percent systematic offset of the Bessel-weighted asymmetry obtained from Monte Carlo extraction compared to input model calculations. Bessel weighting provides a powerful and reliable tool to study the Fourier transform of TMDs with controlled systematics due to experimental acceptances and resolutions with different TMD model inputs. Work is supported by the U.S. Department of Energy under Contract No. DE-FG02-07ER41460.
Wang, Qilong; Wu, Shengnan; Zhu, Huaiping; Ding, Ye; Dai, Xiaoyan; Ouyang, Changhan; Han, Young-Min; Xie, Zhonglin; Zou, Ming-Hui
2017-02-01
PRKAA (protein kinase, AMP-activated, α catalytic subunit) regulates mitochondrial biogenesis, function, and turnover. However, the molecular mechanisms by which PRKAA regulates mitochondrial dynamics remain poorly characterized. Here, we report that PRKAA regulated mitochondrial fission via the autophagy-dependent degradation of DNM1L (dynamin 1-like). Deletion of Prkaa1/AMPKα1 or Prkaa2/AMPKα2 resulted in defective autophagy, DNM1L accumulation, and aberrant mitochondrial fragmentation in the mouse aortic endothelium. Furthermore, autophagy inhibition by chloroquine treatment or ATG7 small interfering RNA (siRNA) transfection, upregulated DNM1L expression and triggered DNM1L-mediated mitochondrial fragmentation. In contrast, autophagy activation by overexpression of ATG7 or chronic administration of rapamycin, the MTOR inhibitor, promoted DNM1L degradation and attenuated mitochondrial fragmentation in Prkaa2-deficient (prkaa2 -/- ) mice, suggesting that defective autophagy contributes to enhanced DNM1L expression and mitochondrial fragmentation. Additionally, the autophagic receptor protein SQSTM1/p62, which bound to DNM1L and led to its translocation into the autophagosome, was involved in DNM1L degradation by the autophagy-lysosome pathway. Gene silencing of SQSTM1 markedly reduced the association between SQSTM1 and DNM1L, impaired the degradation of DNM1L, and enhanced mitochondrial fragmentation in PRKAA-deficient endothelial cells. Finally, the genetic (DNM1L siRNA) or pharmacological (mdivi-1) inhibition of DNMA1L ablated mitochondrial fragmentation in the mouse aortic endothelium and prevented the acetylcholine-induced relaxation of isolated mouse aortas. This suggests that aberrant DNM1L is responsible for enhanced mitochondrial fragmentation and endothelial dysfunction in prkaa knockout mice. Overall, our results show that PRKAA deletion promoted mitochondrial fragmentation in vascular endothelial cells by inhibiting the autophagy-dependent degradation of DNM1L.
Asaturyan, R.; Ent, R.; Mkrtchyan, H.; ...
2012-01-01
A large set of cross sections for semi-inclusive electroproduction of charged pions (π ±) from both proton and deuteron targets was measured. The data are in the deep-inelastic scattering region with invariant mass squared W 2 > 4 GeV 2 and range in four-momentum transfer squared 2 < Q 2 < 4 (GeV/c) 2, and cover a range in the Bjorken scaling variable 0.2 < x < 0.6. The fractional energy of the pions spans a range 0.3 < z < 1, with small transverse momenta with respect to the virtual-photon direction, P t 2 < 0.2 (GeV/c) 2. Themore » invariant mass that goes undetected, M x or W', is in the nucleon resonance region, W' < 2 GeV. The new data conclusively show the onset of quark-hadron duality in this process, and the relation of this phenomenon to the high-energy factorization ansatz of electron-quark scattering and subsequent quark → pion production mechanisms. The x, z and P t 2 dependences of several ratios (the ratios of favored-unfavored fragmentation functions, charged pion ratios, deuteron-hydrogen and aluminum-deuteron ratios for π + and π -) have been studied. The ratios are found to be in good agreement with expectations based upon a high-energy quark-parton model description. We find the azimuthal dependences to be small, as compared to exclusive pion electroproduction, and consistent with theoretical expectations based on tree-level factorization in terms of transverse-momentum-dependent parton distribution and fragmentation functions. In the context of a simple model, the initial transverse momenta of d quarks are found to be slightly smaller than for u quarks, while the transverse momentum width of the favored fragmentation function is about the same as for the unfavored one, and both fragmentation widths are larger than the quark widths.« less
Mechanism of organic aerosol formation and aging: Role of the precursor carbon skeleton
NASA Astrophysics Data System (ADS)
Hunter, J. F.; Carrasquillo, A. J.; Daumit, K. E.; Cross, E. S.; Worsnop, D. R.; Kroll, J. H.
2012-12-01
Oxidative aging of organic aerosol consists of a complex set of reactions coupled with gas-particle partitioning processes. Functionalization reactions involve adding oxygen containing functional groups onto a molecule, leading to reduced vapor pressures and promoting aerosol formation. In fragmentation reactions carbon-carbon bonds are broken as oxygen containing functional groups are added, which generally splits the parent molecule into two smaller and more volatile products. The initial structure of an aerosol-forming precursor molecule may influence what chemistry will occur both by changing the branching between fragmentation and functionalization processes as well as changing the effects of those processes. The fate of early generation oxidation products upon further aging is dependent on this initial chemistry, leading to a persistent effect of the precursor carbon skeleton. Aging experiments have been conducted using a high NOx smog chamber based aging technique. Long residence times and modestly elevated OH concentrations lead to typical maximum OH exposure of 3e11 molecule*seconds/cc, approaching several days equivalent exposure to ambient OH concentrations. A broad set of linear, branched and cyclic aliphatic hydrocarbons has been oxidized to determine the effects of carbon skeleton on the relative importance of fragmentation and functionalization and impacts on aerosol formation chemistry. Relative degree of fragmentation and functionalization is constrained by mass spectrometry of both the gas and particle phase. Measurements of the aerosol oxygen content and mass yield are reported, and structural effects on these properties are determined. Degree of unsaturation is hypothesized to have a significant impact on the effect of fragmentation reactions and to promote additional aerosol formation, extended aging and more oxygenated aerosol.
Arcos, Jesus; Sasindran, Smitha J.; Moliva, Juan I.; Scordo, Julia M.; Sidiki, Sabeen; Guo, Hui; Venigalla, Poornima; Kelley, Holden V.; Lin, Guoxin; Diangelo, Lauren; Silwani, Sayeed N.; Zhang, Jian; Turner, Joanne; Torrelles, Jordi B.
2016-01-01
Mycobacterium tuberculosis (M.tb) , the causative agent of tuberculosis, is a major public health challenge facing the world. During infection, M.tb is deposited in the lung alveolar space where it comes in contact with the lung mucosa, known as alveolar lining fluid (ALF), an environment that M.tb encounters at different stages of the infection and disease. ALF is abundant in homeostatic and antimicrobial hydrolytic enzymes, also known as hydrolases. Here we demonstrate that ALF hydrolases, at their physiological concentrations and upon contact with M.tb, release M.tb cell envelope fragments into the milieu. These released fragments are bioactive, but non-cytotoxic, regulate the function of macrophages, and thus are capable of modulating the immune response contributing to the control of M.tb infection by human macrophages. Specifically, macrophages exposed to fragments derived from the exposure of M.tb to ALF were able to control the infection primarily by increasing phagosome-lysosome fusion and acidification events. This enhanced control was found to be dependent on fragment induced IL-10 production but also involves the STAT3 signaling pathway in an IL-10 independent manner. Collectively our data indicate that M.tb fragments released upon contact with lung mucosa hydrolases participate in the host immune response to M.tb infection through innate immune modulation. PMID:28000679
Variational principle model for the nuclear caloric curve
DOE Office of Scientific and Technical Information (OSTI.GOV)
Das Gupta, S.
2005-12-15
Following the lead of a recent work, I perform a variational principle model calculation for the nuclear caloric curve. A Skyrme-type interaction with and without momentum dependence is used. The calculation is done for a large nucleus, i.e., in the nuclear matter limit. Thus I address the issue of volume fragmentation only. Nonetheless, the results are similar to the previous, largely phenomenological calculation for a finite nucleus. I find that the onset of fragmentation can be sudden as a function of temperature or excitation energy.
Rysavy, Steven J; Beck, David A C; Daggett, Valerie
2014-11-01
Protein function is intimately linked to protein structure and dynamics yet experimentally determined structures frequently omit regions within a protein due to indeterminate data, which is often due protein dynamics. We propose that atomistic molecular dynamics simulations provide a diverse sampling of biologically relevant structures for these missing segments (and beyond) to improve structural modeling and structure prediction. Here we make use of the Dynameomics data warehouse, which contains simulations of representatives of essentially all known protein folds. We developed novel computational methods to efficiently identify, rank and retrieve small peptide structures, or fragments, from this database. We also created a novel data model to analyze and compare large repositories of structural data, such as contained within the Protein Data Bank and the Dynameomics data warehouse. Our evaluation compares these structural repositories for improving loop predictions and analyzes the utility of our methods and models. Using a standard set of loop structures, containing 510 loops, 30 for each loop length from 4 to 20 residues, we find that the inclusion of Dynameomics structures in fragment-based methods improves the quality of the loop predictions without being dependent on sequence homology. Depending on loop length, ∼ 25-75% of the best predictions came from the Dynameomics set, resulting in lower main chain root-mean-square deviations for all fragment lengths using the combined fragment library. We also provide specific cases where Dynameomics fragments provide better predictions for NMR loop structures than fragments from crystal structures. Online access to these fragment libraries is available at http://www.dynameomics.org/fragments. © 2014 The Protein Society.
Rysavy, Steven J; Beck, David AC; Daggett, Valerie
2014-01-01
Protein function is intimately linked to protein structure and dynamics yet experimentally determined structures frequently omit regions within a protein due to indeterminate data, which is often due protein dynamics. We propose that atomistic molecular dynamics simulations provide a diverse sampling of biologically relevant structures for these missing segments (and beyond) to improve structural modeling and structure prediction. Here we make use of the Dynameomics data warehouse, which contains simulations of representatives of essentially all known protein folds. We developed novel computational methods to efficiently identify, rank and retrieve small peptide structures, or fragments, from this database. We also created a novel data model to analyze and compare large repositories of structural data, such as contained within the Protein Data Bank and the Dynameomics data warehouse. Our evaluation compares these structural repositories for improving loop predictions and analyzes the utility of our methods and models. Using a standard set of loop structures, containing 510 loops, 30 for each loop length from 4 to 20 residues, we find that the inclusion of Dynameomics structures in fragment-based methods improves the quality of the loop predictions without being dependent on sequence homology. Depending on loop length, ∼25–75% of the best predictions came from the Dynameomics set, resulting in lower main chain root-mean-square deviations for all fragment lengths using the combined fragment library. We also provide specific cases where Dynameomics fragments provide better predictions for NMR loop structures than fragments from crystal structures. Online access to these fragment libraries is available at http://www.dynameomics.org/fragments. PMID:25142412
Identification of DNA primase inhibitors via a combined fragment-based and virtual screening
NASA Astrophysics Data System (ADS)
Ilic, Stefan; Akabayov, Sabine R.; Arthanari, Haribabu; Wagner, Gerhard; Richardson, Charles C.; Akabayov, Barak
2016-11-01
The structural differences between bacterial and human primases render the former an excellent target for drug design. Here we describe a technique for selecting small molecule inhibitors of the activity of T7 DNA primase, an ideal model for bacterial primases due to their common structural and functional features. Using NMR screening, fragment molecules that bind T7 primase were identified and then exploited in virtual filtration to select larger molecules from the ZINC database. The molecules were docked to the primase active site using the available primase crystal structure and ranked based on their predicted binding energies to identify the best candidates for functional and structural investigations. Biochemical assays revealed that some of the molecules inhibit T7 primase-dependent DNA replication. The binding mechanism was delineated via NMR spectroscopy. Our approach, which combines fragment based and virtual screening, is rapid and cost effective and can be applied to other targets.
The biodiversity-dependent ecosystem service debt.
Isbell, Forest; Tilman, David; Polasky, Stephen; Loreau, Michel
2015-02-01
Habitat destruction is driving biodiversity loss in remaining ecosystems, and ecosystem functioning and services often directly depend on biodiversity. Thus, biodiversity loss is likely creating an ecosystem service debt: a gradual loss of biodiversity-dependent benefits that people obtain from remaining fragments of natural ecosystems. Here, we develop an approach for quantifying ecosystem service debts, and illustrate its use to estimate how one anthropogenic driver, habitat destruction, could indirectly diminish one ecosystem service, carbon storage, by creating an extinction debt. We estimate that c. 2-21 Pg C could be gradually emitted globally in remaining ecosystem fragments because of plant species loss caused by nearby habitat destruction. The wide range for this estimate reflects substantial uncertainties in how many plant species will be lost, how much species loss will impact ecosystem functioning and whether plant species loss will decrease soil carbon. Our exploratory analysis suggests that biodiversity-dependent ecosystem service debts can be globally substantial, even when locally small, if they occur diffusely across vast areas of remaining ecosystems. There is substantial value in conserving not only the quantity (area), but also the quality (biodiversity) of natural ecosystems for the sustainable provision of ecosystem services. © 2014 John Wiley & Sons Ltd/CNRS.
Li, Hui; Kling, Nora G; Förg, Benjamin; Stierle, Johannes; Kessel, Alexander; Trushin, Sergei A; Kling, Matthias F; Kaziannis, Spyros
2016-07-01
The dissociative ionization of toluene initiated by a few-cycle laser pulse as a function of the carrier envelope phase (CEP) is investigated using single-shot velocity map imaging. Several ionic fragments, CH3 (+), H2 (+), and H3 (+), originating from multiply charged toluene ions present a CEP-dependent directional emission. The formation of H2 (+) and H3 (+) involves breaking C-H bonds and forming new bonds between the hydrogen atoms within the transient structure of the multiply charged precursor. We observe appreciable intensity-dependent CEP-offsets. The experimental data are interpreted with a mechanism that involves laser-induced coupling of vibrational states, which has been found to play a role in the CEP-control of molecular processes in hydrocarbon molecules, and appears to be of general importance for such complex molecules.
Ethier, J J; Sato, N; Melnitchouk, W
2017-09-29
We perform the first global QCD analysis of polarized inclusive and semi-inclusive deep-inelastic scattering and single-inclusive e^{+}e^{-} annihilation data, simultaneously fitting the parton distribution and fragmentation functions using the iterative Monte Carlo method. Without imposing SU(3) symmetry relations, we find the strange polarization to be very small, consistent with zero for both inclusive and semi-inclusive data, which provides a resolution to the strange quark polarization puzzle. The combined analysis also allows the direct extraction from data of the isovector and octet axial charges, and is consistent with a small SU(2) flavor asymmetry in the polarized sea.
Ethier, Jacob J.; Sato, Nobuo; Melnitchouk, Wally
2017-09-26
In this paper, we perform the first global QCD analysis of polarized inclusive and semi-inclusive deep-inelastic scattering and single-inclusive $e^+e^-$ annihilation data, simultaneously fitting the parton distribution and fragmentation functions using the iterative Monte Carlo method. Without imposing SU(3) symmetry relations, we find the strange polarization to be very small, consistent with zero for both inclusive and semi-inclusive data, which provides a resolution to the strange quark polarization puzzle. Finally, the combined analysis also allows the direct extraction from data of the isovector and octet axial charges, and is consistent with a small SU(2) flavor asymmetry in the polarized sea.
Wasowicz, Tomasz J; Pranszke, Bogusław
2015-01-29
We have studied fragmentation processes of the gas-phase tetrahydrofuran (THF) molecules in collisions with the H(+), C(+), and O(+) cations. The collision energies have been varied between 25 and 1000 eV and thus covered a velocity range from 10 to 440 km/s. The following excited neutral fragments of THF have been observed: the atomic hydrogen H(n), n = 4-9, carbon atoms in the 2p3s (1)P1, 2p4p (1)D2, and 2p4p (3)P states and vibrationally and rotationally excited diatomic CH fragments in the A(2)Δ and B(2)Σ(-) states. Fragmentation yields of these excited fragments have been measured as functions of the projectile energy (velocity). Our results show that the fragmentation mechanism depends on the projectile cations and is dominated by electron transfer from tetrahydrofuran molecules to cations. It has been additionally hypothesized that in the C(+)+THF collisions a [C-C4H8O](+) complex is formed prior to dissociation. The possible reaction channels involved in fragmentation of THF under the H(+), C(+), and O(+) cations impact are also discussed.
Critical analysis of fragment-orbital DFT schemes for the calculation of electronic coupling values
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schober, Christoph; Reuter, Karsten; Oberhofer, Harald, E-mail: harald.oberhofer@ch.tum.de
2016-02-07
We present a critical analysis of the popular fragment-orbital density-functional theory (FO-DFT) scheme for the calculation of electronic coupling values. We discuss the characteristics of different possible formulations or “flavors” of the scheme which differ by the number of electrons in the calculation of the fragments and the construction of the Hamiltonian. In addition to two previously described variants based on neutral fragments, we present a third version taking a different route to the approximate diabatic state by explicitly considering charged fragments. In applying these FO-DFT flavors to the two molecular test sets HAB7 (electron transfer) and HAB11 (hole transfer),more » we find that our new scheme gives improved electronic couplings for HAB7 (−6.2% decrease in mean relative signed error) and greatly improved electronic couplings for HAB11 (−15.3% decrease in mean relative signed error). A systematic investigation of the influence of exact exchange on the electronic coupling values shows that the use of hybrid functionals in FO-DFT calculations improves the electronic couplings, giving values close to or even better than more sophisticated constrained DFT calculations. Comparing the accuracy and computational cost of each variant, we devise simple rules to choose the best possible flavor depending on the task. For accuracy, our new scheme with charged-fragment calculations performs best, while numerically more efficient at reasonable accuracy is the variant with neutral fragments.« less
Strekalova, Tatyana; Sun, Mu; Sibbe, Mirjam; Evers, Matthias; Dityatev, Alexander; Gass, Peter; Schachner, Melitta
2002-09-01
The extracellular matrix molecule tenascin-C (TN-C) has been shown to be involved in hippocampal synaptic plasticity in vitro. Here, we describe a deficit in hippocampus-dependent contextual memory in TN-C-deficient mice using the step-down avoidance paradigm. We further show that a fragment of TN-C containing the fibronectin type-III repeats 6-8 (FN6-8), but not a fragment containing repeats 3-5, bound to pyramidal and granule cell somata in the hippocampal formation of C57BL/6J mice and repelled axons of pyramidal neurons when presented as a border in vitro. Injection of the FN6-8 fragment into the hippocampus inhibited retention of memory in the step-down paradigm and reduced levels of long-term potentiation in the CA1 region of the hippocampus. In summary, our data show that TN-C is involved in hippocampus-dependent contextual memory and synaptic plasticity and identify the FN6-8 domain as one of molecular determinants mediating these functions.
Neutron-fragment and Neutron-neutron Correlations in Low-energy Fission
NASA Astrophysics Data System (ADS)
Lestone, J. P.
2016-01-01
A computational method has been developed to simulate neutron emission from thermal-neutron induced fission of 235U and from spontaneous fission of 252Cf. Measured pre-emission mass-yield curves, average total kinetic energies and their variances, both as functions of mass split, are used to obtain a representation of the distribution of fragment velocities. Measured average neutron multiplicities as a function of mass split and their dependence on total kinetic energy are used. Simulations can be made to reproduce measured factorial moments of neutron-multiplicity distributions with only minor empirical adjustments to some experimental inputs. The neutron-emission spectra in the rest-frame of the fragments are highly constrained by ENDF/B-VII.1 prompt-fission neutron-spectra evaluations. The n-f correlation measurements of Vorobyev et al. (2010) are consistent with predictions where all neutrons are assumed to be evaporated isotropically from the rest frame of fully accelerated fragments. Measured n-f and n-n correlations of others are a little weaker than the predictions presented here. These weaker correlations could be used to infer a weak scission-neutron source. However, the effect of neutron scattering on the experimental results must be studied in detail before moving away from a null hypothesis that all neutrons are evaporated from the fragments.
Barkó, Szilvia; Bugyi, Beáta; Carlier, Marie-France; Gombos, Rita; Matusek, Tamás; Mihály, József; Nyitrai, Miklós
2010-01-01
We characterized the properties of Drosophila melanogaster DAAM-FH2 and DAAM-FH1-FH2 fragments and their interactions with actin and profilin by using various biophysical methods and in vivo experiments. The results show that although the DAAM-FH2 fragment does not have any conspicuous effect on actin assembly in vivo, in cells expressing the DAAM-FH1-FH2 fragment, a profilin-dependent increase in the formation of actin structures is observed. The trachea-specific expression of DAAM-FH1-FH2 also induces phenotypic effects, leading to the collapse of the tracheal tube and lethality in the larval stages. In vitro, both DAAM fragments catalyze actin nucleation but severely decrease both the elongation and depolymerization rate of the filaments. Profilin acts as a molecular switch in DAAM function. DAAM-FH1-FH2, remaining bound to barbed ends, drives processive assembly of profilin-actin, whereas DAAM-FH2 forms an abortive complex with barbed ends that does not support profilin-actin assembly. Both DAAM fragments also bind to the sides of the actin filaments and induce actin bundling. These observations show that the D. melanogaster DAAM formin represents an extreme class of barbed end regulators gated by profilin. PMID:20177055
Aaboud, M.; Aad, G.; Abbott, B.; ...
2017-06-08
The distributions of transverse momentum and longitudinal momentum fraction of charged particles in jets are measured in Pb+Pb and pp collisions with the ATLAS detector at the LHC. The distributions are measured as a function of jet transverse momentum and rapidity. The analysis utilises an integrated luminosity of 0.14 nb -1 of Pb+Pb data and 4.0 pb -1 of pp data collected in 2011 and 2013, respectively, at the same centre-of-mass energy of 2.76 TeV per colliding nucleon pair. The distributions measured in pp collisions are used as a reference for those measured in Pb+Pb collisions in order to evaluatemore » the impact on the internal structure of jets from the jet energy loss of fast partons propagating through the hot, dense medium created in heavy-ion collisions. Modest but significant centrality-dependent modifications of fragmentation functions in Pb+Pb collisions with respect to those in pp collisions are seen. Finally, no significant dependence of modifications on jet p T and rapidity selections is observed except for the fragments with the highest transverse momenta for which some reduction of yields is observed for more forward jets.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Avakian, Harut
Studies of the 3D structure of the nucleon encoded in Transverse Momentum Dependent distribution and fragmentation functions of partons and Generalized Parton Distributions are among the key objectives of the JLab 12 GeV upgrade and the Electron Ion Collider. Main challenges in extracting 3D partonic distributions from precision measurements of hard scattering processes include clear understanding of leading twist QCD fundamentals, higher twist effects, and also correlations of hadron production in target and current fragmentation regions. In this contribution we discuss some ongoing studies and future measurements of spin-orbit correlations at Jefferson Lab.
Li, Hui; Kling, Nora G.; Förg, Benjamin; Stierle, Johannes; Kessel, Alexander; Trushin, Sergei A.; Kling, Matthias F.; Kaziannis, Spyros
2016-01-01
The dissociative ionization of toluene initiated by a few-cycle laser pulse as a function of the carrier envelope phase (CEP) is investigated using single-shot velocity map imaging. Several ionic fragments, CH3+, H2+, and H3+, originating from multiply charged toluene ions present a CEP-dependent directional emission. The formation of H2+ and H3+ involves breaking C-H bonds and forming new bonds between the hydrogen atoms within the transient structure of the multiply charged precursor. We observe appreciable intensity-dependent CEP-offsets. The experimental data are interpreted with a mechanism that involves laser-induced coupling of vibrational states, which has been found to play a role in the CEP-control of molecular processes in hydrocarbon molecules, and appears to be of general importance for such complex molecules. PMID:26958589
DOE Office of Scientific and Technical Information (OSTI.GOV)
Didier, P.; Weiss, E.; Sibler, A.-P.
2008-02-22
Time-resolved femtosecond spectroscopy can improve the application of green fluorescent proteins (GFPs) as protein-folding reporters. The study of ultrafast excited-state dynamics (ESD) of GFP fused to single chain variable fragment (scFv) antibody fragments, allowed us to define and measure an empirical parameter that only depends on the folding quality (FQ) of the fusion. This method has been applied to the analysis of genetic fusions expressed in the bacterial cytoplasm and allowed us to distinguish folded and thus functional antibody fragments (high FQ) with respect to misfolded antibody fragments. Moreover, these findings were strongly correlated to the behavior of the samemore » scFvs expressed in animal cells. This method is based on the sensitivity of the ESD to the modifications in the tertiary structure of the GFP induced by the aggregation state of the fusion partner. This approach may be applicable to the study of the FQ of polypeptides over-expressed under reducing conditions.« less
Investigation of the W and Q 2 dependence of charged pion distributions in μ p scattering
NASA Astrophysics Data System (ADS)
Arneodo, M.; Arvidson, A.; Aubert, J. J.; Badelek, B.; Beaufays, J.; Bee, C. P.; Benchouk, C.; Berghoff, G.; Bird, I.; Blum, D.; Böhm, E.; de Bouard, X.; Brasse, F. W.; Braun, H.; Broll, C.; Brown, S.; Brück, H.; Calen, H.; Chima, J. S.; Ciborowski, J.; Clifft, R.; Coignet, G.; Combley, F.; Coughlan, J.; D'Agostini, G.; Dahlgren, S.; Dengler, F.; Derado, I.; Dreyer, T.; Drees, J.; Düren, M.; Eckardt, V.; Edwards, A.; Ernst, T.; Eszes, G.; Favier, J.; Ferrero, M. I.; Figiel, J.; Flauger, W.; Foster, J.; Gabathuler, E.; Gajewski, J.; Gamet, R.; Gayler, J.; Geddes, N.; Giubellino, P.; Grafström, P.; Grard, F.; Haas, J.; Hagberg, E.; Hasert, F. J.; Hayman, P.; Heusse, P.; Hoppe, C.; Jaffré, M.; Jacholkowska, A.; Janata, F.; Jancso, G.; Johnson, A. S.; Kabuss, E. M.; Kellner, G.; Korbel, V.; Krüger, J.; Kullander, S.; Landgraf, U.; Lanske, D.; Loken, J.; Long, K.; Maire, M.; Malecki, P.; Manz, A.; Maselli, S.; Mohr, W.; Montanet, F.; Montgomery, H. E.; Nagy, E.; Nassalski, J.; Norton, P. R.; Oakham, F. G.; Osborne, A. M.; Pascaud, C.; Pawlik, B.; Payre, P.; Peroni, C.; Pessard, H.; Pettingale, J.; Pietrzyk, B.; Pönsgen, B.; Pötsch, M.; Renton, P.; Ribarics, P.; Rith, K.; Rondio, E.; Scheer, M.; Schlagböhmer, A.; Schiemann, H.; Schmitz, N.; Schneegans, M.; Scholz, M.; Schröder, T.; Schouten, M.; Schultze, K.; Sloan, T.; Stier, H. E.; Studt, M.; Taylor, G. N.; Thénard, J. M.; Thompson, J. C.; de La Torre, A.; Toth, J.; Urban, L.; Wallucks, W.; Whalley, M.; Wheeler, S.; Williams, W. S. C.; Wimpenny, S. J.; Windmolders, R.; Wolf, G.
1986-03-01
The W and Q 2 dependence of the fragmentation functions and of the average multiplicity of charged pions is investigated, using data from the NA9 experiment at the CERN SPS on muon-proton scattering at 280 GeV. A significant increase of pion production with increasing W is observed at fixed Q 2, leading to a rise of the average charged pion multiplicity, linear in ln W 2, and of the pion fragmentation function in the central region, i.e. at small | x F |. This increase can be understood from the kinematic widening of the cms rapidity range proportional to ln W 2 and the observed W independent height of the rapidity distribution. At fixed W, a rise of the average charged pion multiplicity with Q 2 is observed. This rise appears to be weaker than that observed for all charged hadrons implying a stronger rise with Q 2 for kaons and protons.
cgDNAweb: a web interface to the cgDNA sequence-dependent coarse-grain model of double-stranded DNA.
De Bruin, Lennart; Maddocks, John H
2018-06-14
The sequence-dependent statistical mechanical properties of fragments of double-stranded DNA is believed to be pertinent to its biological function at length scales from a few base pairs (or bp) to a few hundreds of bp, e.g. indirect read-out protein binding sites, nucleosome positioning sequences, phased A-tracts, etc. In turn, the equilibrium statistical mechanics behaviour of DNA depends upon its ground state configuration, or minimum free energy shape, as well as on its fluctuations as governed by its stiffness (in an appropriate sense). We here present cgDNAweb, which provides browser-based interactive visualization of the sequence-dependent ground states of double-stranded DNA molecules, as predicted by the underlying cgDNA coarse-grain rigid-base model of fragments with arbitrary sequence. The cgDNAweb interface is specifically designed to facilitate comparison between ground state shapes of different sequences. The server is freely available at cgDNAweb.epfl.ch with no login requirement.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Park, So Jung; Park, Young Jun; Shin, Ji Hyun
2011-05-13
Highlights: {yields} We screened and identified Tyrphostin A9, a receptor tyrosine kinase inhibitor as a strong mitochondria fission inducer. {yields} Tyrphostin A9 treatment promotes mitochondria dysfunction and contributes to cytotoxicity in cancer cells. {yields} Tyrphostin A9 induces apoptotic cell death through a Drp1-mediated pathway. {yields} Our studies suggest that Tyrphostin A9 induces mitochondria fragmentation and apoptotic cell death via Drp1 dependently. -- Abstract: Mitochondria dynamics controls not only their morphology but also functions of mitochondria. Therefore, an imbalance of the dynamics eventually leads to mitochondria disruption and cell death. To identify specific regulators of mitochondria dynamics, we screened a bioactivemore » chemical compound library and selected Tyrphostin A9, a tyrosine kinase inhibitor, as a potent inducer of mitochondrial fission. Tyrphostin A9 treatment resulted in the formation of fragmented mitochondria filament. In addition, cellular ATP level was decreased and the mitochondrial membrane potential was collapsed in Tyr A9-treated cells. Suppression of Drp1 activity by siRNA or over-expression of a dominant negative mutant of Drp1 inhibited both mitochondrial fragmentation and cell death induced by Tyrpohotin A9. Moreover, treatment of Tyrphostin A9 also evoked mitochondrial fragmentation in other cells including the neuroblastomas. Taken together, these results suggest that Tyrphostin A9 induces Drp1-mediated mitochondrial fission and apoptotic cell death.« less
2015-01-01
Gene fission can convert monomeric proteins into two-piece catalysts, reporters, and transcription factors for systems and synthetic biology. However, some proteins can be challenging to fragment without disrupting function, such as near-infrared fluorescent protein (IFP). We describe a directed evolution strategy that can overcome this challenge by randomly fragmenting proteins and concomitantly fusing the protein fragments to pairs of proteins or peptides that associate. We used this method to create libraries that express fragmented IFP as fusions to a pair of associating peptides (IAAL-E3 and IAAL-K3) and proteins (CheA and CheY) and screened for fragmented IFP with detectable near-infrared fluorescence. Thirteen novel fragmented IFPs were identified, all of which arose from backbone fission proximal to the interdomain linker. Either the IAAL-E3 and IAAL-K3 peptides or CheA and CheY proteins could assist with IFP fragment complementation, although the IAAL-E3 and IAAL-K3 peptides consistently yielded higher fluorescence. These results demonstrate how random gene fission can be coupled to rational gene fusion to create libraries enriched in fragmented proteins with AND gate logic that is dependent upon a protein–protein interaction, and they suggest that these near-infrared fluorescent protein fragments will be suitable as reporters for pairs of promoters and protein–protein interactions within whole animals. PMID:25265085
Pandey, Naresh; Nobles, Christopher L; Zechiedrich, Lynn; Maresso, Anthony W; Silberg, Jonathan J
2015-05-15
Gene fission can convert monomeric proteins into two-piece catalysts, reporters, and transcription factors for systems and synthetic biology. However, some proteins can be challenging to fragment without disrupting function, such as near-infrared fluorescent protein (IFP). We describe a directed evolution strategy that can overcome this challenge by randomly fragmenting proteins and concomitantly fusing the protein fragments to pairs of proteins or peptides that associate. We used this method to create libraries that express fragmented IFP as fusions to a pair of associating peptides (IAAL-E3 and IAAL-K3) and proteins (CheA and CheY) and screened for fragmented IFP with detectable near-infrared fluorescence. Thirteen novel fragmented IFPs were identified, all of which arose from backbone fission proximal to the interdomain linker. Either the IAAL-E3 and IAAL-K3 peptides or CheA and CheY proteins could assist with IFP fragment complementation, although the IAAL-E3 and IAAL-K3 peptides consistently yielded higher fluorescence. These results demonstrate how random gene fission can be coupled to rational gene fusion to create libraries enriched in fragmented proteins with AND gate logic that is dependent upon a protein-protein interaction, and they suggest that these near-infrared fluorescent protein fragments will be suitable as reporters for pairs of promoters and protein-protein interactions within whole animals.
Transverse momentum dependent parton distribution and fragmentation functions with QCD evolution
NASA Astrophysics Data System (ADS)
Aybat, S. Mert; Rogers, Ted C.
2011-06-01
We assess the current phenomenological status of transverse momentum dependent (TMD) parton distribution functions (PDFs) and fragmentation functions (FFs) and study the effect of consistently including perturbative QCD (pQCD) evolution. Our goal is to initiate the process of establishing reliable, QCD-evolved parametrizations for the TMD PDFs and TMD FFs that can be used both to test TMD factorization and to search for evidence of the breakdown of TMD factorization that is expected for certain processes. In this article, we focus on spin-independent processes because they provide the simplest illustration of the basic steps and can already be used in direct tests of TMD factorization. Our calculations are based on the Collins-Soper-Sterman (CSS) formalism, supplemented by recent theoretical developments which have clarified the precise definitions of the TMD PDFs and TMD FFs needed for a valid TMD-factorization theorem. Starting with these definitions, we numerically generate evolved TMD PDFs and TMD FFs using as input existing parametrizations for the collinear PDFs, collinear FFs, nonperturbative factors in the CSS factorization formalism, and recent fixed-scale fits. We confirm that evolution has important consequences, both qualitatively and quantitatively, and argue that it should be included in future phenomenological studies of TMD functions. Our analysis is also suggestive of extensions to processes that involve spin-dependent functions such as the Boer-Mulders, Sivers, or Collins functions, which we intend to pursue in future publications. At our website [http://projects.hepforge.org/tmd/], we have made available the tables and calculations needed to obtain the TMD parametrizations presented herein.
Collins azimuthal asymmetries of hadron production inside jets
Kang, Zhong -Bo; Prokudin, Alexei; Ringer, Felix; ...
2017-10-18
Here, we investigate the Collins azimuthal asymmetry of hadrons produced inside jets in transversely polarized proton-proton collisions. Recently, the quark transversity distributions and the Collins fragmentation functions have been extracted within global analyses from data of the processes semi-inclusive deep inelastic scattering and electron-positron annihilation. We calculate the Collins azimuthal asymmetry for charged pions inside jets using these extractions for RHIC kinematics at center-of-mass energies of 200 and 500 GeV. We compare our results with recent data from the STAR Collaboration at RHIC and find good agreement, which confirms the universality of the Collins fragmentation functions. In addition, we furthermore » explore the impact of transverse momentum dependent evolution effects.« less
Collins azimuthal asymmetries of hadron production inside jets
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kang, Zhong -Bo; Prokudin, Alexei; Ringer, Felix
Here, we investigate the Collins azimuthal asymmetry of hadrons produced inside jets in transversely polarized proton-proton collisions. Recently, the quark transversity distributions and the Collins fragmentation functions have been extracted within global analyses from data of the processes semi-inclusive deep inelastic scattering and electron-positron annihilation. We calculate the Collins azimuthal asymmetry for charged pions inside jets using these extractions for RHIC kinematics at center-of-mass energies of 200 and 500 GeV. We compare our results with recent data from the STAR Collaboration at RHIC and find good agreement, which confirms the universality of the Collins fragmentation functions. In addition, we furthermore » explore the impact of transverse momentum dependent evolution effects.« less
The 4-dimensional Langevin approach to low energy nuclear fission
NASA Astrophysics Data System (ADS)
Ivanyuk, F. A.; Ishizuka, C.; Usang, M. D.; Chiba, S.
2018-03-01
We applied the four-dimensional Langevin approach to the description of fission of 235U by neutrons and calculated the dependence of the excitation energy of fission fragments on their mass number. For this we have fitted the compact just-before-scission configuration obtained by the Langevin calculations by the two separated fragments and calculated the intrinsic excitation and the deformation energy of each fragment accurately taking into account the shell and pairing effects and their dependence on the temperature and mass of the fragments. For the sharing of energy between the fission fragments we have used the simplest and most reliable assumption - the temperature of each fragment immediately after the neck rupture is the same as the temperature of mother nucleus just before scission. The calculated excitation energy of fission fragments clearly demonstrates the saw-tooth structure in the dependence on fragment mass number.
Qin, Zhaoping; Voorhees, John J; Fisher, Gary J; Quan, Taihao
2014-12-01
The dermal compartment of human skin is largely composed of dense collagen-rich fibrils, which provide structural and mechanical support. Skin dermal fibroblasts, the major collagen-producing cells, are interact with collagen fibrils to maintain cell spreading and mechanical force for function. A characteristic feature of aged human skin is fragmentation of collagen fibrils, which is initiated by matrix metalloproteinase 1 (MMP-1). Fragmentation impairs fibroblast attachment and thereby reduces spreading. Here, we investigated the relationship among fibroblast spreading, mechanical force, MMP-1 expression, and collagen fibril fragmentation. Reduced fibroblast spreading due to cytoskeletal disruption was associated with reduced cellular mechanical force, as determined by atomic force microscopy. These reductions substantially induced MMP-1 expression, which led to collagen fibril fragmentation and disorganization in three-dimensional collagen lattices. Constraining fibroblast size by culturing on slides coated with collagen micropatterns also significantly induced MMP-1 expression. Reduced spreading/mechanical force induced transcription factor c-Jun and its binding to a canonical AP-1 binding site in the MMP-1 proximal promoter. Blocking c-Jun function with dominant negative mutant c-Jun significantly reduced induction of MMP-1 expression in response to reduced spreading/mechanical force. Furthermore, restoration of fibroblast spreading/mechanical force led to decline of c-Jun and MMP-1 levels and eliminated collagen fibril fragmentation and disorganization. These data reveal a novel mechanism by which alteration of fibroblast shape/mechanical force regulates c-Jun/AP-1-dependent expression of MMP-1 and consequent collagen fibril fragmentation. This mechanism provides a foundation for understanding the cellular and molecular basis of age-related collagen fragmentation in human skin. © 2014 The Authors. Aging Cell published by the Anatomical Society and John Wiley & Sons Ltd.
Fragmentation of displacement cascades into subcascades: A molecular dynamics study
Antoshchenkova, E.; Luneville, L.; Simeone, D.; ...
2014-12-12
The fragmentation of displacement cascades into subcascades in copper and iron has been investigated through the molecular dynamics technique. A two-point density correlation function has been used to analyze the cascades as a function of the primary knock-on (PKA) energy. This approach is used as a tool for detecting subcascade formation. The fragmentation can already be identified at the end of the ballistic phase. Its resulting evolution in the peak damage state discriminates between unconnected and connected subcascades. The damage zone at the end of the ballistic phase is the precursor of the extended regions that contain the surviving defects.more » A fractal analysis of the cascade exhibits a dependence on both the stage of the cascade development and the PKA energy. This type of analysis enables the minimum and maximum displacement spike energies together with the subcascade formation threshold energy to be determined. (C) 2014 Elsevier B.V. All rights reserved.« less
Fragmentation of displacement cascades into subcascades: A molecular dynamics study
DOE Office of Scientific and Technical Information (OSTI.GOV)
Antoshchenkova, E.; Luneville, L.; Simeone, D.
The fragmentation of displacement cascades into subcascades in copper and iron has been investigated through the molecular dynamics technique. A two-point density correlation function has been used to analyze the cascades as a function of the primary knock-on (PKA) energy. This approach is used as a tool for detecting subcascade formation. The fragmentation can already be identified at the end of the ballistic phase. Its resulting evolution in the peak damage state discriminates between unconnected and connected subcascades. The damage zone at the end of the ballistic phase is the precursor of the extended regions that contain the surviving defects.more » A fractal analysis of the cascade exhibits a dependence on both the stage of the cascade development and the PKA energy. This type of analysis enables the minimum and maximum displacement spike energies together with the subcascade formation threshold energy to be determined. (C) 2014 Elsevier B.V. All rights reserved.« less
Driven fragmentation of granular gases.
Cruz Hidalgo, Raúl; Pagonabarraga, Ignacio
2008-06-01
The dynamics of homogeneously heated granular gases which fragment due to particle collisions is analyzed. We introduce a kinetic model which accounts for correlations induced at the grain collisions and analyze both the kinetics and relevant distribution functions these systems develop. The work combines analytical and numerical studies based on direct simulation Monte Carlo calculations. A broad family of fragmentation probabilities is considered, and its implications for the system kinetics are discussed. We show that generically these driven materials evolve asymptotically into a dynamical scaling regime. If the fragmentation probability tends to a constant, the grain number diverges at a finite time, leading to a shattering singularity. If the fragmentation probability vanishes, then the number of grains grows monotonously as a power law. We consider different homogeneous thermostats and show that the kinetics of these systems depends weakly on both the grain inelasticity and driving. We observe that fragmentation plays a relevant role in the shape of the velocity distribution of the particles. When the fragmentation is driven by local stochastic events, the long velocity tail is essentially exponential independently of the heating frequency and the breaking rule. However, for a Lowe-Andersen thermostat, numerical evidence strongly supports the conjecture that the scaled velocity distribution follows a generalized exponential behavior f(c) approximately exp(-cn) , with n approximately 1.2 , regarding less the fragmentation mechanisms.
Salgado-Negret, Beatriz; Canessa, Rafaella; Valladares, Fernando; Armesto, Juan J; Pérez, Fernanda
2015-01-01
Climate change and fragmentation are major threats to world forests. Understanding how functional traits related to drought tolerance change across small-scale, pronounced moisture gradients in fragmented forests is important to predict species' responses to these threats. In the case of Aextoxicon punctatum, a dominant canopy tree in fog-dependent rain forest patches in semiarid Chile, we explored how the magnitude, variability and correlation patterns of leaf and xylem vessel traits and hydraulic conductivity varied across soil moisture (SM) gradients established within and among forest patches of different size, which are associated with differences in tree establishment and mortality patterns. Leaf traits varied across soil-moisture gradients produced by fog interception. Trees growing at drier leeward edges showed higher leaf mass per area, trichome and stomatal density than trees from the wetter core and windward zones. In contrast, xylem vessel traits (vessels diameter and density) did not vary producing loss of hydraulic conductivity at drier leeward edges. We also detected higher levels of phenotypic integration and variability at leeward edges. The ability of A. punctatum to modify leaf traits in response to differences in SM availability established over short distances (<500 m) facilitates its persistence in contrasting microhabitats within forest patches. However, xylem anatomy showed limited plasticity, which increases cavitation risk at leeward edges. Greater patch fragmentation, together with fluctuations in irradiance and SM in small patches, could result in higher risk of drought-related tree mortality, with profound impacts on hydrological balances at the ecosystem scale.
Salgado-Negret, Beatriz; Canessa, Rafaella; Valladares, Fernando; Armesto, Juan J.; Pérez, Fernanda
2015-01-01
Climate change and fragmentation are major threats to world forests. Understanding how functional traits related to drought tolerance change across small-scale, pronounced moisture gradients in fragmented forests is important to predict species’ responses to these threats. In the case of Aextoxicon punctatum, a dominant canopy tree in fog-dependent rain forest patches in semiarid Chile, we explored how the magnitude, variability and correlation patterns of leaf and xylem vessel traits and hydraulic conductivity varied across soil moisture (SM) gradients established within and among forest patches of different size, which are associated with differences in tree establishment and mortality patterns. Leaf traits varied across soil-moisture gradients produced by fog interception. Trees growing at drier leeward edges showed higher leaf mass per area, trichome and stomatal density than trees from the wetter core and windward zones. In contrast, xylem vessel traits (vessels diameter and density) did not vary producing loss of hydraulic conductivity at drier leeward edges. We also detected higher levels of phenotypic integration and variability at leeward edges. The ability of A. punctatum to modify leaf traits in response to differences in SM availability established over short distances (<500 m) facilitates its persistence in contrasting microhabitats within forest patches. However, xylem anatomy showed limited plasticity, which increases cavitation risk at leeward edges. Greater patch fragmentation, together with fluctuations in irradiance and SM in small patches, could result in higher risk of drought-related tree mortality, with profound impacts on hydrological balances at the ecosystem scale. PMID:26257746
Christopher, R A; Judge, S R; Vincent, P A; Higgins, P J; McKeown-Longo, P J
1999-10-01
Adhesion to the extracellular matrix modulates the cellular response to growth factors and is critical for cell cycle progression. The present study was designed to address the relationship between fibronectin matrix assembly and cell shape or shape dependent cellular processes. The binding of fibronectin's amino-terminal matrix assembly domain to adherent cells represents the initial step in the assembly of exogenous fibronectin into the extracellular matrix. When added to monolayers of pulmonary artery endothelial cells, the 70 kDa fragment of fibronectin (which contains the matrix assembly domain) stabilized both the extracellular fibronectin matrix as well as the actin cytoskeleton against cytochalasin D-mediated structural reorganization. This activity appeared to require specific fibronectin sequences as fibronectin fragments containing the cell adhesion domain as well as purified vitronectin were ineffective inhibitors of cytochalasin D-induced cytoarchitectural restructuring. Such pronounced morphologic consequences associated with exposure to the 70 kDa fragment suggested that this region of the fibronectin molecule may affect specific growth traits known to be influenced by cell shape. To assess this possibility, the 70 kDa fragment was added to scrape-wounded monolayers of bovine microvessel endothelium and the effects on two shape-dependent processes (i.e. migration and proliferation) were measured as a function of time after injury and location from the wound. The addition of amino-terminal fragments of fibronectin to the monolayer significantly inhibited (by >50%) wound closure. Staining of wounded monolayers with BrdU, moreover, indicated that either the 70 kDa or 25 kDa amino-terminal fragments of fibronectin, but not the 40 kDa collagen binding fragment, also inhibited cell cycle progression. These results suggest that the binding of fibronectin's amino-terminal region to endothelial cell layers inhibits cell cycle progression by stabilizing cell shape.
Saxena, Abhishek; Wu, Donghui
2016-01-01
Today, monoclonal immunoglobulin gamma (IgG) antibodies have become a major option in cancer therapy especially for the patients with advanced or metastatic cancers. Efficacy of monoclonal antibodies (mAbs) is achieved through both its antigen-binding fragment (Fab) and crystallizable fragment (Fc). Fab can specifically recognize tumor-associated antigen (TAA) and thus modulate TAA-linked downstream signaling pathways that may lead to the inhibition of tumor growth, induction of tumor apoptosis, and differentiation. The Fc region can further improve mAbs’ efficacy by mediating effector functions such as antibody-dependent cellular cytotoxicity, complement-dependent cytotoxicity, and antibody-dependent cell-mediated phagocytosis. Moreover, Fc is the region interacting with the neonatal Fc receptor in a pH-dependent manner that can slow down IgG’s degradation and extend its serum half-life. Loss of the antibody Fc region dramatically shortens its serum half-life and weakens its anticancer effects. Given the essential roles that the Fc region plays in the modulation of the efficacy of mAb in cancer treatment, Fc engineering has been extensively studied in the past years. This review focuses on the recent advances in therapeutic Fc engineering that modulates its related effector functions and serum half-life. We also discuss the progress made in aglycosylated mAb development that may substantially reduce the cost of manufacture but maintain similar efficacies as conventional glycosylated mAb. Finally, we highlight several Fc engineering-based mAbs under clinical trials. PMID:28018347
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kanazawa, Koichi; Pitonyak, Daniel; Koike, Yuji
We investigate the behavior under Lorentz transformations of perturbative coefficient functions in a collinear twist-3 formalism relevant for high-energy observables including transverse polarization of hadrons. We argue that those perturbative coefficient functions can, a priori, acquire quite different yet Lorentz-invariant forms in various frames. This somewhat surprising difference can be traced back to a general dependence of the perturbative coefficient functions on light cone vectors which are introduced by the twist-3 factorization formulas and which are frame-dependent. One can remove this spurious frame dependence by invoking so-called Lorentz invariance relations (LIRs) between twist-3 parton correlation functions. Some of those relationsmore » for twist-3 distribution functions were discussed in the literature before. In this paper we derive the corresponding LIRs for twist-3 fragmentation functions. We explicitly demonstrate that these LIRs remove the light cone vector dependence by considering transverse spin observables in the single-inclusive production of hadrons in lepton-nucleon collisions, ℓN→hX. Furthermore, with the LIRs in hand, we also show that twist-3 observables in general can be written solely in terms of three-parton correlation functions.« less
Interpreting single jet measurements in Pb$+$Pb collisions at the LHC
Spousta, Martin; Cole, Brian
2016-01-27
Results are presented from a phenomenological analysis of recent measurements of jet suppression and modifications of jet fragmentation functions in Pb+Pb collisions at the LHC. Particular emphasis is placed on the impact of the differences between quark and gluon jet quenching on the transverse momentum (p jet T) dependence of the jet R AA and on the fragmentation functions, D(z). Primordial quark and gluon parton distributions were obtained from PYTHIA8 and were parameterized using simple power-law functions and extensions to the power-law function which were found to better describe the PYTHIA8 parton spectra. A simple model for the quark energymore » loss based on the shift formalism is used to model R AA and D(z) using both analytic results and using direct Monte-Carlo sampling of the PYTHIA parton spectra. The model is capable of describing the full p jet T, rapidity, and centrality dependence of the measured jet R AA using three effective parameters. A key result from the analysis is that the D(z) modifications observed in the data, excluding the enhancement at low-z, may result primarily from the different quenching of the quarks and gluons. Furthermore, the model is also capable of reproducing the charged hadron R AA at high transverse momentum. Predictions are made for the jet R AA at large rapidities where it has not yet been measured and for the rapidity dependence of D(z).« less
NASA Technical Reports Server (NTRS)
Dominiak, P.; Ciszak, Ewa
2004-01-01
Thiamin pyrophosphate (TPP)-dependent enzymes are a divergent family of TPP and metal ion binding proteins that perform a wide range of functions with the common decarboxylation steps of a -(O=)C-C(OH)- fragment of alpha-ketoacids and alpha- hydroxyaldehydes. To determine how structure and catalytic action are conserved in the context of large sequence differences existing within this family of enzymes, we have carried out an analysis of TPP-dependent enzymes of known structures. The common structure of TPP-dependent enzymes is formed at the interface of four alpha/beta domains from at least two subunits, which provide for two metal and TPP-binding sites. Residues around these catalytic sites are conserved for functional purpose, while those further away from TPP are conserved for structural reasons. Together they provide a network of contacts required for flip-flop catalytic action within TPP-dependent enzymes. Thus our analysis defines a TPP-action motif that is proposed for annotating TPP-dependent enzymes for advancing functional proteomics.
de Frutos, Ángel; Navarro, Teresa; Pueyo, Yolanda; Alados, Concepción L.
2015-01-01
Predicting the capacity of ecosystems to absorb impacts from disturbance events (resilience), including land-use intensification and landscape fragmentation, is challenging in the face of global change. Little is known about the impacts of fragmentation on ecosystem functioning from a multi-dimensional perspective (multiple traits). This study used 58 500-m linear transects to quantify changes in the functional composition and resilience of vascular plant communities in response to an increase in landscape fragmentation in 18 natural scrubland fragments embedded within a matrix of abandoned crop fields in Cabo de Gata-Níjar Natural Park, Almería, Spain. Changes in functional community composition were measured using functional diversity indices (functional richness and functional dispersion) that were based on 12 plant traits. Resilience was evaluated using the functional redundancy and response diversity from the perspective of plant dispersal, which is important, particularly, in fragmented landscapes. Scrubland fragmentation was measured using the Integral Index of Connectivity (IIC). The functional richness of the plant communities was higher in the most fragmented scrubland. Conversely, the functional dispersion (i.e., spread) of trait values among species in the functional trait space was lower at the most fragmented sites; consequently, the ecological tolerance of the vegetation to scrubland fragmentation decreased. Classifying the plant species into four functional groups indicated that fragmentation favoured an increase in functional redundancy in the ‘short basal annual forbs and perennial forbs’ group, most of which are species adapted to degraded soils. An assessment based on the traits associated with plant dispersal indicated that the resilience of ‘woody plants’, an important component in the Mediterranean scrubland, and habitat fragmentation were negatively correlated; however, the correlation was positive in the ‘short basal annual forbs and perennial forbs’ and the ‘grasses’ groups. PMID:25790432
Decarboxylation of bovine prothrombin fragment 1 and prothrombin.
Tuhy, P M; Bloom, J W; Mann, K G
1979-12-25
Bovine prothrombin fragment 1 and prothrombin undergo decarboxylation of their gamma-carboxyglutamic acid residues when the lyophilized proteins are heated in vacuo at 110 degrees C for several hours. The fully decarboxylated fragment 1 product has lost its barium-binding ability as well as the calcium-binding function which causes fluorescence quenching in the presence of 2 mM Ca2+. There is no sign of secondary structure alteration in solution upon analysis by fluorescence emission and circular dichroic spectroscopy. A family of partially decarboxylated fragment 1 species generated by heating for shorter periods shows that the initial decrease in calcium-binding ability occurs almost twice as rapidly as the loss of gamma-carboxyglutamic acid. This is consistent with the idea that differential functions can be ascribed to the 10 gamma-carboxyglutamic acid residues in fragment 1, including both high- and low-affinity metal ion binding sites. Prothrombin itself also undergoes total decarboxylation without any apparent alteration in secondary structure. However, in this case the latent thrombin activity is progressively diminished during the heating process in terms of both clotting activity and hydrolysis of the amide substrate H-D-Phe-Pip-Arg-pNA. The present results indicate that in vitro decarboxylation of gamma-carboxyglutamic acid in dried proteins is useful for analyzing the detailed calcium-binding proteins of vitamin K dependent coagulation factors.
Ellis, W C; Mahlooji, M; Lascano, C E; Matis, J H
2005-07-01
Ingestively masticated fragments were collected and sized via sieving. Different sizes of esophageal masticate and ruminal digesta fragments, and ground fragments of larger masticated pieces were incubated in vitro, and undigested NDF remaining at intervals of up to 168 h of incubation was determined. The ruminal age-dependent time delay (tau) for onset of digestion of NDF was positively correlated (P < 0.004) with the mean sieve aperture estimated to retain 50% of the fragments between successive sieve apertures (MRA). Degradation rate of potentially degradable NDF (PDF) and level of indigestible NDF were not related (P > 0.10) to MRA of masticated and ground fragments. Estimates of tau were positively related to MRA, with slopes of bermudagrass < corn silage < ruminal fragments of corn silage. It was concluded that fragment size-, and consequently, ruminal age-dependent onset of PDF degradation of a mixture of different fragment sizes results in an age-dependent rate of degradation of the more rapidly degrading of two subentities of PDF. Models are proposed that assume a tau before onset of simultaneous degradation of PDF from two pools characterized as having gamma-modeled age-dependency and age-constant rates. The ruminal age-dependent pool seems to be associated with the faster-degrading pool, and its rate parameter increases with range in MRA in the population of fragments. Conceptually, the ruminal age-dependent rate parameter for PDF degradation seems to represent a composite of several effects: 1) effects of the size-dependent tau; 2) range in MRA of the population of ingestively masticated fragments; and 3) subentities of PDF that degrade via more rapid age-dependent rates compared with subentities of PDF that degrade via age-constant rates. The estimated fractional rates of ruminative comminution of ingestively masticated fragments (0.060 to 0.075/h) were of a magnitude similar to the mean fractional rates of PDF digestion (0.030 to 0.085/h), which implies that ruminative comminution may be first-limiting to fractional rate of PDF digestion. The in vivo roles of ingestive and ruminative mastication of fragments on PDF degradation must be considered in any kinetic system for estimating PDF digestion in the rumen. These results and others in the literature suggest that the rate of surface area exposure rather than intrinsic chemical attributes of PDF may be first-limiting to degradation rate of PDF in vivo.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stershic, Andrew J.; Dolbow, John E.; Moës, Nicolas
The Thick Level-Set (TLS) model is implemented to simulate brittle media undergoing dynamic fragmentation. This non-local model is discretized by the finite element method with damage represented as a continuous field over the domain. A level-set function defines the extent and severity of damage, and a length scale is introduced to limit the damage gradient. Numerical studies in one dimension demonstrate that the proposed method reproduces the rate-dependent energy dissipation and fragment length observations from analytical, numerical, and experimental approaches. In conclusion, additional studies emphasize the importance of appropriate bulk constitutive models and sufficient spatial resolution of the length scale.
Study of the Mo-Ba partition in 252Cf spontaneous fission
NASA Astrophysics Data System (ADS)
Biswas, D. C.; Choudhury, R. K.; Cinausero, M.; Fornal, B.; Shetty, D. V.; Viesti, G.; Fabris, D.; Fioretto, E.; Lunardon, M.; Nebbia, G.; Prete, G.; Bazzacco, D.; DePoli, M.; Napoli, D. R.; Ur, C. A.; Vedovato, G.
Measurements of fission fragment yields and neutron multiplicities have been carried out for the Mo-Ba fragment pairs in the spontaneous fission of 252Cf, using the γ-ray spectroscopy technique to analyze γ-γ-γ coincidence data. Prompt γ -ray multiplicities were also measured as a function of the number of neutrons emitted in the fission process leading to the Mo-Ba partition. We do not observe the enhancement in the yields of events with high neutron emission multiplicity (νn > 7) that has been associated to a second fission mode leading to the production of hyperdeformed Ba fragments, as reported in some earlier studies. The average γ-ray multiplicity is found to be rather weakly dependent on the number of neutrons emitted in the fission process.
NASA Astrophysics Data System (ADS)
Deden, H.; Fritze, P.; Grässler, H.; Hasert, F. J.; Morfin, J.; Schulte, R.; Böckmann, K.; Geich-Gimbel, C.; Kokott, T. P.; Nellen, B.; Pech, R.; Saarikko, H.; Bosetti, P. C.; Cundy, D. C.; Grant, A. L.; Hulth, P. O.; Pape, L.; Scott, W. G.; Skjeggestad, O.; Mermikides, M.; Simopoulou, E.; Vayaki, A.; Barnham, K. W. J.; Butterworth, I.; Chima, J. S.; Clayton, E. F.; Miller, D. B.; Mobayyen, M.; Penfold, C.; Powell, K. J.; Batley, J. R.; Giles, R.; Grossmann, P.; Lloyd, J. L.; Myatt, G.; Perkins, D. H.; Radojicic, D.; Renton, P.; Saitta, B.; Bloch, M.; Bolognese, T.; Tallini, B.; Velasco, J.; Vignaud, D.; Aachen-Bonn-CERN-Demokritos Athens-I. C. London-Oxford-Saclay Collaboration
1981-04-01
The average transverse momentum squared, < p⊥2>, of hadrons is studied as a function of W2 and of Q2 for ν and overlineν interactions on an isoscalar target. An increase of < p⊥2> with W2 is observed for the hadrons emitted forward in the hadronic c.m.s. The p⊥ dependence of the fragmentation function is found to factorise from the structure function at fixed W, but does not factorise at fixed Q2. Unlike the case of forward-going particles, the < p⊥2> of hadrons going backward in the c.m.s. shows no strong dependence on W2.
Quantal diffusion description of multinucleon transfers in heavy-ion collisions
NASA Astrophysics Data System (ADS)
Ayik, S.; Yilmaz, B.; Yilmaz, O.; Umar, A. S.
2018-05-01
Employing the stochastic mean-field (SMF) approach, we develop a quantal diffusion description of the multi-nucleon transfer in heavy-ion collisions at finite impact parameters. The quantal transport coefficients are determined by the occupied single-particle wave functions of the time-dependent Hartree-Fock equations. As a result, the primary fragment mass and charge distribution functions are determined entirely in terms of the mean-field properties. This powerful description does not involve any adjustable parameter, includes the effects of shell structure, and is consistent with the fluctuation-dissipation theorem of the nonequilibrium statistical mechanics. As a first application of the approach, we analyze the fragment mass distribution in 48Ca+ 238U collisions at the center-of-mass energy Ec.m.=193 MeV and compare the calculations with the experimental data.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chugh, Rajiv, E-mail: rajivchug@gmail.com; Kumar, Rohit, E-mail: rohitksharma.pu@gmail.com; Vinayak, Karan Singh, E-mail: drksvinayak@gmail.com
2016-05-06
Using isospin-dependent quantum molecular dynamics (IQMD) approach, we performed a theoretical investigation of the evolution of various kinds of fragments in heavy and superheavy-ion reactions in the intermediate/medium energy domain. We demonstrated direct impact of symmetry energy and Coulomb interactions on the evolution of fragments. Final fragment spectra (yields) obtained from the analysis of various heavy/super-heavy ion reactions at different reaction conditions show high sensitivity towards Coulomb interactions and less significant sensitivity to symmetry energy forms. No inconsistent pattern of fragment structure is obtained in case of super-heavy ion involved reactions for all the parameterizations of density dependence of symmetrymore » energy.« less
Formation and survival of Population III stellar systems
NASA Astrophysics Data System (ADS)
Hirano, Shingo; Bromm, Volker
2017-09-01
The initial mass function of the first, Population III (Pop III), stars plays a vital role in shaping galaxy formation and evolution in the early Universe. One key remaining issue is the final fate of secondary protostars formed in the accretion disc, specifically whether they merge or survive. We perform a suite of hydrodynamic simulations of the complex interplay among fragmentation, protostellar accretion and merging inside dark matter minihaloes. Instead of the traditional sink particle method, we employ a stiff equation of state approach, so that we can more robustly ascertain the viscous transport inside the disc. The simulations show inside-out fragmentation because the gas collapses faster in the central region. Fragments migrate on the viscous time-scale, over which angular momentum is lost, enabling them to move towards the disc centre, where merging with the primary protostar can occur. This process depends on the fragmentation scale, such that there is a maximum scale of (1-5) × 104 au, inside which fragments can migrate to the primary protostar. Viscous transport is active until radiative feedback from the primary protostar destroys the accretion disc. The final mass spectrum and multiplicity thus crucially depends on the effect of viscosity in the disc. The entire disc is subjected to efficient viscous transport in the primordial case with viscous parameter α ≤ 1. An important aspect of this question is the survival probability of Pop III binary systems, possible gravitational wave sources to be probed with the Advanced LIGO detectors.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aaboud, M.; Aad, G.; Abbott, B.
The distributions of transverse momentum and longitudinal momentum fraction of charged particles in jets are measured in Pb+Pb and pp collisions with the ATLAS detector at the LHC. The distributions are measured as a function of jet transverse momentum and rapidity. The analysis utilises an integrated luminosity of 0.14 nb -1 of Pb+Pb data and 4.0 pb -1 of pp data collected in 2011 and 2013, respectively, at the same centre-of-mass energy of 2.76 TeV per colliding nucleon pair. The distributions measured in pp collisions are used as a reference for those measured in Pb+Pb collisions in order to evaluatemore » the impact on the internal structure of jets from the jet energy loss of fast partons propagating through the hot, dense medium created in heavy-ion collisions. Modest but significant centrality-dependent modifications of fragmentation functions in Pb+Pb collisions with respect to those in pp collisions are seen. Finally, no significant dependence of modifications on jet p T and rapidity selections is observed except for the fragments with the highest transverse momenta for which some reduction of yields is observed for more forward jets.« less
NMR studies on the structure and dynamics of lac operator DNA
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, S.C.
Nuclear Magnetic Resonance spectroscopy was used to elucidate the relationships between structure, dynamics and function of the gene regulatory sequence corresponding to the lactose operon operator of Escherichia coli. The length of the DNA fragments examined varied from 13 to 36 base pair, containing all or part of the operator sequence. These DNA fragments are either derived genetically or synthesized chemically. Resonances of the imino protons were assigned by one dimensional inter-base pair nuclear Overhauser enhancement (NOE) measurements. Imino proton exchange rates were measured by saturation recovery methods. Results from the kinetic measurements show an interesting dynamic heterogeneity with amore » maximum opening rate centered about a GTG/CAC sequence which correlates with the biological function of the operator DNA. This particular three base pair sequence occurs frequently and often symmetrically in prokaryotic nd eukaryotic DNA sites where one anticipates specific protein interaction for gene regulation. The observed sequence dependent imino proton exchange rate may be a reflection of variation of the local structure of regulatory DNA. The results also indicate that the observed imino proton exchange rates are length dependent.« less
Phenomenology from SIDIS and e+e- multiplicities: multiplicities and phenomenology - part I
NASA Astrophysics Data System (ADS)
Bacchetta, Alessandro; Echevarria, Miguel G.; Radici, Marco; Signori, Andrea
2015-01-01
This study is part of a project to investigate the transverse momentum dependence in parton distribution and fragmentation functions, analyzing (semi-)inclusive high-energy processes within a proper QCD framework. We calculate the transverse-momentum-dependent (TMD) multiplicities for e+e- annihilation into two hadrons (considering different combinations of pions and kaons) aiming to investigate the impact of intrinsic and radiative partonic transverse momentum and their mixing with flavor. Different descriptions of the non-perturbative evolution kernel (see, e.g., Refs. [1-5]) are available on the market and there are 200 sets of flavor configurations for the unpolarized TMD fragmentation functions (FFs) resulting from a Monte Carlo fit of Semi-Inclusive Deep-Inelastic Scattering (SIDIS) data at Hermes (see Ref. [6]). We build our predictions of e+e- multiplicities relying on this rich phenomenology. The comparison of these calculations with future experimental data (from Belle and BaBar collaborations) will shed light on non-perturbative aspects of hadron structure, opening important insights into the physics of spin, flavor and momentum structure of hadrons.
Shirazi, Mahdi; Elliott, Simon D
2014-01-30
To describe the atomic layer deposition (ALD) reactions of HfO2 from Hf(N(CH3)2)4 and H2O, a three-dimensional on-lattice kinetic Monte-Carlo model is developed. In this model, all atomistic reaction pathways in density functional theory (DFT) are implemented as reaction events on the lattice. This contains all steps, from the early stage of adsorption of each ALD precursor, kinetics of the surface protons, interaction between the remaining precursors (steric effect), influence of remaining fragments on adsorption sites (blocking), densification of each ALD precursor, migration of each ALD precursors, and cooperation between the remaining precursors to adsorb H2O (cooperative effect). The essential chemistry of the ALD reactions depends on the local environment at the surface. The coordination number and a neighbor list are used to implement the dependencies. The validity and necessity of the proposed reaction pathways are statistically established at the mesoscale. The formation of one monolayer of precursor fragments is shown at the end of the metal pulse. Adsorption and dissociation of the H2O precursor onto that layer is described, leading to the delivery of oxygen and protons to the surface during the H2O pulse. Through these processes, the remaining precursor fragments desorb from the surface, leaving the surface with bulk-like and OH-terminated HfO2, ready for the next cycle. The migration of the low coordinated remaining precursor fragments is also proposed. This process introduces a slow reordering motion (crawling) at the mesoscale, leading to the smooth and conformal thin film that is characteristic of ALD. Copyright © 2013 Wiley Periodicals, Inc.
Operator constraints for twist-3 functions and Lorentz invariance properties of twist-3 observables
Kanazawa, Koichi; Pitonyak, Daniel; Koike, Yuji; ...
2016-03-14
We investigate the behavior under Lorentz transformations of perturbative coefficient functions in a collinear twist-3 formalism relevant for high-energy observables including transverse polarization of hadrons. We argue that those perturbative coefficient functions can, a priori, acquire quite different yet Lorentz-invariant forms in various frames. This somewhat surprising difference can be traced back to a general dependence of the perturbative coefficient functions on light cone vectors which are introduced by the twist-3 factorization formulas and which are frame-dependent. One can remove this spurious frame dependence by invoking so-called Lorentz invariance relations (LIRs) between twist-3 parton correlation functions. Some of those relationsmore » for twist-3 distribution functions were discussed in the literature before. In this paper we derive the corresponding LIRs for twist-3 fragmentation functions. We explicitly demonstrate that these LIRs remove the light cone vector dependence by considering transverse spin observables in the single-inclusive production of hadrons in lepton-nucleon collisions, ℓN→hX. Furthermore, with the LIRs in hand, we also show that twist-3 observables in general can be written solely in terms of three-parton correlation functions.« less
Biophysical characterization of soluble Pseudomonas syringae ice nucleation protein InaZ fragments.
Han, Yu Jin; Song, HyoJin; Lee, Chang Woo; Ly, Nguyễn Hoàng; Joo, Sang-Woo; Lee, Jun Hyuck; Kim, Soon-Jong; Park, SangYoun
2017-01-01
Ice nucleation protein (INP) with its functional domain consisting of multiple 48-residue repeat units effectively induces super-cooled water into ice. Circular dichroism and infrared deconvolution analyses on a soluble 240-residue fragment of Pseudomonas syringae InaZ (InaZ240) containing five 48-residue repeat units indicated that it is mostly composed of β-sheet and random coil. Analytical ultracentrifugation suggested that InaZ240 behaves as a monomer of an elongated ellipsoid. However, InaZ240 showed only minimum ice binding compared to anti-freeze proteins. Other P. syringae InaZ proteins with more 48-residue repeat units were made, in which the largest soluble fragment obtainable was an InaZ with twelve 48-residue repeat units. Size-exclusion chromatography analyses further suggested that the overall shape of the expressed InaZ fragments is pH-dependent, which becomes compact as the numbers of 48-residue repeat unit increase. Copyright © 2016 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Maciuła, Rafał; Szczurek, Antoni
2018-04-01
We consider unfavored light quark/antiquark to D meson fragmentation. We discuss nonperturbative effects for small transverse momenta. The asymmetry for D+ and D- production measured by the LHCb collaboration provides natural constraints on the parton (quark/antiquark) fragmentation functions. We find that already a fraction of q /q ¯→D fragmentation probability is sufficient to account for the measured asymmetry. We make predictions for similar asymmetry for neutral D mesons. Large D -meson production asymmetries are found for large xF which is related to dominance of light quark/antiquark q /q ¯→D fragmentation over the standard c →D fragmentation. As a consequence, prompt atmospheric neutrino flux at high neutrino energies can be much larger than for the conventional c →D fragmentation. The latter can constitute a sizeable background for the cosmic neutrinos claimed to be observed recently by the IceCube Observatory. Large rapidity-dependent D+/D- and D0/D¯0 asymmetries are predicted for low (√{s }=20 - 100 GeV ) energies. The q /q ¯→D fragmentation leads to enhanced production of D mesons at low energies. At √{s }=20 GeV the enhancement factor with respect to the conventional contribution is larger than a factor of five. In the considered picture the large-xF D mesons are produced dominantly via fragmentation of light quarks/antiquarks. Predictions for fixed target p + 4He collisions relevant for a fixed target LHCb experiment are presented.
