Sample records for dependent friction law

  1. Breakdown of Amontons' Law of Friction in Sheared-Elastomer with Local Amontons' Friction

    NASA Astrophysics Data System (ADS)

    Matsukawa, Hiroshi; Otsuki, Michio

    2012-02-01

    It is well known that Amontons' law of friction i.e. the frictional force against the sliding motion of solid object is proportional to the loading force and not dependent on the contact area, holds well for various systems. Here we show, however, the breakdown of the Amontons' law for the elastic object which have local friction obeying Amontons' law and is under uniform pressure by FEM calculation The external shearing force applied to the trailing edge of the sample induces local slip. The range of the slip increases with the increasing external force adiabatically at first. When the range reaches the critical magnitude, the slips moves rapidly and reaches the leading edge of the sample then the whole system slides. These behaviors are consistent with the experiment by Rubinstein et.al. (Phys. Rev. Lett. 98, 226103). The static frictional coefficient, the ratio between the static frictional force for the whole system and the loading force, decreases with the increasing pressure. This means the breakdown of Amontons' law. The pressure dependence of the frictional coefficient is caused by the change of the critical length of the local slip. The behaviors of the local slip and the frictional coefficient are well explained by the 1 dimensional model analytically.

  2. Friction laws at the nanoscale.

    PubMed

    Mo, Yifei; Turner, Kevin T; Szlufarska, Izabela

    2009-02-26

    Macroscopic laws of friction do not generally apply to nanoscale contacts. Although continuum mechanics models have been predicted to break down at the nanoscale, they continue to be applied for lack of a better theory. An understanding of how friction force depends on applied load and contact area at these scales is essential for the design of miniaturized devices with optimal mechanical performance. Here we use large-scale molecular dynamics simulations with realistic force fields to establish friction laws in dry nanoscale contacts. We show that friction force depends linearly on the number of atoms that chemically interact across the contact. By defining the contact area as being proportional to this number of interacting atoms, we show that the macroscopically observed linear relationship between friction force and contact area can be extended to the nanoscale. Our model predicts that as the adhesion between the contacting surfaces is reduced, a transition takes place from nonlinear to linear dependence of friction force on load. This transition is consistent with the results of several nanoscale friction experiments. We demonstrate that the breakdown of continuum mechanics can be understood as a result of the rough (multi-asperity) nature of the contact, and show that roughness theories of friction can be applied at the nanoscale.

  3. Dynamic weakening is limited by granular dynamics

    NASA Astrophysics Data System (ADS)

    Kuwano, O.; Hatano, T.

    2011-12-01

    Earthquakes are the result of the frictional instability of faults containing fine rock powders called gouge derived from attrition in past fault motions. Understanding the frictional instability of granular matter in terms of constitutive laws is thus important. Because of the importance of granular matter for industries and engineering, the friction of granular matter has been studied in the field of solid earth science and other fields, such as statistical physics. In solid earth science, the rate- and state-dependent friction law was established by laboratory experiments at a very low sliding velocity (μm/s to mm/s). Recent experiments conducted at sub-seismic to seismic sliding velocities (mm/s to m/s), however, show that frictional properties are much richer than those predicted by the rate- and state-dependent friction law. One of the most important findings in such experiments is the remarkable weakening due to mechano-chemical effects by frictional heating [Tullis, 2007]. In statistical physics, another empirical law holds for much faster deformation than the former, showing positive shear-rate dependence. Until Recently, friction of granular matter has been investigated independently in the fields of solid earth science and statistical physics, and thus the relation between these distinct constitutive laws is not clear. Recently, some experimental studies have been reported to connect the achievements in these two fields. For example, a laboratory experiment on dry glass beads under very low normal stress (0.02 to 0.05 MPa) in which the frictional heat is negligible reveals the transition from velocity-weakening friction at low sliding velocities to velocity-strengthening friction at high sliding velocities [Kuwano et al., 2011]. Importantly, the velocity-strengthening nature at high sliding velocities is quantitatively the same as those observed in simulations. The inelastic deformation of the grains therefore plays a vital role at high sliding velocities. In this study, we report a friction experiment under higher pressure (0.1 to 0.9 MPa), in which the frictional heat is significant. To clarify the effect of frictional heat in high-speed friction systematically, we investigated both the pressure and the velocity dependence of the friction coefficient over a wide range of sliding velocities ranging from aseismic to seismic slip velocities. We observed considerable weakening, described well by a flash-heating theory, above the sliding velocity of 1 cm/s regardless of pressure. At higher velocities, the velocity strengthening behavior replaced the velocity weakening behavior. This strengthening at higher velocities agrees with data from numerical simulations on sheared granular matter and is therefore described in terms of energy dissipation due to the inelastic deformation of grains. We propose a unified steady-state friction law that well describes the velocity and pressure dependence of the steady-state friction coefficient.

  4. History-dependent friction and slow slip from time-dependent microscopic junction laws studied in a statistical framework

    NASA Astrophysics Data System (ADS)

    Thøgersen, Kjetil; Trømborg, Jørgen Kjoshagen; Sveinsson, Henrik Andersen; Malthe-Sørenssen, Anders; Scheibert, Julien

    2014-05-01

    To study how macroscopic friction phenomena originate from microscopic junction laws, we introduce a general statistical framework describing the collective behavior of a large number of individual microjunctions forming a macroscopic frictional interface. Each microjunction can switch in time between two states: a pinned state characterized by a displacement-dependent force and a slipping state characterized by a time-dependent force. Instead of tracking each microjunction individually, the state of the interface is described by two coupled distributions for (i) the stretching of pinned junctions and (ii) the time spent in the slipping state. This framework allows for a whole family of microjunction behavior laws, and we show how it represents an overarching structure for many existing models found in the friction literature. We then use this framework to pinpoint the effects of the time scale that controls the duration of the slipping state. First, we show that the model reproduces a series of friction phenomena already observed experimentally. The macroscopic steady-state friction force is velocity dependent, either monotonic (strengthening or weakening) or nonmonotonic (weakening-strengthening), depending on the microscopic behavior of individual junctions. In addition, slow slip, which has been reported in a wide variety of systems, spontaneously occurs in the model if the friction contribution from junctions in the slipping state is time weakening. Next, we show that the model predicts a nontrivial history dependence of the macroscopic static friction force. In particular, the static friction coefficient at the onset of sliding is shown to increase with increasing deceleration during the final phases of the preceding sliding event. We suggest that this form of history dependence of static friction should be investigated in experiments, and we provide the acceleration range in which this effect is expected to be experimentally observable.

  5. History-dependent friction and slow slip from time-dependent microscopic junction laws studied in a statistical framework.

    PubMed

    Thøgersen, Kjetil; Trømborg, Jørgen Kjoshagen; Sveinsson, Henrik Andersen; Malthe-Sørenssen, Anders; Scheibert, Julien

    2014-05-01

    To study how macroscopic friction phenomena originate from microscopic junction laws, we introduce a general statistical framework describing the collective behavior of a large number of individual microjunctions forming a macroscopic frictional interface. Each microjunction can switch in time between two states: a pinned state characterized by a displacement-dependent force and a slipping state characterized by a time-dependent force. Instead of tracking each microjunction individually, the state of the interface is described by two coupled distributions for (i) the stretching of pinned junctions and (ii) the time spent in the slipping state. This framework allows for a whole family of microjunction behavior laws, and we show how it represents an overarching structure for many existing models found in the friction literature. We then use this framework to pinpoint the effects of the time scale that controls the duration of the slipping state. First, we show that the model reproduces a series of friction phenomena already observed experimentally. The macroscopic steady-state friction force is velocity dependent, either monotonic (strengthening or weakening) or nonmonotonic (weakening-strengthening), depending on the microscopic behavior of individual junctions. In addition, slow slip, which has been reported in a wide variety of systems, spontaneously occurs in the model if the friction contribution from junctions in the slipping state is time weakening. Next, we show that the model predicts a nontrivial history dependence of the macroscopic static friction force. In particular, the static friction coefficient at the onset of sliding is shown to increase with increasing deceleration during the final phases of the preceding sliding event. We suggest that this form of history dependence of static friction should be investigated in experiments, and we provide the acceleration range in which this effect is expected to be experimentally observable.

  6. A New Microscopic Model of the Rate- and State- Friction Evolution

    NASA Astrophysics Data System (ADS)

    Li, T.; Rubin, A. M.

    2016-12-01

    The Slip (Ruina) law and the Aging (Dieterich) law are the two most common descriptions of the evolution of "state" in rate- and state-dependent friction, behind which are the ideas of slip-dependent and time-dependent fault healing, respectively. Since the mid-1990's, friction experiments have been interpreted as demonstrating that fault healing in rock is primarily time-dependent, and that frictional strength is proportional to contact area (Dieterich and Kilgore, 1994; Beeler et al., 1994). However, a recent re-examination of the data of Beeler et al. (1994) suggests that the evidence for time-dependent healing is equivocal, while large step velocity decreases provide unequivocal evidence of slip-dependent healing (Bhattacharya et al., AGU 2016). Nonetheless, unlike the Aging law, for which see-through experiments showing growing contacts could serve as a physical model, there has been no corresponding physical picture for the Slip law. In this study, we develop a new microscopic model of friction in which each asperity has a heterogeneous strength, with individual portions "remembering" the velocity at which they came into existence. Such a scenario could arise via processes that are more efficient at the margin of a contact than within the interior (e.g., chemical diffusion). A numerical kernel for friction evolution is developed for arbitrary slip histories and an exponential distribution of asperity sizes. For velocity steps we derive an analytical expression that is essentially the Slip law. Numerical inversions show that this model performs as well as the Slip law when fitting velocity step data, but (unfortunately) without improving much the fit to slide-hold-slide data. Because "state" as defined by the Aging law has traditionally been interpreted as contact age, we also use our model to determine whether the "Aging law" actually tracks contact age for general velocity histories. As is traditional, we assume that strength increases logarithmically with age. For reasonable definitions of "age" we obtain results significantly different from the Aging law for velocity step increases. Interestingly, we can obtain an analytical solution for velocity steps that is very close to the Aging law if we adopt a definition of age that we consider to be non-physical.

  7. Systematic Breakdown of Amontons' Law of Friction for an Elastic Object Locally Obeying Amontons' Law

    PubMed Central

    Otsuki, Michio; Matsukawa, Hiroshi

    2013-01-01

    In many sliding systems consisting of solid object on a solid substrate under dry condition, the friction force does not depend on the apparent contact area and is proportional to the loading force. This behaviour is called Amontons' law and indicates that the friction coefficient, or the ratio of the friction force to the loading force, is constant. Here, however, using numerical and analytical methods, we show that Amontons' law breaks down systematically under certain conditions for an elastic object experiencing a friction force that locally obeys Amontons' law. The macroscopic static friction coefficient, which corresponds to the onset of bulk sliding of the object, decreases as pressure or system length increases. This decrease results from precursor slips before the onset of bulk sliding, and is consistent with the results of certain previous experiments. The mechanisms for these behaviours are clarified. These results will provide new insight into controlling friction. PMID:23545778

  8. Does fault strengthening in laboratory rock friction experiments really depend primarily upon time and not slip?

    NASA Astrophysics Data System (ADS)

    Bhattacharya, Pathikrit; Rubin, Allan M.; Beeler, Nicholas M.

    2017-08-01

    The popular constitutive formulations of rate-and-state friction offer two end-member views on whether friction evolves only with slip (Slip law) or with time even without slip (Aging law). While rate stepping experiments show support for the Slip law, laboratory-observed frictional behavior near-zero slip rates has traditionally been inferred as supporting Aging law style time-dependent healing, in particular, from the slide-hold-slide experiments of Beeler et al. (1994). Using a combination of new analytical results and explicit numerical (Bayesian) inversion, we show instead that the slide-hold-slide data of Beeler et al. (1994) favor slip-dependent state evolution during holds. We show that, while the stiffness-independent rate of growth of peak stress (following reslides) with hold duration is a property shared by both the Aging and (under a more restricted set of parameter combinations) Slip laws, the observed stiffness dependence of the rate of stress relaxation during long holds is incompatible with the Aging law with constant rate-state parameters. The Slip law consistently fits the evolution of the stress minima at the end of the holds well, whether fitting jointly with peak stresses or otherwise. But neither the Aging nor Slip laws fit all the data well when a - b is constrained to values derived from prior velocity steps. We also attempted to fit the evolution of stress peaks and minima with the Kato-Tullis hybrid law and the shear stress-dependent Nagata law, both of which, even with the freedom of an extra parameter, generally reproduced the best Slip law fits to the data.

  9. A generalized law for brittle deformation of Westerly granite

    USGS Publications Warehouse

    Lockner, D.A.

    1998-01-01

    A semiempirical constitutive law is presented for the brittle deformation of intact Westerly granite. The law can be extended to larger displacements, dominated by localized deformation, by including a displacement-weakening break-down region terminating in a frictional sliding regime often described by a rate- and state-dependent constitutive law. The intact deformation law, based on an Arrhenius type rate equation, relates inelastic strain rate to confining pressure Pc, differential stress ????, inelastic strain ??i, and temperature T. The basic form of the law for deformation prior to fault nucleation is In ????i = c - (E*/RT) + (????/a??o)sin-??(???? i/2??o) where ??o and ??o are normalization constants (dependent on confining pressure), a is rate sensitivity of stress, and ?? is a shape parameter. At room temperature, eight experimentally determined coefficients are needed to fully describe the stress-strain-strain rate response for Westerly granite from initial loading to failure. Temperature dependence requires apparent activation energy (E* ??? 90 kJ/mol) and one additional experimentally determined coefficient. The similarity between the prefailure constitutive law for intact rock and the rate- and state-dependent friction laws for frictional sliding on fracture surfaces suggests a close connection between these brittle phenomena.

  10. Modeling Aftershocks and Foreshocks by Time-Dependent Friction Laws

    NASA Astrophysics Data System (ADS)

    Lippiello, E.; Landes, F.

    2017-12-01

    The transition with depth from rate-weakening to rate-strengthening rheology represents a viable mechanism to explain both afterslip and the temporal and spatial organization of aftershocks(Avouac, Annu. Rev. Eart Planet Sci. 2015).On the other hand, elastic models for seismic faults, as the Burridge-Knopoff model, are able to reproduce the Gutenberg-Richter (GR) law (de Arcangelis et al., Phys. Rep. 2016). Here we show that the two approaches can be combined in a minimal model containing only a parameter controlling the heterogeneities of the friction force. The key ingredient is the presence of a time-dependent friction on a temporal scale intermediate between the instantaneous scale of fracture propagation and the very slow one of the driving rate. Several features of aftershocks as the GR law, the productivity law, the spatial clustering and the temporal decay of the aftershock number, appear universal properties independent of details of model parameters and friction law. Quantitative agreement with the Omori law constraints the friction law according to a velocity strengthening rheology. The model also provides agreement with recent experimental results on the statistical properties of foreshock occurrence (Lippiello et al. , Pageoph, 2017). We then obtain insights on the nucleation phase preceding mainshocks which we compare with existing models (Ohnaka, Tectonophysics 1992).

  11. Nonlinear shear wave interaction at a frictional interface: energy dissipation and generation of harmonics.

    PubMed

    Meziane, A; Norris, A N; Shuvalov, A L

    2011-10-01

    Analytical and numerical modeling of the nonlinear interaction of shear wave with a frictional interface is presented. The system studied is composed of two homogeneous and isotropic elastic solids, brought into frictional contact by remote normal compression. A shear wave, either time harmonic or a narrow band pulse, is incident normal to the interface and propagates through the contact. Two friction laws are considered and the influence on interface behavior is investigated: Coulomb's law with a constant friction coefficient and a slip-weakening friction law which involves static and dynamic friction coefficients. The relationship between the nonlinear harmonics and the dissipated energy, and the dependence on the contact dynamics (friction law, sliding, and tangential stress) and on the normal contact stress are examined in detail. The analytical and numerical results indicate universal type laws for the amplitude of the higher harmonics and for the dissipated energy, properly non-dimensionalized in terms of the pre-stress, the friction coefficient and the incident amplitude. The results suggest that measurements of higher harmonics can be used to quantify friction and dissipation effects of a sliding interface. © 2011 Acoustical Society of America

  12. Generalized contact and improved frictional heating in the material point method

    NASA Astrophysics Data System (ADS)

    Nairn, J. A.; Bardenhagen, S. G.; Smith, G. D.

    2017-09-01

    The material point method (MPM) has proved to be an effective particle method for computational mechanics modeling of problems involving contact, but all prior applications have been limited to Coulomb friction. This paper generalizes the MPM approach for contact to handle any friction law with examples given for friction with adhesion or with a velocity-dependent coefficient of friction. Accounting for adhesion requires an extra calculation to evaluate contact area. Implementation of velocity-dependent laws usually needs numerical methods to find contacting forces. The friction process involves work which can be converted into heat. This paper provides a new method for calculating frictional heating that accounts for interfacial acceleration during the time step. The acceleration terms is small for many problems, but temporal convergence of heating effects for problems involving vibrations and high contact forces is improved by the new method. Fortunately, the new method needs few extra calculations and therefore is recommended for all simulations.

  13. Generalized contact and improved frictional heating in the material point method

    NASA Astrophysics Data System (ADS)

    Nairn, J. A.; Bardenhagen, S. G.; Smith, G. D.

    2018-07-01

    The material point method (MPM) has proved to be an effective particle method for computational mechanics modeling of problems involving contact, but all prior applications have been limited to Coulomb friction. This paper generalizes the MPM approach for contact to handle any friction law with examples given for friction with adhesion or with a velocity-dependent coefficient of friction. Accounting for adhesion requires an extra calculation to evaluate contact area. Implementation of velocity-dependent laws usually needs numerical methods to find contacting forces. The friction process involves work which can be converted into heat. This paper provides a new method for calculating frictional heating that accounts for interfacial acceleration during the time step. The acceleration terms is small for many problems, but temporal convergence of heating effects for problems involving vibrations and high contact forces is improved by the new method. Fortunately, the new method needs few extra calculations and therefore is recommended for all simulations.

  14. Where did the time go? Friction evolves with slip following large velocity steps, normal stress steps, and (?) during long holds

    NASA Astrophysics Data System (ADS)

    Rubin, A. M.; Bhattacharya, P.; Tullis, T. E.; Okazaki, K.; Beeler, N. M.

    2016-12-01

    The popular constitutive formulations of rate-and-state friction offer two end-member views on whether friction evolves only with slip (Slip law state evolution) or with time even without slip (Aging law state evolution). While rate stepping experiments show support for the Slip law, laboratory observed frictional behavior of initially bare rock surfaces near zero slip rate has traditionally been interpreted to show support for time-dependent evolution of frictional strength. Such laboratory derived support for time-dependent evolution has been one of the motivations behind the Aging law being widely used to model earthquake cycles on natural faults.Through a combination of theoretical results and new experimental data on initially bare granite, we show stronger support for the other end member view, i.e. that friction under a wide range of sliding conditions evolves only with slip. Our dataset is unique in that it combines up to 3.5 orders of magnitude rate steps, sequences of holds up to 10000s, and 5% normal stress steps at order of magnitude different sliding rates during the same experimental run. The experiments were done on the Brown rotary shear apparatus using servo feedback, making the machine stiff enough to provide very large departures from steady-state while maintaining stable, quasi-static sliding. Across these diverse sliding conditions, and in particular for both large velocity step decreases and the longest holds, the data are much more consistent with the Slip law version of slip-dependence than the time-dependence formulated in the Aging law. The shear stress response to normal stress steps is also consistently better explained by the Slip law when paired with the Linker-Dieterich type response to normal stress perturbations. However, the remarkable symmetry and slip-dependence of the normal stress step increases and decreases suggest deficiencies in the Linker-Dieterich formulation that we will probe in future experiments.High quality measurements of interface compaction from the normal-stress steps suggest that the instantaneous changes in state and contact area are opposite in sign, indicating that state evolution might be fundamentally connected to contact quality, and not quantity alone.

  15. Implementation into earthquake sequence simulations of a rate- and state-dependent friction law incorporating pressure solution creep

    NASA Astrophysics Data System (ADS)

    Noda, H.

    2016-05-01

    Pressure solution creep (PSC) is an important elementary process in rock friction at high temperatures where solubilities of rock-forming minerals are significantly large. It significantly changes the frictional resistance and enhances time-dependent strengthening. A recent microphysical model for PSC-involved friction of clay-quartz mixtures, which can explain a transition between dilatant and non-dilatant deformation (d-nd transition), was modified here and implemented in dynamic earthquake sequence simulations. The original model resulted in essentially a kind of rate- and state-dependent friction (RSF) law, but assumed a constant friction coefficient for clay resulting in zero instantaneous rate dependency in the dilatant regime. In this study, an instantaneous rate dependency for the clay friction coefficient was introduced, consistent with experiments, resulting in a friction law suitable for earthquake sequence simulations. In addition, a term for time-dependent strengthening due to PSC was added which makes the friction law logarithmically rate-weakening in the dilatant regime. The width of the zone in which clasts overlap or, equivalently, the interface porosity involved in PSC plays a role as the state variable. Such a concrete physical meaning of the state variable is a great advantage in future modelling studies incorporating other physical processes such as hydraulic effects. Earthquake sequence simulations with different pore pressure distributions demonstrated that excess pore pressure at depth causes deeper rupture propagation with smaller slip per event and a shorter recurrence interval. The simulated ruptures were arrested a few kilometres below the point of pre-seismic peak stress at the d-nd transition and did not propagate spontaneously into the region of pre-seismic non-dilatant deformation. PSC weakens the fault against slow deformation and thus such a region cannot produce a dynamic stress drop. Dynamic rupture propagation further down to brittle-plastic transition, evidenced by geological observations, would require even smaller frictional resistance at coseismic slip rate, suggesting the importance of implementation of dynamic weakening activated at coseismic slip rates for more realistic simulation of earthquake sequences. The present models produced much smaller afterslip at deeper parts of arrested ruptures than those with logarithmic RSF laws because of a more significant rate-strengthening effect due to linearly viscous PSC. Detailed investigation of afterslip would give a clue to understand the deformation mechanism which controls shear resistance of the fault in a region of arrest of earthquake ruptures.

  16. Load and Time Dependence of Interfacial Chemical Bond-Induced Friction at the Nanoscale.

    PubMed

    Tian, Kaiwen; Gosvami, Nitya N; Goldsby, David L; Liu, Yun; Szlufarska, Izabela; Carpick, Robert W

    2017-02-17

    Rate and state friction (RSF) laws are widely used empirical relationships that describe the macroscale frictional behavior of a broad range of materials, including rocks found in the seismogenic zone of Earth's crust. A fundamental aspect of the RSF laws is frictional "aging," where friction increases with the time of stationary contact due to asperity creep and/or interfacial strengthening. Recent atomic force microscope (AFM) experiments and simulations found that nanoscale silica contacts exhibit aging due to the progressive formation of interfacial chemical bonds. The role of normal load (and, thus, normal stress) on this interfacial chemical bond-induced (ICBI) friction is predicted to be significant but has not been examined experimentally. Here, we show using AFM that, for nanoscale ICBI friction of silica-silica interfaces, aging (the difference between the maximum static friction and the kinetic friction) increases approximately linearly with the product of the normal load and the log of the hold time. This behavior is attributed to the approximately linear dependence of the contact area on the load in the positive load regime before significant wear occurs, as inferred from sliding friction measurements. This implies that the average pressure, and thus the average bond formation rate, is load independent within the accessible load range. We also consider a more accurate nonlinear model for the contact area, from which we extract the activation volume and the average stress-free energy barrier to the aging process. Our work provides an approach for studying the load and time dependence of contact aging at the nanoscale and further establishes RSF laws for nanoscale asperity contacts.

  17. Load and Time Dependence of Interfacial Chemical Bond-Induced Friction at the Nanoscale

    NASA Astrophysics Data System (ADS)

    Tian, Kaiwen; Gosvami, Nitya N.; Goldsby, David L.; Liu, Yun; Szlufarska, Izabela; Carpick, Robert W.

    2017-02-01

    Rate and state friction (RSF) laws are widely used empirical relationships that describe the macroscale frictional behavior of a broad range of materials, including rocks found in the seismogenic zone of Earth's crust. A fundamental aspect of the RSF laws is frictional "aging," where friction increases with the time of stationary contact due to asperity creep and/or interfacial strengthening. Recent atomic force microscope (AFM) experiments and simulations found that nanoscale silica contacts exhibit aging due to the progressive formation of interfacial chemical bonds. The role of normal load (and, thus, normal stress) on this interfacial chemical bond-induced (ICBI) friction is predicted to be significant but has not been examined experimentally. Here, we show using AFM that, for nanoscale ICBI friction of silica-silica interfaces, aging (the difference between the maximum static friction and the kinetic friction) increases approximately linearly with the product of the normal load and the log of the hold time. This behavior is attributed to the approximately linear dependence of the contact area on the load in the positive load regime before significant wear occurs, as inferred from sliding friction measurements. This implies that the average pressure, and thus the average bond formation rate, is load independent within the accessible load range. We also consider a more accurate nonlinear model for the contact area, from which we extract the activation volume and the average stress-free energy barrier to the aging process. Our work provides an approach for studying the load and time dependence of contact aging at the nanoscale and further establishes RSF laws for nanoscale asperity contacts.

  18. Frictional ageing from interfacial bonding and the origins of rate and state friction.

    PubMed

    Li, Qunyang; Tullis, Terry E; Goldsby, David; Carpick, Robert W

    2011-11-30

    Earthquakes have long been recognized as being the result of stick-slip frictional instabilities. Over the past few decades, laboratory studies of rock friction have elucidated many aspects of tectonic fault zone processes and earthquake phenomena. Typically, the static friction of rocks grows logarithmically with time when they are held in stationary contact, but the mechanism responsible for this strengthening is not understood. This time-dependent increase of frictional strength, or frictional ageing, is one manifestation of the 'evolution effect' in rate and state friction theory. A prevailing view is that the time dependence of rock friction results from increases in contact area caused by creep of contacting asperities. Here we present the results of atomic force microscopy experiments that instead show that frictional ageing arises from the formation of interfacial chemical bonds, and the large magnitude of ageing at the nanometre scale is quantitatively consistent with what is required to explain observations in macroscopic rock friction experiments. The relative magnitude of the evolution effect compared with that of the 'direct effect'--the dependence of friction on instantaneous changes in slip velocity--determine whether unstable slip, leading to earthquakes, is possible. Understanding the mechanism underlying the evolution effect would enable us to formulate physically based frictional constitutive laws, rather than the current empirically based 'laws', allowing more confident extrapolation to natural faults.

  19. Kalker's algorithm Fastsim solves tangential contact problems with slip-dependent friction and friction anisotropy

    NASA Astrophysics Data System (ADS)

    Piotrowski, J.

    2010-07-01

    This paper presents two extensions of Kalker's algorithm Fastsim of the simplified theory of rolling contact. The first extension is for solving tangential contact problems with the coefficient of friction depending on slip velocity. Two friction laws have been considered: with and without recuperation of the static friction. According to the tribological hypothesis for metallic bodies shear failure, the friction law without recuperation of static friction is more suitable for wheel and rail than the other one. Sample results present local quantities inside the contact area (division to slip and adhesion, traction) as well as global ones (creep forces as functions of creepages and rolling velocity). For the coefficient of friction diminishing with slip, the creep forces decay after reaching the maximum and they depend on the rolling velocity. The second extension is for solving tangential contact problems with friction anisotropy characterised by a convex set of the permissible tangential tractions. The effect of the anisotropy has been shown on examples of rolling without spin and in the presence of pure spin for the elliptical set. The friction anisotropy influences tangential tractions and creep forces. Sample results present local and global quantities. Both extensions have been described with the same language of formulation and they may be merged into one, joint algorithm.

  20. Stick-slip friction and ageing in Velcro®

    NASA Astrophysics Data System (ADS)

    Mariani, Lisa; Angiolillo, Paul

    2014-03-01

    The mesoscopic hook and loop system of Velcro® provides a model of stick-slip friction that exhibits behavior reminiscent of results seen in nanoscale model systems. The friction is linearly dependent on contact area and independent of driving velocity. Morever, there is a power law dependence of the friction on loading, with exponent between 1/4 and 1/3. Furthermore, the evolution of stick-slip to more smooth sliding, as controlled by contact area, is also noted. These transition predictions follow power law profiles, as well, with respect to increasing contact area. Thus, the hook-and-loop system shows to be a good mesoscale model system of stick-slip friction and provides a link between nanoscale and macroscale friction. Through an investigation into the ageing of the hooks in the system, the data suggests that the hooks age during the shearing regime and take a characteristic time to return to initial attachment strength. Additionally, there does not appear to be a significant affect of ageing on the kinetic friction experienced by the system.

  1. Applicability of Macroscopic Wear and Friction Laws on the Atomic Length Scale.

    PubMed

    Eder, S J; Feldbauer, G; Bianchi, D; Cihak-Bayr, U; Betz, G; Vernes, A

    2015-07-10

    Using molecular dynamics, we simulate the abrasion process of an atomically rough Fe surface with multiple hard abrasive particles. By quantifying the nanoscopic wear depth in a time-resolved fashion, we show that Barwell's macroscopic wear law can be applied at the atomic scale. We find that in this multiasperity contact system, the Bowden-Tabor term, which describes the friction force as a function of the real nanoscopic contact area, can predict the kinetic friction even when wear is involved. From this the Derjaguin-Amontons-Coulomb friction law can be recovered, since we observe a linear dependence of the contact area on the applied load in accordance with Greenwood-Williamson contact mechanics.

  2. Sensitivity of grounding line dynamics to basal conditions

    NASA Astrophysics Data System (ADS)

    Gagliardini, O.; Brondex, J.; Chauveau, G.; Gillet-chaulet, F.; Durand, G.

    2017-12-01

    In the context of a warming climate, the dynamical contribution of Antarctica to future sea level rise is still tainted by high uncertainties. Among the processes entering these uncertainties is the link between basal hydrology, friction and grounding line dynamics. Recent works have shown how sensitive is the response of the grounding line retreat to the choice of the form of the friction law. Indeed, starting from the same initial state, grounding line retreat rates can range over almost two orders of magnitude depending on the friction law formulation.Here, we use a phenomenological law that depends on the water pressure and allows a continuous transition from a Weertman-type friction at low water pressure to a Coulomb-type friction at high water pressure. This friction law depends on two main parameters that control the Weertman and Coulomb regimes. The range of values for these two parameters is only weakly physically constrained, and it can be shown that, for a given basal shear stress, different couples of parameters can conduct to the same sliding velocity. In addition, we show that close to the grounding line where basal water pressure is high, determining these two parameters might conduct to an ill-posed inverse problem with no solution.The aim of this presentation is to discuss a methodology to guide the choice of the two friction parameters and explore the sensitivity of the grounding line dynamics to this initial choice. We present results obtained both on a synthetic configuration used by the Marine Ice Sheet Model Intercomparison exercise and for the Amundsen sea sector using the experiments proposed by InitMIP-Antarctica, the first exercise in a series of ISMIP6 ice-sheet model intercomparison activities.

  3. The Indeterminate Case of Classical Static Friction When Coupled with Tension

    NASA Astrophysics Data System (ADS)

    Hahn, Kenneth D.; Russell, Jacob M.

    2018-02-01

    It has been noted that the static friction force poses challenges for students and, at times, even their instructors. Unlike the gravitational force, which has a precise and unambiguous magnitude (FG = mg), the magnitude and direction of the static friction force depend on other forces at play. Friction can be understood rather well in terms of complicated atomic-scale interactions between surfaces. Ringlein and Robbins survey aspects of the atomic origins of friction, and Folkerts explores factors that affect the value of static friction. However, what students typically encounter in an introductory course ignores the atomic origins of friction (beyond perhaps a brief overview of the atomic model). The rules of dry friction (i.e., non-lubricated surfaces in contact) taught in introductory physics were originally published in 1699 by Guillaume Amontons. Amontons's first law states that the force of friction is directly proportional to the applied load, i.e., f = μFN, where FN is the normal force and μ is the coefficient of friction. His second law states that the force of friction is independent of the macroscopic area of contact. These laws were verified by Coulomb in 1781.

  4. A Simple Measurement of the Sliding Friction Coefficient

    ERIC Educational Resources Information Center

    Gratton, Luigi M.; Defrancesco, Silvia

    2006-01-01

    We present a simple computer-aided experiment for investigating Coulomb's law of sliding friction in a classroom. It provides a way of testing the possible dependence of the friction coefficient on various parameters, such as types of materials, normal force, apparent area of contact and sliding velocity.

  5. Microphysically Derived Expressions for Rate-and-State Friction Parameters, a, b, and Dc

    NASA Astrophysics Data System (ADS)

    Chen, Jianye; Niemeijer, A. R.; Spiers, Christopher J.

    2017-12-01

    Rate-and-state friction (RSF) laws are extensively applied in fault mechanics but have a largely empirical basis reflecting only limited understanding of the underlying physical mechanisms. We recently proposed a microphysical model describing the frictional behavior of a granular fault gouge undergoing deformation in terms of granular flow accompanied by thermally activated creep and intergranular sliding at grain contacts. Numerical solutions reproduced typical experimental results well. Here we extend our model to obtain physically meaningful, analytical expressions for the steady state frictional strength and standard RSF parameters, a, b, and Dc. The frictional strength contains two components, namely, grain boundary friction and friction due to intergranular dilatation. The expressions obtained for a and b linearly reflect the rate dependence of these two terms. Dc scales with slip band thickness and varies only slightly with velocity. The values of a, b, and Dc predicted show quantitative agreement with previous experimental results, and inserting their values into classical RSF laws gives simulated friction behavior that is consistent with the predictions of our numerically implemented model for small departures from steady state. For large velocity steps, the model produces mixed RSF behavior that falls between the Slowness and Slip laws, for example, with an intermediate equivalent slip(-weakening) distance d0. Our model possesses the interesting property not only that a and b are velocity dependent but also that Dc and d0 scale differently from classical RSF models, potentially explaining behaviour seen in many hydrothermal friction experiments and having substantial implications for natural fault friction.

  6. Nonmonotonic velocity dependence of atomic friction.

    PubMed

    Reimann, Peter; Evstigneev, Mykhaylo

    2004-12-03

    We propose a theoretical model for friction force microscopy experiments with special emphasis on the realistic description of dissipation and inertia effects. Its main prediction is a nonmonotonic dependence of the friction force upon the sliding velocity of the atomic force microscope tip relative to an atomically flat surface. The region around the force maximum can be approximately described by a universal scaling law and should be observable under experimentally realistic conditions.

  7. Comparison Between 2D and 3D Simulations of Rate Dependent Friction Using DEM

    NASA Astrophysics Data System (ADS)

    Wang, C.; Elsworth, D.

    2017-12-01

    Rate-state dependent constitutive laws of frictional evolution have been successful in representing many of the first- and second- order components of earthquake rupture. Although this constitutive law has been successfully applied in numerical models, difficulty remains in efficient implementation of this constitutive law in computationally-expensive granular mechanics simulations using discrete element methods (DEM). This study introduces a novel approach in implementing a rate-dependent constitutive relation of contact friction into DEM. This is essentially an implementation of a slip-weakening constitutive law onto local particle contacts without sacrificing computational efficiency. This implementation allows the analysis of slip stability of simulated fault gouge materials. Velocity-stepping experiments are reported on both uniform and textured distributions of quartz and talc as 3D analogs of gouge mixtures. Distinct local slip stability parameters (a-b) are assigned to the quartz and talc, respectively. We separately vary talc content from 0 to 100% in the uniform mixtures and talc layer thickness from 1 to 20 particles in the textured mixtures. Applied shear displacements are cycled through velocities of 1μm/s and 10μm/s. Frictional evolution data are collected and compared to 2D simulation results. We show that dimensionality significantly impacts the evolution of friction. 3D simulation results are more representative of laboratory observed behavior and numerical noise is shown at a magnitude of 0.01 in terms of friction coefficient. Stability parameters (a-b) can be straightforwardly obtained from analyzing velocity steps, and are different from locally assigned (a-b) values. Sensitivity studies on normal stress, shear velocity, particle size, local (a-b) values, and characteristic slip distance (Dc) show that the implementation is sensitive to local (a-b) values and relations between (Dc) and particle size.

  8. Apparent Dependence of Rate- and State-Dependent Friction Parameters on Loading Velocity and Cumulative Displacement Inferred from Large-Scale Biaxial Friction Experiments

    NASA Astrophysics Data System (ADS)

    Urata, Yumi; Yamashita, Futoshi; Fukuyama, Eiichi; Noda, Hiroyuki; Mizoguchi, Kazuo

    2017-06-01

    We investigated the constitutive parameters in the rate- and state-dependent friction (RSF) law by conducting numerical simulations, using the friction data from large-scale biaxial rock friction experiments for Indian metagabbro. The sliding surface area was 1.5 m long and 0.5 m wide, slid for 400 s under a normal stress of 1.33 MPa at a loading velocity of either 0.1 or 1.0 mm/s. During the experiments, many stick-slips were observed and those features were as follows. (1) The friction drop and recurrence time of the stick-slip events increased with cumulative slip displacement in an experiment before which the gouges on the surface were removed, but they became almost constant throughout an experiment conducted after several experiments without gouge removal. (2) The friction drop was larger and the recurrence time was shorter in the experiments with faster loading velocity. We applied a one-degree-of-freedom spring-slider model with mass to estimate the RSF parameters by fitting the stick-slip intervals and slip-weakening curves measured based on spring force and acceleration of the specimens. We developed an efficient algorithm for the numerical time integration, and we conducted forward modeling for evolution parameters ( b) and the state-evolution distances (L_{{c}}), keeping the direct effect parameter ( a) constant. We then identified the confident range of b and L_{{c}} values. Comparison between the results of the experiments and our simulations suggests that both b and L_{{c}} increase as the cumulative slip displacement increases, and b increases and L_{{c}} decreases as the loading velocity increases. Conventional RSF laws could not explain the large-scale friction data, and more complex state evolution laws are needed.

  9. Effects of shear load on frictional healing

    NASA Astrophysics Data System (ADS)

    Ryan, K. L.; Marone, C.

    2014-12-01

    During the seismic cycle of repeated earthquake failure, faults regain strength in a process known as frictional healing. Laboratory studies have played a central role in illuminating the processes of frictional healing and fault re-strengthening. These studies have also provided the foundation for laboratory-derived friction constitutive laws, which have been used extensively to model earthquake dynamics. We conducted laboratory experiments to assess the affect of shear load on frictional healing. Frictional healing is quantified during slide-hold-slide (SHS) tests, which serve as a simple laboratory analog for the seismic cycle in which earthquakes (slide) are followed by interseismic quiescence (hold). We studied bare surfaces of Westerly granite and layers of Westerly granite gouge (thickness of 3 mm) at normal stresses from 4-25 MPa, relative humidity of 40-60%, and loading and unloading velocities of 10-300 μm/s. During the hold period of SHS tests, shear stress on the sample was partially removed to investigate the effects of shear load on frictional healing and to isolate time- and slip-dependent effects on fault healing. Preliminary results are consistent with existing works and indicate that frictional healing increases with the logarithm of hold time and decreases with normalized shear stress τ/τf during the hold. During SHS tests with hold periods of 100 seconds, healing values ranged from (0.013-0.014) for τ/τf = 1 to (0.059-0.063) for τ/τf = 0, where τ is the shear stress during the hold period and τf is the shear stress during steady frictional sliding. Experiments on bare rock surfaces and with natural and synthetic fault gouge materials are in progress. Conventional SHS tests (i.e. τ/τf = 1) are adequately described by the rate and state friction laws. However, previous experiments in granular quartz suggest that zero-stress SHS tests are not well characterized by either the Dieterich or Ruina state evolution laws. We are investigating the processes that produce shear stress dependent frictional healing, alternate forms of the state evolution law, and comparing results for friction of bare rock surfaces and granular fault gouge.

  10. Internal friction of single polypeptide chains at high stretch.

    PubMed

    Khatri, Bhavin S; Byrne, Katherine; Kawakami, Masaru; Brockwell, David J; Smith, D Alastair; Radford, Sheena E; McLeish, Tom C B

    2008-01-01

    Experiments that measure the viscoelasticity of single molecules from the Brownian fluctuations of an atomic force microscope (AFM) have provided a new window onto their internal dynamics in an underlying conformational landscape. Here we develop and apply these methods to examine the internal friction of unfolded polypeptide chains at high stretch. The results reveal a power law dependence of internal friction with tension (exponent 1.3 +/- 0.5) and a relaxation time approximately independent of force. To explain these results we develop a frictional worm-like chain (FWLC) model based on the Rayleigh dissipation function of a stiff chain with dynamical resistance to local bending. We analyse the dissipation rate integrated over the chain length by its Fourier components to calculate an effective tension-dependent friction constant for the end-to-end vector of the chain. The result is an internal friction that increases as a power law with tension with an exponent 3/2, consistent with experiment. Extracting the intrinsic bending friction constant of the chain it is found to be approximately 7 orders of magnitude greater than expected from solvent friction alone; a possible explanation we offer is that the underlying energy landscape for bending amino acids and/or peptide bond is rough, consistent with recent results on both proteins and polysaccharides.

  11. Scale-Dependent Friction and Damage Interface law: implications for effective earthquake rupture dynamics and radiation

    NASA Astrophysics Data System (ADS)

    Festa, Gaetano; Vilotte, Jean-Pierre; Raous, Michel; Henninger, Carole

    2010-05-01

    Propagation and radiation of an earthquake rupture is commonly considered as a friction dominated process on fault surfaces. Friction laws, such as the slip weakening and the rate-and-state laws are widely used in the modeling of the earthquake rupture process. These laws prescribe the traction evolution versus slip, slip rate and potentially other internal variables. They introduce a finite cohesive length scale over which the fracture energy is released. However faults are finite-width interfaces with complex internal structures, characterized by highly damaged zones embedding a very thin principal slip interface where most of the dynamic slip localizes. Even though the rupture process is generally investigated at wavelengths larger than the fault zone thickness, which should justify a formulation based upon surface energy, a consistent homogeneization, a very challenging problem, is still missing. Such homogeneization is however be required to derive the consistent form of an effective interface law, as well as the appropriate physical variables and length scales, to correctly describe the coarse-grained dissipation resulting from surface and volumetric contributions at the scale of the fault zone. In this study, we investigate a scale-dependent law, introduced by Raous et al. (1999) in the context of adhesive material interfaces, that takes into account the transition between a damage dominated and a friction dominated state. Such a phase-field formalism describes this transition through an order parameter. We first compare this law to standard slip weakening friction law in terms of the rupture nucleation. The problem is analyzed through the representation of the solution of the quasi-static elastic problem onto the Chebyshev polynomial basis, generalizing the Uenishi-Rice solution. The nucleation solutions, at the onset of instability, are then introduced as initial conditions for the study of the dynamic rupture propagation, in the case of in-plane rupture, using high-order Spectral Element Methods and non-smooth contact mechanics. In particular, we investigate the implications of this new interface law in terms of the rupture propagation and arrest. Special attention is focused on radiation and supershear transition. Comparison with the classical slip weakening friction law is provided. Finally, first results toward a dynamic consistent homogeneization of damaged fault zones will be discussed. Raous, M., Cangémi, L. and Cocou, M. (1999). A consistent model coupling adhesion, friction and unilateral contact', Computer Methods in Applied Mechanics and Engineering, Vol. 177, pp.383-399.

  12. Fractal Tomlinson model for mesoscopic friction: from microscopic velocity-dependent damping to macroscopic Coulomb friction.

    PubMed

    Filippov, A E; Popov, V L

    2007-02-01

    A modified Tomlinson equation with fractal potential is studied. The effective potential is numerically generated and its mesoscopic structure is gradually adjusted to different scales by a number of Fourier modes. It is shown that with the change of scale the intensity of velocity-dependent damping in an effective Langevin equation can be gradually substituted by an equivalent constant "dry friction." For smooth macrosopic surfaces the effective equation completely reduces to the well known Coulomb law.

  13. Chaos and Localization in Dieterich-Ruina Friction

    NASA Astrophysics Data System (ADS)

    Erickson, B. A.; Birnir, B.; Lavallee, D.

    2009-12-01

    We consider two models derived from a 1-D Burridge-Knopoff chain of spring connected blocks subject to the Dieterich-Ruina (D-R) friction law. We analyze both the discrete ordinary differential equations, as well as the continuum model. Preliminary investigation into the ODEs shows evidence of the Dieterich-Ruina law exhibiting chaos, dependent on the size of the system. Periodic behavior occurs when considering chains of 3 or 5 blocks, while a chain of 10 blocks with the same parameter values results in chaotic motion. The continuum model (PDE) undergoes a transition to chaos when a specific parameter is increased and the chaotic regime is reached for smaller critical values than in the case of a single block (see Erickson et. al. 2008). This parameter, epsilon is the ratio of the stress parameters (B-A) and A in the D-R friction law. The parameter A is a measure of the direct velocity dependence (sometimes called the "direct effect") while (A-B) is a measure of the steady-state velocity dependence. When compared to the slip weakening friction law, the parameter (B-A) plays a role of a stress drop while A corresponds to the strength excess. In the case of a single block, transitions to chaos occur when epsilon = 11, a value too high for applications in seismology. For the continuum model however, the chaotic regime is reached for epsilon = 1. That the transition to chaos ensues for smaller parameter values than in the case of a single block may also be an indication that a careful rescaling of the friction law is necessary, similar to the conclusions made by Schmittbuhl et. al. (1996) who studied a "hierarchical array of blocks" and found that velocity weakening friction was scale dependent. We also observe solutions to both the discrete and the continuous model where the slip remains localized in space, suggesting the presence of solitonic behavior. Initial data in the form of a gaussian pulse tends to remain localized under certain parameter values and we explore the space of values for which this occurs. These solitonic or localized solutions can be understood as proxy for the propagation of the rupture across the fault during an earthquake. Under the Dieterich-Ruina law we may have discovered only a small subset of solutions to both the discrete and the continuous model, but there is no question that even in one spatial dimension, a rich phenomenology of dynamics exists.

  14. Drag force scaling for penetration into granular media.

    PubMed

    Katsuragi, Hiroaki; Durian, Douglas J

    2013-05-01

    Impact dynamics is measured for spherical and cylindrical projectiles of many different densities dropped onto a variety non-cohesive granular media. The results are analyzed in terms of the material-dependent scaling of the inertial and frictional drag contributions to the total stopping force. The inertial drag force scales similar to that in fluids, except that it depends on the internal friction coefficient. The frictional drag force scales as the square-root of the density of granular medium and projectile, and hence cannot be explained by the combination of granular hydrostatic pressure and Coulomb friction law. The combined results provide an explanation for the previously observed penetration depth scaling.

  15. General theory of frictional heating with application to rubber friction.

    PubMed

    Fortunato, G; Ciaravola, V; Furno, A; Lorenz, B; Persson, B N J

    2015-05-08

    The energy dissipation in the contact regions between solids in sliding contact can result in high local temperatures which may strongly effect friction and wear. This is the case for rubber sliding on road surfaces at speeds above 1 mm s(-1). We derive equations which describe the frictional heating for solids with arbitrary thermal properties. The theory is applied to rubber friction on road surfaces and we take into account that the frictional energy is partly produced inside the rubber due to the internal friction of rubber and in a thin (nanometer) interfacial layer at the rubber-road contact region. The heat transfer between the rubber and the road surface is described by a heat transfer coefficient which depends on the sliding speed. Numerical results are presented and compared to experimental data. We find that frictional heating results in a kinetic friction force which depends on the orientation of the sliding block, thus violating one of the two basic Leonardo da Vinci 'laws' of friction.

  16. Incorporation of experimentally derived friction laws in numerical simulations of earthquake generated tsunamis

    NASA Astrophysics Data System (ADS)

    Murphy, Shane; Spagnuolo, Elena; Lorito, Stefano; Di Toro, Giulio; Scala, Antonio; Festa, Gaetano; Nielsen, Stefan; Piatanesi, Alessio; Romano, Fabrizio; Aretusini, Stefano

    2016-04-01

    Seismological, tsunami and geodetic observations have shown that subduction zones are complex systems where the properties of earthquake rupture vary with depth. For example nucleation and high frequency radiation generally occur at depth but low frequency radiation and large tsunami-genic slip appear to occur in the shallow crustal depth. Numerical simulations used to describe these features predominantly use standardised theoretical equations or experimental observations often assuming that their validity extends to all slip-rates, lithologies and tectonic environments. However recent rotary-shear experiments performed on a range of diverse materials and experimental conditions highlighted the large variability of the evolution of friction during slipping pointing to a more complex relationship between material type, slip rate and normal stress. Simulating dynamic rupture using a 2D spectral element methodology on a Tohoku like fault, we apply experimentally derived friction laws (i.e. thermal slip distance friction law, Di Toro et al. 2011) Choice of parameters for the friction law are based on expected material type (e.g. cohesive and non-cohesive clay rich material representative of an accretionary wedge), the normal stress which is controlled by the interaction between the regional stress field and the fault geometry. The shear stress distribution on the fault plane is fractal with the yield stress dependent on the static coefficient of friction and the normal stress, parameters that are dependent on the material type and geometry. We use metrics such as the slip distribution, ground motion and fracture energy to explore the effect of frictional behaviour, fault geometry and stress perturbations and its potential role in tsunami generation. Preliminary results will be presented. This research is funded by the European Union's Seventh Framework Programme (FP7/2007-2013) under grant agreement n° 603839 (Project ASTARTE - Assessment, Strategy and Risk Reduction for Tsunamis in Europe) and by the ERC CoG NOFEAR project 614705

  17. Experimental and Analytical Evaluation of Stressing-Rate State Evolution in Rate-State Friction Laws

    NASA Astrophysics Data System (ADS)

    Bhattacharya, P.; Rubin, A. M.; Bayart, E.; Savage, H. M.; Marone, C.; Beeler, N. M.

    2013-12-01

    Standard rate and state friction laws fail to explain the full range of observations from laboratory friction experiments. A new state evolution law has been proposed by Nagata et al. (2012) that adds a linear stressing-rate-dependent term to the Dieterich (aging) law, which may provide a remedy. They introduce a parameter c that controls the contribution of the stressing rate to state evolution. We show through analytical approximations that the new law can transition between the responses of the traditional Dieterich (aging) and Ruina (slip) laws in velocity step up/down experiments when the value of c is tuned properly. In particular, for c = 0 the response is pure aging while for finite, non-zero c one observes slip law like behavior for small velocity jumps but aging law like response for larger jumps. The magnitude of the velocity jump required to see this transition between aging and slip behaviour increases as c increases. In the limit of c >> 1 the response to velocity steps becomes purely slip law like. In this limit, numerical simulations show that this law loses its appealing time dependent healing property. An approach using Markov Chain Monte Carlo parameter search on data for large magnitude velocity step tests reveals that it is only possible to determine a lower bound on c using datasets that are well explained by the slip law. For a dataset with velocity steps of two orders of magnitude on simulated fault gouge we find this lower bound to be c ≈ 10.0. This is significantly larger than c ≈ 2.0 used by Nagata et al. (2012) to fit their data (mainly bare rock experiments with smaller excursions from steady state than our dataset). Similar parameter estimation exercises on slide hold slide data reveal that none of the state evolution laws considered - Dieterich, Ruina, Kato-Tullis and Nagata - match the relevant features of the data. In particular, even the aging law predicts only the correct rate of healing for long hold times but not the correct amount of healing. For c = 10.0, the Nagata law shows significant slip dependence in healing rate for long hold times which is at odds with the lab data and similar to the slip law response. If one accepts frictional healing observed in the laboratory as a ';proper' analog for fault strengthening over the interseismic period, we conclude that none of the investigated state evolution laws provides a comprehensive and correct constitutive relation.

  18. Friction weakening in granular flows deduced from seismic records at the Soufrière Hills Volcano, Montserrat

    NASA Astrophysics Data System (ADS)

    Levy, Clara; Mangeney, Anne; Bonilla, Fabian; Hibert, Clément; Calder, Eliza S.; Smith, Patrick J.

    2015-11-01

    Accurate modeling of rockfalls and pyroclastic flows is still an open issue, partly due to a lack of measurements related to their dynamics. Using seismic data from the Soufrière Hills Volcano, Montserrat, and granular flow modeling, we show that the power laws relating the seismic energy Es to the seismic duration ts and relating the loss of potential energy ΔEp to the flow duration tf are very similar, like the power laws observed at Piton de la Fournaise, Reunion Island. Observations showing that tf≃ts suggest a constant ratio Es/ΔEp≃10-5. This similarity in these two power laws can be obtained only when the granular flow model uses a friction coefficient that decreases with the volume transported. Furthermore, with this volume-dependent friction coefficient, the simulated force applied by the flow to the ground correlates well with the seismic energy, highlighting the signature of this friction weakening effect in seismic data.

  19. The tribology of rosin

    NASA Astrophysics Data System (ADS)

    Smith, J. H.; Woodhouse, J.

    2000-08-01

    Rosin is well known for its ability to excite stick-slip vibration on a violin string but the precise characteristics of the material which enable it to exhibit this behaviour have not been studied in any detail. A method is described in which the coefficient of friction of rosin is measured during individual cycles of a stick-slip vibration. Friction versus sliding velocity characteristics deduced in this way exhibit hysteresis, similar to that found in other investigations using different materials. No part of the hysteresis loops follow the friction/velocity curve found from steady-sliding experiments. Possible constitutive laws are examined to describe this frictional behaviour. It is suggested by a variety of evidence that contact temperature plays an important role. Friction laws are developed by considering that the friction arises primarily from the shear of a softened or molten layer of rosin, with a temperature-dependent viscosity or shear strength. The temperature of the rosin layer is calculated by modelling the heat flow around the sliding contact. The temperature-based models are shown to reproduce some features of the measurements which are not captured in the traditional model, in which friction depends only on sliding speed. A model based on viscous behaviour of a thin melted layer of rosin gives predictions at variance with observations. However, a model based on plastic yielding at the surface of the rosin gives good agreement with these observations.

  20. Interplate coupling and seismic-aseismic slip patterns

    NASA Astrophysics Data System (ADS)

    Senatorski, Piotr

    2017-04-01

    Numerical simulations were carried out to explain the seismic and aseismic slip paradox. Recent observations of megathrust faults show that stable and unstable slip movements can occur at the same locations. This contradicts the previous view based on frictional sliding theories. In the present work, an asperity fault model with the slip-dependent friction and stress dependent healing is used to show that the character of slip can change, even if friction parameters, such as strength and slip-weakening distance, are fixed. The reason is that the slow versus fast slip interplay is more than just about the friction law problem. The character of slip depends both on the local friction and on the system stiffness. The stiffness is related to the slipping area size and distribution of slips, so it changes from one event to another. It is also shown that the high strength interplate patches, such as subducted seamounts, can both promote and restrain large earthquakes, depending on the slip-weakening distance lengths.

  1. Tsunamigenic earthquake simulations using experimentally derived friction laws

    NASA Astrophysics Data System (ADS)

    Murphy, S.; Di Toro, G.; Romano, F.; Scala, A.; Lorito, S.; Spagnuolo, E.; Aretusini, S.; Festa, G.; Piatanesi, A.; Nielsen, S.

    2018-03-01

    Seismological, tsunami and geodetic observations have shown that subduction zones are complex systems where the properties of earthquake rupture vary with depth as a result of different pre-stress and frictional conditions. A wealth of earthquakes of different sizes and different source features (e.g. rupture duration) can be generated in subduction zones, including tsunami earthquakes, some of which can produce extreme tsunamigenic events. Here, we offer a geological perspective principally accounting for depth-dependent frictional conditions, while adopting a simplified distribution of on-fault tectonic pre-stress. We combine a lithology-controlled, depth-dependent experimental friction law with 2D elastodynamic rupture simulations for a Tohoku-like subduction zone cross-section. Subduction zone fault rocks are dominantly incohesive and clay-rich near the surface, transitioning to cohesive and more crystalline at depth. By randomly shifting along fault dip the location of the high shear stress regions ("asperities"), moderate to great thrust earthquakes and tsunami earthquakes are produced that are quite consistent with seismological, geodetic, and tsunami observations. As an effect of depth-dependent friction in our model, slip is confined to the high stress asperity at depth; near the surface rupture is impeded by the rock-clay transition constraining slip to the clay-rich layer. However, when the high stress asperity is located in the clay-to-crystalline rock transition, great thrust earthquakes can be generated similar to the Mw 9 Tohoku (2011) earthquake.

  2. Attraction induced frictionless sliding of rare gas monolayer on metallic surfaces: an efficient strategy for superlubricity.

    PubMed

    Sun, Junhui; Zhang, Yanning; Lu, Zhibin; Xue, Qunji; Wang, Liping

    2017-05-10

    Friction on a nanoscale revealed rich load-dependent behavior, which departs strongly from the long-standing Amonton's law. Whilst electrostatic repulsion-induced friction collapse for rare gas sliding over metallic surfaces in a high-load regime was reported by Righi et al. (Phys. Rev. Lett., 2007, 99, 176101), the significant role of attraction on frictional properties has not been reported to date. In this study, the frictional motion of Xe/Cu(111), Xe/Pd(111) and Ar/Cu(111) was studied using van der Waals corrected density functional calculations. An attraction-induced zero friction, which is a signal of superlubricity, was found for the sliding systems. The superlubric state results from the disappearance of the potential corrugation along the favored sliding path as a consequence of the potential crossing in the attractive regime when the interfacial pressure approaches a critical-value. The finding of an attraction-driven friction drop, together with the repulsion-induced collapse in the high-load regime, which breaks down the classic Amonton's law, provides a distinct approach for the realization of inherent superlubricity in some adsorbate/substrate interfaces.

  3. Continuum modeling of rate-dependent granular flows in SPH

    DOE PAGES

    Hurley, Ryan C.; Andrade, José E.

    2016-09-13

    In this paper, we discuss a constitutive law for modeling rate-dependent granular flows that has been implemented in smoothed particle hydrodynamics (SPH). We model granular materials using a viscoplastic constitutive law that produces a Drucker–Prager-like yield condition in the limit of vanishing flow. A friction law for non-steady flows, incorporating rate-dependence and dilation, is derived and implemented within the constitutive law. We compare our SPH simulations with experimental data, demonstrating that they can capture both steady and non-steady dynamic flow behavior, notably including transient column collapse profiles. In conclusion, this technique may therefore be attractive for modeling the time-dependent evolutionmore » of natural and industrial flows.« less

  4. A hypothesis for delayed dynamic earthquake triggering

    USGS Publications Warehouse

    Parsons, T.

    2005-01-01

    It's uncertain whether more near-field earthquakes are triggered by static or dynamic stress changes. This ratio matters because static earthquake interactions are increasingly incorporated into probabilistic forecasts. Recent studies were unable to demonstrate all predictions from the static-stress-change hypothesis, particularly seismicity rate reductions. However, current dynamic stress change hypotheses do not explain delayed earthquake triggering and Omori's law. Here I show numerically that if seismic waves can alter some frictional contacts in neighboring fault zones, then dynamic triggering might cause delayed triggering and an Omori-law response. The hypothesis depends on faults following a rate/state friction law, and on seismic waves changing the mean critical slip distance (Dc) at nucleation zones.

  5. Bulk-friction modeling of afterslip and the modified Omori law

    USGS Publications Warehouse

    Wennerberg, Leif; Sharp, Robert V.

    1997-01-01

    Afterslip data from the Superstition Hills fault in southern California, a creep event on the same fault, the modified Omori law, and cumulative moments from aftershocks of the 1957 Aleutian Islands earthquake all indicate that the original formulation by Dieterich (1981) [Constitutive properties of faults with simulated gouge. AGU, Geophys. Monogr. 24, 103–120] for friction evolution is more appropriate for systems far from instability than the commonly used approximation developed by Ruina (1983) [Slip instability and state variable friction laws. J. Geophys. Res. 88, 10359–10370] to study instability. The mathematical framework we use to test the friction models is a one-dimensional, massless spring-slider under the simplifying assumption, proposed by Scholz (1990) [The Mechanics of Earthquakes and Faulting. Cambridge University Press] and used by Marone et al. (1991) [On the mechanics of earthquake afterslip. J. Geophys. Res., 96: 8441–8452], that the state variable takes on its velocity-dependent steady-state value throughout motion in response to a step in stress. This assumption removes explicit state-variable dependence from the model, obviating the need to consider state-variable evolution equations. Anti-derivatives of the modified Omori law fit our data very well and are very good approximate solutions to our model equations. A plausible friction model with Omori-law solutions used by Wesson (1988) [Dynamics of fault creep. J. Geophys. Res. 93, 8929–8951] to model fault creep and generalized by Rice (1983) [Constitutive relations for fault slip and earthquake instabilities. Pure Appl. Geophys. 121, 443–475] to a rate-and-state variable friction model yields exactly Omori's law with exponents greater than 1, but yields unstable solutions for Omori exponents less than 1. We estimate from the Dieterich formulation the dimensionless parameter a∗ which is equal to the product of the nominal coefficient of friction and the more commonly reported friction parameter a. We find that a∗ is typically positive, qualitatively consistent with laboratory observations, although our observations are considerably larger than laboratory values. However, we also find good model fits for a∗ < 0 when data correspond to Omori exponents less than 1. A modification of the stability analysis by Rice and Ruina (1983) [Stability of steady frictional slipping. J. Appl. Mech. 50, 343–349] indicates that a∗ < 0 is not a consequence of our assumption regarding state-variable evolution. A consistent interpretation of a∗ < 0 in terms of laboratory models appears to be that the data are from later portions of processes better characterized by two-state-variable friction models. a∗ < 0 is explained by assuming that our data cannot resolve the co-seismic evolution of a short-length-scale state variable to a velocity-weakening state; our parameterization leads to an apparent negative instantaneous viscosity. We estimate the largest critical slip distance associated with afterslip to be ∼1–10 cm, consistent with other estimates for near-surface materials. We assume that our observed large values for a∗ reflect the fact that our model ignores the geometrical complexities of three-dimensional stresses in fractured crustal materials around a fault zone with frictional stresses that vary on a fault surface. Our one-dimensional model parameters reflect spatially averaged, bulk, stress and frictional properties of a fault zone, where we clearly cannot specify the details of the averaging process. Our analysis of Omori's law suggests that bulk-frictional properties of a fault zone are well described by our simple laboratory-based models, but they would need to change during the seismic cycle for a mainshock instability to recur, unless a mainshock-aftershock sequence were characterized by a process similar to the arrested instabilities possible in two-state-variable systems.

  6. Bulk-friction modeling of afterslip and the modified Omori law

    NASA Astrophysics Data System (ADS)

    Wennerberg, Leif; Sharp, Robert V.

    1997-08-01

    Afterslip data from the Superstition Hills fault in southern California, a creep event on the same fault, the modified Omori law, and cumulative moments from aftershocks of the 1957 Aleutian Islands earthquake all indicate that the original formulation by Dieterich (1981) [Constitutive properties of faults with simulated gouge. AGU, Geophys. Monogr. 24, 103-120] for friction evolution is more appropriate for systems far from instability than the commonly used approximation developed by Ruina (1983) [Slip instability and state variable friction laws. J. Geophys. Res. 88, 10359-10370] to study instability. The mathematical framework we use to test the friction models is a one-dimensional, massless spring-slider under the simplifying assumption, proposed by Scholz (1990) [The Mechanics of Earthquakes and Faulting. Cambridge University Press] and used by Marone et al. (1991) [On the mechanics of earthquake afterslip. J. Geophys. Res., 96: 8441-8452], that the state variable takes on its velocity-dependent steady-state value throughout motion in response to a step in stress. This assumption removes explicit state-variable dependence from the model, obviating the need to consider state-variable evolution equations. Anti-derivatives of the modified Omori law fit our data very well and are very good approximate solutions to our model equations. A plausible friction model with Omori-law solutions used by Wesson (1988) [Dynamics of fault creep. J. Geophys. Res. 93, 8929-8951] to model fault creep and generalized by Rice (1983) [Constitutive relations for fault slip and earthquake instabilities. Pure Appl. Geophys. 121, 443-475] to a rate-and-state variable friction model yields exactly Omori's law with exponents greater than 1, but yields unstable solutions for Omori exponents less than 1. We estimate from the Dieterich formulation the dimensionless parameter a∗ which is equal to the product of the nominal coefficient of friction and the more commonly reported friction parameter a. We find that a∗ is typically positive, qualitatively consistent with laboratory observations, although our observations are considerably larger than laboratory values. However, we also find good model fits for a∗ < 0 when data correspond to Omori exponents less than 1. A modification of the stability analysis by Rice and Ruina (1983) [Stability of steady frictional slipping. J. Appl. Mech. 50, 343-349] indicates that a∗ < 0 is not a consequence of our assumption regarding state-variable evolution. A consistent interpretation of a∗ < 0 in terms of laboratory models appears to be that the data are from later portions of processes better characterized by two-state-variable friction models. a∗ < 0 is explained by assuming that our data cannot resolve the co-seismic evolution of a short-length-scale state variable to a velocity-weakening state; our parameterization leads to an apparent negative instantaneous viscosity. We estimate the largest critical slip distance associated with afterslip to be ˜1-10 cm, consistent with other estimates for near-surface materials. We assume that our observed large values for a∗ reflect the fact that our model ignores the geometrical complexities of three-dimensional stresses in fractured crustal materials around a fault zone with frictional stresses that vary on a fault surface. Our one-dimensional model parameters reflect spatially averaged, bulk, stress and frictional properties of a fault zone, where we clearly cannot specify the details of the averaging process. Our analysis of Omori's law suggests that bulk-frictional properties of a fault zone are well described by our simple laboratory-based models, but they would need to change during the seismic cycle for a mainshock instability to recur, unless a mainshock-aftershock sequence were characterized by a process similar to the arrested instabilities possible in two-state-variable systems.

  7. Frictional properties of saponite-rich gouge from a serpentinite-bearing fault zone along the Gokasho-Arashima Tectonic Line, central Japan

    USGS Publications Warehouse

    Sone, Hiroki; Shimamoto, Toshihiko; Moore, Diane E.

    2012-01-01

    We studied a serpentinite-bearing fault zone in Gokasho-Arashima Tectonic Line, Mie Prefecture, central Japan, characterizing its internal structures, mineral assemblage, permeability, and frictional properties. The fault core situated between the serpentinite breccia and the adjacent sedimentary rocks is characterized by a zone locally altered to saponite. The clayey gouge layer separates fault rocks of serpentinite origin containing talc and tremolite from fault rocks of sedimentary origin containing chlorite but no quartz. The minerals that formed within the fault are the products of metasomatic reaction between the serpentinite and the siliceous rocks. Permeability measurements show that serpentinite breccia and fault gouge have permeability of 10−14–10−17 m2 and 10−15–10−18 m2, respectively, at 5–120 MPa confining pressure. Frictional coefficient of the saponite-rich clayey fault gouge ranged between 0.20 and 0.35 under room-dry condition, but was reduced to 0.06–0.12 when saturated with water. The velocity dependence of friction was strongly positive, mostly ranging between 0.005 and 0.006 in terms of a–b values. The governing friction law is not constrained yet, but we find that the saponite-rich gouge possesses an evolutional behavior in the opposite direction to that suggested by the rate and state friction law, in addition to its direct velocity dependence.

  8. Toward a physics-based rate and state friction law for earthquake nucleation processes in fault zones with granular gouge

    NASA Astrophysics Data System (ADS)

    Ferdowsi, B.; Rubin, A. M.

    2017-12-01

    Numerical simulations of earthquake nucleation rely on constitutive rate and state evolution laws to model earthquake initiation and propagation processes. The response of different state evolution laws to large velocity increases is an important feature of these constitutive relations that can significantly change the style of earthquake nucleation in numerical models. However, currently there is not a rigorous understanding of the physical origins of the response of bare rock or gouge-filled fault zones to large velocity increases. This in turn hinders our ability to design physics-based friction laws that can appropriately describe those responses. We here argue that most fault zones form a granular gouge after an initial shearing phase and that it is the behavior of the gouge layer that controls the fault friction. We perform numerical experiments of a confined sheared granular gouge under a range of confining stresses and driving velocities relevant to fault zones and apply 1-3 order of magnitude velocity steps to explore dynamical behavior of the system from grain- to macro-scales. We compare our numerical observations with experimental data from biaxial double-direct-shear fault gouge experiments under equivalent loading and driving conditions. Our intention is to first investigate the degree to which these numerical experiments, with Hertzian normal and Coulomb friction laws at the grain-grain contact scale and without any time-dependent plasticity, can reproduce experimental fault gouge behavior. We next compare the behavior observed in numerical experiments with predictions of the Dieterich (Aging) and Ruina (Slip) friction laws. Finally, the numerical observations at the grain and meso-scales will be used for designing a rate and state evolution law that takes into account recent advances in rheology of granular systems, including local and non-local effects, for a wide range of shear rates and slow and fast deformation regimes of the fault gouge.

  9. Rupture models with dynamically determined breakdown displacement

    USGS Publications Warehouse

    Andrews, D.J.

    2004-01-01

    The critical breakdown displacement, Dc, in which friction drops to its sliding value, can be made dependent on event size by specifying friction to be a function of variables other than slip. Two such friction laws are examined here. The first is designed to achieve accuracy and smoothness in discrete numerical calculations. Consistent resolution throughout an evolving rupture is achieved by specifying friction as a function of elapsed time after peak stress is reached. Such a time-weakening model produces Dc and fracture energy proportional to the square root of distance rupture has propagated in the case of uniform stress drop. The second friction law is more physically motivated. Energy loss in a damage zone outside the slip zone has the effect of increasing Dc and limiting peak slip velocity (Andrews, 1976). This article demonstrates a converse effect, that artificially limiting slip velocity on a fault in an elastic medium has a toughening effect, increasing fracture energy and Dc proportionally to rupture propagation distance in the case of uniform stress drop. Both the time-weakening and the velocity-toughening models can be used in calculations with heterogeneous stress drop.

  10. Three dimensional modelling of earthquake rupture cycles on frictional faults

    NASA Astrophysics Data System (ADS)

    Simpson, Guy; May, Dave

    2017-04-01

    We are developing an efficient MPI-parallel numerical method to simulate earthquake sequences on preexisting faults embedding within a three dimensional viscoelastic half-space. We solve the velocity form of the elasto(visco)dynamic equations using a continuous Galerkin Finite Element Method on an unstructured pentahedral mesh, which thus permits local spatial refinement in the vicinity of the fault. Friction sliding is coupled to the viscoelastic solid via rate- and state-dependent friction laws using the split-node technique. Our coupled formulation employs a picard-type non-linear solver with a fully implicit, first order accurate time integrator that utilises an adaptive time step that efficiently evolves the system through multiple seismic cycles. The implementation leverages advanced parallel solvers, preconditioners and linear algebra from the Portable Extensible Toolkit for Scientific Computing (PETSc) library. The model can treat heterogeneous frictional properties and stress states on the fault and surrounding solid as well as non-planar fault geometries. Preliminary tests show that the model successfully reproduces dynamic rupture on a vertical strike-slip fault in a half-space governed by rate-state friction with the ageing law.

  11. Multiple spatially localized dynamical states in friction-excited oscillator chains

    NASA Astrophysics Data System (ADS)

    Papangelo, A.; Hoffmann, N.; Grolet, A.; Stender, M.; Ciavarella, M.

    2018-03-01

    Friction-induced vibrations are known to affect many engineering applications. Here, we study a chain of friction-excited oscillators with nearest neighbor elastic coupling. The excitation is provided by a moving belt which moves at a certain velocity vd while friction is modelled with an exponentially decaying friction law. It is shown that in a certain range of driving velocities, multiple stable spatially localized solutions exist whose dynamical behavior (i.e. regular or irregular) depends on the number of oscillators involved in the vibration. The classical non-repeatability of friction-induced vibration problems can be interpreted in light of those multiple stable dynamical states. These states are found within a "snaking-like" bifurcation pattern. Contrary to the classical Anderson localization phenomenon, here the underlying linear system is perfectly homogeneous and localization is solely triggered by the friction nonlinearity.

  12. Friction weakening in granular flows deduced from seismic records at the Soufrière Hills Volcano, Montserrat

    NASA Astrophysics Data System (ADS)

    Levy, Clara; Mangeney, Anne; Bonilla, Fabian; Hibert, Clément; Calder, Eliza; Smith, Paddy

    2015-04-01

    Accurate modelling of rockfalls and pyroclastic flows is still an open issue, partly due the lack of measurements related to the dynamics of such events. Using seismic data from the Soufrière Hills Volcano and granular flow modelling, we show that the power laws relating the seismic energy Es to the seismic duration ts and relating the loss of potential energy ΔEp to the flow duration tf are very similar (Ei ≈ tiβ with i = s,p), as observed previously at Piton de la Fournaise, Reunion Island. Observations showing that tf ≃ ts suggest a constant ratio Es/ΔEp ≃ 10-5. This similarity in the power laws can be obtained only when the granular flow model uses a friction coefficient that decreases with the volume involved. Furthermore, with this volume-dependent friction coefficient, the simulated force applied by the flow to the ground correlates well with the seismic energy, highlighting the signature of this friction weakening effect in seismic data.

  13. Friction coefficient of skin in real-time.

    PubMed

    Sivamani, Raja K; Goodman, Jack; Gitis, Norm V; Maibach, Howard I

    2003-08-01

    Friction studies are useful in quantitatively investigating the skin surface. Previous studies utilized different apparatuses and materials for these investigations but there was no real-time test parameter control or monitoring. Our studies incorporated the commercially available UMT Series Micro-Tribometer, a tribology instrument that permits real-time monitoring and calculation of the important parameters in friction studies, increasing the accuracy over previous tribology and friction measurement devices used on skin. Our friction tests were performed on four healthy volunteers and on abdominal skin samples. A stainless steel ball was pressed on to the skin with at a pre-set load and then moved across the skin at a constant velocity of 5 mm/min. The UMT continuously monitored the friction force of the skin and the normal force of the ball to calculate the friction coefficient in real-time. Tests investigated the applicability of Amonton's law, the impact of increased and decreased hydration, and the effect of the application of moisturizers. The friction coefficient depends on the normal load applied, and Amonton's law does not provide an accurate description for the skin surface. Application of water to the skin increased the friction coefficient and application of isopropyl alcohol decreased it. Fast acting moisturizers immediately increased the friction coefficient, but did not have the prolonged effect of the slow, long lasting moisturizers. The UMT is capable of making real-time measurements on the skin and can be used as an effective tool to study friction properties. Results from the UMT measurements agree closely with theory regarding the skin surface.

  14. Monte Carlo calibration of avalanches described as Coulomb fluid flows.

    PubMed

    Ancey, Christophe

    2005-07-15

    The idea that snow avalanches might behave as granular flows, and thus be described as Coulomb fluid flows, came up very early in the scientific study of avalanches, but it is not until recently that field evidence has been provided that demonstrates the reliability of this idea. This paper aims to specify the bulk frictional behaviour of snow avalanches by seeking a universal friction law. Since the bulk friction coefficient cannot be measured directly in the field, the friction coefficient must be calibrated by adjusting the model outputs to closely match the recorded data. Field data are readily available but are of poor quality and accuracy. We used Bayesian inference techniques to specify the model uncertainty relative to data uncertainty and to robustly and efficiently solve the inverse problem. A sample of 173 events taken from seven paths in the French Alps was used. The first analysis showed that the friction coefficient behaved as a random variable with a smooth and bell-shaped empirical distribution function. Evidence was provided that the friction coefficient varied with the avalanche volume, but any attempt to adjust a one-to-one relationship relating friction to volume produced residual errors that could be as large as three times the maximum uncertainty of field data. A tentative universal friction law is proposed: the friction coefficient is a random variable, the distribution of which can be approximated by a normal distribution with a volume-dependent mean.

  15. Dynamic rupture modeling with laboratory-derived constitutive relations

    USGS Publications Warehouse

    Okubo, P.G.

    1989-01-01

    A laboratory-derived state variable friction constitutive relation is used in the numerical simulation of the dynamic growth of an in-plane or mode II shear crack. According to this formulation, originally presented by J.H. Dieterich, frictional resistance varies with the logarithm of the slip rate and with the logarithm of the frictional state variable as identified by A.L. Ruina. Under conditions of steady sliding, the state variable is proportional to (slip rate)-1. Following suddenly introduced increases in slip rate, the rate and state dependencies combine to produce behavior which resembles slip weakening. When rupture nucleation is artificially forced at fixed rupture velocity, rupture models calculated with the state variable friction in a uniformly distributed initial stress field closely resemble earlier rupture models calculated with a slip weakening fault constitutive relation. Model calculations suggest that dynamic rupture following a state variable friction relation is similar to that following a simpler fault slip weakening law. However, when modeling the full cycle of fault motions, rate-dependent frictional responses included in the state variable formulation are important at low slip rates associated with rupture nucleation. -from Author

  16. The fracture strength and frictional strength of Weber Sandstone

    USGS Publications Warehouse

    Byerlee, J.D.