Drijfhout van Hooff, Cornelis Christiaan; Verhage, Samuel Marinus; Hoogendoorn, Jochem Maarten
2015-06-01
One of the factors contributing to long-term outcome of posterior malleolar fractures is the development of osteoarthritis. Based on biomechanical, cadaveric, and small population studies, fixation of posterior malleolar fracture fragments (PMFFs) is usually performed when fragment size exceeds 25-33%. However, the influence of fragment size on long-term clinical and radiological outcome size remains unclear. A retrospective cohort study of 131 patients treated for an isolated ankle fracture with involvement of the posterior malleolus was performed. Mean follow-up was 6.9 (range, 2.5-15.9) years. Patients were divided into groups depending on size of the fragment, small (<5%, n = 20), medium (5-25%, n = 86), or large (>25%, n = 25), and presence of step-off after operative treatment. We have compared functional outcome measures (AOFAS, AAOS), pain (VAS), and dorsiflexion restriction compared to the contralateral ankle and the incidence of osteoarthritis on X-ray. There were no nonunions, 56% of patients had no radiographic osteoarthritis, VAS was 10 of 100, and median clinical score was 90 of 100. More osteoarthritis occurred in ankle fractures with medium and large PMFFs compared to small fragments (small 16%, medium 48%, large 54%; P = .006). Also when comparing small with medium-sized fragments (P = .02), larger fragment size did not lead to a significantly decreased function (median AOFAS 95 vs 88, P = .16). If the PMFF size was >5%, osteoarthritis occurred more frequently when there was a postoperative step-off ≥1 mm in the tibiotalar joint surface (41% vs 61%, P = .02) (whether the posterior fragment had been fixed or not). In this group, fixing the PMFF did not influence development of osteoarthritis. However, in 42% of the cases with fixation of the fragment a postoperative step-off remained (vs 45% in the group without fixation). Osteoarthritis is 1 component of long-term outcome of malleolar fractures, and the results of this study demonstrate that there was more radiographic osteoarthritis in patients with medium and large posterior fragments than in those with small fragments. Radiographic osteoarthritis also occurred more frequently when postoperative step-off was 1 mm or more, whether the posterior fragment was fixed or not. However, clinical scores were not different for these groups. Level IV, retrospective case series. © The Author(s) 2015.
Recursive model for the fragmentation of polarized quarks
NASA Astrophysics Data System (ADS)
Kerbizi, A.; Artru, X.; Belghobsi, Z.; Bradamante, F.; Martin, A.
2018-04-01
We present a model for Monte Carlo simulation of the fragmentation of a polarized quark. The model is based on string dynamics and the 3P0 mechanism of quark pair creation at string breaking. The fragmentation is treated as a recursive process, where the splitting function of the subprocess q →h +q' depends on the spin density matrix of the quark q . The 3P0 mechanism is parametrized by a complex mass parameter μ , the imaginary part of which is responsible for single spin asymmetries. The model has been implemented in a Monte Carlo program to simulate jets made of pseudoscalar mesons. Results for single hadron and hadron pair transverse-spin asymmetries are found to be in agreement with experimental data from SIDIS and e+e- annihilation. The model predictions on the jet-handedness are also discussed.
Formation and distribution of fragments in the spontaneous fission of 240Pu
NASA Astrophysics Data System (ADS)
Sadhukhan, Jhilam; Zhang, Chunli; Nazarewicz, Witold; Schunck, Nicolas
2017-12-01
Background: Fission is a fundamental decay mode of heavy atomic nuclei. The prevalent theoretical approach is based on mean-field theory and its extensions where fission is modeled as a large amplitude motion of a nucleus in a multidimensional collective space. One of the important observables characterizing fission is the charge and mass distribution of fission fragments. Purpose: The goal of this Rapid Communication is to better understand the structure of fission fragment distributions by investigating the competition between the static structure of the collective manifold and the stochastic dynamics. In particular, we study the characteristics of the tails of yield distributions, which correspond to very asymmetric fission into a very heavy and a very light fragment. Methods: We use the stochastic Langevin framework to simulate the nuclear evolution after the system tunnels through the multidimensional potential barrier. For a representative sample of different initial configurations along the outer turning-point line, we define effective fission paths by computing a large number of Langevin trajectories. We extract the relative contribution of each such path to the fragment distribution. We then use nucleon localization functions along effective fission pathways to analyze the characteristics of prefragments at prescission configurations. Results: We find that non-Newtonian Langevin trajectories, strongly impacted by the random force, produce the tails of the fission fragment distribution of 240Pu. The prefragments deduced from nucleon localizations are formed early and change little as the nucleus evolves towards scission. On the other hand, the system contains many nucleons that are not localized in the prefragments even near the scission point. Such nucleons are distributed rapidly at scission to form the final fragments. Fission prefragments extracted from direct integration of the density and from the localization functions typically differ by more than 30 nucleons even near scission. Conclusions: Our Rapid Communication shows that only theoretical models of fission that account for some form of stochastic dynamics can give an accurate description of the structure of fragment distributions. In particular, it should be nearly impossible to predict the tails of these distributions within the standard formulation of time-dependent density-functional theory. At the same time, the large number of nonlocalized nucleons during fission suggests that adiabatic approaches where the interplay between intrinsic excitations and collective dynamics is neglected are ill suited to describe fission fragment properties, in particular, their excitation energy.
N-Heterocyclic Carbene Capture by Cytochrome P450 3A4
Jennings, Gareth K.; Ritchie, Caroline M.; Shock, Lisa S.; Lyons, Charles E.
2016-01-01
Cytochrome P450 3A4 (CYP3A4) is the dominant P450 enzyme involved in human drug metabolism, and its inhibition may result in adverse interactions or, conversely, favorably reduce the systemic elimination rates of poorly bioavailable drugs. Herein we describe a spectroscopic investigation of the interaction of CYP3A4 with N-methylritonavir, an analog of ritonavir, widely used as a pharmacoenhancer. In contrast to ritonavir, the binding affinity of N-methylritonavir for CYP3A4 is pH-dependent. At pH <7.4, the spectra are definitively type I, whereas at pH ≥7.4 the spectra have split Soret bands, including a red-shifted component characteristic of a P450-carbene complex. Variable-pH UV-visible spectroscopy binding studies with molecular fragments narrows the source of this pH dependence to its N-methylthiazolium fragment. The C2 proton of this group is acidic, and variable-pH resonance Raman spectroscopy tentatively assigns it a pKa of 7.4. Hence, this fragment of N-methylritonavir is expected to be readily deprotonated under physiologic conditions to yield a thiazol-2-ylidene, which is an N-heterocyclic carbene that has high-affinity for and is presumed to be subsequently captured by the heme iron. This mechanism is supported by time-dependent density functional theory with an active site model that accurately reproduces distinguishing features of the experimental UV-visible spectra of N-methylritonavir bound to CYP3A4. Finally, density functional theory calculations support that this novel interaction is as strong as the tightest-binding azaheterocycles found in P450 inhibitors and could offer new avenues for inhibitor development. PMID:27126611
Amos, Nevil; Harrisson, Katherine A; Radford, James Q; White, Matt; Newell, Graeme; Mac Nally, Ralph; Sunnucks, Paul; Pavlova, Alexandra
2014-06-01
Loss of functional connectivity following habitat loss and fragmentation could drive species declines. A comprehensive understanding of fragmentation effects on functional connectivity of an ecological assemblage requires investigation of multiple species with different mobilities, at different spatial scales, for each sex, and in different landscapes. Based on published data on mobility and ecological responses to fragmentation of 10 woodland-dependent birds, and using simulation studies, we predicted that (1) fragmentation would impede dispersal and gene flow of eight "decliners" (species that disappear from suitable patches when landscape-level tree cover falls below species-specific thresholds), but not of two "tolerant" species (whose occurrence in suitable habitat patches is independent of landscape tree cover); and that fragmentation effects would be stronger (2) in the least mobile species, (3) in the more philopatric sex, and (4) in the more fragmented region. We tested these predictions by evaluating spatially explicit isolation-by-landscape-resistance models of gene flow in fragmented landscapes across a 50 x 170 km study area in central Victoria, Australia, using individual and population genetic distances. To account for sex-biased dispersal and potential scale- and configuration-specific effects, we fitted models specific to sex and geographic zones. As predicted, four of the least mobile decliners showed evidence of reduced genetic connectivity. The responses were strongly sex specific, but in opposite directions in the two most sedentary species. Both tolerant species and (unexpectedly) four of the more mobile decliners showed no reduction in gene flow. This is unlikely to be due to time lags because more mobile species develop genetic signatures of fragmentation faster than do less mobile ones. Weaker genetic effects were observed in the geographic zone with more aggregated vegetation, consistent with gene flow being unimpeded by landscape structure. Our results indicate that for all but the most sedentary species in our system, the movement of the more dispersive sex (females in most cases) maintains overall genetic connectivity across fragmented landscapes in the study area, despite some small-scale effects on the more philopatric sex for some species. Nevertheless, to improve population viability for the less mobile bird species, structural landscape connectivity must be increased.
Westphal, Nina; Kleene, Ralf; Lutz, David; Theis, Thomas; Schachner, Melitta
2016-07-01
In the mammalian nervous system, the neural cell adhesion molecule NCAM is the major carrier of the glycan polymer polysialic acid (PSA) which confers important functions to NCAM's protein backbone. PSA attached to NCAM contributes not only to cell migration, neuritogenesis, synaptic plasticity, and behavior, but also to regulation of the circadian rhythm by yet unknown molecular mechanisms. Here, we show that a PSA-carrying transmembrane NCAM fragment enters the nucleus after stimulation of cultured neurons with surrogate NCAM ligands, a phenomenon that depends on the circadian rhythm. Enhanced nuclear import of the PSA-carrying NCAM fragment is associated with altered expression of clock-related genes, as shown by analysis of cultured neuronal cells deprived of PSA by specific enzymatic removal. In vivo, levels of nuclear PSA in different mouse brain regions depend on the circadian rhythm and clock-related gene expression in suprachiasmatic nucleus and cerebellum is affected by the presence of PSA-carrying NCAM in the cell nucleus. Our conceptually novel observations reveal that PSA attached to a transmembrane proteolytic NCAM fragment containing part of the extracellular domain enters the cell nucleus, where PSA-carrying NCAM contributes to the regulation of clock-related gene expression and of the circadian rhythm. Copyright © 2016 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Regnier, D.; Dubray, N.; Schunck, N.; Verrière, M.
2016-05-01
Background: Accurate knowledge of fission fragment yields is an essential ingredient of numerous applications ranging from the formation of elements in the r process to fuel cycle optimization for nuclear energy. The need for a predictive theory applicable where no data are available, together with the variety of potential applications, is an incentive to develop a fully microscopic approach to fission dynamics. Purpose: In this work, we calculate the pre-neutron emission charge and mass distributions of the fission fragments formed in the neutron-induced fission of 239Pu using a microscopic method based on nuclear density functional theory (DFT). Methods: Our theoretical framework is the nuclear energy density functional (EDF) method, where large-amplitude collective motion is treated adiabatically by using the time-dependent generator coordinate method (TDGCM) under the Gaussian overlap approximation (GOA). In practice, the TDGCM is implemented in two steps. First, a series of constrained EDF calculations map the configuration and potential-energy landscape of the fissioning system for a small set of collective variables (in this work, the axial quadrupole and octupole moments of the nucleus). Then, nuclear dynamics is modeled by propagating a collective wave packet on the potential-energy surface. Fission fragment distributions are extracted from the flux of the collective wave packet through the scission line. Results: We find that the main characteristics of the fission charge and mass distributions can be well reproduced by existing energy functionals even in two-dimensional collective spaces. Theory and experiment agree typically within two mass units for the position of the asymmetric peak. As expected, calculations are sensitive to the structure of the initial state and the prescription for the collective inertia. We emphasize that results are also sensitive to the continuity of the collective landscape near scission. Conclusions: Our analysis confirms that the adiabatic approximation provides an effective scheme to compute fission fragment yields. It also suggests that, at least in the framework of nuclear DFT, three-dimensional collective spaces may be a prerequisite to reach 10% accuracy in predicting pre-neutron emission fission fragment yields.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kashiwa, Bryan Andrew; Hull, Lawrence Mark
Highlights of recent phenomenological studies of metal failure are given. Failure leading to spallation and fragmentation are typically of interest. The current ‘best model’ includes the following; a full history stress in tension; nucleation initiating dynamic relaxation; toward a tensile yield function; failure dependent on strain, strain rate, and temperature; a mean-preserving ‘macrodefect’ is introduced when failure occurs in tension; and multifield theoretical refinements
Fragment Production and Survival in Irradiated Disks: A Comprehensive Cooling Criterion
NASA Astrophysics Data System (ADS)
Kratter, Kaitlin M.; Murray-Clay, Ruth A.
2011-10-01
Accretion disks that become gravitationally unstable can fragment into stellar or substellar companions. The formation and survival of these fragments depends on the precarious balance between self-gravity, internal pressure, tidal shearing, and rotation. Disk fragmentation depends on two key factors: (1) whether the disk can get to the fragmentation boundary of Q = 1 and (2) whether fragments can survive for many orbital periods. Previous work suggests that to reach Q = 1, and have fragments survive, a disk must cool on an orbital timescale. Here we show that disks heated primarily by external irradiation always satisfy the standard cooling time criterion. Thus, even though irradiation heats disks and makes them more stable in general, once they reach the fragmentation boundary, they fragment more easily. We derive a new cooling criterion that determines fragment survival and calculate a pressure-modified Hill radius, which sets the maximum size of pressure-supported objects in a Keplerian disk. We conclude that fragmentation in protostellar disks might occur at slightly smaller radii than previously thought and recommend tests for future simulations that will better predict the outcome of fragmentation in real disks.
Neutron-neutron angular correlations in spontaneous fission of 252Cf and 240Pu
NASA Astrophysics Data System (ADS)
Verbeke, J. M.; Nakae, L. F.; Vogt, R.
2018-04-01
Background: Angular anisotropy has been observed between prompt neutrons emitted during the fission process. Such an anisotropy arises because the emitted neutrons are boosted along the direction of the parent fragment. Purpose: To measure the neutron-neutron angular correlations from the spontaneous fission of 252Cf and 240Pu oxide samples using a liquid scintillator array capable of pulse-shape discrimination. To compare these correlations to simulations combining the Monte Carlo radiation transport code MCNPX with the fission event generator FREYA. Method: Two different analysis methods were used to study the neutron-neutron correlations with varying energy thresholds. The first is based on setting a light output threshold while the second imposes a time-of-flight cutoff. The second method has the advantage of being truly detector independent. Results: The neutron-neutron correlation modeled by FREYA depends strongly on the sharing of the excitation energy between the two fragments. The measured asymmetry enabled us to adjust the FREYA parameter x in 240Pu, which controls the energy partition between the fragments and is so far inaccessible in other measurements. The 240Pu data in this analysis was the first available to quantify the energy partition for this isotope. The agreement between data and simulation is overall very good for 252Cf(sf ) and 240Pu(sf ) . Conclusions: The asymmetry in the measured neutron-neutron angular distributions can be predicted by FREYA. The shape of the correlation function depends on how the excitation energy is partitioned between the two fission fragments. Experimental data suggest that the lighter fragment is disproportionately excited.
Fragman: an R package for fragment analysis.
Covarrubias-Pazaran, Giovanny; Diaz-Garcia, Luis; Schlautman, Brandon; Salazar, Walter; Zalapa, Juan
2016-04-21
Determination of microsatellite lengths or other DNA fragment types is an important initial component of many genetic studies such as mutation detection, linkage and quantitative trait loci (QTL) mapping, genetic diversity, pedigree analysis, and detection of heterozygosity. A handful of commercial and freely available software programs exist for fragment analysis; however, most of them are platform dependent and lack high-throughput applicability. We present the R package Fragman to serve as a freely available and platform independent resource for automatic scoring of DNA fragment lengths diversity panels and biparental populations. The program analyzes DNA fragment lengths generated in Applied Biosystems® (ABI) either manually or automatically by providing panels or bins. The package contains additional tools for converting the allele calls to GenAlEx, JoinMap® and OneMap software formats mainly used for genetic diversity and generating linkage maps in plant and animal populations. Easy plotting functions and multiplexing friendly capabilities are some of the strengths of this R package. Fragment analysis using a unique set of cranberry (Vaccinium macrocarpon) genotypes based on microsatellite markers is used to highlight the capabilities of Fragman. Fragman is a valuable new tool for genetic analysis. The package produces equivalent results to other popular software for fragment analysis while possessing unique advantages and the possibility of automation for high-throughput experiments by exploiting the power of R.
NASA Astrophysics Data System (ADS)
Sleno, Lekha; Campagna-Slater, Valerie; Volmer, Dietrich A.
2006-09-01
Fragmentation pathways of doxorubicin, a common cancer therapy agent, and three closely related analogs (epirubicin, daunorubicin, idarubicin) were compared using electrospray ionization with tandem mass spectrometry. This class of antibiotics with anti-tumour activity has important structural features, with a tetracyclic aromatic, polyketide portion, which is glycosylated with an amino sugar in order to exhibit its biological activity. Collision-induced dissociation spectra revealed very similar product ions for each analog, however, important differences were seen in the relative abundances and the ease at which certain fragments were formed. Fragment ions observed included those from cleavage of the glycosidic bond, loss of the side chain from the aglycone moiety, water losses and loss of a methyl radical. Following cleavage of the glycosidic bond, the charge can either reside on the aglycone portion or the sugar moiety, and each of these primary fragments undergoes several secondary dissociation pathways, depending on the collision energy. By ramping the collision voltage, we were able to correlate the changes in fragmentation behavior with small alterations in the structure of the precursor ion. The detailed study of the fragmentation behavior of doxorubicin was supported by accurate mass measurements, using an electrospray-time of flight instrument, as well as MS3 data from a quadrupole-linear ion trap mass spectrometer. Computational studies were also performed to help explain the role of certain functional groups in the fragmentation reactions.
Isotopic Dependence of GCR Fluence behind Shielding
NASA Technical Reports Server (NTRS)
Cucinotta, Francis A.; Wilson, John W.; Saganti, Premkumar; Kim, Myung-Hee Y.; Cleghorn, Timothy; Zeitlin, Cary; Tripathi, Ram K.
2006-01-01
In this paper we consider the effects of the isotopic composition of the primary galactic cosmic rays (GCR), nuclear fragmentation cross-sections, and isotopic-grid on the solution to transport models used for shielding studies. Satellite measurements are used to describe the isotopic composition of the GCR. For the nuclear interaction data-base and transport solution, we use the quantum multiple-scattering theory of nuclear fragmentation (QMSFRG) and high-charge and energy (HZETRN) transport code, respectively. The QMSFRG model is shown to accurately describe existing fragmentation data including proper description of the odd-even effects as function of the iso-spin dependence on the projectile nucleus. The principle finding of this study is that large errors (+/-100%) will occur in the mass-fluence spectra when comparing transport models that use a complete isotopic-grid (approx.170 ions) to ones that use a reduced isotopic-grid, for example the 59 ion-grid used in the HZETRN code in the past, however less significant errors (<+/-20%) occur in the elemental-fluence spectra. Because a complete isotopic-grid is readily handled on small computer workstations and is needed for several applications studying GCR propagation and scattering, it is recommended that they be used for future GCR studies.
Lee, Chang-Han; Romain, Gabrielle; Yan, Wupeng; Watanabe, Makiko; Charab, Wissam; Todorova, Biliana; Lee, Jiwon; Triplett, Kendra; Donkor, Moses; Lungu, Oana I; Lux, Anja; Marshall, Nicholas; Lindorfer, Margaret A; Goff, Odile Richard-Le; Balbino, Bianca; Kang, Tae Hyun; Tanno, Hidetaka; Delidakis, George; Alford, Corrine; Taylor, Ronald P; Nimmerjahn, Falk; Varadarajan, Navin; Bruhns, Pierre; Zhang, Yan Jessie; Georgiou, George
2017-08-01
Engineered crystallizable fragment (Fc) regions of antibody domains, which assume a unique and unprecedented asymmetric structure within the homodimeric Fc polypeptide, enable completely selective binding to the complement component C1q and activation of complement via the classical pathway without any concomitant engagement of the Fcγ receptor (FcγR). We used the engineered Fc domains to demonstrate in vitro and in mouse models that for therapeutic antibodies, complement-dependent cell-mediated cytotoxicity (CDCC) and complement-dependent cell-mediated phagocytosis (CDCP) by immunological effector molecules mediated the clearance of target cells with kinetics and efficacy comparable to those of the FcγR-dependent effector functions that are much better studied, while they circumvented certain adverse reactions associated with FcγR engagement. Collectively, our data highlight the importance of CDCC and CDCP in monoclonal-antibody function and provide an experimental approach for delineating the effect of complement-dependent effector-cell engagement in various therapeutic settings.
Fine-scale movement decisions of tropical forest birds in a fragmented landscape.
Gillies, Cameron S; Beyer, Hawthorne L; St Clair, Colleen Cassady
2011-04-01
The persistence of forest-dependent species in fragmented landscapes is fundamentally linked to the movement of individuals among subpopulations. The paths taken by dispersing individuals can be considered a series of steps built from individual route choices. Despite the importance of these fine-scale movement decisions, it has proved difficult to collect such data that reveal how forest birds move in novel landscapes. We collected unprecedented route information about the movement of translocated forest birds from two species in the highly fragmented tropical dry forest of Costa Rica. In this pasture-dominated landscape, forest remains in patches or riparian corridors, with lesser amounts of living fencerows and individual trees or "stepping stones." We used step selection functions to quantify how route choice was influenced by these habitat elements. We found that the amount of risk these birds were willing to take by crossing open habitat was context dependent. The forest-specialist Barred Antshrike (Thamnophilus doliatus) exhibited stronger selection for forested routes when moving in novel landscapes distant from its territory relative to locations closer to its territory. It also selected forested routes when its step originated in forest habitat. It preferred steps ending in stepping stones when the available routes had little forest cover, but avoided them when routes had greater forest cover. The forest-generalist Rufous-naped Wren (Campylorhynchus rufinucha) preferred steps that contained more pasture, but only when starting from non-forest habitats. Our results showed that forested corridors (i.e., riparian corridors) best facilitated the movement of a sensitive forest specialist through this fragmented landscape. They also suggested that stepping stones can be important in highly fragmented forests with little remaining forest cover. We expect that naturally dispersing birds and species with greater forest dependence would exhibit even stronger selection for forested routes than did the birds in our experiments.
Presaddle and postsaddle dissipative effects in fission using complete kinematics measurements
NASA Astrophysics Data System (ADS)
Rodríguez-Sánchez, J. L.; Benlliure, J.; Taïeb, J.; Alvarez-Pol, H.; Audouin, L.; Ayyad, Y.; Bélier, G.; Boutoux, G.; Casarejos, E.; Chatillon, A.; Cortina-Gil, D.; Gorbinet, T.; Heinz, A.; Kelić-Heil, A.; Laurent, B.; Martin, J.-F.; Paradela, C.; Pellereau, E.; Pietras, B.; Ramos, D.; Rodríguez-Tajes, C.; Rossi, D. M.; Simon, H.; Vargas, J.; Voss, B.
2016-12-01
A complete kinematics measurement of the two fission fragments was used for the first time to investigate fission dynamics at small and large deformations. Fissioning systems with high excitation energies, compact shapes, and low angular momenta were produced in inverse kinematics by using spallation reactions of lead projectiles. A new generation experimental setup allowed for the first full and unambiguous identification in mass and atomic number of both fission fragments. This measurement permitted us to accurately determine fission cross sections, the charge distribution, and the neutron excess of the fission fragments as a function of the atomic number of the fissioning system. These data are compared with different model calculations to extract information on the value of the dissipation parameter at small and large deformations. The present results do not show any sizable dependence of the nuclear dissipation parameter on temperature or deformation.
Kikuchi, Keiji; Kozuka-Hata, Hiroko; Oyama, Masaaki; Seiki, Motoharu; Koshikawa, Naohiko
2018-01-01
Proteolytic cleavage of membrane proteins can alter their functions depending on the cleavage sites. We recently demonstrated that membrane type 1 matrix metalloproteinase (MT1-MMP ) converts the tumor suppressor EphA2 into an oncogenic signal transducer through EphA2 cleavage. The cleaved EphA2 fragment that remains at the cell surface may be a better target for cancer therapy than intact EphA2. To analyze the cleavage site(s) of EphA2, we purified the fragments from tumor cells expressing MT1-MMP and Myc- and 6× His-tagged EphA2 by two-step affinity purification . The purified fragment was digested with trypsin to generate proteolytic peptides , and the amino acid sequences of these peptides were determined by nano-LC-mass spectrometry to identify the MT1-MMP-mediated cleavage site(s) of EphA2.
Farias, Ariel A; Jaksic, Fabian M
2011-07-01
1. Changes in land use and habitat fragmentation are major drivers of global change, and studying their effects on biodiversity constitutes a major research programme. However, biodiversity is a multifaceted concept, with a functional component linking species richness to ecosystem function. Currently, the interaction between functional and taxonomic components of biodiversity under realistic scenarios of habitat degradation is poorly understood. 2. The expected functional richness (FR)-species richness relationship (FRSR) is positive, and attenuated for functional redundancy in species-rich assemblages. Further, environmental filters are expected to flatten that association by sorting species with similar traits. Thus, analysing FRSR can inform about the response of biodiversity to environmental gradients and habitat fragmentation, and its expected functional consequences. 3. Top predators affect ecosystem functioning through prey consumption and are particularly vulnerable to changes in land use and habitat fragmentation, being good indicators of ecosystem health and suitable models for assessing the effects of habitat fragmentation on their FR. 4. Thus, this study analyses the functional redundancy of a vertebrate predator assemblage at temperate forest fragments in a rural landscape of Chiloe island (Chile), testing the existence of environmental filters by contrasting an empirically derived FRSR against those predicted from null models, and testing the association between biodiversity components and the structure of forest fragments. 5. Overall, contrasts against null models indicate that regional factors determine low levels of FR and redundancy for the vertebrate predator assemblage studied, while recorded linear FRSR indicates proportional responses of the two biodiversity components to the structure of forest fragments. Further, most species were positively associated with either fragment size or shape complexity, which are highly correlated. This, and the absence of ecological filters at the single-fragment scale, rendered taxonomically and functionally richer predator assemblages at large complex-shaped fragments. 6. These results predict strong effects of deforestation on both components of biodiversity, potentially affecting the functioning of remnants of native temperate forest ecosystems. Thus, the present study assesses general responses of functional and taxonomic components of biodiversity to a specific human-driven process. © 2011 The Authors. Journal of Animal Ecology © 2011 British Ecological Society.
Brand, A P; Greenwood, S L; Glazier, J D; Bennett, E J; Godfrey, K M; Sibley, C P; Hanson, M A; Lewis, R M
2010-05-01
Both syncytiotrophoblast microvillous plasma membrane vesicles (MVM) and placental villous fragments are used to characterize the placental uptake of maternal substrate and to investigate changes in uptake associated with pathological conditions. However, the two techniques have not been directly compared. In this study uptake of (14)C-L-serine was compared in placental villous fragments and in MVM prepared from the same placentas. (14)C-L-serine uptake into MVM vesicles was mediated by System L and System A and smaller unidentified Na(+)-dependent and Na(+)-independent components. In villous fragments an unidentified Na(+)-dependent component mediated the majority of (14)C-L-serine uptake followed by System A and System L. The unidentified Na(+)-independent component of L-serine uptake was not detected in villous fragments. The ratio of System A activity to System L activity was similar in villous fragments and MVM vesicles. However, the unidentified Na(+)-dependent component in villous fragments was significantly higher than that in MVM vesicles. This indicates that the main differences in serine uptake mechanisms identified using the two techniques were not due to differences in System A and System L activity but to differences in the unidentified Na(+)-dependent component. This study suggests that uptake of L-serine into MVM vesicles and villous fragments via Systems A and L is comparable, but that this is not true for all components of L-serine uptake. (c) 2010 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Shevchenko, O. Yu.
2013-06-01
The formulas directly connecting parton distribution functions and fragmentation functions at the next-to-leading-order QCD with the same quantities at the leading order are derived. These formulas are universal, i.e., have the same form for all kinds of parton distribution functions and fragmentation functions, differing only in the respective splitting functions entering there.
Proteome-wide covalent ligand discovery in native biological systems
Backus, Keriann M.; Correia, Bruno E.; Lum, Kenneth M.; Forli, Stefano; Horning, Benjamin D.; González-Páez, Gonzalo E.; Chatterjee, Sandip; Lanning, Bryan R.; Teijaro, John R.; Olson, Arthur J.; Wolan, Dennis W.; Cravatt, Benjamin F.
2016-01-01
Small molecules are powerful tools for investigating protein function and can serve as leads for new therapeutics. Most human proteins, however, lack small-molecule ligands, and entire protein classes are considered “undruggable” 1,2. Fragment-based ligand discovery (FBLD) can identify small-molecule probes for proteins that have proven difficult to target using high-throughput screening of complex compound libraries 1,3. Although reversibly binding ligands are commonly pursued, covalent fragments provide an alternative route to small-molecule probes 4–10, including those that can access regions of proteins that are difficult to access through binding affinity alone 5,10,11. In this manuscript, we report a quantitative analysis of cysteine-reactive small-molecule fragments screened against thousands of proteins. Covalent ligands were identified for >700 cysteines found in both druggable proteins and proteins deficient in chemical probes, including transcription factors, adaptor/scaffolding proteins, and uncharacterized proteins. Among the atypical ligand-protein interactions discovered were compounds that react preferentially with pro- (inactive) caspases. We used these ligands to distinguish extrinsic apoptosis pathways in human cell lines versus primary human T-cells, showing that the former is largely mediated by caspase-8 while the latter depends on both caspase-8 and −10. Fragment-based covalent ligand discovery provides a greatly expanded portrait of the ligandable proteome and furnishes compounds that can illuminate protein functions in native biological systems. PMID:27309814
Muscholl-Silberhorn, Albrecht B.
2000-01-01
Conjugative transfer of Enterococcus faecalis-specific sex pheromone plasmids relies on an adhesin, called aggregation substance, to confer a tight cell-to-cell contact between the mating partners. To analyze the dependence of pAD1-encoded aggregation substance, Asa1, on pheromone induction, a variety of upstream fragments were fused to an α-amylase reporter gene, amyL, by use of a novel promoter probe vector, pAMY-em1. For pheromone-regulated α-amylase activity, a total of at least six genes, traB, traC, traA, traE1, orfY, and orf1, are required: TraB efficiently represses asa1 (by a mechanism unrelated to its presumptive function in pheromone shutdown, since a complete shutdown is observed exclusively in the presence of traC); only traC can relieve traB-mediated repression in a pheromone-dependent manner. In addition to traB, traA is required but not sufficient for negative control. Mutational inactivation of traE1, orfY, or orf1, respectively, results in a total loss of α-amylase activity for constructs normally mediating constitutive expression. Inversion of a fragment covering traA, P0, and traE1 without disrupting any gene or control element switches off amyL or asa1 expression, indicating the involvement of a cis-acting, orientation-dependent factor (as had been shown for plasmid pCF10). Unexpectedly, pAD1 represses all pAMY-em1 derivatives in trans, while its own pheromone-dependent functions are unaffected. The discrepancy between the new data and those of former studies defining TraE1 as a trans-acting positive regulator is discussed. PMID:10850999
Poltev, V I; Anisimov, V M; Sanchez, C; Deriabina, A; Gonzalez, E; Garcia, D; Rivas, F; Polteva, N A
2016-01-01
It is generally accepted that the important characteristic features of the Watson-Crick duplex originate from the molecular structure of its subunits. However, it still remains to elucidate what properties of each subunit are responsible for the significant characteristic features of the DNA structure. The computations of desoxydinucleoside monophosphates complexes with Na-ions using density functional theory revealed a pivotal role of DNA conformational properties of single-chain minimal fragments in the development of unique features of the Watson-Crick duplex. We found that directionality of the sugar-phosphate backbone and the preferable ranges of its torsion angles, combined with the difference between purines and pyrimidines. in ring bases, define the dependence of three-dimensional structure of the Watson-Crick duplex on nucleotide base sequence. In this work, we extended these density functional theory computations to the minimal' fragments of DNA duplex, complementary desoxydinucleoside monophosphates complexes with Na-ions. Using several computational methods and various functionals, we performed a search for energy minima of BI-conformation for complementary desoxydinucleoside monophosphates complexes with different nucleoside sequences. Two sequences are optimized using ab initio method at the MP2/6-31++G** level of theory. The analysis of torsion angles, sugar ring puckering and mutual base positions of optimized structures demonstrates that the conformational characteristic features of complementary desoxydinucleoside monophosphates complexes with Na-ions remain within BI ranges and become closer to the corresponding characteristic features of the Watson-Crick duplex crystals. Qualitatively, the main characteristic features of each studied complementary desoxydinucleoside monophosphates complex remain invariant when different computational methods are used, although the quantitative values of some conformational parameters could vary lying within the limits typical for the corresponding family. We observe that popular functionals in density functional theory calculations lead to the overestimated distances between base pairs, while MP2 computations and the newer complex functionals produce the structures that have too close atom-atom contacts. A detailed study of some complementary desoxydinucleoside monophosphate complexes with Na-ions highlights the existence of several energy minima corresponding to BI-conformations, in other words, the complexity of the relief pattern of the potential energy surface of complementary desoxydinucleoside monophosphate complexes. This accounts for variability of conformational parameters of duplex fragments with the same base sequence. Popular molecular mechanics force fields AMBER and CHARMM reproduce most of the conformational characteristics of desoxydinucleoside monophosphates and their complementary complexes with Na-ions but fail to reproduce some details of the dependence of the Watson-Crick duplex conformation on the nucleotide sequence.
Ma, Cui; Beyer, Andreas M; Durand, Matthew; Clough, Anne V; Zhu, Daling; Norwood Toro, Laura; Terashvili, Maia; Ebben, Johnathan D; Hill, R Blake; Audi, Said H; Medhora, Meetha; Jacobs, Elizabeth R
2018-03-01
We explored mechanisms that alter mitochondrial structure and function in pulmonary endothelial cells (PEC) function after hyperoxia. Mitochondrial structures of PECs exposed to hyperoxia or normoxia were visualized and mitochondrial fragmentation quantified. Expression of pro-fission or fusion proteins or autophagy-related proteins were assessed by Western blot. Mitochondrial oxidative state was determined using mito-roGFP. Tetramethylrhodamine methyl ester estimated mitochondrial polarization in treatment groups. The role of mitochondrially derived reactive oxygen species in mt-fragmentation was investigated with mito-TEMPOL and mitochondrial DNA (mtDNA) damage studied by using ENDO III (mt-tat-endonuclease III), a protein that repairs mDNA damage. Drp-1 (dynamin-related protein 1) was overexpressed or silenced to test the role of this protein in cell survival or transwell resistance. Hyperoxia increased fragmentation of PEC mitochondria in a time-dependent manner through 48 hours of exposure. Hyperoxic PECs exhibited increased phosphorylation of Drp-1 (serine 616), decreases in Mfn1 (mitofusion protein 1), but increases in OPA-1 (optic atrophy 1). Pro-autophagy proteins p62 (LC3 adapter-binding protein SQSTM1/p62), PINK-1 (PTEN-induced putative kinase 1), and LC3B (microtubule-associated protein 1A/1B-light chain 3) were increased. Returning cells to normoxia for 24 hours reversed the increased mt-fragmentation and changes in expression of pro-fission proteins. Hyperoxia-induced changes in mitochondrial structure or cell survival were mitigated by antioxidants mito-TEMPOL, Drp-1 silencing, or inhibition or protection by the mitochondrial endonuclease ENDO III. Hyperoxia induced oxidation and mitochondrial depolarization and impaired transwell resistance. Decrease in resistance was mitigated by mito-TEMPOL or ENDO III and reproduced by overexpression of Drp-1. Because hyperoxia evoked mt-fragmentation, cell survival and transwell resistance are prevented by ENDO III and mito-TEMPOL and Drp-1 silencing, and these data link hyperoxia-induced mt-DNA damage, Drp-1 expression, mt-fragmentation, and PEC dysfunction. © 2018 American Heart Association, Inc.
NASA Astrophysics Data System (ADS)
Abramov, B. M.; Alekseev, P. N.; Borodin, Yu. A.; Bulychjov, S. A.; Dukhovskoy, I. A.; Krutenkova, A. P.; Kulikov, V. V.; Martemyanov, M. A.; Matsyuk, M. A.; Turdakina, E. N.; Khanov, A. I.
2013-06-01
The proton yields at an angle of 3.5° have been measured in the FRAGM experiment on the fragmentation of carbon ions with the energies T 0 = 0.6, 0.95, and 2.0 GeV/nucleon on a beryllium target at the heavy-ion accelerator complex TWAC (terawatt accumulator, Institute for Theoretical and Experimental Physics). The data are represented in the form of the dependences of the invariant cross section for proton yield on the cumulative variable x in the range of 0.9 < x < 2.4. This invariant cross section varies within six orders of magnitude. The proton spectra have been analyzed within the theoretical approach of the fragmentation of quark clusters with the fragmentation functions obtained in the quark-gluon string model. The probabilities of the existence of six- and nine-quark clusters in the carbon nuclei are estimated as 8-12 and 0.2-0.6%, respectively. The results are compared to the estimated of quark effects obtained by other methods.
Calmodulin Bound to the First IQ Motif Is Responsible for Calcium-dependent Regulation of Myosin 5a*
Lu, Zekuan; Shen, Mei; Cao, Yang; Zhang, Hai-Man; Yao, Lin-Lin; Li, Xiang-dong
2012-01-01
Myosin 5a is as yet the best-characterized unconventional myosin motor involved in transport of organelles along actin filaments. It is well-established that myosin 5a is regulated by its tail in a Ca2+-dependent manner. The fact that the actin-activated ATPase activity of myosin 5a is stimulated by micromolar concentrations of Ca2+ and that calmodulin (CaM) binds to IQ motifs of the myosin 5a heavy chain indicates that Ca2+ regulates myosin 5a function via bound CaM. However, it is not known which IQ motif and bound CaM are responsible for the Ca2+-dependent regulation and how the head-tail interaction is affected by Ca2+. Here, we found that the CaM in the first IQ motif (IQ1) is responsible for Ca2+ regulation of myosin 5a. In addition, we demonstrate that the C-lobe fragment of CaM in IQ1 is necessary for mediating Ca2+ regulation of myosin 5a, suggesting that the C-lobe fragment of CaM in IQ1 participates in the interaction between the head and the tail. We propose that Ca2+ induces a conformational change of the C-lobe of CaM in IQ1 and prevents interaction between the head and the tail, thus activating motor function. PMID:22437832
Aguilar, Ramiro; Ashworth, Lorena; Galetto, Leonardo; Aizen, Marcelo Adrián
2006-08-01
The loss and fragmentation of natural habitats by human activities are pervasive phenomena in terrestrial ecosystems across the Earth and the main driving forces behind current biodiversity loss. Animal-mediated pollination is a key process for the sexual reproduction of most extant flowering plants, and the one most consistently studied in the context of habitat fragmentation. By means of a meta-analysis we quantitatively reviewed the results from independent fragmentation studies throughout the last two decades, with the aim of testing whether pollination and reproduction of plant species may be differentially susceptible to habitat fragmentation depending on certain reproductive traits that typify the relationship with and the degree of dependence on their pollinators. We found an overall large and negative effect of fragmentation on pollination and on plant reproduction. The compatibility system of plants, which reflects the degree of dependence on pollinator mutualism, was the only reproductive trait that explained the differences among the species' effect sizes. Furthermore, a highly significant correlation between the effect sizes of fragmentation on pollination and reproductive success suggests that the most proximate cause of reproductive impairment in fragmented habitats may be pollination limitation. We discuss the conservation implications of these findings and give some suggestions for future research into this area.
Casalderrey-Solana, Jorge; Gulhan, Doga Can; Milhano, José Guilherme; ...
2016-03-09
We have previously introduced a hybrid strong/weak coupling model for jet quenching in heavy ion collisions in which we describe the production and fragmentation of jets at weak coupling, using Pythia, and describe the rate at which each parton in the jet shower loses energy as it propagates through the strongly coupled plasma, dE/dx, using an expression computed holographically at strong coupling. The model has a single free parameter that we fit to a single experimental measurement. We then confront our model with experimental data on many other jet observables, focusing in this paper on boson-jet observables, finding that itmore » provides a good description of present jet data. Next, we provide the predictions of our hybrid model for many measurements to come, including those for inclusive jet, dijet, photon-jet and Z-jet observables in heavy ion collisions with energy √s = 5 : 02 ATeV coming soon at the LHC. As the statistical uncertainties on near-future measurements of photon-jet observables are expected to be much smaller than those in present data, with about an order of magnitude more photon-jet events expected, predictions for these observables are particularly important. We find that most of our pre- and post-dictions do not depend sensitively on the form we choose for the rate of energy loss dE/dx of the partons in the shower. This gives our predictions considerable robustness. To better discriminate between possible forms for the rate of energy loss, though, we must turn to intrajet observables. Here, we focus on ratios of fragmentation functions. Finally, we close with a suggestion for a particular ratio, between the fragmentation functions of inclusive and associated jets with the same kinematics in the same collisions, which is particularly sensitive to the x- and E-dependence of dE/dx, and hence may be used to learn which mechanism of parton energy loss best describes the quenching of jets.« less
Electronic effects on melting: Comparison of aluminum cluster anions and cations
NASA Astrophysics Data System (ADS)
Starace, Anne K.; Neal, Colleen M.; Cao, Baopeng; Jarrold, Martin F.; Aguado, Andrés; López, José M.
2009-07-01
Heat capacities have been measured as a function of temperature for aluminum cluster anions with 35-70 atoms. Melting temperatures and latent heats are determined from peaks in the heat capacities; cohesive energies are obtained for solid clusters from the latent heats and dissociation energies determined for liquid clusters. The melting temperatures, latent heats, and cohesive energies for the aluminum cluster anions are compared to previous measurements for the corresponding cations. Density functional theory calculations have been performed to identify the global minimum energy geometries for the cluster anions. The lowest energy geometries fall into four main families: distorted decahedral fragments, fcc fragments, fcc fragments with stacking faults, and "disordered" roughly spherical structures. The comparison of the cohesive energies for the lowest energy geometries with the measured values allows us to interpret the size variation in the latent heats. Both geometric and electronic shell closings contribute to the variations in the cohesive energies (and latent heats), but structural changes appear to be mainly responsible for the large variations in the melting temperatures with cluster size. The significant charge dependence of the latent heats found for some cluster sizes indicates that the electronic structure can change substantially when the cluster melts.
Carneiro, Magda Silva; Campos, Caroline Cambraia Furtado; Beijo, Luiz Alberto; Ramos, Flavio Nunes
2016-01-01
Species homogenization or floristic differentiation are two possible consequences of the fragmentation process in plant communities. Despite the few studies, it seems clear that fragments with low forest cover inserted in anthropogenic matrices are more likely to experience floristic homogenization. However, the homogenization process has two other components, genetic and functional, which have not been investigated. The purpose of this study was to verify whether there was homogenization of tree reproductive functions in a fragmented landscape and, if found, to determine how the process was influenced by landscape composition. The study was conducted in eight fragments in southwest Brazil. The study was conducted in eight fragments in southwestern Brazil. In each fragment, all individual trees were sampled that had a diameter at breast height ≥3 cm, in ten plots (0.2 ha) and, classified within 26 reproductive functional types (RFTs). The process of functional homogenization was evaluated using additive partitioning of diversity. Additionally, the effect of landscape composition on functional diversity and on the number of individuals within each RFT was evaluated using a generalized linear mixed model. appeared to be in a process of functional homogenization (dominance of RFTs, alpha diversity lower than expected by chance and and low beta diversity). More than 50% of the RFTs and the functional diversity were affected by the landscape parameters. In general, the percentage of forest cover has a positive effect on RFTs while the percentage of coffee matrix has a negative one. The process of functional homogenization has serious consequences for biodiversity conservation because some functions may disappear that, in the long term, would threaten the fragments. This study contributes to a better understanding of how landscape changes affect the functional diversity, abundance of individuals in RFTs and the process of functional homogenization, as well as how to manage fragmented landscapes.
2016-01-01
Species homogenization or floristic differentiation are two possible consequences of the fragmentation process in plant communities. Despite the few studies, it seems clear that fragments with low forest cover inserted in anthropogenic matrices are more likely to experience floristic homogenization. However, the homogenization process has two other components, genetic and functional, which have not been investigated. The purpose of this study was to verify whether there was homogenization of tree reproductive functions in a fragmented landscape and, if found, to determine how the process was influenced by landscape composition. The study was conducted in eight fragments in southwest Brazil. The study was conducted in eight fragments in southwestern Brazil. In each fragment, all individual trees were sampled that had a diameter at breast height ≥3 cm, in ten plots (0.2 ha) and, classified within 26 reproductive functional types (RFTs). The process of functional homogenization was evaluated using additive partitioning of diversity. Additionally, the effect of landscape composition on functional diversity and on the number of individuals within each RFT was evaluated using a generalized linear mixed model. appeared to be in a process of functional homogenization (dominance of RFTs, alpha diversity lower than expected by chance and and low beta diversity). More than 50% of the RFTs and the functional diversity were affected by the landscape parameters. In general, the percentage of forest cover has a positive effect on RFTs while the percentage of coffee matrix has a negative one. The process of functional homogenization has serious consequences for biodiversity conservation because some functions may disappear that, in the long term, would threaten the fragments. This study contributes to a better understanding of how landscape changes affect the functional diversity, abundance of individuals in RFTs and the process of functional homogenization, as well as how to manage fragmented landscapes. PMID:27760218
Li, Hui; Li, Wei; Li, Shuhua; Ma, Jing
2008-06-12
Molecular fragmentation quantum mechanics (QM) calculations have been combined with molecular mechanics (MM) to construct the fragmentation QM/MM method for simulations of dilute solutions of macromolecules. We adopt the electrostatics embedding QM/MM model, where the low-cost generalized energy-based fragmentation calculations are employed for the QM part. Conformation energy calculations, geometry optimizations, and Born-Oppenheimer molecular dynamics simulations of poly(ethylene oxide), PEO(n) (n = 6-20), and polyethylene, PE(n) ( n = 9-30), in aqueous solution have been performed within the framework of both fragmentation and conventional QM/MM methods. The intermolecular hydrogen bonding and chain configurations obtained from the fragmentation QM/MM simulations are consistent with the conventional QM/MM method. The length dependence of chain conformations and dynamics of PEO and PE oligomers in aqueous solutions is also investigated through the fragmentation QM/MM molecular dynamics simulations.
NASA Astrophysics Data System (ADS)
Krasilenko, Vladimir G.; Lazarev, Alexander A.; Nikitovich, Diana V.
2018-03-01
The biologically-motivated self-learning equivalence-convolutional recurrent-multilayer neural structures (BLM_SL_EC_RMNS) for fragments images clustering and recognition will be discussed. We shall consider these neural structures and their spatial-invariant equivalental models (SIEMs) based on proposed equivalent two-dimensional functions of image similarity and the corresponding matrix-matrix (or tensor) procedures using as basic operations of continuous logic and nonlinear processing. These SIEMs can simply describe the signals processing during the all training and recognition stages and they are suitable for unipolar-coding multilevel signals. The clustering efficiency in such models and their implementation depends on the discriminant properties of neural elements of hidden layers. Therefore, the main models and architecture parameters and characteristics depends on the applied types of non-linear processing and function used for image comparison or for adaptive-equivalent weighing of input patterns. We show that these SL_EC_RMNSs have several advantages, such as the self-study and self-identification of features and signs of the similarity of fragments, ability to clustering and recognize of image fragments with best efficiency and strong mutual correlation. The proposed combined with learning-recognition clustering method of fragments with regard to their structural features is suitable not only for binary, but also color images and combines self-learning and the formation of weight clustered matrix-patterns. Its model is constructed and designed on the basis of recursively continuous logic and nonlinear processing algorithms and to k-average method or method the winner takes all (WTA). The experimental results confirmed that fragments with a large numbers of elements may be clustered. For the first time the possibility of generalization of these models for space invariant case is shown. The experiment for an images of different dimensions (a reference array) and fragments with diferent dimensions for clustering is carried out. The experiments, using the software environment Mathcad showed that the proposed method is universal, has a significant convergence, the small number of iterations is easily, displayed on the matrix structure, and confirmed its prospects. Thus, to understand the mechanisms of self-learning equivalence-convolutional clustering, accompanying her to the competitive processes in neurons, and the neural auto-encoding-decoding and recognition principles with the use of self-learning cluster patterns is very important which used the algorithm and the principles of non-linear processing of two-dimensional spatial functions of images comparison. The experimental results show that such models can be successfully used for auto- and hetero-associative recognition. Also they can be used to explain some mechanisms, known as "the reinforcementinhibition concept". Also we demonstrate a real model experiments, which confirm that the nonlinear processing by equivalent function allow to determine the neuron-winners and customize the weight matrix. At the end of the report, we will show how to use the obtained results and to propose new more efficient hardware architecture of SL_EC_RMNS based on matrix-tensor multipliers. Also we estimate the parameters and performance of such architectures.
Heavy quark energy loss in nuclear medium
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Benr-Wei; Wang, Enke; Wang, Xin-Nian
2003-09-16
Multiple scattering, modified fragmentation functions and radiative energy loss of a heavy quark propagating in a nuclear medium are investigated in perturbative QCD. Because of the quark mass dependence of the gluon formation time, the medium size dependence of heavy quark energy loss is found to change from a linear to a quadratic form when the initial energy and momentum scale are increased relative to the quark mass. The radiative energy loss is also significantly suppressed relative to a light quark due to the suppression of collinear gluon emission by a heavy quark.
Hadron mass corrections in semi-inclusive deep-inelastic scattering
Guerrero Teran, Juan Vicente; Ethier, James J.; Accardi, Alberto; ...
2015-09-24
We found that the spin-dependent cross sections for semi-inclusive lepton-nucleon scattering are derived in the framework of collinear factorization, including the effects of masses of the target and produced hadron at finite Q 2. At leading order the cross sections factorize into products of parton distribution and fragmentation functions evaluated in terms of new, mass-dependent scaling variables. Furthermore, the size of the hadron mass corrections is estimated at kinematics relevant for current and future experiments, and the implications for the extraction of parton distributions from semi-inclusive measurements are discussed.
Prati, Federica; Zuccotto, Fabio; Fletcher, Daniel; Convery, Maire A; Fernandez-Menendez, Raquel; Bates, Robert; Encinas, Lourdes; Zeng, Jingkun; Chung, Chun-Wa; De Dios Anton, Paco; Mendoza-Losana, Alfonso; Mackenzie, Claire; Green, Simon R; Huggett, Margaret; Barros, David; Wyatt, Paul G; Ray, Peter C
2018-04-06
Our findings reported herein provide support for the benefits of including functional group complexity (FGC) within fragments when screening against protein targets such as Mycobacterium tuberculosis InhA. We show that InhA fragment actives with FGC maintained their binding pose during elaboration. Furthermore, weak fragment hits with functional group handles also allowed for facile fragment elaboration to afford novel and potent InhA inhibitors with good ligand efficiency metrics for optimization. © 2018 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA.
HZEFRG1 - SEMIEMPIRICAL NUCLEAR FRAGMENTATION MODEL
NASA Technical Reports Server (NTRS)
Townsend, L. W.
1994-01-01
The high charge and energy (HZE), Semiempirical Nuclear Fragmentation Model, HZEFRG1, was developed to provide a computationally efficient, user-friendly, physics-based program package for generating nuclear fragmentation databases. These databases can then be used in radiation transport applications such as space radiation shielding and dosimetry, cancer therapy with laboratory heavy ion beams, and simulation studies of detector design in nuclear physics experiments. The program provides individual element and isotope production cross sections for the breakup of high energy heavy ions by the combined nuclear and Coulomb fields of the interacting nuclei. The nuclear breakup contributions are estimated using an energy-dependent abrasion-ablation model of heavy ion fragmentation. The abrasion step involves removal of nucleons by direct knockout in the overlap region of the colliding nuclei. The abrasions are treated on a geometric basis and uniform spherical nuclear density distributions are assumed. Actual experimental nuclear radii obtained from tabulations of electron scattering data are incorporated. Nuclear transparency effects are included by using an energy-dependent, impact-parameter-dependent average transmission factor for the projectile and target nuclei, which accounts for the finite mean free path of nucleons in nuclear matter. The ablation step, as implemented by Bowman, Swiatecki, and Tsang (LBL report no. LBL-2908, July 1973), was treated as a single-nucleon emission for every 10 MeV of excitation energy. Fragmentation contributions from electromagnetic dissociation (EMD) processes, arising from the interacting Coulomb fields, are estimated by using the Weiszacker-Williams theory, extended to include electric dipole and electric quadrupole contributions to one-nucleon removal cross sections. HZEFRG1 consists of a main program, seven function subprograms, and thirteen subroutines. Each is fully commented and begins with a brief description of its functionality. The inputs, which are provided interactively by the user in response to on-screen questions, consist of the projectile kinetic energy in units of MeV/nucleon and the masses and charges of the projectile and target nuclei. With proper inputs, HZEFRG1 first calculates the EMD cross sections and then begins the calculations for nuclear fragmentation by searching through a specified number of isotopes for each charge number (Z) from Z=1 (hydrogen) to the charge of the incident fragmenting nucleus (Zp). After completing the nuclear fragmentation cross sections, HZEFRG1 sorts through the results and writes the sorted output to a file in descending order, based on the charge number of the fragmented nucleus. Details of the theory, extensive comparisons of its predictions with available experimental cross section data, and a complete description of the code implementing it are given in the program documentation. HZEFRG1 is written in ANSI FORTRAN 77 to be machine independent. It was originally developed on a DEC VAX series computer, and has been successfully implemented on a DECstation running RISC ULTRIX 4.3, a Sun4 series computer running SunOS 4.1, an HP 9000 series computer running HP-UX 8.0.1, a Cray Y-MP series computer running UNICOS, and IBM PC series computers running MS-DOS 3.3 and higher. HZEFRG1 requires 1Mb of RAM for execution. In addition, a FORTRAN 77 compiler is required to create an executable. A sample output run is included on the distribution medium for numerical comparison. The standard distribution medium for this program is a 3.5 inch 1.44Mb MS-DOS format diskette. Alternate distribution media and formats are available upon request. HZEFRG1 was completed in 1992.
Gillet, Natacha; Berstis, Laura; Wu, Xiaojing; ...
2016-09-09
In this paper, four methods to calculate charge transfer integrals in the context of bridge-mediated electron transfer are tested. These methods are based on density functional theory (DFT). We consider two perturbative Green's function effective Hamiltonian methods (first, at the DFT level of theory, using localized molecular orbitals; second, applying a tight-binding DFT approach, using fragment orbitals) and two constrained DFT implementations with either plane-wave or local basis sets. To assess the performance of the methods for through-bond (TB)-dominated or through-space (TS)-dominated transfer, different sets of molecules are considered. For through-bond electron transfer (ET), several molecules that were originally synthesizedmore » by Paddon-Row and co-workers for the deduction of electronic coupling values from photoemission and electron transmission spectroscopies, are analyzed. The tested methodologies prove to be successful in reproducing experimental data, the exponential distance decay constant and the superbridge effects arising from interference among ET pathways. For through-space ET, dedicated p-stacked systems with heterocyclopentadiene molecules were created and analyzed on the basis of electronic coupling dependence on donor-acceptor distance, structure of the bridge, and ET barrier height. The inexpensive fragment-orbital density functional tight binding (FODFTB) method gives similar results to constrained density functional theory (CDFT) and both reproduce the expected exponential decay of the coupling with donor-acceptor distances and the number of bridging units. Finally, these four approaches appear to give reliable results for both TB and TS ET and present a good alternative to expensive ab initio methodologies for large systems involving long-range charge transfers.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gillet, Natacha; Berstis, Laura; Wu, Xiaojing
In this paper, four methods to calculate charge transfer integrals in the context of bridge-mediated electron transfer are tested. These methods are based on density functional theory (DFT). We consider two perturbative Green's function effective Hamiltonian methods (first, at the DFT level of theory, using localized molecular orbitals; second, applying a tight-binding DFT approach, using fragment orbitals) and two constrained DFT implementations with either plane-wave or local basis sets. To assess the performance of the methods for through-bond (TB)-dominated or through-space (TS)-dominated transfer, different sets of molecules are considered. For through-bond electron transfer (ET), several molecules that were originally synthesizedmore » by Paddon-Row and co-workers for the deduction of electronic coupling values from photoemission and electron transmission spectroscopies, are analyzed. The tested methodologies prove to be successful in reproducing experimental data, the exponential distance decay constant and the superbridge effects arising from interference among ET pathways. For through-space ET, dedicated p-stacked systems with heterocyclopentadiene molecules were created and analyzed on the basis of electronic coupling dependence on donor-acceptor distance, structure of the bridge, and ET barrier height. The inexpensive fragment-orbital density functional tight binding (FODFTB) method gives similar results to constrained density functional theory (CDFT) and both reproduce the expected exponential decay of the coupling with donor-acceptor distances and the number of bridging units. Finally, these four approaches appear to give reliable results for both TB and TS ET and present a good alternative to expensive ab initio methodologies for large systems involving long-range charge transfers.« less
Gillet, Natacha; Berstis, Laura; Wu, Xiaojing; Gajdos, Fruzsina; Heck, Alexander; de la Lande, Aurélien; Blumberger, Jochen; Elstner, Marcus
2016-10-11
In this article, four methods to calculate charge transfer integrals in the context of bridge-mediated electron transfer are tested. These methods are based on density functional theory (DFT). We consider two perturbative Green's function effective Hamiltonian methods (first, at the DFT level of theory, using localized molecular orbitals; second, applying a tight-binding DFT approach, using fragment orbitals) and two constrained DFT implementations with either plane-wave or local basis sets. To assess the performance of the methods for through-bond (TB)-dominated or through-space (TS)-dominated transfer, different sets of molecules are considered. For through-bond electron transfer (ET), several molecules that were originally synthesized by Paddon-Row and co-workers for the deduction of electronic coupling values from photoemission and electron transmission spectroscopies, are analyzed. The tested methodologies prove to be successful in reproducing experimental data, the exponential distance decay constant and the superbridge effects arising from interference among ET pathways. For through-space ET, dedicated π-stacked systems with heterocyclopentadiene molecules were created and analyzed on the basis of electronic coupling dependence on donor-acceptor distance, structure of the bridge, and ET barrier height. The inexpensive fragment-orbital density functional tight binding (FODFTB) method gives similar results to constrained density functional theory (CDFT) and both reproduce the expected exponential decay of the coupling with donor-acceptor distances and the number of bridging units. These four approaches appear to give reliable results for both TB and TS ET and present a good alternative to expensive ab initio methodologies for large systems involving long-range charge transfers.
Girão, Luciana Coe; Lopes, Ariadna Valentina; Tabarelli, Marcelo; Bruna, Emilio M.
2007-01-01
Functional diversity has been postulated to be critical for the maintenance of ecosystem functioning, but the way it can be disrupted by human-related disturbances remains poorly investigated. Here we test the hypothesis that habitat fragmentation changes the relative contribution of tree species within categories of reproductive traits (frequency of traits) and reduces the functional diversity of tree assemblages. The study was carried out in an old and severely fragmented landscape of the Brazilian Atlantic forest. We used published information and field observations to obtain the frequency of tree species and individuals within 50 categories of reproductive traits (distributed in four major classes: pollination systems, floral biology, sexual systems, and reproductive systems) in 10 fragments and 10 tracts of forest interior (control plots). As hypothesized, populations in fragments and control plots differed substantially in the representation of the four major classes of reproductive traits (more than 50% of the categories investigated). The most conspicuous differences were the lack of three pollination systems in fragments-pollination by birds, flies and non-flying mammals-and that fragments had a higher frequency of both species and individuals pollinated by generalist vectors. Hermaphroditic species predominate in both habitats, although their relative abundances were higher in fragments. On the contrary, self-incompatible species were underrepresented in fragments. Moreover, fragments showed lower functional diversity (H' scores) for pollination systems (−30.3%), floral types (−23.6%), and floral sizes (−20.8%) in comparison to control plots. In contrast to the overwhelming effect of fragmentation, patch and landscape metrics such as patch size and forest cover played a minor role on the frequency of traits. Our results suggest that habitat fragmentation promotes a marked shift in the relative abundance of tree reproductive traits and greatly reduces the functional diversity of tree assemblages in fragmented landscapes. PMID:17878943
Neto, Fausto Carnevale; Guaratini, Thais; Costa-Lotufo, Letícia; Colepicolo, Pio; Gates, Paul J; Lopes, Norberto Peporine
2016-07-15
Carotenoids are polyene isoprenoids with an important role in photosynthesis and photoprotection. Their characterization in biological matrices is a crucial subject for biochemical research. In this work we report the full fragmentation of 16 polyenes (carotenes and xanthophylls) by electrospray ionization tandem mass spectrometry (ESI-CID-MS/MS) and nanospray tandem mass spectrometry (nanoESI-CID-MS/MS). Analyses were carried out on a quadrupole time-of-flight (QTOF) mass spectrometer coupled with a nanoESI source and on a Fourier transform ion cyclotron resonance (FTICR) mass spectrometer with an ESI source. The formulae of the product ions were determined by accurate-mass measurements. It is demonstrated that the fragmentation routes observed for the protonated carotenoids derive essentially from charge-remote fragmentations and pericyclic rearrangements, such as electrocyclic and retro-ene eliminations (assisted or not by a sigmatropic hydrogen shift). All mechanisms are dependent on cis-trans isomerization through the formation of several conjugated polyene carbocation intermediates. Some specific ions for the carotenoid epoxides were justified through formation of cyclic oxonium ions. Complete fragmentation pathways of protonated carotenoids by ESI- and nanoESI-CID-MS/MS provided structural information about functional groups, polyene chain and double bonds, and contribute to identification of carotenoids based on MS/MS fragmentation patterns. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.
Guo, Yongzheng; Wang, Zhen; Qin, Xinghua; Xu, Jie; Hou, Zuoxu; Yang, Hongyan; Mao, Xuechao; Xing, Wenjuan; Li, Xiaoliang; Zhang, Xing; Gao, Feng
2018-06-01
Heart failure (HF) is characterized by reduced fatty acid (FA) utilization associated with mitochondrial dysfunction. Recent evidence has shown that enhancing FA utilization may provide cardioprotection against HF. Our aim was to investigate the effects and the underlying mechanisms of cardiac FA utilization on cardiac function in response to pressure overload. Transverse aortic constriction (TAC) was used in C57 mice to establish pressure overload-induced HF. TAC mice fed on a high fat diet (HFD) exhibited increased cardiac FA utilization and improved cardiac function and survival compared with those on control diet. Such cardioprotection could also be provided by cardiac-specific overexpression of CD36. Notably, both HFD and CD36 overexpression attenuated mitochondrial fragmentation and improved mitochondrial function in the failing heart. Pressure overload decreased ATP-dependent metalloprotease (YME1L) expression and induced the proteolytic cleavage of the dynamin-like guanosine triphosphatase OPA1 as a result of suppressed FA utilization. Enhancing FA utilization upregulated YME1L expression and subsequently rebalanced OPA1 processing, resulting in restoration of mitochondrial morphology in the failing heart. In addition, cardiac-specific overexpression of YME1L exerted similar cardioprotective effects against HF to those provided by HFD or CD36 overexpression. These findings demonstrate that enhancing FA utilization ameliorates mitochondrial fragmentation and cardiac dysfunction via rebalancing OPA1 processing in pressure overload-induced HF, suggesting a unique metabolic intervention approach to improving cardiac functions in HF.
Halling, Jens Frey; Ringholm, Stine; Olesen, Jesper; Prats, Clara; Pilegaard, Henriette
2017-10-01
Aging is associated with impaired mitochondrial function, whereas exercise training enhances mitochondrial content and function in part through activation of PGC-1α. Mitochondria form dynamic networks regulated by fission and fusion with profound effects on mitochondrial functions, yet the effects of aging and exercise training on mitochondrial network structure remain unclear. This study examined the effects of aging and exercise training on mitochondrial network structure using confocal microscopy on mitochondria-specific stains in single muscle fibers from PGC-1α KO and WT mice. Hyperfragmentation of mitochondrial networks was observed in aged relative to young animals while exercise training normalized mitochondrial network structure in WT, but not in PGC-1α KO. Mitochondrial fission protein content (FIS1 and DRP1) relative to mitochondrial content was increased with aging in both WT and PGC-1α KO mice, while exercise training lowered mitochondrial fission protein content relative to mitochondrial content only in WT. Mitochondrial fusion protein content (MFN1/2 and OPA1) was unaffected by aging and lifelong exercise training in both PGC-1α KO and WT mice. The present results provide evidence that exercise training rescues aging-induced mitochondrial fragmentation in skeletal muscle by suppressing mitochondrial fission protein expression in a PGC-1α dependent manner. Copyright © 2017 Elsevier Inc. All rights reserved.
Negative Impacts of Human Land Use on Dung Beetle Functional Diversity
Barragán, Felipe; Moreno, Claudia E.; Escobar, Federico; Halffter, Gonzalo; Navarrete, Dario
2011-01-01
The loss of biodiversity caused by human activity is assumed to alter ecosystem functioning. However our understanding of the magnitude of the effect of these changes on functional diversity and their impact on the dynamics of ecological processes is still limited. We analyzed the functional diversity of copro-necrophagous beetles under different conditions of land use in three Mexican biosphere reserves. In Montes Azules pastures, forest fragments and continuous rainforest were analyzed, in Los Tuxtlas rainforest fragments of different sizes were analyzed and in Barranca de Metztitlán two types of xerophile scrub with different degrees of disturbance from grazing were analyzed. We assigned dung beetle species to functional groups based on food relocation, beetle size, daily activity period and food preferences, and as measures of functional diversity we used estimates based on multivariate methods. In Montes Azules functional richness was lower in the pastures than in continuous rainforest and rainforest fragments, but fragments and continuous forest include functionally redundant species. In small rainforest fragments (<5 ha) in Los Tuxtlas, dung beetle functional richness was lower than in large rainforest fragments (>20 ha). Functional evenness and functional dispersion did not vary among habitat types or fragment size in these reserves. In contrast, in Metztitlán, functional richness and functional dispersion were different among the vegetation types, but differences were not related to the degree of disturbance by grazing. More redundant species were found in submontane than in crassicaule scrub. For the first time, a decrease in the functional diversity in communities of copro-necrophagous beetles resulting from changes in land use is documented, the potential implications for ecosystem functioning are discussed and a series of variables that could improve the evaluation of functional diversity for this biological group is proposed. PMID:21448292
Negative impacts of human land use on dung beetle functional diversity.
Barragán, Felipe; Moreno, Claudia E; Escobar, Federico; Halffter, Gonzalo; Navarrete, Dario
2011-03-23
The loss of biodiversity caused by human activity is assumed to alter ecosystem functioning. However our understanding of the magnitude of the effect of these changes on functional diversity and their impact on the dynamics of ecological processes is still limited. We analyzed the functional diversity of copro-necrophagous beetles under different conditions of land use in three Mexican biosphere reserves. In Montes Azules pastures, forest fragments and continuous rainforest were analyzed, in Los Tuxtlas rainforest fragments of different sizes were analyzed and in Barranca de Metztitlán two types of xerophile scrub with different degrees of disturbance from grazing were analyzed. We assigned dung beetle species to functional groups based on food relocation, beetle size, daily activity period and food preferences, and as measures of functional diversity we used estimates based on multivariate methods. In Montes Azules functional richness was lower in the pastures than in continuous rainforest and rainforest fragments, but fragments and continuous forest include functionally redundant species. In small rainforest fragments (<5 ha) in Los Tuxtlas, dung beetle functional richness was lower than in large rainforest fragments (>20 ha). Functional evenness and functional dispersion did not vary among habitat types or fragment size in these reserves. In contrast, in Metztitlán, functional richness and functional dispersion were different among the vegetation types, but differences were not related to the degree of disturbance by grazing. More redundant species were found in submontane than in crassicaule scrub. For the first time, a decrease in the functional diversity in communities of copro-necrophagous beetles resulting from changes in land use is documented, the potential implications for ecosystem functioning are discussed and a series of variables that could improve the evaluation of functional diversity for this biological group is proposed.
Foam Flow Through a 2D Porous Medium: Evolution of the Bubble Size Distribution
NASA Astrophysics Data System (ADS)
Meheust, Y.; Géraud, B.; Cantat, I.; Dollet, B.
2017-12-01
Foams have been used for decades as displacing fluids for EOR and aquifer remediation, and more recently as carriers of chemical amendments for remediation of the vadose zone. Bulk foams are shear-thinning fluids; but for foams with bubbles of order at least the typical pore size of the porous medium, the rheology cannot be described at the continuum scale, as viscous dissipation occurs mostly at the contact between soap films and solid walls. We have investigated the flow of an initially monodisperse foam through a transparent 2D porous medium[1]. The resulting complex flow phenomenology has been characterized quantitatively from optical measurements of the bubble dynamics. In addition to preferential flow path and local flow intermittency, we observe an irreversible evolution of the probability density function (PDF) for bubbles size as bubbles travel along the porous medium. This evolution is due to bubble fragmentation by lamella division, which is by far the dominant mechanism of film creation/destruction. We measure and characterize this evolution of the PDF as a function of the experimental parameters, and model it numerically based on a fragmentation equation, with excellent agreement. The model uses two ingredients obtained from the experimental data, namely the statistics of the bubble fragmentation rate and of the fragment size distributions[2]. It predicts a nearly-universal scaling of all PDFs as a function of the bubble area normalized by the initial mean bubble area. All the PDFs measured in various experiments, with different mean flow velocities, initial bubble sizes and foam qualities, collapse on a master distribution which is only dependent on the geometry of the medium.References:[1] B. Géraud, S. A. Jones, I. Cantat, B. Dollet & Y. Méheust (2016), WRR 52(2), 773-790. [2] B. Géraud, Y. Méheust, I. Cantat & B. Dollet (2017), Lamella division in a foam flowing through a two-dimensional porous medium: A model fragmentation process, PRL 118, 098003.
The Impact of Coffee and Pasture Agriculture on Predatory and Omnivorous Leaf-Litter Ants
Dias, Nivia da Silva; Zanetti, Ronald; Santos, Mônica Silva; Peñaflor, Maria Fernanda Gomes Villalba; Broglio, Sônia Maria Forti; Delabie, Jacques Hubert Charles
2013-01-01
Ants are known to function as reliable biological indicators for habitat impact assessment. They play a wide range of ecological roles depending on their feeding and nesting habits. By clustering ants in guilds, it is possible both to assess how agriculture and forest fragmentation can disturb ant communities and to predict the ecological impacts due to losses of a specific guild. This study aimed at determining the impact of non-shaded coffee and pasture agriculture on predatory and omnivorous guilds of leaf-litter ants of Atlantic Forest fragments in Minas Gerais, Brazil. Both coffee and pasture agriculture influenced leaf-litter ant community, although coffee was more disruptive than pasture. Coffee agriculture not only disturbed the diversity of predatory ants, but also negatively affected the number of predatory and omnivorous ants when compared to forest fragments. In contrast, pasture agriculture only disrupted the abundance of predatory ants. Fragment edges skirting crops were negatively affected in terms of leaf-litter ant abundance, but not diversity. Cluster analysis showed that forest fragments were similar irrespective of the cultivation, but the borders were similar to the crop. The study assessed agriculture impact by surveying ant guilds, and revealed that the predatory guild is more susceptible than omnivorous ants. PMID:23902334
The impact of coffee and pasture agriculture on predatory and omnivorous leaf-litter ants.
Dias, Nivia da Silva; Zanetti, Ronald; Santos, Mônica Silva; Peñaflor, Maria Fernanda Gomes Villalba; Broglio, Sônia Maria Forti; Delabie, Jacques Hubert Charles
2013-01-01
Ants are known to function as reliable biological indicators for habitat impact assessment. They play a wide range of ecological roles depending on their feeding and nesting habits. By clustering ants in guilds, it is possible both to assess how agriculture and forest fragmentation can disturb ant communities and to predict the ecological impacts due to losses of a specific guild. This study aimed at determining the impact of non-shaded coffee and pasture agriculture on predatory and omnivorous guilds of leaf-litter ants of Atlantic Forest fragments in Minas Gerais, Brazil. Both coffee and pasture agriculture influenced leaf-litter ant community, although coffee was more disruptive than pasture. Coffee agriculture not only disturbed the diversity of predatory ants, but also negatively affected the number of predatory and omnivorous ants when compared to forest fragments. In contrast, pasture agriculture only disrupted the abundance of predatory ants. Fragment edges skirting crops were negatively affected in terms of leaf-litter ant abundance, but not diversity. Cluster analysis showed that forest fragments were similar irrespective of the cultivation, but the borders were similar to the crop. The study assessed agriculture impact by surveying ant guilds, and revealed that the predatory guild is more susceptible than omnivorous ants.
NASA Astrophysics Data System (ADS)
Marimuthu, N.; Singh, V.; Inbanathan, S. S. R.
2017-04-01
In this article, we present the results of our investigations on the projectile's lightest fragment (proton) multiplicity and probability distributions with 84Kr36 emulsion collision at around 1 A GeV. The multiplicity and normalized multiplicity of projectile's lightest fragment (proton) are correlated with the compound particles, shower particles, black particles, grey particles; alpha (helium nucleus) fragments and heavily ionizing charged particles. It is found that projectile's lightest fragment (proton) is strongly correlated with compound particles and shower particles rather than other particles and the average multiplicity of projectile's lightest fragment (proton) increases with increasing compound, shower and heavily ionizing charge particles. Normalized projectile's lightest fragment (proton) is strongly correlated with compound particles, shower particles and heavily ionizing charge particles. The multiplicity distribution of the projectile's lightest fragment (proton) emitted in the 84Kr36 + emulsion interaction at around 1 A GeV with different target has been well explained by KNO scaling. The mean multiplicity of projectile's lightest fragments (proton) depends on the mass number of the projectile and does not significantly dependent of the projectile energy. The mean multiplicity of projectile's lightest fragment (proton) increases with increasing the target mass number.
Discovery of potent and selective sirtuin 2 (SIRT2) inhibitors using a fragment-based approach.
Cui, Huaqing; Kamal, Zeeshan; Ai, Teng; Xu, Yanli; More, Swati S; Wilson, Daniel J; Chen, Liqiang
2014-10-23
Sirtuin 2 (SIRT2) is one of the sirtuins, a family of NAD(+)-dependent deacetylases that act on a variety of histone and non-histone substrates. Accumulating biological functions and potential therapeutic applications have drawn interest in the discovery and development of SIRT2 inhibitors. Herein we report our discovery of novel SIRT2 inhibitors using a fragment-based approach. Inspired by the purported close binding proximity of suramin and nicotinamide, we prepared two sets of fragments, namely, the naphthylamide sulfonic acids and the naphthalene-benzamides and -nicotinamides. Biochemical evaluation of these two series provided structure-activity relationship (SAR) information, which led to the design of (5-benzamidonaphthalen-1/2-yloxy)nicotinamide derivatives. Among these inhibitors, one compound exhibited high anti-SIRT2 activity (48 nM) and excellent selectivity for SIRT2 over SIRT1 and SIRT3. In vitro, it also increased the acetylation level of α-tubulin, a well-established SIRT2 substrate, in both concentration- and time-dependent manners. Further kinetic studies revealed that this compound behaves as a competitive inhibitor against the peptide substrate and most likely as a noncompetitive inhibitor against NAD(+). Taken together, these results indicate that we have discovered a potent and selective SIRT2 inhibitor whose novel structure merits further exploration.
Small and large wetland fragments are equally suited breeding sites for a ground-nesting passerine.
Pasinelli, Gilberto; Mayer, Christian; Gouskov, Alexandre; Schiegg, Karin
2008-06-01
Large habitat fragments are generally thought to host more species and to offer more diverse and/or better quality habitats than small fragments. However, the importance of small fragments for population dynamics in general and for reproductive performance in particular is highly controversial. Using an information-theoretic approach, we examined reproductive performance and probability of local recruitment of color-banded reed buntings Emberiza schoeniclus in relation to the size of 18 wetland fragments in northeastern Switzerland over 4 years. We also investigated if reproductive performance and recruitment probability were density-dependent. None of the four measures of reproductive performance (laying date, nest failure probability, fledgling production per territory, fledgling condition) nor recruitment probability were found to be related to wetland fragment size. In terms of fledgling production, however, fragment size interacted with year, indicating that small fragments were better reproductive grounds in some years than large fragments. Reproductive performance and recruitment probability were not density-dependent. Our results suggest that small fragments are equally suited as breeding grounds for the reed bunting as large fragments and should therefore be managed to provide a habitat for this and other specialists occurring in the same habitat. Moreover, large fragments may represent sinks in specific years because a substantial percentage of all breeding pairs in our study area breed in large fragments, and reproductive failure in these fragments due to the regularly occurring floods may have a much stronger impact on regional population dynamics than comparable events in small fragments.
Using hadron-in-jet data in a global analysis of D* fragmentation functions
NASA Astrophysics Data System (ADS)
Anderle, Daniele P.; Kaufmann, Tom; Stratmann, Marco; Ringer, Felix; Vitev, Ivan
2017-08-01
We present a novel global QCD analysis of charged D*-meson fragmentation functions at next-to-leading order accuracy. This is achieved by making use of the available data for single-inclusive D*-meson production in electron-positron annihilation, hadron-hadron collisions, and, for the first time, in-jet fragmentation in proton-proton scattering. It is shown how to include all relevant processes efficiently and without approximations within the Mellin moment technique, specifically for the in-jet fragmentation cross section. The presented technical framework is generic and can be straightforwardly applied to future analyses of fragmentation functions for other hadron species, as soon as more in-jet fragmentation data become available. We choose to work within the zero mass variable flavor number scheme which is applicable for sufficiently high energies and transverse momenta. The obtained optimum set of parton-to-D* fragmentation functions is accompanied by Hessian uncertainty sets which allow one to propagate hadronization uncertainties to other processes of interest.
NASA Astrophysics Data System (ADS)
Chouhan, Lalit Singh; Raina, Avtar K.
2015-10-01
Blasting is a unit operation in Mine-Mill Fragmentation System (MMFS) and plays a vital role in mining cost. One of the goals of MMFS is to achieve optimum fragment size at minimal cost. Blast fragmentation optimization is known to result in better explosive energy utilization. Fragmentation depends on the rock, explosive and blast design variables. If burden, spacing and type of explosive used in a mine are kept constant, the firing sequence of blast-holes plays a vital role in rock fragmentation. To obtain smaller fragmentation size, mining professionals and relevant publications recommend V- or extended V-pattern of firing sequence. In doing so, it is assumed that the in-flight air collision breaks larger rock fragments into smaller ones, thus aiding further fragmentation. There is very little support to the phenomenon of breakage during in-flight collision of fragments during blasting in published literature. In order to assess the breakage of in-flight fragments due to collision, a mathematical simulation was carried over using basic principles of physics. The calculations revealed that the collision breakage is dependent on velocity of fragments, mass of fragments, the strength of the rock and the area of fragments over which collision takes place. For higher strength rocks, the in-flight collision breakage is very difficult to achieve. This leads to the conclusion that the concept demands an in-depth investigation and validation.
Lawrence, James L M; Tong, Mei; Alfulaij, Naghum; Sherrin, Tessi; Contarino, Mark; White, Michael M; Bellinger, Frederick P; Todorovic, Cedomir; Nichols, Robert A
2014-10-22
Soluble β-amyloid has been shown to regulate presynaptic Ca(2+) and synaptic plasticity. In particular, picomolar β-amyloid was found to have an agonist-like action on presynaptic nicotinic receptors and to augment long-term potentiation (LTP) in a manner dependent upon nicotinic receptors. Here, we report that a functional N-terminal domain exists within β-amyloid for its agonist-like activity. This sequence corresponds to a N-terminal fragment generated by the combined action of α- and β-secretases, and resident carboxypeptidase. The N-terminal β-amyloid fragment is present in the brains and CSF of healthy adults as well as in Alzheimer's patients. Unlike full-length β-amyloid, the N-terminal β-amyloid fragment is monomeric and nontoxic. In Ca(2+) imaging studies using a model reconstituted rodent neuroblastoma cell line and isolated mouse nerve terminals, the N-terminal β-amyloid fragment proved to be highly potent and more effective than full-length β-amyloid in its agonist-like action on nicotinic receptors. In addition, the N-terminal β-amyloid fragment augmented theta burst-induced post-tetanic potentiation and LTP in mouse hippocampal slices. The N-terminal fragment also rescued LTP inhibited by elevated levels of full-length β-amyloid. Contextual fear conditioning was also strongly augmented following bilateral injection of N-terminal β-amyloid fragment into the dorsal hippocampi of intact mice. The fragment-induced augmentation of fear conditioning was attenuated by coadministration of nicotinic antagonist. The activity of the N-terminal β-amyloid fragment appears to reside largely in a sequence surrounding a putative metal binding site, YEVHHQ. These findings suggest that the N-terminal β-amyloid fragment may serve as a potent and effective endogenous neuromodulator. Copyright © 2014 the authors 0270-6474/14/3414210-09$15.00/0.
Cao, Benjamin; Chen, Xingqiang; Yamaryo-Botte, Yoshiki; Richardson, Mark B; Martin, Kirstee L; Khairallah, George N; Rupasinghe, Thusita W T; O'Flaherty, Roisin M; O'Hair, Richard A J; Ralton, Julie E; Crellin, Paul K; Coppel, Ross L; McConville, Malcolm J; Williams, Spencer J
2013-03-15
Glucuronosyl diacylglycerides (GlcAGroAc2) are functionally important glycolipids and membrane anchors for cell wall lipoglycans in the Corynebacteria. Here we describe the complete synthesis of distinct acyl-isoforms of GlcAGroAc2 bearing both acylation patterns of (R)-tuberculostearic acid (C19:0) and palmitic acid (C16:0) and their mass spectral characterization. Collision-induced fragmentation mass spectrometry identified characteristic fragment ions that were used to develop "rules" allowing the assignment of the acylation pattern as C19:0 (sn-1), C16:0 (sn-2) in the natural product from Mycobacterium smegmatis, and the structural assignment of related C18:1 (sn-1), C16:0 (sn-2) GlcAGroAc2 glycolipids from M. smegmatis and Corynebacterium glutamicum. A synthetic hydrophobic octyl glucuronoside was used to characterize the GDP-mannose-dependent mannosyltransferase MgtA from C. glutamicum that extends GlcAGroAc2. This enzyme is an Mg(2+)/Mn(2+)-dependent metalloenzyme that undergoes dramatic activation upon reduction with dithiothreitol.
The pressure-induced, lactose-dependent changes in the composition and size of casein micelles.
Wang, Pengjie; Jin, Shaoming; Guo, Huiyuan; Zhao, Liang; Ren, Fazheng
2015-04-15
The effects of lactose on the changes in the composition and size of casein micelles induced by high-pressure treatment and the related mechanism of action were investigated. Dispersions of ultracentrifuged casein micelle pellets with 0-10% (w/v) lactose were subjected to high pressure (400 MPa) at 20 °C for 40 min. The results indicated that the level of non-sedimentable caseins was positively related to the amount of lactose added prior to pressure treatment, and negatively correlated to the size. A mechanism for the pressure-induced, lactose-dependent changes in the casein micelles is proposed. Lactose inhibits the hydrophobic interactions between the micellar fragments during or after pressure release, through the hydrophilic layer formed by their hydrogen bonds around the micellar fragments. In addition, lactose does not favour the association between calcium and the casein aggregates after pressure release. Due to these two functions, lactose inhibited the formation of larger micelles after pressure treatment. Copyright © 2014 Elsevier Ltd. All rights reserved.
Horak, Jakub
2014-06-01
The conservation of traditional fruit orchards might be considered to be a fashion, and many people might find it difficult to accept that these artificial habitats can be significant for overall biodiversity. The main aim of this study was to identify possible roles of traditional fruit orchards for dead wood-dependent (saproxylic) beetles. The study was performed in the Central European landscape in the Czech Republic, which was historically covered by lowland sparse deciduous woodlands. Window traps were used to catch saproxylic beetles in 25 traditional fruit orchards. The species richness, as one of the best indicators of biodiversity, was positively driven by very high canopy openness and the rising proportion of deciduous woodlands in the matrix of the surrounding landscape. Due to the disappearance of natural and semi-natural habitats (i.e., sparse deciduous woodlands) of saproxylic beetles, orchards might complement the functions of suitable habitat fragments as the last biotic islands in the matrix of the cultural Central European landscape.
Gintautas, Vadas; Ham, Michael I.; Kunsberg, Benjamin; Barr, Shawn; Brumby, Steven P.; Rasmussen, Craig; George, John S.; Nemenman, Ilya; Bettencourt, Luís M. A.; Kenyon, Garret T.
2011-01-01
Can lateral connectivity in the primary visual cortex account for the time dependence and intrinsic task difficulty of human contour detection? To answer this question, we created a synthetic image set that prevents sole reliance on either low-level visual features or high-level context for the detection of target objects. Rendered images consist of smoothly varying, globally aligned contour fragments (amoebas) distributed among groups of randomly rotated fragments (clutter). The time course and accuracy of amoeba detection by humans was measured using a two-alternative forced choice protocol with self-reported confidence and variable image presentation time (20-200 ms), followed by an image mask optimized so as to interrupt visual processing. Measured psychometric functions were well fit by sigmoidal functions with exponential time constants of 30-91 ms, depending on amoeba complexity. Key aspects of the psychophysical experiments were accounted for by a computational network model, in which simulated responses across retinotopic arrays of orientation-selective elements were modulated by cortical association fields, represented as multiplicative kernels computed from the differences in pairwise edge statistics between target and distractor images. Comparing the experimental and the computational results suggests that each iteration of the lateral interactions takes at least ms of cortical processing time. Our results provide evidence that cortical association fields between orientation selective elements in early visual areas can account for important temporal and task-dependent aspects of the psychometric curves characterizing human contour perception, with the remaining discrepancies postulated to arise from the influence of higher cortical areas. PMID:21998562
Plue, J; Colas, F; Auffret, A G; Cousins, S A O
2017-03-01
Persistent seed banks are a key plant regeneration strategy, buffering environmental variation to allow population and species persistence. Understanding seed bank functioning within herb layer dynamics is therefore important. However, rather than assessing emergence from the seed bank in herb layer gaps, most studies evaluate the seed bank functioning via a greenhouse census. We hypothesise that greenhouse data may not reflect seed bank-driven emergence in disturbance gaps due to methodological differences. Failure in detecting (specialist) species may then introduce methodological bias into the ecological interpretation of seed bank functions using greenhouse data. The persistent seed bank was surveyed in 40 semi-natural grassland plots across a fragmented landscape, quantifying seedling emergence in both the greenhouse and in disturbance gaps. Given the suspected interpretational bias, we tested whether each census uncovers similar seed bank responses to fragmentation. Seed bank characteristics were similar between censuses. Census type affected seed bank composition, with >25% of species retrieved better by either census type, dependent on functional traits including seed longevity, production and size. Habitat specialists emerged more in disturbance gaps than in the greenhouse, while the opposite was true for ruderal species. Both censuses uncovered fragmentation-induced seed bank patterns. Low surface area sampling, larger depth of sampling and germination conditions cause underrepresentation of the habitat-specialised part of the persistent seed bank flora during greenhouse censuses. Methodological bias introduced in the recorded seed bank data may consequently have significant implications for the ecological interpretation of seed bank community functions based on greenhouse data. © 2016 German Botanical Society and The Royal Botanical Society of the Netherlands.
A theoretical and mass spectrometry study of the fragmentation of mycosporine-like amino acids
NASA Astrophysics Data System (ADS)
Cardozo, Karina H. M.; Vessecchi, Ricardo; Carvalho, Valdemir M.; Pinto, Ernani; Gates, Paul J.; Colepicolo, Pio; Galembeck, Sérgio E.; Lopes, Norberto P.
2008-06-01
In the present study, the mycosporine-like amino acids (MAAs) were isolated from the marine red alga Gracilaria tenuistipitata and analysed by high-resolution accurate-mass sequential mass spectrometry (MSn). In addition to the proposed fragmentation mechanism based on the MSn analysis, it is clearly demonstrated that the elimination of mass 15 is a radical processes taking place at the methoxyl substituent of the double bond. This characteristic loss of a methyl radical was studied by theoretical calculations and the homolytic cleavage of the OC bond is suggested to be dependent on the bond weakening. The protonation site of the MAAs was indicated by analysis of the Fukui functions and the relative Gibbs energies of the several possible protonated forms.
Chromatin Constrains the Initiation and Elongation of DNA Replication.
Devbhandari, Sujan; Jiang, Jieqing; Kumar, Charanya; Whitehouse, Iestyn; Remus, Dirk
2017-01-05
Eukaryotic chromosomal DNA is faithfully replicated in a complex series of cell-cycle-regulated events that are incompletely understood. Here we report the reconstitution of DNA replication free in solution with purified proteins from the budding yeast Saccharomyces cerevisiae. The system recapitulates regulated bidirectional origin activation; synthesis of leading and lagging strands by the three replicative DNA polymerases Pol α, Pol δ, and Pol ε; and canonical maturation of Okazaki fragments into continuous daughter strands. We uncover a dual regulatory role for chromatin during DNA replication: promoting origin dependence and determining Okazaki fragment length by restricting Pol δ progression. This system thus provides a functional platform for the detailed mechanistic analysis of eukaryotic chromosome replication. Copyright © 2017 Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Horn, Paul R., E-mail: prhorn@berkeley.edu; Mao, Yuezhi; Head-Gordon, Martin, E-mail: mhg@cchem.berkeley.edu
In energy decomposition analysis of Kohn-Sham density functional theory calculations, the so-called frozen (or pre-polarization) interaction energy contains contributions from permanent electrostatics, dispersion, and Pauli repulsion. The standard classical approach to separate them suffers from several well-known limitations. We introduce an alternative scheme that employs valid antisymmetric electronic wavefunctions throughout and is based on the identification of individual fragment contributions to the initial supersystem wavefunction as determined by an energetic optimality criterion. The density deformations identified with individual fragments upon formation of the initial supersystem wavefunction are analyzed along with the distance dependence of the new and classical terms formore » test cases that include the neon dimer, ammonia borane, water-Na{sup +}, water-Cl{sup −}, and the naphthalene dimer.« less
Kohl, Beate; Wagner, Carsten A; Huelseweh, Birgit; Busch, Andreas E; Werner, Andreas
1998-01-01
Renal handling of inorganic phosphate (Pi) involves a Na+-Pi cotransport system which is well conserved between vertebrates. The members of this protein family, denoted NaPi-II, share a topology with, it is thought, eight transmembrane domains. The transporter is proposed to be proteolytically cleaved within a large hydrophilic loop in vivo. The consequences of an interrupted backbone were tested by constructing cDNA clones encoding different N- (1-3 and 1-5) and C-terminal (4-8 and 6-8) complementary fragments of NaPi-II from winter flounder. When the cognate fragments were used in combination (1-3 plus 4-8; 1-5 plus 6-8) they comprised the full complement of the putative transporter domains. None of the four individual fragments or the 1-5 plus 6-8 combination when expressed in Xenopus oocytes increased Pi flux. Coexpression of fragments 1-3 plus 4-8 stimulated transport activity identical to that for expressed wild-type NaPi-II with regard to pH dependency and Km for Na+ and Pi binding; however, the maximal transport rate (vmax) was lower. Immunohistochemistry on cryosections confined the functionally active 1-3 plus 4-8 combination to the oocyte membrane. This was not the case for the 1-5 plus 6-8 combination or any of the individual fragments, all of which failed to induce fluorescence. A second immunohistochemical approach using intact oocytes allowed determination of the extracellular regions of the protein. Epitopes within the loop between transmembrane domains 3 and 4 enhanced fluorescence. Neither N- nor C-terminal tags induced fluorescence. PMID:9508800
CMOS active pixel sensors response to low energy light ions
NASA Astrophysics Data System (ADS)
Spiriti, E.; Finck, Ch.; Baudot, J.; Divay, C.; Juliani, D.; Labalme, M.; Rousseau, M.; Salvador, S.; Vanstalle, M.; Agodi, C.; Cuttone, G.; De Napoli, M.; Romano, F.
2017-12-01
Recently CMOS active pixel sensors have been used in Hadrontherapy ions fragmentation cross section measurements. Their main goal is to reconstruct tracks generated by the non interacting primary ions or by the produced fragments. In this framework the sensors, unexpectedly, demonstrated the possibility to obtain also some informations that could contribute to the ion type identification. The present analysis shows a clear dependency in charge and number of pixels per cluster (pixels with a collected amount of charge above a given threshold) with both fragment atomic number Z and energy loss in the sensor. This information, in the FIRST (F ragmentation of I ons R elevant for S pace and T herapy) experiment, has been used in the overall particle identification analysis algorithm. The aim of this paper is to present the data analysis and the obtained results. An empirical model was developed, in this paper, that reproduce the cluster size as function of the deposited energy in the sensor.
Extracellular vesicle-mediated transfer of processed and functional RNY5 RNA
Chakrabortty, Sudipto K.; Prakash, Ashwin; Nechooshtan, Gal; Hearn, Stephen; Gingeras, Thomas R.
2015-01-01
Extracellular vesicles (EVs) have been proposed as a means to promote intercellular communication. We show that when human primary cells are exposed to cancer cell EVs, rapid cell death of the primary cells is observed, while cancer cells treated with primary or cancer cell EVs do not display this response. The active agents that trigger cell death are 29- to 31-nucleotide (nt) or 22- to 23-nt processed fragments of an 83-nt primary transcript of the human RNY5 gene that are highly likely to be formed within the EVs. Primary cells treated with either cancer cell EVs, deproteinized total RNA from either primary or cancer cell EVs, or synthetic versions of 31- and 23-nt fragments trigger rapid cell death in a dose-dependent manner. The transfer of processed RNY5 fragments through EVs may reflect a novel strategy used by cancer cells toward the establishment of a favorable microenvironment for their proliferation and invasion. PMID:26392588
Medici, Emília Patrícia; Desbiez, Arnaud Leonard Jean
2012-12-01
A population viability analysis (PVA) was conducted of the lowland tapir populations in the Atlantic Forest of the Pontal do Paranapanema region, Brazil, including Morro do Diabo State Park (MDSP) and surrounding forest fragments. Results from the model projected that the population of 126 tapirs in MDSP is likely to persist over the next 100 years; however, 200 tapirs would be required to maintain a viable population. Sensitivity analysis showed that sub-adult mortality and adult mortality have the strongest influence on the dynamics of lowland tapir populations. High road-kill has a major impact on the MDSP tapir population and can lead to population extinction. Metapopulation modeling showed that dispersal of tapirs from MDSP to the surrounding fragments can be detrimental to the overall metapopulation, as fragments act as sinks. Nevertheless, the model showed that under certain conditions the maintenance of the metapopulation dynamics might be determinant for the persistence of tapirs in the region, particularly in the smaller fragments. The establishment of corridors connecting MDSP to the forest fragments models resulted in an increase in the stochastic growth rate, making tapirs more resilient to threats and catastrophes, but only if rates of mortality were not increased when using corridors. The PVA showed that the conservation of tapirs in the Pontal region depends on: the effective protection of MDSP; maintenance and, whenever possible, enhancement of the functional connectivity of the landscape, reducing mortality during dispersal and threats in the unprotected forest fragments; and neutralization of all threats affecting tapirs in the smaller forest fragments. © 2012 Wiley Publishing Asia Pty Ltd, ISZS and IOZ/CAS.
Strong and nonlinear effects of fragmentation on ecosystem service provision at multiple scales
NASA Astrophysics Data System (ADS)
Mitchell, Matthew G. E.; Bennett, Elena M.; Gonzalez, Andrew
2015-09-01
Human actions, such as converting natural land cover to agricultural or urban land, result in the loss and fragmentation of natural habitat, with important consequences for the provision of ecosystem services. Such habitat loss is especially important for services that are supplied by fragments of natural land cover and that depend on flows of organisms, matter, or people across the landscape to produce benefits, such as pollination, pest regulation, recreation and cultural services. However, our quantitative knowledge about precisely how different patterns of landscape fragmentation might affect the provision of these types of services is limited. We used a simple, spatially explicit model to evaluate the potential impact of natural land cover loss and fragmentation on the provision of hypothetical ecosystem services. Based on current literature, we assumed that fragments of natural land cover provide ecosystem services to the area surrounding them in a distance-dependent manner such that ecosystem service flow depended on proximity to fragments. We modeled seven different patterns of natural land cover loss across landscapes that varied in the overall level of landscape fragmentation. Our model predicts that natural land cover loss will have strong and unimodal effects on ecosystem service provision, with clear thresholds indicating rapid loss of service provision beyond critical levels of natural land cover loss. It also predicts the presence of a tradeoff between maximizing ecosystem service provision and conserving natural land cover, and a mismatch between ecosystem service provision at landscape versus finer spatial scales. Importantly, the pattern of landscape fragmentation mitigated or intensified these tradeoffs and mismatches. Our model suggests that managing patterns of natural land cover loss and fragmentation could help influence the provision of multiple ecosystem services and manage tradeoffs and synergies between services across different human-dominated landscapes.
Pe'er, Guy; Henle, Klaus; Dislich, Claudia; Frank, Karin
2011-01-01
Landscape connectivity is a key factor determining the viability of populations in fragmented landscapes. Predicting ‘functional connectivity’, namely whether a patch or a landscape functions as connected from the perspective of a focal species, poses various challenges. First, empirical data on the movement behaviour of species is often scarce. Second, animal-landscape interactions are bound to yield complex patterns. Lastly, functional connectivity involves various components that are rarely assessed separately. We introduce the spatially explicit, individual-based model FunCon as means to distinguish between components of functional connectivity and to assess how each of them affects the sensitivity of species and communities to landscape structures. We then present the results of exploratory simulations over six landscapes of different fragmentation levels and across a range of hypothetical bird species that differ in their response to habitat edges. i) Our results demonstrate that estimations of functional connectivity depend not only on the response of species to edges (avoidance versus penetration into the matrix), the movement mode investigated (home range movements versus dispersal), and the way in which the matrix is being crossed (random walk versus gap crossing), but also on the choice of connectivity measure (in this case, the model output examined). ii) We further show a strong effect of the mortality scenario applied, indicating that movement decisions that do not fully match the mortality risks are likely to reduce connectivity and enhance sensitivity to fragmentation. iii) Despite these complexities, some consistent patterns emerged. For instance, the ranking order of landscapes in terms of functional connectivity was mostly consistent across the entire range of hypothetical species, indicating that simple landscape indices can potentially serve as valuable surrogates for functional connectivity. Yet such simplifications must be carefully evaluated in terms of the components of functional connectivity they actually predict. PMID:21829617
Yokokawa, Fumiaki; Nilar, Shahul; Noble, Christian G; Lim, Siew Pheng; Rao, Ranga; Tania, Stefani; Wang, Gang; Lee, Gladys; Hunziker, Jürg; Karuna, Ratna; Manjunatha, Ujjini; Shi, Pei-Yong; Smith, Paul W
2016-04-28
The discovery and optimization of non-nucleoside dengue viral RNA-dependent-RNA polymerase (RdRp) inhibitors are described. An X-ray-based fragment screen of Novartis' fragment collection resulted in the identification of a biphenyl acetic acid fragment 3, which bound in the palm subdomain of RdRp. Subsequent optimization of the fragment hit 3, relying on structure-based design, resulted in a >1000-fold improvement in potency in vitro and acquired antidengue activity against all four serotypes with low micromolar EC50 in cell-based assays. The lead candidate 27 interacts with a novel binding pocket in the palm subdomain of the RdRp and exerts a promising activity against all clinically relevant dengue serotypes.
NASA Technical Reports Server (NTRS)
Greiner, D. E.; Lindstrom, P. J.; Heckman, H. H.; Cork, B.; Bieser, F. S.
1975-01-01
The fragment momentum distributions in the projectile rest frame are, typically, Gaussian shaped, narrow, consistent with isotropy, depend on fragment and projectile, and have no significant correlation with target mass or beam energy. The nuclear temperature is inferred from the momentum distributions of the fragments and is approximately equal to the projectile nuclear binding energy, indicative of small energy transfer between target and fragment.
Velocity distribution of fragments of catastrophic impacts
NASA Technical Reports Server (NTRS)
Takagi, Yasuhiko; Kato, Manabu; Mizutani, Hitoshi
1992-01-01
Three dimensional velocities of fragments produced by laboratory impact experiments were measured for basalts and pyrophyllites. The velocity distribution of fragments obtained shows that the velocity range of the major fragments is rather narrow, at most within a factor of 3 and that no clear dependence of velocity on the fragment mass is observed. The NonDimensional Impact Stress (NDIS) defined by Mizutani et al. (1990) is found to be an appropriate scaling parameter to describe the overall fragment velocity as well as the antipodal velocity.
Quantum mechanical fragment methods based on partitioning atoms or partitioning coordinates.
Wang, Bo; Yang, Ke R; Xu, Xuefei; Isegawa, Miho; Leverentz, Hannah R; Truhlar, Donald G
2014-09-16
Conspectus The development of more efficient and more accurate ways to represent reactive potential energy surfaces is a requirement for extending the simulation of large systems to more complex systems, longer-time dynamical processes, and more complete statistical mechanical sampling. One way to treat large systems is by direct dynamics fragment methods. Another way is by fitting system-specific analytic potential energy functions with methods adapted to large systems. Here we consider both approaches. First we consider three fragment methods that allow a given monomer to appear in more than one fragment. The first two approaches are the electrostatically embedded many-body (EE-MB) expansion and the electrostatically embedded many-body expansion of the correlation energy (EE-MB-CE), which we have shown to yield quite accurate results even when one restricts the calculations to include only electrostatically embedded dimers. The third fragment method is the electrostatically embedded molecular tailoring approach (EE-MTA), which is more flexible than EE-MB and EE-MB-CE. We show that electrostatic embedding greatly improves the accuracy of these approaches compared with the original unembedded approaches. Quantum mechanical fragment methods share with combined quantum mechanical/molecular mechanical (QM/MM) methods the need to treat a quantum mechanical fragment in the presence of the rest of the system, which is especially challenging for those parts of the rest of the system that are close to the boundary of the quantum mechanical fragment. This is a delicate matter even for fragments that are not covalently bonded to the rest of the system, but it becomes even more difficult when the boundary of the quantum mechanical fragment cuts a bond. We have developed a suite of methods for more realistically treating interactions across such boundaries. These methods include redistributing and balancing the external partial atomic charges and the use of tuned fluorine atoms for capping dangling bonds, and we have shown that they can greatly improve the accuracy. Finally we present a new approach that goes beyond QM/MM by combining the convenience of molecular mechanics with the accuracy of fitting a potential function to electronic structure calculations on a specific system. To make the latter practical for systems with a large number of degrees of freedom, we developed a method to interpolate between local internal-coordinate fits to the potential energy. A key issue for the application to large systems is that rather than assigning the atoms or monomers to fragments, we assign the internal coordinates to reaction, secondary, and tertiary sets. Thus, we make a partition in coordinate space rather than atom space. Fits to the local dependence of the potential energy on tertiary coordinates are arrayed along a preselected reaction coordinate at a sequence of geometries called anchor points; the potential energy function is called an anchor points reactive potential. Electrostatically embedded fragment methods and the anchor points reactive potential, because they are based on treating an entire system by quantum mechanical electronic structure methods but are affordable for large and complex systems, have the potential to open new areas for accurate simulations where combined QM/MM methods are inadequate.
First Monte Carlo analysis of fragmentation functions from single-inclusive e + e - annihilation
Sato, Nobuo; Ethier, J. J.; Melnitchouk, W.; ...
2016-12-02
Here, we perform the first iterative Monte Carlo (IMC) analysis of fragmentation functions constrained by all available data from single-inclusive $e^+ e^-$ annihilation into pions and kaons. The IMC method eliminates potential bias in traditional analyses based on single fits introduced by fixing parameters not well contrained by the data, and provides a statistically rigorous determination of uncertainties. Our analysis reveals specific features of fragmentation functions using the new IMC methodology and those obtained from previous analyses, especially for light quarks and for strange quark fragmentation to kaons.
Scaling laws for impact fragmentation of spherical solids.
Timár, G; Kun, F; Carmona, H A; Herrmann, H J
2012-07-01
We investigate the impact fragmentation of spherical solid bodies made of heterogeneous brittle materials by means of a discrete element model. Computer simulations are carried out for four different system sizes varying the impact velocity in a broad range. We perform a finite size scaling analysis to determine the critical exponents of the damage-fragmentation phase transition and deduce scaling relations in terms of radius R and impact velocity v(0). The scaling analysis demonstrates that the exponent of the power law distributed fragment mass does not depend on the impact velocity; the apparent change of the exponent predicted by recent simulations can be attributed to the shifting cutoff and to the existence of unbreakable discrete units. Our calculations reveal that the characteristic time scale of the breakup process has a power law dependence on the impact speed and on the distance from the critical speed in the damaged and fragmented states, respectively. The total amount of damage is found to have a similar behavior, which is substantially different from the logarithmic dependence on the impact velocity observed in two dimensions.
Castillo, Jessica A; Epps, Clinton W; Jeffress, Mackenzie R; Ray, Chris; Rodhouse, Thomas J; Schwalm, Donelle
2016-09-01
Landscape connectivity is essential for maintaining viable populations, particularly for species restricted to fragmented habitats or naturally arrayed in metapopulations and facing rapid climate change. The importance of assessing both structural connectivity (physical distribution of favorable habitat patches) and functional connectivity (how species move among habitat patches) for managing such species is well understood. However, the degree to which functional connectivity for a species varies among landscapes, and the resulting implications for conservation, have rarely been assessed. We used a landscape genetics approach to evaluate resistance to gene flow and, thus, to determine how landscape and climate-related variables influence gene flow for American pikas (Ochotona princeps) in eight federally managed sites in the western United States. We used empirically derived, individual-based landscape resistance models in conjunction with predictive occupancy models to generate patch-based network models describing functional landscape connectivity. Metareplication across landscapes enabled identification of limiting factors for dispersal that would not otherwise have been apparent. Despite the cool microclimates characteristic of pika habitat, south-facing aspects consistently represented higher resistance to movement, supporting the previous hypothesis that exposure to relatively high temperatures may limit dispersal in American pikas. We found that other barriers to dispersal included areas with a high degree of topographic relief, such as cliffs and ravines, as well as streams and distances greater than 1-4 km depending on the site. Using the empirically derived network models of habitat patch connectivity, we identified habitat patches that were likely disproportionately important for maintaining functional connectivity, areas in which habitat appeared fragmented, and locations that could be targeted for management actions to improve functional connectivity. We concluded that climate change, besides influencing patch occupancy as predicted by other studies, may alter landscape resistance for pikas, thereby influencing functional connectivity through multiple pathways simultaneously. Spatial autocorrelation among genotypes varied across study sites and was largest where habitat was most dispersed, suggesting that dispersal distances increased with habitat fragmentation, up to a point. This study demonstrates how landscape features linked to climate can affect functional connectivity for species with naturally fragmented distributions, and reinforces the importance of replicating studies across landscapes. © 2016 by the Ecological Society of America.
Branscheid, Anja; Marchais, Antonin; Schott, Gregory; Lange, Heike; Gagliardi, Dominique; Andersen, Stig Uggerhøj; Voinnet, Olivier; Brodersen, Peter
2015-01-01
Small regulatory RNAs are fundamental in eukaryotic and prokaryotic gene regulation. In plants, an important element of post-transcriptional control is effected by 20–24 nt microRNAs (miRNAs) and short interfering RNAs (siRNAs) bound to the ARGONAUTE1 (AGO1) protein in an RNA induced silencing complex (RISC). AGO1 may cleave target mRNAs with small RNA complementarity, but the fate of the resulting cleavage fragments remains incompletely understood. Here, we show that SKI2, SKI3 and SKI8, subunits of a cytoplasmic cofactor of the RNA exosome, are required for degradation of RISC 5′, but not 3′-cleavage fragments in Arabidopsis. In the absence of SKI2 activity, many miRNA targets produce siRNAs via the RNA-dependent RNA polymerase 6 (RDR6) pathway. These siRNAs are low-abundant, and map close to the cleavage site. In most cases, siRNAs were produced 5′ to the cleavage site, but several examples of 3′-spreading were also identified. These observations suggest that siRNAs do not simply derive from RDR6 action on stable 5′-cleavage fragments and hence that SKI2 has a direct role in limiting secondary siRNA production in addition to its function in mediating degradation of 5′-cleavage fragments. PMID:26464441
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Kok Foong; Patterson, Robert I.A.; Wagner, Wolfgang
2015-12-15
Graphical abstract: -- Highlights: •Problems concerning multi-compartment population balance equations are studied. •A class of fragmentation weight transfer functions is presented. •Three stochastic weighted algorithms are compared against the direct simulation algorithm. •The numerical errors of the stochastic solutions are assessed as a function of fragmentation rate. •The algorithms are applied to a multi-dimensional granulation model. -- Abstract: This paper introduces stochastic weighted particle algorithms for the solution of multi-compartment population balance equations. In particular, it presents a class of fragmentation weight transfer functions which are constructed such that the number of computational particles stays constant during fragmentation events. Themore » weight transfer functions are constructed based on systems of weighted computational particles and each of it leads to a stochastic particle algorithm for the numerical treatment of population balance equations. Besides fragmentation, the algorithms also consider physical processes such as coagulation and the exchange of mass with the surroundings. The numerical properties of the algorithms are compared to the direct simulation algorithm and an existing method for the fragmentation of weighted particles. It is found that the new algorithms show better numerical performance over the two existing methods especially for systems with significant amount of large particles and high fragmentation rates.« less
To what extent does urbanisation affect fragmented grassland functioning?
van der Walt, L; Cilliers, S S; Kellner, K; Du Toit, M J; Tongway, D
2015-03-15
Urbanisation creates altered environments characterised by increased human habitation, impermeable surfaces, artificial structures, landscape fragmentation, habitat loss, resulting in different resource loss pathways. The vulnerable Rand Highveld Grassland vegetation unit in the Tlokwe Municipal area, South Africa, has been extensively affected and transformed by urbanisation, agriculture, and mining. Grassland fragments in urban areas are often considered to be less species rich and less functional than in the more untransformed or "natural" exurban environments, and are therefore seldom a priority for conservation. Furthermore, urban grassland fragments are often being more intensely managed than exurban areas, such as consistent mowing in open urban areas. Four urbanisation measures acting as indicators for patterns and processes associated with urban areas were calculated for matrix areas surrounding each selected grassland fragment to quantify the position of each grassland remnant along an urbanisation gradient. The grassland fragments were objectively classified into two classes of urbanisation, namely "exurban" and "urban" based on the urbanisation measure values. Grazing was recorded in some exurban grasslands and mowing in some urban grassland fragments. Unmanaged grassland fragments were present in both urban and exurban areas. Fine-scale biophysical landscape function was determined by executing the Landscape Function Analysis (LFA) method. LFA assesses fine-scale landscape patchiness (entailing resource conserving potential and erosion resistance) and 11 soil surface indicators to produce three main LFA parameters (stability, infiltration, and nutrient cycling), which indicates how well a system is functioning in terms of fine-scale biophysical soil processes and characteristics. The aim of this study was to determine the effects of urbanisation and associated management practices on fine-scale biophysical landscape function of urban and exurban grassland fragments, as well as to determine the potential for the use of LFA in decision-making involving the conservation of grassland fragments. The results indicated that the occurrence, size and characteristics of vegetated patches, and especially the presence of litter abundances, were the main factors determining differences in the LFA indices. Furthermore, mowing resulted in the overall fine-scale biophysical indices being higher for some of the urban grassland fragments. This implied that it is not necessarily the influence of urbanisation entailing high or low resource conserving patchiness and patch quality, but rather the management practices associated with urban and exurban areas. Therefore, from a conservation point of view, the grassland fragments in the City of Potchefstroom are just as conservable (on a biophysical function level involving soil processes) than the more "natural" exurban grassland fragments. Copyright © 2014 Elsevier Ltd. All rights reserved.
Yields of projectile fragments in sulphur-emulsion interactions at 3.7 A GeV
NASA Astrophysics Data System (ADS)
Kamel, S.; Osman, W.; Fayed, M.
2017-05-01
This work presents the basic characteristics of singly, doubly and heavily charged projectile fragments (PFs) emitted in inelastic interactions of 32S ions with photo-emulsion nuclei at Dubna energy (3.7 A GeV). Our experimental data are compared with the corresponding data for other projectiles at the same incident energy. The study of mean multiplicities of different charged PFs against the projectile mass shows a power-law relationship. The multiplicity distributions of singly and doubly charged PFs have been fitted well with a Gaussian distribution function. The yields of PFs broken up from the interactions of 32S projectile nuclei with different target nuclei are studied. The beam energy dependence in terms of the various order moments is studied as well.
A conservation law, entropy principle and quantization of fractal dimensions in hadron interactions
NASA Astrophysics Data System (ADS)
Zborovský, I.
2018-04-01
Fractal self-similarity of hadron interactions demonstrated by the z-scaling of inclusive spectra is studied. The scaling regularity reflects fractal structure of the colliding hadrons (or nuclei) and takes into account general features of fragmentation processes expressed by fractal dimensions. The self-similarity variable z is a function of the momentum fractions x1 and x2 of the colliding objects carried by the interacting hadron constituents and depends on the momentum fractions ya and yb of the scattered and recoil constituents carried by the inclusive particle and its recoil counterpart, respectively. Based on entropy principle, new properties of the z-scaling concept are found. They are conservation of fractal cumulativity in hadron interactions and quantization of fractal dimensions characterizing hadron structure and fragmentation processes at a constituent level.
Route to non-Abelian quantum turbulence in spinor Bose-Einstein condensates
NASA Astrophysics Data System (ADS)
Mawson, Thomas; Ruben, Gary; Simula, Tapio
2015-06-01
We have studied computationally the collision dynamics of spin-2 Bose-Einstein condensates initially confined in a triple-well trap. Depending on the phase structure of the initial-state spinor wave function, the collision of the three condensate fragments produces one of many possible vortex-antivortex lattices, after which the system transitions to quantum turbulence. We find that the emerging vortex lattice structures can be described in terms of multiwave interference. We show that the three-fragment collisions can be used to systematically produce staggered vortex-antivortex honeycomb lattices of fractional-charge vortices, whose collision dynamics are known to be non-Abelian. Such condensate collider experiments could potentially be used as a controllable pathway to generating non-Abelian superfluid turbulence with networks of vortex rungs.
Matias, Miguel G; Arenas, Francisco; Rubal, Marcos; Pinto, Isabel S
2015-01-01
Understanding the consequences of fragmentation of coastal habitats is an important topic of discussion in marine ecology. Research on the effects of fragmentation has revealed complex and context-dependent biotic responses, which prevent generalizations across different habitats or study organisms. The effects of fragmentation in marine environments have been rarely investigated across heterogeneous habitats, since most studies have focused on a single type of habitat or patch. In this study, we assessed the effects of different levels of fragmentation (i.e. decreasing size of patches without overall habitat loss). We measured these effects using assemblages of macro-invertebrates colonizing representative morphological groups of intertidal macroalgae (e.g. encrusting, turf and canopy-forming algae). For this purpose, we constructed artificial assemblages with different combinations of morphological groups and increasing levels of fragmentation by manipulating the amount of bare rock or the spatial arrangement of different species in mixed assemblages. In general, our results showed that 1) fragmentation did not significantly affect the assemblages of macroinvertebrates; 2) at greater levels of fragmentation, there were greater numbers of species in mixed algal assemblages, suggesting that higher habitat complexity promotes species colonization. Our results suggest that predicting the consequences of fragmentation in heterogeneous habitats is dependent on the type and diversity of morphological groups making up those habitats.
Matias, Miguel G.; Arenas, Francisco; Rubal, Marcos; Pinto, Isabel S.
2015-01-01
Understanding the consequences of fragmentation of coastal habitats is an important topic of discussion in marine ecology. Research on the effects of fragmentation has revealed complex and context-dependent biotic responses, which prevent generalizations across different habitats or study organisms. The effects of fragmentation in marine environments have been rarely investigated across heterogeneous habitats, since most studies have focused on a single type of habitat or patch. In this study, we assessed the effects of different levels of fragmentation (i.e. decreasing size of patches without overall habitat loss). We measured these effects using assemblages of macro-invertebrates colonizing representative morphological groups of intertidal macroalgae (e.g. encrusting, turf and canopy-forming algae). For this purpose, we constructed artificial assemblages with different combinations of morphological groups and increasing levels of fragmentation by manipulating the amount of bare rock or the spatial arrangement of different species in mixed assemblages. In general, our results showed that 1) fragmentation did not significantly affect the assemblages of macroinvertebrates; 2) at greater levels of fragmentation, there were greater numbers of species in mixed algal assemblages, suggesting that higher habitat complexity promotes species colonization. Our results suggest that predicting the consequences of fragmentation in heterogeneous habitats is dependent on the type and diversity of morphological groups making up those habitats. PMID:26554924
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pisano, Cristian; Bacchetta, Alessandro; Delcarro, Filippo
We present a first attempt at a global fit of unpolarized quark transverse momentum dependent distribution and fragmentation functions from available data on semi-inclusive deep-inelastic scattering, Drell-Yan and $Z$ boson production processes. This analysis is performed in the low transverse momentum region, at leading order in perturbative QCD and with the inclusion of energy scale evolution effects at the next-to-leading logarithmic accuracy.
NASA Astrophysics Data System (ADS)
Spiridonova, V. A.; Sizov, V. A.; Kuzmenko, E. O.; Melnichuk, A. V.; Oleinichenko, E. A.; Kudzhaev, A. M.; Rotanova, T. V.; Snigirev, O. V.
2017-07-01
The binding to Lon protease through biotinylated aptamers whose structures contain G-quadruplex fragments with magnetic nanoparticles (MNPs) functionalized by streptavidin was investigated. The conditions of binding of target aptamers to MNPs are met. The resulting complexes are proposed for detection of Lon protease in different biological sources and for constructing a novel biomagnetic nanosensor immunoassay system.
Dobes, Petr; Otyepka, Michal; Strnad, Miroslav; Hobza, Pavel
2006-05-24
The interaction between roscovitine and cyclin-dependent kinase 2 (cdk2) was investigated by performing correlated ab initio quantum-chemical calculations. The whole protein was fragmented into smaller systems consisting of one or a few amino acids, and the interaction energies of these fragments with roscovitine were determined by using the MP2 method with the extended aug-cc-pVDZ basis set. For selected complexes, the complete basis set limit MP2 interaction energies, as well as the coupled-cluster corrections with inclusion of single, double and noninteractive triples contributions [CCSD(T)], were also evaluated. The energies of interaction between roscovitine and small fragments and between roscovitine and substantial sections of protein (722 atoms) were also computed by using density-functional tight-binding methods covering dispersion energy (DFTB-D) and the Cornell empirical potential. Total stabilisation energy originates predominantly from dispersion energy and methods that do not account for the dispersion energy cannot, therefore, be recommended for the study of protein-inhibitor interactions. The Cornell empirical potential describes reasonably well the interaction between roscovitine and protein; therefore, this method can be applied in future thermodynamic calculations. A limited number of amino acid residues contribute significantly to the binding of roscovitine and cdk2, whereas a rather large number of amino acids make a negligible contribution.
Schwartz, Naomi B; Uriarte, María; DeFries, Ruth; Bedka, Kristopher M; Fernandes, Katia; Gutiérrez-Vélez, Victor; Pinedo-Vasquez, Miguel A
2017-09-01
Tropical second-growth forests could help mitigate climate change, but the degree to which their carbon potential is achieved will depend on exposure to disturbance. Wind disturbance is common in tropical forests, shaping structure, composition, and function, and influencing successional trajectories. However, little is known about the impacts of extreme winds on second-growth forests in fragmented landscapes, though these ecosystems are often located in mosaics of forest, pasture, cropland, and other land cover types. Indirect evidence suggests that fragmentation increases risk of wind damage in tropical forests, but no studies have found such impacts following severe storms. In this study, we ask whether fragmentation and forest type (old vs. second growth) were associated with variation in wind damage after a severe convective storm in a fragmented production landscape in western Amazonia. We applied linear spectral unmixing to Landsat 8 imagery from before and after the storm, and combined it with field observations of damage to map wind effects on forest structure and biomass. We also used Landsat 8 imagery to map land cover with the goals of identifying old- and second-growth forest and characterizing fragmentation. We used these data to assess variation in wind disturbance across 95,596 ha of forest, distributed over 6,110 patches. We find that fragmentation is significantly associated with wind damage, with damage severity higher at forest edges and in edgier, more isolated patches. Damage was also more severe in old-growth than in second-growth forests, but this effect was weaker than that of fragmentation. These results illustrate the importance of considering landscape context in planning tropical forest restoration and natural regeneration projects. Assessments of long-term carbon sequestration potential need to consider spatial variation in disturbance exposure. Where risk of extreme winds is high, minimizing fragmentation and isolation could increase carbon sequestration potential. © 2017 by the Ecological Society of America.
Neural substrates of perceptual integration during bistable object perception
Flevaris, Anastasia V.; Martínez, Antigona; Hillyard, Steven A.
2013-01-01
The way we perceive an object depends both on feedforward, bottom-up processing of its physical stimulus properties and on top-down factors such as attention, context, expectation, and task relevance. Here we compared neural activity elicited by varying perceptions of the same physical image—a bistable moving image in which perception spontaneously alternates between dissociated fragments and a single, unified object. A time-frequency analysis of EEG changes associated with the perceptual switch from object to fragment and vice versa revealed a greater decrease in alpha (8–12 Hz) accompanying the switch to object percept than to fragment percept. Recordings of event-related potentials elicited by irrelevant probes superimposed on the moving image revealed an enhanced positivity between 184 and 212 ms when the probes were contained within the boundaries of the perceived unitary object. The topography of the positivity (P2) in this latency range elicited by probes during object perception was distinct from the topography elicited by probes during fragment perception, suggesting that the neural processing of probes differed as a function of perceptual state. Two source localization algorithms estimated the neural generator of this object-related difference to lie in the lateral occipital cortex, a region long associated with object perception. These data suggest that perceived objects attract attention, incorporate visual elements occurring within their boundaries into unified object representations, and enhance the visual processing of elements occurring within their boundaries. Importantly, the perceived object in this case emerged as a function of the fluctuating perceptual state of the viewer. PMID:24246467
Gluon fragmentation into quarkonium at next-to-leading order
Artoisenet, Pierre; Braaten, Eric
2015-04-22
Here, we present the first calculation at next-to-leading order (NLO) in α s of a fragmentation function into quarkonium whose form at leading order is a nontrivial function of z, namely the fragmentation function for a gluon into a spin-singlet S-wave state at leading order in the relative velocity. To calculate the real NLO corrections, we introduce a new subtraction scheme that allows the phase-space integrals to be evaluated in 4 dimensions. We extract all ultraviolet and infrared divergences in the real NLO corrections analytically by calculating the phase-space integrals of the subtraction terms in 4 – 2ϵ dimensions. Wemore » also extract the divergences in the virtual NLO corrections analytically, and detail the cancellation of all divergences after renormalization. The NLO corrections have a dramatic effect on the shape of the fragmentation function, and they significantly increase the fragmentation probability.« less
Thermostability promotes the cooperative function of split adenylate kinases.
Nguyen, Peter Q; Liu, Shirley; Thompson, Jeremy C; Silberg, Jonathan J
2008-05-01
Proteins can often be cleaved to create inactive polypeptides that associate into functional complexes through non-covalent interactions, but little is known about what influences the cooperative function of the ensuing protein fragments. Here, we examine whether protein thermostability affects protein fragment complementation by characterizing the function of split adenylate kinases from the mesophile Bacillus subtilis (AKBs) and the hyperthermophile Thermotoga neapolitana (AKTn). Complementation studies revealed that the split AKTn supported the growth of Escherichia coli with a temperature-sensitive AK, but not the fragmented AKBs. However, weak complementation occurred when the AKBs fragments were fused to polypeptides that strongly associate, and this was enhanced by a Q16L mutation that thermostabilizes the full-length protein. To examine how the split AK homologs differ in structure and function, their catalytic activity, zinc content, and circular dichroism spectra were characterized. The reconstituted AKTn had higher levels of zinc, greater secondary structure, and >10(3)-fold more activity than the AKBs pair, albeit 17-fold less active than full-length AKTn. These findings provide evidence that the design of protein fragments that cooperatively function can be improved by choosing proteins with the greatest thermostability for bisection, and they suggest that this arises because hyperthermophilic protein fragments exhibit greater residual structure compared to their mesophilic counterparts.
Lee, Michael L.; Katsuyama, Ângela M.; Duge, Leanne S.; Sriram, Chaitra; Krushelnytskyy, Mykhaylo; Kim, Jeansok J.; de la Iglesia, Horacio O.
2016-01-01
Study Objectives: Sleep is important for consolidation of hippocampus-dependent memories. It is hypothesized that the temporal sequence of nonrapid eye movement (NREM) sleep and rapid eye movement (REM) sleep is critical for the weakening of nonadaptive memories and the subsequent transfer of memories temporarily stored in the hippocampus to more permanent memories in the neocortex. A great body of evidence supporting this hypothesis relies on behavioral, pharmacological, neural, and/or genetic manipulations that induce sleep deprivation or stage-specific sleep deprivation. Methods: We exploit an experimental model of circadian desynchrony in which intact animals are not deprived of any sleep stage but show fragmentation of REM and NREM sleep within nonfragmented sleep bouts. We test the hypothesis that the shortening of NREM and REM sleep durations post-training will impair memory consolidation irrespective of total sleep duration. Results: When circadian-desynchronized animals are trained in a hippocampus-dependent contextual fear-conditioning task they show normal short-term memory but impaired long-term memory consolidation. This impairment in memory consolidation is positively associated with the post-training fragmentation of REM and NREM sleep but is not significantly associated with the fragmentation of total sleep or the total amount of delta activity. We also show that the sleep stage fragmentation resulting from circadian desynchrony has no effect on hippocampus-dependent spatial memory and no effect on hippocampus-independent cued fear-conditioning memory. Conclusions: Our findings in an intact animal model, in which sleep deprivation is not a confounding factor, support the hypothesis that the stereotypic sequence and duration of sleep stages play a specific role in long-term hippocampus-dependent fear memory consolidation. Citation: Lee ML, Katsuyama AM, Duge LS, Sriram C, Krushelnytskyy M, Kim JJ, de la Iglesia HO. Fragmentation of rapid eye movement and nonrapid eye movement sleep without total sleep loss impairs hippocampus-dependent fear memory consolidation. SLEEP 2016;39(11):2021–2031. PMID:27568801
DOE Office of Scientific and Technical Information (OSTI.GOV)
Loebl, N.; Maruhn, J. A.; Reinhard, P.-G.
2011-09-15
By calculating the Wigner distribution function in the reaction plane, we are able to probe the phase-space behavior in the time-dependent Hartree-Fock scheme during a heavy-ion collision in a consistent framework. Various expectation values of operators are calculated by evaluating the corresponding integrals over the Wigner function. In this approach, it is straightforward to define and analyze quantities even locally. We compare the Wigner distribution function with the smoothed Husimi distribution function. Different reaction scenarios are presented by analyzing central and noncentral {sup 16}O +{sup 16}O and {sup 96}Zr +{sup 132}Sn collisions. Although we observe strong dissipation in the timemore » evolution of global observables, there is no evidence for complete equilibration in the local analysis of the Wigner function. Because the initial phase-space volumes of the fragments barely merge and mean values of the observables are conserved in fusion reactions over thousands of fm/c, we conclude that the time-dependent Hartree-Fock method provides a good description of the early stage of a heavy-ion collision but does not provide a mechanism to change the phase-space structure in a dramatic way necessary to obtain complete equilibration.« less
2004-01-01
Activated phagocytes release the haem enzyme MPO (myeloperoxidase) and also generate superoxide radicals (O2•−), and hence H2O2, via an oxidative burst. Reaction of MPO with H2O2 in the presence of chloride ions generates HOCl (the physiological mixture of hypochlorous acid and its anion present at pH 7.4). Exposure of glycosaminoglycans to a MPO–H2O2–Cl− system or reagent HOCl generates long-lived chloramides [R-NCl-C(O)-R′] derived from the glycosamine N-acetyl functions. Decomposition of these species by transition metal ions gives polymer-derived amidyl (nitrogen-centred) radicals [R-N•-C(O)-R′], polymer-derived carbon-centred radicals and site-specific strand scission. In the present study, we have shown that exposure of glycosaminoglycan chloramides to O2•− also promotes chloramide decomposition and glycosaminoglycan fragmentation. These processes are inhibited by superoxide dismutase, metal ion chelators and the metal ion-binding protein BSA, consistent with chloramide decomposition and polymer fragmentation occurring via O2•−-dependent one-electron reduction, possibly catalysed by trace metal ions. Polymer fragmentation induced by O2•− [generated by the superoxide thermal source 1, di-(4-carboxybenzyl)hyponitrite] was demonstrated to be entirely chloramide dependent as no fragmentation occurred with the native polymers or when the chloramides were quenched by prior treatment with methionine. EPR spin-trapping experiments using 5,5-dimethyl1-pyrroline-N-oxide and 2-methyl-2-nitrosopropane have provided evidence for both O2•− and polymer-derived carbon-centred radicals as intermediates. The results obtained are consistent with a mechanism involving one-electron reduction of the chloramides to yield polymer-derived amidyl radicals, which subsequently undergo intramolecular hydrogen atom abstraction reactions to give carbon-centred radicals. The latter undergo fragmentation reactions in a site-specific manner. This synergistic damage to glycosaminoglycans induced by HOCl and O2•− may be of significance at sites of inflammation where both oxidants are generated concurrently. PMID:15078224
NASA Astrophysics Data System (ADS)
Morjean, M.; Hinde, D. J.; Simenel, C.; Jeung, D. Y.; Airiau, M.; Cook, K. J.; Dasgupta, M.; Drouart, A.; Jacquet, D.; Kalkal, S.; Palshetkar, C. S.; Prasad, E.; Rafferty, D.; Simpson, E. C.; Tassan-Got, L.; Vo-Phuoc, K.; Williams, E.
2017-12-01
The atomic numbers and the masses of fragments formed in quasifission reactions are simultaneously measured at scission in 48Ti + 238U reactions at a laboratory energy of 286 MeV. The atomic numbers are determined from measured characteristic fluorescence x rays, whereas the masses are obtained from the emission angles and times of flight of the two emerging fragments. For the first time, thanks to this full identification of the quasifission fragments on a broad angular range, the important role of the proton shell closure at Z =82 is evidenced by the associated maximum production yield, a maximum predicted by time-dependent Hartree-Fock calculations. This new experimental approach gives now access to precise studies of the time dependence of the N /Z (neutron over proton ratios of the fragments) evolution in quasifission reactions.
Observing Femtosecond Fragmentation Using Ultrafast X-ray-Induced Auger Spectra
Wolf, Thomas; Holzmeier, Fabian; Wagner, Isabella; ...
2017-07-01
Molecules often fragment after photoionization in the gas phase. Usually, this process can only be investigated spectroscopically as long as there exists electron correlation between the photofragments. Important parameters, like their kinetic energy after separation, cannot be investigated. We are reporting on a femtosecond time-resolved Auger electron spectroscopy study concerning the photofragmentation dynamics of thymine. We observe the appearance of clearly distinguishable signatures from thymine's neutral photofragment isocyanic acid. Furthermore, we observe a time-dependent shift of its spectrum, which we can attribute to the influence of the charged fragment on the Auger electron. This allows us to map our time-dependentmore » dataset onto the fragmentation coordinate. The time dependence of the shift supports efficient transformation of the excess energy gained from photoionization into kinetic energy of the fragments. Our method is broadly applicable to the investigation of photofragmentation processes.« less
Links between plant and fungal diversity in habitat fragments of coastal shrubland
Maltz, Mia R.; Treseder, Kathleen K.; McGuire, Krista L.
2017-09-19
Habitat fragmentation is widespread across ecosystems, detrimentally affecting biodiversity. Although most habitat fragmentation studies have been conducted on macroscopic organisms, microbial communities and fungal processes may also be threatened by fragmentation. This study investigated whether fragmentation, and the effects of fragmentation on plants, altered fungal diversity and function within a fragmented shrubland in southern California. Using fluorimetric techniques, we assayed enzymes from plant litter collected from fragments of varying sizes to investigate enzymatic responses to fragmentation. To isolate the effects of plant richness from those of fragment size on fungi, we deployed litter bags containing different levels of plant littermore » diversity into the largest fragment and incubated in the field for one year. Following field incubation, we determined litter mass loss and conducted molecular analyses of fungal communities. We found that leaf-litter enzyme activity declined in smaller habitat fragments with less diverse vegetation. Moreover, we detected greater litter mass loss in litter bags containing more diverse plant litter. Additionally, bags with greater plant litter diversity harbored greater numbers of fungal taxa. These findings suggest that both plant litter resources and fungal function may be affected by habitat fragmentation's constraints on plants, possibly because plant species differ chemically, and may thus decompose at different rates. Diverse plant assemblages may produce a greater variety of litter resources and provide more ecological niche space, which may support greater numbers of fungal taxa. Thus, reduced plant diversity may constrain both fungal taxa richness and decomposition in fragmented coastal shrublands. Altogether, our findings provide evidence that even fungi may be affected by human-driven habitat fragmentation via direct effects of fragmentation on plants. Our findings underscore the importance of restoring diverse vegetation communities within larger coastal sage scrub fragments and suggest that this may be an effective way to improve the functional capacity of degraded sites.« less
Links between plant and fungal diversity in habitat fragments of coastal shrubland
DOE Office of Scientific and Technical Information (OSTI.GOV)
Maltz, Mia R.; Treseder, Kathleen K.; McGuire, Krista L.
Habitat fragmentation is widespread across ecosystems, detrimentally affecting biodiversity. Although most habitat fragmentation studies have been conducted on macroscopic organisms, microbial communities and fungal processes may also be threatened by fragmentation. This study investigated whether fragmentation, and the effects of fragmentation on plants, altered fungal diversity and function within a fragmented shrubland in southern California. Using fluorimetric techniques, we assayed enzymes from plant litter collected from fragments of varying sizes to investigate enzymatic responses to fragmentation. To isolate the effects of plant richness from those of fragment size on fungi, we deployed litter bags containing different levels of plant littermore » diversity into the largest fragment and incubated in the field for one year. Following field incubation, we determined litter mass loss and conducted molecular analyses of fungal communities. We found that leaf-litter enzyme activity declined in smaller habitat fragments with less diverse vegetation. Moreover, we detected greater litter mass loss in litter bags containing more diverse plant litter. Additionally, bags with greater plant litter diversity harbored greater numbers of fungal taxa. These findings suggest that both plant litter resources and fungal function may be affected by habitat fragmentation's constraints on plants, possibly because plant species differ chemically, and may thus decompose at different rates. Diverse plant assemblages may produce a greater variety of litter resources and provide more ecological niche space, which may support greater numbers of fungal taxa. Thus, reduced plant diversity may constrain both fungal taxa richness and decomposition in fragmented coastal shrublands. Altogether, our findings provide evidence that even fungi may be affected by human-driven habitat fragmentation via direct effects of fragmentation on plants. Our findings underscore the importance of restoring diverse vegetation communities within larger coastal sage scrub fragments and suggest that this may be an effective way to improve the functional capacity of degraded sites.« less
A determination of the fragmentation functions of u-quarks into charged pions
NASA Astrophysics Data System (ADS)
Aubert, J. J.; Bassompierre, G.; Becks, K. H.; Benchouk, C.; Best, C.; Böhm, E.; De Bouard, X.; Brasse, F. W.; Broll, C.; Brown, S.; Carr, J.; Clifft, R.; Cobb, J. H.; Coignet, G.; Combley, F.; Court, G. R.; D'Agostini, G.; Dau, W. D.; Davies, J. K.; Déclais, Y.; Dosselli, U.; Drees, J.; Edwards, A.; Edwards, M.; Favier, J.; Ferrero, M. I.; Flauger, W.; Forsbach, H.; Gabathuler, E.; Gamet, R.; Gayler, J.; Gerhardt, V.; Gössling, C.; Haas, J.; Hamacher, K.; Hayman, P.; Henckes, M.; Korbel, V.; Korzen, B.; Landgraf, U.; Leenen, M.; Maire, M.; Mohr, W.; Montgomery, H. E.; Moser, K.; Mount, R. P.; Nagy, E.; Nassalski, J.; Norton, P. R.; McNicholas, J.; Osborne, A. M.; Payre, P.; Peroni, C.; Peschel, H.; Pessard, H.; Pietrzyk, U.; Rith, K.; Schneegans, M.; Schneider, A.; Sloan, T.; Stier, H. E.; Stockhausen, W.; Thénard, J. M.; Thompson, J. C.; Urban, L.; Villers, M.; Wahlen, H.; Whalley, M.; Williams, D.; Williams, W. S. C.; Williamson, J.; Wimpenny, S. J.; European Muon Collaboration (EMC)
1985-10-01
The fragmentation functions of u-quarks into positive and negative pions are determined from an analysis of identified pions produced in deep inelastic muon-deuterium scattering. The method adopted is not sensitive to the knowledge of the primary quark distribution functions. The fragmentation of u quarks to positive pions is found to fall less steeply in z than that to negative pions as expected in the quark parton model.
Lirman
2000-08-23
Acropora palmata, a branching coral abundant on shallow reef environments throughout the Caribbean, is susceptible to physical disturbance caused by storms. Accordingly, the survivorship and propagation of this species are tied to its capability to recover after fragmentation. Fragments of A. palmata comprised 40% of ramets within populations that had experienced recent storms. While the survivorship of A. palmata fragments was not directly related to the size of fragments, removal of fragments from areas where they settled was influenced by size. Survivorship of fragments was also affected by type of substratum; the greatest mortality (58% loss within the first month) was observed on sand, whereas fragments placed on top of live colonies of A. palmata fused to the underlying tissue and did not experience any losses. Fragments created by Hurricane Andrew on a Florida reef in August 1992 began developing new growth (proto-branches) 7 months after the storm. The number of proto-branches on fragments was dependent on size, but growth was not affected by the size of fragments. Growth-rates of proto-branches increased exponentially with time (1.7 cm year(-1) for 1993-1994, 2.7 cm year(-1) for 1994-1995, 4.2 cm year(-1) for 1995-1996, and 6.5 cm year(-1) for 1996-1997), taking over 4 years for proto-branches to achieve rates comparable to those of adult colonies on the same reef (6.9 cm year(-1)). In addition to the initial mortality and reduced growth-rates, fragmentation resulted in a loss of reproductive potential. Neither colonies that experienced severe fragmentation nor fragments contained gametes until 4 years after the initial damage. Although A. palmata may survive periodic fragmentation, the long-term effects of this process will depend ultimately on the balance between the benefits and costs of this process.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Apatin, V. M.; Lokhman, V. N.; Makarov, G. N., E-mail: gmakarov@isan.troitsk.ru
The fragmentation of free homogeneous (CF{sub 3}I){sub n} clusters in a molecular beam (n ≤ 45 is the average number of molecules in the cluster) and (CF{sub 3}I){sub n} clusters inside or on the surface of large (Xe){sub m} clusters (m ≥ 100 is the average number of atoms in the cluster) by ultraviolet and infrared laser radiations has been studied. These three types of (CF{sub 3}I){sub n} clusters are shown to have different stabilities with respect to fragmentation by both ultraviolet and infrared radiations and completely different dependences of the fragmentation probability on the energy of ultraviolet and infraredmore » radiations. When exposed to ultraviolet radiation, the free (CF{sub 3}I){sub n} clusters fragment at comparatively low fluences (Φ{sub UV} ≤ 0.15 J cm{sup −2}) and the weakest energy dependence of the fragmentation probability is observed for them. A stronger energy dependence of the fragmentation probability is observed for the (CF{sub 3}I){sub n} clusters localized inside (Xe){sub m} clusters, and the strongest dependence is observed for the (CF{sub 3}I){sub n} clusters located on the surface of (Xe){sub m} clusters. When the clusters are exposed to infrared radiation, the homogeneous (CF{sub 3}I){sub n} clusters efficiently fragment at low fluences (Φ{sub IR} ≤ 25 mJ cm{sup −2}), higher fluences (Φ{sub IR} ≈ 75 mJ cm{sup −2}) are needed for the fragmentation of the (CF{sub 3}I){sub n} localized inside (Xe){sub m} clusters, and even higher fluences (Φ{sub IR} ≈ 150 mJ cm{sup −2}) are needed for the fragmentation of the (CF{sub 3}I){sub n} clusters located on the surface of (Xe){sub m} clusters. It has been established that small (CF{sub 3}I){sub n} clusters located on the surface of (Xe){sub m} clusters do not fragment up to fluences Φ{sub IR} ≈ 250 mJ cm{sup −2}. The fragmentation efficiency of (CF{sub 3}I){sub n} clusters is shown to be the same (at the same fluence) when they are excited by both pulsed (τ{sub p} ≈ 150 ns) and continuous-wave infrared laser radiations. Possible causes of such a pattern of ultraviolet and infrared laser-induced fragmentation of these clusters are discussed.« less
Predation and fragmentation portrayed in the statistical structure of prey time series
Hendrichsen, Ditte K; Topping, Chris J; Forchhammer, Mads C
2009-01-01
Background Statistical autoregressive analyses of direct and delayed density dependence are widespread in ecological research. The models suggest that changes in ecological factors affecting density dependence, like predation and landscape heterogeneity are directly portrayed in the first and second order autoregressive parameters, and the models are therefore used to decipher complex biological patterns. However, independent tests of model predictions are complicated by the inherent variability of natural populations, where differences in landscape structure, climate or species composition prevent controlled repeated analyses. To circumvent this problem, we applied second-order autoregressive time series analyses to data generated by a realistic agent-based computer model. The model simulated life history decisions of individual field voles under controlled variations in predator pressure and landscape fragmentation. Analyses were made on three levels: comparisons between predated and non-predated populations, between populations exposed to different types of predators and between populations experiencing different degrees of habitat fragmentation. Results The results are unambiguous: Changes in landscape fragmentation and the numerical response of predators are clearly portrayed in the statistical time series structure as predicted by the autoregressive model. Populations without predators displayed significantly stronger negative direct density dependence than did those exposed to predators, where direct density dependence was only moderately negative. The effects of predation versus no predation had an even stronger effect on the delayed density dependence of the simulated prey populations. In non-predated prey populations, the coefficients of delayed density dependence were distinctly positive, whereas they were negative in predated populations. Similarly, increasing the degree of fragmentation of optimal habitat available to the prey was accompanied with a shift in the delayed density dependence, from strongly negative to gradually becoming less negative. Conclusion We conclude that statistical second-order autoregressive time series analyses are capable of deciphering interactions within and across trophic levels and their effect on direct and delayed density dependence. PMID:19419539
Does the range of IMF affect rise and fall trend in fragmentation?
NASA Astrophysics Data System (ADS)
Sharma, Sakshi; Kumar, Rohit; Puri, Rajeev K.
2018-05-01
We study the rise and fall behavior in the multiplicity of intermediate mass fragments produced in the asymmetric reactions of 36S+ 198Pt using isospin-dependent quantum molecular dynamics model. We use different definitions of intermediate mass fragments according to various experimental studies. We find that the use of one or the other definition of intermediate mass fragments does not alter results significantly.