    1975-01-01

    The fracture strength and frictional strength of Weber Sandstone have been measured as a function of confining pressure and pore pressure. Both the fracture strength and the frictional strength obey the law of effective stress, that is, the strength is determined not by the confining pressure alone but by the difference between the confining pressure and the pore pressure. The fracture strength of the rock varies by as much as 20 per cent depending on the cement between the grains, but the frictional strength is independent of lithology. Over the range 0 2 kb, ??=0??5 + 0??6??n. This relationship also holds for other rocks such as gabbro, dunite, serpentinite, granite and limestone. ?? 1975.

  17. An empirically based steady state friction law and implications for fault stability

    NASA Astrophysics Data System (ADS)

    Spagnuolo, E.; Nielsen, S.; Violay, M.; Di Toro, G.

    2016-04-01

    Empirically based rate-and-state friction laws (RSFLs) have been proposed to model the dependence of friction forces with slip and time. The relevance of the RSFL for earthquake mechanics is that few constitutive parameters define critical conditions for fault stability (i.e., critical stiffness and frictional fault behavior). However, the RSFLs were determined from experiments conducted at subseismic slip rates (V < 1 cm/s), and their extrapolation to earthquake deformation conditions (V > 0.1 m/s) remains questionable on the basis of the experimental evidence of (1) large dynamic weakening and (2) activation of particular fault lubrication processes at seismic slip rates. Here we propose a modified RSFL (MFL) based on the review of a large published and unpublished data set of rock friction experiments performed with different testing machines. The MFL, valid at steady state conditions from subseismic to seismic slip rates (0.1 µm/s < V < 3 m/s), describes the initiation of a substantial velocity weakening in the 1-20 cm/s range resulting in a critical stiffness increase that creates a peak of potential instability in that velocity regime. The MFL leads to a new definition of fault frictional stability with implications for slip event styles and relevance for models of seismic rupture nucleation, propagation, and arrest.

  18. Scalar model for frictional precursors dynamics

    PubMed Central

    Taloni, Alessandro; Benassi, Andrea; Sandfeld, Stefan; Zapperi, Stefano

    2015-01-01

    Recent experiments indicate that frictional sliding occurs by nucleation of detachment fronts at the contact interface that may appear well before the onset of global sliding. This intriguing precursory activity is not accounted for by traditional friction theories but is extremely important for friction dominated geophysical phenomena as earthquakes, landslides or avalanches. Here we simulate the onset of slip of a three dimensional elastic body resting on a surface and show that experimentally observed frictional precursors depend in a complex non-universal way on the sample geometry and loading conditions. Our model satisfies Archard's law and Amontons' first and second laws, reproducing with remarkable precision the real contact area dynamics, the precursors' envelope dynamics prior to sliding, and the normal and shear internal stress distributions close to the interfacial surface. Moreover, it allows to assess which features can be attributed to the elastic equilibrium, and which are attributed to the out-of-equilibrium dynamics, suggesting that precursory activity is an intrinsically quasi-static physical process. A direct calculation of the evolution of the Coulomb stress before and during precursors nucleation shows large variations across the sample, explaining why earthquake forecasting methods based only on accumulated slip and Coulomb stress monitoring are often ineffective. PMID:25640079

  19. Scalar model for frictional precursors dynamics.

    PubMed

    Taloni, Alessandro; Benassi, Andrea; Sandfeld, Stefan; Zapperi, Stefano

    2015-02-02

    Recent experiments indicate that frictional sliding occurs by nucleation of detachment fronts at the contact interface that may appear well before the onset of global sliding. This intriguing precursory activity is not accounted for by traditional friction theories but is extremely important for friction dominated geophysical phenomena as earthquakes, landslides or avalanches. Here we simulate the onset of slip of a three dimensional elastic body resting on a surface and show that experimentally observed frictional precursors depend in a complex non-universal way on the sample geometry and loading conditions. Our model satisfies Archard's law and Amontons' first and second laws, reproducing with remarkable precision the real contact area dynamics, the precursors' envelope dynamics prior to sliding, and the normal and shear internal stress distributions close to the interfacial surface. Moreover, it allows to assess which features can be attributed to the elastic equilibrium, and which are attributed to the out-of-equilibrium dynamics, suggesting that precursory activity is an intrinsically quasi-static physical process. A direct calculation of the evolution of the Coulomb stress before and during precursors nucleation shows large variations across the sample, explaining why earthquake forecasting methods based only on accumulated slip and Coulomb stress monitoring are often ineffective.

  20. Earthquake Cycle Simulations with Rate-and-State Friction and Linear and Nonlinear Viscoelasticity

    NASA Astrophysics Data System (ADS)

    Allison, K. L.; Dunham, E. M.

    2016-12-01

    We have implemented a parallel code that simultaneously models both rate-and-state friction on a strike-slip fault and off-fault viscoelastic deformation throughout the earthquake cycle in 2D. Because we allow fault slip to evolve with a rate-and-state friction law and do not impose the depth of the brittle-to-ductile transition, we are able to address: the physical processes limiting the depth of large ruptures (with hazard implications); the degree of strain localization with depth; the relative partitioning of fault slip and viscous deformation in the brittle-to-ductile transition zone; and the relative contributions of afterslip and viscous flow to postseismic surface deformation. The method uses a discretization that accommodates variable off-fault material properties, depth-dependent frictional properties, and linear and nonlinear viscoelastic rheologies. All phases of the earthquake cycle are modeled, allowing the model to spontaneously generate earthquakes, and to capture afterslip and postseismic viscous flow. We compare the effects of a linear Maxwell rheology, often used in geodetic models, with those of a nonlinear power law rheology, which laboratory data indicates more accurately represents the lower crust and upper mantle. The viscosity of the Maxwell rheology is set by power law rheological parameters with an assumed a geotherm and strain rate, producing a viscosity that exponentially decays with depth and is constant in time. In contrast, the power law rheology will evolve an effective viscosity that is a function of the temperature profile and the stress state, and therefore varies both spatially and temporally. We will also integrate the energy equation for the thermomechanical problem, capturing frictional heat generation on the fault and off-fault viscous shear heating, and allowing these in turn to alter the effective viscosity.

  1. Sliding contact on the interface of elastic body and rigid surface using a single block Burridge-Knopoff model

    NASA Astrophysics Data System (ADS)

    Amireghbali, A.; Coker, D.

    2018-01-01

    Burridge and Knopoff proposed a mass-spring model to explore interface dynamics along a fault during an earthquake. The Burridge and Knopoff (BK) model is composed of a series of blocks of equal mass connected to each other by springs of same stiffness. The blocks also are attached to a rigid driver via another set of springs that pulls them at a constant velocity against a rigid substrate. They studied dynamics of interface for an especial case with ten blocks and a specific set of fault properties. In our study effects of Coulomb and rate-state dependent friction laws on the dynamics of a single block BK model is investigated. The model dynamics is formulated as a system of coupled nonlinear ordinary differential equations in state-space form which lends itself to numerical integration methods, e.g. Runge-Kutta procedure for solution. The results show that the rate and state dependent friction law has the potential of triggering dynamic patterns that are different from those under Coulomb law.

  2. Understanding and Observing Subglacial Friction Using Seismology

    NASA Astrophysics Data System (ADS)

    Tsai, V. C.

    2017-12-01

    Glaciology began with a focus on understanding basic mechanical processes and producing physical models that could explain the principal observations. Recently, however, more attention has been paid to the wealth of recent observations, with many modeling efforts relying on data assimilation and empirical scalings, rather than being based on first-principles physics. Notably, ice sheet models commonly assume that subglacial friction is characterized by a "slipperiness" coefficient that is determined by inverting surface velocity observations. Predictions are usually then made by assuming these slipperiness coefficients are spatially and temporally fixed. However, this is only valid if slipperiness is an unchanging material property of the bed and, despite decades of work on subglacial friction, it has remained unclear how to best account for such subglacial physics in ice sheet models. Here, we describe how basic seismological concepts and observations can be used to improve our understanding and determination of subglacial friction. First, we discuss how standard models of granular friction can and should be used in basal friction laws for marine ice sheets, where very low effective pressures exist. We show that under realistic West Antarctic Ice Sheet conditions, standard Coulomb friction should apply in a relatively narrow zone near the grounding line and that this should transition abruptly as one moves inland to a different, perhaps Weertman-style, dependence of subglacial stress on velocity. We show that this subglacial friction law predicts significantly different ice sheet behavior even as compared with other friction laws that include effective pressure. Secondly, we explain how seismological observations of water flow noise and basal icequakes constrain subglacial physics in important ways. Seismically observed water flow noise can provide constraints on water pressures and channel sizes and geometry, leading to important data on subglacial friction. Basal icequake mechanisms also provide unique constraints on subglacial stress state as well as variations in water pressures. Together, the use of standard seismological concepts and new observations thus promises to provide new constraints on subglacial mechanics and focus attention back on the basic physical processes involved.

  3. An empirically based steady state friction law and implications for fault stability

    PubMed Central

    Nielsen, S.; Violay, M.; Di Toro, G.

    2016-01-01

    Abstract Empirically based rate‐and‐state friction laws (RSFLs) have been proposed to model the dependence of friction forces with slip and time. The relevance of the RSFL for earthquake mechanics is that few constitutive parameters define critical conditions for fault stability (i.e., critical stiffness and frictional fault behavior). However, the RSFLs were determined from experiments conducted at subseismic slip rates (V < 1 cm/s), and their extrapolation to earthquake deformation conditions (V > 0.1 m/s) remains questionable on the basis of the experimental evidence of (1) large dynamic weakening and (2) activation of particular fault lubrication processes at seismic slip rates. Here we propose a modified RSFL (MFL) based on the review of a large published and unpublished data set of rock friction experiments performed with different testing machines. The MFL, valid at steady state conditions from subseismic to seismic slip rates (0.1 µm/s < V < 3 m/s), describes the initiation of a substantial velocity weakening in the 1–20 cm/s range resulting in a critical stiffness increase that creates a peak of potential instability in that velocity regime. The MFL leads to a new definition of fault frictional stability with implications for slip event styles and relevance for models of seismic rupture nucleation, propagation, and arrest. PMID:27667875

  4. Adaptive methods, rolling contact, and nonclassical friction laws

    NASA Technical Reports Server (NTRS)

    Oden, J. T.

    1989-01-01

    Results and methods on three different areas of contemporary research are outlined. These include adaptive methods, the rolling contact problem for finite deformation of a hyperelastic or viscoelastic cylinder, and non-classical friction laws for modeling dynamic friction phenomena.

  5. Macroscopic Asymmetry of Dynamic Rupture on a Bimaterial Interface With Velocity- Weakening Friction

    NASA Astrophysics Data System (ADS)

    Ampuero, J.; Ben-Zion, Y.

    2006-12-01

    Large faults typically separate rocks of different elastic properties. In-plane ruptures on bimaterial interfaces have remarkable dynamic properties that may be relevant to many issues of basic and applied science (e.g., Ben-Zion, 2001). In contrast to slip between similar media, slip along a bimaterial interface generates dynamic changes of normal stress that modify the local fault strength (e.g., Weertman, 1980). One important issue is whether rupture on a bimaterial interface evolves toward a unilateral wrinkle-like pulse in the direction of motion of the compliant medium (the "preferred" direction), or whether it propagates as a symmetric bilateral crack. Some field data suggest that bimaterial interfaces in natural fault zones produce macroscopic rupture asymmetry (Dor et al., 2006; Lewis et al., 2005, 2006); however, this is a subject of ongoing debate. Rubin and Ampuero (2006) performed numerical simulations of bimaterial ruptures under pure slip-weakening friction. They found bilateral crack-like ruptures without significant asymmetry of slip. For ruptures that stopped in low stress areas, there was asymmetry in the final stress distribution, induced by a small scale pulse that detaches from the crack when it stops. This may provide a mechanism for the observed asymmetry of microearthquakes on segments of the San Andreas fault (Rubin and Gillard, 2000). In addition, the results included very prominent asymmetry of slip velocities at the opposite rupture fronts. In calculations with slip-weakening friction the strong asymmetry of slip velocities can not manifest itself into macroscopic rupture asymmetry. However, incorporating in the simulations rate-dependent friction may produce larger stress drop in the preferred direction, leading to macroscopically asymmetric rupture (Ben-Zion, 2006). In this work we study the effect of velocity-weakening friction on rupture along a bimaterial interface, using 2D in-plane simulations with a spectral boundary integral method and a rate-and-state dependent friction law with strong velocity dependence. The law contains slip-weakening or velocity-weakening as limit cases, depending on the length scale in the state evolution law. The steady-state friction coefficient is inversely proportional to slip-rate, mimicking the weakening mechanisms thought to operate on natural faults at high velocities. We examine the behavior of ruptures triggered by a slightly overstressed nucleation zone of size larger than a critical size derived by linear stability analysis. We characterize the range of friction parameters and initial stress values for which ruptures behave as cracks or pulses, decaying or sustained, with subshear or super-shear speeds. All sustained ruptures are initially bilateral. In the range where sub-shear pulse-like rupture is observed, the ruptures develop strong macroscopic asymmetry with continuing propagation along the bimaterial interface. This is manifested by significantly larger seismic potency and propagation distance in the preferred direction, similar to what was found by Shi and Ben-Zion (2006) with strong nucleation phases and slip-weakening friction. The stress asymmetry mechanism described by Rubin and Ampuero (2006) remains in our velocity-weakening simulations as a super-imposed small-scale feature.

  6. How graphene slides: measurement and theory of strain-dependent frictional forces between graphene and SiO2.

    PubMed

    Kitt, Alexander L; Qi, Zenan; Rémi, Sebastian; Park, Harold S; Swan, Anna K; Goldberg, Bennett B

    2013-06-12

    Strain, bending rigidity, and adhesion are interwoven in determining how graphene responds when pulled across a substrate. Using Raman spectroscopy of circular, graphene-sealed microchambers under variable external pressure, we demonstrate that graphene is not firmly anchored to the substrate when pulled. Instead, as the suspended graphene is pushed into the chamber under pressure, the supported graphene outside the microchamber is stretched and slides, pulling in an annulus. Analyzing Raman G band line scans with a continuum model extended to include sliding, we extract the pressure dependent sliding friction between the SiO2 substrate and mono-, bi-, and trilayer graphene. The sliding friction for trilayer graphene is directly proportional to the applied load, but the friction for monolayer and bilayer graphene is inversely proportional to the strain in the graphene, which is in violation of Amontons' law. We attribute this behavior to the high surface conformation enabled by the low bending rigidity and strong adhesion of few layer graphene.

  7. Slip complexity and frictional heterogeneities in dynamic fault models

    NASA Astrophysics Data System (ADS)

    Bizzarri, A.

    2005-12-01

    The numerical modeling of earthquake rupture requires the specification of the fault system geometry, the mechanical properties of the media surrounding the fault, the initial conditions and the constitutive law for fault friction. The latter accounts for the fault zone properties and allows for the description of processes of nucleation, propagation, healing and arrest of a spontaneous rupture. In this work I solve the fundamental elasto-dynamic equation for a planar fault, adopting different constitutive equations (slip-dependent and rate- and state-dependent friction laws). We show that the slip patterns may be complicated by different causes. The spatial heterogeneities of constitutive parameters are able to cause the healing of slip, like barrier-healing or slip pulses. Our numerical experiments show that the heterogeneities of the parameter L affect the dynamic rupture propagation and weakly modify the dynamic stress drop and the rupture velocity. The heterogeneity of a and b parameters affects the dynamic rupture propagation in a more complex way: a velocity strengthening area (a > b) can arrest a dynamic rupture, but can be driven to an instability if suddenly loaded by the dynamic rupture front. Our simulations provide a picture of the complex interactions between fault patches having different frictional properties. Moreover, the slip distribution on the fault plane is complicated considering the effects of the rake rotation during the propagation: depending on the position on the fault plane, the orientation of instantaneous total dynamic traction can change with time with respect to the imposed initial stress direction. These temporal rake rotations depend on the amplitude of the initial stress and on its distribution. They also depend on the curvature and direction of the rupture front with respect to the imposed initial stress direction: this explains why rake rotations are mostly located near the rupture front and within the cohesive zone, where the breakdown processes take places. Finally, the rupture behavior, the fault slip distribution and the traction evolution may be changed and complicated including additional physical phenomena, like thermal pressurization of pore fluid (due to frictional heating). Our results involve interesting implications for slip duration and fracture energy.

  8. Health Information Infrastructure: Flows and Frictions

    ERIC Educational Resources Information Center

    Chung, Dahee

    2017-01-01

    The healthcare environment is becoming increasingly dependent on health information technology, with providers, patients, payers, and other players producing and sharing information to improve healthcare delivery. This, in turn, has brought the issue of Health Information Infrastructure (HII) to the forefront of policy, design, and law. While…

  9. Adhesion-dependent negative friction coefficient on chemically modified graphite at the nanoscale

    NASA Astrophysics Data System (ADS)

    Deng, Zhao; Smolyanitsky, Alex; Li, Qunyang; Feng, Xi-Qiao; Cannara, Rachel J.

    2012-12-01

    From the early tribological studies of Leonardo da Vinci to Amontons’ law, friction has been shown to increase with increasing normal load. This trend continues to hold at the nanoscale, where friction can vary nonlinearly with normal load. Here we present nanoscale friction force microscopy (FFM) experiments for a nanoscale probe tip sliding on a chemically modified graphite surface in an atomic force microscope (AFM). Our results demonstrate that, when adhesion between the AFM tip and surface is enhanced relative to the exfoliation energy of graphite, friction can increase as the load decreases under tip retraction. This leads to the emergence of an effectively negative coefficient of friction in the low-load regime. We show that the magnitude of this coefficient depends on the ratio of tip-sample adhesion to the exfoliation energy of graphite. Through both atomistic- and continuum-based simulations, we attribute this unusual phenomenon to a reversible partial delamination of the topmost atomic layers, which then mimic few- to single-layer graphene. Lifting of these layers with the AFM tip leads to greater deformability of the surface with decreasing applied load. This discovery suggests that the lamellar nature of graphite yields nanoscale tribological properties outside the predictive capacity of existing continuum mechanical models.

  10. DYNAMIC PLANE-STRAIN SHEAR RUPTURE WITH A SLIP-WEAKENING FRICTION LAW CALCULATED BY A BOUNDARY INTEGRAL METHOD.

    USGS Publications Warehouse

    Andrews, D.J.

    1985-01-01

    A numerical boundary integral method, relating slip and traction on a plane in an elastic medium by convolution with a discretized Green function, can be linked to a slip-dependent friction law on the fault plane. Such a method is developed here in two-dimensional plane-strain geometry. Spontaneous plane-strain shear ruptures can make a transition from sub-Rayleigh to near-P propagation velocity. Results from the boundary integral method agree with earlier results from a finite difference method on the location of this transition in parameter space. The methods differ in their prediction of rupture velocity following the transition. The trailing edge of the cohesive zone propagates at the P-wave velocity after the transition in the boundary integral calculations. Refs.

  11. High precision tracking control of a servo gantry with dynamic friction compensation.

    PubMed

    Zhang, Yangming; Yan, Peng; Zhang, Zhen

    2016-05-01

    This paper is concerned with the tracking control problem of a voice coil motor (VCM) actuated servo gantry system. By utilizing an adaptive control technique combined with a sliding mode approach, an adaptive sliding mode control (ASMC) law with friction compensation scheme is proposed in presence of both frictions and external disturbances. Based on the LuGre dynamic friction model, a dual-observer structure is used to estimate the unmeasurable friction state, and an adaptive control law is synthesized to effectively handle the unknown friction model parameters as well as the bound of the disturbances. Moreover, the proposed control law is also implemented on a VCM servo gantry system for motion tracking. Simulations and experimental results demonstrate good tracking performance, which outperform traditional control approaches. Copyright © 2016 ISA. Published by Elsevier Ltd. All rights reserved.

  12. Numerical modeling of landslides and generated seismic waves: The Bingham Canyon Mine landslides

    NASA Astrophysics Data System (ADS)

    Miallot, H.; Mangeney, A.; Capdeville, Y.; Hibert, C.

    2016-12-01

    Landslides are important natural hazards and key erosion processes. They create long period surface waves that can be recorded by regional and global seismic networks. The seismic signals are generated by acceleration/deceleration of the mass sliding over the topography. They consist in a unique and powerful tool to detect, characterize and quantify the landslide dynamics. We investigate here the processes at work during the two massive landslides that struck the Bingham Canyon Mine on the 10th April 2013. We carry a combined analysis of the generated seismic signals and the landslide processes computed with a 3D modeling on a complex topography. Forces computed by broadband seismic waveform inversion are used to constrain the study and particularly the force-source and the bulk dynamic. The source time function are obtained by a 3D model (Shaltop) where rheological parameters can be adjusted. We first investigate the influence of the initial shape of the sliding mass which strongly affects the whole landslide dynamic. We also see that the initial shape of the source mass of the first landslide constrains pretty well the second landslide source mass. We then investigate the effect of a rheological parameter, the frictional angle, that strongly influences the resulted computed seismic source function. We test here numerous friction laws as the frictional Coulomb law and a velocity-weakening friction law. Our results show that the force waveform fitting the observed data is highly variable depending on these different choices.

  13. Well-posed continuum equations for granular flow with compressibility and μ(I)-rheology

    NASA Astrophysics Data System (ADS)

    Barker, T.; Schaeffer, D. G.; Shearer, M.; Gray, J. M. N. T.

    2017-05-01

    Continuum modelling of granular flow has been plagued with the issue of ill-posed dynamic equations for a long time. Equations for incompressible, two-dimensional flow based on the Coulomb friction law are ill-posed regardless of the deformation, whereas the rate-dependent μ(I)-rheology is ill-posed when the non-dimensional inertial number I is too high or too low. Here, incorporating ideas from critical-state soil mechanics, we derive conditions for well-posedness of partial differential equations that combine compressibility with I-dependent rheology. When the I-dependence comes from a specific friction coefficient μ(I), our results show that, with compressibility, the equations are well-posed for all deformation rates provided that μ(I) satisfies certain minimal, physically natural, inequalities.

  14. Well-posed continuum equations for granular flow with compressibility and μ(I)-rheology

    PubMed Central

    Schaeffer, D. G.; Shearer, M.; Gray, J. M. N. T.

    2017-01-01

    Continuum modelling of granular flow has been plagued with the issue of ill-posed dynamic equations for a long time. Equations for incompressible, two-dimensional flow based on the Coulomb friction law are ill-posed regardless of the deformation, whereas the rate-dependent μ(I)-rheology is ill-posed when the non-dimensional inertial number I is too high or too low. Here, incorporating ideas from critical-state soil mechanics, we derive conditions for well-posedness of partial differential equations that combine compressibility with I-dependent rheology. When the I-dependence comes from a specific friction coefficient μ(I), our results show that, with compressibility, the equations are well-posed for all deformation rates provided that μ(I) satisfies certain minimal, physically natural, inequalities. PMID:28588402

  15. Well-posed continuum equations for granular flow with compressibility and μ(I)-rheology.

    PubMed

    Barker, T; Schaeffer, D G; Shearer, M; Gray, J M N T

    2017-05-01

    Continuum modelling of granular flow has been plagued with the issue of ill-posed dynamic equations for a long time. Equations for incompressible, two-dimensional flow based on the Coulomb friction law are ill-posed regardless of the deformation, whereas the rate-dependent μ ( I )-rheology is ill-posed when the non-dimensional inertial number I is too high or too low. Here, incorporating ideas from critical-state soil mechanics, we derive conditions for well-posedness of partial differential equations that combine compressibility with I -dependent rheology. When the I -dependence comes from a specific friction coefficient μ ( I ), our results show that, with compressibility, the equations are well-posed for all deformation rates provided that μ ( I ) satisfies certain minimal, physically natural, inequalities.

  16. Variations in rupture process with recurrence interval in a repeated small earthquake

    USGS Publications Warehouse

    Vidale, J.E.; Ellsworth, W.L.; Cole, A.; Marone, Chris

    1994-01-01

    In theory and in laboratory experiments, friction on sliding surfaces such as rock, glass and metal increases with time since the previous episode of slip. This time dependence is a central pillar of the friction laws widely used to model earthquake phenomena. On natural faults, other properties, such as rupture velocity, porosity and fluid pressure, may also vary with the recurrence interval. Eighteen repetitions of the same small earthquake, separated by intervals ranging from a few days to several years, allow us to test these laboratory predictions in situ. The events with the longest time since the previous earthquake tend to have about 15% larger seismic moment than those with the shortest intervals, although this trend is weak. In addition, the rupture durations of the events with the longest recurrence intervals are more than a factor of two shorter than for the events with the shortest intervals. Both decreased duration and increased friction are consistent with progressive fault healing during the time of stationary contact.In theory and in laboratory experiments, friction on sliding surfaces such as rock, glass and metal increases with time since the previous episode of slip. This time dependence is a central pillar of the friction laws widely used to model earthquake phenomena. On natural faults, other properties, such as rupture velocity, porosity and fluid pressure, may also vary with the recurrence interval. Eighteen repetitions of the same small earthquake, separated by intervals ranging from a few days to several years, allow us to test these laboratory predictions in situ. The events with the longest time since the previous earthquake tend to have about 15% larger seismic moment than those with the shortest intervals, although this trend is weak. In addition, the rupture durations of the events with the longest recurrence intervals are more than a factor of two shorter than for the events with the shortest intervals. Both decreased duration and increased friction are consistent with progressive fault healing during the time of stationary contact.

  17. Time-lapse nanoscopy of friction in the non-Amontons and non-Coulomb regime.

    PubMed

    Ishida, Tadashi; Sato, Takaaki; Ishikawa, Takahiro; Oguma, Masatsugu; Itamura, Noriaki; Goda, Keisuke; Sasaki, Naruo; Fujita, Hiroyuki

    2015-03-11

    Originally discovered by Leonard da Vinci in the 15th century, the force of friction is directly proportional to the applied load (known as Amontons' first law of friction). Furthermore, kinetic friction is independent of the sliding speed (known as Coulomb's law of friction). These empirical laws break down at high normal pressure (due to plastic deformation) and low sliding speed (in the transition regime between static friction and kinetic friction). An important example of this phenomenon is friction between the asperities of tectonic plates on the Earth. Despite its significance, little is known about the detailed mechanism of friction in this regime due to the lack of experimental methods. Here we demonstrate in situ time-lapse nanoscopy of friction between asperities sliding at ultralow speed (∼0.01 nm/s) under high normal pressure (∼GPa). This is made possible by compressing and rubbing a pair of nanometer-scale crystalline silicon anvils with electrostatic microactuators and monitoring its dynamical evolution with a transmission electron microscope. Our analysis of the time-lapse movie indicates that superplastic behavior is induced by decrystallization, plastic deformation, and atomic diffusion at the asperity-asperity interface. The results hold great promise for a better understanding of quasi-static friction under high pressure for geoscience, materials science, and nanotechnology.

  18. Scaling laws in granular flow and pedestrian flow

    NASA Astrophysics Data System (ADS)

    Chen, Shumiao; Alonso-Marroquin, Fernando; Busch, Jonathan; Hidalgo, Raúl Cruz; Sathianandan, Charmila; Ramírez-Gómez, Álvaro; Mora, Peter

    2013-06-01

    We use particle-based simulations to examine the flow of particles through an exit. Simulations involve both gravity-driven particles (representing granular material) and velocity-driven particles (mimicking pedestrian dynamics). Contact forces between particles include elastic, viscous, and frictional forces; and simulations use bunker geometry. Power laws are observed in the relation between flow rate and exit width. Simulations of granular flow showed that the power law has little dependence on the coefficient of friction. Polydisperse granular systems produced higher flow rates than those produced by monodisperse ones. We extend the particle model to include the main features of pedestrian dynamics: thoracic shape, shoulder rotation, and desired velocity oriented towards the exit. Higher desired velocity resulted in higher flow rate. Granular simulations always give higher flow rate than pedestrian simulations, despite the values of aspect ratio of the particles. In terms of force distribution, pedestrians and granulates share similar properties with the non-democratic distribution of forces that poses high risks of injuries in a bottleneck situation.

  19. Electrochemistry with double electrical layers in frictional interaction metal-polymer tribolink

    NASA Astrophysics Data System (ADS)

    Volchenko, N. A.; Krasin, P. S.; Volchenko, D. A.; Voznyi, A. V.

    2018-03-01

    The materials of the article illustrate the estimation of the energy loading of a metal friction element in a “metal-electrolyte-polymer” friction pair while forming various types of double electrical layers with the release of its thermal stabilization state. The rapidity of the processes of oxidation and reduction of the working surfaces of friction pairs during their electrothermomechanical frictional interaction leaves an imprint on all other additional processes that subsequently lead to the thermostabilizing and steady state of the metal friction element. Depending on the type of a brake device, the metal friction element has a different metal consumption and the temperature range varies. In addition, it is shown that the materials of the friction pair play an important role in the formation of electric tribosystems, namely: chemical elements that make up the materials, their valence, and the predominant type of intrinsic conductivity, as well as the sign of the electric charge of the friction pair elements that determines the laws of triboelectricity. Thus, an in-depth approach to the evaluation of the thermal stabilization state of a metal element in a “metal-electrolyte” friction pair is shown due to double electric layers that promote the emergence of current densities of different directions.

  20. Effects of slip, slip rate, and shear heating on the friction of granite

    USGS Publications Warehouse

    Blanpied, M.L.; Tullis, T.E.; Weeks, J.D.

    1998-01-01

    The stability of fault slip is sensitive to the way in which frictional strength responds to changes in slip rate and in particular to the effective velocity dependence of steady state friction ????ss/?? ln V. This quantity can vary substantially with displacement, temperature and slip rate. To investigate the physical basis for this behavior and the possible influence of shear heating, we slid initially bare granite surfaces in unconfined rotary shear to displacements of hundreds of millimeters at normal stresses, ??n, of 10 and 25 MPa and at room temperature. We imposed step changes in slip rate within the range 10-2 to 103.5 ??m/s and also monitored frictional heating with thermistors embedded in the granite. The transient response of ?? to slip rate steps was fit to a rate- and state-dependent friction law using two state variables to estimate the values of several parameters in the constitutive law. The first 20 mm of slip shows rising friction and falling ????ss/?? ln V; further slip shows roughly constant friction, ????ss/?? ln V and parameter values, suggesting that a steady state condition is reached on the fault surface. At V ??? 10 ??m/s, ????ss/?? ln V = -0.004 ?? 0.001. At higher rates the response is sensitive to normal stress: At ??n = 25 MPa granite shows a transition to effective velocity strengthening (????ss/?? ln V = 0.008 ?? 0.004) at the highest slip rates tested. At 10 MPa granite shows a less dramatic change to ????ss/?? ln V ??? 0 at the highest rates. The maximum temperature measured in the granite is ???60??C at 25 MPa and 103.5 ??m/s. Temperatures are in general agreement with a numerical model of heat conduction which assumes spatially homogeneous frictional heating over the sliding surface. The simplest interpretation of our measurements of ????ss/?? ln V is that the granite is inherently veocity weakening (?????ss/??? In V 0 mimics velocity strengthening. These results have implications for the frictional behavior of faults during earthquakes. High slip rates may cause a switch to effective velocity strengthening which could limit peak coseismic slip rate and stress drop. For fluid-saturated faults, strengthening by this mechanism may be partly or fully offset by weakening due to thermal pressurization of a poorly drained pore fluid.

  1. Nonmonotonicity of the Frictional Bimaterial Effect

    NASA Astrophysics Data System (ADS)

    Aldam, Michael; Xu, Shiqing; Brener, Efim A.; Ben-Zion, Yehuda; Bouchbinder, Eran

    2017-10-01

    Sliding along frictional interfaces separating dissimilar elastic materials is qualitatively different from sliding along interfaces separating identical materials due to the existence of an elastodynamic coupling between interfacial slip and normal stress perturbations in the former case. This bimaterial coupling has important implications for the dynamics of frictional interfaces, including their stability and rupture propagation along them. We show that while this bimaterial coupling is a monotonically increasing function of the bimaterial contrast, when it is coupled to interfacial shear stress perturbations through a friction law, various physical quantities exhibit a nonmonotonic dependence on the bimaterial contrast. In particular, we show that for a regularized Coulomb friction, the maximal growth rate of unstable interfacial perturbations of homogeneous sliding is a nonmonotonic function of the bimaterial contrast and provides analytic insight into the origin of this nonmonotonicity. We further show that for velocity-strengthening rate-and-state friction, the maximal growth rate of unstable interfacial perturbations of homogeneous sliding is also a nonmonotonic function of the bimaterial contrast. Results from simulations of dynamic rupture along a bimaterial interface with slip-weakening friction provide evidence that the theoretically predicted nonmonotonicity persists in nonsteady, transient frictional dynamics.

  2. Friction and universal contact area law for randomly rough viscoelastic contacts.

    PubMed

    Scaraggi, M; Persson, B N J

    2015-03-18

    We present accurate numerical results for the friction force and the contact area for a viscoelastic solid (rubber) in sliding contact with hard, randomly rough substrates. The rough surfaces are self-affine fractal with roughness over several decades in length scales. We calculate the contribution to the friction from the pulsating deformations induced by the substrate asperities. We also calculate how the area of real contact, A(v, p), depends on the sliding speed v and on the nominal contact pressure p, and we show how the contact area for any sliding speed can be obtained from a universal master curve A(p). The numerical results are found to be in good agreement with the predictions of an analytical contact mechanics theory.

  3. Effects of asperity contact on stick-slip dynamics

    NASA Astrophysics Data System (ADS)

    Yamaguchi, Tetsuo

    2017-04-01

    It is believed that asperity contact plays an important role in fricton, in particular in onset of dynamic slip or stick-slip motions. However, there remains very few studies controling asperities and observing their effects on mascoscopic stick-slip behavior or frictional constitutive laws. Here we perform stick-slip friction experiments between compliant gels with well-controlled asperity shape/size/configurations by molding technique. We find that, as curvature radius of the asperity becomes larger and the normal stress becomes smaller, velocity dependence turns from rate-strengthening to rate-weakening and accordingly, frictional behavior transitions from steady sliding, slow slip to fast slip. In this talk, we discuss the asperity size effects based on microscopic/macroscopic observations as well as a theoretical argument.

  4. Destabilizing geometrical and bimaterial effects in frictional sliding

    NASA Astrophysics Data System (ADS)

    Aldam, M.; Bar Sinai, Y.; Svetlizky, I.; Fineberg, J.; Brener, E.; Xu, S.; Ben-Zion, Y.; Bouchbinder, E.

    2017-12-01

    Asymmetry of the two blocks forming a fault plane, i.e. the lack of reflection symmetry with respect to the fault plane, either geometrical or material, gives rise to generic destabilizing effects associated with the elastodynamic coupling between slip and normal stress variations. While geometric asymmetry exists in various geophysical contexts, such as thrust faults and landslide systems, its effect on fault dynamics is often overlooked. In the first part of the talk, I will show that geometrical asymmetry alone can destabilize velocity-strengthening faults, which are otherwise stable. I will further show that geometrical asymmetry accounts for a significant weakening effect observed in rupture propagation and present laboratory data that support the theory. In the second part of the talk, I will focus on material asymmetry and discuss an unexpected property of the well-studied frictional bimaterial effect. I will show that while the bimaterial coupling between slip and normal stress variations is a monotonically increasing function of the bimaterial contrast, when it is coupled to interfacial shear stress perturbations through a friction law, various physical quantities exhibit a non-monotonic dependence on the bimaterial contrast. This non-monotonicity is demonstrated for the stability of steady-sliding and for unsteady rupture propagation in faults described by various friction laws (regularized Coulomb, slip-weakening, rate-and-state friction), using analytic and numerical tools. All in all, the importance of bulk asymmetry to interfacial fault dynamics is highlighted. [1] Michael Aldam, Yohai Bar-Sinai, Ilya Svetlizky, Efim A. Brener, Jay Fineberg, and Eran Bouchbinder. Frictional Sliding without Geometrical Reflection Symmetry. Phys. Rev. X, 6(4):041023, 2016. [2] Michael Aldam, Shiqing Xu, Efim A. Brener, Yehuda Ben-Zion, and Eran Bouchbinder. Non-monotonicity of the frictional bimaterial effect. arXiv:1707.01132, 2017.

  5. Slip Morphology of Elastic Strips on Frictional Rigid Substrates.

    PubMed

    Sano, Tomohiko G; Yamaguchi, Tetsuo; Wada, Hirofumi

    2017-04-28

    The morphology of an elastic strip subject to vertical compressive stress on a frictional rigid substrate is investigated by a combination of theory and experiment. We find a rich variety of morphologies, which-when the bending elasticity dominates over the effect of gravity-are classified into three distinct types of states: pinned, partially slipped, and completely slipped, depending on the magnitude of the vertical strain and the coefficient of static friction. We develop a theory of elastica under mixed clamped-hinged boundary conditions combined with the Coulomb-Amontons friction law and find excellent quantitative agreement with simulations and controlled physical experiments. We also discuss the effect of gravity in order to bridge the difference in the qualitative behaviors of stiff strips and flexible strings or ropes. Our study thus complements recent work on elastic rope coiling and takes a significant step towards establishing a unified understanding of how a thin elastic object interacts vertically with a solid surface.

  6. Consistent description of quantum Brownian motors operating at strong friction.

    PubMed

    Machura, L; Kostur, M; Hänggi, P; Talkner, P; Luczka, J

    2004-09-01

    A quantum Smoluchowski equation is put forward that consistently describes thermal quantum states. In particular, it notably does not induce a violation of the second law of thermodynamics. This so modified kinetic equation is applied to study analytically directed quantum transport at strong friction in arbitrarily shaped ratchet potentials that are driven by nonthermal two-state noise. Depending on the mutual interplay of quantum tunneling and quantum reflection these quantum corrections can induce both, a sizable enhancement or a suppression of transport. Moreover, the threshold for current reversals becomes markedly shifted due to such quantum fluctuations.

  7. Dynamic mortar finite element method for modeling of shear rupture on frictional rough surfaces

    NASA Astrophysics Data System (ADS)

    Tal, Yuval; Hager, Bradford H.

    2017-09-01

    This paper presents a mortar-based finite element formulation for modeling the dynamics of shear rupture on rough interfaces governed by slip-weakening and rate and state (RS) friction laws, focusing on the dynamics of earthquakes. The method utilizes the dual Lagrange multipliers and the primal-dual active set strategy concepts, together with a consistent discretization and linearization of the contact forces and constraints, and the friction laws to obtain a semi-smooth Newton method. The discretization of the RS friction law involves a procedure to condense out the state variables, thus eliminating the addition of another set of unknowns into the system. Several numerical examples of shear rupture on frictional rough interfaces demonstrate the efficiency of the method and examine the effects of the different time discretization schemes on the convergence, energy conservation, and the time evolution of shear traction and slip rate.

  8. Quasi-static earthquake cycle simulation based on nonlinear viscoelastic finite element analyses

    NASA Astrophysics Data System (ADS)

    Agata, R.; Ichimura, T.; Hyodo, M.; Barbot, S.; Hori, T.

    2017-12-01

    To explain earthquake generation processes, simulation methods of earthquake cycles have been studied. For such simulations, the combination of the rate- and state-dependent friction law at the fault plane and the boundary integral method based on Green's function in an elastic half space is widely used (e.g. Hori 2009; Barbot et al. 2012). In this approach, stress change around the fault plane due to crustal deformation can be computed analytically, while the effects of complex physics such as mantle rheology and gravity are generally not taken into account. To consider such effects, we seek to develop an earthquake cycle simulation combining crustal deformation computation based on the finite element (FE) method with the rate- and state-dependent friction law. Since the drawback of this approach is the computational cost associated with obtaining numerical solutions, we adopt a recently developed fast and scalable FE solver (Ichimura et al. 2016), which assumes use of supercomputers, to solve the problem in a realistic time. As in the previous approach, we solve the governing equations consisting of the rate- and state-dependent friction law. In solving the equations, we compute stress changes along the fault plane due to crustal deformation using FE simulation, instead of computing them by superimposing slip response function as in the previous approach. In stress change computation, we take into account nonlinear viscoelastic deformation in the asthenosphere. In the presentation, we will show simulation results in a normative three-dimensional problem, where a circular-shaped velocity-weakening area is set in a square-shaped fault plane. The results with and without nonlinear viscosity in the asthenosphere will be compared. We also plan to apply the developed code to simulate the post-earthquake deformation of a megathrust earthquake, such as the 2011 Tohoku earthquake. Acknowledgment: The results were obtained using the K computer at the RIKEN (Proposal number hp160221).

  9. Turbulence as a Problem in Non-equilibrium Statistical Mechanics

    NASA Astrophysics Data System (ADS)

    Goldenfeld, Nigel; Shih, Hong-Yan

    2017-05-01

    The transitional and well-developed regimes of turbulent shear flows exhibit a variety of remarkable scaling laws that are only now beginning to be systematically studied and understood. In the first part of this article, we summarize recent progress in understanding the friction factor of turbulent flows in rough pipes and quasi-two-dimensional soap films, showing how the data obey a two-parameter scaling law known as roughness-induced criticality, and exhibit power-law scaling of friction factor with Reynolds number that depends on the precise form of the nature of the turbulent cascade. These results hint at a non-equilibrium fluctuation-dissipation relation that applies to turbulent flows. The second part of this article concerns the lifetime statistics in smooth pipes around the transition, showing how the remarkable super-exponential scaling with Reynolds number reflects deep connections between large deviation theory, extreme value statistics, directed percolation and the onset of coexistence in predator-prey ecosystems. Both these phenomena reflect the way in which turbulence can be fruitfully approached as a problem in non-equilibrium statistical mechanics.

  10. Understanding dynamic friction through spontaneously evolving laboratory earthquakes

    PubMed Central

    Rubino, V.; Rosakis, A. J.; Lapusta, N.

    2017-01-01

    Friction plays a key role in how ruptures unzip faults in the Earth’s crust and release waves that cause destructive shaking. Yet dynamic friction evolution is one of the biggest uncertainties in earthquake science. Here we report on novel measurements of evolving local friction during spontaneously developing mini-earthquakes in the laboratory, enabled by our ultrahigh speed full-field imaging technique. The technique captures the evolution of displacements, velocities and stresses of dynamic ruptures, whose rupture speed range from sub-Rayleigh to supershear. The observed friction has complex evolution, featuring initial velocity strengthening followed by substantial velocity weakening. Our measurements are consistent with rate-and-state friction formulations supplemented with flash heating but not with widely used slip-weakening friction laws. This study develops a new approach for measuring local evolution of dynamic friction and has important implications for understanding earthquake hazard since laws governing frictional resistance of faults are vital ingredients in physically-based predictive models of the earthquake source. PMID:28660876

  11. Lithology-dependent minimum horizontal stress and in-situ stress estimate

    NASA Astrophysics Data System (ADS)

    Zhang, Yushuai; Zhang, Jincai

    2017-04-01

    Based on the generalized Hooke's law with coupling stresses and pore pressure, the minimum horizontal stress is solved with assumption that the vertical, minimum and maximum horizontal stresses are in equilibrium in the subsurface formations. From this derivation, we find that the uniaxial strain method is the minimum value or lower bound of the minimum stress. Using Anderson's faulting theory and this lower bound of the minimum horizontal stress, the coefficient of friction of the fault is derived. It shows that the coefficient of friction may have a much smaller value than what it is commonly assumed (e.g., μf = 0.6-0.7) for in-situ stress estimate. Using the derived coefficient of friction, an improved stress polygon is drawn, which can reduce the uncertainty of in-situ stress calculation by narrowing the area of the conventional stress polygon. It also shows that the coefficient of friction of the fault is dependent on lithology. For example, if the formation in the fault is composed of weak shales, then the coefficient of friction of the fault may be small (as low as μf = 0.2). This implies that this fault is weaker and more likely to have shear failures than the fault composed of sandstones. To avoid the weak fault from shear sliding, it needs to have a higher minimum stress and a lower shear stress. That is, the critically stressed weak fault maintains a higher minimum stress, which explains why a low shear stress appears in the frictionally weak fault.

  12. Viscous friction of hydrogen-bonded matter

    NASA Astrophysics Data System (ADS)

    Erbas, Aykut; Horinek, Dominik; Netz, Roland R.

    2012-02-01

    Amontons' law successfully describes friction between macroscopic solid bodies for a wide range of velocities and normal forces. For the diffusion and forced sliding of adhering or entangled macromolecules, proteins and biological complexes, temperature effects are invariably important and a similarly successful friction law at biological length and velocity scales is missing. Hydrogen bonds are key to the specific binding of bio-matter. Here we show that friction between hydrogen-bonded matter obeys in the biologically relevant low-velocity viscous regime a simple equations: the friction force is proportional to the number of hydrogen bonds, the sliding velocity, and a friction coefficient γHB. This law is deduced from atomistic molecular dynamics simulations for short peptide chains that are laterally pulled over hydroxylated substrates in the presence of water and holds for widely different peptides, surface polarities and applied normal forces. The value of γHB is extrapolated from simulations at sliding velocities in the range from v=10-2 m/s to 100 m/s by mapping on a simple stochastic model and turns out to be of the order of γHB˜10-8 kg/s. 3 hydrogen bonds act collectively.

  13. The Load and Time Dependence of Chemical Bonding-Induced Frictional Ageing of Silica at the Nanoscale

    NASA Astrophysics Data System (ADS)

    Tian, K.; Gosvami, N. N.; Goldsby, D. L.; Carpick, R. W.

    2015-12-01

    Rate and state friction (RSF) laws are empirical relationships that describe the frictional behavior of rocks and other materials in experiments, and reproduce a variety of observed natural behavior when employed in earthquake models. A pervasive observation from rock friction experiments is the linear increase of static friction with the log of contact time, or 'ageing'. Ageing is usually attributed to an increase in real area of contact associated with asperity creep. However, recent atomic force microscopy (AFM) experiments demonstrate that ageing of nanoscale silica-silica contacts is due to progressive formation of interfacial chemical bonds in the absence of plastic deformation, in a manner consistent with the multi-contact ageing behavior of rocks [Li et al., 2011]. To further investigate chemical bonding-induced ageing, we explored the influence of normal load (and thus contact normal stress) and contact time on ageing. Experiments that mimic slide-hold-slide rock friction experiments were conducted in the AFM for contact loads and hold times ranging from 23 to 393 nN and 0.1 to 100 s, respectively, all in humid air (~50% RH) at room temperature. Experiments were conducted by sequentially sliding the AFM tip on the sample at a velocity V of 0.5 μm/s, setting V to zero and holding the tip stationary for a given time, and finally resuming sliding at 0.5 μm/s to yield a peak value of friction followed by a drop to the sliding friction value. Chemical bonding-induced ageing, as measured by the peak friction minus the sliding friction, increases approximately linearly with the product of normal load and the log of the hold time. Theoretical studies of the roles of reaction energy barriers in nanoscale ageing indicate that frictional ageing depends on the total number of reaction sites and the hold time [Liu & Szlufarska, 2012]. We combine chemical kinetics analyses with contact mechanics models to explain our results, and develop a new approach for curve fitting ageing vs. load data which shows that the friction drop data points all fall on a master curve. The analysis yields physically reasonable values for the activation energy and activation volume of the chemical bonding process. Our study provides a basis to hypothesize that the kinetic processes in chemical bonding-induced ageing do not depend strongly on normal load.

  14. Onset of frictional sliding of rubber–glass contact under dry and lubricated conditions

    PubMed Central

    Tuononen, Ari J.

    2016-01-01

    Rubber friction is critical in many applications ranging from automotive tyres to cylinder seals. The process where a static rubber sample transitions to frictional sliding is particularly poorly understood. The experimental and simulation results in this paper show a completely different detachment process from the static situation to sliding motion under dry and lubricated conditions. The results underline the contribution of the rubber bulk properties to the static friction force. In fact, simple Amontons’ law is sufficient as a local friction law to produce the correct detachment pattern when the rubber material and loading conditions are modelled properly. Simulations show that micro-sliding due to vertical loading can release initial shear stresses and lead to a high static/dynamic friction coefficient ratio, as observed in the measurements. PMID:27291939

  15. Friction Laws Derived From the Acoustic Emissions of a Laboratory Fault by Machine Learning

    NASA Astrophysics Data System (ADS)

    Rouet-Leduc, B.; Hulbert, C.; Ren, C. X.; Bolton, D. C.; Marone, C.; Johnson, P. A.

    2017-12-01

    Fault friction controls nearly all aspects of fault rupture, yet it is only possible to measure in the laboratory. Here we describe laboratory experiments where acoustic emissions are recorded from the fault. We find that by applying a machine learning approach known as "extreme gradient boosting trees" to the continuous acoustical signal, the fault friction can be directly inferred, showing that instantaneous characteristics of the acoustic signal are a fingerprint of the frictional state. This machine learning-based inference leads to a simple law that links the acoustic signal to the friction state, and holds for every stress cycle the laboratory fault goes through. The approach does not use any other measured parameter than instantaneous statistics of the acoustic signal. This finding may have importance for inferring frictional characteristics from seismic waves in Earth where fault friction cannot be measured.

  16. Strength of anisotropy in a granular material: Linear versus nonlinear contact model

    NASA Astrophysics Data System (ADS)

    La Ragione, Luigi; Gammariello, Marica; Recchia, Giuseppina

    2016-12-01

    In this paper, we deal with anisotropy in an idealized granular material made of a collection of frictional, elastic, contacting particles. We present a theoretical analysis for an aggregate of particles isotropically compressed and then sheared, in which two possible contacts laws between particles are considered: a linear contact law, where the contact stiffness is constant; and a nonlinear contact law, where the contact stiffness depends on the overlapping between particles. In the former case the anisotropy observed in the aggregate is associated with particle arrangement. In fact, although the aggregate is initially characterized by an isotropic network of contacts, during the loading, an anisotropic texture develops, which is measured by a fabric tensor. With a nonlinear contact law it is possible to develop anisotropy because contacting stiffnesses are different, depending on the orientation of the contact vectors with respect to the axis of the applied deformation. We find that before the peak load is reached, an aggregate made of particles with a linear contact law develops a much smaller anisotropy compared with that of an aggregate with a nonlinear law.

  17. Pressure-Dependent Friction on Granular Slopes Close to Avalanche.

    PubMed

    Crassous, Jérôme; Humeau, Antoine; Boury, Samuel; Casas, Jérôme

    2017-08-04

    We investigate the sliding of objects on an inclined granular surface close to the avalanche threshold. Our experiments show that the stability is driven by the surface deformations. Heavy objects generate footprintlike deformations which stabilize the objects on the slopes. Light objects do not disturb the sandy surfaces and are also stable. For intermediate weights, the deformations of the surface generate a sliding of the objects. The solid friction coefficient does not follow the Amontons-Coulomb laws, but is found minimal for a characteristic pressure. Applications to the locomotion of devices and animals on sandy slopes as a function of their mass are proposed.

  18. Pressure-Dependent Friction on Granular Slopes Close to Avalanche

    NASA Astrophysics Data System (ADS)

    Crassous, Jérôme; Humeau, Antoine; Boury, Samuel; Casas, Jérôme

    2017-08-01

    We investigate the sliding of objects on an inclined granular surface close to the avalanche threshold. Our experiments show that the stability is driven by the surface deformations. Heavy objects generate footprintlike deformations which stabilize the objects on the slopes. Light objects do not disturb the sandy surfaces and are also stable. For intermediate weights, the deformations of the surface generate a sliding of the objects. The solid friction coefficient does not follow the Amontons-Coulomb laws, but is found minimal for a characteristic pressure. Applications to the locomotion of devices and animals on sandy slopes as a function of their mass are proposed.

  19. Influence of damage and basal friction on the grounding line dynamics

    NASA Astrophysics Data System (ADS)

    Brondex, Julien; Gagliardini, Olivier; Gillet-Chaulet, Fabien; Durand, Gael

    2016-04-01

    The understanding of grounding line dynamics is a major issue in the prediction of future sea level rise due to ice released from polar ice sheets into the ocean. This dynamics is complex and significantly affected by several physical processes not always adequately accounted for in current ice flow models. Among those processes, our study focuses on ice damage and evolving basal friction conditions. Softening of the ice due to damaging processes is known to have a strong impact on its rheology by reducing its viscosity and therefore promoting flow acceleration. Damage creates where shear stresses are high enough which is usually the case at shear margins and in the vicinity of pinning points in contact with ice-shelves. Those areas are known to have a buttressing effect on ice shelves contributing to stabilize the grounding line. We aim at evaluating the extent to which this stabilizing effect is hampered by damaging processes. Several friction laws have been proposed by various author to model the contact between grounded-ice and bedrock. Among them, Coulomb-type friction laws enable to account for reduced friction related to low effective pressure (the ice pressure minus the water pressure). Combining such a friction law to a parametrization of the effective pressure accounting for the fact that the area upstream the grounded line is connected to the ocean, is expected to have a significant impact on the grounding line dynamics. Using the finite-element code Elmer/Ice within which both the Coulomb-type friction law, the effective pressure parametrization and the damage model have been implemented, the goal of this study is to investigate the sensitivity of the grounding line dynamics to damage and to an evolving basal friction. The relative importance between those two processes on the grounding line dynamics is addressed as well.

  20. Modeling and simulation of dynamics of a planar-motion rigid body with friction and surface contact

    NASA Astrophysics Data System (ADS)

    Wang, Xiaojun; Lv, Jing

    2017-07-01

    The modeling and numerical method for the dynamics of a planar-motion rigid body with frictional contact between plane surfaces were presented based on the theory of contact mechanics and the algorithm of linear complementarity problem (LCP). The Coulomb’s dry friction model is adopted as the friction law, and the normal contact forces are expressed as functions of the local deformations and their speeds in contact bodies. The dynamic equations of the rigid body are obtained by the Lagrange equation. The transition problem of stick-slip motions between contact surfaces is formulated and solved as LCP through establishing the complementary conditions of the friction law. Finally, a numerical example is presented as an example to show the application.

  1. Shear Heating-Induced Thermal Pressurization During the Nucleation of Earthquakes

    NASA Astrophysics Data System (ADS)

    Schmitt, S. V.; Segall, P.

    2008-12-01

    Shear heating-induced thermal pressurization has long been posited as a weakening mechanism during earthquakes. It is often assumed that thermal pressurization does not become important until earthquakes become moderate to large in magnitude. Schmitt et al. [AGU, 2007] confirmed the estimate of Segall and Rice [JGR, 2006] that thermal pressurization becomes dominant during the quasi-static nucleation phase by conducting 2D numerical simulations that account for full thermomechanical coupling, with rate and state dependent friction. In that work, thermal pressurization becomes the dominant weakening mechanism at slip rates of 10-5 to 10-3 m/s, depending on the fault zone hydraulic diffusivity. Interestingly, the thermal pressurization process leads to a contraction of the nucleation zone, rather than the growing crack (aging law) or unidirectional slip pulse (slip law) associated with drained rate- and state-dependent frictional nucleation. The results of Schmitt et al. [AGU, 2007] had a shortcoming in that the principal slip surface was treated as a zero-width feature, while in reality it should be a finite-width shear zone. We address that shortcoming with a new set of numerical simulations. We assume a finite-width fault governed by rate and state friction with the radiation damping approximation to simulate inertial effects. Both thermal and hydraulic diffusion are computed via finite differences on separate, coupled grids that adaptively remesh to minimize computational expense while maintaining accuracy. New results suggest that the thermal pressurization effect is modestly reduced by including the finite thickness of the shear zone. Despite the reduction in the effect, the new results still indicate that (1) thermal pressurization is important before seismic slip and (2) thermal pressurization restricts growth of the nucleation zone.

  2. Slow-Slip Phenomena Represented by the One-Dimensional Burridge-Knopoff Model of Earthquakes

    NASA Astrophysics Data System (ADS)

    Kawamura, Hikaru; Yamamoto, Maho; Ueda, Yushi

    2018-05-01

    Slow-slip phenomena, including afterslips and silent earthquakes, are studied using a one-dimensional Burridge-Knopoff model that obeys the rate-and-state dependent friction law. By varying only a few model parameters, this simple model allows reproducing a variety of seismic slips within a single framework, including main shocks, precursory nucleation processes, afterslips, and silent earthquakes.

  3. Foam on troubled water: Capillary induced finite-time arrest of sloshing waves

    NASA Astrophysics Data System (ADS)

    Viola, Francesco; Brun, P.-T.; Dollet, Benjamin; Gallaire, François

    2016-09-01

    Interfacial forces exceed gravitational forces on a scale small relative to the capillary length—two millimeters in the case of an air-water interface—and therefore dominate the physics of sub-millimetric systems. They are of paramount importance for various biological taxa and engineering processes where the motion of a liquid meniscus induces a viscous frictional force that exhibits a sublinear dependence in the meniscus velocity, i.e., a power law with an exponent smaller than one. Interested in the fundamental implications of this dependence, we use a liquid-foam sloshing system as a prototype to exacerbate the effect of sublinear friction on the macroscopic mechanics of multi-phase flows. In contrast to classical theory, we uncover the existence of a finite-time singularity in our system yielding the arrest of the fluid's oscillations. We propose a minimal theoretical framework to capture this effect, thereby amending the paradigmatic damped harmonic oscillator model. Our results suggest that, although often not considered at the macroscale, sublinear capillary forces govern the friction at liquid-solid and liquid-liquid interfaces.

  4. A phase-plane analysis of localized frictional waves

    NASA Astrophysics Data System (ADS)

    Putelat, T.; Dawes, J. H. P.; Champneys, A. R.

    2017-07-01

    Sliding frictional interfaces at a range of length scales are observed to generate travelling waves; these are considered relevant, for example, to both earthquake ground surface movements and the performance of mechanical brakes and dampers. We propose an explanation of the origins of these waves through the study of an idealized mechanical model: a thin elastic plate subject to uniform shear stress held in frictional contact with a rigid flat surface. We construct a nonlinear wave equation for the deformation of the plate, and couple it to a spinodal rate-and-state friction law which leads to a mathematically well-posed problem that is capable of capturing many effects not accessible in a Coulomb friction model. Our model sustains a rich variety of solutions, including periodic stick-slip wave trains, isolated slip and stick pulses, and detachment and attachment fronts. Analytical and numerical bifurcation analysis is used to show how these states are organized in a two-parameter state diagram. We discuss briefly the possible physical interpretation of each of these states, and remark also that our spinodal friction law, though more complicated than other classical rate-and-state laws, is required in order to capture the full richness of wave types.

  5. A phase-plane analysis of localized frictional waves

    PubMed Central

    Dawes, J. H. P.; Champneys, A. R.

    2017-01-01

    Sliding frictional interfaces at a range of length scales are observed to generate travelling waves; these are considered relevant, for example, to both earthquake ground surface movements and the performance of mechanical brakes and dampers. We propose an explanation of the origins of these waves through the study of an idealized mechanical model: a thin elastic plate subject to uniform shear stress held in frictional contact with a rigid flat surface. We construct a nonlinear wave equation for the deformation of the plate, and couple it to a spinodal rate-and-state friction law which leads to a mathematically well-posed problem that is capable of capturing many effects not accessible in a Coulomb friction model. Our model sustains a rich variety of solutions, including periodic stick–slip wave trains, isolated slip and stick pulses, and detachment and attachment fronts. Analytical and numerical bifurcation analysis is used to show how these states are organized in a two-parameter state diagram. We discuss briefly the possible physical interpretation of each of these states, and remark also that our spinodal friction law, though more complicated than other classical rate-and-state laws, is required in order to capture the full richness of wave types. PMID:28804255

  6. A phase-plane analysis of localized frictional waves.

    PubMed

    Putelat, T; Dawes, J H P; Champneys, A R

    2017-07-01

    Sliding frictional interfaces at a range of length scales are observed to generate travelling waves; these are considered relevant, for example, to both earthquake ground surface movements and the performance of mechanical brakes and dampers. We propose an explanation of the origins of these waves through the study of an idealized mechanical model: a thin elastic plate subject to uniform shear stress held in frictional contact with a rigid flat surface. We construct a nonlinear wave equation for the deformation of the plate, and couple it to a spinodal rate-and-state friction law which leads to a mathematically well-posed problem that is capable of capturing many effects not accessible in a Coulomb friction model. Our model sustains a rich variety of solutions, including periodic stick-slip wave trains, isolated slip and stick pulses, and detachment and attachment fronts. Analytical and numerical bifurcation analysis is used to show how these states are organized in a two-parameter state diagram. We discuss briefly the possible physical interpretation of each of these states, and remark also that our spinodal friction law, though more complicated than other classical rate-and-state laws, is required in order to capture the full richness of wave types.

  7. A Real-Time Method for Estimating Viscous Forebody Drag Coefficients

    NASA Technical Reports Server (NTRS)

    Whitmore, Stephen A.; Hurtado, Marco; Rivera, Jose; Naughton, Jonathan W.

    2000-01-01

    This paper develops a real-time method based on the law of the wake for estimating forebody skin-friction coefficients. The incompressible law-of-the-wake equations are numerically integrated across the boundary layer depth to develop an engineering model that relates longitudinally averaged skin-friction coefficients to local boundary layer thickness. Solutions applicable to smooth surfaces with pressure gradients and rough surfaces with negligible pressure gradients are presented. Model accuracy is evaluated by comparing model predictions with previously measured flight data. This integral law procedure is beneficial in that skin-friction coefficients can be indirectly evaluated in real-time using a single boundary layer height measurement. In this concept a reference pitot probe is inserted into the flow, well above the anticipated maximum thickness of the local boundary layer. Another probe is servomechanism-driven and floats within the boundary layer. A controller regulates the position of the floating probe. The measured servomechanism position of this second probe provides an indirect measurement of both local and longitudinally averaged skin friction. Simulation results showing the performance of the control law for a noisy boundary layer are then presented.

  8. Rubber friction and tire dynamics.

    PubMed

    Persson, B N J

    2011-01-12

    We propose a simple rubber friction law, which can be used, for example, in models of tire (and vehicle) dynamics. The friction law is tested by comparing numerical results to the full rubber friction theory (Persson 2006 J. Phys.: Condens. Matter 18 7789). Good agreement is found between the two theories. We describe a two-dimensional (2D) tire model which combines the rubber friction model with a simple mass-spring description of the tire body. The tire model is very flexible and can be used to accurately calculate μ-slip curves (and the self-aligning torque) for braking and cornering or combined motion (e.g. braking during cornering). We present numerical results which illustrate the theory. Simulations of anti-blocking system (ABS) braking are performed using two simple control algorithms.

  9. Earthquake Dynamics in Laboratory Model and Simulation - Accelerated Creep as Precursor of Instabilities

    NASA Astrophysics Data System (ADS)

    Grzemba, B.; Popov, V. L.; Starcevic, J.; Popov, M.

    2012-04-01

    Shallow earthquakes can be considered as a result of tribological instabilities, so called stick-slip behaviour [1,2], meaning that sudden slip occurs at already existing rupture zones. From a contact mechanics point of view it is clear, that no motion can arise completely sudden, the material will always creep in an existing contact in the load direction before breaking loose. If there is a measureable creep before the instability, this could serve as a precursor. To examine this theory in detail, we built up an elementary laboratory model with pronounced stick-slip behaviour. Different material pairings, such as steel-steel, steel-glass and marble-granite, were analysed at different driving force rates. The displacement was measured with a resolution of 8 nm. We were able to show that a measureable accelerated creep precedes the instability. Near the instability, this creep is sufficiently regular to serve as a basis for a highly accurate prediction of the onset of macroscopic slip [3]. In our model a prediction is possible within the last few percents of the preceding stick time. We are hopeful to extend this period. Furthermore, we showed that the slow creep as well as the fast slip can be described very well by the Dieterich-Ruina-friction law, if we include the contribution of local contact rigidity. The simulation meets the experimental curves over five orders of magnitude. This friction law was originally formulated for rocks [4,5] and takes into account the dependency of the coefficient of friction on the sliding velocity and on the contact history. The simulations using the Dieterich-Ruina-friction law back up the observation of a universal behaviour of the creep's acceleration. We are working on several extensions of our model to more dimensions in order to move closer towards representing a full three-dimensional continuum. The first step will be an extension to two degrees of freedom to analyse the interdependencies of the instabilities. We also plan to install a larger system which is capable of performing events of different spatial extent and magnitude. [1] Stick-Slip as a Mechanism for Earthquakes. Brace, W.F. und Byerlee, J.D. 1966, Science, Bd. 153, S. 990-992. [2] Detailed Studies of Frictional Sliding of Granite and Implications for the Earthquake Mechanism. Scholz, C. H., Molnar, P. und Johnson, T. 32, 1972, Journal of Geophysical Research, Bd. 77, S. 6392-6409. [3] Accelerated Creep as a Precursor of Friction Instability and Earthquake Prediction. Popov, V. L., et al. 2010, Physical Mesomechanics, Bd. 13, S. 283-291. [4] Modeling of Rock Friction, Part 1: Experimental Results and Constitutive Equations. Dieterich, J.H. B5, 1979, Journal of Geophysical Research, Bd. 84, S. 2161-2168. [5] State Instability and State Variable Friction Law. Ruina, A. B12, 1983, Journal of Geophysical Research, Bd. 88, S. 10359-10370.

  10. Reynolds-number dependence of the longitudinal dispersion in turbulent pipe flow.

    PubMed

    Hawkins, Christopher; Angheluta, Luiza; Krotkiewski, Marcin; Jamtveit, Bjørn

    2016-04-01

    In Taylor's theory, the longitudinal dispersion in turbulent pipe flows approaches, on long time scales, a diffusive behavior with a constant diffusivity K_{L}, which depends empirically on the Reynolds number Re. We show that the dependence on Re can be determined from the turbulent energy spectrum. By using the intimate connection between the friction factor and the longitudinal dispersion in wall-bounded turbulence, we predict different asymptotic scaling laws of K_{L}(Re) depending on the different turbulent cascades in two-dimensional turbulence. We also explore numerically the K_{L}(Re) dependence in turbulent channel flows with smooth and rough walls using a lattice Boltzmann method.

  11. Solving the dynamic rupture problem with different numerical approaches and constitutive laws

    USGS Publications Warehouse

    Bizzarri, A.; Cocco, M.; Andrews, D.J.; Boschi, Enzo

    2001-01-01

    We study the dynamic initiation, propagation and arrest of a 2-D in-plane shear rupture by solving the elastodynamic equation by using both a boundary integral equation method and a finite difference approach. For both methods we adopt different constitutive laws: a slip-weakening (SW) law, with constant weakening rate, and rate- and state-dependent friction laws (Dieterich-Ruina). Our numerical procedures allow the use of heterogeneous distributions of constitutive parameters along the fault for both formulations. We first compare the two solution methods with an SW law, emphasizing the required stability conditions to achieve a good resolution of the cohesive zone and to avoid artificial complexity in the solutions. Our modelling results show that the two methods provide very similar time histories of dynamic source parameters. We point out that, if a careful control of resolution and stability is performed, the two methods yield identical solutions. We have also compared the rupture evolution resulting from an SW and a rate- and state-dependent friction law. This comparison shows that despite the different constitutive formulations, a similar behaviour is simulated during the rupture propagation and arrest. We also observe a crack tip bifurcation and a jump in rupture velocity (approaching the P-wave speed) with the Dieterich-Ruina (DR) law. The rupture arrest at a barrier (high strength zone) and the barrier-healing mechanism are also reproduced by this law. However, this constitutive formulation allows the simulation of a more general and complex variety of rupture behaviours. By assuming different heterogeneous distributions of the initial constitutive parameters, we are able to model a barrier-healing as well as a self-healing process. This result suggests that if the heterogeneity of the constitutive parameters is taken into account, the different healing mechanisms can be simulated. We also study the nucleation phase duration Tn, defined as the time necessary for the crack to reach the half-length Ic. We compare the Tn values resulting from distinct simulations calculated using different constitutive laws and different sets of constitutive parameters. Our results confirm that the DR law provides a different description of the nucleation process than the SW law adopted in this study. We emphasize that the DR law yields a complete description of the rupture process, which includes the most prominent features of SW.

  12. Olivine friction at the base of oceanic seismogenic zones

    USGS Publications Warehouse

    Boettcher, M.S.; Hirth, G.; Evans, B. M.

    2007-01-01

    We investigate the strength and frictional behavior of olivine aggregates at temperatures and effective confining pressures similar to those at the base of the seismogenic zone on a typical ridge transform fault. Triaxial compression tests were conducted on dry olivine powder (grain size ???60 ??m) at effective confining pressures between 50 and 300 MPa (using Argon as a pore fluid), temperatures between 600??C and 1000??C, and axial displacement rates from 0.06 to 60 ??m/s (axial strain rates from 3 ?? 10-6 to 3 ?? 10-3 s-1). Yielding shows a negative pressure dependence, consistent with predictions for shear enhanced compaction and with the observation that samples exhibit compaction during the initial stages of the experiments. A combination of mechanical data and microstructural observations demonstrate that deformation was accommodated by frictional processes. Sample strengths were pressure-dependent and nearly independent of temperature. Localized shear zones formed in initially homogeneous aggregates early in the experiments. The frictional response to changes in loading rate is well described by rate and state constitutive laws, with a transition from velocity-weakening to velocity-strengthening at 1000??C. Microstructural observations and physical models indicate that plastic yielding of asperities at high temperatures and low axial strain rates stabilizes frictional sliding. Extrapolation of our experimental data to geologic strain rates indicates that a transition from velocity weakening to velocity strengthening occurs at approximately 600??C, consistent with the focal depths of earthquakes in the oceanic lithosphere. Copyright 2007 by the American Geophysical Union.

  13. Fault friction, regional stress, and crust-mantle coupling in southern California from finite element models

    NASA Technical Reports Server (NTRS)

    Bird, P.; Baumgardner, J.

    1984-01-01

    To determine the correct fault rheology of the Transverse Ranges area of California, a new finite element to represent faults and a mangle drag element are introduced into a set of 63 simulation models of anelastic crustal strain. It is shown that a slip rate weakening rheology for faults is not valid in California. Assuming that mantle drag effects on the crust's base are minimal, the optimal coefficient of friction in the seismogenic portion of the fault zones is 0.4-0.6 (less than Byerly's law assumed to apply elsewhere). Depending on how the southern California upper mantle seismic velocity anomaly is interpreted, model results are improved or degraded. It is found that the location of the mantle plate boundary is the most important secondary parameter, and that the best model is either a low-stress model (fault friction = 0.3) or a high-stress model (fault friction = 0.85), each of which has strong mantel drag. It is concluded that at least the fastest moving faults in southern California have a low friction coefficient (approximtely 0.3) because they contain low strength hydrated clay gouges throughout the low-temperature seismogenic zone.

  14. Earthquake models using rate and state friction and fast multipoles

    NASA Astrophysics Data System (ADS)

    Tullis, T.

    2003-04-01

    The most realistic current earthquake models employ laboratory-derived non-linear constitutive laws. These are the rate and state friction laws having both a non-linear viscous or direct effect and an evolution effect in which frictional resistance depends on time of stationary contact and has a memory of past slip velocity that fades with slip. The frictional resistance depends on the log of the slip velocity as well as the log of stationary hold time, and the fading memory involves an approximately exponential decay with slip. Due to the nonlinearly of these laws, analytical earthquake models are not attainable and numerical models are needed. The situation is even more difficult if true dynamic models are sought that deal with inertial forces and slip velocities on the order of 1 m/s as are observed during dynamic earthquake slip. Additional difficulties that exist if the dynamic slip phase of earthquakes is modeled arise from two sources. First, many physical processes might operate during dynamic slip, but they are only poorly understood, the relative importance of the processes is unknown, and the processes are even more nonlinear than those described by the current rate and state laws. Constitutive laws describing such behaviors are still being developed. Second, treatment of inertial forces and the influence that dynamic stresses from elastic waves may have on slip on the fault requires keeping track of the history of slip on remote parts of the fault as far into the past as it takes waves to travel from there. This places even more stringent requirements on computer time. Challenges for numerical modeling of complete earthquake cycles are that both time steps and mesh sizes must be small. Time steps must be milliseconds during dynamic slip, and yet models must represent earthquake cycles 100 years or more in length; methods using adaptive step sizes are essential. Element dimensions need to be on the order of meters, both to approximate continuum behavior adequately and to model microseismicity as well as large earthquakes. In order to model significant sized earthquakes this requires millions of elements. Modeling methods like the boundary element method that involve Green's functions normally require computation times that increase with the number N of elements squared, so using large N becomes impossible. We have adapted the Fast Multipole method to this problem in which the influence of sufficiently remote elements are grouped together and the elements are indexed such that the computations more efficient when run on parallel computers. Compute time varies with N log N rather than N squared. Computer programs are available that use this approach (http://www.servogrid.org/slide/GEM/PARK). Whether the multipole approach can be adapted to dynamic modeling is unclear.

  15. A frictional population model of seismicity rate change

    USGS Publications Warehouse

    Gomberg, J.; Reasenberg, P.; Cocco, M.; Belardinelli, M.E.

    2005-01-01

    We study models of seismicity rate changes caused by the application of a static stress perturbation to a population of faults and discuss our results with respect to the model proposed by Dieterich (1994). These models assume distribution of nucleation sites (e.g., faults) obeying rate-state frictional relations that fail at constant rate under tectonic loading alone, and predicts a positive static stress step at time to will cause an immediate increased seismicity rate that decays according to Omori's law. We show one way in which the Dieterich model may be constructed from simple general idead, illustratted using numerically computed synthetic seismicity and mathematical formulation. We show that seismicity rate change predicted by these models (1) depend on the particular relationship between the clock-advanced failure and fault maturity, (2) are largest for the faults closest to failure at to, (3) depend strongly on which state evolution law faults obey, and (4) are insensitive to some types of population hetrogeneity. We also find that if individual faults fail repeatedly and populations are finite, at timescales much longer than typical aftershock durations, quiescence follows at seismicity rate increase regardless of the specific frictional relations. For the examined models the quiescence duration is comparable to the ratio of stress change to stressing rate ????/??,which occurs after a time comparable to the average recurrence interval of the individual faults in the population and repeats in the absence of any new load may pertubations; this simple model may partly explain observations of repeated clustering of earthquakes. Copyright 2005 by the American Geophysical Union.

  16. Dynamic Rupture and Energy Partition in Models of Earthquake Faults

    NASA Astrophysics Data System (ADS)

    Shi, Z.; Needleman, A.; Ben-Zion, Y.

    2006-12-01

    We study properties of dynamic rupture and the partition of energy between radiation and dissipative mechanisms using 2D finite element calculations. The goal is to improve the understanding of these processes on faults at different evolutionary stages associated with different levels of geometrical complexity and possible presence of contrasting elastic properties across the fault. The initial calculations employ homogeneous media and a planar internal interface governed by a general rate- and state-dependent friction law that accounts for the gradual response of shear stress to abrupt changes of normal stress. Ruptures are initiated by gradually increasing the shear traction in a limited nucleation zone near the origin. By changing the rate dependency of the friction law and the size of the nucleation zone, we obtain four rupture modes: (i) supershear crack-like rupture; (ii) subshear crack-like rupture; (iii) subshear single pulse; and (iv) supershear train of pulses. Increasing the initial shear stress produces a transition from a subshear crack to a supershear crack, while increasing the rate dependency of the friction produces self-healing and the transition from a crack-like to a pulse mode of rupture. Properties of the nucleation process can strongly affect the rupture mode. In the cases examined, the total release of strain energy (over the same propagation distance) decreases following the order: supershear crack, subshear crack, train of pulses and single pulse. The ratio of the radiated kinetic energy to the energy dissipated in friction is about 5% for the supershear crack case and about 2% for the other three cases. Future work will involve similar calculations accounting for the generation of plastic strain in the bulk, the material contrast across the fault, and the addition of cohesive surfaces in the bulk to allow for the generation of new surfaces. The study may provide fundamental information on rupture processes in geologically-relevant circumstances and improve the understanding of physical limits on extreme ground motion. The results may be used to check assumptions made in observational works and may help to guide new observational research.

  17. Evolution of real contact area under shear and the value of static friction of soft materials.

    PubMed

    Sahli, R; Pallares, G; Ducottet, C; Ben Ali, I E; Al Akhrass, S; Guibert, M; Scheibert, J

    2018-01-16

    The frictional properties of a rough contact interface are controlled by its area of real contact, the dynamical variations of which underlie our modern understanding of the ubiquitous rate-and-state friction law. In particular, the real contact area is proportional to the normal load, slowly increases at rest through aging, and drops at slip inception. Here, through direct measurements on various contacts involving elastomers or human fingertips, we show that the real contact area also decreases under shear, with reductions as large as 30[Formula: see text], starting well before macroscopic sliding. All data are captured by a single reduction law enabling excellent predictions of the static friction force. In elastomers, the area-reduction rate of individual contacts obeys a scaling law valid from micrometer-sized junctions in rough contacts to millimeter-sized smooth sphere/plane contacts. For the class of soft materials used here, our results should motivate first-order improvements of current contact mechanics models and prompt reinterpretation of the rate-and-state parameters.

  18. Seismic variability of subduction thrust faults: Insights from laboratory models

    NASA Astrophysics Data System (ADS)

    Corbi, F.; Funiciello, F.; Faccenna, C.; Ranalli, G.; Heuret, A.

    2011-06-01

    Laboratory models are realized to investigate the role of interface roughness, driving rate, and pressure on friction dynamics. The setup consists of a gelatin block driven at constant velocity over sand paper. The interface roughness is quantified in terms of amplitude and wavelength of protrusions, jointly expressed by a reference roughness parameter obtained by their product. Frictional behavior shows a systematic dependence on system parameters. Both stick slip and stable sliding occur, depending on driving rate and interface roughness. Stress drop and frequency of slip episodes vary directly and inversely, respectively, with the reference roughness parameter, reflecting the fundamental role for the amplitude of protrusions. An increase in pressure tends to favor stick slip. Static friction is a steeply decreasing function of the reference roughness parameter. The velocity strengthening/weakening parameter in the state- and rate-dependent dynamic friction law becomes negative for specific values of the reference roughness parameter which are intermediate with respect to the explored range. Despite the simplifications of the adopted setup, which does not address the problem of off-fault fracturing, a comparison of the experimental results with the depth distribution of seismic energy release along subduction thrust faults leads to the hypothesis that their behavior is primarily controlled by the depth- and time-dependent distribution of protrusions. A rough subduction fault at shallow depths, unable to produce significant seismicity because of low lithostatic pressure, evolves into a moderately rough, velocity-weakening fault at intermediate depths. The magnitude of events in this range is calibrated by the interplay between surface roughness and subduction rate. At larger depths, the roughness further decreases and stable sliding becomes gradually more predominant. Thus, although interplate seismicity is ultimately controlled by tectonic parameters (velocity of the plates/trench and the thermal regime), the direct control is exercised by the resulting frictional properties of the plate interface.

  19. Slow rupture of frictional interfaces

    NASA Astrophysics Data System (ADS)

    Bar Sinai, Yohai; Brener, Efim A.; Bouchbinder, Eran

    2012-02-01

    The failure of frictional interfaces and the spatiotemporal structures that accompany it are central to a wide range of geophysical, physical and engineering systems. Recent geophysical and laboratory observations indicated that interfacial failure can be mediated by slow slip rupture phenomena which are distinct from ordinary, earthquake-like, fast rupture. These discoveries have influenced the way we think about frictional motion, yet the nature and properties of slow rupture are not completely understood. We show that slow rupture is an intrinsic and robust property of simple non-monotonic rate-and-state friction laws. It is associated with a new velocity scale cmin, determined by the friction law, below which steady state rupture cannot propagate. We further show that rupture can occur in a continuum of states, spanning a wide range of velocities from cmin to elastic wave-speeds, and predict different properties for slow rupture and ordinary fast rupture. Our results are qualitatively consistent with recent high-resolution laboratory experiments and may provide a theoretical framework for understanding slow rupture phenomena along frictional interfaces.

  20. Historical Scientific Models and Theories as Resources for Learning and Teaching: The Case of Friction

    ERIC Educational Resources Information Center

    Besson, Ugo

    2013-01-01

    This paper presents a history of research and theories on sliding friction between solids. This history is divided into four phases: from Leonardo da Vinci to Coulomb and the establishment of classical laws of friction; the theories of lubrication and the Tomlinson's theory of friction (1850-1930); the theories of wear, the Bowden and Tabor's…

  1. Interactions and triggering in a 3D rate and state asperity model

    NASA Astrophysics Data System (ADS)

    Dublanchet, P.; Bernard, P.

    2012-12-01

    Precise relocation of micro-seismicity and careful analysis of seismic source parameters have progressively imposed the concept of seismic asperities embedded in a creeping fault segment as being one of the most important aspect that should appear in a realistic representation of micro-seismic sources. Another important issue concerning micro-seismic activity is the existence of robust empirical laws describing the temporal and magnitude distribution of earthquakes, such as the Omori law, the distribution of inter-event time and the Gutenberg-Richter law. In this framework, this study aims at understanding statistical properties of earthquakes, by generating synthetic catalogs with a 3D, quasi-dynamic continuous rate and state asperity model, that takes into account a realistic geometry of asperities. Our approach contrasts with ETAS models (Kagan and Knopoff, 1981) usually implemented to produce earthquake catalogs, in the sense that the non linearity observed in rock friction experiments (Dieterich, 1979) is fully taken into account by the use of rate and state friction law. Furthermore, our model differs from discrete models of faults (Ziv and Cochard, 2006) because the continuity allows us to define realistic geometries and distributions of asperities by the assembling of sub-critical computational cells that always fail in a single event. Moreover, this model allows us to adress the question of the influence of barriers and distribution of asperities on the event statistics. After recalling the main observations of asperities in the specific case of Parkfield segment of San-Andreas Fault, we analyse earthquake statistical properties computed for this area. Then, we present synthetic statistics obtained by our model that allow us to discuss the role of barriers on clustering and triggering phenomena among a population of sources. It appears that an effective size of barrier, that depends on its frictional strength, controls the presence or the absence, in the synthetic catalog, of statistical laws that are similar to what is observed for real earthquakes. As an application, we attempt to draw a comparison between synthetic statistics and the observed statistics of Parkfield in order to characterize what could be a realistic frictional model of Parkfield area. More generally, we obtained synthetic statistical properties that are in agreement with power-law decays characterized by exponents that match the observations at a global scale, showing that our mechanical model is able to provide new insights into the understanding of earthquake interaction processes in general.

  2. Slow Earthquakes and The Mechanics of Slow Frictional Stick-Slip

    NASA Astrophysics Data System (ADS)

    Marone, Chris; Scuderi, Marco; Leeman, John; Saffer, Demian; Collettini, Cristiano; Johnson, Paul

    2015-04-01

    Slow earthquakes represent one mode of the spectrum of fault slip behaviors ranging from steady aseismic slip to normal earthquakes. Like normal earthquakes, slow earthquakes can occur repetitively, such that a fault fails in a form of stick-slip failure defined by interseismic strain accumulation and slow, quasidynamic slip. The mechanics of frictional stick-slip and seismogenic faulting appear to apply to slow earthquakes, however, the mechanisms that limit dynamic slip velocity, rupture propagation speed, and the scaling between moment and duration of slow earthquakes are poorly understood. Here, we describe laboratory experiments that explore the mechanics of repetitive, slow frictional stick-slip failure. We document the role of loading stiffness and friction constitutive behavior in dictating the properties of repetitive, frictional stick-slip. Our results show that a spectrum of dynamic and quasidynamic slip velocities can occur in stick-slip events depending on the relation between loading stiffness k and the rheologic critical stiffness kc given, in the context of rate and state friction, by the ratio of the friction rate parameter (b-a) divided by the critical friction distance Dc. Slow slip is favored by conditions for which k is ~ equal to kc, whereas normal, fast stick slip occurs when k/kc < 1. We explore the role of elastic coupling and spatially extended slip propagation by comparing slow slip results for shear in a layer driven by forcing blocks of varying stiffness. We evaluate our data in the framework of rate and state friction laws and focus on the frictional mechanics of slow stick-slip failure with special attention paid to the connections between quasidynamic failure and mechanisms of the brittle-ductile transition in fault rocks.

  3. Frictional constraints on crustal faulting

    USGS Publications Warehouse

    Boatwright, J.; Cocco, M.

    1996-01-01

    We consider how variations in fault frictional properties affect the phenomenology of earthquake faulting. In particular, we propose that lateral variations in fault friction produce the marked heterogeneity of slip observed in large earthquakes. We model these variations using a rate- and state-dependent friction law, where we differentiate velocity-weakening behavior into two fields: the strong seismic field is very velocity weakening and the weak seismic field is slightly velocity weakening. Similarly, we differentiate velocity-strengthening behavior into two fields: the compliant field is slightly velocity strengthening and the viscous field is very velocity strengthening. The strong seismic field comprises the seismic slip concentrations, or asperities. The two "intermediate" fields, weak seismic and compliant, have frictional velocity dependences that are close to velocity neutral: these fields modulate both the tectonic loading and the dynamic rupture process. During the interseismic period, the weak seismic and compliant regions slip aseismically, while the strong seismic regions remain locked, evolving into stress concentrations that fail only in main shocks. The weak seismic areas exhibit most of the interseismic activity and aftershocks but can also creep seismically. This "mixed" frictional behavior can be obtained from a sufficiently heterogenous distribution of the critical slip distance. The model also provides a mechanism for rupture arrest: dynamic rupture fronts decelerate as they penetrate into unloaded complaint or weak seismic areas, producing broad areas of accelerated afterslip. Aftershocks occur on both the weak seismic and compliant areas around a fault, but most of the stress is diffused through aseismic slip. Rapid afterslip on these peripheral areas can also produce aftershocks within the main shock rupture area by reloading weak fault areas that slipped in the main shock and then healed. We test this frictional model by comparing the seismicity and the coseismic slip for the 1966 Parkfield, 1979 Coyote Lake, and 1984 Morgan Hill earthquakes. The interevent seismicity and aftershocks appear to occur on fault areas outside the regions of significant slip: these regions are interpreted as either weak seismic or compliant, depending on whether or not they manifest interevent seismicity.

  4. Fully Coupled Thermomechanical Finite Element Analysis of Material Evolution During Friction-Stir Welding of AA5083

    DTIC Science & Technology

    2009-09-03

    coefficients are set to a value of 0.3. The stick/slip critical shear stress level is defined using a modified Coulomb friction law. Within this law, there...Modified Johnson Cook Model Equivalent Plastic Strain a P M,htgnert S d lei Y 1 2 3 4 5 6 7 420 440 460 480 500 520 540 560 Original Johnson Cook Model...Lett., 2005, 59, 3315–3318. 7 Thomas, W. M. and Nicholas, E. D. Friction stir welding for the transportation industries. Mater. Des ., 1997, 18, 269

  5. Three-dimensional separation and reattachment

    NASA Technical Reports Server (NTRS)

    Peake, D. J.; Tobak, M.

    1982-01-01

    The separation of three dimensional turbulent boundary layers from the lee of flight vehicles at high angles of attack is investigated. The separation results in dominant, large scale, coiled vortex motions that pass along the body in the general direction of the free stream. In all cases of three dimensional flow separation and reattachment, the assumption of continuous vector fields of skin friction lines and external flow streamlines, coupled with simple laws of topology, provides a flow grammar whose elemental constituents are the singular points: the nodes, spiral nodes (foci), and saddles. The phenomenon of three dimensional separation may be construed as either a local or a global event, depending on whether the skin friction line that becomes a line of separation originates at a node or a saddle point.

  6. Analysis of a turbulent boundary layer over a moving ground plane

    NASA Technical Reports Server (NTRS)

    Roper, A. T.; Gentry, G. L., Jr.

    1972-01-01

    Four methods of predicting the integral and friction parameters for a turbulent boundary layer over a moving ground plane were evaluated by using test information obtained in 76.2- by 50.8-centimeter tunnel. The tunnel was operated in the open sidewall configuration. These methods are (1) relative integral parameter method, (2) modified power law method, (3) relative power law method, and (4) modified law of the wall method. The modified law of the wall method predicts a more rapid decrease in skin friction with an increase in the ratio of belt velocity to free steam velocity than do methods (1) and (3).

  7. Rate and State Friction Relation for Nanoscale Contacts: Thermally Activated Prandtl-Tomlinson Model with Chemical Aging

    NASA Astrophysics Data System (ADS)

    Tian, Kaiwen; Goldsby, David L.; Carpick, Robert W.

    2018-05-01

    Rate and state friction (RSF) laws are widely used empirical relationships that describe macroscale to microscale frictional behavior. They entail a linear combination of the direct effect (the increase of friction with sliding velocity due to the reduced influence of thermal excitations) and the evolution effect (the change in friction with changes in contact "state," such as the real contact area or the degree of interfacial chemical bonds). Recent atomic force microscope (AFM) experiments and simulations found that nanoscale single-asperity amorphous silica-silica contacts exhibit logarithmic aging (increasing friction with time) over several decades of contact time, due to the formation of interfacial chemical bonds. Here we establish a physically based RSF relation for such contacts by combining the thermally activated Prandtl-Tomlinson (PTT) model with an evolution effect based on the physics of chemical aging. This thermally activated Prandtl-Tomlinson model with chemical aging (PTTCA), like the PTT model, uses the loading point velocity for describing the direct effect, not the tip velocity (as in conventional RSF laws). Also, in the PTTCA model, the combination of the evolution and direct effects may be nonlinear. We present AFM data consistent with the PTTCA model whereby in aging tests, for a given hold time, static friction increases with the logarithm of the loading point velocity. Kinetic friction also increases with the logarithm of the loading point velocity at sufficiently high velocities, but at a different increasing rate. The discrepancy between the rates of increase of static and kinetic friction with velocity arises from the fact that appreciable aging during static contact changes the energy landscape. Our approach extends the PTT model, originally used for crystalline substrates, to amorphous materials. It also establishes how conventional RSF laws can be modified for nanoscale single-asperity contacts to provide a physically based friction relation for nanoscale contacts that exhibit chemical bond-induced aging, as well as other aging mechanisms with similar physical characteristics.

  8. In-Flight Capability for Evaluating Skin-Friction Gages and Other Near-Wall Flow Sensors

    NASA Technical Reports Server (NTRS)

    Bui, Trong T.; Pipitone, Brett J.; Krake, Keith L.; Richwine, Dave (Technical Monitor)

    2003-01-01

    An 8-in.-square boundary-layer sensor panel has been developed for in-flight evaluation of skin-friction gages and other near-wall flow sensors on the NASA Dryden Flight Research Center F-15B/Flight Test Fixture (FTF). Instrumentation on the sensor panel includes a boundary-layer rake, temperature sensors, static pressure taps, and a Preston tube. Space is also available for skin-friction gages or other near-wall flow sensors. Pretest analysis of previous F-15B/FTF flight data has identified flight conditions suitable for evaluating skin-friction gages. At subsonic Mach numbers, the boundary layer over the sensor panel closely approximates the two-dimensional (2D), law-of-the-wall turbulent boundary layer, and skin-friction estimates from the Preston tube and the rake (using the Clauser plot method) can be used to evaluate skin-friction gages. At supersonic Mach numbers, the boundary layer over the sensor panel becomes complex, and other means of measuring skin friction are needed to evaluate the accuracy of new skin-friction gages. Results from the flight test of a new rubber-damped skin-friction gage confirm that at subsonic Mach numbers, nearly 2D, law-of-the-wall turbulent boundary layers exist over the sensor panel. Sensor panel data also show that this new skin-friction gage prototype does not work in flight.

  9. Probing the surface profile and friction behavior of heterogeneous polymers: a molecular dynamics study

    NASA Astrophysics Data System (ADS)

    Dai, L.; Sorkin, V.; Zhang, Y. W.

    2017-04-01

    We perform molecular dynamics simulations to investigate molecular structure alternation and friction behavior of heterogeneous polymer (perfluoropolyether) surfaces using a nanoscale probing tip (tetrahedral amorphous carbon). It is found that depending on the magnitude of the applied normal force, three regimes exist: the shallow depth-sensing (SDS), deep depth-sensing (DDS), and transitional depth-sensing (TDS) regimes; TDS is between SDS and DDS. In SDS, the tip is floating on the polymer surface and there is insignificant permanent alternation in the polymer structure due to largely recoverable atomic deformations, and the surface roughness profile can be accurately measured. In DDS, the tip is plowing through the polymer surface and there is significant permanent alternation in the molecular structure. In this regime, the lateral friction force rises sharply and fluctuates violently when overcoming surface pile-ups. In SDS, the friction can be described by a modified Amonton’s law including the adhesion effect; meanwhile, in DDS, the adhesion effect is negligible but the friction coefficient is significantly higher. The underlying reason for the difference in these regimes rests upon different contributions by the repulsion and attraction forces between the tip and polymer surfaces to the friction force. Our findings here reveal important insights into lateral depth-sensing on heterogeneous polymer surfaces and may help improve the precision of depth-sensing devices.

  10. Constitutive law for the densification of fused silica with applications in polishing and microgrinding

    NASA Astrophysics Data System (ADS)

    Lambropoulos, John C.; Fang, Tong; Xu, Su; Gracewski, Sheryl M.

    1995-09-01

    We discuss a constitutive model describing the permanent densification of fused silica under large applied pressures and shear stresses. The constitutive law is assumed to be rate- independent, and uses a yield function coupling hydrostatic pressure and shear stress, a flow rule describing the evolution of permanent strains after initial densification, and a hardening rule describing the dependence of the incremental densification on the levels of applied stresses. The constitutive law accounts for multiaxial states of stress, since during polishing and grinding operations complex stress states occur in a thin surface layer due to the action of abrasive particles. Due to frictional and other abrasive forces, large shear stresses are present near the surface during manufacturing. We apply the constitutive law in estimating the extent of the densified layer during the mechanical interaction of an abrasive grain and a flat surface.

  11. Inferring rate and state friction parameters from a rupture model of the 1995 Hyogo-ken Nanbu (Kobe) Japan earthquake

    USGS Publications Warehouse

    Guatteri, Mariagiovanna; Spudich, P.; Beroza, G.C.

    2001-01-01

    We consider the applicability of laboratory-derived rate- and state-variable friction laws to the dynamic rupture of the 1995 Kobe earthquake. We analyze the shear stress and slip evolution of Ide and Takeo's [1997] dislocation model, fitting the inferred stress change time histories by calculating the dynamic load and the instantaneous friction at a series of points within the rupture area. For points exhibiting a fast-weakening behavior, the Dieterich-Ruina friction law, with values of dc = 0.01-0.05 m for critical slip, fits the stress change time series well. This range of dc is 10-20 times smaller than the slip distance over which the stress is released, Dc, which previous studies have equated with the slip-weakening distance. The limited resolution and low-pass character of the strong motion inversion degrades the resolution of the frictional parameters and suggests that the actual dc is less than this value. Stress time series at points characterized by a slow-weakening behavior are well fitted by the Dieterich-Ruina friction law with values of dc ??? 0.01-0.05 m. The apparent fracture energy Gc can be estimated from waveform inversions more stably than the other friction parameters. We obtain a Gc = 1.5??106 J m-2 for the 1995 Kobe earthquake, in agreement with estimates for previous earthquakes. From this estimate and a plausible upper bound for the local rock strength we infer a lower bound for Dc of about 0.008 m. Copyright 2001 by the American Geophysical Union.

  12. Scaling properties of a rice-pile model: inertia and friction effects.

    PubMed

    Khfifi, M; Loulidi, M

    2008-11-01

    We present a rice-pile cellular automaton model that includes inertial and friction effects. This model is studied in one dimension, where the updating of metastable sites is done according to a stochastic dynamics governed by a probabilistic toppling parameter p that depends on the accumulated energy of moving grains. We investigate the scaling properties of the model using finite-size scaling analysis. The avalanche size, the lifetime, and the residence time distributions exhibit a power-law behavior. Their corresponding critical exponents, respectively, tau, y, and yr, are not universal. They present continuous variation versus the parameters of the system. The maximal value of the critical exponent tau that our model gives is very close to the experimental one, tau=2.02 [Frette, Nature (London) 379, 49 (1996)], and the probability distribution of the residence time is in good agreement with the experimental results. We note that the critical behavior is observed only in a certain range of parameter values of the system which correspond to low inertia and high friction.

  13. Analytical skin friction and heat transfer formula for compressible internal flows

    NASA Technical Reports Server (NTRS)

    Dechant, Lawrence J.; Tattar, Marc J.

    1994-01-01

    An analytic, closed-form friction formula for turbulent, internal, compressible, fully developed flow was derived by extending the incompressible law-of-the-wall relation to compressible cases. The model is capable of analyzing heat transfer as a function of constant surface temperatures and surface roughness as well as analyzing adiabatic conditions. The formula reduces to Prandtl's law of friction for adiabatic, smooth, axisymmetric flow. In addition, the formula reduces to the Colebrook equation for incompressible, adiabatic, axisymmetric flow with various roughnesses. Comparisons with available experiments show that the model averages roughly 12.5 percent error for adiabatic flow and 18.5 percent error for flow involving heat transfer.

  14. Preconceptions of Japanese Students Surveyed Using the Force and Motion Conceptual Evaluation

    NASA Astrophysics Data System (ADS)

    Ishimoto, Michi

    2010-07-01

    We assess the preconceptions of Japanese students about force and motion. The Force and Motion Conceptual Evaluation is a research-based, multiple-choice assessment of students' conceptual understanding of Newton's laws of motion and energy conservation. It is administered to determine the effectiveness of introductory mechanics curricula. In this study, the test was given to engineering students at the beginning of the first lecture of an introductory mechanics course for several years. Some students had minimal high school physics education, whereas the others had completed high school physics programs. To probe the students' preconceptions, we studied their test answers for each of the following categories: velocity, acceleration, Newton's first and second laws, Newton's third law, and energy conservation. We find that preconceptions, such as F ∝ mv, are prevalent among the students, regardless of their level of high school physics education. In the case of a collision between two objects, two preconceptions—a mass-dependent model and an action-dependent model—are prevalent. Typically, students combine the two models, with action dependency outweighing mass dependency. In the case of a sled sliding down a hill without friction at two heights and inclinations, a quarter of students used the height-dependent model to answer questions regarding speed and kinetic energy.

  15. Micromechanics of sea ice frictional slip from test basin scale experiments

    NASA Astrophysics Data System (ADS)

    Sammonds, Peter R.; Hatton, Daniel C.; Feltham, Daniel L.

    2017-02-01

    We have conducted a series of high-resolution friction experiments on large floating saline ice floes in an environmental test basin. In these experiments, a central ice floe was pushed between two other floes, sliding along two interfacial faults. The frictional motion was predominantly stick-slip. Shear stresses, normal stresses, local strains and slip displacement were measured along the sliding faults, and acoustic emissions were monitored. High-resolution measurements during a single stick-slip cycle at several positions along the fault allowed us to identify two phases of frictional slip: a nucleation phase, where a nucleation zone begins to slip before the rest of the fault, and a propagation phase when the entire fault is slipping. This is slip-weakening behaviour. We have therefore characterized what we consider to be a key deformation mechanism in Arctic Ocean dynamics. In order to understand the micromechanics of sea ice friction, we have employed a theoretical constitutive relation (i.e. an equation for shear stress in terms of temperature, normal load, acceleration, velocity and slip displacement) derived from the physics of asperity-asperity contact and sliding (Hatton et al. 2009 Phil. Mag. 89, 2771-2799 (doi:10.1080/14786430903113769)). We find that our experimental data conform reasonably with this frictional law once slip weakening is introduced. We find that the constitutive relation follows Archard's law rather than Amontons' law, with ? (where τ is the shear stress and σn is the normal stress) and n = 26/27, with a fractal asperity distribution, where the frictional shear stress, τ = ffractal Tmlws, where ffractal is the fractal asperity height distribution, Tml is the shear strength for frictional melting and lubrication and ws is the slip weakening. We can therefore deduce that the interfacial faults failed in shear for these experimental conditions through processes of brittle failure of asperities in shear, and, at higher velocities, through frictional heating, localized surface melting and hydrodynamic lubrication. This article is part of the themed issue 'Microdynamics of ice'.

  16. Are there reliable constitutive laws for dynamic friction?

    PubMed

    Woodhouse, Jim; Putelat, Thibaut; McKay, Andrew

    2015-09-28

    Structural vibration controlled by interfacial friction is widespread, ranging from friction dampers in gas turbines to the motion of violin strings. To predict, control or prevent such vibration, a constitutive description of frictional interactions is inevitably required. A variety of friction models are discussed to assess their scope and validity, in the light of constraints provided by different experimental observations. Three contrasting case studies are used to illustrate how predicted behaviour can be extremely sensitive to the choice of frictional constitutive model, and to explore possible experimental paths to discriminate between and calibrate dynamic friction models over the full parameter range needed for real applications. © 2015 The Author(s).

  17. Dynamical friction for supersonic motion in a homogeneous gaseous medium

    NASA Astrophysics Data System (ADS)

    Thun, Daniel; Kuiper, Rolf; Schmidt, Franziska; Kley, Wilhelm

    2016-05-01

    Context. The supersonic motion of gravitating objects through a gaseous ambient medium constitutes a classical problem in theoretical astrophysics. Its application covers a broad range of objects and scales from planetesimals, planets, and all kind of stars up to galaxies and black holes. In particular, the dynamical friction caused by the wake that forms behind the object plays an important role for the dynamics of the system. To calculate the dynamical friction for a particular system, standard formulae based on linear theory are often used. Aims: It is our goal to check the general validity of these formulae and provide suitable expressions for the dynamical friction acting on the moving object, based on the basic physical parameters of the problem: first, the mass, radius, and velocity of the perturber; second, the gas mass density, soundspeed, and adiabatic index of the gaseous medium; and finally, the size of the forming wake. Methods: We perform dedicated sequences of high-resolution numerical studies of rigid bodies moving supersonically through a homogeneous ambient medium and calculate the total drag acting on the object, which is the sum of gravitational and hydrodynamical drag. We study cases without gravity with purely hydrodynamical drag, as well as gravitating objects. In various numerical experiments, we determine the drag force acting on the moving body and its dependence on the basic physical parameters of the problem, as given above. From the final equilibrium state of the simulations, for gravitating objects we compute the dynamical friction by direct numerical integration of the gravitational pull acting on the embedded object. Results: The numerical experiments confirm the known scaling laws for the dependence of the dynamical friction on the basic physical parameters as derived in earlier semi-analytical studies. As a new important result we find that the shock's stand-off distance is revealed as the minimum spatial interaction scale of dynamical friction. Below this radius, the gas settles into a hydrostatic state, which - owing to its spherical symmetry - causes no net gravitational pull onto the moving body. Finally, we derive an analytic estimate for the stand-off distance that can easily be used when calculating the dynamical friction force.

  18. SPH calculations of asteroid disruptions: The role of pressure dependent failure models

    NASA Astrophysics Data System (ADS)

    Jutzi, Martin

    2015-03-01

    We present recent improvements of the modeling of the disruption of strength dominated bodies using the Smooth Particle Hydrodynamics (SPH) technique. The improvements include an updated strength model and a friction model, which are successfully tested by a comparison with laboratory experiments. In the modeling of catastrophic disruptions of asteroids, a comparison between old and new strength models shows no significant deviation in the case of targets which are initially non-porous, fully intact and have a homogeneous structure (such as the targets used in the study by Benz and Asphaug, 1999). However, for many cases (e.g. initially partly or fully damaged targets and rubble-pile structures) we find that it is crucial that friction is taken into account and the material has a pressure dependent shear strength. Our investigations of the catastrophic disruption threshold Q D * as a function of target properties and target sizes up to a few 100 km show that a fully damaged target modeled without friction has a Q D * which is significantly (5-10 times) smaller than in the case where friction is included. When the effect of the energy dissipation due to compaction (pore crushing) is taken into account as well, the targets become even stronger ( Q D * is increased by a factor of 2-3). On the other hand, cohesion is found to have an negligible effect at large scales and is only important at scales ≲ 1 km. Our results show the relative effects of strength, friction and porosity on the outcome of collisions among small (≲ 1000 km) bodies. These results will be used in a future study to improve existing scaling laws for the outcome of collisions (e.g. Leinhardt and Stewart, 2012).

  19. Limits on rock strength under high confinement

    NASA Astrophysics Data System (ADS)

    Renshaw, Carl E.; Schulson, Erland M.

    2007-06-01

    Understanding of deep earthquake source mechanisms requires knowledge of failure processes active under high confinement. Under low confinement the compressive strength of rock is well known to be limited by frictional sliding along stress-concentrating flaws. Under higher confinement strength is usually assumed limited by power-law creep associated with the movement of dislocations. In a review of existing experimental data, we find that when the confinement is high enough to suppress frictional sliding, rock strength increases as a power-law function only up to a critical normalized strain rate. Within the regime where frictional sliding is suppressed and the normalized strain rate is below the critical rate, both globally distributed ductile flow and localized brittle-like failure are observed. When frictional sliding is suppressed and the normalized strain rate is above the critical rate, failure is always localized in a brittle-like manner at a stress that is independent of the degree of confinement. Within the high-confinement, high-strain rate regime, the similarity in normalized failure strengths across a variety of rock types and minerals precludes both transformational faulting and dehydration embrittlement as strength-limiting mechanisms. The magnitude of the normalized failure strength corresponding to the transition to the high-confinement, high-strain rate regime and the observed weak dependence of failure strength on strain rate within this regime are consistent with a localized Peierls-type strength-limiting mechanism. At the highest strain rates the normalized strengths approach the theoretical limit for crystalline materials. Near-theoretical strengths have previously been observed only in nano- and micro-scale regions of materials that are effectively defect-free. Results are summarized in a new deformation mechanism map revealing that when confinement and strain rate are sufficient, strengths approaching the theoretical limit can be achieved in cm-scale sized samples of rocks rich in defects. Thus, non-frictional failure processes must be considered when interpreting rock deformation data collected under high confinement and low temperature. Further, even at higher temperatures the load-bearing ability of crustal rocks under high confinement may not be limited by a frictional process under typical geologic strain rates.

  20. The thermodynamic efficiency of heat engines with friction

    NASA Astrophysics Data System (ADS)

    Bizarro, João P. S.

    2012-04-01

    The presence of the work done against friction is incorporated into the analysis of the efficiency of heat engines based on the first and second laws of thermodynamics. We obtain the efficiencies of Stirling and Brayton engines with friction and recover results known from finite-time thermodynamics. We show that ηfric/η ≈ (1 - Wfric/W), where ηfric/η is the ratio of the efficiencies with and without friction and Wfric/W is the fraction of the work W performed by the working fluid which is spent against friction forces.

  1. Frictional behavior of large displacement experimental faults

    USGS Publications Warehouse

    Beeler, N.M.; Tullis, T.E.; Blanpied, M.L.; Weeks, J.D.

    1996-01-01

    The coefficient of friction and velocity dependence of friction of initially bare surfaces and 1-mm-thick simulated fault gouges (400 mm at 25??C and 25 MPa normal stress. Steady state negative friction velocity dependence and a steady state fault zone microstructure are achieved after ???18 mm displacement, and an approximately constant strength is reached after a few tens of millimeters of sliding on initially bare surfaces. Simulated fault gouges show a large but systematic variation of friction, velocity dependence of friction, dilatancy, and degree of localization with displacement. At short displacement (<10 mm), simulated gouge is strong, velocity strengthening and changes in sliding velocity are accompanied by relatively large changes in dilatancy rate. With continued displacement, simulated gouges become progressively weaker and less velocity strengthening, the velocity dependence of dilatancy rate decreases, and deformation becomes localized into a narrow basal shear which at its most localized is observed to be velocity weakening. With subsequent displacement, the fault restrengthens, returns to velocity strengthening, or to velocity neutral, the velocity dependence of dilatancy rate becomes larger, and deformation becomes distributed. Correlation of friction, velocity dependence of friction and of dilatancy rate, and degree of localization at all displacements in simulated gouge suggest that all quantities are interrelated. The observations do not distinguish the independent variables but suggest that the degree of localization is controlled by the fault strength, not by the friction velocity dependence. The friction velocity dependence and velocity dependence of dilatancy rate can be used as qualitative measures of the degree of localization in simulated gouge, in agreement with previous studies. Theory equating the friction velocity dependence of simulated gouge to the sum of the friction velocity dependence of bare surfaces and the velocity dependence of dilatancy rate of simulated gouge fails to quantitatively account for the experimental observations.

  2. Earthquake sequence simulations with measured properties for JFAST core samples

    NASA Astrophysics Data System (ADS)

    Noda, Hiroyuki; Sawai, Michiyo; Shibazaki, Bunichiro

    2017-08-01

    Since the 2011 Tohoku-Oki earthquake, multi-disciplinary observational studies have promoted our understanding of both the coseismic and long-term behaviour of the Japan Trench subduction zone. We also have suggestions for mechanical properties of the fault from the experimental side. In the present study, numerical models of earthquake sequences are presented, accounting for the experimental outcomes and being consistent with observations of both long-term and coseismic fault behaviour and thermal measurements. Among the constraints, a previous study of friction experiments for samples collected in the Japan Trench Fast Drilling Project (JFAST) showed complex rate dependences: a and a-b values change with the slip rate. In order to express such complexity, we generalize a rate- and state-dependent friction law to a quadratic form in terms of the logarithmic slip rate. The constraints from experiments reduced the degrees of freedom of the model significantly, and we managed to find a plausible model by changing only a few parameters. Although potential scale effects between lab experiments and natural faults are important problems, experimental data may be useful as a guide in exploring the huge model parameter space. This article is part of the themed issue 'Faulting, friction and weakening: from slow to fast motion'.

  3. Earthquake sequence simulations with measured properties for JFAST core samples.

    PubMed

    Noda, Hiroyuki; Sawai, Michiyo; Shibazaki, Bunichiro

    2017-09-28

    Since the 2011 Tohoku-Oki earthquake, multi-disciplinary observational studies have promoted our understanding of both the coseismic and long-term behaviour of the Japan Trench subduction zone. We also have suggestions for mechanical properties of the fault from the experimental side. In the present study, numerical models of earthquake sequences are presented, accounting for the experimental outcomes and being consistent with observations of both long-term and coseismic fault behaviour and thermal measurements. Among the constraints, a previous study of friction experiments for samples collected in the Japan Trench Fast Drilling Project (JFAST) showed complex rate dependences: a and a - b values change with the slip rate. In order to express such complexity, we generalize a rate- and state-dependent friction law to a quadratic form in terms of the logarithmic slip rate. The constraints from experiments reduced the degrees of freedom of the model significantly, and we managed to find a plausible model by changing only a few parameters. Although potential scale effects between lab experiments and natural faults are important problems, experimental data may be useful as a guide in exploring the huge model parameter space.This article is part of the themed issue 'Faulting, friction and weakening: from slow to fast motion'. © 2017 The Author(s).

  4. On turbulent friction in straight ducts with complex cross-section: the wall law and the hydraulic diameter

    NASA Astrophysics Data System (ADS)

    Pirozzoli, Sergio

    2018-07-01

    We develop predictive formulas for friction resistance in ducts with complex cross-sectional shape based on the use of the log law and neglect of wall shear stress nonuniformities. The traditional hydraulic diameter naturally emerges from the analysis as the controlling length scale for common duct shapes as triangles and regular polygons. The analysis also suggests that a new effective diameter should be used in more general cases, yielding corrections of a few percent to friction estimates based on the traditional hydraulic diameter. Fair but consistent predictive improvement is shown for duct geometries of practical relevance, including rectangular and annular ducts, and circular rod bundles.

  5. Boundary layers and resistance on liquid motion with only slight friction

    NASA Technical Reports Server (NTRS)

    1980-01-01

    The laws of fluid motion are examined systematically for the case where friction is assumed to be very slight. Calculations are carried out with the appropriate differential equation and practical investigations are illustrated.

  6. Development of a Numerical Model for Orthogonal Cutting. Discussion about the Sensitivity to Friction Problem

    NASA Astrophysics Data System (ADS)

    San Juan, M.; de la Iglesia, J. M.; Martín, O.; Santos, F. J.

    2009-11-01

    In despite of the important progresses achieved in the knowledge of cutting processes, the study of certain aspects has undergone the very limitations of the experimental means: temperature gradients, frictions, contact, etc… Therefore, the development of numerical models is a valid tool as a first approach to study of those problems. In the present work, a calculation model under Abaqus Explicit code is developed to represent the orthogonal cutting of AISI 4140 steel. A bidimensional simulation under plane strain conditions, which is considered as adiabatic due to the high speed of the material flow, is chosen. The chip separation is defined by means of a fracture law that allows complex simulations of tool penetration in the workpiece. The strong influence of friction on cutting is proved, therefore a very good definition of materials behaviour laws could be obtained, but an erroneous value of friction coefficient could notably reduce the reliability. Considering the difficulty of checking the friction models used in the simulation, from the tests carried out habitually, the most efficacious way to characterize the friction would be to combine simulation models with cutting tests.

  7. Experimental and Model Studies on Loading Path-Dependent and Nonlinear Gas Flow Behavior in Shale Fractures

    NASA Astrophysics Data System (ADS)

    Li, Honglian; Lu, Yiyu; Zhou, Lei; Tang, Jiren; Han, Shuaibin; Ao, Xiang

    2018-01-01

    Interest in shale gas as an energy source is growing worldwide. Because the rock's natural fracture system can contribute to gas production, it is important to understand the flow behavior of natural fractures in shale. Previous studies on the flow characteristics in shale fractures were limited and did not consider the effect of nonlinearity. To understand the basic mechanics of the gas flow behavior in shale fractures, laboratory investigations with consideration of the fluid pressure gradient, the confining stress, the loading history and the fracture geometry were conducted in this paper. Izbash's equation was used to analyze the nonlinearity of the flow. The results show that the behavior of the friction factors is similar to that shown in flow tests in smooth and rough pipes. The increase of the confining stress and the irreversible damage to the shale decreased the hydraulic aperture and increased the relative roughness. Thus, turbulent flow could appear at a low Reynolds number, resulting in a significant pressure loss. The limits of the cubic law and the existing correction factor for transmissivity are discussed. It is found that the previous friction models overestimate the friction factor in the laminar regime and underestimate the friction factor in the turbulent regime. For this reason, a new friction model based on a linear combination of the Reynolds number and the relative roughness was developed.

  8. Influence of the pressure dependent coefficient of friction on deep drawing springback predictions

    NASA Astrophysics Data System (ADS)

    Gil, Imanol; Galdos, Lander; Mendiguren, Joseba; Mugarra, Endika; Sáenz de Argandoña, Eneko

    2016-10-01

    This research studies the effect of considering an advanced variable friction coefficient on the springback prediction of stamping processes. Traditional constant coefficient of friction considerations are being replaced by more advanced friction coefficient definitions. The aim of this work is to show the influence of defining a pressure dependent friction coefficient on numerical springback predictions of a DX54D mild steel, a HSLA380 and a DP780 high strength steel. The pressure dependent friction model of each material was fitted to the experimental data obtained by Strip Drawing tests. Then, these friction models were implemented in a numerical simulation of a drawing process of an industrial automotive part. The results showed important differences between defining a pressure dependent friction coefficient or a constant friction coefficient.

  9. Dynamic earthquake rupture simulation on nonplanar faults embedded in 3D geometrically complex, heterogeneous Earth models

    NASA Astrophysics Data System (ADS)

    Duru, K.; Dunham, E. M.; Bydlon, S. A.; Radhakrishnan, H.

    2014-12-01

    Dynamic propagation of shear ruptures on a frictional interface is a useful idealization of a natural earthquake.The conditions relating slip rate and fault shear strength are often expressed as nonlinear friction laws.The corresponding initial boundary value problems are both numerically and computationally challenging.In addition, seismic waves generated by earthquake ruptures must be propagated, far away from fault zones, to seismic stations and remote areas.Therefore, reliable and efficient numerical simulations require both provably stable and high order accurate numerical methods.We present a numerical method for:a) enforcing nonlinear friction laws, in a consistent and provably stable manner, suitable for efficient explicit time integration;b) dynamic propagation of earthquake ruptures along rough faults; c) accurate propagation of seismic waves in heterogeneous media with free surface topography.We solve the first order form of the 3D elastic wave equation on a boundary-conforming curvilinear mesh, in terms of particle velocities and stresses that are collocated in space and time, using summation-by-parts finite differences in space. The finite difference stencils are 6th order accurate in the interior and 3rd order accurate close to the boundaries. Boundary and interface conditions are imposed weakly using penalties. By deriving semi-discrete energy estimates analogous to the continuous energy estimates we prove numerical stability. Time stepping is performed with a 4th order accurate explicit low storage Runge-Kutta scheme. We have performed extensive numerical experiments using a slip-weakening friction law on non-planar faults, including recent SCEC benchmark problems. We also show simulations on fractal faults revealing the complexity of rupture dynamics on rough faults. We are presently extending our method to rate-and-state friction laws and off-fault plasticity.

  10. Temperature-Dependent Friction and Wear Behavior of PTFE and MoS 2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Babuska, T. F.; Pitenis, A. A.; Jones, M. R.

    2016-06-16

    We present an investigation of the temperature-dependent friction behavior of PTFE, MoS 2, and PTFE-on- MoS 2. Friction behavior was measured while continuously varying contact temperature in the range -150 to 175°C while sliding in dry nitrogen, as well as for self-mated PTFE immersed in liquid nitrogen. These results contrast with previous reports of monotonic inverse temperature dependent friction behavior, as well as reported high-friction transitions and plateaus at temperatures below about -20°C that were not observed, providing new insights about the molecular mechanisms of macro-scale friction. The temperature-dependent friction behavior characteristic of self-mated PTFE was found also on themore » PTFE-on-MoS 2 sliding contact, suggesting that PTFE friction was defined by sub-surface deformation mechanisms and internal friction even when sliding against a lamellar lubricant with extremely low friction coefficient (μ ~ 0.02). The various relaxation temperatures of PTFE were found in the temperature-dependent friction behavior, showing excellent agreement with reported values acquired using torsional techniques measuring internal friction. Additionally, hysteresis in friction behavior suggests an increase in near-surface crystallinity at upon exceeding the high temperature relaxation, T α~ 116°C.« less

  11. Reciprocal Sliding Friction Model for an Electro-Deposited Coating and Its Parameter Estimation Using Markov Chain Monte Carlo Method

    PubMed Central

    Kim, Kyungmok; Lee, Jaewook

    2016-01-01

    This paper describes a sliding friction model for an electro-deposited coating. Reciprocating sliding tests using ball-on-flat plate test apparatus are performed to determine an evolution of the kinetic friction coefficient. The evolution of the friction coefficient is classified into the initial running-in period, steady-state sliding, and transition to higher friction. The friction coefficient during the initial running-in period and steady-state sliding is expressed as a simple linear function. The friction coefficient in the transition to higher friction is described with a mathematical model derived from Kachanov-type damage law. The model parameters are then estimated using the Markov Chain Monte Carlo (MCMC) approach. It is identified that estimated friction coefficients obtained by MCMC approach are in good agreement with measured ones. PMID:28773359

  12. Switching sliding mode force tracking control of piezoelectric-hydraulic pump-based friction element actuation systems for automotive transmissions

    NASA Astrophysics Data System (ADS)

    Kim, Gi-Woo; Wang, K. W.

    2009-08-01

    In this study, a nonlinear sliding-mode controller is designed for force tracking of a piezoelectric-hydraulic pump (PHP)-based actuation system, which is developed to replace the current electro-hydraulic actuation systems for automatic transmission (AT) friction elements, such as band brakes or clutches. By utilizing the PHP, one can eliminate the various hydraulic components (oil pump, regulating valve and control valve) in current ATs and achieve a simpler configuration with more efficient operation. With the derived governing equation of motion of the PHP-based actuation system integrated with the friction element (band brake), a switching control law is synthesized based on the sliding-mode theory. To evaluate the effectiveness of the proposed control law, its force tracking performance for the engagement of a friction element during an AT 1\\to 2 up-shift is examined experimentally. It is shown that one can successfully track the desired force trajectory for AT shift control with small tracking error. This study demonstrates the potential of the PHP as a new controllable actuation system for AT friction elements.

  13. Chemical origins of frictional aging.

    PubMed

    Liu, Yun; Szlufarska, Izabela

    2012-11-02

    Although the basic laws of friction are simple enough to be taught in elementary physics classes and although friction has been widely studied for centuries, in the current state of knowledge it is still not possible to predict a friction force from fundamental principles. One of the highly debated topics in this field is the origin of static friction. For most macroscopic contacts between two solids, static friction will increase logarithmically with time, a phenomenon that is referred to as aging of the interface. One known reason for the logarithmic growth of static friction is the deformation creep in plastic contacts. However, this mechanism cannot explain frictional aging observed in the absence of roughness and plasticity. Here, we discover molecular mechanisms that can lead to a logarithmic increase of friction based purely on interfacial chemistry. Predictions of our model are consistent with published experimental data on the friction of silica.

  14. Morphology and growth of polarized tissues.

    PubMed

    Blanch-Mercader, C; Casademunt, J; Joanny, J F

    2014-05-01

    We study and classify the time-dependent morphologies of polarized tissues subject to anisotropic but spatially homogeneous growth. Extending previous studies, we model the tissue as a fluid, and discuss the interplay of the active stresses generated by the anisotropic cell division and three types of passive mechanical forces: viscous stresses, friction with the environment and tension at the tissue boundary. The morphology dynamics is formulated as a free-boundary problem, and conformal mapping techniques are used to solve the evolution numerically. We combine analytical and numerical results to elucidate how the different passive forces compete with the active stresses to shape the tissue in different temporal regimes and derive the corresponding scaling laws. We show that in general the aspect ratio of elongated tissues is non-monotonic in time, eventually recovering isotropic shapes in the presence of friction forces, which are asymptotically dominant.

  15. Quantitative measure of the variation in fault rheology due to fluid-rock interactions

    USGS Publications Warehouse

    Blanpied, M.L.; Marone, C.J.; Lockner, D.A.; Byerlee, J.D.; King, D.P.

    1998-01-01

    We analyze friction data from two published suites of laboratory tests on granite in order to explore and quantify the effects of temperature (T) and pore water pressure (Pp) on the sliding behavior of faults. Rate-stepping sliding tests were performed on laboratory faults in granite containing "gouge" (granite powder), both dry at 23?? to 845??C [Lockner et al., 1986], and wet (Pp = 100 MPa) at 23?? to 600??C [Blanpied et al., 1991, 1995]. Imposed slip velocities (V) ranged from 0.01 to 5.5 ??m/s, and effective normal stresses were near 400 MPa. For dried granite at all temperatures, and wet granite below -300??C, the coefficient of friction (??) shows low sensitivity to V, T, and Pp. For wet granite above -350??, ?? drops rapidly with increasing T and shows a strong, positive rate dependence and protracted strength transients following steps in V, presumably reflecting the activity of a water-aided deformation process. By inverting strength data from velocity stepping tests we determined values for parameters in three formulations of a rate- and state-dependent constitutive law. One or two state variables were used to represent slip history effects. Each velocity step yielded an independent set of values for the nominal friction level, five constitutive parameters (transient parameters a, b1, and b2 and characteristic displacements Dcl and Dc2), and the velocity dependence of steady state friction ?????ss/??? In V = a-b1-b2. Below 250??, data from dry and most wet tests are adequately modeled by using the "slip law" [Ruina, 1983] and one state variable (a = 0.003 to 0.018, b = 0.001 to +0.018, Dc ??? 1 to 20 ??m). Dried tests above 250?? can also be fitted with one state variable. In contrast, wet tests above 350?? require higher direct rate dependence (a = 0.03 to 0.12), plus a second state variable with large, negative amplitude (b2 = -0.03 to -0.14) and large characteristic displacement (Dc2 = 300 to >4000 ??m). Thus the parameters a, b1, and b2 for wet granite show a pronounced change in their temperature dependence in the range 270?? to 350??C, which may reflect a change in underlying deformation mechanism. We quantify the trends in parameter values from 25?? to 600??C by piecewise linear regressions, which provide a straightforward means to incorporate the full constitutive response of granite into numerical models of fault slip. The modeling results suggest that the succeptibility for unstable (stick-slip) sliding is maximized between 90?? and 360??C, in agreement with laboratory observations and consistent with the depth range of earthquakes on mature faults in the continental crust.

  16. Experimental research on the friction of pivots

    NASA Technical Reports Server (NTRS)

    Jaquerod, A; Defossez, L; Mugeli, H

    1930-01-01

    In horology the friction between solids is of the greatest importance; one limited, however, to the application of the laws of Coulomb which, do not at all correspond with reality. This report presents a review of the subject and some general conclusions. The choice of lubricant is discussed as well as the pressure between frictional surfaces. The gears in a watch are used extensively as examples.

  17. Prediction of mean flow data for adiabatic 2-D compressible turbulent boundary layers

    NASA Astrophysics Data System (ADS)

    Motallebi, Fariborz

    1995-02-01

    This report presents a method for the prediction of mean flow data (i.e. , skin friction, velocity profile, and shape parameter) for adiabatic two-dimensional compressible turbulent boundary layers at zero pressure gradient. The transformed law of the wall, law of the wake, the van Driest model for the complete inner region, and a correlation between the Reynolds number based on the boundary layer integral length scale (Re(sub Delta*)) and the Reynolds number based on the boundary layer momentum thickness (Re(sub theta)) were used to predict the mean flow quantities. The results for skin friction coefficient show good agreement with a number of existing theories including those of van Driest and Huang et al. Comparison with a large number of experimental data suggests that at least for transonic and supersonic flows, the velocity profile as described by van Driest and Coles is Reynolds number dependent and should not be presumed universal. Extra information or perhaps a better physical approach to the formulation of the mean structure of compressible turbulent boundary layers, even in zero pressure gradient and adiabatic condition, is required in order to achieve complete (physical and mathematical) convergence when it is applied in any prediction methods.

  18. Rupture Propagation for Stochastic Fault Models

    NASA Astrophysics Data System (ADS)

    Favreau, P.; Lavallee, D.; Archuleta, R.

    2003-12-01

    The inversion of strong motion data of large earhquakes give the spatial distribution of pre-stress on the ruptured faults and it can be partially reproduced by stochastic models, but a fundamental question remains: how rupture propagates, constrained by the presence of spatial heterogeneity? For this purpose we investigate how the underlying random variables, that control the pre-stress spatial variability, condition the propagation of the rupture. Two stochastic models of prestress distributions are considered, respectively based on Cauchy and Gaussian random variables. The parameters of the two stochastic models have values corresponding to the slip distribution of the 1979 Imperial Valley earthquake. We use a finite difference code to simulate the spontaneous propagation of shear rupture on a flat fault in a 3D continuum elastic body. The friction law is the slip dependent friction law. The simulations show that the propagation of the rupture front is more complex, incoherent or snake-like for a prestress distribution based on Cauchy random variables. This may be related to the presence of a higher number of asperities in this case. These simulations suggest that directivity is stronger in the Cauchy scenario, compared to the smoother rupture of the Gauss scenario.

  19. Micromechanics of sea ice frictional slip from test basin scale experiments

    PubMed Central

    Hatton, Daniel C.; Feltham, Daniel L.

    2017-01-01

    We have conducted a series of high-resolution friction experiments on large floating saline ice floes in an environmental test basin. In these experiments, a central ice floe was pushed between two other floes, sliding along two interfacial faults. The frictional motion was predominantly stick–slip. Shear stresses, normal stresses, local strains and slip displacement were measured along the sliding faults, and acoustic emissions were monitored. High-resolution measurements during a single stick–slip cycle at several positions along the fault allowed us to identify two phases of frictional slip: a nucleation phase, where a nucleation zone begins to slip before the rest of the fault, and a propagation phase when the entire fault is slipping. This is slip-weakening behaviour. We have therefore characterized what we consider to be a key deformation mechanism in Arctic Ocean dynamics. In order to understand the micromechanics of sea ice friction, we have employed a theoretical constitutive relation (i.e. an equation for shear stress in terms of temperature, normal load, acceleration, velocity and slip displacement) derived from the physics of asperity–asperity contact and sliding (Hatton et al. 2009 Phil. Mag. 89, 2771–2799 (doi:10.1080/14786430903113769)). We find that our experimental data conform reasonably with this frictional law once slip weakening is introduced. We find that the constitutive relation follows Archard's law rather than Amontons' law, with (where τ is the shear stress and σn is the normal stress) and n = 26/27, with a fractal asperity distribution, where the frictional shear stress, τ = ffractal Tmlws, where ffractal is the fractal asperity height distribution, Tml is the shear strength for frictional melting and lubrication and ws is the slip weakening. We can therefore deduce that the interfacial faults failed in shear for these experimental conditions through processes of brittle failure of asperities in shear, and, at higher velocities, through frictional heating, localized surface melting and hydrodynamic lubrication. This article is part of the themed issue ‘Microdynamics of ice’. PMID:28025302

  20. Micromechanics of sea ice frictional slip from test basin scale experiments.

    PubMed

    Sammonds, Peter R; Hatton, Daniel C; Feltham, Daniel L

    2017-02-13

    We have conducted a series of high-resolution friction experiments on large floating saline ice floes in an environmental test basin. In these experiments, a central ice floe was pushed between two other floes, sliding along two interfacial faults. The frictional motion was predominantly stick-slip. Shear stresses, normal stresses, local strains and slip displacement were measured along the sliding faults, and acoustic emissions were monitored. High-resolution measurements during a single stick-slip cycle at several positions along the fault allowed us to identify two phases of frictional slip: a nucleation phase, where a nucleation zone begins to slip before the rest of the fault, and a propagation phase when the entire fault is slipping. This is slip-weakening behaviour. We have therefore characterized what we consider to be a key deformation mechanism in Arctic Ocean dynamics. In order to understand the micromechanics of sea ice friction, we have employed a theoretical constitutive relation (i.e. an equation for shear stress in terms of temperature, normal load, acceleration, velocity and slip displacement) derived from the physics of asperity-asperity contact and sliding (Hatton et al. 2009 Phil. Mag. 89, 2771-2799 (doi:10.1080/14786430903113769)). We find that our experimental data conform reasonably with this frictional law once slip weakening is introduced. We find that the constitutive relation follows Archard's law rather than Amontons' law, with [Formula: see text] (where τ is the shear stress and σ n is the normal stress) and n = 26/27, with a fractal asperity distribution, where the frictional shear stress, τ = f fractal T ml w s , where f fractal is the fractal asperity height distribution, T ml is the shear strength for frictional melting and lubrication and w s is the slip weakening. We can therefore deduce that the interfacial faults failed in shear for these experimental conditions through processes of brittle failure of asperities in shear, and, at higher velocities, through frictional heating, localized surface melting and hydrodynamic lubrication.This article is part of the themed issue 'Microdynamics of ice'. © 2016 The Author(s).

  1. The Conveyor Belt Problem and Newton's Third Law.

    ERIC Educational Resources Information Center

    Stewart, Maurice Bruce

    1989-01-01

    Shows how the thermal power developed by friction is exactly half the supplied power in the general case of a variable force of friction. Investigates the mechanism whereby one-half the input energy is dissipated as heat using mathematical expressions. (YP)

  2. Lateral-torsional response of base-isolated buildings with curved surface sliding system subjected to near-fault earthquakes

    NASA Astrophysics Data System (ADS)

    Mazza, Fabio

    2017-08-01

    The curved surface sliding (CSS) system is one of the most in-demand techniques for the seismic isolation of buildings; yet there are still important aspects of its behaviour that need further attention. The CSS system presents variation of friction coefficient, depending on the sliding velocity of the CSS bearings, while friction force and lateral stiffness during the sliding phase are proportional to the axial load. Lateral-torsional response needs to be better understood for base-isolated structures located in near-fault areas, where fling-step and forward-directivity effects can produce long-period (horizontal) velocity pulses. To analyse these aspects, a six-storey reinforced concrete (r.c.) office framed building, with an L-shaped plan and setbacks in elevation, is designed assuming three values of the radius of curvature for the CSS system. Seven in-plan distributions of dynamic-fast friction coefficient for the CSS bearings, ranging from a constant value for all isolators to a different value for each, are considered in the case of low- and medium-type friction properties. The seismic analysis of the test structures is carried out considering an elastic-linear behaviour of the superstructure, while a nonlinear force-displacement law of the CSS bearings is considered in the horizontal direction, depending on sliding velocity and axial load. Given the lack of knowledge of the horizontal direction at which near-fault ground motions occur, the maximum torsional effects and residual displacements are evaluated with reference to different incidence angles, while the orientation of the strongest observed pulses is considered to obtain average values.

  3. Velocity Dependence of the Kinetic Friction of Nanoparticles

    NASA Astrophysics Data System (ADS)

    Dietzel, Dirk; Feldmann, Michael; Schirmeisen, Andre

    2010-03-01

    The velocity dependence of interfacial friction is of high interest to unveil the fundamental processes in nanoscopic friction. So far, different forms of velocity dependence have been observed for contacts between friction force microscope (FFM) tips and a substrate surface. In this work we present velocity-dependent friction measurements performed by nanoparticle manipulation of antimony nanoparticles on atomically flat HOPG substrates under UHV conditions. This allows to analyze interfacial friction for very well defined and clean surface contacts. A novel approach to nanoparticle manipulation, the so called 'tip-on-top' technique [1], made it possible to manipulate the same particle many times while varying the velocity. The antimony particles exhibit a qualitatively different velocity dependence on friction in comparison to direct tip-HOPG contacts. A characteristic change in velocity dependence was observed when comparing freshly prepared particles to contaminated specimen, which were exposed to air before the manipulation experiments. [1] Dietzel et al., Appl. Phys. Lett. 95, 53104 (2009)

  4. The Impact of Frictional Healing on Stick-Slip Recurrence Interval and Stress Drop: Implications for Earthquake Scaling

    NASA Astrophysics Data System (ADS)

    Im, Kyungjae; Elsworth, Derek; Marone, Chris; Leeman, John

    2017-12-01

    Interseismic frictional healing is an essential process in the seismic cycle. Observations of both natural and laboratory earthquakes demonstrate that the magnitude of stress drop scales with the logarithm of recurrence time, which is a cornerstone of the rate and state friction (RSF) laws. However, the origin of this log linear behavior and short time "cutoff" for small recurrence intervals remains poorly understood. Here we use RSF laws to demonstrate that the back-projected time of null-healing intrinsically scales with the initial frictional state θi. We explore this behavior and its implications for (1) the short-term cutoff time of frictional healing and (2) the connection between healing rates derived from stick-slip sliding versus slide-hold-slide tests. We use a novel, continuous solution of RSF for a one-dimensional spring-slider system with inertia. The numerical solution continuously traces frictional state evolution (and healing) and shows that stick-slip cutoff time also scales with frictional state at the conclusion of the dynamic slip process θi (=Dc/Vpeak). This numerical investigation on the origins of stick-slip response is verified by comparing laboratory data for a range of peak slip velocities. Slower slip motions yield lesser magnitude of friction drop at a given time due to higher frictional state at the end of each slip event. Our results provide insight on the origin of log linear stick-slip evolution and suggest an approach to estimating the critical slip distance on faults that exhibit gradual accelerations, such as for slow earthquakes.

  5. A study of kinetic friction: The Timoshenko oscillator

    NASA Astrophysics Data System (ADS)

    Henaff, Robin; Le Doudic, Gabriel; Pilette, Bertrand; Even, Catherine; Fischbach, Jean-Marie; Bouquet, Frédéric; Bobroff, Julien; Monteverde, Miguel; Marrache-Kikuchi, Claire A.

    2018-03-01

    Friction is a complex phenomenon that is of paramount importance in everyday life. We present an easy-to-build and inexpensive experiment illustrating Coulomb's law of kinetic friction. The so-called friction, or Timoshenko, oscillator consists of a plate set into periodic motion through the competition between gravity and friction on its rotating supports. The period of such an oscillator gives a measurement of the coefficient of kinetic friction μk between the plate and the supports. Our prototype is mainly composed of a motor, LEGO blocks, and a low-cost microcontroller, but despite its simplicity, the results obtained are in good agreement with values of μk found in the literature (enhanced online).

  6. Tidal friction and generalized Cassini's laws in the solar system. [for planetary spin axis rotation

    NASA Technical Reports Server (NTRS)

    Ward, W. R.

    1975-01-01

    The tidal drift toward a generalized Cassini state of rotation of the spin axis of a planet or satellite in a precessing orbit is described. Generalized Cassini's laws are applied to several solar system objects and the location of their spin axes estimated. Of those considered only the moon definitely occupies state 2 with the spin axis near to the normal of the invariable plane. Most objects appear to occupy state 1 with the spin axis near to the orbit normal. Iapetus could occupy either state depending on its oblateness. In addition, the resonant rotation of Mercury is found to have little effect on the tidal drift of its spin axis toward state 1.

  7. Time-dependent friction and the mechanics of stick-slip

    USGS Publications Warehouse

    Dieterich, J.H.

    1978-01-01

    Time-dependent increase of static friction is characteristic of rock friction undera variety of experimental circumstances. Data presented here show an analogous velocity-dependent effect. A theor of friction is proposed that establishes a common basis for static and sliding friction. Creep at points of contact causes increases in friction that are proportional to the logarithm of the time that the population of points of contact exist. For static friction that time is the time of stationary contact. For sliding friction the time of contact is determined by the critical displacement required to change the population of contacts and the slip velocity. An analysis of a one-dimensional spring and slider system shows that experimental observations establishing the transition from stable sliding to stick-slip to be a function of normal stress, stiffness and surface finish are a consequence of time-dependent friction. ?? 1978 Birkha??user Verlag.

  8. Steady-state propagation speed of rupture fronts along one-dimensional frictional interfaces.

    PubMed

    Amundsen, David Skålid; Trømborg, Jørgen Kjoshagen; Thøgersen, Kjetil; Katzav, Eytan; Malthe-Sørenssen, Anders; Scheibert, Julien

    2015-09-01

    The rupture of dry frictional interfaces occurs through the propagation of fronts breaking the contacts at the interface. Recent experiments have shown that the velocities of these rupture fronts range from quasistatic velocities proportional to the external loading rate to velocities larger than the shear wave speed. The way system parameters influence front speed is still poorly understood. Here we study steady-state rupture propagation in a one-dimensional (1D) spring-block model of an extended frictional interface for various friction laws. With the classical Amontons-Coulomb friction law, we derive a closed-form expression for the steady-state rupture velocity as a function of the interfacial shear stress just prior to rupture. We then consider an additional shear stiffness of the interface and show that the softer the interface, the slower the rupture fronts. We provide an approximate closed form expression for this effect. We finally show that adding a bulk viscosity on the relative motion of blocks accelerates steady-state rupture fronts and we give an approximate expression for this effect. We demonstrate that the 1D results are qualitatively valid in 2D. Our results provide insights into the qualitative role of various key parameters of a frictional interface on its rupture dynamics. They will be useful to better understand the many systems in which spring-block models have proved adequate, from friction to granular matter and earthquake dynamics.

  9. Transmission of heat from a flat plate to a fluid flowing at a high velocity

    NASA Technical Reports Server (NTRS)

    Crocco, Luigi

    1932-01-01

    The writer, starting with the consideration of the hydrodynamic and thermodynamic equations for the turbulent boundary layer of a flat plate when it is necessary to take into account the heat produced by friction, arrives at the conclusion that the transmission of the heat follows the same law that is valid when the frictional heat is negligible, provided the temperature of the fluid is considered to be that which the fluid would reach if arrested adiabatically. It is then shown how the same law holds good for faired bodies, and some applications of the law are made to the problems of flight at very high speeds.

  10. Contact Dependence and Velocity Crossover in Friction between Microscopic Solid/Solid Contacts.

    PubMed

    McGraw, Joshua D; Niguès, Antoine; Chennevière, Alexis; Siria, Alessandro

    2017-10-11

    Friction at the nanoscale differs markedly from that between surfaces of macroscopic extent. Characteristically, the velocity dependence of friction between apparent solid/solid contacts can strongly deviate from the classically assumed velocity independence. Here, we show that a nondestructive friction between solid tips with radius on the scale of hundreds of nanometers and solid hydrophobic self-assembled monolayers has a strong velocity dependence. Specifically, using laterally oscillating quartz tuning forks, we observe a linear scaling in the velocity at the lowest accessed velocities, typically hundreds of micrometers per second, crossing over into a logarithmic velocity dependence. This crossover is consistent with a general multicontact friction model that includes thermally activated breaking of the contacts at subnanometric elongation. We find as well a strong dependence of the friction on the dimensions of the frictional probe.

  11. On laminar and turbulent friction

    NASA Technical Reports Server (NTRS)

    Von Karman, TH

    1946-01-01

    Report deals, first with the theory of the laminar friction flow, where the basic concepts of Prandtl's boundary layer theory are represented from mathematical and physical points of view, and a method is indicated by means of which even more complicated cases can be treated with simple mathematical means, at least approximately. An attempt is also made to secure a basis for the computation of the turbulent friction by means of formulas through which the empirical laws of the turbulent pipe resistance can be applied to other problems on friction drag. (author)

  12. Real data assimilation for optimization of frictional parameters and prediction of afterslip in the 2003 Tokachi-oki earthquake inferred from slip velocity by an adjoint method

    NASA Astrophysics Data System (ADS)

    Kano, Masayuki; Miyazaki, Shin'ichi; Ishikawa, Yoichi; Hiyoshi, Yoshihisa; Ito, Kosuke; Hirahara, Kazuro

    2015-10-01

    Data assimilation is a technique that optimizes the parameters used in a numerical model with a constraint of model dynamics achieving the better fit to observations. Optimized parameters can be utilized for the subsequent prediction with a numerical model and predicted physical variables are presumably closer to observations that will be available in the future, at least, comparing to those obtained without the optimization through data assimilation. In this work, an adjoint data assimilation system is developed for optimizing a relatively large number of spatially inhomogeneous frictional parameters during the afterslip period in which the physical constraints are a quasi-dynamic equation of motion and a laboratory derived rate and state dependent friction law that describe the temporal evolution of slip velocity at subduction zones. The observed variable is estimated slip velocity on the plate interface. Before applying this method to the real data assimilation for the afterslip of the 2003 Tokachi-oki earthquake, a synthetic data assimilation experiment is conducted to examine the feasibility of optimizing the frictional parameters in the afterslip area. It is confirmed that the current system is capable of optimizing the frictional parameters A-B, A and L by adopting the physical constraint based on a numerical model if observations capture the acceleration and decaying phases of slip on the plate interface. On the other hand, it is unlikely to constrain the frictional parameters in the region where the amplitude of afterslip is less than 1.0 cm d-1. Next, real data assimilation for the 2003 Tokachi-oki earthquake is conducted to incorporate slip velocity data inferred from time dependent inversion of Global Navigation Satellite System time-series. The optimized values of A-B, A and L are O(10 kPa), O(102 kPa) and O(10 mm), respectively. The optimized frictional parameters yield the better fit to the observations and the better prediction skill of slip velocity afterwards. Also, further experiment shows the importance of employing a fine-mesh model. It will contribute to the further understanding of the frictional properties on plate interfaces and lead to the forecasting system that provides useful information on the possibility of consequent earthquakes.

  13. Evaluation of analytical procedures for prediction of turbulent boundary layers on a porous wall

    NASA Technical Reports Server (NTRS)

    Towne, C. E.

    1974-01-01

    An analytical study has been made to determine how well current boundary layer prediction techniques work when there is mass transfer normal to the wall. The data that were considered in this investigation were for two-dimensional, incompressible, turbulent boundary layers with suction and blowing. Some of the bleed data were taken in an adverse pressure gradient. An integral prediction method was used three different porous wall skin friction relations, in addition to a solid-surface relation for the suction cases. A numerical prediction method was also used. Comparisons were made between theoretical and experimental skin friction coefficients, displacement and momentum thicknesses, and velocity profiles. The integral method with one of the porous wall skin friction laws gave very good agreement with data for most of the cases considered. The use of the solid-surface skin friction law caused the integral to overpredict the effectiveness of the bleed. The numerical techniques also worked well for most of the cases.

  14. Optimizing snake locomotion on an inclined plane

    NASA Astrophysics Data System (ADS)

    Wang, Xiaolin; Osborne, Matthew T.; Alben, Silas

    2014-01-01

    We develop a model to study the locomotion of snakes on inclined planes. We determine numerically which snake motions are optimal for two retrograde traveling-wave body shapes, triangular and sinusoidal waves, across a wide range of frictional parameters and incline angles. In the regime of large transverse friction coefficients, we find power-law scalings for the optimal wave amplitudes and corresponding costs of locomotion. We give an asymptotic analysis to show that the optimal snake motions are traveling waves with amplitudes given by the same scaling laws found in the numerics.

  15. Implicit Geometry Meshing for the simulation of Rotary Friction Welding

    NASA Astrophysics Data System (ADS)

    Schmicker, D.; Persson, P.-O.; Strackeljan, J.

    2014-08-01

    The simulation of Rotary Friction Welding (RFW) is a challenging task, since it states a coupled problem of phenomena like large plastic deformations, heat flux, contact and friction. In particular the mesh generation and its restoration when using a Lagrangian description of motion is of significant severity. In this regard Implicit Geometry Meshing (IGM) algorithms are promising alternatives to the more conventional explicit methods. Because of the implicit description of the geometry during remeshing, the IGM procedure turns out to be highly robust and generates spatial discretizations of high quality regardless of the complexity of the flash shape and its inclusions. A model for efficient RFW simulation is presented, which is based on a Carreau fluid law, an Augmented Lagrange approach in mapping the incompressible deformations, a penalty contact approach, a fully regularized Coulomb-/fluid friction law and a hybrid time integration strategy. The implementation of the IGM algorithm using 6-node triangular finite elements is described in detail. The techniques are demonstrated on a fairly complex friction welding problem, demonstrating the performance and the potentials of the proposed method. The techniques are general and straight-forward to implement, and offer the potential of successful adoption to a wide range of other engineering problems.

  16. Experimental demonstration of a semi-brittle origin for crustal strain transients

    NASA Astrophysics Data System (ADS)

    Reber, J. E.; Lavier, L. L.; Hayman, N. W.

    2015-12-01

    Tectonic motions that give rise to destructive earthquakes and enigmatic transient slip events are commonly explained by friction laws that describe slip on fault surfaces and gouge-filled zones. Friction laws with the added effects of pore fluid pressure, shear heating, and chemical reactions as currently applied do not take into account that over a wide range of pressure and temperature conditions rocks deform following a complex mixed brittle-ductile rheology. In semi-brittle materials, such as polymineralic rocks, elasto-plastic and visco-elastic defamation can be observed simultaneously in different phases of the material. Field observations of such semi-brittle rocks at the mesoscale have shown that for a given range of composition, temperature, and pressure, the formation of fluid-filled brittle fractures and veins can precede and accompany the development of localized ductile flow. We propose that the coexistence of brittle and viscous behavior controls some of the physical characteristics of strain transients and slow slip events. Here we present results from shear experiments on semi-brittle rock analogues investigating the effect of yield stress on fracture propagation and connection, and how this can lead to reoccurring strain transients. During the experiments we monitor the evolution of fractures and flow as well as the force development in the system. We show that the nature of localized slip and flow in semi-brittle materials depends on the initiation and formation of mode I and II fractures and does not involve frictional behavior, supporting an alternative mechanism for the development of tectonic strain transients.

  17. Micromechanical processes of frictional aging and the affect of shear stress on fault healing: insights from material characterization and ultrasonic velocity measurements

    NASA Astrophysics Data System (ADS)

    Ryan, K. L.; Marone, C.

    2015-12-01

    During the seismic cycle, faults repeatedly fail and regain strength. The gradual strength recovery is often referred to as frictional healing, and existing works suggest that healing can play an important role in determining the mode of fault slip ranging from dynamic rupture to slow earthquakes. Laboratory studies can play an important role in identifying the processes of frictional healing and their evolution with shear strain during the seismic cycle. These studies also provide data for laboratory-derived friction constitutive laws, which can improve dynamic earthquake models. Previous work shows that frictional healing varies with shear stress on a fault during the interseismic period. Unfortunately, the micromechanical processes that cause shear stress dependent frictional healing are not well understood and cannot be incorporated into current earthquake models. In fault gouge, frictional healing involves compaction and particle rearrangement within sheared granular layers. Therefore, to address these issues, we investigate the role grain size reduction plays in frictional re-strengthening processes at different levels of shear stress. Sample material was preserved from biaxial deformation experiments on granular Westerly granite. The normal stress was held constant at 25 MPa and we performed several 100 second slide-hold-slide tests in each experiment. We conducted a series of 5 experiments each with a different value of normalized shear stress (ranging from 0 to 1), defined as the ratio of the pre-hold shear stress to the shear stress during the hold. The particle size distribution for each sample was analyzed. In addition, acoustic measurements were recorded throughout our experiments to investigate variations in ultrasonic velocity and signal amplitude that reflect changes in the elastic moduli of the layer. Acoustic monitoring provides information about healing mechanisms and can provide a link between laboratory studies and tectonic fault zones.

  18. Historical Scientific Models and Theories as Resources for Learning and Teaching: The Case of Friction

    NASA Astrophysics Data System (ADS)

    Besson, Ugo

    2013-05-01

    This paper presents a history of research and theories on sliding friction between solids. This history is divided into four phases: from Leonardo da Vinci to Coulomb and the establishment of classical laws of friction; the theories of lubrication and the Tomlinson's theory of friction (1850-1930); the theories of wear, the Bowden and Tabor's synthesis and the birth of Tribology (1930-1980); nanotribology, friction at the atomic scale, and new fields of research (after 1980). Attention is given to recent research, so giving the sense of a topic that is still alive and currently an object of interest, with interpretative controversies. The development of explanatory and visual models is especially stressed, in connection with students' common ideas and with didactic purposes. The history shows that many models proposed in the past have been modified but not abandoned, so that here the scientific evolution has worked more by adding than by eliminating. The last sections discuss problems and proposals on teaching friction and the possible uses in teaching of models, images and theories found in history. Concerning the role of the history in science teaching, the case of friction has particular features, because some recent developments are unknown to most teachers and many results, also not very recent, contrast with the laws usually proposed in textbooks. Here history can supply a number of models, examples and experiments which can constitute useful resources to improve student understanding, joining together objectives of cultural value and of better scientific knowledge.

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Intravaia, F.; Behunin, R. O.; Henkel, C.

    Here, we discuss the failure of the Markov approximation in the description of atom-surface fluctuation-induced interactions, both in equilibrium (Casimir-Polder forces) and out of equilibrium (quantum friction). Using general theoretical arguments, we show that the Markov approximation can lead to erroneous predictions of such phenomena with regard to both strength and functional dependencies on system parameters. Particularly, we show that the long-time power-law tails of two-time dipole correlations and their corresponding low-frequency behavior, neglected in the Markovian limit, affect the prediction of the force. These findings highlight the importance of non-Markovian effects in dispersion interactions.

  20. Earthquake cycles and physical modeling of the process leading up to a large earthquake

    NASA Astrophysics Data System (ADS)

    Ohnaka, Mitiyasu

    2004-08-01

    A thorough discussion is made on what the rational constitutive law for earthquake ruptures ought to be from the standpoint of the physics of rock friction and fracture on the basis of solid facts observed in the laboratory. From this standpoint, it is concluded that the constitutive law should be a slip-dependent law with parameters that may depend on slip rate or time. With the long-term goal of establishing a rational methodology of forecasting large earthquakes, the entire process of one cycle for a typical, large earthquake is modeled, and a comprehensive scenario that unifies individual models for intermediate-and short-term (immediate) forecasts is presented within the framework based on the slip-dependent constitutive law and the earthquake cycle model. The earthquake cycle includes the phase of accumulation of elastic strain energy with tectonic loading (phase II), and the phase of rupture nucleation at the critical stage where an adequate amount of the elastic strain energy has been stored (phase III). Phase II plays a critical role in physical modeling of intermediate-term forecasting, and phase III in physical modeling of short-term (immediate) forecasting. The seismogenic layer and individual faults therein are inhomogeneous, and some of the physical quantities inherent in earthquake ruptures exhibit scale-dependence. It is therefore critically important to incorporate the properties of inhomogeneity and physical scaling, in order to construct realistic, unified scenarios with predictive capability. The scenario presented may be significant and useful as a necessary first step for establishing the methodology for forecasting large earthquakes.

  1. Combining Earthquake Focal Mechanism Inversion and Coulomb Friction Law to Yield Tectonic Stress Magnitudes in Strike-slip Faulting Regime

    NASA Astrophysics Data System (ADS)

    Soh, I.; Chang, C.