Relativistic corrections to heavy quark fragmentation to S-wave heavy mesons
NASA Astrophysics Data System (ADS)
Sang, Wen-Long; Yang, Lan-Fei; Chen, Yu-Qi
2009-07-01
The relativistic corrections of order v2 to the fragmentation functions for the heavy quark to S-wave heavy quarkonia are calculated in the framework of the nonrelativistic quantum chromodynamics factorization formula. We derive the fragmentation functions by using the Collins-Soper definition in both the Feynman gauge and the axial gauge. We also extract them through the process Z0→Hq qmacr in the limit MZ/m→∞. We find that all results obtained by these two different methods and in different gauges are the same. We estimate the relative size of the relativistic corrections to the fragmentation functions.
Relativistic corrections to heavy quark fragmentation to S-wave heavy mesons
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sang Wenlong; Yang Lanfei; Chen Yuqi
The relativistic corrections of order v{sup 2} to the fragmentation functions for the heavy quark to S-wave heavy quarkonia are calculated in the framework of the nonrelativistic quantum chromodynamics factorization formula. We derive the fragmentation functions by using the Collins-Soper definition in both the Feynman gauge and the axial gauge. We also extract them through the process Z{sup 0}{yields}Hqq in the limit M{sub Z}/m{yields}{infinity}. We find that all results obtained by these two different methods and in different gauges are the same. We estimate the relative size of the relativistic corrections to the fragmentation functions.
Fusion of small unilamellar vesicles induced by bovine serum albumin fragments.
Garcia, L A; Schenkman, S; Araujo, P S; Chaimovich, H
1983-07-01
The limited pepsin proteolysis products of bovine serum albumin, fragment A (residues 307-586) and fragment B (residues 1-306), induced the fusion of small unilamellar vesicles of egg phosphatidyl choline at concentrations near 5 microM. Fusion was demonstrated and analyzed on the basis of: a) time-dependent changes in absorbance; b) dilution of the fluorescent label 2-(10-(1-pyrene)decanoyl) phosphatidyl choline, incorporated into a small percentage of the vesicles, as measured by the decrease in the excimer to monomer (E/M) ratio; c) increase of the average hydrodynamic radius of the liposomes, estimated by Sepharose 4B filtration, and d) the strict inverse relationship between the size of the liposomes and their E/M ratios. Albumin fragment B, like albumin, induced the formation of large aggregates in which rapid cooperative fusion produced vesicles having a large hydrodynamic radius. Fragment A did not produce large aggregates and the initial fusion products exhibited a hydrodynamic radius. Fragment A did not produce large aggregates and the initial fusion products exhibited a hydrodynamic radius smaller than those obtained with fragment B. Albumin and fragments A and B are fusogenic only at pH below 4.0. These data discussed in terms of a general model for a signal-dependent protein-induced membrane fusion.
EpCAM and the biology of hepatic stem/progenitor cells
Theise, Neil D.; Schmelzer, Eva; Boulter, Luke; Gires, Olivier; van Grunsven, Leo A.
2014-01-01
Epithelial cell adhesion molecule (EpCAM) is a transmembrane glycoprotein, which is frequently and highly expressed on carcinomas, tumor-initiating cells, selected tissue progenitors, and embryonic and adult stem cells. During liver development, EpCAM demonstrates a dynamic expression, since it can be detected in fetal liver, including cells of the parenchyma, whereas mature hepatocytes are devoid of EpCAM. Liver regeneration is associated with a population of EpCAM-positive cells within ductular reactions, which gradually lose the expression of EpCAM along with maturation into hepatocytes. EpCAM can be switched on and off through a wide panel of strategies to fine-tune EpCAM-dependent functional and differentiative traits. EpCAM-associated functions relate to cell–cell adhesion, proliferation, maintenance of a pluripotent state, regulation of differentiation, migration, and invasion. These functions can be conferred by the full-length protein and/or EpCAM-derived fragments, which are generated upon regulated intramembrane proteolysis. Control by EpCAM therefore not only depends on the presence of full-length EpCAM at cellular membranes but also on varying rates of the formation of EpCAM-derived fragments that have their own regulatory properties and on changes in the association of EpCAM with interaction partners. Thus spatiotemporal localization of EpCAM in immature liver progenitors, transit-amplifying cells, and mature liver cells will decisively impact the regulation of EpCAM functions and might be one of the triggers that contributes to the adaptive processes in stem/progenitor cell lineages. This review will summarize EpCAM-related molecular events and how they relate to hepatobiliary differentiation and regeneration. PMID:25477371
Roemmelt, Andreas T; Steuer, Andrea E; Poetzsch, Michael; Kraemer, Thomas
2014-12-02
Forensic and clinical toxicological screening procedures are employing liquid chromatography-tandem mass spectrometry (LC-MS/MS) techniques with information-dependent acquisition (IDA) approaches more and more often. It is known that the complexity of a sample and the IDA settings might prevent important compounds from being triggered. Therefore, data-independent acquisition (DIA) methods should be more suitable for systematic toxicological analysis (STA). The DIA method sequential window acquisition of all theoretical fragment-ion spectra (SWATH), which uses Q1 windows of 20-35 Da for data-independent fragmentation, was systematically investigated for its suitability for STA. Quality of SWATH-generated mass spectra were evaluated with regard to mass error, relative abundance of the fragments, and library hits. With the Q1 window set to 20-25 Da, several precursors pass Q1 at the same time and are fragmented, thus impairing the library search algorithms to a different extent: forward fit was less affected than reverse fit and purity fit. Mass error was not affected. The relative abundance of the fragments was concentration dependent for some analytes and was influenced by cofragmentation, especially of deuterated analogues. Also, the detection rate of IDA compared to SWATH was investigated in a forced coelution experiment (up to 20 analytes coeluting). Even using several different IDA settings, it was observed that IDA failed to trigger relevant compounds. Screening results of 382 authentic forensic cases revealed that SWATH's detection rate was superior to IDA, which failed to trigger ∼10% of the analytes.
NASA Astrophysics Data System (ADS)
Asakawa, Daiki; Mizuno, Hajime; Toyo'oka, Toshimasa
2017-12-01
The formation mechanisms of singly and multiply charged organophosphate metabolites by electrospray ionization (ESI) and their gas phase stabilities were investigated. Metabolites containing multiple phosphate groups, such as adenosine 5'-diphosphate (ADP), adenosine 5'-triphosphate (ATP), and D- myo-inositol-1,4,5-triphosphate (IP3) were observed as doubly deprotonated ions by negative-ion ESI mass spectrometry. Organophosphates with multiple negative charges were found to be unstable and often underwent loss of PO3 -, although singly deprotonated analytes were stable. The presence of fragments due to the loss of PO3 - in the negative-ion ESI mass spectra could result in the misinterpretation of analytical results. In contrast to ESI, matrix-assisted laser desorption ionization (MALDI) produced singly charged organophosphate metabolites with no associated fragmentation, since the singly charged anions are stable. The stability of an organophosphate metabolite in the gas phase strongly depends on its charge state. The fragmentations of multiply charged organophosphates were also investigated in detail through density functional theory calculations. [Figure not available: see fulltext.
Sekimoto, Kanako; Takayama, Mitsuo
2013-05-01
Collision-induced dissociation (CID) experiments were performed on atmospheric ion adducts [M + R](-) formed between various types of organic compounds M and atmospheric negative ions R(-) [such as O2(-), HCO3(-), COO(-)(COOH), NO2(-), NO3(-), and NO3(-)(HNO3)] in negative-ion mode atmospheric pressure corona discharge ionization (APCDI) mass spectrometry. All of the [M + R](-) adducts were fragmented to form deprotonated analytes [M - H](-) and/or atmospheric ions R(-), whose intensities in the CID spectra were dependent on the proton affinities of the [M - H](-) and R(-) fragments. Precursor ions [M + R](-) for which R(-) have higher proton affinities than [M - H](-) formed [M - H](-) as the dominant product. Furthermore, the CID of the adducts with HCO3(-) and NO3(-)(HNO3) led to other product ions such as [M + HO](-) and NO3(-), respectively. The fragmentation behavior of [M + R](-) for each R(-) observed was independent of analyte type (e.g., whether the analyte was aliphatic or aromatic, or possessed certain functional groups).
Hydrogenated pyrene: Statistical single-carbon loss below the knockout threshold
NASA Astrophysics Data System (ADS)
Wolf, Michael; Giacomozzi, Linda; Gatchell, Michael; de Ruette, Nathalie; Stockett, Mark H.; Schmidt, Henning T.; Cederquist, Henrik; Zettergren, Henning
2016-04-01
An ongoing discussion revolves around the question of what effect hydrogenation has on carbon backbone fragmentation in polycyclic aromatic hydrocarbons (PAHs). In order to shed more light on this issue, we have measured absolute single carbon loss cross sections in collisions between native or hydrogenated pyrene cations (C16H+10+m, m = 0, 6, 16) and He as functions of center-of-mass energies down to 20 eV. Classical molecular dynamics (MD) simulations give further insight into energy transfer processes and also yield m-dependent threshold energies for prompt (femtoseconds) carbon knockout. Such fast, non-statistical fragmentation processes dominate CHx-loss for native pyrene (m = 0), while much slower statistical fragmentation processes contribute significantly to single-carbon loss for the hydrogenated molecules (m = 6 and m = 16). The latter is shown by measurements of large CHx-loss cross sections far below the MD knockout thresholds for C16H+16 and C16H+26. Contribution to the "Atomic Cluster Collisions (7th International Symposium)", edited by Gerardo Delgado Barrio, Andrey Solov'Yov, Pablo Villarreal, Rita Prosmiti.
Thurber, Greg M; Wittrup, K Dane
2008-05-01
Antibody-based cancer treatment depends upon distribution of the targeting macromolecule throughout tumor tissue, and spatial heterogeneity could significantly limit efficacy in many cases. Antibody distribution in tumor tissue is a function of drug dosage, antigen concentration, binding affinity, antigen internalization, drug extravasation from blood vessels, diffusion in the tumor extracellular matrix, and systemic clearance rates. We have isolated the effects of a subset of these variables by live-cell microscopic imaging of single-chain antibody fragments against carcinoembryonic antigen in LS174T tumor spheroids. The measured rates of scFv penetration and retention were compared with theoretical predictions based on simple scaling criteria. The theory predicts that antibody dose must be large enough to drive a sufficient diffusive flux of antibody to overcome cellular internalization, and exposure time must be long enough to allow penetration to the spheroid center. The experimental results in spheroids are quantitatively consistent with these predictions. Therefore, simple scaling criteria can be applied to accurately predict antibody and antibody fragment penetration distance in tumor tissue.
Thurber, Greg M.; Wittrup, K. Dane
2010-01-01
Antibody-based cancer treatment depends upon distribution of the targeting macromolecule throughout tumor tissue, and spatial heterogeneity could significantly limit efficacy in many cases. Antibody distribution in tumor tissue is a function of drug dosage, antigen concentration, binding affinity, antigen internalization, drug extravasation from blood vessels, diffusion in the tumor extracellular matrix, and systemic clearance rates. We have isolated the effects of a subset of these variables by live-cell microscopic imaging of single-chain antibody fragments against carcinoembryonic antigen in LS174T tumor spheroids. The measured rates of scFv penetration and retention were compared with theoretical predictions based on simple scaling criteria. The theory predicts that antibody dose must be large enough to drive a sufficient diffusive flux of antibody to overcome cellular internalization, and exposure time must be long enough to allow penetration to the spheroid center. The experimental results in spheroids are quantitatively consistent with these predictions. Therefore, simple scaling criteria can be applied to accurately predict antibody and antibody fragment penetration distance in tumor tissue. PMID:18451160
Production of functional sperm by subcutaneous auto-grafting of immature testes in rainbow trout.
Hayashi, Makoto; Sakuma, Daika; Yoshizaki, Goro
2018-02-01
Sexually mature individuals are indispensable for breeding programs. Salmonids require a long period before reaching sexual maturity, so we aimed to shorten the period required to obtain functional sperm by grafting immature testicular fragments into mature recipients, which we predicted would allow the grafted testicular fragments to skip the long pre-pubertal period. First, we demonstrated successful subcutaneous auto-grafting of testicular fragments in rainbow trout. Unilateral testectomy was performed, and the isolated immature testicular fragment was auto-grafted into the subcutaneous space along the back of recipient fish. The grafted testicular fragments developed synchronously with the recipients' testis remaining in its body cavity, and both eventually produced functional sperm. Next, immature testicular fragments were auto-grafted into the subcutaneous space of sexually mature males. We achieved this, without immune rejection, by isolating and cryopreserving testes from immature fish, and rearing these unilaterally testectomized fish until sexual maturity. The cryopreserved testes were then auto-grafted into the original, now spermiating fish. The grated immature testicular fragments differentiated and produced functional sperm within 5 months after grafting. By combining this grafting method with a technique to avoid immune rejection, we expect to develop a practical method for producing sperm in a shorter period in salmonids. © 2017 Wiley Periodicals, Inc.
Nucleon localization and fragment formation in nuclear fission
Zhang, C. L.; Schuetrumpf, B.; Nazarewicz, W.
2016-12-27
An electron localization measure was originally introduced to characterize chemical bond structures in molecules. Recently, a nucleon localization based on Hartree-Fock densities has been introduced to investigate α-cluster structures in light nuclei. Compared to the local nucleonic densities, the nucleon localization function has been shown to be an excellent indicator of shell effects and cluster correlations. In this work, using the spatial nucleon localization measure, we investigated the emergence of fragments in fissioning heavy nuclei using the self-consistent energy density functional method with a quantified energy density functional optimized for fission studies. We studied the particle densities and spatial nucleonmore » localization distributions along the fission pathways of 264Fm, 232Th, and 240Pu. We demonstrated that the fission fragments were formed fairly early in the evolution, well before scission. To illustrate the usefulness of the localization measure, we showed how the hyperdeformed state of 232Th could be understood in terms of a quasimolecular state made of 132Sn and 100Zr fragments. Compared to nucleonic distributions, the nucleon localization function more effectively quantifies nucleonic clustering: its characteristic oscillating pattern, traced back to shell effects, is a clear fingerprint of cluster/fragment configurations. This is of particular interest for studies of fragment formation and fragment identification in fissioning nuclei.« less
Abe, Ryoji; Jeong, Hee-Jin; Arakawa, Dai; Dong, Jinhua; Ohashi, Hiroyuki; Kaigome, Rena; Saiki, Fujio; Yamane, Kyosuke; Takagi, Hiroaki; Ueda, Hiroshi
2014-04-11
Recently, we described a novel reagentless fluorescent biosensor strategy named Quenchbody, which functions via the antigen-dependent removal of the quenching effect on a fluorophore that is attached to a single-chain antibody variable region. To explore the practical utility of Quenchbodies, we prepared antibody Fab fragments that were fluorolabeled at either one or two of the N-terminal regions, using a cell-free translation-mediated position-specific protein labeling system. Unexpectedly, the Fab fragment labeled at the heavy chain N-terminal region demonstrated a deeper quenching and antigen-dependent release compared to that observed using scFv. Moreover, when the Fab was fluorolabeled at the two N-termini with either the same dye or with two different dyes, an improved response due to enhanced quenching via dye-dye interactions was observed. On the basis of this approach, several targets, including peptides, proteins, and haptens, as well as narcotics, were quantified with a higher response up to 50-fold. In addition, differentiation of osteosarcoma to osteoblasts was successfully imaged using a similarly fluorolabeled recombinant Fab protein prepared from E. coli. Due to its versatility, this "Ultra-Quenchbody" is expected to exhibit a range of applications from in vitro diagnostics to the live imaging of various targets in situ.
Critical thresholds in species` responses to landscape structure
DOE Office of Scientific and Technical Information (OSTI.GOV)
With, K.A.; Crist, T.O.
1995-12-01
Critical thresholds are transition ranges across which small changes in spatial pattern produce abrupt shifts in ecological responses. Habitat fragmentation provides a familiar example of a critical threshold. As the landscape becomes dissected into smaller parcels of habitat. landscape connectivity-the functional linkage among habitat patches - may suddenly become disrupted, which may have important consequences for the distribution and persistence of populations. Landscape connectivity depends not only on the abundance and spatial patterning of habitat. but also on the habitat specificity and dispersal abilities of species. Habitat specialists with limited dispersal capabilities presumably have a much lower threshold to habitatmore » fragmentation than highly vagile species, which may perceive the landscape as functionally connected across a greater range of fragmentation severity. To determine where threshold effects in species, responses to landscape structure are likely to occur, a simulation model modified from percolation theory was developed. Our simulations predicted the distributional patterns of populations in different landscape mosaics, which we tested empirically using two grasshopper species (Orthoptera: Acrididae) that occur in the shortgrass prairie of north-central Colorado. The distribution of these two species in this grassland mosaic matched the predictions from our simulations. By providing quantitative predictions of threshold effects, this modelling approach may prove useful in the formulation of conservation strategies and assessment of land-use changes on species` distributional patterns and persistence.« less
Qiao, Huanyu; Chen, Jefferson K.; Reynolds, April; Höög, Christer; Paddy, Michael; Hunter, Neil
2012-01-01
The intimate synapsis of homologous chromosome pairs (homologs) by synaptonemal complexes (SCs) is an essential feature of meiosis. In many organisms, synapsis and homologous recombination are interdependent: recombination promotes SC formation and SCs are required for crossing-over. Moreover, several studies indicate that initiation of SC assembly occurs at sites where crossovers will subsequently form. However, recent analyses in budding yeast and fruit fly imply a special role for centromeres in the initiation of SC formation. In addition, in budding yeast, persistent SC–dependent centromere-association facilitates the disjunction of chromosomes that have failed to become connected by crossovers. Here, we examine the interplay between SCs, recombination, and centromeres in a mammal. In mouse spermatocytes, centromeres do not serve as SC initiation sites and are invariably the last regions to synapse. However, centromeres are refractory to de-synapsis during diplonema and remain associated by short SC fragments. Since SC–dependent centromere association is lost before diakinesis, a direct role in homolog segregation seems unlikely. However, post–SC disassembly, we find evidence of inter-centromeric connections that could play a more direct role in promoting homolog biorientation and disjunction. A second class of persistent SC fragments is shown to be crossover-dependent. Super-resolution structured-illumination microscopy (SIM) reveals that these structures initially connect separate homolog axes and progressively diminish as chiasmata form. Thus, DNA crossing-over (which occurs during pachynema) and axis remodeling appear to be temporally distinct aspects of chiasma formation. SIM analysis of the synapsis and crossover-defective mutant Sycp1−/− implies that SCs prevent unregulated fusion of homolog axes. We propose that SC fragments retained during diplonema stabilize nascent bivalents and help orchestrate local chromosome reorganization that promotes centromere and chiasma function. PMID:22761591
Medium range order and structural relaxation in As–Se network glasses through FSDP analysis
Golovchak, R.; Lucas, P.; Oelgoetz, J.; ...
2015-01-13
We performed synchrotron X-ray diffraction and neutron scattering studies on As-Se glasses in two states: as-prepared (rejuvenated) and aged for similar to 27 years. The first sharp diffraction peak (FSDP) obtained from the structure factor data as a function of composition and temperature indicates that the cooperative processes that are responsible for structural relaxation do not affect FSDP. The results are correlated with the composition dependence of the complex heat capacity of the glasses and concentration of different structural fragments in the glass network. Furthermore, the comparison of structural information shows that density fluctuations, which were thought previously to havemore » a significant contribution to FSDP, have much smaller effect than the cation-cation correlations, presence of ordered structural fragments or cage molecules.« less
Projectile fragmentation of 40,48Ca and isotopic scaling in a transport approach
NASA Astrophysics Data System (ADS)
Mikhailova, T. I.; Erdemchimeg, B.; Artukh, A. G.; Di Toro, M.; Wolter, H. H.
2016-07-01
We investigate theoretically projectile fragmentation in reactions of 40,48Ca on 9Be and 181Ta targets using a Boltzmann-type transport approach, which is supplemented by a statistical decay code to describe the de-excitation of the hot primary fragments. We determine the thermodynamical properties of the primary fragments and calculate the isotope distributions of the cold final fragments. These describe the data reasonably well. For the pairs of projectiles with different isotopic content we analyze the isotopic scaling (or isoscaling) of the final fragment distributions, which has been used to extract the symmetry energy of the primary source. The calculation exhibits isoscaling behavior for the total yields as do the experiments. We also perform an impact-parameter-dependent isoscaling analysis in view of the fact that the primary systems at different impact parameters have very different properties. Then the isoscaling behavior is less stringent, which we can attribute to specific structure effects of the 40,48Ca pair. The symmetry energy determined in this way depends on these structure effects.
Projectile fragmentation of {sup 40,48}Ca and isotopic scaling in a transport approach
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mikhailova, T. I., E-mail: tmikh@jinr.ru; Erdemchimeg, B.; Artukh, A. G.
2016-07-15
We investigate theoretically projectile fragmentation in reactions of {sup 40,48}Ca on {sup 9}Be and {sup 181}Ta targets using a Boltzmann-type transport approach, which is supplemented by a statistical decay code to describe the de-excitation of the hot primary fragments. We determine the thermodynamical properties of the primary fragments and calculate the isotope distributions of the cold final fragments. These describe the data reasonably well. For the pairs of projectiles with different isotopic content we analyze the isotopic scaling (or isoscaling) of the final fragment distributions, which has been used to extract the symmetry energy of the primary source. The calculationmore » exhibits isoscaling behavior for the total yields as do the experiments. We also perform an impact-parameter-dependent isoscaling analysis in view of the fact that the primary systems at different impact parameters have very different properties. Then the isoscaling behavior is less stringent, which we can attribute to specific structure effects of the {sup 40,48}Ca pair. The symmetry energy determined in this way depends on these structure effects.« less
Effects of medium on nuclear properties in multifragmentation
NASA Astrophysics Data System (ADS)
De, J. N.; Samaddar, S. K.; Viñas, X.; Centelles, M.; Mishustin, I. N.; Greiner, W.
2012-08-01
In multifragmentation of hot nuclear matter, properties of fragments embedded in a soup of nucleonic gas and other fragments should be modified as compared with isolated nuclei. Such modifications are studied within a simple model where only nucleons and one kind of heavy nuclei are considered. The interaction between different species is described with a momentum-dependent two-body potential whose parameters are fitted to reproduce properties of cold isolated nuclei. The internal energy of heavy fragments is parametrized according to a liquid-drop model with density- and temperature-dependent parameters. Calculations are carried out for several subnuclear densities and moderate temperatures, for isospin-symmetric and asymmetric systems. We find that the fragments get stretched due to interactions with the medium and their binding energies decrease with increasing temperature and density of nuclear matter.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Weldon, Aimee Jean
2004-07-01
Description – Ph.D Dissertation. North Carolina State University. Raleigh, North Carolina. 135 pp. Abatract - Habitat fragmentation and its associated effects have been blamed for the recent population declines of many Neotropical migratory bird species. Increased predation and parasitism resulting from edge-related effects have been implicated for poor nesting success in many studies, mostly of forest interior species. However, little attention has been devoted to disturbance-dependent birds. In this study, I examine how patch shape and connectivity in fragmented landscapes affects the reproductive success of disturbance-dependent bird species, specifically the Indigo Bunting (Passerina cyanea). I conducted my study in amore » landscape-scale experimental system of similar-area habitat patches that differed in connectivity and in shape. Shapes differed between edgy and rectangular forms, where edgy patches contained 50% more edge than rectangular patches. I tested whether edgy patches function as ecological traps for species with strong edge preferences, by leading them to select dangerous habitats. Indigo Buntings preferentially selected edgy patches over rectangular patches, but experienced significantly lower reproductive success in edgy patches early in the season. Although predation pressure intensified in rectangular patches late in the season, seasonal fecundity was still significantly lower in edgy patches, providing the first empirical evidence that edges can function as ecological traps for Indigo Buntings. A second objective of my study was to evaluate the efficacy of conservation corridors for disturbance-dependent bird species. Conservation corridors have become a popular strategy to preserve biodiversity and promote gene flow in fragmented landscapes, but corridors may also have negative consequences. I tested the hypothesis that corridors can increase nest predation risk in connected patches relative to unconnected patches. Nest predation rates increased significantly in connected patches compared to unconnected rectangular patches, but were similar between connected patches and unconnected edgy patches. This suggests that the increase in predator activity in connected patches is largely attributable to edge effects incurred through the addition of a corridor. This is the first landscape-scale study to experimentally demonstrate the potential negative effects of conservation corridors.« less
Branscheid, Anja; Marchais, Antonin; Schott, Gregory; Lange, Heike; Gagliardi, Dominique; Andersen, Stig Uggerhøj; Voinnet, Olivier; Brodersen, Peter
2015-12-15
Small regulatory RNAs are fundamental in eukaryotic and prokaryotic gene regulation. In plants, an important element of post-transcriptional control is effected by 20-24 nt microRNAs (miRNAs) and short interfering RNAs (siRNAs) bound to the ARGONAUTE1 (AGO1) protein in an RNA induced silencing complex (RISC). AGO1 may cleave target mRNAs with small RNA complementarity, but the fate of the resulting cleavage fragments remains incompletely understood. Here, we show that SKI2, SKI3 and SKI8, subunits of a cytoplasmic cofactor of the RNA exosome, are required for degradation of RISC 5', but not 3'-cleavage fragments in Arabidopsis. In the absence of SKI2 activity, many miRNA targets produce siRNAs via the RNA-dependent RNA polymerase 6 (RDR6) pathway. These siRNAs are low-abundant, and map close to the cleavage site. In most cases, siRNAs were produced 5' to the cleavage site, but several examples of 3'-spreading were also identified. These observations suggest that siRNAs do not simply derive from RDR6 action on stable 5'-cleavage fragments and hence that SKI2 has a direct role in limiting secondary siRNA production in addition to its function in mediating degradation of 5'-cleavage fragments. © The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research.
Number-squeezed and fragmented states of strongly interacting bosons in a double well
NASA Astrophysics Data System (ADS)
Corbo, Joel C.; DuBois, Jonathan L.; Whaley, K. Birgitta
2017-11-01
We present a systematic study of the phenomena of number squeezing and fragmentation for a repulsive Bose-Einstein condensate (BEC) in a three-dimensional double-well potential over a range of interaction strengths and barrier heights, including geometries that exhibit appreciable overlap in the one-body wave functions localized in the left and right wells. We compute the properties of the condensate with numerically exact, full-dimensional path-integral ground-state (PIGS) quantum Monte Carlo simulations and compare with results obtained from using two- and eight-mode truncated basis models. The truncated basis models are found to agree with the numerically exact PIGS simulations for weak interactions, but fail to correctly predict the amount of number squeezing and fragmentation exhibited by the PIGS simulations for strong interactions. We find that both number squeezing and fragmentation of the BEC show nonmonotonic behavior at large values of interaction strength a . The number squeezing shows a universal scaling with the product of number of particles and interaction strength (N a ), but no such universal behavior is found for fragmentation. Detailed analysis shows that the introduction of repulsive interactions not only suppresses number fluctuations to enhance number squeezing, but can also enhance delocalization across wells and tunneling between wells, each of which may suppress number squeezing. This results in a dynamical competition whose resolution shows a complex dependence on all three physical parameters defining the system: interaction strength, number of particles, and barrier height.
Lee, Jason E.; Patel, Kirit; Almodóvar, Sharilyn; Tuder, Rubin M.; Flores, Sonia C.
2011-01-01
Although reduced bioavailability of nitric oxide (NO) has been implicated in the pathogenesis of pulmonary arterial hypertension (PAH), its consequences on organellar structure and function within vascular cells is largely unexplored. We investigated the effect of reduced NO on the structure of the Golgi apparatus as assayed by giantin or GM130 immunofluorescence in human pulmonary arterial endothelial (HPAECs) and smooth muscle (HPASMCs) cells, bovine PAECs, and human EA.hy926 endothelial cells. Golgi structure was also investigated in cells in tissue sections of pulmonary vascular lesions in idiopathic PAH (IPAH) and in macaques infected with a chimeric simian immunodeficiency virus containing the human immunodeficiency virus (HIV)-nef gene (SHIV-nef) with subcellular three-dimensional (3D) immunoimaging. Compounds with NO scavenging activity including 2-(4-carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide (c-PTIO), methylene blue, N-acetylcysteine, and hemoglobin markedly fragmented the Golgi in all cell types evaluated as did monocrotaline pyrrole, while LY-83583, sildenafil, fasudil, Y-27632, Tiron, Tempol, or H2O2 did not. Golgi fragmentation by NO scavengers was inhibited by diethylamine NONOate, was evident in HPAECs after selective knockdown of endothelial nitric oxide synthase using small interfering RNA (siRNA), was independent of microtubule organization, required the GTPase dynamin 2, and was accompanied by depletion of α-soluble N-ethylmaleimide-sensitive factor (NSF) acceptor protein (α-SNAP) from Golgi membranes and codispersal of the SNAP receptor (SNARE) Vti1a with giantin. Golgi fragmentation was confirmed in endothelial and smooth muscle cells in pulmonary arterial lesions in IPAH and the SHIV-nef-infected macaque with subcellular 3D immunoimaging. In SHIV-nef-infected macaques Golgi fragmentation was observed in cells containing HIV-nef-bearing endosomes. The observed Golgi fragmentation suggests that NO plays a significant role in modulating global protein trafficking patterns that contribute to changes in the cell surface landscape and functional signaling in vascular cells. PMID:21217069
Effective field theory approach to heavy quark fragmentation
Fickinger, Michael; Fleming, Sean; Kim, Chul; ...
2016-11-17
Using an approach based on Soft Collinear Effective Theory (SCET) and Heavy Quark Effective Theory (HQET) we determine the b-quark fragmentation function from electron-positron annihilation data at the Z-boson peak at next-to-next-to leading order with next-to-next-to leading log resummation of DGLAP logarithms, and next-to-next-to-next-to leading log resummation of endpoint logarithms. This analysis improves, by one order, the previous extraction of the b-quark fragmentation function. We find that while the addition of the next order in the calculation does not much shift the extracted form of the fragmentation function, it does reduce theoretical errors indicating that the expansion is converging. Usingmore » an approach based on effective field theory allows us to systematically control theoretical errors. Furthermore, while the fits of theory to data are generally good, the fits seem to be hinting that higher order correction from HQET may be needed to explain the b-quark fragmentation function at smaller values of momentum fraction.« less
Azmi, Sarfuddin; Jiang, Keren; Stiles, Michael; Thundat, Thomas; Kaur, Kamaljit
2015-03-09
We employed a direct peptide-bacteria binding assay to screen peptide fragments for high and specific binding to Listeria monocytogenes. Peptides were screened from a peptide array library synthesized on cellulose membrane. Twenty four peptide fragments (each a 14-mer) were derived from three potent anti-listerial peptides, Leucocin A, Pediocin PA1, and Curvacin A, that belong to class IIa bacteriocins. Fragment Leu10 (GEAFSAGVHRLANG), derived from the C-terminal region of Leucocin A, displayed the highest binding among all of the library fragments toward several pathogenic Gram-positive bacteria, including L. monocytogenes, Enterococcus faecalis, and Staphylococcus aureus. The specific binding of Leu10 to L. monocytogenes was further validated using microcantilever (MCL) experiments. Microcantilevers coated with gold were functionalized with peptides by chemical conjugation using a cysteamine linker to yield a peptide density of ∼4.8×10(-3) μmol/cm2 for different peptide fragments. Leu10 (14-mer) functionalized MCL was able to detect Listeria with same sensitivity as that of Leucocin A (37-mer) functionalized MCL, validating the use of short peptide fragments in bacterial detection platforms. Fragment Leu10 folded into a helical conformation in solution, like that of native Leucocin A, suggesting that both Leu10 and Leucocin A may employ a similar mechanism for binding target bacteria. The results show that peptide-conjugated microcantilevers can function as highly sensitive platforms for Listeria detection and hold potential to be developed as biosensors for pathogenic bacteria.
NASA Technical Reports Server (NTRS)
Gouge, Michael F.
2011-01-01
Hypervelocity impact tests on test satellites are performed by members of the orbital debris scientific community in order to understand and typify the on-orbit collision breakup process. By analysis of these test satellite fragments, the fragment size and mass distributions are derived and incorporated into various orbital debris models. These same fragments are currently being put to new use using emerging technologies. Digital models of these fragments are created using a laser scanner. A group of computer programs referred to as the Fragment Rotation Analysis and Lightcurve code uses these digital representations in a multitude of ways that describe, measure, and model on-orbit fragments and fragment behavior. The Dynamic Rotation subroutine generates all of the possible reflected intensities from a scanned fragment as if it were observed to rotate dynamically while in orbit about the Earth. This calls an additional subroutine that graphically displays the intensities and the resulting frequency of those intensities as a range of solar phase angles in a Probability Density Function plot. This document reports the additions and modifications to the subset of the Fragment Rotation Analysis and Lightcurve concerned with the Dynamic Rotation and Probability Density Function plotting subroutines.
NASA Astrophysics Data System (ADS)
Hartman, Joshua D.; Monaco, Stephen; Schatschneider, Bohdan; Beran, Gregory J. O.
2015-09-01
We assess the quality of fragment-based ab initio isotropic 13C chemical shift predictions for a collection of 25 molecular crystals with eight different density functionals. We explore the relative performance of cluster, two-body fragment, combined cluster/fragment, and the planewave gauge-including projector augmented wave (GIPAW) models relative to experiment. When electrostatic embedding is employed to capture many-body polarization effects, the simple and computationally inexpensive two-body fragment model predicts both isotropic 13C chemical shifts and the chemical shielding tensors as well as both cluster models and the GIPAW approach. Unlike the GIPAW approach, hybrid density functionals can be used readily in a fragment model, and all four hybrid functionals tested here (PBE0, B3LYP, B3PW91, and B97-2) predict chemical shifts in noticeably better agreement with experiment than the four generalized gradient approximation (GGA) functionals considered (PBE, OPBE, BLYP, and BP86). A set of recommended linear regression parameters for mapping between calculated chemical shieldings and observed chemical shifts are provided based on these benchmark calculations. Statistical cross-validation procedures are used to demonstrate the robustness of these fits.
Hartman, Joshua D; Monaco, Stephen; Schatschneider, Bohdan; Beran, Gregory J O
2015-09-14
We assess the quality of fragment-based ab initio isotropic (13)C chemical shift predictions for a collection of 25 molecular crystals with eight different density functionals. We explore the relative performance of cluster, two-body fragment, combined cluster/fragment, and the planewave gauge-including projector augmented wave (GIPAW) models relative to experiment. When electrostatic embedding is employed to capture many-body polarization effects, the simple and computationally inexpensive two-body fragment model predicts both isotropic (13)C chemical shifts and the chemical shielding tensors as well as both cluster models and the GIPAW approach. Unlike the GIPAW approach, hybrid density functionals can be used readily in a fragment model, and all four hybrid functionals tested here (PBE0, B3LYP, B3PW91, and B97-2) predict chemical shifts in noticeably better agreement with experiment than the four generalized gradient approximation (GGA) functionals considered (PBE, OPBE, BLYP, and BP86). A set of recommended linear regression parameters for mapping between calculated chemical shieldings and observed chemical shifts are provided based on these benchmark calculations. Statistical cross-validation procedures are used to demonstrate the robustness of these fits.
Varshavsky, Alexander
2012-01-01
Despite extensive understanding of sleep regulation, the molecular-level cause and function of sleep are unknown. I suggest that they originate in individual neurons and stem from increased production of protein fragments during wakefulness. These fragments are transient parts of protein complexes in which the fragments were generated. Neuronal Ca2+ fluxes are higher during wakefulness than during sleep. Subunits of transmembrane channels and other proteins are cleaved by Ca2+-activated calpains and by other nonprocessive proteases, including caspases and secretases. In the proposed concept, termed the fragment generation (FG) hypothesis, sleep is a state during which the production of fragments is decreased (owing to lower Ca2+ transients) while fragment-destroying pathways are upregulated. These changes facilitate the elimination of fragments and the remodeling of protein complexes in which the fragments resided. The FG hypothesis posits that a proteolytic cleavage, which produces two fragments, can have both deleterious effects and fitness-increasing functions. This (previously not considered) dichotomy can explain both the conservation of cleavage sites in proteins and the evolutionary persistence of sleep, because sleep would counteract deleterious aspects of protein fragments. The FG hypothesis leads to new explanations of sleep phenomena, including a longer sleep after sleep deprivation. Studies in the 1970s showed that ethanol-induced sleep in mice can be strikingly prolonged by intracerebroventricular injections of either Ca2+ alone or Ca2+ and its ionophore (Erickson et al., Science 1978;199:1219–1221; Harris, Pharmacol Biochem Behav 1979;10:527–534; Erickson et al., Pharmacol Biochem Behav 1980;12:651–656). These results, which were never interpreted in connection to protein fragments or the function of sleep, may be accounted for by the FG hypothesis about molecular causation of sleep. PMID:22930402
Models of fragmentation with composite power laws
NASA Astrophysics Data System (ADS)
Tavassoli, Z.; Rodgers, G. J.
1999-06-01
Some models for binary fragmentation are introduced in which a time dependent transition size produces two regions of fragment sizes above and below the transition size. In the first model we assume a fixed rate of fragmentation for the largest fragment and two different rates of fragmentation in the two regions of sizes above and below the transition size. The model is solved exactly in the long time limit to reveal stable time-invariant solutions for the fragment size and mass distributions. These solutions exhibit composite power law behaviours; power laws with two different exponents for fragments in smaller and larger regions. A special case of the model with no fragmentation in the smaller size region is also examined. Another model is also introduced which have three regions of fragment sizes with different rates of fragmentation. The similarities between the stable distributions in our models and composite power law distributions from experimental work on shock fragmentation of long thin glass rods and thick clay plates are discussed.
Cytosolic NADP(+)-dependent isocitrate dehydrogenase regulates cadmium-induced apoptosis.
Shin, Seoung Woo; Kil, In Sup; Park, Jeen-Woo
2010-04-01
Cadmium ions have a high affinity for thiol groups. Therefore, they may disturb many cellular functions. We recently reported that cytosolic NADP(+)-dependent isocitrate dehydrogenase (IDPc) functions as an antioxidant enzyme to supply NADPH, a major source of reducing equivalents to the cytosol. Cadmium decreased the activity of IDPc both as a purified enzyme and in cultured cells. In the present study, we demonstrate that the knockdown of IDPc expression in HEK293 cells greatly enhances apoptosis induced by cadmium. Transfection of HEK293 cells with an IDPc small interfering RNA significantly decreased the activity of IDPc and enhanced cellular susceptibility to cadmium-induced apoptosis as indicated by the morphological evidence of apoptosis, DNA fragmentation and condensation, cellular redox status, mitochondria redox status and function, and the modulation of apoptotic marker proteins. Taken together, our results suggest that suppressing the expression of IDPc enhances cadmium-induced apoptosis of HEK293 cells by increasing disruption of the cellular redox status. Copyright 2009 Elsevier Inc. All rights reserved.
Imaging the square of the correlated two-electron wave function of a hydrogen molecule
Waitz, M.; Bello, R. Y.; Metz, D.; ...
2017-12-22
The toolbox for imaging molecules is well-equipped today. Some techniques visualize the geometrical structure, others the electron density or electron orbitals. Molecules are many-body systems for which the correlation between the constituents is decisive and the spatial and the momentum distribution of one electron depends on those of the other electrons and the nuclei. Such correlations have escaped direct observation by imaging techniques so far. Here, we implement an imaging scheme which visualizes correlations between electrons by coincident detection of the reaction fragments after high energy photofragmentation. With this technique, we examine the H 2 two-electron wave function in whichmore » electron-electron correlation beyond the mean-field level is prominent. We visualize the dependence of the wave function on the internuclear distance. High energy photoelectrons are shown to be a powerful tool for molecular imaging. Finally, our study paves the way for future time resolved correlation imaging at FELs and laser based X-ray sources.« less
Imaging the square of the correlated two-electron wave function of a hydrogen molecule.
Waitz, M; Bello, R Y; Metz, D; Lower, J; Trinter, F; Schober, C; Keiling, M; Lenz, U; Pitzer, M; Mertens, K; Martins, M; Viefhaus, J; Klumpp, S; Weber, T; Schmidt, L Ph H; Williams, J B; Schöffler, M S; Serov, V V; Kheifets, A S; Argenti, L; Palacios, A; Martín, F; Jahnke, T; Dörner, R
2017-12-22
The toolbox for imaging molecules is well-equipped today. Some techniques visualize the geometrical structure, others the electron density or electron orbitals. Molecules are many-body systems for which the correlation between the constituents is decisive and the spatial and the momentum distribution of one electron depends on those of the other electrons and the nuclei. Such correlations have escaped direct observation by imaging techniques so far. Here, we implement an imaging scheme which visualizes correlations between electrons by coincident detection of the reaction fragments after high energy photofragmentation. With this technique, we examine the H 2 two-electron wave function in which electron-electron correlation beyond the mean-field level is prominent. We visualize the dependence of the wave function on the internuclear distance. High energy photoelectrons are shown to be a powerful tool for molecular imaging. Our study paves the way for future time resolved correlation imaging at FELs and laser based X-ray sources.
Imaging the square of the correlated two-electron wave function of a hydrogen molecule
DOE Office of Scientific and Technical Information (OSTI.GOV)
Waitz, M.; Bello, R. Y.; Metz, D.
The toolbox for imaging molecules is well-equipped today. Some techniques visualize the geometrical structure, others the electron density or electron orbitals. Molecules are many-body systems for which the correlation between the constituents is decisive and the spatial and the momentum distribution of one electron depends on those of the other electrons and the nuclei. Such correlations have escaped direct observation by imaging techniques so far. Here, we implement an imaging scheme which visualizes correlations between electrons by coincident detection of the reaction fragments after high energy photofragmentation. With this technique, we examine the H 2 two-electron wave function in whichmore » electron-electron correlation beyond the mean-field level is prominent. We visualize the dependence of the wave function on the internuclear distance. High energy photoelectrons are shown to be a powerful tool for molecular imaging. Finally, our study paves the way for future time resolved correlation imaging at FELs and laser based X-ray sources.« less
Isomer-dependent fragmentation dynamics of inner-shell photoionized difluoroiodobenzene
Ablikim, Utuq; Bomme, Cédric; Savelyev, Evgeny; ...
2017-05-11
The fragmentation dynamics of 2,6- and 3,5-difluoroiodobenzene after iodine 4d inner-shell photoionization with soft X-rays are studied using coincident electron and ion momentum imaging. By analyzing the momentum correlation between iodine and fluorine cations in three-fold ion coincidence events, we can distinguish the two isomers experimentally. Classical Coulomb explosion simulations are in overall agreement with the experimentally determined fragment ion kinetic energies and momentum correlations and point toward different fragmentation mechanisms and time scales. Finally, while most three-body fragmentation channels show clear evidence for sequential fragmentation on a time scale larger than the rotational period of the fragments, the breakupmore » into iodine and fluorine cations and a third charged co-fragment appears to occur within several hundred femtoseconds.« less
Jared D. Wolfe; Philip C. Stouffer; Karl Mokross; Luke L. Powell; Marina M. Anciães
2015-01-01
Avian diversity in fragmented Amazonian landscapes depends on a balance between extinction and colonization in cleared and disturbed areas. Regenerating forest facilitates bird dispersal within degraded Amazonian landscapes and may tip the balance in favor of persistence in habitat patches. Determining the response of Amazonian birds to fragmentation may be...
Kim, Dongkyeong; Choi, Jin-Ok; Fan, Chuandong; Shearer, Randall S; Sharif, Mohamed; Busch, Patrick; Park, Yungki
2017-05-19
Myrf is a key transcription factor for oligodendrocyte differentiation and central nervous system myelination. We and others have previously shown that Myrf is generated as a membrane protein in the endoplasmic reticulum (ER), and that it undergoes auto-processing to release its N-terminal fragment from the ER, which enters the nucleus to work as a transcription factor. These previous studies allow a glimpse into the unusual complexity behind the biogenesis and function of the transcription factor domain of Myrf. Here, we report that Myrf N-terminal fragments assemble into stable homo-trimers before ER release. Consequently, Myrf N-terminal fragments are released from the ER only as homo-trimers. Our re-analysis of a previous genetic screening result in Caenorhabditis elegans shows that homo-trimerization is essential for the biological functions of Myrf N-terminal fragment, and that the region adjacent to the DNA-binding domain is pivotal to its homo-trimerization. Further, our computational analysis uncovered a novel homo-trimeric DNA motif that mediates the homo-trimeric DNA binding of Myrf N-terminal fragments. Importantly, we found that homo-trimerization defines the DNA binding specificity of Myrf N-terminal fragments. In sum, our study elucidates the molecular mechanism governing the biogenesis and function of Myrf N-terminal fragments and its physiological significance. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.
Fragmentation of mercury compounds under ultraviolet light irradiation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kokkonen, E.; Hautala, L.; Jänkälä, K.
2015-08-21
Ultraviolet light induced photofragmentation of mercury compounds is studied experimentally with electron energy resolved photoelectron-photoion coincidence techniques and theoretically with computational quantum chemical methods. A high resolution photoelectron spectrum using synchrotron radiation is presented. Fragmentation of the molecule is studied subsequent to ionization to the atomic-mercury-like d orbitals. State dependent fragmentation behaviour is presented and specific reactions for dissociation pathways are given. The fragmentation is found to differ distinctly in similar orbitals of different mercury compounds.
Size-dependent enrichment of waste slag aggregate fragments abraded from asphalt concrete.
Takahashi, Fumitake; Shimaoka, Takayuki; Gardner, Kevin; Kida, Akiko
2011-10-30
Authors consider the environmental prospects of using melted waste slag as the aggregate for asphalt pavement. In particular, the enrichment of slag-derived fragments in fine abrasion dust particles originated from slag asphalt concrete and its size dependency were concerned. A series of surface abrasion tests for asphalt concrete specimens, containing only natural aggregates as reference or 30 wt% of substituted slag aggregates, were performed. Although two of three slag-asphalt concretes generated 1.5-3.0 times larger amount of abrasion dust than the reference asphalt concrete did, it could not be explained only by abrasion resistance of slag. The enrichment of slag-derived fragments in abrasion dust, estimated on the basis of the peak intensity of quartz and heavy metal concentrations, had size dependency for all slag-asphalt concretes. Slag-derived fragments were enriched in abrasion dust particles with diameters of 150-1000 μm. Enrichment factors were 1.4-2.1. In contrast, there was no enrichment in abrasion dust particles with diameter less than 75 μm. This suggests that prior airborne-size fragmentation of substituted slag aggregates does not need to be considered for tested slag aggregates when environmental risks of abrasion dust of slag-asphalt pavement are assessed. Copyright © 2011 Elsevier B.V. All rights reserved.
Lee, Michael L; Katsuyama, Ângela M; Duge, Leanne S; Sriram, Chaitra; Krushelnytskyy, Mykhaylo; Kim, Jeansok J; de la Iglesia, Horacio O
2016-11-01
Sleep is important for consolidation of hippocampus-dependent memories. It is hypothesized that the temporal sequence of nonrapid eye movement (NREM) sleep and rapid eye movement (REM) sleep is critical for the weakening of nonadaptive memories and the subsequent transfer of memories temporarily stored in the hippocampus to more permanent memories in the neocortex. A great body of evidence supporting this hypothesis relies on behavioral, pharmacological, neural, and/or genetic manipulations that induce sleep deprivation or stage-specific sleep deprivation. We exploit an experimental model of circadian desynchrony in which intact animals are not deprived of any sleep stage but show fragmentation of REM and NREM sleep within nonfragmented sleep bouts. We test the hypothesis that the shortening of NREM and REM sleep durations post-training will impair memory consolidation irrespective of total sleep duration. When circadian-desynchronized animals are trained in a hippocampus-dependent contextual fear-conditioning task they show normal short-term memory but impaired long-term memory consolidation. This impairment in memory consolidation is positively associated with the post-training fragmentation of REM and NREM sleep but is not significantly associated with the fragmentation of total sleep or the total amount of delta activity. We also show that the sleep stage fragmentation resulting from circadian desynchrony has no effect on hippocampus-dependent spatial memory and no effect on hippocampus-independent cued fear-conditioning memory. Our findings in an intact animal model, in which sleep deprivation is not a confounding factor, support the hypothesis that the stereotypic sequence and duration of sleep stages play a specific role in long-term hippocampus-dependent fear memory consolidation. © 2016 Associated Professional Sleep Societies, LLC.
Analysis of incident-energy dependence of delayed neutron yields in actinides
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nasir, Mohamad Nasrun bin Mohd, E-mail: monasr211@gmail.com; Metorima, Kouhei, E-mail: kohei.m2420@hotmail.co.jp; Ohsawa, Takaaki, E-mail: ohsawa@mvg.biglobe.ne.jp
The changes of delayed neutron yields (ν{sub d}) of Actinides have been analyzed for incident energy up to 20MeV using realized data of precursor after prompt neutron emission, from semi-empirical model, and delayed neutron emission probability data (P{sub n}) to carry out a summation method. The evaluated nuclear data of the delayed neutron yields of actinide nuclides are still uncertain at the present and the cause of the energy dependence has not been fully understood. In this study, the fission yields of precursor were calculated considering the change of the fission fragment mass yield based on the superposition of fivesmore » Gaussian distribution; and the change of the prompt neutrons number associated with the incident energy dependence. Thus, the incident energy dependent behavior of delayed neutron was analyzed.The total number of delayed neutron is expressed as ν{sub d}=∑Y{sub i} • P{sub ni} in the summation method, where Y{sub i} is the mass yields of precursor i and P{sub ni} is the delayed neutron emission probability of precursor i. The value of Y{sub i} is derived from calculation of post neutron emission mass distribution using 5 Gaussian equations with the consideration of large distribution of the fission fragments. The prompt neutron emission ν{sub p} increases at higher incident-energy but there are two different models; one model says that the fission fragment mass dependence that prompt neutron emission increases uniformly regardless of the fission fragments mass; and the other says that the major increases occur at heavy fission fragments area. In this study, the changes of delayed neutron yields by the two models have been investigated.« less
The neuropeptide substance P stimulates the effector functions of platelets.
Damonneville, M; Monté, D; Auriault, C; Capron, A
1990-01-01
Sensory neuropeptides, such as substance P, appear as potent mediators of various immunological reactions, and inhibit or stimulate a wide range of functions of immune inflammatory cells. Platelets were recently shown to participate as effector cells in an IgE or lymphokine-dependent killing of parasites. Substance P and its carboxy-terminal fragment SP (4-11) induce the cytotoxic activity of platelets towards the larvae of Schistosoma mansoni, respectively, by 90% and 40%, whereas the modified C terminal SP, the SP-free acid, exhibits no effect on the platelets. The neuropeptide effects occur at low doses (10(-8) M), are specific as shown by inhibition studies with a substance P antagonist, the D-SP. Binding data obtained after flow cytofluorometry with FITC-SP lead to the conclusion that SP binds specifically to about 20% of the homogenous population of platelets. Moreover, IgE could modulate the SP-dependent functions of platelets since the pre-incubation with myeloma human IgE or with AP2 monoclonal antibodies--known to inhibit the IgE-dependent killing of these cells-leads to a dramatic decrease of the SP dependent cytotoxic activity of platelets towards the larvae. These findings identify a potent mechanism for nervous system regulation of host defence responses. PMID:1696868
Wang, Taofeng; Li, Guangwu; Zhu, Liping; ...
2016-01-08
The dependence of correlations of neutron multiplicity ν and γ-ray multiplicity M γ in spontaneous fission of 252Cf on fragment mass A* and total kinetic energy (TKE) have been investigated by employing the ratio of M γ/ν and the form of M γ(ν). We show for the first time that M γ and ν have a complex correlation for heavy fragment masses, while there is a positive dependence of Mγ for light fragment masses and for near-symmetric mass splits. The ratio M γ/ν exhibits strong shell effects for neutron magic number N=50 and near doubly magic number shell closure atmore » Z=50 and N=82. The γ-ray multiplicity Mγ has a maximum for TKE=165-170 MeV. Above 170 MeV M γ(TKE) is approximately linear, while it deviates significantly from a linear dependence at lower TKE. The correlation between the average neutron and γ-ray multiplicities can be partly reproduced by model calculations.« less
NASA Astrophysics Data System (ADS)
Prasad, Sandeep; Choudhary, B. S.; Mishra, A. K.
2017-08-01
Rock fragmentation size is very important parameters for economical point of view in any surface mining. Rock fragment size direct effects on the costs of drilling, blasting, loading, secondary blasting and crushing. The main purpose of this study is to investigate effect of blast design parameters such as burden, blast hole length, stemming length, and powder factor on rock fragmentation. The fragment sizes (MFS, K50, m), and maximum fragment size (K95, m) of rock were determined by using the computer software. For every blast, after blasting operation, the images of whole muck pile are captured and there images were used for fragmentation analysis by using the Fragalyst software. It was observed that the optimal fragment size (MFS, K50, m and maximum fragment size, K95, m) of rock depends strongly on the blast design parameters and explosive parameters.
Isegawa, Miho; Gao, Jiali; Truhlar, Donald G
2011-08-28
Molecular fragmentation algorithms provide a powerful approach to extending electronic structure methods to very large systems. Here we present a method for including charge transfer between molecular fragments in the explicit polarization (X-Pol) fragment method for calculating potential energy surfaces. In the conventional X-Pol method, the total charge of each fragment is preserved, and charge transfer between fragments is not allowed. The description of charge transfer is made possible by treating each fragment as an open system with respect to the number of electrons. To achieve this, we applied Mermin's finite temperature method to the X-Pol wave function. In the application of this method to X-Pol, the fragments are open systems that partially equilibrate their number of electrons through a quasithermodynamics electron reservoir. The number of electrons in a given fragment can take a fractional value, and the electrons of each fragment obey the Fermi-Dirac distribution. The equilibrium state for the electrons is determined by electronegativity equalization with conservation of the total number of electrons. The amount of charge transfer is controlled by re-interpreting the temperature parameter in the Fermi-Dirac distribution function as a coupling strength parameter. We determined this coupling parameter so as to reproduce the charge transfer energy obtained by block localized energy decomposition analysis. We apply the new method to ten systems, and we show that it can yield reasonable approximations to potential energy profiles, to charge transfer stabilization energies, and to the direction and amount of charge transferred. © 2011 American Institute of Physics
Isegawa, Miho; Gao, Jiali; Truhlar, Donald G.
2011-01-01
Molecular fragmentation algorithms provide a powerful approach to extending electronic structure methods to very large systems. Here we present a method for including charge transfer between molecular fragments in the explicit polarization (X-Pol) fragment method for calculating potential energy surfaces. In the conventional X-Pol method, the total charge of each fragment is preserved, and charge transfer between fragments is not allowed. The description of charge transfer is made possible by treating each fragment as an open system with respect to the number of electrons. To achieve this, we applied Mermin's finite temperature method to the X-Pol wave function. In the application of this method to X-Pol, the fragments are open systems that partially equilibrate their number of electrons through a quasithermodynamics electron reservoir. The number of electrons in a given fragment can take a fractional value, and the electrons of each fragment obey the Fermi–Dirac distribution. The equilibrium state for the electrons is determined by electronegativity equalization with conservation of the total number of electrons. The amount of charge transfer is controlled by re-interpreting the temperature parameter in the Fermi–Dirac distribution function as a coupling strength parameter. We determined this coupling parameter so as to reproduce the charge transfer energy obtained by block localized energy decomposition analysis. We apply the new method to ten systems, and we show that it can yield reasonable approximations to potential energy profiles, to charge transfer stabilization energies, and to the direction and amount of charge transferred. PMID:21895159
Stoeck, Alexander; Shang, Li; Dempsey, Peter J.
2010-01-01
Betacellulin (BTC) belongs to the family of epidermal growth factor (EGF)-like growth factors that are expressed as transmembrane precursors and undergo proteolytic ectodomain shedding to release soluble mature ligands. BTC is a dual-specificity ligand for ErbB1 and ErbB4 receptors, and can activate unique signal-transduction pathways that are beneficial for the function, survival and regeneration of pancreatic β-cells. We have previously shown that BTC precursor (proBTC) is cleaved by ADAM10 to generate soluble ligand and a stable, transmembrane remnant (BTC-CTF). In this study, we analyzed the fate of the BTC-CTF in greater detail. We demonstrated that proBTC is cleaved by ADAM10 to produce BTC-CTF, which then undergoes intramembrane processing by presenilin-1- and/or presenilin-2-dependent γ-secretase to generate an intracellular-domain fragment (BTC-ICD). We found that the proBTC cytoplasmic domain is palmitoylated and that palmitoylation is not required for ADAM10-dependent cleavage but is necessary for the stability and γ-secretase-dependent processing of BTC-CTF to generate BTC-ICD. Additionally, palmitoylation is required for nuclear-membrane localization of BTC-ICD, as demonstrated by the redistribution of non-palmitoylated BTC-ICD mutant to the nucleoplasm. Importantly, a novel receptor-independent role for BTC-ICD signaling is suggested by the ability of BTC-ICD to inhibit cell growth in vitro. PMID:20530572
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chacon, Stephany S.; Garcia-Jaramillo, Manuel; Liu, Suet Yi
We report it is widely accepted that soil organic carbon cycling depends on the presence and catalytic functionality of extracellular enzymes. Recent reports suggest that combusted and autoclaved soils may have the capacity to degrade organic test substrates to a larger extent than the living, enzyme-bearing soils. In search of the underlying mechanisms, we adsorbed Beta-Glucosidase (BG) and Bovine Serum Albumin (BSA) on the phyllosilicate kaolinite and the manganese oxide birnessite at pH 5 and pH 7. The protein-mineral samples were then subjected to gradual energy inputs of a magnitude equivalent to naturally occurring wildfire events. The abundance and molecularmore » masses of desorbed organic compounds were recorded after ionization with tunable synchrotron vacuum ultraviolet radiation (VUV). The mechanisms controlling the fate of proteins varied with mineralogy. Kaolinite adsorbed protein largely through hydrophobic interactions and, even at large energy inputs, produced negligible amounts of desorption fragments compared to birnessite. Acid birnessite adsorbed protein through coulombic forces at low energy levels, became a hydrolyzing catalyst at low energies and low pH, and eventually turned into a reactant involving disintegration of both mineral and protein at higher energy inputs. Fragmentation of proteins was energy dependent and did not occur below an energy threshold of 0.20 MW cm -2 . Neither signal abundance nor signal intensity were a function of protein size. Above the energy threshold value, BG that had been adsorbed to birnessite at pH 7 showed an increase in signal abundance with increasing energy applications. Signal intensities differed with adsorption pH for BSA but only at the highest energy level applied. Our results indicate that proteins adsorbed to kaolinite may remain intact after exposure to such energy inputs as can be expected to occur in natural ecosystems. Protein fragmentation and concomitant loss of functionality must be expected in surface soils replete with pedogenic manganese oxides. Lastly, we conclude that minerals can do both: protect enzymes at high energy intensities in the case of kaolinite and, in the case of birnessite, substitute for and even exceed the oxidative functionality that may have been lost when unprotected oxidative enzymes were denatured at high energy inputs.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chacon, Stephany S.; Garcia-Jaramillo, Manuel; Liu, Suet Yi
2018-02-28
We report it is widely accepted that soil organic carbon cycling depends on the presence and catalytic functionality of extracellular enzymes. Recent reports suggest that combusted and autoclaved soils may have the capacity to degrade organic test substrates to a larger extent than the living, enzyme-bearing soils. In search of the underlying mechanisms, we adsorbed Beta-Glucosidase (BG) and Bovine Serum Albumin (BSA) on the phyllosilicate kaolinite and the manganese oxide birnessite at pH 5 and pH 7. The protein-mineral samples were then subjected to gradual energy inputs of a magnitude equivalent to naturally occurring wildfire events. The abundance and molecularmore » masses of desorbed organic compounds were recorded after ionization with tunable synchrotron vacuum ultraviolet radiation (VUV). The mechanisms controlling the fate of proteins varied with mineralogy. Kaolinite adsorbed protein largely through hydrophobic interactions and, even at large energy inputs, produced negligible amounts of desorption fragments compared to birnessite. Acid birnessite adsorbed protein through coulombic forces at low energy levels, became a hydrolyzing catalyst at low energies and low pH, and eventually turned into a reactant involving disintegration of both mineral and protein at higher energy inputs. Fragmentation of proteins was energy dependent and did not occur below an energy threshold of 0.20 MW cm -2 . Neither signal abundance nor signal intensity were a function of protein size. Above the energy threshold value, BG that had been adsorbed to birnessite at pH 7 showed an increase in signal abundance with increasing energy applications. Signal intensities differed with adsorption pH for BSA but only at the highest energy level applied. Our results indicate that proteins adsorbed to kaolinite may remain intact after exposure to such energy inputs as can be expected to occur in natural ecosystems. Protein fragmentation and concomitant loss of functionality must be expected in surface soils replete with pedogenic manganese oxides. Lastly, we conclude that minerals can do both: protect enzymes at high energy intensities in the case of kaolinite and, in the case of birnessite, substitute for and even exceed the oxidative functionality that may have been lost when unprotected oxidative enzymes were denatured at high energy inputs.« less
Alcohol and aldehyde dehydrogenase polymorphisms in Chinese and Indian populations.
Tan, Ene-Choo; Lim, Leslie; Leong, Jern-Yi; Lim, Jing-Yan; Lee, Arthur; Yang, Jun; Tan, Chay-Hoon; Winslow, Munidasa
2010-01-01
The association between two functional polymorphisms in alcohol dehydrogenase (ADH2/ADH1B) and aldehyde dehydrogenase (ALDH2) genes and alcohol dependence was examined in 182 Chinese and Indian patients undergoing treatment for alcohol dependence and 184 screened control subjects from Singapore. All subjects were screened by the Alcohol Use Disorders Identification Test (AUDIT). Patients were also administered the Severity of Alcohol Dependence Questionnaire (SADQ). Polymorphisms were genotyped by allele-specific polymerase chain reaction and selected genotypes confirmed by DNA sequencing or restriction fragment length polymorphism. Our results showed that frequencies of ADH1B*2 and ALDH2*2 were higher in controls compared to alcohol-dependent subjects for both Chinese and Indians. Frequencies of these two alleles were also higher in the 104 Chinese controls compared to the 80 Indian controls. None of the eight Chinese who were homozygous for both protective alleles was alcohol dependent. The higher frequencies of the protective alleles could explain the lower rate of alcohol dependence in Chinese.
Transcriptional regulation of α1H T-type calcium channel under hypoxia
Sellak, Hassan; Zhou, Chun; Liu, Bainan; Chen, Hairu; Lincoln, Thomas M.
2014-01-01
The low-voltage-activated T-type Ca2+ channels play an important role in mediating the cellular responses to altered oxygen tension. Among three T-type channel isoforms, α1G, α1H, and α1I, only α1H was found to be upregulated under hypoxia. However, mechanisms underlying such hypoxia-dependent isoform-specific gene regulation remain incompletely understood. We, therefore, studied the hypoxia-dependent transcriptional regulation of α1G and α1H gene promoters with the aim to identify the functional hypoxia-response elements (HREs). In rat pulmonary artery smooth muscle cells (PASMCs) and pheochromocytoma (PC12) cells after hypoxia (3% O2) exposure, we observed a prominent increase in α1H mRNA at 12 h along with a significant rise in α1H-mediated T-type current at 24 and 48 h. We then cloned two promoter fragments from the 5′-flanking regions of rat α1G and α1H gene, 2,000 and 3,076 bp, respectively, and inserted these fragments into a luciferase reporter vector. Transient transfection of PASMCs and PC12 cells with these recombinant constructs and subsequent luciferase assay revealed a significant increase in luciferase activity from the reporter containing the α1H, but not α1G, promoter fragment under hypoxia. Using serial deletion and point mutation analysis strategies, we identified a functional HRE at site −1,173cacgc−1,169 within the α1H promoter region. Furthermore, an electrophoretic mobility shift assay using this site as a DNA probe demonstrated an increased binding activity to nuclear protein extracts from the cells after hypoxia exposure. Taken together, these findings indicate that hypoxia-induced α1H upregulation involves binding of hypoxia-inducible factor to an HRE within the α1H promoter region. PMID:25099734
An unusual fragmentation of oxetane-embedded tetracyclic ketal systems.
Rao, G Hari Mangeswara; Khan, Faiz Ahmed
2013-11-01
An unusual route for the synthesis of functionalized cyclobutane derivatives starting from functionalized norbornane derivatives is reported. Base-induced fragmentation of an oxetanol-type moiety embedded in a tetracyclic norbornyl ketal leads to a cyclobutane-fused derivative as the major or exclusive product. The fragmentation reaction for bridgehead-bromine-substituted derivatives was much faster than for the corresponding chlorine-substituted substrates. The functionalized cyclobutane product was formed exclusively in high yield in the former case, while the latter furnished a minor uncyclized side product in varying yields.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zemla, A; Lang, D; Kostova, T
2010-11-29
Most of the currently used methods for protein function prediction rely on sequence-based comparisons between a query protein and those for which a functional annotation is provided. A serious limitation of sequence similarity-based approaches for identifying residue conservation among proteins is the low confidence in assigning residue-residue correspondences among proteins when the level of sequence identity between the compared proteins is poor. Multiple sequence alignment methods are more satisfactory - still, they cannot provide reliable results at low levels of sequence identity. Our goal in the current work was to develop an algorithm that could overcome these difficulties and facilitatemore » the identification of structurally (and possibly functionally) relevant residue-residue correspondences between compared protein structures. Here we present StralSV, a new algorithm for detecting closely related structure fragments and quantifying residue frequency from tight local structure alignments. We apply StralSV in a study of the RNA-dependent RNA polymerase of poliovirus and demonstrate that the algorithm can be used to determine regions of the protein that are relatively unique or that shared structural similarity with structures that are distantly related. By quantifying residue frequencies among many residue-residue pairs extracted from local alignments, one can infer potential structural or functional importance of specific residues that are determined to be highly conserved or that deviate from a consensus. We further demonstrate that considerable detailed structural and phylogenetic information can be derived from StralSV analyses. StralSV is a new structure-based algorithm for identifying and aligning structure fragments that have similarity to a reference protein. StralSV analysis can be used to quantify residue-residue correspondences and identify residues that may be of particular structural or functional importance, as well as unusual or unexpected residues at a given sequence position.« less
Zemla, Adam T; Lang, Dorothy M; Kostova, Tanya; Andino, Raul; Ecale Zhou, Carol L
2011-06-02
Most of the currently used methods for protein function prediction rely on sequence-based comparisons between a query protein and those for which a functional annotation is provided. A serious limitation of sequence similarity-based approaches for identifying residue conservation among proteins is the low confidence in assigning residue-residue correspondences among proteins when the level of sequence identity between the compared proteins is poor. Multiple sequence alignment methods are more satisfactory--still, they cannot provide reliable results at low levels of sequence identity. Our goal in the current work was to develop an algorithm that could help overcome these difficulties by facilitating the identification of structurally (and possibly functionally) relevant residue-residue correspondences between compared protein structures. Here we present StralSV (structure-alignment sequence variability), a new algorithm for detecting closely related structure fragments and quantifying residue frequency from tight local structure alignments. We apply StralSV in a study of the RNA-dependent RNA polymerase of poliovirus, and we demonstrate that the algorithm can be used to determine regions of the protein that are relatively unique, or that share structural similarity with proteins that would be considered distantly related. By quantifying residue frequencies among many residue-residue pairs extracted from local structural alignments, one can infer potential structural or functional importance of specific residues that are determined to be highly conserved or that deviate from a consensus. We further demonstrate that considerable detailed structural and phylogenetic information can be derived from StralSV analyses. StralSV is a new structure-based algorithm for identifying and aligning structure fragments that have similarity to a reference protein. StralSV analysis can be used to quantify residue-residue correspondences and identify residues that may be of particular structural or functional importance, as well as unusual or unexpected residues at a given sequence position. StralSV is provided as a web service at http://proteinmodel.org/AS2TS/STRALSV/.
HA metabolism in skin homeostasis and inflammatory disease.
Kavasi, Rafaela-Maria; Berdiaki, Aikaterini; Spyridaki, Ioanna; Corsini, Emanuela; Tsatsakis, Aristidis; Tzanakakis, George; Nikitovic, Dragana
2017-03-01
Hyaluronan (HA), an unsulfated glycosaminoglycan, is an important component of the complex extracellular matrix network which surrounds and supports cells in tissues. HA is detected in all vertebrate tissues, but the bulk of HA is produced and deposited in the skin. In this review we focus on the role of HA in skin-associated inflammatory disease and wound healing. Properties of HA are directly dependent on its molecular weight. Thus, high molecular weight HA (HMWHA) is deposited in normal tissues during homeostasis and promotes their stability whereas low molecular weight HA fragments (LMWHA), on the other hand, may arise from enzymatic or chemical activities. The degradation of HMWHA to LMWHA fragments, often leads to the generation of biologically active oligosaccharides with different properties and postulated functions in wound scar formation and inflammation. More detailed studies of HA involvement in skin-associated inflammatory disease may result in novel treatment modalities. Copyright © 2017 Elsevier Ltd. All rights reserved.
Two-proton correlations in the target fragmentation region of nuclear collisions at 200 A GeV
NASA Astrophysics Data System (ADS)
Awes, T. C.; Barlag, C.; Berger, F.; Bloomer, M. A.; Blume, C.; Bock, D.; Bock, R.; Bohne, E.-M.; Bucher, D.; Claussen, A.; Clewing, G.; Dragon, L.; Eklund, A.; Garpman, S.; Glasow, R.; Gustafsson, H.; Gutbrod, H. H.; Hölker, G.; Idh, J.; Jacobs, P.; Kampert, K. H.; Kolb, B. W.; Löhner, H.; Lund, I.; Obenshain, F. E.; Oskarsson, A.; Otterlund, I.; Peitzmann, T.; Plasil, F.; Poskanzer, A. M.; Purschke, M.; Roters, B.; Saini, S.; Santo, R.; Schmidt, H. R.; Sørensen, S. P.; Steffens, K.; Steinhaeuser, P.; Stenlund, E.; Stüken, D.; Young, G. R.
1995-06-01
Correlations between protons are studied in the target fragmentation region of reactions of protons and16O with C, Cu, Ag, Au and of32S with Al and Au at 200 A GeV. The emitted protons were measured with the Plastic Ball detector in the WA80 experiment at the CERN SPS. The comparison of the correlation function with calculations, assuming a spherical, gaussian shaped source with a lifetime τ=0 fm/ c, allows the extraction of radius parameters. The values are very close to those expected from the geometry of the target nuclei and increase with the target mass as α A {Target/1/3}. Even in proton induced reactions the whole target nucleus is involved. The dependence of the radii on centrality, polar angle θ lab, and energy, and their relation to measured proton yields are presented.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hartman, Joshua D.; Beran, Gregory J. O., E-mail: gregory.beran@ucr.edu; Monaco, Stephen
2015-09-14
We assess the quality of fragment-based ab initio isotropic {sup 13}C chemical shift predictions for a collection of 25 molecular crystals with eight different density functionals. We explore the relative performance of cluster, two-body fragment, combined cluster/fragment, and the planewave gauge-including projector augmented wave (GIPAW) models relative to experiment. When electrostatic embedding is employed to capture many-body polarization effects, the simple and computationally inexpensive two-body fragment model predicts both isotropic {sup 13}C chemical shifts and the chemical shielding tensors as well as both cluster models and the GIPAW approach. Unlike the GIPAW approach, hybrid density functionals can be used readilymore » in a fragment model, and all four hybrid functionals tested here (PBE0, B3LYP, B3PW91, and B97-2) predict chemical shifts in noticeably better agreement with experiment than the four generalized gradient approximation (GGA) functionals considered (PBE, OPBE, BLYP, and BP86). A set of recommended linear regression parameters for mapping between calculated chemical shieldings and observed chemical shifts are provided based on these benchmark calculations. Statistical cross-validation procedures are used to demonstrate the robustness of these fits.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, C. L.; Schuetrumpf, B.; Nazarewicz, W.