    2017-12-01

    The techniques for estimating present-day stress states by inverting multiple earthquake focal mechanism solutions (FMS) provide orientations of the three principal stresses and their relative magnitudes. In order to estimate absolute magnitudes of the stresses that are generally required to analyze faulting mechanics, we combine the relative stress magnitude parameter (R-value) derived from the inversion process and the concept of frictional equilibrium of stress state defined by Coulomb friction law. The stress inversion in Korean Peninsula using 152 FMS data (magnitude≥2.5) conducted at regularly spaced grid points yields a consistent strike-slip faulting regime in which the maximum (S1) and the minimum (S3) principal stresses act in horizontal planes (with an S1 azimuth in ENE-WSW) and the intermediate principal stress (S2) close to vertical. However, R-value varies from 0.28 to 0.75 depending on locations, systematically increasing eastward. Based on the assumptions that the vertical stress is lithostatic, pore pressure is hydrostatic, and the maximum differential stress (S1-S3) is limited by Byerlee's friction of optimally oriented faults for slip, we estimate absolute magnitudes of the two horizontal principal stresses using R-value. As R-value increases, so do the magnitudes of the horizontal stresses. Our estimation of the stress magnitudes shows that the maximum horizontal principal stress (S1) normalized by vertical stress tends to increase from 1.3 in the west to 1.8 in the east. The estimated variation of stress magnitudes is compatible with distinct clustering of faulting types in different regions. Normal faulting events are densely populated in the west region where the horizontal stress is relatively low, whereas numerous reverse faulting events prevail in the east offshore where the horizontal stress is relatively high. Such a characteristic distribution of distinct faulting types in different regions can only be explained in terms of stress magnitude variation.

  2. Viscosity Dependence of Some Protein and Enzyme Reaction Rates: Seventy-Five Years after Kramers.

    PubMed

    Sashi, Pulikallu; Bhuyan, Abani K

    2015-07-28

    Kramers rate theory is a milestone in chemical reaction research, but concerns regarding the basic understanding of condensed phase reaction rates of large molecules in viscous milieu persist. Experimental studies of Kramers theory rely on scaling reaction rates with inverse solvent viscosity, which is often equated with the bulk friction coefficient based on simple hydrodynamic relations. Apart from the difficulty of abstraction of the prefactor details from experimental data, it is not clear why the linearity of rate versus inverse viscosity, k ∝ η(-1), deviates widely for many reactions studied. In most cases, the deviation simulates a power law k ∝ η(-n), where the exponent n assumes fractional values. In rate-viscosity studies presented here, results for two reactions, unfolding of cytochrome c and cysteine protease activity of human ribosomal protein S4, show an exceedingly overdamped rate over a wide viscosity range, registering n values up to 2.4. Although the origin of this extraordinary reaction friction is not known at present, the results indicate that the viscosity exponent need not be bound by the 0-1 limit as generally suggested. For the third reaction studied here, thermal dissociation of CO from nativelike cytochrome c, the rate-viscosity behavior can be explained using Grote-Hynes theory of time-dependent friction in conjunction with correlated motions intrinsic to the protein. Analysis of the glycerol viscosity-dependent rate for the CO dissociation reaction in the presence of urea as the second variable shows that the protein stabilizing effect of subdenaturing amounts of urea is not affected by the bulk viscosity. It appears that a myriad of factors as diverse as parameter uncertainty due to the difficulty of knowing the exact reaction friction and both mode and consequences of protein-solvent interaction work in a complex manner to convey as though Kramers rate equation is not absolute.

  3. Dynamic history-dependent variational-hemivariational inequalities with applications to contact mechanics

    NASA Astrophysics Data System (ADS)

    Migórski, Stanislaw; Ogorzaly, Justyna

    2017-02-01

    In the paper we deliver a new existence and uniqueness result for a class of abstract nonlinear variational-hemivariational inequalities which are governed by two operators depending on the history of the solution, and include two nondifferentiable functionals, a convex and a nonconvex one. Then, we consider an initial boundary value problem which describes a model of evolution of a viscoelastic body in contact with a foundation. The contact process is assumed to be dynamic, and the friction is described by subdifferential boundary conditions. Both the constitutive law and the contact condition involve memory operators. As an application of the abstract theory, we provide a result on the unique weak solvability of the contact problem.

  4. A constitutive law for finite element contact problems with unclassical friction

    NASA Technical Reports Server (NTRS)

    Plesha, M. E.; Steinetz, B. M.

    1986-01-01

    Techniques for modeling complex, unclassical contact-friction problems arising in solid and structural mechanics are discussed. A constitutive modeling concept is employed whereby analytic relations between increments of contact surface stress (i.e., traction) and contact surface deformation (i.e., relative displacement) are developed. Because of the incremental form of these relations, they are valid for arbitrary load-deformation histories. The motivation for the development of such a constitutive law is that more realistic friction idealizations can be implemented in finite element analysis software in a consistent, straightforward manner. Of particular interest is modeling of two-body (i.e., unlubricated) metal-metal, ceramic-ceramic, and metal-ceramic contact. Interfaces involving ceramics are of engineering importance and are being considered for advanced turbine engines in which higher temperature materials offer potential for higher engine fuel efficiency.

  5. Postearthquake relaxation after the 2004 M6 Parkfield, California, earthquake and rate-and-state friction

    USGS Publications Warehouse

    Savage, J.C.; Langbein, J.

    2008-01-01

    An unusually complete set of measurements (including rapid rate GPS over the first 10 days) of postseismic deformation is available at 12 continuous GPS stations located close to the epicenter of the 2004 M6.0 Parkfield earthquake. The principal component modes for the relaxation of the ensemble of those 12 GPS stations were determined. The first mode alone furnishes an adequate approximation to the data. Thus, the relaxation at all stations can be represented by the product of a common temporal function and distinct amplitudes for each component (north or east) of relaxation at each station. The distribution in space of the amplitudes indicates that the relaxation is dominantly strike slip. The temporal function, which spans times from about 5 min to 900 days postearthquake, can be fit by a superposition of three creep terms, each of the form ??l loge(1 + t/??l), with characteristic times ??, = 4.06, 0.11, and 0.0001 days. It seems likely that what is actually involved is a broad spectrum of characteristic times, the individual components of which arise from afterslip on different fault patches. Perfettini and Avouac (2004) have shown that an individual creep term can be explained by the spring-slider model with rate-dependent (no state variable) friction. The observed temporal function can also be explained using a single spring-slider model (i.e., single fault patch) that includes rate-and-state-dependent friction, a single-state variable, and either of the two commonly used (aging and slip) state evolution laws. In the latter fits, the rate-and-state friction parameter b is negative.

  6. Dynamical continuous time random Lévy flights

    NASA Astrophysics Data System (ADS)

    Liu, Jian; Chen, Xiaosong

    2016-03-01

    The Lévy flights' diffusive behavior is studied within the framework of the dynamical continuous time random walk (DCTRW) method, while the nonlinear friction is introduced in each step. Through the DCTRW method, Lévy random walker in each step flies by obeying the Newton's Second Law while the nonlinear friction f(v) = - γ0v - γ2v3 being considered instead of Stokes friction. It is shown that after introducing the nonlinear friction, the superdiffusive Lévy flights converges, behaves localization phenomenon with long time limit, but for the Lévy index μ = 2 case, it is still Brownian motion.

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dechant, Lawrence J.

    We examine the role of periodic sinusoidal free-stream disturbances on the inner law law-of-the-wall (log-law) for turbulent boundary layers. This model serves a surrogate for the interaction of flight vehicles with atmospheric disturbances. The approximate skin friction expression that is derived suggests that free-stream disturbances can cause enhancement of the mean skin friction. Considering the influence of grid generated free stream turbulence in the laminar sublayer/log law region (small scale/high frequency) the model recovers the well-known shear layer enhancement suggesting an overall validity for the approach. The effect on the wall shear associated with the lower frequency due to themore » passage of the vehicle through large (vehicle scale) atmospheric disturbances is likely small i.e. on the order 1% increase for turbulence intensities on the order of 2%. The increase in wall pressure fluctuation which is directly proportional to the wall shear stress is correspondingly small.« less

  8. The instantaneous rate dependence in low temperature laboratory rock friction and rock deformation experiments

    USGS Publications Warehouse

    Beeler, N.M.; Tullis, T.E.; Kronenberg, A.K.; Reinen, L.A.

    2007-01-01

    Earthquake occurrence probabilities that account for stress transfer and time-dependent failure depend on the product of the effective normal stress and a lab-derived dimensionless coefficient a. This coefficient describes the instantaneous dependence of fault strength on deformation rate, and determines the duration of precursory slip. Although an instantaneous rate dependence is observed for fracture, friction, crack growth, and low temperature plasticity in laboratory experiments, the physical origin of this effect during earthquake faulting is obscure. We examine this rate dependence in laboratory experiments on different rock types using a normalization scheme modified from one proposed by Tullis and Weeks [1987]. We compare the instantaneous rate dependence in rock friction with rate dependence measurements from higher temperature dislocation glide experiments. The same normalization scheme is used to compare rate dependence in friction to rock fracture and to low-temperature crack growth tests. For particular weak phyllosilicate minerals, the instantaneous friction rate dependence is consistent with dislocation glide. In intact rock failure tests, for each rock type considered, the instantaneous rate dependence is the same size as for friction, suggesting a common physical origin. During subcritical crack growth in strong quartzofeldspathic and carbonate rock where glide is not possible, the instantaneous rate dependence measured during failure or creep tests at high stress has long been thought to be due to crack growth; however, direct comparison between crack growth and friction tests shows poor agreement. The crack growth rate dependence appears to be higher than the rate dependence of friction and fracture by a factor of two to three for all rock types considered. Copyright 2007 by the American Geophysical Union.

  9. Chirality-dependent friction of bulk molecular solids.

    PubMed

    Yang, Dian; Cohen, Adam E

    2014-08-26

    We show that the solid-solid friction between bulk chiral molecular solids can depend on the relative chirality of the two materials. In menthol and 1-phenyl-1-butanol, heterochiral friction is smaller than homochiral friction, while in ibuprofen, heterochiral friction is larger. Chiral asymmetries in the coefficient of sliding friction vary with temperature and can be as large as 30%. In the three compounds tested, the sign of the difference between heterochiral and homochiral friction correlated with the sign of the difference in melting point between racemate (compound or conglomerate) and pure enantiomer. Menthol and ibuprofen each form a stable racemic compound, while 1-phenyl-1-butanol forms a racemic conglomerate. Thus, a difference between heterochiral and homochiral friction does not require the formation of a stable interfacial racemic compound. Measurements of chirality-dependent friction provide a unique means to distinguish the role of short-range intermolecular forces from all other sources of dissipation in the friction of bulk molecular solids.

  10. Turbulent boundary layers over nonstationary plane boundaries

    NASA Technical Reports Server (NTRS)

    Roper, A. T.; Gentry, G. L., Jr.

    1978-01-01

    Methods of predicting integral parameters and skin friction coefficients of turbulent boundary layers developing over moving ground planes were evaluated. The three methods evaluated were: relative integral parameter method; relative power law method; and modified law of the wall method.

  11. Frictional velocity-weakening in landslides on Earth and on other planetary bodies.

    PubMed

    Lucas, Antoine; Mangeney, Anne; Ampuero, Jean Paul

    2014-03-04

    One of the ultimate goals in landslide hazard assessment is to predict maximum landslide extension and velocity. Despite much work, the physical processes governing energy dissipation during these natural granular flows remain uncertain. Field observations show that large landslides travel over unexpectedly long distances, suggesting low dissipation. Numerical simulations of landslides require a small friction coefficient to reproduce the extension of their deposits. Here, based on analytical and numerical solutions for granular flows constrained by remote-sensing observations, we develop a consistent method to estimate the effective friction coefficient of landslides. This method uses a constant basal friction coefficient that reproduces the first-order landslide properties. We show that friction decreases with increasing volume or, more fundamentally, with increasing sliding velocity. Inspired by frictional weakening mechanisms thought to operate during earthquakes, we propose an empirical velocity-weakening friction law under a unifying phenomenological framework applicable to small and large landslides observed on Earth and beyond.

  12. Friction Force: From Mechanics to Thermodynamics

    ERIC Educational Resources Information Center

    Ferrari, Christian; Gruber, Christian

    2010-01-01

    We study some mechanical problems in which a friction force is acting on a system. Using the fundamental concepts of state, time evolution and energy conservation, we explain how to extend Newtonian mechanics to thermodynamics. We arrive at the two laws of thermodynamics and then apply them to investigate the time evolution and heat transfer of…

  13. Unconventional Behavior of Friction at the Nanoscale beyond Amontons' Law.

    PubMed

    Chen, Jingrun; Gao, Wang

    2017-08-05

    By means of a many-body van der Waals (vdW)-corrected density functional theory approach, the atomic-scale friction of a prototypical tip-substrate system consisting of an Si tip and a graphene substrate is studied. In a loading-sliding process, the tip-substrate distance is found to be essential for nanofrictional behavior, through determining the competition between vdW contributions and electronic contributions. As the tip approaches the substrate, this competition results in a smooth transition of normal forces from attraction to repulsion, and the friction coefficient in turn undergoes a sign change from negative to positive with possible giant magnitude and strong anisotropy. The loading-sliding process does not introduce any chemical modification of the underlying system. These findings reveal the boundary of validity of Amontons' law, unify negative and giant friction coefficients, rationalize the experimentally observed anisotropy of nanofriction, and are universal when vdW interactions are crucial, all of which are helpful to establish a comprehensive picture of nanofriction. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Friction law and hysteresis in granular materials

    PubMed Central

    Wyart, M.

    2017-01-01

    The macroscopic friction of particulate materials often weakens as the flow rate is increased, leading to potentially disastrous intermittent phenomena including earthquakes and landslides. We theoretically and numerically study this phenomenon in simple granular materials. We show that velocity weakening, corresponding to a nonmonotonic behavior in the friction law, μ(I), is present even if the dynamic and static microscopic friction coefficients are identical, but disappears for softer particles. We argue that this instability is induced by endogenous acoustic noise, which tends to make contacts slide, leading to faster flow and increased noise. We show that soft spots, or excitable regions in the materials, correspond to rolling contacts that are about to slide, whose density is described by a nontrivial exponent θs. We build a microscopic theory for the nonmonotonicity of μ(I), which also predicts the scaling behavior of acoustic noise, the fraction of sliding contacts χ, and the sliding velocity, in terms of θs. Surprisingly, these quantities have no limit when particles become infinitely hard, as confirmed numerically. Our analysis rationalizes previously unexplained observations and makes experimentally testable predictions. PMID:28811373

  15. Friction law and hysteresis in granular materials

    NASA Astrophysics Data System (ADS)

    DeGiuli, E.; Wyart, M.

    2017-08-01

    The macroscopic friction of particulate materials often weakens as the flow rate is increased, leading to potentially disastrous intermittent phenomena including earthquakes and landslides. We theoretically and numerically study this phenomenon in simple granular materials. We show that velocity weakening, corresponding to a nonmonotonic behavior in the friction law, μ(I), is present even if the dynamic and static microscopic friction coefficients are identical, but disappears for softer particles. We argue that this instability is induced by endogenous acoustic noise, which tends to make contacts slide, leading to faster flow and increased noise. We show that soft spots, or excitable regions in the materials, correspond to rolling contacts that are about to slide, whose density is described by a nontrivial exponent θs. We build a microscopic theory for the nonmonotonicity of μ(I), which also predicts the scaling behavior of acoustic noise, the fraction of sliding contacts χ, and the sliding velocity, in terms of θs. Surprisingly, these quantities have no limit when particles become infinitely hard, as confirmed numerically. Our analysis rationalizes previously unexplained observations and makes experimentally testable predictions.

  16. Geological and mechanical properties on the 3-D fault patch of the rapid creeping Chihshang Fault: a plate suture between Luzon arc and Eurasia in eastern Taiwan

    NASA Astrophysics Data System (ADS)

    Lee, J. C.; Mu, C. H.; Huang, W. J.; Liu, Z. Y. C.; Shirzaei, M.

    2017-12-01

    The 35-km-long Chihshang Fault is a rapidly creeping thrust at plate suture between the converging Philippine and Eurasian plates in eastern Taiwan. We combined geological investigation, geodetic data, seismological information, and a rate-dependant friction model, to illustrate the mechanical frictional properties and their variations along the strike and the depth (30-km-deep) of the fault. During the interseismic period, the Chihshang Fault is characterized by three different slip behaviours at different depths: 1) abundant micro-seismicity and semi-continuous rapid slip at the depth of 10-20 km seismogenic zone; 2) visco-elastic aseismic slip zone beneath 25 km; 3) seasonal locked/creep switch at depth of 0-2 km. Using elastic dislocation model, 1-D diffusion model, Coulomb stress criterion, and rate-dependent frictional law, we simulate the surface creep curves from the creep meters data. The result shows a rate-strengthening zone with positive frictional property (a-b) in the upper 500 meters of fault, which appears to be locked during the dry season. We tend to interpret it as a result of 300-500 m thick of unconsolidated gravels layers in the footwall of the Chihshang Fault. We also implement an inverse dynamic modeling scheme to estimate the frictional parameter () in depths by taking into account pre-seismic stress and coulomb stress changes associated with co- and post-seismic deformation of the 2003 Mw 6.5 Chengkung earthquake. Model parameters are determined from fitting the transient post-seismic geodetic signal measured at 12 continuous GPS stations. We apply a non-linear optimization algorithm, Genetic Algorithm (GA), to search for the optimum parameters. The optimum is 1.4 ×10-2 along the shallow part of the fault (0-10 km depth) and 1.2 × 10-2 in 22-28 km depth. The inferred frictional parameters are consistent with the laboratory measurements on clay rich fault zone gouges comparable to the Lichi mélange, considering the main rock composition of the Chihshang fault. Our results indicate a possibly strong influence from the surface cover of a few hundreds meter thick unconsolidated deposits (i.e., late Quaternary gravel) and the clay rich fault gouge (i.e. the Lichi Melange) on frictional properties.

  17. International Congress NONLINEAR DYNAMICAL ANALYSIS 2007 dedicated to the 150th Anniversary of Academician A. M. Lyapunov

    DTIC Science & Technology

    2010-05-14

    and Coulomb friction. We consider a simple mass spring system submitted to an external force and constrained to remain in a half -space. The contact of... the mass with the boundary of the half -space is assumed to hold with Coulomb friction. The unilateral contact and Coulomb friction laws are strict...Lyapunov frequently discussed this problem with Henry Poincare (1854-1912) and George Darwin (1845 - 1912). They both considered the "pear-form" figure as

  18. Sliding friction between polymer surfaces: A molecular interpretation

    NASA Astrophysics Data System (ADS)

    Allegra, Giuseppe; Raos, Guido

    2006-04-01

    For two contacting rigid bodies, the friction force F is proportional to the normal load and independent of the macroscopic contact area and relative velocity V (Amonton's law). With two mutually sliding polymer samples, the surface irregularities transmit deformation to the underlying material. Energy loss along the deformation cycles is responsible for the friction force, which now appears to depend strongly on V [see, e.g., N. Maeda et al., Science 297, 379 (2002)]. We base our theoretical interpretation on the assumption that polymer chains are mainly subjected to oscillatory "reptation" along their "tubes." At high deformation frequencies—i.e., with a large sliding velocity V—the internal viscosity due to the rotational energy barriers around chain bonds hinders intramolecular mobility. As a result, energy dissipation and the correlated friction force strongly diminish at large V. Derived from a linear differential equation for chain dynamics, our results are basically consistent with the experimental data by Maeda et al. [Science 297, 379 (2002)] on modified polystyrene. Although the bulk polymer is below Tg, we regard the first few chain layers below the surface to be in the liquid state. In particular, the observed maximum of F vs V is consistent with physically reasonable values of the molecular parameters. As a general result, the ratio F /V is a steadily decreasing function of V, tending to V-2 for large velocities. We evaluate a much smaller friction for a cross-linked polymer under the assumption that the junctions are effectively immobile, also in agreement with the experimental results of Maeda et al. [Science 297, 379 (2002)].

  19. Study of structure defect interactions in aluminum by the acoustic method. [internal friction in pure aluminum

    NASA Technical Reports Server (NTRS)

    Nicolaescu, I. I.

    1974-01-01

    Using echo pulse and resonance rod methods, internal friction in pure aluminum was studied as a function of frequency, hardening temperature, time (internal friction relaxation) and impurity content. These studies led to the conclusion that internal friction in these materials depends strongly on dislocation structure and on elastic interactions between structure defects. It was found experimentally that internal friction relaxation depends on the cooling rate and on the impurity content. Some parameters of the dislocation structure and of the diffusion process were determined. It is shown that the dislocated dependence of internal friction can be used as a method of nondestructive testing of the impurity content of high-purity materials.

  20. Flow friction of the turbulent coolant flow in cryogenic porous cables

    NASA Technical Reports Server (NTRS)

    Hendricks, R. C.; Yeroshenko, V. M.; Zaichik, L. I.; Yanovsky, L. S.

    1979-01-01

    Considered are cryogenic power transmission cables with porous cores. Calculations of the turbulent coolant flow with injection or suction through the porous wall are presented within the framework of a two-layer model. Universal velocity profiles were obtained for the viscous sublayer and flow core. Integrating the velocity profile, the law of flow friction in the pipe with injection has been derived for the case when there is a tangential injection velocity component. The effect of tangential velocity on the relative law of flow friction is analyzed. The applicability of the Prandtl model to the problem under study is discussed. It is shown that the error due to the acceptance of the model increases with the injection parameter and at lower Reynolds numbers; under these circumstances, the influence of convective terms in the turbulent energy equation on the mechanism of turbulent transport should be taken into account.

  1. Friction of hard surfaces and its application in earthquakes and rock slope stability

    NASA Astrophysics Data System (ADS)

    Sinha, Nitish; Singh, Arun K.; Singh, Trilok N.

    2018-05-01

    In this article, we discuss the friction models for hard surfaces and their applications in earth sciences. The rate and state friction (RSF) model, which is basically modified form of the classical Amontons-Coulomb friction laws, is widely used for explaining the crustal earthquakes and the rock slope failures. Yet the RSF model has further been modified by considering the role of temperature at the sliding interface known as the rate, state and temperature friction (RSTF) model. Further, if the pore pressure is also taken into account then it is stated as the rate, state, temperature and pore pressure friction (RSTPF) model. All the RSF models predict a critical stiffness as well as a critical velocity at which sliding behavior becomes stable/unstable. The friction models are also used for predicting time of failure of the rock mass on an inclined plane. Finally, the limitation and possibilities of the proposed friction models are also highlighted.

  2. Microphysically derived expressions for rate-and-state friction and fault stability parameters

    NASA Astrophysics Data System (ADS)

    Chen, Jianye; Niemeijer, Andre; Spiers, Christopher

    2017-04-01

    Rate-and-state friction (RSF) laws and associated parameters are extensively applied to fault mechanics, mainly on an empirical basis with a limited understanding of the underlying physical mechanisms. We recently established a general microphysical model [Chen and Spiers, 2016], for describing both steady-state and transient frictional behavior of any granular fault gouge material undergoing deformation by granular flow plus an arbitrary creep mechanism at grain contacts, such as pressure solution. We further showed that the model is able to reproduce typical experimental frictional results, namely "velocity stepping" and "slide-hold-slide" sequences, in satisfactory agreement with the main features and trends observed. Here, we extend our model, which we explored only numerically thus far, to obtain analytical solutions for the classical rate and state friction parameters from a purely microphysical modelling basis. By analytically solving the constitutive equations of the model under various boundary conditions, physically meaningful, theoretical expressions for the RSF parameters, i.e. a, b and Dc, are obtained. We also apply linear stability analysis to a spring-slider system, describing interface friction using our model, to yield analytical expressions of the critical stiffness (Kc) and critical recurrence wavelength (Wc) of the system. The values of a , b and Dc, as well as Kc and Wc, predicted by these expressions agree well with the numerical modeling results and acceptably with values obtained from experiments, on calcite for instance. Inserting the parameters obtained into classical RSF laws (slowness and slip laws) and conducting forward modelling gives simulated friction behavior that is fully consistent with the direct predictions of our numerically implemented model. Numerical tests with friction obeying our model show that the slip stability of fault motion exhibits a transition from stable sliding, via self-sustained oscillations, to stick slips with decreasing elastic stiffness, decreasing loading rate, and increasing normal stress, which is fully consistent with our linear stability analysis and also with previous RSF models that employed constant values of the RSF parameters. Importantly, our analytical expressions for. a, b, Dc, Kc and Wc, are functions of the internal microstructure of the fault (porosity, grain size and shear zone thickness), the material properties of the fault gouge (e.g. creep law parameters like activation energy, stress sensitivity, grain size sensitivity), and the ambient conditions the fault is subjected to (temperature and normal stress). The expressions obtained thus have clear physical meaning allowing a more meaningful extrapolation to natural conditions. On the basis of these physics-based expressions, seismological implications for slip on natural faults (e.g. subduction zone interfaces, faults in carbonate terrains) are discussed. Reference Chen, J., and C. J. Spiers (2016), Rate and state frictional and healing behavior of carbonate fault gouge explained using microphysical model, J. Geophys. Res., 121, doi:10.1002/2016JB013470.

  3. A microphysical model explains rate-and-state friction

    NASA Astrophysics Data System (ADS)

    Chen, Jianye; Spiers, Christopher J.

    2015-04-01

    The rate-and-state friction (RSF) laws were originally developed as a phenomenological description of the frictional behavior observed in lab experiments. In previous studies, the empirical RSF laws have been extensively and quite successfully applied to fault mechanisms. However, these laws can not readily be envisioned in terms of the underlying physics. There are several critical discrepancies between seismological constraints on RSF behavior associated with earthquakes and lab-derived RSF parameters, in particular regarding the static stress drop and characteristic slip distance associated with seismic events. Moreover, lab friction studies can address only limited fault topographies, displacements, experimental durations and P-T conditions, which means that scale issues, and especially processes like dilatation and fluid-rock interaction, cannot be fully taken into account. Without a physical basis accounting for such effects, extrapolation of lab-derived RSF data to nature involves significant, often unknown uncertainties. In order to more reliably apply experimental results to natural fault zones, and notably to extrapolate lab data beyond laboratory pressure, temperature and velocity conditions, an understanding of the microphysical mechanisms governing fault frictional behavior is required. Here, following some pioneering efforts (e.g. Niemeijer and Spiers, 2007; Den Hartog and Spiers, 2014), a mechanism-based microphysical model is developed for describing the frictional behavior of carbonate fault gouge, assuming that the frictional behavior seen in lab experiments is controlled by competing processes of intergranular slip versus contact creep by pressure solution. The model basically consists of two governing equations derived from energy/entropy balance considerations and the kinematic relations that apply to a granular fault gouge undergoing shear and dilation/compaction. These two equations can be written as ˙τ/K = Vimp- Lt[λ˙γsbps +(1- λ)˙γbpuslk]- Ltλ˙γsbps ------σn------- σn(μbar+ 2tanψ) - τ(1 - barμtanψ) (1) τ(1 - barμtanψ) - σ (μbar+ tanψ) φ˙sb = --------n-----˙γsbps(1- φsb) σn(barμ+ 2tan ψ)- τ(1- barμtan ψ) (2) They describe the evolution of shear stress (τ) and shear band porosity (φsb) in response to any boundary conditions imposed. By solving these two controlling equations, and using standard creep equations to describe gouge compaction by pressure solution, typical lab-frictional tests were simulated, namely 'velocity stepping' and 'slide-hold-slide' test sequences, using velocity histories and environmental conditions employed in the experiments summarized above. The modeling results capture all of the main features and trends seen in the experimental data, including both steady-state and transient aspects of the observed behavior, with reasonable quantitative agreement. The model is the first mechanism-based model that I am aware of that can reproduce RSF-like behavior without recourse to the RSF law. Since it is microphysically based, the approach adopted should help provide a much improved framework for extrapolating friction data to natural conditions.

  4. Disk in a groove with friction: An analysis of static equilibrium and indeterminacy

    NASA Astrophysics Data System (ADS)

    Donolato, Cesare

    2018-05-01

    This note studies the statics of a rigid disk placed in a V-shaped groove with frictional walls and subjected to gravity and a torque. The two-dimensional equilibrium problem is formulated in terms of the angles that contact forces form with the normal to the walls. This approach leads to a single trigonometric equation in two variables whose domain is determined by Coulomb's law of friction. The properties of solutions (existence, uniqueness, or indeterminacy) as functions of groove angle, friction coefficient and applied torque are derived by a simple geometric representation. The results modify some of the conclusions by other authors on the same problem.

  5. Effect of velocity-dependent friction on multiple-vehicle collisions in traffic flow

    NASA Astrophysics Data System (ADS)

    Nagatani, Takashi

    2017-01-01

    We present the dynamic model for the multiple-vehicle collisions to take into account the velocity-dependent friction force. We study the effect of the velocity-dependent friction on the chain-reaction crash on a road. In the traffic situation, drivers brake according to taillights of the forward vehicle and the friction force depends highly on the vehicular speed. The first crash may induce more collisions. We investigate whether or not the first collision induces the multiple-vehicle collisions, numerically and analytically. The dynamic transitions occur from no collisions, through a single collision and double collisions, to multiple collisions with decreasing the headway. We explore the effect of the velocity-dependent friction on the dynamic transitions and the region maps in the multiple-vehicle collisions.

  6. Internal friction in enzyme reactions.

    PubMed

    Rauscher, Anna; Derényi, Imre; Gráf, László; Málnási-Csizmadia, András

    2013-01-01

    The empirical concept of internal friction was introduced 20 years ago. This review summarizes the results of experimental and theoretical studies that help to uncover the nature of internal friction. After the history of the concept, we describe the experimental challenges in measuring and interpreting internal friction based on the viscosity dependence of enzyme reactions. We also present speculations about the structural background of this viscosity dependence. Finally, some models about the relationship between the energy landscape and internal friction are outlined. Alternative concepts regarding the viscosity dependence of enzyme reactions are also discussed. Copyright © 2012 International Union of Biochemistry and Molecular Biology, Inc.

  7. Work-Energy Theorem and Friction Forces: Two Experiments

    ERIC Educational Resources Information Center

    Bonanno, A.; Bozzo, G.; Grandinetti, M.; Sapia, P.

    2016-01-01

    Several studies have showed the subsistence, even in students enrolled in scientific degree courses, of spontaneous ideas regarding the motion of bodies that conflict with Newton's laws. One of the causes is related to the intuitive preconceptions that students have about the role of friction as a force. In fact, in real world novices do not…

  8. Calculation of the Pitot tube correction factor for Newtonian and non-Newtonian fluids.

    PubMed

    Etemad, S Gh; Thibault, J; Hashemabadi, S H

    2003-10-01

    This paper presents the numerical investigation performed to calculate the correction factor for Pitot tubes. The purely viscous non-Newtonian fluids with the power-law model constitutive equation were considered. It was shown that the power-law index, the Reynolds number, and the distance between the impact and static tubes have a major influence on the Pitot tube correction factor. The problem was solved for a wide range of these parameters. It was shown that employing Bernoulli's equation could lead to large errors, which depend on the magnitude of the kinetic energy and energy friction loss terms. A neural network model was used to correlate the correction factor of a Pitot tube as a function of these three parameters. This correlation is valid for most Newtonian, pseudoplastic, and dilatant fluids at low Reynolds number.

  9. Intruder Dynamic Response in Particulate Media

    NASA Astrophysics Data System (ADS)

    Warnakulasooriya, Niranjan

    Many everyday materials, broadly classified as "particulate media", are at the heart of many industries and natural phenomena. Examples range from the storage and transport of bulk foods and aggregates such as grains and coal; the processing of pharmaceutical pills and the grinding coffee beans; to the mitigation and cost control of life-threatening events like landslides, earthquakes, and silo failures. The common theme connecting all these phenomena is the mechanical stability of the granular material that arises from interactions at the microscopic level of the grain scale, and how this influences collective properties at the bulk, macroscopic scale. In this dissertation, we present an extensive study of the mechanical properties of a physics-based model of granular particle systems in two dimensions using computer simulations. Specifically, we study the dynamics of an intruder particle that is driven through a dense, disordered packing of particles. This practical technique has the benefit of being amenable to experimental application which we expect will motivate future studies in the area. We find the 'microrheology' of the intruder can be traced back to the properties of underlying, original, unperturbed packing, thereby providing a method to characterize the mechanical properties of the material that may otherwise be unavailable. To perform this study, we initially created mechanically stable granular packings of bidisperse discs, for several orders of magnitude of particle friction coefficient mu, over a range in packing densities, or packing fractions φ, in the vicinity of the critical packing fraction φc, the density below which the packing is no longer stable. This range in φ translates to a range in packing pressures P, spanning several orders of magnitude down to the P → 0 limit. For each packing, we apply a driving force to the intruder probe particle and find the critical force Fc, the minimum force required to induce motion of the probe as it is dragged through the system. We find that Fc(mu) for the different friction packings, scales with the packing pressure P as a power-law according to:Fc(mu) - Fo cmu) Pbeta(mu). The power-law exponent, beta(mu) becomes friction dependent, but approaches the value, beta(mu → 0) = 1.0 +/- 0.1 in the zero-friction limit. Focmu) is the value of F c in the limit P → 0, that similarly depends on the friction coefficient as, Focmu) → 0, when mu → infinity. We use this property of Fo cmu) to characterize the mechanical properties of different frictional packings. Another focus of this study is the 'microrheology' of the intruder through force-velocity dependencies in mu = 0 systems at different P. For this case, the intruder is driven through the packing at a steady-state velocity , for driving forces above the critical force FD > Fc. We introduce a scaling function that collapses the force-velocity curves onto a single master curve. This power law scaling of the collapsed curve as P → 0 is reminiscent of a continuous phase transition, reinforcing the notion that the mechanical state of the system exhibits critical-like features. Furthermore, we also find an alternative scaling collapse of the form: - (FD - Fc) alpha, where represents a constant velocity term in the limit of small excess forcing, and the critical force Fc now appears as fitting parameter that matches our explicit calculations. Thence, we are able to extract Fc from a driven probe without a-priori having any knowledge about the state of the system. To further investigate the transition of the system through the different intruder force perturbations, we implemented a coarse graining (CG) technique that transforms our discrete particle interaction force information into continuous stress fields. Through this methodology, we are able to calculate the kinetic and contact stresses as the intruder is driven through the system. We are able to qualify and quantify the directional and distance dependencies of the stress response of the packing due to the driven probe via radial and azimuthal stress calculations. In particular, we find how the stress response not only captures the wake region behind the driven intruder, but also how the stress decays in the forward direction of the intruder, which follows universal behavior.

  10. [On Two Opposing (Bio)surfaces as Comprehended in Terms of an Extension of the Coulomb-Amontons Law of Friction, with Its Virtual Usefulness for Biotribology in Nanoscale].

    PubMed

    Gadomski, A; Hladyszowski, J

    2015-01-01

    An extension of the Coulomb-Amontons law is proposed in terms of an interaction-detail involving renormalization (simplified) n-th level scheme. The coefficient of friction is obtained in a general exponential (nonlinear) form, characteristic of virtually infinite (or, many body) level of the interaction map. Yet, its application for a hydration repulsion bilayered system, prone to facilitated lubrication, is taken as linearly confined, albeit with an inclusion of a decisive repelling force/pressure factor. Some perspectives toward related systems, fairly outside biotribological issues, have been also addressed.

  11. Non-Markovianity in atom-surface dispersion forces

    DOE PAGES

    Intravaia, F.; Behunin, R. O.; Henkel, C.; ...

    2016-10-18

    Here, we discuss the failure of the Markov approximation in the description of atom-surface fluctuation-induced interactions, both in equilibrium (Casimir-Polder forces) and out of equilibrium (quantum friction). Using general theoretical arguments, we show that the Markov approximation can lead to erroneous predictions of such phenomena with regard to both strength and functional dependencies on system parameters. Particularly, we show that the long-time power-law tails of two-time dipole correlations and their corresponding low-frequency behavior, neglected in the Markovian limit, affect the prediction of the force. These findings highlight the importance of non-Markovian effects in dispersion interactions.

  12. Non-Markovianity in atom-surface dispersion forces

    NASA Astrophysics Data System (ADS)

    Intravaia, F.; Behunin, R. O.; Henkel, C.; Busch, K.; Dalvit, D. A. R.

    2016-10-01

    We discuss the failure of the Markov approximation in the description of atom-surface fluctuation-induced interactions, both in equilibrium (Casimir-Polder forces) and out of equilibrium (quantum friction). Using general theoretical arguments, we show that the Markov approximation can lead to erroneous predictions of such phenomena with regard to both strength and functional dependencies on system parameters. In particular, we show that the long-time power-law tails of two-time dipole correlations and their corresponding low-frequency behavior, neglected in the Markovian limit, affect the prediction of the force. Our findings highlight the importance of non-Markovian effects in dispersion interactions.

  13. Mechanical Sensors and Plastic Syringes to Verify the Gas Laws without Neglecting Friction

    ERIC Educational Resources Information Center

    Onorato, P.; Mascheretti, P.; De Ambrosis, A.

    2010-01-01

    Two experiments are proposed to study Boyle's law and the pressure law in a school laboratory. The peculiar feature of the experiments is that the value of the pressure and of the volume are obtained respectively by means of a force and a position sensor, thus allowing students to connect, in an experimental context, mechanics variables, such as…

  14. Modulation of Folding Internal Friction by Local and Global Barrier Heights.

    PubMed

    Zheng, Wenwei; de Sancho, David; Best, Robert B

    2016-03-17

    Recent experiments have revealed an unexpected deviation from a first power dependence of protein relaxation times on solvent viscosity, an effect that has been attributed to "internal friction". One clear source of internal friction in protein dynamics is the isomerization of dihedral angles. A key outstanding question is whether the global folding barrier height influences the measured internal friction, based on the observation that the folding rates of fast-folding proteins, with smaller folding free energy barriers, tend to exhibit larger internal friction. Here, by studying two alanine-based peptides, we find that systematic variation of global folding barrier heights has little effect on the internal friction for folding rates. On the other hand, increasing local torsion angle barriers leads to increased internal friction, which is consistent with solvent memory effects being the origin of the viscosity dependence. Thus, it appears that local torsion transitions determine the viscosity dependence of the diffusion coefficient on the global coordinate and, in turn, internal friction effects on the folding rate.

  15. A dynamic unilateral contact problem with adhesion and friction in viscoelasticity

    NASA Astrophysics Data System (ADS)

    Cocou, Marius; Schryve, Mathieu; Raous, Michel

    2010-08-01

    The aim of this paper is to study an interaction law coupling recoverable adhesion, friction and unilateral contact between two viscoelastic bodies of Kelvin-Voigt type. A dynamic contact problem with adhesion and nonlocal friction is considered and its variational formulation is written as the coupling between an implicit variational inequality and a parabolic variational inequality describing the evolution of the intensity of adhesion. The existence and approximation of variational solutions are analysed, based on a penalty method, some abstract results and compactness properties. Finally, some numerical examples are presented.

  16. Evaluation and Description of Friction between an Electro-Deposited Coating and a Ceramic Ball under Fretting Condition

    PubMed Central

    Kim, Kyungmok

    2015-01-01

    This article describes fretting behavior of zirconia and silicon nitride balls on an electro-deposited coating. Fretting tests are performed using a ball-on-flat configuration. The evolution of the kinetic friction coefficient is determined, along with slip ratio. Experimental results show that the steady-state friction coefficient between ceramic balls (Si3N4 and ZrO2) and an electro-deposited coating is about 0.06, lower than the value between AISI 52100 ball and the coating. After a steady-state sliding, the transition of the friction coefficient is varied with a ball. The friction coefficient for ZrO2 balls became a critical value after higher fretting cycles than those for Si3N4 and AISI 52100 balls. In addition, it is identified that two parameters can describe the transition of the friction coefficient. Finally, the evolution of the friction coefficient is expressed as an exponential or a power-law form. PMID:28793471

  17. Fluctuation-induced transport of two coupled particles: effect of the interparticle interaction.

    PubMed

    Makhnovskii, Yurii A; Rozenbaum, Viktor M; Sheu, Sheh-Yi; Yang, Dah-Yen; Trakhtenberg, Leonid I; Lin, Sheng Hsien

    2014-06-07

    We consider a system of two coupled particles fluctuating between two states, with different interparticle interaction potentials and particle friction coefficients. An external action drives the interstate transitions that induces reciprocating motion along the internal coordinate x (the interparticle distance). The system moves unidirectionally due to rectification of the internal motion by asymmetric friction fluctuations and thus operates as a dimeric motor that converts input energy into net movement. We focus on how the law of interaction between the particles affects the dimer transport and, in particular, the role of thermal noise in the motion inducing mechanism. It is argued that if the interaction potential behaves at large distances as x(α), depending on the value of the exponent α, the thermal noise plays a constructive (α > 2), neutral (α = 2), or destructive (α < 2) role. In the case of α = 1, corresponding piecewise linear potential profiles, an exact solution is obtained and discussed in detail.

  18. Stress-dependent grain size evolution of nanocrystalline Ni-W and its impact on friction behavior

    DOE PAGES

    Argibay, N.; Furnish, T. A.; Boyce, B. L.; ...

    2016-06-07

    The friction behavior of ultra-nanocrystalline Ni-W coatings was investigated. A critical stress threshold was identified below which friction remained low, and above which a time-dependent evolution toward higher friction behavior occurred. Founded on established plasticity models we propose a correlation between surface grain size and applied stress that can be used to predict the critical stress separating the two friction regimes. Lastly, this interpretation of plasticity models suggests that macro-scale low and high friction regimes are respectively associated with the nano-scale mechanisms of grain boundary and dislocation-mediated plasticity.

  19. Temperature dependence of internal friction in enzyme reactions.

    PubMed

    Rauscher, Anna Á; Simon, Zoltán; Szöllosi, Gergely J; Gráf, László; Derényi, Imre; Malnasi-Csizmadia, Andras

    2011-08-01

    Our aim was to elucidate the physical background of internal friction of enzyme reactions by investigating the temperature dependence of internal viscosity. By rapid transient kinetic methods, we directly measured the rate constant of trypsin 4 activation, which is an interdomain conformational rearrangement, as a function of temperature and solvent viscosity. We found that the apparent internal viscosity shows an Arrhenius-like temperature dependence, which can be characterized by the activation energy of internal friction. Glycine and alanine mutations were introduced at a single position of the hinge of the interdomain region to evaluate how the flexibility of the hinge affects internal friction. We found that the apparent activation energies of the conformational change and the internal friction are interconvertible parameters depending on the protein flexibility. The more flexible a protein was, the greater proportion of the total activation energy of the reaction was observed as the apparent activation energy of internal friction. Based on the coupling of the internal and external movements of the protein during its conformational change, we constructed a model that quantitatively relates activation energy, internal friction, and protein flexibility.

  20. Breakdown of the Coulomb friction law in TiC/a-C:H nanocomposite coatings

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pei, Y. T.; Huizenga, P.; Galvan, D.

    2006-12-01

    Advanced TiC/a-C:H nanocomposite coatings have been produced via reactive deposition in a closed-field unbalanced magnetron sputtering system (Hauzer HTC-1000 or HTC 1200). In this paper, we report on the tribological behavior of TiC/a-C:H nanocomposite coatings in which ultralow friction is tailored with superior wear resistance, two properties often difficult to achieve simultaneously. Tribotests have been performed at room temperature with a ball-on-disk configuration. In situ monitoring of the wear depth of the coated disk together with the wear height of the ball counterpart at nanometer scale reveals that the self-lubricating effects are induced by the formation of transfer films onmore » the surface of the ball counterpart. A remarkable finding is a breakdown of the Coulomb friction law in the TiC/a-C:H nanocomposite coatings. In addition, the coefficient of friction of TiC/a-C:H nanocomposite coatings decreases with decreasing relative humidity. A superior wear resistance of the coated disk at a level of 10{sup -17} m{sup 3}/N m (per lap) has been achieved under the condition of superlow friction and high toughness, both of which require fine TiC nanoparticles (e.g., 2 nm) and a wide matrix separation that must be comparable to the dimensions of the nanoparticles.« less

  1. Steady and transient sliding under rate-and-state friction

    NASA Astrophysics Data System (ADS)

    Putelat, Thibaut; Dawes, Jonathan H. P.

    2015-05-01

    The physics of dry friction is often modelled by assuming that static and kinetic frictional forces can be represented by a pair of coefficients usually referred to as μs and μk, respectively. In this paper we re-examine this discontinuous dichotomy and relate it quantitatively to the more general, and smooth, framework of rate-and-state friction. This is important because it enables us to link the ideas behind the widely used static and dynamic coefficients to the more complex concepts that lie behind the rate-and-state framework. Further, we introduce a generic framework for rate-and-state friction that unifies different approaches found in the literature. We consider specific dynamical models for the motion of a rigid block sliding on an inclined surface. In the Coulomb model with constant dynamic friction coefficient, sliding at constant velocity is not possible. In the rate-and-state formalism steady sliding states exist, and analysing their existence and stability enables us to show that the static friction coefficient μs should be interpreted as the local maximum at very small slip rates of the steady state rate-and-state friction law. Next, we revisit the often-cited experiments of Rabinowicz (J. Appl. Phys., 22:1373-1379, 1951). Rabinowicz further developed the idea of static and kinetic friction by proposing that the friction coefficient maintains its higher and static value μs over a persistence length before dropping to the value μk. We show that there is a natural identification of the persistence length with the distance that the block slips as measured along the stable manifold of the saddle point equilibrium in the phase space of the rate-and-state dynamics. This enables us explicitly to define μs in terms of the rate-and-state variables and hence link Rabinowicz's ideas to rate-and-state friction laws. This stable manifold naturally separates two basins of attraction in the phase space: initial conditions in the first one lead to the block eventually stopping, while in the second basin of attraction the sliding motion continues indefinitely. We show that a second definition of μs is possible, compatible with the first one, as the weighted average of the rate-and-state friction coefficient over the time the block is in motion.

  2. Predicting orogenic wedge styles as a function of analogue erosion law and material softening

    NASA Astrophysics Data System (ADS)

    Mary, Baptiste C. L.; Maillot, Bertrand; Leroy, Yves M.

    2013-10-01

    The evolution of a compressive frictional wedge on a weak, frictional and planar décollement, subjected to frontal accretion, is predicted with a two step method called sequential limit analysis. The first step consists in finding, with the kinematic approach of limit analysis, the length of the active décollement and the dips of the emerging ramp and of the conjugate shear plane composing the emerging thrust fold. The second step leads to a modification of the geometry, first, because of the thrust fold development due to compression and, second, because of erosion. Erosion consists in removing periodically any material above a fictitious line at a selected slope, as done in analogue experiments. This application of sequential limit analysis generalizes the critical Coulomb wedge theory since it follows the internal deformation development. With constant frictional properties, the deformation is mostly diffuse, a succession of thrust folds being activated so that the topographic slope reaches exactly the theoretical, critical value. Frictional weakening on the ramps results in a deformation style composed of thrust sheets and horses. Applying an erosion slope at the critical topographic value leads to exhumation in the frontal, central, or rear region of the wedge depending on the erosion period and the weakening. Erosion at slopes slightly above or below the critical value results in exhumation toward the foreland or the hinterland, respectively, regardless of the erosion period. Exhumation is associated with duplexes, imbricate fans, antiformal stacks, and major backthrusting. Comparisons with sandbox experiments confirm that the thickness, dips, vergence, and exhumation of thrust sheets can be reproduced with friction and erosion parameters within realistic ranges of values.

  3. Effect of thermal pressurization on dynamic rupture propagation under depth-dependent stress

    NASA Astrophysics Data System (ADS)

    Urata, Y.; Kuge, K.; Kase, Y.

    2009-12-01

    Fluid and pore pressure evolution can affect dynamic propagation of earthquake ruptures owing to thermal pressurization (e.g., Mase and Smith, 1985). We investigate dynamic rupture propagation with thermal pressurization on a fault subjected to depth-dependent stress, on the basis of 3-D numerical simulations for spontaneous dynamic ruptures. We put a vertical strike-slip rectangular fault in a semi-infinite, homogenous, and elastic medium. The length and width of the fault are 8 and 3 km, respectively. We assume a depth-dependent stress estimated by Yamashita et al. (2004). The numerical algorithm is based on the finite-difference method by Kase and Kuge (2001). A rupture is initiated by increasing shear stress in a small patch at the bottom of the fault, and then proceeds spontaneously, governed by a slip-weakening law with the Coulomb failure criteria. Coefficients of friction and Dc are homogeneous on the fault. On a fault with thermal pressurization, we allow effective normal stress to vary with pore pressure change due to frictional heating by the formulation of Bizzarri and Cocco (2006). When thermal pressurization does not work, tractions drop in the same way everywhere and rupture velocity is subshear except near the free surface. Due to thermal pressurization, dynamic friction on the fault decreases and is heterogeneous not only vertically but horizontally, slip increases, and rupture velocity along the strike direction becomes supershear. As a result, plural peaks of final slip appear, as observed in the case of undrained dip-slip fault by Urata et al. (2008). We found in this study that the early stage of rupture growth under the depth-dependent stress is affected by the location of an initial crack. When a rupture is initiated at the center of the fault without thermal pressurization, the rupture cannot propagate and terminates. Thermal pressurization can help such a powerless rupture to keep propagating.

  4. The effect of friction in coulombian damper

    NASA Astrophysics Data System (ADS)

    Wahad, H. S.; Tudor, A.; Vlase, M.; Cerbu, N.; Subhi, K. A.

    2017-02-01

    The study aimed to analyze the damping phenomenon in a system with variable friction, Stribeck type. Shock absorbers with limit and dry friction, is called coulombian shock-absorbers. The physical damping vibration phenomenon, in equipment, is based on friction between the cushioning gasket and the output regulator of the shock-absorber. Friction between them can be dry, limit, mixture or fluid. The friction is depending on the contact pressure and lubricant presence. It is defined dimensionless form for the Striebeck curve (µ friction coefficient - sliding speed v). The friction may damp a vibratory movement or can maintain it (self-vibration), depending on the µ with v (it can increase / decrease or it can be relative constant). The solutions of differential equation of movement are obtained for some work condition of one damper for automatic washing machine. The friction force can transfer partial or total energy or generates excitation energy in damper. The damping efficiency is defined and is determined analytical for the constant friction coefficient and for the parabolic friction coefficient.

  5. Bioinspired orientation-dependent friction.

    PubMed

    Xue, Longjian; Iturri, Jagoba; Kappl, Michael; Butt, Hans-Jürgen; del Campo, Aránzazu

    2014-09-23

    Spatular terminals on the toe pads of a gecko play an important role in directional adhesion and friction required for reversible attachment. Inspired by the toe pad design of a gecko, we study friction of polydimethylsiloxane (PDMS) micropillars terminated with asymmetric (spatular-shaped) overhangs. Friction forces in the direction of and against the spatular end were evaluated and compared to friction forces on symmetric T-shaped pillars and pillars without overhangs. The shape of friction curves and the values of friction forces on spatula-terminated pillars were orientation-dependent. Kinetic friction forces were enhanced when shearing against the spatular end, while static friction was stronger in the direction toward the spatular end. The overall friction force was higher in the direction against the spatula end. The maximum value was limited by the mechanical stability of the overhangs during shear. The aspect ratio of the pillar had a strong influence on the magnitude of the friction force, and its contribution surpassed and masked that of the spatular tip for aspect ratios of >2.

  6. Solvent friction effects propagate over the entire protein molecule through low-frequency collective modes.

    PubMed

    Moritsugu, Kei; Kidera, Akinori; Smith, Jeremy C

    2014-07-24

    Protein solvation dynamics has been investigated using atom-dependent Langevin friction coefficients derived directly from molecular dynamics (MD) simulations. To determine the effect of solvation on the atomic friction coefficients, solution and vacuum MD simulations were performed for lysozyme and staphylococcal nuclease and analyzed by Langevin mode analysis. The coefficients thus derived are roughly correlated with the atomic solvent-accessible surface area (ASA), as expected from the fact that friction occurs as the result of collisions with solvent molecules. However, a considerable number of atoms with higher friction coefficients are found inside the core region. Hence, the influence of solvent friction propagates into the protein core. The internal coefficients have large contributions from the low-frequency modes, yielding a simple picture of the surface-to-core long-range damping via solvation governed by collective low-frequency modes. To make use of these findings in implicit-solvent modeling, we compare the all-atom friction results with those obtained using Langevin dynamics (LD) with two empirical representations: the constant-friction and the ASA-dependent (Pastor-Karplus) friction models. The constant-friction model overestimates the core and underestimates the surface damping whereas the ASA-dependent friction model, which damps protein atoms only on the solvent-accessible surface, reproduces well the friction coefficients for both the surface and core regions observed in the explicit-solvent MD simulations. Therefore, in LD simulation, the solvent friction coefficients should be imposed only on the protein surface.

  7. Solvent friction effects propagate over the entire protein molecule through low-frequency collective modes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moritsugu, Kei; Kidera, Akinori; Smith, Jeremy C.

    2014-06-25

    Protein solvation dynamics has been investigated using atom-dependent Langevin friction coefficients derived directly from molecular dynamics (MD) simulations. To determine the effect of solvation on the atomic friction coefficients, solution and vacuum MD simulations were performed for lysozyme and staphylococcal nuclease and analyzed by Langevin mode analysis. The coefficients thus derived are roughly correlated with the atomic solvent-accessible surface area (ASA), as expected from the fact that friction occurs as the result of collisions with solvent molecules. However, a considerable number of atoms with higher friction coefficients are found inside the core region. Hence, the influence of solvent friction propagatesmore » into the protein core. The internal coefficients have large contributions from the low-frequency modes, yielding a simple picture of the surface-to-core long-range damping via solvation governed by collective low-frequency modes. To make use of these findings in implicit-solvent modeling, we compare the all-atom friction results with those obtained using Langevin dynamics (LD) with two empirical representations: the constant-friction and the ASA-dependent (Pastor Karplus) friction models. The constant-friction model overestimates the core and underestimates the surface damping whereas the ASA-dependent friction model, which damps protein atoms only on the solvent-accessible surface, reproduces well the friction coefficients for both the surface and core regions observed in the explicit-solvent MD simulations. Furthermore, in LD simulation, the solvent friction coefficients should be imposed only on the protein surface.« less

  8. Two dimensional modeling of elastic wave propagation in solids containing cracks with rough surfaces and friction - Part II: Numerical implementation.

    PubMed

    Delrue, Steven; Aleshin, Vladislav; Truyaert, Kevin; Bou Matar, Olivier; Van Den Abeele, Koen

    2018-01-01

    Our study aims at the creation of a numerical toolbox that describes wave propagation in samples containing internal contacts (e.g. cracks, delaminations, debondings, imperfect intergranular joints) of known geometry with postulated contact interaction laws including friction. The code consists of two entities: the contact model and the solid mechanics module. Part I of the paper concerns an in-depth description of a constitutive model for realistic contacts or cracks that takes into account the roughness of the contact faces and the associated effects of friction and hysteresis. In the crack model, three different contact states can be recognized: contact loss, total sliding and partial slip. Normal (clapping) interactions between the crack faces are implemented using a quadratic stress-displacement relation, whereas tangential (friction) interactions were introduced using the Coulomb friction law for the total sliding case, and the Method of Memory Diagrams (MMD) in case of partial slip. In the present part of the paper, we integrate the developed crack model into finite element software in order to simulate elastic wave propagation in a solid material containing internal contacts or cracks. We therefore implemented the comprehensive crack model in MATLAB® and introduced it in the Structural Mechanics Module of COMSOL Multiphysics®. The potential of the approach for ultrasound based inspection of solids with cracks showing acoustic nonlinearity is demonstrated by means of an example of shear wave propagation in an aluminum sample containing a single crack with rough surfaces and friction. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. The effect of topography on pyroclastic flow mobility

    NASA Astrophysics Data System (ADS)

    Ogburn, S. E.; Calder, E. S.

    2010-12-01

    Pyroclastic flows are among the most destructive volcanic phenomena. Hazard mitigation depends upon accurate forecasting of possible flow paths, often using computational models. Two main metrics have been proposed to describe the mobility of pyroclastic flows. The Heim coefficient, height-dropped/run-out (H/L), exhibits an inverse relationship with flow volume. This coefficient corresponds to the coefficient of friction and informs computational models that use Coulomb friction laws. Another mobility measure states that with constant shear stress, planimetric area is proportional to the flow volume raised to the 2/3 power (A∝V^(2/3)). This relationship is incorporated in models using constant shear stress instead of constant friction, and used directly by some empirical models. Pyroclastic flows from Soufriere Hills Volcano, Montserrat; Unzen, Japan; Colima, Mexico; and Augustine, Alaska are well described by these metrics. However, flows in specific valleys exhibit differences in mobility. This study investigates the effect of topography on pyroclastic flow mobility, as measured by the above mentioned mobility metrics. Valley width, depth, and cross-sectional area all influence flow mobility. Investigating the appropriateness of these mobility measures, as well as the computational models they inform, indicates certain circumstances under which each model performs optimally. Knowing which conditions call for which models allows for better model selection or model weighting, and therefore, more realistic hazard predictions.

  10. Experimental evidence of non-Amontons behaviour at a multi-contact interface

    NASA Astrophysics Data System (ADS)

    Scheibert, J.; Prevost, A.; Frelat, J.; Rey, P.; Debrégeas, G.

    2008-08-01

    We report on normal stress field measurements at the multicontact interface between a rough elastomeric film and a smooth glass sphere under normal load, using an original MEMS-based stress-sensing device. These measurements are compared to Finite-Elements Method (FEM) calculations with boundary conditions obeying locally Amontons' rigid-plastic-like friction law with a uniform friction coefficient. In dry contact conditions, significant deviations are observed which decrease with increasing load. In lubricated conditions, the measured profile recovers almost perfectly the predicted profile. These results are interpreted as a consequence of the finite compliance of the multicontact interface, a mechanism which is not taken into account in Amontons' law.

  11. A novel disturbance-observer based friction compensation scheme for ball and plate system.

    PubMed

    Wang, Yongkun; Sun, Mingwei; Wang, Zenghui; Liu, Zhongxin; Chen, Zengqiang

    2014-03-01

    Friction is often ignored when designing a controller for the ball and plate system, which can lead to steady-error and stick-slip phenomena, especially for the small amplitude command. It is difficult to achieve high-precision control performance for the ball and plate system because of its friction. A novel reference compensation strategy is presented to attenuate the aftereffects caused by the friction. To realize this strategy, a linear control law is proposed based on a reduced-order observer. Neither the accurate friction model nor the estimation of specific characteristic parameters is needed in this design. Moreover, the describing function method illustrates that the limit cycle can be avoided. Finally, the comparative mathematical simulations and the practical experiments are used to validate the effectiveness of the proposed method. © 2013 ISA Published by ISA All rights reserved.

  12. Archimedes' law explains penetration of solids into granular media.

    PubMed

    Kang, Wenting; Feng, Yajie; Liu, Caishan; Blumenfeld, Raphael

    2018-03-16

    Understanding the response of granular matter to intrusion of solid objects is key to modelling many aspects of behaviour of granular matter, including plastic flow. Here we report a general model for such a quasistatic process. Using a range of experiments, we first show that the relation between the penetration depth and the force resisting it, transiently nonlinear and then linear, is scalable to a universal form. We show that the gradient of the steady-state part, K ϕ , depends only on the medium's internal friction angle, ϕ, and that it is nonlinear in μ = tan ϕ, in contrast to an existing conjecture. We further show that the intrusion of any convex solid shape satisfies a modified Archimedes' law and use this to: relate the zero-depth intercept of the linear part to K ϕ and the intruder's cross-section; explain the curve's nonlinear part in terms of the stagnant zone's development.

  13. Frictional properties of low-angle normal fault gouges and implications for low-angle normal fault slip

    NASA Astrophysics Data System (ADS)

    Haines, Samuel; Marone, Chris; Saffer, Demian

    2014-12-01

    The mechanics of slip on low-angle normal faults (LANFs) remain an enduring problem in structural geology and fault mechanics. In most cases, new faults should form rather than having slip occur on LANFs, assuming values of fault friction consistent with Byerlee's Law. We present results of laboratory measurements on the frictional properties of natural clay-rich gouges from low-angle normal faults (LANF) in the American Cordillera, from the Whipple Mts. Detachment, the Panamint range-front detachment, and the Waterman Hills detachment. These clay-rich gouges are dominated by neoformed clay minerals and are an integral part of fault zones in many LANFs, yet their frictional properties under in situ conditions remain relatively unknown. We conducted measurements under saturated and controlled pore pressure conditions at effective normal stresses ranging from 20 to 60 MPa (corresponding to depths of 0.9-2.9 km), on both powdered and intact wafers of fault rock. For the Whipple Mountains detachment, friction coefficient (μ) varies depending on clast content, with values ranging from 0.40 to 0.58 for clast-rich material, and 0.29-0.30 for clay-rich gouge. Samples from the Panamint range-front detachment were clay-rich, and exhibit friction values of 0.28 to 0.38, significantly lower than reported from previous studies on fault gouges tested under room humidity (nominally dry) conditions, including samples from the same exposure. Samples from the Waterman Hills detachment are slightly stronger, with μ ranging from 0.38 to 0.43. The neoformed gouge materials from all three localities exhibits velocity-strengthening frictional behavior under almost all of the experimental conditions we explored, with values of the friction rate parameter (a - b) ranging from -0.001 to +0.025. Clast-rich samples exhibited frictional healing (strength increases with hold time), whereas clay-rich samples do not. Our results indicate that where clay-rich neoformed gouges are present along LANFs, they provide a mechanically viable explanation for slip on faults with dips <20°, requiring only moderate (Pf <σ3) overpressures and/or correcting for ∼5° of footwall tilting. Furthermore, the low rates of frictional strength recovery and velocity-strengthening frictional behavior we observe provide an explanation for the lack of observed seismicity on these structures. We suggest that LANFs in the upper crust (depth <8 km) slip via a combination of a) reaction-weakening of initially high-angle fault zones by the formation of neoformed clay-rich gouges, and b) regional tectonic accommodation of rotating fault blocks.

  14. Conditions for extreme sensitivity of protein diffusion in membranes to cell environments

    PubMed Central

    Tserkovnyak, Yaroslav; Nelson, David R.

    2006-01-01

    We study protein diffusion in multicomponent lipid membranes close to a rigid substrate separated by a layer of viscous fluid. The large-distance, long-time asymptotics for Brownian motion are calculated by using a nonlinear stochastic Navier–Stokes equation including the effect of friction with the substrate. The advective nonlinearity, neglected in previous treatments, gives only a small correction to the renormalized viscosity and diffusion coefficient at room temperature. We find, however, that in realistic multicomponent lipid mixtures, close to a critical point for phase separation, protein diffusion acquires a strong power-law dependence on temperature and the distance to the substrate H, making it much more sensitive to cell environment, unlike the logarithmic dependence on H and very small thermal correction away from the critical point. PMID:17008402

  15. Investigation of second grade fluid through temperature dependent thermal conductivity and non-Fourier heat flux

    NASA Astrophysics Data System (ADS)

    Hayat, T.; Ahmad, Salman; Khan, M. Ijaz; Alsaedi, A.; Waqas, M.

    2018-06-01

    Here we investigated stagnation point flow of second grade fluid over a stretchable cylinder. Heat transfer is characterized by non-Fourier law of heat flux and thermal stratification. Temperature dependent thermal conductivity and activation energy are also accounted. Transformations procedure is applying to transform the governing PDE's into ODE's. Obtained system of ODE's are solved analytically by HAM. Influence of flow variables on velocity, temperature, concentration, skin friction and Sherwood number are analyzed. Obtained outcome shows that velocity enhanced through curvature parameter, viscoelastic parameter and velocities ratio variable. Temperature decays for larger Prandtl number, thermal stratification, thermal relaxation and curvature parameter. Sherwood number and concentration field show opposite behavior for higher estimation of activation energy, reaction rate, curvature parameter and Schmidt number.

  16. General theory of frictional heating with application to rubber friction

    NASA Astrophysics Data System (ADS)

    Fortunato, G.; Ciaravola, V.; Furno, A.; Lorenz, B.; Persson, B. N. J.

    2015-05-01

    The energy dissipation in the contact regions between solids in sliding contact can result in high local temperatures which may strongly effect friction and wear. This is the case for rubber sliding on road surfaces at speeds above 1 mm s-1. We derive equations which describe the frictional heating for solids with arbitrary thermal properties. The theory is applied to rubber friction on road surfaces and we take into account that the frictional energy is partly produced inside the rubber due to the internal friction of rubber and in a thin (nanometer) interfacial layer at the rubber-road contact region. The heat transfer between the rubber and the road surface is described by a heat transfer coefficient which depends on the sliding speed. Numerical results are presented and compared to experimental data. We find that frictional heating results in a kinetic friction force which depends on the orientation of the sliding block, thus violating one of the two basic Leonardo da Vinci ‘laws’ of friction.

  17. Microstructure and Thermo-Hydro-Mechanical effects as an explanation for rate dependency during seismic slip

    NASA Astrophysics Data System (ADS)

    Stefanou, I.; Rattez, H.; Sulem, J.

    2017-12-01

    Rapid shear tests of granulated fault gouges show pronounced rate-dependency. For this reason rate-dependent constitutive laws are frequently used for describing fault friction.Here we propose a micromechanical, physics-based continuum approach by considering the characteristic size of the microstructure and the thermal- and pore-pressure-diffusion mechanisms that take place in the fault gouge during rapid shearing. It is shown that even for rate-independent materials, the apparent, macroscopic behavior of the system is rate-dependent. This is due to the competition of the characteristic lengths and time scales introduced indirectly by the microstructure and the thermal and hydraulic diffusivities.Both weakening and shear band thickness are rate dependent, despite the fact that the constitutive description of the material was considered rate-independent. Moreover the size of the microstructure, which here is identified with the grain size of the fault gouge (D50), plays an important role in the slope of the softening branch of the shear stress-strain response curve and consequently in the transition from aseismic to seismic slip.References Dieterich, J. H. (1979). Modeling of rock friction: 1. Experimental results and constitutive equations. Journal of Geophysical Research, 84(B5), 2161. http://doi.org/10.1029/JB084iB05p02161 Scholz, C. H. (2002). The mechanics of earthquakes and faulting (Second). Cambridge. Sulem, J., & Stefanou, I. (2016). Thermal and chemical effects in shear and compaction bands. Geomechanics for Energy and the Environment, 6, 4-21. http://doi.org/10.1016/j.gete.2015.12.004

  18. Slip-Size Distribution and Self-Organized Criticality in Block-Spring Models with Quenched Randomness

    NASA Astrophysics Data System (ADS)

    Sakaguchi, Hidetsugu; Kadowaki, Shuntaro

    2017-07-01

    We study slowly pulling block-spring models in random media. Second-order phase transitions exist in a model pulled by a constant force in the case of velocity-strengthening friction. If external forces are slowly increased, nearly critical states are self-organized. Slips of various sizes occur, and the probability distributions of slip size roughly obey power laws. The exponent is close to that in the quenched Edwards-Wilkinson model. Furthermore, the slip-size distributions are investigated in cases of Coulomb friction, velocity-weakening friction, and two-dimensional block-spring models.

  19. Molecular Origins of Internal Friction Effects on Protein Folding Rates

    PubMed Central

    Sirur, Anshul

    2014-01-01

    Recent experiments on protein folding dynamics have revealed strong evidence for internal friction effects. That is, observed relaxation times are not simply proportional to the solvent viscosity as might be expected if the solvent were the only source of friction. However, a molecular interpretation of this remarkable phenomenon is currently lacking. Here, we use all-atom simulations of peptide and protein folding in explicit solvent, to probe the origin of the unusual viscosity dependence. We find that an important contribution to this effect, explaining the viscosity dependence of helix formation and the folding of a helix-containing protein, is the insensitivity of torsion angle isomerization to solvent friction. The influence of this landscape roughness can, in turn, be quantitatively explained by a rate theory including memory friction. This insensitivity of local barrier crossing to solvent friction is expected to contribute to the viscosity dependence of folding rates in larger proteins. PMID:24986114

  20. Molecular origins of internal friction effects on protein-folding rates.

    PubMed

    de Sancho, David; Sirur, Anshul; Best, Robert B

    2014-07-02

    Recent experiments on protein-folding dynamics have revealed strong evidence for internal friction effects. That is, observed relaxation times are not simply proportional to the solvent viscosity as might be expected if the solvent were the only source of friction. However, a molecular interpretation of this remarkable phenomenon is currently lacking. Here, we use all-atom simulations of peptide and protein folding in explicit solvent, to probe the origin of the unusual viscosity dependence. We find that an important contribution to this effect, explaining the viscosity dependence of helix formation and the folding of a helix-containing protein, is the insensitivity of torsion angle isomerization to solvent friction. The influence of this landscape roughness can, in turn, be quantitatively explained by a rate theory including memory friction. This insensitivity of local barrier crossing to solvent friction is expected to contribute to the viscosity dependence of folding rates in larger proteins.

  1. Swimming in a granular frictional fluid

    NASA Astrophysics Data System (ADS)

    Goldman, Daniel

    2012-02-01

    X-ray imaging reveals that the sandfish lizard swims within granular media (sand) using axial body undulations to propel itself without the use of limbs. To model the locomotion of the sandfish, we previously developed an empirical resistive force theory (RFT), a numerical sandfish model coupled to an experimentally validated Discrete Element Method (DEM) model of the granular medium, and a physical robot model. The models reveal that only grains close to the swimmer are fluidized, and that the thrust and drag forces are dominated by frictional interactions among grains and the intruder. In this talk I will use these models to discuss principles of swimming within these granular ``frictional fluids". The empirical drag force laws are measured as the steady-state forces on a small cylinder oriented at different angles relative to the displacement direction. Unlike in Newtonian fluids, resistive forces are independent of speed. Drag forces resemble those in viscous fluids while the ratio of thrust to drag forces is always larger in the granular media than in viscous fluids. Using the force laws as inputs, the RFT overestimates swimming speed by approximately 20%. The simulation reveals that this is related to the non-instantaneous increase in force during reversals of body segments. Despite the inaccuracy of the steady-state assumption, we use the force laws and a recently developed geometric mechanics theory to predict optimal gaits for a model system that has been well-studied in Newtonian fluids, the three-link swimmer. The combination of the geometric theory and the force laws allows us to generate a kinematic relationship between the swimmer's shape and position velocities and to construct connection vector field and constraint curvature function visualizations of the system dynamics. From these we predict optimal gaits for forward, lateral and rotational motion. Experiment and simulation are in accord with the theoretical prediction, and demonstrate that swimming in sand can be viewed as movement in a localized frictional fluid.

  2. Bonded-cell model for particle fracture.

    PubMed

    Nguyen, Duc-Hanh; Azéma, Emilien; Sornay, Philippe; Radjai, Farhang

    2015-02-01

    Particle degradation and fracture play an important role in natural granular flows and in many applications of granular materials. We analyze the fracture properties of two-dimensional disklike particles modeled as aggregates of rigid cells bonded along their sides by a cohesive Mohr-Coulomb law and simulated by the contact dynamics method. We show that the compressive strength scales with tensile strength between cells but depends also on the friction coefficient and a parameter describing cell shape distribution. The statistical scatter of compressive strength is well described by the Weibull distribution function with a shape parameter varying from 6 to 10 depending on cell shape distribution. We show that this distribution may be understood in terms of percolating critical intercellular contacts. We propose a random-walk model of critical contacts that leads to particle size dependence of the compressive strength in good agreement with our simulation data.

  3. Discrete dislocation plasticity analysis of loading rate-dependent static friction.

    PubMed

    Song, H; Deshpande, V S; Van der Giessen, E

    2016-08-01

    From a microscopic point of view, the frictional force associated with the relative sliding of rough surfaces originates from deformation of the material in contact, by adhesion in the contact interface or both. We know that plastic deformation at the size scale of micrometres is not only dependent on the size of the contact, but also on the rate of deformation. Moreover, depending on its physical origin, adhesion can also be size and rate dependent, albeit different from plasticity. We present a two-dimensional model that incorporates both discrete dislocation plasticity inside a face-centred cubic crystal and adhesion in the interface to understand the rate dependence of friction caused by micrometre-size asperities. The friction strength is the outcome of the competition between adhesion and discrete dislocation plasticity. As a function of contact size, the friction strength contains two plateaus: at small contact length [Formula: see text], the onset of sliding is fully controlled by adhesion while for large contact length [Formula: see text], the friction strength approaches the size-independent plastic shear yield strength. The transition regime at intermediate contact size is a result of partial de-cohesion and size-dependent dislocation plasticity, and is determined by dislocation properties, interfacial properties as well as by the loading rate.

  4. Friction and Wear on the Atomic Scale

    NASA Astrophysics Data System (ADS)

    Gnecco, Enrico; Bennewitz, Roland; Pfeiffer, Oliver; Socoliuc, Anisoara; Meyer, Ernst

    Friction has long been the subject of research: the empirical da Vinci-Amontons friction laws have been common knowledge for centuries. Macroscopic experiments performed by the school of Bowden and Tabor revealed that macroscopic friction can be related to the collective action of small asperities. Over the last 15 years, experiments performed with the atomic force microscope have provided new insights into the physics of single asperities sliding over surfaces. This development, together with the results from complementary experiments using surface force apparatus and the quartz microbalance, have led to the new field of nanotribology. At the same time, increasing computing power has permitted the simulation of processes that occur during sliding contact involving several hundreds of atoms. It has become clear that atomic processes cannot be neglected when interpreting nanotribology experiments. Even on well-defined surfaces, experiments have revealed that atomic structure is directly linked to friction force. This chapter will describe friction force microscopy experiments that reveal, more or less directly, atomic processes during sliding contact.

  5. In-Vivo Human Skin to Textiles Friction Measurements

    NASA Astrophysics Data System (ADS)

    Pfarr, Lukas; Zagar, Bernhard

    2017-10-01

    We report on a measurement system to determine highly reliable and accurate friction properties of textiles as needed for example as input to garment simulation software. Our investigations led to a set-up that allows to characterize not just textile to textile but also textile to in-vivo human skin tribological properties and thus to fundamental knowledge about genuine wearer interaction in garments. The method of test conveyed in this paper is measuring concurrently and in a highly time resolved manner the normal force as well as the resulting shear force caused by a friction subject intending to slide out of the static friction regime and into the dynamic regime on a test bench. Deeper analysis of various influences is enabled by extending the simple model following Coulomb's law for rigid body friction to include further essential parameters such as contact force, predominance in the yarn's orientation and also skin hydration. This easy-to-use system enables to measure reliably and reproducibly both static and dynamic friction for a variety of friction partners including human skin with all its variability there might be.

  6. Kepler's Laws: Demonstration and Derivation Without Calculus

    ERIC Educational Resources Information Center

    Chapman, Seville

    1969-01-01

    Presents a demonstration apparatus for Kepler's three laws of planetary motion consisting of an air-supported "satellite whose orbit on a level table surface is determined by an inverse square force generated by a Peaucellier linkage and long spring. The device can also be used to illustrate centrifugal force, statics, friction, momentum and…

  7. Shape dependence of slip length on patterned hydrophobic surfaces

    NASA Astrophysics Data System (ADS)

    Gu, Xiaokun; Chen, Min

    2011-08-01

    The effects of solid-liquid interfacial shape on the boundary velocity slip of patterned hydrophobic surfaces are investigated. The scaling law in literature is extended to demonstrate the role of such shape, indicating a decrease of the effective slip length with increasing interfacial roughness. A patterned surface with horizontally aligned carbon nanotube arrays reaches an effective slip length of 83 nm, by utilizing large intrinsic slippage of carbon nanotube while keeping away from the negative effects of interfacial curvature through the flow direction. The results emphasize the importance of avoiding the solid-liquid interfacial roughness in low-friction patterned surface design and manufacture.

  8. The frequency response of dynamic friction: Enhanced rate-and-state models

    NASA Astrophysics Data System (ADS)

    Cabboi, A.; Putelat, T.; Woodhouse, J.

    2016-07-01

    The prediction and control of friction-induced vibration requires a sufficiently accurate constitutive law for dynamic friction at the sliding interface: for linearised stability analysis, this requirement takes the form of a frictional frequency response function. Systematic measurements of this frictional frequency response function are presented for small samples of nylon and polycarbonate sliding against a glass disc. Previous efforts to explain such measurements from a theoretical model have failed, but an enhanced rate-and-state model is presented which is shown to match the measurements remarkably well. The tested parameter space covers a range of normal forces (10-50 N), of sliding speeds (1-10 mm/s) and frequencies (100-2000 Hz). The key new ingredient in the model is the inclusion of contact stiffness to take into account elastic deformations near the interface. A systematic methodology is presented to discriminate among possible variants of the model, and then to identify the model parameter values.

  9. Ultrahigh interlayer friction in multiwalled boron nitride nanotubes.

    PubMed

    Niguès, A; Siria, A; Vincent, P; Poncharal, P; Bocquet, L

    2014-07-01

    Friction at the nanoscale has revealed a wealth of behaviours that depart strongly from the long-standing macroscopic laws of Amontons-Coulomb. Here, by using a 'Christmas cracker'-type of system in which a multiwalled nanotube is torn apart between a quartz-tuning-fork-based atomic force microscope (TF-AFM) and a nanomanipulator, we compare the mechanical response of multiwalled carbon nanotubes (CNTs) and multiwalled boron nitride nanotubes (BNNTs) during the fracture and telescopic sliding of the layers. We found that the interlayer friction for insulating BNNTs results in ultrahigh viscous-like dissipation that is proportional to the contact area, whereas for the semimetallic CNTs the sliding friction vanishes within experimental uncertainty. We ascribe this difference to the ionic character of the BN, which allows charge localization. The interlayer viscous friction of BNNTs suggests that BNNT membranes could serve as extremely efficient shock-absorbing surfaces.

  10. The Physical Mechanism of Frictional Aging Revealed by Nanoindentation Creep

    NASA Astrophysics Data System (ADS)

    Thom, C.; Carpick, R. W.; Goldsby, D. L.

    2017-12-01

    A classical observation from rock friction experiments is that friction increases linearly with the logarithm of the time of stationary contact, a phenomenon sometimes referred to as aging. Aging is most often attributed to an increase in the real area of contact due to asperity creep. However, recent atomic force microscopy (AFM) experiments and molecular dynamics simulations suggest that time-dependent siloxane (Si—O—Si) bonding gives rise to aging in silica-silica contacts in the absence of plastic deformation. Determining whether an increase in contact `quantity' (due to creep), contact `quality' (due to chemical bonding), or another unknown mechanism causes aging is a challenging experimental task, despite its importance for developing a physical basis for rate and state friction laws. An intriguing observation is that aging is absent in friction experiments on quartz rocks and gouge at humidities <5% and returns upon exposure of the test specimens to humid air. This behavior has been attributed to the effects of water on asperity creep (via hydrolytic weakening) or on the adhesive strength of contacts. To discern between these possibilities, we have conducted nanoindentation experiments on single crystals of quartz to measure their indentation hardness and creep behavior at humidities of 2% to 50%, and in vacuum. Samples were loaded at 1000 mN/s to a peak load of 15, 40, or 400 mN, which was then held constant for 10 s. After the peak load is reached, the tip sinks into the material with time due to creep of the indentation contact. Our experiments reveal that there is no effect of varying humidity on either indentation hardness or indentation creep behavior over the full range of humidities investigated. If asperity creep were the dominant mechanism of frictional aging for quartz in the experiments cited above, then significant increases in hardness and decreases in the growth rate of indentation contacts at low humidities is expected, in stark contrast with our nanoindentation data. Our experiments indicate that asperity creep cannot be the cause of aging in quartz rocks, and suggest that chemical bonding may instead be the dominant mechanism of frictional aging.

  11. Work-energy theorem and friction forces: two experiments

    NASA Astrophysics Data System (ADS)

    Bonanno, A.; Bozzo, G.; Grandinetti, M.; Sapia, P.

    2016-11-01

    Several studies have showed the subsistence, even in students enrolled in scientific degree courses, of spontaneous ideas regarding the motion of bodies that conflict with Newton’s laws. One of the causes is related to the intuitive preconceptions that students have about the role of friction as a force. In fact, in real world novices do not recognise friction as a force, and for this reason they may believe that a motion with a constant speed needs as a necessary condition the presence of a constant force in the same direction of the motion. In order to face these ‘intuitive ways of reasoning’, in this paper we propose two sequential experiments that can allow undergraduate students to clarify the role of friction forces through the use of the work-energy theorem. This is a necessary first step on the way to a deeper understanding of Newton’s second law. We have planned our experiments in order to strongly reduce quantitative difficult calculations and to facilitate qualitative comprehension of observed phenomena. Moreover, the proposed activities represent two examples of the recurring methodology used in experimental practices, since they offer the possibility to measure very small physical quantities in an indirect way with a higher accuracy than the direct measurements of the same quantities.

  12. Dry friction avalanches: experiment and theory.

    PubMed

    Buldyrev, Sergey V; Ferrante, John; Zypman, Fredy R

    2006-12-01

    Experimental evidence and theoretical models are presented supporting the conjecture that dry friction stick-slip is described by self-organized criticality. We use the data, obtained with a pin-on-disk tribometer set to measure lateral force, to examine the variation of the friction force as a function of time. We study nominally flat surfaces of matching aluminum and steel. The probability distribution of force drops follows a negative power law with exponents mu in the range 3.2-3.5. The frequency power spectrum follows a 1/f alpha pattern with alpha in the range 1-1.8. We first compare these experimental results with the well-known Robin Hood model of self-organized criticality. We find good agreement between theory and experiment for the force-drop distribution but not for the power spectrum. We explain this on a physical basis and propose a model which takes explicitly into account the stiffness and inertia of the tribometer. Specifically, we numerically solve the equation of motion of a block on a friction surface pulled by a spring and show that for certain spring constants the motion is characterized by the same power law spectrum as in experiments. We propose a physical picture relating the fluctuations of the force drops to the microscopic geometry of the surface.

  13. Temperature dependence of ice-on-rock friction at realistic glacier conditions

    PubMed Central

    Savage, H.; Nettles, M.

    2017-01-01

    Using a new biaxial friction apparatus, we conducted experiments of ice-on-rock friction in order to better understand basal sliding of glaciers and ice streams. A series of velocity-stepping and slide–hold–slide tests were conducted to measure friction and healing at temperatures between −20°C and melting. Experimental conditions in this study are comparable to subglacial temperatures, sliding rates and effective pressures of Antarctic ice streams and other glaciers, with load-point velocities ranging from 0.5 to 100 µm s−1 and normal stress σn = 100 kPa. In this range of conditions, temperature dependences of both steady-state friction and frictional healing are considerable. The friction increases linearly with decreasing temperature (temperature weakening) from μ = 0.52 at −20°C to μ = 0.02 at melting. Frictional healing increases and velocity dependence shifts from velocity-strengthening to velocity-weakening behaviour with decreasing temperature. Our results indicate that the strength and stability of glaciers and ice streams may change considerably over the range of temperatures typically found at the ice–bed interface. This article is part of the themed issue ‘Microdynamics of ice’. PMID:28025297

  14. Adhesion in ceramics and magnetic media

    NASA Technical Reports Server (NTRS)

    Miyoshi, Kazuhisa

    1989-01-01

    When a ceramic is brought into contact with a metal or a polymeric material such as a magnetic medium, strong bonds form between the materials. For ceramic-to-metal contacts, adhesion and friction are strongly dependent on the ductility of the metals. Hardness of metals plays a much more important role in adhesion and friction than does the surface energy of metals. Adhesion, friction, surface energy, and hardness of a metal are all related to its Young's modulus and shear modulus, which have a marked dependence on the electron configuration of the metal. An increase in shear modulus results in a decrease in area of contact that is greater than the corresponding increase in surface energy (the fond energy) with shear modulus. Consequently, the adhesion and friction decrease with increasing shear modulus. For ceramics in contact with polymeric magnetic tapes, environment is extremely important. For example, a nitrogen environment reduces adhesion and friction when ferrite contacts polymeric tape, whereas a vacuum environment strengthens the ferrite-to-tape adhesion and increases friction. Adhesion and friction are strongly dependent on the particle loading of the tape. An increase in magnetic particle concentration increases the complex modulus of the tape, and a lower real area of contact and lower friction result.

  15. Atomistic Simulation of Single Asperity Contact

    NASA Astrophysics Data System (ADS)

    Philip; Kromer; Marder, Michael

    2003-03-01

    In the standard (Bowden and Tabor) model of friction, the macroscopic behavior of sliding results from the deformation of microscopic asperities in contact. A recent idea instead extracts macroscopic friction from the aggregate behavior of traveling, self-healing interfacial cracks: certain families of cracks are found to be mathematically forbidden, and the envelope of allowed cracks dictates the familiar Coulomb law of friction. To explore the connection between the new and traditional pictures of friction, we conducted molecular dynamics (MD) simulations of single-asperity contact subjected to an oscillatory sliding force -- a geometry important for the problem of fretting (damage due to small-scale vibratory contact). Our simulations reveal the importance of traveling interface cracks to the dynamics of slip at the interface, and illuminate the dynamics of crack initiation and suppression.

  16. Dynamics of a particle with friction and delay

    NASA Astrophysics Data System (ADS)

    Monteiro Marques, Manuel D. P.; Dzonou, Raoul

    2018-03-01

    We are interested in the motion of a simple mechanical system having a finite number of degrees of freedom subjected to a unilateral constraint with dry friction and delay effects (with maximal duration τ > 0). At the contact point, we characterize the friction by a Coulomb law associated with a friction cone. Starting from a formulation of the problem that was given by Jean-Jacques Moreau in the form of a second-order differential inclusion in the sense of measures, we consider a sweeping process algorithm that converges towards a solution to the dynamical contact problem. The mathematical machinery as well as the general plan of the existence proof may seem much too heavy in order to treat just this simple case, but they have proved useful in more complex settings. xml:lang="fr"

  17. Slow-slip events on the Whillans Ice Plain, Antarctica, described using rate-and-state friction as an ice stream sliding law

    NASA Astrophysics Data System (ADS)

    Lipovsky, Bradley Paul; Dunham, Eric M.

    2017-04-01

    The Whillans Ice Plain (WIP), Antarctica, experiences twice daily tidally modulated stick-slip cycles. Slip events last about 30 min, have sliding velocities as high as ˜0.5 mm/s (15 km/yr), and have total slip ˜0.5 m. Slip events tend to occur during falling ocean tide: just after high tide and just before low tide. To reproduce these characteristics, we use rate-and-state friction, which is commonly used to simulate tectonic faulting, as an ice stream sliding law. This framework describes the evolving strength of the ice-bed interface throughout stick-slip cycles. We present simulations that resolve the cross-stream dimension using a depth-integrated treatment of an elastic ice layer loaded by tides and steady ice inflow. Steady sliding with rate-weakening friction is conditionally stable with steady sliding occurring for sufficiently narrow ice streams relative to a nucleation length. Stick-slip cycles occur when the ice stream is wider than the nucleation length or, equivalently, when effective pressures exceed a critical value. Ice streams barely wider than the nucleation length experience slow-slip events, and our simulations suggest that the WIP is in this slow-slip regime. Slip events on the WIP show a sense of propagation, and we reproduce this behavior by introducing a rate-strengthening region in the center of the otherwise rate-weakening ice stream. If pore pressures are raised above a critical value, our simulations predict that the WIP would exhibit quasi-steady tidally modulated sliding as observed on other ice streams. This study validates rate-and-state friction as a sliding law to describe ice stream sliding styles.

  18. Rotational dynamics of polyatomic ions in aqueous solutions: From continuum model to mode-coupling theory, aided by computer simulations.

    PubMed

    Banerjee, Puja; Bagchi, Biman

    2018-06-14

    Due to the presence of the rotational mode and the distributed surface charges, the dynamical behavior of polyatomic ions in water differs considerably from those of the monatomic ions. However, their fascinating dynamical properties have drawn scant attention. We carry out theoretical and computational studies of a series of well-known polyatomic ions, namely, sulfate, nitrate, and acetate ions. All three ions exhibit different rotational diffusivity, with that of the nitrate ion being considerably larger than the other two. They all defy the hydrodynamic laws of size dependence. Study of the local structure around the ions provides valuable insight into the origin of these differences. We carry out a detailed study of the rotational diffusion of these ions by extensive computer simulation and by using the theoretical approaches of the dielectric friction developed by Fatuzzo-Mason (FM) and Nee-Zwanzig (NZ), and subsequently generalized by Alavi and Waldeck. A critical element of the FM-NZ theory is the decomposition of the total rotational friction, ζ Rot , into Stokes and dielectric parts. The study shows a dominant role of dielectric friction in the sense that if the ions are made neutral, the nature of diffusion changes and the values become much larger. Our analyses further reveal that the decomposition of total friction into the Stokes and dielectric friction breaks down for sulfate ions but remains semi-quantitatively valid for nitrate and acetate ions. We discuss the relationship between translational and rotational dielectric friction on rigid spherical ions. We develop a self-consistent mode-coupling theory (SC-MCT) formalism that could provide a unified view of rotational friction of polyatomic ions in polar medium. Our SC-MCT shows that the breakdown can be attributed to the change in the microscopic structural features. The mode-coupling theory helps in elucidating the role of coupling between translational and rotational motion of these ions. In fact, these two motions self-consistently determine the value of each other. The reference interaction site model-based MCT suggests an interesting relation between the torque-torque and the force-force time correlation function with the proportionality constant being determined by the geometry and the charge distribution of the polyatomic molecule. We point out several parallelisms between the theories of translational and rotation friction calculations of ions in polar liquids.

  19. Frictional behavior of atomically thin sheets: hexagonal-shaped graphene islands grown on copper by chemical vapor deposition.

    PubMed

    Egberts, Philip; Han, Gang Hee; Liu, Xin Z; Johnson, A T Charlie; Carpick, Robert W

    2014-05-27

    Single asperity friction experiments using atomic force microscopy (AFM) have been conducted on chemical vapor deposited (CVD) graphene grown on polycrystalline copper foils. Graphene substantially lowers the friction force experienced by the sliding asperity of a silicon AFM tip compared to the surrounding oxidized copper surface by a factor ranging from 1.5 to 7 over loads from the adhesive minimum up to 80 nN. No damage to the graphene was observed over this range, showing that friction force microscopy serves as a facile, high contrast probe for identifying the presence of graphene on Cu. Consistent with studies of epitaxially grown, thermally grown, and mechanically exfoliated graphene films, the friction force measured between the tip and these CVD-prepared films depends on the number of layers of graphene present on the surface and reduces friction in comparison to the substrate. Friction results on graphene indicate that the layer-dependent friction properties result from puckering of the graphene sheet around the sliding tip. Substantial hysteresis in the normal force dependence of friction is observed with repeated scanning without breaking contact with a graphene-covered region. Because of the hysteresis, friction measured on graphene changes with time and maximum applied force, unless the tip slides over the edge of the graphene island or contact with the surface is broken. These results also indicate that relatively weak binding forces exist between the copper foil and these CVD-grown graphene sheets.

  20. A unified multicomponent stress-diffusion model of drug release from non-biodegradable polymeric matrix tablets.

    PubMed

    Salehi, Ali; Zhao, Jin; Cabelka, Tim D; Larson, Ronald G

    2016-02-28

    We propose a new transport model of drug release from hydrophilic polymeric matrices, based on Stefan-Maxwell flux laws for multicomponent transport. Polymer stress is incorporated in the total mixing free energy, which contributes directly to the diffusion driving force while leading to time-dependent boundary conditions at the tablet interface. Given that hydrated matrix tablets are dense multicomponent systems, extended Stefan-Maxwell (ESM) flux laws are adopted to ensure consistency with the Onsager reciprocity principle and the Gibbs-Duhem thermodynamic constraint. The ESM flux law for any given component takes into account the friction exerted by all other species and is invariant with respect to reference velocity, thus satisfying Galilean translational invariance. Our model demonstrates that penetrant-induced plasticization of polymer chains partially or even entirely offsets the steady decline of chemical potential gradients at the tablet-medium interface that drive drug release. Utilizing a Flory-Huggins thermodynamic model, a modified form of the upper convected Maxwell constitutive equation for polymer stress and a Fujita-type dependence of mutual diffusivities on composition, depending on parameters, Fickian, anomalous or case II drug transport arises naturally from the model, which are characterized by quasi-power-law release profiles with exponents ranging from 0.5 to 1, respectively. A necessary requirement for non-Fickian release in our model is that the matrix stress relaxation time is comparable to the time scale for water diffusion. Mutual diffusivities and their composition dependence are the most decisive factors in controlling drug release characteristics in our model. Regression of the experimental polymer dissolution and drug release profiles in a system of Theophylline/cellulose (K15M) demonstrate that API-water mutual diffusivity in the presence of excipient cannot generally be taken as a constant. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. Effect of particle inertia on turbulence in a suspension.

    PubMed

    L'vov, Victor S; Ooms, Gijs; Pomyalov, Anna

    2003-04-01

    We propose a one-fluid analytical model for a turbulently flowing dilute suspension, based on a modified Navier-Stokes equation with a k-dependent effective density of suspension rho(eff)(k) and an additional damping term proportional, variant gamma(p)(k), representing the fluid-particle friction (described by Stokes law). The statistical description of turbulence within the model is simplified by a modification of the usual closure procedure based on the Richardson-Kolmogorov picture of turbulence with a differential approximation for the energy transfer term. The resulting ordinary differential equation for the energy budget is solved analytically for various important limiting cases and numerically in the general case. In the inertial interval of scales, we describe analytically two competing effects: the energy suppression due to the fluid-particle friction and the energy enhancement during the cascade process due to decrease of the effective density of the small-scale motions. An additional suppression or enhancement of the energy density may occur in the viscous subrange, caused by the variation of the extent of the inertial interval due to the combined effect of the fluid-particle friction and the decrease of the kinematic viscosity of the suspensions. The analytical description of the complicated interplay of these effects supported by numerical calculations is presented. Our findings allow one to rationalize the qualitative picture of the isotropic homogeneous turbulence of dilute suspensions as observed in direct numerical simulations.

  2. Dependence of the friction strengthening of graphene on velocity.

    PubMed

    Zeng, Xingzhong; Peng, Yitian; Liu, Lei; Lang, Haojie; Cao, Xing'an

    2018-01-25

    Graphene shows great potential applications as a solid lubricant in micro- and nanoelectromechanical systems (MEMS/NEMS). An atomic-scale friction strengthening effect in a few initial atomic friction periods usually occurred on few-layer graphene. Here, velocity dependent friction strengthening was observed in atomic-scale frictional behavior of graphene by atomic force microscopy (AFM). The degree of the friction strengthening decreases with the increase of velocity first and then reaches a plateau. This could be attributed to the interaction potential between the tip and graphene at high velocity which is weaker than that at low velocity, because the strong tip-graphene contact interface needs a longer time to evolve. The subatomic-scale stick-slip behavior in the conventional stick-slip motion supports the weak interaction between the tip and graphene at high velocity. These findings can provide a deeper understanding of the atomic-scale friction mechanism of graphene and other two-dimensional materials.

  3. Friction between footwear and floor covered with solid particles under dry and wet conditions.

    PubMed

    Li, Kai Way; Meng, Fanxing; Zhang, Wei

    2014-01-01

    Solid particles on the floor, both dry and wet, are common but their effects on the friction on the floor were seldom discussed in the literature. In this study, friction measurements were conducted to test the effects of particle size of solid contaminants on the friction coefficient on the floor under footwear, floor, and surface conditions. The results supported the hypothesis that particle size of solids affected the friction coefficient and the effects depended on footwear, floor, and surface conditions. On dry surfaces, solid particles resulted in friction loss when the Neolite footwear pad was used. On the other hand, solid particles provided additional friction when measured with the ethylene vinyl acetate (EVA) footwear pad. On wet surfaces, introducing solid particles made the floors more slip-resistant and such effects depended on particle size. This study provides information for better understanding of the mechanism of slipping when solid contaminants are present.

  4. Friction between a surrogate skin (Lorica Soft) and nonwoven fabrics used in hygiene products

    NASA Astrophysics Data System (ADS)

    Falloon, Sabrina S.; Cottenden, Alan

    2016-09-01

    Incontinence pad wearers often suffer from sore skin, and a better understanding of friction between pads and skin is needed to inform the development of less damaging materials. This work investigated friction between a skin surrogate (Lorica Soft) and 13 nonwoven fabrics representing those currently used against the skin in commercial pads. All fabrics were found to behave consistently with Amontons’ law: coefficients of friction did not differ systematically when measured under two different loads. Although the 13 fabrics varied considerably in composition and structure, their coefficients of friction (static and dynamic) against Lorica Soft were remarkably similar, especially for the ten fabrics comprising just polypropylene (PP) fibres. The coefficients of friction for one PP fabric never differed by more than 15.7% from those of any other, suggesting that the ranges of fibre decitex (2.0-6.5), fabric area density (13-30 g m-2) and bonding area (11%-25%) they exhibited had only limited impact on their friction properties. It is likely that differences were largely attributable to variability in properties between multiple samples of a given fabric. Of the remaining fabrics, the one comprising polyester fibres had significantly higher coefficients of friction than the highest friction PP fabric (p < 0.005), while the one comprising PP fibres with a polyethylene sheath had significantly lower coefficients of friction than the lowest friction PP fabric (p < 10-8). However, fabrics differed in too many other ways to confidently attribute these differences in friction properties just to the choice of base polymer.

  5. Friction Durability of Extremely Thin Diamond-Like Carbon Films at High Temperature

    PubMed Central

    Miyake, Shojiro; Suzuki, Shota; Miyake, Masatoshi

    2017-01-01

    To clarify the friction durability, both during and after the high-temperature heating of nanometer-thick diamond-like carbon (DLC) films, deposited using filtered cathodic vacuum arc (FCVA) and plasma chemical vapor deposition (P-CVD) methods, the dependence of the friction coefficient on the load and sliding cycles of the DLC films, were evaluated. Cluster-I consisted of a low friction area in which the DLC film was effective, while cluster-II consisted of a high friction area in which the lubricating effect of the DLC film was lost. The friction durability of the films was evaluated by statistical cluster analysis. Extremely thin FCVA-DLC films exhibited an excellent wear resistance at room temperature, but their friction durability was decreased at high temperatures. In contrast, the durability of the P-CVD-DLC films was increased at high temperatures when compared with that observed at room temperature. This inverse dependence on temperature corresponded to the nano-friction results obtained by atomic force microscopy. The decrease in the friction durability of the FCVA-DLC films at high temperatures, was caused by a complex effect of temperature and friction. The tribochemical reaction produced by the P-CVD-DLC films reduced their friction coefficient, increasing their durability at high temperatures. PMID:28772520

  6. Friction Durability of Extremely Thin Diamond-Like Carbon Films at High Temperature.

    PubMed

    Miyake, Shojiro; Suzuki, Shota; Miyake, Masatoshi

    2017-02-10

    To clarify the friction durability, both during and after the high-temperature heating of nanometer-thick diamond-like carbon (DLC) films, deposited using filtered cathodic vacuum arc (FCVA) and plasma chemical vapor deposition (P-CVD) methods, the dependence of the friction coefficient on the load and sliding cycles of the DLC films, were evaluated. Cluster-I consisted of a low friction area in which the DLC film was effective, while cluster-II consisted of a high friction area in which the lubricating effect of the DLC film was lost. The friction durability of the films was evaluated by statistical cluster analysis. Extremely thin FCVA-DLC films exhibited an excellent wear resistance at room temperature, but their friction durability was decreased at high temperatures. In contrast, the durability of the P-CVD-DLC films was increased at high temperatures when compared with that observed at room temperature. This inverse dependence on temperature corresponded to the nano-friction results obtained by atomic force microscopy. The decrease in the friction durability of the FCVA-DLC films at high temperatures, was caused by a complex effect of temperature and friction. The tribochemical reaction produced by the P-CVD-DLC films reduced their friction coefficient, increasing their durability at high temperatures.

  7. An Experimental Study on Normal Stress and Shear Rate Dependency of Basic Friction Coefficient in Dry and Wet Limestone Joints

    NASA Astrophysics Data System (ADS)

    Mehrishal, Seyedahmad; Sharifzadeh, Mostafa; Shahriar, Korosh; Song, Jae-Jon

    2016-12-01

    Among all parameters that affect the friction of rocks, variable normal stress and slip rate are the most important second-order parameters. The shear-rate- and normal-stress-dependent friction behavior of rock discontinuities may significantly influence the dynamic responses of rock mass. In this research, two limestone rock types, which were travertine and onyx marble with slickenside and grinded #80 surfaces, were prepared and CNL direct shear tests were performed on the joints under various shear conditions. The shearing rate varied from 0.1 to 50 mm/min under different normal stresses (from 2 to 30 % of UCS) in both dry and wet conditions. Experiments showed that the friction coefficient of slickensided and ground #80 surfaces of limestone increased with the increasing shear velocity and decreased with the increasing normal stress. Micro-asperity interlocking between ground #80 surfaces showed higher wear and an increase in friction coefficient ( µ) compared to slickensided surfaces. Slickensided samples with moist surfaces showed an increase in the coefficient of friction compared to dry surfaces; however, on ground #80 surfaces, the moisture decreased the coefficient of friction to a smaller value. Slickenside of limestone typically slides stably in a dry condition and by stick-slip on moist surfaces. The observed shear-rate- and normal-stress-dependent friction behavior can be explained by a similar framework to that of the adhesion theory of friction and a friction mechanism that involves the competition between microscopic dilatant slip and surface asperity deformation. The results have important implications for understanding the behavior of basic and residual friction coefficients of limestone rock surfaces.

  8. Two-dimensional analysis of post-seismic deformation of the 2011 Tohoku-Oki earthquake with rate-and-state friction and non-linear rock rheology

    NASA Astrophysics Data System (ADS)

    Muto, J.; Moore, J. D. P.; Barbot, S.; Iinuma, T.; Ohta, Y.; Horiuchi, S.; Hikaru, I.

    2017-12-01

    We conduct a two-dimensional (2D) analysis of the post-seismic deformation of the 2011 Tohoku-Oki earthquake with the nonlinear coupling between frictional afterslip and viscoelastic flow. We consider slip on the plate boundary and distributed viscous flow of the lower crust and mantle. We created 2D transects across the Miyagi-Yamagata area where the largest coseismic slip was observed. We use the stress change by the coseismic slip model of Iinuma et al. (2012) to drive the post-seismic relaxation. The simulation is performed by the integral method (Lambert & Barbot, 2016) expanded to plane strain (Barbot, Moore, & Lambert, 2017). Despite the simple 2D approximation, we look for a realistic model compatible with mineral physics to explain geodetic observations including 5 years of seafloor observations (Tomita et al., 2017). In the ductile regions, the model employs a bi-viscous Burgers rheology with power-law flow (Masuti et al., 2016). The steady-state viscosity is estimated based on a thermal structure obtained by thermal-flow model including the wedge corner flow (Horiuchi & Iwamori, 2016). We model afterslip by the regularized rate-strengthening approximation of the rate-and-state dependent friction law (Barbot et al., 2009). The combination of power-law rheology with stress-driven afterslip explains the observed 2D displacement fields well during the 5-year post-seismic period. We also find that the model requires a low viscosity ( 1018 Pas) body beneath the quaternary volcano (Mt. Naruko) to reproduce the localized subsidence detected in the 9-month post-seismic period (Muto et al., 2016). The introduction of the low-viscosity body also reproduces quick recovery of the subsidence in the 5-year period. Equipped with a reference model that fits available geodetic observations, we discuss the importance of the mechanical coupling between afterslip and viscoelastic flow. We find that ignoring the traction change on the fault by viscoelastic flow introduces variations of the order of 20% on the amplitude of afterslip. This effect is most pronounced late in the post-seismic relaxation. Our model reconciles laboratory constraints on rock rheology and geophysical observations after the earthquake and serves as a first-order reference to better understand the dynamics of subduction at the Japan trench.

  9. Unified law of evolution of experimental gouge-filled fault for fast and slow slip events at slider frictional experiments

    NASA Astrophysics Data System (ADS)

    Ostapchuk, Alexey; Saltykov, Nikolay

    2017-04-01

    Excessive tectonic stresses accumulated in the area of rock discontinuity are released while a process of slip along preexisting faults. Spectrum of slip modes includes not only creeps and regular earthquakes but also some transitional regimes - slow-slip events, low-frequency and very low-frequency earthquakes. However, there is still no agreement in Geophysics community if such fast and slow events have mutual nature [Peng, Gomberg, 2010] or they present different physical phenomena [Ide et al., 2007]. Models of nucleation and evolution of fault slip events could be evolved by laboratory experiments in which regularities of shear deformation of gouge-filled fault are investigated. In the course of the work we studied deformation regularities of experimental fault by slider frictional experiments for development of unified law of evolution of fault and revelation of its parameters responsible for deformation mode realization. The experiments were conducted as a classic slider-model experiment, in which block under normal and shear stresses moves along interface. The volume between two rough surfaces was filled by thin layer of granular matter. Shear force was applied by a spring which deformed with a constant rate. In such experiments elastic energy was accumulated in the spring, and regularities of its releases were determined by regularities of frictional behaviour of experimental fault. A full spectrum of slip modes was simulated in laboratory experiments. Slight change of gouge characteristics (granule shape, content of clay), viscosity of interstitial fluid and level of normal stress make it possible to obtained gradual transformation of the slip modes from steady sliding and slow slip to regular stick-slip, with various amplitude of 'coseismic' displacement. Using method of asymptotic analogies we have shown that different slip modes can be specified in term of single formalism and preparation of different slip modes have uniform evolution law. It is shown that shear stiffness of experimental fault is the parameter, which control realization of certain slip modes. It is worth to be mentioned that different serious of transformation is characterized by functional dependences, which have general view and differ only in normalization factors. Findings authenticate that slow and fast slip events have mutual nature. Determination of fault stiffness and testing of fault gouge allow to estimate intensity of seismic events. The reported study was funded by RFBR according to the research project № 16-05-00694.

  10. Spectral derivation of the classic laws of wall-bounded turbulent flows.

    PubMed

    Gioia, Gustavo; Chakraborty, Pinaki

    2017-08-01

    We show that the classic laws of the mean-velocity profiles (MVPs) of wall-bounded turbulent flows-the 'law of the wall,' the 'defect law' and the 'log law'-can be predicated on a sufficient condition with no manifest ties to the MVPs, namely that viscosity and finite turbulent domains have a depressive effect on the spectrum of turbulent energy. We also show that this sufficient condition is consistent with empirical data on the spectrum and may be deemed a general property of the energetics of wall turbulence. Our findings shed new light on the physical origin of the classic laws and their immediate offshoot, Prandtl's theory of turbulent friction.

  11. Rockburst Disaster Prediction of Isolated Coal Pillar by Electromagnetic Radiation Based on Frictional Effect

    PubMed Central

    Zhao, Tongbin; Yin, Yanchun; Xiao, Fukun; Tan, Yunliang; Zou, Jianchao

    2014-01-01

    Based on the understanding that charges generated during coal cracking are due to coal particle friction, a microstructure model was developed by considering four different variation laws of friction coefficient. Firstly, the frictional energy release of coal sample during uniaxial compressive tests was investigated and discussed. Then electromagnetic radiation method was used to predict the potential rockburst disaster in isolated coal pillar mining face, Muchengjian Colliery. The results indicate that the friction coefficient of coal particles decreases linearly with the increase of axial loading force. In predicting the strain-type rockburst, the high stress state of coal must be closely monitored. Field monitoring shows that electromagnetic radiation signal became abnormal before the occurrence of rockburst during isolated coal pillar mining. Furthermore, rockburst tends to occur at the early and ending stages of isolated coal pillar extraction. Mine-site investigation shows the occurrence zone of rockburst is consistent with the prediction, proving the reliability of the electromagnetic radiation method to predict strain-type rockburst disaster. PMID:25054186

  12. Efficiency limit factor analysis for the Francis-99 hydraulic turbine

    NASA Astrophysics Data System (ADS)

    Zeng, Y.; Zhang, L. X.; Guo, J. P.; Guo, Y. K.; Pan, Q. L.; Qian, J.

    2017-01-01

    The energy loss in hydraulic turbine is the most direct factor that affects the efficiency of the hydraulic turbine. Based on the analysis theory of inner energy loss of hydraulic turbine, combining the measurement data of the Francis-99, this paper calculates characteristic parameters of inner energy loss of the hydraulic turbine, and establishes the calculation model of the hydraulic turbine power. Taken the start-up test conditions given by Francis-99 as case, characteristics of the inner energy of the hydraulic turbine in transient and transformation law are researched. Further, analyzing mechanical friction in hydraulic turbine, we think that main ingredients of mechanical friction loss is the rotation friction loss between rotating runner and water body, and defined as the inner mechanical friction loss. The calculation method of the inner mechanical friction loss is given roughly. Our purpose is that explore and research the method and way increasing transformation efficiency of water flow by means of analysis energy losses in hydraulic turbine.

  13. A novel explicit equation for the friction factor prediction in the annular flow with drag-reducing polymer

    NASA Astrophysics Data System (ADS)

    Lakzian, Esmail; Masoudifar, Amir; Saghi, Hassan

    2017-03-01

    In this paper, a novel explicit equation is presented for the friction factor prediction in the annular flow with drag reducing polymer (DRP). By using dimensional analyses and curve fitting on the published experimental data, the suggested equation is derived based on the logarithmic velocity profiles and power law in boundary layers. In the next step, a least squares method is used to calibrate the presented equation. Then, the equation is used to friction factor prediction of the gas-liquid mixture with DRP and the results are compared with the experimental data and the Al-Sarkhi ones. Finally, drag reduction (DR) is applied as the ratio of the friction factor reduction using DRP to the friction factor without DRP. The DR results show that the suggested equation has a better agreement with the experimental data in comparison with the pervious equations. The results also show that DR prediction decreases with the increase of the gas superficial velocity.

  14. Load-bearing Characters Analysis of Large Diameter Rock-Socketed Filling Piles Based on Self-Balanced Method

    NASA Astrophysics Data System (ADS)

    tongqing, Wu; liang, Li; xinjian, Liu; Xu, nianchun; Tian, Mao

    2018-03-01

    Self-balanced method is carried out on the large diameter rock-socketed filling piles of high-pile wharf at Inland River, to explore the distribution laws of load-displacement curve, pile internal force, pile tip friction resistance and pile side friction resistance under load force. The results showed that: the tip resistance of S1 and S2 test piles accounted for 53.4% and 53.6% of the pile bearing capacity, respectively, while the total side friction resistance accounted for 46.6% and 46.4% of the pile bearing capacity, respectively; both the pile tip friction resistance and pile side friction resistance can be fully played, and reach to the design requirements. The reasonability of large diameter rock-socketed filling design is verified through test analysis, which can provide basis for the optimization of high-pile wharf structural type, thus reducing the wharf project cost, and also providing reference for the similar large diameter rock-socketed filling piles of high-pile wharf at Inland River.

  15. Rockburst disaster prediction of isolated coal pillar by electromagnetic radiation based on frictional effect.

    PubMed

    Zhao, Tongbin; Yin, Yanchun; Xiao, Fukun; Tan, Yunliang; Zou, Jianchao

    2014-01-01

    Based on the understanding that charges generated during coal cracking are due to coal particle friction, a microstructure model was developed by considering four different variation laws of friction coefficient. Firstly, the frictional energy release of coal sample during uniaxial compressive tests was investigated and discussed. Then electromagnetic radiation method was used to predict the potential rockburst disaster in isolated coal pillar mining face, Muchengjian Colliery. The results indicate that the friction coefficient of coal particles decreases linearly with the increase of axial loading force. In predicting the strain-type rockburst, the high stress state of coal must be closely monitored. Field monitoring shows that electromagnetic radiation signal became abnormal before the occurrence of rockburst during isolated coal pillar mining. Furthermore, rockburst tends to occur at the early and ending stages of isolated coal pillar extraction. Mine-site investigation shows the occurrence zone of rockburst is consistent with the prediction, proving the reliability of the electromagnetic radiation method to predict strain-type rockburst disaster.

  16. Application of viscoelastic, viscoplastic, and rate-and-state friction constitutive laws to the deformation of unconsolidated sands

    NASA Astrophysics Data System (ADS)

    Hagin, Paul N.

    Laboratory experiments on dry, unconsolidated sands from the Wilmington field, CA, reveal significant viscous creep strain under a variety of loading conditions. In hydrostatic compression tests between 10 and 50 MPa of pressure, the creep strain exceeds the magnitude of the instantaneous strain and follows a power law function of time. Interestingly, the viscous effects only appear when loading a sample beyond its preconsolidation pressure. Cyclic loading tests (at quasi-static frequencies of 10-6 to 10 -2 Hz) show that the bulk modulus increases by a factor of two with increasing frequency while attenuation remains constant. I attempt to fit these observations using three classes of models: linear viscoelastic, viscoplastic, and rate-and-state friction models. For the linear viscoelastic modeling, I investigated two types of models; spring-dashpot (exponential) and power law models. I find that a combined power law-Maxwell solid creep model adequately fits all of the data. Extrapolating the power law-Maxwell creep model out to 30 years (to simulate the lifetime of a reservoir) predicts that the static bulk modulus is 25% of the dynamic modulus, in good agreement with field observations. Laboratory studies also reveal that a large portion of the deformation is permanent, suggesting that an elastic-plastic model is appropriate. However, because the viscous component of deformation is significant, an elastic-viscoplastic model is necessary. An appropriate model for unconsolidated sands is developed by incorporating Perzyna (power law) viscoplasticity theory into the modified Cambridge clay cap model. Hydrostatic compression tests conducted as a function of volumetric strain rate produced values for the required model parameters. As a result, by using an end cap model combined with power law viscoplasticity theory, changes in porosity in both the elastic and viscoplastic regimes can be predicted as a function of both stress path and strain rate. To test whether rate-and-state friction laws can be used to model creep strain, I expand the rate-and-state formulation to include deformation under hydrostatic stress boundary conditions. Results show that the expanded rate-and-state formulation successfully describes the creep strain of unconsolidated sand. Finally, I show that the viscoplastic end cap and rate-and-state models are mathematically similar.

  17. A viscoelastic damage rheology and rate- and state-dependent friction

    NASA Astrophysics Data System (ADS)

    Lyakhovsky, Vladimir; Ben-Zion, Yehuda; Agnon, Amotz

    2005-04-01

    We analyse the relations between a viscoelastic damage rheology model and rate- and state-dependent (RS) friction. Both frameworks describe brittle deformation, although the former models localization zones in a deforming volume while the latter is associated with sliding on existing surfaces. The viscoelastic damage model accounts for evolving elastic properties and inelastic strain. The evolving elastic properties are related quantitatively to a damage state variable representing the local density of microcracks. Positive and negative changes of the damage variable lead, respectively, to degradation and recovery of the material in response to loading. A model configuration having an existing narrow zone with localized damage produces for appropriate loading and temperature-pressure conditions an overall cyclic stick-slip motion compatible with a frictional response. Each deformation cycle (limit cycle) can be divided into healing and weakening periods associated with decreasing and increasing damage, respectively. The direct effect of the RS friction and the magnitude of the frictional parameter a are related to material strengthening with increasing rate of loading. The strength and residence time of asperities (model elements) in the weakening stage depend on the rates of damage evolution and accumulation of irreversible strain. The evolutionary effect of the RS friction and overall change in the friction parameters (a-b) are controlled by the duration of the healing period and asperity (element) strengthening during this stage. For a model with spatially variable properties, the damage rheology reproduces the logarithmic dependency of the steady-state friction coefficient on the sliding velocity and the normal stress. The transition from a velocity strengthening regime to a velocity weakening one can be obtained by varying the rate of inelastic strain accumulation and keeping the other damage rheology parameters fixed. The developments unify previous damage rheology results on deformation localization leading to formation of new fault zones with detailed experimental results on frictional sliding. The results provide a route for extending the formulation of RS friction into a non-linear continuum mechanics framework.

  18. Downhill cycling symmetry breaking: how the rider foils experiment

    NASA Astrophysics Data System (ADS)

    Ben Abu, Yuval; Wolfson, Ira; Bran, Gil; Yizhaq, Hezi

    2017-11-01

    In high-school teaching of mechanics, we deal, among other things, with the nature of static and kinetic friction, forces that are proportional to the normal force. Under the influence of frictional forces, a body moves down a rough sloped decline at a fixed rate of acceleration that is independent of its mass. This situation does not apply to cases where the frictional force is dependent upon velocity, such as bodies which are moving through a streaming fluid (such as raindrops falling to the ground). In this case the body moves with a continuously decreasing acceleration, eventually reaching a terminal velocity when the frictional and gravitational forces balance out. This velocity constraint is determined by the dependence of the frictional force on velocity and geometric parameters that determine the strength of the frictional force. We show here that a similar situation takes place when bicycles descend an incline with a fixed slope. We also investigated the dependence of the velocity constraint with mass, using bicycles equipped with sophisticated sensors that metamorphose them into data-processing laboratories.

  19. A Coupled Model of Stress-Driven Frictional Afterslip and Viscoelastic Relaxation Following the 2011 Tohoku-oki Earthquake

    NASA Astrophysics Data System (ADS)

    Fukuda, J.; Johnson, K. M.

    2017-12-01

    Postseismic deformation following the 2011 Mw9.0 Tohoku-oki earthquake has been captured by both on-land GNSS and seafloor GPS/Acoustic networks. Previous studies have shown that the observed postseismic displacements can be reproduced as the sum of contributions from viscoelastic relaxation of coseismic stress changes in the upper mantle and afterslip on the plate interface surrounding the coseismic rupture. In most previous studies, viscoelastic relaxation and afterslip were modeled separately and afterslip was estimated kinematically. In this study, we develop a mechanical model of postseismic deformation in which afterslip and viscoelastic relaxation are driven by coseismic stress perturbations and are mechanically coupled. We assume that afterslip is governed by a rate-strengthening friction law that is characterized with a friction parameter (a-b)*sigma, where a-b represents the rate dependence of steady-state friction and sigma is the effective normal stress. Viscoelastic relaxation of the upper mantle is modeled with a biviscous Burgers rheology that is characterized with the steady-state and transient viscosities. We calculate the evolution of afterslip and viscoelastic relaxation using stress changes computed from an assumed coseismic slip model as the initial condition. We examine the effects of the friction parameters, mantle viscosities, elastic thickness of the slab and upper plate, and coseismic slip distribution on the model prediction and explore the range of the parameters that can fit the observed postseismic displacements. We find that the vertical postseismic displacements are particularly sensitive to these parameters. Our modeling results indicate that the on-land postseismic deformation is dominated by afterslip, whereas the seafloor postseismic deformation is dominated by viscoelastic relaxation. We also examine if afterslip overlaps regions that ruptured seismically during M6.3-7.2 earthquakes between 2003 and 2010. We find that significant overlap between afterslip and the historical M6.3-7.2 coseismic rupture areas are required to fit the horizontal postseismic displacements.

  20. Variational and numerical analysis of a quasistatic viscoelastic problem with normal compliance, friction and damage

    NASA Astrophysics Data System (ADS)

    Han, Weimin; Shillor, Meir; Sofonea, Mircea

    2001-12-01

    We consider a model for quasistatic frictional contact between a viscoelastic body and a foundation. The material constitutive relation is assumed to be nonlinear. The mechanical damage of the material, caused by excessive stress or strain, is described by the damage function, the evolution of which is determined by a parabolic inclusion. The contact is modeled with the normal compliance condition and the associated version of Coulomb's law of dry friction. We derive a variational formulation for the problem and prove the existence of its unique weak solution. We then study a fully discrete scheme for the numerical solutions of the problem and obtain error estimates on the approximate solutions.

  1. Analysis of Fault Spacing in Thrust-Belt Wedges Using Numerical Modeling

    NASA Astrophysics Data System (ADS)

    Regensburger, P. V.; Ito, G.

    2017-12-01

    Numerical modeling is invaluable in studying the mechanical processes governing the evolution of geologic features such as thrust-belt wedges. The mechanisms controlling thrust fault spacing in wedges is not well understood. Our numerical model treats the thrust belt as a visco-elastic-plastic continuum and uses a finite-difference, marker-in-cell method to solve for conservation of mass and momentum. From these conservation laws, stress is calculated and Byerlee's law is used to determine the shear stress required for a fault to form. Each model consists of a layer of crust, initially 3-km-thick, carried on top of a basal décollement, which moves at a constant speed towards a rigid backstop. A series of models were run with varied material properties, focusing on the angle of basal friction at the décollement, the angle of friction within the crust, and the cohesion of the crust. We investigate how these properties affected the spacing between thrusts that have the most time-integrated history of slip and therefore have the greatest effect on the large-scale undulations in surface topography. The surface position of these faults, which extend through most of the crustal layer, are identifiable as local maxima in positive curvature of surface topography. Tracking the temporal evolution of faults, we find that thrust blocks are widest when they first form at the front of the wedge and then they tend to contract over time as more crustal material is carried to the wedge. Within each model, thrust blocks form with similar initial widths, but individual thrust blocks develop differently and may approach an asymptotic width over time. The median of thrust block widths across the whole wedge tends to decrease with time. Median fault spacing shows a positive correlation with both wedge cohesion and internal friction. In contrast, median fault spacing exhibits a negative correlation at small angles of basal friction (<17˚) and a positive correlation with larger angles of basal friction. From these correlations, we will derive scaling laws that can be used to predict fault spacing in thrust-belt wedges.

  2. Two dimensional modeling of elastic wave propagation in solids containing cracks with rough surfaces and friction - Part I: Theoretical background.

    PubMed

    Aleshin, Vladislav; Delrue, Steven; Trifonov, Andrey; Bou Matar, Olivier; Van Den Abeele, Koen

    2018-01-01

    Our study aims at the creation of a numerical toolbox that describes wave propagation in samples containing internal contacts (e.g. cracks, delaminations, debondings, imperfect intergranular joints) of known geometry with postulated contact interaction laws including friction. The code consists of two entities: the contact model and the solid mechanics module. Part I of the paper concerns the modeling of internal contacts (called cracks for brevity), while part II is related to the integration of the developed contact model into a solid mechanics module that allows the description of wave propagation processes. The contact model is used to produce normal and tangential load-displacement relationships, which in turn are used by the solid mechanics module as boundary conditions at the internal contacts. Due to friction, the tangential reaction curve is hysteretic and memory-dependent. In addition, it depends on the normal reaction curve. An essential feature of the proposed contact model is that it takes into account the roughness of the contact faces. On one hand, accounting for roughness makes the contact model more complicated since it gives rise to a partial slip regime when some parts on the contact area experience slip and some do not. On the other hand, as we will show, the concept of contact surfaces covered by asperities receding under load makes it possible to formulate a consistent contact model that provides nonlinear load-displacement relationships for any value of the drive displacements and their histories. This is a strong advantage, since this way, the displacement-driven model allows for a simple explicit procedure of data exchange with the solid mechanics module, while more traditional flat-surface contacts driven by loads generate a complex iterative procedure. More specifically, the proposed contact model is based on the previously developed method of memory diagrams that allows one to automatically obtain memory-dependent solutions to frictional contact problems in the particular case of partial slip. Here we extend the solution onto cases of total sliding and contact loss which is possible while using the displacement-driven formulation. The method requires the knowledge of the normal contact response obtained in our case as a result of statistical consideration of roughness of contact faces. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Modelling the time behaviour of a self-organized seismic region: a cellular automaton with memory

    NASA Astrophysics Data System (ADS)

    Cisternas, A.; Rivera, L.; Munoz, D.

    2003-04-01

    The range of a cumulative sequence of earthquake moments in a seismic region varies according to Hurst's law, namely a power law in the length of the time window. The range allows for an estimation of Mmax in a seismic zone. In the case of an independent process, the Hurst exponent H is 0.5. Memory implies 0.5

  4. Characteristics of aperiodic sequence of slip events caused by interaction between seismic patches and that caused be self-organized stress heterogeneity

    NASA Astrophysics Data System (ADS)

    Kato, N.

    2017-12-01

    Numerical simulations of earthquake cycles are conducted to investigate the origin of complexity of earthquake recurrence. There are two main causes of the complexity. One is self-organized stress heterogeneity due to dynamical effect. The other is the effect of interaction between some fault patches. In the model, friction on the fault is assumed to obey a rate- and state-dependent friction law. Circular patches of velocity-weakening frictional property are assumed on the fault. On the remaining areas of the fault, velocity-strengthening friction is assumed. We consider three models: Single patch model, two-patch model, and three-patch model. In the first model, the dynamical effect is mainly examined. The latter two models take into consideration the effect of interaction as well as the dynamical effect. Complex multiperiodic or aperiodic sequences of slip events occur when slip behavior changes from the seismic to aseismic, and when the degree of interaction between seismic patches is intermediate. The former is observed in all the models, and the latter is observed in the two-patch model and the three-patch model. Evolution of spatial distribution of shear stress on the fault suggests that aperiodicity at the transition from seismic to aseismic slip is caused by self-organized stress heterogeneity. The iteration maps of recurrence intervals of slip events in aperiodic sequences are examined, and they are approximately expressed by simple curves for aperiodicity at the transition from seismic to aseismic slip. In contrast, the iteration maps for aperiodic sequences caused by interaction between seismic patches are scattered and they are not expressed by simple curves. This result suggests that complex sequences caused by different mechanisms may be distinguished.

  5. Estimation of a Stopping Criterion for Geophysical Granular Flows Based on Numerical Experimentation

    NASA Astrophysics Data System (ADS)

    Yu, B.; Dalbey, K.; Bursik, M.; Patra, A.; Pitman, E. B.

    2004-12-01

    Inundation area may be the most important factor for mitigation of natural hazards related to avalanches, debris flows, landslides and pyroclastic flows. Run-out distance is the key parameter for inundation because the front deposits define the leading edge of inundation. To define the run-out distance, it is necessary to know when a flow stops. Numerical experiments are presented for determining a stopping criterion and exploring the suitability of a Savage-Hutter granular model for computing inundation areas of granular flows. The TITAN2D model was employed to run numerical experiments based on the Savage-Hutter theory. A potentially reasonable stopping criterion was found as a function of dimensionless average velocity, aspect ratio of pile, internal friction angle, bed friction angle and bed slope in the flow direction. Slumping piles on a horizontal surface and geophysical flows over complex topography were simulated. Several mountainous areas, including Colima volcano (MX), Casita (Nic.), Little Tahoma Peak (WA, USA) and the San Bernardino Mountains (CA, USA) were used to simulate geophysical flows. Volcanic block and ash flows, debris avalanches and debris flows occurred in these areas and caused varying degrees of damage. The areas have complex topography, including locally steep open slopes, sinuous channels, and combinations of these. With different topography and physical scaling, slumping piles and geophysical flows have a somewhat different dependence of dimensionless stopping velocity on power-law constants associated with aspect ratio of pile, internal friction angle, bed friction angle and bed slope in the flow direction. Visual comparison of the details of the inundation area obtained from the TITAN2D model with models that contain some form of viscous dissipation point out weaknesses in the model that are not evident by investigation of the stopping criterion alone.

  6. Length scale effects of friction in particle compaction using atomistic simulations and a friction scaling model

    NASA Astrophysics Data System (ADS)

    Stone, T. W.; Horstemeyer, M. F.

    2012-09-01

    The objective of this study is to illustrate and quantify the length scale effects related to interparticle friction under compaction. Previous studies have shown as the length scale of a specimen decreases, the strength of a single crystal metal or ceramic increases. The question underlying this research effort continues the thought—If there is a length scale parameter related to the strength of a material, is there a length scale parameter related to friction? To explore the length scale effects of friction, molecular dynamics (MD) simulations using an embedded atom method potential were performed to analyze the compression of two spherical FCC nickel nanoparticles at different contact angles. In the MD model study, we applied a macroscopic plastic contact formulation to determine the normal plastic contact force at the particle interfaces and used the average shear stress from the MD simulations to determine the tangential contact forces. Combining this information with the Coulomb friction law, we quantified the MD interparticle coefficient of friction and showed good agreement with experimental studies and a Discrete Element Method prediction as a function of contact angle. Lastly, we compared our MD simulation friction values to the tribological predictions of Bhushan and Nosonovsky (BN), who developed a friction scaling model based on strain gradient plasticity and dislocation-assisted sliding that included a length scale parameter. The comparison revealed that the BN elastic friction scaling model did a much better job than the BN plastic scaling model of predicting the coefficient of friction values obtained from the MD simulations.

  7. Dependence of internal friction on folding mechanism.

    PubMed

    Zheng, Wenwei; De Sancho, David; Hoppe, Travis; Best, Robert B

    2015-03-11

    An outstanding challenge in protein folding is understanding the origin of "internal friction" in folding dynamics, experimentally identified from the dependence of folding rates on solvent viscosity. A possible origin suggested by simulation is the crossing of local torsion barriers. However, it was unclear why internal friction varied from protein to protein or for different folding barriers of the same protein. Using all-atom simulations with variable solvent viscosity, in conjunction with transition-path sampling to obtain reaction rates and analysis via Markov state models, we are able to determine the internal friction in the folding of several peptides and miniproteins. In agreement with experiment, we find that the folding events with greatest internal friction are those that mainly involve helix formation, while hairpin formation exhibits little or no evidence of friction. Via a careful analysis of folding transition paths, we show that internal friction arises when torsion angle changes are an important part of the folding mechanism near the folding free energy barrier. These results suggest an explanation for the variation of internal friction effects from protein to protein and across the energy landscape of the same protein.

  8. Evolutionary Oseen Model for Generalized Newtonian Fluid with Multivalued Nonmonotone Friction Law

    NASA Astrophysics Data System (ADS)

    Migórski, Stanisław; Dudek, Sylwia

    2018-03-01

    The paper deals with the non-stationary Oseen system of equations for the generalized Newtonian incompressible fluid with multivalued and nonmonotone frictional slip boundary conditions. First, we provide a result on existence of a unique solution to an abstract evolutionary inclusion involving the Clarke subdifferential term for a nonconvex function. We employ a method based on a surjectivity theorem for multivalued L-pseudomonotone operators. Then, we exploit the abstract result to prove the weak unique solvability of the Oseen system.

  9. Mechanical device for determining the stiffness and the viscous friction coefficient of shock absorber elements modelled by bond graph

    NASA Astrophysics Data System (ADS)

    Ibănescu, R.; Ibănescu, M.

    2016-11-01

    The present paper presents a mechanical device for the assessment of the fundamental parameters of a shock absorber: the spring stiffness and the viscous friction coefficient, without disassembling the absorber. The device produces an oscillatory motion of the shock absorber and can measure its amplitude and angular velocities. The dynamic model of the system, consisting of the mechanical device and the shock absorber, is performed by using the bond- graph method. Based on this model, the motion equations are obtained, which by integration lead to the motion law. The two previously mentioned parameters are determined by using this law and the measured values of two amplitudes and of their corresponding angular velocities. They result as solutions of a system of two non-linear algebraic equations.

  10. Jamming of three-dimensional prolate granular materials.

    PubMed

    Desmond, K; Franklin, Scott V

    2006-03-01

    We have found that the ability of long thin rods to jam into a solidlike state in response to a local perturbation depends upon both the particle aspect ratio and the container size. The dynamic phase diagram in this parameter space reveals a broad transition region separating granular stick-slip and solidlike behavior. In this transition region the pile displays both solid and stick-slip behavior. We measure the force on a small object pulled through the pile, and find the fluctuation spectra to have power law tails with an exponent characteristic of the region. The exponent varies from beta=-2 in the stick-slip region to beta=-1 in the solid region. These values reflect the different origins--granular rearrangements vs dry friction--of the fluctuations. Finally, the packing fraction shows only a slight dependence on container size, but depends on aspect ratio in a manner predicted by mean-field theory and implies an aspect-ratio-independent contact number of =5.25 +/- 0.03.

  11. Evidence of Self-Organized Criticality in Dry Sliding Friction

    NASA Technical Reports Server (NTRS)

    Zypman, Fredy R.; Ferrante, John; Jansen, Mark; Scanlon, Kathleen; Abel, Phillip

    2003-01-01

    This letter presents experimental results on unlubricated friction, which suggests that stick-slip is described by self-organized criticality (SOC). The data, obtained with a pin-on-disc tribometer examines the variation of the friction force as a function of time-or sliding distance. This is the first time that standard tribological equipment has been used to examine the possibility of SOC. The materials were matching pins and discs of aluminium loaded with 250, 500 and 1000 g masses, and matching M50 steel couples loaded with a 1000 g mass. An analysis of the data shows that the probability distribution of slip sizes follows a power law. We perform a careful analysis of all the properties, beyond the two just mentioned, which are required to imply the presence of SOC. Our data strongly support the existence of SOC for stick-slip in dry sliding friction.

  12. Exploring load, velocity, and surface disorder dependence of friction with one-dimensional and two-dimensional models.

    PubMed

    Dagdeviren, Omur E

    2018-08-03

    The effect of surface disorder, load, and velocity on friction between a single asperity contact and a model surface is explored with one-dimensional and two-dimensional Prandtl-Tomlinson (PT) models. We show that there are fundamental physical differences between the predictions of one-dimensional and two-dimensional models. The one-dimensional model estimates a monotonic increase in friction and energy dissipation with load, velocity, and surface disorder. However, a two-dimensional PT model, which is expected to approximate a tip-sample system more realistically, reveals a non-monotonic trend, i.e. friction is inert to surface disorder and roughness in wearless friction regime. The two-dimensional model discloses that the surface disorder starts to dominate the friction and energy dissipation when the tip and the sample interact predominantly deep into the repulsive regime. Our numerical calculations address that tracking the minimum energy path and the slip-stick motion are two competing effects that determine the load, velocity, and surface disorder dependence of friction. In the two-dimensional model, the single asperity can follow the minimum energy path in wearless regime; however, with increasing load and sliding velocity, the slip-stick movement dominates the dynamic motion and results in an increase in friction by impeding tracing the minimum energy path. Contrary to the two-dimensional model, when the one-dimensional PT model is employed, the single asperity cannot escape to the minimum energy minimum due to constraint motion and reveals only a trivial dependence of friction on load, velocity, and surface disorder. Our computational analyses clarify the physical differences between the predictions of the one-dimensional and two-dimensional models and open new avenues for disordered surfaces for low energy dissipation applications in wearless friction regime.

  13. Effect of Coulomb friction on orientational correlation and velocity distribution functions in a sheared dilute granular gas.

    PubMed

    Gayen, Bishakhdatta; Alam, Meheboob

    2011-08-01

    From particle simulations of a sheared frictional granular gas, we show that the Coulomb friction can have dramatic effects on orientational correlation as well as on both the translational and angular velocity distribution functions even in the Boltzmann (dilute) limit. The dependence of orientational correlation on friction coefficient (μ) is found to be nonmonotonic, and the Coulomb friction plays a dual role of enhancing or diminishing the orientational correlation, depending on the value of the tangential restitution coefficient (which characterizes the roughness of particles). From the sticking limit (i.e., with no sliding contact) of rough particles, decreasing the Coulomb friction is found to reduce the density and spatial velocity correlations which, together with diminished orientational correlation for small enough μ, are responsible for the transition from non-gaussian to gaussian distribution functions in the double limit of small friction (μ→0) and nearly elastic particles (e→1). This double limit in fact corresponds to perfectly smooth particles, and hence the maxwellian (gaussian) is indeed a solution of the Boltzmann equation for a frictional granular gas in the limit of elastic collisions and zero Coulomb friction at any roughness. The high-velocity tails of both distribution functions seem to follow stretched exponentials even in the presence of Coulomb friction, and the related velocity exponents deviate strongly from a gaussian with increasing friction.

  14. Frictional behaviour of sandstone: A sample-size dependent triaxial investigation

    NASA Astrophysics Data System (ADS)

    Roshan, Hamid; Masoumi, Hossein; Regenauer-Lieb, Klaus

    2017-01-01

    Frictional behaviour of rocks from the initial stage of loading to final shear displacement along the formed shear plane has been widely investigated in the past. However the effect of sample size on such frictional behaviour has not attracted much attention. This is mainly related to the limitations in rock testing facilities as well as the complex mechanisms involved in sample-size dependent frictional behaviour of rocks. In this study, a suite of advanced triaxial experiments was performed on Gosford sandstone samples at different sizes and confining pressures. The post-peak response of the rock along the formed shear plane has been captured for the analysis with particular interest in sample-size dependency. Several important phenomena have been observed from the results of this study: a) the rate of transition from brittleness to ductility in rock is sample-size dependent where the relatively smaller samples showed faster transition toward ductility at any confining pressure; b) the sample size influences the angle of formed shear band and c) the friction coefficient of the formed shear plane is sample-size dependent where the relatively smaller sample exhibits lower friction coefficient compared to larger samples. We interpret our results in terms of a thermodynamics approach in which the frictional properties for finite deformation are viewed as encompassing a multitude of ephemeral slipping surfaces prior to the formation of the through going fracture. The final fracture itself is seen as a result of the self-organisation of a sufficiently large ensemble of micro-slip surfaces and therefore consistent in terms of the theory of thermodynamics. This assumption vindicates the use of classical rock mechanics experiments to constrain failure of pressure sensitive rocks and the future imaging of these micro-slips opens an exciting path for research in rock failure mechanisms.

  15. Micro-macro correlations and anisotropy in granular assemblies under uniaxial loading and unloading.

    PubMed

    Imole, Olukayode I; Wojtkowski, Mateusz; Magnanimo, Vanessa; Luding, Stefan

    2014-04-01

    The influence of contact friction on the behavior of dense, polydisperse granular assemblies under uniaxial (oedometric) loading and unloading deformation is studied using discrete element simulations. Even though the uniaxial deformation protocol is one of the "simplest" element tests possible, the evolution of the structural anisotropy necessitates its careful analysis and understanding, since it is the source of interesting and unexpected observations. On the macroscopic, homogenized, continuum scale, the deviatoric stress ratio and the deviatoric fabric, i.e., the microstructure behave in a different fashion during uniaxial loading and unloading. The maximal stress ratio and strain increase with increasing contact friction. In contrast, the deviatoric fabric reaches its maximum at a unique strain level independent of friction, with the maximal value decreasing with friction. For unloading, both stress and fabric respond to unloading strain with a friction-dependent delay but at different strains. On the micro-level, a friction-dependent non-symmetry of the proportion of weak (strong) and sliding (sticking) contacts with respect to the total contacts during loading and unloading is observed. Coupled to this, from the directional probability distribution, the "memory" and history-dependent behavior of granular systems is confirmed. Surprisingly, while a rank-2 tensor is sufficient to describe the evolution of the normal force directions, a sixth order harmonic approximation is necessary to describe the probability distribution of contacts, tangential force, and mobilized friction. We conclude that the simple uniaxial deformation activates microscopic phenomena not only in the active Cartesian directions, but also at intermediate orientations, with the tilt angle being dependent on friction, so that this microstructural features cause the interesting, nontrivial macroscopic behavior.

  16. Marginal rigidity and history dependence in packings of attractive athermal emulsions

    NASA Astrophysics Data System (ADS)

    Bargteil, Dylan; Pontani, Lea-Laetitia; Brujic, Jasna

    2014-03-01

    The geometry and stress through particulate packings depends on the method of preparation and the interaction potential between the particles. Previously, we discovered that creaming frictionless, athermal emulsions with a short-range depletion attraction leads to an initial increase in the packing density above random close packing, followed by a monotonic decrease in density (Jorjadze et al, PNAS, 2011). This decrease is because the attractive force stabilizes loose voids, thus reducing the average coordination number, , of the packing. In order to understand the mechanism of packing creation, we investigate whether the final density is influenced by the polydispersity or the initial volume fraction of droplets, as it is in frictional packings. Finally, we compress the attractive packings by centrifugation to probe the scaling laws of pressure versus density and and compare them with those found in repulsive packings (Jorjadze et al, PRL, 2013).

  17. Granular materials flow like complex fluids

    NASA Astrophysics Data System (ADS)

    Kou, Binquan; Cao, Yixin; Li, Jindong; Xia, Chengjie; Li, Zhifeng; Dong, Haipeng; Zhang, Ang; Zhang, Jie; Kob, Walter; Wang, Yujie

    2017-11-01

    Granular materials such as sand, powders and foams are ubiquitous in daily life and in industrial and geotechnical applications. These disordered systems form stable structures when unperturbed, but in the presence of external influences such as tapping or shear they `relax', becoming fluid in nature. It is often assumed that the relaxation dynamics of granular systems is similar to that of thermal glass-forming systems. However, so far it has not been possible to determine experimentally the dynamic properties of three-dimensional granular systems at the particle level. This lack of experimental data, combined with the fact that the motion of granular particles involves friction (whereas the motion of particles in thermal glass-forming systems does not), means that an accurate description of the relaxation dynamics of granular materials is lacking. Here we use X-ray tomography to determine the microscale relaxation dynamics of hard granular ellipsoids subject to an oscillatory shear. We find that the distribution of the displacements of the ellipsoids is well described by a Gumbel law (which is similar to a Gaussian distribution for small displacements but has a heavier tail for larger displacements), with a shape parameter that is independent of the amplitude of the shear strain and of the time. Despite this universality, the mean squared displacement of an individual ellipsoid follows a power law as a function of time, with an exponent that does depend on the strain amplitude and time. We argue that these results are related to microscale relaxation mechanisms that involve friction and memory effects (whereby the motion of an ellipsoid at a given point in time depends on its previous motion). Our observations demonstrate that, at the particle level, the dynamic behaviour of granular systems is qualitatively different from that of thermal glass-forming systems, and is instead more similar to that of complex fluids. We conclude that granular materials can relax even when the driving strain is weak.

  18. Analysis Method of Friction Torque and Weld Interface Temperature during Friction Process of Steel Friction Welding

    NASA Astrophysics Data System (ADS)

    Kimura, Masaaki; Inoue, Haruo; Kusaka, Masahiro; Kaizu, Koichi; Fuji, Akiyoshi

    This paper describes an analysis method of the friction torque and weld interface temperature during the friction process for steel friction welding. The joining mechanism model of the friction welding for the wear and seizure stages was constructed from the actual joining phenomena that were obtained by the experiment. The non-steady two-dimensional heat transfer analysis for the friction process was carried out by calculation with FEM code ANSYS. The contact pressure, heat generation quantity, and friction torque during the wear stage were calculated using the coefficient of friction, which was considered as the constant value. The thermal stress was included in the contact pressure. On the other hand, those values during the seizure stage were calculated by introducing the coefficient of seizure, which depended on the seizure temperature. The relationship between the seizure temperature and the relative speed at the weld interface in the seizure stage was determined using the experimental results. In addition, the contact pressure and heat generation quantity, which depended on the relative speed of the weld interface, were solved by taking the friction pressure, the relative speed and the yield strength of the base material into the computational conditions. The calculated friction torque and weld interface temperatures of a low carbon steel joint were equal to the experimental results when friction pressures were 30 and 90 MPa, friction speed was 27.5 s-1, and weld interface diameter was 12 mm. The calculation results of the initial peak torque and the elapsed time for initial peak torque were also equal to the experimental results under the same conditions. Furthermore, the calculation results of the initial peak torque and the elapsed time for initial peak torque at various friction pressures were equal to the experimental results.

  19. A Fluid-driven Earthquake Cycle, Omori's Law, and Fluid-driven Aftershocks

    NASA Astrophysics Data System (ADS)

    Miller, S. A.

    2015-12-01

    Few models exist that predict the Omori's Law of aftershock rate decay, with rate-state friction the only physically-based model. ETAS is a probabilistic model of cascading failures, and is sometimes used to infer rate-state frictional properties. However, the (perhaps dominant) role of fluids in the earthquake process is being increasingly realised, so a fluid-based physical model for Omori's Law should be available. In this talk, I present an hypothesis for a fluid-driven earthquake cycle where dehydration and decarbonization at depth provides continuous sources of buoyant high pressure fluids that must eventually make their way back to the surface. The natural pathway for fluid escape is along plate boundaries, where in the ductile regime high pressure fluids likely play an integral role in episodic tremor and slow slip earthquakes. At shallower levels, high pressure fluids pool at the base of seismogenic zones, with the reservoir expanding in scale through the earthquake cycle. Late in the cycle, these fluids can invade and degrade the strength of the brittle crust and contribute to earthquake nucleation. The mainshock opens permeable networks that provide escape pathways for high pressure fluids and generate aftershocks along these flow paths, while creating new pathways by the aftershocks themselves. Thermally activated precipitation then seals up these pathways, returning the system to a low-permeability environment and effective seal during the subsequent tectonic stress buildup. I find that the multiplicative effect of an exponential dependence of permeability on the effective normal stress coupled with an Arrhenius-type, thermally activated exponential reduction in permeability results in Omori's Law. I simulate this scenario using a very simple model that combines non-linear diffusion and a step-wise increase in permeability when a Mohr Coulomb failure condition is met, and allow permeability to decrease as an exponential function in time. I show very strong spatial correlations of the simulated evolved permeability and fluid pressure field with aftershock hypocenters from this 1992 Landers and 1994 Northridge aftershock sequences, and reproduce the observed aftershock decay rates. Controls on the decay rates (p-value) will also be discussed.

  20. Some aspects of frictional measurements in hip joint simulators.

    PubMed

    Unsworth, Anthony

    2016-05-01

    The measurement of friction in artificial hip joints can lead to the knowledge of the lubrication mechanisms occurring in the joints. However, the measurement of friction, particularly in spherical contacts, is not always straightforward. The important loading and kinematic features must be appropriate and the friction must be measured in the correct plane. Even defining a coefficient of friction is difficult with spherical contacts as friction acts at different moment arms throughout the contact area. Thus, the generated frictional torques depend on the pressure distribution of the contact and the moment arms at which this pressure acts. The pressure distribution depends on the material properties, the surface entraining velocities, the joint diameters, and the clearance between the two surfaces of the ball and socket joint. Equally measuring friction is very taxing for machines which are applying very high loads. Slight misalignments of the application of these loads can produce torques which are very much greater than the frictional torques that we are trying to measure. This article attempts to share the thoughts behind over 40 years of measuring friction in artificial joints using the Durham Friction Simulators. This has led to accrued consistency of measurement and a robust scientific design rationale to understand the nature of friction in these spherical contacts. It also impacts on how to obtain accurate measurements as well as on the understanding of where the difficult issues lie and how to overcome them. © IMechE 2016.

  1. The Indeterminate Case of Classical Static Friction When Coupled with Tension

    ERIC Educational Resources Information Center

    Hahn, Kenneth D.; Russell, Jacob M.

    2018-01-01

    It has been noted that the static friction force poses challenges for students and, at times, even their instructors. Unlike the gravitational force, which has a precise and unambiguous magnitude (F[subscript G] = mg), the magnitude and direction of the static friction force depend on other forces at play. Friction can be understood rather well in…

  2. Debris-bed friction of hard-bedded glaciers

    USGS Publications Warehouse

    Cohen, D.; Iverson, N.R.; Hooyer, T.S.; Fischer, U.H.; Jackson, M.; Moore, P.L.

    2005-01-01

    [1] Field measurements of debris-bed friction on a smooth rock tablet at the bed of Engabreen, a hard-bedded, temperate glacier in northern Norway, indicated that basal ice containing 10% debris by volume exerted local shear traction of up to 500 kPa. The corresponding bulk friction coefficient between the dirty basal ice and the tablet was between 0.05 and 0.08. A model of friction in which nonrotating spherical rock particles are held in frictional contact with the bed by bed-normal ice flow can account for these measurements if the power law exponent for ice flowing past large clasts is 1. A small exponent (n < 2) is likely because stresses in ice are small and flow is transient. Numerical calculations of the bed-normal drag force on a sphere in contact with a flat bed using n = 1 show that this force can reach values several hundred times that on a sphere isolated from the bed, thus drastically increasing frictional resistance. Various estimates of basal friction are obtained from this model. For example, the shear traction at the bed of a glacier sliding at 20 m a-1 with a geothermally induced melt rate of 0.006 m a-1 and an effective pressure of 300 kPa can exceed 100 kPa. Debris-bed friction can therefore be a major component of sliding resistance, contradicting the common assumption that debris-bed friction is negligible. Copyright 2005 by the American Geophysical Union.

  3. Seeing Circles and Drawing Ellipses: When Sound Biases Reproduction of Visual Motion

    PubMed Central

    Aramaki, Mitsuko; Bringoux, Lionel; Ystad, Sølvi; Kronland-Martinet, Richard

    2016-01-01

    The perception and production of biological movements is characterized by the 1/3 power law, a relation linking the curvature and the velocity of an intended action. In particular, motions are perceived and reproduced distorted when their kinematics deviate from this biological law. Whereas most studies dealing with this perceptual-motor relation focused on visual or kinaesthetic modalities in a unimodal context, in this paper we show that auditory dynamics strikingly biases visuomotor processes. Biologically consistent or inconsistent circular visual motions were used in combination with circular or elliptical auditory motions. Auditory motions were synthesized friction sounds mimicking those produced by the friction of the pen on a paper when someone is drawing. Sounds were presented diotically and the auditory motion velocity was evoked through the friction sound timbre variations without any spatial cues. Remarkably, when subjects were asked to reproduce circular visual motion while listening to sounds that evoked elliptical kinematics without seeing their hand, they drew elliptical shapes. Moreover, distortion induced by inconsistent elliptical kinematics in both visual and auditory modalities added up linearly. These results bring to light the substantial role of auditory dynamics in the visuo-motor coupling in a multisensory context. PMID:27119411

  4. Re-understanding the law-of-the-wall for wall-bounded turbulence based on in-depth investigation of DNS data

    NASA Astrophysics Data System (ADS)

    Cao, Bochao; Xu, Hongyi

    2018-05-01

    Based on direct numerical simulation (DNS) data of the straight ducts, namely square and rectangular annular ducts, detailed analyses were conducted for the mean streamwise velocity, relevant velocity scales, and turbulence statistics. It is concluded that turbulent boundary layers (TBL) should be broadly classified into three types (Type-A, -B, and -C) in terms of their distribution patterns of the time-averaged local wall-shear stress (τ _w ) or the mean local frictional velocity (u_τ ) . With reference to the Type-A TBL analysis by von Karman in developing the law-of-the-wall using the time-averaged local frictional velocity (u_τ ) as scale, the current study extended the approach to the Type-B TBL and obtained the analytical expressions for streamwise velocity in the inner-layer using ensemble-averaged frictional velocity (\\bar{{u}}_τ ) as scale. These analytical formulae were formed by introducing the general damping and enhancing functions. Further, the research applied a near-wall DNS-guided integration to the governing equations of Type-B TBL and quantitatively proved the correctness and accuracy of the inner-layer analytical expressions for this type.

  5. Granular self-organization by autotuning of friction.

    PubMed

    Kumar, Deepak; Nitsure, Nitin; Bhattacharya, S; Ghosh, Shankar

    2015-09-15

    A monolayer of granular spheres in a cylindrical vial, driven continuously by an orbital shaker and subjected to a symmetric confining centrifugal potential, self-organizes to form a distinctively asymmetric structure which occupies only the rear half-space. It is marked by a sharp leading edge at the potential minimum and a curved rear. The area of the structure obeys a power-law scaling with the number of spheres. Imaging shows that the regulation of motion of individual spheres occurs via toggling between two types of motion, namely, rolling and sliding. A low density of weakly frictional rollers congregates near the sharp leading edge whereas a denser rear comprises highly frictional sliders. Experiments further suggest that because the rolling and sliding friction coefficients differ substantially, the spheres acquire a local time-averaged coefficient of friction within a large range of intermediate values in the system. The various sets of spatial and temporal configurations of the rollers and sliders constitute the internal states of the system. Experiments demonstrate and simulations confirm that the global features of the structure are maintained robustly by autotuning of friction through these internal states, providing a previously unidentified route to self-organization of a many-body system.

  6. Friction and wear of single-crystal and polycrystalline maganese-zinc ferrite in contact with various metals

    NASA Technical Reports Server (NTRS)

    Miyoshi, K.; Buckley, D. H.

    1977-01-01

    Sliding friction experiments were conducted with single-crystal (SCF) and hot-pressed polycrystalline (HPF) manganese-zinc ferrite in contact with various metals. Results indicate that the coefficients of friction for SCF and HPF are related to the relative chemical activity of those metals in high vacuum. The more active the metal, the higher the coefficient of friction. The coefficients of friction for both SCF and HPF were the same and much higher in vacuum than in argon at atmospheric pressure. All the metals tested transferred to the surface of both SCF and HPF in sliding. Both SCF and HPF exhibited cracking and fracture with sliding. Cracking in SCF is dependent on crystallographic characteristics. In HPF, cracking depends on the orientation of the individual crystallites.

  7. Variational transition state theory for multidimensional activated rate processes in the presence of anisotropic friction

    NASA Astrophysics Data System (ADS)

    Berezhkovskii, Alexander M.; Frishman, Anatoli M.; Pollak, Eli

    1994-09-01

    Variational transition state theory (VTST) is applied to the study of the activated escape of a particle trapped in a multidimensional potential well and coupled to a heat bath. Special attention is given to the dependence of the rate constant on the friction coefficients in the case of anisotropic friction. It is demonstrated explicitly that both the traditional as well as the nontraditional scenarios for the particle escape are recovered uniformly within the framework of VTST. Effects such as saddle point avoidance and friction dependence of the activation energy are derived from VTST using optimized planar dividing surfaces.