An electron localization measure was originally introduced to characterize chemical bond structures in molecules. Recently, a nucleon localization based on Hartree-Fock densities has been introduced to investigate α-cluster structures in light nuclei. Compared to the local nucleonic densities, the nucleon localization function has been shown to be an excellent indicator of shell effects and cluster correlations. In this work, using the spatial nucleon localization measure, we investigated the emergence of fragments in fissioning heavy nuclei using the self-consistent energy density functional method with a quantified energy density functional optimized for fission studies. We studied the particle densities and spatial nucleonmore » localization distributions along the fission pathways of 264Fm, 232Th, and 240Pu. We demonstrated that the fission fragments were formed fairly early in the evolution, well before scission. To illustrate the usefulness of the localization measure, we showed how the hyperdeformed state of 232Th could be understood in terms of a quasimolecular state made of 132Sn and 100Zr fragments. Compared to nucleonic distributions, the nucleon localization function more effectively quantifies nucleonic clustering: its characteristic oscillating pattern, traced back to shell effects, is a clear fingerprint of cluster/fragment configurations. This is of particular interest for studies of fragment formation and fragment identification in fissioning nuclei.« less
The β-amyloid peptide compromises Reelin signaling in Alzheimer’s disease
Cuchillo-Ibañez, Inmaculada; Mata-Balaguer, Trinidad; Balmaceda, Valeria; Arranz, Juan José; Nimpf, Johannes; Sáez-Valero, Javier
2016-01-01
Reelin is a signaling protein that plays a crucial role in synaptic function, which expression is influenced by β-amyloid (Aβ). We show that Reelin and Aβ oligomers co-immunoprecipitated in human brain extracts and were present in the same size-exclusion chromatography fractions. Aβ treatment of cells led to increase expression of Reelin, but secreted Reelin results trapped together with Aβ aggregates. In frontal cortex extracts an increase in Reelin mRNA, and in soluble and insoluble (guanidine-extractable) Reelin protein, was associated with late Braak stages of Alzheimer’s disease (AD), while expression of its receptor, ApoER2, did not change. However, Reelin-dependent induction of Dab1 phosphorylation appeared reduced in AD. In cells, Aβ reduced the capacity of Reelin to induce internalization of biotinylated ApoER2 and ApoER2 processing. Soluble proteolytic fragments of ApoER2 generated after Reelin binding can be detected in cerebrospinal fluid (CSF). Quantification of these soluble fragments in CSF could be a tool to evaluate the efficiency of Reelin signaling in the brain. These CSF-ApoER2 fragments correlated with Reelin levels only in control subjects, not in AD, where these fragments diminished. We conclude that while Reelin expression is enhanced in the Alzheimer’s brain, the interaction of Reelin with Aβ hinders its biological activity. PMID:27531658
Aad, G.; Abbott, B.; Abdallah, J.; ...
2011-11-30
The jet fragmentation function and transverse profile for jets with 25 GeV < p Tjet < 500 GeV and |η jet| < 1.2 produced in proton–proton collisions with a center-of-mass energy of 7 TeV are presented. The measurement is performed using data with an integrated luminosity of 36 pb –1. Jets are reconstructed and their momentum measured using calorimetric information. The momenta of the charged particle constituents are measured using the tracking system. The distributions corrected for detector effects are compared with various Monte Carlo event generators and generator tunes. Several of these choices show good agreement with the measuredmore » fragmentation function. Furthermore, none of these choices reproduce both the transverse profile and fragmentation function over the full kinematic range of the measurement.« less
Double Parton Fragmentation Function and its Evolution in Quarkonium Production
NASA Astrophysics Data System (ADS)
Kang, Zhong-Bo
2014-01-01
We summarize the results of a recent study on a new perturbative QCD factorization formalism for the production of heavy quarkonia of large transverse momentum pT at collider energies. Such a new factorization formalism includes both the leading power (LP) and next-to-leading power (NLP) contributions to the cross section in the mQ2/p_T^2 expansion for heavy quark mass mQ. For the NLP contribution, the so-called double parton fragmentation functions are involved, whose evolution equations have been derived. We estimate fragmentation functions in the non-relativistic QCD formalism, and found that their contribution reproduce the bulk of the large enhancement found in explicit NLO calculations in the color singlet model. Heavy quarkonia produced from NLP channels prefer longitudinal polarization, in contrast to the single parton fragmentation function. This might shed some light on the heavy quarkonium polarization puzzle.
Mitochondrial fission proteins regulate programmed cell death in yeast.
Fannjiang, Yihru; Cheng, Wen-Chih; Lee, Sarah J; Qi, Bing; Pevsner, Jonathan; McCaffery, J Michael; Hill, R Blake; Basañez, Gorka; Hardwick, J Marie
2004-11-15
The possibility that single-cell organisms undergo programmed cell death has been questioned in part because they lack several key components of the mammalian cell death machinery. However, yeast encode a homolog of human Drp1, a mitochondrial fission protein that was shown previously to promote mammalian cell death and the excessive mitochondrial fragmentation characteristic of apoptotic mammalian cells. In support of a primordial origin of programmed cell death involving mitochondria, we found that the Saccharomyces cerevisiae homolog of human Drp1, Dnm1, promotes mitochondrial fragmentation/degradation and cell death following treatment with several death stimuli. Two Dnm1-interacting factors also regulate yeast cell death. The WD40 repeat protein Mdv1/Net2 promotes cell death, consistent with its role in mitochondrial fission. In contrast to its fission function in healthy cells, Fis1 unexpectedly inhibits Dnm1-mediated mitochondrial fission and cysteine protease-dependent cell death in yeast. Furthermore, the ability of yeast Fis1 to inhibit mitochondrial fission and cell death can be functionally replaced by human Bcl-2 and Bcl-xL. Together, these findings indicate that yeast and mammalian cells have a conserved programmed death pathway regulated by a common molecular component, Drp1/Dnm1, that is inhibited by a Bcl-2-like function.
Population Response to Habitat Fragmentation in a Stream-Dwelling Brook Trout Population
Letcher, Benjamin H.; Nislow, Keith H.; Coombs, Jason A.; O'Donnell, Matthew J.; Dubreuil, Todd L.
2007-01-01
Fragmentation can strongly influence population persistence and expression of life-history strategies in spatially-structured populations. In this study, we directly estimated size-specific dispersal, growth, and survival of stream-dwelling brook trout in a stream network with connected and naturally-isolated tributaries. We used multiple-generation, individual-based data to develop and parameterize a size-class and location-based population projection model, allowing us to test effects of fragmentation on population dynamics at local (i.e., subpopulation) and system-wide (i.e., metapopulation) scales, and to identify demographic rates which influence the persistence of isolated and fragmented populations. In the naturally-isolated tributary, persistence was associated with higher early juvenile survival (∼45% greater), shorter generation time (one-half) and strong selection against large body size compared to the open system, resulting in a stage-distribution skewed towards younger, smaller fish. Simulating barriers to upstream migration into two currently-connected tributary populations caused rapid (2–6 generations) local extinction. These local extinctions in turn increased the likelihood of system-wide extinction, as tributaries could no longer function as population sources. Extinction could be prevented in the open system if sufficient immigrants from downstream areas were available, but the influx of individuals necessary to counteract fragmentation effects was high (7–46% of the total population annually). In the absence of sufficient immigration, a demographic change (higher early survival characteristic of the isolated tributary) was also sufficient to rescue the population from fragmentation, suggesting that the observed differences in size distributions between the naturally-isolated and open system may reflect an evolutionary response to isolation. Combined with strong genetic divergence between the isolated tributary and open system, these results suggest that local adaptation can ‘rescue’ isolated populations, particularly in one-dimensional stream networks where both natural and anthropogenically-mediated isolation is common. However, whether rescue will occur before extinction depends critically on the race between adaptation and reduced survival in response to fragmentation. PMID:18188404
Shape Distribution of Fragments from Microsatellite Impact Tests
NASA Technical Reports Server (NTRS)
Liou, J.C.; Hanada, T.
2009-01-01
Fragment shape is an important factor for conducting reliable orbital debris damage assessments for critical space assets, such as the International Space Station. To date, seven microsatellite impact tests have been completed as part of an ongoing collaboration between Kyushu University and the NASA Orbital Debris Program Office. The target satellites ranged in size from 15 cm 15 cm 15 cm to 20 cm 20 cm 20 cm. Each target satellite was equipped with fully functional electronics, including circuits, battery, and transmitter. Solar panels and multi-layer insulation (MLI) were added to the target satellites of the last two tests. The impact tests were carried out with projectiles of different sizes and impact speeds. All fragments down to about 2 mm in size were collected and analyzed based on their three orthogonal dimensions, x, y, and z, where x is the longest dimension, y is the longest dimension in the plane perpendicular to x, and z is the longest dimension perpendicular to both x and y. Each fragment was also photographed and classified by shape and material composition. This data set serves as the basis of our effort to develop a fragment shape distribution. Two distinct groups can be observed in the x/y versus y/z distribution of the fragments. Objects in the first group typically have large x/y values. Many of them are needle-like objects originating from the fragmentation of carbon fiber reinforced plastic materials used to construct the satellites. Objects in the second group tend to have small x/y values, and many of them are box-like or plate-like objects, depending on their y/z values. Each group forms the corresponding peak in the x/y distribution. However, only one peak can be observed in the y/z distribution. These distributions and how they vary with size, material type, and impact parameters will be described in detail within the paper.
Population response to habitat fragmentation in a stream-dwelling brook trout population
Letcher, B.H.; Nislow, K.H.; Coombs, J.A.; O'Donnell, M. J.; Dubreuil, T.L.
2007-01-01
Fragmentation can strongly influence population persistence and expression of life-history strategies in spatially-structured populations. In this study, we directly estimated size-specific dispersal, growth, and survival of stream-dwelling brook trout in a stream network with connected and naturally-isolated tributaries. We used multiple-generation, individual-based data to develop and parameterize a size-class and location-based population projection model, allowing us to test effects of fragmentation on population dynamics at local (i.e., subpopulation) and system-wide (i.e., metapopulation) scales, and to identify demographic rates which influence the persistence of isolated and fragmented populations. In the naturally-isolated tributary, persistence was associated with higher early juvenile survival (-45% greater), shorter generation time (one-half) and strong selection against large body size compared to the open system, resulting in a stage-distribution skewed towards younger, smaller fish. Simulating barriers to upstream migration into two currently-connected tribuory populations caused rapid (2-6 generations) local extinction. These local extinctions in turn increased the likelihood of system-wide extinction, as tributaries could no longer function as population sources. Extinction could be prevented in the open system if sufficient immigrants from downstream areas were available, but the influx of individuals necessary to counteract fragmentation effects was high (7-46% of the total population annually). In the absence of sufficient immigration, a demographic change (higher early survival characteristic of the isolated tributary) was also sufficient to rescue the population from fragmentation, suggesting that the observed differences in size distributions between the naturally-isolated and open system may reflect an evolutionary response to isolation. Combined with strong genetic divergence between the isolated tributary and open system, these results suggest that local adaptation can 'rescue' isolated populations, particularly in one-dimensional stream networks where both natural and anthropegenically-mediated isolation is common. However, whether rescue will occur before extinction depends critically on the race between adaptation and reduced survival in response to fragmentation.
Temporal change in fragmentation of continental US forests
James D. Wickham; Kurt H. Riitters; Timothy G. Wade; Collin Homer
2008-01-01
Changes in forest ecosystem function and condition arise from changes in forest fragmentation. Previous studies estimated forest fragmentation for the continental United States (US). In this study, new temporal land-cover data from the National Land Cover Database (NLCD) were used to estimate changes in forest fragmentation at multiple scales for the continental US....
NASA Astrophysics Data System (ADS)
Bertolotto, Jorge A.; Umazano, Juan P.
2016-06-01
In the present work we make a theoretical study of the steady state electric linear dichroism of DNA fragments in aqueous solution. The here developed theoretical approach considers a flexible bent rod model with a saturating induced dipole moment. The electric polarizability tensor of bent DNA fragments is calculated considering a phenomenological model which theoretical and experimental backgroung is presented here. The model has into account the electric polarizability longitudinal and transversal to the macroion. Molecular flexibility is described using an elastic potential. We consider DNA fragments originally bent with bending fluctuations around an average bending angle. The induced dipole moment is supposed constant once the electric field strength grows up at critical value. To calculate the reduced electric linear dichroism we determine the optical factor considering the basis of the bent DNA perpendicular to the molecular axis. The orientational distribution function has into account the anisotropic electric properties and the molecule flexibility. We applied the present theoretical background to fit electric dichroism experimental data of DNA fragments reported in the bibliography in a wide range of molecular weight and electric field. From these fits, values of DNA physical properties are estimated. We compare and discuss the results here obtained with the theoretical and experimental data presented by other authors. The original contributions of this work are: the inclusion of the transversal electric polarizability saturating with the electric field, the description of the electric properties with an electric polarizability tensor dependant on the bending angle and the use of an arc model originally bent.
Sangiuolo, Federica; Scaldaferri, Maria Lucia; Filareto, Antonio; Spitalieri, Paola; Guerra, Lorenzo; Favia, Maria; Caroppo, Rosa; Mango, Ruggiero; Bruscia, Emanuela; Gruenert, Dieter C; Casavola, Valeria; De Felici, Massimo; Novelli, Giuseppe
2008-01-01
Different gene targeting approaches have been developed to modify endogenous genomic DNA in both human and mouse cells. Briefly, the process involves the targeting of a specific mutation in situ leading to the gene correction and the restoration of a normal gene function. Most of these protocols with therapeutic potential are oligonucleotide based, and rely on endogenous enzymatic pathways. One gene targeting approach, "Small Fragment Homologous Replacement (SFHR)", has been found to be effective in modifying genomic DNA. This approach uses small DNA fragments (SDF) to target specific genomic loci and induce sequence and subsequent phenotypic alterations. This study shows that SFHR can stably introduce a 3-bp deletion (deltaF508, the most frequent cystic fibrosis (CF) mutation) into the Cftr (CF Transmembrane Conductance Regulator) locus in the mouse embryonic stem (ES) cell genome. After transfection of deltaF508-SDF into murine ES cells, SFHR-mediated modification was evaluated at the molecular levels on DNA and mRNA obtained from transfected ES cells. About 12% of transcript corresponding to deleted allele was detected, while 60% of the electroporated cells completely lost any measurable CFTR-dependent chloride efflux. The data indicate that the SFHR technique can be used to effectively target and modify genomic sequences in ES cells. Once the SFHR-modified ES cells differentiate into different cell lineages they can be useful for elucidating tissue-specific gene function and for the development of transplantation-based cellular and therapeutic protocols.
The scale of landscape fragmentation affects herbivore response to vegetation heterogeneity.
Banks, John E
1998-11-01
Using alternating bands of weeds and broccoli I experimentally manipulated vegetation composition and the spatial scale at which the landscape was fragmented in a factorial design. This experimental approach allowed me to distinguish the effect of spatial scale from that of simple crop heterogeneity on crop herbivores. The importance of scale depended on which insect species were examined. Cabbage aphids (Brevicoryne brassicae) were influenced by vegetation composition at all tested scales of fragmentation; cabbage butterflies (Pieris rapae) were not affected by scale or by composition and flea beetles (Phyllotreta cruciferae) revealed a striking dependence on scale of fragmentation as well as an interaction between scale and composition. This approach shows the importance of dissecting out the effects of scale from other aspects of landscape manipulation, and emphasizes the challenge of developing a theory that will enable prediction of species-specific responses to scale.
NASA Astrophysics Data System (ADS)
Kelkar, A. H.; Misra, D.; Tribedi, L. C.
2007-09-01
We study the various inelastic processes such ionization, fragmentation and evaporation of C60 molecule in collisions with fast heavy ions. We have used 2.33 MeV/u C, O and F projectile ion beams. Various ionization and fragmentation products were detected using time-of-flight mass spectrometer. The multiply charged C60r+ ions were detected for maximum r = 4. The projectile charge state (qp) dependence of the single and double ionization cross sections is well reproduced by a model based on the giant dipole plasmon resonance (GDPR). The qp-dependence of the fragmentation yields, was found to be linear. Variation of relative yields of the evaporation products of C602+ (i.e. C582+, C562+ etc) and C603+ (i.e. C583+, C563+ etc) with qp has also been investigated for various projectiles.
Varshavsky, Alexander
2012-11-01
Despite extensive understanding of sleep regulation, the molecular-level cause and function of sleep are unknown. I suggest that they originate in individual neurons and stem from increased production of protein fragments during wakefulness. These fragments are transient parts of protein complexes in which the fragments were generated. Neuronal Ca²⁺ fluxes are higher during wakefulness than during sleep. Subunits of transmembrane channels and other proteins are cleaved by Ca²⁺-activated calpains and by other nonprocessive proteases, including caspases and secretases. In the proposed concept, termed the fragment generation (FG) hypothesis, sleep is a state during which the production of fragments is decreased (owing to lower Ca²⁺ transients) while fragment-destroying pathways are upregulated. These changes facilitate the elimination of fragments and the remodeling of protein complexes in which the fragments resided. The FG hypothesis posits that a proteolytic cleavage, which produces two fragments, can have both deleterious effects and fitness-increasing functions. This (previously not considered) dichotomy can explain both the conservation of cleavage sites in proteins and the evolutionary persistence of sleep, because sleep would counteract deleterious aspects of protein fragments. The FG hypothesis leads to new explanations of sleep phenomena, including a longer sleep after sleep deprivation. Studies in the 1970s showed that ethanol-induced sleep in mice can be strikingly prolonged by intracerebroventricular injections of either Ca²⁺ alone or Ca²⁺ and its ionophore (Erickson et al., Science 1978;199:1219-1221; Harris, Pharmacol Biochem Behav 1979;10:527-534; Erickson et al., Pharmacol Biochem Behav 1980;12:651-656). These results, which were never interpreted in connection to protein fragments or the function of sleep, may be accounted for by the FG hypothesis about molecular causation of sleep. Copyright © 2012 The Protein Society.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Barin, G; Krungleviciute, V; Gutov, O
2014-07-07
We successfully demonstrate an approach based on linker fragmentation to create defects and tune the pore volumes and surface areas of two metal-organic frameworks, NU-125 and HKUST-1, both of which feature copper paddlewheel nodes. Depending on the linker fragment composition, the defect can be either a vacant site or a functional group that the original linker does not have. In the first case, we show that both surface area and pore volume increase, while in the second case they decrease. The effect of defects on the high-pressure gas uptake is also studied over a large temperature and pressure range formore » different gases. We found that despite an increase in pore volume and surface area in structures with vacant sites, the absolute adsorption for methane decreases for HKUST-1 and slightly increases for NU-125. However, the working capacity (deliverable amount between 65 and 5 bar) in both cases remains similar to parent frameworks due to lower uptakes at low pressures. In the case of NU-125, the effect of defects became more pronounced at lower temperatures, reflecting the greater surface areas and pore volumes of the altered forms.« less
Effect of palladium doping on the stability and fragmentation patterns of cationic gold clusters
NASA Astrophysics Data System (ADS)
Ferrari, P.; Hussein, H. A.; Heard, C. J.; Vanbuel, J.; Johnston, R. L.; Lievens, P.; Janssens, E.
2018-05-01
We analyze in detail how the interplay between electronic structure and cluster geometry determines the stability and the fragmentation channels of single Pd-doped cationic Au clusters, PdA uN-1+ (N =2 -20 ). For this purpose, a combination of photofragmentation experiments and density functional theory calculations was employed. A remarkable agreement between the experiment and the calculations is obtained. Pd doping is found to modify the structure of the Au clusters, in particular altering the two-dimensional to three-dimensional transition size, with direct consequences on the stability of the clusters. Analysis of the electronic density of states of the clusters shows that depending on cluster size, Pd delocalizes one 4 d electron, giving an enhanced stability to PdA u6 + , or remains with all 4 d10 electrons localized, closing an electronic shell in PdA u9 + . Furthermore, it is observed that for most clusters, Au evaporation is the lowest-energy decay channel, although for some sizes Pd evaporation competes. In particular, PdA u7 + and PdA u9 + decay by Pd evaporation due to the high stability of the A u7 + and A u9 + fragmentation products.
Kuliawat, Regina; Santambrogio, Laura
2009-01-01
Melanocytes synthesize and store melanin within tissue-specific organelles, the melanosomes. Melanin deposition takes place along fibrils found within these organelles and fibril formation is known to depend on trafficking of the membrane glycoprotein Silver/Pmel17. However, correctly targeted, full-length Silver/Pmel17 cannot form fibers. Proteolytic processing in endosomal compartments and the generation of a lumenal Mα fragment that is incorporated into amyloid-like structures is also essential. Dominant White (DWhite), a mutant form of Silver/Pmel17 first described in chicken, causes disorganized fibers and severe hypopigmentation due to melanocyte death. Surprisingly, the DWhite mutation is an insertion of three amino acids into the transmembrane domain; the DWhite-Mα fragment is unaffected. To determine the functional importance of the transmembrane domain in organized fibril assembly, we investigated membrane trafficking and multimerization of Silver/Pmel17/DWhite proteins. We demonstrate that the DWhite mutation changes lipid interactions and disulfide bond-mediated associations of lumenal domains. Thus, partitioning into membrane microdomains and effects on conformation explain how the transmembrane region may contribute to the structural integrity of Silver/Pmel17 oligomers or influence toxic, amyloidogenic properties. PMID:19679373
Corridors restore animal-mediated pollination in fragmented tropical forest landscapes
Kormann, Urs; Scherber, Christoph; Tscharntke, Teja; Klein, Nadja; Larbig, Manuel; Valente, Jonathon J.; Hadley, Adam S.; Betts, Matthew G.
2016-01-01
Tropical biodiversity and associated ecosystem functions have become heavily eroded through habitat loss. Animal-mediated pollination is required in more than 94% of higher tropical plant species and 75% of the world's leading food crops, but it remains unclear if corridors avert deforestation-driven pollination breakdown in fragmented tropical landscapes. Here, we used manipulative resource experiments and field observations to show that corridors functionally connect neotropical forest fragments for forest-associated hummingbirds and increase pollen transfer. Further, corridors boosted forest-associated pollinator availability in fragments by 14.3 times compared with unconnected equivalents, increasing overall pollination success. Plants in patches without corridors showed pollination rates equal to bagged control flowers, indicating pollination failure in isolated fragments. This indicates, for the first time, that corridors benefit tropical forest ecosystems beyond boosting local species richness, by functionally connecting mutualistic network partners. We conclude that small-scale adjustments to landscape configuration safeguard native pollinators and associated pollination services in tropical forest landscapes. PMID:26817765
Tsumoto, K; Shinoki, K; Kondo, H; Uchikawa, M; Juji, T; Kumagai, I
1998-10-01
An improved and efficient refolding system for a single-chain antibody fragment (scFv) from inclusion bodies expressed in Escherichia coli was developed. Stepwise removal of denaturing reagent and controlled addition of oxidizing reagent were found to be the most effective conditions to achieve for almost complete recovery of functional monomeric scFv from inclusion bodies. Adding L-arginine to the refolding solution also increased the yield of refolded functional scFv. The single-chain Fv fragments of both a mouse anti-lysozyme monoclonal antibody, HyHEL10, and a human monoclonal antibody against the D antigen of the Rh blood group, D10, in solubilized inclusion bodies could be refolded under these conditions with yields of up to 95%. The refolding procedures developed in this study will contribute to providing a stable supply of large amounts of human single-chain Fv fragments.
Neocentromeres and epigenetically inherited features of centromeres
Burrack, Laura S.; Berman, Judith
2012-01-01
Neocentromeres are ectopic sites where new functional kinetochores assemble and permit chromosome segregation. Neocentromeres usually form following genomic alterations that remove or disrupt centromere function. The ability to form neocentromeres is conserved in eukaryotes ranging from fungi to mammals. Neocentromeres that rescue chromosome fragments in cells with gross chromosomal rearrangements are found in several types of human cancers, and in patients with developmental disabilities. In this review, we discuss the importance of neocentromeres to human health and evaluate recently developed model systems to study neocentromere formation, maintenance, and function in chromosome segregation. Additionally, studies of neocentromeres provide insight into native centromeres; analysis of neocentromeres found in human clinical samples and induced in model organisms distinguishes features of centromeres that are dependent on centromere DNA from features that are epigenetically inherited together with the formation of a functional kinetochore. PMID:22723125
Robustness of optimal random searches in fragmented environments
NASA Astrophysics Data System (ADS)
Wosniack, M. E.; Santos, M. C.; Raposo, E. P.; Viswanathan, G. M.; da Luz, M. G. E.
2015-05-01
The random search problem is a challenging and interdisciplinary topic of research in statistical physics. Realistic searches usually take place in nonuniform heterogeneous distributions of targets, e.g., patchy environments and fragmented habitats in ecological systems. Here we present a comprehensive numerical study of search efficiency in arbitrarily fragmented landscapes with unlimited visits to targets that can only be found within patches. We assume a random walker selecting uniformly distributed turning angles and step lengths from an inverse power-law tailed distribution with exponent μ . Our main finding is that for a large class of fragmented environments the optimal strategy corresponds approximately to the same value μopt≈2 . Moreover, this exponent is indistinguishable from the well-known exact optimal value μopt=2 for the low-density limit of homogeneously distributed revisitable targets. Surprisingly, the best search strategies do not depend (or depend only weakly) on the specific details of the fragmentation. Finally, we discuss the mechanisms behind this observed robustness and comment on the relevance of our results to both the random search theory in general, as well as specifically to the foraging problem in the biological context.
Mustafaoglu, Nur; Alves, Nathan J; Bilgicer, Basar
2015-07-01
The nucleotide binding site (NBS) is a highly conserved region between the variable light and heavy chains at the Fab domains of all antibodies, and a small molecule that we identified, indole-3-butyric acid (IBA), binds specifically to this site. Fab fragment, with its small size and simple production methods compared to intact antibody, is good candidate for use in miniaturized diagnostic devices and targeted therapeutic applications. However, commonly used modification techniques are not well suited for Fab fragments as they are often more delicate than intact antibodies. Fab fragments are of particular interest for sensor surface functionalization but immobilization results in damage to the antigen binding site and greatly reduced activity due to their truncated size that allows only a small area that can bind to surfaces without impeding antigen binding. In this study, we describe an NBS-UV photocrosslinking functionalization method (UV-NBS(Biotin) in which a Fab fragment is site-specifically biotinylated with an IBA-EG11-Biotin linker via UV energy exposure (1 J/cm(2)) without affecting its antigen binding activity. This study demonstrates successful immobilization of biotinylated Ebola detecting Fab fragment (KZ52 Fab fragment) via the UV-NBS(Biotin) method yielding 1031-fold and 2-fold better antigen detection sensitivity compared to commonly used immobilization methods: direct physical adsorption and NHS-Biotin functionalization, respectively. Utilization of the UV-NBS(Biotin) method for site-specific conjugation to Fab fragment represents a proof of concept use of Fab fragment for various diagnostic and therapeutic applications with numerous fluorescent probes, affinity molecules and peptides. © 2015 Wiley Periodicals, Inc.
Bonnemaison, Mathilde L.; Bäck, Nils; Duffy, Megan E.; Ralle, Martina; Mains, Richard E.; Eipper, Betty A.
2015-01-01
The adaptor protein-1 complex (AP-1), which transports cargo between the trans-Golgi network and endosomes, plays a role in the trafficking of Atp7a, a copper-transporting P-type ATPase, and peptidylglycine α-amidating monooxygenase (PAM), a copper-dependent membrane enzyme. Lack of any of the four AP-1 subunits impairs function, and patients with MEDNIK syndrome, a rare genetic disorder caused by lack of expression of the σ1A subunit, exhibit clinical and biochemical signs of impaired copper homeostasis. To explore the role of AP-1 in copper homeostasis in neuroendocrine cells, we used corticotrope tumor cells in which AP-1 function was diminished by reducing expression of its μ1A subunit. Copper levels were unchanged when AP-1 function was impaired, but cellular levels of Atp7a declined slightly. The ability of PAM to function was assessed by monitoring 18-kDa fragment-NH2 production from proopiomelanocortin. Reduced AP-1 function made 18-kDa fragment amidation more sensitive to inhibition by bathocuproine disulfonate, a cell-impermeant Cu(I) chelator. The endocytic trafficking of PAM was altered, and PAM-1 accumulated on the cell surface when AP-1 levels were reduced. Reduced AP-1 function increased the Atp7a presence in early/recycling endosomes but did not alter the ability of copper to stimulate its appearance on the plasma membrane. Co-immunoprecipitation of a small fraction of PAM and Atp7a supports the suggestion that copper can be transferred directly from Atp7a to PAM, a process that can occur only when both proteins are present in the same subcellular compartment. Altered luminal cuproenzyme function may contribute to deficits observed when the AP-1 function is compromised. PMID:26170456
Angular correlations in pair production at the LHC in the parton Reggeization approach
NASA Astrophysics Data System (ADS)
Karpishkov, Anton; Nefedov, Maxim; Saleev, Vladimir
2017-10-01
We calculate angular correlation spectra between beauty (B) and anti-beauty mesons in proton-proton collisions in the leading order approximation of the parton Reggeization approach consistently merged with the next-to-leading order corrections from the emission of additional hard gluon (NLO* approximation). To describe b-quark hadronization we use the universal scale-depended parton-to-meson fragmentation functions extracted from the combined e+e- annihilation data. The Kimber-Martin-Ryskin model for the unintegrated parton distribution functions in a proton is implied. We have obtained good agreement between our predictions and data from the CMS Collaboration at the energy TeV for angular correlations within uncertainties and without free parameters.
NASA Astrophysics Data System (ADS)
Bansal, Preeti
2016-05-01
We simulate semi-central symmetric system reactions, for center-of-mass energies at which maximal number of light fragments (2 ≤ A ≤ 4) occurs and at a fixed Ec.m. = 60 AMeV. The study was carried out with soft EOS using isospin-dependent quantum molecular dynamics (IQMD) model. We studied various properties of fragments at peak Ec.m. and also at constant energy (Ec.m. = 60 AMeV) to find out the relative difference between the properties at both energies.
Generalized Boltzmann-Type Equations for Aggregation in Gases
NASA Astrophysics Data System (ADS)
Adzhiev, S. Z.; Vedenyapin, V. V.; Volkov, Yu. A.; Melikhov, I. V.
2017-12-01
The coalescence and fragmentation of particles in a dispersion system are investigated by applying kinetic theory methods, namely, by generalizing the Boltzmann kinetic equation to coalescence and fragmentation processes. Dynamic equations for the particle concentrations in the system are derived using the kinetic equations of motion. For particle coalescence and fragmentation, equations for the particle momentum, coordinate, and mass distribution functions are obtained and the coalescence and fragmentation coefficients are calculated. The equilibrium mass and velocity distribution functions of the particles in the dispersion system are found in the approximation of an active terminal group (Becker-Döring-type equation). The transition to a continuum description is performed.
Evolution of Particle Size Distributions in Fragmentation Over Time
NASA Astrophysics Data System (ADS)
Charalambous, C. A.; Pike, W. T.
2013-12-01
We present a new model of fragmentation based on a probabilistic calculation of the repeated fracture of a particle population. The resulting continuous solution, which is in closed form, gives the evolution of fragmentation products from an initial block, through a scale-invariant power-law relationship to a final comminuted powder. Models for the fragmentation of particles have been developed separately in mainly two different disciplines: the continuous integro-differential equations of batch mineral grinding (Reid, 1965) and the fractal analysis of geophysics (Turcotte, 1986) based on a discrete model with a single probability of fracture. The first gives a time-dependent development of the particle-size distribution, but has resisted a closed-form solution, while the latter leads to the scale-invariant power laws, but with no time dependence. Bird (2009) recently introduced a bridge between these two approaches with a step-wise iterative calculation of the fragmentation products. The development of the particle-size distribution occurs with discrete steps: during each fragmentation event, the particles will repeatedly fracture probabilistically, cascading down the length scales to a final size distribution reached after all particles have failed to further fragment. We have identified this process as the equivalent to a sequence of trials for each particle with a fixed probability of fragmentation. Although the resulting distribution is discrete, it can be reformulated as a continuous distribution in maturity over time and particle size. In our model, Turcotte's power-law distribution emerges at a unique maturation index that defines a regime boundary. Up to this index, the fragmentation is in an erosional regime with the initial particle size setting the scaling. Fragmentation beyond this index is in a regime of comminution with rebreakage of the particles down to the size limit of fracture. The maturation index can increment continuously, for example under grinding conditions, or as discrete steps, such as with impact events. In both cases our model gives the energy associated with the fragmentation in terms of the developing surface area of the population. We show the agreement of our model to the evolution of particle size distributions associated with episodic and continuous fragmentation and how the evolution of some popular fractals may be represented using this approach. C. A. Charalambous and W. T. Pike (2013). Multi-Scale Particle Size Distributions of Mars, Moon and Itokawa based on a time-maturation dependent fragmentation model. Abstract Submitted to the AGU 46th Fall Meeting. Bird, N. R. A., Watts, C. W., Tarquis, A. M., & Whitmore, A. P. (2009). Modeling dynamic fragmentation of soil. Vadose Zone Journal, 8(1), 197-201. Reid, K. J. (1965). A solution to the batch grinding equation. Chemical Engineering Science, 20(11), 953-963. Turcotte, D. L. (1986). Fractals and fragmentation. Journal of Geophysical Research: Solid Earth 91(B2), 1921-1926.
Tmd Factorization and Evolution for Tmd Correlation Functions
NASA Astrophysics Data System (ADS)
Mert Aybat, S.; Rogers, Ted C.
We discuss the application of transverse momentum dependent (TMD) factorization theorems to phenomenology. Our treatment relies on recent extensions of the Collins-Soper-Sterman (CSS) formalism. Emphasis is placed on the importance of using well-defined TMD parton distribution functions (PDFs) and fragmentation functions (FFs) in calculating the evolution of these objects. We explain how parametrizations of unpolarized TMDs can be obtained from currently existing fixed-scale Gaussian fits and previous implementations of the CSS formalism in the Drell-Yan process, and provide some examples. We also emphasize the importance of agreed-upon definitions for having an unambiguous prescription for calculating higher orders in the hard part, and provide examples of higher order calculations. We end with a discussion of strategies for extending the phenomenological applications of TMD factorization to situations beyond the unpolarized case.
Degree of Landscape Fragmentation Influences Genetic Isolation among Populations of a Gliding Mammal
Taylor, Andrea C.; Walker, Faith M.; Goldingay, Ross L.; Ball, Tina; van der Ree, Rodney
2011-01-01
Forests and woodlands are under continuing pressure from urban and agricultural development. Tree-dependent mammals that rarely venture to the ground are likely to be highly sensitive to forest fragmentation. The Australian squirrel glider (Petaurus norfolcensis) provides an excellent case study to examine genetic (functional) connectivity among populations. It has an extensive range that occurs in a wide band along the east coast. However, its forest and woodland habitat has become greatly reduced in area and is severely fragmented within the southern inland part of the species' range, where it is recognised as threatened. Within central and northern coastal regions, habitat is much more intact and we thus hypothesise that genetic connectivity will be greater in this region than in the south. To test this we employed microsatellite analysis in a molecular population biology approach. Most sampling locations in the highly modified south showed signatures of genetic isolation. In contrast, a high level of genetic connectivity was inferred among most sampled populations in the more intact habitat of the coastal region, with samples collected 1400 km apart having similar genetic cluster membership. Nonetheless, some coastal populations associated with urbanisation and agriculture are genetically isolated, suggesting the historic pattern observed in the south is emerging on the coast. Our study demonstrates that massive landscape changes following European settlement have had substantial impacts on levels of connectivity among squirrel glider populations, as predicted on the basis of the species' ecology. This suggests that landscape planning and management in the south should be focused on restoring habitat connectivity where feasible, while along the coast, existing habitat connectivity must be maintained and recent losses restored. Molecular population biology approaches provide a ready means for identifying fragmentation effects on a species at multiple scales. Such studies are required to examine the generality of our findings for other tree-dependent species. PMID:22053200
Critical Features of Fragment Libraries for Protein Structure Prediction
dos Santos, Karina Baptista
2017-01-01
The use of fragment libraries is a popular approach among protein structure prediction methods and has proven to substantially improve the quality of predicted structures. However, some vital aspects of a fragment library that influence the accuracy of modeling a native structure remain to be determined. This study investigates some of these features. Particularly, we analyze the effect of using secondary structure prediction guiding fragments selection, different fragments sizes and the effect of structural clustering of fragments within libraries. To have a clearer view of how these factors affect protein structure prediction, we isolated the process of model building by fragment assembly from some common limitations associated with prediction methods, e.g., imprecise energy functions and optimization algorithms, by employing an exact structure-based objective function under a greedy algorithm. Our results indicate that shorter fragments reproduce the native structure more accurately than the longer. Libraries composed of multiple fragment lengths generate even better structures, where longer fragments show to be more useful at the beginning of the simulations. The use of many different fragment sizes shows little improvement when compared to predictions carried out with libraries that comprise only three different fragment sizes. Models obtained from libraries built using only sequence similarity are, on average, better than those built with a secondary structure prediction bias. However, we found that the use of secondary structure prediction allows greater reduction of the search space, which is invaluable for prediction methods. The results of this study can be critical guidelines for the use of fragment libraries in protein structure prediction. PMID:28085928
Critical Features of Fragment Libraries for Protein Structure Prediction.
Trevizani, Raphael; Custódio, Fábio Lima; Dos Santos, Karina Baptista; Dardenne, Laurent Emmanuel
2017-01-01
The use of fragment libraries is a popular approach among protein structure prediction methods and has proven to substantially improve the quality of predicted structures. However, some vital aspects of a fragment library that influence the accuracy of modeling a native structure remain to be determined. This study investigates some of these features. Particularly, we analyze the effect of using secondary structure prediction guiding fragments selection, different fragments sizes and the effect of structural clustering of fragments within libraries. To have a clearer view of how these factors affect protein structure prediction, we isolated the process of model building by fragment assembly from some common limitations associated with prediction methods, e.g., imprecise energy functions and optimization algorithms, by employing an exact structure-based objective function under a greedy algorithm. Our results indicate that shorter fragments reproduce the native structure more accurately than the longer. Libraries composed of multiple fragment lengths generate even better structures, where longer fragments show to be more useful at the beginning of the simulations. The use of many different fragment sizes shows little improvement when compared to predictions carried out with libraries that comprise only three different fragment sizes. Models obtained from libraries built using only sequence similarity are, on average, better than those built with a secondary structure prediction bias. However, we found that the use of secondary structure prediction allows greater reduction of the search space, which is invaluable for prediction methods. The results of this study can be critical guidelines for the use of fragment libraries in protein structure prediction.
Correlations between the disintegration of melt and the measured impulses in steam explosions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Froehlich, G.; Linca, A.; Schindler, M.
To find our correlations in steam explosions (melt water interactions) between the measured impulses and the disintegration of the melt, experiments were performed in three configurations i.e. stratified, entrapment and jet experiments. Linear correlations were detected between the impulse and the total surface of the fragments. Theoretical considerations point out that a linear correlation assumes superheating of a water layer around the fragments of a constant thickness during the fragmentation process to a constant temperature (here the homogeneous nucleation temperature of water was assumed) and a constant expansion velocity of the steam in the main expansion time. The correlation constantmore » does not depend on melt temperature and trigger pressure, but it depends on the configuration of the experiment or of a scenario of an accident. Further research is required concerning the correlation constant. For analysing steam explosion accidents the explosivity is introduced. The explosivity is a mass specific impulse. The explosivity is linear correlated with the degree of fragmentation. Knowing the degree of fragmentation with proper correlation constant the explosivity can be calculated and from the explosivity combined with the total mass of fragments the impulse is obtained which can be used to an estimation of the maximum force.« less
Study of Quantum Chaos in the Framework of Triaxial Rotator Models
DOE Office of Scientific and Technical Information (OSTI.GOV)
Proskurins, J.; Bavrins, K.; Andrejevs, A.
2009-01-28
Dynamical quantum chaos criteria--a perturbed wave function entropy W({psi}{sub i}) and a fragmentation width {kappa}({phi}{sub k}) of basis states were studied in two cases of nuclear rigid triaxial rotator models. The first model is characterized by deformation angle {gamma} only, while the second model depends on both quadrupole deformation parameters ({beta},{gamma}). The degree of chaoticity has been determined in the studies of the dependence of criteria W({psi}{sub i}) and {kappa}({phi}{sub k}) from nuclear spin values up to I{<=}101 for model parameters {gamma} and ({beta},{gamma}) correspondingly. The transition from librational to rotational type energy spectra has been considered for both modelsmore » as well.« less
Scale-dependence of transverse momentum correlations in PbAu collisions at 158A GeV/c
NASA Astrophysics Data System (ADS)
Ceres Collaboration; Adamová, D.; Agakichiev, G.; Antończyk, D.; Appelshäuser, H.; Belaga, V.; Bielcikova, S.; Braun-Munzinger, P.; Busch, O.; Cherlin, A.; Damjanović, S.; Dietel, T.; Dietrich, L.; Drees, A.; Dubitzky, W.; Esumi, S. I.; Filimonov, K.; Fomenko, K.; Fraenkel, Z.; Garabatos, C.; Glässel, P.; Holeczek, J.; Kushpil, V.; Maas, A.; Marín, A.; Milošević, J.; Milov, A.; Miśkowiec, D.; Panebrattsev, Yu.; Petchenova, O.; Petráček, V.; Pfeiffer, A.; Płoskoń, M.; Radomski, S.; Rak, J.; Ravinovich, I.; Rehak, P.; Sako, H.; Schmitz, W.; Sedykh, S.; Shimansky, S.; Stachel, J.; Šumbera, M.; Tilsner, H.; Tserruya, I.; Tsiledakis, G.; Wessels, J. P.; Wienold, T.; Wurm, J. P.; Xie, W.; Yurevich, S.; Yurevich, V.
2008-10-01
We present results on transverse momentum correlations of charged particle pairs produced in PbAu collisions at 158A GeV/c at the Super Proton Synchrotron. The transverse momentum correlations have been studied as a function of collision centrality, angular separation of the particle pairs, transverse momentum and charge sign. We demonstrate that the results are in agreement with previous findings in scale-independent analyses at the same beam energy. Employing the two-particle momentum correlator <Δp,Δp> and the cumulative p variable x(p), we identify, using the scale-dependent approach presented in this paper, different sources contributing to the measured correlations, such as quantum and Coulomb correlations, elliptic flow and mini-jet fragmentation.
Distinct compartmentalization of dentin matrix protein 1 fragments in mineralized tissues and cells.
Maciejewska, Izabela; Qin, Disheng; Huang, Bingzhen; Sun, Yao; Mues, Gabrielle; Svoboda, Kathy; Bonewald, Lynda; Butler, William T; Feng, Jerry Q; Qin, Chunlin
2009-01-01
Dentin matrix protein 1 (DMP1) has been shown to be critical for the formation of dentin and bone. However, the precise pathway by which DMP1 participates in dentinogenesis and osteogenesis remains to be clarified. DMP1 is present in the extracellular matrix of dentin and bone as processed NH(2)- and COOH-terminal fragments. The NH(2)-terminal fragment occurs as a proteoglycan, whereas the COOH-terminal fragment is highly phosphorylated. The differences in biochemical properties suggest that these fragments may have different tissue and cell distribution in association with distinct functions. In this study, we analyzed the distribution of the NH(2)- and COOH-terminal fragments of DMP1 in tooth, bone, osteocytes as well as MC3T3-E1 and HEK-293 cells. Immunohistochemical analyses were performed using antibodies specific to the NH(2)- or COOH-terminal region of DMP1. Clear differences in the distribution of these fragments were observed. In the teeth and bone, the NH(2)-terminal fragment was primarily located in the nonmineralized predentin and cartilage of the growth plate, while the COOH-terminal fragment accumulated in the mineralized zones. In osteocytes, the NH(2)-terminal fragment appeared more abundant along cell membrane and processes of osteocytes, while the COOH-terminal fragment was often found in the nuclei. This pattern of distribution in cellular compartments was further confirmed by analyses on MC3T3-E1 and HEK-293 cells transfected with a construct containing DMP1 cDNA. In these cell lines, the COOH-terminal fragment accumulated in cell nuclei, while the NH(2)-terminal fragment was in the cytosol. The different distribution of DMP1 fragments indicates that these DMP1 variants must perform distinct functions. Copyright 2008 S. Karger AG, Basel.
DNA fragment sizing and sorting by laser-induced fluorescence
Hammond, Mark L.; Jett, James H.; Keller, Richard A.; Marrone, Babetta L.; Martin, John C.
1996-01-01
A method is provided for sizing DNA fragments using high speed detection systems, such as flow cytometry to determine unique characteristics of DNA pieces from a sample. In one characterization the DNA piece is fragmented at preselected sites to produce a plurality of DNA fragments. The DNA piece or the resulting DNA fragments are treated with a dye effective to stain stoichiometrically the DNA piece or the DNA fragments. The fluorescence from the dye in the stained fragments is then examined to generate an output functionally related to the number of nucleotides in each one of the DNA fragments. In one embodiment, the intensity of the fluorescence emissions from each fragment is linearly related to the fragment length. The distribution of DNA fragment sizes forms a characterization of the DNA piece for use in forensic and research applications.
Chen, Tingting; Tan, Jieqiong; Wan, Zhengqing; Zou, Yongyi; Kessete Afewerky, Henok; Zhang, Zhuohua
2017-01-01
Evidence continues to accumulate that pesticides are the leading candidates of environmental toxins that may contribute to the pathogenesis of Parkinson’s disease. The mechanisms, however, remain largely unclear. According to epidemiological studies, we selected nine representative pesticides (paraquat, rotenone, chlorpyrifos, pendimethalin, endosulfan, fenpyroximate, tebufenpyrad, trichlorphon and carbaryl) which are commonly used in China and detected the effects of the pesticides on mitochondria and ubiquitin-proteasome system (UPS) function. Our results reveal that all the nine studied pesticides induce morphological changes of mitochondria at low concentrations. Paraquat, rotenone, chlorpyrifos, pendimethalin, endosulfan, fenpyroximate and tebufenpyrad induced mitochondria fragmentation. Furthermore, some of them (paraquat, rotenone, chlorpyrifos, fenpyroximate and tebufenpyrad) caused a significant dose-dependent decrease of intracellular ATP. Interestingly, these pesticides which induce mitochondria dysfunction also inhibit 26S and 20S proteasome activity. However, two out of the nine pesticides, namely trichlorphon and carbaryl, were found not to cause mitochondrial fragmentation or functional damage, nor inhibit the activity of the proteasome, which provides significant guidance for selection of pesticides in China. Moreover, our results demonstrate a potential link between inhibition of mitochondria and the UPS, and pesticide-induced Parkinsonism. PMID:29168786
Leon, Julio; Moreno, Arturo J; Garay, Bayardo I; Chalkley, Robert J; Burlingame, Alma L; Wang, Dan; Dubal, Dena B
2017-08-08
Cognitive dysfunction and decreased mobility from aging and neurodegenerative conditions, such as Parkinson and Alzheimer diseases, are major biomedical challenges in need of more effective therapies. Increasing brain resilience may represent a new treatment strategy. Klotho, a longevity factor, enhances cognition when genetically and broadly overexpressed in its full, wild-type form over the mouse lifespan. Whether acute klotho treatment can rapidly enhance cognitive and motor functions or induce resilience is a gap in our knowledge of its therapeutic potential. Here, we show that an α-klotho protein fragment (αKL-F), administered peripherally, surprisingly induced cognitive enhancement and neural resilience despite impermeability to the blood-brain barrier in young, aging, and transgenic α-synuclein mice. αKL-F treatment induced cleavage of the NMDAR subunit GluN2B and also enhanced NMDAR-dependent synaptic plasticity. GluN2B blockade abolished αKL-F-mediated effects. Peripheral αKL-F treatment is sufficient to induce neural enhancement and resilience in mice and may prove therapeutic in humans. Copyright © 2017 The Author(s). Published by Elsevier Inc. All rights reserved.
Impact and explosion crater ejecta, fragment size, and velocity
NASA Technical Reports Server (NTRS)
Okeefe, J. D.; Ahrens, T. J.
1983-01-01
A model was developed for the mass distribution of fragments that are ejected at a given velocity for impact and explosion craters. The model is semi-empirical in nature and is derived from (1) numerical calculations of cratering and the resultant mass versus ejection velocity, (2) observed ejecta blanket particle size distributions, (3) an empirical relationship between maximum ejecta fragment size and crater diameter and an assumption on the functional form for the distribution of fragements ejected at a given velocity. This model implies that for planetary impacts into competent rock, the distribution of fragments ejected at a given velocity are nearly monodisperse, e.g., 20% of the mass of the ejecta at a given velocity contain fragments having a mass less than 0.1 times a mass of the largest fragment moving at that velocity. Using this model, the largest fragment that can be ejected from asteroids, the moon, Mars, and Earth is calculated as a function of crater diameter. In addition, the internal energy of ejecta versus ejecta velocity is found. The internal energy of fragments having velocities exceeding the escape velocity of the moon will exceed the energy required for incipient melting for solid silicates and thus, constrains the maximum ejected solid fragment size.
The dual role of fragments in fragment-assembly methods for de novo protein structure prediction
Handl, Julia; Knowles, Joshua; Vernon, Robert; Baker, David; Lovell, Simon C.
2013-01-01
In fragment-assembly techniques for protein structure prediction, models of protein structure are assembled from fragments of known protein structures. This process is typically guided by a knowledge-based energy function and uses a heuristic optimization method. The fragments play two important roles in this process: they define the set of structural parameters available, and they also assume the role of the main variation operators that are used by the optimiser. Previous analysis has typically focused on the first of these roles. In particular, the relationship between local amino acid sequence and local protein structure has been studied by a range of authors. The correlation between the two has been shown to vary with the window length considered, and the results of these analyses have informed directly the choice of fragment length in state-of-the-art prediction techniques. Here, we focus on the second role of fragments and aim to determine the effect of fragment length from an optimization perspective. We use theoretical analyses to reveal how the size and structure of the search space changes as a function of insertion length. Furthermore, empirical analyses are used to explore additional ways in which the size of the fragment insertion influences the search both in a simulation model and for the fragment-assembly technique, Rosetta. PMID:22095594
A New Secondary Structure Assignment Algorithm Using Cα Backbone Fragments
Cao, Chen; Wang, Guishen; Liu, An; Xu, Shutan; Wang, Lincong; Zou, Shuxue
2016-01-01
The assignment of secondary structure elements in proteins is a key step in the analysis of their structures and functions. We have developed an algorithm, SACF (secondary structure assignment based on Cα fragments), for secondary structure element (SSE) assignment based on the alignment of Cα backbone fragments with central poses derived by clustering known SSE fragments. The assignment algorithm consists of three steps: First, the outlier fragments on known SSEs are detected. Next, the remaining fragments are clustered to obtain the central fragments for each cluster. Finally, the central fragments are used as a template to make assignments. Following a large-scale comparison of 11 secondary structure assignment methods, SACF, KAKSI and PROSS are found to have similar agreement with DSSP, while PCASSO agrees with DSSP best. SACF and PCASSO show preference to reducing residues in N and C cap regions, whereas KAKSI, P-SEA and SEGNO tend to add residues to the terminals when DSSP assignment is taken as standard. Moreover, our algorithm is able to assign subtle helices (310-helix, π-helix and left-handed helix) and make uniform assignments, as well as to detect rare SSEs in β-sheets or long helices as outlier fragments from other programs. The structural uniformity should be useful for protein structure classification and prediction, while outlier fragments underlie the structure–function relationship. PMID:26978354
A Fragment-Cloud Model for Breakup of Asteroids with Varied Internal Structures
NASA Technical Reports Server (NTRS)
Wheeler, Lorien; Mathias, Donovan; Stokan, Ed; Brown, Peter
2016-01-01
As an asteroid descends toward Earth, it deposits energy in the atmosphere through aerodynamic drag and ablation. Asteroid impact risk assessments rely on energy deposition estimates to predict blast overpressures and ground damage that may result from an airburst, such as the one that occurred over Chelyabinsk, Russia in 2013. The rates and altitudes at which energy is deposited along the entry trajectory depend upon how the bolide fragments, which in turn depends upon its internal structure and composition. In this work, we have developed an analytic asteroid fragmentation model to assess the atmospheric energy deposition of asteroids with a range of structures and compositions. The modeling approach combines successive fragmentation of larger independent pieces with aggregate debris clouds released with each fragmentation event. The model can vary the number and masses of fragments produced, the amount of mass released as debris clouds, the size-strength scaling used to increase the robustness of smaller fragments, and other parameters. The initial asteroid body can be seeded with a distribution of independent fragment sizes amid a remaining debris mass to represent loose rubble pile conglomerations, can be given an outer regolith later, or can be defined as a coherent or fractured monolith. This approach enables the model to represent a range of breakup behaviors and reproduce detailed energy deposition features such as multiple flares due to successive burst events, high-altitude regolith blow-off, or initial disruption of rubble piles followed by more energetic breakup of the constituent boulders. These capabilities provide a means to investigate sensitivities of ground damage to potential variations in asteroid structure.
NASA Astrophysics Data System (ADS)
Wheeler, Lorien; Mathias, Donovan; NASA Engineering Risk Assessment Team, NASA Asteroid Threat Assessment Project
2016-10-01
As an asteroid descends toward Earth, it deposits energy in the atmosphere through aerodynamic drag and ablation. Asteroid impact risk assessments rely on energy deposition estimates to predict blast overpressures and ground damage that may result from an airburst, such as the one that occurred over Chelyabinsk, Russia in 2013. The rates and altitudes at which energy is deposited along the entry trajectory depend upon how the bolide fragments, which in turn depends upon its internal structure and composition. In this work, an analytic asteroid fragmentation model has been developed to model the atmospheric breakup and resulting energy deposition of asteroids with a range of internal structures. The modeling approach combines successive fragmentation of larger independent pieces with aggregate debris clouds released with each fragmentation event. The model can vary the number and masses of fragments produced, the amount of mass released as debris clouds, and the size-strength scaling used to increase the robustness of smaller fragments. The initial asteroid body can be seeded with a distribution of independent fragment sizes amid a remaining debris mass to represent loose rubble pile conglomerations, or can be defined as a monolith with an outer regolith layer. This approach enables the model to represent a range of breakup behaviors and reproduce detailed energy deposition features such as multiple flares due to successive burst events, high-altitude regolith blow-off, or initial disruption of rubble piles followed by more energetic breakup of the constituent boulders. These capabilities provide a means to investigate sensitivities of ground damage to potential variations in asteroid structure.
NASA Astrophysics Data System (ADS)
Pagano, E. V.; Acosta, L.; Auditore, L.; Cap, T.; Cardella, G.; Colonna, M.; De Filippo, E.; Geraci, E.; Gnoffo, B.; Lanzalone, G.; Maiolino, C.; Martorana, N.; Pagano, A.; Papa, M.; Piasecki, E.; Pirrone, S.; Politi, G.; Porto, F.; Quattrocchi, L.; Rizzo, F.; Russotto, P.; Trifiro’, A.; Trimarchi, M.; Siwek-Wilczynska, K.
2018-05-01
In nuclear reactions at Fermi energies two and multi particles intensity interferometry correlation methods are powerful tools in order to pin down the characteristic time scale of the emission processes. In this paper we summarize an improved application of the fragment-fragment correlation function in the specific physics case of heavy projectile-like (PLF) binary massive splitting in two fragments of intermediate mass(IMF). Results are shown for the reverse kinematics reaction 124 Sn+64 Ni at 35 AMeV that has been investigated by using the forward part of CHIMERA multi-detector. The analysis was performed as a function of the charge asymmetry of the observed couples of IMF. We show a coexistence of dynamical and statistical components as a function of the charge asymmetry. Transport CoMD simulations are compared with the data in order to pin down the timescale of the fragments production and the relevant ingredients of the in medium effective interaction used in the transport calculations.
An energy-dependent numerical model for the condensation probability, γ j
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kerby, Leslie Marie
The “condensation” probability, γ j, is an important variable in the preequilibrium stage of nuclear spallation reactions. It represents the probability that p j excited nucleons (excitons) will “condense” to form complex particle type j in the excited residual nucleus. In addition, it has a significant impact on the emission width, or probability of emitting fragment type j from the residual nucleus. Previous formulations for γ j were energy-independent and valid for fragments up to 4He only. This paper explores the formulation of a new model for γ j, one which is energy-dependent and valid for up to 28Mg, andmore » which provides improved fits compared to experimental fragment spectra.« less
An energy-dependent numerical model for the condensation probability, γ j
Kerby, Leslie Marie
2016-12-09
The “condensation” probability, γ j, is an important variable in the preequilibrium stage of nuclear spallation reactions. It represents the probability that p j excited nucleons (excitons) will “condense” to form complex particle type j in the excited residual nucleus. In addition, it has a significant impact on the emission width, or probability of emitting fragment type j from the residual nucleus. Previous formulations for γ j were energy-independent and valid for fragments up to 4He only. This paper explores the formulation of a new model for γ j, one which is energy-dependent and valid for up to 28Mg, andmore » which provides improved fits compared to experimental fragment spectra.« less
Waveform control of orientation-dependent ionization of DCl in few-cycle laser fields.
Znakovskaya, I; von den Hoff, P; Schirmel, N; Urbasch, G; Zherebtsov, S; Bergues, B; de Vivie-Riedle, R; Weitzel, K-M; Kling, M F
2011-05-21
Strong few-cycle light fields with stable electric field waveforms allow controlling electrons on time scales down to the attosecond domain. We have studied the dissociative ionization of randomly oriented DCl in 5 fs light fields at 720 nm in the tunneling regime. Momentum distributions of D(+) and Cl(+) fragments were recorded via velocity-map imaging. A waveform-dependent anti-correlated directional emission of D(+) and Cl(+) fragments is observed. Comparison of our results with calculations indicates that tailoring of the light field via the carrier envelope phase permits the control over the orientation of DCl(+) and in turn the directional emission of charged fragments upon the breakup of the molecular ion. © The Owner Societies 2011
Iglesias-Guimarais, Victoria; Gil-Guiñon, Estel; Sánchez-Osuna, María; Casanelles, Elisenda; García-Belinchón, Mercè; Comella, Joan X.; Yuste, Victor J.
2013-01-01
Apoptotic nuclear morphology and oligonucleosomal double-strand DNA fragments (also known as DNA ladder) are considered the hallmarks of apoptotic cell death. From a classic point of view, these two processes occur concomitantly. Once activated, DNA fragmentation factor, 40-kDa subunit (DFF40)/caspase-activated DNase (CAD) endonuclease hydrolyzes the DNA into oligonucleosomal-size pieces, facilitating the chromatin package. However, the dogma that the apoptotic nuclear morphology depends on DNA fragmentation has been questioned. Here, we use different cellular models, including MEF CAD−/− cells, to unravel the mechanism by which DFF40/CAD influences chromatin condensation and nuclear collapse during apoptosis. Upon apoptotic insult, SK-N-AS cells display caspase-dependent apoptotic nuclear alterations in the absence of internucleosomal DNA degradation. The overexpression of a wild-type form of DFF40/CAD endonuclease, but not of different catalytic-null mutants, restores the cellular ability to degrade the chromatin into oligonucleosomal-length fragments. We show that apoptotic nuclear collapse requires a 3′-OH endonucleolytic activity even though the internucleosomal DNA degradation is impaired. Moreover, alkaline unwinding electrophoresis and In Situ End-Labeling (ISEL)/In Situ Nick Translation (ISNT) assays reveal that the apoptotic DNA damage observed in the DNA ladder-deficient SK-N-AS cells is characterized by the presence of single-strand nicks/breaks. Apoptotic single-strand breaks can be impaired by DFF40/CAD knockdown, abrogating nuclear collapse and disassembly. In conclusion, the highest order of chromatin compaction observed in the later steps of caspase-dependent apoptosis relies on DFF40/CAD-mediated DNA damage by generating 3′-OH ends in single-strand rather than double-strand DNA nicks/breaks. PMID:23430749
Tang, Weijuan; Sheng, Huaming; Jin, Chunfen; Riedeman, James S; Kenttämaa, Hilkka I
2016-04-15
The chemistry of desulfurization involved in processing crude oil is greatly dependent on the forms of sulfur in the oil. Sulfur exists in different chemical bonding environments in fossil fuels, including those in thiophenes and benzothiophenes, thiols, sulfides, and disulfides. In this study, the fragmentation behavior of the molecular ions of 17 aromatic organosulfur compounds with various functionalities was systematically investigated by using high-resolution tandem mass spectrometry. Multiple-stage tandem mass spectrometric experiments were carried out using a linear quadrupole ion trap (LQIT) equipped with an atmospheric pressure chemical ionization (APCI) source. (+)APCI/CS2 was used to generate stable dominant molecular ions for all the compounds studied except for three sulfides that also showed abundant fragment ions. The LQIT coupled with an orbitrap mass spectrometer was used for elemental composition analysis, which facilitated the identification of the neutral molecules lost during fragmentation. The characteristic fragment ions generated in MS(2) and MS(3) experiments provide clues for the chemical bonding environment of sulfur atoms in the examined compounds. Upon collision-induced dissociation (CID), the molecular ions can lose the sulfur atom in a variety of ways, including as S (32 Da), HS(•) (33 Da), H2 S (34 Da), CS (44 Da), (•) CHS (45 Da) and CH2 S (46 Da). These neutral fragments are not only indicative of the presence of sulfur, but also of the type of sulfur present in the compound. Generally, losses of HS(•) and H2 S were found to be associated with compounds containing saturated sulfur functionalities, while losses of S, CS and (•) CHS were more common for heteroaromatic sulfur compounds. High-resolution tandem mass spectrometry with APCI/CS2 ionization is a viable approach to determining the types of organosulfur compounds. It can potentially be applied to analysis of complex mixtures, which is beneficial to improving the desulfurization process of fossil fuels. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.
Cui, Xiaoyan; Sun, Can; Zhao, Pei; Wang, Yanyan; Guo, Yanchun; Zhao, Yufen; Cao, Shuxia
2018-04-01
The fragmentation pathways of pentacoordinated phenoxyspirophosphoranes were investigated in the positive mode by electrospray ionization multistage mass spectrometry. The results demonstrate that the sodium adducts of the title compounds undergo two competitive fragmentation pathways, and the fragmentation patterns are heavily dependent on the various substituent patterns at the phenolic group. An electron-withdrawing substituent at the ortho-position always results in the removal of a corresponding phenol analogue, while cleavage by spiroring opening becomes the predominant fragmentation pathway if an electron-donating substituent is at the phenolic group. The substituent effects on the competitive fragmentation pathways were further elucidated by theoretical calculations, single crystal structure analysis, and high-resolution mass spectrometry. The results contribute to the understanding of the gas-phase fragmentation reactions and the structure identification of spirophosphorane analogues by electrospray ionization multistage mass spectrometry. Copyright © 2018 John Wiley & Sons, Ltd.
Grebecka, L; Pomorski, P; Lopatowska, A
1995-10-01
Isolated fragments produced by bisection of Amoeba proteus differ by their position in the original cell and by the presence or absence of the cell nucleus. Immediately after the operation, both types of anterior fragments preserve the former motory polarity, and do not interrupt locomotion. In the same time, all posterior fragments stop, round up and fail to react stimuli. In the second phase of experiment, these anterior fragments, which had no nucleus ceased to move, whereas the nucleated posterior ones resumed locomotion. It was demonstrated, that the behaviour of a fragment is primarily determined by the peripheral F-actin distribution, which is different depending on the origin of the fragment either from the anterior or from the posterior cell region. Later, the "inherited" F-actin distribution may be stabilized or reorganized in the presence of the nucleus, or desorganized in its absence.
Ruffell, Jay; Didham, Raphael K.; Barrett, Paul; Gorman, Nic; Pike, Rhonda; Hickey-Elliott, Andrée; Sievwright, Karin; Armstrong, Doug P.
2014-01-01
Forest edges can strongly affect avian nest success by altering nest predation rates, but this relationship is inconsistent and context dependent. There is a need for researchers to improve the predictability of edge effects on nest predation rates by examining the mechanisms driving their occurrence and variability. In this study, we examined how the capture rates of ship rats, an invasive nest predator responsible for avian declines globally, varied with distance from the forest edge within forest fragments in a pastoral landscape in New Zealand. We hypothesised that forest edges would affect capture rates by altering vegetation structure within fragments, and that the strength of edge effects would depend on whether fragments were grazed by livestock. We measured vegetation structure and rat capture rates at 488 locations ranging from 0–212 m from the forest edge in 15 forest fragments, seven of which were grazed. Contrary to the vast majority of previous studies of edge effects on nest predation, ship rat capture rates increased with increasing distance from the forest edge. For grazed fragments, capture rates were estimated to be 78% lower at the forest edge than 118 m into the forest interior (the farthest distance for grazed fragments). This relationship was similar for ungrazed fragments, with capture rates estimated to be 51% lower at the forest edge than 118 m into the forest interior. A subsequent path analysis suggested that these ‘reverse’ edge effects were largely or entirely mediated by changes in vegetation structure, implying that edge effects on ship rats can be predicted from the response of vegetation structure to forest edges. We suggest the occurrence, strength, and direction of edge effects on nest predation rates may depend on edge-driven changes in local habitat when the dominant predator is primarily restricted to forest patches. PMID:25412340
Ruffell, Jay; Didham, Raphael K; Barrett, Paul; Gorman, Nic; Pike, Rhonda; Hickey-Elliott, Andrée; Sievwright, Karin; Armstrong, Doug P
2014-01-01
Forest edges can strongly affect avian nest success by altering nest predation rates, but this relationship is inconsistent and context dependent. There is a need for researchers to improve the predictability of edge effects on nest predation rates by examining the mechanisms driving their occurrence and variability. In this study, we examined how the capture rates of ship rats, an invasive nest predator responsible for avian declines globally, varied with distance from the forest edge within forest fragments in a pastoral landscape in New Zealand. We hypothesised that forest edges would affect capture rates by altering vegetation structure within fragments, and that the strength of edge effects would depend on whether fragments were grazed by livestock. We measured vegetation structure and rat capture rates at 488 locations ranging from 0-212 m from the forest edge in 15 forest fragments, seven of which were grazed. Contrary to the vast majority of previous studies of edge effects on nest predation, ship rat capture rates increased with increasing distance from the forest edge. For grazed fragments, capture rates were estimated to be 78% lower at the forest edge than 118 m into the forest interior (the farthest distance for grazed fragments). This relationship was similar for ungrazed fragments, with capture rates estimated to be 51% lower at the forest edge than 118 m into the forest interior. A subsequent path analysis suggested that these 'reverse' edge effects were largely or entirely mediated by changes in vegetation structure, implying that edge effects on ship rats can be predicted from the response of vegetation structure to forest edges. We suggest the occurrence, strength, and direction of edge effects on nest predation rates may depend on edge-driven changes in local habitat when the dominant predator is primarily restricted to forest patches.
Volpe, Noelia L.; Robinson, W. Douglas; Frey, Sarah J. K.; Hadley, Adam S.; Betts, Matthew G.
2016-01-01
Habitat loss and fragmentation influence species distributions and therefore ecological processes that depend upon them. Pollination may be particularly susceptible to fragmentation, as it depends on frequent pollinator movement. Unfortunately, most pollinators are too small to track efficiently which has precluded testing the hypothesis that habitat fragmentation reduces or eliminates pollen flow by disrupting pollinator movement. We used radio-telemetry to examine space use of the green hermit hummingbird (Phaethornis guy), an important ‘hub’ pollinator of understory flowering plants across substantial portions of the neotropics and the primary pollinator of a keystone plant which shows reduced pollination success in fragmented landscapes. We found that green hermits strongly avoided crossing large stretches of non-forested matrix and preferred to move along stream corridors. Forest gaps as small as 50 m diminished the odds of movement by 50%. Green hermits occurred almost exclusively inside the forest, with the odds of occurrence being 8 times higher at points with >95% canopy cover compared with points having <5% canopy cover. Nevertheless, surprisingly. the species occurred in fragmented landscapes with low amounts of forest (~30% within a 2 km radius). Our results indicate that although green hermits are present even in landscapes with low amounts of tropical forest, movement within these landscapes ends up strongly constrained by forest gaps. Restricted movement of pollinators may be an underappreciated mechanism for widespread declines in pollination and plant fitness in fragmented landscapes, even when in the presence of appropriate pollinators. PMID:27941984
DOE Office of Scientific and Technical Information (OSTI.GOV)
Litvinenko, A. G., E-mail: alitvin@jinr.ru; Litvinenko, E. I.
2015-03-15
We have studied the mechanisms influencing production of cumulative pions and protons in the fragmentation of the incident deuterons into cumulative pions and protons emitted at zero angle. We argue that the peripheral dependence on the atomic mass of the target nucleus, which was obtained in the experiments for medium and heavy nuclei, can be explained by scattering on target nucleons without introducing additional parameters.
Dynamics and molecular determinants of cytoplasmic lipid droplet clustering and dispersion.
Orlicky, David J; Monks, Jenifer; Stefanski, Adrianne L; McManaman, James L
2013-01-01
Perilipin-1 (Plin1), a prominent cytoplasmic lipid droplet (CLD) binding phosphoprotein and key physiological regulator of triglyceride storage and lipolysis in adipocytes, is thought to regulate the fragmentation and dispersion of CLD that occurs in response to β-adrenergic activation of adenylate cyclase. Here we investigate the dynamics and molecular determinants of these processes using cell lines stably expressing recombinant forms of Plin1 and/or other members of the perilipin family. Plin1 and a C-terminal CLD-binding fragment of Plin1 (Plin1CT) induced formation of single dense CLD clusters near the microtubule organizing center, whereas neither an N-terminal CLD-binding fragment of Plin1, nor Plin2 or Plin3 induced clustering. Clustered CLD coated by Plin1, or Plin1CT, dispersed in response to isoproterenol, or other agents that activate adenylate cyclase, in a process inhibited by the protein kinase A inhibitor, H89, and blocked by microtubule disruption. Isoproterenol-stimulated phosphorylation of CLD-associated Plin1 on serine 492 preceded their dispersion, and live cell imaging showed that cluster dispersion involved initial fragmentation of tight clusters into multiple smaller clusters, which then fragmented into well-dispersed individual CLD. siRNA knockdown of the cortical actin binding protein, moesin, induced disaggregation of tight clusters into multiple smaller clusters, and inhibited the reaggregation of dispersed CLD into tight clusters. Together these data suggest that the clustering and dispersion processes involve a complex orchestration of phosphorylation-dependent, microtubule-dependent and independent, and microfilament dependent steps.
Prompt neutron emission and energy balance in 235U(n,f)
NASA Astrophysics Data System (ADS)
Göök, Alf; Hambsch, Franz-Josef; Oberstedt, Stephan
2017-09-01
Investigations of prompt fission neutron (PFN) emission are of importance in understanding the fission process in general and the sharing of excitation energy among the fission fragments in particular. Experimental activities at JRC-Geel on PFN emission in response to OECD/NEA nuclear data requests is presented in this contribution. The focus lies on on-going investigations of PFN emission from the reaction 235U(n,f) in the region of the resolved resonances taking place at the GELINA facility. For this reaction strong fluctuations of fission fragment mass distributions and mean total kinetic energy have been observed as a function of incident neutron energy in the resonance region. In addition, fluctuations of prompt neutron multiplicities have also been observed. The goal of the present study is to verify the current knowledge of PFN multiplicity fluctuations and to study correlations with fission fragment properties. The experiment employs a scintillation detector array for neutron detection, while fission fragment properties are determined via the double kinetic energy technique using a position sensitive twin ionization chamber. Results on PFN multiplicity correlations with fission fragment properties from the present study show significant differences compared to earlier studies on this reaction, induced by thermal neutrons. Specifically, the total kinetic energy dependence of the neutron multiplicity per fission shows an inverse slope FX1TKE/FX2ν approximately 35% weaker than observed in earlier studies of thermal neutron induced fission on 235U. The inverse slope is related to the energy carried away per emitted neutron and is, thereby, closely connected to the energy balance of the fission reaction. The present result should have strong impact on the modeling of both prompt neutron and prompt γ-ray emission in fission of the 236U compound nucleus.