  8. Ratchet due to broken friction symmetry.

    PubMed

    Nordén, B; Zolotaryuk, Y; Christiansen, P L; Zolotaryuk, A V

    2002-01-01

    A ratchet mechanism that occurs due to asymmetric dependence of the friction of a moving system on its velocity or a driving force is reported. For this kind of ratchet, instead of a particle moving in a periodic potential, the dynamics of which have broken space-time symmetry, the system must be provided with some internal structure realizing such a velocity- or force-friction dependence. For demonstration of a ratchet mechanism of this type, an experimental setup (gadget) that converts longitudinal oscillating or fluctuating motion into a unidirectional rotation has been built and experiments with it have been carried out. In this device, an asymmetry of friction dependence on an applied force appears, resulting in rectification of rotary motion. In experiments, our setup is observed to rotate only in one direction, which is in accordance with given theoretical arguments. Despite the setup being three dimensional, the ratchet rotary motion is proved to be described by one dynamical equation. This kind of motion is a result of the interplay of friction and inertia. We also consider a case with viscous friction, which is irrelevant to this gadget, but it can be a possible mechanism of rotary unidirectional motion of some swimming organisms in a liquid.

  9. On the dependence of the domain of values of functionals of hypersonic aerodynamics on controls

    NASA Astrophysics Data System (ADS)

    Bilchenko, Grigory; Bilchenko, Nataly

    2018-05-01

    The properties of mathematical model of control of heat and mass transfer in laminar boundary layer on permeable cylindrical and spherical surfaces of the hypersonic aircraft are considered. Dependences of hypersonic aerodynamics functionals (the total heat flow and the total Newton friction force) on controls (the blowing into boundary layer, the temperature factor, the magnetic field) are investigated. The domains of allowed values of functionals of hypersonic aerodynamics are obtained. The results of the computational experiments are presented: the dependences of total heat flow on controls; the dependences of total Newton friction force on controls; the mutual dependences of functionals (as the domains of allowed values "Heat and Friction"); the dependences of blowing system power on controls. The influences of magnetic field and dissociation on the domain of "Heat and Friction" allowed values are studied. It is proved that for any fixed constant value of magnetic field the blowing system power is a symmetric function of constant dimensionless controls (the blowing into boundary layer and the temperature factor). It is shown that the obtained domain of allowed values of functionals of hypersonic aerodynamics depending on permissible range of controls may be used in engineering.

  10. The evolving quality of frictional contact with graphene.

    PubMed

    Li, Suzhi; Li, Qunyang; Carpick, Robert W; Gumbsch, Peter; Liu, Xin Z; Ding, Xiangdong; Sun, Jun; Li, Ju

    2016-11-24

    Graphite and other lamellar materials are used as dry lubricants for macroscale metallic sliding components and high-pressure contacts. It has been shown experimentally that monolayer graphene exhibits higher friction than multilayer graphene and graphite, and that this friction increases with continued sliding, but the mechanism behind this remains subject to debate. It has long been conjectured that the true contact area between two rough bodies controls interfacial friction. The true contact area, defined for example by the number of atoms within the range of interatomic forces, is difficult to visualize directly but characterizes the quantity of contact. However, there is emerging evidence that, for a given pair of materials, the quality of the contact can change, and that this can also strongly affect interfacial friction. Recently, it has been found that the frictional behaviour of two-dimensional materials exhibits traits unlike those of conventional bulk materials. This includes the abovementioned finding that for few-layer two-dimensional materials the static friction force gradually strengthens for a few initial atomic periods before reaching a constant value. Such transient behaviour, and the associated enhancement of steady-state friction, diminishes as the number of two-dimensional layers increases, and was observed only when the two-dimensional material was loosely adhering to a substrate. This layer-dependent transient phenomenon has not been captured by any simulations. Here, using atomistic simulations, we reproduce the experimental observations of layer-dependent friction and transient frictional strengthening on graphene. Atomic force analysis reveals that the evolution of static friction is a manifestation of the natural tendency for thinner and less-constrained graphene to re-adjust its configuration as a direct consequence of its greater flexibility. That is, the tip atoms become more strongly pinned, and show greater synchrony in their stick-slip behaviour. While the quantity of atomic-scale contacts (true contact area) evolves, the quality (in this case, the local pinning state of individual atoms and the overall commensurability) also evolves in frictional sliding on graphene. Moreover, the effects can be tuned by pre-wrinkling. The evolving contact quality is critical for explaining the time-dependent friction of configurationally flexible interfaces.

  11. Friction and wear of metals with a single-crystal abrasive grit of silicon carbide: Effect of shear strength of metal

    NASA Technical Reports Server (NTRS)

    Miyoshi, K.; Buckley, D. H.

    1978-01-01

    Sliding friction experiments were conducted with spherical, single-crystal silicon carbide riders in contact with various metals and with metal riders in contact with silicon carbide flats. Results indicate that: (1) the friction force in the plowing of metal and (2) the groove height (corresponding to the volume of the groove) are related to the shear strength of the metal. That is, they decrease linearly as the shear strength of the bulk metal increases. Grooves are formed in metals primarily from plastic deformation, with occasional metal removal. The relation between the groove width D and the load W can be expressed by W = kD, superscript n which satisfies Meyer's law.

  12. Quantum friction in two-dimensional topological materials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Farias, M. Belén; Kort-Kamp, Wilton J. M.; Dalvit, Diego A. R.

    In this paper, we develop the theory of quantum friction in two-dimensional topological materials. The quantum drag force on a metallic nanoparticle moving above such systems is sensitive to the nontrivial topology of their electronic phases, shows a novel distance scaling law, and can be manipulated through doping or via the application of external fields. We use the developed framework to investigate quantum friction due to the quantum Hall effect in magnetic field biased graphene, and to topological phase transitions in the graphene family materials. Finally, it is shown that topologically nontrivial states in two-dimensional materials enable an increase ofmore » two orders of magnitude in the quantum drag force with respect to conventional neutral graphene systems.« less

  13. Quantum friction in two-dimensional topological materials

    DOE PAGES

    Farias, M. Belén; Kort-Kamp, Wilton J. M.; Dalvit, Diego A. R.

    2018-04-24

    In this paper, we develop the theory of quantum friction in two-dimensional topological materials. The quantum drag force on a metallic nanoparticle moving above such systems is sensitive to the nontrivial topology of their electronic phases, shows a novel distance scaling law, and can be manipulated through doping or via the application of external fields. We use the developed framework to investigate quantum friction due to the quantum Hall effect in magnetic field biased graphene, and to topological phase transitions in the graphene family materials. Finally, it is shown that topologically nontrivial states in two-dimensional materials enable an increase ofmore » two orders of magnitude in the quantum drag force with respect to conventional neutral graphene systems.« less

  14. Load-Dependent Friction Hysteresis on Graphene.

    PubMed

    Ye, Zhijiang; Egberts, Philip; Han, Gang Hee; Johnson, A T Charlie; Carpick, Robert W; Martini, Ashlie

    2016-05-24

    Nanoscale friction often exhibits hysteresis when load is increased (loading) and then decreased (unloading) and is manifested as larger friction measured during unloading compared to loading for a given load. In this work, the origins of load-dependent friction hysteresis were explored through atomic force microscopy (AFM) experiments of a silicon tip sliding on chemical vapor deposited graphene in air, and molecular dynamics simulations of a model AFM tip on graphene, mimicking both vacuum and humid air environmental conditions. It was found that only simulations with water at the tip-graphene contact reproduced the experimentally observed hysteresis. The mechanisms underlying this friction hysteresis were then investigated in the simulations by varying the graphene-water interaction strength. The size of the water-graphene interface exhibited hysteresis trends consistent with the friction, while measures of other previously proposed mechanisms, such as out-of-plane deformation of the graphene film and irreversible reorganization of the water molecules at the shearing interface, were less correlated to the friction hysteresis. The relationship between the size of the sliding interface and friction observed in the simulations was explained in terms of the varying contact angles in front of and behind the sliding tip, which were larger during loading than unloading.

  15. Granular slumping on a horizontal surface

    NASA Astrophysics Data System (ADS)

    Lajeunesse, E.; Monnier, J. B.; Homsy, G. M.

    2005-10-01

    We report the results of an experimental investigation of the flow induced by the collapse of a column of granular material (glass beads of diameter d) over a horizontal surface. Two different setups are used, namely, a rectangular channel and a semicircular tube, allowing us to compare two-dimensional and axisymmetric flows, with particular focus on the internal flow structure. In both geometries the flow dynamics and the deposit morphologies are observed to depend primarily on the initial aspect ratio of the granular column a =Hi/Li, where Hi is the height of the initial granular column and Li its length along the flow direction. Two distinct regimes are observed depending on a: an avalanche of the column flanks producing truncated deposits for small a and a column free fall leading to conical deposits for large a. In both geometries the characteristic time scale is the free fall of the granular column τc=√Hi/g . The flow initiated by Coulomb-like failure never involves the whole granular heap but remains localized in a surface layer whose size and shape depend on a and vary in both space and time. Except in the vicinity of the pile foot where the flow is pluglike, velocity profiles measured at the side wall are identical to those commonly observed in steady granular surface flows: the velocity varies linearly with depth in the flowing layer and decreases exponentially with depth in the static layer. Moreover, the shear rate is constant, γ˙=0.3√g /d , independent of the initial aspect ratio, the flow geometry, position along the heap, or time. Despite the rather complex flow dynamics, the scaled deposit height Hf/Li and runout distance ΔL /Li both exhibit simple power laws whose exponents depend on a and on the flow geometry. We show that the physical origin of these power laws can be understood on the basis of a dynamic balance between acceleration, pressure gradient, and friction forces at the foot of the granular pile. Two asymptotic behaviors can be distinguished: the flow is dominated by friction forces at small a and by pressure forces at large a. The effect of the flow geometry is determined primarily by mass conservation and becomes important only for large a.

  16. Skin friction measurements by a new nonintrusive double-laser-beam oil viscosity balance technique

    NASA Technical Reports Server (NTRS)

    Monson, D. J.; Higuchi, H.

    1980-01-01

    A portable dual-laser-beam interferometer that nonintrusively measures skin friction by monitoring the thickness change of an oil film subject to shear stress is described. The method is an advance over past versions in that the troublesome and error-introducing need to measure the distance to the oil leading edge and the starting time for the oil flow has been eliminated. The validity of the method was verified by measuring oil viscosity in the laboratory, and then using those results to measure skin friction beneath the turbulent boundary layer in a low-speed wind tunnel. The dual-laser-beam skin friction measurements are compared with Preston tube measurements, with mean velocity profile data in a 'law-of-the-wall' coordinate system, and with computations based on turbulent boundary-layer theory. Excellent agreement is found in all cases. This validation and the aforementioned improvements appear to make the present form of the instrument usable to measure skin friction reliably and nonintrusively in a wide range of flow situations in which previous methods are not practical.

  17. Skin Friction Measurements by a Dual-Laser-Beam Interferometer Technique

    NASA Technical Reports Server (NTRS)

    Monson, D. J.; Higuchi, H.

    1981-01-01

    A portable dual-laser-beam interferometer that nonintrusively measures skin friction by monitoring the thickness change of an oil film subject to shear stress is described. The method is an advance over past versions in that the troublesome and error-introducing need to measure the distance to the oil leading edge and the starting time for the oil flow has been eliminated. The validity of the method was verified by measuring oil viscosity in the laboratory, and then using those results to measure skin friction beneath the turbulent boundary layer in a low speed wind tunnel. The dual-laser-beam skin friction measurements are compared with Preston tube measurements, with mean velocity profile data in a "law-of-the-well" coordinate system, and with computations based on turbulent boundary-layer theory. Excellent agreement is found in all cases. (This validation and the aforementioned improvements appear to make the present form of the instrument usable to measure skin friction reliably and nonintrusively in a wide range of flow situations in which previous methods are not practical.)

  18. Dependence of Internal Friction on Folding Mechanism

    PubMed Central

    2016-01-01

    An outstanding challenge in protein folding is understanding the origin of “internal friction” in folding dynamics, experimentally identified from the dependence of folding rates on solvent viscosity. A possible origin suggested by simulation is the crossing of local torsion barriers. However, it was unclear why internal friction varied from protein to protein or for different folding barriers of the same protein. Using all-atom simulations with variable solvent viscosity, in conjunction with transition-path sampling to obtain reaction rates and analysis via Markov state models, we are able to determine the internal friction in the folding of several peptides and miniproteins. In agreement with experiment, we find that the folding events with greatest internal friction are those that mainly involve helix formation, while hairpin formation exhibits little or no evidence of friction. Via a careful analysis of folding transition paths, we show that internal friction arises when torsion angle changes are an important part of the folding mechanism near the folding free energy barrier. These results suggest an explanation for the variation of internal friction effects from protein to protein and across the energy landscape of the same protein. PMID:25721133

  19. DC servomechanism parameter identification: a Closed Loop Input Error approach.

    PubMed

    Garrido, Ruben; Miranda, Roger

    2012-01-01

    This paper presents a Closed Loop Input Error (CLIE) approach for on-line parametric estimation of a continuous-time model of a DC servomechanism functioning in closed loop. A standard Proportional Derivative (PD) position controller stabilizes the loop without requiring knowledge on the servomechanism parameters. The analysis of the identification algorithm takes into account the control law employed for closing the loop. The model contains four parameters that depend on the servo inertia, viscous, and Coulomb friction as well as on a constant disturbance. Lyapunov stability theory permits assessing boundedness of the signals associated to the identification algorithm. Experiments on a laboratory prototype allows evaluating the performance of the approach. Copyright © 2011 ISA. Published by Elsevier Ltd. All rights reserved.

  20. Motion of a rigid sphere through an elastic tube with a lubrication film

    NASA Astrophysics Data System (ADS)

    Tani, Marie; Cambau, Thomas; Bico, Jose; Reyssat, Etienne

    2017-11-01

    The motion of large objects through narrow tubes is a common problem in physiology and more generally in the biological world. We built a model experiment where a rigid sphere is moved inside a narrower elastic tube coated with a lubricating fluid. The friction force is generally lower than in a non-lubricated situation. Interestingly, the force increases with the pulling velocity to the power 1/3, and also depends on the viscosity of the lubricant, the geometry and the mechanical properties of the tube. All our experimental data are well described by a scaling law combining lubrication and elasticity equations. We furthermore measured the thickness of the lubricant film. We present all these results.

  1. Thermal state of an ice shell on Europa

    NASA Technical Reports Server (NTRS)

    Ojakangas, Gregory W.; Stevenson, David J.

    1989-01-01

    The thickness of the ice shell presently hypothesized for Europa, which is decoupled from a silicate core by a liquid water layer, is calculated as a function of colatitude and longitude under suitable assumptions for two plausible ice rheology behaviors: that of Maxwell type, and that of generalized flow-law rheology. Due to the dissipation rate's pronounced temperature dependence, virtually all tidal dissipation is found to concentrate in the lowest few kilometers of the shell. While for some parameter choices an insulating regolith that raises the near-surface temperature by more than a few tens of degrees C may stabilize the shell against polar wander, a modest regolith may enhance the probability of such wander's occurrence through the reduction of the shell's retarding friction.

  2. Universal Logarithmic Law of the Wall in Turbulent Channel and Pipe Flows

    NASA Astrophysics Data System (ADS)

    Zanoun, E.-S.; Durst, F.; Nagib, Hassan

    2003-11-01

    The accuracy of obtaining parameters of velocity distribution in the inertial sub-layer of wall-bounded flows depends on evaluating the wall friction and spatial resolution of measurements. By focusing on these aspects of experiments and extending the range of available channel data by a factor of two, our work confirms the log-law over a power-law representation for Re_τ≥ 2×10^3. Measurements in a fully-developed pipe reveal that velocity instruments such as hot-wires are superior to pressure probes for several reasons including spatial resolution. No general technique for correcting Pitot probe data exists, and the MacMillan's displacement correction drastically changes the slope of the logarithmic law. Oil-film interferometry coupled with hot-wire measurements were used to demonstrate effects of channel aspect ratio on results and to reveal that initial tripping has insignificant effects on the Kármán constant in the fully developed region. Data reveal evidence on differences in the outer flow between channels and pipes. In channels, we find that the inertial sub-range may be represented by the simple approximate formula ;U^+≈e ln y^++10/e and the fully developed channel resistance by c_f=0.0624 Re_m-0.25 or √2/c_f; ≈ ; e; ln Re √c_f+10/e+e;(ln1/√2-1).

  3. Measurement of Vehicle Tire-to-Road Coefficient of Friction with a Portable Microcomputerized Transducer.

    DTIC Science & Technology

    1982-08-01

    Sliding Rubber and the Load Dependance of Road Tyre Friction," The Physics of Tire Tractio,’. Theory, and Experiment (Hays, D. F., and Brown, A. L...Saturation of Sliding Rubber and the Load Dependance of Road Tyre Friction," The Physics of Tire Traction, Theory, and Expe-iment (Hays, D. F., and...surfaces could be identified and evaluated before accidents happen or runway surfaces could be evaluated to determine if rubber or other contaminant

  4. TEACHING PHYSICS: A computer-based revitalization of Atwood's machine

    NASA Astrophysics Data System (ADS)

    Trumper, Ricardo; Gelbman, Moshe

    2000-09-01

    Atwood's machine is used in a microcomputer-based experiment to demonstrate Newton's second law with considerable precision. The friction force on the masses and the moment of inertia of the pulley can also be estimated.

  5. Airflow in Gravity Sewers - Determination of Wastewater Drag Coefficient.

    PubMed

    Bentzen, Thomas Ruby; Østertoft, Kristian Kilsgaard; Vollertsen, Jes; Fuglsang, Emil Dietz; Nielsen, Asbjørn Haaning

    2016-03-01

    Several experiments have been conducted in order to improve the understanding of the wastewater drag and the wall frictional force acting on the headspace air in gravity sewers. The aim of the study is to improve the data basis for a numerical model of natural sewer ventilation. The results of the study shows that by integrating the top/side wall shear stresses the log-law models for the air velocity distribution along the unwetted perimeter resulted in a good agreement with the friction forces calculated by use of the Colebrook-White formula for hydraulic smooth pipes. Secondly, the water surface drags were found by log-law models of the velocity distribution in turbulent flows to fit velocity profiles measured from the water surface and by integrating the water surface drags along the wetted perimeter, mean water surface drags were found and a measure of the water surface drag coefficient was found.

  6. Critical stresses for extension of filament-bridged matrix cracks in ceramic-matrix composites: An assessment with a model composite with tailored interfaces

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Danchaivijit, S.; Shetty, D.K.; Eldridge, J.

    Matrix cracking was studied in a model unidirectional composite of SiC filaments in an epoxy-bonded alumina matrix. The residual clamping stress on the filaments due to the shrinkage of the epoxy was moderated with the addition of the alumina filler, and the filament surface was coated with a releasing agent to produce unbonded frictional interfaces. Uniaxial tension specimens with controlled through-cracks with bridging filaments were fabricated by a two-step casting technique. Critical stresses for extension of the filament-bridged cracks of various lengths were measured in uniaxial tension using a high-sensitivity extensometer. The measured crack-length dependence of the critical stress wasmore » in good agreement with the prediction of a stress-intensity analysis that employed a new force-displacement law for the bridging filaments. The analysis required independent experimental evaluation of the matrix fracture toughness, the interfacial sliding friction stress, and the residual tension in the matrix. The matrix-cracking stress for the test specimens without the deliberately introduced cracks was significantly higher than the steady-state cracking stress measured for the long, filament-bridged cracks.« less

  7. Friction fluctuations of gold nanoparticles in the superlubric regime

    NASA Astrophysics Data System (ADS)

    Dietzel, Dirk; de Wijn, Astrid S.; Vorholzer, Matthias; Schirmeisen, Andre

    2018-04-01

    Superlubricity, or alternatively termed structural (super)lubrictiy, is a concept where ultra-low friction is expected at the interface between sliding surfaces if these surfaces are incommensurate and thus unable to interlock. In this work, we now report on sudden, reversible, friction changes that have been observed during AFM-based nanomanipulation experiments of gold nanoparticles sliding on highly oriented pyrolythic graphite. These effects can be explained by rotations of the gold nanoparticles within the concept of structural superlubricity, where the occurrence of ultra-low friction can depend extremely sensitively on the relative orientation between the slider and the substrate. From our theoretical simulations it will become apparent how even miniscule magnitudes of rotation are compatible to the observed effects and how size and shape of the particles can influence the dependence between friction and relative orientation.

  8. Novel experimental methods for investigating high speed friction of titanium-aluminum-vanadium/tool steel interface and dynamic failure of extrinsically toughened DRA composites

    NASA Astrophysics Data System (ADS)

    Irfan, Mohammad Abdulaziz

    Dynamic deformation, flow, and failure are integral parts of all dynamic processes in materials. Invariably, dynamic failure also involves the relative sliding of one component of the material over the other. Advances in elucidation of these failure mechanisms under high loading rates has been of great interest to scientists working in this area. The need to develop new dynamic mechanical property tests for materials under well characterized and controllable loading conditions has always been a challenge to experimentalists. The current study focuses on the development of two experimental methods to study some aspects of dynamic material response. The first part focuses on the development of a single stage gas gun facility for investigating high-speed metal to metal interfacial friction with applications to high speed machining. During the course of this investigation a gas gun was designed and built capable of accelerating projectiles upto velocities of 1 km/s. Using this gas gun pressure-shear plate impact friction experiments were conducted to simulate conditions similar to high speed machining at the tool-workpiece interface. The impacting plates were fabricated from materials representing the tribo-pair of interest. Accurate measurements of the interfacial tractions, i.e. the normal pressure and the frictional stress at the tribo-pair interface, and the interfacial slip velocity could be made by employing laser interferometry. Normal pressures of the order of 1-2 MPa were generated and slipping velocities of the order of 50 m/s were obtained. In order to illustrate the structure of the constitutive law governing friction, the study included experimental investigation of frictional response to step changes in normal pressure and interfacial shear stress. The results of these experiments indicate that sliding resistance for Ti6Al4V/CH steel interface is much lower than measured under quasi-static sliding conditions. Also the temperature at the interface strongly effects the sliding resistance of the interface. The experimental results deduced from the response of the sliding interface to step changes in normal pressure and the applied shear stress reinforce the importance of including frictional memory in the development of rate dependent state variable friction models. The second part of the thesis presents an investigation into the dynamic deformation and failure of extrinsically toughened DRA composites. Experiments were conducted using the split Hopkinson pressure bar to investigate the deformation and flow behavior under dynamic compression loading. A modified Hopkinson bar apparatus was used to explore the dynamic fracture behavior of three different extrinsically toughened DRA composites. The study was paralleled by systematic exploration of the failure modes in each composite. For all the composites evaluated the dynamic crack propagation characteristics of the composites are observed to be strongly dependent on the volume fraction of the ductile phase reinforcement in the composite, the yield stress of the ductile phase reinforcement, the micro-structural arrangement of the ductile phase reinforcements with respect to the notch, and the impact velocity employed in the particular experiment.

  9. Numerical investigation of magnetohydrodynamic slip flow of power-law nanofluid with temperature dependent viscosity and thermal conductivity over a permeable surface

    NASA Astrophysics Data System (ADS)

    Hussain, Sajid; Aziz, Asim; Khalique, Chaudhry Masood; Aziz, Taha

    2017-12-01

    In this paper, a numerical investigation is carried out to study the effect of temperature dependent viscosity and thermal conductivity on heat transfer and slip flow of electrically conducting non-Newtonian nanofluids. The power-law model is considered for water based nanofluids and a magnetic field is applied in the transverse direction to the flow. The governing partial differential equations(PDEs) along with the slip boundary conditions are transformed into ordinary differential equations(ODEs) using a similarity technique. The resulting ODEs are numerically solved by using fourth order Runge-Kutta and shooting methods. Numerical computations for the velocity and temperature profiles, the skin friction coefficient and the Nusselt number are presented in the form of graphs and tables. The velocity gradient at the boundary is highest for pseudoplastic fluids followed by Newtonian and then dilatant fluids. Increasing the viscosity of the nanofluid and the volume of nanoparticles reduces the rate of heat transfer and enhances the thickness of the momentum boundary layer. The increase in strength of the applied transverse magnetic field and suction velocity increases fluid motion and decreases the temperature distribution within the boundary layer. Increase in the slip velocity enhances the rate of heat transfer whereas thermal slip reduces the rate of heat transfer.

  10. Friction of Aviation Engines

    NASA Technical Reports Server (NTRS)

    Sparrow, S W; Thorne, M A

    1928-01-01

    The first portion of this report discusses measurements of friction made in the altitude laboratory of the Bureau of Standards between 1920 and 1926 under research authorization of the National Advisory Committee for Aeronautics. These are discussed with reference to the influence of speed, barometric pressure, jacket-water temperature, and throttle opening upon the friction of aviation engines. The second section of the report deals with measurements of the friction of a group of pistons differing from each other in a single respect, such as length, clearance, area of thrust face, location of thrust face, etc. Results obtained with each type of piston are discussed and attention is directed particularly to the fact that the friction chargeable to piston rings depends upon piston design as well as upon ring design. This is attributed to the effect of the rings upon the thickness and distribution of the oil film which in turn affects the friction of the piston to an extent which depends upon its design.

  11. Exploring the role of internal friction in the dynamics of unfolded proteins using simple polymer models.

    PubMed

    Cheng, Ryan R; Hawk, Alexander T; Makarov, Dmitrii E

    2013-02-21

    Recent experiments showed that the reconfiguration dynamics of unfolded proteins are often adequately described by simple polymer models. In particular, the Rouse model with internal friction (RIF) captures internal friction effects as observed in single-molecule fluorescence correlation spectroscopy (FCS) studies of a number of proteins. Here we use RIF, and its non-free draining analog, Zimm model with internal friction, to explore the effect of internal friction on the rate with which intramolecular contacts can be formed within the unfolded chain. Unlike the reconfiguration times inferred from FCS experiments, which depend linearly on the solvent viscosity, the first passage times to form intramolecular contacts are shown to display a more complex viscosity dependence. We further describe scaling relationships obeyed by contact formation times in the limits of high and low internal friction. Our findings provide experimentally testable predictions that can serve as a framework for the analysis of future studies of contact formation in proteins.

  12. Rubber friction directional asymmetry

    NASA Astrophysics Data System (ADS)

    Tiwari, A.; Dorogin, L.; Steenwyk, B.; Warhadpande, A.; Motamedi, M.; Fortunato, G.; Ciaravola, V.; Persson, B. N. J.

    2016-12-01

    In rubber friction studies it is usually assumed that the friction force does not depend on the sliding direction, unless the substrate has anisotropic properties, like a steel surface grinded in one direction. Here we will present experimental results for rubber friction, where we observe a strong asymmetry between forward and backward sliding, where forward and backward refer to the run-in direction of the rubber block. The observed effect could be very important in tire applications, where directional properties of the rubber friction could be induced during braking.

  13. Application of fractional derivative with exponential law to bi-fractional-order wave equation with frictional memory kernel

    NASA Astrophysics Data System (ADS)

    Cuahutenango-Barro, B.; Taneco-Hernández, M. A.; Gómez-Aguilar, J. F.

    2017-12-01

    Analytical solutions of the wave equation with bi-fractional-order and frictional memory kernel of Mittag-Leffler type are obtained via Caputo-Fabrizio fractional derivative in the Liouville-Caputo sense. Through the method of separation of variables and Laplace transform method we derive closed-form solutions and establish fundamental solutions. Special cases with homogeneous Dirichlet boundary conditions and nonhomogeneous initial conditions, as well as for the external force are considered. Numerical simulations of the special solutions were done and novel behaviors are obtained.

  14. Frictional Characteristics of graphene

    NASA Astrophysics Data System (ADS)

    Lee, Changgu; Carpick, Robert; Hone, James

    2009-03-01

    The frictional characteristics of graphene were characterized using friction force microscopy (FFM). The frictional force for monolayer graphene is more than twice that of bulk graphite, with 2,3, and 4 layer samples showing a monotonic decrease in friction with increasing sample thickness. Measurements on suspended graphene membranes show identical results, ruling out substrate effects as the cause of the observed variation. Likewise, the adhesion force is identical for all samples. The frictional force is independent of load within experimental uncertainty, consistent with previous measurements on graphite. We consider several possible explanations for the origin of the observed thickness dependence.

  15. Biomechanics of ant adhesive pads: frictional forces are rate- and temperature-dependent.

    PubMed

    Federle, Walter; Baumgartner, Werner; Hölldobler, Bert

    2004-01-01

    Tarsal adhesive pads enable insects to hold on to smooth plant surfaces. Using a centrifuge technique, we tested whether a "wet adhesion" model of a thin film of liquid secreted between the pad and the surface can explain adhesive and frictional forces in Asian Weaver ants (Oecophylla smaragdina). When forces are acting parallel to the surface, pads in contact with the surface can slide smoothly. Force per unit pad contact area was strongly dependent on sliding velocity and temperature. Seemingly consistent with the effect of a thin liquid film in the contact zone, (1) frictional force linearly increased with sliding velocity, (2) the increment was greater at lower temperatures and (3) no temperature dependence was detected for low-rate perpendicular detachment forces. However, we observed a strong, temperature-independent static friction that was inconsistent with a fully lubricated contact. Static friction was too large to be explained by the contribution of other (sclerotized) body parts. Moreover, the rate-specific increase of shear stress strongly exceeded predictions derived from estimates of the adhesive liquid film's thickness and viscosity. Both lines of evidence indicate that the adhesive secretion alone is insufficient to explain the observed forces and that direct interaction of the soft pad cuticle with the surface ("rubber friction") is involved.

  16. The Physics of Earthquakes: In the Quest for a Unified Theory (or Model) That Quantitatively Describes the Entire Process of an Earthquake Rupture, From its Nucleation to the Dynamic Regime and to its Arrest

    NASA Astrophysics Data System (ADS)

    Ohnaka, M.

    2004-12-01

    For the past four decades, great progress has been made in understanding earthquake source processes. In particular, recent progress in the field of the physics of earthquakes has contributed substantially to unraveling the earthquake generation process in quantitative terms. Yet, a fundamental problem remains unresolved in this field. The constitutive law that governs the behavior of earthquake ruptures is the basis of earthquake physics, and the governing law plays a fundamental role in accounting for the entire process of an earthquake rupture, from its nucleation to the dynamic propagation to its arrest, quantitatively in a unified and consistent manner. Therefore, without establishing the rational constitutive law, the physics of earthquakes cannot be a quantitative science in a true sense, and hence it is urgent to establish the rational constitutive law. However, it has been controversial over the past two decades, and it is still controversial, what the constitutive law for earthquake ruptures ought to be, and how it should be formulated. To resolve the controversy is a necessary step towards a more complete, unified theory of earthquake physics, and now the time is ripe to do so. Because of its fundamental importance, we have to discuss thoroughly and rigorously what the constitutive law ought to be from the standpoint of the physics of rock friction and fracture on the basis of solid evidence. There are prerequisites for the constitutive formulation. The brittle, seismogenic layer and individual faults therein are characterized by inhomogeneity, and fault inhomogeneity has profound implications for earthquake ruptures. In addition, rupture phenomena including earthquakes are inherently scale dependent; indeed, some of the physical quantities inherent in rupture exhibit scale dependence. To treat scale-dependent physical quantities inherent in the rupture over a broad scale range quantitatively in a unified and consistent manner, it is critical to formulate the governing law properly so as to incorporate the scaling property. Thus, the properties of fault inhomogeneity and physical scaling are indispensable prerequisites to be incorporated into the constitutive formulation. Thorough discussion in this context necessarily leads to the consistent conclusion that the constitutive law must be formulated in such a manner that the shear traction is a primary function of the slip displacement, with the secondary effect of slip rate or stationary contact time. This constitutive formulation makes it possible to account for the entire process of an earthquake rupture over a broad scale range quantitatively in a unified and consistent manner.

  17. Frictional Heat Generation and Slip Duration Estimated From Micro-fault in an Exhumed Accretionary Complex and Their Relations to the Scaling Law for Slow Earthquakes

    NASA Astrophysics Data System (ADS)

    Hashimoto, Y.; Morita, K.; Okubo, M.; Hamada, Y.; Lin, W.; Hirose, T.; Kitamura, M.

    2015-12-01

    Fault motion has been estimated by diffusion pattern of frictional heating recorded in geology (e.g., Fulton et al., 2012). The same record in deeper subduction plate interface can be observed from micro-faults in an exhumed accretionary complex. In this study, we focused on a micro-fault within the Cretaceous Shimanto Belt, SW Japan to estimate fault motion from the frictional heating diffusion pattern. A carbonaceous material concentrated layer (CMCL) with ~2m of thickness is observed in study area. Some micro-faults cut the CMCL. Thickness of a fault is about 3.7mm. Injection veins and dilatant fractures were observed in thin sections, suggesting that the high fluid pressure was existed. Samples with 10cm long were collected to measure distribution of vitrinite reflectance (Ro) as a function of distance from the center of micro-fault. Ro of host rock was ~1.0%. Diffusion pattern was detected decreasing in Ro from ~1.2%-~1.1%. Characteristic diffusion distance is ~4-~9cm. We conducted grid search to find the optimal frictional heat generation per unit area (Q, the product of friction coefficient, normal stress and slip velocity) and slip duration (t) to fit the diffusion pattern. Thermal diffusivity (0.98*10-8m2/s) and thermal conductivity (2.0 W/mK) were measured. In the result, 2000-2500J/m2 of Q and 63000-126000s of t were estimated. Moment magnitudes (M0) of slow earthquakes (slow EQs) follow a scaling law with slip duration and its dimension is different from that for normal earthquakes (normal EQ) (Ide et al., 2007). The slip duration estimated in this study (~104-~105s) consistent with 4-5 of M0, never fit to the scaling law for normal EQ. Heat generation can be inverted from 4-5 of M0, corresponding with ~108-~1011J, which is consistent with rupture area of 105-108m2 in this study. The comparisons in heat generation and slip duration between geological measurements and geophysical remote observations give us the estimation of rupture area, M0, and earthquake style, for non-active geological records.

  18. A general law of fault wear and its implication to gouge zone evolution

    NASA Astrophysics Data System (ADS)

    Boneh, Yuval; Reches, Ze'ev

    2017-04-01

    Fault wear and gouge production are universal components of frictional sliding. Wear models commonly consider fault roughness, normal stress and rock strength, but ignore the effects of gouge presence and slip-velocity. In contrast, our experimental observations indicate that wear continues while gouge layer is fully developed, and that wear-rates vary by orders-of-magnitude during slip along experimental faults made of carbonites, sandstones and granites (Boneh et al., 2013, 2014). We derive here a new universal law for fault wear by incorporating the gouge layer and slip-velocity. Slip between two rock-blocks undergoes a transition from a 'two-body' mode, during which the blocks interact at surface roughness contacts, to 'three-body' mode, during which a gouge layer separates the two blocks. Our wear model considers 'effective roughness' as the mechanism for failure at resisting, interacting sites that control the global wear. The effective roughness is comprised of a time dependent, dynamic asperities which are different in population and scale from original surfaces asperities. The model assumes that the intensity of this failure is proportional to the mechanical impulse, which is the integrated force over loading time at the interacting sites. We use this concept to calculate the wear-rate as function of the impulse-density, which is the ratio [shear-stress/slip-velocity], during fault slip. The compilation of experimental wear-rates in a large range of slip-velocities (10 μm/s - 1 m/s) and normal stresses (0.2 - 200 MPa) reveal very good agreement with the model predictions. The model provides the first explanation why fault slip at seismic velocity, e.g., 1 m/s, generates significantly less wear and gouge than fault slip at creeping velocity. Thus, the model provides a tool to use the gouge thickness of fault-zones for estimation of paleo-velocity. Boneh, Y., Sagy, A., Reches, Z., 2013. Frictional strength and wear-rate of carbonate faults during high-velocity, steady-state sliding. Earth and Planetary Science Letters 381, 127-137. Boneh, Y., Chang, J.C., Lockner, D.A., Reches, Z., 2014. Evolution of Wear and Friction Along Experimental Faults. Pure and Applied Geophysics, 1-17.

  19. Sea-level response to melting of Antarctic ice shelves on multi-centennial timescales with the fast Elementary Thermomechanical Ice Sheet model (f.ETISh v1.0)

    NASA Astrophysics Data System (ADS)

    Pattyn, Frank

    2017-08-01

    The magnitude of the Antarctic ice sheet's contribution to global sea-level rise is dominated by the potential of its marine sectors to become unstable and collapse as a response to ocean (and atmospheric) forcing. This paper presents Antarctic sea-level response to sudden atmospheric and oceanic forcings on multi-centennial timescales with the newly developed fast Elementary Thermomechanical Ice Sheet (f.ETISh) model. The f.ETISh model is a vertically integrated hybrid ice sheet-ice shelf model with vertically integrated thermomechanical coupling, making the model two-dimensional. Its marine boundary is represented by two different flux conditions, coherent with power-law basal sliding and Coulomb basal friction. The model has been compared to existing benchmarks. Modelled Antarctic ice sheet response to forcing is dominated by sub-ice shelf melt and the sensitivity is highly dependent on basal conditions at the grounding line. Coulomb friction in the grounding-line transition zone leads to significantly higher mass loss in both West and East Antarctica on centennial timescales, leading to 1.5 m sea-level rise after 500 years for a limited melt scenario of 10 m a-1 under freely floating ice shelves, up to 6 m for a 50 m a-1 scenario. The higher sensitivity is attributed to higher ice fluxes at the grounding line due to vanishing effective pressure. Removing the ice shelves altogether results in a disintegration of the West Antarctic ice sheet and (partially) marine basins in East Antarctica. After 500 years, this leads to a 5 m and a 16 m sea-level rise for the power-law basal sliding and Coulomb friction conditions at the grounding line, respectively. The latter value agrees with simulations by DeConto and Pollard (2016) over a similar period (but with different forcing and including processes of hydrofracturing and cliff failure). The chosen parametrizations make model results largely independent of spatial resolution so that f.ETISh can potentially be integrated in large-scale Earth system models.

  20. Automatic control of the preload in adaptive friction drives of chemical production machines

    NASA Astrophysics Data System (ADS)

    Balakin, P. D.

    2017-08-01

    Being based on the principle of providing the systems with adaptation property to the real parameters and operational condition, the energy effective mechanical system constructed on the base of friction gear with automated preload is offered and this allows keeping mechanical efficiency value adequate transforming drive path to in the terms of multimode operation. This is achieved by integrated control loop, operating on the basis of the laws of motion with the energy of the main power flow by changing automatically the kinematic dimension of the section and, hence, the value of preload in the friction contact. The given ratios of forces and deformations in the control loop are required at the stage of conceptual design to determine design dimensions of power transmission elements with new properties.

  1. Fracture and Friction

    NASA Astrophysics Data System (ADS)

    Gerde, Eric; Marder, Michael

    2001-03-01

    We present an atomic scale description of a self-healing crack steadily traveling along a compressed interface between dissimilar solids. The motion is similar to the wrinkle-like Weertman pulse observed by Anooshehpoor in recent foam-rubber sliding experiments. In contrast to the theoretical models of Weertman and Adams, and the numerical calculations of Andrews and Ben-Zion, we do not employ a frictional constitutive law on the interface. Yet the restrictive conditions under which these cracks can propagate make the interface appear to have a static coefficient of friction. By analytically linking atomic and continuum fields, we are able to efficiently and exhaustively explore the conditions under which self-healing cracks can propagate. To a good approximation, they are sustainable only when the interfacial shear stresses are 0.4 times the compressive stresses.

  2. Development of a two-dimensional skin friction balance nulling circuit using multivariable control theory

    NASA Technical Reports Server (NTRS)

    Tripp, John S.; Patek, Stephen D.

    1988-01-01

    Measurement of planar skin friction forces in aerodynamic testing currently requires installation of two perpendicularly mounted, single-axis balances; consequently, force components must be sensed at two distinct locations. A two-axis instrument developed at the Langley Research Center to overcome this disadvantage allows measurement of a two-dimensional force at one location. This paper describes a feedback-controlled nulling circuit developed for the NASA two-axis balance which, without external compensation, is inherently unstable because of its low friction mechanical design. Linear multivariable control theory is applied to an experimentally validated mathematical model of the balance to synthesize a state-variable feedback control law. Pole placement techniques and computer simulation studies are employed to select eigenvalues which provide ideal transient response with decoupled sensing dynamics.

  3. Analytic description of the frictionally engaged in-plane bending process incremental swivel bending (ISB)

    NASA Astrophysics Data System (ADS)

    Frohn, Peter; Engel, Bernd; Groth, Sebastian

    2018-05-01

    Kinematic forming processes shape geometries by the process parameters to achieve a more universal process utilizations regarding geometric configurations. The kinematic forming process Incremental Swivel Bending (ISB) bends sheet metal strips or profiles in plane. The sequence for bending an arc increment is composed of the steps clamping, bending, force release and feed. The bending moment is frictionally engaged by two clamping units in a laterally adjustable bending pivot. A minimum clamping force hindering the material from slipping through the clamping units is a crucial criterion to achieve a well-defined incremental arc. Therefore, an analytic description of a singular bent increment is developed in this paper. The bending moment is calculated by the uniaxial stress distribution over the profiles' width depending on the bending pivot's position. By a Coulomb' based friction model, necessary clamping force is described in dependence of friction, offset, dimensions of the clamping tools and strip thickness as well as material parameters. Boundaries for the uniaxial stress calculation are given in dependence of friction, tools' dimensions and strip thickness. The results indicate that changing the bending pivot to an eccentric position significantly affects the process' bending moment and, hence, clamping force, which is given in dependence of yield stress and hardening exponent. FE simulations validate the model with satisfactory accordance.

  4. Mechanical properties of thin-film materials evaluated from amplitude-dependent internal friction

    NASA Astrophysics Data System (ADS)

    Nishino, Yoichi

    1999-09-01

    A method is presented to evaluate the mechanical properties of thin-film materials from measurements of the amplitude-dependent internal friction. According to the constitutive equation, the internal friction in the film can be determined separately from measured damping of the film/substrate composite. The internal friction in aluminum films is dependent on the strain amplitude that is approximately two orders of magnitude higher than that for bulk aluminum. On the basis of the microplasticity theory, the amplitude-dependent internal friction in the film can be converted into the plastic strain as a function of effective stress on dislocation motion. The mechanical responses thus obtained for aluminum films show that the plastic strain of the order of 10-9 increases nonlinearly with increasing stress. These curves tend to shift to a higher stress with decreasing film thickness and also with decreasing temperature, both indicating a suppression of microplastic flow. The microflow stress at a constant level of the plastic strain varies inversely with the film thickness, provided the grain size is larger than the film thickness. The film thickness effect in the microplastic range can be well explained by the bowing of a dislocation segment whose ends are pinned at the film surface and at the film/substrate interface.

  5. Thermo-Mechanical Calculations of Hybrid Rotary Friction Welding at Equal Diameter Copper Bars and Effects of Essential Parameters on Dependent Special Variables

    NASA Astrophysics Data System (ADS)

    Parsa, M. H.; Davari, H.; Hadian, A. M.; Ahmadabadi, M. Nili

    2007-05-01

    Hybrid Rotary Friction Welding is a modified type of common rotary friction welding processes. In this welding method parameters such as pressure, angular velocity and time of welding control temperature, stress, strain and their variations. These dependent factors play an important rule in defining optimum process parameters combinations in order to improve the design and manufacturing of welding machines and quality of welded parts. Thermo-mechanical simulation of friction welding has been carried out and it has been shown that, simulation is an important tool for prediction of generated heat and strain at the weld interface and can be used for prediction of microstructure and evaluation of quality of welds. For simulation of Hybrid Rotary Friction Welding, a commercial finite element program has been used and the effects of pressure and rotary velocity of rotary part on temperature and strain variations have been investigated.

  6. Imaging high-speed friction at the nanometer scale

    PubMed Central

    Thorén, Per-Anders; de Wijn, Astrid S.; Borgani, Riccardo; Forchheimer, Daniel; Haviland, David B.

    2016-01-01

    Friction is a complicated phenomenon involving nonlinear dynamics at different length and time scales. Understanding its microscopic origin requires methods for measuring force on nanometer-scale asperities sliding at velocities reaching centimetres per second. Despite enormous advances in experimental technique, this combination of small length scale and high velocity remain elusive. We present a technique for rapidly measuring the frictional forces on a single asperity over a velocity range from zero to several centimetres per second. At each image pixel we obtain the velocity dependence of both conservative and dissipative forces, revealing the transition from stick-slip to smooth sliding friction. We explain measurements on graphite using a modified Prandtl–Tomlinson model, including the damped elastic deformation of the asperity. With its improved force sensitivity and small sliding amplitude, our method enables rapid and detailed surface mapping of the velocity dependence of frictional forces with less than 10 nm spatial resolution. PMID:27958267

  7. Orthogonal Simulation Experiment for Flow Characteristics of Ore in Ore Drawing and Influencing Factors in a Single Funnel Under a Flexible Isolation Layer

    NASA Astrophysics Data System (ADS)

    Chen, Qingfa; Zhao, Fuyu; Chen, Qinglin; Wang, Yuding; Zhong, Yu; Niu, Wenjing

    2017-12-01

    A study on the flow characteristics of ore and factors that influence these characteristics is important to master ore flow laws. An orthogonal ore-drawing numerical model was established and the flow characteristics were explored. A weight matrix was obtained and the effect of the factors was determined. It was found that (1) the entire isolation-layer interface presents a Gaussian curve morphology and marked particles in each layer show a funnel morphology; (2) the drawing amount, Q, and the isolation layer half-width, W, are correlated positively with the fall depth, H, of the isolation layer; (3) factors that affect the characteristics sequentially include the particle friction coefficient, the interface friction coefficient, the isolation layer thickness, and the particle radius, and (4) the optimal combination is an isolation layer thickness of 0.005 m, an interface friction coefficient of 0.8, a particle friction coefficient of 0.2, and a particle radius of 0.007 m.

  8. Mixed-sediment transport modelling in Scheldt estuary with a physics-based bottom friction law

    NASA Astrophysics Data System (ADS)

    Bi, Qilong; Toorman, Erik A.

    2015-04-01

    In this study, the main object is to investigate the performance of a few new physics-based process models by implementation into a numerical model for the simulation of the flow and morphodynamics in the Western Scheldt estuary. In order to deal with the complexity within the research domain, and improve the prediction accuracy, a 2D depth-averaged model has been set up as realistic as possible, i.e. including two-way hydrodynamic-sediment transport coupling, mixed sand-mud sediment transport (bedload transport as well as suspended load in the water column) and a dynamic non-uniform bed composition. A newly developed bottom friction law, based on a generalised mixing-length (GML) theory, is implemented, with which the new bed shear stress closure is constructed as the superposition of the turbulent and the laminar contribution. It allows the simulation of all turbulence conditions (fully developed turbulence, from hydraulic rough to hydraulic smooth, transient and laminar), and the drying and wetting of intertidal flats can now be modelled without specifying an inundation threshold. The benefit is that intertidal morphodynamics can now be modelled with great detail for the first time. Erosion and deposition in these areas can now be estimated with much higher accuracy, as well as their contribution to the overall net fluxes. Furthermore, Krone's deposition law has been adapted to sand-mud mixtures, and the critical stresses for deposition are computed from suspension capacity theory, instead of being tuned. The model has been calibrated and results show considerable differences in sediment fluxes, compared to a traditional approach and the analysis also reveals that the concentration effects play a very important role. The new bottom friction law with concentration effects can considerably alter the total sediment flux in the estuary not only in terms of magnitude but also in terms of erosion and deposition patterns.

  9. Dynamics of hydrated mucopolysaccharides in cartilaginous tissues treated by laser radiation

    NASA Astrophysics Data System (ADS)

    Omelchenko, Alexander I.; Sobol, Emil N.; Ignatieva, Natalia Y.; Lunin, Valerii V.; Jumel, Kornelia; Harding, Stephen E.; Jones, Nicholas

    2001-05-01

    Dynamic mechanical properties of hydrated mucopolysaccharides have been studied in heated solutions by means of molecular hydrodynamic and acoustic techniques. These experiments model the thermal condition used for laser reshaping of cartilage. It has been shown that elastic modulus and internal friction depends on concentration of chondroitine sulphate in the solution and temperature. Maximum of internal friction was revealed at about 40 degree(s)C that corresponds to temperature of breakdown of hydrophobic bonds. Temperature dependence of internal friction manifests structural changes in polysaccharides molecules under laser heating.

  10. Comparison of Friction Characteristics on TN and VA Mode Alignment Films with Friction Force Microscopy

    NASA Astrophysics Data System (ADS)

    Kwak, Musun; Chung, Hanrok; Kwon, Hyukmin; Kim, Jehyun; Han, Daekyung; Yi, Yoonseon; Lee, Sangmun; Lee, Chulgu; Cha, Sooyoul

    Using frictional force microscopy (FFM), the friction surface characteristics were compared between twisted nematic (TN) mode and vertical alignment (VA) mode alignment films (AFs). The friction asymmetry was detected depending on temperature conditions on TN mode AF, but not on VA mode AF. The difference between two modes was explained by leaning intermolecular repulsion caused by the pre-tilt angle uniformity and the density of side chain. No level difference according to temperature conditions appeared when the pre-tilt angle were measured after liquid crystal (LC) injection.

  11. Questions Students Ask: How Can a Downhill Skier Move Faster than a Sky Diver?

    ERIC Educational Resources Information Center

    Armenti, Angelo, Jr.

    1984-01-01

    Discusses the relationship of gravity, coefficient of friction, surface area, and Newton's second law to explain the physics involved in downhill skiers being able to move faster than sky divers in free fall. (JM)

  12. Reproducing the scaling laws for Slow and Fast ruptures

    NASA Astrophysics Data System (ADS)

    Romanet, Pierre; Bhat, Harsha; Madariaga, Raúl

    2017-04-01

    Modelling long term behaviour of large, natural fault systems, that are geometrically complex, is a challenging problem. This is why most of the research so far has concentrated on modelling the long term response of single planar fault system. To overcome this limitation, we appeal to a novel algorithm called the Fast Multipole Method which was developed in the context of modelling gravitational N-body problems. This method allows us to decrease the computational complexity of the calculation from O(N2) to O(N log N), N being the number of discretised elements on the fault. We then adapted this method to model the long term quasi-dynamic response of two faults, with step-over like geometry, that are governed by rate and state friction laws. We assume the faults have spatially uniform rate weakening friction. The results show that when stress interaction between faults is accounted, a complex spectrum of slip (including slow-slip events, dynamic ruptures and partial ruptures) emerges naturally. The simulated slow-slip and dynamic events follow the scaling law inferred by Ide et al. 2007 i. e. M ∝ T for slow-slip events and M ∝ T2 (in 2D) for dynamic events.

  13. Thermo-fluid-dynamics of turbulent boundary layer over a moving continuous flat sheet in a parallel free stream

    NASA Astrophysics Data System (ADS)

    Afzal, Bushra; Noor Afzal Team; Bushra Afzal Team

    2014-11-01

    The momentum and thermal turbulent boundary layers over a continuous moving sheet subjected to a free stream have been analyzed in two layers (inner wall and outer wake) theory at large Reynolds number. The present work is based on open Reynolds equations of momentum and heat transfer without any closure model say, like eddy viscosity or mixing length etc. The matching of inner and outer layers has been carried out by Izakson-Millikan-Kolmogorov hypothesis. The matching for velocity and temperature profiles yields the logarithmic laws and power laws in overlap region of inner and outer layers, along with friction factor and heat transfer laws. The uniformly valid solution for velocity, Reynolds shear stress, temperature and thermal Reynolds heat flux have been proposed by introducing the outer wake functions due to momentum and thermal boundary layers. The comparison with experimental data for velocity profile, temperature profile, skin friction and heat transfer are presented. In outer non-linear layers, the lowest order momentum and thermal boundary layer equations have also been analyses by using eddy viscosity closure model, and results are compared with experimental data. Retired Professor, Embassy Hotel, Rasal Ganj, Aligarh 202001 India.

  14. Frequency-dependent solvent friction and torsional damping in liquid 1,2-difluoroethane

    NASA Astrophysics Data System (ADS)

    MacPhail, Richard A.; Monroe, Frances C.

    1991-04-01

    We have used Raman spectroscopy to study the torsional dynamics, rotational dynamics, and conformational solvation energy of liquid 1,2-difluoroethane. From the Raman intensities, we obtain Δ H(g-t) = -2.4±0.1 kcal/mol, indicating strong dipolar solvation of the gauche conformer. We analyze the Raman linewidths of the CCF bending bands to obtain the zero-frequency torsional damping coefficient or well friction for the gauche conformer, and from the linewidth of the torsion band we obtain the friction evaluated at the torsional frequency. The zero-frequency well friction shows deviations from hydrodynamic behavior reminiscent of those observed for barrier friction, whereas the high-frequency friction is considerably smaller in magnitude and independent of temperature and viscosity. The zero-frequency torsional friction correlates linearly with the rotational friction. It is argued that the small amplitude of the torsional fluctuations emphasizes the short distance, or high wavevector components of the solvent friction. Dielectric friction apparently does not contribute to the torsional friction at the observed frequencies.

  15. Ultralow Friction in a Superconducting Magnetic Bearing

    NASA Technical Reports Server (NTRS)

    Bornemann, Hans J.; Siegel, Michael; Zaitsev, Oleg; Bareiss, Martin; Laschuetza, Helmut

    1996-01-01

    Passive levitation by superconducting magnetic bearings can be utilized in flywheels for energy storage. Basic design criteria of such a bearing are high levitation force, sufficient vertical and horizontal stability and low friction. A test facility was built for the measurement and evaluation of friction in a superconducting magnetic bearing as a function of operating temperature and pressure in the vacuum vessel. The bearing consists of a commercial disk shaped magnet levitated above single grain, melt-textured YBCO high-temperature superconductor material. The superconductor was conduction cooled by an integrated AEG tactical cryocooler. The temperature could be varied from 50 K to 80 K. The pressure in the vacuum chamber was varied from 1 bar to 10(exp -5) mbar. At the lowest pressure setting, the drag torque shows a linear frequency dependence over the entire range investigated (0 less than f less than 40 Hz). Magnetic friction, the frequency independent contribution, is very low. The frequency dependent drag torque is generated by molecular friction from molecule-surface collisions and by eddy currents. Given the specific geometry of the set-up and gas pressure, the molecular drag torque can be estimated. At a speed of 40 Hz, the coefficient of friction (drag-to-lift ratio) was measured to be mu = 1.6 x 10(exp -7) at 10(exp -5) mbar and T = 60 K. This is equivalent to a drag torque of 7.6 x 10(exp -10) Nm. Magnetic friction causes approx. 1% of the total losses. Molecular friction accounts for about 13% of the frequency dependent drag torque, the remaining 87% being due to eddy currents and losses from rotor unbalance. The specific energy loss is only 0.3% per hour.

  16. DEM simulation of flow of dumbbells on a rough inclined plane

    NASA Astrophysics Data System (ADS)

    Mandal, Sandip; Khakhar, Devang

    2015-11-01

    The rheology of non-spherical granular materials such as food grains, sugar cubes, sand, pharmaceutical pills, among others, is not understood well. We study the flow of non-spherical dumbbells of different aspect ratios on a rough inclined plane by using soft sphere DEM simulations. The dumbbells are generated by fusing two spheres together and a linear spring dashpot model along with Coulombic friction is employed to calculate inter-particle forces. At steady state, a uni-directional shear flow is obtained which allows for a detailed study of the rheology. The effect of aspect ratio and inclination angle on mean velocity, volume fraction, shear rate, shear stress, pressure and viscosity profiles is examined. The effect of aspect ratio on probability distribution of angles, made by the major axes of the dumbbells with the flow direction, average angle and order parameter is analyzed. The dense flow rheology is well explained by Bagnold's law and the constitutive laws of JFP model. The dependencies of first and second normal stress differences on aspect ratio are studied. The probability distributions of translational and rotational velocity are analyzed.

  17. Improvements to the George/Castillo Boundary Layer Theory

    NASA Astrophysics Data System (ADS)

    Wosnik, Martin; George, William K.; Castillo, Luciano

    2000-11-01

    George and Castillo (1997)(George WK and Castillo L (1997) Appl.Mech.Rev.), 50, 12/1, 689-729. presented a new theory for Zero Pressure Gradient Turbulent Boundary Layers based on an application of Near-Asymptotics to scaling laws derived from equilibrium similarity to the Reynolds-averaged equations. The resulting overlap velocity profiles retained a dependence on local Reynolds number, the parameters for which had to satisfy the following constraint equation: ln \\varepsilon fracdγd ln δ^+ = fracdln [C_o/C_i] d ln δ^+ where γ is the power exponent, Co and Ci are the coefficients in inner and outer variables respectively. GC considered only the first term in an asymptotic expansion of the exact solution, but higher order terms can be considered with no increase in the number of unknowns. The improved theory is tested against new experimental Zero Pressure Gradient Turbulent Boundary Layer data of Smith (1994), Oesterlund (1999) and Johansson and Castillo (2000). For the friction law, the first order term is sufficient, but for Co and γ the higher order terms improve the fit to the velocity profiles significantly.

  18. Friction coefficient dependence on electrostatic tribocharging

    PubMed Central

    Burgo, Thiago A. L.; Silva, Cristiane A.; Balestrin, Lia B. S.; Galembeck, Fernando

    2013-01-01

    Friction between dielectric surfaces produces patterns of fixed, stable electric charges that in turn contribute electrostatic components to surface interactions between the contacting solids. The literature presents a wealth of information on the electronic contributions to friction in metals and semiconductors but the effect of triboelectricity on friction coefficients of dielectrics is as yet poorly defined and understood. In this work, friction coefficients were measured on tribocharged polytetrafluoroethylene (PTFE), using three different techniques. As a result, friction coefficients at the macro- and nanoscales increase many-fold when PTFE surfaces are tribocharged, but this effect is eliminated by silanization of glass spheres rolling on PTFE. In conclusion, tribocharging may supersede all other contributions to macro- and nanoscale friction coefficients in PTFE and probably in other insulating polymers. PMID:23934227

  19. Mechanism of axial strain effects on friction in carbon nanotube rotating bearings.

    PubMed

    Huang, Jianzhang; Han, Qiang

    2018-08-10

    A systematic study of axial strain effects on friction in carbon nanotube bearings is conducted in this paper. The relationships between friction and axial strains are determined by implementing molecular dynamics simulations. It is found that the dependence of friction on velocity and temperature is altered by axial strains. The mechanism of strain effects is revealed through numerical and theoretical analyses. Based on phonon computations, axial strain effects tune friction by adjusting the distribution of the phonon frequency density, which affects the transfer efficiency of orderly kinetic energy into disorderly thermal energy. The findings in this work advance the understanding of friction in carbon nanotubes and suggest the great potential of axial strain effects on tuning friction in nanodevice applications.

  20. The effect of mineral reactions and microstructure on long-term experimental fault zone weakening

    NASA Astrophysics Data System (ADS)

    Niemeijer, Andre R.

    2017-04-01

    The frictional properties of fault rocks and, in particular, the velocity dependence of friction and associated rate-and-state parameters, are thought to exert an important control on earthquake nucleation and propagation. Experimental results obtained from natural fault gouges typically show that the velocity dependence of friction is a function of both temperature and sliding velocity, indicating that thermally activated time-dependent processes are fundamentally responsible for causing velocity-weakening behavior in silicate-bearing gouges at earthquake "nucleation velocities" (˜ 1 μm/s) and temperatures around 150-300 ˚ C. In addition, slow experiments at velocities of 10s of nm/s using three different fault gouge types all exhibit major weakening with ongoing displacement at constant velocity. Microstructural and microanalytical analyses demonstrate that the development of a weak through-going foliation as well as the (shear-enhanced) formation of new, weak minerals such as talc or muscovite occurred, which both presumably contributed to the observed weakening. Importantly, the slow deformation rates allow for time-dependent viscous deformation (e.g. pressure solution) to occur at low shear stress within the hard, frictionally strong minerals such as quartz. The results highlight the importance of the chemical effects of fluids and microstructural development on long-term fault weakening under slow loading conditions. The resultant frictionally weak fault gouges allow strain to remain localized, yield a strong permeability anisotropy and provide a barrier for rupture propagation. Along-fault variations in the chemical conditions thus have the potential to produce strong contrasts in frictional properties, which can have a large effect on potential earthquake rupture size and style.

  1. Strain amplitude-dependent anelasticity in Cu-Ni solid solution due to thermally activated and athermal dislocation-point obstacle interactions

    NASA Astrophysics Data System (ADS)

    Kustov, S.; Gremaud, G.; Benoit, W.; Golyandin, S.; Sapozhnikov, K.; Nishino, Y.; Asano, S.

    1999-02-01

    Experimental investigations of the internal friction and the Young's modulus defect in single crystals of Cu-(1.3-7.6) at. % Ni have been performed for 7-300 K over a wide range of oscillatory strain amplitudes. Extensive data have been obtained at a frequency of vibrations around 100 kHz and compared with the results obtained for the same crystals at a frequency of ˜1 kHz. The strain amplitude dependence of the anelastic strain amplitude and the average friction stress acting on a dislocation due to solute atoms are also analyzed. Several stages in the strain amplitude dependence of the internal friction and the Young's modulus defect are revealed for all of the alloy compositions, at different temperatures and in different frequency ranges. For the 100 kHz frequency, low temperatures and low strain amplitudes (˜10-7-10-5), the amplitude-dependent internal friction and the Young's modulus defect are essentially temperature independent, and are ascribed to a purely hysteretic internal friction component. At higher strain amplitudes, a transition stage and a steep strain amplitude dependence of the internal friction and the Young's modulus defect are observed, followed by saturation at the highest strain amplitudes employed. These stages are temperature and frequency dependent and are assumed to be due to thermally activated motion of dislocations. We suggest that the observed regularities in the entire strain amplitude, temperature and frequency ranges correspond to a motion of dislocations in a two-component system of obstacles: weak but long-range ones, due to the elastic interaction of dislocations with solute atoms distributed in the bulk of the crystal; and strong short-range ones, due to the interaction of dislocations with solute atoms distributed close to dislocation glide planes. Based on these assumptions, a qualitative explanation is given for the variety of experimental observations.

  2. Structural and environmental dependence of superlow friction in ion vapour-deposited a-C : H : Si films for solid lubrication application

    NASA Astrophysics Data System (ADS)

    Chen, Xinchun; Kato, Takahisa; Kawaguchi, Masahiro; Nosaka, Masataka; Choi, Junho

    2013-06-01

    Understanding the tribochemical interaction of water molecules in humid environment with carbonaceous film surfaces, especially hydrophilic surface, is fundamental for applications in tribology and solid lubrication. This paper highlights some experimental evidence to elucidate the structural and environmental dependence of ultralow or even superlow friction in ion vapour-deposited a-C : H : Si films. The results indicate that both surface density of silicon hydroxyl group (Si-OH) and humidity level (RH) determine the frictional performance of a-C : H : Si films. Ultralow friction coefficient μ (˜0.01-0.055) is feasible in a wide range of RH. The dissociative formation of hydrophilic Si-OH surface and the following nanostructure of interfacial water molecules under contact pressure are the origin of ultralow friction for a-C : H : Si films in humid environment. The correlation between contact pressure and friction coefficient derived from Hertzian contact model is not valid in the present case. Under this nanoscale boundary lubrication, the friction coefficient tends to increase as the contact pressure increases. There even exists a contact pressure threshold for the transition from ultralow to superlow friction (μ ˜ 0.007). In comparison, when tribotested in dry N2, the observed superlow friction (μ ˜ 0.004) in the absence of water is correlated with the formation of a low shear strength tribolayer by wear-induced phase transformation.

  3. Rubber contact mechanics: adhesion, friction and leakage of seals.

    PubMed

    Tiwari, A; Dorogin, L; Tahir, M; Stöckelhuber, K W; Heinrich, G; Espallargas, N; Persson, B N J

    2017-12-13

    We study the adhesion, friction and leak rate of seals for four different elastomers: Acrylonitrile Butadiene Rubber (NBR), Ethylene Propylene Diene (EPDM), Polyepichlorohydrin (GECO) and Polydimethylsiloxane (PDMS). Adhesion between smooth clean glass balls and all the elastomers is studied both in the dry state and in water. In water, adhesion is observed for the NBR and PDMS elastomers, but not for the EPDM and GECO elastomers, which we attribute to the differences in surface energy and dewetting. The leakage of water is studied with rubber square-ring seals squeezed against sandblasted glass surfaces. Here we observe a strongly non-linear dependence of the leak rate on the water pressure ΔP for the elastomers exhibiting adhesion in water, while the leak rate depends nearly linearly on ΔP for the other elastomers. We attribute the non-linearity to some adhesion-related phenomena, such as dewetting or the (time-dependent) formation of gas bubbles, which blocks fluid flow channels. Finally, rubber friction is studied at low sliding speeds using smooth glass and sandblasted glass as substrates, both in the dry state and in water. The measured friction coefficients are compared to theory, and the origin of the frictional shear stress acting in the area of real contact is discussed. The NBR rubber, which exhibits the strongest adhesion both in the dry state and in water, also shows the highest friction both in the dry state and in water.

  4. Quantum thermodynamics for driven dissipative bosonic systems

    NASA Astrophysics Data System (ADS)

    Ochoa, Maicol A.; Zimbovskaya, Natalya; Nitzan, Abraham

    2018-02-01

    We investigate two prototypical dissipative bosonic systems under slow driving and arbitrary system-bath coupling strength, recovering their dynamic evolution as well as the heat and work rates, and we verify that thermodynamic laws are respected. Specifically, we look at the damped harmonic oscillator and the damped two-level system. For the former, we study independently the slow time-dependent perturbation in the oscillator frequency and in the coupling strength. For the latter, we concentrate on the slow modulation of the energy gap between the two levels. Importantly, we are able to find the entropy production rates for each case without explicitly defining nonequilibrium extensions for the entropy functional. This analysis also permits the definition of phenomenological friction coefficients in terms of structural properties of the system-bath composite.

  5. Contact stresses in meshing spur gear teeth: Use of an incremental finite element procedure

    NASA Technical Reports Server (NTRS)

    Hsieh, Chih-Ming; Huston, Ronald L.; Oswald, Fred B.

    1992-01-01

    Contact stresses in meshing spur gear teeth are examined. The analysis is based upon an incremental finite element procedure that simultaneously determines the stresses in the contact region between the meshing teeth. The teeth themselves are modeled by two dimensional plain strain elements. Friction effects are included, with the friction forces assumed to obey Coulomb's law. The analysis assumes that the displacements are small and that the tooth materials are linearly elastic. The analysis procedure is validated by comparing its results with those for the classical two contacting semicylinders obtained from the Hertz method. Agreement is excellent.

  6. Valuation of coefficient of rolling friction by the inclined plane method

    NASA Astrophysics Data System (ADS)

    Ciornei, F. C.; Alaci, S.; Ciogole, V. I.; Ciornei, M. C.

    2017-05-01

    A major objective of tribological researches is characterisation of rolling friction, due to various cases encountered in classical engineering applications, like gear transmissions and cam mechanisms or more recent examples met in bioengineering and biomedical devices. A characteristic of these examples consists in reduced dimensions of the contact zones, theoretically zero, the relative motion occurring between the contact points being either sliding or rolling. A characteristic parameter for the rolling motion is the coefficient of rolling friction. The paper proposes a method for estimation of coefficient of rolling friction by studying the motion of a body of revolution on an inclined plane. Assuming the hypothesis that moment of rolling friction is proportional to the normal reaction force, the law of motion for the body on the inclined plane is found under the premise of pure rolling. It is reached the conclusion that there is an uniformly accelerated motion, and thus for a known plane slope, it is sufficient to find the time during which the body runs a certain distance, starting from motionless situation. To obtain accurate results assumes finding precisely the time of motion. The coefficient of rolling friction was estimated for several slopes of the inclined plane and it is concluded that with increased slope, the values of coefficient of rolling friction increase, fact that suggest that the proportionality between the rolling torque and normal load is valid only for domains of limited variations of normal load.

  7. Friction and Wear Management Using Solvent Partitioning of Hydrophilic-Surface-Interactive Chemicals Contained in Boundary Layer-Targeted Emulsions

    NASA Technical Reports Server (NTRS)

    Richmond, Robert Chaffee (Inventor); Schramm, Jr., Harry F. (Inventor); Defalco, Francis G. (Inventor)

    2015-01-01

    Lubrication additives of the current invention require formation of emulsions in base lubricants, created with an aqueous salt solution plus a single-phase compound such that partitioning within the resulting emulsion provides thermodynamically targeted compounds for boundary layer organization thus establishing anti-friction and/or anti-wear. The single-phase compound is termed "boundary layer organizer", abbreviated BLO. These emulsion-contained compounds energetically favor association with tribologic surfaces in accord with the Second Law of Thermodynamics, and will organize boundary layers on those surfaces in ways specific to the chemistry of the salt and BLO additives. In this way friction modifications may be provided by BLOs targeted to boundary layers via emulsions within lubricating fluids, wherein those lubricating fluids may be water-based or oil-based.

  8. Post-seismic and interseismic fault creep I: model description

    NASA Astrophysics Data System (ADS)

    Hetland, E. A.; Simons, M.; Dunham, E. M.

    2010-04-01

    We present a model of localized, aseismic fault creep during the full interseismic period, including both transient and steady fault creep, in response to a sequence of imposed coseismic slip events and tectonic loading. We consider the behaviour of models with linear viscous, non-linear viscous, rate-dependent friction, and rate- and state-dependent friction fault rheologies. Both the transient post-seismic creep and the pattern of steady interseismic creep rates surrounding asperities depend on recent coseismic slip and fault rheologies. In these models, post-seismic fault creep is manifest as pulses of elevated creep rates that propagate from the coseismic slip, these pulses feature sharper fronts and are longer lived in models with rate-state friction compared to other models. With small characteristic slip distances in rate-state friction models, interseismic creep is similar to that in models with rate-dependent friction faults, except for the earliest periods of post-seismic creep. Our model can be used to constrain fault rheologies from geodetic observations in cases where the coseismic slip history is relatively well known. When only considering surface deformation over a short period of time, there are strong trade-offs between fault rheology and the details of the imposed coseismic slip. Geodetic observations over longer times following an earthquake will reduce these trade-offs, while simultaneous modelling of interseismic and post-seismic observations provide the strongest constraints on fault rheologies.

  9. Failures in sand in reduced gravity environments

    NASA Astrophysics Data System (ADS)

    Marshall, Jason P.; Hurley, Ryan C.; Arthur, Dan; Vlahinic, Ivan; Senatore, Carmine; Iagnemma, Karl; Trease, Brian; Andrade, José E.

    2018-04-01

    The strength of granular materials, specifically sand is important for understanding physical phenomena on other celestial bodies. However, relatively few experiments have been conducted to determine the dependence of strength properties on gravity. In this work, we experimentally investigated relative values of strength (the peak friction angle, the residual friction angle, the angle of repose, and the peak dilatancy angle) in Earth, Martian, Lunar, and near-zero gravity. The various angles were captured in a classical passive Earth pressure experiment conducted on board a reduced gravity flight and analyzed using digital image correlation. The data showed essentially no dependence of the peak friction angle on gravity, a decrease in the residual friction angle between Martian and Lunar gravity, no dependence of the angle of repose on gravity, and an increase in the dilation angle between Martian and Lunar gravity. Additionally, multiple flow surfaces were seen in near-zero gravity. These results highlight the importance of understanding strength and deformation mechanisms of granular materials at different levels of gravity.

  10. Inertial frictional ratchets and their load bearing efficiencies

    NASA Astrophysics Data System (ADS)

    Kharkongor, D.; Reenbohn, W. L.; Mahato, Mangal C.

    2018-03-01

    We investigate the performance of an inertial frictional ratchet in a sinusoidal potential driven by a sinusoidal external field. The dependence of the performance on the parameters of the sinusoidally varying friction, such as the mean friction coefficient and its phase difference with the potential, is studied in detail. Interestingly, under certain circumstances, the thermodynamic efficiency of the ratchet against an applied load shows a non-monotonic behaviour as a function of the mean friction coefficient. Also, in the large friction ranges, the efficiency is shown to increase with increasing applied load even though the corresponding ratchet current decreases as the applied load increases. These counterintuitive numerical results are explained in the text.

  11. Collisional model of the drag force of granular impact

    NASA Astrophysics Data System (ADS)

    Stevens Bester, Cacey; Behringer, Robert P.

    2017-06-01

    A dense, dry granular target can cause a free-falling intruding object to come to an abrupt stop as its momentum is lost to the grains. An empirical force law describes this process, characterizing the stopping force as the sum of depth-dependent friction and velocity-dependent inertial drag. However, a complete interpretation of the stopping force, incorporating grain-scale interactions during impact, remains unresolved. Here, the momentum transfer is proposed to occur through sporadic, normal collisions with clusters of high force-carrying grains at the intruder's surface. To test this model in impact experiments, we determine the forces acting on an intruder decelerating through a dense granular medium using high-speed imaging of its trajectory. We vary the geometry of the impacting object to infer intruder-grain interactions. As a result, we connect the inertial drag to the effect of intruder shape based on the proposed collisional model. These impact studies serve as an approach to understand dynamic force transmission in granular media.

  12. Thermomechanical earthquake cycle simulations with rate-and-state friction and nonlinear viscoelasticity

    NASA Astrophysics Data System (ADS)

    Allison, K. L.; Dunham, E. M.

    2017-12-01

    We simulate earthquake cycles on a 2D strike-slip fault, modeling both rate-and-state fault friction and an off-fault nonlinear power-law rheology. The power-law rheology involves an effective viscosity that is a function of temperature and stress, and therefore varies both spatially and temporally. All phases of the earthquake cycle are simulated, allowing the model to spontaneously generate earthquakes, and to capture frictional afterslip and postseismic and interseismic viscous flow. We investigate the interaction between fault slip and bulk viscous flow, using experimentally-based flow laws for quartz-diorite in the crust and olivine in the mantle, representative of the Mojave Desert region in Southern California. We first consider a suite of three linear geotherms which are constant in time, with dT/dz = 20, 25, and 30 K/km. Though the simulations produce very different deformation styles in the lower crust, ranging from significant interseismc fault creep to purely bulk viscous flow, they have almost identical earthquake recurrence interval, nucleation depth, and down-dip coseismic slip limit. This indicates that bulk viscous flow and interseismic fault creep load the brittle crust similarly. The simulations also predict unrealistically high stresses in the upper crust, resulting from the fact that the lower crust and upper mantle are relatively weak far from the fault, and from the relatively small role that basal tractions on the base of the crust play in the force balance of the lithosphere. We also find that for the warmest model, the effective viscosity varies by an order of magnitude in the interseismic period, whereas for the cooler models it remains roughly constant. Because the rheology is highly sensitive to changes in temperature, in addition to the simulations with constant temperature we also consider the effect of heat generation. We capture both frictional heat generation and off-fault viscous shear heating, allowing these in turn to alter the effective viscosity. The resulting temperature changes may reduce the width of the shear zone in the lower crust and upper mantle, and reduce the effective viscosity.

  13. Study of adhesion and friction properties on a nanoparticle gradient surface: transition from JKR to DMT contact mechanics.

    PubMed

    Ramakrishna, Shivaprakash N; Nalam, Prathima C; Clasohm, Lucy Y; Spencer, Nicholas D

    2013-01-08

    We have previously investigated the dependence of adhesion on nanometer-scale surface roughness by employing a roughness gradient. In this study, we correlate the obtained adhesion forces on nanometer-scale rough surfaces to their frictional properties. A roughness gradient with varying silica particle (diameter ≈ 12 nm) density was prepared, and adhesion and frictional forces were measured across the gradient surface in perfluorodecalin by means of atomic force microscopy with a polyethylene colloidal probe. Similarly to the pull-off measurements, the frictional forces initially showed a reduction with decreasing particle density and later an abrupt increase as the colloidal sphere began to touch the flat substrate beneath, at very low particle densities. The friction-load relation is found to depend on the real contact area (A(real)) between the colloid probe and the underlying particles. At high particle density, the colloidal sphere undergoes large deformations over several nanoparticles, and the contact adhesion (JKR type) dominates the frictional response. However, at low particle density (before the colloidal probe is in contact with the underlying surface), the colloidal sphere is suspended by a few particles only, resulting in local deformations of the colloid sphere, with the frictional response to the applied load being dominated by long-range, noncontact (DMT-type) interactions with the substrate beneath.

  14. Mechanics, Waves and Thermodynamics

    NASA Astrophysics Data System (ADS)

    Ranjan Jain, Sudhir

    2016-05-01

    Figures; Preface; Acknowledgement; 1. Energy, mass, momentum; 2. Kinematics, Newton's laws of motion; 3. Circular motion; 4. The principle of least action; 5. Work and energy; 6. Mechanics of a system of particles; 7. Friction; 8. Impulse and collisions; 9. Central forces; 10. Dimensional analysis; 11. Oscillations; 12. Waves; 13. Sound of music; 14. Fluid mechanics; 15. Water waves; 16. The kinetic theory of gases; 17. Concepts and laws of thermodynamics; 18. Some applications of thermodynamics; 19. Basic ideas of statistical mechanics; Bibliography; Index.

  15. Influence of friction forces on the motion of VTOL aircraft during landing operations on ships at sea

    NASA Technical Reports Server (NTRS)

    Howard, J. C.; Chin, D. O.

    1981-01-01

    Equations describing the friction forces generated during landing operations on ships at sea were formulated. These forces depend on the platform reaction and the coefficient of friction. The platform reaction depends on the relative sink rate and the shock absorbing capability of the landing gear. The friction coefficient varies with the surface condition of the landing platform and the angle of yaw of the aircraft relative to the landing platform. Landings by VTOL aircraft, equipped with conventional oleopneumatic landing gears are discussed. Simplifications are introduced to reduce the complexity of the mathematical description of the tire and shock strut characteristics. Approximating the actual complicated force deflection characteristic of the tire by linear relationship is adequate. The internal friction forces in the shock strut are included in the landing gear model. A set of relatively simple equations was obtained by including only those tire and shock strut characteristics that contribute significantly to the generation of landing gear forces.

  16. Study the friction behaviour of poly[2-(dimethylamino)ethyl methacrylate] brush with AFM probes in contact mechanics

    NASA Astrophysics Data System (ADS)

    Raftari, Maryam; Zhang, Zhenyu; Leggett, Graham J.; Geoghegan, Mark

    2011-10-01

    We have studied the frictional behaviour of grafted poly[2-(dimethylamino)ethyl methacrylate] (PDMAEMA) films using friction force microscopy (FFM). The films were prepared on native oxide-terminated silicon substrates using the technique of atom transfer radical polymerization (ATRP). We show that single asperity contact mechanics (Johnson-Kendall-Roberts(JKR) and Derjaguin-Muller-Toporov(DMT)) as well as a linear (Amontons) relation between applied load and frictional load depending on the pH of the FFM probe. Measurements were made using functionalized and unfunctionalized silicon nitride triangular probes. Functionalized probes included gold-coated probes, and ones coated with a self-assembled monolayer of dodecanethiol (DDT). The frictional behaviour between PDMAEMA and all tips immersed in pH from 3 to 11 are corresponded to the DMT or JKR model and are linear in pH=1, 2, and 12. These results show that contact mechanics of polyelectrolytes in water is complex and strongly dependent on the environmental pH.

  17. Dynamic Contact Angle at the Nanoscale: A Unified View.

    PubMed

    Lukyanov, Alex V; Likhtman, Alexei E

    2016-06-28

    Generation of a dynamic contact angle in the course of wetting is a fundamental phenomenon of nature. Dynamic wetting processes have a direct impact on flows at the nanoscale, and therefore, understanding them is exceptionally important to emerging technologies. Here, we reveal the microscopic mechanism of dynamic contact angle generation. It has been demonstrated using large-scale molecular dynamics simulations of bead-spring model fluids that the main cause of local contact angle variations is the distribution of microscopic force acting at the contact line region. We were able to retrieve this elusive force with high accuracy. It has been directly established that the force distribution can be solely predicted on the basis of a general friction law for liquid flow at solid surfaces by Thompson and Troian. The relationship with the friction law provides both an explanation of the phenomenon of dynamic contact angle and a methodology for future predictions. The mechanism is intrinsically microscopic, universal, and irreducible and is applicable to a wide range of problems associated with wetting phenomena.

  18. Natural Erosion of Sandstone as Shape Optimisation.

    PubMed

    Ostanin, Igor; Safonov, Alexander; Oseledets, Ivan

    2017-12-11

    Natural arches, pillars and other exotic sandstone formations have always been attracting attention for their unusual shapes and amazing mechanical balance that leave a strong impression of intelligent design rather than the result of a stochastic process. It has been recently demonstrated that these shapes could have been the result of the negative feedback between stress and erosion that originates in fundamental laws of friction between the rock's constituent particles. Here we present a deeper analysis of this idea and bridge it with the approaches utilized in shape and topology optimisation. It appears that the processes of natural erosion, driven by stochastic surface forces and Mohr-Coulomb law of dry friction, can be viewed within the framework of local optimisation for minimum elastic strain energy. Our hypothesis is confirmed by numerical simulations of the erosion using the topological-shape optimisation model. Our work contributes to a better understanding of stochastic erosion and feasible landscape formations that could be found on Earth and beyond.

  19. Springback evaluation of friction stir welded TWB automotive sheets

    NASA Astrophysics Data System (ADS)

    Kim, Junehyung; Lee, Wonoh; Chung, Kyung-Hwan; Kim, Daeyong; Kim, Chongmin; Okamoto, Kazutaka; Wagoner, R. H.; Chung, Kwansoo

    2011-02-01

    Springback behavior of automotive friction stir welded TWB (tailor welded blank) sheets was experimentally investigated and the springback prediction capability of the constitutive law was numerically validated. Four automotive sheets, aluminum alloy 6111-T4, 5083-H18, 5083-O and dual-phase DP590 steel sheets, each having one or two different thicknesses, were considered. To represent mechanical properties, the modified Chaboche type combined isotropic-kinematic hardening law was utilized along with the non-quadratic orthogonal anisotropic yield function, Yld2000-2d, while the anisotropy of the weld zone was ignored for simplicity. For numerical simulations, mechanical properties previously characterized [1] were applied. For validation purposes, three springback tests including the unconstrained cylindrical bending, 2-D draw bending and OSU draw-bend tests were carried out. The numerical method performed reasonably well in analyzing all verification tests and it was confirmed that the springback of TWB as well as of base samples is significantly affected by the ratio of the yield stress with respect to Young's modulus and thickness.

  20. Shear localization and effective wall friction in a wall bounded granular flow

    NASA Astrophysics Data System (ADS)

    Artoni, Riccardo; Richard, Patrick

    2017-06-01

    In this work, granular flow rheology is investigated by means of discrete numerical simulations of a torsional, cylindrical shear cell. Firstly, we focus on azimuthal velocity profiles and study the effect of (i) the confining pressure, (ii) the particle-wall friction coefficient, (iii) the rotating velocity of the bottom wall and (iv) the cell diameter. For small cell diameters, azimuthal velocity profiles are nearly auto-similar, i.e. they are almost linear with the radial coordinate. Different strain localization regimes are observed : shear can be localized at the bottom, at the top of the shear cell, or it can be even quite distributed. This behavior originates from the competition between dissipation at the sidewalls and dissipation in the bulk of the system. Then we study the effective friction at the cylindrical wall, and point out the strong link between wall friction, slip and fluctuations of forces and velocities. Even if the system is globally below the sliding threshold, force fluctuations trigger slip events, leading to a nonzero wall slip velocity and an effective wall friction coefficient different from the particle-wall one. A scaling law was found linking slip velocity, granular temperature in the main flow direction and effective friction. Our results suggest that fluctuations are an important ingredient for theories aiming to capture the interface rheology of granular materials.

  1. Frictional behavior of carbonate-rich sediments in subduction zones

    NASA Astrophysics Data System (ADS)

    Rabinowitz, H. S.; Savage, H. M.; Carpenter, B. M.; Collettini, C.

    2016-12-01

    Deformation in rocks and sediments is controlled by multiple mechanisms, each governed by its own pressure- (P), temperature- (T), and slip velocity- (v) dependent kinetics. Frictional behavior depends on which of these mechanisms are dominant, and, thus, varies with P, T, and v. Carbonates are a useful material with which to interrogate the PTv controls on friction due to the fact that a wide range of mechanisms can be easily accessed in the lab at geologically relevant conditions. In addition, carbonate-rich layers make up a significant component of subducting sediments around the world and may impact the frictional behavior of shallow subduction zones. In order to investigate the effect of carbonate subduction and the evolution of friction at subduction zone conditions, we conducted deformation experiments on input sediments for two subduction zones, the Hikurangi trench, New Zealand (ODP Site 1124) and the Peru trench (DSDP Site 321), which have carbonate/clay contents of 40/60 wt% and 80/20 wt%, respectively. Samples were saturated with distilled water mixed with 35g/l sea salt and deformed at room temperature. Experiments were conducted at σeff = 1-100 MPa and T = 20-100 °C with sliding velocities of 1-300 μm/s and hold times of 1-1000 s. We test the changes in velocity dependence and healing over these PT conditions to elucidate the frictional behavior of carbonates in subduction zone settings. The mechanical results are complemented by microstructural analysis. In lower stress experiments, there is no obvious shear localization; however, by 25 MPa, pervasive boundary-parallel shears become dominant, particularly in the Peru samples. Optical observations of these shear zones under cross-polarized light show evidence of plastic deformation (CPO development) while SEM-EDS observations indicate phase segregation in the boundary shears. Degree of microstructural localization appears to correspond with the trends observed in velocity-dependence. Our preliminary results indicate that carbonate/clay compositions could have a significant impact on the frictional behavior of subducting sediments.

  2. Spectrum of Slip Processes on the Subduction Interface in a Continuum Framework Resolved by Rate-and State Dependent Friction and Adaptive Time Stepping

    NASA Astrophysics Data System (ADS)

    Herrendoerfer, R.; van Dinther, Y.; Gerya, T.

    2015-12-01

    To explore the relationships between subduction dynamics and the megathrust earthquake potential, we have recently developed a numerical model that bridges the gap between processes on geodynamic and earthquake cycle time scales. In a self-consistent, continuum-based framework including a visco-elasto-plastic constitutive relationship, cycles of megathrust earthquake-like ruptures were simulated through a purely slip rate-dependent friction, albeit with very low slip rates (van Dinther et al., JGR, 2013). In addition to much faster earthquakes, a range of aseismic slip processes operate at different time scales in nature. These aseismic processes likely accommodate a considerable amount of the plate convergence and are thus relevant in order to estimate the long-term seismic coupling and related hazard in subduction zones. To simulate and resolve this wide spectrum of slip processes, we innovatively implemented rate-and state dependent friction (RSF) and an adaptive time-stepping into our continuum framework. The RSF formulation, in contrast to our previous friction formulation, takes the dependency of frictional strength on a state variable into account. It thereby allows for continuous plastic yielding inside rate-weakening regions, which leads to aseismic slip. In contrast to the conventional RSF formulation, we relate slip velocities to strain rates and use an invariant formulation. Thus we do not require the a priori definition of infinitely thin, planar faults in a homogeneous elastic medium. With this new implementation of RSF, we succeed to produce consistent cycles of frictional instabilities. By changing the frictional parameter a, b, and the characteristic slip distance, we observe a transition from stable sliding to stick-slip behaviour. This transition is in general agreement with predictions from theoretical estimates of the nucleation size, thereby to first order validating our implementation. By incorporating adaptive time-stepping based on a fraction of characteristic slip distance over maximum slip velocity, we are able to resolve stick-slip events and increase computational speed. In this better resolved framework, we examine the role of aseismic slip on the megathrust cycle and its dependence on subduction velocity.

  3. The roles of time and displacement in velocity-dependent volumetric strain of fault zones

    USGS Publications Warehouse

    Beeler, N.M.; Tullis, T.E.

    1997-01-01

    The relationship between measured friction??A and volumetric strain during frictional sliding was determined using a rate and state variable dependent friction constitutive equation, a common work balance relating friction and volume change, and two types of experimental faults: initially bare surfaces of Westerly granite and rock surfaces separated by a 1 mm layer of < 90 ??m Westerly granite gouge. The constitutive equation is the sum of a constant term representing the nominal resistance to sliding and two smaller terms: a rate dependent term representing the shear viscosity of the fault surface (direct effect), and a term which represents variations in the area of contact (evolution effect). The work balance relationship requires that ??A differs from the frictional resistance that leads to shear heating by the derivative of fault normal displacement with respect shear displacement, d??n ld??s. An implication of this relationship is that the rate dependence of d??n ld??s contributes to the rate dependence of ??A. Experiments show changes in sliding velocity lead to changes in both fault strength and volume. Analysis of data with the rate and state equations combined with the work balance relationship preclude the conventional interpretation of the direct effect in the rate and state variable constitutive equations. Consideration of a model bare surface fault consisting of an undeformable indentor sliding on a deformable surface reveals a serious flaw in the work balance relationship if volume change is time-dependent. For the model, at zero slip rate indentation creep under the normal load leads to time-dependent strengthening of the fault surface but, according to the work balance relationship, no work is done because compaction or dilatancy can only be induced by shearing. Additional tests on initially bare surfaces and gouges show that fault normal strain in experiments is time-dependent, consistent with the model. This time-dependent fault normal strain, which is not accounted for in the work balance relationship, explains the inconsistency between the constitutive equations and the work balance. For initially bare surface faults, all rate dependence of volume change is due to time dependence. Similar results are found for gouge. We conclude that ??A reflects the frictional resistance that results in shear heating, and no correction needs to be made for the volume changes. The result that time-dependent volume changes do not contribute to ??A is a general result and extends beyond these experiments, the simple indentor model and particular constitutive equations used to illustrate the principle.

  4. Water-vapor effects on friction of magnetic tape in contact with nickel-zinc ferrite

    NASA Technical Reports Server (NTRS)

    Miyoshi, K.; Buckley, D. H.

    1984-01-01

    The effects of humidity of moist nitrogen on the friction and deformation behavior of magnetic tape in contact with a nickel-zinc ferrite spherical pin were studied. The results indicate that the coefficient of friction is markedly dependent on the ambient relative humidity. Although the coefficient of friction remains low below 40-percent relative humidity, it increases rapidly with increasing relative humidity above 40 percent. The general ambient environment of the tape does not have any effect on the friction behavior if the area where the tape is in sliding contact with the ferrite pin is flooded with controlled nitrogen. The response time for the friction of the tape to humidity changes is about 10 sec. The effect of friction as a function of relative humidity on dehumidifying is very similar to that on humidifying. A surface softening of the tape due to water vapor increases the friction of the tape.

  5. Scale dependence of rock friction at high work rate.

    PubMed

    Yamashita, Futoshi; Fukuyama, Eiichi; Mizoguchi, Kazuo; Takizawa, Shigeru; Xu, Shiqing; Kawakata, Hironori

    2015-12-10

    Determination of the frictional properties of rocks is crucial for an understanding of earthquake mechanics, because most earthquakes are caused by frictional sliding along faults. Prior studies using rotary shear apparatus revealed a marked decrease in frictional strength, which can cause a large stress drop and strong shaking, with increasing slip rate and increasing work rate. (The mechanical work rate per unit area equals the product of the shear stress and the slip rate.) However, those important findings were obtained in experiments using rock specimens with dimensions of only several centimetres, which are much smaller than the dimensions of a natural fault (of the order of 1,000 metres). Here we use a large-scale biaxial friction apparatus with metre-sized rock specimens to investigate scale-dependent rock friction. The experiments show that rock friction in metre-sized rock specimens starts to decrease at a work rate that is one order of magnitude smaller than that in centimetre-sized rock specimens. Mechanical, visual and material observations suggest that slip-evolved stress heterogeneity on the fault accounts for the difference. On the basis of these observations, we propose that stress-concentrated areas exist in which frictional slip produces more wear materials (gouge) than in areas outside, resulting in further stress concentrations at these areas. Shear stress on the fault is primarily sustained by stress-concentrated areas that undergo a high work rate, so those areas should weaken rapidly and cause the macroscopic frictional strength to decrease abruptly. To verify this idea, we conducted numerical simulations assuming that local friction follows the frictional properties observed on centimetre-sized rock specimens. The simulations reproduced the macroscopic frictional properties observed on the metre-sized rock specimens. Given that localized stress concentrations commonly occur naturally, our results suggest that a natural fault may lose its strength faster than would be expected from the properties estimated from centimetre-sized rock samples.

  6. Hypersonic aerodynamic characteristics of a family of power-law, wing body configurations

    NASA Technical Reports Server (NTRS)

    Townsend, J. C.

    1973-01-01

    The configurations analyzed are half-axisymmetric, power-law bodies surmounted by thin, flat wings. The wing planform matches the body shock-wave shape. Analytic solutions of the hypersonic small disturbance equations form a basis for calculating the longitudinal aerodynamic characteristics. Boundary-layer displacement effects on the body and the wing upper surface are approximated. Skin friction is estimated by using compressible, laminar boundary-layer solutions. Good agreement was obtained with available experimental data for which the basic theoretical assumptions were satisfied. The method is used to estimate the effects of power-law, fineness ratio, and Mach number variations at full-scale conditions. The computer program is included.

  7. Finger pad friction and its role in grip and touch

    PubMed Central

    Adams, Michael J.; Johnson, Simon A.; Lefèvre, Philippe; Lévesque, Vincent; Hayward, Vincent; André, Thibaut; Thonnard, Jean-Louis

    2013-01-01

    Many aspects of both grip function and tactile perception depend on complex frictional interactions occurring in the contact zone of the finger pad, which is the subject of the current review. While it is well established that friction plays a crucial role in grip function, its exact contribution for discriminatory touch involving the sliding of a finger pad is more elusive. For texture discrimination, it is clear that vibrotaction plays an important role in the discriminatory mechanisms. Among other factors, friction impacts the nature of the vibrations generated by the relative movement of the fingertip skin against a probed object. Friction also has a major influence on the perceived tactile pleasantness of a surface. The contact mechanics of a finger pad is governed by the fingerprint ridges and the sweat that is exuded from pores located on these ridges. Counterintuitively, the coefficient of friction can increase by an order of magnitude in a period of tens of seconds when in contact with an impermeably smooth surface, such as glass. In contrast, the value will decrease for a porous surface, such as paper. The increase in friction is attributed to an occlusion mechanism and can be described by first-order kinetics. Surprisingly, the sensitivity of the coefficient of friction to the normal load and sliding velocity is comparatively of second order, yet these dependencies provide the main basis of theoretical models which, to-date, largely ignore the time evolution of the frictional dynamics. One well-known effect on taction is the possibility of inducing stick–slip if the friction decreases with increasing sliding velocity. Moreover, the initial slip of a finger pad occurs by the propagation of an annulus of failure from the perimeter of the contact zone and this phenomenon could be important in tactile perception and grip function. PMID:23256185

  8. Seismogenic Potential of a Gouge-filled Fault and the Criterion for Its Slip Stability: Constraints From a Microphysical Model

    NASA Astrophysics Data System (ADS)

    Chen, Jianye; Niemeijer, A. R.

    2017-12-01

    Physical constraints for the parameters of the rate-and-state friction (RSF) laws have been mostly lacking. We presented such constraints based on a microphysical model and demonstrated the general applicability to granular fault gouges deforming under hydrothermal conditions in a companion paper. In this paper, we examine the transition velocities for contrasting frictional behavior (i.e., strengthening to weakening and vice versa) and the slip stability of the model. The model predicts a steady state friction coefficient that increases with slip rate at very low and high slip rates and decreases in between. This allows the transition velocities to be theoretically obtained and the unstable slip regime (Vs→w < V < Vw→s) to be defined. In a spring-slider configuration, linear perturbation analysis provides analytical expressions of the critical stiffness (Kc) below which unstable slip occurs and of the critical recurrence wavelength (Wc) and static stress drop (Δμs) associated with self-sustained oscillations or stick slips. Numerical implementation of the model predicts frictional behavior that exhibits consecutive transitions from stable sliding, via periodic oscillations, to unstable stick slips with decreasing elastic stiffness or loading rate, and gives Kc, Wc, Δμs, Vs→w, and Vw→s values that are consistent with the analytical predictions. General scaling relations of these parameters given by the model are consistent with previous interpretations in the context of RSF laws and agree well with previous experiments, testifying to high validity. From these physics-based expressions that allow a more reliable extrapolation to natural conditions, we discuss the seismological implications for natural faults and present topics for future work.

  9. Physically representative atomistic modeling of atomic-scale friction

    NASA Astrophysics Data System (ADS)

    Dong, Yalin

    Nanotribology is a research field to study friction, adhesion, wear and lubrication occurred between two sliding interfaces at nano scale. This study is motivated by the demanding need of miniaturization mechanical components in Micro Electro Mechanical Systems (MEMS), improvement of durability in magnetic storage system, and other industrial applications. Overcoming tribological failure and finding ways to control friction at small scale have become keys to commercialize MEMS with sliding components as well as to stimulate the technological innovation associated with the development of MEMS. In addition to the industrial applications, such research is also scientifically fascinating because it opens a door to understand macroscopic friction from the most bottom atomic level, and therefore serves as a bridge between science and engineering. This thesis focuses on solid/solid atomic friction and its associated energy dissipation through theoretical analysis, atomistic simulation, transition state theory, and close collaboration with experimentalists. Reduced-order models have many advantages for its simplification and capacity to simulating long-time event. We will apply Prandtl-Tomlinson models and their extensions to interpret dry atomic-scale friction. We begin with the fundamental equations and build on them step-by-step from the simple quasistatic one-spring, one-mass model for predicting transitions between friction regimes to the two-dimensional and multi-atom models for describing the effect of contact area. Theoretical analysis, numerical implementation, and predicted physical phenomena are all discussed. In the process, we demonstrate the significant potential for this approach to yield new fundamental understanding of atomic-scale friction. Atomistic modeling can never be overemphasized in the investigation of atomic friction, in which each single atom could play a significant role, but is hard to be captured experimentally. In atomic friction, the interesting physical process is buried between the two contact interfaces, thus makes a direct measurement more difficult. Atomistic simulation is able to simulate the process with the dynamic information of each single atom, and therefore provides valuable interpretations for experiments. In this, we will systematically to apply Molecular Dynamics (MD) simulation to optimally model the Atomic Force Microscopy (AFM) measurement of atomic friction. Furthermore, we also employed molecular dynamics simulation to correlate the atomic dynamics with the friction behavior observed in experiments. For instance, ParRep dynamics (an accelerated molecular dynamic technique) is introduced to investigate velocity dependence of atomic friction; we also employ MD simulation to "see" how the reconstruction of gold surface modulates the friction, and the friction enhancement mechanism at a graphite step edge. Atomic stick-slip friction can be treated as a rate process. Instead of running a direction simulation of the process, we can apply transition state theory to predict its property. We will have a rigorous derivation of velocity and temperature dependence of friction based on the Prandtl-Tomlinson model as well as transition theory. A more accurate relation to prediction velocity and temperature dependence is obtained. Furthermore, we have included instrumental noise inherent in AFM measurement to interpret two discoveries in experiments, suppression of friction at low temperature and the attempt frequency discrepancy between AFM measurement and theoretical prediction. We also discuss the possibility to treat wear as a rate process.

  10. Static and sliding contact of rough surfaces: Effect of asperity-scale properties and long-range elastic interactions

    NASA Astrophysics Data System (ADS)

    Hulikal, Srivatsan; Lapusta, Nadia; Bhattacharya, Kaushik

    2018-07-01

    Friction in static and sliding contact of rough surfaces is important in numerous physical phenomena. We seek to understand macroscopically observed static and sliding contact behavior as the collective response of a large number of microscopic asperities. To that end, we build on Hulikal et al. (2015) and develop an efficient numerical framework that can be used to investigate how the macroscopic response of multiple frictional contacts depends on long-range elastic interactions, different constitutive assumptions about the deforming contacts and their local shear resistance, and surface roughness. We approximate the contact between two rough surfaces as that between a regular array of discrete deformable elements attached to a elastic block and a rigid rough surface. The deformable elements are viscoelastic or elasto/viscoplastic with a range of relaxation times, and the elastic interaction between contacts is long-range. We find that the model reproduces the main macroscopic features of evolution of contact and friction for a range of constitutive models of the elements, suggesting that macroscopic frictional response is robust with respect to the microscopic behavior. Viscoelasticity/viscoplasticity contributes to the increase of friction with contact time and leads to a subtle history dependence. Interestingly, long-range elastic interactions only change the results quantitatively compared to the meanfield response. The developed numerical framework can be used to study how specific observed macroscopic behavior depends on the microscale assumptions. For example, we find that sustained increase in the static friction coefficient during long hold times suggests viscoelastic response of the underlying material with multiple relaxation time scales. We also find that the experimentally observed proportionality of the direct effect in velocity jump experiments to the logarithm of the velocity jump points to a complex material-dependent shear resistance at the microscale.

  11. A theoretical model for the collective motion of proteins by means of principal component analysis

    NASA Astrophysics Data System (ADS)

    Kamberaj, Hiqmet

    2011-02-01

    A coarse grained model in the frame work of principal component analysis is presented. We used a bath of harmonic oscillators approach, based on classical mechanics, to derive the generalized Langevin equations of motion for the collective coordinates. The dynamics of the protein collective coordinates derived from molecular dynamics simulations have been studied for the Bovine Pancreatic Trypsin Inhibitor. We analyzed the stability of the method by studying structural fluctuations of the C a atoms obtained from a 20 ns molecular dynamics simulation. Subsequently, the dynamics of the collective coordinates of protein were characterized by calculating the dynamical friction coefficient and diffusion coefficients along with time-dependent correlation functions of collective coordinates. A dual diffusion behavior was observed with a fast relaxation time of short diffusion regime 0.2-0.4 ps and slow relaxation time of long diffusion about 1-2 ps. In addition, we observed a power law decay of dynamical friction coefficient with exponent for the first five collective coordinates varying from -0.746 to -0.938 for the real part and from -0.528 to -0.665 for its magnitude. It was found that only the first ten collective coordinates are responsible for configuration transitions occurring on time scale longer than 50 ps.

  12. An Energy-Equivalent d+/d− Damage Model with Enhanced Microcrack Closure-Reopening Capabilities for Cohesive-Frictional Materials

    PubMed Central

    Cervera, Miguel; Tesei, Claudia

    2017-01-01

    In this paper, an energy-equivalent orthotropic d+/d− damage model for cohesive-frictional materials is formulated. Two essential mechanical features are addressed, the damage-induced anisotropy and the microcrack closure-reopening (MCR) effects, in order to provide an enhancement of the original d+/d− model proposed by Faria et al. 1998, while keeping its high algorithmic efficiency unaltered. First, in order to ensure the symmetry and positive definiteness of the secant operator, the new formulation is developed in an energy-equivalence framework. This proves thermodynamic consistency and allows one to describe a fundamental feature of the orthotropic damage models, i.e., the reduction of the Poisson’s ratio throughout the damage process. Secondly, a “multidirectional” damage procedure is presented to extend the MCR capabilities of the original model. The fundamental aspects of this approach, devised for generic cyclic conditions, lie in maintaining only two scalar damage variables in the constitutive law, while preserving memory of the degradation directionality. The enhanced unilateral capabilities are explored with reference to the problem of a panel subjected to in-plane cyclic shear, with or without vertical pre-compression; depending on the ratio between shear and pre-compression, an absent, a partial or a complete stiffness recovery is simulated with the new multidirectional procedure. PMID:28772793

  13. What can friction tell us about shallow megathrust slip behavior?

    NASA Astrophysics Data System (ADS)

    Ikari, M.; Kopf, A.; Hirose, T.

    2012-12-01

    In subduction zones, the updip propagation of great earthquake ruptures on plate boundary megathrusts is currently one of the most important questions in earth science, primarily because rupture that approaches the surface causes seafloor displacement, resulting in enormous tsunamis. Moreover, the extent of updip rupture propagation is a key factor in defining the magnitude of the earthquake itself. Within the depth limits of the seismogenic zone, velocity-weakening frictional behavior is essential for the nucleation of large-magnitude earthquake rupture. Results of friction experiments at low slip velocities (~10-6-10-4 m/s) have suggested that velocity-weakening tends to occur in frictionally strong materials (typically non-clay), which may act as asperities on fault surfaces. However, the role of frictional strength and velocity dependence in controlling the extent of rupture propagation beyond the updip limit of the seismogenic zone is still unclear. Low to high-velocity friction experiments have provided insights into fault strength evolution over slip velocities spanning ~10 orders of magnitude, from plate convergence rates to coseismic slip rates. Results using primarily non-clay materials typically exhibit high friction at low velocities that progressively weakens at higher velocities (velocity-weakening), becoming nearly frictionless at coseismic slip rates [Di Toro et al., 2011]. However, the shallow near-trench regions of subduction zones are typically rich in clay minerals which are weak (friction coefficient ≤ ~0.4) and velocity-strengthening at slip rates < 10-3 m/s. A compilation of friction experiments using samples from the Nankai Trough region offshore Japan obtained by scientific ocean drilling shows that this material exhibits such behavior at low to intermediate slip velocities. However, after reaching peak values at ~10-2 m/s, these materials also exhibit a precipitous drop in friction toward near-zero values at coseismic slip rates. This suggests that all geologic materials, regardless of composition, are extremely weak when coseismic slip rates are enforced. Therefore, the likelihood of near-trench rupture propagation in subduction zones depends critically on whether slip can reach velocities ≥ ~10-2 m/s, where dynamic weakening becomes dominant. This depends on whether the propagating earthquake rupture can overcome the overall strength of the fault gouge and/or velocity-strengthening behavior at low to intermediate slip rates. We discuss here the possibility of near-trench earthquake rupture at Nankai and other subduction zones on the basis of laboratory friction measurements.

  14. Experimental evidence for dynamic friction on rock fractures from frequency-dependent nonlinear hysteresis and harmonic generation

    NASA Astrophysics Data System (ADS)

    Saltiel, Seth; Bonner, Brian P.; Mittal, Tushar; Delbridge, Brent; Ajo-Franklin, Jonathan B.

    2017-07-01

    Frictional properties affect the propagation of high-amplitude seismic waves across rock fractures and faults. Laboratory evidence suggests that these properties can be measured in active seismic surveys, potentially offering a route to characterizing friction in situ. We present experimental results from a subresonance torsional modulus and attenuation apparatus that utilizes micron-scale sinusoidal oscillations to probe the nonlinear stress-strain relation at a range of strain amplitudes and rates. Nonlinear effects are further quantified using harmonic distortion; however, time series data best illuminate underlying physical processes. The low-frequency stress-strain hysteretic loops show stiffening at the sinusoid's static ends, but stiffening is reduced above a threshold frequency. This shape is determined by harmonic generation in the strain; the stress signal has no harmonics, confirming that the fractured sample is the source of the nonlinearity. These qualitative observations suggest the presence of rate-dependent friction and are consistent between fractures in three different rock types. We propose that static friction at the low strain rate part of the cycle, when given sufficient "healing" time at low oscillation frequencies, causes this stiffening cusp shape in the hysteresis loop. While rate-and-state friction is commonly used to represent dynamic friction, it cannot capture static friction or negative slip velocities. So we implement another dynamic friction model, based on the work of Dahl, which describes this process and produces similar results. Since the two models have a similar form, parameterizations of field data could constraint fault model inputs, such as specific location velocity strengthening or weakening properties.

  15. Rubber friction: role of the flash temperature

    NASA Astrophysics Data System (ADS)

    Persson, B. N. J.

    2006-08-01

    When a rubber block is sliding on a hard rough substrate, the substrate asperities will exert time-dependent deformations of the rubber surface resulting in viscoelastic energy dissipation in the rubber, which gives a contribution to the sliding friction. Most surfaces of solids have roughness on many different length scales, and when calculating the friction force it is necessary to include the viscoelastic deformations on all length scales. The energy dissipation will result in local heating of the rubber. Since the viscoelastic properties of rubber-like materials are extremely strongly temperature dependent, it is necessary to include the local temperature increase in the analysis. At very low sliding velocity the temperature increase is negligible because of heat diffusion, but already for velocities of order 10-2 m s-1 the local heating may be very important. Here I study the influence of the local heating on the rubber friction, and I show that in a typical case the temperature increase results in a decrease in rubber friction with increasing sliding velocity for v>0.01 m s-1. This may result in stick-slip instabilities, and is of crucial importance in many practical applications, e.g. for tyre-road friction and in particular for ABS braking systems.

  16. Interplay of non-Markov and internal friction effects in the barrier crossing kinetics of biopolymers: insights from an analytically solvable model.

    PubMed

    Makarov, Dmitrii E

    2013-01-07

    Conformational rearrangements in biomolecules (such as protein folding or enzyme-ligand binding) are often interpreted in terms of low-dimensional models of barrier crossing such as Kramers' theory. Dimensionality reduction, however, entails memory effects; as a result, the effective frictional drag force along the reaction coordinate nontrivially depends on the time scale of the transition. Moreover, when both solvent and "internal" friction effects are important, their interplay results in a highly nonlinear dependence of the effective friction on solvent viscosity that is not captured by common phenomenological models of barrier crossing. Here, these effects are illustrated using an analytically solvable toy model of an unstructured polymer chain involved in an inter- or intramolecular transition. The transition rate is calculated using the Grote-Hynes and Langer theories, which--unlike Kramers' theory--account for memory. The resulting effective frictional force exerted by the polymer along the reaction coordinate can be rationalized in terms of the effective number of monomers engaged in the transition. Faster transitions (relative to the polymer reconfiguration time scale) involve fewer monomers and, correspondingly, lower friction forces, because the polymer chain does not have enough time to reconfigure in response to the transition.

  17. Dependence of sea-surface microwave emissivity on friction velocity as derived from SMMR/SASS

    NASA Technical Reports Server (NTRS)

    Wentz, F. J.; Christensen, E. J.; Richardson, K. A.

    1981-01-01

    The sea-surface microwave emissivity is derived using SMMR brightness temperatures and SASS inferred friction velocities for three North Pacific Seasat passes. The results show the emissivity increasing linearly with friction velocity with no obvious break between the foam-free and foam regimes up to a friction velocity of about 70 cm/sec (15 m/sec wind speed). For horizontal polarization the sensitivity of emissivity to friction velocity greatly increases with frequency, while for vertical polarization the sensitivity is much less and is independent of frequency. This behavior is consistent with two-scale scattering theory. A limited amount of high friction velocity data above 70 cm/sec suggests an additional increase in emissivity due to whitecapping.

  18. Wave Riemann description of friction terms in unsteady shallow flows: Application to water and mud/debris floods

    NASA Astrophysics Data System (ADS)

    Murillo, J.; García-Navarro, P.

    2012-02-01

    In this work, the source term discretization in hyperbolic conservation laws with source terms is considered using an approximate augmented Riemann solver. The technique is applied to the shallow water equations with bed slope and friction terms with the focus on the friction discretization. The augmented Roe approximate Riemann solver provides a family of weak solutions for the shallow water equations, that are the basis of the upwind treatment of the source term. This has proved successful to explain and to avoid the appearance of instabilities and negative values of the thickness of the water layer in cases of variable bottom topography. Here, this strategy is extended to capture the peculiarities that may arise when defining more ambitious scenarios, that may include relevant stresses in cases of mud/debris flow. The conclusions of this analysis lead to the definition of an accurate and robust first order finite volume scheme, able to handle correctly transient problems considering frictional stresses in both clean water and debris flow, including in this last case a correct modelling of stopping conditions.

  19. Friction factors of colloidal suspension containing silicon dioxide nanoparticles in water

    NASA Astrophysics Data System (ADS)

    Tang, Clement; Pant, Sarbottam; Sharif, Md. Tanveer

    2015-11-01

    The purpose of this study is to experimentally characterize the friction factor of a colloidal suspension flow in circular and square tubes. The suspension contained silicon dioxide nanoparticles dispersed in distilled water at 9.58% volume concentration. Rheological measurements indicated that the suspension exhibits non-Newtonian behavior, and could be modelled as a power-law generalized Newtonian fluid. The experimental study showed that, with proper characterization of the consistency and flow behavior indices, the suspension flow friction factors in circular and square tubes exhibit similarities with those of Newtonian fluid flow. In the laminar fully-developed flow region, the Poiseuille numbers are similar to those established for Newtonian fluid flow. In the turbulent region, the Dodge and Metzner relation between the friction factor and a generalized Reynolds number can adequately describe the flow. The onsets of transition to turbulent flow for the suspension vary with the shape of the tube and differ from those of Newtonian fluid flow. The deviations suggest that the flow passage shape and the presence of nanoparticles affect the onset of transition to turbulent flow. Supported by North Dakota NASA EPSCoR.

  20. Turbulent Friction in the Boundary Layer of a Flat Plate in a Two-Dimensional Compressible Flow at High Speeds

    NASA Technical Reports Server (NTRS)

    Frankl, F.; Voishel, V.

    1943-01-01

    In the present report an investigation is made on a flat plate in a two-dimensional compressible flow of the effect of compressibility and heating on the turbulent frictional drag coefficient in the boundary layer of an airfoil or wing radiator. The analysis is based on the Prandtl-Karman theory of the turbulent boundary later and the Stodola-Crocco, theorem on the linear relation between the total energy of the flow and its velocity. Formulas are obtained for the velocity distribution and the frictional drag law in a turbulent boundary later with the compressibility effect and heat transfer taken into account. It is found that with increase of compressibility and temperature at full retardation of the flow (the temperature when the velocity of the flow at a given point is reduced to zero in case of an adiabatic process in the gas) at a constant R (sub x), the frictional drag coefficient C (sub f) decreased, both of these factors acting in the same sense.

  1. Calibration of 3D ALE finite element model from experiments on friction stir welding of lap joints

    NASA Astrophysics Data System (ADS)

    Fourment, Lionel; Gastebois, Sabrina; Dubourg, Laurent

    2016-10-01

    In order to support the design of such a complex process like Friction Stir Welding (FSW) for the aeronautic industry, numerical simulation software requires (1) developing an efficient and accurate Finite Element (F.E.) formulation that allows predicting welding defects, (2) properly modeling the thermo-mechanical complexity of the FSW process and (3) calibrating the F.E. model from accurate measurements from FSW experiments. This work uses a parallel ALE formulation developed in the Forge® F.E. code to model the different possible defects (flashes and worm holes), while pin and shoulder threads are modeled by a new friction law at the tool / material interface. FSW experiments require using a complex tool with scroll on shoulder, which is instrumented for providing sensitive thermal data close to the joint. Calibration of unknown material thermal coefficients, constitutive equations parameters and friction model from measured forces, torques and temperatures is carried out using two F.E. models, Eulerian and ALE, to reach a satisfactory agreement assessed by the proper sensitivity of the simulation to process parameters.

  2. Self-Paced Physics, Segment 18.

    ERIC Educational Resources Information Center

    New York Inst. of Tech., Old Westbury.

    Eighty-seven problems are included in this volume which is arranged to match study segments 2 through 14. The subject matter is related to projectiles, simple harmonic motion, kinetic friction, multiple pulley arrangements, motion on inclined planes, circular motion, potential energy, kinetic energy, center of mass, Newton's laws, elastic and…

  3. Friction and oxidative wear of 440C ball bearing steels under high load and extreme bulk temperatures

    NASA Technical Reports Server (NTRS)

    Chaudhuri, Dilip K.; Slifka, Andrew J.; Siegwarth, James D.

    1993-01-01

    Unlubricated sliding friction and wear of 440C steels in an oxygen environment have been studied under a variety of load, speed, and temperature ranging from approximately -185 to 675 deg C. A specially designed test apparatus with a ball-on-flat geometry has been used for this purpose. The observed dependencies of the initial coefficient of friction, the average dynamic coefficient of friction, and the wear rate on load, speed, and test temperatures have been examined from the standpoint of existing theories of friction and wear. High contact temperatures are generated during the sliding friction, causing rapid oxidation and localized surface melting. A combination of fatigue, delamination, and loss of hardness due to tempering of the martensitic structure is responsible for the high wear rate observed and the coefficient of friction.

  4. Where do we stand after twenty years of dynamic triggering studies? (Invited)

    NASA Astrophysics Data System (ADS)

    Prejean, S. G.; Hill, D. P.

    2013-12-01

    In the past two decades, remote dynamic triggering of earthquakes by other earthquakes has been explored in a variety of physical environments with a wide array of observation and modeling techniques. These studies have significantly refined our understanding of the state of the crust and the physical conditions controlling earthquake nucleation. Despite an ever growing database of dynamic triggering observations, significant uncertainties remain and vigorous debate in almost all aspects of the science continues. For example, although dynamic earthquake triggering can occur with peak dynamic stresses as small as 1 kPa, triggering thresholds and their dependence on local stress state, hydrological environment, and frictional properties of faults are not well understood. Some studies find a simple threshold based on the peak amplitude of shaking while others find dependencies on frequency, recharge time, and other parameters. Considerable debate remains over the range of physical processes responsible for dynamic triggering, and the wide variation in dynamic triggering responses and time scales suggests triggering by multiple physical processes. Although Coulomb shear failure with various friction laws can often explain dynamic triggering, particularly instantaneous triggering, delayed dynamic triggering may be dependent on fluid transport and other slowly evolving aseismic processes. Although our understanding of the global distribution of dynamic triggering has improved, it is far from complete due to spatially uneven monitoring. A major challenge involves establishing statistical significance of potentially triggered earthquakes, particularly if they are isolated events or time-delayed with respect to triggering stresses. Here we highlight these challenges and opportunities with existing data. We focus on environmental dependence of dynamic triggering by large remote earthquakes particularly in volcanic and geothermal systems, as these systems often have high rates of background seismicity. In many volcanic and geothermal systems, such as the Geysers in Northern California, dynamic triggering of micro-earthquakes is frequent and predictable. In contrast, most active and even erupting volcanoes in Alaska (with the exception of the Katmai Volcanic Cluster) do not experience dynamic triggering. We explore why.

  5. Friction behavior of a microstructured polymer surface inspired by snake skin.

    PubMed

    Baum, Martina J; Heepe, Lars; Gorb, Stanislav N

    2014-01-01

    The aim of this study was to understand the influence of microstructures found on ventral scales of the biological model, Lampropeltis getula californiae, the California King Snake, on the friction behavior. For this purpose, we compared snake-inspired anisotropic microstructured surfaces to other microstructured surfaces with isotropic and anisotropic geometry. To exclude that the friction measurements were influenced by physico-chemical variations, all friction measurements were performed on the same epoxy polymer. For frictional measurements a microtribometer was used. Original data were processed by fast Fourier transformation (FFT) with a zero frequency related to the average friction and other peaks resulting from periodic stick-slip behavior. The data showed that the specific ventral surface ornamentation of snakes does not only reduce the frictional coefficient and generate anisotropic frictional properties, but also reduces stick-slip vibrations during sliding, which might be an adaptation to reduce wear. Based on this extensive comparative study of different microstructured polymer samples, it was experimentally demonstrated that the friction-induced stick-slip behavior does not solely depend on the frictional coefficient of the contact pair.

  6. Locomotive and reptation motion induced by internal force and friction.

    PubMed

    Sakaguchi, Hidetsugu; Ishihara, Taisuke

    2011-06-01

    We propose a simple mechanical model of locomotion induced by internal force and friction. We first construct a system of two elements as an analog of the bipedal motion. The internal force does not induce a directional motion by itself because of the action-reaction law, but a directional motion becomes possible by the control of the frictional force. The efficiency of these model systems is studied using an analogy to the heat engine. As a modified version of the two-element model, we construct a model that exhibits a bipedal motion similar to kinesin's motion of molecular motor. Next, we propose a linear chain model and a ladder model as an extension of the original two-element model. We find a transition from a straight to a snake-like motion in a ladder model by changing the strength of the internal force.

  7. Dynamic Modelling of Erosion and Deposition Processes in Debris Flows With Application to Real Debris Flow Events in Switzerland

    NASA Astrophysics Data System (ADS)

    Deubelbeiss, Y.; McArdell, B. W.; Graf, C.

    2011-12-01

    The dynamics of a debris flow can be significantly influenced by erosion and deposition processes during an event because volume changes have a strong influence on flow properties such as flow velocity, flow heights and runout distances. It is therefore worth exploring how to include these processes in numerical models, which are used for hazard assessment and mitigation measure planning. However, it is still under debate, what mechanism drives the erosion of material at the base of a debris flow. There are different processes attributed to erosion: it has been proposed that erosion correlates with the stresses due to granular interactions at the front, which in turn strongly depend on particle size or it may be related to basal shear forces. Because it is expected that larger flow heights result in larger stresses one can additionally hypothesize that there is a correlation between erosion rate and flow height. To test different erosion laws in a numerical model and its influence on the flow behavior we implement different relationships and compare simulation results with field data. Herefore, we use the numerical model, RAMMS (Christen et al., 2010), employing the Voellmy-fluid friction law. While it has already been shown that a correlation of erosion with velocity does not lead to a satisfying result (too high entrainment in the tail) a correlation with flow height combined with velocity (momentum) has been successfully applied to ice-avalanches. Currently, we are testing the momentum-driven and for comparison we reconsider the simple velocity-driven erosion rate. However, these laws do not consider processes on a smaller scale such as particle fluctuations resulting in energy production, which might play an important role. Therefore, we additionally consider an erosion model that has potential to draw new insights on the erosion process in debris flows. The model is based on an extended Voellmy model, which additionally employs an equation, which is a measure of the random kinetic energy (RKE, equivalent to granular temperature) produced by the random movement of particles in a debris flow (Buser and Bartelt, 2009). Advantageous is that friction is dependent on the production of RKE and is decreasing with decreasing RKE. The amount of energy produced in the system, might therefore be a useful indicator for the erosion rate. While the erosion model using the Voellmy approach might be successfully applicable to cases where erosion and bulking are the main processes, such as in Illgraben (CH), it might be less straight forward in mountain torrents where we additionally observe a lot of deposition along the flow path such as in Dorfbach (CH). The extended Voellmy model is indirectly accounting for this process as friction is a function of RKE, which allows material to deposit earlier. At both locations we have debris flow observation stations including innovative new measurement techniques indication parameters such as flow velocity, height and volumes at specific locations (Illgraben, Dorfbach) as well as erosion rate measurements (Illgraben). These highly valuable data allow us good model calibration as well as verification of the newly implemented erosion models.

  8. Coarse-grained debris flow dynamics on erodible beds

    NASA Astrophysics Data System (ADS)

    Lanzoni, Stefano; Gregoretti, Carlo; Stancanelli, Laura Maria

    2017-03-01

    A systematic set of flume experiments is used to investigate the features of velocity profiles within the body of coarse-grained debris flows and the dependence of the transport sediment concentration on the relevant parameters (runoff discharge, bed slope, grain size, and form). The flows are generated in a 10 m long laboratory flume, initially filled with a layer consisting of loose debris. After saturation, a prescribed water discharge is suddenly supplied over the granular bed, and the runoff triggers a debris flow wave that reaches nearly steady conditions. Three types of material have been used in the tests: gravel with mean grain size of 3 and 5 mm, and 3 mm glass spheres. Measured parameters included: triggering water discharge, volumetric sediment discharge, sediment concentration, flow depth, and velocity profiles. The dynamic similarity with full-sized debris flows is discussed on the basis of the relevant dimensionless parameters. Concentration data highlight the dependence on the slope angle and the importance of the quasi-static friction angle. The effects of flow rheology on the shape of velocity profiles are analyzed with attention to the role of different stress-generating mechanisms. A remarkable collapse of the dimensionless profiles is obtained by scaling the debris flow velocity with the runoff velocity, and a power law characterization is proposed following a heuristic approach. The shape of the profiles suggests a smooth transition between the different rheological regimes (collisional and frictional) that establish in the upper and lower regions of the flow and is compatible with the presence of multiple length scales dictated by the type of contacts (instantaneous or long lasting) between grains.

  9. Modeling of Instabilities and Self-organization at the Frictional Interface

    NASA Astrophysics Data System (ADS)

    Mortazavi, Vahid

    The field of friction-induced self-organization and its practical importance remains unknown territory to many tribologists. Friction is usually thought of as irreversible dissipation of energy and deterioration; however, under certain conditions, friction can lead to the formation of new structures at the interface, including in-situ tribofilms and various patterns at the interface. This thesis studies self-organization and instabilities at the frictional interface, including the instability due to the temperature-dependency of the coefficient of friction, the transient process of frictional running-in, frictional Turing systems, the stick-and-slip phenomenon, and, finally, contact angle (CA) hysteresis as an example of solid-liquid friction and dissipation. All these problems are chosen to bridge the gap between fundamental interest in understanding the conditions leading to self-organization and practical motivation. We study the relationship between friction-induced instabilities and friction-induced self-organization. Friction is usually thought of as a stabilizing factor; however, sometimes it leads to the instability of sliding, in particular when friction is coupled with another process. Instabilities constitute the main mechanism for pattern formation. At first, a stationary structure loses its stability; after that, vibrations with increasing amplitude occur, leading to a limit cycle corresponding to a periodic pattern. The self-organization is usually beneficial for friction and wear reduction because the tribological systems tend to enter a state with the lowest energy dissipation. The introductory chapter starts with basic definitions related to self-organization, instabilities and friction, literature review, and objectives. We discuss fundamental concepts that provide a methodological tool to investigate, understand and enhance beneficial processes in tribosystems which might lead to self-organization. These processes could result in the ability of a frictional surface to exhibit "self-protection" and "self-healing" properties. Hence, this research is dealing with the fundamental concepts that allow the possibility of the development of a new generation of tribosystem and materials that reinforce such properties. In chapter 2, we investigate instabilities due to the temperature-dependency of the coefficient of friction. The temperature-dependency of the coefficient of friction can have a significant effect on the frictional sliding stability, by leading to the formation of "hot" and "cold" spots on the contacting surfaces. We formulate a stability criterion and perform a case study of a brake disk. In chapter 3, we study frictional running-in. Running-in is a transient period on the onset of the frictional sliding, in which friction and wear decrease to their stationary values. In this research, running-in is interpreted as friction-induced self-organization process. We introduce a theoretical model of running-in and investigate rough profile evolution assuming that its kinetics is driven by two opposite processes or events, i.e., smoothening which is typical for the deformation-driven friction and wear, and roughening which is typical for the adhesion-driven friction and wear. In chapter 4, we investigate the possibility of the so-called Turing-type pattern formation during friction. Turing or reaction-diffusion systems describe variations of spatial concentrations of chemical components with time due to local chemical reactions coupled with diffusion. During friction, the patterns can form at the sliding interface due to the mass transfer (diffusion), heat transfer, various tribochemical reactions, and wear. In chapter 5, we investigate how interfacial patterns including propagating trains of stick and slip zones form due to dynamic sliding instabilities. These can be categorized as self-organized patterns. We treat stick and slip as two phases at the interface, and study the effects related to phase transitions. Our results show how interfacial patterns form, how the transition between stick and slip zones occurs, and which parameters affect them. In chapter 6, we use Cellular Potts Model to study contact angle (CA) hysteresis as a measure of solid-liquid energy dissipation. We simulate CA hysteresis for a droplet over the tilted patterned surface, and a bubble placed under the surface immersed in liquid. We discuss the dependency of CA hysteresis on the surface structure and other parameters. This analysis allows decoupling of the 1D (pinning of the triple line) and 2D effects (adhesion hysteresis in the contact area) and obtain new insights on the nature of CA hysteresis. To summarize, we examine different cases in frictional interface and observe similar trends. We investigate and discus how these trends could be beneficial in design, synthesis and characterization of different materials and tribosystems. Furthermore, we describe how to utilize fundamental concepts for specific engineering applications. Finally, the main theme of this research is to find new applications of concept of self-organization to tribology and the role played by different physical and chemical interactions in modifying and controlling friction and wear. (Abstract shortened by UMI.)

  10. Effects of wall temperature on skin-friction measurements by oil-film interferometry

    NASA Astrophysics Data System (ADS)

    Bottini, H.; Kurita, M.; Iijima, H.; Fukagata, K.

    2015-10-01

    Wind-tunnel skin-friction measurements with thin-oil-film interferometry have been taken on an aluminum sample to investigate the effects of wall temperature on the accuracy of the technique. The sample has been flush-mounted onto a flat plate with an electric heater at its bottom and mirror-smooth temperature-sensitive paint sprayed on its top. The heater has varied the sample temperature from ambient to 328 K, and the paint has permitted wall temperature measurements on the same area of the skin-friction measurements and during the same test. The measured wall temperatures have been used to calculate the correct oil viscosities, and these viscosities and the constant nominal viscosity at 298 K have been used to calculate two different sets of skin-friction coefficients. These sets have been compared to each other and with theoretical values. This comparison shows that the effects of wall temperature on the accuracy of skin-friction measurements are sensible, and more so as wall temperature differs from 298 K. Nonetheless, they are effectively neutralized by the use of wall temperature measurements in combination with the correct oil viscosity-temperature law. In this regard, the special temperature-sensitive paint developed for this study shows advantages with respect to more traditional wall temperature measurement techniques.

  11. A Class of time-fractional hemivariational inequalities with application to frictional contact problem

    NASA Astrophysics Data System (ADS)

    Zeng, Shengda; Migórski, Stanisław

    2018-03-01

    In this paper a class of elliptic hemivariational inequalities involving the time-fractional order integral operator is investigated. Exploiting the Rothe method and using the surjectivity of multivalued pseudomonotone operators, a result on existence of solution to the problem is established. Then, this abstract result is applied to provide a theorem on the weak solvability of a fractional viscoelastic contact problem. The process is quasistatic and the constitutive relation is modeled with the fractional Kelvin-Voigt law. The friction and contact conditions are described by the Clarke generalized gradient of nonconvex and nonsmooth functionals. The variational formulation of this problem leads to a fractional hemivariational inequality.

  12. A class of fractional differential hemivariational inequalities with application to contact problem

    NASA Astrophysics Data System (ADS)

    Zeng, Shengda; Liu, Zhenhai; Migorski, Stanislaw

    2018-04-01

    In this paper, we study a class of generalized differential hemivariational inequalities of parabolic type involving the time fractional order derivative operator in Banach spaces. We use the Rothe method combined with surjectivity of multivalued pseudomonotone operators and properties of the Clarke generalized gradient to establish existence of solution to the abstract inequality. As an illustrative application, a frictional quasistatic contact problem for viscoelastic materials with adhesion is investigated, in which the friction and contact conditions are described by the Clarke generalized gradient of nonconvex and nonsmooth functionals, and the constitutive relation is modeled by the fractional Kelvin-Voigt law.

  13. The role of fluid pressure on frictional behavior at the base of the seismogenic zone

    USGS Publications Warehouse

    Hirth, Greg; Beeler, Nicholas M.

    2015-01-01

    To characterize stress and deformation style at the base of the seismogenic zone, we investigate how the mechanical properties of fluid-rock systems respond to variations in temperature and strain rate. The role of fluids on the processes responsible for the brittle-ductile transition in quartz-rich rocks has not been explored at experimental conditions where the kinetic competition between microcracking and viscous flow is similar to that expected in the Earth. Our initial analysis of this competition suggests that the effective stress law for sliding friction should not work as efficiently near the brittle-ductile transition as it does at shallow conditions

  14. Development and assessment of atomistic models for predicting static friction coefficients

    NASA Astrophysics Data System (ADS)

    Jahangiri, Soran; Heverly-Coulson, Gavin S.; Mosey, Nicholas J.

    2016-08-01

    The friction coefficient relates friction forces to normal loads and plays a key role in fundamental and applied areas of science and technology. Despite its importance, the relationship between the friction coefficient and the properties of the materials forming a sliding contact is poorly understood. We illustrate how simple relationships regarding the changes in energy that occur during slip can be used to develop a quantitative model relating the friction coefficient to atomic-level features of the contact. The slip event is considered as an activated process and the load dependence of the slip energy barrier is approximated with a Taylor series expansion of the corresponding energies with respect to load. The resulting expression for the load-dependent slip energy barrier is incorporated in the Prandtl-Tomlinson (PT) model and a shear-based model to obtain expressions for friction coefficient. The results indicate that the shear-based model reproduces the static friction coefficients μs obtained from first-principles molecular dynamics simulations more accurately than the PT model. The ability of the model to provide atomistic explanations for differences in μs amongst different contacts is also illustrated. As a whole, the model is able to account for fundamental atomic-level features of μs, explain the differences in μs for different materials based on their properties, and might be also used in guiding the development of contacts with desired values of μs.

  15. Dynamic effects in friction and adhesion through cooperative rupture and formation of supramolecular bonds.

    PubMed

    Blass, Johanna; Albrecht, Marcel; Bozna, Bianca L; Wenz, Gerhard; Bennewitz, Roland

    2015-05-07

    We introduce a molecular toolkit for studying the dynamics in friction and adhesion from the single molecule level to effects of multivalency. As experimental model system we use supramolecular bonds established by the inclusion of ditopic adamantane connector molecules into two surface-bound cyclodextrin molecules, attached to a tip of an atomic force microscope (AFM) and to a flat silicon surface. The rupture force of a single bond does not depend on the pulling rate, indicating that the fast complexation kinetics of adamantane and cyclodextrin are probed in thermal equilibrium. In contrast, the pull-off force for a group of supramolecular bonds depends on the unloading rate revealing a non-equilibrium situation, an effect discussed as the combined action of multivalency and cantilever inertia effects. Friction forces exhibit a stick-slip characteristic which is explained by the cooperative rupture of groups of host-guest bonds and their rebinding. No dependence of friction on the sliding velocity has been observed in the accessible range of velocities due to fast rebinding and the negligible delay of cantilever response in AFM lateral force measurements.

  16. Darda's Demon and the First Law of Thermodynamics.

    ERIC Educational Resources Information Center

    Butcher, Frank

    1984-01-01

    Describes an experiment in which the final speed of a toy car is predicted by measuring the elastic potential energy stored in its spring at the start and the energy lost to friction during the run. Conservation of energy is discussed and the necessary mathematical formulas are presented. (BC)

  17. Imaging surface contacts: Power law contact distributions and contact stresses in quartz, calcite, glass and acrylic plastic

    USGS Publications Warehouse

    Dieterich, J.H.; Kilgore, B.D.

    1996-01-01

    A procedure has been developed to obtain microscope images of regions of contact between roughened surfaces of transparent materials, while the surfaces are subjected to static loads or undergoing frictional slip. Static loading experiments with quartz, calcite, soda-lime glass and acrylic plastic at normal stresses to 30 MPa yield power law distributions of contact areas from the smallest contacts that can be resolved (3.5 ??m2) up to a limiting size that correlates with the grain size of the abrasive grit used to roughen the surfaces. In each material, increasing normal stress results in a roughly linear increase of the real area of contact. Mechanisms of contact area increase are by growth of existing contacts, coalescence of contacts and appearance of new contacts. Mean contacts stresses are consistent with the indentation strength of each material. Contact size distributions are insensitive to normal stress indicating that the increase of contact area is approximately self-similar. The contact images and contact distributions are modeled using simulations of surfaces with random fractal topographies. The contact process for model fractal surfaces is represented by the simple expedient of removing material at regions where surface irregularities overlap. Synthetic contact images created by this approach reproduce observed characteristics of the contacts and demonstrate that the exponent in the power law distributions depends on the scaling exponent used to generate the surface topography.

  18. A nanostructured surface increases friction exponentially at the solid-gas interface.

    PubMed

    Phani, Arindam; Putkaradze, Vakhtang; Hawk, John E; Prashanthi, Kovur; Thundat, Thomas

    2016-09-06

    According to Stokes' law, a moving solid surface experiences viscous drag that is linearly related to its velocity and the viscosity of the medium. The viscous interactions result in dissipation that is known to scale as the square root of the kinematic viscosity times the density of the gas. We observed that when an oscillating surface is modified with nanostructures, the experimentally measured dissipation shows an exponential dependence on kinematic viscosity. The surface nanostructures alter solid-gas interplay greatly, amplifying the dissipation response exponentially for even minute variations in viscosity. Nanostructured resonator thus allows discrimination of otherwise narrow range of gaseous viscosity making dissipation an ideal parameter for analysis of a gaseous media. We attribute the observed exponential enhancement to the stochastic nature of interactions of many coupled nanostructures with the gas media.

  19. A nanostructured surface increases friction exponentially at the solid-gas interface

    NASA Astrophysics Data System (ADS)

    Phani, Arindam; Putkaradze, Vakhtang; Hawk, John E.; Prashanthi, Kovur; Thundat, Thomas

    2016-09-01

    According to Stokes’ law, a moving solid surface experiences viscous drag that is linearly related to its velocity and the viscosity of the medium. The viscous interactions result in dissipation that is known to scale as the square root of the kinematic viscosity times the density of the gas. We observed that when an oscillating surface is modified with nanostructures, the experimentally measured dissipation shows an exponential dependence on kinematic viscosity. The surface nanostructures alter solid-gas interplay greatly, amplifying the dissipation response exponentially for even minute variations in viscosity. Nanostructured resonator thus allows discrimination of otherwise narrow range of gaseous viscosity making dissipation an ideal parameter for analysis of a gaseous media. We attribute the observed exponential enhancement to the stochastic nature of interactions of many coupled nanostructures with the gas media.

  20. From Geodetic Imaging of Seismic and Aseismic Fault Slip to Dynamic Modeling of the Seismic Cycle

    NASA Astrophysics Data System (ADS)

    Avouac, Jean-Philippe

    2015-05-01

    Understanding the partitioning of seismic and aseismic fault slip is central to seismotectonics as it ultimately determines the seismic potential of faults. Thanks to advances in tectonic geodesy, it is now possible to develop kinematic models of the spatiotemporal evolution of slip over the seismic cycle and to determine the budget of seismic and aseismic slip. Studies of subduction zones and continental faults have shown that aseismic creep is common and sometimes prevalent within the seismogenic depth range. Interseismic coupling is generally observed to be spatially heterogeneous, defining locked patches of stress accumulation, to be released in future earthquakes or aseismic transients, surrounded by creeping areas. Clay-rich tectonites, high temperature, and elevated pore-fluid pressure seem to be key factors promoting aseismic creep. The generally logarithmic time evolution of afterslip is a distinctive feature of creeping faults that suggests a logarithmic dependency of fault friction on slip rate, as observed in laboratory friction experiments. Most faults can be considered to be paved with interlaced patches where the friction law is either rate-strengthening, inhibiting seismic rupture propagation, or rate-weakening, allowing for earthquake nucleation. The rate-weakening patches act as asperities on which stress builds up in the interseismic period; they might rupture collectively in a variety of ways. The pattern of interseismic coupling can help constrain the return period of the maximum- magnitude earthquake based on the requirement that seismic and aseismic slip sum to match long-term slip. Dynamic models of the seismic cycle based on this conceptual model can be tuned to reproduce geodetic and seismological observations. The promise and pitfalls of using such models to assess seismic hazard are discussed.

  1. Many-body effects in the mobility and diffusivity of interstitial solute in a crystalline solid: The case of helium in BCC tungsten

    NASA Astrophysics Data System (ADS)

    Wen, Haohua; Semenov, A. A.; Woo, C. H.

    2017-09-01

    The many-body dynamics of a crystalline solid containing an interstitial solute atom (ISA) is usually interpreted within the one-particle approximation as a random walker hopping among trapping centers at periodic lattice sites. The corresponding mobility and diffusivity can be formulated based on the transition-state theory in the form of the Arrhenius law. Possible issues arising from the many-body nature of the dynamics may need to be understood and resolved both scientifically and technologically. Noting the congruence between the dynamics of the many-body and stochastic systems within the Mori-Zwanzig theory, we analyzed the dynamics of a model particle subjected to a saw-tooth potential in a noisy medium. The ISA mobility is found to be governed by two sources of dissipative friction: that which is produced by the scattering of lattice waves by the moving ISA (phonon wind), and that which is derived from the energy dissipation associated with overcoming the migration barrier screened by lattice waves (i.e., phonon screened). The many-body effect in both cases increases with temperature, so that the first component of the friction is important at high temperatures and the second component is important at low temperatures. A formulation built on this mechanistic structure of the dissipative friction requires the mobility and diffusivity to be expressed not only in terms of the migration enthalpy and entropy, but also of the phonon drag coefficient. As a test, the complex temperature dependence of the mobility and diffusivity of interstitial helium in BCC W obtained from molecular-dynamics simulation is very well reproduced.

  2. Modeling of heat transfer in compacted machining chips during friction consolidation process

    NASA Astrophysics Data System (ADS)

    Abbas, Naseer; Deng, Xiaomin; Li, Xiao; Reynolds, Anthony

    2018-04-01

    The current study aims to provide an understanding of the heat transfer process in compacted aluminum alloy AA6061 machining chips during the friction consolidation process (FCP) through experimental investigations and mathematical modelling and numerical simulation. Compaction and friction consolidation of machining chips is the first stage of the Friction Extrusion Process (FEP), which is a novel method for recycling machining chips to produce useful products such as wires. In this study, compacted machining chips are modelled as a continuum whose material properties vary with density during friction consolidation. Based on density and temperature dependent thermal properties, the temperature field in the chip material and process chamber caused by frictional heating during the friction consolidation process is predicted. The predicted temperature field is found to compare well with temperature measurements at select points where such measurements can be made using thermocouples.

  3. Is internal friction friction?

    USGS Publications Warehouse

    Savage, J.C.; Byerlee, J.D.; Lockner, D.A.

    1996-01-01

    Mogi [1974] proposed a simple model of the incipient rupture surface to explain the Coulomb failure criterion. We show here that this model can plausibly be extended to explain the Mohr failure criterion. In Mogi's model the incipient rupture surface immediately before fracture consists of areas across which material integrity is maintained (intact areas) and areas across which it is not (cracks). The strength of the incipient rupture surface is made up of the inherent strength of the intact areas plus the frictional resistance to sliding offered by the cracked areas. Although the coefficient of internal friction (slope of the strength versus normal stress curve) depends upon both the frictional and inherent strengths, the phenomenon of internal friction can be identified with the frictional part. The curvature of the Mohr failure envelope is interpreted as a consequence of differences in damage (cracking) accumulated in prefailure loading at different confining pressures.

  4. Solid friction between soft filaments.

    PubMed

    Ward, Andrew; Hilitski, Feodor; Schwenger, Walter; Welch, David; Lau, A W C; Vitelli, Vincenzo; Mahadevan, L; Dogic, Zvonimir

    2015-06-01

    Any macroscopic deformation of a filamentous bundle is necessarily accompanied by local sliding and/or stretching of the constituent filaments. Yet the nature of the sliding friction between two aligned filaments interacting through multiple contacts remains largely unexplored. Here, by directly measuring the sliding forces between two bundled F-actin filaments, we show that these frictional forces are unexpectedly large, scale logarithmically with sliding velocity as in solid-like friction, and exhibit complex dependence on the filaments' overlap length. We also show that a reduction of the frictional force by orders of magnitude, associated with a transition from solid-like friction to Stokes's drag, can be induced by coating F-actin with polymeric brushes. Furthermore, we observe similar transitions in filamentous microtubules and bacterial flagella. Our findings demonstrate how altering a filament's elasticity, structure and interactions can be used to engineer interfilament friction and thus tune the properties of fibrous composite materials.

  5. Solid friction between soft filaments

    NASA Astrophysics Data System (ADS)

    Ward, Andrew; Hilitski, Feodor; Schwenger, Walter; Welch, David; Lau, A. W. C.; Vitelli, Vincenzo; Mahadevan, L.; Dogic, Zvonimir

    2015-06-01

    Any macroscopic deformation of a filamentous bundle is necessarily accompanied by local sliding and/or stretching of the constituent filaments. Yet the nature of the sliding friction between two aligned filaments interacting through multiple contacts remains largely unexplored. Here, by directly measuring the sliding forces between two bundled F-actin filaments, we show that these frictional forces are unexpectedly large, scale logarithmically with sliding velocity as in solid-like friction, and exhibit complex dependence on the filaments’ overlap length. We also show that a reduction of the frictional force by orders of magnitude, associated with a transition from solid-like friction to Stokes’s drag, can be induced by coating F-actin with polymeric brushes. Furthermore, we observe similar transitions in filamentous microtubules and bacterial flagella. Our findings demonstrate how altering a filament’s elasticity, structure and interactions can be used to engineer interfilament friction and thus tune the properties of fibrous composite materials.

  6. Effects of Stone-Wales and vacancy defects in atomic-scale friction on defective graphite

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sun, Xiao-Yu; Key Laboratory of Hubei Province for Water Jet Theory and New Technology, Wuhan University, Wuhan 430072; Wu, RunNi

    2014-05-05

    Graphite is an excellent solid lubricant for surface coating, but its performance is significantly weakened by the vacancy or Stone-Wales (SW) defect. This study uses molecular dynamics simulations to explore the frictional behavior of a diamond tip sliding over a graphite which contains a single defect or stacked defects. Our results suggest that the friction on defective graphite shows a strong dependence on defect location and type. The 5-7-7-5 structure of SW defect results in an effectively negative slope of friction. For defective graphite containing a defect in the surface, adding a single vacancy in the interior layer will decreasemore » the friction coefficients, while setting a SW defect in the interior layer may increase the friction coefficients. Our obtained results may provide useful information for understanding the atomic-scale friction properties of defective graphite.« less

  7. Effects of water-vapor on friction and deformation of polymeric magnetic media in contact with a ceramic oxide

    NASA Technical Reports Server (NTRS)

    Miyoshi, K.; Buckley, D. H.

    1984-01-01

    The effects of humidity (water-vapor) in nitrogen on the friction and deformation behavior of magnetic tape in contact with a Ni-Zn ferrite spherical pin were studied. The coefficient of friction is markedly dependent on the ambient relative humidity. In elastic contacts the coefficient of friction increased linearly with increasing humidity; it decreased linearly when humidity was lowered. This effect is the result of changes in the chemistry and interaction of tape materials such as degradation of the lubricant. In plastic contacts there was no effect of humidity on friction below 40 percent relative humidity. There is no effect on friction associated with the breakthrough of the adsorbed water-vapor film at the interface of the tape and Ni-Zn ferrite. The coefficient of friction, however, increased rapidly with increasing relative humidity above 40 percent in plastic contacts.

  8. Friction Anisotropy with Respect to Topographic Orientation

    PubMed Central

    Yu, Chengjiao; Wang, Q. Jane

    2012-01-01

    Friction characteristics with respect to surface topographic orientation were investigated using surfaces of different materials and fabricated with grooves of different scales. Scratching friction tests were conducted using a nano-indentation-scratching system with the tip motion parallel or perpendicular to the groove orientation. Similar friction anisotropy trends were observed for all the surfaces studied, which are (1) under a light load and for surfaces with narrow grooves, the tip motion parallel to the grooves offers higher friction coefficients than does that perpendicular to them, (2) otherwise, equal or lower friction coefficients are found under this motion. The influences of groove size relative to the diameter of the mating tip (as a representative asperity), surface contact stiffness, contact area, and the characteristic stiction length are discussed. The appearance of this friction anisotropy is independent of material; however, the boundary and the point of trend transition depend on material properties. PMID:23248751

  9. Solid friction between soft filaments

    DOE PAGES

    Ward, Andrew; Hilitski, Feodor; Schwenger, Walter; ...

    2015-03-02

    Any macroscopic deformation of a filamentous bundle is necessarily accompanied by local sliding and/or stretching of the constituent filaments. Yet the nature of the sliding friction between two aligned filaments interacting through multiple contacts remains largely unexplored. Here, by directly measuring the sliding forces between two bundled F-actin filaments, we show that these frictional forces are unexpectedly large, scale logarithmically with sliding velocity as in solid-like friction, and exhibit complex dependence on the filaments’ overlap length. We also show that a reduction of the frictional force by orders of magnitude, associated with a transition from solid-like friction to Stokes’s drag,more » can be induced by coating F-actin with polymeric brushes. Furthermore, we observe similar transitions in filamentous microtubules and bacterial flagella. In conclusion, our findings demonstrate how altering a filament’s elasticity, structure and interactions can be used to engineer interfilament friction and thus tune the properties of fibrous composite materials.« less

  10. Adhesion and friction of iron-base binary alloys in contact with silicon carbide in vacuum

    NASA Technical Reports Server (NTRS)

    Miyoshi, K.; Buckley, D. H.

    1980-01-01

    Single pass sliding friction experiments were conducted with various iron base binary alloys (alloying elements were Ti, Cr, Mn, Ni, Rh, and W) in contact with a single crystal silicon carbide /0001/ surface in vacuum. Results indicate that atomic size and concentration of alloying elements play an important role in controlling adhesion and friction properties of iron base binary alloys. The coefficient of friction generally increases with an increase in solute concentration. The coefficient of friction increases linearly as the solute to iron atomic radius ratio increases or decreases from unity. The chemical activity of the alloying elements was also an important parameter in controlling adhesion and friction of alloys, as these latter properties are highly dependent upon the d bond character of the elements.

  11. Quantum friction in arbitrarily directed motion

    DOE PAGES

    Klatt, J.; Farías, M. Belen; Dalvit, D. A. R.; ...

    2017-05-30

    In quantum friction, the electromagnetic fluctuation-induced frictional force decelerating an atom which moves past a macroscopic dielectric body, has so far eluded experimental evidence despite more than three decades of theoretical studies. Inspired by the recent finding that dynamical corrections to such an atom's internal dynamics are enhanced by one order of magnitude for vertical motion—compared with the paradigmatic setup of parallel motion—here we generalize quantum friction calculations to arbitrary angles between the atom's direction of motion and the surface in front of which it moves. Motivated by the disagreement between quantum friction calculations based on Markovian quantum master equationsmore » and time-dependent perturbation theory, we carry out our derivations of the quantum frictional force for arbitrary angles by employing both methods and compare them.« less

  12. Friction force microscopy at a regularly stepped Au(665) electrode: Anisotropy effects

    NASA Astrophysics Data System (ADS)

    Podgaynyy, Nikolay; Iqbal, Shahid; Baltruschat, Helmut

    2015-01-01

    Using friction force microscopy, friction was determined for the AFM-tip scanning parallel and vertically to the monoatomic steps of Au(665) electrode for different coverages of Cu in sulfuric acid. When the tip was scanning parallel to the steps, the results were similar to those obtained before for a Au(111) surface: a higher coverage of Cu leads to an increased friction. However, differently from Au(111), no transitions in the friction coefficient were observed with increasing load. Atomic stick slip was observed both for the Au surface and the √{ 3} × √{ 3} honeycomb Cu adlayer with a Cu coverage of 2/3. When the tip was scanning perpendicular to the steps, friction did not depend much on coverage; astonishingly, atomic stick slip was also observed.

  13. Finite element based simulation on friction stud welding of metal matrix composites to steel

    NASA Astrophysics Data System (ADS)

    Hynes, N. Rajesh Jesudoss; Tharmaraj, R.; Velu, P. Shenbaga; Kumar, R.

    2016-05-01

    Friction welding is a solid state joining technique used for joining similar and dissimilar materials with high integrity. This new technique is being successfully applied to the aerospace, automobile, and ship building industries, and is attracting more and more research interest. The quality of Friction Stud Welded joints depends on the frictional heat generated at the interface. Hence, thermal analysis on friction stud welding of stainless steel (AISI 304) and aluminium silicon carbide (AlSiC) combination is carried out in the present work. In this study, numerical simulation is carried out using ANSYS software and the temperature profiles are predicted at various increments of time. The developed numerical model is found to be adequate to predict temperature distribution of friction stud weld aluminium silicon carbide/stainless steel joints.

  14. Time- & Load-Dependence of Triboelectric Effect.

    PubMed

    Pan, Shuaihang; Yin, Nian; Zhang, Zhinan

    2018-02-06

    Time- and load-dependent friction behavior is considered as important for a long time, due to its time-evolution and force-driving characteristics. However, its electronic behavior, mainly considered in triboelectric effect, has almost never been given the full attention and analyses from the above point of view. In this paper, by experimenting with fcc-latticed aluminum and copper friction pairs, the mechanical and electronic behaviors of friction contacts are correlated by time and load analyses, and the behind physical understanding is provided. Most importantly, the difference of "response lag" in force and electricity is discussed, the extreme points of coefficient of friction with the increasing normal loads are observed and explained with the surface properties and dynamical behaviors (i.e. wear), and the micro and macro theories linking tribo-electricity to normal load and wear (i.e. the physical explanation between coupled electrical and mechanical phenomena) are successfully developed and tested.

  15. Micromechanics of ice friction

    NASA Astrophysics Data System (ADS)

    Sammonds, P. R.; Bailey, E.; Lishman, B.; Scourfield, S.