Universality of fragment shapes.
Domokos, Gábor; Kun, Ferenc; Sipos, András Árpád; Szabó, Tímea
2015-03-16
The shape of fragments generated by the breakup of solids is central to a wide variety of problems ranging from the geomorphic evolution of boulders to the accumulation of space debris orbiting Earth. Although the statistics of the mass of fragments has been found to show a universal scaling behavior, the comprehensive characterization of fragment shapes still remained a fundamental challenge. We performed a thorough experimental study of the problem fragmenting various types of materials by slowly proceeding weathering and by rapid breakup due to explosion and hammering. We demonstrate that the shape of fragments obeys an astonishing universality having the same generic evolution with the fragment size irrespective of materials details and loading conditions. There exists a cutoff size below which fragments have an isotropic shape, however, as the size increases an exponential convergence is obtained to a unique elongated form. We show that a discrete stochastic model of fragmentation reproduces both the size and shape of fragments tuning only a single parameter which strengthens the general validity of the scaling laws. The dependence of the probability of the crack plan orientation on the linear extension of fragments proved to be essential for the shape selection mechanism.
Universality of fragment shapes
Domokos, Gábor; Kun, Ferenc; Sipos, András Árpád; Szabó, Tímea
2015-01-01
The shape of fragments generated by the breakup of solids is central to a wide variety of problems ranging from the geomorphic evolution of boulders to the accumulation of space debris orbiting Earth. Although the statistics of the mass of fragments has been found to show a universal scaling behavior, the comprehensive characterization of fragment shapes still remained a fundamental challenge. We performed a thorough experimental study of the problem fragmenting various types of materials by slowly proceeding weathering and by rapid breakup due to explosion and hammering. We demonstrate that the shape of fragments obeys an astonishing universality having the same generic evolution with the fragment size irrespective of materials details and loading conditions. There exists a cutoff size below which fragments have an isotropic shape, however, as the size increases an exponential convergence is obtained to a unique elongated form. We show that a discrete stochastic model of fragmentation reproduces both the size and shape of fragments tuning only a single parameter which strengthens the general validity of the scaling laws. The dependence of the probability of the crack plan orientation on the linear extension of fragments proved to be essential for the shape selection mechanism. PMID:25772300
NASA Technical Reports Server (NTRS)
Richardson, Erin; Hays, M. J.; Blackwood, J. M.; Skinner, T.
2014-01-01
The Liquid Propellant Fragment Overpressure Acceleration Model (L-FOAM) is a tool developed by Bangham Engineering Incorporated (BEi) that produces a representative debris cloud from an exploding liquid-propellant launch vehicle. Here it is applied to the Core Stage (CS) of the National Aeronautics and Space Administration (NASA) Space Launch System (SLS launch vehicle). A combination of Probability Density Functions (PDF) based on empirical data from rocket accidents and applicable tests, as well as SLS specific geometry are combined in a MATLAB script to create unique fragment catalogues each time L-FOAM is run-tailored for a Monte Carlo approach for risk analysis. By accelerating the debris catalogue with the BEi blast model for liquid hydrogen / liquid oxygen explosions, the result is a fully integrated code that models the destruction of the CS at a given point in its trajectory and generates hundreds of individual fragment catalogues with initial imparted velocities. The BEi blast model provides the blast size (radius) and strength (overpressure) as probabilities based on empirical data and anchored with analytical work. The coupling of the L-FOAM catalogue with the BEi blast model is validated with a simulation of the Project PYRO S-IV destruct test. When running a Monte Carlo simulation, L-FOAM can accelerate all catalogues with the same blast (mean blast, 2 s blast, etc.), or vary the blast size and strength based on their respective probabilities. L-FOAM then propagates these fragments until impact with the earth. Results from L-FOAM include a description of each fragment (dimensions, weight, ballistic coefficient, type and initial location on the rocket), imparted velocity from the blast, and impact data depending on user desired application. LFOAM application is for both near-field (fragment impact to escaping crew capsule) and far-field (fragment ground impact footprint) safety considerations. The user is thus able to use statistics from a Monte Carlo set of L-FOAM catalogues to quantify risk for a multitude of potential CS destruct scenarios. Examples include the effect of warning time on the survivability of an escaping crew capsule or the maximum fragment velocities generated by the ignition of leaking propellants in internal cavities.
NASA Astrophysics Data System (ADS)
Krasilenko, Vladimir G.; Lazarev, Alexander A.; Nikitovich, Diana V.
2017-08-01
Self-learning equivalent-convolutional neural structures (SLECNS) for auto-coding-decoding and image clustering are discussed. The SLECNS architectures and their spatially invariant equivalent models (SI EMs) using the corresponding matrix-matrix procedures with basic operations of continuous logic and non-linear processing are proposed. These SI EMs have several advantages, such as the ability to recognize image fragments with better efficiency and strong cross correlation. The proposed clustering method of fragments with regard to their structural features is suitable not only for binary, but also color images and combines self-learning and the formation of weight clustered matrix-patterns. Its model is constructed and designed on the basis of recursively processing algorithms and to k-average method. The experimental results confirmed that larger images and 2D binary fragments with a large numbers of elements may be clustered. For the first time the possibility of generalization of these models for space invariant case is shown. The experiment for an image with dimension of 256x256 (a reference array) and fragments with dimensions of 7x7 and 21x21 for clustering is carried out. The experiments, using the software environment Mathcad, showed that the proposed method is universal, has a significant convergence, the small number of iterations is easily, displayed on the matrix structure, and confirmed its prospects. Thus, to understand the mechanisms of self-learning equivalence-convolutional clustering, accompanying her to the competitive processes in neurons, and the neural auto-encoding-decoding and recognition principles with the use of self-learning cluster patterns is very important which used the algorithm and the principles of non-linear processing of two-dimensional spatial functions of images comparison. These SIEMs can simply describe the signals processing during the all training and recognition stages and they are suitable for unipolar-coding multilevel signals. We show that the implementation of SLECNS based on known equivalentors or traditional correlators is possible if they are based on proposed equivalental two-dimensional functions of image similarity. The clustering efficiency in such models and their implementation depends on the discriminant properties of neural elements of hidden layers. Therefore, the main models and architecture parameters and characteristics depends on the applied types of non-linear processing and function used for image comparison or for adaptive-equivalental weighing of input patterns. Real model experiments in Mathcad are demonstrated, which confirm that non-linear processing on equivalent functions allows you to determine the neuron winners and adjust the weight matrix. Experimental results have shown that such models can be successfully used for auto- and hetero-associative recognition. They can also be used to explain some mechanisms known as "focus" and "competing gain-inhibition concept". The SLECNS architecture and hardware implementations of its basic nodes based on multi-channel convolvers and correlators with time integration are proposed. The parameters and performance of such architectures are estimated.
Extreme ultraviolet photoionization of aldoses and ketoses
NASA Astrophysics Data System (ADS)
Shin, Joong-Won; Dong, Feng; Grisham, Michael E.; Rocca, Jorge J.; Bernstein, Elliot R.
2011-04-01
Gas phase monosaccharides (2-deoxyribose, ribose, arabinose, xylose, lyxose, glucose galactose, fructose, and tagatose), generated by laser desorption of solid sample pellets, are ionized with extreme ultraviolet photons (EUV, 46.9 nm, 26.44 eV). The resulting fragment ions are analyzed using a time of flight mass spectrometer. All aldoses yield identical fragment ions regardless of size, and ketoses, while also generating same ions as aldoses, yields additional features. Extensive fragmentation of the monosaccharides is the result the EUV photons ionizing various inner valence orbitals. The observed fragmentation patterns are not dependent upon hydrogen bonding structure or OH group orientation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bansal, Preeti
We simulate semi-central symmetric system reactions, for center-of-mass energies at which maximal number of light fragments (2 ≤ A ≤ 4) occurs and at a fixed E{sub c.m.} = 60 AMeV. The study was carried out with soft EOS using isospin-dependent quantum molecular dynamics (IQMD) model. We studied various properties of fragments at peak E{sub c.m.} and also at constant energy (E{sub c.m.} = 60 AMeV) to find out the relative difference between the properties at both energies.
Immigration Rates during Population Density Reduction in a Coral Reef Fish
Turgeon, Katrine; Kramer, Donald L.
2016-01-01
Although the importance of density-dependent dispersal has been recognized in theory, few empirical studies have examined how immigration changes over a wide range of densities. In a replicated experiment using a novel approach allowing within-site comparison, we examined changes in immigration rate following the gradual removal of territorial damselfish from a limited area within a much larger patch of continuous habitat. In all sites, immigration occurred at intermediate densities but did not occur before the start of removals and only rarely as density approached zero. In the combined data and in 5 of 7 sites, the number of immigrants was a hump-shaped function of density. This is the first experimental evidence for hump-shaped, density-dependent immigration. This pattern may be more widespread than previously recognized because studies over more limited density ranges have identified positive density dependence at low densities and negative density dependence at high densities. Positive density dependence at low density can arise from limits to the number of potential immigrants and from behavioral preferences for settling near conspecifics. Negative density dependence at high density can arise from competition for resources, especially high quality territories. The potential for non-linear effects of local density on immigration needs to be recognized for robust predictions of conservation reserve function, harvest impacts, pest control, and the dynamics of fragmented populations. PMID:27271081
Min, A; Hasuma, T; Yano, Y; Matsui-Yuasa, I; Otani, S
1995-12-01
We examined the effect of inhibitors of tyrosine kinase and tyrosine phosphatase on DNA fragmentation, protein tyrosine phosphorylation, and polyamine metabolism in the murine T-cell line CTLL-2. When cells were exposed to herbimycin A, a specific inhibitor of tyrosine kinase (Uehara et al., 1989, Biochem. Biophys. Res. Commun., 163:803-809), in the presence of interleukin 2 (IL-2), DNA was degraded into oligonucleosomal fragments in a dose-dependent fashion. Genistein, another inhibitor of tyrosine kinase (Akiyama et al., 1987, J. Biol. Chem., 262:5592-5596), had similar effects. Exposure of CTLL-2 cells to vanadate, a tyrosine phosphatase inhibitor, blocked with the DNA fragmentation induced by herbimycin A. Tyrosine phosphorylation of 55 Kd protein was inhibited by herbimycin A, and the inhibition was reduced by vanadate. Ornithine decarboxylase (ODC) activity decreased rapidly after herbimycin A was added to CTLL-2 cell cultures, while vanadate increased ODC activity. The exogenous addition of putrescine or spermine, but not that of spermidine, attenuated herbimycin A-induced DNA fragmentation. These findings suggest that phosphorylation of tyrosine residues of 55 Kd protein prevents DNA fragmentation and that polyamines are involved in regulation of apoptosis.
Tsallis Entropy and the Transition to Scaling in Fragmentation
NASA Astrophysics Data System (ADS)
Sotolongo-Costa, Oscar; Rodriguez, Arezky H.; Rodgers, G. J.
2000-12-01
By using the maximum entropy principle with Tsallis entropy we obtain a fragment size distribution function which undergoes a transition to scaling. This distribution function reduces to those obtained by other authors using Shannon entropy. The treatment is easily generalisable to any process of fractioning with suitable constraints.
Cofilin1-dependent actin dynamics control DRP1-mediated mitochondrial fission
Rehklau, Katharina; Hoffmann, Lena; Gurniak, Christine B; Ott, Martin; Witke, Walter; Scorrano, Luca; Culmsee, Carsten; Rust, Marco B
2017-01-01
Mitochondria form highly dynamic networks in which organelles constantly fuse and divide. The relevance of mitochondrial dynamics is evident from its implication in various human pathologies, including cancer or neurodegenerative, endocrine and cardiovascular diseases. Dynamin-related protein 1 (DRP1) is a key regulator of mitochondrial fission that oligomerizes at the mitochondrial outer membrane and hydrolyzes GTP to drive mitochondrial fragmentation. Previous studies demonstrated that DRP1 recruitment and mitochondrial fission is promoted by actin polymerization at the mitochondrial surface, controlled by the actin regulatory proteins inverted formin 2 (INF2) and Spire1C. These studies suggested the requirement of additional actin regulatory activities to control DRP1-mediated mitochondrial fission. Here we show that the actin-depolymerizing protein cofilin1, but not its close homolog actin-depolymerizing factor (ADF), is required to maintain mitochondrial morphology. Deletion of cofilin1 caused mitochondrial DRP1 accumulation and fragmentation, without altering mitochondrial function or other organelles’ morphology. Mitochondrial morphology in cofilin1-deficient cells was restored upon (i) re-expression of wild-type cofilin1 or a constitutively active mutant, but not of an actin-binding-deficient mutant, (ii) pharmacological destabilization of actin filaments and (iii) genetic depletion of DRP1. Our work unraveled a novel function for cofilin1-dependent actin dynamics in mitochondrial fission, and identified cofilin1 as a negative regulator of mitochondrial DRP1 activity. We conclude that cofilin1 is required for local actin dynamics at mitochondria, where it may balance INF2/Spire1C-induced actin polymerization. PMID:28981113
Generation and characterization of the sea bass Dicentrarchus labrax brain and liver transcriptomes.
Magnanou, Elodie; Klopp, Christophe; Noirot, Celine; Besseau, Laurence; Falcón, Jack
2014-07-01
The sea bass Dicentrarchus labrax is the center of interest of an increasing number of basic or applied research investigations, even though few genomic or transcriptomic data is available. Current public data only represent a very partial view of its transcriptome. To fill this need, we characterized brain and liver transcriptomes in a generalist manner that would benefit the entire scientific community. We also tackled some bioinformatics questions, related to the effect of RNA fragment size on the assembly quality. Using Illumina RNA-seq, we sequenced organ pools from both wild and farmed Atlantic and Mediterranean fishes. We built two distinct cDNA libraries per organ that only differed by the length of the selected mRNA fragments. Efficiency of assemblies performed on either or both fragments size differed depending on the organ, but remained very close reflecting the quality of the technical replication. We generated more than 19,538Mbp of data. Over 193million reads were assembled into 35,073 contigs (average length=2374bp; N50=3257). 59% contigs were annotated with SwissProt, which corresponded to 12,517 unique genes. We compared the Gene Ontology (GO) contig distribution between the sea bass and the tilapia. We also looked for brain and liver GO specific signatures as well as KEGG pathway coverage. 23,050 putative micro-satellites and 134,890 putative SNPs were identified. Our sampling strategy and assembly pipeline provided a reliable and broad reference transcriptome for the sea bass. It constitutes an indisputable quantitative and qualitative improvement of the public data, as it provides 5 times more base pairs with fewer and longer contigs. Both organs present unique signatures consistent with their specific physiological functions. The discrepancy in fragment size effect on assembly quality between organs lies in their difference in complexity and thus does not allow prescribing any general strategy. This information on two key organs will facilitate further functional approaches. Copyright © 2014 Elsevier B.V. All rights reserved.
Schleuning, Matthias; Farwig, Nina; Peters, Marcell K; Bergsdorf, Thomas; Bleher, Bärbel; Brandl, Roland; Dalitz, Helmut; Fischer, Georg; Freund, Wolfram; Gikungu, Mary W; Hagen, Melanie; Garcia, Francisco Hita; Kagezi, Godfrey H; Kaib, Manfred; Kraemer, Manfred; Lung, Tobias; Naumann, Clas M; Schaab, Gertrud; Templin, Mathias; Uster, Dana; Wägele, J Wolfgang; Böhning-Gaese, Katrin
2011-01-01
Forest fragmentation and selective logging are two main drivers of global environmental change and modify biodiversity and environmental conditions in many tropical forests. The consequences of these changes for the functioning of tropical forest ecosystems have rarely been explored in a comprehensive approach. In a Kenyan rainforest, we studied six animal-mediated ecosystem processes and recorded species richness and community composition of all animal taxa involved in these processes. We used linear models and a formal meta-analysis to test whether forest fragmentation and selective logging affected ecosystem processes and biodiversity and used structural equation models to disentangle direct from biodiversity-related indirect effects of human disturbance on multiple ecosystem processes. Fragmentation increased decomposition and reduced antbird predation, while selective logging consistently increased pollination, seed dispersal and army-ant raiding. Fragmentation modified species richness or community composition of five taxa, whereas selective logging did not affect any component of biodiversity. Changes in the abundance of functionally important species were related to lower predation by antbirds and higher decomposition rates in small forest fragments. The positive effects of selective logging on bee pollination, bird seed dispersal and army-ant raiding were direct, i.e. not related to changes in biodiversity, and were probably due to behavioural changes of these highly mobile animal taxa. We conclude that animal-mediated ecosystem processes respond in distinct ways to different types of human disturbance in Kakamega Forest. Our findings suggest that forest fragmentation affects ecosystem processes indirectly by changes in biodiversity, whereas selective logging influences processes directly by modifying local environmental conditions and resource distributions. The positive to neutral effects of selective logging on ecosystem processes show that the functionality of tropical forests can be maintained in moderately disturbed forest fragments. Conservation concepts for tropical forests should thus include not only remaining pristine forests but also functionally viable forest remnants.
Schleuning, Matthias; Farwig, Nina; Peters, Marcell K.; Bergsdorf, Thomas; Bleher, Bärbel; Brandl, Roland; Dalitz, Helmut; Fischer, Georg; Freund, Wolfram; Gikungu, Mary W.; Hagen, Melanie; Garcia, Francisco Hita; Kagezi, Godfrey H.; Kaib, Manfred; Kraemer, Manfred; Lung, Tobias; Schaab, Gertrud; Templin, Mathias; Uster, Dana; Wägele, J. Wolfgang; Böhning-Gaese, Katrin
2011-01-01
Forest fragmentation and selective logging are two main drivers of global environmental change and modify biodiversity and environmental conditions in many tropical forests. The consequences of these changes for the functioning of tropical forest ecosystems have rarely been explored in a comprehensive approach. In a Kenyan rainforest, we studied six animal-mediated ecosystem processes and recorded species richness and community composition of all animal taxa involved in these processes. We used linear models and a formal meta-analysis to test whether forest fragmentation and selective logging affected ecosystem processes and biodiversity and used structural equation models to disentangle direct from biodiversity-related indirect effects of human disturbance on multiple ecosystem processes. Fragmentation increased decomposition and reduced antbird predation, while selective logging consistently increased pollination, seed dispersal and army-ant raiding. Fragmentation modified species richness or community composition of five taxa, whereas selective logging did not affect any component of biodiversity. Changes in the abundance of functionally important species were related to lower predation by antbirds and higher decomposition rates in small forest fragments. The positive effects of selective logging on bee pollination, bird seed dispersal and army-ant raiding were direct, i.e. not related to changes in biodiversity, and were probably due to behavioural changes of these highly mobile animal taxa. We conclude that animal-mediated ecosystem processes respond in distinct ways to different types of human disturbance in Kakamega Forest. Our findings suggest that forest fragmentation affects ecosystem processes indirectly by changes in biodiversity, whereas selective logging influences processes directly by modifying local environmental conditions and resource distributions. The positive to neutral effects of selective logging on ecosystem processes show that the functionality of tropical forests can be maintained in moderately disturbed forest fragments. Conservation concepts for tropical forests should thus include not only remaining pristine forests but also functionally viable forest remnants. PMID:22114695
Klusha, V E; Abissova, N A; Mutsenietse, R K; Svirskis, Sh V; Binert, M
1981-12-01
The effect of substance P (SP) and of its fragments 5-11, 8-11, 9-11, 10-11 administered into the brain ventricles in doses of 5, 25 and 50 nM on the behavior and content of biogenic monoamines of the rat brain was studied. The analgetic properties of the substances under consideration and those of fragment SP 10-11 in doses of 5, 25, 50 and 100 nM were also subjected to examination. It was found that SP and fragment 5-11 stimulate and enhance the locomotor activity in rats, while fragments 8-11 and 9-11 provoke hypoactivity. The substances under study increase the serotonin and dopamine turnover, whereas SP and fragment 8-11 lower the serotonin content as well. After administration of SP and fragment 5-11 analgesia was seen to transform to hyperalgesia depending on the dose. Fragments 8-11 and 9-11 produce analgetic effect. It is suggested that both SP fragments and the whole SP molecule can influence the neurochemical process that regulate behavior and pain perception.
Studies of transverse momentum dependent parton distributions and Bessel weighting
Aghasyan, M.; Avakian, H.; De Sanctis, E.; ...
2015-03-01
In this paper we present a new technique for analysis of transverse momentum dependent parton distribution functions, based on the Bessel weighting formalism. The procedure is applied to studies of the double longitudinal spin asymmetry in semi-inclusive deep inelastic scattering using a new dedicated Monte Carlo generator which includes quark intrinsic transverse momentum within the generalized parton model. Using a fully differential cross section for the process, the effect of four momentum conservation is analyzed using various input models for transverse momentum distributions and fragmentation functions. We observe a few percent systematic offset of the Bessel-weighted asymmetry obtained from Montemore » Carlo extraction compared to input model calculations, which is due to the limitations imposed by the energy and momentum conservation at the given energy/Q2. We find that the Bessel weighting technique provides a powerful and reliable tool to study the Fourier transform of TMDs with controlled systematics due to experimental acceptances and resolutions with different TMD model inputs.« less
Studies of transverse momentum dependent parton distributions and Bessel weighting
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aghasyan, M.; Avakian, H.; De Sanctis, E.
In this paper we present a new technique for analysis of transverse momentum dependent parton distribution functions, based on the Bessel weighting formalism. The procedure is applied to studies of the double longitudinal spin asymmetry in semi-inclusive deep inelastic scattering using a new dedicated Monte Carlo generator which includes quark intrinsic transverse momentum within the generalized parton model. Using a fully differential cross section for the process, the effect of four momentum conservation is analyzed using various input models for transverse momentum distributions and fragmentation functions. We observe a few percent systematic offset of the Bessel-weighted asymmetry obtained from Montemore » Carlo extraction compared to input model calculations, which is due to the limitations imposed by the energy and momentum conservation at the given energy/Q2. We find that the Bessel weighting technique provides a powerful and reliable tool to study the Fourier transform of TMDs with controlled systematics due to experimental acceptances and resolutions with different TMD model inputs.« less
A novel role for the integrin-binding III-10 module in fibronectin matrix assembly.
Hocking, D C; Smith, R K; McKeown-Longo, P J
1996-04-01
Fibronectin matrix assembly is a cell-dependent process which is upregulated in tissues at various times during development and wound repair to support the functions of cell adhesion, migration, and differentiation. Previous studies have demonstrated that the alpha 5 beta 1 integrin and fibronectin's amino terminus and III-1 module are important in fibronectin polymerization. We have recently shown that fibronectin's III-1 module contains a conformationally sensitive binding site for fibronectin's amino terminus (Hocking, D.C., J. Sottile, and P.J. McKeown-Longo. 1994. J. Biol. Chem. 269: 19183-19191). The present study was undertaken to define the relationship between the alpha 5 beta 1 integrin and fibronectin polymerization. Solid phase binding assays using recombinant III-10 and III-1 modules of human plasma fibronectin indicated that the III-10 module contains a conformation-dependent binding site for the III-1 module of fibronectin. Unfolded III-10 could support the formation of a ternary complex containing both III-1 and the amino-terminal 70-kD fragment, suggesting that the III-1 module can support the simultaneous binding of III-10 and 70 kD. Both unfolded III-10 and unfolded III-1 could support fibronectin binding, but only III-10 could promote the formation of disulfide-bonded multimers of fibronectin in the absence of cells. III-10-dependent multimer formation was inhibited by both the anti-III-1 monoclonal antibody, 9D2, and amino-terminal fragments of fibronectin. A fragment of III-10, termed III-10/A, was able to block matrix assembly in fibroblast monolayers. Similar results were obtained using the III-10A/RGE fragment, in which the RGD site had been mutated to RGE, indicating that III-I0/A was blocking matrix assembly by a mechanism distinct from disruption of integrin binding. Texas red-conjugated recombinant III-1,2 localized to beta 1-containing sites of focal adhesions on cells plated on fibronectin or the III-9,10 modules of fibronectin. Monoclonal antibodies against the III-1 or the III-9,10 modules of fibronectin blocked binding of III-1,2 to cells without disrupting focal adhesions. These data suggest that a role of the alpha 5 beta 1 integrin in matrix assembly is to regulate a series of sequential self-interactions which result in the polymerization of fibronectin.
Apoptotic signals induce specific degradation of ribosomal RNA in yeast
Mroczek, Seweryn; Kufel, Joanna
2008-01-01
Organisms exposed to reactive oxygen species, generated endogenously during respiration or by environmental conditions, undergo oxidative stress. Stress response can either repair the damage or activate one of the programmed cell death (PCD) mechanisms, for example apoptosis, and finally end in cell death. One striking characteristic, which accompanies apoptosis in both vertebrates and yeast, is a fragmentation of cellular DNA and mammalian apoptosis is often associated with degradation of different RNAs. We show that in yeast exposed to stimuli known to induce apoptosis, such as hydrogen peroxide, acetic acid, hyperosmotic stress and ageing, two large subunit ribosomal RNAs, 25S and 5.8S, became extensively degraded with accumulation of specific intermediates that differ slightly depending on cell death conditions. This process is most likely endonucleolytic, is correlated with stress response, and depends on the mitochondrial respiratory status: rRNA is less susceptible to degradation in respiring cells with functional defence against oxidative stress. In addition, RNA fragmentation is independent of two yeast apoptotic factors, metacaspase Yca1 and apoptosis-inducing factor Aif1, but it relies on the apoptotic chromatin condensation induced by histone H2B modifications. These data describe a novel phenotype for certain stress- and ageing-related PCD pathways in yeast. PMID:18385160
Fragments of a larger whole: retrieval cues constrain observed neural correlates of memory encoding.
Otten, Leun J
2007-09-01
Laying down a new memory involves activity in a number of brain regions. Here, it is shown that the particular regions associated with successful encoding depend on the way in which memory is probed. Event-related functional magnetic resonance imaging signals were acquired while subjects performed an incidental encoding task on a series of visually presented words denoting objects. A recognition memory test using the Remember/Know procedure to separate responses based on recollection and familiarity followed 1 day later. Critically, half of the studied objects were cued with a corresponding spoken word, and half with a corresponding picture. Regardless of cue, activity in prefrontal and hippocampal regions predicted subsequent recollection of a word. Type of retrieval cue modulated activity in prefrontal, temporal, and parietal cortices. Words subsequently recognized on the basis of a sense of familiarity were at study also associated with differential activity in a number of brain regions, some of which were probe dependent. Thus, observed neural correlates of successful encoding are constrained by type of retrieval cue, and are only fragments of all encoding-related neural activity. Regions exhibiting cue-specific effects may be sites that support memory through the degree of overlap between the processes engaged during encoding and those engaged during retrieval.
Rate-dependent carbon and nitrogen kinetic isotope fractionation in hydrolysis of isoproturon.
Penning, Holger; Cramer, Christopher J; Elsner, Martin
2008-11-01
Stable isotope fractionation permits quantifying contaminant degradation in the field when the transformation reaction is associated with a consistent isotope enrichment factor epsilon. When interpreted in conjunction with dual isotope plots, isotope fractionation is also particularly useful for elucidating reaction mechanisms. To assess the consistency of epsilon and dual isotope slopes in a two-step reaction, we investigated the abiotic hydrolysis of the herbicide isoproturon (3-(4-isopropylphenyl)-1,1-dimethylurea) using a fragmentation method that allows measuring isotope ratios in different parts of the molecule. Carbon and nitrogen position-specific isotope fractionation, as well as slopes in dual isotope plots, varied linearly with rate constants k(obs) depending on the presence of buffers that mediate the initial zwitterion formation. The correlation can be explained by two consecutive reaction steps (zwitterion formation followed by dimethylamine elimination) each of which has a different kinetic isotope effect and may be rate-limiting. Intrinsic isotope effects for both steps, extracted from our kinetic data using a novel theoretical treatment, agree well with values computed from density functional calculations. Our study therefore demonstrates that more variable isotope fractionation may be observed in simple chemical reactions than commonly thought, but that consistent epsilon or dual isotope slopes may nonetheless be encountered in certain molecular fragments.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Myagkov, N. N., E-mail: nn-myagkov@mail.ru
The problem of aluminum projectile fragmentation upon high-velocity impact on a thin aluminum shield is considered. A distinctive feature of this description is that the fragmentation has been numerically simulated using the complete system of equations of deformed solid mechanics by a method of smoothed particle hydrodynamics in three-dimensional setting. The transition from damage to fragmentation is analyzed and scaling relations are derived in terms of the impact velocity (V), ratio of shield thickness to projectile diameter (h/D), and ultimate strength (σ{sub p}) in the criterion of projectile and shield fracture. Analysis shows that the critical impact velocity V{sub c}more » (separating the damage and fragmentation regions) is a power function of σ{sub p} and h/D. In the supercritical region (V > V{sub c}), the weight-average fragment mass asymptotically tends to a power function of the impact velocity with exponent independent of h/D and σ{sub p}. Mean cumulative fragment mass distributions at the critical point are scale-invariant with respect to parameters h/D and σ{sub p}. Average masses of the largest fragments are also scale-invariant at V > V{sub c}, but only with respect to variable parameter σ{sub p}.« less
Geometry analysis for landscape fragmentation in coastal areas of China
NASA Astrophysics Data System (ADS)
Zhang, Tianhai; Yu, Ning; Mu, Hongdu; Tuo, Tao
2017-08-01
In recent years, the continuous expansion of urban-transport networks in China has aggravated the fragmentation of regional landscapes and led to the degradation of multiple ecological functions. In this study, Geographic Information System (GIS) techniques, patch size of fragmentation geometry were used to identify and monitor spatial distribution patterns of landscape fragmentation due to urban-transport networks in Fujian Province. This network has caused serious damage to regional ecological functions, and risks to the persistence of animal populations and biodiversity. This analysis revealed that the smallest patch class (0-15 km2) occurred with a much greater frequency than all other larger patch sizes. In the coastal cities of Xiamen, Zhangzhou and Quanzhou, the percentage of the number of patches less than 300 km2 was higher than in the western cities of Nanping, Sanming and Longyan, and the percentage of the area of patches less than 300 km2 was also higher. Based on a holistic identification of the structure of the network and its landscape division, we found that: Fujian Province has a spatial pattern of landscape fragmentation, with less fragmentation in western and northern regions, and most fragmentation in southern and eastern regions. Coastal regions and areas close to the main transport routes were more seriously fragmented and contained most of the small patches.
Maeda, Yuri; Furuta, Hiroyuki; Ikawa, Yoshiya
2011-03-01
As dynamic structural changes are pivotal for the functions of some classes of RNA molecule, it is important to develop methods to monitor structural changes in RNA in a time-dependent manner without chemical modification. Based on previous reports that trans-acting RNAs can be used as probes for analysis and control of 3D structures of target RNAs, we applied this method to monitor time-dependent structural changes in RNA. We designed and performed a proof-of-principle study using a simple model RNA complex that adopts two different structures as a target. The time-dependent structural changes in the target RNA were successfully monitored using two trans-acting RNAs, which stably form a ternary complex with the bimolecular target RNA and act as a catalyst to join two RNA fragments of the target complex, respectively. Copyright © 2010 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.
Scaling Laws for Shapes of Food Fragments by Human Mastication
NASA Astrophysics Data System (ADS)
Kobayashi, Naoki; Kohyama, Kaoru; Sasaki, Yo; Matsushita, Mitsugu
2007-04-01
Scaling property of the shape of fragments which were produced by masticating raw carrots has been studied experimentally and theoretically. Mastication experiments showed that most fragments have more or less isotropic shapes which are independent of the number of chewing strokes, whereas larger fragments than a crossover size have complicated shapes. Since the crossover size had the structure which was dependent on the number of chewing strokes, we have tried to propose dynamic scaling hypothesis analogous to the case of growing self-affine interface. It was found that the dynamic scaling yields fairly accurate values of the scaling exponents. Our results will provide a new observation and insight of not only sequential fragmentation but also construction for physiological measurement.
Wang, Xinglong; Su, Bo; Liu, Wanhong; He, Xiaohua; Gao, Yuan; Castellani, Rudy J.; Perry, George; Smith, Mark A.; Zhu, Xiongwei
2011-01-01
SUMMARY Selective degeneration of nigrostriatal dopaminergic neurons in Parkinson disease (PD) can be modeled by the administration of the neurotoxin 1-methyl-4-phenylpyridinium (MPP+). Since abnormal mitochondrial dynamics are increasingly implicated in the pathogenesis of PD, in this study, we investigated the effect of MPP+ on mitochondrial dynamics and assessed temporal and causal relationship with other toxic effects induced by MPP+ in neuronal cells. In SH-SY5Y cells, MPP+ causes a rapid increase in mitochondrial fragmentation followed by a second wave of increase in mitochondrial fragmentation, along with increased DLP1 expression and mitochondrial translocation. Genetic inactivation of DLP1 completely blocks MPP+-induced mitochondrial fragmentation. Notably, this approach partially rescues MPP+-induced decline in ATP levels and ATP/ADP ratio and increased [Ca2+]i and almost completely prevents increased reactive oxygen species production, loss of mitochondrial membrane potential, enhanced autophagy and cell death, suggesting that mitochondria fragmentation is an upstream event that mediates MPP+-induced toxicity. On the other hand, thiol antioxidant NAC or glutamate receptor antagonist D-AP5 also partially alleviate MPP+-induced mitochondrial fragmentation, suggesting a vicious spiral of events contributes to MPP+-induced toxicity. We further validated our findings in primary rat midbrain dopaminergic neurons that 0.5 μM MPP+ induced mitochondrial fragmentation only in TH-positive dopaminergic neurons in a similar pattern to that in SH-SY5Y cells but had no effects on these mitochondrial parameters in TH-negative neurons. Overall, these findings suggest that DLP1-dependent mitochondrial fragmentation plays a crucial role in mediating MPP+-induced mitochondria abnormalities and cellular dysfunction and may represent a novel therapeutic target for PD. PMID:21615675
DNA Length Modulates the Affinity of Fragments of Genomic DNA for the Nuclear Matrix In Vitro.
García-Vilchis, David; Aranda-Anzaldo, Armando
2017-12-01
Classical observations have shown that during the interphase the chromosomal DNA of metazoans is organized in supercoiled loops attached to a compartment known as the nuclear matrix (NM). Fragments of chromosomal DNA able to bind the isolated NM in vitro are known as matrix associated/attachment/addressed regions or MARs. No specific consensus sequence or motif has been found that may constitute a universal, defining feature of MARs. On the other hand, high-salt resistant DNA-NM interactions in situ define true DNA loop anchorage regions or LARs, that might correspond to a subset of the potential MARs but are not necessarily identical to MARs characterized in vitro, since there are several examples of MARs able to bind the NM in vitro but which are not actually bound to the NM in situ. In the present work we assayed the capacity of two LARs, as well as of shorter fragments within such LARs, for binding to the NM in vitro. Paradoxically the isolated (≈2 kb) LARs cannot bind to the NM in vitro while their shorter (≈300 pb) sub-fragments and other non-related but equally short DNA fragments, bind to the NM in a high-salt resistant fashion. Our results suggest that the ability of a given DNA fragment for binding to the NM in vitro primarily depends on the length of the fragment, suggesting that binding to the NM is modulated by the local topology of the DNA fragment in suspension that it is known to depend on the DNA length. J. Cell. Biochem. 118: 4487-4497, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.
Fission of actinide nuclei using multi-nucleon transfer reactions
NASA Astrophysics Data System (ADS)
Léguillon, Romain; Nishio, Katsuhisa; Hirose, Kentaro; Orlandi, Riccardo; Makii, Hiroyuki; Nishinaka, Ichiro; Ishii, Tetsuro; Tsukada, Kazuaki; Asai, Masato; Chiba, Satoshi; Ohtsuki, Tsutomu; Araki, Shohei; Watanabe, Yukinobu; Tatsuzawa, Ryotaro; Takaki, Naoyuki
2014-09-01
We are promoting a campaign to measure fission-fragment mass distributions for neutron-rich actinide nuclei populated by transfer reactions from their ground state up to an excitation energy of several tens MeV. We thus obtain the excitation energy dependence of the mass distribution. The experiment was carried out at the 20 MV JAEA tandem facility at Tokai. We report on the data obtained in the direct reaction 18 O + 232 Th . Transfer-channels and excitation energies of the fissioning nuclei were identified using silicon dE-E detectors located at forward angle. Two fission fragments were detected in coincidence using multi-wire proportional counters. Fission fragment masses were determined by kinematic consideration. We obtained the fission fragment mass distributions for 13 nuclei from actinium to uranium and some fission barrier heights. We are promoting a campaign to measure fission-fragment mass distributions for neutron-rich actinide nuclei populated by transfer reactions from their ground state up to an excitation energy of several tens MeV. We thus obtain the excitation energy dependence of the mass distribution. The experiment was carried out at the 20 MV JAEA tandem facility at Tokai. We report on the data obtained in the direct reaction 18 O + 232 Th . Transfer-channels and excitation energies of the fissioning nuclei were identified using silicon dE-E detectors located at forward angle. Two fission fragments were detected in coincidence using multi-wire proportional counters. Fission fragment masses were determined by kinematic consideration. We obtained the fission fragment mass distributions for 13 nuclei from actinium to uranium and some fission barrier heights. Present study is supported by the Ministry of Education, Culture, Sports, Science and Technology of Japan.
Gao, Qiong; Yu, Mei
2014-01-01
Despite the overall trend of worldwide deforestation over recent decades, reforestation has also been found and is expected in developing countries undergoing fast urbanization and agriculture abandonment. The consequences of reforestation on landscape patterns are seldom addressed in the literature, despite their importance in evaluating biodiversity and ecosystem functions. By analyzing long-term land cover changes in Puerto Rico, a rapidly reforested (6 to 42% during 1940-2000) and urbanized tropical island, we detected significantly different patterns of fragmentation and underlying mechanisms among forests, urban areas, and wetlands. Forest fragmentation is often associated with deforestation. However, we also found significant fragmentation during reforestation. Urban sprawl and suburb development have a dominant impact on forest fragmentation. Reforestation mostly occurs along forest edges, while significant deforestation occurs in forest interiors. The deforestation process has a much stronger impact on forest fragmentation than the reforestation process due to their different spatial configurations. In contrast, despite the strong interference of coastal urbanization, wetland aggregation has occurred due to the effective implementation of laws/regulations for wetland protection. The peak forest fragmentation shifted toward rural areas, indicating progressively more fragmentation in forest interiors. This shift is synchronous with the accelerated urban sprawl as indicated by the accelerated shift of the peak fragmentation index of urban cover toward rural areas, i.e., 1.37% yr-1 in 1977-1991 versus 2.17% yr-1 in 1991-2000. Based on the expected global urbanization and the regional forest transition from deforested to reforested, the fragmented forests and aggregated wetlands in this study highlight possible forest fragmentation processes during reforestation in an assessment of biodiversity and functions and suggest effective laws/regulations in land planning to reduce future fragmentation.
Gao, Qiong; Yu, Mei
2014-01-01
Despite the overall trend of worldwide deforestation over recent decades, reforestation has also been found and is expected in developing countries undergoing fast urbanization and agriculture abandonment. The consequences of reforestation on landscape patterns are seldom addressed in the literature, despite their importance in evaluating biodiversity and ecosystem functions. By analyzing long-term land cover changes in Puerto Rico, a rapidly reforested (6 to 42% during 1940–2000) and urbanized tropical island, we detected significantly different patterns of fragmentation and underlying mechanisms among forests, urban areas, and wetlands. Forest fragmentation is often associated with deforestation. However, we also found significant fragmentation during reforestation. Urban sprawl and suburb development have a dominant impact on forest fragmentation. Reforestation mostly occurs along forest edges, while significant deforestation occurs in forest interiors. The deforestation process has a much stronger impact on forest fragmentation than the reforestation process due to their different spatial configurations. In contrast, despite the strong interference of coastal urbanization, wetland aggregation has occurred due to the effective implementation of laws/regulations for wetland protection. The peak forest fragmentation shifted toward rural areas, indicating progressively more fragmentation in forest interiors. This shift is synchronous with the accelerated urban sprawl as indicated by the accelerated shift of the peak fragmentation index of urban cover toward rural areas, i.e., 1.37% yr−1 in 1977–1991 versus 2.17% yr−1 in 1991–2000. Based on the expected global urbanization and the regional forest transition from deforested to reforested, the fragmented forests and aggregated wetlands in this study highlight possible forest fragmentation processes during reforestation in an assessment of biodiversity and functions and suggest effective laws/regulations in land planning to reduce future fragmentation. PMID:25409016
Homogeneous versus heterogeneous probes for microbial ecological microarrays.
Bae, Jin-Woo; Park, Yong-Ha
2006-07-01
Microbial ecological microarrays have been developed for investigating the composition and functions of microorganism communities in environmental niches. These arrays include microbial identification microarrays, which use oligonucleotides, gene fragments or microbial genomes as probes. In this article, the advantages and disadvantages of each type of probe are reviewed. Oligonucleotide probes are currently useful for probing uncultivated bacteria that are not amenable to gene fragment probing, whereas the functional gene fragments amplified randomly from microbial genomes require phylogenetic and hierarchical categorization before use as microbial identification probes, despite their high resolution for both specificity and sensitivity. Until more bacteria are sequenced and gene fragment probes are thoroughly validated, heterogeneous bacterial genome probes will provide a simple, sensitive and quantitative tool for exploring the ecosystem structure.
Nishio, K.; Andreyev, A. N.; Chapman, R.; ...
2015-06-30
Mass distributions of fission fragments from the compound nuclei 180Hg and 190 Hg formed in fusion reactions 36Ar + 144 Smand 36Ar + 154Sm, respectively, were measured at initial excitation energies of E*( 180Hg) = 33-66 MeV and E*( 190Hg) = 48-71 MeV. In the fission of 180Hg, the mass spectra were well reproduced by assuming only an asymmetric-mass division, with most probable light and heavy fragment masses more » $$\\overline{A}_L$$/ $$\\overline{A}_H$$ = 79/101. The mass asymmetry for 180Hg agrees well with that obtained in the low-energy β +/EC-delayed fission of 180Tl, from our earlier ISOLDE(CERN) experiment. Fission of 190Hg is found to proceed in a similar way, delivering the mass asymmetry of $$\\overline{A}_L$$/ $$\\overline{A}_H$$ = 83/107, throughout the measured excitation energy range. The persistence as a function of excitation energy of the mass-asymmetric fission for both proton-rich Hg isotopes gives strong evidence for the survival of microscopic effects up to effective excitation energies of compound nuclei as high as 40 MeV. In conclusion, this behavior is different from fission of actinide nuclei and heavier mercury isotope 198Hg.« less
Modified stochastic fragmentation of an interval as an ageing process
NASA Astrophysics Data System (ADS)
Fortin, Jean-Yves
2018-02-01
We study a stochastic model based on modified fragmentation of a finite interval. The mechanism consists of cutting the interval at a random location and substituting a unique fragment on the right of the cut to regenerate and preserve the interval length. This leads to a set of segments of random sizes, with the accumulation of small fragments near the origin. This model is an example of record dynamics, with the presence of ‘quakes’ and slow dynamics. The fragment size distribution is a universal inverse power law with logarithmic corrections. The exact distribution for the fragment number as function of time is simply related to the unsigned Stirling numbers of the first kind. Two-time correlation functions are defined, and computed exactly. They satisfy scaling relations, and exhibit aging phenomena. In particular, the probability that the same number of fragments is found at two different times t>s is asymptotically equal to [4πlog(s)]-1/2 when s\\gg 1 and the ratio t/s is fixed, in agreement with the numerical simulations. The same process with a reset impedes the aging phenomenon-beyond a typical time scale defined by the reset parameter.
Molecularly Imprinted Polymers with DNA Aptamer Fragments as Macromonomers.
Zhang, Zijie; Liu, Juewen
2016-03-01
Molecularly imprinted polymers (MIPs) are produced in the presence of a template molecule. After removing the template, the cavity can selectively rebind the template. MIPs are attractive functional materials with a low cost and high stability, but traditional MIPs often suffer from low binding affinity. This study employs DNA aptamer fragments as macromonomers to improve MIPs. The DNA aptamer for adenosine was first split into two halves, fluorescently labeled, and copolymerized into MIPs. With a fluorescence quenching assay, the importance of imprinting was confirmed. Further studies were carried out using isothermal titration calorimetry (ITC). Compared to the mixture of the free aptamer fragments, their MIPs doubled the binding affinity. Each free aptamer fragment alone cannot bind adenosine, whereas MIPs containing each fragment are effective binders. We further shortened one of the aptamer fragments, and the DNA length was pushed to as short as six nucleotides, yielding MIPs with a dissociation constant of 27 μM adenosine. This study provides a new method for preparing functional MIP materials by combining high-affinity biopolymer fragments with low-cost synthetic monomers, allowing higher binding affinity and providing a method for signaling binding based on DNA chemistry.
Arabidopsis GRI is involved in the regulation of cell death induced by extracellular ROS.
Wrzaczek, Michael; Brosché, Mikael; Kollist, Hannes; Kangasjärvi, Jaakko
2009-03-31
Reactive oxygen species (ROS) have important functions in plant stress responses and development. In plants, ozone and pathogen infection induce an extracellular oxidative burst that is involved in the regulation of cell death. However, very little is known about how plants can perceive ROS and regulate the initiation and the containment of cell death. We have identified an Arabidopsis thaliana protein, GRIM REAPER (GRI), that is involved in the regulation of cell death induced by extracellular ROS. Plants with an insertion in GRI display an ozone-sensitive phenotype. GRI is an Arabidopsis ortholog of the tobacco flower-specific Stig1 gene. The GRI protein appears to be processed in leaves with a release of an N-terminal fragment of the protein. Infiltration of the N-terminal fragment of the GRI protein into leaves caused cell death in a superoxide- and salicylic acid-dependent manner. Analysis of the extracellular GRI protein yields information on how plants can initiate ROS-induced cell death during stress response and development.
Arabidopsis GRI is involved in the regulation of cell death induced by extracellular ROS
Wrzaczek, Michael; Brosché, Mikael; Kollist, Hannes; Kangasjärvi, Jaakko
2009-01-01
Reactive oxygen species (ROS) have important functions in plant stress responses and development. In plants, ozone and pathogen infection induce an extracellular oxidative burst that is involved in the regulation of cell death. However, very little is known about how plants can perceive ROS and regulate the initiation and the containment of cell death. We have identified an Arabidopsis thaliana protein, GRIM REAPER (GRI), that is involved in the regulation of cell death induced by extracellular ROS. Plants with an insertion in GRI display an ozone-sensitive phenotype. GRI is an Arabidopsis ortholog of the tobacco flower-specific Stig1 gene. The GRI protein appears to be processed in leaves with a release of an N-terminal fragment of the protein. Infiltration of the N-terminal fragment of the GRI protein into leaves caused cell death in a superoxide- and salicylic acid-dependent manner. Analysis of the extracellular GRI protein yields information on how plants can initiate ROS-induced cell death during stress response and development. PMID:19279211
Discovery of an Inhibitor of the Proteasome Subunit Rpn11.
Perez, Christian; Li, Jing; Parlati, Francesco; Rouffet, Matthieu; Ma, Yuyong; Mackinnon, Andrew L; Chou, Tsui-Fen; Deshaies, Raymond J; Cohen, Seth M
2017-02-23
The proteasome plays a crucial role in degradation of normal proteins that happen to be constitutively or inducibly unstable, and in this capacity it plays a regulatory role. Additionally, it degrades abnormal/damaged/mutant/misfolded proteins, which serves a quality-control function. Inhibitors of the proteasome have been validated in the treatment of multiple myeloma, with several FDA-approved therapeutics. Rpn11 is a Zn 2+ -dependent metalloisopeptidase that hydrolyzes ubiquitin from tagged proteins that are trafficked to the proteasome for degradation. A fragment-based drug discovery (FBDD) approach was utilized to identify fragments with activity against Rpn11. Screening of a library of metal-binding pharmacophores (MBPs) revealed that 8-thioquinoline (8TQ, IC 50 value ∼2.5 μM) displayed strong inhibition of Rpn11. Further synthetic elaboration of 8TQ yielded a small molecule compound (35, IC 50 value ∼400 nM) that is a potent and selective inhibitor of Rpn11 that blocks proliferation of tumor cells in culture.
Tn552 transposase purification and in vitro activities.
Rowland, S J; Sherratt, D J; Stark, W M; Boocock, M R
1995-01-01
The Staphylococcus aureus transposon Tn552 encodes a protein (p480) containing the 'D,D(35)E' motif common to retroviral integrases and the transposases of a number of bacterial elements, including phage Mu, the integron-containing element Tn5090, Tn7 and IS3. p480 and a histidine-tagged derivative were overexpressed in Escherichia coli and purified by methods involving denaturation and renaturation. DNase I footprinting and gel binding assays demonstrated that p480 binds to two adjacent, directly repeated 23 bp motifs at each end of Tn552. Although donor strand cleavage by p480 was not detected, in vitro conditions were defined for strand transfer activity with transposon end fragments having pre-cleaved 3' termini. Strand transfer was Mn(2+)-dependent and appeared to join a single left or right end fragment to target DNA. The importance of the terminal dinucleotide CA-3' was demonstrated by mutation. The in vitro activities of p480 are consistent with its proposed function as the Tn552 transposase. Images PMID:7828593
2013-01-01
Background Prostate apoptosis response-4 (Par-4) is a tumor-suppressor protein that selectively activates and induces apoptosis in cancer cells, but not in normal cells. The cancer specific pro-apoptotic function of Par-4 is encoded in its centrally located SAC (Selective for Apoptosis induction in Cancer cells) domain (amino acids 137–195). The SAC domain itself is capable of nuclear entry, caspase activation, inhibition of NF-κB activity, and induction of apoptosis in cancer cells. However, the precise mechanism(s) of how the SAC domain is released from Par-4, in response to apoptotic stimulation, is not well explored. Results In this study, we demonstrate for the first time that sphingosine (SPH), a member of the sphingolipid family, induces caspase-dependant cleavage of Par-4, leading to the release of SAC domain containing fragment from it. Par-4 is cleaved at the EEPD131G site on incubation with caspase-3 in vitro, and by treating cells with several anti-cancer agents. The caspase-3 mediated cleavage of Par-4 is blocked by addition of the pan-caspase inhibitor z-VAD-fmk, caspase-3 specific inhibitor Ac-DEVD-CHO, and by introduction of alanine substitution for D131 residue. Moreover, suppression of SPH-induced Akt dephosphorylation also abrogated the caspase dependant cleavage of Par-4. Conclusion Evidence provided here shows that Par-4 is cleaved by caspase-3 during SPH-induced apoptosis. Cleavage of Par-4 leads to the generation of SAC domain containing fragment which may possibly be essential and sufficient to induce or augment apoptosis in cancer cells. PMID:23442976
Kislin, Mikhail; Sword, Jeremy; Fomitcheva, Ioulia V.; Croom, Deborah; Pryazhnikov, Evgeny; Lihavainen, Eero; Toptunov, Dmytro; Rauvala, Heikki; Ribeiro, Andre S.
2017-01-01
Mitochondria play a variety of functional roles in cortical neurons, from metabolic support and neuroprotection to the release of cytokines that trigger apoptosis. In dendrites, mitochondrial structure is closely linked to their function, and fragmentation (fission) of the normally elongated mitochondria indicates loss of their function under pathological conditions, such as stroke and brain trauma. Using in vivo two-photon microscopy in mouse brain, we quantified mitochondrial fragmentation in a full spectrum of cortical injuries, ranging from severe to mild. Severe global ischemic injury was induced by bilateral common carotid artery occlusion, whereas severe focal stroke injury was induced by Rose Bengal photosensitization. The moderate and mild traumatic injury was inflicted by focal laser lesion and by mild photo-damage, respectively. Dendritic and mitochondrial structural changes were tracked longitudinally using transgenic mice expressing fluorescent proteins localized either in cytosol or in mitochondrial matrix. In response to severe injury, mitochondrial fragmentation developed in parallel with dendritic damage signified by dendritic beading. Reconstruction from serial section electron microscopy confirmed mitochondrial fragmentation. Unlike dendritic beading, fragmentation spread beyond the injury core in focal stroke and focal laser lesion models. In moderate and mild injury, mitochondrial fragmentation was reversible with full recovery of structural integrity after 1–2 weeks. The transient fragmentation observed in the mild photo-damage model was associated with changes in dendritic spine density without any signs of dendritic damage. Our findings indicate that alterations in neuronal mitochondria structure are very sensitive to the tissue damage and can be reversible in ischemic and traumatic injuries. SIGNIFICANCE STATEMENT During ischemic stroke or brain trauma, mitochondria can either protect neurons by supplying ATP and adsorbing excessive Ca2+, or kill neurons by releasing proapoptotic factors. Mitochondrial function is tightly linked to their morphology: healthy mitochondria are thin and long; dysfunctional mitochondria are thick (swollen) and short (fragmented). To date, fragmentation of mitochondria was studied either in dissociated cultured neurons or in brain slices, but not in the intact living brain. Using real-time in vivo two-photon microscopy, we quantified mitochondrial fragmentation during acute pathological conditions that mimic severe, moderate, and mild brain injury. We demonstrated that alterations in neuronal mitochondria structural integrity can be reversible in traumatic and ischemic injuries, highlighting mitochondria as a potential target for therapeutic interventions. PMID:28077713
A measurement of the b quark fragmentation function at {radical}Q{sup 2} = 45.6 GeV
DOE Office of Scientific and Technical Information (OSTI.GOV)
Church, E.D.
1996-06-01
Presented here is a measurement of the b quark fragmentation function D{sub b}(X), taken from a sample of 504 semi-leptonic B decays which were selected from the 150,000 Z{sup 0} decays collected between 1993 and 1995 at the SLD at SLAC. The energy of each tagged B hadron is reconstructed using missing jet energy, based on the information from the lepton and a partially-reconstructed charm-decay vertex. Account is taken of the effect of primary orbitally excited mesons (B**s). An iterative unfolding procedure is used which serves to effectively extract the true fragmentation function from the reconstructed B energy spectrum. Themore » final result is shown to be compatible with many theoretical models. A comparison is made with other b fragmentation function measurements at 45.6 GeV, and this measurement is shown to be consistent with those results. The average scaled energy is found to be (x{sub E}) = 0.697{+-} 0.017(stat) {+-} 0.034(sys).« less
NMR screening in fragment-based drug design: a practical guide.
Kim, Hai-Young; Wyss, Daniel F
2015-01-01
Fragment-based drug design (FBDD) comprises both fragment-based screening (FBS) to find hits and elaboration of these hits to lead compounds. Typical fragment hits have lower molecular weight (<300-350 Da) and lower initial potency but higher ligand efficiency when compared to those from high-throughput screening. NMR spectroscopy has been widely used for FBDD since it identifies and localizes the binding site of weakly interacting hits on the target protein. Here we describe ligand-based NMR methods for hit identification from fragment libraries and for functional cross-validation of primary hits.
Scale-dependence of transverse momentum correlations in Pb sbnd Au collisions at 158A GeV/c
NASA Astrophysics Data System (ADS)
Adamová, D.; Agakichiev, G.; Antończyk, D.; Appelshäuser, H.; Belaga, V.; Bielcikova, S.; Braun-Munzinger, P.; Busch, O.; Cherlin, A.; Damjanović, S.; Dietel, T.; Dietrich, L.; Drees, A.; Dubitzky, W.; Esumi, S. I.; Filimonov, K.; Fomenko, K.; Fraenkel, Z.; Garabatos, C.; Glässel, P.; Holeczek, J.; Kushpil, V.; Maas, A.; Marín, A.; Milošević, J.; Milov, A.; Miśkowiec, D.; Panebrattsev, Yu.; Petchenova, O.; Petráček, V.; Pfeiffer, A.; Płoskoń, M.; Radomski, S.; Rak, J.; Ravinovich, I.; Rehak, P.; Sako, H.; Schmitz, W.; Sedykh, S.; Shimansky, S.; Stachel, J.; Šumbera, M.; Tilsner, H.; Tserruya, I.; Tsiledakis, G.; Wessels, J. P.; Wienold, T.; Wurm, J. P.; Xie, W.; Yurevich, S.; Yurevich, V.; Ceres Collaboration
2008-10-01
We present results on transverse momentum correlations of charged particle pairs produced in Pb sbnd Au collisions at 158A GeV/c at the Super Proton Synchrotron. The transverse momentum correlations have been studied as a function of collision centrality, angular separation of the particle pairs, transverse momentum and charge sign. We demonstrate that the results are in agreement with previous findings in scale-independent analyses at the same beam energy. Employing the two-particle momentum correlator <Δp,Δp> and the cumulative p variable x(p), we identify, using the scale-dependent approach presented in this paper, different sources contributing to the measured correlations, such as quantum and Coulomb correlations, elliptic flow and mini-jet fragmentation.
NASA Astrophysics Data System (ADS)
Katsura, Takekuni; Nakamura, Akiko M.; Takabe, Ayana; Okamoto, Takaya; Sangen, Kazuyoshi; Hasegawa, Sunao; Liu, Xun; Mashimo, Tsutomu
2014-10-01
Iron meteorites and some M-class asteroids are generally understood to be fragments that were originally part of cores of differentiated planetesimals or part of local melt pools on primitive bodies. The parent bodies of iron meteorites may have formed in the terrestrial planet region, from which they were then scattered into the main belt (Bottke, W.F., Nesvorný, D., Grimm, R.E., Morbidelli, A., O'Brien, D.P. [2006]. Nature 439, 821-824). Therefore, a wide range of collisional events at different mass scales, temperatures, and impact velocities would have occurred between the time when the iron was segregated and the impact that eventually exposed the iron meteorites to interplanetary space. In this study, we performed impact disruption experiments of iron meteorite specimens as projectiles or targets at room temperature to increase understanding of the disruption process of iron bodies in near-Earth space. Our iron specimens (as projectiles or targets) were almost all smaller in size than their counterparts (as targets or projectiles, respectively). Experiments of impacts of steel specimens were also conducted for comparison. The fragment mass distribution of the iron material was different from that of rocks. In the iron fragmentation, a higher percentage of the mass was concentrated in larger fragments, probably due to the ductile nature of the material at room temperature. The largest fragment mass fraction f was dependent not only on the energy density but also on the size d of the specimen. We assumed a power-law dependence of the largest fragment mass fraction to initial peak pressure P0 normalized by a dynamic strength, Y, which was defined to be dependent on the size of the iron material. A least squares fit to the data of iron meteorite specimens resulted in the following relationship: f∝∝d, indicating a large size dependence of f. Additionally, the deformation of the iron materials in high-velocity shots was found to be most significant when the initial pressure greatly exceeded the dynamic strength of the material.
Batman-cracks. Observations and numerical simulations
NASA Astrophysics Data System (ADS)
Selvadurai, A. P. S.; Busschen, A. Ten; Ernst, L. J.
1991-05-01
To ensure mechanical strength of fiber reinforced plastics (FRP), good adhesion between fibers and the matrix is considered to be an essential requirement. An efficient test of fiber-matrix interface characterization is the fragmentation test which provides information about the interface slip mechanism. This test consists of the longitudinal loading of a single fiber which is embedded in a matrix specimen. At critical loads the fiber experiences fragmentation. This fragmentation will terminate depending upon the shear-slip strength of the fiber-matrix adhesion, which is inversely proportional to average fragment lengths. Depending upon interface strength characteristics either bond or slip matrix fracture can occur at the onset of fiber fracture. Certain particular features of matrix fracture are observed at the locations of fiber fracture in situations where there is sufficient interface bond strength. These refer to the development of fractures with a complex surface topography. The experimental procedure involved in the fragmentation tests is discussed and the boundary element technique to examine the development of multiple matrix fractures at the fiber fracture locations is examined. The mechanics of matrix fracture is examined. When bond integrity is maintained, a fiber fracture results in a matrix fracture. The matrix fracture topography in a fragmentation test is complex; however, simplified conoidal fracture patterns can be used to investigate the crack extension phenomena. Via a mixed-mode fracture criterion, the generation of a conoidal fracture pattern in the matrix is investigated. The numerical results compare favorably with observed experimental data derived from tests conducted on fragmentation test specimens consisting of a single glass fiber which is embedded in a polyester matrix.
del-Val, Ek; Armesto, Juan J; Barbosa, Olga; Marquet, Pablo A
2007-09-01
The landscape (matrix) surrounding habitat fragments critically affects the biodiversity of those fragments due to biotic interchange and physical effects. However, to date, there have been only a limited number of studies on plant-animal interactions in fragmented landscapes, particularly on how tree seedling herbivory is affected by fragmentation. We have examined this question in a fog-dependent mosaic of rainforest fragments located on coastal mountaintops of semiarid Chile (30 degrees S), where the effects of the surrounding semiarid matrix and forest patch size (0.1-22 ha) on tree seedling survival were simultaneously addressed. The rainforest is strongly dominated by the endemic evergreen tree species Aextoxicon punctatum (Olivillo, approx. 80% of basal area). To assess the magnitudes and causes of Olivillo seedling mortality, we set up a field experiment where 512 tree seedlings of known age were transplanted into four forest fragments of different sizes in four 1.5 x 3-m plots per patch; one-half of each plot was fenced off with chicken wire to exclude small mammals. The plots were monitored for 22 months. Overall, 50% of the plants died during the experiment. The exclusion of small mammals from the plots increased seedling survival by 25%, with the effect being greater in smaller patches where matrix-dwelling herbivores are more abundant. This experiment highlights the important role of the surrounding matrix in affecting the persistence of trees in forest fragments. Because herbivores from the matrix cause greater tree seedling mortality in small patches, their effects must be taken into account in forest conservation-restoration plans.
NASA Astrophysics Data System (ADS)
Arneodo, M.; Arvidson, A.; Aubert, J. J.; Badelek, B.; Beaufays, J.; Bee, C. P.; Benchouk, C.; Berghoff, G.; Bird, I. G.; Blum, D.; Böhm, E.; De Bouard, X.; Brasse, F. W.; Braun, H.; Broll, C.; Brown, S. C.; Brück, H.; Calen, H.; Chima, J. S.; Ciborowski, J.; Clifft, R.; Coignet, G.; Combley, F.; Coughlan, J.; D'Agostini, G.; Dahlgren, S.; Dengler, F.; Derado, I.; Dreyer, T.; Drees, J.; Düren, M.; Eckardt, V.; Edwards, A.; Edwards, M.; Ernst, T.; Eszes, G.; Favier, J.; Ferrero, M. I.; Figiel, J.; Flauger, W.; Foster, J.; Gabathuler, E.; Gajewski, J.; Gamet, R.; Gayler, J.; Geddes, N.; Grafström, P.; Grard, F.; Haas, J.; Hagberg, E.; Hasert, F. J.; Hayman, P.; Heusse, P.; Jaffre, M.; Jacholkowska, A.; Janata, F.; Jancso, G.; Johnson, A. S.; Kabuss, E. M.; Kellner, G.; Korbel, V.; Krüger, A.; Krüger, J.; Kullander, S.; Landgraf, U.; Lanske, D.; Loken, J.; Long, K.; Maire, M.; Malecki, P.; Manz, A.; Maselli, S.; Mohr, W.; Montanet, F.; Montgomery, H. E.; Nagy, E.; Nassalski, J.; Norton, P. R.; Oakham, F. G.; Osborne, A. M.; Pascaud, C.; Pawlik, B.; Payre, P.; Peroni, C.; Peschel, H.; Pessard, H.; Pettingale, J.; Pietrzyk, B.; Poensgen, B.; Pötsch, M.; Renton, P.; Ribarics, P.; Rith, K.; Rondio, E.; Sandacz, A.; Scheer, M.; Schlagböhmer, A.; Schiemann, H.; Schmitz, N.; Schneegans, M.; Scholz, M.; Schouten, M.; Schröder, T.; Schultze, K.; Sloan, T.; Stier, H. E.; Studt, M.; Taylor, G. N.; Thenard, J. M.; Thompson, J. C.; De la Torre, A.; Toth, J.; Urban, L.; Urban, L.; Wallucks, W.; Whalley, M.; Wheeler, S.; Williams, W. S. C.; Wimpenny, S. J.; Windmolders, R.; Wolf, G.; European Muon Collaboration
1989-07-01
A new determination of the u valence quark distribution function in the proton is obtained from the analysis of identified charged pions, kaons, protons and antiprotons produced in muon-proton and muon-deuteron scattering. The comparison with results obtained in inclusive deep inelastic lepton-nucleon scattering provides a further test of the quark-parton model. The u quark fragmentation functions into positive and negative pions, kaons, protons and antiprotons are also measured.
Effect of forest fragmentation on bird populations
Robbins, C.S.
1979-01-01
Many of the insectivorous songbird species that winter in the tropics are dependent on large unbroken tracts of forest during the breeding season. These species are disappearing from localities where forests are becoming fragmented. By long-range planning, managers can prevent local extinctions of these area-sensitive birds through use of such techniques as management in large units, retention of connecting corridors, and prevention of excessive isolation of forest fragments. Edge conditions can be provided, where appropriate to meet the needs of upland game species.
Optical model calculations of 14.6A GeV silicon fragmentation cross sections
NASA Technical Reports Server (NTRS)
Townsend, Lawrence W.; Khan, Ferdous; Tripathi, Ram K.
1993-01-01
An optical potential abrasion-ablation collision model is used to calculate hadronic dissociation cross sections for a 14.6 A GeV(exp 28) Si beam fragmenting in aluminum, tin, and lead targets. The frictional-spectator-interaction (FSI) contributions are computed with two different formalisms for the energy-dependent mean free path. These estimates are compared with experimental data and with estimates obtained from semi-empirical fragmentation models commonly used in galactic cosmic ray transport studies.
Dynamics and Molecular Determinants of Cytoplasmic Lipid Droplet Clustering and Dispersion
Stefanski, Adrianne L.; McManaman, James L.
2013-01-01
Perilipin-1 (Plin1), a prominent cytoplasmic lipid droplet (CLD) binding phosphoprotein and key physiological regulator of triglyceride storage and lipolysis in adipocytes, is thought to regulate the fragmentation and dispersion of CLD that occurs in response to β-adrenergic activation of adenylate cyclase. Here we investigate the dynamics and molecular determinants of these processes using cell lines stably expressing recombinant forms of Plin1 and/or other members of the perilipin family. Plin1 and a C-terminal CLD-binding fragment of Plin1 (Plin1CT) induced formation of single dense CLD clusters near the microtubule organizing center, whereas neither an N-terminal CLD-binding fragment of Plin1, nor Plin2 or Plin3 induced clustering. Clustered CLD coated by Plin1, or Plin1CT, dispersed in response to isoproterenol, or other agents that activate adenylate cyclase, in a process inhibited by the protein kinase A inhibitor, H89, and blocked by microtubule disruption. Isoproterenol-stimulated phosphorylation of CLD-associated Plin1 on serine 492 preceded their dispersion, and live cell imaging showed that cluster dispersion involved initial fragmentation of tight clusters into multiple smaller clusters, which then fragmented into well-dispersed individual CLD. siRNA knockdown of the cortical actin binding protein, moesin, induced disaggregation of tight clusters into multiple smaller clusters, and inhibited the reaggregation of dispersed CLD into tight clusters. Together these data suggest that the clustering and dispersion processes involve a complex orchestration of phosphorylation-dependent, microtubule-dependent and independent, and microfilament dependent steps. PMID:23825572
Casciola-Rosen, Livia; Wigley, Fredrick; Rosen, Antony
1997-01-01
The observation that revelation of immunocryptic epitopes in self antigens may initiate the autoimmune response has prompted the search for processes which induce novel fragmentation of autoantigens as potential initiators of autoimmunity. The reversible ischemia reperfusion which characterizes scleroderma has focused attention on reactive oxygen species as molecules which might induce autoantigen fragmentation. We demonstrate that several of the autoantigens targeted in diffuse scleroderma are uniquely susceptible to cleavage by reactive oxygen species, in a metal-dependent manner. Multiple features of the fragmentation reaction and its inhibition indicate that these autoantigens possess metal-binding sites, which focus metal-catalyzed oxidation reactions (and consequent fragmentation) to specific regions of the antigens. These data suggest that the autoantibody response in scleroderma is the immune marker of unique protein fragmentation, induced by ischemia reperfusion in the presence of appropriate metals, and focus attention on abnormal metal status as a potential pathogenic principle in this disease. PMID:8996243
A first determination of the unpolarized quark TMDs from a global analysis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bacchetta, Alessandro; Delcarro, Filippo; Pisano, Cristian
Transverse momentum dependent distribution and fragmentation functions of unpolarized quarks inside unpolarized protons are extracted, for the first time, through a simultaneous analysis of semi-inclusive deep-inelastic scattering, Drell-Yan and Z boson hadroproduction processes. This study is performed at leading order in perturbative QCD, with energy scale evolution at the next-to-leading logarithmic accuracy. Moreover, some specific choices are made to deal with low scale evolution around 1 GeV2. Since only data in the low transverse momentum region are considered, no matching to fixed-order calculations at high transverse momentum is needed.
Evolution of post-ESWL residual lithiasis depending on the type of calculus and urine composition.
Grases, Felix; Costa-Bauzá, Antonia; Isern, Bernat; Sanchis, Pilar; Perelló, Joan; Hierro, Fernando; Conte Visus, Antonio
2009-07-01
Extracorporeal shock wave lithotripsy (ESWL) is one of the most commonly used procedures for removal of renal calculi from the upper urinary tract, but complete expulsion of the fragments generated is not always achieved. This can lead to new lithiasic episodes, and it is considered that 10-26% of fragmented calculi can undergo regrowth. This in vitro study investigated the influence of fragment and urinary composition on post-ESWL growth of fragments, with the aims of establishing the effect and importance of these parameters, and identifying effective prophylactic measures. Fragments collected from patients immediately following expulsion after ESWL treatment were selected for regrowth experiments. The particles included 24 calcium oxalate monohydrate (COM) fragments, 48 calcium oxalate dihydrate (COD), 24 hydroxyapatite (HAP), and 16 uric acid. In all treatments, calculi fragments showed a considerable capacity to induce growth of calcium oxalate and calcium phosphate. Under normocalciuria conditions, new COM crystals formed; both COM and COD crystals developed under hypercalciuria conditions at a urinary pH < 6.0; and in hypercalciuric conditions and urinary pH > 6.0 both HAP and brushite (BRU) crystals were formed. The highest growth rates were observed for COD calculi fragments under hypercalciuria conditions and at a urinary pH of 6.5, followed by growth on COM and HAP fragments under the same conditions; growth rates under other conditions tested were similar but 10-fold lower. With regard to the role of crystallization inhibitors, phytate exhibited inhibitory effects under all assay conditions. However, citrate had little effect, even at the highest concentration tested (1,000 mg/L). This study demonstrates the importance of avoiding heterogeneous nucleant retention (pre-existing solid microparticles) in renal cavities, as these can act as very efficient inducers of the formation of new calculi, the composition of which is mainly dependant on the urine composition.
NASA Astrophysics Data System (ADS)
Forgan, D. H.; Hall, C.; Meru, F.; Rice, W. K. M.