    2015-12-01

    Frictional mechanics are controlled by the ice micro-structure - surface asperities and flaws - but also the ice fabric and permeability network structure of the contacting blocks. Ice properties are dependent upon the temperature of the bulk ice, on the normal stress and on the sliding velocity and acceleration. This means the shear stress required for sliding is likewise dependent on sliding velocity, acceleration, and temperature. We aim to describe the micro-physics of the contacting surface. We review micro-mechanical models of friction: the elastic and ductile deformation of asperities under normal loads and their shear failure by ductile flow, brittle fracture, or melting and hydrodynamic lubrication. Combinations of these give a total of six rheological models of friction. We present experimental results in ice mechanics and physics from laboratory experiments to understand the mechanical models. We then examine the scaling relations of the slip of ice, to examine how the micro-mechanics of ice friction can be captured simple reduced-parameter models, describing the mechanical state and slip rate of the floes. We aim to capture key elements that they may be incorporated into mid and ocean-basin scale modelling.

  16. Effect of friction on vibrotactile sensation of normal and dehydrated skin.

    PubMed

    Chen, S; Ge, S; Tang, W; Zhang, J

    2016-02-01

    Vibrotactile sensation mediated is highly dependent on surface mechanical and frictional properties. Dehydration of skin could change these properties. To investigate the relationship between friction and vibrotactile sensation of normal and dehydrated skin. Vibrations were firstly measured during surface exploration using a biomimetic sensor. Piglet skin was used as human skin model to study frictional properties for both normal and dehydrated skin using an atomic force microscope on nanoscale and a pin-on-disk tribometer on macroscale. Effect of vibrational frequency on friction and vibrotactile perception was also observed on nano and macro scale for normal and dehydrated skin. The result indicated that dehydrated skin was less sensitive than normal skin. The coefficient of friction of dehydrated skin is smaller than that of normal skin on both nano and macro scale. The coefficient of friction increases as increasing scanning frequencies. There is a positive correlation between coefficient of friction and vibrotactile sensation on nanoscale and macroscale. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  17. Measuring internal friction of an ultrafast-folding protein.

    PubMed

    Cellmer, Troy; Henry, Eric R; Hofrichter, James; Eaton, William A

    2008-11-25

    Nanosecond laser T-jump was used to measure the viscosity dependence of the folding kinetics of the villin subdomain under conditions where the viscogen has no effect on its equilibrium properties. The dependence of the unfolding/refolding relaxation time on solvent viscosity indicates a major contribution to the dynamics from internal friction. The internal friction increases with increasing temperature, suggesting a shift in the transition state along the reaction coordinate toward the native state with more compact structures, and therefore, a smaller diffusion coefficient due to increased landscape roughness. Fitting the data with an Ising-like model yields a relatively small position dependence for the diffusion coefficient. This finding is consistent with the excellent correlation found between experimental and calculated folding rates based on free energy barrier heights using the same diffusion coefficient for every protein.

  18. Newton's laws of motion in the form of a Riccati equation.

    PubMed

    Nowakowski, Marek; Rosu, Haret C

    2002-04-01

    We discuss two applications of a Riccati equation to Newton's laws of motion. The first one is the motion of a particle under the influence of a power law central potential V(r)=kr(epsilon). For zero total energy we show that the equation of motion can be cast in the Riccati form. We briefly show here an analogy to barotropic Friedmann-Robertson-Lemaitre cosmology where the expansion of the universe can be also shown to obey a Riccati equation. A second application in classical mechanics, where again the Riccati equation appears naturally, are problems involving quadratic friction. We use methods reminiscent to nonrelativistic supersymmetry to generalize and solve such problems.

  19. A new class of energy based control laws for revolute robot arms - Tracking control, robustness enhancement and adaptive control

    NASA Technical Reports Server (NTRS)

    Wen, John T.; Kreutz, Kenneth; Bayard, David S.

    1988-01-01

    A class of joint-level control laws for all-revolute robot arms is introduced. The analysis is similar to the recently proposed energy Liapunov function approach except that the closed-loop potential function is shaped in accordance with the underlying joint space topology. By using energy Liapunov functions with the modified potential energy, a much simpler analysis can be used to show closed-loop global asymptotic stability and local exponential stability. When Coulomb and viscous friction and model parameter errors are present, a sliding-mode-like modification of the control law is proposed to add a robustness-enhancing outer loop. Adaptive control is also addressed within the same framework. A linear-in-the-parameters formulation is adopted, and globally asymptotically stable adaptive control laws are derived by replacing the model parameters in the nonadaptive control laws by their estimates.

  20. Optimizing Geometry Mediated Skin Friction Drag on Riblet-Textured Surfaces

    NASA Astrophysics Data System (ADS)

    Raayai, Shabnam; McKinley, Gareth

    2016-11-01

    Micro-scale riblets have been shown to modify the skin friction drag on patterned surfaces. Shark skin is widely known as a natural example of this passive drag reduction mechanism and artificial riblet tapes have been previously used in the America's Cups tournament resulting in a 1987 victory. Previous experiments with riblet surfaces in turbulent boundary layer flow have shown 4-8% reduction in the skin friction drag. Our computations with sinusoidal riblet surfaces in high Reynolds number laminar boundary layer flow and experiments with V-grooves in laminar Taylor-Couette flow also show that the reduction in skin friction can be substantial and depends on the spacing and height of the riblets. In the boundary layer setting, this frictional reduction is also a function of the length of the plate in the flow direction, while in the Taylor Couette setting it depends on the gap size. In the current work, we use scaling arguments and conformal mapping to establish a simplified theory for laminar flow over V-groove riblets and explore the self-similarity of the velocity contours near the patterned surface. We combine these arguments with theoretical and numerical calculations using Matlab and OpenFOAM to show that the drag reduction achievable in laminar flow over riblet surfaces depends on a rescaled form of the Reynolds number combined with the aspect ratio of the texture (defined in terms of the ratio of the height to spacing of the riblets). We then use these results to explain the underlying physical mechanisms driving frictional drag reduction and offer recommendations for designing low drag surfaces.

  1. Exorcising Maxwell's Demon from Liboff's Three-Channel Conundrum

    NASA Astrophysics Data System (ADS)

    Opatrný, Tomáš; Mišáková, Zuzana

    2011-02-01

    We study a model proposed by Liboff (Found. Phys. Lett. 10:89, 1997) to violate the second law of thermodynamics. Discs are moving without friction in three connected channels inclined by π/3 with respect to each other. Based on the geometry considerations, it was argued that eventually all the discs end up in the middle channel regardless of their initial positions. This would mean a decrease of the entropy of the system and violation of the second law. We argue that no such anomalous behavior occurs in the system.

  2. Fault Frictional Stability in a Nuclear Waste Repository

    NASA Astrophysics Data System (ADS)

    Orellana, Felipe; Violay, Marie; Scuderi, Marco; Collettini, Cristiano

    2016-04-01

    Exploitation of underground resources induces hydro-mechanical and chemical perturbations in the rock mass. In response to such disturbances, seismic events might occur, affecting the safety of the whole engineering system. The Mont Terri Rock Laboratory is an underground infrastructure devoted to the study of geological disposal of nuclear waste in Switzerland. At the site, it is intersected by large fault zones of about 0.8 - 3 m in thickness and the host rock formation is a shale rock named Opalinus Clay (OPA). The mineralogy of OPA includes a high content of phyllosilicates (50%), quartz (25%), calcite (15%), and smaller proportions of siderite and pyrite. OPA is a stiff, low permeable rock (2×10-18 m2), and its mechanical behaviour is strongly affected by the anisotropy induced by bedding planes. The evaluation of fault stability and associated fault slip behaviour (i.e. seismic vs. aseismic) is a major issue in order to ensure the long-term safety and operation of the repository. Consequently, experiments devoted to understand the frictional behaviour of OPA have been performed in the biaxial apparatus "BRAVA", recently developed at INGV. Simulated fault gouge obtained from intact OPA samples, were deformed at different normal stresses (from 4 to 30 MPa), under dry and fluid-saturated conditions. To estimate the frictional stability, the velocity-dependence of friction was evaluated during velocity steps tests (1-300 μm/s). Slide-hold-slide tests were performed (1-3000 s) to measure the amount of frictional healing. The collected data were subsequently modelled with the Ruina's slip dependent formulation of the rate and state friction constitutive equations. To understand the deformation mechanism, the microstructures of the sheared gouge were analysed. At 7 MPa normal stress and under dry conditions, the friction coefficient decreased from a peak value of μpeak,dry = 0.57 to μss,dry = 0.50. Under fluid-saturated conditions and same normal stress, the friction coefficient decreased from a peak value of μpeak,sat = 0.45 to μss,sat = 0.34. Additionally, it has been observed that the weakening distance Dw is smaller under fluid- saturated conditions (˜4 mm) compared to dry conditions (˜6 mm). Results showed a linear decrease of both peak friction and steady state friction when normal stress increases. When fluid- saturation degree of gouges is reduced, gouge samples underwent a transition from velocity strengthening to velocity weakening behaviour, thus indicating a potentially unstable frictional behaviour of the fault. Furthermore, under both saturated and dry conditions, the frictional healing rate showed a low recovery of the friction coefficient under different holding times. Our experiments indicate that the frictional behaviour of Opalinus Clay is characterized by complex processes depending upon normal stress, sliding velocity, and saturation degree of the samples. This complexity highlights the need for further experiments in order to better evaluate the seismic risk during long-term nuclear waste disposal within the OPA clay formation.

  3. Rubber friction: role of the flash temperature.

    PubMed

    Persson, B N J

    2006-08-16

    When a rubber block is sliding on a hard rough substrate, the substrate asperities will exert time-dependent deformations of the rubber surface resulting in viscoelastic energy dissipation in the rubber, which gives a contribution to the sliding friction. Most surfaces of solids have roughness on many different length scales, and when calculating the friction force it is necessary to include the viscoelastic deformations on all length scales. The energy dissipation will result in local heating of the rubber. Since the viscoelastic properties of rubber-like materials are extremely strongly temperature dependent, it is necessary to include the local temperature increase in the analysis. At very low sliding velocity the temperature increase is negligible because of heat diffusion, but already for velocities of order 10(-2) m s(-1) the local heating may be very important. Here I study the influence of the local heating on the rubber friction, and I show that in a typical case the temperature increase results in a decrease in rubber friction with increasing sliding velocity for v>0.01 m s(-1). This may result in stick-slip instabilities, and is of crucial importance in many practical applications, e.g. for tyre-road friction and in particular for ABS braking systems.

  4. Frictional properties of exhumed fault gouges in DFDP-1 cores, Alpine Fault, New Zealand

    USGS Publications Warehouse

    Boulton, Carolyn; Moore, Diane E.; Lockner, David A.; Toy, Virginia G.; Townend, John; Southerland, Rupert

    2014-01-01

    Principal slip zone gouges recovered during the Deep Fault Drilling Project (DFDP-1), Alpine Fault, New Zealand, were deformed in triaxial friction experiments at temperatures, T, of up to 350°C, effective normal stresses, σn′, of up to 156 MPa, and velocities between 0.01 and 3 µm/s. Chlorite/white mica-bearing DFDP-1A blue gouge, 90.62 m sample depth, is frictionally strong (friction coefficient, μ, 0.61–0.76) across all experimental conditions tested (T = 70–350°C, σn′ = 31.2–156 MPa); it undergoes a transition from positive to negative rate dependence as T increases past 210°C. The friction coefficient of smectite-bearing DFDP-1B brown gouge, 128.42 m sample depth, increases from 0.49 to 0.74 with increasing temperature and pressure (T = 70–210°C, σn′ = 31.2–93.6 MPa); the positive to negative rate dependence transition occurs as T increases past 140°C. These measurements indicate that, in the absence of elevated pore fluid pressures, DFDP-1 gouges are frictionally strong under conditions representative of the seismogenic crust.

  5. Confinement-Dependent Friction in Peptide Bundles

    PubMed Central

    Erbaş, Aykut; Netz, Roland R.

    2013-01-01

    Friction within globular proteins or between adhering macromolecules crucially determines the kinetics of protein folding, the formation, and the relaxation of self-assembled molecular systems. One fundamental question is how these friction effects depend on the local environment and in particular on the presence of water. In this model study, we use fully atomistic MD simulations with explicit water to obtain friction forces as a single polyglycine peptide chain is pulled out of a bundle of k adhering parallel polyglycine peptide chains. The whole system is periodically replicated along the peptide axes, so a stationary state at prescribed mean sliding velocity V is achieved. The aggregation number is varied between k = 2 (two peptide chains adhering to each other with plenty of water present at the adhesion sites) and k = 7 (one peptide chain pulled out from a close-packed cylindrical array of six neighboring peptide chains with no water inside the bundle). The friction coefficient per hydrogen bond, extrapolated to the viscous limit of vanishing pulling velocity V → 0, exhibits an increase by five orders of magnitude when going from k = 2 to k = 7. This dramatic confinement-induced friction enhancement we argue to be due to a combination of water depletion and increased hydrogen-bond cooperativity. PMID:23528088

  6. Structure and dynamics of water confined in a graphene nanochannel under gigapascal high pressure: dependence of friction on pressure and confinement.

    PubMed

    Yang, Lei; Guo, Yanjie; Diao, Dongfeng

    2017-05-31

    Recently, water flow confined in nanochannels has become an interesting topic due to its unique properties and potential applications in nanofluidic devices. The trapped water is predicted to experience high pressure in the gigapascal regime. Theoretical and experimental studies have reported various novel structures of the confined water under high pressure. However, the role of this high pressure on the dynamic properties of water has not been elucidated to date. In the present study, the structure evolution and interfacial friction behavior of water constrained in a graphene nanochannel were investigated via molecular dynamics simulations. Transitions of the confined water to different ice phases at room temperature were observed in the presence of lateral pressure at the gigapascal level. The friction coefficient at the water/graphene interface was found to be dependent on the lateral pressure and nanochannel height. Further theoretical analyses indicate that the pressure dependence of friction is related to the pressure-induced change in the structure of water and the confinement dependence results from the variation in the water/graphene interaction energy barrier. These findings provide a basic understanding of the dynamics of the nanoconfined water, which is crucial in both fundamental and applied science.

  7. Seismicity in a model governed by competing frictional weakening and healing mechanisms

    NASA Astrophysics Data System (ADS)

    Hillers, G.; Carlson, J. M.; Archuleta, R. J.

    2009-09-01

    Observations from laboratory, field and numerical work spanning a wide range of space and time scales suggest a strain dependent progressive evolution of material properties that control the stability of earthquake faults. The associated weakening mechanisms are counterbalanced by a variety of restrengthening mechanisms. The efficiency of the healing processes depends on local material properties and on rheologic, temperature, and hydraulic conditions. We investigate the relative effects of these competing non-linear feedbacks on seismogenesis in the context of evolving frictional properties, using a mechanical earthquake model that is governed by slip weakening friction. Weakening and strengthening mechanisms are parametrized by the evolution of the frictional control variable-the slip weakening rate R-using empirical relationships obtained from laboratory experiments. In our model, weakening depends on the slip of an earthquake and tends to increase R, following the behaviour of real and simulated frictional interfaces. Healing causes R to decrease and depends on the time passed since the last slip. Results from models with these competing feedbacks are compared with simulations using non-evolving friction. Compared to fixed R conditions, evolving properties result in a significantly increased variability in the system dynamics. We find that for a given set of weakening parameters the resulting seismicity patterns are sensitive to details of the restrengthening process, such as the healing rate b and a lower cutoff time, tc, up to which no significant change in the friction parameter is observed. For relatively large and small cutoff times, the statistics are typical of fixed large and small R values, respectively. However, a wide range of intermediate values leads to significant fluctuations in the internal energy levels. The frequency-size statistics of earthquake occurrence show corresponding non-stationary characteristics on time scales over which negligible fluctuations are observed in the fixed-R case. The progressive evolution implies that-except for extreme weakening and healing rates-faults and fault networks possibly are not well characterized by steady states on typical catalogue time scales, thus highlighting the essential role of memory and history dependence in seismogenesis. The results suggest that an extrapolation to future seismicity occurrence based on temporally limited data may be misleading due to variability in seismicity patterns associated with competing mechanisms that affect fault stability.

  8. Constraining friction, dilatancy and effective stress with earthquake rates in the deep crust

    NASA Astrophysics Data System (ADS)

    Beeler, N. M.; Thomas, A.; Burgmann, R.; Shelly, D. R.

    2015-12-01

    Similar to their behavior on the deep extent of some subduction zones, families of recurring low-frequency earthquakes (LFE) within zones of non-volcanic tremor on the San Andreas fault in central California show strong sensitivity to stresses induced by the tides. Taking all of the LFE families collectively, LFEs occur at all levels of the daily tidal stress, and are in phase with the very small, ~200 Pa, shear stress amplitudes while being uncorrelated with the ~2 kPa tidal normal stresses. Following previous work we assume LFE sources are small, persistent regions that repeatedly fail during shear within a much larger scale, otherwise aseismically creeping fault zone and that the correlation of LFE occurrence reflects modulation of the fault creep rate by the tidal stresses. We examine the predictions of laboratory-observed rate-dependent dilatancy associated with frictional slip. The effect of dilatancy hardening is to damp the slip rate, so high dilatancy under undrained pore pressure reduces modulation of slip rate by the tides. The undrained end-member model produces: 1) no sensitivity to the tidal normal stress, as first suggested in this context by Hawthorne and Rubin [2010], and 2) fault creep rate in phase with the tidal shear stress. Room temperature laboratory-observed values of the dilatancy and friction coefficients for talc, an extremely weak and weakly dilatant material, under-predict the observed San Andreas modulation at least by an order of magnitude owing to too much dilatancy. This may reflect a temperature dependence of the dilatancy and friction coefficients, both of which are expected to be zero at the brittle-ductile transition. The observed tidal modulation constrains the product of the friction and dilatancy coefficients to be at most 5 x 10-7 in the LFE source region, an order of magnitude smaller than observed at room temperature for talc. Alternatively, considering the predictions of a purely rate-dependent talc friction would constrain the ambient effective normal stress to be no more than 40 kPa. In summary, for friction models that have both rate-dependent strength and dilatancy, the observations require intrinsic weakness, low dilatancy, and lithostatic pore fluid pressures.

  9. Steady sliding frictional contact problem for a 2d elastic half-space with a discontinuous friction coefficient and related stress singularities

    NASA Astrophysics Data System (ADS)

    Ballard, Patrick

    2016-12-01

    The steady sliding frictional contact problem between a moving rigid indentor of arbitrary shape and an isotropic homogeneous elastic half-space in plane strain is extensively analysed. The case where the friction coefficient is a step function (with respect to the space variable), that is, where there are jumps in the friction coefficient, is considered. The problem is put under the form of a variational inequality which is proved to always have a solution which, in addition, is unique in some cases. The solutions exhibit different kinds of universal singularities that are explicitly given. In particular, it is shown that the nature of the universal stress singularity at a jump of the friction coefficient is different depending on the sign of the jump.

  10. Molecular dynamics simulations of metallic friction and of its dependence on electric currents - development and first results

    NASA Astrophysics Data System (ADS)

    Meintanis, Evangelos Anastasios

    We have extended the HOLA molecular dynamics (MD) code to run slider-on-block friction experiments for Al and Cu. Both objects are allowed to evolve freely and show marked deformation despite the hardness difference. We recover realistic coefficients of friction and verify the importance of cold-welding and plastic deformations in dry sliding friction. Our first data also show a mechanism for decoupling between load and friction at high velocities. Such a mechanism can explain an increase in the coefficient of friction of metals with velocity. The study of the effects of currents on our system required the development of a suitable electrodynamic (ED) solver, as the disparity of MD and ED time scales threatened the efficiency of our code. Our first simulations combining ED and MD are presented.

  11. Surface friction measurements of fine-graded asphalt mixtures : final report, June 2008.

    DOT National Transportation Integrated Search

    2008-06-01

    Skid resistance is generated by the development of friction between the vehicle tire and : roadway surface, and is partially dependent upon the characteristics of the pavement : texture. Microtexture and macrotexture are the critical components of pa...

  12. An analysis of the Dahl friction model and its effect on a CMG gimbal rate controller

    NASA Technical Reports Server (NTRS)

    Nurre, G. S.

    1974-01-01

    The effects of friction, represented by the Dahl model, on a CMG rate control system was investigated by digital simulation. The conclusion from these simulation results is that gimbal pivot friction can be a significant effect on the gimbal rate control system. The magnitude of the problem this presents depends on the characteristics of the actual pivot. It would appear from this preliminary look that one solution is to insure that the control system natural frequency is higher by some prescribed amount than the natural frequency of the friction loop.

  13. Contact line friction of electrowetting actuated viscous droplets

    NASA Astrophysics Data System (ADS)

    Vo, Quoc; Tran, Tuan

    2018-06-01

    We examine the contact line friction coefficient of viscous droplets spreading and retracting on solid surfaces immersed in ambient oil. By using the electrowetting effect, we generate a surface tension imbalance to drive the spreading and the retracting motion of the three-phase contact line (TCL). We show that neither the driving force intensity nor TCL direction significantly influences the friction coefficient. Instead, the friction coefficient depends equivalently on the viscosity of liquid droplets and the surrounding oil. We derive and experimentally verify a transient timescale that can be used to characterize both the spreading and retracting dynamics.

  14. The influence of bed friction variability due to land cover on storm-driven barrier island morphodynamics

    USGS Publications Warehouse

    Passeri, Davina L.; Long, Joseph W.; Plant, Nathaniel G.; Bilskie, Matthew V.; Hagen, Scott C.

    2018-01-01

    Variations in bed friction due to land cover type have the potential to influence morphologic change during storm events; the importance of these variations can be studied through numerical simulation and experimentation at locations with sufficient observational data to initialize realistic scenarios, evaluate model accuracy and guide interpretations. Two-dimensional in the horizontal plane (2DH) morphodynamic (XBeach) simulations were conducted to assess morphodynamic sensitivity to spatially varying bed friction at Dauphin Island, AL using hurricanes Ivan (2004) and Katrina (2005) as experimental test cases. For each storm, three bed friction scenarios were simulated: (1) a constant Chezy coefficient across land and water, (2) a constant Chezy coefficient across land and depth-dependent Chezy coefficients across water, and (3) spatially varying Chezy coefficients across land based on land use/land cover (LULC) data and depth-dependent Chezy coefficients across water. Modeled post-storm bed elevations were compared qualitatively and quantitatively with post-storm lidar data. Results showed that implementing spatially varying bed friction influenced the ability of XBeach to accurately simulate morphologic change during both storms. Accounting for frictional effects due to large-scale variations in vegetation and development reduced cross-barrier sediment transport and captured overwash and breaching more accurately. Model output from the spatially varying friction scenarios was used to examine the need for an existing sediment transport limiter, the influence of pre-storm topography and the effects of water level gradients on storm-driven morphodynamics.

  15. Control system for maximum use of adhesive forces of a railway vehicle in a tractive mode

    NASA Astrophysics Data System (ADS)

    Spiryagin, Maksym; Lee, Kwan Soo; Yoo, Hong Hee

    2008-04-01

    The realization of maximum adhesive forces for a railway vehicle is a very difficult process, because it involves using tractive efforts and depends on friction characteristics in the contact zone between wheels and rails. Tractive efforts are realized by means of tractive torques of motors, and their maximum values can provide negative effects such as slip and skid. These situations usually happen when information about friction conditions is lacking. The negative processes have a major influence on wearing of contact bodies and tractive units. Therefore, many existing control systems for vehicles use an effect of a prediction of a friction coefficient between wheels and rails because measuring a friction coefficient at the moment of running vehicle movement is very difficult. One of the ways to solve this task is to use noise spectrum analysis for friction coefficient detection. This noise phenomenon has not been clearly studied and analyzed. In this paper, we propose an adhesion control system of railway vehicles based on an observer, which allows one to determine the maximum tractive torque based on the optimal adhesive force between the wheels (wheel pair) of a railway vehicle and rails (rail track) depending on weight load from a wheel to a rail, friction conditions in the contact zone, a lateral displacement of wheel set and wheel sleep. As a result, it allows a railway vehicle to be driven in a tractive mode by the maximum adhesion force for real friction conditions.

  16. A COSMIC COINCIDENCE: THE POWER-LAW GALAXY CORRELATION FUNCTION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Watson, Douglas F.; Berlind, Andreas A.; Zentner, Andrew R.

    We model the evolution of galaxy clustering through cosmic time to investigate the nature of the power-law shape of {xi}(r), the galaxy two-point correlation function. While {xi}(r) at large scales is set by primordial fluctuations, departures from a power law are governed by galaxy pair counts at small scales, subject to nonlinear dynamics. We assume that galaxies reside within dark matter halos and subhalos. Therefore, the shape of the correlation function at small scales depends on the amount of halo substructure. We use a semi-analytic substructure evolution model to study subhalo populations within host halos. We find that tidal massmore » loss and, to a lesser extent, dynamical friction dramatically deplete the number of subhalos within larger host halos over time, resulting in a {approx}90% reduction by z = 0 compared to the number of distinct mergers that occur during the assembly of a host halo. We show that these nonlinear processes resulting in this depletion are essential for achieving a power law {xi}(r). We investigate how the shape of {xi}(r) depends on subhalo mass (or luminosity) and redshift. We find that {xi}(r) breaks from a power law at high masses, implying that only galaxies of luminosities {approx}< L{sub *} should exhibit power-law clustering. Moreover, we demonstrate that {xi}(r) evolves from being far from a power law at high redshift, toward a near power-law shape at z = 0. We argue that {xi}(r) will once again evolve away from a power law in the future. This is in large part caused by the evolving competition between the accretion and destruction rates of subhalos over time, which happen to strike just the right balance at z {approx} 0. We then investigate the conditions required for {xi}(r) to be a power law in a general context. We use the halo model, along with simple parameterizations of the halo occupation distribution, to probe galaxy occupation at various masses and redshifts. We show that the key ingredients determining the shape of {xi}(r) are the fraction of galaxies that are satellites, the relative difference in mass between the halos of isolated galaxies and halos that contain a single satellite on average, and the rareness of halos that host galaxies. These pieces are intertwined and we find no simple, universal rule for which a power law {xi}(r) will occur. However, we do show that the physics responsible for setting the galaxy content of halos do not care about the conditions needed to achieve a power law {xi}(r) and that these conditions are met only in a narrow mass and redshift range. We conclude that the power-law nature of {xi}(r) for L{sub *} and fainter galaxy samples at low redshift is a cosmic coincidence.« less

  17. Proactive Collective Bargaining for School Board Members.

    ERIC Educational Resources Information Center

    California School Boards Association, Sacramento.

    This handbook is a guide to the collective bargaining process for school board members. It emphasizes the need for school boards to take the initiative in setting goals, reducing the potential for friction, and preserving management prerogatives against the competing responsibility to bargain in good faith under the law. Chapter 1 describes the…

  18. Political Therapeutics: Dialogues and Frictions Around Care and Cure.

    PubMed

    Giordano, Cristiana

    2018-01-01

    In 1978, Italy passed a law establishing the abolition of the mental hospital. Up to that time, the traditional asylums were still governed by the 1904 law that positioned psychiatry within the criminal justice system by assigning it the function of custodia (control, custody) rather than of cura (care). In the 1960s and 1970s, Italian psychiatrist Franco Basaglia initiated a movement of de-institutionalization of the mentally ill that revolutionized psychiatric care in Italy. It also had a deep impact on restructuring the psychiatric system in other European and Latin American countries. In this article, I discuss the different psychiatric practices and imaginaries that resulted from the movement of democratic psychiatry and Basaglia's visions for a community-based and diagnosis-free care of the mentally ill. I ethnographically trace what I call the "Basaglia effect" in today's psychiatric practices, and focus on ethnopsychiatry as a counter clinic that emerged from Basaglia's legacy. I reflect on the frictions between care and cure that ethnopsychiatry re-articulates and works with in the context of contemporary migrations to Europe.

  19. The role of frictional stress in misfit dislocation generation

    NASA Technical Reports Server (NTRS)

    Jesser, William A.

    1992-01-01

    An evaluation is undertaken of the implications of the friction and frictionless models of misfit dislocation generation in view of: (1) experimental measurements of the critical thickness above which misfit dislocation generation occurs; and (2) the amount of strain relaxation that occurs as a function of layer thickness, time, and temperature. Some of the frictional force terms that were expected to exhibit a strong temperature dependence are shown to be independent of temperature.

  20. Mechanical response of the flux lines in ceramic YBa2Cu3O7-δ

    NASA Astrophysics Data System (ADS)

    Luzuriaga, J.; André, M.-O.; Benoit, W.

    1992-06-01

    We have studied the mechanical response of the flux-line lattice (FLL) in ceramic samples of YBa2Cu3O7 by means of a low-frequency forced pendulum. The internal friction and elastic modulus variation of the FLL have been measured as a function of temperature for different values of the applied stress. A somewhat different behavior was observed whether a zero-field-cooling or field-cooling procedure was followed. Measurements of the internal friction and elastic modulus as a function of the applied stress at constant temperature show amplitude-dependent dissipation, with a maximum dissipation at intermediate values of the stress. This dependence is well fitted by a rheological model of extended dry friction, if we restrict ourselves to the dissipation and modulus at fixed temperature. The agreement is not so good when attempting to extend the model to fit the temperature dependence.

  1. In-flight Compressible Turbulent Boundary Layer Measurements on a Hollow Cylinder at a Mach Number of 3.0

    NASA Technical Reports Server (NTRS)

    Quinn, R. D.; Gong, L.

    1978-01-01

    Skin temperatures, shearing forces, surface static pressures, and boundary layer pitot pressures and total temperatures were measured on a hollow cylinder 3.04 meters long and 0.437 meter in diameter mounted beneath the fuselage of the YF-12A airplane. The data were obtained at a nominal free stream Mach number of 3.0 and at wall-to-recovery temperature ratios of 0.66 to 0.91. The free stream Reynolds number had a minimal value of 4.2 million per meter. Heat transfer coefficients and skin friction coefficients were derived from skin temperature time histories and shear force measurements, respectively. Boundary layer velocity profiles were derived from pitot pressure measurements, and a Reynolds analogy factor of 1.11 was obtained from the measured heat transfer and skin friction data. The skin friction coefficients predicted by the theory of van Driest were in excellent agreement with the measurements. Theoretical heat transfer coefficients, in the form of Stanton numbers calculated by using a modified Reynolds analogy between skin friction and heat transfer, were compared with measured values. The measured velocity profiles were compared to Coles' incompressible law-of-the-wall profile.

  2. Skin friction measurements of mathematically generated roughness in the transitionally- to fully-rough regimes

    NASA Astrophysics Data System (ADS)

    Barros, Julio; Schultz, Michael; Flack, Karen

    2016-11-01

    Engineering systems are affected by surface roughness which cause an increase in drag leading to significant performance penalties. One important question is how to predict frictional drag purely based upon surface topography. Although significant progress has been made in recent years, this has proven to be challenging. The present work takes a systematic approach by generating surface roughness in which surfaces parameters, such as rms , skewness, can be controlled. Surfaces were produced using the random Fourier modes method with enforced power-law spectral slopes. The surfaces were manufactured using high resolution 3D-printing. In this study three surfaces with constant amplitude and varying slope, P, were investigated (P = - 0 . 5 , - 1 . 0 , - 1 . 5). Skin-friction measurements were conducted in a high Reynolds number turbulent channel flow facility, covering a wide range of Reynolds numbers, from hydraulic-smooth to fully-rough regimes. Results show that some long wavelength roughness scales do not contribute significantly to the frictional drag, thus highlighting the need for filtering in the calculation of surface statistics. Upon high-pass filtering, it was found that krms is highly correlated with the measured ks.

  3. Rheology of concentrated suspensions of non-colloidal rigid fibers

    NASA Astrophysics Data System (ADS)

    Guazzelli, Elisabeth; Tapia, Franco; Shaikh, Saif; Butler, Jason E.; Pouliquen, Olivier

    2017-11-01

    Pressure and volume-imposed rheology is used to study suspensions of non-colloidal, rigid fibers in the concentrated regime for aspect ratios ranging from 3 to 15. The suspensions exhibit yield-stresses. Subtracting these apparent yield-stresses reveals a viscous scaling for both the shear and normal stresses. The variation in aspect ratio does not affect the friction coefficient (ratio of shear and normal stresses), but increasing the aspect ratio lowers the maximum volume fraction at which the suspension flows. Constitutive laws are proposed for the viscosities and the friction coefficient close to this maximum flowable fraction. The scaling of the stresses near this jamming transition are found to differ substantially from that of a suspension of spheres.

  4. Coulomb Mechanics And Landscape Geometry Explain Landslide Size Distribution

    NASA Astrophysics Data System (ADS)

    Jeandet, L.; Steer, P.; Lague, D.; Davy, P.

    2017-12-01

    It is generally observed that the dimensions of large bedrock landslides follow power-law scaling relationships. In particular, the non-cumulative frequency distribution (PDF) of bedrock landslide area is well characterized by a negative power-law above a critical size, with an exponent 2.4. However, the respective role of bedrock mechanical properties, landscape shape and triggering mechanisms on the scaling properties of landslide dimensions are still poorly understood. Yet, unravelling the factors that control this distribution is required to better estimate the total volume of landslides triggered by large earthquakes or storms. To tackle this issue, we develop a simple probabilistic 1D approach to compute the PDF of rupture depths in a given landscape. The model is applied to randomly sampled points along hillslopes of studied digital elevation models. At each point location, the model determines the range of depth and angle leading to unstable rupture planes, by applying a simple Mohr-Coulomb rupture criterion only to the rupture planes that intersect downhill surface topography. This model therefore accounts for both rock mechanical properties, friction and cohesion, and landscape shape. We show that this model leads to realistic landslide depth distribution, with a power-law arising when the number of samples is high enough. The modeled PDF of landslide size obtained for several landscapes match the ones from earthquakes-driven landslides catalogues for the same landscape. In turn, this allows us to invert landslide effective mechanical parameters, friction and cohesion, associated to those specific events, including Chi-Chi, Wenchuan, Niigata and Gorkha earthquakes. The cohesion and friction ranges (25-35 degrees and 5-20 kPa) are in good agreement with previously inverted values. Our results demonstrate that reduced complexity mechanics is efficient to model the distribution of unstable depths, and show the role of landscape variability in landslide size distribution.

  5. Molecular Level Investigations of Interfacial Friction of Polymer Brush Surfaces

    NASA Astrophysics Data System (ADS)

    Perry, Scott

    2005-03-01

    The development of synthetic polymer lubricants to mimic joint lubrication within the human body will be presented. Unlike most industrial applications involving oils and greases, lubrication of these joints is accomplished in an aqueous environment. Fundamentally, water is a poor lubricant in most settings due to the weak pressure dependence of its viscosity, yet the contacting surfaces of skeletal joints function with low friction throughout a lifetime. Motivated by the molecular structure of materials making up joint surfaces, interfacial friction between polymer brush surfaces under aqueous environments has been probed with an array of molecularly sensitive surface analytical techniques including atomic force microscopy. The brush surfaces, comprised of poly(L-lysine)-g-poly(ethylene glycol) (PLL-g-PEG), have been generated through the spontaneous adsorption of polymer from solution onto oxide substrates and sodium borosilicate surfaces (AFM tip). The character of the polymer films has been investigated in-situ with the quartz crystal microbalance (QCM) and atomic force microscope (AFM) and ex-situ with ellipsometry and X-ray photoelectron spectroscopy (XPS). The interfacial friction measurements have been carried out on polymer-coated substrates with bare or polymer-coated, microsphere-attached tips in over a range of solution conditions. It was found that the adsorption of polymer on oxides strikingly reduced the interfacial friction, resulting in ultra-low friction under certain conditions. By using a series of PLL-g-PEG polymers differing from each other in PEG side-chain length and grafting ratio, we observed that frictional properties of polymer-coated interfaces strongly depend on the architecture of PLL-g-PEG. Polymer-film formation and the influence of polymer architecture will be reviewed while the role of solvent and manifestation of ultra-low friction will be discussed in detail.

  6. Large‐displacement, hydrothermal frictional properties of DFDP‐1 fault rocks, Alpine Fault, New Zealand: Implications for deep rupture propagation

    PubMed Central

    Boulton, C.; Toy, V. G.; Townend, J.; Sutherland, R.

    2016-01-01

    Abstract The Alpine Fault, New Zealand, is a major plate‐bounding fault that accommodates 65–75% of the total relative motion between the Australian and Pacific plates. Here we present data on the hydrothermal frictional properties of Alpine Fault rocks that surround the principal slip zones (PSZ) of the Alpine Fault and those comprising the PSZ itself. The samples were retrieved from relatively shallow depths during phase 1 of the Deep Fault Drilling Project (DFDP‐1) at Gaunt Creek. Simulated fault gouges were sheared at temperatures of 25, 150, 300, 450, and 600°C in order to determine the friction coefficient as well as the velocity dependence of friction. Friction remains more or less constant with changes in temperature, but a transition from velocity‐strengthening behavior to velocity‐weakening behavior occurs at a temperature of T = 150°C. The transition depends on the absolute value of sliding velocity as well as temperature, with the velocity‐weakening region restricted to higher velocity for higher temperatures. Friction was substantially lower for low‐velocity shearing (V < 0.3 µm/s) at 600°C, but no transition to normal stress independence was observed. In the framework of rate‐and‐state friction, earthquake nucleation is most likely at an intermediate temperature of T = 300°C. The velocity‐strengthening nature of the Alpine Fault rocks at higher temperatures may pose a barrier for rupture propagation to deeper levels, limiting the possible depth extent of large earthquakes. Our results highlight the importance of strain rate in controlling frictional behavior under conditions spanning the classical brittle‐plastic transition for quartzofeldspathic compositions. PMID:27610290

  7. Coefficient of friction: tribological studies in man - an overview.

    PubMed

    Sivamani, Raja K; Goodman, Jack; Gitis, Norm V; Maibach, Howard I

    2003-08-01

    Compared to other studies of skin, relatively few studies have focused on the friction of skin. This work reviews existing skin friction, emphasizing test apparatuses and parameters that have added to information regarding the friction coefficient. This review also outlines what factors are important to consider in future friction studies. Past studies have utilized numerous designs for a test apparatus, including probe geometry and material, as well as various probe motions (rotational vs. linear). Most tests were performed in vivo; a few were performed in vitro and on porcine skin. Differences in probe material, geometry and smoothness affect friction coefficient measurements. An increase in skin hydration, either through water or through moisturizer application, increases its friction coefficient; a decrease in skin hydration, either through clinical dermatitis or through alcohol addition, decreases the coefficient. Differences are present between anatomical sites. Conflicting results are found regarding age and no differences are apparent as a result of gender or race. Skin friction appears to be dependent on several factors - such as age, anatomical site and skin hydration. The choice of the probe and the test apparatus also influence the measurement.

  8. Effects of humidity and interlayer cations on the frictional strength of montmorillonite

    NASA Astrophysics Data System (ADS)

    Tetsuka, Hiroshi; Katayama, Ikuo; Sakuma, Hiroshi; Tamura, Kenji

    2018-04-01

    We developed a humidity control system in a biaxial friction testing machine to investigate the effect of relative humidity and interlayer cations on the frictional strength of montmorillonite. We carried out the frictional experiments on Na- and Ca-montmorillonite under controlled relative humidities (ca. 10, 30, 50, 70, and 90%) and at a constant temperature (95 °C). Our experimental results show that frictional strengths of both Na- and Ca-montmorillonite decrease systematically with increasing relative humidity. The friction coefficients of Na-montmorillonite decrease from 0.33 (at relative humidity of 10%) to 0.06 (at relative humidity of 93%) and those of Ca-montmorillonite decrease from 0.22 (at relative humidity of 11%) to 0.04 (at relative humidity of 91%). Our results also show that the frictional strength of Na-montmorillonite is higher than that of Ca-montmorillonite at a given relative humidity. These results reveal that the frictional strength of montmorillonite is sensitive to hydration state and interlayer cation species, suggesting that the strength of faults containing these clay minerals depends on the physical and chemical environment.[Figure not available: see fulltext.

  9. Rheology of serpentinite in high-temperature and low-slip-velocity regime

    NASA Astrophysics Data System (ADS)

    Takahashi, M.; Uehara, S.; Mizoguchi, K.; Takeda, N.; Masuda, K.

    2009-12-01

    This study was designed to clarify the rheology of serpentinite experimentally, related both the sliding velocity and the temperature. The frictional behavior of serpentinite is of particular interest in the study of earthquake generation processes along subducting plates and transform faults. Previous studies [Reinen et al., 1991-93] revealed that the serpentinites indicated two-mechanical behaviors at velocity-step test: ‘state-variable dominated behavior’ at relatively higher velocity (0.1-10 μm/sec) and ‘flow-dominated behavior’ at lower velocity (less than 0.1 μm/sec). Such complexity on the frictional behavior could make it complicated to forecast on the slip acceleration process from the plate motion velocity to the earthquake. Even under the room-temperature condition, those multiple behavior could be observed, thus, serpentinite can be a model substance to present a new constitutive law at the brittle-ductile transition regime. We, therefore, focus to discuss the transient behaviors of serpentinite at the velocity-step test. We used a gas-medium, high-pressure, and high-temperature triaxial testing machine belonging to the National Institute of Advanced Industrial Science and Technology (AIST), Japan. Sliding deformation was applied on the thin zone of the serpentinite gouge (1.0 g of almost pure antigorite powder) sandwiched between two alumina blocks with oblique surfaces at 30° to the axis. All experiments were carried out under a set of constant conditions, 100 MPa of the confining pressure (Ar-gas) and 30 MPa of the pore pressure (distilled water). The temperature conditions were varied from the room-temperature to 500° C, and three sliding velocity-regimes were adopted: low (0.0115 - 0.115 μm/sec), middle (0.115 - 1.15 μm/sec) and high (1.15 - 11.5 μm/sec) velocity regimes. In each velocity regime, the sliding velocity was increased or decreased in a stepwise fashion, and then we observed the transient behaviors until it reached the new steady-state frictional strength. Most results showed velocity-strengthening and flow-like transient behavior. Roughly said, the degree of the velocity dependence became larger with increasing the temperature until 400° C, and became larger with decreasing the velocity. At the temperature condition from 300° C to 400° C, the increasing of the velocity dependence became conspicuous with decreasing the velocity. Moreover, just after the dehydration of the antigorite started (450° - 500° C), the friction behaved unstable sliding. The rheology of the serpentinite seemed to be “not simple” at this experimental conditions on this study.

  10. Internally architectured materials with directionally asymmetric friction

    PubMed Central

    Bafekrpour, Ehsan; Dyskin, Arcady; Pasternak, Elena; Molotnikov, Andrey; Estrin, Yuri

    2015-01-01

    Internally Architectured Materials (IAMs) that exhibit different friction forces for sliding in the opposite directions are proposed. This is achieved by translating deformation normal to the sliding plane into a tangential force in a manner that is akin to a toothbrush with inclined bristles. Friction asymmetry is attained by employing a layered material or a structure with parallel ‘ribs’ inclined to the direction of sliding. A theory of directionally asymmetric friction is presented, along with prototype IAMs designed, fabricated and tested. The friction anisotropy (the ξ-coefficient) is characterised by the ratio of the friction forces for two opposite directions of sliding. It is further demonstrated that IAM can possess very high levels of friction anisotropy, with ξ of the order of 10. Further increase in ξ is attained by modifying the shape of the ribs to provide them with directionally dependent bending stiffness. Prototype IAMs produced by 3D printing exhibit truly giant friction asymmetry, with ξ in excess of 20. A novel mechanical rectifier, which can convert oscillatory movement into unidirectional movement by virtue of directionally asymmetric friction, is proposed. Possible applications include locomotion in a constrained environment and energy harvesting from oscillatory noise and vibrations. PMID:26040634

  11. Effects of rolling friction on a spinning coin or disk

    NASA Astrophysics Data System (ADS)

    Cross, Rod

    2018-05-01

    Experimental and theoretical results are presented concerning the motion of a spinning disk on a horizontal surface. The disk precesses about a vertical axis while falling either quickly or slowly onto the surface depending on the coefficient of rolling friction. The rate of fall also depends on the offset distance, in the rolling direction, between the centre of mass and the line of action of the normal reaction force. Euler’s angular momentum equations are solved to obtain estimates of both the coefficient of friction and the offset distance for a 50.6 mm diameter brass disk spinning on three different surfaces. The fall times varied from about 3 s on P800 emery paper to about 30 s on glass.

  12. Effect of Mn and Cr additions on kinetics of recrystallization and parameters of grain-boundary relaxation of Al-4.9Mg alloy

    NASA Astrophysics Data System (ADS)

    Mikhailovskaya, A. V.; Golovin, I. S.; Zaitseva, A. A.; Portnoi, V. K.; Dröttboom, P.; Cifre, J.

    2013-03-01

    Methods of microstructural analysis, measurements of hardness, and temperature and time dependences of internal friction (TDIF and TDIF(iso), respectively) have been used to study recrystallization in cold-rolled alloys and grain-boundary relaxation in annealed alloys. A complex analysis of the effect of additions of transition metals (Mn, Cr) on the magnitude of the activation energy of the background of the internal friction in deformed and annealed states and on the activation parameters of grain-boundary relaxation has been performed. Methods of amplitude dependences of internal friction (ADIF) have been used to determine the critical amplitude that corresponds to the beginning of microplastic deformation in the alloys at different temperatures.

  13. Effects of internal friction on contact formation dynamics of polymer chain

    NASA Astrophysics Data System (ADS)

    Bian, Yukun; Li, Peng; Zhao, Nanrong

    2018-04-01

    A theoretical framework is presented to study the contact formation dynamics of polymer chains, in accompany with an electron-transfer quenching. Based on a non-Markovian Smoluchowski equation supplemented with an exponential sink term, we derive the mean time of contact formation under Wilemski-Fixman approximation. Our particular attentions are paid to the effect of internal friction. We find out that internal friction induces a novel fractional viscosity dependence, which will become more remarkable as internal friction increases. Furthermore, we clarify that internal friction inevitably promotes a diffusion-controlled mechanism by slowing the chain relaxation. Finally, we apply our theory to rationalise the experimental investigation for contact formation of a single-stranded DNA. The theoretical results can reproduce the experimental data very well with quite reasonable estimation for the intrinsic parameters. Such good agreements clearly demonstrate the validity of our theory which has appropriately addressed the very role of internal friction to the relevant dynamics.

  14. Thermal analysis of a reactive generalized Couette flow of power law fluids between concentric cylindrical pipes

    NASA Astrophysics Data System (ADS)

    Makinde, O. D.

    2014-12-01

    In this paper, the steady generalized axial Couette flow of Ostwald-de Waele power law reactive fluids between concentric cylindrical pipes is investigated. It is assumed that the outer cylinder is stationary and exchanges heat with the ambient surrounding following Newton's law of cooling, while the inner cylinder with isothermal surface is set in motion in the axial direction. The model nonlinear differential equations for the momentum and energy balance are obtained and tackled numerically using the shooting method coupled with the Runge-Kutta-Fehlberg integration technique. The effects of various embedded thermophysical parameters on the velocity and temperature fields including skin friction, Nusselt number and thermal criticality conditions are presented graphically and discussed quantitatively.

  15. Modeling and calculation of impact friction caused by corner contact in gear transmission

    NASA Astrophysics Data System (ADS)

    Zhou, Changjiang; Chen, Siyu

    2014-09-01

    Corner contact in gear pair causes vibration and noise, which has attracted many attentions. However, teeth errors and deformation make it difficulty to determine the point situated at corner contact and study the mechanism of teeth impact friction in the current researches. Based on the mechanism of corner contact, the process of corner contact is divided into two stages of impact and scratch, and the calculation model including gear equivalent error—combined deformation is established along the line of action. According to the distributive law, gear equivalent error is synthesized by base pitch error, normal backlash and tooth profile modification on the line of action. The combined tooth compliance of the first point lying in corner contact before the normal path is inversed along the line of action, on basis of the theory of engagement and the curve of tooth synthetic compliance & load-history. Combined secondarily the equivalent error with the combined deflection, the position standard of the point situated at corner contact is probed. Then the impact positions and forces, from the beginning to the end during corner contact before the normal path, are calculated accurately. Due to the above results, the lash model during corner contact is founded, and the impact force and frictional coefficient are quantified. A numerical example is performed and the averaged impact friction coefficient based on the presented calculation method is validated. This research obtains the results which could be referenced to understand the complex mechanism of teeth impact friction and quantitative calculation of the friction force and coefficient, and to gear exact design for tribology.

  16. Aircraft Drag Prediction and Reduction. Addendum 1,

    DTIC Science & Technology

    1986-04-01

    are presented in figures 13, 14. In one case ( Eppler airfoil ) the agreement between measured and calculated skin-friction distribution is seen to be...FRICTION VALUES ON THE UPPERSIDE OF THE EPPLER 003 AIRFOIL 460 Fig. 13 Example of skin friction prediction (1) (from ref. 4) 450 MSH1 EXTENT REQUIRED...fast ccmputer with suificiutly large mmory. Figure 9 presents an example of the pressure drag dependence on mesh d naity for a 2D lifting airfoil with a

  17. Computer simulation of earthquakes

    NASA Technical Reports Server (NTRS)

    Cohen, S. C.

    1976-01-01

    Two computer simulation models of earthquakes were studied for the dependence of the pattern of events on the model assumptions and input parameters. Both models represent the seismically active region by mechanical blocks which are connected to one another and to a driving plate. The blocks slide on a friction surface. In the first model elastic forces were employed and time independent friction to simulate main shock events. The size, length, and time and place of event occurrence were influenced strongly by the magnitude and degree of homogeniety in the elastic and friction parameters of the fault region. Periodically reoccurring similar events were frequently observed in simulations with near homogeneous parameters along the fault, whereas, seismic gaps were a common feature of simulations employing large variations in the fault parameters. The second model incorporated viscoelastic forces and time-dependent friction to account for aftershock sequences. The periods between aftershock events increased with time and the aftershock region was confined to that which moved in the main event.

  18. Enhancement of the water flow velocity through carbon nanotubes resulting from the radius dependence of the friction due to electron excitations

    NASA Astrophysics Data System (ADS)

    Sokoloff, J. B.

    2018-03-01

    Secchi et al. [Nature (London) 537, 210 (2016), 10.1038/nature19315] observed a large enhancement of the permeability and slip length in carbon nanotubes when the tube radius is of the order of 15 nm, but not in boron nitride nanotubes. It will be pointed out that none of the parameters that appear in the usual molecular dynamics treatments of water flow in carbon nanotubes have a length scale comparable to 15 nm, which could account for the observed flow velocity enhancement. It will be demonstrated here, however, that if the friction force between the water and the tube walls in carbon nanotubes is dominated by friction due to electron excitations in the tube walls, the enhanced flow can be accounted for by a reduction in the contribution to the friction due to electron excitations in the wall, resulting from the dependence of the electron energy band gap on the tube radius.

  19. Frictional slip of granite at hydrothermal conditions

    USGS Publications Warehouse

    Blanpied, M.L.; Lockner, D.A.; Byerlee, J.D.

    1995-01-01

    To measure the strength, sliding behavior, and friction constitutive properties of faults at hydrothermal conditions, laboratory granite faults containing a layer of granite powder (simulated gouge) were slid. The mechanical results define two regimes. The first regime includes dry granite up to at least 845?? and wet granite below 250??C. In this regime the coefficient of friction is high (?? = 0.7 to 0.8) and depends only modestly on temperature, slip rate, and PH2O. The second regime includes wet granite above ~350??C. In this regime friction decreases considerably with increasing temperature (temperature weakening) and with decreasing slip rate (velocity strengthening). These regimes correspond well to those identified in sliding tests on ultrafine quartz. The results highlight the importance of fluid-assisted deformation processes active in faults at depth and the need for laboratory studies on the roles of additional factors such as fluid chemistry, large displacements, higher concentrations of phyllosilicates, and time-dependent fault healing. -from Authors

  20. Meniscus formation in a capillary and the role of contact line friction.

    PubMed

    Andrukh, Taras; Monaenkova, Daria; Rubin, Binyamin; Lee, Wah-Keat; Kornev, Konstantin G

    2014-01-28

    We studied spontaneous formation of an internal meniscus by dipping glass capillaries of 25 μm to 350 μm radii into low volatile hexadecane and tributyl phosphate. X-ray phase contrast and high speed optical microscopy imaging were employed. We showed that the meniscus completes its formation when the liquid column is still shorter than the capillary radius. After that, the meniscus travels about ten capillary radii at a constant velocity. We demonstrated that the experimental observations can be explained by introducing a friction force linearly proportional to the meniscus velocity with a friction coefficient depending on the air/liquid/solid triplet. It was demonstrated that the friction coefficient does not depend on the capillary radius. Numerical solution of the force balance equation revealed four different uptake regimes that can be specified in a phase portrait. This phase portrait was found to be in good agreement with the experimental results and can be used as a guide for the design of thin porous absorbers.

  1. Prediction of friction factor of pure water flowing inside vertical smooth and microfin tubes by using artificial neural networks

    NASA Astrophysics Data System (ADS)

    Çebi, A.; Akdoğan, E.; Celen, A.; Dalkilic, A. S.

    2017-02-01

    An artificial neural network (ANN) model of friction factor in smooth and microfin tubes under heating, cooling and isothermal conditions was developed in this study. Data used in ANN was taken from a vertically positioned heat exchanger experimental setup. Multi-layered feed-forward neural network with backpropagation algorithm, radial basis function networks and hybrid PSO-neural network algorithm were applied to the database. Inputs were the ratio of cross sectional flow area to hydraulic diameter, experimental condition number depending on isothermal, heating, or cooling conditions and mass flow rate while the friction factor was the output of the constructed system. It was observed that such neural network based system could effectively predict the friction factor values of the flows regardless of their tube types. A dependency analysis to determine the strongest parameter that affected the network and database was also performed and tube geometry was found to be the strongest parameter of all as a result of analysis.

  2. Friction characteristics of trocars in laparoscopic surgery.

    PubMed

    Alazmani, Ali; Roshan, Rupesh; Jayne, David G; Neville, Anne; Culmer, Peter

    2015-04-01

    This article investigates the friction characteristics of the instrument-trocar interface in laparoscopic surgery for varying linear instrument velocities, trocar seal design and material, and trocar tilt. Furthermore, the effect of applying lubrication at the instrument-trocar seal interface on friction was studied. A friction testing apparatus was designed and built to characterise the resistance force at the instrument-trocar interface as a function of the instrument's linear movement in the 12-mm trocar (at constant velocity) for different design, seal material, and angle of tilt. The resistance force depended on the trocar seal design and material properties, specifically surface roughness, elasticity, hardness, the direction of movement, and the instrument linear velocity, and varied between 0.25 and 8 N. Lubricating the shaft with silicone oil reduced the peak resistance force by 75% for all trocars and eliminated the stick-slip phenomenon evident in non-lubricated cases. The magnitude of fluctuation in resistance force depends on the trocar design and is attributed to stick-slip of the sealing mechanism and is generally higher during retraction in comparison to insertion. Trocars that have an inlet seal made of rubber/polyurethane showed higher resistance forces during retraction. Use of a lubricant significantly reduced frictional effects. Comparisons of the investigated trocars indicate that a low friction port, providing the surgeon with improved haptic feedback, can be designed by improving the tribological properties of the trocar seal interface. © IMechE 2015.

  3. Time-resolved observation of thermally activated rupture of a capillary-condensed water nanobridge

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bak, Wan; Sung, Baekman; Kim, Jongwoo

    2015-01-05

    The capillary-condensed liquid bridge is one of the most ubiquitous forms of liquid in nature and contributes significantly to adhesion and friction of biological molecules as well as microscopic objects. Despite its important role in nanoscience and technology, the rupture process of the bridge is not well understood and needs more experimental works. Here, we report real-time observation of rupture of a capillary-condensed water nanobridge in ambient condition. During slow and stepwise stretch of the nanobridge, we measured the activation time for rupture, or the latency time required for the bridge breakup. By statistical analysis of the time-resolved distribution ofmore » activation time, we show that rupture is a thermally activated stochastic process and follows the Poisson statistics. In particular, from the Arrhenius law that the rupture rate satisfies, we estimate the position-dependent activation energies for the capillary-bridge rupture.« less

  4. Rheology of the Ronne Ice Shelf, Antarctica, Inferred from Satellite Radar Interferometry Data using an Inverse Control Method

    NASA Technical Reports Server (NTRS)

    Larour, E.; Rignot, E.; Joughin, I.; Aubry, D.

    2005-01-01

    The Antarctic Ice Sheet is surrounded by large floating ice shelves that spread under their own weight into the ocean. Ice shelf rigidity depends on ice temperature and fabrics, and is influenced by ice flow and the delicate balance between bottom and surface accumulation. Here, we use an inverse control method to infer the rigidity of the Ronne Ice Shelf that best matches observations of ice velocity from satellite radar interferometry. Ice rigidity, or flow law parameter B, is shown to vary between 300 and 900 kPa a(sup 1/3). Ice is softer along the side margins due to frictional heating, and harder along the outflow of large glaciers, which advect cold continental ice. Melting at the bottom surface of the ice shelf increases its rigidity, while freezing decreases it. Accurate numerical modelling of ice shelf flow must account for this spatial variability in mechanical characteristics.

  5. Application of an enriched FEM technique in thermo-mechanical contact problems

    NASA Astrophysics Data System (ADS)

    Khoei, A. R.; Bahmani, B.

    2018-02-01

    In this paper, an enriched FEM technique is employed for thermo-mechanical contact problem based on the extended finite element method. A fully coupled thermo-mechanical contact formulation is presented in the framework of X-FEM technique that takes into account the deformable continuum mechanics and the transient heat transfer analysis. The Coulomb frictional law is applied for the mechanical contact problem and a pressure dependent thermal contact model is employed through an explicit formulation in the weak form of X-FEM method. The equilibrium equations are discretized by the Newmark time splitting method and the final set of non-linear equations are solved based on the Newton-Raphson method using a staggered algorithm. Finally, in order to illustrate the capability of the proposed computational model several numerical examples are solved and the results are compared with those reported in literature.

  6. Interactions between water and 1-butyl-1-methylpyrrolidinium ionic liquids

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fadeeva, Tatiana A.; DeVine, Jessalyn A.; Castner, Edward W., E-mail: ed.castner@rutgers.edu

    2015-08-14

    We report experimental results on the diffusivity of water in two ionic liquids obtained using the pulsed-gradient spin-echo NMR method. Both ionic liquids have the same cation, 1-butyl-1-methylpyrrolidinium, but different trifluoromethyl-containing anions. One has a strongly hydrophobic anion, bis(trifluoromethylsulfonyl)amide, while the second has a hydrophilic anion, trifluoromethylsulfonate. Transport of water in these ionic liquids is much faster than would be predicted from hydrodynamic laws, indicating that the neutral water molecules experience a very different friction than the anions and cations at the molecular level. Temperature-dependent viscosities, conductivities, and densities are reported as a function of water concentration to further analyzemore » the properties of the ionic liquid-water mixtures. These results on the properties of water in ionic liquids should be of interest to researchers in diverse areas ranging from separations, solubilizing biomass and energy technologies.« less

  7. Relationship between gas exchange, wind speed, and radar backscatter in a large wind-wave tank

    NASA Technical Reports Server (NTRS)

    Wanninkhof, Richard H.; Bliven, L. F.

    1991-01-01

    The relationships between the gas exchange, wind speed, friction velocity, and radar backscatter from the water surface was investigated using data obtained in a large water tank in the Delft (Netherlands) wind-wave tunnel, filled with water supersaturated with SF6, N2O, and CH4. Results indicate that the gas-transfer velocities of these substances were related to the wind speed with a power law dependence. Microwave backscatter from water surface was found to be related to gas transfer velocities by a relationship in the form k(gas) = a 10 exp (b A0), where k is the gas transfer velocity for the particular gas, the values of a and b are obtained from a least squares fit of the average backscatter cross section and gas transfer at 80 m, and A0 is the directional (azimuthal) averaged return.

  8. Linear modal stability analysis of bowed-strings.

    PubMed

    Debut, V; Antunes, J; Inácio, O

    2017-03-01

    Linearised models are often invoked as a starting point to study complex dynamical systems. Besides their attractive mathematical simplicity, they have a central role for determining the stability properties of static or dynamical states, and can often shed light on the influence of the control parameters on the system dynamical behaviour. While the bowed string dynamics has been thoroughly studied from a number of points of view, mainly by time-domain computer simulations, this paper proposes to explore its dynamical behaviour adopting a linear framework, linearising the friction force near an equilibrium state in steady sliding conditions, and using a modal representation of the string dynamics. Starting from the simplest idealisation of the friction force given by Coulomb's law with a velocity-dependent friction coefficient, the linearised modal equations of the bowed string are presented, and the dynamical changes of the system as a function of the bowing parameters are studied using linear stability analysis. From the computed complex eigenvalues and eigenvectors, several plots of the evolution of the modal frequencies, damping values, and modeshapes with the bowing parameters are produced, as well as stability charts for each system mode. By systematically exploring the influence of the parameters, this approach appears as a preliminary numerical characterisation of the bifurcations of the bowed string dynamics, with the advantage of being very simple compared to sophisticated numerical approaches which demand the regularisation of the nonlinear interaction force. To fix the idea about the potential of the proposed approach, the classic one-degree-of-freedom friction-excited oscillator is first considered, and then the case of the bowed string. Even if the actual stick-slip behaviour is rather far from the linear description adopted here, the results show that essential musical features of bowed string vibrations can be interpreted from this simple approach, at least qualitatively. Notably, the technique provides an instructive and original picture of bowed motions, in terms of groups of well-defined unstable modes, which is physically intuitive to discuss tonal changes observed in real bowed string.

  9. The Effect of Semi-Brittle Rheology on the Seismicity at the Subduction Interface: Coseismic and Aseismic Events

    NASA Astrophysics Data System (ADS)

    Tong, X.; Lavier, L.

    2017-12-01

    Cold and warm subduction zones usually have different seismicity and tectonic structure. Aseismic events like episodic tremor and slip (ETS) and slow slip event (SSE) are often observed in warm and young slabs which typically have less megathrust seismicity and smaller seismogenic area (e.g. southwest Japan). On the other hand, cold and old slabs (e.g. Northeast Japan) have more megathrust events and larger seismogenic area and few aseismic events. Recent studies have try to model the differences in seismic behaviors with different approaches, includes rheological heterogeneity (e.g. frictional vs. viscous), petrological heterogeneity (e.g. hydration-dehydration process and mineral phase changes), and the frictional heterogeneity (e.g. rate-and-state dependent friction). Following previous works, we proposed a new model in which the subduction channel has a temperature dependent material assembly which composed of an explicit mixture of basalt/eclogite and mantle peridotite. Our model also take into account rate and state dependent friction and pore fluid pressure. Depending on the temperature, the basalt and peridotite mixture can behave either as an elastoplastic frictional or a Maxwell viscoelastic material. To model the mixture numerically, we use DynEarthSol3D (DES3D). DES3D is a robust, adaptive, multi-dimensional, finite element method solver which has a composite Elasto-Visco-Plastic rheology. We vary the temperature profile, the ratio of basalt vs. peridotite, the rheology of the mantle peridotites and the loading rate of the subduction interface. Over multiple earthquake cycles, our two end member experiments show that megathrust earthquakes are dominate the seismicity for cold condition (e.g. Japan trench) while both coseismic and aseismic events account for the seismicity for warm condition (e.g. Nankai trench).

  10. The role of frictional contact of constituent blocks on the stability of masonry domes.

    PubMed

    Beatini, Valentina; Royer-Carfagni, Gianni; Tasora, Alessandro

    2018-01-01

    The observation of old construction works confirms that masonry domes can withstand tensile hoop stresses, at least up to a certain level. Here, such tensile resistance, rather than a priori assumed as a property of the bulk material, is attributed to the contact forces that are developed at the interfaces between interlocked blocks under normal pressure, specified by Coulomb's friction law. According to this rationale, the aspect ratio of the blocks, as well as the bond pattern, becomes of fundamental importance. To investigate the complex assembly of blocks, supposed rigid, we present a non-smooth contact dynamic analysis, implemented in a custom software based on the Project Chrono C++ framework and complemented with parametric-design interfaces for pre- and post-processing complex geometries. Through this advanced tool, we investigate the role of frictional forces resisting hoop stresses in the stability of domes, either circular or oval, under static and dynamic loading, focusing, in particular, on the structural role played by the underlying drum and the surmounting tiburium .

  11. Study on residual stresses in ultrasonic torsional vibration assisted micro-milling

    NASA Astrophysics Data System (ADS)

    Lu, Zesheng; Hu, Haijun; Sun, Yazhou; Sun, Qing

    2010-10-01

    It is well known that machining induced residual stresses can seriously affect the dimensional accuracy, corrosion and wear resistance, etc., and further influence the longevity and reliability of Micro-Optical Components (MOC). In Ultrasonic Torsional Vibration Assisted Micro-milling (UTVAM), cutting parameters, vibration parameters, mill cutter parameters, the status of wear length of tool flank are the main factors which affect residual stresses. A 2D model of UTVAM was established with FE analysis software ABAQUS. Johnson-Cook's flow stress model and shear failure principle are used as the workpiece material model and failure principle, while friction between tool and workpiece uses modified Coulomb's law whose sliding friction area is combined with sticking friction. By means of FEA, the influence rules of cutting parameters, vibration parameters, mill cutter parameters, the status of wear length of tool flank on residual stresses are obtained, which provides a basis for choosing optimal process parameters and improving the longevity and reliability of MOC.

  12. Indentation theory on a half-space of transversely isotropic multi-ferroic composite medium: sliding friction effect

    NASA Astrophysics Data System (ADS)

    Wu, F.; Wu, T.-H.; Li, X.-Y.

    2018-03-01

    This article aims to present a systematic indentation theory on a half-space of multi-ferroic composite medium with transverse isotropy. The effect of sliding friction between the indenter and substrate is taken into account. The cylindrical flat-ended indenter is assumed to be electrically/magnetically conducting or insulating, which leads to four sets of mixed boundary-value problems. The indentation forces in the normal and tangential directions are related to the Coulomb friction law. For each case, the integral equations governing the contact behavior are developed by means of the generalized method of potential theory, and the corresponding coupling field is obtained in terms of elementary functions. The effect of sliding on the contact behavior is investigated. Finite element method (FEM) in the context of magneto-electro-elasticity is developed to discuss the validity of the analytical solutions. The obtained analytical solutions may serve as benchmarks to various simplified analyses and numerical codes and as a guide for future experimental studies.

  13. Numerical modeling of short-term slow slip events in the Shikoku region considering the effect of earth tides and plate configuration

    NASA Astrophysics Data System (ADS)

    Matsuzawa, T.; Tanaka, Y.; Shibazaki, B.

    2016-12-01

    Several studies reported that occurrence of slow slip events (SSEs) in the Nankai region is affected by earth tides (e.g., Nakata et al., 2008; Ide and Tanaka, 2014; Yabe et al., 2015). The tidal effect on the SSEs is also examined by numerical studies (e.g., Hawthorne and Rubin, 2013). In our previous study, repeating SSEs in the Shikoku region are numerically reproduced, incorporating the actual plate configuration (Matsuzawa et al., 2013). In this study, we examined the behavior of SSEs in the Shikoku region, considering stress perturbation by earth tides. Our numerical model is similar to our previous study (Matsuzawa et al., 2013). A plate interface is expressed by small triangular elements. A rate- and state-dependent friction law (RS-law) with cutoff velocities is adopted as the friction law on each element. We assumed that (a-b) value in the RS-law is negative within the short-term SSE region, and positive outside the region. The short-term SSE region is based on the actual distribution of low-frequency tremor. Low effective normal stress is assumed at the depth of short-term SSEs. Calculating stress change by earth tides as in Yabe et al., (2015), we assume that the stress change is represented by periods of 10 major tides. Incorporating this stress perturbation, we calculate the evolution of slip on the plate interface. In the numerical result, repeating short-term SSEs are reproduced in the short-term SSE region. Recurrent intervals of SSEs at an isolated patch (e.g., northeastern Shikoku) have small fluctuation. Introducing tidal effect, peak velocity becomes faster than that in the case without tidal effect. On the other hand, the difference of peak velocities is not clear between the cases with and without tidal effect at widely connected SSE region (e.g., western Shikoku), as the intervals and peak velocities of SSEs are largely fluctuated in both cases. Hirahara (2016) suggested that the recurrence interval of events is synchronized to the period of external force, when these two periods are close. In our result, recurrence intervals of SSEs at the isolated patch seem to be less fluctuated in the case with tides, and perhaps, may be attracted to the period of integer multiple of the long period tides (e.g., Mf), although further examination is required to confirm this interpretation.

  14. Antifriction basalt-plastics based on polypropylene

    NASA Astrophysics Data System (ADS)

    Bashtannik, P. I.; Ovcharenko, V. G.

    1997-05-01

    A study is made of the dependence of the mechanical and friction-engineering properties of polypropylene reinforced with basalt fibers on the viscosity of the polymer matrix. It is established that the main factors that determine the mechanical properties of the plastics are the quality of impregnation of the fibers by the binder and the residual length of the reinforcing filler in the composite after extrusion and injection molding. The material that was developed has a low friction coefficient and low rate of wear within a relatively brood range of friction conditions. The basalt-plastics can be used in the rubbing parts of machines and mechanisms subjected to dry friction.

  15. Remote Estimation of River Discharge and Bathymetry: Sensitivity to Turbulent Dissipation and Bottom Friction

    NASA Astrophysics Data System (ADS)

    Simeonov, J.; Holland, K. T.

    2016-12-01

    We investigated the fidelity of a hierarchy of inverse models that estimate river bathymetry and discharge using measurements of surface currents and water surface elevation. Our most comprehensive depth inversion was based on the Shiono and Knight (1991) model that considers the depth-averaged along-channel momentum balance between the downstream pressure gradient due to gravity, the bottom drag and the lateral stresses induced by turbulence. The discharge was determined by minimizing the difference between the predicted and the measured streamwise variation of the total head. The bottom friction coefficient was assumed to be known or determined by alternative means. We also considered simplifications of the comprehensive inversion model that exclude the lateral mixing term from the momentum balance and assessed the effect of neglecting this term on the depth and discharge estimates for idealized in-bank flow in symmetric trapezoidal channels with width/depth ratio of 40 and different side-wall slopes. For these simple gravity-friction models, we used two different bottom friction parameterizations - a constant Darcy-Weisbach local friction and a depth-dependent friction related to the local depth and a constant Manning (roughness) coefficient. Our results indicated that the Manning gravity-friction model provides accurate estimates of the depth and the discharge that are within 1% of the assumed values for channels with side-wall slopes between 1/2 and 1/17. On the other hand, the constant Darcy-Weisbach friction model underpredicted the true depth and discharge by 7% and 9%, respectively, for the channel with side-wall slope of 1/17. These idealized modeling results suggest that a depth-dependent parameterization of the bottom friction is important for accurate inversion of depth and discharge and that the lateral turbulent mixing is not important. We also tested the comprehensive and the simplified inversion models for the Kootenai River near Bonners Ferry (Idaho) using in situ and remote sensing measurements of surface currents and water surface elevation obtained during a 2010 field experiment.

  16. Dynamic weakening of serpentinite gouges and bare surfaces at seismic slip rates

    PubMed Central

    Proctor, B P; Mitchell, T M; Hirth, G; Goldsby, D; Zorzi, F; Platt, J D; Di Toro, G

    2014-01-01

    To investigate differences in the frictional behavior between initially bare rock surfaces of serpentinite and powdered serpentinite (“gouge”) at subseismic to seismic slip rates, we conducted single-velocity step and multiple-velocity step friction experiments on an antigorite-rich and lizardite-rich serpentinite at slip rates (V) from 0.003 m/s to 6.5 m/s, sliding displacements up to 1.6 m, and normal stresses (σn) up to 22 MPa for gouge and 97 MPa for bare surfaces. Nominal steady state friction values (μnss) in gouge at V = 1 m/s are larger than in bare surfaces for all σn tested and demonstrate a strong σn dependence; μnss decreased from 0.51 at 4.0 MPa to 0.39 at 22.4 MPa. Conversely, μnss values for bare surfaces remained ∼0.1 with increasing σn and V. Additionally, the velocity at the onset of frictional weakening and the amount of slip prior to weakening were orders of magnitude larger in gouge than in bare surfaces. Extrapolation of the normal stress dependence for μnss suggests that the behavior of antigorite gouge approaches that of bare surfaces at σn ≥ 60 MPa. X-ray diffraction revealed dehydration reaction products in samples that frictionally weakened. Microstructural analysis revealed highly localized slip zones with melt-like textures in some cases gouge experiments and in all bare surfaces experiments for V ≥ 1 m/s. One-dimensional thermal modeling indicates that flash heating causes frictional weakening in both bare surfaces and gouge. Friction values for gouge decrease at higher velocities and after longer displacements than bare surfaces because strain is more distributed. Key Points Gouge friction approaches that of bare surfaces at high normal stress Dehydration reactions and bulk melting in serpentinite in < 1 m of slip Flash heating causes dynamic frictional weakening in gouge and bare surfaces PMID:26167425

  17. Suppression of friction by mechanical vibrations.

    PubMed

    Capozza, Rosario; Vanossi, Andrea; Vezzani, Alessandro; Zapperi, Stefano

    2009-08-21

    Mechanical vibrations are known to affect frictional sliding and the associated stick-slip patterns causing sometimes a drastic reduction of the friction force. This issue is relevant for applications in nanotribology and to understand earthquake triggering by small dynamic perturbations. We study the dynamics of repulsive particles confined between a horizontally driven top plate and a vertically oscillating bottom plate. Our numerical results show a suppression of the high dissipative stick-slip regime in a well-defined range of frequencies that depends on the vibrating amplitude, the normal applied load, the system inertia and the damping constant. We propose a theoretical explanation of the numerical results and derive a phase diagram indicating the region of parameter space where friction is suppressed. Our results allow to define better strategies for the mechanical control of friction.

  18. Quasiperiodic oscillation and possible Second Law violation in a nanosystem

    NASA Astrophysics Data System (ADS)

    Quick, R.; Singharoy, A.; Ortoleva, P.

    2013-05-01

    Simulation of a virus-like particle reveals persistent oscillation about a free-energy minimizing structure. For an icosahedral structure of 12 human papillomavirus (HPV) L1 protein pentamers, the period is about 70 picoseconds and has amplitude of about 4 Å at 300 K and pH 7. The pentamers move radially and out-of-phase with their neighbors. As temperature increases the amplitude and period decrease. Since the dynamics are shown to be friction-dominated and free-energy driven, the oscillations are noninertial. These anomalous oscillations are an apparent violation of the Second Law mediated by fluctuations accompanying nanosystem behavior.

  19. Swept Away: Exploring the Physics of Curling

    ERIC Educational Resources Information Center

    Esser, Liza

    2011-01-01

    Studying the Olympic sport of curling is a fun and engaging way to learn about the concepts of friction, forces, momentum, and Newton's laws. Each winter, the author takes her eighth-grade physical science class on a field trip to experience curling firsthand. This field trip has become a favorite of the eighth graders at Capitol Hill Day School…

  20. What Governs Friction of Silicon Oxide in Humid Environment: Contact Area between Solids, Water Meniscus around the Contact, or Water Layer Structure?

    PubMed

    Chen, Lei; Xiao, Chen; Yu, Bingjun; Kim, Seong H; Qian, Linmao

    2017-09-26

    In order to understand the interfacial parameters governing the friction force (F t ) between silicon oxide surfaces in humid environment, the sliding speed (v) and relative humidity (RH) dependences of F t were measured for a silica sphere (1 μm radius) sliding on a silicon oxide (SiO x ) surface, using atomic force microscopy (AFM), and analyzed with a mathematical model describing interfacial contacts under a dynamic condition. Generally, F t decreases logarithmically with increasing v to a cutoff value below which its dependence on interfacial chemistry and sliding condition is relatively weak. Above the cutoff value, the logarithmic v dependence could be divided into two regimes: (i) when RH is lower than 50%, F t is a function of both v and RH; (ii) in contrast, at RH ≥ 50%, F t is a function of v only, but not RH. These complicated v and RH dependences were hypothesized to originate from the structure of the water layer adsorbed on the surface and the water meniscus around the annulus of the contact area. This hypothesis was tested by analyzing F t as a function of the water meniscus area (A m ) and volume (V m ) estimated from a thermally activated water-bridge formation model. Surprisingly, it was found that F t varies linearly with V m and correlates poorly with A m at RH < 50%; and then its V m dependence becomes weaker as RH increases above 50%. Comparing the friction data with the attenuated total reflection infrared (ATR-IR) spectroscopy analysis result of the adsorbed water layer, it appeared that the solidlike water layer structure formed on the silica surface plays a critical role in friction at RH < 50% and its contribution diminishes at RH ≥ 50%. These findings give a deeper insight into the role of water condensation in friction of the silicon oxide single asperity contact under ambient conditions.

Top