2018-03-01
It is likely that most protostellar systems undergo a brief phase where the protostellar disc is self-gravitating. If these discs are prone to fragmentation, then they are able to rapidly form objects that are initially of several Jupiter masses and larger. The fate of these disc fragments (and the fate of planetary bodies formed afterwards via core accretion) depends sensitively not only on the fragment's interaction with the disc, but also with its neighbouring fragments. We return to and revise our population synthesis model of self-gravitating disc fragmentation and tidal downsizing. Amongst other improvements, the model now directly incorporates fragment-fragment interactions while the disc is still present. We find that fragment-fragment scattering dominates the orbital evolution, even when we enforce rapid migration and inefficient gap formation. Compared to our previous model, we see a small increase in the number of terrestrial-type objects being formed, although their survival under tidal evolution is at best unclear. We also see evidence for disrupted fragments with evolved grain populations - this is circumstantial evidence for the formation of planetesimal belts, a phenomenon not seen in runs where fragment-fragment interactions are ignored. In spite of intense dynamical evolution, our population is dominated by massive giant planets and brown dwarfs at large semimajor axis, which direct imaging surveys should, but only rarely, detect. Finally, disc fragmentation is shown to be an efficient manufacturer of free-floating planetary mass objects, and the typical multiplicity of systems formed via gravitational instability will be low.
Plasminogen fragments K 1-3 and K 5 bind to different sites in fibrin fragment DD.
Grinenko, T V; Kapustianenko, L G; Yatsenko, T A; Yusova, O I; Rybachuk, V N
2016-01-01
Specific plasminogen-binding sites of fibrin molecule are located in Аα148-160 regions of C-terminal domains. Plasminogen interaction with these sites initiates the activation process of proenzyme and subsequent fibrin lysis. In this study we investigated the binding of plasminogen fragments K 1-3 and K 5 with fibrin fragment DD and their effect on Glu-plasminogen interaction with DD. It was shown that the level of Glu-plasminogen binding to fibrin fragment DD is decreased by 50-60% in the presence of K 1-3 and K 5. Fragments K 1-3 and K 5 have high affinity to fibrin fragment DD (Kd is 0.02 for K 1-3 and 0.054 μМ for K 5). K 5 interaction is independent and K 1-3 is partly dependent on C-terminal lysine residues. K 1-3 interacts with complex of fragment DD-immobilized K 5 as well as K 5 with complex of fragment DD-immobilized K 1-3. The plasminogen fragments do not displace each other from binding sites located in fibrin fragment DD, but can compete for the interaction. The results indicate that fibrin fragment DD contains different binding sites for plasminogen kringle fragments K 1-3 and K 5, which can be located close to each other. The role of amino acid residues of fibrin molecule Аα148-160 region in interaction with fragments K 1-3 and K 5 is discussed.
The sand bag model of the dispersion of the cosmic body in the atmosphere
NASA Technical Reports Server (NTRS)
Teterev, A. V.; Nemchinov, I. V.
1993-01-01
The strength of the extraterrestrial bodies depends on their structure, composition, dimensions, and the history of this body. The fragmentation of the body due to aerodynamic stresses begins at sufficiently large heights above the surface of the Earth. The process of fragmentation and dispersion of the fragments usually is studied by the hydrodynamic or even gasdynamic models. If the fragmentation process begins due to the initial cracks and faults of the body, or this body consists of large boulders glued by ice, the strength of these boulders after fragmentation remains higher than the aerodynamic stresses exerted at the remaining part of the body. It is supposed that fragmentation occurs at initial moment t = 0 at some height z(sub o) above the surface of the air, these fragments remain solid. The possibility of further fragmentation during the remaining part of the trajectory is not taken into account. If the number of these parts is large enough and their size is small in comparison to the initial radius of the body than we can use the sand bag model proposed in qualitative form.
Baculovirus display of functional antibody Fab fragments.
Takada, Shinya; Ogawa, Takafumi; Matsui, Kazusa; Suzuki, Tasuku; Katsuda, Tomohisa; Yamaji, Hideki
2015-08-01
The generation of a recombinant baculovirus that displays antibody Fab fragments on the surface was investigated. A recombinant baculovirus was engineered so that the heavy chain (Hc; Fd fragment) of a mouse Fab fragment was expressed as a fusion to the N-terminus of baculovirus gp64, while the light chain of the Fab fragment was simultaneously expressed as a secretory protein. Following infection of Sf9 insect cells with the recombinant baculovirus, the culture supernatant was analyzed by enzyme-linked immunosorbent assay using antigen-coated microplates and either an anti-mouse IgG or an anti-gp64 antibody. A relatively strong signal was obtained in each case, showing antigen-binding activity in the culture supernatant. In western blot analysis of the culture supernatant using the anti-gp64 antibody, specific protein bands were detected at an electrophoretic mobility that coincided with the molecular weight of the Hc-gp64 fusion protein as well as that of gp64. Flow cytometry using a fluorescein isothiocyanate-conjugated antibody specific to mouse IgG successfully detected the Fab fragments on the surface of the Sf9 cells. These results suggest that immunologically functional antibody Fab fragments can be displayed on the surface of baculovirus particles, and that a fluorescence-activated cell sorter with a fluorescence-labeled antigen can isolate baculoviruses displaying specific Fab fragments. This successful baculovirus display of antibody Fab fragments may offer a novel approach for the efficient selection of specific antibodies.
Production of spin-polarized radioactive ion beams via projectile fragmentation reaction
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kameda, D.; Ueno, H.; Yoshimi, A.
2008-02-06
Spin-polarized radioactive ion beams are produced in the projectile fragmentation reaction induced by intermediate-energy heavy ion beams. The degree of spin polarization shows characteristic dependence on the outgoing momentum of the projectile fragment in the magnitude around 1{approx}10%. The qualitative behavior is well described by the kinematical model of the fragmentation process. Recently, we have successfully produced spin-polarized beams of aluminum isotopes in the mass A{approx}30 region via the fragmentation of 95 MeV/u {sup 40}Ar projectiles. The magnetic moments of {sup 30}Al and {sup 32}Al and the electric quadrupole moments of {sup 31}Al and {sup 32}Al have been measured usingmore » the {beta}-NMR technique with the polarized RI beams of the Al isotopes.« less
Connectivity, non-random extinction and ecosystem function in experimental metacommunities.
Staddon, Philip; Lindo, Zoë; Crittenden, Peter D; Gilbert, Francis; Gonzalez, Andrew
2010-05-01
The spatial insurance hypothesis indicates that connectivity is an important attribute of natural ecosystems that sustains both biodiversity and ecosystem function. We tested the hypothesis by measuring the impact of manipulating connectivity in experimental metacommunties of a natural and diverse microecosystem. Isolation led to the extinction of large-bodied apex predators, subsequently followed by increases in prey species abundance. This trophic cascade was associated with significantly altered carbon and nitrogen fluxes in fragmented treatments. The ecosystem impacts were characteristic of a function debt because they persisted for several generations after the initial loss of connectivity. Local extinctions and disruption of ecosystem processes were mitigated, and even reversed, by the presence of corridors in the connected metacommunities, although these beneficial effects were unexpectedly delayed. We hypothesized that corridors maintained grazer movement between fragments, which enhanced microbial activity, and decomposition in comparison to isolated fragments. Our results indicate that knowledge of habitat connectivity and spatial processes is essential to understand the magnitude and timing of ecosystem perturbation in fragmented landscapes.
On projectile fragmentation at high-velocity perforation of a thin bumper
NASA Astrophysics Data System (ADS)
Myagkov, N. N.; Stepanov, V. V.
2014-09-01
By means of 3D numerical simulations, we study the statistical properties of the fragments cloud formed during high-velocity impact of a spherical projectile on a mesh bumper. We present a quantitative description of the projectile fragmentation, and study the nature of the transition from the damage to the fragmentation of the projectile when the impact velocity varies. A distinctive feature of the present work is that the calculations are carried out by smoothed particle hydrodynamics (SPH) method applied to the equations of mechanics of deformable solids (MDS). We describe the materials behavior by the Mie-Grüneisen equation of state and the Johnson-Cook model for the yield strength. The maximum principal stress spall model is used as the fracture model. It is shown that the simulation results of fragmentation based on the MDS equations by the SPH method are qualitatively consistent with the results obtained earlier on the basis of the molecular dynamics and discrete element models. It is found that the power-law distribution exponent does not depend on energy imparted to the projectile during the high-velocity impact. At the same time, our calculations show that the critical impact velocity, the power-law exponent and other critical exponents depend on the fracture criterion.
Hou, Ningning; Zhang, Meng; Xu, Yingjie; Sun, Zhongmin; Wang, Jing; Zhang, Lijuan; Zhang, Quanbin
2017-12-01
Crude polysaccharides from Costaria costata were extracted by hot water and further fractionated by anion exchange chromatography into three polysaccharide fractions. Three low molecular weight fragments were then prepared by degradation of the polysaccharides with hydrogen peroxide and ascorbic acid. The structural features of the polysaccharides and their low molecular weight fragments were elucidated for the first time based on the HGPC, FT-IR, NMR, MS, monosaccharide composition, and other chemical analyses. Their anticoagulant and FGF-1, -2, -7, -8, -9, -10/FGFR1c signaling activation activities in BaF3 cells were also examined. Our studies showed that the polysaccharides were sulfated at different positions of galactose and fucose residues. The APTT-, PT- and TT-based anticoagulant assay results indicated that a high molecular weight and a higher degree of sulfation were essential for their anticoagulant activities. In contrast, not only the polysaccharides but also the depolymerized fragments showed significant FGF/FGFR signal activating activities in a FGF-, molecular weight-, and sulfation-dependent manner. The results presented in current study demonstrated the potential use of the polysaccharides and their fragments as anticoagulants and FGF signal regulators. Copyright © 2017 Elsevier B.V. All rights reserved.
Two-Step Mechanism of Membrane Disruption by Aβ through Membrane Fragmentation and Pore Formation
Sciacca, Michele F.M.; Kotler, Samuel A.; Brender, Jeffrey R.; Chen, Jennifer; Lee, Dong-kuk; Ramamoorthy, Ayyalusamy
2012-01-01
Disruption of cell membranes by Aβ is believed to be one of the key components of Aβ toxicity. However, the mechanism by which this occurs is not fully understood. Here, we demonstrate that membrane disruption by Aβ occurs by a two-step process, with the initial formation of ion-selective pores followed by nonspecific fragmentation of the lipid membrane during amyloid fiber formation. Immediately after the addition of freshly dissolved Aβ1–40, defects form on the membrane that share many of the properties of Aβ channels originally reported from single-channel electrical recording, such as cation selectivity and the ability to be blockaded by zinc. By contrast, subsequent amyloid fiber formation on the surface of the membrane fragments the membrane in a way that is not cation selective and cannot be stopped by zinc ions. Moreover, we observed that the presence of ganglioside enhances both the initial pore formation and the fiber-dependent membrane fragmentation process. Whereas pore formation by freshly dissolved Aβ1–40 is weakly observed in the absence of gangliosides, fiber-dependent membrane fragmentation can only be observed in their presence. These results provide insights into the toxicity of Aβ and may aid in the design of specific compounds to alleviate the neurodegeneration of Alzheimer’s disease. PMID:22947931
Isotopic Effects in Nuclear Fragmentation and GCR Transport Problems
NASA Technical Reports Server (NTRS)
Cucinotta, Francis A.
2002-01-01
Improving the accuracy of the galactic cosmic ray (GCR) environment and transport models is an important goal in preparing for studies of the projected risks and the efficiency of potential mitigations methods for space exploration. In this paper we consider the effects of the isotopic composition of the primary cosmic rays and the isotopic dependence of nuclear fragmentation cross sections on GCR transport models. Measurements are used to describe the isotopic composition of the GCR including their modulation throughout the solar cycle. The quantum multiple-scattering approach to nuclear fragmentation (QMSFRG) is used as the data base generator in order to accurately describe the odd-even effect in fragment production. Using the Badhwar and O'Neill GCR model, the QMSFRG model and the HZETRN transport code, the effects of the isotopic dependence of the primary GCR composition and on fragment production for transport problems is described for a complete GCR isotopic-grid. The principle finding of this study is that large errors ( 100%) will occur in the mass-flux spectra when comparing the complete isotopic-grid (141 ions) to a reduced isotopic-grid (59 ions), however less significant errors 30%) occur in the elemental-flux spectra. Because the full isotopic-grid is readily handled on small computer work-stations, it is recommended that they be used for future GCR studies.
Dispersal of remnant endangered trees in a fragmented and disturbed forest by frugivorous birds.
Li, Ning; Bai, Bing; Li, Xin-Hai; An, Shu-Qing; Lu, Chang-Hu
2017-07-01
Most endangered plant species in a fragmented forest behave as a unique source population, with a high dependence on frugivorous birds for recruitment and persistence. In this study, we combined field data of dispersal behavior of birds and GIS information of patch attributes to estimate how frugivorous birds could affect the effective dispersal pattern of Chinese yew (Taxus chinensis) in a fragmented and disturbed forest. Nine bird species were observed to visit T. chinensis trees, with Urocissa erythrorhyncha, Zoothera dauma and Picus canus being the most common dispersers. After foraging, six disperser species exhibited different perching patterns. Three specialist species, P. canus, Turdus hortulorum, and Z. dauma stayed in the source patch, while three generalist species, U. erythrorhyncha, Hypsipetes mcclellandii, and H. castanonotus, could perch in bamboo patches and varied in movement ability due to body size. As a consequence of perching, dispersers significantly contributed to the seed bank, but indirectly affected seedling recruitment. Moreover, the recruitment of T. chinensis was also affected by patch attributes in a fragmented forest (distances to source patch, patch type, size). Our results highlighted the ability of unique source population regeneration of T. chinensis in a fragmented forest, with high dependence on both frugivorous birds and patch attributes, which should be considered in future planning for forest management and conservation.
Fast metastable fragments produced by dissociative excitation of carbonyl sulfide
NASA Technical Reports Server (NTRS)
Van Brunt, R. J.; Mumma, M. J.
1975-01-01
Dissociative excitation of OCS by electron impact has been studied using the method of translational spectroscopy. Time-of-flight distributions and excitation functions of the fast metastable fragments have been measured. The results are compared with similar measurements on CO2 and show that a variety of metastable fragments including CO(a 3Pi), S(5S), O(5S) as well as long-lived high-lying atomic and molecular Rydberg fragments can contribute to dissociation.
Cerame, Blain; Cox, James A.; Brumfield, Robb T.; Tucker, James W.; Taylor, Sabrina S.
2014-01-01
Bachman's Sparrow (Peucaea aestivalis) is a fire-dependent species that has undergone range-wide population declines in recent decades. We examined genetic diversity in Bachman's Sparrows to determine whether natural barriers have led to distinct population units and to assess the effect of anthropogenic habitat loss and fragmentation. Genetic diversity was examined across the geographic range by genotyping 226 individuals at 18 microsatellite loci and sequencing 48 individuals at mitochondrial and nuclear genes. Multiple analyses consistently demonstrated little genetic structure and high levels of genetic variation, suggesting that populations are panmictic. Based on these genetic data, separate management units/subspecies designations or translocations to promote gene flow among fragmented populations do not appear to be necessary. Panmixia in Bachman's Sparrow may be a consequence of an historical range expansion and retraction. Alternatively, high vagility in Bachman's Sparrow may be an adaptation to the ephemeral, fire-mediated habitat that this species prefers. In recent times, high vagility also appears to have offset inbreeding and loss of genetic diversity in highly fragmented habitat. PMID:25180939
Shiokawa, D; Tanuma, S
2004-10-01
In this study, we investigate the roles of two apoptotic endonucleases, CAD and DNase gamma, in neuronal apoptosis. High expression of CAD, but not DNase gamma, is detected in proliferating N1E-115 neuroblastoma cells, and apoptotic DNA fragmentation induced by staurosporine under proliferating conditions is abolished by the expression of a caspase-resistant form of ICAD. After the induction of neuronal differentiation, CAD disappearance and the induction of DNase gamma occur simultaneously in N1E-115 cells. Apoptotic DNA fragmentation that occurs under differentiating conditions is suppressed by the downregulation of DNase gamma caused by its antisense RNA. The induction of DNase gamma is also observed during neuronal differentiation of PC12 cells, and apoptotic DNA fragmentation induced by NGF deprivation is inhibited by the antisense-mediated downregulation of DNase gamma. These observations suggest that DNA fragmentation in neuronal apoptosis is catalyzed by either CAD or DNase gamma depending on the differentiation state. Furthermore, DNase gamma is suggested to be involved in naturally occurring apoptosis in developing nervous systems.
[Eccentricity-dependent influence of amodal completion on visual search].
Shirama, Aya; Ishiguchi, Akira
2009-06-01
Does amodal completion occur homogeneously across the visual field? Rensink and Enns (1998) found that visual search for efficiently-detected fragments became inefficient when observers perceived the fragments as a partially-occluded version of a distractor due to a rapid completion process. We examined the effect of target eccentricity in Rensink and Enns's tasks and a few additional tasks by magnifying the stimuli in the peripheral visual field to compensate for the loss of spatial resolution (M-scaling; Rovamo & Virsu, 1979). We found that amodal completion disrupted the efficient search for the salient fragments (i.e., target) even when the target was presented at high eccentricity (within 17 deg). In addition, the configuration effect of the fragments, which produced amodal completion, increased with eccentricity while the same target was detected efficiently at the lowest eccentricity. This eccentricity effect is different from a previously-reported eccentricity effect where M-scaling was effective (Carrasco & Frieder, 1997). These findings indicate that the visual system has a basis for rapid completion across the visual field, but the stimulus representations constructed through amodal completion have eccentricity-dependent properties.
NASA Astrophysics Data System (ADS)
Albao, Marvin A.; Padama, Allan Abraham B.
2017-02-01
Using a combined density functional theory (DFT) and kinetic Monte Carlo (KMC) simulations, we study the adsorption at 800 K and subsequent desorption of CO on W(100) at higher temperatures. The resulting TPD profiles are known experimentally to exhibit three desorption peaks β1, β2, and β3 at 930 K, 1070 K, and 1375 K, respectively. Unlike more recent theoretical studies that propose that all three aforementioned peaks are molecularly rather than associatively desorbed, our KMC analyses are in support of the latter, since at 800 K dissociation is facile and that CO exists as dissociation fragments C and O. We show that these peaks arise from desorption from the same adsorption site but whose binding energy varies depending on local environment, that is, the presence of CO as well as dissociation fragments C and O nearby. Furthermore we show that several key parameters, such as desorption, dissociation and recombination barriers all play a key role in the TPD spectra-these parameter effectively controls not only the location of the TPD peaks but the shape and width of the desorption peaks as well. Moreover, our KMC simulations reveal that varying the heating rate shifts the peaks but leaves their shape intact.
Entropy-driven one-step formation of Phi29 pRNA 3WJ from three RNA fragments.
Binzel, Daniel W; Khisamutdinov, Emil F; Guo, Peixuan
2014-04-15
The emerging field of RNA nanotechnology necessitates creation of functional RNA nanoparticles but has been limited by particle instability. It has been shown that the three-way junction of bacteriophage phi29 motor pRNA has unusual stability and can self-assemble from three fragments with high efficiency. It is generally believed that RNA and DNA folding is energy landscape-dependent, and the folding of RNA is driven by enthalpy. Here we examine the thermodynamic characteristics of the 3WJ components as 2'-fluoro RNA, DNA, and RNA. It was seen that the three fragments existed either in 3WJ complex or as monomers, with the intermediate of dimers almost undetectable. It seems that the three fragments can lead to the formation of the 3WJ complex efficiently within a rapid time. A low dissociation constant (apparent KD) of 11.4 nM was determined for RNA, inclusion of 2'-F pyrimidines strengthened the KD to 4.5 nM, and substitution of DNA weakened it to 47.7 nM. The ΔG°37, were -36, -28, and -15 kcal/mol for 3WJ2'-F, 3WJRNA, and 3WJDNA, respectively. It is found that the formation of the three-component complex was governed by entropy, instead of enthalpy, as usually found in RNA complexes. Here entropy-driven is referring to a dominating entropic contribution to the increased stability of the 3WJ(2'-F and 3WJ(RNA) compared to the 3WJ(DNA,) instead of referring to the absolute role or total energy governing 3WJ folding. [corrected].
Hwang, Sang-Yeon; Kim, Jaewook; Kim, Woo Youn
2018-04-04
In theoretical charge-transfer research, calculation of the electronic coupling element is crucial for examining the degree of the electronic donor-acceptor interaction. The tunneling current (TC), representing the magnitudes and directions of electron flow, provides a way of evaluating electronic couplings, along with the ability of visualizing how electrons flow in systems. Here, we applied the TC theory to π-conjugated organic dimer systems, in the form of our fragment-orbital tunneling current (FOTC) method, which uses the frontier molecular-orbitals of system fragments as diabatic states. For a comprehensive test of FOTC, we assessed how reasonable the computed electronic couplings and the corresponding TC densities are for the hole- and electron-transfer databases HAB11 and HAB7. FOTC gave 12.5% mean relative unsigned error with regard to the high-level ab initio reference. The shown performance is comparable with that of fragment-orbital density functional theory, which gave the same error by 20.6% or 13.9% depending on the formulation. In the test of a set of nucleobase π stacks, we showed that the original TC expression is also applicable to nondegenerate cases under the condition that the overlap between the charge distributions of diabatic states is small enough to offset the energy difference. Lastly, we carried out visual analysis on the FOTC densities of thiophene dimers with different intermolecular alignments. The result depicts an intimate topological connection between the system geometry and electron flow. Our work provides quantitative and qualitative grounds for FOTC, showing it to be a versatile tool in characterization of molecular charge-transfer systems.
Tests of a Structural Theory of the Memory Trace.
ERIC Educational Resources Information Center
Jones, Gregory V.
1978-01-01
Jones (1976) has shown that the memory trace resulting from the viewing of a picture corresponds to a "fragment" of that picture. This research shows that the fragmentation hypothesis also correctly represents the recall of memories derived from sentences, i.e., the functional unit of memory, the mnemonic trace, is a fragment of the original item.…
The fragmentation of 510 MeV/nucleon iron-56 in polyethylene. I. Fragment fluence spectra
NASA Technical Reports Server (NTRS)
Zeitlin, C.; Miller, J.; Heilbronn, L.; Frankel, K.; Gong, W.; Schimmerling, W.
1996-01-01
The fragmentation of 510 MeV/nucleon iron ions in several thicknesses of polyethylene has been measured. Non-interacting primary beam particles and fragments have been identified and their LETs calculated by measuring ionization energy loss in a stack of silicon detectors. Fluences, normalized to the incident beam intensity and corrected for detector effects, are presented for each fragment charge and target. Histograms of fluence as a function of LET are also presented. Some implications of these data for measurements of the biological effects of heavy ions are discussed.
Kooyman, R M; Zanne, A E; Gallagher, R V; Cornwell, W; Rossetto, M; O'Connor, P; Parkes, E A; Catterall, C F; Laffan, S W; Lusk, C H
2013-12-01
The conservation implications of large-scale rainforest clearing and fragmentation on the persistence of functional and taxonomic diversity remain poorly understood. If traits represent adaptive strategies of plant species to particular circumstances, the expectation is that the effect of forest clearing and fragmentation will be affected by species functional traits, particularly those related to dispersal. We used species occurrence data for woody plants in 46 rainforest patches across 75,000 ha largely cleared of forest by the early 1900s to determine the combined effects of area reduction, fragmentation, and patch size on the taxonomic structure and functional diversity of subtropical rainforest. We compiled species trait values for leaf area, seed dry mass, wood density, and maximum height and calculated species niche breadths. Taxonomic structure, trait values (means, ranges), and the functional diversity of assemblages of climbing and free-standing plants in remnant patches were quantified. Larger rainforest patches had higher species richness. Species in smaller patches were taxonomically less related than species in larger patches. Free-standing plants had a high percentage of frugivore dispersed seeds; climbers had a high proportion of small wind-dispersed seeds. Connections between the patchy spatial distribution of free-standing species, larger seed sizes, and dispersal syndrome were weak. Assemblages of free-standing plants in patches showed more taxonomic and spatial structuring than climbing plants. Smaller isolated patches retained relatively high functional diversity and similar taxonomic structure to larger tracts of forest despite lower species richness. The response of woody plants to clearing and fragmentation of subtropical rainforest differed between climbers and slow-growing mature-phase forest trees but not between climbers and pioneer trees. Quantifying taxonomic structure and functional diversity provides an improved basis for conservation planning and management by elucidating the effects of forest-area reduction and fragmentation. Efectos de la Forma de Crecimiento y Atributos Funcionales en la Respuesta de Plantas Leñosas al Desmonte y Fragmentación de Bosque Lluvioso Subtropical. © 2013 Society for Conservation Biology.
Impact of pulse duration on Ho:YAG laser lithotripsy: fragmentation and dusting performance.
Bader, Markus J; Pongratz, Thomas; Khoder, Wael; Stief, Christian G; Herrmann, Thomas; Nagele, Udo; Sroka, Ronald
2015-04-01
In vitro investigations of Ho:YAG laser-induced stone fragmentation were performed to identify potential impacts of different pulse durations on stone fragmentation characteristics. A Ho:YAG laser system (Swiss LaserClast, EMS S.A., Nyon, Switzerland) with selectable long or short pulse mode was tested with regard to its fragmentation and laser hardware compatibility properties. The pulse duration is depending on the specific laser parameters. Fragmentation tests (hand-held, hands-free, single-pulse-induced crater) on artificial BEGO stones were performed under reproducible experimental conditions (fibre sizes: 365 and 200 µm; laser settings: 10 W through combinations of 0.5, 1, 2 J/pulse and 20, 10, 5 Hz, respectively). Differences in fragmentation rates between the two pulse duration regimes were detected with statistical significance for defined settings. Hand-held and motivated Ho:YAG laser-assisted fragmentation of BEGO stones showed no significant difference between short pulse mode and long pulse mode, neither in fragmentation rates nor in number of fragments and fragment sizes. Similarly, the results of the hands-free fragmentation tests (with and without anti-repulsion device) showed no statistical differences between long pulse and short pulse modes. The study showed that fragmentation rates for long and short pulse durations at identical power settings remain at a comparable level. Longer holmium laser pulse duration reduces stone pushback. Therefore, longer laser pulses may result in better clinical outcome of laser lithotripsy and more convenient handling during clinical use without compromising fragmentation effectiveness.
DRP-1 is required for BH3 mimetic-mediated mitochondrial fragmentation and apoptosis
Milani, Mateus; Byrne, Dominic P; Greaves, Georgia; Butterworth, Michael; Cohen, Gerald M; Eyers, Patrick A; Varadarajan, Shankar
2017-01-01
The concept of using BH3 mimetics as anticancer agents has been substantiated by the efficacy of selective drugs, such as Navitoclax and Venetoclax, in treating BCL-2-dependent haematological malignancies. However, most solid tumours depend on MCL-1 for survival, which is highly amplified in multiple cancers and a major factor determining chemoresistance. Most MCL-1 inhibitors that have been generated so far, while demonstrating early promise in vitro, fail to exhibit specificity and potency in a cellular context. To address the lack of standardised assays for benchmarking the in vitro binding of putative inhibitors before analysis of their cellular effects, we developed a rapid differential scanning fluorimetry (DSF)-based assay, and used it to screen a panel of BH3 mimetics. We next contrasted their binding signatures with their ability to induce apoptosis in a MCL-1 dependent cell line. Of all the MCL-1 inhibitors tested, only A-1210477 induced rapid, concentration-dependent apoptosis, which strongly correlated with a thermal protective effect on MCL-1 in the DSF assay. In cells that depend on both MCL-1 and BCL-XL, A-1210477 exhibited marked synergy with A-1331852, a BCL-XL specific inhibitor, to induce cell death. Despite this selectivity and potency, A-1210477 induced profound structural changes in the mitochondrial network in several cell lines that were not phenocopied following MCL-1 RNA interference or transcriptional repression, suggesting that A-1210477 induces mitochondrial fragmentation in an MCL-1-independent manner. However, A-1210477-induced mitochondrial fragmentation was dependent upon DRP-1, and silencing expression levels of DRP-1 diminished not just mitochondrial fragmentation but also BH3 mimetic-mediated apoptosis. These findings provide new insights into MCL-1 ligands, and the interplay between DRP-1 and the anti-apoptotic BCL-2 family members in the regulation of apoptosis. PMID:28079887
NASA Astrophysics Data System (ADS)
Zuo, S.; Dai, S.; Ren, Y.; Yu, Z.
2017-12-01
Scientifically revealing the spatial heterogeneity and the relationship between the fragmentation of urban landscape and the direct carbon emissions are of great significance to land management and urban planning. In fact, the linear and nonlinear effects among the various factors resulted in the carbon emission spatial map. However, there is lack of the studies on the direct and indirect relations between the carbon emission and the city functional spatial form changes, which could not be reflected by the land use change. The linear strength and direction of the single factor could be calculated through the correlation and Geographically Weighted Regression (GWR) analysis, the nonlinear power of one factor and the interaction power of each two factors could be quantified by the Geodetector analysis. Therefore, we compared the landscape fragmentation metrics of the urban land cover and functional district patches to characterize the landscape form and then revealed the relations between the landscape fragmentation level and the direct the carbon emissions based on the three methods. The results showed that fragmentation decreased and the fragmented patches clustered at the coarser resolution. The direct CO2 emission density and the population density increased when the fragmentation level aggregated. The correlation analysis indicated the weak linear relation between them. The spatial variation of GWR output indicated the fragmentation indicator (MESH) had the positive influence on the carbon emission located in the relatively high emission region, and the negative effects regions accounted for the small part of the area. The Geodetector which explores the nonlinear relation identified the DIVISION and MESH as the most powerful direct factor for the land cover patches, NP and PD for the functional district patches, and the interactions between fragmentation indicator (MESH) and urban sprawl metrics (PUA and DIS) had the greatly increased explanation powers on the urban carbon emission. Overall, this study provides a framework to understand the relation between the urban landscape fragmentation and the carbon emission for the low carbon city construction planning in the other cities.
Ten-Year Follow-Up of a Fragment Reattachment to an Anterior Tooth: A Conservative Approach.
Mendes, Luiz; Laxe, Laisa; Passos, Leandro
2017-01-01
This report describes the 10-year follow-up data of a patient who underwent fragment reattachment to the maxillary central incisor after coronal fracture with pulp exposure as well as the procedures followed for functional and esthetic adjustments. A 9-year-old female patient presented at the clinic of dentistry at the State University of Rio de Janeiro with a coronal fracture and pulp exposure of the right maxillary central incisor that had occurred immediately after an accident. The intact tooth fragment was recovered at the accident site and stored in milk. The treatment plan followed was to perform direct pulp capping and tooth fragment reattachment. When the patient was 14 years old, adhesion between fragment and remaining tooth was lost, and fragment reattachment was performed. Five years later, the same tooth presented clinical discoloration and absence of sensitivity during pulp vitality tests. Subsequently, a new treatment plan was formulated, which included endodontic treatment, followed by nonvital tooth bleaching and light-cured composite resin restoration. An esthetic and natural-looking restoration was achieved. Tooth fragment reattachment is not a temporary restorative technique and requires functional and esthetic adjustments over time to maintain the biomimetic characteristics of traumatized anterior teeth and predictable outcomes.
Ten-Year Follow-Up of a Fragment Reattachment to an Anterior Tooth: A Conservative Approach
Mendes, Luiz; Laxe, Laisa
2017-01-01
This report describes the 10-year follow-up data of a patient who underwent fragment reattachment to the maxillary central incisor after coronal fracture with pulp exposure as well as the procedures followed for functional and esthetic adjustments. A 9-year-old female patient presented at the clinic of dentistry at the State University of Rio de Janeiro with a coronal fracture and pulp exposure of the right maxillary central incisor that had occurred immediately after an accident. The intact tooth fragment was recovered at the accident site and stored in milk. The treatment plan followed was to perform direct pulp capping and tooth fragment reattachment. When the patient was 14 years old, adhesion between fragment and remaining tooth was lost, and fragment reattachment was performed. Five years later, the same tooth presented clinical discoloration and absence of sensitivity during pulp vitality tests. Subsequently, a new treatment plan was formulated, which included endodontic treatment, followed by nonvital tooth bleaching and light-cured composite resin restoration. An esthetic and natural-looking restoration was achieved. Tooth fragment reattachment is not a temporary restorative technique and requires functional and esthetic adjustments over time to maintain the biomimetic characteristics of traumatized anterior teeth and predictable outcomes. PMID:28740741
Biogenesis and function of tRNA fragments during sperm maturation and fertilization in mammals.
Sharma, Upasna; Conine, Colin C; Shea, Jeremy M; Boskovic, Ana; Derr, Alan G; Bing, Xin Y; Belleannee, Clemence; Kucukural, Alper; Serra, Ryan W; Sun, Fengyun; Song, Lina; Carone, Benjamin R; Ricci, Emiliano P; Li, Xin Z; Fauquier, Lucas; Moore, Melissa J; Sullivan, Robert; Mello, Craig C; Garber, Manuel; Rando, Oliver J
2016-01-22
Several recent studies link parental environments to phenotypes in subsequent generations. In this work, we investigate the mechanism by which paternal diet affects offspring metabolism. Protein restriction in mice affects small RNA (sRNA) levels in mature sperm, with decreased let-7 levels and increased amounts of 5' fragments of glycine transfer RNAs (tRNAs). In testicular sperm, tRNA fragments are scarce but increase in abundance as sperm mature in the epididymis. Epididymosomes (vesicles that fuse with sperm during epididymal transit) carry RNA payloads matching those of mature sperm and can deliver RNAs to immature sperm in vitro. Functionally, tRNA-glycine-GCC fragments repress genes associated with the endogenous retroelement MERVL, in both embryonic stem cells and embryos. Our results shed light on sRNA biogenesis and its dietary regulation during posttesticular sperm maturation, and they also link tRNA fragments to regulation of endogenous retroelements active in the preimplantation embryo. Copyright © 2016, American Association for the Advancement of Science.
Albumin modification and fragmentation in renal disease.
Donadio, Carlo; Tognotti, Danika; Donadio, Elena
2012-02-18
Albumin is the most important antioxidant substance in plasma and performs many physiological functions. Furthermore, albumin is the major carrier of endogenous molecules and exogenous ligands. This paper reviews the importance of post-translational modifications of albumin and fragments thereof in patients with renal disease. First, current views and controversies on renal handling of proteins, mainly albumin, will be discussed. Post-translational modifications, namely the fragmentation of albumin found with proteomic techniques in nephrotic patients, diabetics, and ESRD patients will be presented and discussed. It is reasonable to hypothesize that proteolytic fragmentation of serum albumin is due to a higher susceptibility to proteases, induced by oxidative stress. The clinical relevance of the fragmentation of albumin has not yet been established. These modifications could affect some physiological functions of albumin and have a patho-physiological role in uremic syndrome. Proteomic analysis of serum allows the identification of over-expressed proteins and can detect post-translational modifications of serum proteins, hitherto hidden, using standard laboratory techniques. Copyright © 2011 Elsevier B.V. All rights reserved.
Dynamics of fragment formation in neutron-rich matter
NASA Astrophysics Data System (ADS)
Alcain, P. N.; Dorso, C. O.
2018-01-01
Background: Neutron stars are astronomical systems with nucleons subjected to extreme conditions. Due to the longer range Coulomb repulsion between protons, the system has structural inhomogeneities. Several interactions tailored to reproduce nuclear matter plus a screened Coulomb term reproduce these inhomogeneities known as nuclear pasta. These structural inhomogeneities, located in the crusts of neutron stars, can also arise in expanding systems depending on the thermodynamic conditions (temperature, proton fraction, etc.) and the expansion velocity. Purpose: We aim to find the dynamics of the fragment formation for expanding systems simulated according to the little big bang model. This expansion resembles the evolution of merging neutron stars. Method: We study the dynamics of the nucleons with semiclassical molecular dynamics models. Starting with an equilibrium configuration, we expand the system homogeneously until we arrive at an asymptotic configuration (i.e., very low final densities). We study, with four different cluster recognition algorithms, the fragment distribution throughout this expansion and the dynamics of the cluster formation. Results: Studying the topology of the equilibrium states, before the expansion, we reproduced the known pasta phases plus a novel phase we called pregnocchi, consisting of proton aggregates embedded in a neutron sea. We have identified different fragmentation regimes, depending on the initial temperature and fragment velocity. In particular, for the already mentioned pregnocchi, a neutron cloud surrounds the clusters during the early stages of the expansion, resulting in systems that give rise to configurations compatible with the emergence of the r process. Conclusions: We showed that a proper identification of the cluster distribution is highly dependent on the cluster recognition algorithm chosen, and found that the early cluster recognition algorithm (ECRA) was the most stable one. This approach allowed us to identify the dynamics of the fragment formation. These calculations pave the way to a comparison between Earth experiments and neutron star studies.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gibbs, John W.; Tourret, Damien; Gibbs, Paul J.
2015-09-25
Dendrite fragmentation is an important phenomenon in microstructural development during solidification. For instance, it plays a key role in initiating the columnar-to-equiaxed transition (CET). Here, we use x-ray radiography to study dendrite fragmentation rate in a Sn-39.5 wt.% Bi alloy during directional solidification. Experiments were performed in which solidification was parallel and anti-parallel to gravity, leading to significantly different fragmentation rates. We quantify the distribution of fragmentation rate as a function of distance from the solidification front, time in the mushy zone, and volume fraction of solid. While the observed fragmentation rate can be high, there is no evidence ofmore » a CET, illustrating that it requires more than just fragmentation to occur.« less
Gibbs, John W.; Tourret, Damien; Gibbs, Paul J.; ...
2015-09-25
Dendrite fragmentation is an important phenomenon in microstructural development during solidification. For instance, it plays a key role in initiating the columnar-to-equiaxed transition (CET). In this paper, we use x-ray radiography to study dendrite fragmentation rate in a Sn-39.5 wt.% Bi alloy during directional solidification. Experiments were performed in which solidification was parallel and anti-parallel to gravity, leading to significantly different fragmentation rates. We quantify the distribution of fragmentation rate as a function of distance from the solidification front, time in the mushy zone, and volume fraction of solid. Finally, while the observed fragmentation rate can be high, there ismore » no evidence of a CET, illustrating that it requires more than just fragmentation to occur.« less
Crownover, Emily; Duvall, Craig L.; Convertine, Anthony; Hoffman, Allan S.; Stayton, Patrick S.
2012-01-01
Here we describe a new graft copolymer architecture of poly(propylacrylic acid) (polyPAA) that displays potent pH-dependent, membrane-destabilizing activity and in addition is shown to enhance protein blood circulation kinetics. PolyPAA containing a single telechelic alkyne functionality was prepared via reversible addition-fragmentation chain transfer (RAFT) polymerization with an alkyne-functional chain transfer agent (CTA) and coupled to RAFT polymerized poly(azidopropyl methacrylate) (polyAPMA) through azide-alkyne [3+2] Huisgen cycloaddition. The graft copolymers become membrane destabilizing at endosomal pH values and are active at significantly lower concentrations than the linear polyPAA. A biotin terminated polyPAA graft copolymer was prepared by grafting PAA onto polyAPMA polymerized with a biotin functional RAFT CTA. The blood circulation time and biodistribution of tritium labeled avidin conjugated to the polyPAA graft copolymer was characterized along with a clinically utilized 40 kDa branched polyethylene glycol (PEG) also possessing biotin functionalization. The linear and graft polyPAA increase the area under the curve (AUC) over avidin alone by 9 and 12 times, respectively. Furthermore, polyPAA graft copolymer conjugates accumulated in tumor tissue significantly more than the linear polyPAA and the branched PEG conjugates. The collective data presented in this report indicate that the polyPAA graft copolymers exhibit robust pH-dependent, membrane-destabilizing activity, low cytotoxicity and significantly enhance blood circulation time and tumor accumulation. PMID:21699931
Chhabra, P. S.; Lambe, A. T.; Canagaratna, M. R.; ...
2014-07-01
Recent developments in high resolution, time-of-flight chemical ionization mass spectrometry (HR-ToF-CIMS) have made possible the direct detection of atmospheric organic compounds in real-time with high sensitivity and with little or no fragmentation, including low volatility, highly oxygenated organic vapors that are precursors to secondary organic aerosol formation. Here, for the first time, we examine gas-phase O 3 and OH oxidation products of α-pinene and naphthalene formed in the PAM flow reactor with an HR-ToF-CIMS using acetate reagent ion chemistry. Integrated OH exposures ranged from 1.2 × 10 11 to 9.7 × 10 11 molec cm −3 s, corresponding to approximatelymore » 1.0 to 7.5 days of equivalent atmospheric oxidation. Measured gas-phase organic acids are similar to those previously observed in environmental chamber studies. For both precursors, we find that acetate-CIMS spectra capture both functionalization (oxygen addition) and fragmentation (carbon loss) as a function of OH exposure. The level of fragmentation is observed to increase with increased oxidation. We present a method that estimates vapor pressures of organic molecules using the measured O/C ratio, H/C ratio, and carbon number for each compound detected by the CIMS. The predicted condensed-phase SOA average acid yields and O/C and H/C ratios agree within uncertainties with previous AMS measurements and ambient CIMS results. While acetate reagent ion chemistry is used to selectively measure organic acids, in principle this method can be applied to additional reagent ion chemistries depending on the application.« less
Relationship between cavitation and loss of echogenicity from ultrasound contrast agents
NASA Astrophysics Data System (ADS)
Radhakrishnan, Kirthi; Bader, Kenneth B.; Haworth, Kevin J.; Kopechek, Jonathan A.; Raymond, Jason L.; Huang, Shao-Ling; McPherson, David D.; Holland, Christy K.
2013-09-01
Ultrasound contrast agents (UCAs) have the potential to nucleate cavitation and promote both beneficial and deleterious bioeffects in vivo. Previous studies have elucidated the pulse-duration-dependent pressure amplitude threshold for rapid loss of echogenicity due to UCA fragmentation. Previous studies have demonstrated that UCA fragmentation was concomitant with inertial cavitation. The purpose of this study was to evaluate the relationship between stable and inertial cavitation thresholds and loss of echogenicity of UCAs as a function of pulse duration. Determining the relationship between cavitation thresholds and loss of echogenicity of UCAs would enable monitoring of cavitation based upon the onscreen echogenicity in clinical applications. Two lipid-shelled UCAs, echogenic liposomes (ELIP) and Definity®, were insonified by a clinical ultrasound scanner in duplex spectral Doppler mode at four pulse durations (‘sample volumes’) in both a static system and a flow system. Cavitation emissions from the UCAs insonified by Doppler pulses were recorded using a passive cavitation detection system and stable and inertial cavitation thresholds ascertained. Loss of echogenicity from ELIP and Definity® was assessed within regions of interest on B-mode images. A numerical model based on UCA rupture predicted the functional form of the loss of echogenicity from ELIP and Definity®. Stable and inertial cavitation thresholds were found to have a weak dependence on pulse duration. Stable cavitation thresholds were lower than inertial cavitation thresholds. The power of cavitation emissions was an exponential function of the loss of echogenicity over the investigated range of acoustic pressures. Both ELIP and Definity® lost more than 80% echogenicity before the onset of stable or inertial cavitation. Once this level of echogenicity loss occurred, both stable and inertial cavitation were detected in the physiologic flow phantom. These results imply that stable and inertial cavitation are necessary in order to trigger complete loss of echogenicity acoustically from UCAs and this finding can be used when planning diagnostic and therapeutic applications.
Relationship between cavitation and loss of echogenicity from ultrasound contrast agents
Radhakrishnan, Kirthi; Bader, Kenneth B; Haworth, Kevin J; Kopechek, Jonathan A; Raymond, Jason L; Huang, Shao-Ling; McPherson, David D; Holland, Christy K
2014-01-01
Ultrasound contrast agents (UCAs) have the potential to nucleate cavitation and promote both beneficial and deleterious bioeffects in vivo. Previous studies have elucidated the pulse-duration dependent pressure amplitude threshold for rapid loss of echogenicity due to UCA fragmentation. Previous studies have demonstrated that UCA fragmentation was concomitant with inertial cavitation. The purpose of this study was to evaluate the relationship between stable and inertial cavitation thresholds and loss of echogenicity of UCAs as a function of pulse duration. Determining the relationship between cavitation thresholds and loss of echogenicity of UCAs would enable monitoring of cavitation based upon the on-screen echogenicity in clinical applications. Two lipid-shelled UCAs, echogenic liposomes (ELIP) and Definity®, were insonified by a clinical ultrasound scanner in duplex spectral Doppler mode at four pulse durations (“sample volumes”) in both a static system and a flow system. Cavitation emissions from the UCAs insonified by Doppler pulses were recorded using a passive cavitation detection system and stable and inertial cavitation thresholds ascertained. Loss of echogenicity from ELIP and Definity® was assessed within regions of interest on B-mode images. A numerical model based on UCA rupture predicted the functional form of the loss of echogenicity from ELIP and Definity®. Stable and inertial cavitation thresholds were found to have a weak dependence on pulse duration. Stable cavitation thresholds were lower than inertial cavitation thresholds. The power of cavitation emissions was an exponential function of the loss of echogenicity over the investigated range of acoustic pressures. Both ELIP and Definity® lost more than 80% echogenicity before the onset of stable or inertial cavitation. Once this level of echogenicity loss occurred, both stable and inertial cavitation were detected in the physiologic flow phantom. These results imply that stable and inertial cavitation are necessary in order to trigger complete loss of echogenicity acoustically from UCAs and this finding can be used when planning diagnostic and therapeutic applications. PMID:24002637
Relationship between cavitation and loss of echogenicity from ultrasound contrast agents.
Radhakrishnan, Kirthi; Bader, Kenneth B; Haworth, Kevin J; Kopechek, Jonathan A; Raymond, Jason L; Huang, Shao-Ling; McPherson, David D; Holland, Christy K
2013-09-21
Ultrasound contrast agents (UCAs) have the potential to nucleate cavitation and promote both beneficial and deleterious bioeffects in vivo. Previous studies have elucidated the pulse-duration-dependent pressure amplitude threshold for rapid loss of echogenicity due to UCA fragmentation. Previous studies have demonstrated that UCA fragmentation was concomitant with inertial cavitation. The purpose of this study was to evaluate the relationship between stable and inertial cavitation thresholds and loss of echogenicity of UCAs as a function of pulse duration. Determining the relationship between cavitation thresholds and loss of echogenicity of UCAs would enable monitoring of cavitation based upon the onscreen echogenicity in clinical applications. Two lipid-shelled UCAs, echogenic liposomes (ELIP) and Definity®, were insonified by a clinical ultrasound scanner in duplex spectral Doppler mode at four pulse durations ('sample volumes') in both a static system and a flow system. Cavitation emissions from the UCAs insonified by Doppler pulses were recorded using a passive cavitation detection system and stable and inertial cavitation thresholds ascertained. Loss of echogenicity from ELIP and Definity® was assessed within regions of interest on B-mode images. A numerical model based on UCA rupture predicted the functional form of the loss of echogenicity from ELIP and Definity®. Stable and inertial cavitation thresholds were found to have a weak dependence on pulse duration. Stable cavitation thresholds were lower than inertial cavitation thresholds. The power of cavitation emissions was an exponential function of the loss of echogenicity over the investigated range of acoustic pressures. Both ELIP and Definity® lost more than 80% echogenicity before the onset of stable or inertial cavitation. Once this level of echogenicity loss occurred, both stable and inertial cavitation were detected in the physiologic flow phantom. These results imply that stable and inertial cavitation are necessary in order to trigger complete loss of echogenicity acoustically from UCAs and this finding can be used when planning diagnostic and therapeutic applications.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Boskey, Adele L., E-mail: boskeya@hss.edu; Christensen, Brian, E-mail: bc@mb.au.dk; Taleb, Hayat, E-mail: Talebh@hss.edu
Highlights: Black-Right-Pointing-Pointer Thrombin-cleaved fragments of milk-osteopontin effect hydroxyapatite formation differently. Black-Right-Pointing-Pointer N- and C-terminal fragments promoted hydroxyapatite formation and growth. Black-Right-Pointing-Pointer A central fragment inhibited hydroxyapatite formation and growth. Black-Right-Pointing-Pointer Binding to collagen or hydroxyapatite seed crystals modified these effects. -- Abstract: The manuscript tests the hypothesis that posttranslational modification of the SIBLING family of proteins in general and osteopontin in particular modify the abilities of these proteins to regulate in vitro hydroxyapatite (HA) formation. Osteopontin has diverse effects on hydroxyapatite (HA) mineral crystallite formation and growth depending on the extent of phosphorylation. We hypothesized that different regions of full-lengthmore » OPN would also have distinct effects on the mineralization process. Thrombin fragmentation of milk OPN (mOPN) was used to test this hypothesis. Three fragments were tested in a de novo HA formation assay; an N-terminal fragment (aa 1-147), a central fragment (aa 148-204) denoted SKK-fragment and a C-terminal fragment (aa 205-262). Compared to intact mOPN the C- and N-terminal fragments behaved comparably, promoting HA formation and growth, but the central SKK-fragment acted as a mineralization inhibitor. In a seeded growth experiment all fragments inhibited mineral proliferation, but the SKK-fragment was the most effective inhibitor. These effects, seen in HA-formation and seeded growth assays in a gelatin gel system and in a pH-stat experiment were lost when the protein or fragments were dephosphorylated. Effects of the fully phosphorylated protein and fragments were also altered in the presence of fibrillar collagen. The diverse effects can be explained in terms of the intrinsically disordered nature of OPN and its fragments which enable them to interact with their multiple partners.« less
NASA Astrophysics Data System (ADS)
Duarte, Manuel; Mamon, Gary A.
2014-05-01
The specific star formation rates of galaxies are influenced both by their mass and by their environment. Moreover, the mass function of groups and clusters serves as a powerful cosmological tool. It is thus important to quantify the accuracy to which group properties are extracted from redshift surveys. We test here the Friends-of-Friends (FoF) grouping algorithm, which depends on two linking lengths (LLs), plane-of-sky and line-of-sight (LOS), normalized to the mean nearest neighbour separation of field galaxies. We argue, on theoretical grounds, that LLs should be b⊥ ≃ 0.11, and b∥ ≈ 1.3 to recover 95 per cent of all galaxies with projected radii within the virial radius r200 and 95 per cent of the galaxies along the LOS. We then predict that 80 to 90 per cent of the galaxies in FoF groups should lie within their parent real-space groups (RSGs), defined within their virial spheres. We test the FoF extraction for 16 × 16 pairs of LLs, using subsamples of galaxies, doubly complete in distance and luminosity, of a flux-limited mock Sloan Digital Sky Survey (SDSS) galaxy catalogue. We find that massive RSGs are more prone to fragmentation, while the fragments typically have low estimated mass, with typically 30 per cent of groups of low and intermediate estimated mass being fragments. Group merging rises drastically with estimated mass. For groups of three or more galaxies, galaxy completeness and reliability are both typically better than 80 per cent (after discarding the fragments). Estimated masses of extracted groups are biased low, by up to a factor 4 at low richness, while the inefficiency of mass estimation improves from 0.85 dex to 0.2 dex when moving from low to high multiplicity groups. The optimal LLs depend on the scientific goal for the group catalogue. We propose b⊥ ≃ 0.07, with b∥ ≃ 1.1 for studies of environmental effects, b∥ ≃ 2.5 for cosmographic studies and b∥ ≃ 5 for followups of individual groups.
XRN2 is required for the degradation of target RNAs by RNase H1-dependent antisense oligonucleotides
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hori, Shin-Ichiro; Yamamoto, Tsuyoshi; Obika, Satoshi, E-mail: obika@phs.osaka-u.ac.jp
Antisense oligonucleotides (ASOs) can suppress the expression of a target gene by cleaving pre-mRNA and/or mature mRNA via RNase H1. Following the initial endonucleolytic cleavage by RNase H1, the target RNAs are degraded by a mechanism that is poorly understood. To better understand this degradation pathway, we depleted the expression of two major 5′ to 3′ exoribonucleases (XRNs), named XRN1 and XRN2, and analyzed the levels of 3′ fragments of the target RNAs in vitro. We found that the 3′ fragments of target pre-mRNA generated by ASO were almost completely degraded from their 5′ ends by nuclear XRN2 after RNase H1-mediatedmore » cleavage, whereas the 3′ fragments of mature mRNA were partially degraded by XRN2. In contrast to ASO, small interference RNA (siRNA) could reduce the expression level of only mature mRNA, and the 3′ fragment was degraded by cytoplasmic XRN1. Our findings indicate that the RNAs targeted by RNase H1-dependent ASO are rapidly degraded in the nucleus, contrary to the cytoplasmic degradation pathway mediated by siRNA. - Highlights: • We compared the degradation mechanism of the transcript targeted by ASO and siRNA. • We focused on two 5′ to 3′ exoribonucleases, cytoplasmic XRN1, and nuclear XRN2. • The 3′ fragment of target pre-mRNA generated by ASO was degraded by XRN2. • The 3′ fragment of target mRNA generated by ASO was partially degraded by XRN2. • XRN1 depletion promoted accumulation of the 3′ fragment of mRNA generated by siRNA.« less
Multisegment nanowire sensors for the detection of DNA molecules.
Wang, Xu; Ozkan, Cengiz S
2008-02-01
We describe a novel application for detecting specific single strand DNA sequences using multisegment nanowires via a straightforward surface functionalization method. Nanowires comprising CdTe-Au-CdTe segments are fabricated using electrochemical deposition, and electrical characterization indicates a p-type behavior for the multisegment nanostructures, in a back-to-back Schottky diode configuration. Such nanostructures modified with thiol-terminated probe DNA fragments could function as high fidelity sensors for biomolecules at very low concentration. The gold segment is utilized for functionalization and binding of single strand DNA (ssDNA) fragments while the CdTe segments at both ends serve to modulate the equilibrium Fermi level of the heterojunction device upon hybridization of the complementary DNA fragments (cDNA) to the ssDNA over the Au segment. Employing such multisegment nanowires could lead to the fabrication more sophisticated and high multispecificity biosensors via selective functionalization of individual segments for biowarfare sensing and medical diagnostics applications.
Heavy quarkonium production at collider energies: Factorization and evolution
NASA Astrophysics Data System (ADS)
Kang, Zhong-Bo; Ma, Yan-Qing; Qiu, Jian-Wei; Sterman, George
2014-08-01
We present a perturbative QCD factorization formalism for inclusive production of heavy quarkonia of large transverse momentum, pT at collider energies, including both leading power (LP) and next-to-leading power (NLP) behavior in pT. We demonstrate that both LP and NLP contributions can be factorized in terms of perturbatively calculable short-distance partonic coefficient functions and universal nonperturbative fragmentation functions, and derive the evolution equations that are implied by the factorization. We identify projection operators for all channels of the factorized LP and NLP infrared safe short-distance partonic hard parts, and corresponding operator definitions of fragmentation functions. For the NLP, we focus on the contributions involving the production of a heavy quark pair, a necessary condition for producing a heavy quarkonium. We evaluate the first nontrivial order of evolution kernels for all relevant fragmentation functions, and discuss the role of NLP contributions.
Sun, Liqin; Chu, Jinling; Sun, Zhongliang; Chen, Lihong
2016-01-01
Polysaccharides synthesized by microalgae can be used as the functional ingredients of food or drugs. Here, we investigated the physicochemical properties and bioactivities of the polysaccharide from microalgae Pavlova viridis, and indicated the structure-activity relationship. The polysaccharides (PPS0) were degraded with H2O2-vitamin C assisted by ultrasonic waves. The functional group content, monosaccharide composition, and average molecular weight (avg-MW) were detected by chemical or chromatographic method. The immunomodulatory activities were evaluated in vitro by detecting nitric oxide (NO) emission, neutral red uptake and macrophage proliferation. Antitumor activities of degraded fragments were detected using S180-tumor-bearing mouse model by intragastric administration. Degraded polysaccharides PPS1 and PPS2 were obtained at avg-MW of 386.96 and 54.99 kDa. The sulfate group content of polysaccharide was 16%, and the uronic acid content was 5.88 and 8.48%. PPS mainly consisted of fructose, glucose and mannose. All the degraded PPSs could increase phagocytosis and proliferation of macrophages, and stimulated NO emission in a dose-dependently way. PPS2 in Low-MW fragments had the strongest immunoenhancing activities. Different doses of PPS all could inhibit the growth of implanted S180 tumor. At dose of 200 mg/kg/day, the tumor inhibition rate of PPS2 was 57.06%, about 23.6% less than that of CTX-treated group. Different-MW PPS significantly increased lymphocyte proliferation. At 200 mg/L, the proliferation index of PPS2 was 1.37, 2.03 times higher than that of CTX-treated group. The polysaccharides of Pavlova viridis had potential antitumor activities by improving immune response. Moreover, the bioactivities depend on their molecular weight. Copyright © 2015 Elsevier Inc. All rights reserved.
Definition of a RACK1 Interaction Network in Drosophila melanogaster Using SWATH-MS.
Kuhn, Lauriane; Majzoub, Karim; Einhorn, Evelyne; Chicher, Johana; Pompon, Julien; Imler, Jean-Luc; Hammann, Philippe; Meignin, Carine
2017-07-05
Receptor for Activated protein C kinase 1 (RACK1) is a scaffold protein that has been found in association with several signaling complexes, and with the 40S subunit of the ribosome. Using the model organism Drosophila melanogaster , we recently showed that RACK1 is required at the ribosome for internal ribosome entry site (IRES)-mediated translation of viruses. Here, we report a proteomic characterization of the interactome of RACK1 in Drosophila S2 cells. We carried out Label-Free quantitation using both Data-Dependent and Data-Independent Acquisition (DDA and DIA, respectively) and observed a significant advantage for the Sequential Window Acquisition of all THeoretical fragment-ion spectra (SWATH) method, both in terms of identification of interactants and quantification of low abundance proteins. These data represent the first SWATH spectral library available for Drosophila and will be a useful resource for the community. A total of 52 interacting proteins were identified, including several molecules involved in translation such as structural components of the ribosome, factors regulating translation initiation or elongation, and RNA binding proteins. Among these 52 proteins, 15 were identified as partners by the SWATH strategy only. Interestingly, these 15 proteins are significantly enriched for the functions translation and nucleic acid binding. This enrichment reflects the engagement of RACK1 at the ribosome and highlights the added value of SWATH analysis. A functional screen did not reveal any protein sharing the interesting properties of RACK1, which is required for IRES-dependent translation and not essential for cell viability. Intriguingly however, 10 of the RACK1 partners identified restrict replication of Cricket paralysis virus (CrPV), an IRES-containing virus. Copyright © 2017 Kuhn et al.
Effects of a Single Night of Postpartum Sleep on Childless Women’s Daytime Functioning
McBean, Amanda L.; Kinsey, Steven G.; Montgomery-Downs, Hawley E.
2017-01-01
Study Objectives The maternal postpartum period is characterized by sleep fragmentation, which is associated with daytime impairment, mental health disturbances, and changes in melatonin patterns. In addition to sleep fragmentation, women undergo a complex set of physiological and environmental changes upon entering the postpartum period, confounding our understanding of effects of postpartum sleep disturbance. The primary study aim was to understand the basic impact of a single night of postpartum-like sleep fragmentation on sleep architecture, nocturnal melatonin levels, mood, daytime sleepiness, and neurobehavioral performance. Measurements and Results For one week prior to entry into the laboratory, eleven healthy nulliparous women kept a stable sleep-wake schedule (verified via actigraphy). Participants contributed three consecutive nights of laboratory overnight polysomnography: (1) a habituation/sleep disorder screening night; (2) a baseline night; and (3) a sleep fragmentation night, when participants were awakened three times for ~30 min each. Self-reported sleep quality and mood (Profile of Mood States Survey) both decreased significantly after sleep fragmentation compared to baseline measurements. Unexpectedly, daytime sleepiness (Multiple Sleep Latency Test) decreased significantly after sleep fragmentation. Experimental fragmentation had no significant effect on time spent in nocturnal sleep stages, urinary 6-sulphatoxymelatonin concentration, or psychomotor vigilance test performance. Participants continued to provide actigraphy data, and daily PVTs and self-reported sleep quality assessments at home for one week following sleep fragmentation; these assessments did not differ from baseline values. Conclusions While there were no changes in measured physiological components of a single night of postpartum-like experimental sleep fragmentation, there were decreases in self-reported measures of mood and sleep quality. Future research should examine the effects of multiple nights of modeling postpartum-like sleep fragmentation on objective measures of sleep and daytime functioning. PMID:26776447
Attosecond-recollision-controlled selective fragmentation of polyatomic molecules.
Xie, Xinhua; Doblhoff-Dier, Katharina; Roither, Stefan; Schöffler, Markus S; Kartashov, Daniil; Xu, Huailiang; Rathje, Tim; Paulus, Gerhard G; Baltuška, Andrius; Gräfe, Stefanie; Kitzler, Markus
2012-12-14
Control over various fragmentation reactions of a series of polyatomic molecules (acetylene, ethylene, 1,3-butadiene) by the optical waveform of intense few-cycle laser pulses is demonstrated experimentally. We show both experimentally and theoretically that the responsible mechanism is inelastic ionization from inner-valence molecular orbitals by recolliding electron wave packets, whose recollision energy in few-cycle ionizing laser pulses strongly depends on the optical waveform. Our work demonstrates an efficient and selective way of predetermining fragmentation and isomerization reactions in polyatomic molecules on subfemtosecond time scales.
Self-polarization and directional motility of cytoplasm.
Verkhovsky, A B; Svitkina, T M; Borisy, G G
1999-01-14
Directional cell motility implies the presence of a steering mechanism and a functional asymmetry between the front and rear of the cell. How this functional asymmetry arises and is maintained during cell locomotion is, however, unclear. Lamellar fragments of fish epidermal keratocytes, which lack nuclei, microtubules and most organelles, present a simplified, perhaps minimal, system for analyzing this problem because they consist of little other than the motile machinery enclosed by a membrane and yet can move with remarkable speed and persistence. We have produced two types of cellular fragments: discoid stationary fragments and polarized fragments undergoing locomotion. The organization and dynamics of the actin-myosin II system were isotropic in stationary fragments and anisotropic in the moving fragments. To investigate whether the creation of asymmetry could result in locomotion, a transient mechanical stimulus was applied to stationary fragments. The stimulus induced localized contraction and the formation of an actin-myosin II bundle at one edge of the fragment. Remarkably, stimulated fragments started to undergo locomotion and the locomotion and associated anisotropic organization of the actin-myosin II system were sustained after withdrawal of the stimulus. We propose a model in which lamellar cytoplasm is considered a dynamically bistable system capable of existing in a non-polarized or polarized state and interconvertible by mechanical stimulus. The model explains how the anisotropic organization of the lamellum is maintained in the process of locomotion. Polarized locomotion is sustained through a positive-feedback loop intrinsic to the actin-myosin II machinery: anisotropic organization of the machinery drives translocation, which then reinforces the asymmetry of the machinery, favoring further translocation.
González, Ezequiel; Salvo, Adriana; Valladares, Graciela
2015-02-01
Loss and fragmentation of natural ecosystems are widely recognized as the most important threats to biodiversity conservation, with Neotropical dry forests among the most endangered ecosystems. Area and edge effects are major factors in fragmented landscapes. Here, we examine area and edge effects and their interaction, on ensembles of arthropods associated to native vegetation in a fragmented Chaco Serrano forest. We analyzed family richness and community composition of herbivores, predators, and parasitoids on three native plant species in 12 fragments of varying size and at edge/interior positions. We also looked for indicator families by using Indicator Species Analysis. Loss of family richness with the reduction of forest fragment area was observed for the three functional groups, with similar magnitude. Herbivores were richer at the edges without interaction between edge and area effects, whereas predators were not affected by edge/interior position and parasitoid richness showed an interaction between area and position, with a steeper area slope at the edges. Family composition of herbivore, predator, and parasitoid assemblages was also affected by forest area and/or edge/interior situation. We found three indicator families for large remnants and five for edges. Our results support the key role of forest area for conservation of arthropods taxonomic and functional diversity in a highly threatened region, and emphasize the need to understand the interactions between area and edge effects on such diversity. © 2014 Institute of Zoology, Chinese Academy of Sciences.
Andrew Lister; Rachel Riemann; Tonya Lister; Will McWilliams
2005-01-01
Forest fragmentation is thought to impact many biotic and abiotic processes important to ecosystem function. We assessed forest fragmentation in 13 Northeastern States to gain a greater understanding of the trends in and status of this region?s forests. We reclassified and then statistically filtered and updated classified Landsat imagery from the early 1990s, and...
Litkouhi, Babak; Kwong, Joseph; Lo, Chun-Min; Smedley, James G; McClane, Bruce A; Aponte, Margarita; Gao, Zhijian; Sarno, Jennifer L; Hinners, Jennifer; Welch, William R; Berkowitz, Ross S; Mok, Samuel C; Garner, Elizabeth I O
2007-01-01
Background Claudin-4, a tight junction (TJ) protein and receptor for the C-terminal fragment of Clostridium perfringens enterotoxin (C-CPE), is overexpressed in epithelial ovarian cancer (EOC). Previous research suggests DNA methylation is a mechanism for claudin-4 overexpression in cancer and that C-CPE acts as an absorption-enhancing agent in claudin-4-expressing cells. We sought to correlate claudin-4 overexpression in EOC with clinical outcomes and TJ barrier function, investigate DNA methylation as a mechanism for overexpression, and evaluate the effect of C-CPE on the TJ. Methods Claudin-4 expression in EOC was quantified and correlated with clinical outcomes. Claudin-4 methylation status was determined, and claudin-4-negative cell lines were treated with a demethylating agent. Electric cell-substrate impedance sensing was used to calculate junctional (paracellular) resistance (Rb) in EOC cells after claudin-4 silencing and after C-CPE treatment. Results Claudin-4 overexpression in EOC does not correlate with survival or other clinical endpoints and is associated with hypomethylation. Claudin-4 overexpression correlates with Rb and C-CPE treatment of EOC cells significantly decreased Rb in a dose- and claudin-4-dependent noncytotoxic manner. Conclusions C-CPE treatment of EOC cells leads to altered TJ function. Further research is needed to determine the potential clinical applications of C-CPE in EOC drug delivery strategies. PMID:17460774
Preparation and Analysis of Positioned Mononucleosomes
Kulaeva, Olga; Studitsky, Vasily M.
2016-01-01
Short DNA fragments containing single nucleosomes have been extensively employed as simple model experimental systems for analysis of many intranuclear processes, including binding of proteins to nucleosomes, covalent histone modifications, transcription, DNA repair and ATP-dependent chromatin remodeling. Here we describe several recently developed procedures for obtaining and analysis of mononucleosomes assembled on 200–350-bp DNA fragments. PMID:25827872
Use of fragmented landscapes by Marbled Murrelets for nesting in Southern Oregon
C.B. Meyer; S.L. Miller
2002-01-01
As oldgrowth forest becomes more fragmented in the Pacific Northwest (U.S.A.), species dependent on large patches of oldgrowth forest may be at greater risk of extinction. The Marbled Murrelet (Brachyramphus marmoratus), a seabird whose populations are declining in North America, nests in such old-growth forests or forests with large remnant trees....
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mohr, Stephan; Masella, Michel; Ratcliff, Laura E.
We present, within Kohn-Sham Density Functional Theory calculations, a quantitative method to identify and assess the partitioning of a large quantum mechanical system into fragments. We then introduce a simple and efficient formalism (which can be written as generalization of other well-known population analyses) to extract, from first principles, electrostatic multipoles for these fragments. The corresponding fragment multipoles can in this way be seen as reliable (pseudo-) observables. By applying our formalism within the code BigDFT, we show that the usage of a minimal set of in-situ optimized basis functions is of utmost importance for having at the same timemore » a proper fragment definition and an accurate description of the electronic structure. With this approach it becomes possible to simplify the modeling of environmental fragments by a set of multipoles, without notable loss of precision in the description of the active quantum mechanical region. Furthermore, this leads to a considerable reduction of the degrees of freedom by an effective coarsegraining approach, eventually also paving the way towards efficient QM/QM and QM/MM methods coupling together different levels of accuracy.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yamazaki, Kaoru; Nakamura, Takashi; Kanno, Manabu
2014-09-28
To establish the fundamental understanding of the fragmentation dynamics of highly positive charged nano- and bio-materials, we carried out on-the-fly classical trajectory calculations on the fragmentation dynamics of C{sub 60}{sup q+} (q = 20–60). We used the UB3LYP/3-21G level of density functional theory and the self-consistent charge density-functional based tight-binding theory. For q ≥ 20, we found that a two-step explosion mechanism governs the fragmentation dynamics: C{sub 60}{sup q+} first ejects singly and multiply charged fast atomic cations C{sup z+} (z ≥ 1) via Coulomb explosions on a timescale of 10 fs to stabilize the remaining core cluster. Thermal evaporationsmore » of slow atomic and molecular fragments from the core cluster subsequently occur on a timescale of 100 fs to 1 ps. Increasing the charge q makes the fragments smaller. This two-step mechanism governs the fragmentation dynamics in the most likely case that the initial kinetic energy accumulated upon ionization to C{sub 60}{sup q+} by ion impact or X-ray free electron laser is larger than 100 eV.« less
Mohr, Stephan; Masella, Michel; Ratcliff, Laura E.; ...
2017-07-21
We present, within Kohn-Sham Density Functional Theory calculations, a quantitative method to identify and assess the partitioning of a large quantum mechanical system into fragments. We then introduce a simple and efficient formalism (which can be written as generalization of other well-known population analyses) to extract, from first principles, electrostatic multipoles for these fragments. The corresponding fragment multipoles can in this way be seen as reliable (pseudo-) observables. By applying our formalism within the code BigDFT, we show that the usage of a minimal set of in-situ optimized basis functions is of utmost importance for having at the same timemore » a proper fragment definition and an accurate description of the electronic structure. With this approach it becomes possible to simplify the modeling of environmental fragments by a set of multipoles, without notable loss of precision in the description of the active quantum mechanical region. Furthermore, this leads to a considerable reduction of the degrees of freedom by an effective coarsegraining approach, eventually also paving the way towards efficient QM/QM and QM/MM methods coupling together different levels of accuracy.« less
Schenke, Björn; Schlichting, Sören; Tribedy, Prithwish; ...
2016-10-14
The mass ordering of mean transverse momentummore » $$\\langle$$p T$$\\rangle$$ and of the Fourier harmonic coefficient v 2 (p T) of azimuthally anisotropic particle distributions in high energy hadron collisions is often interpreted as evidence for the hydrodynamic flow of the matter produced. We investigate an alternative initial state interpretation of this pattern in high-multiplicity proton-proton collisions at the LHC. The QCD Yang-Mills equations describing the dynamics of saturated gluons are solved numerically with initial conditions obtained from the color-glass-condensate-based impact-parameter-dependent glasma model. The gluons are subsequently fragmented into various hadron species employing the well established Lund string fragmentation algorithm of the pythia event generator. Lastly, we find that this initial state approach reproduces characteristic features of bulk spectra, in particular, the particle mass dependence of $$\\langle$$p T$$\\rangle$$ and v 2 (p T).« less
NASA Astrophysics Data System (ADS)
Troitskaya, Yu. I.; Ermakova, O. S.; Kandaurov, A. A.; Kozlov, D. S.; Sergeev, D. A.; Zilitinkevich, S. S.
2017-11-01
Influence of the spray generation due to the fragmentation of the "bag-breakup" type on momentum exchange in the atmospheric boundary layer above the sea surface at hurricane winds was investigated on the basis of the analysis of the results of laboratory experiments. It was shown that aerodynamic drag is determined by the contribution of three factors: first, the drag of the "bag-breakup" canopies as obstacles; second, acceleration of the spray formed during fragmentation by the air flow; and the third factor is related to the stratification of the near-water atmospheric layer due to the presence of levitated water droplets. Combination of all three factors leads to a non-monotonous dependence of the aerodynamic drag coefficient on wind speed, which confirms the results of the field and laboratory measurements.
HZEFRG1: An energy-dependent semiempirical nuclear fragmentation model
NASA Technical Reports Server (NTRS)
Townsend, Lawrence W.; Wilson, John W.; Tripathi, Ram K.; Norbury, John W.; Badavi, Francis F.; Khan, Ferdous
1993-01-01
Methods for calculating cross sections for the breakup of high-energy heavy ions by the combined nuclear and coulomb fields of the interacting nuclei are presented. The nuclear breakup contributions are estimated with an abrasion-ablation model of heavy ion fragmentation that includes an energy-dependent, mean free path. The electromagnetic dissociation contributions arising from the interacting coulomb fields are estimated by using Weizsacker-Williams theory extended to include electric dipole and electric quadrupole contributions. The complete computer code that implements the model is included as an appendix. Extensive comparisons of cross section predictions with available experimental data are made.
Real time polymer nanocomposites-based physical nanosensors: theory and modeling.
Bellucci, Stefano; Shunin, Yuri; Gopeyenko, Victor; Lobanova-Shunina, Tamara; Burlutskaya, Nataly; Zhukovskii, Yuri
2017-09-01
Functionalized carbon nanotubes and graphene nanoribbons nanostructures, serving as the basis for the creation of physical pressure and temperature nanosensors, are considered as tools for ecological monitoring and medical applications. Fragments of nanocarbon inclusions with different morphologies, presenting a disordered system, are regarded as models for nanocomposite materials based on carbon nanoсluster suspension in dielectric polymer environments (e.g., epoxy resins). We have formulated the approach of conductivity calculations for carbon-based polymer nanocomposites using the effective media cluster approach, disordered systems theory and conductivity mechanisms analysis, and obtained the calibration dependences. Providing a proper description of electric responses in nanosensoring systems, we demonstrate the implementation of advanced simulation models suitable for real time control nanosystems. We also consider the prospects and prototypes of the proposed physical nanosensor models providing the comparisons with experimental calibration dependences.
Real time polymer nanocomposites-based physical nanosensors: theory and modeling
NASA Astrophysics Data System (ADS)
Bellucci, Stefano; Shunin, Yuri; Gopeyenko, Victor; Lobanova-Shunina, Tamara; Burlutskaya, Nataly; Zhukovskii, Yuri
2017-09-01
Functionalized carbon nanotubes and graphene nanoribbons nanostructures, serving as the basis for the creation of physical pressure and temperature nanosensors, are considered as tools for ecological monitoring and medical applications. Fragments of nanocarbon inclusions with different morphologies, presenting a disordered system, are regarded as models for nanocomposite materials based on carbon nanoсluster suspension in dielectric polymer environments (e.g., epoxy resins). We have formulated the approach of conductivity calculations for carbon-based polymer nanocomposites using the effective media cluster approach, disordered systems theory and conductivity mechanisms analysis, and obtained the calibration dependences. Providing a proper description of electric responses in nanosensoring systems, we demonstrate the implementation of advanced simulation models suitable for real time control nanosystems. We also consider the prospects and prototypes of the proposed physical nanosensor models providing the comparisons with experimental calibration dependences.
Quantum control of molecular fragmentation in strong laser fields
NASA Astrophysics Data System (ADS)
Zohrabi, Mohammad
Present advances in laser technology allow the production of ultrashort (<˜5 fs, approaching single cycle at 800 nm), intense tabletop laser pulses. At these high intensities laser-matter interactions cannot be described with perturbation theory since multiphoton processes are involved. This is in contrast to photodissociation by the absorption of a single photon, which is well described by perturbation theory. For example, at high intensities (<˜5x1013 W/cm2) the fragmentation of molecular hydrogen ions has been observed via the absorption of three or more photons. In another example, an intriguing dissociation mechanism has been observed where molecular hydrogen ions seem to fragment by apparently absorbing no photons. This is actually a two photon process, photoabsorption followed by stimulated emission, resulting in low energy fragments. We are interested in exploring these kinds of multiphoton processes. Our research group has studied the dynamics and control of fragmentation induced by strong laser fields in a variety of molecular targets. The main goal is to provide a basic understanding of fragmentation mechanisms and possible control schemes of benchmark systems such as H2+. This knowledge is further extended to more complex systems like the benchmark H3+ polyatomic and other molecules. In this dissertation, we report research based on two types of experiments. In the first part, we describe laser-induced fragmentation of molecular ion-beam targets. In the latter part, we discuss the formation of highly-excited neutral fragments from hydrogen molecules using ultrashort laser pulses. In carrying out these experiments, we have also extended experimental techniques beyond their previous capabilities. We have performed a few experiments to advance our understanding of laser-induced fragmentation of molecular-ion beams. For instance, we explored vibrationally resolved spectra of O2+ dissociation using various wavelengths. We observed a vibrational suppression effect in the dissociation spectra due to the small magnitude of the dipole transition moment, which depends on the photon energy --- a phenomenon known as Cooper minima. By changing the laser wavelength, the Cooper minima shift, a fact that was used to identify the dissociation pathways. In another project, we studied the carrier-envelope phase (CEP) dependences of highly-excited fragments from hydrogen molecules. General CEP theory predicts a CEP dependence in the total dissociation yield due to the interference of dissociation pathways differing by an even net number of photons, and our measurements are consistent with this prediction. Moreover, we were able to extract the difference in the net number of photons involved in the interfering pathways by using a Fourier analysis. In terms of our experimental method, we have implemented a pump-probe style technique on a thin molecular ion-beam target and explored the feasibility of such experiments. The results presented in this work should lead to a better understanding of the dynamics and control in molecular fragmentation induced by intense laser fields.
Zweig, Christa L.; Reichert, Brian E.; Kitchens, Wiley M.
2011-01-01
Large wetlands around the world face the possibility of degradation, not only from complete conversion, but also from subtle changes in their structure and function. While fragmentation and isolation of wetlands within heterogeneous landscapes has received much attention, the disruption of spatial patterns/processes within large wetland systems and the resulting fragmentation of community components are less well documented. A greater understanding of pattern/process relationships and landscape gradients, and what occurs when they are altered, could help avoid undesirable consequences of restoration actions. The objective of this study is to determine the amount of fragmentation of sawgrass ridges due to artificial impoundment of water and how that may be differentially affected by spatial position relative to north and south levees. We also introduce groundbreaking evidence of landscape-level discontinuous elevation gradients within WCA3AS by comparing generalized linear and generalized additive models. These relatively abrupt breaks in elevation may have non-linear effects on hydrology and vegetation communities and would be crucial in restoration considerations. Modeling suggests there are abrupt breaks in elevation as a function of northing (Y-coordinate). Fragmentation indices indicate that fragmentation is a function of elevation and easting (X-coordinate), and that fragmentation has increased from 1988-2002. When landscapes change and the changes are compounded by non-linear landscape variables that are described herein, the maintenance processes change with them, creating a degraded feedback loop that alters the system's response to structuring variables and diminishes our ability to predict the effects of restoration projects or climate change. Only when these landscape variables and linkages are clearly defined can we predict the response to potential perturbations and apply the knowledge to other landscape-level wetland systems in need of future restoration.
Wang, Xuyi; Peng, Jianping; Li, De; Zhang, Linlin; Wang, Hui; Jiang, Leisheng; Chen, Xiaodong
2016-10-04
The success of Bernese periacetabular osteotomy depends significantly on how extent the acetabular fragment can be corrected to its optimal position. This study was undertaken to investigate whether correcting the acetabular fragment into the so-called radiological "normal" range is the best choice for all developmental dysplasia of the hip with different severities of dysplasia from the biomechanical view? If not, is there any correlation between the biomechanically optimal position of the acetabular fragment and the severity of dysplasia? Four finite element models with different severities of dysplasia were developed. The virtual periacetabular osteotomy was performed with the acetabular fragment rotated anterolaterally to incremental center-edge angles; then, the contact area and pressure and von Mises stress in the cartilage were calculated at different correction angles. The optimal position of the acetabular fragment for patients 1, 2, and 3 was when the acetabular fragment rotated 17° laterally (with the lateral center-edge angle of 36° and anterior center-edge angle of 58°; both were slightly larger than the "normal" range), 25° laterally following further 5° anterior rotation (with the lateral center-edge angle of 31° and anterior center-edge angle of 51°; both were within the "normal" range), and 30° laterally following further 10° anterior rotation (with the lateral center-edge angle of 25° and anterior center-edge angle of 40°; both were less than the "normal" range), respectively. The optimal corrective position of the acetabular fragment is severity dependent rather than within the radiological "normal" range for developmental dysplasia of the hip. We prudently proposed that the optimal correction center-edge angle of mild, moderate, and severe developmental dysplasia of the hip is slightly larger than the "normal" range, within the "normal" range, and less than the lower limit of the "normal" range, respectively.
Khromov, Alexander; Choudhury, Nandini; Stevenson, Andra S; Somlyo, Avril V; Eto, Masumi
2009-08-07
The reversible regulation of myosin light chain phosphatase (MLCP) in response to agonist stimulation and cAMP/cGMP signals plays an important role in the regulation of smooth muscle (SM) tone. Here, we investigated the mechanism underlying the inhibition of MLCP induced by the phosphorylation of myosin phosphatase targeting subunit (MYPT1), a regulatory subunit of MLCP, at Thr-696 and Thr-853 using glutathione S-transferase (GST)-MYPT1 fragments having the inhibitory phosphorylation sites. GST-MYPT1 fragments, including only Thr-696 and only Thr-853, inhibited purified MLCP (IC(50) = 1.6 and 60 nm, respectively) when they were phosphorylated with RhoA-dependent kinase (ROCK). The activities of isolated catalytic subunits of type 1 and type 2A phosphatases (PP1 and PP2A) were insensitive to either fragment. Phospho-GST-MYPT1 fragments docked directly at the active site of MLCP, and this was blocked by a PP1/PP2A inhibitor microcystin (MC)-LR or by mutation of the active sites in PP1. GST-MYPT1 fragments induced a contraction of beta-escin-permeabilized ileum SM at constant pCa 6.3 (EC(50) = 2 microm), which was eliminated by Ala substitution of the fragment at Thr-696 or by ROCK inhibitors or 8Br-cGMP. GST-MYPT1-(697-880) was 5-times less potent than fragments including Thr-696. Relaxation induced by 8Br-cGMP was not affected by Ala substitution at Ser-695, a known phosphorylation site for protein kinase A/G. Thus, GST-MYPT1 fragments are phosphorylated by ROCK in permeabilized SM and mimic agonist-induced inhibition and cGMP-induced activation of MLCP. We propose a model in which MYPT1 phosphorylation at Thr-696 and Thr-853 causes an autoinhibition of MLCP that accounts for Ca(2+) sensitization of smooth muscle force.
Management of an uncomplicated crown fracture by reattaching the fractured fragment-Case report.
Martos, Josué; Pinto, Karoline V A; Miguelis, Tiago M F; Xavier, Cristina B
2017-12-01
Coronal fractures of the anterior teeth are common sequelae of traumatic dental injuries. Reattachment of fractured tooth fragments using dental adhesive techniques offers some advantages, including restoration of the function, esthetics, shape, texture, and brightness of the surface. The present report describes a clinical case of reattachment with a 4-year clinical and radiographic follow up in a permanent maxillary central incisor with an uncomplicated crown fracture. Fragment reattachment is a conservative procedure, preserving esthetics and functionality, and it can provide an immediate positive emotional response from the patient. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Construction of Biologically Functional Bacterial Plasmids In Vitro
Cohen, Stanley N.; Chang, Annie C. Y.; Boyer, Herbert W.; Helling, Robert B.
1973-01-01
The construction of new plasmid DNA species by in vitro joining of restriction endonuclease-generated fragments of separate plasmids is described. Newly constructed plasmids that are inserted into Escherichia coli by transformation are shown to be biologically functional replicons that possess genetic properties and nucleotide base sequences from both of the parent DNA molecules. Functional plasmids can be obtained by reassociation of endonuclease-generated fragments of larger replicons, as well as by joining of plasmid DNA molecules of entirely different origins. Images PMID:4594039
Wang, Lijun; Wang, Weiwei; Li, Fudong; Zhang, Jiahai; Wu, Jihui; Gong, Qingguo; Shi, Yunyu
2015-01-01
Small RNA OxyS is induced during oxidative stress in Escherichia coli and it is an Hfq-dependent negative regulator of mRNA translation. OxyS represses the translation of fhlA and rpoS mRNA, which encode the transcriptional activator and σs subunit of RNA polymerase, respectively. However, little is known regarding how Hfq, an RNA chaperone, interacts with OxyS at the atomic level. Here, using fluorescence polarization and tryptophan fluorescence quenching assays, we verified that the A-rich linker region of OxyS sRNA binds Hfq at its distal side. We also report two crystal structures of Hfq in complex with A-rich RNA fragments from this linker region. Both of these RNA fragments bind to the distal side of Hfq and adopt a different conformation compared with those previously reported for the (A-R-N)n tripartite recognition motif. Furthermore, using fluorescence polarization, electrophoresis mobility shift assays and in vivo translation assays, we found that an Hfq mutant, N48A, increases the binding affinity of OxyS for Hfq in vitro but is defective in the negative regulation of fhlA translation in vivo, suggesting that the normal function of OxyS depends on the details of the interaction with Hfq that may be related to the rapid recycling of Hfq in the cell. PMID:25670676
Tripathi, Shweta; Wang, Guangshun; White, Mitchell; Rynkiewicz, Michael; Seaton, Barbara; Hartshorn, Kevan
2015-01-01
The human cathelicidin LL-37 has been shown to play a role in host defense against influenza A viruses (IAV) through direct antiviral effects and through modulating inflammatory responses to infection. We recently showed that LL-37 increases neutrophil respiratory burst and neutrophil extracellular trap (NET) responses to IAV through engaging formyl peptide receptor 2 (FPR-2). In this paper we show that a fragment of LL-37, GI-20, which is composed of the central helical segment of the peptide, has similar effects as LL-37 on neutrophil activation. In addition to increasing respiratory burst and NET responses of the cells to IAV through an FPR-2 dependent mechanism, it reduces neutrophil IL-8 production to IAV (also like LL-37). The N-terminal fragment, LL-23, did not have similar effects. Both GI-20 and LL-37 increase neutrophil intracellular calcium levels and their ability to increase neutrophil activation responses was calcium dependent and partially inhibited by pertussis toxin. These studies show that the central helix of LL-37 retains the ability of LL-37 to modulate neutrophil responses through FPR-2. Based on our findings we developed a homology model of FPR-2 and performed docking experiments of LL-37 and GI-20 with the receptor. PMID:26308522
Stacked-unstacked equilibrium at the nick site of DNA.
Protozanova, Ekaterina; Yakovchuk, Peter; Frank-Kamenetskii, Maxim D
2004-09-17
Stability of duplex DNA with respect to separation of complementary strands is crucial for DNA executing its major functions in the cell and it also plays a central role in major biotechnology applications of DNA: DNA sequencing, polymerase chain reaction, and DNA microarrays. Two types of interaction are well known to contribute to DNA stability: stacking between adjacent base-pairs and pairing between complementary bases. However, their contribution into the duplex stability is yet to be determined. Now we fill this fundamental gap in our knowledge of the DNA double helix. We have prepared a series of 32, 300 bp-long DNA fragments with solitary nicks in the same position differing only in base-pairs flanking the nick. Electrophoretic mobility of these fragments in the gel has been studied. Assuming the equilibrium between stacked and unstacked conformations at the nick site, all 32 stacking free energy parameters have been obtained. Only ten of them are essential and they govern the stacking interactions between adjacent base-pairs in intact DNA double helix. A full set of DNA stacking parameters has been determined for the first time. From these data and from a well-known dependence of DNA melting temperature on G.C content, the contribution of base-pairing into duplex stability has been estimated. The obtained energy parameters of the DNA double helix are of paramount importance for understanding sequence-dependent DNA flexibility and for numerous biotechnology applications.
Tugnoli, Alessandro; Gubinelli, Gianfilippo; Landucci, Gabriele; Cozzani, Valerio
2014-08-30
The evaluation of the initial direction and velocity of the fragments generated in the fragmentation of a vessel due to internal pressure is an important information in the assessment of damage caused by fragments, in particular within the quantitative risk assessment (QRA) of chemical and process plants. In the present study an approach is proposed to the identification and validation of probability density functions (pdfs) for the initial direction of the fragments. A detailed review of a large number of past accidents provided the background information for the validation procedure. A specific method was developed for the validation of the proposed pdfs. Validated pdfs were obtained for both the vertical and horizontal angles of projection and for the initial velocity of the fragments. Copyright © 2014 Elsevier B.V. All rights reserved.
Dron, J; Zheng, W; Marchand, N; Wortham, H
2008-08-01
A functional group analysis method was developed to determine the quantitative content of carbonyl functional groups in atmospheric particulate organic matter (POM) using constant neutral loss scanning-tandem mass spectrometry (CNLS-MS/MS). The neutral loss method consists in monitoring the loss of a neutral fragment produced by the fragmentation of a precursor ion in a collision cell. The only ions detected are the daughter ions resulting from the loss of the neutral fragment under study. Then, scanning the loss of a neutral fragment characteristic of a functional group enables the selective detection of the compounds bearing the chemical function under study within a complex mixture. The selective detection of carbonyl functional groups was achieved after derivatization with pentafluorophenylhydrazine (PFPH) by monitoring the neutral loss of C(6)F(5)N (181 amu), which was characteristic of a large panel of derivatized carbonyl compounds. The method was tested on 25 reference mixtures of different composition, all containing 24 carbonyl compounds at randomly determined concentrations. The repeatability and calibration tests were satisfying as they resulted in a relative standard deviation below 5% and a linear range between 0.01 and 0.65 mM with a calculated detection limit of 0.0035 mM. Also, the relative deviation induced by changing the composition of the mixture while keeping the total concentration of carbonyl functional groups constant was less than 20%. These reliability experiments demonstrate the high robustness of the developed procedure for accurate carbonyl functional group measurement, which was applied to atmospheric POM samples. Copyright (c) 2008 John Wiley & Sons, Ltd.
Fragment Size Distribution of Blasted Rock Mass
NASA Astrophysics Data System (ADS)
Jug, Jasmin; Strelec, Stjepan; Gazdek, Mario; Kavur, Boris
2017-12-01
Rock mass is a heterogeneous material, and the heterogeneity of rock causes sizes distribution of fragmented rocks in blasting. Prediction of blasted rock mass fragmentation has a significant role in the overall economics of opencast mines. Blasting as primary fragmentation can significantly decrease the cost of loading, transport, crushing and milling operations. Blast fragmentation chiefly depends on the specific blast design (geometry of blast holes drilling, the quantity and class of explosive, the blasting form, the timing and partition, etc.) and on the properties of the rock mass (including the uniaxial compressive strength, the rock mass elastic Young modulus, the rock discontinuity characteristics and the rock density). Prediction and processing of blasting results researchers can accomplish by a variety of existing software’s and models, one of them is the Kuz-Ram model, which is possibly the most widely used approach to estimating fragmentation from blasting. This paper shows the estimation of fragmentation using the "SB" program, which was created by the authors. Mentioned program includes the Kuz-Ram model. Models of fragmentation are confirmed and calibrated by comparing the estimated fragmentation with actual post-blast fragmentation from image processing techniques. In this study, the Kuz-Ram fragmentation model has been used for an open-pit limestone quarry in Dalmatia, southern Croatia. The resulting calibrated value of the rock factor enables the quality prognosis of fragmentation in further blasting works, with changed drilling geometry and blast design parameters. It also facilitates simulation in the program to optimize blasting works and get the desired fragmentations of the blasted rock mass.
Cullen, Laury; Stanton, Jessica C; Lima, Fernando; Uezu, Alexandre; Perilli, Miriam L L; Akçakaya, H Reşit
2016-01-01
Jaguar (Panthera onca) populations in the Upper Paraná River, in the Brazilian Atlantic Forest region, live in a landscape that includes highly fragmented areas as well as relatively intact ones. We developed a model of jaguar habitat suitability in this region, and based on this habitat model, we developed a spatially structured metapopulation model of the jaguar populations in this area to analyze their viability, the potential impact of road mortality on the populations' persistence, and the interaction between road mortality and habitat fragmentation. In more highly fragmented populations, density of jaguars per unit area is lower and density of roads per jaguar is higher. The populations with the most fragmented habitat were predicted to have much lower persistence in the next 100 years when the model included no dispersal, indicating that the persistence of these populations are dependent to a large extent on dispersal from other populations. This, in turn, indicates that the interaction between road mortality and habitat fragmentation may lead to source-sink dynamics, whereby populations with highly fragmented habitat are maintained only by dispersal from populations with less fragmented habitat. This study demonstrates the utility of linking habitat and demographic models in assessing impacts on species living in fragmented landscapes.
Cullen, Laury; Stanton, Jessica C.; Lima, Fernando; Uezu, Alexandre; Perilli, Miriam L. L.; Akçakaya, H. Reşit
2016-01-01
Jaguar (Panthera onca) populations in the Upper Paraná River, in the Brazilian Atlantic Forest region, live in a landscape that includes highly fragmented areas as well as relatively intact ones. We developed a model of jaguar habitat suitability in this region, and based on this habitat model, we developed a spatially structured metapopulation model of the jaguar populations in this area to analyze their viability, the potential impact of road mortality on the populations' persistence, and the interaction between road mortality and habitat fragmentation. In more highly fragmented populations, density of jaguars per unit area is lower and density of roads per jaguar is higher. The populations with the most fragmented habitat were predicted to have much lower persistence in the next 100 years when the model included no dispersal, indicating that the persistence of these populations are dependent to a large extent on dispersal from other populations. This, in turn, indicates that the interaction between road mortality and habitat fragmentation may lead to source-sink dynamics, whereby populations with highly fragmented habitat are maintained only by dispersal from populations with less fragmented habitat. This study demonstrates the utility of linking habitat and demographic models in assessing impacts on species living in fragmented landscapes. PMID:27973584
Off-normal deposition of PTFE thin films during 157-nm irradiation
NASA Astrophysics Data System (ADS)
George, Sharon R.; Langford, Stephen C.; Dickinson, J. Thomas
2010-03-01
Polytetrafluoroethylene (PTFE) is valued for its chemical stability, low surface energy, and insulating properties. The ablation of PTFE by F2 excimer lasers (157 nm photons) involves photochemical scission of C-C bonds along the polymer chain. Depending on the fluence, the fragment masses can range from 50 to 2000 amu. Gaussian beam profiles allow for the production of spatially non-uniform distributions of fragment masses, with the lighter fragments concentrated in the center of the laser spot. The resulting trajectories for the light fragments can be strongly forward directed, while the heavy fragments are directed more to the side, well away from the surface normal. We present experimental evidence for these angular distributions, and numerically simulate this behavior with a simple, two-component hydrodynamic model. Under the conditions of our work, most of the ablated mass appears as heavier fragments and can be collected on substrates mounted to the sides or above and below the laser spot. This geometry may have advantages in some applications of pulsed laser deposition.
The Structure and Stability of Bn(+) Clusters
NASA Technical Reports Server (NTRS)
Ricca, Alessandra; Bauschlicher, Charles W., Jr.; Langhoff, Stephen R. (Technical Monitor)
1995-01-01
The geometries of B+n clusters for n less than 14 have been optimized using density functional theory with the B3LYP functional. The most stable structure for each cluster is planar or quasi-planar. The B3LYP fragmentation energies are calibrated using coupled cluster theory. Overall, our corrected fragmentation energies are in reasonable agreement with experiment. Our results are compared with previous theoretical results.
Guo, Xing; Disatnik, Marie-Helene; Monbureau, Marie; Shamloo, Mehrdad; Mochly-Rosen, Daria; Qi, Xin
2013-01-01
Huntington’s disease (HD) is the result of expression of a mutated Huntingtin protein (mtHtt), and is associated with a variety of cellular dysfunctions including excessive mitochondrial fission. Here, we tested whether inhibition of excessive mitochondrial fission prevents mtHtt-induced pathology. We developed a selective inhibitor (P110-TAT) of the mitochondrial fission protein dynamin-related protein 1 (DRP1). We found that P110-TAT inhibited mtHtt-induced excessive mitochondrial fragmentation, improved mitochondrial function, and increased cell viability in HD cell culture models. P110-TAT treatment of fibroblasts from patients with HD and patients with HD with iPS cell–derived neurons reduced mitochondrial fragmentation and corrected mitochondrial dysfunction. P110-TAT treatment also reduced the extent of neurite shortening and cell death in iPS cell–derived neurons in patients with HD. Moreover, treatment of HD transgenic mice with P110-TAT reduced mitochondrial dysfunction, motor deficits, neuropathology, and mortality. We found that p53, a stress gene involved in HD pathogenesis, binds to DRP1 and mediates DRP1-induced mitochondrial and neuronal damage. Furthermore, P110-TAT treatment suppressed mtHtt-induced association of p53 with mitochondria in multiple HD models. These data indicate that inhibition of DRP1-dependent excessive mitochondrial fission with a P110-TAT–like inhibitor may prevent or slow the progression of HD. PMID:24231356
Chen, Xiuting; Li, Qingnuan; Gong, Yu
2017-12-14
Tripositive Ln(TMTDA) 3 3+ complexes (Ln = La-Lu except Pm, TMTDA = tetramethyl 3-thio-diglycolamide) were observed in the gas phase by electrospray ionization of LnCl 3 and TMTDA mixtures. Collision-induced dissociation (CID) was employed to investigate their fragmentation chemistry, which revealed the influence of metal center as well as ligand on the ligated complexes. Ln(TMTDA) 2 (TMTDA-45) 3+ resulting from C carbonyl -N bond cleavage of TMTDA and hydrogen transfer was the major CID product for all Ln(TMTDA) 3 3+ except Eu(TMTDA) 3 3+ , which predominantly formed charge-reducing product Eu II (TMTDA) 2 2+ via electron transfer from TMTDA to Eu 3+ . Density functional theory calculations on the structure of La(TMTDA) 3 3+ and Lu(TMTDA) 3 3+ revealed that Ln 3+ was coordinated by six O carbonyl atoms from three neutral TMTDA ligands, and both complexes possessed C 3h symmetry. The S ether atom deviating from the ligand plane was not coordinated to the metal center. On the basis of the CID results of Ln(TMTDA) 3 3+ , Ln(TMGA) 3 3+ , and Ln(TMOGA) 3 3+ , the fragmentation chemistry associated with the ligand depends on the coordination mode, while the redox chemistry of these tripositive ions is related to the nature of both metal centers and diamide ligands.
Importance of riparian remnants for frog species diversity in a highly fragmented rainforest.
Rodríguez-Mendoza, Clara; Pineda, Eduardo
2010-12-23
Tropical forests undergo continuous transformation to other land uses, resulting in landscapes typified by forest fragments surrounded by anthropogenic habitats. Small forest fragments, specifically strip-shaped remnants flanking streams (referred to as riparian remnants), can be particularly important for the maintenance and conservation of biodiversity within highly fragmented forests. We compared frog species diversity between riparian remnants, other forest fragments and cattle pastures in a tropical landscape in Los Tuxtlas, Mexico. We found similar species richness in the three habitats studied and a similar assemblage structure between riparian remnants and forest fragments, although species composition differed by 50 per cent. Frog abundance was halved in riparian remnants compared with forest fragments, but was twice that found in pastures. Our results suggest that riparian remnants play an important role in maintaining a portion of frog species diversity in a highly fragmented forest, particularly during environmentally stressful (hot and dry) periods. In this regard, however, the role of riparian remnants is complementary, rather than substitutive, with respect to the function of other forest fragments within the fragmented forest.
Star formation in shells of colliding multi-SNe bubbles
NASA Astrophysics Data System (ADS)
Vasiliev, Evgenii O.; Shchekinov, Yuri A.
2017-12-01
It is believed that when bubbles formed by multiple supernovae explosions interact with one another, they stimulate star formation in overlapping shells. We consider the evolution of a shocked layer formed by the collision of two identical bubbles each of which originated from OB clusters of ˜ 50 members and ˜ 50 pc. The clusters are separated by 200-400 pc.We found that depending on evolutionary status of colliding bubbles the shocked layer can either be destroyed into diffuse lumps, or be fragmented into dense clumps: the former occurs in collisions of young bubbles with continuing supernovae explosions, and the latter occurs in older bubble interactions.We argue that fragmentation efficiency in shells depends on external heating: for a heating rate <˜ 1.7×10-24 erg s-1 the number of fragments formed in a collision of two old bubbles reaches several tens at t ˜ 4 Myr, while a heating rate >˜ 7 × 10-24 erg s-1 prevents fragmentation. The clumps formed in freely expanding parts of bubbles are gradually destroyed and disappear on t <˜ 1 Myr,whereas those formed in the overlapping shells survive much longer. Because of this the number of fragments in an isolated bubble begins to decrease after reaching a maximum, while in collision of two old bubbles it fluctuates around 60-70 until longer than t ˜ 5 Myr.
NASA Astrophysics Data System (ADS)
Baehr, Hans; Klahr, Hubert
2015-12-01
Protoplanetary disks fragment due to gravitational instability when there is enough mass for self-gravitation, described by the Toomre parameter, and when heat can be lost at a rate comparable to the local dynamical timescale, described by {t}{{c}}=β {{{Ω }}}-1. Simulations of self-gravitating disks show that the cooling parameter has a rough critical value at {β }{{crit}}=3. When below {β }{{crit}}, gas overdensities will contract under their own gravity and fragment into bound objects while otherwise maintaining a steady state of gravitoturbulence. However, previous studies of the critical cooling parameter have found dependences on simulation resolution, indicating that the simulation of self-gravitating protoplanetary disks is not so straightforward. In particular, the simplicity of the cooling timescale tc prevents fragments from being disrupted by pressure support as temperatures rise. We alter the cooling law so that the cooling timescale is dependent on local surface density fluctuations, which is a means of incorporating optical depth effects into the local cooling of an object. For lower resolution simulations, this results in a lower critical cooling parameter and a disk that is more stable to gravitational stresses, suggesting that the formation of large gas giants planets in large, cool disks is generally suppressed by more realistic cooling. At our highest resolution, however, the model becomes unstable to fragmentation for cooling timescales up to β =10.
Napolitano, Constanza; Díaz, Diego; Sanderson, Jim; Johnson, Warren E; Ritland, Kermit; Ritland, Carol E; Poulin, Elie
2015-01-01
Landscape fragmentation is often a major cause of species extinction as it can affect a wide variety of ecological processes. The impact of fragmentation varies among species depending on many factors, including their life-history traits and dispersal abilities. Felids are one of the groups most threatened by fragmented landscapes because of their large home ranges, territorial behavior, and low population densities. Here, we model the impacts of habitat fragmentation on patterns of genetic diversity in the guigna (Leopardus guigna), a small felid that is closely associated with the heavily human-impacted temperate rainforests of southern South America. We assessed genetic variation in 1798 base pairs of mitochondrial DNA sequences, 15 microsatellite loci, and 2 sex chromosome genes and estimated genetic diversity, kinship, inbreeding, and dispersal in 38 individuals from landscapes with differing degrees of fragmentation on Chiloé Island in southern Chile. Increased fragmentation was associated with reduced genetic diversity, but not with increased kinship or inbreeding. However, in fragmented landscapes, there was a weaker negative correlation between pairwise kinship and geographic distance, suggesting increased dispersal distances. These results highlight the importance of biological corridors to maximize connectivity in fragmented landscapes and contribute to our understanding of the broader genetic consequences of habitat fragmentation, especially for forest-specialist carnivores. © The American Genetic Association 2015. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
The Importance of Dispersal for Bacterial Community Composition and Functioning
Lindström, Eva S.; Östman, Örjan
2011-01-01
We conducted a metacommunity experiment to investigate the role of dispersal for bacterial community composition (BCC) and function of freshwater bacteria. Bacteria were dispersed from a common source pool into three different lake communities in their natural lake water. The experiment was conducted in dialysis bags to enable a decoupling between a change in the local environment and dispersal. BCC was determined by terminal restriction fragment length polymorphism (tRFLP) of the 16S rRNA gene. We show that the greatest changes in BCC occurred between 10% and 43% of dispersal of standing stock per day. Functioning, measured as growth rate, was also affected by dispersal in all three communities but the qualitative pattern differed between communities, sometimes showing a hump-shaped relationship to dispersal and sometimes decreasing with increasing dispersal. In all waters, functioning was related to BCC. Our results show that dispersal does affect BCC and functioning but that high dispersal rates are needed. Further, the effect of dispersal on BCC and function seem to depend on the quality of the habitat to which bacteria disperse into. PMID:21998714
Place, Nicolas; Ivarsson, Niklas; Venckunas, Tomas; Neyroud, Daria; Brazaitis, Marius; Cheng, Arthur J.; Ochala, Julien; Kamandulis, Sigitas; Girard, Sebastien; Volungevičius, Gintautas; Paužas, Henrikas; Mekideche, Abdelhafid; Kayser, Bengt; Martinez-Redondo, Vicente; Bruton, Joseph; Truffert, Andre; Lanner, Johanna T.; Skurvydas, Albertas; Westerblad, Håkan
2015-01-01
High-intensity interval training (HIIT) is a time-efficient way of improving physical performance in healthy subjects and in patients with common chronic diseases, but less so in elite endurance athletes. The mechanisms underlying the effectiveness of HIIT are uncertain. Here, recreationally active human subjects performed highly demanding HIIT consisting of 30-s bouts of all-out cycling with 4-min rest in between bouts (≤3 min total exercise time). Skeletal muscle biopsies taken 24 h after the HIIT exercise showed an extensive fragmentation of the sarcoplasmic reticulum (SR) Ca2+ release channel, the ryanodine receptor type 1 (RyR1). The HIIT exercise also caused a prolonged force depression and triggered major changes in the expression of genes related to endurance exercise. Subsequent experiments on elite endurance athletes performing the same HIIT exercise showed no RyR1 fragmentation or prolonged changes in the expression of endurance-related genes. Finally, mechanistic experiments performed on isolated mouse muscles exposed to HIIT-mimicking stimulation showed reactive oxygen/nitrogen species (ROS)-dependent RyR1 fragmentation, calpain activation, increased SR Ca2+ leak at rest, and depressed force production due to impaired SR Ca2+ release upon stimulation. In conclusion, HIIT exercise induces a ROS-dependent RyR1 fragmentation in muscles of recreationally active subjects, and the resulting changes in muscle fiber Ca2+-handling trigger muscular adaptations. However, the same HIIT exercise does not cause RyR1 fragmentation in muscles of elite endurance athletes, which may explain why HIIT is less effective in this group. PMID:26575622
Place, Nicolas; Ivarsson, Niklas; Venckunas, Tomas; Neyroud, Daria; Brazaitis, Marius; Cheng, Arthur J; Ochala, Julien; Kamandulis, Sigitas; Girard, Sebastien; Volungevičius, Gintautas; Paužas, Henrikas; Mekideche, Abdelhafid; Kayser, Bengt; Martinez-Redondo, Vicente; Ruas, Jorge L; Bruton, Joseph; Truffert, Andre; Lanner, Johanna T; Skurvydas, Albertas; Westerblad, Håkan
2015-12-15
High-intensity interval training (HIIT) is a time-efficient way of improving physical performance in healthy subjects and in patients with common chronic diseases, but less so in elite endurance athletes. The mechanisms underlying the effectiveness of HIIT are uncertain. Here, recreationally active human subjects performed highly demanding HIIT consisting of 30-s bouts of all-out cycling with 4-min rest in between bouts (≤3 min total exercise time). Skeletal muscle biopsies taken 24 h after the HIIT exercise showed an extensive fragmentation of the sarcoplasmic reticulum (SR) Ca(2+) release channel, the ryanodine receptor type 1 (RyR1). The HIIT exercise also caused a prolonged force depression and triggered major changes in the expression of genes related to endurance exercise. Subsequent experiments on elite endurance athletes performing the same HIIT exercise showed no RyR1 fragmentation or prolonged changes in the expression of endurance-related genes. Finally, mechanistic experiments performed on isolated mouse muscles exposed to HIIT-mimicking stimulation showed reactive oxygen/nitrogen species (ROS)-dependent RyR1 fragmentation, calpain activation, increased SR Ca(2+) leak at rest, and depressed force production due to impaired SR Ca(2+) release upon stimulation. In conclusion, HIIT exercise induces a ROS-dependent RyR1 fragmentation in muscles of recreationally active subjects, and the resulting changes in muscle fiber Ca(2+)-handling trigger muscular adaptations. However, the same HIIT exercise does not cause RyR1 fragmentation in muscles of elite endurance athletes, which may explain why HIIT is less effective in this group.
Fragmentation characteristics of hydroxycinnamic acids in ESI-MSn by density functional theory.
Yin, Zhi-Hui; Sun, Chang-Hai; Fang, Hong-Zhuang
2017-07-01
This work aims to analyze the electrospray ionization multistage mass spectrometry (ESI-MS n ) fragmentation characteristics of hydroxycinnamic acids (HCAs) in negative ion mode. The geometric parameters, energies, natural bond orbitals and frontier orbitals of fragments were calculated by density functional theory (DFT) to investigate mass spectral fragmentation mechanisms. The results showed that proton transfer always occurred during fragmentation of HCAs; their quasi-molecular ions ([M - H] - ) existed in more than one form and were mainly with the lowest energy. The fragmentation characteristics included the followings: (1) according to the different substitution position of phenolic hydroxyl group, the ring contraction reaction by CO elimination from benzene was in an increasingly difficult order: m-phenolic hydroxyl > p-phenolic hydroxyl > o-phenolic hydroxyl; and (2) ortho effect always occurred in o-dihydroxycinnamic acids (o-diHCAs), i.e. one phenolic hydroxyl group offered H + , which combined with the other one to lose H 2 O. In addition, there was a nucleophilic reaction during ring contraction in diHCAs that oxygen atom attacked the carbon atom binding with the other phenolic hydroxyl to lose CO 2 . The fragmentation characteristics and mechanism of HCAs could be used for analysis and identification of such compounds quickly and effectively, and as reference for structural analogues by ESI-MS. Copyright © 2017 John Wiley & Sons, Ltd. Copyright © 2017 John Wiley & Sons, Ltd.
Nomura, Yayoi; Sato, Yumi; Suno, Ryoji; Horita, Shoichiro
2016-01-01
Abstract Fv antibody fragments have been used as co‐crystallization partners in structural biology, particularly in membrane protein crystallography. However, there are inherent technical issues associated with the large‐scale production of soluble, functional Fv fragments through conventional methods in various expression systems. To circumvent these problems, we developed a new method, in which a single synthetic polyprotein consisting of a variable light (VL) domain, an intervening removable affinity tag (iRAT), and a variable heavy (VH) domain is expressed by a Gram‐positive bacterial secretion system. This method ensures stoichiometric expression of VL and VH from the monocistronic construct followed by proper folding and assembly of the two variable domains. The iRAT segment can be removed by a site‐specific protease during the purification process to yield tag‐free Fv fragments suitable for crystallization trials. In vitro refolding step is not required to obtain correctly folded Fv fragments. As a proof of concept, we tested the iRAT‐based production of multiple Fv fragments, including a crystallization chaperone for a mammalian membrane protein as well as FDA‐approved therapeutic antibodies. The resulting Fv fragments were functionally active and crystallized in complex with the target proteins. The iRAT system is a reliable, rapid and broadly applicable means of producing milligram quantities of Fv fragments for structural and biochemical studies. PMID:27595817
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shevitz, Daniel Wolf; Key, Brian P.; Garcia, Daniel B.
2017-09-05
The Fragment Impact Toolkit (FIT) is a software package used for probabilistic consequence evaluation of fragmenting sources. The typical use case for FIT is to simulate an exploding shell and evaluate the consequence on nearby objects. FIT is written in the programming language Python and is designed as a collection of interacting software modules. Each module has a function that interacts with the other modules to produce desired results.
Stouffer, Philip C.; Johnson, Erik I.; Bierregaard, Richard O.; Lovejoy, Thomas E.
2011-01-01
Inferences about species loss following habitat conversion are typically drawn from short-term surveys, which cannot reconstruct long-term temporal dynamics of extinction and colonization. A long-term view can be critical, however, to determine the stability of communities within fragments. Likewise, landscape dynamics must be considered, as second growth structure and overall forest cover contribute to processes in fragments. Here we examine bird communities in 11 Amazonian rainforest fragments of 1–100 ha, beginning before the fragments were isolated in the 1980s, and continuing through 2007. Using a method that accounts for imperfect detection, we estimated extinction and colonization based on standardized mist-net surveys within discreet time intervals (1–2 preisolation samples and 4–5 post-isolation samples). Between preisolation and 2007, all fragments lost species in an area-dependent fashion, with loss of as few as <10% of preisolation species from 100-ha fragments, but up to 70% in 1-ha fragments. Analysis of individual time intervals revealed that the 2007 result was not due to gradual species loss beginning at isolation; both extinction and colonization occurred in every time interval. In the last two samples, 2000 and 2007, extinction and colonization were approximately balanced. Further, 97 of 101 species netted before isolation were detected in at least one fragment in 2007. Although a small subset of species is extremely vulnerable to fragmentation, and predictably goes extinct in fragments, developing second growth in the matrix around fragments encourages recolonization in our landscapes. Species richness in these fragments now reflects local turnover, not long-term attrition of species. We expect that similar processes could be operating in other fragmented systems that show unexpectedly low extinction. PMID:21731616
Stouffer, Philip C; Johnson, Erik I; Bierregaard, Richard O; Lovejoy, Thomas E
2011-01-01
Inferences about species loss following habitat conversion are typically drawn from short-term surveys, which cannot reconstruct long-term temporal dynamics of extinction and colonization. A long-term view can be critical, however, to determine the stability of communities within fragments. Likewise, landscape dynamics must be considered, as second growth structure and overall forest cover contribute to processes in fragments. Here we examine bird communities in 11 Amazonian rainforest fragments of 1-100 ha, beginning before the fragments were isolated in the 1980s, and continuing through 2007. Using a method that accounts for imperfect detection, we estimated extinction and colonization based on standardized mist-net surveys within discreet time intervals (1-2 preisolation samples and 4-5 post-isolation samples). Between preisolation and 2007, all fragments lost species in an area-dependent fashion, with loss of as few as <10% of preisolation species from 100-ha fragments, but up to 70% in 1-ha fragments. Analysis of individual time intervals revealed that the 2007 result was not due to gradual species loss beginning at isolation; both extinction and colonization occurred in every time interval. In the last two samples, 2000 and 2007, extinction and colonization were approximately balanced. Further, 97 of 101 species netted before isolation were detected in at least one fragment in 2007. Although a small subset of species is extremely vulnerable to fragmentation, and predictably goes extinct in fragments, developing second growth in the matrix around fragments encourages recolonization in our landscapes. Species richness in these fragments now reflects local turnover, not long-term attrition of species. We expect that similar processes could be operating in other fragmented systems that show unexpectedly low extinction.
Dáttilo, Wesley; Aguirre, Armando; Quesada, Mauricio; Dirzo, Rodolfo
2015-01-01
Despite increasing knowledge about the effects of habitat loss on pollinators in natural landscapes, information is very limited regarding the underlying mechanisms of forest fragmentation affecting plant-pollinator interactions in such landscapes. Here, we used a network approach to describe the effects of forest fragmentation on the patterns of interactions involving the understory dominant palm Astrocaryum mexicanum (Arecaceae) and its floral visitors (including both effective and non-effective pollinators) at the individual level in a Mexican tropical rainforest landscape. Specifically, we asked: (i) Does fragment size affect the structure of individual-based plant-pollinator networks? (ii) Does the core of highly interacting visitor species change along the fragmentation size gradient? (iii) Does forest fragment size influence the abundance of effective pollinators of A. mexicanum? We found that fragment size did not affect the topological structure of the individual-based palm-pollinator network. Furthermore, while the composition of peripheral non-effective pollinators changed depending on fragment size, effective core generalist species of pollinators remained stable. We also observed that both abundance and variance of effective pollinators of male and female flowers of A. mexicanum increased with forest fragment size. These findings indicate that the presence of effective pollinators in the core of all forest fragments could keep the network structure stable along the gradient of forest fragmentation. In addition, pollination of A. mexicanum could be more effective in larger fragments, since the greater abundance of pollinators in these fragments may increase the amount of pollen and diversity of pollen donors between flowers of individual plants. Given the prevalence of fragmentation in tropical ecosystems, our results indicate that the current patterns of land use will have consequences on the underlying mechanisms of pollination in remnant forests.
Biggs, Brendan C.
2013-01-01
Background Restoration is increasingly implemented to reestablish habitat structure and function following physical anthropogenic disturbance, but scientific knowledge of effectiveness of methods lags behind demand for guidelines. On coral reefs, recovery is largely dependent on coral reestablishment, and substratum stability is critical to the survival of coral fragments and recruits. Concrete is often used to immobilize rubble, but its ecological performance has not been rigorously evaluated, and restoration has generally fallen short of returning degraded habitat to pre-disturbance conditions. Fragments of erect branching sponges mediate reef recovery by facilitating rubble consolidation, yet such natural processes have been largely overlooked in restoring reefs. Methods On two reefs in Curacao, four treatments - coral rubble alone, rubble seeded with sponge fragments, rubble bound by concrete, and concrete “rubble” bound by concrete - were monitored over four years to investigate rubble consolidation with and without sponges and the ecological performance of treatments in terms of the number and diversity of coral recruits. Species specific rates of sponge fragment attachment to rubble, donor sponge growth and tissue replacement, and fragment survival inside rubble piles were also investigated to evaluate sponge species performance and determine rates for sustainably harvesting tissue. Findings/Significance Rubble piles seeded with sponges retained height and shape to a significantly greater degree, lost fewer replicates to water motion, and were significantly more likely to be consolidated over time than rubble alone. Significantly more corals recruited to sponge-seeded rubble than to all other treatments. Coral diversity was also greatest for rubble with sponges and it was the only treatment to which framework building corals recruited. Differences in overall sponge species performance suggest species selection is important to consider. Employing organisms that jump start successional pathways and facilitate recovery can significantly improve restoration outcomes; however, best practices require techniques be tailored to each system. PMID:23750219
Font, B; Eichenberger, D; Goldschmidt, D; Boutillon, M M; Hulmes, D J
1998-06-15
Fibromodulin belongs to the family of small, leucine-rich proteoglycans which have been reported to interact with collagens and to inhibit type I collagen fibrillogenesis. Decorin and fibromodulin exhibit a noticeable degree of sequence similarity. However, as previously reported [Font, B., Eichenberger, D., Rosenberg, L. M. & van der Rest, M. (1996) Matrix Biol. 15, 341-348] the domains of these molecules implicated in the interactions with type XII and type XIV collagens are different, these being the dermatan sulphate/chondroitin sulphate chain for decorin and the core protein for fibromodulin. At the present time the fibromodulin domains implicated in the interactions with fibrillar collagens remain unknown. In experiments reported here, we have sought to identify the structural requirements for fibromodulin interaction with collagen and for the control of type I collagen fibrillogenesis. Circular dichroism spectra and fibrillogenesis inhibition studies show that fibromodulin structure and its collagen fibrillogenesis control function are strictly dependent on the presence of intact disulphide bridge(s). In addition, we show that the binding of fibromodulin (or fibromodulin-derived fragments) to type I collagen is not necessarily correlated with fibrillogenesis inhibition. To isolate fibromodulin domains, the native proteoglycan was submitted to mild proteolysis. We have isolated an alpha-chymotrypsin-resistant fragment which contains the bulk of the N-terminal and central region of the molecule including the leucine-rich repeats 4 and 6 reported for decorin to be involved in type I collagen binding. This fragment does not bind to type I collagen. Using enzymes with different specificities, a number of large fragments of fibromodulin were obtained, suggesting a compact structure for this molecule which is relatively resistant to proteolysis. None of these N-glycosylated fragments were able to bind to type I collagen in co-sedimentation experiments. Taken together these results suggest that fibromodulin-type I collagen interactions leading to fibrillogenesis inhibition require more than one binding domain. One of these domains could be the C-terminal end of the molecule containing the disulphide loop which is absent in the chymotrypsin-resistant fragment.
NASA Technical Reports Server (NTRS)
Venkatapathy, Ethiraj; Gulhan, Ali; Aftosmis, Michael; Brock, Joseph; Mathias, Donovan; Need, Dominic; Rodriguez, David; Seltner, Patrick; Stern, Eric; Wiles, Sebastian
2017-01-01
An airburst from a large asteroid during entry can cause significant ground damage. The damage depends on the energy and the altitude of airburst. Breakup of asteroids into fragments and their lateral spread have been observed. Modeling the underlying physics of fragmented bodies interacting at hypersonic speeds and the spread of fragments is needed for a true predictive capability. Current models use heuristic arguments and assumptions such as pancaking or point source explosive energy release at pre-determined altitude or an assumed fragmentation spread rate to predict airburst damage. A multi-year collaboration between German Aerospace Center (DLR) and NASA has been established to develop validated computational tools to address the above challenge.
NASA Astrophysics Data System (ADS)
Durda, Daniel D.; Flynn, George J.; Sandel, L. Erica; Strait, Melissa M.
2007-01-01
We present mass-frequency data for fragments from the impact disruption of four chondritic meteorites, extending to masses several orders of magnitude smaller the mass-frequency data that are usually measured in similar impact experiments. Masses of mm- to cm-scale fragments were determined by directly weighing debris collected from the floor of the Ames Vertical Gun Range impact chamber. Masses of sub-mm to dust-size fragments were determined from analysis of foil penetration data. The mass-frequency distributions display a range of morphologies ranging from nearly linear power-law distributions to `broken' power laws with progressively shallower slopes at smaller fragment masses, apparently dependent on the magnitude of the impact specific energy.
Gauge invariance and kaon production in deep inelastic scattering at low scales
NASA Astrophysics Data System (ADS)
Guerrero, Juan V.; Accardi, Alberto
2018-06-01
This paper focuses on hadron mass effects in calculations of semi-inclusive kaon production in lepton-Deuteron deeply inelastic scattering at HERMES and COMPASS kinematics. In the collinear factorization framework, the corresponding cross section is shown to factorize, at leading order and leading twist, into products of parton distributions and fragmentation functions evaluated in terms of kaon- and nucleon-mass-dependent scaling variables, and to respect gauge invariance. It is found that hadron mass corrections for integrated kaon multiplicities sizeably reduce the apparent large discrepancy between measurements of K++K- multiplicities performed by the two collaborations, and fully reconcile their K+/K- ratios.
Dissipative dynamics in quasifission
NASA Astrophysics Data System (ADS)
Oberacker, V. E.; Umar, A. S.; Simenel, C.
2014-11-01
Quasifission is the primary reaction mechanism that prevents the formation of superheavy elements in heavy-ion fusion experiments. Employing the time-dependent density functional theory approach, we study quasifission in the systems Ca,4840+238U . Results show that for 48Ca projectiles the quasifission is substantially reduced in comparison to the 40Ca case. This partly explains the success of superheavy element formation with 48Ca beams. For the first time, we also calculate the repartition of excitation energies of the two fragments in a dynamic microscopic theory. The differences between both systems are interpreted in terms of initial neutron to proton asymmetry of the colliding partners.
Xenoliths in maars and diatremes with inferences for the moon, Mars, and Venus.
NASA Technical Reports Server (NTRS)
Mcgetchin, T. R.; Ullrich, G. W.
1973-01-01
Some field observations of the occurrence of deep-seated rock fragments in three terrestrial volcanic features that may have counterparts on the moon or Mars are reviewed, and results of numerical hydrodynamic calculations of the eruption of these types of volcanoes are presented. In particular, the transport of entrained fragmental debris is investigated for the surface (muzzle) velocity of fragments that it yields as a function of fragment size and various values of surface gravity. The implications of these observations and inferences for possible future space missions are examined.
Patterns of bird functional diversity on land-bridge island fragments.
Ding, Zhifeng; Feeley, Kenneth J; Wang, Yanping; Pakeman, Robin J; Ding, Ping
2013-07-01
The loss of species diversity due to habitat fragmentation has been extensively studied. In contrast, the impacts of habitat fragmentation on functional diversity remains relatively poorly understood. We conducted bird functional diversity studies on a set of 41 recently isolated land-bridge islands in the Thousand Island Lake, China. We analysed differences in bird species richness and a recently developed suite of complementary functional diversity indices (FRic, volume of functional space occupied; FEve, evenness of abundance distribution in the functional trait space; FDiv, divergence in the distribution of abundance in the trait volume) across different gradients (island area and isolation). We found no correlations between FRic and FEve or FEve and FDiv, but negative correlations between FRic and FDiv. As predicted, island area accounted for most of the variation in bird species richness, whereas isolation explained most of the variation in species evenness (decreasing species evenness with increasing isolation). Functional diversity appears to be more strongly influenced by habitat filtering as opposed to limiting similarity. More specifically, across all islands, both FRic and FEve were significantly lower than expected for randomly assembled communities, but FDiv showed no clear patterns. FRic increased with island area, FEve decreased with island area and FDiv showed no clear patterns. Our finding that FEve decreases with island area at TIL may indicate low functional stability on such islands, and as such large islands and habitat patches may deserve extra attention and/or protection. These results help to demonstrate the importance of considering the effects of fragmentation on functional diversity in habitat management and reserve design plans. © 2013 The Authors. Journal of Animal Ecology © 2013 British Ecological Society.
TWO-STAGE FRAGMENTATION FOR CLUSTER FORMATION: ANALYTICAL MODEL AND OBSERVATIONAL CONSIDERATIONS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bailey, Nicole D.; Basu, Shantanu, E-mail: nwityk@uwo.ca, E-mail: basu@uwo.ca
2012-12-10
Linear analysis of the formation of protostellar cores in planar magnetic interstellar clouds shows that molecular clouds exhibit a preferred length scale for collapse that depends on the mass-to-flux ratio and neutral-ion collision time within the cloud. We extend this linear analysis to the context of clustered star formation. By combining the results of the linear analysis with a realistic ionization profile for the cloud, we find that a molecular cloud may evolve through two fragmentation events in the evolution toward the formation of stars. Our model suggests that the initial fragmentation into clumps occurs for a transcritical cloud onmore » parsec scales while the second fragmentation can occur for transcritical and supercritical cores on subparsec scales. Comparison of our results with several star-forming regions (Perseus, Taurus, Pipe Nebula) shows support for a two-stage fragmentation model.« less
Using fragmentation trees and mass spectral trees for identifying unknown compounds in metabolomics.
Vaniya, Arpana; Fiehn, Oliver
2015-06-01
Identification of unknown metabolites is the bottleneck in advancing metabolomics, leaving interpretation of metabolomics results ambiguous. The chemical diversity of metabolism is vast, making structure identification arduous and time consuming. Currently, comprehensive analysis of mass spectra in metabolomics is limited to library matching, but tandem mass spectral libraries are small compared to the large number of compounds found in the biosphere, including xenobiotics. Resolving this bottleneck requires richer data acquisition and better computational tools. Multi-stage mass spectrometry (MSn) trees show promise to aid in this regard. Fragmentation trees explore the fragmentation process, generate fragmentation rules and aid in sub-structure identification, while mass spectral trees delineate the dependencies in multi-stage MS of collision-induced dissociations. This review covers advancements over the past 10 years as a tool for metabolite identification, including algorithms, software and databases used to build and to implement fragmentation trees and mass spectral annotations.
Fu, Changlin; Donovan, William P; Shikapwashya-Hasser, Olga; Ye, Xudong; Cole, Robert H
2014-01-01
Molecular cloning is utilized in nearly every facet of biological and medical research. We have developed a method, termed Hot Fusion, to efficiently clone one or multiple DNA fragments into plasmid vectors without the use of ligase. The method is directional, produces seamless junctions and is not dependent on the availability of restriction sites for inserts. Fragments are assembled based on shared homology regions of 17-30 bp at the junctions, which greatly simplifies the construct design. Hot Fusion is carried out in a one-step, single tube reaction at 50 °C for one hour followed by cooling to room temperature. In addition to its utility for multi-fragment assembly Hot Fusion provides a highly efficient method for cloning DNA fragments containing inverted repeats for applications such as RNAi. The overall cloning efficiency is in the order of 90-95%.
Fu, Changlin; Donovan, William P.; Shikapwashya-Hasser, Olga; Ye, Xudong; Cole, Robert H.
2014-01-01
Molecular cloning is utilized in nearly every facet of biological and medical research. We have developed a method, termed Hot Fusion, to efficiently clone one or multiple DNA fragments into plasmid vectors without the use of ligase. The method is directional, produces seamless junctions and is not dependent on the availability of restriction sites for inserts. Fragments are assembled based on shared homology regions of 17–30 bp at the junctions, which greatly simplifies the construct design. Hot Fusion is carried out in a one-step, single tube reaction at 50°C for one hour followed by cooling to room temperature. In addition to its utility for multi-fragment assembly Hot Fusion provides a highly efficient method for cloning DNA fragments containing inverted repeats for applications such as RNAi. The overall cloning efficiency is in the order of 90–95%. PMID:25551825
Identification of peptides in functional Scamorza ovine milk cheese.
Albenzio, M; Santillo, A; Marino, R; Della Malva, A; Caroprese, M; Sevi, A
2015-12-01
Ovine bulk milk was used to produce Scamorza cheese with probiotics: either a mix of Bifidobacterium longum and Bifidobacterium lactis or Lactobacillus acidophilus as the probiotic strains. Peptides obtained from reverse phase-HPLC water-soluble extract of Scamorza cheeses were analyzed using a quadrupole time-of-flight liquid chromatography-mass spectrometry system. Identified fragments were derived from casein hydrolysis or probiotic bacterial enzymes; some of the fragments showed encrypted peptide sequences that shared structural homology with previously described bioactive peptides in ovine milk and dairy products. Bifidobacterium longum and B. lactis showed greater proteolytic potential both in terms of level of pH 4.6 water-soluble nitrogen extract and ability to generate peptides with potential biofunctionality. Fragments deriving from microbial enzymes may be regarded as tracing fragments useful for monitoring probiotic activity in functional Scamorza cheese. Copyright © 2015 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Ruell, E.W.; Riley, S.P.D.; Douglas, M.R.; Antolin, M.F.; Pollinger, J.R.; Tracey, J.A.; Lyren, L.M.; Boydston, E.E.; Fisher, R.N.; Crooks, K.R.
2012-01-01
Although habitat fragmentation is recognized as a primary threat to biodiversity, the effects of urban development on genetic population structure vary among species and landscapes and are not yet well understood. Here we use non-invasive genetic sampling to compare the effects of fragmentation by major roads and urban development on levels of dispersal, genetic diversity, and relatedness between paired bobcat populations in replicate landscapes in coastal southern California. We hypothesized that bobcat populations in sites surrounded by urbanization would experience reduced functional connectivity relative to less isolated nearby populations. Our results show that bobcat genetic population structure is affected by roads and development but not always as predicted by the degree that these landscape features surround fragments. Instead, we suggest that urban development may affect functional connectivity between bobcat populations more by limiting the number and genetic diversity of source populations of migrants than by creating impermeable barriers to dispersal.
Injecting asteroid fragments into resonances
NASA Technical Reports Server (NTRS)
Farinella, Paolo; Gonczi, R.; Froeschle, Christiane; Froeschle, Claude
1992-01-01
We have quantitatively modeled the chance insertion of asteroid collisional fragments into the 3:1 and g = g(sub 6) resonances, through which they can achieve Earth-approaching orbits. Although the results depend on some poorly known parameters, they indicate that most meteorites and near-earth asteroids probably come from a small and non-representative sample of asteroids, located in the neighborhood of the two resonances.
NASA Technical Reports Server (NTRS)
Dudkin, V. E.; Kovalev, E. E.; Nefedov, N. A.; Antonchik, V. A.; Bogdanov, S. D.; Ostroumov, V. I.; Benton, E. V.; Crawford, H. J.
1995-01-01
Nuclear photographic emulsion is used to study the dependence of the characteristics of target-nucleus fragments on the masses and impact parameters of interacting nuclei. The data obtained are compared in all details with the calculation results made in terms of the Dubna version of the cascade-evaporation model (DCM).
Numerical modeling of oil shale fragmentation experiments
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kuszmaul, J.S.
The economic development of modified in situ oil shale retorting will benefit from the ability to design a blasting scheme that creates a rubble bed of uniform permeability. Preparing such a design depends upon successfully predicting how a given explosive charge and firing sequence will fracture the oil shale. Numerical models are used to predict the extent of damage caused by a particular explosive charge. Recent single-blastwell cratering tests provided experimental measurements of the extent of damage induced by an explosion. Measuring rock damage involved crater excavation, rubble screening, crater elevation surveys, and posttest extraction of cores. These measurements weremore » compared to the damage calculated by the numerical model. Core analyses showed that the damage varied greatly from layer to layer. The numerical results also show this effect, indicating that rock damage is highly dependent on oil shale grade. The computer simulation also calculated particle velocities and dynamic stress amplitudes in the rock; predicted values agree with experimental measurements. Calculated rock fragmentation compared favorably with fragmentation measured by crater excavation and by core analysis. Because coring provides direct inspection of rock fragmentation, the use of posttest coring in future experiments is recommended.« less
Energy dissipation in fragmented geomaterials associated with impacting oscillators
NASA Astrophysics Data System (ADS)
Khudyakov, Maxim; Pasternak, Elena; Dyskin, Arcady
2016-04-01
In wave propagation through fragmented geomaterials forced by periodic loadings, the elements (fragments) strike against each other when passing through the neutral position (position with zero mutual rotation), quickly damping the oscillations. Essentially the impacts act as shock absorbers albeit localised at the neutral points. In order to analyse the vibrations of and wave propagation in such structures, a differential equation of a forced harmonic oscillator was investigated, where the each time the system passes through the neutral point the velocity gets reduced by multiplying it with the restitution coefficient which characterise the impact of the fragments. In forced vibrations the impact times depend on both the forced oscillations and the restitution coefficient and form an irregular sequence. Numerical solution of the differential equation was performed using Mathematica software. Along with vibration diagrams, the dependence of the energy dissipation on the ratio of the forcing frequency to the natural frequency was obtained. For small positive values of the restitution coefficient (less than 0.5), the asymmetric oscillations were found, and the phase of the forced vibrations determined the direction of the asymmetry. Also, at some values of the forcing frequencies and the restitution coefficient chaotic behaviour was found.
Atypical mitochondrial fission upon bacterial infection
Stavru, Fabrizia; Palmer, Amy E.; Wang, Chunxin; Youle, Richard J.; Cossart, Pascale
2013-01-01
We recently showed that infection by Listeria monocytogenes causes mitochondrial network fragmentation through the secreted pore-forming toxin listeriolysin O (LLO). Here, we examine factors involved in canonical fusion and fission. Strikingly, LLO-induced mitochondrial fragmentation does not require the traditional fission machinery, as Drp1 oligomers are absent from fragmented mitochondria following Listeria infection or LLO treatment, as the dynamin-like protein 1 (Drp1) receptor Mff is rapidly degraded, and as fragmentation proceeds efficiently in cells with impaired Drp1 function. LLO does not cause processing of the fusion protein optic atrophy protein 1 (Opa1), despite inducing a decrease in the mitochondrial membrane potential, suggesting a unique Drp1- and Opa1-independent fission mechanism distinct from that triggered by uncouplers or the apoptosis inducer staurosporine. We show that the ER marks LLO-induced mitochondrial fragmentation sites even in the absence of functional Drp1, demonstrating that the ER activity in regulating mitochondrial fission can be induced by exogenous agents and that the ER appears to regulate fission by a mechanism independent of the canonical mitochondrial fission machinery. PMID:24043775
Measurement of the fusion probability P{sub CN} for the reaction of {sup 50}Ti with {sup 208}Pb
DOE Office of Scientific and Technical Information (OSTI.GOV)
Naik, R. S.; Loveland, W.; Sprunger, P. H.
2007-11-15
The capture cross sections and fission fragment angular distributions were measured for the reaction of {sup 50}Ti with {sup 208}Pb at center of mass projectile energies (E{sub c.m.}) of 183.7, 186.2, 190.2, 194.2, and 202.3 MeV (E*=14.2, 16.6, 20.6, 24.7, and 32.7 MeV). From fitting the backward angle fragment angular distributions, the cross sections for quasifission and fusion-fission and P{sub CN}, the probability that the colliding nuclei go from the contact configuration to inside the fission saddle point, were deduced. These quantities, along with the known values of the evaporation residue production cross sections for this reaction, were used tomore » deduce values of the survival probabilities, W{sub sur}, for this reaction as a function of excitation energy. The deduced values of P{sub CN} and W{sub sur} and their dependence on excitation energy differ from some current theoretical predictions of these quantities.« less
Study of Binding Interaction between Pif80 Protein Fragment and Aragonite
NASA Astrophysics Data System (ADS)
Du, Yuan-Peng; Chang, Hsun-Hui; Yang, Sheng-Yu; Huang, Shing-Jong; Tsai, Yu-Ju; Huang, Joseph Jen-Tse; Chan, Jerry Chun Chung
2016-08-01
Pif is a crucial protein for the formation of the nacreous layer in Pinctada fucata. Three non-acidic peptide fragments of the aragonite-binding domain (Pif80) are selected, which contain multiple copies of the repeat sequence DDRK, to study the interaction between non-acidic peptides and aragonite. The polypeptides DDRKDDRKGGK (Pif80-11) and DDRKDDRKGGKDDRKDDRKGGK (Pif80-22) have similar binding affinity to aragonite. Solid-state NMR data indicate that the backbones of Pif80-11 and Pif80-22 peptides bound on aragonite adopt a random-coil conformation. Pif80-11 is a lot more effective than Pif80-22 in promoting the nucleation of aragonite on the substrate of β-chitin. Our results suggest that the structural arrangement at a protein-mineral interface depends on the surface structure of the mineral substrate and the protein sequence. The side chains of the basic residues, which function as anchors to the aragonite surface, have uniform structures. The role of basic residues as anchors in protein-mineral interaction may play an important role in biomineralization.
NASA Astrophysics Data System (ADS)
Mazzoleni, L. R.; Habib, D.; Zhao, Y.; Dalbec, M.; Samburova, V.; Hallar, G.; Zielinska, B.; Lowenthal, D.
2013-12-01
Water-soluble organic carbon (WSOC) is a complex mixture of thousands of organic compounds which may have significant influence on the climate-relevant properties of atmospheric aerosols. An improved understanding of the molecular composition of WSOC is needed to evaluate the effect of aerosol composition upon aerosol physical properties. Products of gas phase, aqueous phase and particle phase reactions contribute to pre-existing aerosol organic mass or nucleate new aerosol particles. Thus, ambient aerosols carry a complex array of WSOC components with variable chemical signatures depending upon its origin and aerosol life-cycle processes. In this work, ultrahigh resolution Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS) was used to characterize aerosol WSOC collected during the summer of 2010 at the Storm Peak Laboratory (3210 m a.s.l.) near Steamboat Springs, CO. Approximately 4000 molecular formulas were assigned in the mass range of m/z 100-800 after negative-ion electrospray ionization. The observed trends indicate significant non-oxidative accretion reaction pathways for the formation of high molecular weight WSOC components closely associated with terpene ozonolysis secondary organic aerosol (SOA). The aerosol WSOC was further characterized using ultrahigh resolution tandem MS analysis with infrared multiphoton dissociation to determine the functional groups and structural properties of 1700 WSOC species up to m/z 600. Due to the complex nature of the WSOC, multiple precursor ions were simultaneously fragmented. The exact mass measurements of the precursor and product ions facilitated molecular formula assignments and matching of neutral losses. The most important neutral losses are CO2, H2O, CH3OH, HNO3, CH3NO3, SO3 and SO4. The presence and frequency of these losses indicate the type of functional groups contained in the precursor structures. Consistent with the acidic nature of WSOC compounds, the most frequently observed losses were CO2 (~65%), H2O (~60%) and CH3OH (~40%). Several of the studied precursors had two or more losses associated with them and combinations of neutral losses such as, H4O2, CH2O3, C2H4O3 and C2O4. These neutral losses clearly indicate a multifunctional nature of the studied aerosol WSOC. Analysis of the fragment ions which were not associated with typical neutral losses indicates an overall aliphatic SOA-like structure with regular differences of 14 Da and 18 Da between low molecular weight fragment ions. Many of the fragment ions were observed in 85% or more of the MS2 spectra. The patterns observed in the low molecular weight fragment ions were very consistent over all of the mass spectra providing evidence for the significance of the non-oxidative accretion formation pathways.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, C.; Albergo, S.; Caccia, Z.
A liquid hydrogen target was used to study the nuclear fragmentation of beams of relativistic heavy ions, [sup 22]Ne to [sup 58]Ni, over an energy range 400 to 900 MeV/nucleon. The experiments were carried out at the Lawrence Berkeley Laboratory Bevalac HISS facility, using the charge-velocity-rigidity method to identify the charged fragments. Here we describe the general concept of the experiment and present total charge-changing cross sections obtained from 17 separate runs. These new measured cross sections display an energy dependence which follows semiempirical model predictions. The mass dependence of the cross sections behaves as predicted by optical models, butmore » within the experimental energy range, the optical model parameters display a clear energy dependence. The isospin of the projectile nuclei also appears to be an important factor in the interaction process.« less
Negureanu, Lacramioara; Salsbury, Freddie R.
2012-01-01
The cellular response to DNA damage signaling by MMR proteins is incompletely understood. It is generally accepted that MMR-dependent apoptosis pathway in response to DNA damage detection is independent of MMR's DNA repair function. In this study we investigate correlated motions in response to the binding of mismatched and PCL DNA fragments by MutSα, as derived from 50 ns molecular dynamics simulations. The protein dynamics in response to the mismatched and damaged DNA recognition suggests that MutSα signals their recognition through independent pathways providing evidence for the molecular origin of the MMR-dependent apoptosis. MSH2 subunit is indicated to play a key role in signaling both mismatched and damaged DNA recognition; localized and collective motions within the protein allow identifying sites on the MSH2 surface possible involved in recruiting proteins responsible for downstream events. Unlike in the mismatch complex, predicted key communication sites specific for the damage recognition are on the list of known cancer causing mutations or deletions. This confirms MSH2's role in signaling DNA-damage induced apoptosis and suggests that defects in MMR alone is sufficient to trigger tumorigenesis, supporting the experimental evidence that MMR-damage response function could protect from the early occurrence of tumors. Identifying these particular communication sites may have implications for the treatment of cancers that are not defective for MMR, but are unable to function optimally for MMR-dependent responses following DNA damage such as the case of resistance to cisplatin. PMID:22712459
Orihuela, Rodrigo L L; Peres, Carlos A; Mendes, Gabriel; Jarenkow, João A; Tabarelli, Marcelo
2015-01-01
We examine the effects of forest fragmentation on the structure and composition of tree assemblages within three seasonal and aseasonal forest types of southern Brazil, including evergreen, Araucaria, and deciduous forests. We sampled three southernmost Atlantic Forest landscapes, including the largest continuous forest protected areas within each forest type. Tree assemblages in each forest type were sampled within 10 plots of 0.1 ha in both continuous forests and 10 adjacent forest fragments. All trees within each plot were assigned to trait categories describing their regeneration strategy, vertical stratification, seed-dispersal mode, seed size, and wood density. We detected differences among both forest types and landscape contexts in terms of overall tree species richness, and the density and species richness of different functional groups in terms of regeneration strategy, seed dispersal mode and woody density. Overall, evergreen forest fragments exhibited the largest deviations from continuous forest plots in assemblage structure. Evergreen, Araucaria and deciduous forests diverge in the functional composition of tree floras, particularly in relation to regeneration strategy and stress tolerance. By supporting a more diversified light-demanding and stress-tolerant flora with reduced richness and abundance of shade-tolerant, old-growth species, both deciduous and Araucaria forest tree assemblages are more intrinsically resilient to contemporary human-disturbances, including fragmentation-induced edge effects, in terms of species erosion and functional shifts. We suggest that these intrinsic differences in the direction and magnitude of responses to changes in landscape structure between forest types should guide a wide range of conservation strategies in restoring fragmented tropical forest landscapes worldwide.